Sample records for acute colitis induced

  1. Ipilimumab-induced acute severe colitis treated by infliximab.

    PubMed

    Pagès, Cecile; Gornet, Jean M; Monsel, Gentiane; Allez, Matthieu; Bertheau, Philippe; Bagot, Martine; Lebbé, Celeste; Viguier, Manuelle

    2013-06-01

    Ipilimumab (anti-CTLA-4 antibody) is a new tool for the treatment of metastatic melanoma patients that has led to an improvement in survival rates worldwide. New types of toxicities have been described with ipilimumab called 'immune-related adverse events' or irAEs. Here, we report an acute and steroid resistant case of ipilimumab-induced colitis treated with infliximab in a melanoma stage IV AJCC patient. The patient presented with acute grade 3 diarrhea after the second perfusion of ipilimumab. After the administration of intravenous steroids, the patient continued to have grade 2 diarrhea with erythematous mucous with several ulceration sites on rectosigmoidoscopy. Infliximab perfusion (5 mg/kg) was performed and resulted in resolution of symptoms within 2 days with complete healing was observed by rectal sigmoidoscopy on day 7. After failure of two further lines of chemotherapy, the patient died 10 months after the diagnosis of stage IVM1C melanoma. Treatment algorithms exist for the management of these digestive adverse events; however, some points remain unclear. No predictive marker for the occurrence of this digestive toxicity has been validated to date. Modes of administration of steroids and dosage are not clearly defined, except in cases of acute abdomen; surgery is difficult to propose for patients with a poor prognosis. Infliximab is another option for the treatment of steroid-resistant ipilimumab-induced colitis but its use in metastatic melanoma raises questions of its possible impact on the evolution of cancer. We reviewed at least 19 cases published of infliximab administration for ipilimumab-mediated colitis. Unfortunately, tolerance and cancer evolution have scarcely been reported. Thus, because more patients are being treated with CTLA-4 blockade, management of ipilimumab-induced colitis requires further studies.

  2. Formononetin Administration Ameliorates Dextran Sulfate Sodium-Induced Acute Colitis by Inhibiting NLRP3 Inflammasome Signaling Pathway.

    PubMed

    Wu, Dacheng; Wu, Keyan; Zhu, Qingtian; Xiao, Weiming; Shan, Qing; Yan, Zhigang; Wu, Jian; Deng, Bin; Xue, Yan; Gong, Weijuan; Lu, Guotao; Ding, Yanbing

    2018-01-01

    Formononetin is a kind of isoflavone compound and has been reported to possess anti-inflammatory properties. In this present study, we aimed to explore the protective effects of formononetin on dextran sulfate sodium- (DSS-) induced acute colitis. By intraperitoneal injection of formononetin in mice, the disease severity of colitis was attenuated in a dose-dependent manner, mainly manifesting as relieved clinical symptoms of colitis, mitigated colonic epithelial cell injury, and upregulations of colonic tight junction proteins levels (ZO-1, claudin-1, and occludin). Meanwhile, our study found that formononetin significantly prevented acute injury of colonic cells induced by TNF- α in vitro, specifically manifesting as the increased expressions of colonic tight junction proteins (ZO-1, claudin-1, and occludin). In addition, the result showed that formononetin could reduce the NLRP3 pathway protein levels (NLRP3, ASC, IL-1 β ) in vivo and vitro, and MCC950, the NLRP3 specific inhibitor, could alleviate the DSS-induced mice acute colitis. Furthermore, in the foundation of administrating MCC950 to inhibit activation of NLRP3 inflammasome, we failed to observe the protective effects of formononetin on acute colitis in mice. Collectively, our study for the first time confirmed the protective effects of formononetin on DSS-induced acute colitis via inhibiting the NLRP3 inflammasome pathway activation.

  3. Ginseng Berry Extract Attenuates Dextran Sodium Sulfate-Induced Acute and Chronic Colitis

    PubMed Central

    Zhang, Wei; Xu, Li; Cho, Si-Young; Min, Kyung-Jin; Oda, Tatsuya; Zhang, LiJun; Yu, Qing; Jin, Jun-O

    2016-01-01

    This study investigates the in vivo functions of ginseng berry extract (GB) as a therapy for dextran sodium sulfate (DSS)-induced colitis. C57BL/6 mice were given drinking water containing DSS (3%) for eight days to induce acute colitis. At the same time, the mice received an oral dose of GB (50 mg/kg) once daily. The GB-treated mice were less susceptible to the development of acute colitis than were control mice treated with saline, as determined by weight loss, disease activity, and colon histology. The administration of GB to DSS-treated mice also reduced the numbers and inhibited the activation of colon-infiltrating T cells, neutrophils, intestinal CD103−CD11c+ dendritic cells (cDCs), and macrophages. In addition, GB treatment promoted the migration of CD103+CD11c+ cDCs and expansion of Foxp3+ regulatory T cells in the colons of DSS-treated mice. Similarly, in the DSS-induced chronic colitis model, GB treatment improved the macroscopic and histological appearance of the colon wall when compared to untreated control mice, as indicated by longer colon length and lower histological scores. This is the first report to show that oral administration of GB suppresses immune activation and protects against experimentally induced colitis. PMID:27058552

  4. Formononetin Administration Ameliorates Dextran Sulfate Sodium-Induced Acute Colitis by Inhibiting NLRP3 Inflammasome Signaling Pathway

    PubMed Central

    Wu, Dacheng; Wu, Keyan; Zhu, Qingtian; Xiao, Weiming; Shan, Qing; Yan, Zhigang; Wu, Jian; Deng, Bin; Xue, Yan; Gong, Weijuan

    2018-01-01

    Formononetin is a kind of isoflavone compound and has been reported to possess anti-inflammatory properties. In this present study, we aimed to explore the protective effects of formononetin on dextran sulfate sodium- (DSS-) induced acute colitis. By intraperitoneal injection of formononetin in mice, the disease severity of colitis was attenuated in a dose-dependent manner, mainly manifesting as relieved clinical symptoms of colitis, mitigated colonic epithelial cell injury, and upregulations of colonic tight junction proteins levels (ZO-1, claudin-1, and occludin). Meanwhile, our study found that formononetin significantly prevented acute injury of colonic cells induced by TNF-α in vitro, specifically manifesting as the increased expressions of colonic tight junction proteins (ZO-1, claudin-1, and occludin). In addition, the result showed that formononetin could reduce the NLRP3 pathway protein levels (NLRP3, ASC, IL-1β) in vivo and vitro, and MCC950, the NLRP3 specific inhibitor, could alleviate the DSS-induced mice acute colitis. Furthermore, in the foundation of administrating MCC950 to inhibit activation of NLRP3 inflammasome, we failed to observe the protective effects of formononetin on acute colitis in mice. Collectively, our study for the first time confirmed the protective effects of formononetin on DSS-induced acute colitis via inhibiting the NLRP3 inflammasome pathway activation. PMID:29507526

  5. Fermented herbal formula KIOM-MA-128 protects against acute colitis induced by dextran sodium sulfate in mice.

    PubMed

    Kim, Dong-Gun; Lee, Mi-Ra; Yoo, Jae-Myung; Park, Kwang-Il; Ma, Jin-Yeul

    2017-07-05

    Colitis is a well-known subtype of inflammatory bowel disease and is caused by diverse factors. Previous research has shown that KIOM-MA elicits anti-inflammatory and anti-allergic effects on various diseases. KIOM-MA-128, our novel herbal formula, was generated from KIOM-MA using probiotics to improve the therapeutic efficacy. We investigated whether KIOM-MA-128 has protective activity in a mouse model of acute colitis induced by dextran sodium sulfate (DSS). Colitis was induced by DSS administered to ICR mice in drinking water. KIOM-MA-128 (125 or 250 mg/kg) was orally administered once per day. The body weights of the mice were measured daily, and colonic endoscopies were performed at 5 and 8 days. Colon length as well as histological and cytokine changes were observed at the end of drug administration. KIOM-MA-128 has pharmacological activity in an acute colitis model. KIOM-MA-128 reduced the loss of body weight and disease activity index (DAI) and inhibited the abnormally short colon lengths and the colonic damage in this mouse model of acute colitis. Moreover, KIOM-MA-128 suppressed pro-inflammatory cytokine expression and maintained the integrity of the tight junctions during DSS-induced colitis. The results indicated that KIOM-MA-128 protects against DSS-induced colitis in mice and suggested that this formula might be a candidate treatment for inflammatory bowel disease (IBD).

  6. Dextran sulfate sodium-induced acute colitis impairs dermal lymphatic function in mice.

    PubMed

    Agollah, Germaine D; Wu, Grace; Peng, Ho-Lan; Kwon, Sunkuk

    2015-12-07

    To investigate whether dermal lymphatic function and architecture are systemically altered in dextran sulfate sodium (DSS)-induced acute colitis. Balb/c mice were administered 4% DSS in lieu of drinking water ad libitum for 7 d and monitored to assess disease activity including body weight, diarrhea severity, and fecal bleeding. Control mice received standard drinking water with no DSS. Changes in mesenteric lymphatics were assessed following oral administration of a fluorescently-labelled fatty acid analogue, while dermal lymphatic function and architecture was longitudinally characterized using dynamic near-infrared fluorescence (NIRF) imaging following intradermal injection of indocyanine green (ICG) at the base of the tail or to the dorsal aspect of the left paw prior to, 4, and 7 d after DSS administration. We also measured dye clearance rate after injection of Alexa680-bovine serum albumin (BSA). NIRF imaging data was analyzed to reveal lymphatic contractile activity after selecting fixed regions of interest (ROIs) of the same size in fluorescent lymphatic vessels on fluorescence images. The averaged fluorescence intensity within the ROI of each fluorescence image was plotted as a function of imaging time and the lymphatic contraction frequency was computed by assessing the number of fluorescent pulses arriving at a ROI. Mice treated with DSS developed acute inflammation with clinical symptoms of loss of body weight, loose feces/watery diarrhea, and fecal blood, all of which were aggravated as disease progressed to 7 d. Histological examination of colons of DSS-treated mice confirmed acute inflammation, characterized by segmental to complete loss of colonic mucosa with an associated chronic inflammatory cell infiltrate that extended into the deeper layers of the wall of the colon, compared to control mice. In situ intravital imaging revealed that mice with acute colitis showed significantly fewer fluorescent mesenteric lymphatic vessels, indicating impaired

  7. 5-fluorouracil attenuates dextran sodium sulfate-induced acute colitis in mice.

    PubMed

    Xiao, Junhua; Lu, Zhanjun; Sheng, Jiaqing; Song, Yunna; Jiang, Weiliang; Liu, Fei; Zheng, Ping

    2016-03-01

    5‑Fluorouracil (5‑FU) has been predominantly used in the clinic for cancer chemotherapy. Previous studies have demonstrated that 5‑FU has an anti‑inflammatory function. In the current study, the potential therapeutic role of 5‑FU in dextran sodium sulfate (DSS)‑induced acute mouse colitis was investigated. Effects on the severity of colitis were studied via histochemical and immunohistochemical staining, cytokine levels were determined by reverse transcriptoin‑quantitative polymerase chain reaction and the effect of 5‑FU on NF‑κB was examined by western blotting. Administration of 5‑FU ameliorated the severity of acute DSS‑induced colitis. The disease activity score was significantly lower in the 5‑FU + DSS‑treated mice compared with the DSS‑treated group (P<0.01). Tumor necrosis factor‑α, interleukin‑1β and interferon γ mRNA expression levels were significantly downregulated in the colon tissue of DSS mice treated with 5‑FU compared with the untreated DSS mice (P<0.05). In addition, the number of CD4+ T cells in the colonic lamina propria and myeloperoxidase activity were significantly decreased in the 5‑FU + DSS‑treated mice (P<0.05). Furthermore, 5‑FU treatment significantly reduced p‑NF‑κB‑p56 protein expression levels in the colon tissue of DSS‑treated mice (P<0.05). The present results demonstrated that 5‑FU minimizes the abnormal immune cytokine response and relieves the pathophysiological disorders associated with experimental acute colitis. Thus, the modulating inflammatory response role of 5‑FU may be partially associated with inhibiting NF‑κB activation and 5‑FU may be a novel therapeutic strategy for the treatment of inflammatory bowel disease.

  8. Absence of stearoyl-CoA desaturase-1 does not promote DSS-induced acute colitis.

    PubMed

    Macdonald, Marcia L E; Bissada, Nagat; Vallance, Bruce A; Hayden, Michael R

    2009-12-01

    Absence of stearoyl-CoA desaturase-1 (SCD1) in mice leads to chronic inflammation of the skin and increased susceptibility to atherosclerosis, while also increasing plasma inflammatory markers. A recent report suggested that SCD1 deficiency also increases disease severity in a mouse model of inflammatory bowel disease, induced by dextran sulfate sodium (DSS). However, SCD1-deficient mice are known to consume increased amounts of water, which would also be expected to increase the intake of DSS-treated water. The aim of this study was to determine the effect of SCD1 deficiency on DSS-induced acute colitis with DSS dosing adjusted to account for genotype differences in fluid consumption. Wild-type controls were treated with 3.5% DSS for 5 days to induce moderately severe colitis, while the concentration of DSS given to SCD1-deficient mice was lowered to 2.5% to control for increased fluid consumption. Colonic inflammation was assessed by clinical and histological scoring. Although SCD1-deficient mice consumed a total intake of DSS that was greater than that of wild-type controls, colonic inflammation, colon length and fecal blood were not altered by SCD1-deficiency in DSS-induced colitis, while diarrhea and total weight loss were modestly improved. Despite SCD1 deficiency leading to chronic inflammation of the skin and increased susceptibility to atherosclerosis, it does not accelerate inflammation in the DSS-induced model of acute colitis when DSS intake is controlled. These observations suggest that SCD1 deficiency does not play a significant role in colonic inflammation in this model.

  9. The protective effects of magnolol on acute trinitrobenzene sulfonic acid‑induced colitis in rats.

    PubMed

    Zhang, Yong; Fu, Li-Tang; Tang, Fang

    2018-03-01

    The present study aimed to investigate the protective effects of magnolol on acute 2,4,6-trinitrobenzene sulfonic acid (TNBS)‑induced colitis, and its underlying mechanisms. Experimental colitis was induced by intracolonic administration of TNBS/ethanol into rats. The model rats were randomly assigned into groups: TNBS, magnolol (high, medium and low doses), and salazosulfapyridine (positive control). All intervention regimens were administered by oral gavage, once a day for 7 consecutive days, 24 h after colitis induction. Histological and biochemical changes in colonic inflammation were evaluated by hematoxylin and eosin and immunohistochemistry, respectively. Rats treated with all doses of magnolol exhibited decreased colonic myeloperoxidase activity (P<0.05 vs. TNBS), reduced serum levels of proinflammatory cytokines [including interleukin (IL)‑6 and IL‑17], and downregulated Toll‑like receptor-4 (TLR‑4) mRNA expression. Histological analysis revealed that medium and high doses of magnolol conferred an anti‑inflammatory effect, which was indicated by a decrease in disease activity index, an increase in thymus index, and downregulation of nuclear factor (NF)‑κB p65 mRNA and TLR‑4 protein expression. However, only high‑dose magnolol significantly ameliorated the elevated colon weight/length ratio. The results of the present study indicate that magnolol exerts protective effects against acute TNBS‑induced colitis in rats, and the TLR‑4/NF‑κB signaling pathway‑mediated inhibitory effect on inflammatory cascades may contribute to the protective activity of magnolol.

  10. Fucoidan Extracts Ameliorate Acute Colitis

    PubMed Central

    Lean, Qi Ying; Eri, Rajaraman D.; Fitton, J. Helen; Patel, Rahul P.; Gueven, Nuri

    2015-01-01

    Inflammatory bowel diseases (IBD), such as ulcerative colitis and Crohn’s disease, are an important cause of morbidity and impact significantly on quality of life. Overall, current treatments do not sustain a long-term clinical remission and are associated with adverse effects, which highlight the need for new treatment options. Fucoidans are complex sulphated, fucose-rich polysaccharides, found in edible brown algae and are described as having multiple bioactivities including potent anti-inflammatory effects. Therefore, the therapeutic potential of two different fucoidan preparations, fucoidan-polyphenol complex (Maritech Synergy) and depyrogenated fucoidan (DPF) was evaluated in the dextran sulphate sodium (DSS) mouse model of acute colitis. Mice were treated once daily over 7 days with fucoidans via oral (Synergy or DPF) or intraperitoneal administration (DPF). Signs and severity of colitis were monitored daily before colons and spleens were collected for macroscopic evaluation, cytokine measurements and histology. Orally administered Synergy and DPF, but not intraperitoneal DPF treatment, significantly ameliorated symptoms of colitis based on retention of body weight, as well as reduced diarrhoea and faecal blood loss, compared to the untreated colitis group. Colon and spleen weight in mice treated with oral fucoidan was also significantly lower, indicating reduced inflammation and oedema. Histological examination of untreated colitis mice confirmed a massive loss of crypt architecture and goblet cells, infiltration of immune cells and oedema, while all aspects of this pathology were alleviated by oral fucoidan. Importantly, in this model, the macroscopic changes induced by oral fucoidan correlated significantly with substantially decreased production of at least 15 pro-inflammatory cytokines by the colon tissue. Overall, oral fucoidan preparations significantly reduce the inflammatory pathology associated with DSS-induced colitis and could therefore

  11. Preventive rather than therapeutic treatment with high fiber diet attenuates clinical and inflammatory markers of acute and chronic DSS-induced colitis in mice.

    PubMed

    Silveira, Ana Letícia Malheiros; Ferreira, Adaliene Versiani Matos; de Oliveira, Marina Chaves; Rachid, Milene Alvarenga; da Cunha Sousa, Larissa Fonseca; Dos Santos Martins, Flaviano; Gomes-Santos, Ana Cristina; Vieira, Angelica Thomaz; Teixeira, Mauro Martins

    2017-02-01

    Inflammatory bowel diseases (IBDs) are chronic inflammatory disorders with important impact on global health. Prebiotic and probiotic strategies are thought to be useful in the context of experimental IBD. Here, we compared the effects of preventive versus therapeutic treatment with a high fiber diet (prebiotic) in combination or not with Bifidobacterium longum (probiotic) in a murine model of chronic colitis. Colitis was induced by adding dextran sulfate sodium (DSS) to drinking water for 6 days (acute colitis) or for 5 cycles of DSS (chronic colitis). Administration of the high fiber diet protected from acute colitis. Protection was optimal when diet was started 20 days prior to DSS. A 5-day pretreatment with acetate, a short-chain fatty acid, provided partial protection against acute colitis. In chronic colitis, pretreatment with the high fiber diet attenuated clinical and inflammatory parameters of disease. However, when the treatment with the high fiber diet started after disease had been established, overall protection was minimal. Similarly, delayed treatment with acetate or B. longum did not provide any protection even when the probiotic was associated with the high fiber diet. Preventive use of a high fiber diet or acetate clearly protects mice against acute and chronic damage induced by DSS in mice. However, protection is lost when therapies are initiated after disease has been established. These results suggest that any therapy aimed at modifying the gut environment (e.g., prebiotic or probiotic strategies) should be given early in the course of disease.

  12. Supplementation of Low- and High-fat Diets with Fermentable Fiber Exacerbates Severity of DSS-induced Acute Colitis.

    PubMed

    Miles, Jennifer P; Zou, Jun; Kumar, Matam-Vijay; Pellizzon, Michael; Ulman, Edward; Ricci, Matthew; Gewirtz, Andrew T; Chassaing, Benoit

    2017-07-01

    Lack of dietary fiber has been suggested to increase the risk of developing various chronic inflammatory diseases, whereas supplementation of diets with fiber might offer an array of health-promoting benefits. Consistent with this theme, we recently reported that in mice, compositionally defined diets that are made with purified ingredients and lack fermentable fiber promote low-grade inflammation and metabolic syndrome, both of which could be ameliorated by supplementation of such diets with the fermentable fiber inulin. Herein, we examined if, relative to a grain-based mouse diet (chow), compositionally defined diet consumption would impact development of intestinal inflammation induced by dextran sulfate sodium (DSS) and moreover, whether DSS-induced colitis might also be attenuated by diets supplemented with inulin. Analogous to their promotion of low-grade inflammation, compositionally defined diet of high- and low-fat content with cellulose increased the severity of DSS-induced colitis relative to chow. However, in contrast to the case of low-grade inflammation, addition of inulin, but not the insoluble fiber cellulose, further exacerbated the severity of colitis and its associated clinical manifestations (weight loss and bleeding) in both low- and high-fat diets. While inulin, and perhaps other fermentable fibers, can ameliorate low-grade inflammation and associated metabolic disease, it also has the potential to exacerbate disease severity in response to inducers of acute colitis.

  13. G protein-coupled receptor kinase-2-deficient mice are protected from dextran sodium sulfate-induced acute colitis.

    PubMed

    Steury, Michael D; Kang, Ho Jun; Lee, Taehyung; Lucas, Peter C; McCabe, Laura R; Parameswaran, Narayanan

    2018-06-01

    G protein-coupled receptor kinase 2 (GRK2) is a serine/threonine kinase and plays a key role in different disease processes. Previously, we showed that GRK2 knockdown enhances wound healing in colonic epithelial cells. Therefore, we hypothesized that ablation of GRK2 would protect mice from dextran sodium sulfate (DSS)-induced acute colitis. To test this, we administered DSS to wild-type (GRK2 +/+ ) and GRK2 heterozygous (GRK +/- ) mice in their drinking water for 7 days. As predicted, GRK2 +/- mice were protected from colitis as demonstrated by decreased weight loss (20% loss in GRK2 +/+ vs. 11% loss in GRK2 +/- ). lower disease activity index (GRK2 +/+ 9.1 vs GRK2 +/- 4.1), and increased colon lengths (GRK2 +/+ 4.7 cm vs GRK2 +/- 5.3 cm). To examine the mechanisms by which GRK2 +/- mice are protected from colitis, we investigated expression of inflammatory genes in the colon as well as immune cell profiles in colonic lamina propria, mesenteric lymph node, and in bone marrow. Our results did not reveal differences in immune cell profiles between the two genotypes. However, expression of inflammatory genes was significantly decreased in DSS-treated GRK2 +/- mice compared with GRK2 +/+ . To understand the mechanisms, we generated myeloid-specific GRK2 knockout mice and subjected them to DSS-induced colitis. Similar to whole body GRK2 heterozygous knockout mice, myeloid-specific knockout of GRK2 was sufficient for the protection from DSS-induced colitis. Together our results indicate that deficiency of GRK2 protects mice from DSS-induced colitis and further suggests that the mechanism of this effect is likely via GRK2 regulation of inflammatory genes in the myeloid cells.

  14. Minocycline attenuates experimental colitis in mice by blocking expression of inducible nitric oxide synthase and matrix metalloproteinases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, T.-Y.; Division of Gastroenterology and Hepatology, Tri-Service General Hospital, Taipei, Taiwan; Chu, H.-C.

    2009-05-15

    In addition to its antimicrobial activity, minocycline exerts anti-inflammatory effects in several disease models. However, whether minocycline affects the pathogenesis of inflammatory bowel disease has not been determined. We investigated the effects of minocycline on experimental colitis and its underlying mechanisms. Acute and chronic colitis were induced in mice by treatment with dextran sulfate sodium (DSS) or trinitrobenzene sulfonic acid (TNBS), and the effect of minocycline on colonic injury was assessed clinically and histologically. Prophylactic and therapeutic treatment of mice with minocycline significantly diminished mortality rate and attenuated the severity of DSS-induced acute colitis. Mechanistically, minocycline administration suppressed inducible nitricmore » oxide synthase (iNOS) expression and nitrotyrosine production, inhibited proinflammatory cytokine expression, repressed the elevated mRNA expression of matrix metalloproteinases (MMPs) 2, 3, 9, and 13, diminished the apoptotic index in colonic tissues, and inhibited nitric oxide production in the serum of mice with DSS-induced acute colitis. In DSS-induced chronic colitis, minocycline treatment also reduced body weight loss, improved colonic histology, and blocked expression of iNOS, proinflammatory cytokines, and MMPs from colonic tissues. Similarly, minocycline could ameliorate the severity of TNBS-induced acute colitis in mice by decreasing mortality rate and inhibiting proinflammatory cytokine expression in colonic tissues. These results demonstrate that minocycline protects mice against DSS- and TNBS-induced colitis, probably via inhibition of iNOS and MMP expression in intestinal tissues. Therefore, minocycline is a potential remedy for human inflammatory bowel diseases.« less

  15. DSS-induced acute colitis in C57BL/6 mice is mitigated by sulforaphane pre-treatment.

    PubMed

    Wagner, Anika E; Will, Olga; Sturm, Christine; Lipinski, Simone; Rosenstiel, Philip; Rimbach, Gerald

    2013-12-01

    The Brassica-derived isothiocyanate sulforaphane (SFN) is known to induce factor erythroid 2-related factor 2 (Nrf2), a transcription factor centrally involved in chemoprevention. Furthermore, SFN exhibits anti-inflammatory properties in vitro and in vivo. However, little is known regarding the anti-inflammatory properties of SFN in severe inflammatory phenotypes. In the present study, we tested if pre-treatment with SFN protects mice from dextran sodium sulphate (DSS)-induced colitis. C57BL/6 mice received either phosphate-buffered saline (control) or 25 mg/kg body weight (BW) SFN per os for 7 days. Subsequently, acute colitis was induced by administering 4% DSS via drinking water for 5 days and BWs, stool consistency and faecal blood loss were recorded. Following endoscopic colonoscopy, mice were sacrificed, the organs excised and spleen weights and colon lengths measured. For histopathological analysis, distal colon samples were fixed in 4% para-formaldehyde, sectioned and stained with hematoxylin/eosin. Inflammatory biomarkers were also measured in distal colon. Treatment with SFN prior to colitis induction significantly minimised both BW loss and the disease activity index compared to control mice. Furthermore, colon lengths in SFN pre-treated mice were significantly longer than in control mice. Both macroscopic and microscopic analysis of the colon revealed attenuated inflammation in SFN pre-treated animals. mRNA analysis of distal colon samples confirmed reduced expression of inflammatory markers and increased expression of Nrf2-dependent genes in SFN pre-treated mice. Our results indicate that pre-treating mice with SFN confers protection from DSS-induced colitis. These protective effects were corroborated macroscopically, microscopically and at the molecular level. © 2013.

  16. Orally Administered Enoxaparin Ameliorates Acute Colitis by Reducing Macrophage-Associated Inflammatory Responses

    PubMed Central

    Lean, Qi Ying; Eri, Rajaraman D.; Randall-Demllo, Sarron; Sohal, Sukhwinder Singh; Stewart, Niall; Peterson, Gregory M.; Gueven, Nuri; Patel, Rahul P.

    2015-01-01

    Inflammatory bowel diseases, such as ulcerative colitis, cause significant morbidity and decreased quality of life. The currently available treatments are not effective in all patients, can be expensive and have potential to cause severe side effects. This prompts the need for new treatment modalities. Enoxaparin, a widely used antithrombotic agent, is reported to possess anti-inflammatory properties and therefore we evaluated its therapeutic potential in a mouse model of colitis. Acute colitis was induced in male C57BL/6 mice by administration of dextran sulfate sodium (DSS). Mice were treated once daily with enoxaparin via oral or intraperitoneal administration and monitored for colitis activities. On termination (day 8), colons were collected for macroscopic evaluation and cytokine measurement, and processed for histology and immunohistochemistry. Oral but not intraperitoneal administration of enoxaparin significantly ameliorated DSS-induced colitis. Oral enoxaparin-treated mice retained their body weight and displayed less diarrhea and fecal blood loss compared to the untreated colitis group. Colon weight in enoxaparin-treated mice was significantly lower, indicating reduced inflammation and edema. Histological examination of untreated colitis mice showed a massive loss of crypt architecture and goblet cells, infiltration of immune cells and the presence of edema, while all aspects of this pathology were alleviated by oral enoxaparin. Reduced number of macrophages in the colon of oral enoxaparin-treated mice was accompanied by decreased levels of pro-inflammatory cytokines. Oral enoxaparin significantly reduces the inflammatory pathology associated with DSS-induced colitis in mice and could therefore represent a novel therapeutic option for the management of ulcerative colitis. PMID:26218284

  17. Angelica acutiloba Kitagawa Extract Attenuates DSS-Induced Murine Colitis

    PubMed Central

    Jang, Jong-Chan; Lee, Kang Min

    2016-01-01

    We examined the protective effects of Angelica acutiloba Kitagawa (AAK) extract on a murine model of acute experimental colitis. Colitis was induced by 4% dextran sulfate sodium (DSS) in the drinking water of male C57BL/6 mice, for 7 consecutive days. Oral administration of AAK extract (500 mg/kg/day) significantly alleviated DSS-induced symptoms such as anorexia, weight loss, events of diarrhea or bloody stools, and colon shortening. Histological damage was also ameliorated, as evidenced by the architectural preservation and suppression of inflammatory cell infiltration in colonic samples. Treatment improved the colonic mRNA expression of different inflammatory markers: cytokines, inducible enzymes, matrix metalloproteinases, and tight junction-related proteins. In the isolated serum, IgE levels were downregulated. Collectively, these findings indicate the therapeutic potentials of AAK as an effective complementary or alternative modality for the treatment of ulcerative colitis. PMID:27293323

  18. Rebamipide alleviates radiation-induced colitis through improvement of goblet cell differentiation in mice.

    PubMed

    Jang, Hyosun; Park, Sunhoo; Lee, Janet; Myung, Jae Kyung; Jang, Won-Suk; Lee, Sun-Joo; Myung, Hyunwook; Lee, Changsun; Kim, Hyewon; Lee, Seung-Sook; Jin, Young-Woo; Shim, Sehwan

    2018-04-01

    Radiation-induced colitis is a common clinical problem associated with radiotherapy and accidental exposure to ionizing radiation. Goblet cells play a pivotal role in the intestinal barrier against pathogenic bacteria. Rebamipide, an anti-gastric ulcer drug, has the effects to promote goblet cell proliferation. The aim of this study was to investigate whether radiation-induced colonic injury could be alleviated by rebamipide. This study orally administered rebamipide for 6 days to mice, which were subjected to 13 Gy abdominal irradiation, to evaluate the therapeutic effects of rebamipide against radiation-induced colitis. To confirm the effects of rebamipide on irradiated colonic epithelial cells, this study used the HT29 cell line. Rebamipide clearly alleviated the acute radiation-induced colitis, as reflected by the histopathological data, and significantly increased the number of goblet cells. The drug also inhibited intestinal inflammation and protected from bacterial translocation during acute radiation-induced colitis. Furthermore, rebamipide significantly increased mucin 2 expression in both the irradiated mouse colon and human colonic epithelial cells. Additionally, rebamipide accelerated not only the recovery of defective tight junctions but also the differentiation of impaired goblet cells in an irradiated colonic epithelium, which indicates that rebamipide has beneficial effects on the colon. Rebamipide is a therapeutic candidate for radiation-induced colitis, owing to its ability to inhibit inflammation and protect the colonic epithelial barrier. © 2017 The Authors Journal of Gastroenterology and Hepatology published by Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  19. [Acute severe colitis with recto-vaginal fistula during treatment with non-steroidal anti-inflammatory agents].

    PubMed

    Tissot, B; Lamy, A; Perraudeau, F; Manouvrier, J L; Imbert, Y

    2002-07-13

    We report the case of severe colitis occurring during treatment with non-steroid anti-inflammatories (NSAI). A 57 year-old woman was hospitalized for lumbar pain that had not been relieved by AINS, tramadol and then morphine. The patient presented with septic shock and peritonitis by rectal perforation, followed by acute rectorrhagia. The endoscopic aspect evoked Crohn's disease with a recto-vaginal fistula. Progression was further complicated by two episodes of collapse because of acute rectorrhagia, requiring hemostasis colectomy and abdominal-perineal amputation. The diagnosis retained was AINS-induced colitis complicated by acute colectasia on a fecaloma with recto-vaginal fistula.

  20. Platelet-Derived CCL5 Regulates CXC Chemokine Formation and Neutrophil Recruitment in Acute Experimental Colitis.

    PubMed

    Yu, Changhui; Zhang, Songen; Wang, Yongzhi; Zhang, Su; Luo, Lingtao; Thorlacius, Henrik

    2016-02-01

    Accumulating data suggest that platelets not only regulate thrombosis and haemostasis but also inflammatory processes. Platelets contain numerous potent pro-inflammatory compounds, including the chemokines CCL5 and CXCL4, although their role in acute colitis remains elusive. The aim of this study is to examine the role of platelets and platelet-derived chemokines in acute colitis. Acute colitis is induced in female Balb/c mice by administration of 5% dextran sodium sulfate (DSS) for 5 days. Animals receive a platelet-depleting, anti-CCL5, anti-CXCL4, or a control antibody prior to DSS challenge. Colonic tissue is collected for quantification of myeloperoxidase (MPO) activity, CXCL5, CXCL2, interleukin-6 (IL-6), and CCL5 levels as well as morphological analyses. Platelet depletion reduce tissue damage and clinical disease activity index in DSS-exposed animals. Platelet depletion not only reduces levels of CXCL2 and CXCL5 but also levels of CCL5 in the inflamed colon. Immunoneutralization of CCL5 but not CXCL4 reduces tissue damage, CXC chemokine expression, and neutrophil recruitment in DSS-treated animals. These findings show that platelets play a key role in acute colitis by regulating CXC chemokine generation, neutrophil infiltration, and tissue damage in the colon. Moreover, our results suggest that platelet-derived CCL5 is an important link between platelet activation and neutrophil recruitment in acute colitis. © 2015 Wiley Periodicals, Inc.

  1. The effect of chemically induced colitis, psychological stress and their combination on visceral pain in female Wistar rats.

    PubMed

    Deiteren, Annemie; Vermeulen, Wim; Moreels, Tom G; Pelckmans, Paul A; De Man, Joris G; De Winter, Benedicte Y

    2014-09-01

    Visceral sensitivity is of pathophysiological importance in abdominal pain disorders and can be modulated by inflammation and stress. However, it is unclear whether inflammation and stress alter visceral perception independently of each other or in conjunction through neuroendocrine interactions. Therefore, we compared the short- and long-term effects of experimental colitis and water avoidance stress (WAS), alone or in combination, on visceral sensitivity in female Wistar rats. Colitis was induced by trinitrobenzene sulfonic acid (TNBS) and colonoscopically confirmed. During WAS, rats were placed on a platform surrounded by water for 1 h. Visceral sensitivity was assessed by quantifying the visceromotor responses (VMRs) to colorectal distension. Activation of the hypothalamic-pituitary-adrenal axis was determined by measuring serum corticosterone in a separate protocol. TNBS instillation resulted in overt colitis, associated with significant visceral hypersensitivity during the acute inflammatory phase (3 days post-TNBS; n = 8/group); after colitis had subsided (28 days post-TNBS), hypersensitivity was resolved (n = 4-8/group). Single WAS was associated with increased VMRs of a magnitude comparable to acute TNBS-induced hypersensitivity (n = 8/group). However, after repetitive WAS no significant hypersensitivity was present (n = 8/group). No additive effect of colitis and stress was seen on visceral pain perception (n = 6-8/group). Corticosterone levels were only increased in acute TNBS-colitis, acute WAS and their combination. To conclude, both colitis and stress successfully induced short-term visceral hypersensitivity and activated the hypothalamic-pituitary-adrenal axis, but long-term effects were absent. In addition, our current findings do not support an additive effect of colitis and stress on visceral sensitivity in female Wistar rats.

  2. Anti-inflammatory effect of Helichrysum oligocephalum DC extract on acetic acid — Induced acute colitis in rats

    PubMed Central

    Minaiyan, Mohsen; Ghassemi-Dehkordi, Nasrollah; Mahzouni, Parvin; Ahmadi, Najme-Sadat

    2014-01-01

    Background: Helichrysum oligocephalum DC. from Asteraceae family is an endemic plant growing wild in Iran. This study was carried out to investigate the effect of H. oligocephalum hydroalcoholic extract (HOHE) on ulcerative colitis (UC) induced by acetic acid (AA) in rats. Materials and Methods: Rats were grouped (n = 6) and fasted for 24 h before colitis induction. Treatments were started 2 h before the induction of colitis and continued for two consecutive days with different doses of HOHE (100, 200, and 400 mg/kg) orally (p.o.) and intraperitoneally (i.p.). The colon tissue was removed and tissue damages were scored after macroscopic and histopathologic assessments. Results: Among the examined doses of HOHE, 100 mg/kg was the most effective dose that reduced the extent of UC lesions and resulted in significant alleviation. Weight/length ratio as an index of tissue inflammation and extravasation was also diminished in the treatment group administered HOHE at a dose of 100 mg/kg, and the results showed correlation with macroscopic and histopathologic evaluations. These data suggest that HOHE (100 mg/kg) administered either p.o. or i.p. was effective in diminishing inflammation and ulcer indices in this murine model of acute colitis in a non–dose-related manner. Conclusions: H. oligocephalum could be considered as a suitable anticolitis alternative; however, further studies are needed to support this hypothesis for clinical setting. PMID:24761395

  3. Lubiprostone induced ischemic colitis.

    PubMed

    Sherid, Muhammed; Sifuentes, Humberto; Samo, Salih; Deepak, Parakkal; Sridhar, Subbaramiah

    2013-01-14

    Ischemic colitis accounts for 6%-18% of the causes of acute lower gastrointestinal bleeding. It is often multifactorial and more commonly encountered in the elderly. Several medications have been implicated in the development of colonic ischemia. We report a case of a 54-year old woman who presented with a two-hour history of nausea, vomiting, abdominal pain, and bloody stool. The patient had recently used lubiprostone with close temporal relationship between the increase in the dose and her symptoms of rectal bleeding. The radiologic, colonoscopic and histopathologic findings were all consistent with ischemic colitis. Her condition improved without any serious complications after the cessation of lubiprostone. This is the first reported case of ischemic colitis with a clear relationship with lubiprostone (Naranjo score of 10). Clinical vigilance for ischemic colitis is recommended for patients receiving lubiprostone who are presenting with abdominal pain and rectal bleeding.

  4. Lubiprostone induced ischemic colitis

    PubMed Central

    Sherid, Muhammed; Sifuentes, Humberto; Samo, Salih; Deepak, Parakkal; Sridhar, Subbaramiah

    2013-01-01

    Ischemic colitis accounts for 6%-18% of the causes of acute lower gastrointestinal bleeding. It is often multifactorial and more commonly encountered in the elderly. Several medications have been implicated in the development of colonic ischemia. We report a case of a 54-year old woman who presented with a two-hour history of nausea, vomiting, abdominal pain, and bloody stool. The patient had recently used lubiprostone with close temporal relationship between the increase in the dose and her symptoms of rectal bleeding. The radiologic, colonoscopic and histopathologic findings were all consistent with ischemic colitis. Her condition improved without any serious complications after the cessation of lubiprostone. This is the first reported case of ischemic colitis with a clear relationship with lubiprostone (Naranjo score of 10). Clinical vigilance for ischemic colitis is recommended for patients receiving lubiprostone who are presenting with abdominal pain and rectal bleeding. PMID:23345954

  5. Heme oxygenase-1 ameliorates dextran sulfate sodium-induced acute murine colitis by regulating Th17/Treg cell balance.

    PubMed

    Zhang, Liya; Zhang, Yanjie; Zhong, Wenwei; Di, Caixia; Lin, Xiaoliang; Xia, Zhenwei

    2014-09-26

    Inflammatory bowel disease (IBD), including ulcerative colitis and Crohn's disease, is a group of autoimmune diseases characterized by nonspecific inflammation in the gastrointestinal tract. Recent investigations suggest that activation of Th17 cells and/or deficiency of regulatory T cells (Treg) is involved in the pathogenesis of IBD. Heme oxygenase (HO)-1 is a protein with a wide range of anti-inflammatory and immune regulatory function, which exerts significantly protective roles in various T cell-mediated diseases. In this study, we aim to explore the immunological regulation of HO-1 in the dextran sulfate sodium-induced model of experimental murine colitis. BALB/c mice were administered 4% dextran sulfate sodium orally; some mice were intraperitoneally pretreated with HO-1 inducer hemin or HO-1 inhibitor stannum protoporphyrin IX. The results show that hemin enhances the colonic expression of HO-1 and significantly ameliorates the symptoms of colitis with improved histological changes, accompanied by a decreased proportion of Th17 cells and increased number of Tregs in mesenteric lymph node and spleen. Moreover, induction of HO-1 down-regulates retinoic acid-related orphan receptor γt expression and IL-17A levels, while promoting Treg-related forkhead box p3 (Foxp3) expression and IL-10 levels in colon. Further study in vitro revealed that up-regulated HO-1 switched the naive T cells to Tregs when cultured under a Th17-inducing environment, which involved in IL-6R blockade. Therefore, HO-1 may exhibit anti-inflammatory activity in the murine model of acute experimental colitis via regulating the balance between Th17 and Treg cells, thus providing a possible novel therapeutic target in IBD. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Intermittent fasting prompted recovery from dextran sulfate sodium-induced colitis in mice.

    PubMed

    Okada, Toshihiko; Otsubo, Takeshi; Hagiwara, Teruki; Inazuka, Fumika; Kobayashi, Eiko; Fukuda, Shinji; Inoue, Takuya; Higuchi, Kazuhide; Kawamura, Yuki I; Dohi, Taeko

    2017-09-01

    Fasting-refeeding in mice induces transient hyperproliferation of colonic epithelial cells, which is dependent on the lactate produced as a metabolite of commensal bacteria. We attempted to manipulate colonic epithelial cell turnover with intermittent fasting to prompt recovery from acute colitis. Acute colitis was induced in C57BL/6 mice by administration of dextran sulfate sodium in the drinking water for 5 days. From day 6, mice were fasted for 36 h and refed normal bait, glucose powder, or lactylated high-amylose starch. On day 9, colon tissues were subjected to analysis of histology and cytokine expression. The effect of lactate on the proliferation of colonocytes was assessed by enema in vivo and primary culture in vitro . Intermittent fasting resulted in restored colonic crypts and less expression of interleukin-1β and interleukin-17 in the colon than in mice fed ad libitum . Administration of lactate in the colon at refeeding time by enema or by feeding lactylated high-amylose starch increased the number of regenerating crypts. Addition of lactate but not butyrate or acetate supported colony formation of colonocytes in vitro . In conclusion, intermittent fasting in the resolution phase of acute colitis resulted in better recovery of epithelial cells and reduced inflammation.

  7. Intermittent fasting prompted recovery from dextran sulfate sodium-induced colitis in mice

    PubMed Central

    Okada, Toshihiko; Otsubo, Takeshi; Hagiwara, Teruki; Inazuka, Fumika; Kobayashi, Eiko; Fukuda, Shinji; Inoue, Takuya; Higuchi, Kazuhide; Kawamura, Yuki I.; Dohi, Taeko

    2017-01-01

    Fasting-refeeding in mice induces transient hyperproliferation of colonic epithelial cells, which is dependent on the lactate produced as a metabolite of commensal bacteria. We attempted to manipulate colonic epithelial cell turnover with intermittent fasting to prompt recovery from acute colitis. Acute colitis was induced in C57BL/6 mice by administration of dextran sulfate sodium in the drinking water for 5 days. From day 6, mice were fasted for 36 h and refed normal bait, glucose powder, or lactylated high-amylose starch. On day 9, colon tissues were subjected to analysis of histology and cytokine expression. The effect of lactate on the proliferation of colonocytes was assessed by enema in vivo and primary culture in vitro. Intermittent fasting resulted in restored colonic crypts and less expression of interleukin-1β and interleukin-17 in the colon than in mice fed ad libitum. Administration of lactate in the colon at refeeding time by enema or by feeding lactylated high-amylose starch increased the number of regenerating crypts. Addition of lactate but not butyrate or acetate supported colony formation of colonocytes in vitro. In conclusion, intermittent fasting in the resolution phase of acute colitis resulted in better recovery of epithelial cells and reduced inflammation. PMID:28955126

  8. Proinflammatory and anti-inflammatory cytokines present in the acute phase of experimental colitis treated with Saccharomyces boulardii.

    PubMed

    Grijó, Nathália Nahas; Borra, Ricardo Carneiro; Sdepanian, Vera Lucia

    2010-09-01

    To study the proinflammatory and anti-inflammatory cytokines present in the acute phase of trinitrobenzene sulfonic acid (TNBS)-induced experimental colitis treated with Saccharomyces boulardii. Thirty male Wistar rats were divided into three groups: (1) treated group--received Saccharomyces boulardii for 14 days; (2) non-treated group--received sodium chloride solution for 14 days; (3) control group. Colitis was induced on the seventh day of the study in the treated and the non-treated groups using TNBS (10 mg) dissolved in 50% ethanol. Quantification of cytokines, including interleukin (IL)-1beta (IL-1beta), IL-6, transforming growth factor-beta (TGF-beta), IL-10 and tumor necrosis factor-alpha (TNF-alpha), in the serum and colonic tissue collected on day 14 were carried out using an enzyme-linked immunosorbent assay (ELISA). The mean concentrations of TGF-beta in both the serum and the colonic tissue of the treated group were statistically higher than that of the control group. The mean concentration of TGF-beta in the colonic tissue of the non-treated group was also statistically higher than the control group. The group treated with Saccharomyces boulardii showed increased amounts of TGF-beta, an anti-inflammatory cytokine, during the acute phase of colitis. There were no differences in the amount of TNF-alpha, IL-1beta, IL-6, and IL-10 between the treated and the non-treated or the control groups during the acute phase of experimental colitis induced by TNBS.

  9. Exosomes Derived from Dendritic Cells Treated with Schistosoma japonicum Soluble Egg Antigen Attenuate DSS-Induced Colitis

    PubMed Central

    Wang, Lifu; Yu, Zilong; Wan, Shuo; Wu, Feng; Chen, Wei; Zhang, Beibei; Lin, Datao; Liu, Jiahua; Xie, Hui; Sun, Xi; Wu, Zhongdao

    2017-01-01

    Exosomes are 30–150 nm small membrane vesicles that are released into the extracellular medium via cells that function as a mode of intercellular communication. Dendritic cell (DC)-derived exosomes modulate immune responses and prevent the development of autoimmune diseases. Moreover, Schistosoma japonicum eggs show modulatory effects in a mouse model of colitis. Therefore, we hypothesized that exosomes derived from DCs treated with S. japonicum soluble eggs antigen (SEA; SEA-treated DC exosomes) would be useful for treating inflammatory bowel disease (IBD). Exosomes were purified from the supernatant of DCs treated or untreated with SEA and identified via transmission electron microscopy, western blotting and NanoSight. Acute colitis was induced via the administration of dextran sulfate sodium (DSS) in drinking water (5.0%, wt/vol). Treatment with exosomes was conducted via intraperitoneal injection (i.p.; 50 μg per mouse) from day 0 to day 6. Clinical scores were calculated based on weight loss, stool type, and bleeding. Colon length was measured as an indirect marker of inflammation, and colon macroscopic characteristics were determined. Body weight loss and the disease activity index of DSS-induced colitis mice decreased significantly following treatment with SEA-treated DC exosomes. Moreover, the colon lengths of SEA-treated DC exosomes treated colitis mice improved, and their mean colon macroscopic scores decreased. In addition, histologic examinations and histological scores showed that SEA-treated DC exosomes prevented colon damage in acute DSS-induced colitis mice. These results indicate that SEA-treated DC exosomes attenuate the severity of acute DSS-induced colitis mice more effectively than DC exosomes. The current work suggests that SEA-treated DC exosomes may be useful as a new approach to treat IBD. PMID:28959207

  10. [A case of acute pancreatitis caused by 5-aminosalicylic acid suppositories in a patient with ulcerative colitis].

    PubMed

    Kim, Kook Hyun; Kim, Tae Nyeun; Jang, Byung Ik

    2007-12-01

    Oral 5-aminosalicylic acid (5-ASA) has been known as a first-choice drug for ulcerative colitis. However, hypersensitivity reactions, including pancreatitis, hepatitis, and skin rash, have been reported with 5-ASA. Topical formulations of 5-ASA like suppositories have been rarely reported to induce adverse reactions because of their limited absorption rate. We recently experienced a case of acute pancreatitis caused by 5-ASA suppositories in a patient with ulcerative colitis. A 26-year-old male was admitted with abdominal pain and diagnosed as ulcerative colitis. Acute pancreatitis occurred soon after 24 hours of treatment with oral mesalazine. Drug-induced pancreatitis was suspected and administration of mesalazine was discontinued. Then 5-ASA suppositories were started instead of oral mesalazine. Twenty-four hours after taking 5-ASA suppositories, he experienced severe abdominal pain, fever, and elevation of amylase levels. The suppositories were immediately stopped and symptoms resolved over next 48 hours. Herein, we suggest that, in patients treated with 5-ASA suppositories who complain of severe abdominal pain, drug-induced pancreatitis should be suspected.

  11. Oral delivery of Lactococcus lactis that secretes bioactive heme oxygenase-1 alleviates development of acute colitis in mice.

    PubMed

    Shigemori, Suguru; Watanabe, Takafumi; Kudoh, Kai; Ihara, Masaki; Nigar, Shireen; Yamamoto, Yoshinari; Suda, Yoshihito; Sato, Takashi; Kitazawa, Haruki; Shimosato, Takeshi

    2015-11-25

    Mucosal delivery of therapeutic proteins using genetically modified strains of lactic acid bacteria (gmLAB) is being investigated as a new therapeutic strategy. We developed a strain of gmLAB, Lactococcus lactis NZ9000 (NZ-HO), which secretes the anti-inflammatory molecule recombinant mouse heme oxygenase-1 (rmHO-1). The effects of short-term continuous oral dosing with NZ-HO were evaluated in mice with dextran sulfate sodium (DSS)-induced acute colitis as a model of inflammatory bowel diseases (IBD). We identified the secretion of rmHO-1 by NZ-HO. rmHO-1 was biologically active as determined with spectroscopy. Viable NZ-HO was directly delivered to the colon via oral administration, and rmHO-1 was secreted onto the colonic mucosa in mice. Acute colitis in mice was induced by free drinking of 3 % DSS in water and was accompanied by an increase in the disease activity index score and histopathological changes. Daily oral administration of NZ-HO significantly improved these colitis-associated symptoms. In addition, NZ-HO significantly increased production of the anti-inflammatory cytokine interleukin (IL)-10 and decreased the expression of pro-inflammatory cytokines such as IL-1α and IL-6 in the colon compared to a vector control strain. Oral administration of NZ-HO alleviates DSS-induced acute colitis in mice. Our results suggest that NZ-HO may be a useful mucosal therapeutic agent for treating IBD.

  12. The expression of REG 1A and REG 1B is increased during acute amebic colitis.

    PubMed

    Peterson, Kristine M; Guo, Xiaoti; Elkahloun, Abdel G; Mondal, Dinesh; Bardhan, Pradip K; Sugawara, Akira; Duggal, Priya; Haque, Rashidul; Petri, William A

    2011-09-01

    Entamoeba histolytica, a protozoan parasite, is an important cause of diarrhea and colitis in the developing world. Amebic colitis is characterized by ulceration of the intestinal mucosa. We performed microarray analysis of intestinal biopsies during acute and convalescent amebiasis in order to identify genes potentially involved in tissue injury or repair. Colonic biopsy samples were obtained from 8 patients during acute E. histolytica colitis and again 60 days after recovery. Gene expression in the biopsies was evaluated using microarray, and confirmed by reverse transcriptase quantitative polymerase chain reaction (RT-qPCR). REG 1A and REG 1B were the most up-regulated of all genes in the human intestine in acute versus convalescent E. histolytica disease: as determined by microarray, the levels of induction were 7.4-fold and 10.7 fold for REG 1A and B; p=0.003 and p=0.006 respectively. Increased expression of REG 1A and REG 1B protein in the colonic crypt epithelial cells during acute amebiasis was similarly observed by immunohistochemistry. Because REG 1 protein is anti-apoptotic and pro-proliferative, and since E. histolytica induces apoptosis of the intestinal epithelium as part of its disease process, we next tested if REG 1 might be protective during amebiasis by preventing parasite-induced apoptosis. Intestinal epithelial cells from REG 1-/- mice were found to be more susceptible to spontaneous, and parasite-induced, apoptosis in vitro (p=0.03). We concluded that REG 1A and REG 1B were upregulated during amebiasis and may function to protect the intestinal epithelium from parasite-induced apoptosis. Published by Elsevier Ireland Ltd.

  13. Chronic intermittent psychosocial stress (social defeat/overcrowding) in mice increases the severity of an acute DSS-induced colitis and impairs regeneration.

    PubMed

    Reber, S O; Obermeier, F; Straub, R H; Straub, H R; Falk, W; Neumann, I D

    2006-10-01

    Ulcerative colitis is a multifactorial disease, with immunological, genetic, and environmental factors playing an important role in its pathogenesis. Here we investigated the consequences of exposure to chronic psychosocial stress on the severity of a dextran sulfate sodium (DSS)-induced colitis in male C57BL/6 mice. Chronic stress was induced by repeated exposure to social defeat (SD, 2 h) and overcrowding (OC, 24 h) during 19 consecutive days. SD/OC mice showed a diminished body weight gain, thymus-atrophy, and adrenal hypertrophy, but similar light-phase plasma corticosterone concentrations, compared with unstressed mice. In contrast, the rise in dark-phase corticosterone concentration was significantly attenuated in SD/OC mice, whereas plasma ACTH concentrations and hypothalamic CRH mRNA expression did not differ between stressed and nonstressed groups. Additionally, adrenal cells from SD/OC mice showed a decreased in vitro response to ACTH stimulation. Subsequent treatment with 1% DSS for 7 d resulted in a more severe intestinal inflammation in SD/OC mice, as reflected by an increase in body weight loss, histological damage scores, and secretion of IL-6, TNFalpha, and interferon-gamma from mesenteric lymph node cells and by decreased colon length. The impaired health status of stressed mice was also reflected by a significantly lower survival rate after termination of the DSS treatment. In conclusion, the present findings demonstrate that chronic intermittent exposure to a psychosocial stressor before the induction of acute DSS-colitis results in adrenal insufficiency, increases in the severity of the acute inflammation, and impairs the healing phase.

  14. Overexpression of alpha(1)-acid glycoprotein in transgenic mice leads to sensitisation to acute colitis.

    PubMed

    Hochepied, T; Wullaert, A; Berger, F G; Baumann, H; Brouckaert, P; Steidler, L; Libert, C

    2002-09-01

    alpha(1)-Acid glycoprotein (alpha(1)-AGP) is an acute phase protein in most mammalian species whose concentration rises 2-5-fold during an acute phase reaction. Its serum concentration has often been used as a marker of disease, including inflammatory bowel disease (IBD). High alpha(1)-AGP levels were found to have a prognostic value for an increased risk of relapse in IBD. To investigate a possible role for increased serum levels of alpha(1)-AGP in the development of IBD. Dextran sodium sulphate (DSS) 2% was added to the drinking water of transgenic mice, overexpressing the rat alpha(1)-AGP gene, to induce acute colitis, thus mimicking the conditions of relapse. Clinical parameters, inflammatory parameters, and histological analyses on colon sections were performed. Homozygous alpha(1)-AGP-transgenic mice started losing weight and showed rectal bleeding significantly earlier than heterozygous transgenic or wild-type mice. Survival time of homozygous transgenic mice was significantly shorter compared with heterozygous and wild-type mice. The higher susceptibility of homozygous alpha(1)-AGP-transgenic mice to DSS induced acute colitis was also reflected in higher local myeloperoxidase levels, higher inflammation scores of the colon, and higher systemic levels of interleukin 6 and serum amyloid P component. Local inflammatory parameters were also significantly different in heterozygous transgenic mice compared with wild-type mice, indicating a local dosage effect. In homozygous transgenic mice, significantly higher amounts of bacteria were found in organs but IgA levels were only slightly lower than those of control mice. Sufficiently high serum levels of alpha(1)-AGP result in a more aggressive development of acute colitis.

  15. Antiinflammatory effects of Cordia myxa fruit on experimentally induced colitis in rats.

    PubMed

    Al-Awadi, F M; Srikumar, T S; Anim, J T; Khan, I

    2001-05-01

    Products of certain species of Cordia are reported to have antiinflammatory properties. In the present study we examined the effects of Cordia myxa fruit on experimentally induced colitis in rats. Colitis was induced by intrarectal administration of 4% acetic acid. Colitic, normal, and corresponding control animals were included. Body weight was recorded daily. All the animals were sacrificed 4 days after the fruit treatment. Colitis was monitored histologically and by activity of myeloperoxidase. Glutathione peroxidase, superoxide dismutase, as well as total antioxidant status and concentrations of zinc, copper, manganese, selenium, and iron were assayed in plasma, liver, and colon using standard methods. Histology of the colon of colitic rats showed acute colitis that was confirmed by a significant increase in the myeloperoxidase activity. Colitis was associated with significant decreases in the tissue activities of glutathione peroxidase and superoxide dismutase and lower concentrations of trace elements. Histologic examination and myeloperoxidase activity showed that the fruit treatment reversed the above findings in the inflamed colon, and in liver and plasma of colitic rats. The present results suggest that the observed antiinflammatory effect of the Cordia myxa may be attributed partly to its antioxidant property and to restoration of the levels of trace elements in the inflamed colon, liver, and plasma.

  16. Dietary tryptophan alleviates dextran sodium sulfate-induced colitis through aryl hydrocarbon receptor in mice.

    PubMed

    Islam, Jahidul; Sato, Shoko; Watanabe, Kouichi; Watanabe, Takaya; Ardiansyah; Hirahara, Keisuke; Aoyama, Yukihide; Tomita, Shuhei; Aso, Hisashi; Komai, Michio; Shirakawa, Hitoshi

    2017-04-01

    Ulcerative colitis is the typical progression of chronic inflammatory bowel disease. Amino acids, particularly tryptophan, have been reported to exert a protective effect against colitis induced by dextran sodium sulfate (DSS), but the precise underlying mechanisms remain incompletely clarified. Tryptophan metabolites are recognized to function as endogenous ligands for aryl hydrocarbon receptor (Ahr), which is a critical regulator of inflammation and immunity. Thus, we conducted this study to investigate whether dietary tryptophan supplementation protects against DSS-induced colitis by acting through Ahr. Female wild-type (WT) and Ahr-deficient (knockout; KO) mice (10-12 weeks old) were divided into four groups and fed either a control or 0.5% tryptophan diet. The tryptophan diet ameliorated DSS-induced colitis symptoms and severity in WT mice but not in KO mice, and the diet reduced the mRNA expression of Il-6, Tnfα, Il-1β and the chemokines Ccl2, Cxcl1 and Cxcl2 in the WT groups. Furthermore, Il-22 and Stat3 mRNA expression in the colon was elevated in WT mice fed with the tryptophan diet, which mainly protected epithelial layer integrity, and Ahr also modulated immune homeostasis by regulating Foxp3 and Il-17 mRNA expression. These data suggest that tryptophan-containing diet might ameliorate DSS-induced acute colitis and regulate epithelial homeostasis through Ahr. Thus, tryptophan could serve as a promising preventive agent in the treatment of ulcerative colitis. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Development of perianal ulcer as a result of acute fulminant amoebic colitis.

    PubMed

    Torigoe, Takayuki; Nakayama, Yoshifumi; Yamaguchi, Koji

    2012-09-14

    We report a case of acute fulminant amoebic colitis that resulted in the development of a perianal ulcer in a 29-year-old Japanese homosexual man with acquired immunodeficiency syndrome (AIDS). The patient was admitted to our hospital with a persistent perianal abscess that was refractory to antibiotic therapy administered at another hospital. On admission, we observed a giant ulcer in the perianal region. At first, cytomegalovirus colitis was suspected by blood investigations. Ganciclovir therapy was initiated; however, the patient developed necrosis of the skin around the anus during therapy. We only performed end-sigmoidostomy and necrotomy to avoid excessive surgical invasion. Histopathological examination of the surgical specimen revealed the presence of trophozoite amoebae, indicating a final diagnosis of acute fulminant amoebic colitis. The patient's postoperative course was favorable, and proctectomy of the residual rectum was performed 11 mo later. Amoebic colitis is one of the most severe complications affecting patients with AIDS. Particularly, acute fulminant amoebic colitis may result in a poor prognosis; therefore, staged surgical therapy as a less invasive procedure should be considered as one of the treatment options for these patients.

  18. Efficacy of Bifidobacterium breve NCC2950 against DSS-induced colitis is dependent on bacterial preparation and timing of administration.

    PubMed

    Hayes, C L; Natividad, J M M; Jury, J; Martin, R; Langella, P; Verdu, E F

    2014-03-01

    Probiotics have been proposed as a therapy for inflammatory bowel disease, but variations in strains, formulations, and protocols used in clinical trials have hindered the creation of guidelines for their use. Thus, preclinical insight into the mechanisms of specific probiotic strains and mode of administration would be useful to guide future clinical trial design. In this study, live, heat inactivated (HI), and spent culture medium preparations of the probiotic Bifidobacterium breve NCC2950 were administered to specific pathogen free C57BL/6 mice before or during colitis, as well as before colitis reactivation. Five days of 3.5% dextran sulphate sodium in drinking water was used to induce colitis. Pretreatment with live B. breve reduced disease severity, myeloperoxidase activity, microscopic damage, cytokine production, interleukin (IL)-12/IL-10 ratio, and lymphocyte infiltration in the colon. B. breve did not attenuate on-going colitis. After acute colitis, disease symptoms were normalised sooner with live and HI B. breve treatment; however, reactivation of colitis was not prevented. These findings indicate that the efficacy of a probiotic to modulate intestinal inflammation is dependent on the formulation as well as state of inflammation when administered. Overall, live B. breve was most efficacious in preventing acute colitis. Live and HI B. breve also promoted recovery from diarrhoea and colon bleeding after a bout of acute colitis.

  19. Kefir treatment ameliorates dextran sulfate sodium-induced colitis in rats

    PubMed Central

    Senol, Altug; Isler, Mehmet; Sutcu, Recep; Akin, Mete; Cakir, Ebru; Ceyhan, Betul M; Kockar, M Cem

    2015-01-01

    AIM: To investigate the preventive effect of kefir on colitis induced with dextran sulfate sodium (DSS) in rats. METHODS: Twenty-four male Wistar-albino rats were randomized into four groups: normal control, kefir-control, colitis, and kefir-colitis groups. Rats in the normal and kefir-control groups were administered tap water as drinking water for 14 d. Rats in the colitis and kefir-colitis groups were administered a 3% DSS solution as drinking water for 8-14 d to induce colitis. Rats in the kefir-control and kefir-colitis groups were administered 5 mL kefir once a day for 14 d while rats in the normal control and colitis group were administered an identical volume of the placebo (skim milk) using an orogastric feeding tube. Clinical colitis was evaluated with reference to the disease activity index (DAI), based on daily weight loss, stool consistency, and presence of bleeding in feces. Rats were sacrificed on the 15th day, blood specimens were collected, and colon tissues were rapidly removed. Levels of myeloperoxidase (MPO), tumor necrosis factor (TNF)-α, interleukin (IL)-10, malondialdehyde, and inducible nitric oxide synthase (iNOS) were measured in colon tissue. RESULTS: The DAI was lower in the kefir-colitis group than in the colitis group (on the 3rd and 5th days of colitis induction; P < 0.01). The DAI was also significantly higher in the colitis group between days 2 and 6 of colitis induction when compared to the normal control and kefir-control groups. The DAI was statistically higher only on the 6th day in the kefir-colitis group when compared to that in the normal control groups. Increased colon weight and decreased colon length were observed in colitis-induced rats. Mean colon length in the colitis group was significantly shorter than that of the kefir-control group. Kefir treatment significantly decreased histologic colitis scores (P < 0.05). MPO activity in the colitis group was significantly higher than in the kefir-control group (P < 0

  20. Kefir treatment ameliorates dextran sulfate sodium-induced colitis in rats.

    PubMed

    Senol, Altug; Isler, Mehmet; Sutcu, Recep; Akin, Mete; Cakir, Ebru; Ceyhan, Betul M; Kockar, M Cem

    2015-12-14

    To investigate the preventive effect of kefir on colitis induced with dextran sulfate sodium (DSS) in rats. Twenty-four male Wistar-albino rats were randomized into four groups: normal control, kefir-control, colitis, and kefir-colitis groups. Rats in the normal and kefir-control groups were administered tap water as drinking water for 14 d. Rats in the colitis and kefir-colitis groups were administered a 3% DSS solution as drinking water for 8-14 d to induce colitis. Rats in the kefir-control and kefir-colitis groups were administered 5 mL kefir once a day for 14 d while rats in the normal control and colitis group were administered an identical volume of the placebo (skim milk) using an orogastric feeding tube. Clinical colitis was evaluated with reference to the disease activity index (DAI), based on daily weight loss, stool consistency, and presence of bleeding in feces. Rats were sacrificed on the 15(th) day, blood specimens were collected, and colon tissues were rapidly removed. Levels of myeloperoxidase (MPO), tumor necrosis factor (TNF)-α, interleukin (IL)-10, malondialdehyde, and inducible nitric oxide synthase (iNOS) were measured in colon tissue. The DAI was lower in the kefir-colitis group than in the colitis group (on the 3(rd) and 5(th) days of colitis induction; P < 0.01). The DAI was also significantly higher in the colitis group between days 2 and 6 of colitis induction when compared to the normal control and kefir-control groups. The DAI was statistically higher only on the 6(th) day in the kefir-colitis group when compared to that in the normal control groups. Increased colon weight and decreased colon length were observed in colitis-induced rats. Mean colon length in the colitis group was significantly shorter than that of the kefir-control group. Kefir treatment significantly decreased histologic colitis scores (P < 0.05). MPO activity in the colitis group was significantly higher than in the kefir-control group (P < 0.05). Kefir treatment

  1. Tomato Lycopene Extract Prevents Lipopolysaccharide-Induced NF-κB Signaling but Worsens Dextran Sulfate Sodium-Induced Colitis in NF-κBEGFP Mice

    PubMed Central

    Joo, Young-Eun; Karrasch, Thomas; Mühlbauer, Marcus; Allard, Brigitte; Narula, Acharan; Herfarth, Hans H.; Jobin, Christian

    2009-01-01

    Background The impact of tomato lycopene extract (TLE) on intestinal inflammation is currently unknown. We investigated the effect of TLE on lipopolysaccharide (LPS)-induced innate signaling and experimental colitis. Methodology/Principal Findings Mice were fed a diet containing 0.5 and 2% TLE or isoflavone free control (AIN-76). The therapeutic efficacy of TLE diet was assessed using dextran sulfate sodium (DSS) exposed mice and IL-10−/−;NF-κBEGFP mice, representing an acute and spontaneous chronic colitis model respectively. A mini-endoscope was used to determine the extent of macroscopic mucosal lesions. Murine splenocytes and intestinal epithelial cells were used to determine the in vitro impact of TLE on LPS-induced NF-κB signaling. In vitro, TLE blocked LPS-induced IκBα degradation, RelA translocation, NF-κB transcriptional activity and MIP-2 mRNA accumulation in IEC-18 cells. Moreover, LPS-induced IL-12p40 gene expression was dose-dependently inhibited in TLE-treated splenocytes. Interestingly, DSS-induced acute colitis worsened in TLE-fed NF-κBEGFP mice compared to control diet as measured by weight loss, colonoscopic analysis and histological scores. In contrast, TLE-fed IL-10−/−;NF-κBEGFP mice displayed decreased colonic EGFP expression compared to control diet. IL-6, TNFα, and MCP-1 mRNA expression were increased in the colon of TLE-fed, DSS-exposed NF-κBEGFP mice compared to the control diet. Additionally, caspase-3 activation and TUNEL positive cells were enhanced in TLE diet-fed, DSS-exposed mice as compared to DSS control mice. Conclusions/ Significance These results indicate that TLE prevents LPS-induced proinflammatory gene expression by blocking of NF-κB signaling, but aggravates DSS-induced colitis by enhancing epithelial cell apoptosis. PMID:19234608

  2. In utero and postnatal exposure to a phytoestrogen-enriched diet increases parameters of acute inflammation in a rat model of TNBS-induced colitis.

    PubMed

    Seibel, Jan; Molzberger, Almut F; Hertrampf, Torsten; Laudenbach-Leschowski, Ute; Degen, Gisela H; Diel, Patrick

    2008-12-01

    Inflammatory bowel disease (IBD) is very common in Europe and USA. Its incidence in East Asia has been traditionally low, albeit the risk of IBD increases in Asian immigrants adopting western lifestyles, suggesting a strong role of environmental/dietary factors in IBD. A lifelong exposure to phytoestrogen-rich diets has been associated with a decreased risk of developing breast cancer and might also be protective against IBD. We studied the influence of in utero and postnatal exposure to a phytoestrogen (PE)-rich diet on acute inflammation in an animal model of TNBS-induced colitis. Wistar rats were exposed in utero and postnatally to high (genistein: 240 microg/g feed; daidzein: 232 microg/g feed) or very low levels (genistein and daidzein <10 microg/g feed) of phytoestrogen isoflavones fed to pregnant dams with the diet and throughout nursing. After weaning, the offspring had free access to these diets. At the age of 11 weeks, colitis was induced with an enema of TNBS. After 3 days, animals were sacrificed and tissues were collected for histological evaluation and analysis of molecular markers of inflammation. Animals kept on a PE-rich diet (PRD) had higher colon weights than animals on low PE-levels (PDD), suggesting enhanced acute inflammation by phytoestrogens. This result was supported by histological findings and by analysis of myeloperoxidase activity. Interestingly, relative mRNA and protein expression of cyclooxygenase-2 (COX-2) were modulated in rats on PRD, providing evidence that COX-2, the inducible isoform of the enzyme, is involved in the management of colonic inflammation. Our results suggest that early-in-life exposure to PE might not protect against the development of IBD but enhances the extent of acute inflammation.

  3. In vivo treatment with the herbal phenylethanoid acteoside ameliorates intestinal inflammation in dextran sulphate sodium-induced colitis

    PubMed Central

    Hausmann, M; Obermeier, F; Paper, D H; Balan, K; Dunger, N; Menzel, K; Falk, W; Schoelmerich, J; Herfarth, H; Rogler, G

    2007-01-01

    Recently we demonstrated that in inflammatory bowel disease (IBD) macrophage-oxidative burst activity is increased and NADPH oxidase mRNA is induced. The herbal phenylethanoid acteoside isolated from Plantago lanceolata L. was shown to exhibit anti-oxidative potential. Using the dextran sulphate sodium (DSS)-induced colitis model, in this study we have assessed whether systemic application of acteoside affects colitis. Colitis was induced by DSS in Balb/c mice. Treatment with acteoside (120, 600 µg/mouse/day) was performed intraperitoneally. The colon lengths were determined. Colonic tissue was scored histologically (max. score 8) by a blinded investigator. T cells isolated from mesenteric lymph nodes (MLN) were stimulated with anti-CD3 antibody in the presence of interleukin (IL)-2 (final concentration 10 U/ml). After incubation for 24 h, IL-1β, IL-6, IL-12 tumour necrosis factor (TNF)-α and interferon (IFN)-γ levels in supernatants were analysed by the beadlyte® cytokine detection system. Histological scoring of colonic tissue revealed that application of acteoside was followed by a significantly improved histological score. In acute colitis the histological score was 3·2 with acteoside versus 5·2 with phosphate-buffered saline (PBS) (P < 0·02). In chronic colitis both 120 µg (3·3 versus 5·2) or 600 µg acteoside (3·0 versus 5·2) significantly ameliorated colitis (both P < 0·02). Stimulated MLN from mice with chronic DSS-induced colitis treated with acteoside showed a significant down-regulation of IFN-γ secretion (195 pg/ml with 600 µg acteoside versus 612 pg/ml with PBS, P < 0·02). Inhibition of oxidative burst activity with acteoside reduced mucosal tissue damage in DSS colitis and could be a therapeutic alternative for IBD treatment. Further studies of this agent are warranted. PMID:17437425

  4. Ulcerative colitis flair induced by mesalamine suppositories hypersensitivity

    PubMed Central

    Ding, Hao; Liu, Xiao-Chang; Mei, Qiao; Xu, Jian-Ming; Hu, Xiang-Yang; Hu, Jing

    2014-01-01

    Mesalamine suppositories have been used widely for the treatment of distal ulcerative colitis and considered to be safer than systemic administration for its limited systemic absorption. However, previous studies have shown that mesalamine suppository occasionally causes severe hypersensitivity reactions including fever, rashes, colitis exacerbation and acute eosinophilic pneumonia. Here we present a 25-year-old woman with ulcerative colitis with bloody diarrhea accompanied by abdominal pain and fever which were aggravated after introduction of mesalamine suppositories. In light of symptom exacerbation of ulcerative colitis, increased inflammatory injury of colon mucosa shown by colonoscopy and elevated peripheral eosinophil count after mesalamine suppositories administration, and the Naranjo algorithm score of 10, the possibility of hypersensitivity reaction to mesalamine suppositories should be considered, warning us to be aware of this potential reaction after administration of mesalamine formulations even if it is the suppositories. PMID:24707159

  5. Ulcerative colitis flair induced by mesalamine suppositories hypersensitivity.

    PubMed

    Ding, Hao; Liu, Xiao-Chang; Mei, Qiao; Xu, Jian-Ming; Hu, Xiang-Yang; Hu, Jing

    2014-04-07

    Mesalamine suppositories have been used widely for the treatment of distal ulcerative colitis and considered to be safer than systemic administration for its limited systemic absorption. However, previous studies have shown that mesalamine suppository occasionally causes severe hypersensitivity reactions including fever, rashes, colitis exacerbation and acute eosinophilic pneumonia. Here we present a 25-year-old woman with ulcerative colitis with bloody diarrhea accompanied by abdominal pain and fever which were aggravated after introduction of mesalamine suppositories. In light of symptom exacerbation of ulcerative colitis, increased inflammatory injury of colon mucosa shown by colonoscopy and elevated peripheral eosinophil count after mesalamine suppositories administration, and the Naranjo algorithm score of 10, the possibility of hypersensitivity reaction to mesalamine suppositories should be considered, warning us to be aware of this potential reaction after administration of mesalamine formulations even if it is the suppositories.

  6. Clinical course of ulcerative colitis patients who develop acute pancreatitis.

    PubMed

    Kim, Jong Wook; Hwang, Sung Wook; Park, Sang Hyoung; Song, Tae Jun; Kim, Myung-Hwan; Lee, Ho-Su; Ye, Byong Duk; Yang, Dong-Hoon; Kim, Kyung-Jo; Byeon, Jeong-Sik; Myung, Seung-Jae; Yang, Suk-Kyun

    2017-05-21

    To investigate the clinical course of ulcerative colitis (UC) patients who develop acute pancreatitis. We analyzed 3307 UC patients from the inflammatory bowel disease registry at Asan Medical Center from June 1989 to May 2015. The clinical course of UC patients who developed acute pancreatitis was compared with that of non-pancreatitis UC patients. Among 51 patients who developed acute pancreatitis, 13 (0.40%) had autoimmune, 10 (0.30%) had aminosalicylate-induced, and 13 (1.73%) had thiopurine-induced pancreatitis. All 13 patients with autoimmune pancreatitis (AIP) had type 2 AIP. Two (15.4%) patients had pre-existing AIP, and three (23.1%) patients developed AIP and UC simultaneously. Compared to non-pancreatitis patients, AIP patients had UC diagnosed at a significantly younger age (median, 22.9 years vs 36.4 years; P = 0.001). AIP and aminosalicylate-induced pancreatitis patients had more extensive UC compared to non-pancreatitis patients. All patients with pancreatitis recovered uneventfully, and there were no recurrences. Biologics were used more frequently in aminosalicylate- and thiopurine-induced pancreatitis patients compared to non-pancreatitis patients [adjusted OR (95%CI), 5.16 (1.42-18.67) and 6.90 (1.83-25.98), respectively]. Biologic utilization rate was similar among AIP and non-pancreatitis patients [OR (95%CI), 0.84 (0.11-6.66)]. Colectomy rates for autoimmune, aminosalicylate-induced, and thiopurine-induced pancreatitis, and for non-pancreatitis patients were 15.4% (2/13), 20% (2/10), 15.4% (2/13), and 7.3% (239/3256), respectively; the rates were not significantly different after adjusting for baseline disease extent. Pancreatitis patients show a non-significant increase in colectomy, after adjusting for baseline disease extent.

  7. Clinical course of ulcerative colitis patients who develop acute pancreatitis

    PubMed Central

    Kim, Jong Wook; Hwang, Sung Wook; Park, Sang Hyoung; Song, Tae Jun; Kim, Myung-Hwan; Lee, Ho-Su; Ye, Byong Duk; Yang, Dong-Hoon; Kim, Kyung-Jo; Byeon, Jeong-Sik; Myung, Seung-Jae; Yang, Suk-Kyun

    2017-01-01

    AIM To investigate the clinical course of ulcerative colitis (UC) patients who develop acute pancreatitis. METHODS We analyzed 3307 UC patients from the inflammatory bowel disease registry at Asan Medical Center from June 1989 to May 2015. The clinical course of UC patients who developed acute pancreatitis was compared with that of non-pancreatitis UC patients. RESULTS Among 51 patients who developed acute pancreatitis, 13 (0.40%) had autoimmune, 10 (0.30%) had aminosalicylate-induced, and 13 (1.73%) had thiopurine-induced pancreatitis. All 13 patients with autoimmune pancreatitis (AIP) had type 2 AIP. Two (15.4%) patients had pre-existing AIP, and three (23.1%) patients developed AIP and UC simultaneously. Compared to non-pancreatitis patients, AIP patients had UC diagnosed at a significantly younger age (median, 22.9 years vs 36.4 years; P = 0.001). AIP and aminosalicylate-induced pancreatitis patients had more extensive UC compared to non-pancreatitis patients. All patients with pancreatitis recovered uneventfully, and there were no recurrences. Biologics were used more frequently in aminosalicylate- and thiopurine-induced pancreatitis patients compared to non-pancreatitis patients [adjusted OR (95%CI), 5.16 (1.42-18.67) and 6.90 (1.83-25.98), respectively]. Biologic utilization rate was similar among AIP and non-pancreatitis patients [OR (95%CI), 0.84 (0.11-6.66)]. Colectomy rates for autoimmune, aminosalicylate-induced, and thiopurine-induced pancreatitis, and for non-pancreatitis patients were 15.4% (2/13), 20% (2/10), 15.4% (2/13), and 7.3% (239/3256), respectively; the rates were not significantly different after adjusting for baseline disease extent. CONCLUSION Pancreatitis patients show a non-significant increase in colectomy, after adjusting for baseline disease extent. PMID:28596686

  8. Protective effect of Bauhinia tomentosa on acetic acid induced ulcerative colitis by regulating antioxidant and inflammatory mediators.

    PubMed

    Kannan, Narayanan; Guruvayoorappan, Chandrasekharan

    2013-05-01

    Inflammatory bowel diseases (IBD), including Crohn's disease and Ulcerative colitis (UC), are life-long and recurrent disorders of the gastrointestinal tract with unknown etiology. The present study is designed to evaluate the ameliorative effect of Bauhinia tomentosa during ulcerative colitis (UC). Three groups of animals (n=6) were treated with B. tomentosa (5, 10, 20 mg/kg B.wt respectively) for 5 consecutive days before induction of UC. UC was induced by intracolonic injection of 3% acetic acid. The colonic mucosal injury was assessed by macroscopic scoring and histological examination. Furthermore, the mucosal content of lipid peroxidation (LPO), reduced glutathione (GSH), nitric oxide (NO), glutathione peroxidase (GPx) and superoxide dismutase (SOD) activity confirms that B. tomentosa could significantly inhibit colitis in a dose dependent manner. The myeloperoxidase (MPO), tumor necrosis factor (TNF-α), inducible nitric oxide synthase (iNOS) expression studies and lactate dehydrogenase (LDH) assay also supported that B. tomentosa could significantly inhibit experimental colitis. The effect was comparable to the standard drug sulfasalazine. Colonic mucosal injury parallels with the result of histological and biochemical evaluations. The extracts obtained from B. tomentosa possess active substances, which exert marked protective effects in acute experimental colitis, possibly by regulating the antioxidant and inflammatory mediators. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Idelalisib-induced colitis and skin eruption mimicking graft-versus-host disease.

    PubMed

    Hammami, Muhammad Bader; Al-Taee, Ahmad; Meeks, Marshall; Fesler, Mark; Hurley, M Yadira; Cao, Dengfeng; Lai, Jin-Ping

    2017-04-01

    Idelalisib is a selective inhibitor of the delta isoform of phosphatidylinositol 3-kinase which was approved by the United States Federal Drug Administration in 2014 for the treatment of relapsed chronic lymphocytic leukemia and indolent non-Hodgkin lymphoma. Drug-induced injury of the gastrointestinal tract is a relatively frequent but usually under-recognized disease entity. We report the case of a 56-year-old male with a history of relapsed follicular lymphoma status post allogenic bone marrow transplant who developed severe diarrhea with a skin eruption mimicking graft-versus-host disease (GVHD) 6 months after starting idelalisib. He underwent a colonoscopy demonstrating a grossly normal-appearing colon and terminal ileum. Biopsies taken during the procedure revealed mild active ileitis, colitis, and proctitis with frequent epithelial apoptosis, and focal intra-epithelial lymphocytosis. Skin biopsies revealed sub-acute spongiotic dermatitis suggestive of either contact dermatitis or an eczematous drug reaction. Symptoms were attributed to idelalisib given their resolution with withdrawal of the drug in conjunction with the skin and colonic biopsies. High clinical suspicion and awareness of the histological features of idelalisib-associated colitis is important to distinguish it from potential mimickers such as GVHD and infectious colitis.

  10. Anti-inflammatory effect of a standardized triterpenoid-rich fraction isolated from Rubus coreanus on dextran sodium sulfate-induced acute colitis in mice and LPS-induced macrophages.

    PubMed

    Shin, Ji-Sun; Cho, Eu-Jin; Choi, Hye-Eun; Seo, Ji-Hyung; An, Hyo-Jin; Park, Hee-Juhn; Cho, Young-Wuk; Lee, Kyung-Tae

    2014-12-02

    Rubus coreanus Miquel (Rosaceae), the Korean black raspberry, has traditionally been used to treat inflammatory diseases including diarrhea, asthma, stomach ailment, and cancer. Although previous studies showed that the 19α-hydroxyursane-type triterpenoids isolated from Rubus coreanus exerted anti-inflammatory activities, their effects on ulcerative colitis and mode of action have not been explored. This study was designed to assess the anti-inflammatory effects and the molecular mechanisms involving19α-hydroxyursane-type triterpenoid-rich fraction from Rubus coreanus (TFRC) on a mice model of colitis and lipopolysaccharide (LPS)-induced RAW 264.7 macrophages. Experimental colitis was induced by DSS for 7 days in ICR mice. Disease activity indices (DAI) took into account body weight, stool consistency, and gross bleeding. Histological changes and macrophage accumulation were observed by immunohistochemical analysis. Pro-inflammatory markers were determined using immunoassays, RT-PCR, and real time PCR. Signaling pathway involving nuclear factor-κB (NF-κB) and mitogen-activated protein kinases (MAPKs) activation was determined by luciferase assay and Western blotting. In DSS-induced colitis mice, TFRC improved DAIs and pathological characteristics including colon shortening and colonic epithelium injury. TFRC suppressed tissue levels of pro-inflammatory cytokines and reduced macrophage infiltration into colonic tissues. In LPS-induced RAW 264.7 macrophages, TFRC inhibited the production of NO, PGE2, and pro-inflammatory cytokines by down-regulating the activation of NF-κB and p38 MAPK signaling. The study demonstrates that TFRC has potent anti-inflammatory effects on DSS-induced colonic injury and LPS-induced macrophage activation, and supports its possible therapeutic and preventive roles in colitis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. Neuroprotective Potential of Mesenchymal Stem Cell-Based Therapy in Acute Stages of TNBS-Induced Colitis in Guinea-Pigs

    PubMed Central

    Robinson, Ainsley M.; Miller, Sarah; Payne, Natalie; Boyd, Richard; Sakkal, Samy; Nurgali, Kulmira

    2015-01-01

    Background & Aims The therapeutic benefits of mesenchymal stem cells (MSCs), such as homing ability, multipotent differentiation capacity and secretion of soluble bioactive factors which exert neuroprotective, anti-inflammatory and immunomodulatory properties, have been attributed to attenuation of autoimmune, inflammatory and neurodegenerative disorders. In this study, we aimed to determine the earliest time point at which locally administered MSC-based therapies avert enteric neuronal loss and damage associated with intestinal inflammation in the guinea-pig model of colitis. Methods At 3 hours after induction of colitis by 2,4,6-trinitrobenzene-sulfonate (TNBS), guinea-pigs received either human bone marrow-derived MSCs, conditioned medium (CM), or unconditioned medium by enema into the colon. Colon tissues were collected 6, 24 and 72 hours after administration of TNBS. Effects on body weight, gross morphological damage, immune cell infiltration and myenteric neurons were evaluated. RT-PCR, flow cytometry and antibody array kit were used to identify neurotrophic and neuroprotective factors released by MSCs. Results MSC and CM treatments prevented body weight loss, reduced infiltration of leukocytes into the colon wall and the myenteric plexus, facilitated repair of damaged tissue and nerve fibers, averted myenteric neuronal loss, as well as changes in neuronal subpopulations. The neuroprotective effects of MSC and CM treatments were observed as early as 24 hours after induction of inflammation even though the inflammatory reaction at the level of the myenteric ganglia had not completely subsided. Substantial number of neurotrophic and neuroprotective factors released by MSCs was identified in their secretome. Conclusion MSC-based therapies applied at the acute stages of TNBS-induced colitis start exerting their neuroprotective effects towards enteric neurons by 24 hours post treatment. The neuroprotective efficacy of MSC-based therapies can be exerted

  12. Outbreak of acute colitis on a horse farm associated with tetracycline-contaminated sweet feed.

    PubMed Central

    Keir, A A; Stämpfli, H R; Crawford, J

    1999-01-01

    Exposure of a group of horses to tetracycline-contaminated feed resulted in acute colitis and subsequent death in one horse and milder diarrhea in 3 others. The most severely affected animal demonstrated clinical and pathological findings typical of colitis X. The other herdmates responded well to administration of zinc bacitracin. PMID:10572668

  13. Analysing the effect of I1 imidazoline receptor ligands on DSS-induced acute colitis in mice.

    PubMed

    Fehér, Ágnes; Tóth, Viktória E; Al-Khrasani, Mahmoud; Balogh, Mihály; Lázár, Bernadette; Helyes, Zsuzsanna; Gyires, Klára; Zádori, Zoltán S

    2017-02-01

    Imidazoline receptors (IRs) have been recognized as promising targets in the treatment of numerous diseases; and moxonidine and rilmenidine, agonists of I 1 -IRs, are widely used as antihypertensive agents. Some evidence suggests that IR ligands may induce anti-inflammatory effects acting on I 1 -IRs or other molecular targets, which could be beneficial in patients with inflammatory bowel disease (IBD). On the other hand, several IR ligands may stimulate also alpha 2 -adrenoceptors, which were earlier shown to inhibit, but in more recent studies to rather aggravate colitis. Hence, this study aimed to analyse for the first time the effect of various I 1 -IR ligands on intestinal inflammation. Colitis was induced in C57BL/6 mice by adding dextran sulphate sodium (DSS) to the drinking water for 7 days. Mice were treated daily with different IR ligands: moxonidine and rilmenidine (I 1 -IR agonists), AGN 192403 (highly selective I 1 -IR ligand, putative antagonist), efaroxan (I 1 -IR antagonist), as well as with the endogenous IR agonists agmatine and harmane. It was found that moxonidine and rilmenidine at clinically relevant doses, similarly to the other IR ligands, do not have a significant impact on the macroscopic and histological signs of DSS-evoked inflammation. Likewise, colonic myeloperoxidase and serum interleukin-6 levels remained unchanged in response to these agents. Thus, our study demonstrates that imidazoline ligands do not influence significantly the severity of DSS-colitis in mice and suggest that they probably neither affect the course of IBD in humans. However, the translational value of these findings needs to be verified with other experimental colitis models and human studies.

  14. Interleukin 1α-Deficient Mice Have an Altered Gut Microbiota Leading to Protection from Dextran Sodium Sulfate-Induced Colitis.

    PubMed

    Nunberg, Moran; Werbner, Nir; Neuman, Hadar; Bersudsky, Marina; Braiman, Alex; Ben-Shoshan, Moshe; Ben Izhak, Meirav; Louzoun, Yoram; Apte, Ron N; Voronov, Elena; Koren, Omry

    2018-01-01

    Inflammatory bowel diseases (IBD) are a group of chronic inflammatory disorders of the intestine, with as-yet-unclear etiologies, affecting over a million people in the United States alone. With the emergence of microbiome research, numerous studies have shown a connection between shifts in the gut microbiota composition (dysbiosis) and patterns of IBD development. In a previous study, we showed that interleukin 1α (IL-1α) deficiency in IL-1α knockout (KO) mice results in moderate dextran sodium sulfate (DSS)-induced colitis compared to that of wild-type (WT) mice, characterized by reduced inflammation and complete healing, as shown by parameters of weight loss, disease activity index (DAI) score, histology, and cytokine expression. In this study, we tested whether the protective effects of IL-1α deficiency on DSS-induced colitis correlate with changes in the gut microbiota and whether manipulation of the microbiota by cohousing can alter patterns of colon inflammation. We analyzed the gut microbiota composition in both control (WT) and IL-1α KO mice under steady-state homeostasis, during acute DSS-induced colitis, and after recovery using 16S rRNA next-generation sequencing. Additionally, we performed cohousing of both mouse groups and tested the effects on the microbiota and clinical outcomes. We demonstrate that host-derived IL-1α has a clear influence on gut microbiota composition, as well as on severity of DSS-induced acute colon inflammation. Cohousing both successfully changed the gut microbiota composition and increased the disease severity of IL-1α-deficient mice to levels similar to those of WT mice. This study shows a strong and novel correlation between IL-1α expression, microbiota composition, and clinical outcomes of DSS-induced colitis. IMPORTANCE Here, we show a connection between IL-1α expression, microbiota composition, and clinical outcomes of DSS-induced colitis. Specifically, we show that the mild colitis symptoms seen in IL-1

  15. Interleukin 1α-Deficient Mice Have an Altered Gut Microbiota Leading to Protection from Dextran Sodium Sulfate-Induced Colitis

    PubMed Central

    2018-01-01

    ABSTRACT Inflammatory bowel diseases (IBD) are a group of chronic inflammatory disorders of the intestine, with as-yet-unclear etiologies, affecting over a million people in the United States alone. With the emergence of microbiome research, numerous studies have shown a connection between shifts in the gut microbiota composition (dysbiosis) and patterns of IBD development. In a previous study, we showed that interleukin 1α (IL-1α) deficiency in IL-1α knockout (KO) mice results in moderate dextran sodium sulfate (DSS)-induced colitis compared to that of wild-type (WT) mice, characterized by reduced inflammation and complete healing, as shown by parameters of weight loss, disease activity index (DAI) score, histology, and cytokine expression. In this study, we tested whether the protective effects of IL-1α deficiency on DSS-induced colitis correlate with changes in the gut microbiota and whether manipulation of the microbiota by cohousing can alter patterns of colon inflammation. We analyzed the gut microbiota composition in both control (WT) and IL-1α KO mice under steady-state homeostasis, during acute DSS-induced colitis, and after recovery using 16S rRNA next-generation sequencing. Additionally, we performed cohousing of both mouse groups and tested the effects on the microbiota and clinical outcomes. We demonstrate that host-derived IL-1α has a clear influence on gut microbiota composition, as well as on severity of DSS-induced acute colon inflammation. Cohousing both successfully changed the gut microbiota composition and increased the disease severity of IL-1α-deficient mice to levels similar to those of WT mice. This study shows a strong and novel correlation between IL-1α expression, microbiota composition, and clinical outcomes of DSS-induced colitis. IMPORTANCE Here, we show a connection between IL-1α expression, microbiota composition, and clinical outcomes of DSS-induced colitis. Specifically, we show that the mild colitis symptoms seen in IL-1

  16. Patchouli alcohol ameliorates dextran sodium sulfate-induced experimental colitis and suppresses tryptophan catabolism.

    PubMed

    Qu, Chang; Yuan, Zhong-Wen; Yu, Xiu-Ting; Huang, Yan-Feng; Yang, Guang-Hua; Chen, Jian-Nan; Lai, Xiao-Ping; Su, Zi-Ren; Zeng, Hui-Fang; Xie, Ying; Zhang, Xiao-Jun

    2017-07-01

    Despite the increased morbidity of ulcerative colitis (UC) in recent years, available treatments remain unsatisfactory. Pogostemon cablin has been widely applied to treat a variety of gastrointestinal disorders in clinic for centuries, in which patchouli alcohol (PA, C 15 H 26 O) has been identified as the major active component. This study attempted to determine the bioactivity of PA on dextran sulfate sodium (DSS)-induced mice colitis and clarify the mechanism of action. Acute colitis was induced in mice by 3% DSS for 7 days. The mice were then given PA (10, 20 and 40mg/kg) or sulfasalazine (SASP, 200mg/kg) as positive control via oral administration for 7 days. At the end of study, animals were sacrificed and samples were collected for pathological and other analysis. In addition, a metabolite profiling and a targeted metabolite analysis, based on the Ultra-Performance Liquid Chromatography coupled with mass spectrometry (UPLC-MS) approach, were performed to characterize the metabolic changes in plasma. The results revealed that PA significantly reduced the disease activity index (DAI) and ameliorated the colonic injury of DSS mice. The levels of colonic MPO and cytokines involving TNF-α, IFN-γ, IL-1β, IL-6, IL-4 and IL-10 also declined. Furthermore, PA improved the intestinal epithelial barrier by enhancing the level of colonic expression of the tight junction (TJ) proteins, for instance ZO-1, ZO-2, claudin-1 and occludin, and by elevating the levels of mucin-1 and mucin-2 mRNA. The study also demonstrated that PA inhibited the DSS-induced cell death signaling by modulating the apoptosis related Bax and Bcl-2 proteins and down-regulating the necroptosis related RIP3 and MLKL proteins. By comparison, up-regulation of IDO-1 and TPH-1 protein expression in DSS group was suppressed by PA, which was in line with the declined levels of kynurenine (Kyn) and 5-hydroxytryptophan (5-HTP) in plasma. The therapeutic effect of PA was evidently reduced when Kyn was given

  17. Walnut phenolic extract inhibits nuclear factor kappaB signaling in intestinal epithelial cells, and ameliorates experimental colitis and colitis-associated colon cancer in mice.

    PubMed

    Koh, Seong-Joon; Choi, Youn-I; Kim, Yuri; Kim, Yoo-Sun; Choi, Sang Woon; Kim, Ji Won; Kim, Byeong Gwan; Lee, Kook Lae

    2018-05-09

    Walnuts (Juglans regia) are known to have anti-cancer and immunomodulatory effects. However, little information is available on the effects of walnut phenolic extract (WPE) on intestinal inflammation and colitis-associated colon cancer. COLO205 cells were pretreated with WPE and then stimulated with tumor necrosis factor (TNF)-α. In the acute colitis model, wild type mice (C57BL/6) were administered 4% dextran sulfate sodium (DSS) for 5 days. In the chronic colitis model, interleukin (IL)-10 -/- mice were administered with either the vehicle or WPE (20 mg/kg) by oral gavage daily for 2 weeks. In an inflammation-associated tumor model, wild type mice were administered a single intraperitoneal injection of azoxymethane followed by three cycles of 2% DSS for 5 days and 2 weeks of free water consumption. WPE significantly inhibited IL-8 and IL-1α expression in COLO205 cells. WPE attenuated both the TNF-α-induced IκB phosphorylation/degradation and NF-κB DNA binding activity. The administration of oral WPE significantly reduced the severity of colitis in both acute and chronic colitis models, including the IL-10 -/- mice. In immunohistochemical staining, WPE attenuated NF-κB signaling in the colons of both colitis models. Finally, WPE also significantly reduced tumor development in a murine model of colitis-associated colon cancer (CAC). WPE ameliorates acute and chronic colitis and CAC in mice, suggesting that WPE may have potentials for the treatment of inflammatory bowel disease.

  18. Muscadine Grape (Vitis rotundifolia) or Wine Phytochemicals Reduce Intestinal Inflammation in Mice with Dextran Sulfate Sodium-Induced Colitis.

    PubMed

    Li, Ruiqi; Kim, Min-Hyun; Sandhu, Amandeep K; Gao, Chi; Gu, Liwei

    2017-02-01

    The objective of this study was to determine the anti-inflammatory effects of phytochemical extracts from muscadine grapes or wine on dextran sulfate sodium (DSS)-induced colitis in mice and to investigate cellular mechanisms. Two groups of C57BL/6J mice were gavaged with muscadine grape phytochemicals (MGP) or muscadine wine phytochemicals (MWP), respectively, for 14 days. Acute colitis was induced by 3% DSS in drinking water for 7 days. An additional two groups of mice served as healthy and disease controls. Results indicated that MGP or MWP significantly prevented weight loss, reduced disease activity index, and preserved colonic length compared to the colitis group (p ≤ 0.05). MGP or MWP significantly decreased myeloperoxidase activity as well as the levels of IL-1β, IL-6, and TNF-α in colon (p ≤ 0.05). MGP or MWP caused down-regulation of the NF-κB pathway by inhibiting the phosphorylation and degradation of IκB in a dose-dependent manner. These findings suggest that phytochemicals from muscadine grape or wine mitigate ulcerative colitis via attenuation of pro-inflammatory cytokine production and modulation of the NF-κB pathway.

  19. Changes in the composition of intestinal fungi and their role in mice with dextran sulfate sodium-induced colitis.

    PubMed

    Qiu, Xinyun; Zhang, Feng; Yang, Xi; Wu, Na; Jiang, Weiwei; Li, Xia; Li, Xiaoxue; Liu, Yulan

    2015-05-27

    Intestinal fungi are increasingly believed to greatly influence gut health. However, the effects of fungi on intestinal inflammation and on gut bacterial constitution are not clear. Here, based on pyrosequencing method, we reveal that fungal compositions vary in different intestinal segments (ileum, cecum, and colon), prefer different colonization locations (mucosa and feces), and are remarkably changed during intestinal inflammation in dextran sulfate sodium (DSS)-colitis mouse models compare to normal controls: Penicillium, Wickerhamomyces, Alternaria, and Candida are increased while Cryptococcus, Phialemonium, Wallemia and an unidentified Saccharomycetales genus are decreased in the guts of DSS-colitis mice. Fungi-depleted mice exhibited aggravated acute DSS-colitis associated with gain of Hallella, Barnesiella, Bacteroides, Alistipes, and Lactobacillus and loss of butyrate-producing Clostridium XIVa, and Anaerostipes compare with normal control. In contrast, bacteria-depleted mice show attenuated acute DSS-colitis. Mice with severely chronic recurrent DSS-colitis show increased plasma (1,3)-β-D-glucan level and fungal translocation into the colonic mucosa, mesenteric lymph nodes and spleen. This work demonstrate the different roles of fungi in acute and chronic recurrent colitis: They are important counterbalance to bacteria in maintaining intestinal micro-ecological homeostasis and health in acutely inflamed intestines, but can harmfully translocate into abnormal sites and could aggravate disease severity in chronic recurrent colitis.

  20. Changes in the composition of intestinal fungi and their role in mice with dextran sulfate sodium-induced colitis

    PubMed Central

    Qiu, Xinyun; Zhang, Feng; Yang, Xi; Wu, Na; Jiang, Weiwei; Li, Xia; Li, Xiaoxue; Liu, Yulan

    2015-01-01

    Intestinal fungi are increasingly believed to greatly influence gut health. However, the effects of fungi on intestinal inflammation and on gut bacterial constitution are not clear. Here, based on pyrosequencing method, we reveal that fungal compositions vary in different intestinal segments (ileum, cecum, and colon), prefer different colonization locations (mucosa and feces), and are remarkably changed during intestinal inflammation in dextran sulfate sodium (DSS)-colitis mouse models compare to normal controls: Penicillium, Wickerhamomyces, Alternaria, and Candida are increased while Cryptococcus, Phialemonium, Wallemia and an unidentified Saccharomycetales genus are decreased in the guts of DSS-colitis mice. Fungi-depleted mice exhibited aggravated acute DSS-colitis associated with gain of Hallella, Barnesiella, Bacteroides, Alistipes, and Lactobacillus and loss of butyrate-producing Clostridium XIVa, and Anaerostipes compare with normal control. In contrast, bacteria-depleted mice show attenuated acute DSS-colitis. Mice with severely chronic recurrent DSS-colitis show increased plasma (1,3)-β-D-glucan level and fungal translocation into the colonic mucosa, mesenteric lymph nodes and spleen. This work demonstrate the different roles of fungi in acute and chronic recurrent colitis: They are important counterbalance to bacteria in maintaining intestinal micro-ecological homeostasis and health in acutely inflamed intestines, but can harmfully translocate into abnormal sites and could aggravate disease severity in chronic recurrent colitis. PMID:26013555

  1. Extracellular Vesicles From the Helminth Fasciola hepatica Prevent DSS-Induced Acute Ulcerative Colitis in a T-Lymphocyte Independent Mode

    PubMed Central

    Roig, Javier; Saiz, Maria L.; Galiano, Alicia; Trelis, Maria; Cantalapiedra, Fernando; Monteagudo, Carlos; Giner, Elisa; Giner, Rosa M.; Recio, M. C.; Bernal, Dolores; Sánchez-Madrid, Francisco; Marcilla, Antonio

    2018-01-01

    The complexity of the pathogenesis of inflammatory bowel disease (ulcerative colitis and Crohn’s disease) has led to the quest of empirically drug therapies, combining immunosuppressant agents, biological therapy and modulators of the microbiota. Helminth parasites have been proposed as an alternative treatment of these diseases based on the hygiene hypothesis, but ethical and medical problems arise. Recent reports have proved the utility of parasite materials, mainly excretory/secretory products as therapeutic agents. The identification of extracellular vesicles on those secreted products opens a new field of investigation, since they exert potent immunomodulating effects. To assess the effect of extracellular vesicles produced by helminth parasites to treat ulcerative colitis, we have analyzed whether extracellular vesicles produced by the parasitic helminth Fasciola hepatica can prevent colitis induced by chemical agents in a mouse model. Adult parasites were cultured in vitro and secreted extracellular vesicles were purified and used for immunizing both wild type C57BL/6 and RAG1-/- mice. Control and immunized mice groups were treated with dextran sulfate sodium 7 days after last immunization to promote experimental colitis. The severity of colitis was assessed by disease activity index and histopathological scores. Mucosal cytokine expression was evaluated by ELISA. The activation of NF-kB, COX-2, and MAPK were evaluated by immunoblotting. Administration of extracellular vesicles from F. hepatica ameliorates the pathological symptoms reducing the amount of pro-inflammatory cytokines and interfering with both MAPK and NF-kB pathways. Interestingly, the observed effects do not seem to be mediated by T-cells. Our results indicate that extracellular vesicles from parasitic helminths can modulate immune responses in dextran sulfate sodium (DSS)-induced colitis, exerting a protective effect that should be mediated by other cells distinct from B- and T

  2. Mentha longifolia protects against acetic-acid induced colitis in rats.

    PubMed

    Murad, Hussam A S; Abdallah, Hossam M; Ali, Soad S

    2016-08-22

    Mentha longifolia L (Wild Mint or Habak) (ML) is used in traditional medicine in treatment of many gastrointestinal disorders. This study aimed to evaluate potential protecting effect of ML and its major constituent, eucalyptol, against acetic acid-induced colitis in rats, a model of human inflammatory bowel disease (IBD). Rats were divided into ten groups (n=8) given orally for three days (mg/kg/day) the following: normal control, acetic acid-induced colitis (un-treated, positive control), vehicle (DMSO), sulfasalazine (500), ML extract (100, 500, 1000), and eucalyptol (100, 200, 400). After 24h-fasting, two ML of acetic acid (3%) was administered intrarectally. On the fifth day, serum and colonic biochemical markers, and histopathological changes were evaluated. Colitis significantly increased colonic myeloperoxidase activity and malonaldehyde level, and serum tumor necrosis factor-α, interleukin-6, and malonaldehyde levels while significantly decreased colonic and serum glutathione levels. All treatments (except ML 100, ML 1000, and eucalyptol 100) significantly reversed these changes where eucalyptol (400) showed the highest activity in a dose-dependent manner. The colitis-induced histopathological changes were mild in sulfasalazine and eucalyptol 400 groups, moderate in ML 500 and eucalyptol 200 groups, and severe in ML 100, ML 1000, and eucalyptol 100 groups nearly similar to colitis-untreated rats. ML (in moderate doses) and eucalyptol (dose-dependently) exerted protective effects against acetic acid-induced colitis in rats possibly through antioxidant and antiinflammatory properties suggesting a potential benefit in treatments of IBD. To our knowledge this is the first report addressing this point. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Ipilimumab-induced colitis in patients with metastatic melanoma.

    PubMed

    De Felice, Kara M; Gupta, Arjun; Rakshit, Sagar; Khanna, Sahil; Kottschade, Lisa A; Finnes, Heidi D; Papadakis, Konstantinos A; Loftus, Edward V; Raffals, Laura E; Markovic, Svetomir N

    2015-08-01

    Ipilimumab is used for the treatment of metastatic melanoma and is associated with serious immune-related colitis. We aimed to report the clinical features, treatment, and outcomes of patients with ipilimumab-induced colitis. In this retrospective observational study, we identified patients with unresectable melanoma treated with ipilimumab between March 2011 and September 2013. Diarrhea was assessed using the Common Terminology Criteria for Adverse Events, v3.0. Colitis was defined by diarrhea (grade≥2) requiring steroids with or without endoscopic/histologic/radiologic evidence of colitis. A total of 103 patients with metastatic melanoma treated with ipilimumab were identified. Of these, 30 patients (29%) developed diarrhea (all grades), and 23 patients (22%) developed colitis requiring systemic corticosteroid therapy. The median number of ipilimumab doses before onset of diarrhea was 2 (range, 1-4). Six of 23 patients responded to less than 1 mg/kg daily prednisone alone. Fifteen patients required high-dose oral and/or intravenous prednisone (1-2 mg/kg body weight). Six patients had diarrhea refractory to prednisone; five required rescue therapy with budesonide (9-12 mg daily) and one was treated with infliximab (5 mg/kg, three doses). There was one case of severe diarrhea (grade 3) treated successfully with high-dose budesonide (12 mg) monotherapy. Ipilimumab-induced colitis requires early and aggressive medical therapy. Most patients can be successfully managed with systemic corticosteroids. High-dose budesonide is an attractive steroid-sparing agent, however further studies of its efficacy in this setting are needed. Infliximab should be used in refractory cases to avoid colectomy. Copyright © 2015 Wolters Kluwer Health, Inc. All rights reserved.

  4. Ficus carica aqueous extract alleviates delayed gastric emptying and recovers ulcerative colitis-enhanced acute functional gastrointestinal disorders in rats.

    PubMed

    Rtibi, Kaïs; Grami, Dhekra; Wannes, Dalanda; Selmi, Slimen; Amri, Mohamed; Sebai, Hichem; Marzouki, Lamjed

    2018-06-02

    Ficus carica fruit, a source of bioactive functional ingredients, have been traditionally long time used for its medicinal benefits as they improve the digestive system, treating constipation and used as a natural laxative. The recent study was investigated the ameliorative effect of Ficus carica L. aqueous extract (FCAE) on delayed gastric emptying and ulcerative colitis-improved motility disturbances in dextran sulfate sodium (DSS)-induced acute colitis in rats. Wistar rats were assigned randomly and received 5% DSS for seven days. Ulcerative colitis diagnosis was confirmed by clinical signs, visible fecal blood and histopatological evaluation. The estimation of the action of colitis on TGI and constipation as well as the protective effect of extract, the intestinal biochemical and physiological parameters were measured using the charcoal meal test, loperamide (Lop)-induced constipation as well as spectrophotometric assays. FCAE (150 and 300 mg kg -1 ) was administered orally once per day for seven days 1 h after the loperamide treatment. Phenol-red colorimetric method was used to explore the action of FCAE on gastric emptying process. Ulcerative colitis caused a significantly gastrointestinal motility inhibition in normal rats and notably aggravated the constipation in LOP group. Oppositely, FCAE oral intake significantly increased levels of the gastrointestinal transit ratio and gastric emptying by accelerating of their times. Moreover, constipation severity induced by colitis was remarkably reduced in the FCAE treatment group, as demonstrated by a marked management of fecal parameters, water content, oxidative stress indicators, lipid metabolism, and intracellular mediators. Phytochemical analysis of FCAE revealed the presence of carbohydrates, polysaccharides, phenolic acids as gallic acid, chlorogenic acid, syringic acid and ellagic acid, and flavonoids (e.g. rutin, catechin, epicatechin and apeginine). The obtained results indicated that FCAE exhibits

  5. Impact of basal diet on dextran sodium sulphate (DSS)-induced colitis in rats.

    PubMed

    Boussenna, Ahlem; Goncalves-Mendes, Nicolas; Joubert-Zakeyh, Juliette; Pereira, Bruno; Fraisse, Didier; Vasson, Marie-Paule; Texier, Odile; Felgines, Catherine

    2015-12-01

    Dextran sodium sulphate (DSS)-induced colitis is a widely used model for inflammatory bowel disease. However, various factors including nutrition may affect the development of this colitis. This study aimed to compare and characterize the impact of purified and non-purified basal diets on the development of DSS-induced colitis in the rat. Wistar rats were fed a non-purified or a semi-synthetic purified diet for 21 days. Colitis was then induced in half of the rats by administration of DSS in drinking water (4% w/v) during the last 7 days of experimentation. At the end of the experimental period, colon sections were taken for histopathological examination, determination of various markers of inflammation (myeloperoxidase: MPO, cytokines) and oxidative stress (superoxide dismutase: SOD, catalase: CAT, glutathione peroxidase: GPx and glutathione reductase: GRed activities), and evaluation of the expression of various genes implicated in this disorder. DSS ingestion induced a more marked colitis in animals receiving the purified diet, as reflected by higher histological score and increased MPO activity. A significant decrease in SOD and CAT activities was also observed in rats fed the purified diet. Also, in these animals, administration of DSS induced a significant increase in interleukin (IL)-1α, IL-1β and IL-6. In addition, various genes implicated in inflammation were over-expressed after ingestion of DSS by rats fed the purified diet. These results show that a purified diet promotes the onset of a more severe induced colitis than a non-purified one, highlighting the influence of basal diet in colitis development.

  6. Curative effect of Terminalia chebula extract on acetic acid-induced experimental colitis: role of antioxidants, free radicals and acute inflammatory marker.

    PubMed

    Gautam, M K; Goel, Shalini; Ghatule, R R; Singh, A; Nath, G; Goel, R K

    2013-10-01

    The present study has evaluated the healing effects of extract of dried fruit pulp of Terminalia chebula (TCE) on acetic acid (AA)-induced colitis in rats. TCE (600 mg/kg) showed healing effects against AA-induced colonic damage score and weight when administered orally daily for 14 days. TCE was further studied for its effects on various physical (mucus/blood in stool and stool frequency, food and water intake and body weight changes), histology, antibacterial activity and free radicals (NO and LPO), antioxidants (SOD, CAT and GSH) and myeloperoxidase in colonic tissue. Intra-colonic AA administration increased colonic mucosal damage and inflammation, mucus/bloody diarrhoea, stool frequency, but decreased body weight which were reversed by TCE and sulfasalazine (SS, positive control) treatments. TCE showed antibacterial activity and both TCE and SS enhanced the antioxidants, but decreased free radicals and myeloperoxidase activities affected in acetic acid-induced colitis. TCE indicated the presence of active principles with proven antioxidants, anti-inflammatory, immunomodulatory, and free radical scavenging and healing properties. Thus, TCE seemed to be safe and effective in healing experimental colitis.

  7. Medicinal lavender modulates the enteric microbiota to protect against Citrobacter rodentium-induced colitis.

    PubMed

    Baker, J; Brown, K; Rajendiran, E; Yip, A; DeCoffe, D; Dai, C; Molcan, E; Chittick, S A; Ghosh, S; Mahmoud, S; Gibson, D L

    2012-10-01

    Inflammatory bowel disease, inclusive of Crohn's disease and ulcerative colitis, consists of immunologically mediated disorders involving the microbiota in the gastrointestinal tract. Lavender oil is a traditional medicine used to relieve many gastrointestinal disorders. The goal of this study was to examine the therapeutic effects of the essential oil obtained from a novel lavender cultivar, Lavandula×intermedia cultivar Okanagan lavender (OLEO), in a mouse model of acute colitis caused by Citrobacter rodentium. In colitic mice, oral gavage with OLEO resulted in less severe disease, including decreased morbidity and mortality, reduced intestinal tissue damage, and decreased infiltration of neutrophils and macrophages, with reduced levels of TNF-α, IFN-γ, IL-22, macrophage inflammatory protein-2α, and inducible nitric oxide synthase expression. This was associated with increased levels of regulatory T cell populations compared with untreated colitic mice. Recently, we demonstrated that the composition of the enteric microbiota affects susceptibility to C. rodentium-induced colitis. Here, we found that oral administration of OLEO induced microbiota enriched with members of the phylum Firmicutes, including segmented filamentous bacteria, which are known to protect against the damaging effects of C. rodentium. Additionally, during infection, OLEO treatment promoted the maintenance of microbiota loads, with specific increases in Firmicutes bacteria and decreases in γ-Proteobacteria. We observed that Firmicutes bacteria were intimately associated with the apical region of the intestinal epithelial cells during infection, suggesting that their protective effect was through contact with the gut wall. Finally, we show that OLEO inhibited C. rodentium growth and adherence to Caco-2 cells, primarily through the activities of 1,8-cineole and borneol. These results indicate that while OLEO promoted Firmicutes populations, it also controlled pathogen load through

  8. Goniothalamin prevents the development of chemically induced and spontaneous colitis in rodents and induces apoptosis in the HT-29 human colon tumor cell line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vendramini-Costa, Débora Barbosa, E-mail: vendrami

    Colon cancer is the third most incident type of cancer worldwide. One of the most important risk factors for colon cancer development are inflammatory bowel diseases (IBD), thus therapies focusing on IBD treatment have great potential to be used in cancer prevention. Nature has been a source of new therapeutic and preventive agents and the racemic form of the styryl-lactone goniothalamin (GTN) has been shown to be a promising antiproliferative agent, with gastroprotective, antinociceptive and anti-inflammatory effects. As inflammation is a well-known tumor promoter, the major goal of this study was to evaluate the therapeutic and preventive potentials of GTNmore » on chemically induced and spontaneous colitis, as well as the cytotoxic effects of GTN on a human colon tumor cell line (HT-29). GTN treatments inhibited TNBS-induced acute and chronic colitis development in Wistar rats, reducing myeloperoxidase levels and inflammatory cells infiltration in the mucosa. In spontaneous-colitis using IL-10 deficient mice (C57BL/6 background), GTN prevented colitis development through downregulation of TNF-α, upregulation of SIRT-1 and inhibition of proliferation (PCNA index), without signs of toxicity after three months of treatment. In HT-29 cells, treatment with 10 μM of GTN induced apoptosis by increasing BAX/BCL2, p-JNK1/JNK1, p-P38/P38 ratios as well as through ROS generation. Caspase 8, 9 and 3 activation also occurred, suggesting caspase-dependent apoptotic pathway, culminating in PARP-1 cleavage. Together with previous data, these results show the importance of GTN as a pro-apoptotic, preventive and therapeutic agent for IBD and highlight its potential as a chemopreventive agent for colon cancer. - Highlights: • Goniothalamin (GTN) inhibits the development of TNBS-induced colitis in rats. • Moreover, GTN prevents the development of spontaneous colitis in IL-10 deficient mice. • This activity relies on downregulation of TNF-α and upregulation of SIRT-1

  9. Dietary Propolis Ameliorates Dextran Sulfate Sodium-Induced Colitis and Modulates the Gut Microbiota in Rats Fed a Western Diet.

    PubMed

    Wang, Kai; Jin, Xiaolu; You, Mengmeng; Tian, Wenli; Le Leu, Richard K; Topping, David L; Conlon, Michael A; Wu, Liming; Hu, Fuliang

    2017-08-14

    Propolis is an important hive product and considered beneficial to health. However, evidence of its potential for improving gut health is still lacking. Here we use rats to examine whether dietary supplementation with propolis could be used as a therapy for ulcerative colitis. Rats were fed with a Western style diet alone (controls) or supplemented with different amounts of Chinese propolis (0.1%, 0.2%, and 0.3%) to examine effects on acute colitis induced by 3% dextran sulphate sodium (DSS) in drinking water. Propolis at 0.3%, but not lower levels, significantly improved colitis symptoms compared with the control group, with a less pronounced disease activity index (DAI) ( p < 0.001), a significant increase in colon length/weight ratio ( p < 0.05) and an improved distal colon tissue structure as assessed by histology. Although short chain fatty acid levels in digesta were not altered by propolis supplementation, 16S rRNA phylogenetic sequencing revealed a significant increase in gut microbial diversity after 21 days of 0.3% propolis supplementation compared with controls including a significant increase in bacteria belonging to the Proteobacteria and Acidobacteria phyla. This is the first study to demonstrate that propolis can attenuate DSS-induced colitis and provides new insight into diet-microbiota interactions during inflammatory bowel disease.

  10. H. pylori attenuates TNBS-induced colitis via increasing mucosal Th2 cells in mice.

    PubMed

    Wu, Yi-Zhong; Tan, Gao; Wu, Fang; Zhi, Fa-Chao

    2017-09-26

    There is an epidemiological inverse relationship between Helicobacter pylori ( H. pylori ) infection and Crohn's disease (CD). However, whether H. pylori plays a protective role against CD remains unclear. Since 2, 4, 6-trinitrobenzene sulfonic acid (TNBS)-induced colitis is thought to resemble CD, we investigated whether H. pylori can attenuate TNBS-induced colitis in mice. Here we show that H. pylori can attenuate the severity of TNBS-induced colitis. In addition, H. pylori not only down-regulates Th17 and Th1 cytokine expression, but can up-regulate Th2 cytokine expression and increase the Th2:Th17 ratio of CD4 + T in the colonic mucosa of TNBS-induced colitis. Our results indicate that H. pylori attenuates TNBS-induced colitis mainly through increasing Th2 cells in murine colonic mucosa. Our finding offers a novel view on the role of H. pylori in regulating gastrointestinal immunity, and may open a new avenue for development of therapeutic strategies in CD by making use of asymptomatic H. pylori colonization.

  11. Eosinophil-mediated signalling attenuates inflammatory responses in experimental colitis

    PubMed Central

    Masterson, Joanne C; McNamee, Eóin N; Fillon, Sophie A; Hosford, Lindsay; Harris, Rachel; Fernando, Shahan D; Jedlicka, Paul; Iwamoto, Ryo; Jacobsen, Elizabeth; Protheroe, Cheryl; Eltzschig, Holger K; Colgan, Sean P; Arita, Makoto; Lee, James J; Furuta, Glenn T

    2015-01-01

    Objective Eosinophils reside in the colonic mucosa and increase significantly during disease. Although a number of studies have suggested that eosinophils contribute to the pathogenesis of GI inflammation, the expanding scope of eosinophil-mediated activities indicate that they also regulate local immune responses and modulate tissue inflammation. We sought to define the impact of eosinophils that respond to acute phases of colitis in mice. Design Acute colitis was induced in mice by administration of dextran sulfate sodium, 2,4,6-trinitrobenzenesulfonic acid or oxazolone to C57BL/6J (control) or eosinophil deficient (PHIL) mice. Eosinophils were also depleted from mice using antibodies against interleukin (IL)-5 or by grafting bone marrow from PHIL mice into control mice. Colon tissues were collected and analysed by immunohistochemistry, flow cytometry and reverse transcription PCR; lipids were analysed by mass spectroscopy. Results Eosinophil-deficient mice developed significantly more severe colitis, and their colon tissues contained a greater number of neutrophils, than controls. This compensatory increase in neutrophils was accompanied by increased levels of the chemokines CXCL1 and CXCL2, which attract neutrophils. Lipidomic analyses of colonic tissue from eosinophil-deficient mice identified a deficiency in the docosahexaenoic acid-derived anti-inflammatory mediator 10, 17- dihydroxydocosahexaenoic acid (diHDoHE), namely protectin D1 (PD1). Administration of an exogenous PD1-isomer (10S, 17S-DiHDoHE) reduced the severity of colitis in eosinophil-deficient mice. The PD1-isomer also attenuated neutrophil infiltration and reduced levels of tumour necrosis factor-α, IL-1β, IL-6 and inducible NO-synthase in colons of mice. Finally, in vitro assays identified a direct inhibitory effect of PD1-isomer on neutrophil transepithelial migration. Conclusions Eosinophils exert a protective effect in acute mouse colitis, via production of anti-inflammatory lipid

  12. Effect of Coriandrum sativum hydroalcoholic extract and its essential oil on acetic acid- induced acute colitis in rats

    PubMed Central

    Heidari, Bahareh; Sajjadi, Seyed Ebrahim; Minaiyan, Mohsen

    2016-01-01

    Objective: The aim of this study was to determine the protective effects of Coriandrum sativum on acetic acid-inducedcolitis in rats. C. sativum (Coriander) has long been used in Iranian traditional medicine and its use as an anti-inflammatory agent is still common in some herbal formulations. Materials and Methods: Colitis was induced by intra-rectal administration of 2ml acetic acid 4% in fasted male Wistar rats. Treatment was carried out using three increasing doses of extract (250, 500, 1000 mg/kg) and essential oil (0.25, 0.5, 1 ml/kg) of coriander started 2 h before colitis induction and continued for a five-day period. Colon biopsies were taken for weighting, macroscopic scoring of injured tissue, histopathological examination and measuring myeloperoxidase (MPO) activity. Results: Colon weight was decreased in the groups treated with extract (500 and 1000 mg/kg) and essential oil (0.5 ml/kg) compared to the control group. Regarding MPO levels, ulcer severity and area as well as the total colitis index, same results indicating meaningful alleviation of colitis was achieved after treatment with oral extract and essential oil. Conclusion: Since the present experiment was made by oral fractions of coriander thus the resulting effects could be due to both the absorption of the active ingredients and/or the effect of non-absorbable materials on colitis after reaching the colon. In this regard, we propose more toxicological and clinical experiments to warranty its beneficial application in human inflammatory bowel diseases. PMID:27222834

  13. Low-level light therapy induces mucosal healing in a murine model of dextran-sodium-sulfate induced colitis.

    PubMed

    Zigmond, Ehud; Varol, Chen; Kaplan, Michail; Shapira, Oz; Melzer, Ehud

    2014-08-01

    The aim of this study was to demonstrate the effect of low-level light therapy (LLLT) in an acute colitis model in mice. Low-level light therapy (LLLT) has been shown to be an effective treatment for various inflammatory processes such as oral mucositis and diabetic foot ulcers. Colitis was induced by dextran sodium sulfate (DSS) in mice in four blinded controlled studies (validation of model, efficacy study, and two studies for evaluation of optimal dose). LLLT was applied to the colon utilizing a small diameter endoscope with an LED-based light source in several wavelengths (440, 660, and 850 nm at 1 J/cm(2)) and then 850 nm at several doses (1, 0.5, 0.25, and 0.1 J/cm(2)). LLLT was initiated 1 day prior to induction of colitis and went on for the 6 day induction period as well as for the following 3-10 days. Dose was controlled by changing exposure time. Disease activity was scored endoscopically and by histopathological assessment. Statistically significant improvement in disease severity was observed in the treatment groups compared with the control groups. The three wavelengths used demonstrated efficacy, and a clear dose-response curve was observed for one of the wavelengths (850 nm). On day 11, colonoscopic scoring in the sham-treated mice increased from 7.9±1.3 to 12.2±2.2, while activity in all treated groups remained stable. Photobiostimulation with LLLT has a significant positive effect on disease progression in mice with DSS colitis.

  14. Overexpression of GATA-3 in T cells accelerates dextran sulfate sodium-induced colitis.

    PubMed

    Okamura, Midori; Yoh, Keigyou; Ojima, Masami; Morito, Naoki; Takahashi, Satoru

    2014-01-01

    Ulcerative colitis (UC) is an inflammatory bowel disease, and its pathogenesis includes genetic, environmental, and immunological factors, such as T helper cells and their secreted cytokines. T helper cells are classified as Th1, Th2, and Th17 cells. However, it is unclear which T helper cells are important in UC. Dextran sulfate sodium (DSS)-induced colitis is a commonly used model of UC. In this study, we induced DSS colitis in Th1 dominant (T-bet transgenic (Tg)) mice, Th2 dominant (GATA-3 Tg) mice, and Th17 dominant (RORγt Tg) mice to elucidate the roles of T helper cell in DSS colitis. The results showed that GATA-3 Tg mice developed the most severe DSS colitis compared with the other groups. GATA-3 Tg mice showed a significant decreased in weight from day 1 to day 7, and an increased high score for the disease activity index compared with the other groups. Furthermore, GATA-3 Tg mice developed many ulcers in the colon, and many neutrophils and macrophages were detected on day 4 after DSS treatment. Measurement of GATA-3-induced cytokines demonstrated that IL-13 was highly expressed in the colon from DSS-induced GATA-3 Tg mice. In conclusion, GATA-3 overexpression in T-cells and IL-13 might play important roles in the development of DSS colitis.

  15. Paeonol attenuates TNBS-induced colitis by inhibiting NF-{kappa}B and STAT1 transactivation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishiguro, Kazuhiro; Ando, Takafumi; Maeda, Osamu

    2006-11-15

    Paeonol, a major phenolic component of Moutan Cortex, is known to have anti-inflammatory activity. However, the effect of Paeonol on colitis has not been evaluated and the molecular mechanism of its anti-inflammatory action remains unknown. The aim of this study was to determine if Paeonol enema attenuates trinitrobenzene sulfonic acid (TNBS)-induced colitis in mice. We also investigated the effects of Paeonol in colon cancer-derived CW-2 cells and T cell leukemia-derived Jurkat cells treated with tumor necrosis factor {alpha} (TNF{alpha}) and/or interferon {gamma} (IFN{gamma}), which play critical roles in TNBS-induced colitis. Paeonol enema attenuated TNBS-induced colitis judging by body weigh reduction,more » colon length and histological score. Myeloperoxidase activity and inducible nitric oxide synthase (iNOS) production in the colon were also reduced with Paeonol enema. In CW-2 cells, Paeonol inhibited iNOS protein and mRNA expression induced by costimulation of TNF{alpha} and IFN{gamma}. Furthermore, Paeonol reduced TNF{alpha}-induced NF-{kappa}B transactivation and IFN{gamma}-induced STAT1 transactivation in CW-2 cells and also in Jurkat cells. These findings suggest that Paeonol enema may be useful for the treatment of colitis.« less

  16. Loss of n-6 fatty acid induced pediatric obesity protects against acute murine colitis

    USDA-ARS?s Scientific Manuscript database

    Dietary influences may affect microbiome composition and host immune responses, thereby modulating propensity toward inflammatory bowel diseases: Crohn disease and ulcerative colitis. Dietary n-6 fatty acids have been associated with ulcetative colitis in prospective studies. However, the critical d...

  17. Myristica fragrans seed extract protects against dextran sulfate sodium-induced colitis in mice.

    PubMed

    Kim, Hyojung; Bu, Youngmin; Lee, Beom-Joon; Bae, Jinhyun; Park, Sujin; Kim, Jinsung; Lee, Kyungjin; Cha, Jae-Myung; Ryu, Bongha; Ko, Seok-Jae; Han, Gajin; Min, Byungil; Park, Jae-Woo

    2013-10-01

    Nutmeg (seed of Myristica fragrans [MF]) is one of the most commonly used spices in the world and also a well-known herb for the treatment of various intestinal diseases, including colitis in traditional Korean medicine. The purpose of the current study was to investigate whether water extract of MF (MFE) can protect against dextran sulfate sodium (DSS) induced colitis in a mouse model. Colitis was induced by 5% DSS in balb/c mice. MFE (100, 300 or 1000 mg/kg) was orally administered to the mice twice a day for 7 days. Body weight, colon length, clinical score, and histological score were assessed to determine the effects on colitis. Proinflammatory cytokines (interferon-γ, tumor necrosis factor-α, interleukin [IL]-1β, and IL-6) were measured to investigate the mechanisms of action. MFE dose dependently inhibited the colon shortening and histological damage to the colon. However, it did not prevent weight loss. MFE also inhibited proinflammatory cytokines. The current results suggest that MFE ameliorates DSS-induced colitis in mice by inhibiting inflammatory cytokines. Further investigation, including the exact mechanisms is needed.

  18. The Influence of Ghrelin on the Development of Dextran Sodium Sulfate-Induced Colitis in Rats

    PubMed Central

    Matuszyk, Aleksandra; Ceranowicz, Dagmara; Warzecha, Zygmunt; Ceranowicz, Piotr; Fyderek, Krzysztof; Gałązka, Krystyna; Cieszkowski, Jakub; Bonior, Joanna; Jaworek, Jolanta; Pihut, Małgorzata; Dembiński, Artur

    2015-01-01

    Ghrelin has protective and therapeutic effects in the gut. The aim of present studies was to investigate the effect of treatment with ghrelin on the development of colitis evoked by dextran sodium sulfate (DSS). Methods. Studies have been performed on rats. Colitis was induced by adding 5% DSS to the drinking water for 5 days. During this period animals were treated intraperitoneally twice a day with saline or ghrelin given at the dose of 8 nmol/kg/dose. On the sixth day, animals were anesthetized and the severity of colitis was assessed. Results. Treatment with ghrelin during administration of DSS reduced the development of colitis. Morphological features of colonic mucosa exhibited a reduction in the area and deep of mucosal damage. Ghrelin reversed the colitis-induced decrease in blood flow, DNA synthesis, and superoxide dismutase activity in colonic mucosa. These effects were accompanied by a decrease in the colitis-evoked increase in mucosal concentration of interleukin-1β and malondialdehyde. Treatment with ghrelin reversed the DSS-induced reduction in body weight gain. Conclusions. Administration of ghrelin exhibits the preventive effect against the development of DSS-induced colitis. This effect seems to be related to ghrelin's anti-inflammatory and antioxidative properties. PMID:26713317

  19. Therapeutic Effects of 6-Gingerol, 8-Gingerol, and 10-Gingerol on Dextran Sulfate Sodium-Induced Acute Ulcerative Colitis in Rats.

    PubMed

    Zhang, Feng; Ma, Na; Gao, Yong-Feng; Sun, Li-Li; Zhang, Ji-Guo

    2017-09-01

    Ulcerative colitis is one of the most common types of inflammatory bowel disease and is multifactorial and relapsing. 6-Gingerol, a component of gingerols extracted from ginger (Zingiber officinale), has been reported to improve ulcerative colitis. The present study aims to investigate the therapeutic efficacy of two analogous forms of 6-gingerol, 8-gingerol, and 10-gingerol, on ulcerative colitis. Colitis was induced in rats through consumption of 5% (w/v) dextran sulfate sodium drinking water for 7 consecutive days. 6-Gingerol, 8-gingerol, and 10-gingerol were then given intraperitoneally at doses of 30 mg kg -1  d -1 for another 7 days, respectively. Body weight change, disease activity index, inflammatory cytokines, and oxidative stress indices were measured, and the colonic tissue injuries were assessed macroscopically and histopathologically. Results showed that all three gingerols attenuated colitic symptoms evoked by dextran sulfate sodium, significantly elevated superoxide dismutase activity, decreased malondialdehyde levels and myeloperoxidase activity in the colon tissue, and markedly reduced the content of tumor necrosis factor alpha and Interleukin 1 beta in the serum. Histological observations showed that all three gingerols obviously accelerated mucosal damage healing. It is concluded that 6-gingerol, 8-gingerol, and 10-gingerol, the three analogues, have a strong and relatively equal efficacy in the treatment of colitis. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  20. Curcumin reverses attenuated carbachol-induced contraction of the colon in a rat model of colitis.

    PubMed

    Lubbad, Asmaa S; Oriowo, Mabayoje A; Khan, Islam

    2009-01-01

    Curcumin ameliorates colitis whether it reverses colitis-induced reduction in colonic contractility remains to be investigated. To investigate the effect of curcumin on colitis-induced reduction of carbachol-induced contraction in colon segments from rats treated with trinitrobenzenesulphonic acid. Colitis was induced in rats by intra rectal administration of trinitrobenzenesulphonic acid and followed for 5 days. A group of animals which received trinitobenzene sulphonic acids was treated with curcumin (100 mg/Kg and 200 mg/kg body weight) 2 hrs prior to induction of colitis. The controls received phosphate buffered saline in a similar fashion. Markers of inflammation and contractility of colon were assayed using standard procedures. Induction of colitis was associated with increased myeloperoxidase activity and malondialdehyde levels, gross histological changes characterized by infiltration of inflammatory cells. All these changes were prevented by treatment with curcumin (100 mg/kg). Treatment with curcumin also reduced the histological scores from 3.34+/-0.40 to 1.75+/-0.30 confirming an anti-inflammatory effect of curcumin in this experimental model of colitis. Colonic reactivity to carbachol was decreased in colitis affecting the maximum response but not sensitivity. Treatment with curcumin had no effect on sensitivity of the colon to carbachol in any of the preparations. Curcumin however reversed the decrease in carbachol-induced contraction associated with trinitrobenzenesulphonic acid treatment. The same dose of curcumin had no effect on either the potency of or the maximum response to carbachol in control rats. Tissue expression of NF-kB was increased in colon segments from trinitrobenzenesulphonic acid -treated rats and this was inhibited in rats treated with curcumin. Based on these findings it is concluded that curcumin prevented the reduction in carbachol-induced contraction in trinitrobenzenesulphonic acid -treated rats by modulating NF-kB signaling

  1. Supplementation of the diet with Salecan attenuates the symptoms of colitis induced by dextran sulphate sodium in mice.

    PubMed

    Zhou, Mengyi; Wang, Zhongqiu; Chen, Jinping; Zhan, Yibei; Wang, Tao; Xia, Lin; Wang, Shiming; Hua, Zichun; Zhang, Jianfa

    2014-05-28

    As a water-soluble extracellular β-glucan produced by Agrobacterium sp. ZX09, Salecan has an excellent toxicological profile and exerts multiple physiological effects. The aims of the present study were to investigate the protective effects of a Salecan diet in the well-defined dextran sulphate sodium (DSS) model of experimental murine colitis and to elucidate the mechanism involved in its effects with special attention being paid to its effect on the production of TNF-α, a primary mediator involved in the inflammatory response. Male C57BL/6J mice were fed a diet supplemented with either 4 or 8 % Salecan for 26 d and DSS was administered to induce acute colitis during the last 5 d of the experimental period. Several clinical and inflammatory parameters as well as mRNA expression of TNF-α and Dectin-1 were evaluated. The results indicated that the dietary incorporation of Salecan attenuated the severity of DSS colitis as evidenced by the decreased disease activity index, reduced severity of anaemia, attenuated changes in colon architecture and reduced colonic myeloperoxidase activity. This protection was associated with the down-regulation of TNF-α mRNA levels, which might derive from its ability to increase Dectin-1 mRNA levels. In conclusion, the present study suggests that Salecan contributes to the reduction of colonic damage and inflammation in mice with DSS-induced colitis and holds promise as a new, effective nutritional supplement in the management of inflammatory bowel disease.

  2. Growth hormone secretagogue receptor is important in the development of experimental colitis.

    PubMed

    Liu, Zhen-Ze; Wang, Wei-Gang; Li, Qing; Tang, Miao; Li, Jun; Wu, Wen-Ting; Wan, Ying-Han; Wang, Zhu-Gang; Bao, Shi-San; Fei, Jian

    2015-01-01

    Growth hormone secretagogue receptor (GHSR) and its ligand, ghrelin, are important modulators in weight control and energy homeostasis. Recently, ghrelin is also involved in experimental colitis, but the role of GHSR in the development of colitis is unclear. The aim was to examine the underlying mechanism of GHSR in IBD development. The temporal expression of GHSR/ghrelin was determined in dextran sulphate sodium (DSS) induced colitis in Wt mice. The severity of DSS induced colitis from GHSR(-/-) and WT mice was compared at clinical/pathological levels. Furthermore, the function of macrophages was evaluated in vivo and in vitro. Lack of GHSR attenuated colitis significantly at the clinical and pathological levels with reduced colonic pro-inflammatory cytokines (P < 0.05). This is consistent with the observation of less colonic macrophage infiltration and TLRs expression from DSS-treated GHSR(-/-) mice compared to WT mice (P < 0.05). Furthermore, there was significantly reduced pro-inflammatory cytokines in LPS-stimulated macrophages in vitro from GHSR(-/-) mice than WT mice (P < 0.05). Moreover, D-lys(3)-GHRP6 (a GHSR antagonist) reduced LPS-induced macrophage pro-inflammatory cytokines from WT mice in vitro. GHSR contributes to development of acute DSS-induced colitis, likely via elevated pro-inflammatory cytokines and activation of macrophages. These data suggest GHSR as a potential therapeutic target for IBD.

  3. Bilirubin prevents acute DSS-induced colitis by inhibiting leukocyte infiltration and suppressing upregulation of inducible nitric oxide synthase

    PubMed Central

    Vogel, Megan E.; Kindel, Tammy L.; Smith, Darcey L. H.; Idelman, Gila; Avissar, Uri; Kakarlapudi, Ganesh; Masnovi, Michelle E.

    2015-01-01

    Bilirubin is thought to exert anti-inflammatory effects by inhibiting vascular cell adhesion molecule-1 (VCAM-1)-dependent leukocyte migration and by suppressing the expression of inducible nitric oxide synthase (iNOS). As VCAM-1 and iNOS are important mediators of tissue injury in the dextran sodium sulfate (DSS) murine model of inflammatory colitis, we examined whether bilirubin prevents colonic injury in DSS-treated mice. Male C57BL/6 mice were administered 2.5% DSS in the drinking water for 7 days, while simultaneously receiving intraperitoneal injections of bilirubin (30 mg/kg) or potassium phosphate vehicle. Disease activity was monitored, peripheral blood counts and serum nitrate levels were determined, and intestinal specimens were analyzed for histological injury, leukocyte infiltration, and iNOS expression. The effect of bilirubin on IL-5 production by HSB-2 cells and on Jurkat cell transendothelial migration also was determined. DSS-treated mice that simultaneously received bilirubin lost less body weight, had lower serum nitrate levels, and exhibited reduced disease severity than vehicle-treated animals. Concordantly, histopathological analyses revealed that bilirubin-treated mice manifested significantly less colonic injury, including reduced infiltration of eosinophils, lymphocytes, and monocytes, and diminished iNOS expression. Bilirubin administration also was associated with decreased eosinophil and monocyte infiltration into the small intestine, with a corresponding increase in peripheral blood eosinophilia. Bilirubin prevented Jurkat migration but did not alter IL-5 production. In conclusion, bilirubin prevents DSS-induced colitis by inhibiting the migration of leukocytes across the vascular endothelium and by suppressing iNOS expression. PMID:26381705

  4. Bilirubin prevents acute DSS-induced colitis by inhibiting leukocyte infiltration and suppressing upregulation of inducible nitric oxide synthase.

    PubMed

    Zucker, Stephen D; Vogel, Megan E; Kindel, Tammy L; Smith, Darcey L H; Idelman, Gila; Avissar, Uri; Kakarlapudi, Ganesh; Masnovi, Michelle E

    2015-11-15

    Bilirubin is thought to exert anti-inflammatory effects by inhibiting vascular cell adhesion molecule-1 (VCAM-1)-dependent leukocyte migration and by suppressing the expression of inducible nitric oxide synthase (iNOS). As VCAM-1 and iNOS are important mediators of tissue injury in the dextran sodium sulfate (DSS) murine model of inflammatory colitis, we examined whether bilirubin prevents colonic injury in DSS-treated mice. Male C57BL/6 mice were administered 2.5% DSS in the drinking water for 7 days, while simultaneously receiving intraperitoneal injections of bilirubin (30 mg/kg) or potassium phosphate vehicle. Disease activity was monitored, peripheral blood counts and serum nitrate levels were determined, and intestinal specimens were analyzed for histological injury, leukocyte infiltration, and iNOS expression. The effect of bilirubin on IL-5 production by HSB-2 cells and on Jurkat cell transendothelial migration also was determined. DSS-treated mice that simultaneously received bilirubin lost less body weight, had lower serum nitrate levels, and exhibited reduced disease severity than vehicle-treated animals. Concordantly, histopathological analyses revealed that bilirubin-treated mice manifested significantly less colonic injury, including reduced infiltration of eosinophils, lymphocytes, and monocytes, and diminished iNOS expression. Bilirubin administration also was associated with decreased eosinophil and monocyte infiltration into the small intestine, with a corresponding increase in peripheral blood eosinophilia. Bilirubin prevented Jurkat migration but did not alter IL-5 production. In conclusion, bilirubin prevents DSS-induced colitis by inhibiting the migration of leukocytes across the vascular endothelium and by suppressing iNOS expression. Copyright © 2015 the American Physiological Society.

  5. Induction of ulcerative colitis in mice influences the course of infection with the nematode Trichuris muris.

    PubMed

    Vegas-Sánchez, M C; Rollán-Landeras, E; García-Rodríguez, J J; Bolás-Fernández, F

    2015-09-01

    The aim of this study was to assess the effect of infection with the nematode whipworm Trichuris muris on the course of chemically induced acute ulcerative colitis in CBA/J mice, a strain proven to be highly resistant to infection with T. muris. Each mouse was infected with 50 embryonated eggs of T. muris by oral gavage. Acute colitis was triggered by administering 4% dextran sulphate sodium (DSS) in the drinking water for nine consecutive days at different times after infection. Concurrent infection and DSS administration exacerbate the severity of the colitis while favouring the permanence of parasites in the intestine. The induction of ulcerative colitis from days 54 to 62 post-infection (p.i.), when all worms had been expelled, ameliorated the course of the inflammatory disease. When ulcerative colitis was triggered earlier on, from days 27 to 35 p.i., the beneficial effects on inflammatory events were clearly shown with signs of mucosal epithelization and regeneration as early as day 1 after DSS administration. Previous infections by T. muris therefore accelerate recovery from subsequently induced inflammatory bowel disease and such an effect assists the nematode to persist in the intestinal niche.

  6. Resistant starch modulates in vivo colonic butyrate uptake and its oxidation in rats with dextran sulfate sodium-induced colitis.

    PubMed

    Moreau, Noëlle M; Champ, Martine M; Goupry, Stéphane M; Le Bizec, Bruno J; Krempf, Michel; Nguyen, Patrick G; Dumon, Henri J; Martin, Lucile J

    2004-03-01

    We previously demonstrated improvements of colonic lesions due to dextran sulfate sodium (DSS) in rats after 7 d of supplementation with resistant starch (RS) type 3, a substrate yielding high levels of butyrate (C(4)), a colonic cell fuel source. In the present study, we hypothesized that if inflammation is related to decreased C(4) utilization by the colonic mucosa, RS supplementation should restore C(4) use simultaneously with an increase in the amount of C(4) present in the digestive tract. Hence, we compared, in vivo, the cecocolonic uptake of C(4) and its oxidation into CO(2) and ketone bodies in control and DSS-treated rats fed a fiber-free basal diet (BD) or a RS-supplemented diet. Sprague-Dawley rats (n = 60) were used. DSS treatment was performed to induce acute colitis and then to maintain chronic colitis. After cecal infusion of [1-(13)C]-C(4) (20 micro mol in 1 h), concentrations and (13)C-enrichment of C(4), ketone bodies, and CO(2) were quantified in the abdominal aorta and portal vein. Portal blood flow was recorded. During acute colitis, (13)C(4) uptake and (13)CO(2) production were lower in DSS rats than in controls. During chronic colitis, DSS rats did not differ from controls. After 7 d of chronic colitis, RS-DSS rats exhibited the same C(4) uptake as BD-DSS rats in spite of higher C(4) cecocolonic disposal. After 14 d, C(4) uptake was higher in RS-DSS than in BD-DSS rats. Thus, the increased utilization of C(4) by the mucosa is subsequent to evidence of healing and appears to be a consequence rather than a cause of this RS healing effect.

  7. Opposite Role of Tumor Necrosis Factor Receptors in Dextran Sulfate Sodium-Induced Colitis in Mice

    PubMed Central

    Wang, Yi; Liu, Guijun; Wang, Renxi; Xiao, He; Li, Xinying; Hou, Chunmei; Shen, Beifen; Guo, Renfeng; Li, Yan; Shi, Yanchun; Chen, Guojiang

    2012-01-01

    Tumor necrosis factor-α (TNF-α) is a key factor for the pathogenesis of inflammatory bowel diseases (IBD), whose function is known to be mediated by TNF receptor 1 (TNFR1) or 2. However, the precise role of the two receptors in IBD remains poorly understood. Herein, acute colitis was induced by dextran sulfate sodium (DSS) instillation in TNFR1 or 2−/− mice. TNFR1 ablation led to exacerbation of signs of colitis, including more weight loss, increased mortality, colon shortening and oedema, severe intestinal damage, and higher levels of myeloperoxidase compared to wild-type counterparts. While, TNFR2 deficiency had opposite effects. This discrepancy was reflected by alteration of proinflammatory cytokine and chemokine production in the colons. Importantly, TNFR1 ablation rendered enhanced apoptosis of colonic epithelial cells and TNFR2 deficiency conferred pro-apoptotic effects of lamina propria (LP)-immune cells, as shown by the decreased ratio of Bcl-2/Bax and enhanced nuclear factor (NF)-κB activity. PMID:23285227

  8. Autoimmune thyroid disease with ulcerative colitis.

    PubMed

    Modebe, O

    1986-06-01

    Two cases of co-existing thyroid disease and ulcerative colitis are reported. Thyroid disorder preceded ulcerative colitis in each case. The presence of acute colitis delayed and obscured the clinical diagnosis of thyrotoxicosis in one case and the colitis could not be controlled until her thyrotoxicosis was treated. Although the specific factors involved in this relationship are now known, an interplay of immunological factors is most probable.

  9. New insights on the modulatory roles of metformin or alpha-lipoic acid versus their combination in dextran sulfate sodium-induced chronic colitis in rats.

    PubMed

    Samman, Fatma S; Elaidy, Samah M; Essawy, Soha S; Hassan, Mohammad S

    2017-11-24

    Dextran sulfate sodium (DSS)-induced colitis is the most widely used model that resembles ulcerative colitis (UC) in human with challenging chronic mechanistic oxidative stress-inflammatory/immunological cascades. In models of acute colitis, reduction of oxidative stress and inflammatory burdens beside manipulation of many transcriptional factors were achieved by metformin or alpha-lipoic acid (α-LA). Currently, in vivo DSS-induced chronic colitis was conducted and the possible therapeutic roles of metformin and/or α-LA were explored. Chronic UC was induced by adding 5% DSS orally in drinking water for 7 days followed by 3% DSS in drinking water for 14 days in adult male albino Wistar rats. Intraperitoneal administration of α-LA (25 mg/kg, twice/day) and/or metformin (100 mg/kg/day) were set at day 7 of DSS administration and continued for 14 days. Body weights, survival rates, disease activity index (DAI), colonic oxidative stress markers, tumor necrosis factor (TNF)-α levels, colonic nuclear factor-kappa-B (NF-κB) immunohistochemical expression, and the colonic histopathological changes were observed. Metformin or/and α-LA attenuated the severity of the DSS-induced colitis through improving the reductions in body weights, the DAI, the colonic oxidative stress markers, TNF-α, and NF-κB levels, and the morphological mucosal damage scores. Significant synergetic therapeutic effects were observed with combined therapeutic regimens. Therapeutically, metformin and α-LA could be administered in chronic colitis. The combination of currently used pharmaceutics with natural and synthetic potent antioxidant compounds will become a therapeutic strategy of choice for UC to improve the quality of life if sufficient clinical trials are available. Copyright © 2017 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  10. Anti-inflammatory and anti-apoptotic effects of rosuvastatin by regulation of oxidative stress in a dextran sulfate sodium-induced colitis model

    PubMed Central

    Shin, Seung Kak; Cho, Jae Hee; Kim, Eui Joo; Kim, Eun-Kyung; Park, Dong Kyun; Kwon, Kwang An; Chung, Jun-Won; Kim, Kyoung Oh; Kim, Yoon Jae

    2017-01-01

    AIM To evaluate the anti-inflammatory and anti-apoptotic effects of rosuvastatin by regulation of oxidative stress in a dextran sulfate sodium (DSS)-induced colitis model. METHODS An acute colitis mouse model was induced by oral administration of 5% DSS in the drinking water for 7 d. In the treated group, rosuvastatin (0.3 mg/kg per day) was administered orally before and after DSS administration for 21 d. On day 21, mice were sacrificed and the colons were removed for macroscopic examination, histology, and Western blot analysis. In the in vitro study, IEC-6 cells were stimulated with 50 ng/mL tumor necrosis factor (TNF)-α and then treated with or without rosuvastatin (2 μmol/L). The levels of reactive oxygen species (ROS), inflammatory mediators, and apoptotic markers were measured. RESULTS In DSS-induced colitis mice, rosuvastatin treatment significantly reduced the disease activity index and histological damage score compared to untreated mice (P < 0.05). Rosuvastatin also attenuated the DSS-induced increase of 8-hydroxy-2’-deoxyguanosine and NADPH oxidase-1 expression in colon tissue. Multiplex ELISA analysis revealed that rosuvastatin treatment reduced the DSS-induced increase of serum IL-2, IL-4, IL-5, IL-6, IL-12 and IL-17, and G-CSF levels. The increased levels of cleaved caspase-3, caspase-7, and poly (ADP-ribose) polymerase in the DSS group were attenuated by rosuvastatin treatment. In vitro, rosuvastatin significantly reduced the production of ROS, inflammatory mediators and apoptotic markers in TNF-α-treated IEC-6 cells (P < 0.05). CONCLUSION Rosuvastatin had the antioxidant, anti-inflammatory and anti-apoptotic effects in DSS-induced colitis model. Therefore, it might be a candidate anti-inflammatory drug in patients with inflammatory bowel disease. PMID:28740344

  11. Ulcerative colitis with acute pleurisy

    PubMed Central

    Lu, Shuming; Wang, Lihua; Zhang, Weisheng; Zhang, Zhuqing; Liu, Lina; Wang, Yingde; Meng, Hua

    2017-01-01

    Abstract Rationale: Inflammatory bowel diseases (IBD), including ulcerative colitis (UC) and Crohn's disease, are associated with a large number of extraintestinal manifestations. Pulmonary manifestations are infrequently seen in patients with IBD. Moreover, serositis including pleural and pericardial manifestations in UC is rare. Patient concerns: We report a case of UC with acute pleurisy in a 43-year-old man; review literature; and discuss the diagnosis, differential diagnosis, and treatment. Diagnoses: Active duodenal ulcer was found using gastroscopy. Multiple ulcers in segmented pattern were noticed in the left hemi-colon using colonoscopy. An UC in active stage was confirmed subsequently by histology. Intervention: The patient was treated with bifidobacterium tetravaccine tablets, oral mesalazine and mesalazine enemas. The omeprazole and mucosal protective agents were given to treat the duodenal ulcer. Outcomes: As follow-up, the therapy including oral mesalazine and infliximab regularly was continued and the patient condition was stabilized. Main lesson: Pulmonary involvement should be considered in patients who develop pleurisy in UC. Infliximab is considered the better available treatment for patients presenting with pleurisy in UC. PMID:28746225

  12. Management of Paediatric Ulcerative Colitis, Part 2: Acute Severe Colitis; An Evidence-based Consensus Guideline from ECCO and ESPGHAN.

    PubMed

    Turner, Dan; Ruemmele, Frank M; Orlanski-Meyer, Esther; Griffiths, Anne M; Carpi, Javier Martin de; Bronsky, Jiri; Veres, Gabor; Aloi, Marina; Strisciuglio, Caterina; Braegger, Christian P; Assa, Amit; Romano, Claudio; Hussey, Séamus; Stanton, Michael; Pakarinen, Mikko; de Ridder, Lissy; Katsanos, Konstantinos H; Croft, Nick; Navas-López, Víctor Manuel; Wilson, David C; Lawrence, Sally; Russell, Richard K

    2018-05-30

    Acute severe colitis (ASC) is one of the few emergencies in paediatric gastroenterology. Tight monitoring and timely medical and surgical interventions may improve outcomes and minimize morbidity and mortality. We aimed to standardize daily treatment of ASC in children through detailed recommendations and practice points which are based on a systematic review of the literature and consensus of experts. These guidelines are a joint effort of the European Crohn's and Colitis Organization (ECCO) and the European Society of Paediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN). Fifteen predefined questions were addressed by working subgroups. An iterative consensus process, including two face-to-face meetings, was followed by voting by the national representatives of ECCO and all members of the Paediatric Inflammatory Bowel Disease (IBD) Porto group of ESPGHAN (43 voting experts). A total of 24 recommendations and 43 practice points were endorsed with a consensus rate of at least 91% regarding diagnosis, monitoring and management of ASC in children. A summary flowchart is presented based on daily scoring of the Paediatric Ulcerative Colitis Activity Index (PUCAI). Several topics have been altered since the previous 2011 guidelines and from those published in adults. These guidelines standardize the management of ASC in children in an attempt to optimize outcomes of this intensive clinical scenario.

  13. Cytomegalovirus reactivation in patients with refractory checkpoint inhibitor-induced colitis.

    PubMed

    Franklin, Cindy; Rooms, Isabelle; Fiedler, Melanie; Reis, Henning; Milsch, Laura; Herz, Saskia; Livingstone, Elisabeth; Zimmer, Lisa; Schmid, Kurt Werner; Dittmer, Ulf; Schadendorf, Dirk; Schilling, Bastian

    2017-11-01

    Immune checkpoint inhibitors can cause severe immune-related adverse events, with immune-related diarrhea and colitis (irColitis) being among the most frequent ones. While the majority of patients with irColitis respond well to corticosteroid treatment ± other immunomodulatory drugs such as infliximab, some patients do not show resolution of their symptoms. In the present study, we analysed the frequency of therapy-refractory irColitis, the underlying cause, and useful diagnostic approaches. Between 2006 and 2016, 370 patients with metastatic malignant melanoma were treated with checkpoint inhibitors at the Department of Dermatology at the University Hospital Essen. All patients were identified for whom diarrhea and/or colitis was documented in the digital patient records. Patients who did not respond to standard immunosuppressive therapy within 2 weeks were classified as refractory. Demographic and clinical data of all patients were collected. We identified 41 patients with irColitis, the majority occurring during treatment with ipilimumab. Amongst these, 5 (12.2%) were refractory to standard immunomodulatory treatment with corticosteroids and infliximab. Therapy-refractory cases tended to show more severe inflammation in colonic biopsies (p = 0.04). In all therapy-refractory cases cytomegalovirus (CMV) was detectable. CMV-DNA in colonic biopsies and in plasma was significantly more often detectable in therapy-refractory cases (in colonic biopsies p = 0.005, in plasma: p = 0.002). Presence of serum CMV IgM and positive immunohistochemical stainings of colon biopsies for CMV were also associated with refractory colitis (p=0.021; p = 0.053). This report on CMV reactivation during management of checkpoint inhibitor-induced colitis emphasises the need for repetitive diagnostic measures in treatment-refractory irColitis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Titanium dioxide nanoparticles exacerbate DSS-induced colitis: role of the NLRP3 inflammasome

    PubMed Central

    Ruiz, Pedro A; Morón, Belen; Becker, Helen M; Lang, Silvia; Atrott, Kirstin; Spalinger, Marianne R; Scharl, Michael; Wojtal, Kacper A; Fischbeck-Terhalle, Anne; Frey-Wagner, Isabelle; Hausmann, Martin; Kraemer, Thomas; Rogler, Gerhard

    2017-01-01

    Objective Western lifestyle and diet are major environmental factors playing a role in the development of IBD. Titanium dioxide (TiO2) nanoparticles are widely used as food additives or in pharmaceutical formulations and are consumed by millions of people on a daily basis. We investigated the effects of TiO2 in the development of colitis and the role of the nucleotide-binding oligomerisation domain receptor, pyrin domain containing (NLRP)3 inflammasome. Design Wild-type and NLRP3-deficient mice with dextran sodium sulfate-induced colitis were orally administered with TiO2 nanoparticles. The proinflammatory effects of TiO2 particles in cultured human intestinal epithelial cells (IECs) and macrophages were also studied, as well as the ability of TiO2 crystals to traverse IEC monolayers and accumulate in the blood of patients with IBD using inductively coupled plasma mass spectrometry. Results Oral administration of TiO2 nanoparticles worsened acute colitis through a mechanism involving the NLRP3 inflammasome. Importantly, crystals were found to accumulate in spleen of TiO2-administered mice. In vitro, TiO2 particles were taken up by IECs and macrophages and triggered NLRP3-ASC-caspase-1 assembly, caspase-1 cleavage and the release of NLRP3-associated interleukin (IL)-1β and IL-18. TiO2 also induced reactive oxygen species generation and increased epithelial permeability in IEC monolayers. Increased levels of titanium were found in blood of patients with UC having active disease. Conclusion These findings indicate that individuals with a defective intestinal barrier function and pre-existing inflammatory condition, such as IBD, might be negatively impacted by the use of TiO2 nanoparticles. PMID:26848183

  15. Suppression of dextran sulfate sodium-induced colitis in mice by radon inhalation.

    PubMed

    Nishiyama, Yuichi; Kataoka, Takahiro; Yamato, Keiko; Taguchi, Takehito; Yamaoka, Kiyonori

    2012-01-01

    The enhanced release of reactive oxygen species from activated neutrophils plays important role in the pathogenesis of inflammatory bowel disease. We previously reported that radon inhalation activates antioxidative functions in various organs of mice. In this study, we examined the protective effects of radon inhalation on dextran sulfate sodium- (DSS) induced colitis in mice which were subjected to DSS for 7 days. Mice were continuously treated with air only (sham) or radon at a concentration of 2000 Bq/m³ from a day before DSS administration to the end of colitis induction. In the results, radon inhalation suppressed the elevation of the disease activity index score and histological damage score induced by DSS. Based on the changes in tumor necrosis factor-alpha in plasma and myeloperoxidase activity in the colon, it was shown that radon inhalation suppressed DSS-induced colonic inflammation. Moreover, radon inhalation suppressed lipid peroxidation of the colon induced by DSS. The antioxidant level (superoxide dismutase and total glutathione) in the colon after DSS administration was significantly higher in mice treated with radon than with the sham. These results suggested that radon inhalation suppressed DSS-induced colitis through the enhancement of antioxidative functions in the colon.

  16. Azathioprine-induced Acute Pancreatitis in Patients with Inflammatory Bowel Diseases—A Prospective Study on Incidence and Severity

    PubMed Central

    Mohl, Wolfgang; Bokemeyer, Bernd; Bündgens, Burkhard; Büning, Jürgen; Miehlke, Stephan; Hüppe, Dietrich; Maaser, Christian; Klugmann, Tobias; Kruis, Wolfgang; Siegmund, Britta; Helwig, Ulf; Weismüller, Joseph; Drabik, Attyla; Stallmach, Andreas

    2016-01-01

    Background and Aims: Azathioprine [AZA] is recommended for maintenance of steroid-free remission in inflammatory bowel disease IBD. The aim of this study has been to establish the incidence and severity of AZA-induced pancreatitis, an idiosyncratic and major side effect, and to identify specific risk factors. Methods: We studied 510 IBD patients [338 Crohn’s disease, 157 ulcerative colitis, 15 indeterminate colitis] with initiation of AZA treatment in a prospective multicentre registry study. Acute pancreatitis was diagnosed in accordance with international guidelines. Results: AZA was continued by 324 [63.5%] and stopped by 186 [36.5%] patients. The most common cause of discontinuation was nausea [12.2%]. AZA-induced pancreatitis occurred in 37 patients [7.3%]. Of these: 43% were hospitalised with a median inpatient time period of 5 days; 10% had peripancreatic fluid collections; 24% had vomiting; and 14% had fever. No patient had to undergo nonsurgical or surgical interventions. Smoking was the strongest risk factor for AZA-induced acute pancreatitis [p < 0.0002] in univariate and multivariate analyses. Conclusions: AZA-induced acute pancreatitis is a common adverse event in IBD patients, but in this study had a mild course in all patients. Smoking is the most important risk factor. PMID:26468141

  17. Acute murine colitis reduces colonic 5-aminosalicylic acid metabolism by regulation of N-acetyltransferase-2

    PubMed Central

    Ramírez-Alcántara, Verónica

    2014-01-01

    Pharmacotherapy based on 5-aminosalicylic acid (5-ASA) is a preferred treatment for ulcerative colitis, but variable patient response to this therapy is observed. Inflammation can affect therapeutic outcomes by regulating the expression and activity of drug-metabolizing enzymes; its effect on 5-ASA metabolism by the colonic arylamine N-acetyltransferase (NAT) enzyme isoforms is not firmly established. We examined if inflammation affects the capacity for colonic 5-ASA metabolism and NAT enzyme expression. 5-ASA metabolism by colonic mucosal homogenates was directly measured with a novel fluorimetric rate assay. 5-ASA metabolism reported by the assay was dependent on Ac-CoA, inhibited by alternative NAT substrates (isoniazid, p-aminobenzoylglutamate), and saturable with Km (5-ASA) = 5.8 μM. A mouse model of acute dextran sulfate sodium (DSS) colitis caused pronounced inflammation in central and distal colon, and modest inflammation of proximal colon, defined by myeloperoxidase activity and histology. DSS colitis reduced capacity for 5-ASA metabolism in central and distal colon segments by 52 and 51%, respectively. Use of selective substrates of NAT isoforms to inhibit 5-ASA metabolism suggested that mNAT2 mediated 5-ASA metabolism in normal and colitis conditions. Western blot and real-time RT-PCR identified that proximal and distal mucosa had a decreased mNAT2 protein-to-mRNA ratio after DSS. In conclusion, an acute colonic inflammation impairs the expression and function of mNAT2 enzyme, thereby diminishing the capacity for 5-ASA metabolism by colonic mucosa. PMID:24742986

  18. Comparative protective effect of hawthorn berry hydroalcoholic extract, atorvastatin, and mesalamine on experimentally induced colitis in rats.

    PubMed

    Malekinejad, Hassan; Shafie-Irannejad, Vahid; Hobbenaghi, Rahim; Tabatabaie, Seyed Hamed; Moshtaghion, Seyed-Mehdi

    2013-07-01

    The protective effect of hydroalcoholic extract of hawthorn berries (HBE) on acetic acid (AA)-induced colitis in rats was investigated. Forty-two Wistar rats were divided into seven groups, including control and test groups (n=6). The control animals received saline, and the test animals were treated with saline (sham group), mesalamine (50 mg/kg; M group), atorvastatin (20 mg/kg; A group), HBE (100 mg/kg; H group), mesalamine and HBE (HM group), or atorvastatin plus HBE (HA group), 3 days before and a week after colitis induction. Colitis was induced by administration of 1 mL AA (4%) via a polyethylene catheter intrarectally. High-performance liquid chromatography analyses showed that HBE contained 0.13% and 0.5% oleanolic acid and ursolic acid, respectively. Elevated myeloperoxidase activity and lipid peroxidation were attenuated in the HA group. The H and HM groups showed marked reductions in colitis-induced decreases in total thiol molecules and body weight. The histopathological studies revealed that HBE decreased colitis-induced edema and infiltration of neutrophils. Our data suggest the anti-inflammatory and antioxidant effects of HBE and atorvastatin protect against AA-induced colitis. The anti-inflammatory effect of HBE may be attributable to its ability to decrease myeloperoxidase activity as a biomarker of neutrophil infiltration.

  19. Nitric oxide increases Wnt-induced secreted protein-1 (WISP-1/CCN4) expression and function in colitis.

    PubMed

    Wang, Hongying; Zhang, Rui; Wen, Shoubin; McCafferty, Donna-Marie; Beck, Paul L; MacNaughton, Wallace K

    2009-04-01

    Nitric oxide (NO) derived from the inducible NO synthase (iNOS) is an important and complex mediator of inflammation in the intestine. Wnt-inducible secreted protein (WISP)-1 (CCN4), a member of the connective tissue growth factor family, is involved in tissue repair. We sought to determine the relationship between iNOS and WISP-1 in colitis. By analyzing human colonic biopsy samples, we showed that the expression of mRNA for both iNOS and WISP-1 was significantly higher in ulcerative colitis samples compared with control tissue. The upregulation of WISP-1 was positively correlated with iNOS expression in two models of colitis, induced by intrarectal trinitrobenzenesulfonic acid (TNBS) or occurring spontaneously in IL-10 deficient mice. Loss of iNOS, studied using iNOS(-/-) mice in both TNBS-induced and IL-10(-/-) colitis models, significantly attenuated the colitis-related WISP-1 increase. In human colonic epithelial cell lines, the NO donor, DETA-NONOate, elevated WISP-1 mRNA and protein expression through a beta-catenin and CREB-dependent, but Wnt-1-independent, pathway. In addition, NO-induced WISP-1 directly induced secretion of soluble collagen in colonic fibroblast cells. NO increases WISP-1 expression both in vitro and in vivo, suggesting a new role for iNOS and NO in colitis.

  20. Granisetron ameliorates acetic acid-induced colitis in rats.

    PubMed

    Fakhfouri, Gohar; Rahimian, Reza; Daneshmand, Ali; Bahremand, Arash; Rasouli, Mohammad Reza; Dehpour, Ahmad Reza; Mehr, Shahram Ejtemaei; Mousavizadeh, Kazem

    2010-04-01

    Inflammatory bowel disease (IBD) is a chronically relapsing inflammation of the gastrointestinal tract, of which the definite etiology remains ambiguous. Considering the adverse effects and incomplete efficacy of currently administered drugs, it is indispensable to explore new candidates with more desirable therapeutic profiles. 5-HT( 3) receptor antagonists have shown analgesic and anti-inflammatory properties in vitro and in vivo. This study aims to investigate granisetron, a 5-HT( 3) receptor antagonist, in acetic acid-induced rat colitis and probable involvement of 5-HT(3) receptors. Colitis was rendered by instillation of 1 mL of 4% acetic acid (vol/vol) and after 1 hour, granisetron (2 mg/kg), dexamethasone (1 mg/kg), meta-chlorophenylbiguanide (mCPBG, 5 mg/kg), a 5-HT( 3) receptor agonist, or granisetron + mCPBG was given intraperitoneally. Twenty-four hours following colitis induction, animals were sacrificed and distal colons were assessed macroscopically, histologically and biochemically (malondialdehyde, myeloperoxidase, tumor necrosis factor-alpha, interleukin-1 beta and interleukin-6). Granisetron or dexamethasone significantly (p < .05) improved macroscopic and histologic scores, curtailed myeloperoxidase activity and diminished colonic levels of inflammatory cytokines and malondialdehyde. The protective effects of granisetron were reversed by concurrent administration of mCPBG. Our data suggests that the salutary effects of granisetron in acetic acid colitis could be mediated by 5-HT(3) receptors.

  1. Pregnancy-associated Sweet's syndrome in an acute episode of ulcerative colitis.

    PubMed

    Best, J; Dechene, A; Esser, S; Gerken, G; Canbay, A

    2009-08-01

    A 33-year old pregnant patient (pregnancy week 15) with a past medical history of ulcerative colitis with onset of the disease following the birth of her first child was admitted to the hospital with symptoms of weight loss, pyrexia, leukocytosis and bloody and mucous diarrhoea. Total ileocolonoscopy revealed an acute flare of ulcerative colitis. Within a few days, tender erythematous skin lesions occurred and were histologically proven to be neutrophilic dermatosis. Treatment with highly-dosed prednisone led to a complete remission of both cutaneous and intestinal manifestations. Both pathogenic entities are associated with similar immunological alterations, such as comparable cytokine and chemokine release patterns and recruitment of inflammatory cells. Recent data also indicates that proinflammatory cytokine levels are elevated in pregnancy, which might be pivotal in the pathogenesis and the severity of intestinal and extraintestinal symptoms. We present and discuss a diagnostic algorithm and an overall therapeutic rationale for Sweet's syndrome. Copyright Georg Thieme Verlag KG Stuttgart. New York.

  2. Inhibiting Inducible Nitric Oxide Synthase in Enteric Glia Restores Electrogenic Ion Transport in Mice with Colitis

    PubMed Central

    MacEachern, Sarah J.; Patel, Bhavik A.; Keenan, Catherine M.; Dicay, Michael; Chapman, Kevin; McCafferty, Donna-Marie; Savidge, Tor C.; Beck, Paul L.; MacNaughton, Wallace K.; Sharkey, Keith A.

    2015-01-01

    Background & Aims Disturbances in the control of ion transport lead to epithelial barrier dysfunction in patients with colitis. Enteric glia regulate intestinal barrier function and colonic ion transport. However, it is not clear whether enteric glia are involved in the epithelial hypo-responsiveness. We investigated enteric glial regulation of ion transport in mice with trinitrobenzene sulphonic acid- or dextran sodium sulfate-induced colitis and in Il10−/− mice. Methods Electrically-evoked ion transport was measured in full-thickness segments of colon from CD1 and Il10−/− mice with or without colitis in Ussing chambers. Nitric oxide (NO) production was assessed using amperometry. Bacterial translocation was investigated in the liver, spleen and blood of mice. Results Electrical stimulation of the colon evoked a tetrodotoxin-sensitive chloride secretion. In mice with colitis, ion transport almost completely disappeared. Inhibiting inducible NO synthase (NOS2), but not neuronal NOS (NOS1), partially restored the evoked secretory response. Blocking glial function with fluoroacetate, which is not a NOS2 inhibitor, also partially restored ion transport. Combined NOS2 inhibition and fluoroacetate administration fully restored secretion. Epithelial responsiveness to vasoactive intestinal peptide was increased after enteric glial function was blocked in mice with colitis. In colons of mice without colitis, NO was produced in the myenteric plexus almost completely via NOS1. NO production was increased in mice with colitis, compared to mice without colitis; a substantial proportion of NOS2 was blocked by fluoroacetate administration. Inhibition of enteric glial function in vivo reduced the severity of trinitrobenzene sulphonic acid -induced colitis and associated bacterial translocation. Conclusions Increased production of NOS2 in enteric glia contributes to the dysregulation of intestinal ion transport in mice with colitis. Blocking enteric glial function in these

  3. Inhibiting Inducible Nitric Oxide Synthase in Enteric Glia Restores Electrogenic Ion Transport in Mice With Colitis.

    PubMed

    MacEachern, Sarah J; Patel, Bhavik A; Keenan, Catherine M; Dicay, Michael; Chapman, Kevin; McCafferty, Donna-Marie; Savidge, Tor C; Beck, Paul L; MacNaughton, Wallace K; Sharkey, Keith A

    2015-08-01

    Disturbances in the control of ion transport lead to epithelial barrier dysfunction in patients with colitis. Enteric glia regulate intestinal barrier function and colonic ion transport. However, it is not clear whether enteric glia are involved in epithelial hyporesponsiveness. We investigated enteric glial regulation of ion transport in mice with trinitrobenzene sulfonic acid- or dextran sodium sulfate-induced colitis and in Il10(-/-) mice. Electrically evoked ion transport was measured in full-thickness segments of colon from CD1 and Il10(-/-) mice with or without colitis in Ussing chambers. Nitric oxide (NO) production was assessed using amperometry. Bacterial translocation was investigated in the liver, spleen, and blood of mice. Electrical stimulation of the colon evoked a tetrodotoxin-sensitive chloride secretion. In mice with colitis, ion transport almost completely disappeared. Inhibiting inducible NO synthase (NOS2), but not neuronal NOS (NOS1), partially restored the evoked secretory response. Blocking glial function with fluoroacetate, which is not a NOS2 inhibitor, also partially restored ion transport. Combined NOS2 inhibition and fluoroacetate administration fully restored secretion. Epithelial responsiveness to vasoactive intestinal peptide was increased after enteric glial function was blocked in mice with colitis. In colons of mice without colitis, NO was produced in the myenteric plexus almost completely via NOS1. NO production was increased in mice with colitis, compared with mice without colitis; a substantial proportion of NOS2 was blocked by fluoroacetate administration. Inhibition of enteric glial function in vivo reduced the severity of trinitrobenzene sulfonic acid-induced colitis and associated bacterial translocation. Increased production of NOS2 in enteric glia contributes to the dysregulation of intestinal ion transport in mice with colitis. Blocking enteric glial function in these mice restores epithelial barrier function and reduces

  4. Indigo Naturalis Ameliorates Oxazolone-Induced Dermatitis but Aggravates Colitis by Changing the Composition of Gut Microflora.

    PubMed

    Adachi, Soichiro; Hoshi, Namiko; Inoue, Jun; Yasutomi, Eiichiro; Otsuka, Takafumi; Dhakhwa, Ramesh; Wang, Zi; Koo, Yuna; Takamatsu, Toshihiro; Matsumura, Yuriko; Yamairi, Haruka; Watanabe, Daisuke; Ooi, Makoto; Tanahashi, Toshihito; Nishiumi, Shin; Yoshida, Masaru; Azuma, Takeshi

    2017-01-01

    Indigo naturalis (IND) is an herbal medicine that has been used as an anti-inflammatory agent to treat diseases including dermatitis and inflammatory bowel disease in China. However, the mechanism by which IND exerts its immunomodulatory effect is not well understood. A murine model of dermatitis and inflammatory bowel disease, both induced by oxazolone (OXA), was treated with IND. The severity of dermatitis was evaluated based on ear thickness measurements and histological scoring. The severity of colitis was evaluated by measuring body weight, histological scoring, and endoscopic scoring. The expression of inflammatory cytokines in ear and colon tissue was evaluated using real-time PCR. 16S rRNA DNA sequencing of feces from OXA-induced colitis mice was performed before and after IND treatment. The effects of IND on OXA-induced colitis were also evaluated after depleting the gut flora with antibiotics to test whether alteration of the gut flora by IND influenced the course of intestinal inflammation in this model. IND treatment ameliorated OXA dermatitis with a reduction in IL-4 and eosinophil recruitment. However, OXA colitis was significantly aggravated in spite of a reduction in intestinal IL-13, a pivotal cytokine in the induction of the colitis. It was found that IND dramatically altered the gut flora and IND no longer exacerbated colitis when colitis was induced after gut flora depletion. Our data suggest that IND could modify the inflammatory immune response in multiple ways, either directly (i.e., modification of the allergic immune cell activity) or indirectly (i.e., alteration of commensal compositions). © 2017 S. Karger AG, Basel.

  5. Comparative Protective Effect of Hawthorn Berry Hydroalcoholic Extract, Atorvastatin, and Mesalamine on Experimentally Induced Colitis in Rats

    PubMed Central

    Shafie-Irannejad, Vahid; Hobbenaghi, Rahim; Tabatabaie, Seyed Hamed; Moshtaghion, Seyed-Mehdi

    2013-01-01

    Abstract The protective effect of hydroalcoholic extract of hawthorn berries (HBE) on acetic acid (AA)–induced colitis in rats was investigated. Forty-two Wistar rats were divided into seven groups, including control and test groups (n=6). The control animals received saline, and the test animals were treated with saline (sham group), mesalamine (50 mg/kg; M group), atorvastatin (20 mg/kg; A group), HBE (100 mg/kg; H group), mesalamine and HBE (HM group), or atorvastatin plus HBE (HA group), 3 days before and a week after colitis induction. Colitis was induced by administration of 1 mL AA (4%) via a polyethylene catheter intrarectally. High-performance liquid chromatography analyses showed that HBE contained 0.13% and 0.5% oleanolic acid and ursolic acid, respectively. Elevated myeloperoxidase activity and lipid peroxidation were attenuated in the HA group. The H and HM groups showed marked reductions in colitis-induced decreases in total thiol molecules and body weight. The histopathological studies revealed that HBE decreased colitis-induced edema and infiltration of neutrophils. Our data suggest the anti-inflammatory and antioxidant effects of HBE and atorvastatin protect against AA-induced colitis. The anti-inflammatory effect of HBE may be attributable to its ability to decrease myeloperoxidase activity as a biomarker of neutrophil infiltration. PMID:23875899

  6. Alterations in melatonin and 5-HT signalling in the colonic mucosa of mice with dextran-sodium sulfate-induced colitis.

    PubMed

    MacEachern, Sarah J; Keenan, Catherine M; Papakonstantinou, Evangelia; Sharkey, Keith A; Patel, Bhavik Anil

    2018-05-01

    Inflammatory bowel disease (IBD) is characterized by pain, bleeding, cramping and altered gastrointestinal (GI) function. Changes in mucosal 5-HT (serotonin) signalling occur in animal models of colitis and in humans suffering from IBD. Melatonin is co-released with 5-HT from the mucosa and has a wide variety of actions in the GI tract. Here, we examined how melatonin signalling is affected by colitis and determined how this relates to 5-HT signalling. Using electroanalytical approaches, we investigated how 5-HT release, reuptake and availability as well as melatonin availability are altered in dextran sodium sulfate (DSS)-induced colitis in mice. Studies were conducted to explore if melatonin treatment during active colitis could reduce the severity of colitis. We observed an increase in 5-HT and a decrease in melatonin availability in DSS-induced colitis. A significant reduction in 5-HT reuptake was observed in DSS-induced colitis animals. A reduction in the content of 5-HT was observed, but no difference in tryptophan levels were observed. A reduction in deoxycholic acid-stimulated 5-HT availability and a significant reduction in mechanically-stimulated 5-HT and melatonin availability were observed in DSS-induced colitis. Orally or rectally administered melatonin once colitis was established did not significantly suppress inflammation. Our data suggest that DSS-induced colitis results in a reduction in melatonin availability and an increase in 5-HT availability, due to a reduction/loss of tryptophan hydroxylase 1 enzyme, 5-HT content and 5-HT transporters. Mechanosensory release was more susceptible to inflammation when compared with chemosensory release. © 2018 The British Pharmacological Society.

  7. Suppression of Dextran Sulfate Sodium-Induced Colitis in Mice by Radon Inhalation

    PubMed Central

    Nishiyama, Yuichi; Kataoka, Takahiro; Yamato, Keiko; Taguchi, Takehito; Yamaoka, Kiyonori

    2012-01-01

    The enhanced release of reactive oxygen species from activated neutrophils plays important role in the pathogenesis of inflammatory bowel disease. We previously reported that radon inhalation activates antioxidative functions in various organs of mice. In this study, we examined the protective effects of radon inhalation on dextran sulfate sodium- (DSS) induced colitis in mice which were subjected to DSS for 7 days. Mice were continuously treated with air only (sham) or radon at a concentration of 2000 Bq/m3 from a day before DSS administration to the end of colitis induction. In the results, radon inhalation suppressed the elevation of the disease activity index score and histological damage score induced by DSS. Based on the changes in tumor necrosis factor-alpha in plasma and myeloperoxidase activity in the colon, it was shown that radon inhalation suppressed DSS-induced colonic inflammation. Moreover, radon inhalation suppressed lipid peroxidation of the colon induced by DSS. The antioxidant level (superoxide dismutase and total glutathione) in the colon after DSS administration was significantly higher in mice treated with radon than with the sham. These results suggested that radon inhalation suppressed DSS-induced colitis through the enhancement of antioxidative functions in the colon. PMID:23365486

  8. Ischemic colitis induced by the newly reformulated multicomponent weight-loss supplement Hydroxycut®

    PubMed Central

    Sherid, Muhammed; Samo, Salih; Sulaiman, Samian; Gaziano, Joseph H

    2013-01-01

    Ischemic colitis accounts for 6%-18% of causes of acute lower gastrointestinal bleeding. It is more often multifactorial and more common in elderly. Drugs are considered important causative agents of this disease with different mechanisms. In this paper, we describe a 37-year-old otherwise healthy female presented with sudden onset diffuse abdominal pain and bloody stool. Radiologic, colonoscopic and histopathologic findings were all consistent with ischemic colitis. Her only suspected factor was hydroxycut which she had been taking for a period of 1 mo prior to her presentation. Her condition improved uneventfully after cessation of hydroxycut, bowel rest, intravenous hydration, and antibiotics. This is a first case of ischemic colitis with clear relationship with hydroxycut use (Naranjo score of 7). Our case demonstrates the importance of questioning patients regarding the usage of dietary supplements; especially since many patients consider them safe and do not disclose their use voluntarily to their physicians. Hydroxycut has to be considered as a potential trigger for otherwise unexplained ischemic colitis. PMID:23596542

  9. Berberine ameliorates chronic relapsing dextran sulfate sodium-induced colitis in C57BL/6 mice by suppressing Th17 responses.

    PubMed

    Li, Yan-Hong; Xiao, Hai-Tao; Hu, Dong-Dong; Fatima, Sarwat; Lin, Cheng-Yuan; Mu, Huai-Xue; Lee, Nikki P; Bian, Zhao-Xiang

    2016-08-01

    Ulcerative colitis (UC) is an increasingly common condition particularly in developed countries. The lack of satisfactory treatment has fueled the search for alternative therapeutic strategies. In recent studies, berberine, a plant alkaloid with a long history of medicinal use in Chinese medicine, has shown beneficial effects against animal models of acute UC. However, UC usually presents as a chronic condition with frequent relapse in patients. How berberine will act on chronic UC remains unclear. In the present study, we adopted dextran sulfate sodium (DSS)-induced chronic relapsing colitis model to assess the ameliorating activity of berberine. Colitis was induced by two cycles of 2.0% DSS for five days followed by 14days of drinking water plus a third cycle consisting of DSS only for five days. The colitis mice were orally administered 20mg/kg berberine from day 13 onward for 30days and monitored daily. The body weight, stool consistency, and stool bleeding were recorded for determination of the disease activity index (DAI). At the end of treatment, animals were sacrificed and samples were collected and subjected to histological, RT-qPCR, Western blot, and LC-MS analyses. Lymphocytes were isolated from spleens and mesenteric lymph nodes (MLN) and cultured for flow cytometry analysis of IL-17 secretion from CD4(+) cells and the Th17 cell differentiation. Results showed that berberine significantly ameliorated the DAI, colon shortening, colon tissue injury, and reduction of colonic expression of tight junction (TJ) protein ZO-1 and occludin of colitis mice. Notably, berberine treatment pronouncedly reduced DSS-upregulated Th17-related cytokine (IL-17 and ROR-γt) mRNAs in the colon. Furthermore, the mRNA expression of IL-6 and IL-23, and the phosphorylation of STAT3 in colon tissues from DSS-treated mice were pronouncedly inhibited by berberine. Moreover, the up-regulation of IL-17 secretion from CD4(+) cells of spleens and MLNs caused by DSS were significantly

  10. Magnolol, a Natural Polyphenol, Attenuates Dextran Sulfate Sodium-Induced Colitis in Mice.

    PubMed

    Zhao, Ling; Xiao, Hai-Tao; Mu, Huai-Xue; Huang, Tao; Lin, Ze-Si; Zhong, Linda L D; Zeng, Guang-Zhi; Fan, Bao-Min; Lin, Cheng-Yuan; Bian, Zhao-Xiang

    2017-07-20

    Magnolol is a lignan with anti-inflammatory activity identified in Magnolia officinalis . Ulcerative colitis (UC), one of the types of inflammatory bowel disease (IBD), is a disease that causes inflammation and ulcers in the colon. To investigate the effect of magnolol in dextran sulfate sodium (DSS)-induced experimental UC model, male C57 mice were treated with 2% DSS drinking water for 5 consecutive days followed by intragastric administration with magnolol (5, 10 and 15 mg/kg) daily for 7 days. The results showed that magnolol significantly attenuated disease activity index, inhibited colonic shortening, reduced colonic lesions and suppressed myeloperoxidase (MPO) activity. Moreover, colonic pro-inflammatory cytokines (TNF-α, IL-6, and IL-1β) induced by colitis were dramatically decreased by magnolol. To further unveil the metabolic signatures upon magnolol treatment, mass spectrometry-based metabolomic analysis of the small molecular metabolites in mice serum were performed. Compared with controls, abnormality of serum metabolic phenotypes in DSS-treated mice were effectively reversed by different doses of magnolol. In particular, magnolol treatment effectively elevated the serum levels of tryptophan metabolites including kynurenic acid (KA), 5-hydroxyindoleacetic acid, indoleacetic acid (IAA), indolelactic acid and indoxylsulfuric acid, which are potential aryl hydrocarbon receptor (AHR) ligands to impact colitis. These findings suggest that magnolol exerts anti-inflammatory effect on DSS-induced colitis and its underlying mechanisms are associated with the restoring of tryptophan metabolites that inhibit the colonic inflammation.

  11. Magnolol treatment attenuates dextran sulphate sodium-induced murine experimental colitis by regulating inflammation and mucosal damage.

    PubMed

    Shen, Peng; Zhang, Zecai; He, Yue; Gu, Cong; Zhu, Kunpeng; Li, Shan; Li, Yanxin; Lu, Xiaojie; Liu, Jiuxi; Zhang, Naisheng; Cao, Yongguo

    2018-03-01

    Magnolol, the main and active ingredient of the Magnolia officinalis, has been widely used in traditional prescription to the human disorders. Magnolol has been proved to have several pharmacological properties including anti-bacterial, anti-oxidant and anti-inflammatory activities. However, the effects of magnolol on ulcerative colitis (UC) have not been reported. The aim of this study was to investigate the protective effects and mechanisms of magnolol on dextran sulphate sodium (DSS)-induced colitis in mice. The results showed that magnolol significantly alleviated DSS-induced body weight loss, disease activities index (DAI), colon length shortening and colonic pathological damage. In addition, magnolol restrained the expression of TNF-α, IL-1β and IL-12 via the regulation of nuclear factor-κB (NF-κB) and Peroxisome proliferator-activated receptor-γ (PPAR-γ) pathways. Magnolol also enhanced the expression of ZO-1 and occludin in DSS-induced mice colonic tissues. These results showed that magnolol played protective effects on DSS-induced colitis and may be an alternative therapeutic reagent for colitis treatment. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Aronia melanocarpa fruit juice ameliorates the symptoms of inflammatory bowel disease in TNBS-induced colitis in rats.

    PubMed

    Valcheva-Kuzmanova, Stefka; Kuzmanov, Atanas; Kuzmanova, Vasilena; Tzaneva, Maria

    2018-03-01

    Trinitrobenzensulfonic acid (TNBS) is commonly used to induce an experimental inflammatory bowel disease (IBD) model. Oxidative stress and inflammation have been proposed as mechanisms underlying the pathophysiology of IBD. Aronia melanocarpa fruit juice (AMFJ) is extremely rich in polyphenolic substances, mainly proanthocyanidins, flavonoids and phenolic acids. The aim of this study was to evaluate the effect of AMFJ in a rat TNBSinduced colitis model and to compare the effect of the juice with that of sulfasalazine. Colitis was induced by TNBS in male Wistar rats. After the induction of colitis, AMFJ at three doses (2.5, 5 and 10 mL/kg) and sulfasalazine (400 mg/kg) were administered orally till the 14th experimental day. Severity of colitis was assessed by macroscopic and histopathological criteria. Oxidative stress was evaluated by the concentration of thiobarbituric acid reactive substances (TBARS). TNBS caused severe colonic damage. AMFJ dose-dependently ameliorated TNBS-induced colitis. It improved the macroscopic and microscopic signs of colitis, and prevented the increase of colonic TBARS concentrations. Regarding different indices, the effect of AMFJ was comparable or even higher than that of sulfasalazine. In conclusion, the ameliorative effects of AMFJ in the experimental TNBSinduced colitis might be the result of its potent antioxidant and antiinflammatory properties. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Sustained neurochemical plasticity in central terminals of mouse DRG neurons following colitis.

    PubMed

    Benson, Jessica R; Xu, Jiameng; Moynes, Derek M; Lapointe, Tamia K; Altier, Christophe; Vanner, Stephen J; Lomax, Alan E

    2014-05-01

    Sensitization of dorsal root ganglia (DRG) neurons is an important mechanism underlying the expression of chronic abdominal pain caused by intestinal inflammation. Most studies have focused on changes in the peripheral terminals of DRG neurons in the inflamed intestine but recent evidence suggests that the sprouting of central nerve terminals in the dorsal horn is also important. Therefore, we examine the time course and reversibility of changes in the distribution of immunoreactivity for substance P (SP), a marker of the central terminals of DRG neurons, in the spinal cord during and following dextran sulphate sodium (DSS)-induced colitis in mice. Acute and chronic treatment with DSS significantly increased SP immunoreactivity in thoracic and lumbosacral spinal cord segments. This increase developed over several weeks and was evident in both the superficial laminae of the dorsal horn and in lamina X. These increases persisted for 5 weeks following cessation of both the acute and chronic models. The increase in SP immunoreactivity was not observed in segments of the cervical spinal cord, which were not innervated by the axons of colonic afferent neurons. DRG neurons dissociated following acute DSS-colitis exhibited increased neurite sprouting compared with neurons dissociated from control mice. These data suggest significant colitis-induced enhancements in neuropeptide expression in DRG neuron central terminals. Such neurotransmitter plasticity persists beyond the period of active inflammation and might contribute to a sustained increase in nociceptive signaling following the resolution of inflammation.

  14. Plecanatide and dolcanatide, novel guanylate cyclase-C agonists, ameliorate gastrointestinal inflammation in experimental models of murine colitis.

    PubMed

    Shailubhai, Kunwar; Palejwala, Vaseem; Arjunan, Krishna Priya; Saykhedkar, Sayali; Nefsky, Bradley; Foss, John A; Comiskey, Stephen; Jacob, Gary S; Plevy, Scott E

    2015-11-06

    To evaluate the effect of orally administered plecanatide or dolcanatide, analogs of uroguanylin, on amelioration of colitis in murine models. The cyclic guanosine monophosphate (cGMP) stimulatory potency of plecanatide and dolcanatide was measured using a human colon carcinoma T84 cell-based assay. For animal studies all test agents were formulated in phosphate buffered saline. Sulfasalazine or 5-amino salicylic acid (5-ASA) served as positive controls. Effect of oral treatment with test agents on amelioration of acute colitis induced either by dextran sulfate sodium (DSS) in drinking water or by rectal instillation of trinitrobenzene sulfonic (TNBS) acid, was examined in BALB/c and/or BDF1 mice. Additionally, the effect of orally administered plecanatide on the spontaneous colitis in T-cell receptor alpha knockout (TCRα(-/-)) mice was also examined. Amelioration of colitis was assessed by monitoring severity of colitis, disease activity index and by histopathology. Frozen colon tissues were used to measure myeloperoxidase activity. Plecanatide and dolcanatide are structurally related analogs of uroguanylin, which is an endogenous ligand of guanylate cyclase-C (GC-C). As expected from the agonists of GC-C, both plecanatide and dolcanatide exhibited potent cGMP-stimulatory activity in T84 cells. Once-daily treatment by oral gavage with either of these analogs (0.05-0.5 mg/kg) ameliorated colitis in both DSS and TNBS-induced models of acute colitis, as assessed by body weight, reduction in colitis severity (P < 0.05) and disease activity index (P < 0.05). Amelioration of colitis by either of the drug candidates was comparable to that achieved by orally administered sulfasalazine or 5-ASA. Plecanatide also effectively ameliorated colitis in TCRα(-/-) mice, a model of spontaneous colitis. As dolcanatide exhibited higher resistance to proteolysis in simulated gastric and intestinal juices, it was selected for further studies. This is the first-ever study reporting

  15. Plecanatide and dolcanatide, novel guanylate cyclase-C agonists, ameliorate gastrointestinal inflammation in experimental models of murine colitis

    PubMed Central

    Shailubhai, Kunwar; Palejwala, Vaseem; Arjunan, Krishna Priya; Saykhedkar, Sayali; Nefsky, Bradley; Foss, John A; Comiskey, Stephen; Jacob, Gary S; Plevy, Scott E

    2015-01-01

    AIM: To evaluate the effect of orally administered plecanatide or dolcanatide, analogs of uroguanylin, on amelioration of colitis in murine models. METHODS: The cyclic guanosine monophosphate (cGMP) stimulatory potency of plecanatide and dolcanatide was measured using a human colon carcinoma T84 cell-based assay. For animal studies all test agents were formulated in phosphate buffered saline. Sulfasalazine or 5-amino salicylic acid (5-ASA) served as positive controls. Effect of oral treatment with test agents on amelioration of acute colitis induced either by dextran sulfate sodium (DSS) in drinking water or by rectal instillation of trinitrobenzene sulfonic (TNBS) acid, was examined in BALB/c and/or BDF1 mice. Additionally, the effect of orally administered plecanatide on the spontaneous colitis in T-cell receptor alpha knockout (TCRα-/-) mice was also examined. Amelioration of colitis was assessed by monitoring severity of colitis, disease activity index and by histopathology. Frozen colon tissues were used to measure myeloperoxidase activity. RESULTS: Plecanatide and dolcanatide are structurally related analogs of uroguanylin, which is an endogenous ligand of guanylate cyclase-C (GC-C). As expected from the agonists of GC-C, both plecanatide and dolcanatide exhibited potent cGMP-stimulatory activity in T84 cells. Once-daily treatment by oral gavage with either of these analogs (0.05-0.5 mg/kg) ameliorated colitis in both DSS and TNBS-induced models of acute colitis, as assessed by body weight, reduction in colitis severity (P < 0.05) and disease activity index (P < 0.05). Amelioration of colitis by either of the drug candidates was comparable to that achieved by orally administered sulfasalazine or 5-ASA. Plecanatide also effectively ameliorated colitis in TCRα-/- mice, a model of spontaneous colitis. As dolcanatide exhibited higher resistance to proteolysis in simulated gastric and intestinal juices, it was selected for further studies. CONCLUSION: This is

  16. BTB and CNC homolog 1 (Bach1) deficiency ameliorates TNBS colitis in mice: role of M2 macrophages and heme oxygenase-1.

    PubMed

    Harusato, Akihito; Naito, Yuji; Takagi, Tomohisa; Uchiyama, Kazuhiko; Mizushima, Katsura; Hirai, Yasuko; Higashimura, Yasuki; Katada, Kazuhiro; Handa, Osamu; Ishikawa, Takeshi; Yagi, Nobuaki; Kokura, Satoshi; Ichikawa, Hiroshi; Muto, Akihiko; Igarashi, Kazuhiko; Yoshikawa, Toshikazu

    2013-01-01

    BTB and CNC homolog 1 (Bach1) is a transcriptional repressor of heme oxygenase-1 (HO-1), which plays an important role in the protection of cells and tissues against acute and chronic inflammation. However, the role of Bach1 in the gastrointestinal mucosal defense system remains little understood. HO-1 supports the suppression of experimental colitis and localizes mainly in macrophages in colonic mucosa. This study was undertaken to elucidate the Bach1/HO-1 system's effects on the pathogenesis of experimental colitis. This study used C57BL/6 (wild-type) and homozygous Bach1-deficient C57BL/6 mice in which colonic damage was induced by the administration of an enema of 2,4,6-trinitrobenzene sulfonic acid (TNBS). Subsequently, they were evaluated macroscopically, histologically, and biochemically. Peritoneal macrophages from the respective mice were isolated and analyzed. Then, wild-type mice were injected with peritoneal macrophages from the respective mice. Acute colitis was induced similarly. TNBS-induced colitis was inhibited in Bach1-deficient mice. TNBS administration increased the expression of HO-1 messenger RNA and protein in colonic mucosa in Bach1-deficient mice. The expression of HO-1 mainly localized in F4/80-immunopositive and CD11b-immunopositive macrophages. Isolated peritoneal macrophages from Bach1-deficient mice highly expressed HO-1 and also manifested M2 macrophage markers, such as Arginase-1, Fizz-1, Ym1, and MRC1. Furthermore, TNBS-induced colitis was inhibited by the transfer of Bach1-deficient macrophages into wild-type mice. Deficiency of Bach1 ameliorated TNBS-induced colitis. Bach1-deficient macrophages played a key role in protection against colitis. Targeting of this mechanism is applicable to cell therapy for human inflammatory bowel disease.

  17. [Generalized intestinal CMV infection with protein-losing syndrome in ulcerative colitis].

    PubMed

    Kraus, M; Meyenberger, C; Suter, W

    2000-10-28

    Infection by cytomegalovirus (CMV) in immunocompetent patients is rare, and if it occurs it is most often associated with ulcerative colitis. This case illustrates a CMV infection in a patient with an ulcerative colitis combined with CMV-induced protein losing enteropathy, a condition reported in immunocompetent individuals in only a very few cases worldwide. It demonstrates the importance of differentiating between a flare-up of ulcerative colitis and CMV colitis. The indication for antiviral therapy is discussed. A 76-years-old patient with a 23-year history of leftsided ulcerative colitis presented with acute pancolitis sparing the rectum. He showed no evidence of impaired host defence, nor has he ever had taken immunosuppressive drugs. Disseminated primary CMV infection involving of the colon, the oesophagus and the small intestine with protein losing enteropathy was diagnosed on the basis of histology, culture and serology. In view of the long duration of the illness and the highly active infection, antiviral therapy with ganciclovir was given and led to a dramatical improvement of all disease manifestations. The patient subsequently remained in remission from ulcerative colitis for three years.

  18. BTZO-15, an ARE-Activator, Ameliorates DSS- and TNBS-Induced Colitis in Rats

    PubMed Central

    Yukitake, Hiroshi; Kimura, Haruhide; Suzuki, Hirobumi; Tajima, Yasukazu; Sato, Yoshimi; Imaeda, Toshihiro; Kajino, Masahiro; Takizawa, Masayuki

    2011-01-01

    Inflammatory bowel disease (IBD) is a group of chronic inflammatory disorders that are primarily represented by ulcerative colitis and Crohn's disease. The etiology of IBD is not well understood; however, oxidative stress is considered a potential etiological and/or triggering factor for IBD. We have recently reported the identification of BTZO-1, an activator of antioxidant response element (ARE)-mediated gene expression, which protects cardiomyocytes from oxidative stress-induced insults. Here we describe the potential of BTZO-15, an active BTZO-1 derivative for ARE-activation with a favorable ADME-Tox profile, for the treatment of IBD. BTZO-15 induced expression of heme oxygenase-1 (HO-1), an ARE-regulated cytoprotective protein, and inhibited NO-induced cell death in IEC-18 cells. Large intestine shortening, rectum weight gain, diarrhea, intestinal bleeding, and an increase in rectal myeloperoxidase (MPO) activity were observed in a dextran sulfate sodium (DSS)-induced colitis rat model. Oral administration of BTZO-15 induced HO-1 expression in the rectum and attenuated DSS-induced changes. Furthermore BTZO-15 reduced the ulcerated area and rectal MPO activity in 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis rats without affecting rectal TNF-α levels. These results suggest that BTZO-15 is a promising compound for a novel IBD therapeutic drug with ARE activation properties. PMID:21853095

  19. Minimally invasive screening for colitis using attenuated total internal reflectance Fourier transform infrared spectroscopy

    PubMed Central

    Titus, Jitto; Viennois, Emilie; Merlin, Didier; Perera, A. G. Unil

    2016-01-01

    This article describes a rapid, simple and cost-effective technique that could lead to a screening method for colitis without the need for biopsies or in vivo measurements. This screening technique includes the testing of serum using Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) spectroscopy for the colitis-induced increased presence of mannose. Chronic (Interleukin 10 knockout) and acute (Dextran Sodium Sulphate-induced) models for colitis are tested using the ATR-FTIR technique. Arthritis (Collagen Antibody Induced Arthritis) and metabolic syndrome (Toll like receptor 5 knockout) models are also tested as controls. The marker identified as mannose uniquely screens and distinguishes the colitic from the non-colitic samples and the controls. The reference or the baseline spectrum could be the pooled and averaged spectra of non-colitic samples or the subject's previous sample spectrum. This shows the potential of having individualized route maps of disease status, leading to personalized diagnosis and drug management. PMID:27094092

  20. Trametes versicolor protein YZP activates regulatory B lymphocytes - gene identification through de novo assembly and function analysis in a murine acute colitis model.

    PubMed

    Kuan, Yen-Chou; Wu, Ying-Jou; Hung, Chih-Liang; Sheu, Fuu

    2013-01-01

    Trametes versicolor (Yun-Zhi) is a medicinal fungus used as a chemotherapy co-treatment to enhance anti-tumor immunity. Although the efficacies of T. versicolor extracts have been documented, the active ingredients and mechanisms underlying the actions of these extracts remain uncharacterized. We purified a new protein, YZP, from the fruiting bodies of T. versicolor and identified the gene encoding YZP using RNA-seq and de novo assembly technologies. YZP is a 12-kDa non-glycosylated protein comprising 139 amino acids, including an 18-amino acids signal peptide. YZP induced a greater than 60-fold increase in IL-10 secretion in mice B lymphocytes; moreover, YZP specifically triggered the differentiation of CD1d(+) B cells into IL-10-producing regulatory B cells (Bregs) and enhanced the expression of CD1d. YZP-induced B cells suppressed approximately 40% of the LPS-activated macrophage production of inflammatory cytokines in a mixed leukocyte reaction and significantly alleviated the disease activity and colonic inflammation in a DSS-induced acute colitis murine model. Furthermore, YZP activated Breg function via interaction with TLR2 and TLR4 and up-regulation of the TLR-mediated signaling pathway. We purified a novel Breg-stimulating protein, YZP, from T. versicolor and developed an advanced approach combining RNA-seq and de novo assembly technologies.to clone its gene. We demonstrated that YZP activated CD1d(+) Breg differentiation through TLR2/4-mediated signaling pathway, and the YZP-stimulated B cells exhibited anti-inflammatory efficacies in vitro and in murine acute colitis models.

  1. Nitric oxide released by Lactobacillus farciminis improves TNBS-induced colitis in rats.

    PubMed

    Lamine, F; Fioramonti, J; Bueno, L; Nepveu, F; Cauquil, E; Lobysheva, I; Eutamène, H; Théodorou, V

    2004-01-01

    Beneficial effects of lactobacilli have been reported in experimental colitis. On the other hand, despite the controversial role of nitric oxide (NO) in the inflammatory gut process, a protective action of exogenous NO in inflammation has been suggested. Consequently, this study aimed to determine the effect of (i) sodium nitroprusside (SNP), a NO donor and (ii) treatment with Lactobacillus farciminis, which produces NO in vitro, on trinitrobenzene sulphonic acid (TNBS)-induced colitis in rats and to evaluate the role of exogenous NO in this effect. Rats were divided into three groups receiving one of the following: (i) a continuous intracolonic (IC) infusion of SNP for 4 days, (ii) L. farciminis orally for 19 days, or (iii) saline. On day 1 and day 15, respectively, TNBS and saline were administrated IC, followed by a continuous IC infusion of saline or haemoglobin, a NO scavenger. At the end of treatments, the following parameters were evaluated: macroscopic damage of colonic mucosa, myeloperoxidase and nitric oxide synthase activities and colonic luminal NO production. In colitic rats, SNP and L. farciminis treatment significantly (P < 0.05) reduced macroscopic damage scores, myeloperoxidase and nitric oxide synthase activities compared to controls. Haemoglobin infusion abolished the anti-inflammatory effect of both NO donor treatments, but had no effect per se on colitis. NO released intraluminally by SNP infusion or by L. farciminis given orally improves TNBS-induced colitis in rats. These results indicate a protective role of NO donation in colonic inflammation and show for the first time a mechanism involving NO delivery by a bacterial strain reducing an experimental colitis.

  2. Melatonin attenuates dextran sodium sulfate induced colitis with sleep deprivation: possible mechanism by microarray analysis.

    PubMed

    Chung, Sook Hee; Park, Young Sook; Kim, Ok Soon; Kim, Ja Hyun; Baik, Haing Woon; Hong, Young Ok; Kim, Sang Su; Shin, Jae-Ho; Jun, Jin-Hyun; Jo, Yunju; Ahn, Sang Bong; Jo, Young Kwan; Son, Byoung Kwan; Kim, Seong Hwan

    2014-06-01

    Inflammatory bowel disease is a chronic inflammatory condition of the gastrointestinal tract. It can be aggravated by stress, like sleep deprivation, and improved by anti-inflammatory agents, like melatonin. We aimed to investigate the effects of sleep deprivation and melatonin on inflammation. We also investigated genes regulated by sleep deprivation and melatonin. In the 2% DSS induced colitis mice model, sleep deprivation was induced using modified multiple platform water bath. Melatonin was injected after induction of colitis and colitis with sleep deprivation. Also mRNA was isolated from the colon of mice and analyzed via microarray and real-time PCR. Sleep deprivation induced reduction of body weight, and it was difficult for half of the mice to survive. Sleep deprivation aggravated, and melatonin attenuated the severity of colitis. In microarrays and real-time PCR of mice colon tissues, mRNA of adiponectin and aquaporin 8 were downregulated by sleep deprivation and upregulated by melatonin. However, mRNA of E2F transcription factor (E2F2) and histocompatibility class II antigen A, beta 1 (H2-Ab1) were upregulated by sleep deprivation and downregulated by melatonin. Melatonin improves and sleep deprivation aggravates inflammation of colitis in mice. Adiponectin, aquaporin 8, E2F2 and H2-Ab1 may be involved in the inflammatory change aggravated by sleep deprivation and attenuated by melatonin.

  3. Mangiferin corrects the imbalance of Th17/Treg cells in mice with TNBS-induced colitis.

    PubMed

    Lim, Su-Min; Jeong, Jin-Ju; Choi, Hyun Sik; Chang, Hwan Bong; Kim, Dong-Hyun

    2016-05-01

    In the previous study, 80% ethanol extract of the rhizome mixture of Anemarrhena asphodeloides and Coptidis chinensis (AC) and its main constituent mangiferin improved TNBS-induced colitis in mice by inhibiting macrophage activation related to the innate immunity. In the preliminary study, we found that AC could inhibit Th17 cell differentiation in mice with TNBS-induced colitis. Therefore, we investigated whether AC and it main constituent mangiferin are capable of inhibiting inflammation by regulating T cell differentiation related to the adaptive immunity in vitro and in vivo. AC and mangiferin potently suppressed colon shortening and myeloperoxidase activity in mice with TNBS-induced colitis. They also suppressed TNBS-induced Th17 cell differentiation and IL-17 expression, but increased TNBS-suppressed Treg cell differentiation and IL-10 expression. Moreover, AC and mangiferin strongly inhibited the expression of TNF-α and IL-17, as well as the activation of NF-κB. Furthermore, mangiferin potently inhibited the differentiation of splenocytes into Th7 cells and increased the differentiation into Treg cells in vitro. Mangiferin also inhibited RORγt and IL-17 expression and STAT3 activation in splenocytes and induced Foxp3 and IL-10 expression and STAT5 activation. Based on these findings, mangiferin may ameliorate colitis by the restoration of disturbed Th17/Treg cells and inhibition of macrophage activation. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Preventive and therapeutic effects of blueberry (Vaccinium corymbosum) extract against DSS-induced ulcerative colitis by regulation of antioxidant and inflammatory mediators.

    PubMed

    Pervin, Mehnaz; Hasnat, Md Abul; Lim, Ji-Hong; Lee, Yoon-Mi; Kim, Eun Ok; Um, Byung-Hun; Lim, Beong Ou

    2016-02-01

    Inflammatory bowel disease (IBD) is an inflammatory disorder caused by hyperactivation of effector immune cells that produce high levels of proinflammatory cytokines. The aims of our study were to determine whether orally administered blueberry extract (BE) could attenuate or prevent the development of experimental colitis in mice and to elucidate the mechanism of action. Female Balb/C mice (n=7) were randomized into groups differing in treatment conditions (prevention and treatment) and dose of BE (50 mg/kg body weight). Acute ulcerative colitis was induced by oral administration of 3% dextran sodium sulfate for 7 days in drinking water. Colonic mucosal injury was assessed by clinical, macroscopic, biochemical and histopathological examinations. BE significantly decreased disease activity index and improved the macroscopic and histological score of colons when compared to the colitis group (P<.05). BE markedly attenuated myeloperoxidase accumulation (colitis group 54.97±2.78 nmol/mg, treatment group 30.78±1.33 nmol/mg) and malondialdehyde in colon and prostaglandin E2 level in serum while increasing the levels of superoxide dismutase and catalase (colitis group 11.94±1.16 U/ml, BE treatment group 16.49±0.39 U/ml) compared with the colitis group (P<.05). mRNA levels of the cyclooxygenase (COX)-2, interferon-γ, interleukin (IL)-1β and inducible nitric oxide synthase cytokines were determined by reverse transcriptase polymerase chain reaction. Immunohistochemical analysis showed that BE attenuates the expression of COX-2 and IL-1β in colonic tissue. Moreover, BE reduced the nuclear translocation of nuclear transcription factor kappa B (NF-κB) by immunofluorescence analysis. Thus, the anti-inflammatory effect of BE at colorectal sites is a result of a number of mechanisms: antioxidation, down-regulation of the expression of inflammatory mediators and inhibition of the nuclear translocation of NF-κB. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. [Allergic colitis in exclusively breast-fed infants].

    PubMed

    Sierra Salinas, C; Blasco Alonso, J; Olivares Sánchez, L; Barco Gálvez, A; del Río Mapelli, L

    2006-02-01

    Eosinophilic colitis is induced by antigens present in cow's milk proteins in formula or human milk. In the last few years, an increasing number of cases have been diagnosed in exclusively breast-fed infants. We performed a retrospective study of 13 infants diagnosed with allergic colitis in our unit between January 1997 and January 2004. All the infants had been exclusively breast-fed. In all patients, initial symptoms were digestive (12 with mucus and bloody stools). Onset of symptoms occurred at 0-3 months in 77 %. Laboratory data of the allergic compound were negative. The main locations were the descending and sigmoid colon (75 %). Biopsy demonstrated acute inflammation, with neutrophil infiltration and an increase in eosinophils. In all patients, initial treatment consisted of exclusion of cow's milk proteins from the mother's diet. Ten of the 13 patients showed no improvement, requiring exclusive administration of protein-free hydrolyzate. In 3 infants, breastfeeding was maintained (breastfeeding without cow's milk proteins plus hydrolyzate). Diagnosis of eosinophilic colitis is based on exclusion of other causes of specific colitis and typical endoscopic and ultrastructural findings. Moreover, a satisfactory response to dietary treatment must be demonstrated. This diagnosis should be considered in breast-fed infants with rectal bleeding without involvement of general health status.

  6. Clinical course of severe colitis: a comparison between Crohn’s Disease and ulcerative colitis.

    PubMed

    Sinagra, E; Orlando, A; Mocciaro, F; Criscuoli, V; Oliva, L; Maisano, S; Giunta, M; La Seta, F; Solina, G; Rizzo, A G; Leone, A; Tomasello, G; Cappello, F; Cottone, M

    2018-01-01

    Few data are available about the clinical course of severe colonic Crohn’s disease (CD). The aim of this study is to describe the clinical course of severe Crohn’s colitis in a patient cohort with isolated colonic or ileocolonic CD, and to compare it with the clinical course of patients with severe ulcerative colitis (UC). Thirty-four patients with severe Crohn’s colitis were prospectively identified in our cohort of 593 consecutive hospitalized patients through evaluation of the Crohn’s Disease Activity Index score and the Harvey-Bradshaw Index. One hundred sixty-nine patients with severe ulcerative colitis were prospectively identified in our cohort of 449 consecutive hospitalized patients through evaluation of the Lichtiger score and the Truelove-Witts score. We evaluated the following data/aspects: response to steroids, response to biologics, colectomy rate in acute, colectomy rate during follow-up, megacolon and cytomegalovirus infection rate. We did not find significant differences in the response to steroids and to biologics, in the percentage of cytomegalovirus infection and of megacolon, while the rate of colectomy in acute turned out to be greater in patients with severe Crohn’s colitis compared to patients with severe UC, and this difference appeared to be the limit of statistical significance (Chi-squared 3.31, p = 0.069, OR 0.39); the difference between the colectomy rates at the end of the follow-up was also not significant. In the whole population, by univariate analysis, according to the linear regression model, a young age at diagnosis is associated with a higher overall colectomy rate (p = 0.024) and a higher elective colectomy rate (p = 0.022), but not with a higher acute colectomy rate, and an elevated ESR is correlated with a higher overall colectomy rate (p = 0.014) and a higher acute colectomy rate (p = 0.032), but not with a higher elective colectomy rate. This correlation was significant on multivariate analysis. The overall rate of

  7. [Effect of schistosome ova on Trinitrobenzenesulfonic acid induced colitis in mice].

    PubMed

    Jiang, Jie; Xue, Ru-yi; Zhang, Shun-cai; Zhou, Jun; Zhou, Kang

    2007-08-14

    To investigate the effects of intraperitoneal injected schistosome ova on TNBS-induced colitis and on the intestinal TLR4 expression in mice. 40 BALB/c mice were randomized into 3 groups: normal control group (10 mice), TNBS group (20 mice) in which mice were exposed to trinitrobenzesulfonic acid (TNBS) and were induced with colitis, and the schistosome ova group (10 mice) in which mice were intraperitoneal injected with freeze-killed schistosome ova and later exposed to TNBS. The following variables were observed: mortality, pathological appearance of the colon, histological scoring of the specimen, serum TNF-alpha level, and intestinal TLR4 expression detected by RT-PCR and Immunohistochemistry. Mortality of schistosome ova group was lower than that of the TNBS group (20% vs 70%, P < 0.05). Inflammation of the mice colon in the schistosome ova group was less severe than that of the TNBS group (1.4 +/- 0.5 vs 4.2 +/- 0.6, P < 0.01, Ameho criteria scoring). TLR4 expression of colon was up-regulated in mice of TNBS group and down-regulated in schistosome ova group which was still higher than that of normal controls (0.762 +/- 0.054 vs 0.325 +/- 0.029 vs 0.237 +/- 0.021, P < 0.01). Intraperitoneal injected schistosome ova can obviously reduce TNBS-induced colitis in mice, which may be attributed to down-regulated TLR4 expression in colon.

  8. Indigo Naturalis ameliorates murine dextran sodium sulfate-induced colitis via aryl hydrocarbon receptor activation.

    PubMed

    Kawai, Shoichiro; Iijima, Hideki; Shinzaki, Shinichiro; Hiyama, Satoshi; Yamaguchi, Toshio; Araki, Manabu; Iwatani, Shuko; Shiraishi, Eri; Mukai, Akira; Inoue, Takahiro; Hayashi, Yoshito; Tsujii, Masahiko; Motooka, Daisuke; Nakamura, Shota; Iida, Tetsuya; Takehara, Tetsuo

    2017-08-01

    Indigo Naturalis (IN) is used as a traditional herbal medicine for ulcerative colitis (UC). However, the mechanisms of action of IN have not been clarified. We aimed to evaluate the efficacy of IN for ameliorating colonic inflammation. We further investigated the mechanisms of action of IN. Colitis severity was assessed in dextran sodium sulfate-induced colitis and trinitrobenzene sulfonic acid-induced colitis models with or without the oral administration of IN or indigo, which is a known major component of IN. Colonic lamina propria (LP) mononuclear cells isolated from IN-treated mice were analyzed with quantitative reverse transcription polymerase chain reaction (qRT-PCR) and flow cytometry. LP and splenic mononuclear cells cultured in vitro with IN or indigo were also analyzed. The role of the candidate receptor for indigo, the aryl hydrocarbon receptor (AhR), was analyzed using Ahr-deficient mice. Colitis severity was significantly ameliorated in the IN and indigo treatment groups compared with the control group. The mRNA expression levels of interleukin (Il)-10 and Il-22 in the LP lymphocytes were increased by IN treatment. The treatment of splenocytes with IN or indigo increased the expression of anti-inflammatory cytokines and resulted in the expansion of IL-10-producing CD4 + T cells and IL-22-producing CD3 - RORγt + cells, but not CD4 + Foxp3 + regulatory T cells. The amelioration of colitis by IN or indigo was abrogated in Ahr-deficient mice, in association with diminished regulatory cytokine production. IN and indigo ameliorated murine colitis through AhR signaling activation, suggesting that AhR could be a promising therapeutic target for UC.

  9. TRPV1 receptors on unmyelinated C-fibres mediate colitis-induced sensitization of pelvic afferent nerve fibres in rats

    PubMed Central

    De Schepper, H U; De Winter, B Y; Van Nassauw, L; Timmermans, J-P; Herman, A G; Pelckmans, P A; De Man, J G

    2008-01-01

    Patients with inflammatory bowel disease often suffer from gastrointestinal motility and sensitivity disorders. The aim of the current study was to investigate the role of transient receptor potential of the vanilloid type 1 (TRPV1) receptors in the pathophysiology of colitis-induced pelvic afferent nerve sensitization. Trinitrobenzene sulphate (TNBS) colitis (7.5 mg, 30% ethanol) was induced in Wistar rats 72 h prior to the experiment. Single-fibre recordings were made from pelvic nerve afferents in the decentralized S1 dorsal root. Fibres responding to colorectal distension (CRD) were identified in controls and rats with TNBS colitis. The effect of the TRPV1 antagonist N-(4-tertiarybutylphenyl)-4-(3-chlorophyridin-2-yl)tetrahydropyrazine-1(2H)carboxamide (BCTC; 0.25–5 mg kg−1) or its vehicle (hydroxypropyl-β-cyclodextrin) was tested on the afferent response to repetitive distensions (60 mmHg). Immunocytochemical staining of TRPV1 and NF200, a marker for A-fibre neurons, was performed in the dorsal root ganglia L6–S1. TNBS colitis significantly increased the response to colorectal distension of pelvic afferent C-fibres. BCTC did not significantly affect the C-fibre response in controls, but normalized the sensitized response in rats with colitis. TNBS colitis increased the spontaneous activity of C-fibres, an effect which was insensitive to administration of BCTC. TNBS colitis had no effect on Aδ-fibres, nor was their activity modulated by BCTC. TNBS colitis caused an immunocytochemical up-regulation of TRPV1 receptors in the cell bodies of pelvic afferent NF200 negative neurons. TRPV1 signalling mediates the colitis-induced sensitization of pelvic afferent C-fibres to CRD, while Aδ-fibres are neither sensitized by colitis nor affected by TRPV1 inhibition. PMID:18755744

  10. Trametes versicolor Protein YZP Activates Regulatory B Lymphocytes – Gene Identification through De Novo Assembly and Function Analysis in a Murine Acute Colitis Model

    PubMed Central

    Kuan, Yen-Chou; Wu, Ying-Jou; Hung, Chih-Liang; Sheu, Fuu

    2013-01-01

    Background Trametes versicolor (Yun-Zhi) is a medicinal fungus used as a chemotherapy co-treatment to enhance anti-tumor immunity. Although the efficacies of T. versicolor extracts have been documented, the active ingredients and mechanisms underlying the actions of these extracts remain uncharacterized. Results We purified a new protein, YZP, from the fruiting bodies of T. versicolor and identified the gene encoding YZP using RNA-seq and de novo assembly technologies. YZP is a 12-kDa non-glycosylated protein comprising 139 amino acids, including an 18-amino acids signal peptide. YZP induced a greater than 60-fold increase in IL-10 secretion in mice B lymphocytes; moreover, YZP specifically triggered the differentiation of CD1d+ B cells into IL-10-producing regulatory B cells (Bregs) and enhanced the expression of CD1d. YZP-induced B cells suppressed approximately 40% of the LPS-activated macrophage production of inflammatory cytokines in a mixed leukocyte reaction and significantly alleviated the disease activity and colonic inflammation in a DSS-induced acute colitis murine model. Furthermore, YZP activated Breg function via interaction with TLR2 and TLR4 and up-regulation of the TLR-mediated signaling pathway. Conclusions We purified a novel Breg-stimulating protein, YZP, from T. versicolor and developed an advanced approach combining RNA-seq and de novo assembly technologies.to clone its gene. We demonstrated that YZP activated CD1d+ Breg differentiation through TLR2/4-mediated signaling pathway, and the YZP-stimulated B cells exhibited anti-inflammatory efficacies in vitro and in murine acute colitis models. PMID:24019869

  11. Predicting the Individual Risk of Acute Severe Colitis at Diagnosis.

    PubMed

    Cesarini, Monica; Collins, Gary S; Rönnblom, Anders; Santos, Antonieta; Wang, Lai Mun; Sjöberg, Daniel; Parkes, Miles; Keshav, Satish; Travis, Simon P L

    2017-03-01

    Acute severe colitis [ASC] is associated with major morbidity. We aimed to develop and externally validate an index that predicted ASC within 3 years of diagnosis. The development cohort included patients aged 16-89 years, diagnosed with ulcerative colitis [UC] in Oxford and followed for 3 years. Primary outcome was hospitalization for ASC, excluding patients admitted within 1 month of diagnosis. Multivariable logistic regression examined the adjusted association of seven risk factors with ASC. Backwards elimination produced a parsimonious model that was simplified to create an easy-to-use index. External validation occurred in separate cohorts from Cambridge, UK, and Uppsala, Sweden. The development cohort [Oxford] included 34/111 patients who developed ASC within a median 14 months [range 1-29]. The final model applied the sum of 1 point each for extensive disease, C-reactive protein [CRP] > 10mg/l, or haemoglobin < 12g/dl F or < 14g/dl M at diagnosis, to give a score from 0/3 to 3/3. This predicted a 70% risk of developing ASC within 3 years [score 3/3]. Validation cohorts included different proportions with ASC [Cambridge = 25/96; Uppsala = 18/298]. Of those scoring 3/3 at diagnosis, 18/18 [Cambridge] and 12/13 [Uppsala] subsequently developed ASC. Discriminant ability [c-index, where 1.0 = perfect discrimination] was 0.81 [Oxford], 0.95 [Cambridge], 0.97 [Uppsala]. Internal validation using bootstrapping showed good calibration, with similar predicted risk across all cohorts. A nomogram predicted individual risk. An index applied at diagnosis reliably predicts the risk of ASC within 3 years in different populations. Patients with a score 3/3 at diagnosis may merit early immunomodulator therapy. Copyright © 2016 European Crohn’s and Colitis Organisation (ECCO). Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com

  12. The Mixture of Anemarrhena asphodeloides and Coptis chinensis Attenuates High-Fat Diet-Induced Colitis in Mice.

    PubMed

    Lim, Su-Min; Choi, Hyun-Sik; Kim, Dong-Hyun

    2017-01-01

    Anemarrhena asphodeloides (AA, family Liliaceae) inhibits macrophage activation by inhibiting IRAK1 phosphorylation and helper T (Th)17 differentiation. Coptis chinensis (CC, family Ranunculaceae), which inhibits macrophage activation by inhibiting the binding of lipopolysaccharide (LPS) on toll-like receptor 4 and inducing regulatory T (Treg) cell differentiation. The mixture of AA and CC (AC-mix) synergistically attenuates 2,4,6-trinitrobenzenesulfonic acid or dextran sulfate sodium-induced colitis in mice by inhibiting NF-[Formula: see text]B activation and regulating Th17/Treg balance. In the present study, we examined the effect of AC-mix on high-fat diet (HFD)-induced colitis in mice, which induced NF-[Formula: see text]B activation and disturbed Th17/Treg balance. Long-term feeding of HFD in mice caused colitis, including increased macroscopic score and myeloperoxidase activity. Oral administration of AC-mix (20[Formula: see text]mg/kg) suppressed HFD-induced myeloperoxidase activity by 68% ([Formula: see text]). Furthermore, treatment with the AC-mix (20[Formula: see text]mg/kg) inhibited HFD-induced activation of NF-[Formula: see text]B and expression of cyclooxygenase-2, inducible NO synthase, interleukin (IL)-17, and tumor necrosis factor-alpha but increased HFD- suppressed expression of IL-10. AC-mix suppressed HFD-induced differentiation into Th17 cells by 46% ([Formula: see text]) and increased HFD-induced differentiation into regulatory T cells 2.2-fold ([Formula: see text]). AC-mix also suppressed the HFD-induced Proteobacteria/Bacteroidetes ratio on the gut microbiota by 48% ([Formula: see text]). These findings suggest that AC-mix can ameliorate HFD-induced colitis by regulating innate and adaptive immunities and correcting the disturbance of gut microbiota.

  13. [Immunopathology of ulcerative colitis and granulomatous colitis (author's transl)].

    PubMed

    Bläker, F

    1975-08-01

    There is no convincing evidence as yet for a key role of immunological processes in the pathogenesis of unspecific colitis. However clinical findings as well as immunological data do support the hypothesis that immune reactions are involved primarily or secondarily in the pathogenesis and the clinical course of ulcerative colitis and granulomatous colitis. In such patients a specific adaptation of humoral and cell-bound immune reactions against antigenic material from the colon and other tissues has been found in peripheral blood, lymphatic tissue and bowel wall. In this context it seems to be especially noteworthy, that lymphocytes taken from patients with colitis lead to disintegration of colon epithelial cells in vitro. This cytotoxic effect of the lymphocytes is lost after colectomy or remission of the disease. Ulcerative and granulomatous colitis do have many clinical and immunological peculiarities in common. This makes one think, that possibly the same noxious factors induce differential local reactions because of different hereditary disposition.

  14. Effects of dietary glutamine on the homeostasis of CD4+ T cells in mice with dextran sulfate sodium-induced acute colitis.

    PubMed

    Hsiung, Yuan-Chin; Liu, Jun-Jen; Hou, Yu-Chen; Yeh, Chiu-Li; Yeh, Sung-Ling

    2014-01-01

    This study investigated the effects of dietary glutamine (Gln) on T-helper (Th) and T regulatory (Treg) cell homeostasis and colonic inflammatory mediator expression in mice with dextran sulfate sodium (DSS)-induced colitis. Mice were randomly assigned to 4 groups with 2 normal control (C and G) and 2 DSS-treated groups (DC and DG). The C and DC groups were fed a common semipurified diet, while the G and DG groups received an identical diet except that part of the casein was replaced by Gln, which provided 25% of the total amino acid nitrogen. Mice were fed the diets for 10 days. On day 6, mice in the normal control groups were given distilled water, while those in the DSS groups were given distilled water containing 1.5% DSS for 5 d. At the end of the experiment, the mice were sacrificed for further examination. Results showed that DC group had higher plasma haptoglobin, colonic weight, immunoglobulin G, inflammatory cytokine and nuclear factor (NF)-κB protein levels. Gln administration lowered inflammatory mediators and NF-κB/IκBα ratio in colitis. Compared with the DC group, the percentages of interleukin-17F and interferon-γ in blood and transcription factors, T-bet and RAR-related orphan receptor-γt, gene expressions in mesenteric lymph nodes were lower, whereas blood Foxp3 was higher in the DG group. Also, DG group had lower colon injury score. These results suggest that Gln administration suppressed Th1/Th17 and Th-associated cytokine expressions and upregulated the expression of Tregs, which may modulate the balance of Th/Treg and reduce inflammatory reactions in DSS-induced colitis.

  15. Preventive effects of Schistosoma japonicum ova on trinitrobenzenesulfonic acid-induced colitis and bacterial translocation in mice.

    PubMed

    Zhao, Yuan; Zhang, Shuncai; Jiang, Li; Jiang, Jie; Liu, Hongchun

    2009-11-01

    To evaluate the preventive effects of Schistosoma japonicum ova on trinitrobenzenesulfonic acid (TNBS)-induced colitis and bacterial translocation in mice. BALB/c mice were randomly divided into three groups: control group; TNBS(+)Ova(-) group; and TNBS(+)Ova(+) group. Mice of the TNBS(+)Ova(+) group were exposed to 10 000 freeze-killed S. japonicum ova by i.p. injection on day 1 and day 11. On day 15, mice were challenged with TNBS to induce colitis. The following variables were assessed: colon pathological changes; serum expression of tumor necrosis factor-alpha (TNF-alpha), gamma-interferon (IFN-gamma) and interleukin-10 (IL-10); expression of Toll-like receptor 4 (TLR4) in colon; IFN-gamma, IL-10 and TLR4 mRNA expression in colon; and the bacterial translocation rate. Compared to TNBS(+)Ova(-) group, the colonic inflammation in the TNBS(+)Ova(+) group were relieved. A highly significant elevation of IFN-gamma and TNF-alpha were observed in the TNBS-induced colitis group. After exposure to the eggs, IFN-gamma was significantly decreased, while TNF-alpha was similar to that of the TNBS(+)ova(-) group. No obvious variation was seen in IL-10 expression in TNBS-induced colitis, compared to the controls. Exposure to the eggs led to a significant upregulation of IL-10 expression. TLR4 expression was elevated after injected with TNBS and was downregulated in the eggs group. Less intestinal bacterial translocation frequency was observed when exposed to eggs. S. japonicum ova can prevent the TNBS-induced colitis and reduce the bacterial translocation frequency in mice. The mechanisms were supposed to be due to the regulation of T-helper cell 1/2 balance and TLR4 expression.

  16. miR-19a promotes colitis-associated colorectal cancer by regulating tumor necrosis factor alpha-induced protein 3-NF-κB feedback loops.

    PubMed

    Wang, T; Xu, X; Xu, Q; Ren, J; Shen, S; Fan, C; Hou, Y

    2017-06-08

    Chronic inflammation is believed to have a crucial role in colon cancer development. MicroRNA (miRNA) deregulation is common in human colorectal cancers, but little is known regarding whether miRNA drives tumor progression by regulating inflammation. Here, we showed that miR-19a can promote colitis and colitis-associated colon cancer (CAC) development using a CAC mouse model and an acute colitis mouse model. Tumor necrosis factor-α (TNF-α) stimulation can increase miR-19a expression, and upregulated miR-19a can in turn activate nuclear factor (NF)-κB signaling and TNF-α production by targeting TNF alpha-induced protein 3 (TNFAIP3). miR-19a inhibition can also alleviate CAC in vivo. Moreover, the regulatory effects of miR-19a on TNFAIP3 and NF-κB signaling were confirmed using tumor samples from patients with colon cancer. These new findings demonstrate that miR-19a has a direct role in upregulating NF-κB signaling and that miR-19a has roles in inflammation and CAC.

  17. Protective effects of black cumin (Nigella sativa) oil on TNBS-induced experimental colitis in rats.

    PubMed

    Isik, F; Tunali Akbay, Tugba; Yarat, A; Genc, Z; Pisiriciler, R; Caliskan-Ak, E; Cetinel, S; Altıntas, A; Sener, G

    2011-03-01

    The pathogenesis and treatment of ulcerative colitis remain poorly understood. The aim of the present study is to investigate the effects of black cumin (Nigella sativa) oil on rats with colitis. Experimental colitis was induced with 1 mL trinitrobenzene sulfonic acid (TNBS) in 40% ethanol by intracolonic administration with 8-cm-long cannula under ether anesthesia to rats in colitis group and colitis + black cumin oil group. Rats in the control group were given saline at the same volume by intracolonic administration. Black cumin oil (BCO, Origo "100% natural Black Cumin Seed Oil," Turkey) was given to colitis + black cumin oil group by oral administration during 3 days, 5 min after colitis induction. Saline was given to control and colitis groups at the same volume by oral administration. At the end of the experiment, macroscopic lesions were scored and the degree of oxidant damage was evaluated by colonic total protein, sialic acid, malondialdehyde, and glutathione levels, collagen content, and tissue factor, superoxide dismutase, and myeloperoxidase activities. Tissues were also examined by histological and cytological analysis. Proinflammatory cytokines [tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β, and IL-6], lactate dehydrogenase activity, and triglyceride and cholesterol levels were analyzed in blood samples. We found that black cumin oil decreased the proinflammatory cytokines, lactate dehydrogenase, triglyceride, and cholesterol, which were increased in colitis. BCO, by preventing inflammatory status in the blood, partly protected colonic tissue against experimental ulcerative colitis.

  18. Sickle cell-induced ischemic colitis.

    PubMed

    Stewart, Camille L; Ménard, Geraldine E

    2009-07-01

    Sickle cell-induced ischemic colitis is a rare yet potentially fatal complication of sickle cell anemia. Frequent pain crises with heavy analgesia may obscure and prolong this important diagnosis. Our patient was a 29-year-old female with sickle cell disease who was admitted with left lower quadrant abdominal pain. A diagnostic workup, including chemistries, complete blood count, blood cultures, chest x-ray, computerized tomography scanning, and colonoscopy, was performed to identify the etiology of her symptoms. This case highlights the importance of differentiating simple pain crisis from more serious and life-threatening ischemic bowel. A review of the literature compares this case to others reported and gives a method for diagnosing and treating this complication of sickle cell disease.

  19. Effect of royal jelly on experimental colitis induced by acetic acid and alteration of mast cell distribution in the colon of rats

    PubMed Central

    Karaca, T.; Bayiroglu, F.; Yoruk, M.; Kaya, M.S.; Uslu, S.; Comba, B.; Mis, L.

    2010-01-01

    This study investigated the effects of royal jelly (RJ) on acetic acid-induced colitis in rats. Twenty adult female Wistar albino rats were divided into four treatment groups of 5 animals each, including a control group (Group I); Group II was treated orally with RJ (150 mg kg−1 body weight); Group III had acetic acid-induced colitis; and Group IV had acetic acid-induced colitis treated orally with RJ (150 mg kg−1 body weight) for 4 weeks. Colitis was induced by intracolonic instillation of 4% acetic acid; the control group received physiological saline (10 mL kg−1). Colon samples were obtained under deep anaesthesia from animals in all groups. Tissues were fixed in 10% formalin neutral buffer solution for 24 h and embedded in paraffin. Six-micrometre-thick sections were stained with Mallory’s triple stain and toluidine blue in 1% aqueous solution at pH 1.0 for 5 min (for Mast Cells). RJ was shown to protect the colonic mucosa against the injurious effect of acetic acid. Colitis (colonic damage) was confirmed histomorphometrically as significant increases in the number of mast cells (MC) and colonic erosions in rats with acetic acid-induced colitis. The RJ treatment significantly decreased the number of MC and reduced the area of colonic erosion in the colon of RJ-treated rats compared with rats with untreated colitis. The results suggest that oral treatment with RJ could be used to treat colitis. PMID:21263740

  20. Purified rutin and rutin-rich asparagus attenuates disease severity and tissue damage following dextran sodium sulfate-induced colitis.

    PubMed

    Power, Krista A; Lu, Jenifer T; Monk, Jennifer M; Lepp, Dion; Wu, Wenqing; Zhang, Claire; Liu, Ronghua; Tsao, Rong; Robinson, Lindsay E; Wood, Geoffrey A; Wolyn, David J

    2016-11-01

    This study investigated the effects of cooked whole asparagus (ASP) versus its equivalent level of purified flavonoid glycoside, rutin (RUT), on dextran sodium sulfate (DSS)-induced colitis and subsequent colitis recovery in mice. C57BL/6 male mice were fed an AIN-93G basal diet (BD), or BD supplemented with 2% cooked ASP or 0.025% RUT for 2 wks prior to and during colitis induction with 2% DSS in water for 7 days, followed by 5 days colitis recovery. In colitic mice, both ASP and RUT upregulated mediators of improved barrier integrity and enhanced mucosal injury repair (e.g. Muc1, IL-22, Rho-A, Rac1, and Reg3γ), increased the proportion of mouse survival, and improved disease activity index. RUT had the greatest effect in attenuating DSS-induced colonic damage indicated by increased crypt and goblet cell restitution, reduced colonic myeloperoxidase, as well as attenuated DSS-induced microbial dysbiosis (reduced Enterobacteriaceae and Bacteroides, and increased unassigned Clostridales, Oscillospira, Lactobacillus, and Bifidobacterium). These findings demonstrate that dietary cooked ASP and its flavonoid glycoside, RUT, may be useful in attenuating colitis severity by modulating the colonic microenvironment resulting in reduced colonic inflammation, promotion of colonic mucosal injury repair, and attenuation of colitis-associated microbial dysbiosis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. The combination of high-fat diet-induced obesity and chronic ulcerative colitis reciprocally exacerbates adipose tissue and colon inflammation

    PubMed Central

    2011-01-01

    Background This study evaluated the relationship between ulcerative colitis and obesity, which are both chronic diseases characterized by inflammation and increases in immune cells and pro-inflammatory cytokines. Methods Mice with chronic ulcerative colitis induced by 2 cycles of dextran sodium sulfate (DSS) in the first and fourth week of the experiment were fed a high-fat diet (HFD) to induce obesity by 8 weeks. The animals were divided into 4 \\ groups (control, colitis, HFD and colitis + HFD). Results Obesity alone did not raise histopathology scores, but the combination of obesity and colitis worsened the scores in the colon compared to colitis group. Despite the reduction in weight gain, there was increased inflammatory infiltrate in both the colon and visceral adipose tissue of colitis + HFD mice due to increased infiltration of macrophages, neutrophils and lymphocytes. Intravital microscopy of VAT microvasculature showed an increase in leukocyte adhesion and rolling and overexpression of adhesion molecules compared to other groups. Moreover, circulating lymphocytes, monocytes and neutrophils in the spleen and cecal lymph nodes were increased in the colitis + HFD group. Conclusion Our results demonstrated the relationship between ulcerative colitis and obesity as aggravating factors for each disease, with increased inflammation in the colon and adipose tissue and systemic alterations observed in the spleen, lymph nodes and bloodstream. PMID:22073943

  2. Butyric acid attenuates intestinal inflammation in murine DSS-induced colitis model via milk fat globule-EGF factor 8.

    PubMed

    Mishiro, Tsuyoshi; Kusunoki, Ryusaku; Otani, Aya; Ansary, Md Mesbah Uddin; Tongu, Miki; Harashima, Nanae; Yamada, Takaya; Sato, Shuichi; Amano, Yuji; Itoh, Kazuhito; Ishihara, Shunji; Kinoshita, Yoshikazu

    2013-07-01

    Butyric acid, a short-chain fatty acid and one of the main metabolites of intestinal microbial fermentation of dietary fiber, has been shown to have an important role in maintaining the integrity of the intestinal mucosa, while it also has been shown to exert potent anti-inflammatory effects both in vitro and in vivo. However, the precise mechanisms underlying those effects have not been fully identified. We exposed colonic epithelial cells to butyric acid, then extracted total RNA samples, and subsequently hybridized them to microarray chips. Among the upregulated genes, milk fat globule-epidermal growth factor 8 (MFG-E8) was elevated by approximately fivefold. We previously reported that the potential therapeutic benefits of MFG-E8 in intestinal tissue injury were dependent not only on enhanced clearance of apoptotic cells but also required diverse cellular events for maintaining epithelial integrity. The influence of butyric acid on cell function is often attributed to its inhibition of histone deacetylases (HDACs). We found that acetylation on histone 3 lysine 9 (acetyl-H3K9) around the MFG-E8 promoter was significantly increased with butyric acid exposure. Experimental colitis was induced by administration of dextran sodium sulfate (DSS) in C57BL/6N (MFG-E8+/+) and MFG-E8-/- mice. Although the colonic bacterial compositions in wild-type (WT) and MFG-E8-/- mice were not significantly different, intrarectal administration of butyric acid during an acute phase of colitis attenuated intestinal inflammatory parameters and inhibited body weight loss in the WT mice. Our novel findings suggest that butyric acid has significant anti-inflammatory effects partly via MFG-E8 on DSS-induced murine experimental colitis.

  3. Fish oil attenuates omega-6 polyunsaturated fatty acid-induced dysbiosis and infectious colitis but impairs LPS dephosphorylation activity causing sepsis.

    PubMed

    Ghosh, Sanjoy; DeCoffe, Daniella; Brown, Kirsty; Rajendiran, Ethendhar; Estaki, Mehrbod; Dai, Chuanbin; Yip, Ashley; Gibson, Deanna L

    2013-01-01

    Clinically, excessive ω-6 polyunsaturated fatty acid (PUFA) and inadequate ω-3 PUFA have been associated with enhanced risks for developing ulcerative colitis. In rodent models, ω-3 PUFAs have been shown to either attenuate or exacerbate colitis in different studies. We hypothesized that a high ω-6: ω-3 PUFA ratio would increase colitis susceptibility through the microbe-immunity nexus. To address this, we fed post-weaned mice diets rich in ω-6 PUFA (corn oil) and diets supplemented with ω-3 PUFA (corn oil+fish oil) for 5 weeks. We evaluated the intestinal microbiota, induced colitis with Citrobacter rodentium and followed disease progression. We found that ω-6 PUFA enriched the microbiota with Enterobacteriaceae, Segmented Filamentous Bacteria and Clostridia spp., all known to induce inflammation. During infection-induced colitis, ω-6 PUFA fed mice had exacerbated intestinal damage, immune cell infiltration, prostaglandin E2 expression and C. rodentium translocation across the intestinal mucosae. Addition of ω-3 PUFA on a high ω-6 PUFA diet, reversed inflammatory-inducing microbial blooms and enriched beneficial microbes like Lactobacillus and Bifidobacteria, reduced immune cell infiltration and impaired cytokine/chemokine induction during infection. While, ω-3 PUFA supplementation protected against severe colitis, these mice suffered greater mortality associated with sepsis-related serum factors such as LPS binding protein, IL-15 and TNF-α. These mice also demonstrated decreased expression of intestinal alkaline phosphatase and an inability to dephosphorylate LPS. Thus, the colonic microbiota is altered differentially through varying PUFA composition, conferring altered susceptibility to colitis. Overall, ω-6 PUFA enriches pro-inflammatory microbes and augments colitis; but prevents infection-induced systemic inflammation. In contrast, ω-3 PUFA supplementation reverses the effects of the ω-6 PUFA diet but impairs infection-induced responses

  4. Fish Oil Attenuates Omega-6 Polyunsaturated Fatty Acid-Induced Dysbiosis and Infectious Colitis but Impairs LPS Dephosphorylation Activity Causing Sepsis

    PubMed Central

    Brown, Kirsty; Rajendiran, Ethendhar; Estaki, Mehrbod; Dai, Chuanbin; Yip, Ashley; Gibson, Deanna L.

    2013-01-01

    Clinically, excessive ω-6 polyunsaturated fatty acid (PUFA) and inadequate ω-3 PUFA have been associated with enhanced risks for developing ulcerative colitis. In rodent models, ω-3 PUFAs have been shown to either attenuate or exacerbate colitis in different studies. We hypothesized that a high ω-6: ω-3 PUFA ratio would increase colitis susceptibility through the microbe-immunity nexus. To address this, we fed post-weaned mice diets rich in ω-6 PUFA (corn oil) and diets supplemented with ω-3 PUFA (corn oil+fish oil) for 5 weeks. We evaluated the intestinal microbiota, induced colitis with Citrobacter rodentium and followed disease progression. We found that ω-6 PUFA enriched the microbiota with Enterobacteriaceae, Segmented Filamentous Bacteria and Clostridia spp., all known to induce inflammation. During infection-induced colitis, ω-6 PUFA fed mice had exacerbated intestinal damage, immune cell infiltration, prostaglandin E2 expression and C. rodentium translocation across the intestinal mucosae. Addition of ω-3 PUFA on a high ω-6 PUFA diet, reversed inflammatory-inducing microbial blooms and enriched beneficial microbes like Lactobacillus and Bifidobacteria, reduced immune cell infiltration and impaired cytokine/chemokine induction during infection. While, ω-3 PUFA supplementation protected against severe colitis, these mice suffered greater mortality associated with sepsis-related serum factors such as LPS binding protein, IL-15 and TNF-α. These mice also demonstrated decreased expression of intestinal alkaline phosphatase and an inability to dephosphorylate LPS. Thus, the colonic microbiota is altered differentially through varying PUFA composition, conferring altered susceptibility to colitis. Overall, ω-6 PUFA enriches pro-inflammatory microbes and augments colitis; but prevents infection-induced systemic inflammation. In contrast, ω-3 PUFA supplementation reverses the effects of the ω-6 PUFA diet but impairs infection-induced responses

  5. Protective Effect of Ocimum basilicum Essential Oil Against Acetic Acid-Induced Colitis in Rats.

    PubMed

    Rashidian, Amir; Roohi, Parnia; Mehrzadi, Saeed; Ghannadi, Ali Reza; Minaiyan, Mohsen

    2016-10-01

    Ocimum basilicum L has been traditionally used for the treatment of inflammatory bowel disease in Iran. This study investigates the ameliorative effect of Ocimum basilicum essential oil on an acetic acid-induced colitis model in rats. Ocimum basilicum essential oil with 2 doses (200 and 400 μL/kg) significantly ameliorated wet weight/length ratio of colonic tissue compared to the control group. Higher doses of essential oil (200 and 400 μL/kg) significantly reduced ulcer severity, ulcer area, and ulcer index. On the other hand, histological examination revealed the diminution of total colitis index as a marker for inflammatory cell infiltration in the colonic segments of rats treated with Ocimum basilicum essential oil (200 and 400 μL/kg). The increased level of myeloperoxidase was significantly decreased after the treatment with the essential oil (200 and 400 μL/kg). These results suggest that Ocimum basilicum exhibits protective effect against acetic acid-induced colitis. © The Author(s) 2015.

  6. Prevention of acetic acid-induced colitis by desferrithiocin analogs in a rat model.

    PubMed

    Bergeron, Raymond J; Wiegand, Jan; Weimar, William R; Nguyen, John Nhut; Sninsky, Charles A

    2003-02-01

    Iron contributes significantly to the formation of reactive oxygen species via the Fenton reaction. Therefore, we assessed whether a series of desferrithiocin analogs, both carboxylic acids and hydroxamates, could (1) either promote or diminish the iron-mediated oxidation of ascorbate, (2) quench a model radical species, 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS+), and (3) when applied topically, prevent acetic acid-induced colitis in rats. Surprisingly, most of the desferrithiocin analogs inhibited the Fenton reaction to an approximately equivalent degree; however, substantial differences were observed in the capacity of the analogs to scavenge the model radical cation. Four carboxylic acid desferrithiocin analogs and their respective N-methylhydroxamates were tested along with desferrioxamine and Rowasa, a currently accepted topical therapeutic agent for inflammatory bowel disease (IBD), in a rodent model of acetic acid-induced colitis. The colonic damage was quantitated by two independent measurements. Although neither radical scavenging nor prevention of Fenton chemistry was a definitive predictor of in vivo efficacy, the overall trend is that desferrithiocin analogs substituted with an N-methylhydroxamate in the place of the carboxylic acid are both better free radical scavengers and more active against acetic acid-induced colitis. These results represent an intriguing alternative avenue to the development of improved IBD therapeutic agents.

  7. Food antigen-induced immune responses in Crohn's disease patients and experimental colitis mice.

    PubMed

    Kawaguchi, Takaaki; Mori, Maiko; Saito, Keiko; Suga, Yasuyo; Hashimoto, Masaki; Sako, Minako; Yoshimura, Naoki; Uo, Michihide; Danjo, Keiko; Ikenoue, Yuka; Oomura, Kaori; Shinozaki, Junko; Mitsui, Akira; Kajiura, Takayuki; Suzuki, Manabu; Takazoe, Masakazu

    2015-04-01

    In Crohn's disease (CD), the involvement of food antigens in immune responses remains unclear. The objective of this study was to detect immune responses against food antigens in CD patients and examine the mechanism in a mouse model of colitis. We enrolled 98 CD patients, 50 ulcerative colitis patients, and 52 healthy controls (HCs) to compare the levels of serum immunoglobulin (Ig)Gs against 88 foods. The presence of serum IgGs against foods was also examined in interleukin (IL)-10 knockout (KO) mice in which CD4(+) T cell activation by antigenic food protein was assessed. Mice transferred with IL-10 KO cells received diets with or without food antigens, and the development of colitis was evaluated. The prevalence of IgGs against various foods, especially vegetables, grains, and nuts, was significantly higher in CD patients than in HCs. Similarly, the prevalence of IgGs against food proteins was higher in IL-10 KO mice than in BALB/c mice. Beta-conglycinin, identified as an antigenic food proteins in IL-10 KO mice, induced CD4(+) T cell production of interferon-γ and IL-17 through dendritic cell antigen presentation. Elimination of the food antigens ameliorated the development of colitis in mice without altering the composition of their intestinal microbiota. In CD colitis mice, intestinal inflammation via CD4(+) T cell hyperactivation was induced by food antigens associated with high serum IgG levels and was ameliorated by the elimination of food antigens. This disrupted immunological tolerance to food antigen, which might act as an exacerbating factor, remains to be elucidated in CD patients.

  8. The enhanced susceptibility of ADAM-17 hypomorphic mice to DSS-induced colitis is not ameliorated by loss of RIPK3, revealing an unexpected function of ADAM-17 in necroptosis

    PubMed Central

    Luzius, Anne; Saggau, Carina; Ruder, Barbara; Bolik, Julia; Schmidt-Arras, Dirk; Linkermann, Andreas; Becker, Christoph; Rosenstiel, Philip; Rose-John, Stefan; Adam, Dieter

    2018-01-01

    The disintegrin metalloprotease ADAM17 has a critical role in intestinal inflammation and regeneration in mice, as illustrated by the dramatically increased susceptibility of ADAM17 hypomorphic (ADAM17ex/ex) mice to dextran sulfate sodium (DSS)-induced colitis. Similarly, necroptosis has been implicated in inflammatory responses in the intestine. In this study, we have investigated the contribution of necroptosis to ADAM17-regulated intestinal inflammation in vivo by crossing ADAM17ex/ex mice with mice that lack the necroptotic core protein RIPK3. Despite the loss of RIPK3, ADAM17ex/ex/RIPK3−/− mice showed the same increased susceptibility as ADAM17ex/ex mice in both acute and chronic models of DSS-induced colitis. Mice of both genotypes revealed comparable results with regard to weight loss, disease activity index and colitis-associated changes of inner organs. Histopathological analyses confirmed similar tissue destruction, loss of barrier integrity, immune cell infiltration, and cell death; serum analyses revealed similar levels of the pro-inflammatory cytokine KC. Resolving these unexpected findings, ADAM17ex/ex mice did not show phosphorylation of RIPK3 and its necroptotic interaction partner MLKL during DSS-induced colitis, although both proteins were clearly expressed. Consistent with these findings, murine embryonic fibroblasts derived from ADAM17ex/ex mice were protected from tumor necrosis factor (TNF)-induced necroptosis and failed to show phosphorylation of MLKL and RIPK3 after induction of necroptosis by TNF, revealing a novel, undescribed role of the protease ADAM17 in necroptosis. PMID:29560122

  9. The enhanced susceptibility of ADAM-17 hypomorphic mice to DSS-induced colitis is not ameliorated by loss of RIPK3, revealing an unexpected function of ADAM-17 in necroptosis.

    PubMed

    Fuchslocher Chico, Johaiber; Falk-Paulsen, Maren; Luzius, Anne; Saggau, Carina; Ruder, Barbara; Bolik, Julia; Schmidt-Arras, Dirk; Linkermann, Andreas; Becker, Christoph; Rosenstiel, Philip; Rose-John, Stefan; Adam, Dieter

    2018-02-27

    The disintegrin metalloprotease ADAM17 has a critical role in intestinal inflammation and regeneration in mice, as illustrated by the dramatically increased susceptibility of ADAM17 hypomorphic (ADAM17 ex/ex ) mice to dextran sulfate sodium (DSS)-induced colitis. Similarly, necroptosis has been implicated in inflammatory responses in the intestine. In this study, we have investigated the contribution of necroptosis to ADAM17-regulated intestinal inflammation in vivo by crossing ADAM17 ex/ex mice with mice that lack the necroptotic core protein RIPK3. Despite the loss of RIPK3, ADAM17 ex/ex /RIPK3 -/- mice showed the same increased susceptibility as ADAM17 ex/ex mice in both acute and chronic models of DSS-induced colitis. Mice of both genotypes revealed comparable results with regard to weight loss, disease activity index and colitis-associated changes of inner organs. Histopathological analyses confirmed similar tissue destruction, loss of barrier integrity, immune cell infiltration, and cell death; serum analyses revealed similar levels of the pro-inflammatory cytokine KC. Resolving these unexpected findings, ADAM17 ex/ex mice did not show phosphorylation of RIPK3 and its necroptotic interaction partner MLKL during DSS-induced colitis, although both proteins were clearly expressed. Consistent with these findings, murine embryonic fibroblasts derived from ADAM17 ex/ex mice were protected from tumor necrosis factor (TNF)-induced necroptosis and failed to show phosphorylation of MLKL and RIPK3 after induction of necroptosis by TNF, revealing a novel, undescribed role of the protease ADAM17 in necroptosis.

  10. Therapeutic and prophylactic thalidomide in TNBS-induced colitis: Synergistic effects on TNF-α, IL-12 and VEGF production

    PubMed Central

    Carvalho, Ana Teresa; Souza, Heitor; Carneiro, Antonio Jose; Castelo-Branco, Morgana; Madi, Kalil; Schanaider, Alberto; Silva, Flavia; Pereira Jứnior, Fernando Antonio; Pereira, Márcia G; Tortori, Cláudio; Dines, Ilana; Carvalho, Jane; Rocha, Eduardo; Elia, Celeste

    2007-01-01

    AIM: To evaluated the therapeutic and prophylactic effect of thalidomide on 2, 4, 6-trinitrobenzene sulfonic acid (TNBS)-induced colitis. Thalidomide has been reported to downregulate the expression of tumor necrosis factor α (TNF-α), IL-12, and vascular endothelial growth factor (VEGF), hallmarks of intestinal inflammation in Crohn’s disease (CD). METHODS: Male Wistar rats were divided in five groups of ten animals each. Four groups received a rectal infusion of TNBS in ethanol. The first group was sacrificed 7 d after colitis induction. The second and third groups received either thalidomide or placebo by gavage and were sacrificed at 14 d. The fourth group received thalidomide 6 h before TNBS administration, and was sacrificed 7 d after induction. The fifth group acted as the control group and colitis was not induced. Histological inflammatory scores of the colon were performed and lamina propria CD4+ T cells, macrophages, and VEGF+ cells were detected by immunohistochemistry. TNF-α and IL-12 were quantified in the supernatant of organ cultures by ELISA. RESULTS: Significant reduction in the inflammatory score and in the percentage of VEGF+ cells was observed in the group treated with thalidomide compared with animals not treated with thalidomide. Both TNF-α and IL-12 levels were significantly reduced among TNBS induced colitis animals treated with thalidomide compared with animals that did not receive thalidomide. TNF-α levels were also significantly reduced among the animals receiving thalidomide prophylaxis compared with untreated animals with TNBS-induced colitis. Intestinal levels of TNF-α and IL-12 were significantly correlated with the inflammatory score and the number of VEGF+ cells. CONCLUSION: Thalidomide significantly attenuates TNBS-induced colitis by inhibiting the intestinal production of TNF-α, IL-12, and VEGF. This effect may support the use of thalidomide as an alternate approach in selected patients with CD. PMID:17465495

  11. Therapeutic and prophylactic thalidomide in TNBS-induced colitis: synergistic effects on TNF-alpha, IL-12 and VEGF production.

    PubMed

    Carvalho, Ana Teresa; Souza, Heitor; Carneiro, Antonio Jose; Castelo-Branco, Morgana; Madi, Kalil; Schanaider, Alberto; Silv, Flavia; Pereira Junior, Fernando Antonio; Pereira, Marcia G; Tortori, Claudio; Dines, Ilana; Carvalho, Jane; Rocha, Eduardo; Elia, Celeste

    2007-04-21

    To evaluated the therapeutic and prophylactic effect of thalidomide on 2, 4, 6-trinitrobenzene sulfonic acid (TNBS)-induced colitis. Thalidomide has been reported to downregulate the expression of tumor necrosis factor alpha (TNF-alpha), IL-12, and vascular endothelial growth factor (VEGF), hallmarks of intestinal inflammation in Crohnos disease (CD). Male Wistar rats were divided in five groups of ten animals each. Four groups received a rectal infusion of TNBS in ethanol. The first group was sacrificed 7 d after colitis induction. The second and third groups received either thalidomide or placebo by gavage and were sacrificed at 14 d. The fourth group received thalidomide 6 h before TNBS administration, and was sacrificed 7 d after induction. The fifth group acted as the control group and colitis was not induced. Histological inflammatory scores of the colon were performed and lamina propria CD4+ T cells, macrophages, and VEGF+ cells were detected by immunohistochemistry. TNF-alpha and IL-12 were quantified in the supernatant of organ cultures by ELISA. Significant reduction in the inflammatory score and in the percentage of VEGF+ cells was observed in the group treated with thalidomide compared with animals not treated with thalidomide. Both TNF-alpha and IL-12 levels were significantly reduced among TNBS induced colitis animals treated with thalidomide compared with animals that did not receive thalidomide. TNF-alpha levels were also significantly reduced among the animals receiving thalidomide prophylaxis compared with untreated animals with TNBS-induced colitis. Intestinal levels of TNF-alpha and IL-12 were significantly correlated with the inflammatory score and the number of VEGF+ cells. Thalidomide significantly attenuates TNBS-induced colitis by inhibiting the intestinal production of TNF-alpha, IL-12, and VEGF. This effect may support the use of thalidomide as an alternate approach in selected patients with CD.

  12. MAR binding protein SMAR1 favors IL-10 mediated regulatory T cell function in acute colitis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mirlekar, Bhalchandra; Patil, Sachin; Bopanna, Ramanamurthy

    2015-08-21

    T{sub reg} cells are not only crucial for controlling immune responses to autoantigens but also prevent those directed towards commensal pathogens. Control of effector immune responses by T{sub reg} cells depend on their capacity to accumulate at inflammatory site and accordingly accommodate to inflammatory environment. Till date, the factors associated with maintaining these aspects of T{sub reg} phenotype is not understood properly. Here we have shown that a known nuclear matrix binding protein SMAR1 is selectively expressed more in colonic T{sub reg} cells and is required for their ability to accumulate at inflammatory site and to sustain high levels ofmore » Foxp3 and IL-10 expression during acute colitis. Elimination of anti-inflammatory subsets revealed a protective role for IL-10 producing T{sub reg} cells in SMAR1{sup −/−} mice. Moreover, a combined action of Foxp3 and SMAR1 restricts effector cytokine production and enhance the production of IL-10 by colonic T{sub reg} cells that controls acute colitis. This data highlights a critical role of SMAR1 in maintaining T{sub reg} physiology during inflammatory disorders. - Highlights: • SMAR1 is essential to sustain high level of Foxp3 and IL-10 in T{sub reg} cells. • SMAR1{sup −/−} T{sub reg} cells produce pro-inflammatory cytokine IL-17 leads to inflammation. • IL-10 administration can control the inflammation in SMAR1{sup −/−} mice. • Both Foxp3 and SMAR1 maintain T{sub reg} phenotype that controls colitis.« less

  13. Factors precipitating acute ulcerative colitis.

    PubMed

    Puri, A S; Chaubal, C C; Midha, Vandana

    2014-08-01

    Ulcerative colitis is characterized by mucosal inflammation of a variable length of the colon starting from the rectum. The precise etiopathogenesis is unknown but it occurs in genetically susceptible individuals who manifest an abnormal immunological response against gut commensal bacteria. The disease course is-characterized by multiple spontaneous relapses and remissions. Two pathogens namely CMV and C. difficile have been associated with disease exacerbation in specific clinical situations. Whereas C. difficile may produce worsening of the disease in those exposed to broad spectrum antibiotics, CMV reactivation is seen only in patients with moderate to severe steroid refractory disease. The importance of these two super-infections can be gauged by the fact that both the ACG and the ECCO recommend testing for these two pathogens in appropriate clinical situations. The applicability of these guidelines in the Indian scenario has yet to be determined in view of the bacterial and parasitic infections endemic in tropical countries. The guidelines for diagnosis and management of these two super-infections in the presence of ulcerative colitis are discussed in this review.

  14. Baicalin attenuates TNBS-induced colitis in rats by modulating the Th17/Treg paradigm.

    PubMed

    Zou, Ying; Dai, Shi-Xue; Chi, Hong-Gang; Li, Tao; He, Zhi-Wei; Wang, Jian; Ye, Cai-Guo; Huang, Guo-Liang; Zhao, Bing; Li, Wen-Yang; Wan, Zheng; Feng, Jin-Shan; Zheng, Xue-Bao

    2015-10-01

    Baicalin, a flavonoid, has a wide range of pharmacological properties, including immunomodulation. The objective of this study was to investigate the effect of baicalin on the balance of T helper 17 (Th17) and regulatory T (Treg) cells in a colitis model. The rat colitis model was induced by 2,4,6-trinitrobenzene sulfonic acid (TNBS). Baicalin (10 ml/kg, each) or mesalazine (positive control) was then administered orally for 7 days. Inflammatory and immunological responses were evaluated by pathology, enzyme-linked immunosorbent assay, real-time polymerase chain reaction, western blot analysis, and flow cytometry. Our study showed that baicalin not only significantly attenuated TNBS-induced colitis by reducing the disease activity index as well as macroscopic and microscopic scores, but it also improved the weight loss and shortening of the colon. Baicalin treatment also induced a significant decrease in the levels of inflammatory mediators, including the myeloperoxidase activity, the levels of tumor necrosis factor α, IL-1β, and Th1-related cytokines IL-12 and IFN-γ. Furthermore, the beneficial effects of baicalin seem to be associated with regulation of the Th17 and Treg paradigm. We found that administration of baicalin significantly downregulated the number of Th17 cells and the levels of Th17-related cytokines (IL-17 and IL-6) and retinoic acid receptor-related orphan receptor γt. In contrast, there was an increase in Treg cells numbers, Treg-related cytokines transforming growth factor-β and IL-10, and forkhead box P3. Our results suggest that the anti-inflammatory effect of baicalin may be linked to modulation of the balance between Th17 and Treg cells in TNBS-induced ulcerative colitis.

  15. Different Effects of Three Selected Lactobacillus Strains in Dextran Sulfate Sodium-Induced Colitis in BALB/c Mice.

    PubMed

    Cui, Yi; Wei, Hongyun; Lu, Fanggen; Liu, Xiaowei; Liu, Deliang; Gu, Li; Ouyang, Chunhui

    2016-01-01

    To analyze the changes of different Lactobacillus species in ulcerative colitis patients and to further assess the therapeutic effects of selected Lactobacillus strains on dextran sulfate sodium (DSS)-induced experimental colitis in BALB/c mice. Forty-five active ulcerative colitis (UC) patients and 45 population-based healthy controls were enrolled. Polymerase chain reaction (PCR) amplification and real-time PCR were performed for qualitative and quantitative analyses, respectively, of the Lactobacillus species in UC patients. Three Lactobacillus strains from three species were selected to assess the therapeutic effects on experimental colitis. Sixty 8-week-old BALB/c mice were divided into six groups. The five groups that had received DSS were administered normal saline, mesalazine, L. fermentum CCTCC M206110 strain, L. crispatus CCTCC M206119 strain, or L. plantarum NCIMB8826 strain. We assessed the severity of colitis based on disease activity index (DAI), body weight loss, colon length, and histologic damage. The detection rate of four of the 11 Lactobacillus species decreased significantly (P < 0.05), and the detection rate of two of the 11 Lactobacillus species increased significantly (P < 0.05) in UC patients. Relative quantitative analysis revealed that eight Lactobacillus species declined significantly in UC patients (P < 0.05), while three Lactobacillus species increased significantly (P < 0.05). The CCTCC M206110 treatment group had less weight loss and colon length shortening, lower DAI scores, and lower histologic scores (P < 0.05), while the CCTCC M206119 treatment group had greater weight loss and colon length shortening, higher histologic scores, and more severe inflammatory infiltration (P < 0.05). NCIMB8826 improved weight loss and colon length shortening (P < 0.05) with no significant influence on DAI and histologic damage in the colitis model. Administration of an L. crispatus CCTCC M206119 supplement aggravated DSS-induced colitis. L

  16. Different Effects of Three Selected Lactobacillus Strains in Dextran Sulfate Sodium-Induced Colitis in BALB/c Mice

    PubMed Central

    Cui, Yi; Wei, Hongyun; Lu, Fanggen; Liu, Xiaowei; Liu, Deliang; Gu, Li; Ouyang, Chunhui

    2016-01-01

    Aim To analyze the changes of different Lactobacillus species in ulcerative colitis patients and to further assess the therapeutic effects of selected Lactobacillus strains on dextran sulfate sodium (DSS)-induced experimental colitis in BALB/c mice. Methods Forty-five active ulcerative colitis (UC) patients and 45 population-based healthy controls were enrolled. Polymerase chain reaction (PCR) amplification and real-time PCR were performed for qualitative and quantitative analyses, respectively, of the Lactobacillus species in UC patients. Three Lactobacillus strains from three species were selected to assess the therapeutic effects on experimental colitis. Sixty 8-week-old BALB/c mice were divided into six groups. The five groups that had received DSS were administered normal saline, mesalazine, L. fermentum CCTCC M206110 strain, L. crispatus CCTCC M206119 strain, or L. plantarum NCIMB8826 strain. We assessed the severity of colitis based on disease activity index (DAI), body weight loss, colon length, and histologic damage. Results The detection rate of four of the 11 Lactobacillus species decreased significantly (P < 0.05), and the detection rate of two of the 11 Lactobacillus species increased significantly (P < 0.05) in UC patients. Relative quantitative analysis revealed that eight Lactobacillus species declined significantly in UC patients (P < 0.05), while three Lactobacillus species increased significantly (P < 0.05). The CCTCC M206110 treatment group had less weight loss and colon length shortening, lower DAI scores, and lower histologic scores (P < 0.05), while the CCTCC M206119 treatment group had greater weight loss and colon length shortening, higher histologic scores, and more severe inflammatory infiltration (P < 0.05). NCIMB8826 improved weight loss and colon length shortening (P < 0.05) with no significant influence on DAI and histologic damage in the colitis model. Conclusions Administration of an L. crispatus CCTCC M206119 supplement aggravated

  17. Treatment with bindarit, an inhibitor of MCP-1 synthesis, protects mice against trinitrobenzene sulfonic acid-induced colitis.

    PubMed

    Bhatia, M; Landolfi, C; Basta, F; Bovi, G; Ramnath, R Devi; de Joannon, A Capezzone; Guglielmotti, A

    2008-10-01

    Chemokines play a fundamental role in trafficking and activation of leukocytes in colonic inflammation. We investigated the ability of bindarit, an inhibitor of monocyte chemoattractant protein-1 (MCP-1/CCL2) synthesis, to inhibit chemokine production by human intestinal epithelial cells (HT-29) and its effect in trinitro-benzene sulfonic acid (TNBS)-induced colitis in mice. HT-29 cells were incubated with bindarit in the presence of TNF-alpha/IFN-gamma and 24 h later supernatants were collected for MCP-1, IL-8 and RANTES measurement. A 1 mg enema of TNBS was given to BALB/c mice, and bindarit (100 mg/kg) was orally administered twice daily starting from two days before colitis induction. Weight loss, histology, and MCP-1 level and myeloperoxidase (MPO) activity in colon extracts were assessed. In HT-29 cells, bindarit concentration-dependently and selectively inhibited MCP-1 secretion (as well as mRNA expression) primed by TNF-alpha/IFN-gamma. Moreover treatment with bindarit reduced clinical and histopathological severity of TNBS-induced colitis. These effects were associated with significant inhibition of MCP-1 and MPO in colon extracts. Bindarit exhibits a potent bioactivity in reducing leukocyte infiltration, down-regulating MCP-1 synthesis, and preventing the development of severe colitis in a mice model of TNBS-induced colitis. These observations suggest a potential use of MCP-1 synthesis blockers in intestinal inflammation in humans.

  18. Gut microbiota drives the attenuation of dextran sulphate sodium-induced colitis by Huangqin decoction

    PubMed Central

    Ye, Juan; Cai, Xueting; Tsering, Pamo; Cheng, Xiaolan; Hu, Chunping; Zhang, Shuangquan; Cao, Peng

    2017-01-01

    The gut microbiota, including probiotics and pathogenic microorganisms, is involved in ulcerative colitis (UC) by regulating pathogenic microorganisms and the production of intestinal mucosal antibodies. Huangqin decoction (HQD), a traditional Chinese formula chronicled in the Shanghan lun, has been recognized as an effective drug for UC, owing to its anti-inflammatory and anti-oxidative properties. In the present study, we investigated whether HQD ameliorates dextran sulphate sodium (DSS)-induced colitis through alteration of the gut microbiota. We found that HQD significantly inhibited colitis, alleviating the loss of body weight, disease activity index, colon shortening, tissue injury, and inflammatory cytokine changes induced by DSS treatment. Principal component analysis and principal co-ordinate analysis showed an obvious difference among the groups, with increased diversity in the DSS and DSS+HQD groups. Linear discriminant analysis effect size was used to determine differences between the groups. The relative abundance of Lactococcus was higher in the DSS+HQD group than in the DSS group, whereas Desulfovibrio and Helicobacter were decreased. Furthermore, the protective effect of HQD was attenuated only in antibiotic-treated mice. In conclusion, our results suggest that HQD could ameliorate DSS-induced inflammation through alteration of the gut microbiota. PMID:28415628

  19. The Intestinal Microbiota Plays a Role in Salmonella-Induced Colitis Independent of Pathogen Colonization

    PubMed Central

    Ferreira, Rosana B. R.; Gill, Navkiran; Willing, Benjamin P.; Antunes, L. Caetano M.; Russell, Shannon L.; Croxen, Matthew A.; Finlay, B. Brett

    2011-01-01

    The intestinal microbiota is composed of hundreds of species of bacteria, fungi and protozoa and is critical for numerous biological processes, such as nutrient acquisition, vitamin production, and colonization resistance against bacterial pathogens. We studied the role of the intestinal microbiota on host resistance to Salmonella enterica serovar Typhimurium-induced colitis. Using multiple antibiotic treatments in 129S1/SvImJ mice, we showed that disruption of the intestinal microbiota alters host susceptibility to infection. Although all antibiotic treatments caused similar increases in pathogen colonization, the development of enterocolitis was seen only when streptomycin or vancomycin was used; no significant pathology was observed with the use of metronidazole. Interestingly, metronidazole-treated and infected C57BL/6 mice developed severe pathology. We hypothesized that the intestinal microbiota confers resistance to infectious colitis without affecting the ability of S. Typhimurium to colonize the intestine. Indeed, different antibiotic treatments caused distinct shifts in the intestinal microbiota prior to infection. Through fluorescence in situ hybridization, terminal restriction fragment length polymorphism, and real-time PCR, we showed that there is a strong correlation between the intestinal microbiota composition before infection and susceptibility to Salmonella-induced colitis. Members of the Bacteroidetes phylum were present at significantly higher levels in mice resistant to colitis. Further analysis revealed that Porphyromonadaceae levels were also increased in these mice. Conversely, there was a positive correlation between the abundance of Lactobacillus sp. and predisposition to colitis. Our data suggests that different members of the microbiota might be associated with S. Typhimurium colonization and colitis. Dissecting the mechanisms involved in resistance to infection and inflammation will be critical for the development of therapeutic and

  20. Effect of karanjin on 2,4,6-trinitrobenzenesulfonic acid-induced colitis in Balb/c mice.

    PubMed

    Patel, Praful Prakash; Trivedi, Naitikumar Devshankar

    2017-01-01

    The objective of this study is to evaluate the beneficial effect of karanjin for the treatment of experimental colitis. Colitis was induced in the Balb/c mice by rectal administration of 2% solution of 2,4,6-trinitrobenzenesulfonic acid (TNBS) in 50% methanol. Karanjin (>98% pure) was administered in two different concentrations 100 and 200 mg/kg and sulfasalazine (100 mg/kg) as reference for 7 consecutive days to colitic mice. On the 8 day, mice were euthanized and degree of inflammation was assessed by macroscopic, microscopic, histology and biochemical estimation of myeloperoxidase (MPO), nitric oxide (NO), malondialdehyde (MDA), catalase (CAT), superoxide dismutase (SOD), and reduced glutathione (GSH) level were measured. Karanjin significantly and dose dependently ameliorate the macroscopic damage, histological changes such as cellular infiltration, tissue necrosis, mucosal and submucosal damage as compared to the TNBS control group. Karanjin reduces the activity of MPO, depressed MDA, and NO level and helps in restoring the level of CAT, SOD, and GSH to normal when compared to the TNBS colitis group. Result of the present study indicates that karanjin has the potential to cure colitis induced by intracolonic administration of TNBS.

  1. Effect of karanjin on 2,4,6-trinitrobenzenesulfonic acid-induced colitis in Balb/c mice

    PubMed Central

    Patel, Praful Prakash; Trivedi, Naitikumar Devshankar

    2017-01-01

    OBJECTIVES: The objective of this study is to evaluate the beneficial effect of karanjin for the treatment of experimental colitis. METHODS: Colitis was induced in the Balb/c mice by rectal administration of 2% solution of 2,4,6-trinitrobenzenesulfonic acid (TNBS) in 50% methanol. Karanjin (>98% pure) was administered in two different concentrations 100 and 200 mg/kg and sulfasalazine (100 mg/kg) as reference for 7 consecutive days to colitic mice. On the 8 day, mice were euthanized and degree of inflammation was assessed by macroscopic, microscopic, histology and biochemical estimation of myeloperoxidase (MPO), nitric oxide (NO), malondialdehyde (MDA), catalase (CAT), superoxide dismutase (SOD), and reduced glutathione (GSH) level were measured. RESULTS: Karanjin significantly and dose dependently ameliorate the macroscopic damage, histological changes such as cellular infiltration, tissue necrosis, mucosal and submucosal damage as compared to the TNBS control group. Karanjin reduces the activity of MPO, depressed MDA, and NO level and helps in restoring the level of CAT, SOD, and GSH to normal when compared to the TNBS colitis group. CONCLUSION: Result of the present study indicates that karanjin has the potential to cure colitis induced by intracolonic administration of TNBS. PMID:28706329

  2. Very Long O-antigen Chains Enhance Fitness during Salmonella-induced Colitis by Increasing Bile Resistance

    PubMed Central

    Crawford, Robert W.; Keestra, A. Marijke; Winter, Sebastian E.; Xavier, Mariana N.; Tsolis, Renée M.; Tolstikov, Vladimir; Bäumler, Andreas J.

    2012-01-01

    Intestinal inflammation changes the luminal habitat for microbes through mechanisms that have not been fully resolved. We noticed that the FepE regulator of very long O-antigen chain assembly in the enteric pathogen Salmonella enterica serotype Typhimurium (S. Typhimurium) conferred a luminal fitness advantage in the mouse colitis model. However, a fepE mutant was not defective for survival in tissue, resistance to complement or resistance to polymyxin B. We performed metabolite profiling to identify changes in the luminal habitat that accompany S. Typhimurium-induced colitis. This analysis suggested that S. Typhimurium-induced colitis increased the luminal concentrations of total bile acids. A mutation in fepE significantly reduced the minimal inhibitory concentration (MIC) of S. Typhimurium for bile acids in vitro. Oral administration of the bile acid sequestrant cholestyramine resin lowered the concentrations of total bile acids in colon contents during S. Typhimurium infection and significantly reduced the luminal fitness advantage conferred by the fepE gene in the mouse colitis model. Collectively, these data suggested that very long O-antigen chains function in bile acid resistance of S. Typhimurium, a property conferring a fitness advantage during luminal growth in the inflamed intestine. PMID:23028318

  3. Dietary Heme Induces Gut Dysbiosis, Aggravates Colitis, and Potentiates the Development of Adenomas in Mice

    PubMed Central

    Constante, Marco; Fragoso, Gabriela; Calvé, Annie; Samba-Mondonga, Macha; Santos, Manuela M.

    2017-01-01

    Dietary heme can be used by colonic bacteria equipped with heme-uptake systems as a growth factor and thereby impact on the microbial community structure. The impact of heme on the gut microbiota composition may be particularly pertinent in chronic inflammation such as in inflammatory bowel disease (IBD), where a strong association with gut dysbiosis has been consistently reported. In this study we investigated the influence of dietary heme on the gut microbiota and inferred metagenomic composition, and on chemically induced colitis and colitis-associated adenoma development in mice. Using 16S rRNA gene sequencing, we found that mice fed a diet supplemented with heme significantly altered their microbiota composition, characterized by a decrease in α-diversity, a reduction of Firmicutes and an increase of Proteobacteria, particularly Enterobacteriaceae. These changes were similar to shifts seen in dextran sodium sulfate (DSS)-treated mice to induce colitis. In addition, dietary heme, but not systemically delivered heme, contributed to the exacerbation of DSS-induced colitis and facilitated adenoma formation in the azoxymethane/DSS colorectal cancer (CRC) mouse model. Using inferred metagenomics, we found that the microbiota alterations elicited by dietary heme resulted in non-beneficial functional shifts, which were also characteristic of DSS-induced colitis. Furthermore, a reduction in fecal butyrate levels was found in mice fed the heme supplemented diet compared to mice fed the control diet. Iron metabolism genes known to contribute to heme release from red blood cells, heme uptake, and heme exporter proteins, were significantly enriched, indicating a shift toward favoring the growth of bacteria able to uptake heme and protect against its toxicity. In conclusion, our data suggest that luminal heme, originating from dietary components or gastrointestinal bleeding in IBD and, to lesser extent in CRC, directly contributes to microbiota dysbiosis. Thus, luminal

  4. Toll-like receptor 3 pre-conditioning increases the therapeutic efficacy of umbilical cord mesenchymal stromal cells in a dextran sulfate sodium-induced colitis model.

    PubMed

    Fuenzalida, Patricia; Kurte, Mónica; Fernández-O'ryan, Catalina; Ibañez, Cristina; Gauthier-Abeliuk, Melanie; Vega-Letter, Ana María; Gonzalez, Paz; Irarrázabal, Carlos; Quezada, Nataly; Figueroa, Fernando; Carrión, Flavio

    2016-05-01

    Immunomodulatory properties of human umbilical cord-derived mesenchymal stromal cells (UCMSCs) can be differentially modulated by toll-like receptors (TLR) agonists. Here, the therapeutic efficacy of short TLR3 and TLR4 pre-conditioning of UCMSCs was evaluated in a dextran sulfate sodium (DSS)-induced colitis in mice. The novelty of this study is that although modulation of human MSCs activity by TLRs is not a new concept, this is the first time that short TLR pre-conditioning has been carried out in a murine inflammatory model of acute colitis. C57BL/6 mice were exposed to 2.5% dextran sulfate sodium (DSS) in drinking water ad libitum for 7 days. At days 1 and 3, mice were injected intraperitoneally with 1 × 10(6) UCMSCs untreated or TLR3 and TLR4 pre-conditioned UCMSCs. UCMSCs were pre-conditioned with poly(I:C) for TLR3 and LPS for TLR4 for 1 h at 37°C and 5% CO2. We evaluated clinical signs of disease and body weights daily. At the end of the experiment, colon length and histological changes were assessed. poly(I:C) pre-conditioned UCMSCs significantly ameliorated the clinical and histopathological severity of DSS-induced colitis compared with UCMSCs or LPS pre-conditioned UCMSCs. In contrast, infusion of LPS pre-conditioned UCMSCs significantly increased clinical signs of disease, colon shortening and histological disease index in DSS-induced colitis. These results show that short in vitro TLR3 pre-conditioning with poly(I:C) enhances the therapeutic efficacy of UCMSCs, which is a major breakthrough for developing improved treatments to patients with inflammatory bowel disease. Copyright © 2016 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  5. SPECT-computed tomography in rats with TNBS-induced colitis: A first step toward functional imaging

    PubMed Central

    Marion-Letellier, Rachel; Bohn, Pierre; Modzelewski, Romain; Vera, Pierre; Aziz, Moutaz; Guérin, Charlène; Savoye, Guillaume; Savoye-Collet, Céline

    2017-01-01

    AIM To assess the feasibility of SPECT-computed tomography (CT) in rats with trinitrobenzene sulfonic acid (TNBS)-induced acute colitis and confront it with model inflammatory characteristics. METHODS Colitis was induced in Sprague-Dawley rats by intrarectal injection of TNBS (n = 10) while controls received vehicle (n = 10). SPECT-CT with intravenous injection of 10 MBq of 67Ga-Citrate was performed at day 2. SPECT-CT criteria were colon wall thickness and maximal wall signal intensity. Laboratory parameters were assessed: colon weight:length ratio, colon cyclooxygenase-2 expression by western blot and histological inflammatory score. RESULTS Colon weight/length ratio, colon COX-2 expression and histological inflammatory score were significantly higher in the TNBS group than in the control group (P = 0.0296, P < 0.0001, P = 0.0007 respectively). Pixel max tend to be higher in the TNBS group than in the control group but did not reach statistical significance (P = 0.0662). Maximal thickness is significantly increased in the TNBS group compared to the control group (P = 0.0016) while colon diameter is not (P = 0.1904). Maximal thickness and colon diameter were correlated to colon COX-2 expression (P = 0.0093, P = 0.009 respectively) while pixel max was not (P = 0.22). Maximal thickness was significantly increased when inflammation was histologically observed (P = 0.0043) while pixel max and colon diameter did not (P = 0.2452, P = 0.3541, respectively). CONCLUSION SPECT-CT is feasible and easily distinguished control from colitic rats. PMID:28127195

  6. The Dynamics of Interleukin-10-Afforded Protection during Dextran Sulfate Sodium-Induced Colitis

    PubMed Central

    Cardoso, Ana; Gil Castro, Antonio; Martins, Ana Catarina; Carriche, Guilhermina M.; Murigneux, Valentine; Castro, Isabel; Cumano, Ana; Vieira, Paulo; Saraiva, Margarida

    2018-01-01

    Inflammatory bowel disease encompasses a group of chronic-inflammatory conditions of the colon and small intestine. These conditions are characterized by exacerbated inflammation of the organ that greatly affects the quality of life of patients. Molecular mechanisms counteracting this hyperinflammatory status of the gut offer strategies for therapeutic intervention. Among these regulatory molecules is the anti-inflammatory cytokine interleukin (IL)-10, as shown in mice and humans. Indeed, IL-10 signaling, particularly in macrophages, is essential for intestinal homeostasis. We sought to investigate the temporal profile of IL-10-mediated protection during chemical colitis and which were the underlying mechanisms. Using a novel mouse model of inducible IL-10 overexpression (pMT-10), described here, we show that mice preconditioned with IL-10 for 8 days before dextran sulfate sodium (DSS) administration developed a milder colitic phenotype. In IL-10-induced colitic mice, Ly6C cells isolated from the lamina propria showed a decreased inflammatory profile. Because our mouse model leads to transcription of the IL-10 transgene in the bone marrow and elevated seric IL-10 concentration, we investigated whether IL-10 could imprint immune cells in a long-lasting way, thus conferring sustained protection to colitis. We show that this was not the case, as IL-10-afforded protection was only observed if IL-10 induction immediately preceded DSS-mediated colitis. Thus, despite the protection afforded by IL-10 in colitis, novel strategies are required, specifically to achieve long-lasting protection. PMID:29545807

  7. MANAGEMENT OF ACUTE SEVERE ULCERATIVE COLITIS: A CLINICAL UPDATE.

    PubMed

    Sobrado, Carlos Walter; Sobrado, Lucas Faraco

    2016-01-01

    Acute severe colitis is a potentially lethal medical emergency and, even today, its treatment remains a challenge for clinicians and surgeons. Intravenous corticoid therapy, which was introduced into the therapeutic arsenal in the 1950s, continues to be the first-line treatment and, for patients who are refractory to this, the rescue therapy may consist of clinical measures or emergency colectomy. To evaluate the indications for and results from drug rescue therapy (cyclosporine, infliximab and tacrolimus), and to suggest a practical guide for clinical approaches. The literature was reviewed using the Medline/PubMed, Cochrane library and SciELO databases, and additional information from institutional websites of interest, by cross-correlating the following keywords: acute severe colitis, fulminating colitis and treatment. Treatments for acute severe colitis have avoided colectomy in 60-70% of the cases, provided that they have been started early on, with multidisciplinary follow-up. Despite the adverse effects of intravenous cyclosporine, this drug has been indicated in cases of greater severity with an imminent risk of colectomy, because of its fast action, short half-life and absence of increased risk of surgical complications. Therapy using infliximab has been reserved for less severe cases and those in which immunosuppressants are being or have been used (AZA/6-MP). Indication of biological agents has recently been favored because of their ease of therapeutic use, their good short and medium-term results, the possibility of maintenance therapy and also their action as a "bridge" for immunosuppressant action (AZA/6-MP). Colectomy has been reserved for cases in which there is still no response five to seven days after rescue therapy and in cases of complications (toxic megacolon, profuse hemorrhage and perforation). Patients with a good response to rescue therapy who do not undergo emergency operations should be considered for maintenance therapy using

  8. Novel application of proton pump inhibitor for the prevention of colitis-induced colorectal carcinogenesis beyond acid suppression.

    PubMed

    Kim, Yoon Jae; Lee, Jeong Sang; Hong, Kyung Sook; Chung, Jun Won; Kim, Ju Hyun; Hahm, Ki Baik

    2010-08-01

    Colitis-associated cancers arise in the setting of chronic inflammation wherein an "inflammation-dysplasia-carcinoma" sequence prevails. Based on our previous findings in which the proton pump inhibitor could impose significant levels of anti-inflammatory, antiangiogenic, and selective apoptosis induction beyond gastric acid suppression, we investigated whether omeprazole could prevent the development of colitis-associated cancer in a mouse model induced by repeated bouts of colitis. Omeprazole, 10 mg/kg, was given i.p. all through the experimental periods for colitis-associated carcinogenesis. Molecular changes regarding inflammation and carcinogenesis were compared between control groups and colitis-associated cancer groups treated with omeprazole in addition to chemopreventive outcome. Nine of 12 (75.0%) mice in the control group developed multiple colorectal tumors, whereas tumors were noted in only 3 of 12 (25.0%) mice treated with daily injections of omeprazole. The cancer-preventive results of omeprazole treatment was based on significant decreases in the levels of nitric oxide, thiobarbituric acid-reactive substance, and interleukin-6 accompanied with attenuated expressions of tumor necrosis factor-alpha, inducible nitric oxide synthase, and cyclooxygenase-2. The expressions of matrix metalloproteinase (MMP)-9, MMP-11, and MT1-MMMP were significantly decreased in mice treated with omeprazole in accordance with significant decreases in the number of beta-catenin-accumulated crypts. A significant induction of apoptosis was observed in tumor tissue treated with omeprazole. Omeprazole could block the trophic effect of gastrin in colon epithelial cells. The significant anti-inflammatory, antioxidative, and antimutagenic activities of omeprazole played a cancer-preventive role against colitis-induced carcinogenesis, and our novel in vivo evidence is suggestive of chemopreventive action independent of gastric acid suppression. 2010 AACR.

  9. Melatonin modulates adiponectin expression on murine colitis with sleep deprivation.

    PubMed

    Kim, Tae Kyun; Park, Young Sook; Baik, Haing-Woon; Jun, Jin Hyun; Kim, Eun Kyung; Sull, Jae Woong; Sung, Ho Joong; Choi, Jin Woo; Chung, Sook Hee; Gye, Myung Chan; Lim, Ju Yeon; Kim, Jun Bong; Kim, Seong Hwan

    2016-09-07

    To determine adiponectin expression in colonic tissue of murine colitis and systemic cytokine expression after melatonin treatments and sleep deprivation. The following five groups of C57BL/6 mice were used in this study: (1) group I, control; (2) group II, 2% DSS induced colitis for 7 d; (3) group III, 2% DSS induced colitis and melatonin treatment; (4) group IV, 2% DSS induced colitis with sleep deprivation (SD) using specially designed and modified multiple platform water baths; and (5) group V, 2% DSS induced colitis with SD and melatonin treatment. Melatonin (10 mg/kg) or saline was intraperitoneally injected daily to mice for 4 d. The body weight was monitored daily. The degree of colitis was evaluated histologically after sacrificing the mice. Immunohistochemical staining and Western blot analysis was performed using anti-adiponectin antibody. After sampling by intracardiac punctures, levels of serum cytokines were measured by ELISA. Sleep deprivation in water bath exacerbated DSS induced colitis and worsened weight loss. Melatonin injection not only alleviated the severity of mucosal injury, but also helped survival during stressful condition. The expression level of adiponectin in mucosa was decreased in colitis, with the lowest level observed in colitis combined with sleep deprivation. Melatonin injection significantly (P < 0.05) recovered the expression of adiponectin. The expression levels of IL-6 and IL-17 were increased in the serum of mice with DSS colitis but decreased after melatonin injection. This study suggested that melatonin modulated adiponectin expression in colonic tissue and melatonin and adiponectin synergistically potentiated anti-inflammatory effects on colitis with sleep deprivation.

  10. Cape Gooseberry [Physalis peruviana L.] Calyces Ameliorate TNBS Acid-induced Colitis in Rats.

    PubMed

    Castro, Jenny; Ocampo, Yanet; Franco, Luis

    2015-11-01

    Physalis peruviana [cape gooseberry] is highly appreciated for its commercial value. The Colombian ecotype is in great demand in the international market, particularly for the unique morphological characteristics of the calyx, which has extended use as a traditional herbal remedy in Colombia because of its anti-inflammatory properties. In this work, the anti-inflammatory activity of the total ethereal extract of Physalis peruviana calyces was evaluated in preventive and therapeutic protocols in a TNBS acid-induced colitis rat model. Colitis was induced by intrarectal administration of TNBS. An evaluation of macroscopic and histopathological parameters in colonic tissue was performed, along with the determination of myeloperoxidase enzyme activity, cytokine levels and gene expression. Additionally, effects on nitric oxide release by lipopolysaccharide [LPS]-stimulated RAW264.7 macrophages and the scavenging activity of DPPH and ABTS free radicals were determined. The treatment with the Physalis peruviana extract produced a significant improvement in the colonic tissue at both macroscopic and histological levels. IL-1β and TNF-α production was reduced by the extract in both experimental approaches. The groups treated with Physalis peruviana showed a tendency to MUC2 up-regulation and down-regulation of COX-2, iNOS, NLRP3, IL-1β, IL-6 and IL-10 expression. Nitric oxide release in RAW264.7 macrophages was significantly inhibited. The Physalis peruviana extract showed intestinal anti-inflammatory activity in the TNBS-induced colitis model, placing this species' calyx, a natural derivative, as a promising source of metabolites that could be used in treatment for inflammatory bowel disease. Copyright © 2015 European Crohn’s and Colitis Organisation (ECCO). Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  11. Anti-inflammatory effects of phytosteryl ferulates in colitis induced by dextran sulphate sodium in mice

    PubMed Central

    Islam, M S; Murata, T; Fujisawa, M; Nagasaka, R; Ushio, H; Bari, A M; Hori, M; Ozaki, H

    2008-01-01

    Background and purpose: We have recently reported that phytosteryl ferulates isolated from rice bran inhibit nuclear factor-κB (NF-κB) activity in macrophages. In the present study, we investigated the effect of γ-oryzanol (γ-ORZ), a mixture of phytosteryl ferulates, cycloartenyl ferulate (CAF), one of the components of γ-ORZ, and ferulic acid (FA), a possible metabolite of γ-ORZ in vivo, on a model of colitis in mice. Experimental approach: We induced colitis with dextran sulphate sodium (DSS) in mice and monitored disease activity index (DAI), histopathology score, tissue myeloperoxidase (MPO) activity, mRNA expressions of cytokines and COX-2, colon length, antioxidant potency and NF-κB activity in colitis tissue. Key results: Both DAI and histopathology score revealed that DSS induced a severe mucosal colitis, with a marked increase in the thickness of the muscle layer, distortion and loss of crypts, depletion of goblet cells and infiltration of macrophages, granulocytes and lymphocytes. MPO activity, pro-inflammatory cytokines and COX-2 levels, NF-κB p65 nuclear translocation and inhibitory protein of nuclear factor-κB-α degradation levels were significantly increased in DSS-induced colitis tissues. γ-ORZ (50 mg kg−1 day−1 p.o.) markedly inhibited these inflammatory reactions and CAF had a similar potency. In vitro assay demonstrated that γ-ORZ and CAF had strong antioxidant effects comparable to those of α-tocopherol. Conclusions and implications: Phytosteryl ferulates could be new potential therapeutic and/or preventive agents for gastrointestinal inflammatory diseases. Their anti-inflammatory effect could be mediated by inhibition of NF-κB activity, which was at least partly due to the antioxidant effect of the FA moiety in the structure of phytosteryl ferulates. PMID:18536734

  12. Enteral supplement enriched with glutamine, fiber, and oligosaccharide attenuates experimental colitis in mice.

    PubMed

    Joo, Erina; Yamane, Shunsuke; Hamasaki, Akihiro; Harada, Norio; Matsunaga, Tetsuro; Muraoka, Atsushi; Suzuki, Kazuyo; Nasteska, Daniela; Fukushima, Toru; Hayashi, Tatsuya; Tsuji, Hidemi; Shide, Kenichiro; Tsuda, Kinsuke; Inagaki, Nobuya

    2013-03-01

    Ulcerative colitis is a chronic recurrent disease characterized by acute inflammation of the colonic mucosa. In Japan, a dietary supplementation product enriched with glutamine, dietary fiber, and oligosaccharide (GFO) is widely applied for enteral nutrition support. These three components have been suggested to improve intestinal health. In this study, we investigated whether GFO has suppressive effects on mucosal damage in ulcerative colitis in an experimental mouse model. C57BL/6 mice received 2.5% dextran sulfate sodium in drinking water for 5 d to induce colitis. Then, they were given 0.25 mL of GFO or a 20% glucose solution twice daily for 10 d. Another set of mice receiving unaltered drinking water was used as the normal control group. The body weight loss and disease activity index were significantly lower in the GFO-treated mice compared with the glucose-treated mice (P < 0.05). The decrease in colon length induced by dextran sulfate sodium was significantly alleviated in GFO-treated mice compared with glucose-treated mice (P < 0.01). In addition, the histologic findings showed that intestinal inflammation was significantly attenuated in mice treated with GFO. Furthermore, treatment with GFO significantly inhibited the dextran sulfate sodium-induced increase in the mRNA expression of interleukin-1β. These results suggest that GFO has potential therapeutic value as an adjunct therapy for ulcerative colitis. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Glutamine supplementation attenuates expressions of adhesion molecules and chemokine receptors on T cells in a murine model of acute colitis.

    PubMed

    Hou, Yu-Chen; Wu, Jin-Ming; Wang, Ming-Yang; Wu, Ming-Hsun; Chen, Kuen-Yuan; Yeh, Sung-Ling; Lin, Ming-Tsan

    2014-01-01

    Migration of T cells into the colon plays a major role in the pathogenesis in inflammatory bowel disease. This study investigated the effects of glutamine (Gln) supplementation on chemokine receptors and adhesion molecules expressed by T cells in mice with dextran sulfate sodium- (DSS-) induced colitis. C57BL/6 mice were fed either a standard diet or a Gln diet replacing 25% of the total nitrogen. After being fed the diets for 5 days, half of the mice from both groups were given 1.5% DSS in drinking water to induce colitis. Mice were killed after 5 days of DSS exposure. DSS colitis resulted in higher expression levels of P-selectin glycoprotein ligand- (PSGL-) 1, leukocyte function-associated antigen- (LFA-) 1, and C-C chemokine receptor type 9 (CCR9) by T helper (Th) and cytotoxic T (Tc) cells, and mRNA levels of endothelial adhesion molecules in colons were upregulated. Gln supplementation decreased expressions of PSGL-1, LFA-1, and CCR9 by Th cells. Colonic gene expressions of endothelial adhesion molecules were also lower in Gln-colitis mice. Histological finding showed that colon infiltrating Th cells were less in the DSS group with Gln administration. Gln supplementation may ameliorate the inflammation of colitis possibly via suppression of T cell migration.

  14. Contrasting effects of pseudoephedrine and papaverine in dextran sodium sulfate-induced colitis.

    PubMed

    Harris, Norman R; Specian, Robert D; Carter, Patsy R; Morgan, Georgia A

    2008-03-01

    Dextran sodium sulfate (DSS) induces submucosal arteriolar constriction that reduces blood flow to the intestine, and the relevance of this decrease in flow needs further investigation. In the present study we examined the effects of a vasoconstrictor (pseudoephedrine) and a vasodilator (papaverine) on the outcome of DSS-induced colitis. Mice were given DSS in drinking water for 6 days, with enemas on days 0, 1, 3, and 5 containing pseudoephedrine, papaverine, or no drug. At the conclusion of the 6-day protocol a disease activity index comprising weight loss, stool consistency, and rectal bleeding was evaluated, along with intravital microscopy observations of submucosal venular leukocyte and platelet adherence in the proximal colon and terminal ileum. Pseudoephedrine and papaverine had several contrasting effects on the outcome of DSS ingestion: pseudoephedrine induced the highest levels of weight loss, loose stools, venular platelet adherence, and overall disease activity index, while papaverine induced the highest levels of venular leukocyte adherence, but the lowest levels of rectal bleeding, loose stools, and overall disease activity index. The results suggest that vasoconstriction worsens the pathological consequences of DSS in the mouse model of colitis.

  15. Protective effect of natural honey against acetic acid-induced colitis in rats.

    PubMed

    Mahgoub, A A; el-Medany, A H; Hagar, H H; Sabah, D M

    2002-01-01

    The protective effects of natural honey against acetic acid-induced colitis were investigated in rats. Honey and glucose, fructose, sucrose, maltose mixture were administered, orally and rectally, daily for a period of 4 days. Induction of colitis was done on the third day using 3% acetic acid. Animals were killed on day 4 two hours after administration of the dose and colonic biopsies were taken for macroscopic scoring, histopathological and biochemical studies. Honey dose-dependently afforded protection against acetic acid-induced colonic damage. There was almost 100% protection with the highest dose (5 g/kg) used while glucose, fructose, sucrose, maltose mixture produced no significant protective effect. Also, honey prevented the depletion of the antioxidant enzymes reduced glutathione and catalase and restored the lipid peroxide malondialdehyde towards normal levels. Further studies are required to explore the active ingredients responsible for the antioxidant effect of honey and its therapeutic potential in humans.

  16. Dietary Supplementation of Fermented Rice Bran Effectively Alleviates Dextran Sodium Sulfate-Induced Colitis in Mice.

    PubMed

    Islam, Jahidul; Koseki, Takuya; Watanabe, Kouichi; Budijanto, Slamet; Oikawa, Akira; Alauddin, Md; Goto, Tomoko; Aso, Hisahi; Komai, Michio; Shirakawa, Hitoshi

    2017-07-13

    Rice bran (RB) is a major by-product of rice polishing and a rich source of bioactive compounds. Here, we investigated the anti-colitis effect of diet supplementation with fermented rice bran (FRB) in a murine model of ulcerative colitis. FRB was prepared by dual fermentation of RB using fungi and lactic acid bacteria. Colitis was induced in C57Bl/6N male mice ( n = 8/group) by dextran sodium sulfate (DSS). Body weight change, disease activity index (DAI), histopathology score, tissue myeloperoxidase (MPO) activity, cytokine and chemokine transcript levels, and the production of short-chain fatty acids (SCFAs) and mucin in the colonic tissue were monitored. Based on histopathology scores, DSS induced severe mucosal inflammation, with an increased loss of crypts, and inflammatory cell infiltration in the control and RB groups, but not in the FRB group. MPO activity, thiobarbituric acid-reactive substance levels, and pro-inflammatory cytokine transcript ( Tnf-α , Il-1β , Il-6 , and Il-17 ) levels were significantly higher in the control and RB groups than in the FRB group. Thus, dietary FRB attenuated intestinal inflammation owing to elevated SCFAs and tryptamine production, which might regulate tight junction barrier integrity and intestinal homeostasis. These results suggest that FRB could comprise an effective potential preventive agent for ulcerative colitis.

  17. Effects of methanolic extract from leaves of Rubus imperialis in DSS-induced colitis in mice.

    PubMed

    da Silva, Luisa Mota; Somensi, Lincon Bordignon; Boeing, Thaise; Barp, Cristiane; Cechinel-Filho, Valdir; Niero, Rivaldo; de Andrade, Sérgio Faloni

    2016-12-01

    This study investigated the effects of Rubus imperialis, a berry known as "amora-branca", in colitis dextran sulfate sodium (DSS)-induced in mice. Animals were treated orally with vehicle (water), 5-aminosalicylic acid (100 mg/kg) or methanolic extract from leaves of R. imperialis (MERI, 100 mg/kg), once a day during seven days. The disease activity index (DAI) was observed daily. Colons were collected for histological, histochemical and biochemical analysis. The administration of MERI exacerbated colitis, as indicated by DAI heightened weight loss and increased histological colonic injury. MERI also decreased the colon mucin levels and increased colonic TNF content. The colonic levels of reduced glutathione and the superoxide dismutase activity in colitic group treated with MERI were decreased. Despite the worsening of colitis, MERI not altered the intestinal transit, body weight, colon length or organs weight in normal mice. Tormentic acid (TA) and 2β,3β,19α-trihydroxyursolic acid (THA), compounds isolated from MERI, reduced the L929 cells viability. Thus, MERI may have aggravated the DSS-induced colitis through intense intestinal mucus barrier impairment, which would lead to inflammatory responses, TA and THA contribute to the intestinal damage verified suggesting caution about the use of R. imperialis preparations, particularly in inflammatory bowel diseases.

  18. Ghrelin ameliorates intestinal barrier dysfunction in experimental colitis by inhibiting the activation of nuclear factor-kappa B

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Jian; Zhang, Lin; Dai, Weiqi

    Aim: This study aimed to investigate the effect and underlying mechanism of ghrelin on intestinal barrier dysfunction in dextran sulfate sodium (DSS)-induced colitis. Methods and results: Acute colitis was induced in C57BL/6J mice by administering 2.5% DSS. Saline or 25, 125, 250 μg/kg ghrelin was administrated intraperitoneally (IP) to mice 1 day before colitis induction and on days 4, 5, and 6 after DSS administration. IP injection of a ghrelin receptor antagonist, [D-lys{sup 3}]-GHRP-6, was performed immediately prior to ghrelin injection. Ghrelin (125 or 250 μg/kg) could reduce the disease activity index, histological score, and myeloperoxidase activities in experimental colitis, and alsomore » prevented shortening of the colon. Ghrelin could prevent the reduction of transepithelial electrical resistance and tight junction expression, and bolstered tight junction structural integrity and regulated cytokine secretion. Ultimately, ghrelin inhibited nuclear factor kappa B (NF-κB), inhibitory κB-α, myosin light chain kinase, and phosphorylated myosin light chain 2 activation. Conclusions: Ghrelin prevented the breakdown of intestinal barrier function in DSS-induced colitis. The protective effects of ghrelin on intestinal barrier function were mediated by its receptor GHSR-1a. The inhibition of NF-κB activation might be part of the mechanism underlying the effects of ghrelin that protect against barrier dysfunction. - Highlights: • Ghrelin ameliorates intestinal barrier dysfunction in experimental colitis. • The effect of ghrelin is mediated by GHSR-1a. • Inhibition of NF-κB activation.« less

  19. Effects of dexpanthenol on acetic acid-induced colitis in rats

    PubMed Central

    Cagin, Yasir Furkan; Parlakpinar, Hakan; Vardi, Nigar; Polat, Alaadin; Atayan, Yahya; Erdogan, Mehmet Ali; Tanbek, Kevser

    2016-01-01

    While the pathogenesis of acetic acid (AA)-induced colitis is unclear, reactive oxygen species are considered to have a significant effect. The aim of the present study was to elucidate the therapeutic potential of dexpanthenol (Dxp) on the amelioration of colitis in rats. Group I (n=8; control group) was intrarectally administered 1 ml saline solution (0.9%); group II [n=8; AA] was administered 4% AA into the colon via the rectum as a single dose for three consecutive days; group III (n=8; AA + Dxp) was administered AA at the same dosage as group II from day 4, and a single dose of Dxp was administered intraperitoneally; and group IV (n=8; Dxp) was administered Dxp similarly to Group III. Oxidative stress and colonic damage were assessed via biochemical and histologic examination methods. AA treatment led to an increase in oxidative parameters and a decrease in antioxidant systems. Histopathological examination showed that AA treatment caused tissue injury and increased caspase-3 activity in the distal colon and triggered apoptosis. Dxp treatment caused biochemical and histopathological improvements, indicating that Dxp may have an anti-oxidant effect in colitis; therefore, Dxp may be a potential therapeutic agent for the amelioration of IBD. PMID:27882101

  20. Effects of dexpanthenol on acetic acid-induced colitis in rats.

    PubMed

    Cagin, Yasir Furkan; Parlakpinar, Hakan; Vardi, Nigar; Polat, Alaadin; Atayan, Yahya; Erdogan, Mehmet Ali; Tanbek, Kevser

    2016-11-01

    While the pathogenesis of acetic acid (AA)-induced colitis is unclear, reactive oxygen species are considered to have a significant effect. The aim of the present study was to elucidate the therapeutic potential of dexpanthenol (Dxp) on the amelioration of colitis in rats. Group I (n=8; control group) was intrarectally administered 1 ml saline solution (0.9%); group II [n=8; AA] was administered 4% AA into the colon via the rectum as a single dose for three consecutive days; group III (n=8; AA + Dxp) was administered AA at the same dosage as group II from day 4, and a single dose of Dxp was administered intraperitoneally; and group IV (n=8; Dxp) was administered Dxp similarly to Group III. Oxidative stress and colonic damage were assessed via biochemical and histologic examination methods. AA treatment led to an increase in oxidative parameters and a decrease in antioxidant systems. Histopathological examination showed that AA treatment caused tissue injury and increased caspase-3 activity in the distal colon and triggered apoptosis. Dxp treatment caused biochemical and histopathological improvements, indicating that Dxp may have an anti-oxidant effect in colitis; therefore, Dxp may be a potential therapeutic agent for the amelioration of IBD.

  1. Evaluating [11C]PBR28 PET for Monitoring Gut and Brain Inflammation in a Rat Model of Chemically Induced Colitis.

    PubMed

    Kurtys, E; Doorduin, J; Eisel, U L M; Dierckx, R A J O; de Vries, E F J

    2017-02-01

    Ulcerative colitis (UC) is a chronic inflammatory disease of the colon that affects an increasing number of patients. High comorbidity is observed between UC and other diseases in which inflammation may be involved, including brain diseases such as cognitive impairment, mental disorders, anxiety, and depression. To investigate the increased occurrence of these brain diseases in patients with UC, non-invasive methods for monitoring peripheral and central inflammation could be applied. Therefore, the goal of this study is to assess the feasibility of monitoring gut and brain inflammation in a rat model of chemically induced colitis by positron emission tomography (PET) with [ 11 C]PBR28, a tracer targeting the translocator protein (TSPO), which is upregulated when microglia and macrophages are activated. Colitis was induced in rats by intra-rectal injection of 2,4,6-trinitrobenzenesulfonic acid (TNBS). Rats with colitis and healthy control animals were subjected to [ 11 C]PBR28 PET of the abdomen followed by ex vivo biodistribution in order to assess whether inflammation in the gut could be detected. Another group of rats with colitis underwent repetitive [ 11 C]PBR28 PET imaging of the brain to investigate the development of neuroinflammation. Eleven days after TNBS injection, ex vivo biodistribution studies demonstrated increased [ 11 C]PBR28 uptake in the inflamed cecum and colon of rats with colitis as compared to healthy controls, whereas PET imaging did not show any difference between groups at any time. Similarly, repetitive PET imaging of the brain did not reveal any neuroinflammation induced by the TNBS administration in the colon. In contrast, significantly increased [ 11 C]PBR28 uptake in cerebellum could be detected in ex vivo biodistribution studies on day 11. Inflammation in both the gut and the brain of rats with chemically induced colitis was observed by ex vivo biodistribution. However, these effects could not be detected by [ 11 C]PBR28 PET imaging

  2. The effect of memantine on trinitrobenzene sulfonic acid-induced ulcerative colitis in mice.

    PubMed

    Motaghi, Ehsan; Hajhashemi, Valiollah; Mahzouni, Parvin; Minaiyan, Mohsen

    2016-12-15

    Previous reports suggest a significant role for N-Methyl-D-aspartate (NMDA) activation in inflammatory processes. So, this study was conducted to investigate the effect of memantine, a commonly used NMDA receptor antagonist, on inflammatory changes in mice model of colitis. Colitis was induced by intracolonic instillation of trinitrobenzene sulfonic acid (TNBS) (40mg/kg). Animals received memantine (12.5, 25 and 50mg/kg, i.p.), glutamate (2g/kg, p.o.) or dexamethasone (1mg/kg, i.p.) 24h before TNBS instillation and daily thereafter for 4 days. The colonic injury was measured by clinical, macroscopic, microscopic and biochemical analysis. Memantine significantly attenuated the body weight loss, colon weight, the plasma levels of interleukin-1β (IL-1β), interleukin-6 (IL-6), and colon level of tumor necrosis factor-α (TNF-α) and myeloperoxidase (MPO); as well as macroscopic and microscopic signs of colitis. Oral administration of glutamate had no significant effect on investigated parameters. Memantine as a NMDA antagonist may provide a novel venue for the development of strategies for the treatment of ulcerative colitis. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Activating PXR by Imperatorin Attenuates Dextran Sulphate Sodium-Induced Colitis in Mice.

    PubMed

    Liu, Meijing; Zhang, Guohui; Zheng, Chunge; Song, Meng; Liu, Fangle; Huang, Xiaotao; Bai, Shasha; Huang, Xinan; Lin, Chaozhan; Zhu, Chenchen; Hu, Yingjie; Mi, Suiqing; Liu, Changhui

    2018-06-26

    The activation of human pregnane X receptor (PXR) has potential therapeutic uses for inflammatory bowel disease (IBD). Imperatorin (IMP), a naturally-occurring coumarin, is the main bioactive ingredient of Angelica dahurica Radix, which is regularly used to treat the common cold and intestinal disorders. However, there are no data on the protective effects of IMP against IBD. The effects of IMP on PXR-modulated cytochrome P450 3A4 (CYP3A4) expression were assessed using a PXR transactivation assay, a mammalian two-hybrid assay, a competitive ligand-binding assay, analysis of CYP3A4 mRNA and protein expression levels, and measurement of CYP3A4 activity using a cell-based reporter gene assay and in vitro model. The inhibitory effects of IMP on NF-κB activity was evaluated by a reporter assay and NF-κB p65 nuclear translocation. The anti-IBD effects of IMP were investigated in a dextran sulphate sodium (DSS)-induced colitis mouse model. Colon inflammatory cytokines were assessed by ELISA. IMP activated CYP3A4 promoter activity, recruited steroid receptor coactivator 1 (SRC-1) to the ligand-binding domain of PXR, and increased the expression and activity of CYP3A4. However, PXR knockdown substantially reduced PXR-mediated CYP3A4 expression. Furthermore, IMP-mediated PXR activation suppressed NF-κB nuclear translocation and downregulated lipopolysaccharide-induced proinflammatory gene expression. Nevertheless, PXR knockdown partially reduced the IMP-mediated inhibition of NF-κB. IMP ameliorated DSS-induced colitis by PXR/NF-κB signalling. IMP serves as a PXR agonist to attenuate DSS-induced colitis by the suppression of the NF-κB-mediated proinflammatory response in a PXR/NF-κB- dependent manner. This article is protected by copyright. All rights reserved.

  4. An endogenous aryl hydrocarbon receptor (AhR) ligand, ITE induces regulatory T cells (Tregs) and ameliorates experimental colitis.

    PubMed

    Abron, Jessicca D; Singh, Narendra P; Mishra, Manoj K; Price, Robert L; Nagarkatti, Mitzi; Nagarkatti, Prakash S; Singh, Udai P

    2018-04-19

    Inflammatory bowel disease (IBD) is a chronic intestinal inflammatory condition that affects millions of people with high morbidity and health-care cost. The precise etiology of IBD is unknown, but clear evidence suggests that intestinal inflammation is caused by an excessive immune response to mucosal antigens. Recent studies have shown that activation of the aryl hydrocarbon receptor (AhR) induces regulatory T cells (Tregs) and suppresses autoimmune diseases. In the current study, we investigated if nontoxic ligand of AhR, 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE), can attenuate dextran sodium sulphate (DSS)-induced colitis. Our studies demonstrated that in mice that received ITE treatment, in-vivo colitis pathogenesis, including a decrease in body weight, was significantly reversed along with the systemic and intestinal inflammatory cytokines. ITE increased the expression of Tregs in spleen, mesenteric lymph nodes (MLNs) and colon lamina propria lymphocytes (cLPL) of mice with colitis when compared to controls. This induction of Tregs was reversed by AhR antagonist treatment in-vitro. ITE treatment also increased dendritic cells (DCs; CD11c+) and decreased F4/80+ (macrophage) from the spleen, MLNs and cLPL in mice with colitis. ITE also reversed the systemic and intestinal frequency of CD4+T cells during colitis and suppressed inflammatory cytokines including IFN-γ, TNF-α, IL-17, IL-6 and IL-1 as well as induced IL-10 levels. These findings suggest that ITE attenuates colitis through induction of Tregs and reduction in inflammatory CD4+ T cells and cytokines. Thus, our work demonstrates that the nontoxic endogenous AhR ligand ITE, may serve as a therapeutic modality to treat IBD.

  5. Dasatinib-Induced T-Cell-Mediated Colitis: A Case Report and Review of the Literature.

    PubMed

    Shanshal, Mohamed; Shakespeare, Andrew; Thirumala, Seshadri; Fenton, Boyd; Quick, Donald P

    2016-01-01

    Dasatinib is a potent inhibitor of the altered tyrosine kinase activity in disease states associated with BCR/ABL1. This agent has been shown to exhibit broad off-target kinase inhibition and immunomodulating properties. These effects may be responsible for dasatinib's unique side effects including a distinctive form of hemorrhagic colitis. We report a case of hemorrhagic colitis associated with dasatinib use in a patient with chronic myelogenous leukemia. Colon biopsies at the time of symptomatic colitis confirmed CD3+CD8+ T cell infiltration. The process rapidly resolved following drug discontinuation, but relapsed when rechallenged with a reduced dose of dasatinib. Colitis did not recur when the patient was treated with an alternative agent. A literature review of prior cases involving dasatinib-induced T-cell mediated colitis provides insight into commonalities that may facilitate the recognition and management of this entity. Most incidences occurred after a 3-month drug exposure and may be accompanied by large granular lymphocytes. The process uniformly resolves within a few days following drug discontinuation and will generally recur in a shorter period of time if the drug is reintroduced. Most patients will require an alternative agent, although select patients could be continued on dasatinib if other options are limited. © 2016 S. Karger AG, Basel.

  6. α7 Nicotinic Agonist AR-R17779 Protects Mice against 2,4,6-Trinitrobenzene Sulfonic Acid-Induced Colitis in a Spleen-Dependent Way.

    PubMed

    Grandi, Andrea; Zini, Irene; Flammini, Lisa; Cantoni, Anna M; Vivo, Valentina; Ballabeni, Vigilio; Barocelli, Elisabetta; Bertoni, Simona

    2017-01-01

    The existence of a cholinergic anti-inflammatory pathway negatively modulating the inflammatory and immune responses in various clinical conditions and experimental models has long been postulated. In particular, the protective involvement of the vagus nerve and of nicotinic Ach receptors (nAChRs) has been proposed in intestinal inflammation and repeatedly investigated in DSS- and TNBS-induced colitis. However, the role of α 7 nAChRs stimulation is still controversial and the potential contribution of α 4 β 2 nAChRs has never been explored in this experimental condition. Our aims were therefore to pharmacologically investigate the role played by both α 7 and α 4 β 2 nAChRs in the modulation of the local and systemic inflammatory responses activated in TNBS-induced colitis in mice and to assess the involvement of the spleen in nicotinic responses. To this end, TNBS-exposed mice were sub-acutely treated with various subcutaneous doses of highly selective agonists (AR-R17779 and TC-2403) and antagonists (methyllycaconitine and dihydro-β-erythroidine) of α 7 and α 4 β 2 nAChRs, respectively, or with sulfasalazine 50 mg/kg per os and clinical and inflammatory responses were evaluated by means of biochemical, histological and flow cytometry assays. α 4 β 2 ligands evoked weak and contradictory effects, while α 7 nAChR agonist AR-R17779 emerged as the most beneficial treatment, able to attenuate several local markers of colitis severity and to revert the rise in splenic T-cells and in colonic inflammatory cytokines levels induced by haptenization. After splenectomy, AR-R17779 lost its protective effects, demonstrating for the first time that, in TNBS-model of experimental colitis, the anti-inflammatory effect of exogenous α 7 nAChR stimulation is strictly spleen-dependent. Our findings showed that the selective α 7 nAChRs agonist AR-R17779 exerted beneficial effects in a model of intestinal inflammation characterized by activation of the adaptive immune

  7. Protective effects of polyphenol-rich infusions from carob (Ceratonia siliqua) leaves and cladodes of Opuntia ficus-indica against inflammation associated with diet-induced obesity and DSS-induced colitis in Swiss mice.

    PubMed

    Aboura, Ikram; Nani, Abdelhafid; Belarbi, Meriem; Murtaza, Babar; Fluckiger, Aurélie; Dumont, Adélie; Benammar, Chahid; Tounsi, Moufida Saidani; Ghiringhelli, François; Rialland, Mickaël; Khan, Naim Akhtar; Hichami, Aziz

    2017-12-01

    In the present study, we have investigated the effects of polyphenol-rich infusions from carob leaves and OFI-cladodes on inflammation associated with obesity and dextran sulfate sodium (DSS)-induced ulcerative colitis in Swiss mice. In vitro studies revealed that aqueous extracts of carob leaves and OFI-cladodes exhibited anti-inflammatory properties marked by the inhibition of IL-6, TNF-α and nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells concomitant with NF-κβ nucleus translocation inhibition. For in vivo investigations, Swiss male mice were subjected to control or high fat diet (HFD). At the 8th week after the start of study, animals received or not 1% infusion of either carob leaves or OFI-cladode for 4 weeks and were subjected to 2% DSS administration in drinking water over last 7 days. After sacrifice, pro-inflammatory cytokines levels in plasma and their mRNA expression in different organs were determined. Results showed that carob leaf and OFI-cladode infusions reduced inflammation severity associated with HFD-induced obesity and DSS-induced acute colitis indicated by decrease in pro-inflammatory cytokines expression (as such TNF-α, IL1b and IL-6) in colon, adipose tissue and spleen. In addition, plasma levels of IL-6 and TNF-α were also curtailed in response to infusions treatment. Thus, carob leaf and OFI-cladode infusions prevented intestinal permeability through the restoration of tight junction proteins (Zo1, occludins) and immune homeostasis. Hence, the anti-inflammatory effect of carob leaves and OFI-cladodes could be attributed to their polyphenols which might alleviate inflammation severity associated with obesity and colitis. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  8. Salvia miltiorrhiza (dan shen) significantly ameliorates colon inflammation in dextran sulfate sodium induced colitis.

    PubMed

    Wen, Xiao-Dong; Wang, Chong-Zhi; Yu, Chunhao; Zhang, Zhiyu; Calway, Tyler; Wang, Yunwei; Li, Ping; Yuan, Chun-Su

    2013-01-01

    Inflammatory bowel disease increases the risks of human colorectal cancer. In this study, the effects of Salvia miltiorrhiza extract (SME) on chemically-induced colitis in a mouse model were evaluated. Chemical composition of SME was determined by HPLC analysis. A/J mice received a single injection of AOM 7.5 mg/kg. After one week, these mice received 2.5% DSS for eight days, or DSS plus SME (25 or 50 mg/kg). DSS-induced colitis was scored with the disease activity index (DAI). Body weight and colon length were also measured. The severity of inflammatory lesions was further evaluated by colon tissue histological assessment. HPLC assay showed that the major constituents in the tested SME were danshensu, protocatechuic aldehyde, salvianolic acid D, and salvianolic acid B. In the model group, the DAI score reached its highest level on Day 8, while the SME group on both doses showed a significantly reduced DAI score (both p < 0.01). As an objective index of the severity of inflammation, colon length was significantly shorter in the model group than the vehicle group. Treatment with 25 and 50 mg/kg of SME inhibited the shortening of colon in a dose-related manner (p < 0.05 and p < 0.01, respectively). SME groups also significantly reduced weight reduction (p < 0.05). Colitis histological data supported the pharmacological observations. Thus, Salvia miltiorrhiza could be a promising candidate in preventing and treating colitis and in reducing the risks of inflammation-associated colorectal cancer.

  9. Bacillus coagulans GBI-30, 6086 limits the recurrence of Clostridium difficile-Induced colitis following vancomycin withdrawal in mice.

    PubMed

    Fitzpatrick, Leo R; Small, Jeffrey S; Greene, Wallace H; Karpa, Kelly D; Farmer, Sean; Keller, David

    2012-10-22

    Recently, we found that the probiotic strain Bacillus coagulans GBI-30, 6086 (GanedenBC30) improved indices of Clostridium difficile (C. difficile)-induced colitis in mice (Fitzpatrick et al., Gut Pathogens, 2011). Our goal was to determine if BC30 could also prevent the recurrence of C. difficile-induced colitis in mice, following initial treatment with vancomycin. During study days 0 through 5, mice were treated with antibiotics. On day 6, the C. difficile strain VPI 10463 was given by oro-gastric gavage at ≈ 5x104 CFU to induce colitis. Mice were treated on study days 6 to 10 with vancomycin (50 mg/kg) (vanco) or vehicle (saline) by gavage. On days 10 to16, mice were dosed by gavage with saline vehicle or BC30 (2 x 109 CFU per day). Mice were monitored for mortality, weight loss and diarrhea. On study days 14, 16 and 17, stools and colons were collected for analyzing other parameters of colitis. The mean stool consistency score in Vehicle/C.difficile/Vanco mice increased from 0.4 (day 10) to a range of 1.1 to 1.4 (days 14 to 17), indicating the recurrence of colitis. On days 13 through 17, the stool consistency scores for the vancomycin/BC30 mice were significantly lower (p< 0.05) than for the vancomycin/vehicle cohort of animals. On day 17, 88.9% of mice treated with BC30 had normal stools, while this value was 0% with vehicle treatment (p value = 0.0004). Colonic myeloperoxidase (Units/2 cm colon) was significantly (p < 0.05) reduced from 4.3 ± 0.7 (Vehicle/C.difficile/Vanco) to 2.6 ± 0.2 (BC30/C. Difficle/Vanco). The colonic histology score and Keratinocyte derived-chemokine level in the colon were also lower in BC30 treated mice. In BC30-treated mice, there was evidence of better stool consistency, as well as improved biochemical and histological indices of colitis, following initial treatment of animals with vancomycin. BC30 limited the recurrence of CD-induced colitis following vancomycin withdrawal in mice.

  10. Bacillus coagulans GBI-30, 6086 limits the recurrence of Clostridium difficile-Induced colitis following vancomycin withdrawal in mice

    PubMed Central

    2012-01-01

    Background Recently, we found that the probiotic strain Bacillus coagulans GBI-30, 6086 (GanedenBC30) improved indices of Clostridium difficile (C. difficile)-induced colitis in mice (Fitzpatrick et al., Gut Pathogens, 2011). Our goal was to determine if BC30 could also prevent the recurrence of C. difficile-induced colitis in mice, following initial treatment with vancomycin. During study days 0 through 5, mice were treated with antibiotics. On day 6, the C. difficile strain VPI 10463 was given by oro-gastric gavage at ≈ 5x104 CFU to induce colitis. Mice were treated on study days 6 to 10 with vancomycin (50 mg/kg) (vanco) or vehicle (saline) by gavage. On days 10 to16, mice were dosed by gavage with saline vehicle or BC30 (2 x 109 CFU per day). Mice were monitored for mortality, weight loss and diarrhea. On study days 14, 16 and 17, stools and colons were collected for analyzing other parameters of colitis. Results The mean stool consistency score in Vehicle/C.difficile/Vanco mice increased from 0.4 (day 10) to a range of 1.1 to 1.4 (days 14 to 17), indicating the recurrence of colitis. On days 13 through 17, the stool consistency scores for the vancomycin/BC30 mice were significantly lower (p< 0.05) than for the vancomycin/vehicle cohort of animals. On day 17, 88.9% of mice treated with BC30 had normal stools, while this value was 0% with vehicle treatment (p value = 0.0004). Colonic myeloperoxidase (Units/2 cm colon) was significantly (p < 0.05) reduced from 4.3 ± 0.7 (Vehicle/C.difficile/Vanco) to 2.6 ± 0.2 (BC30/C. Difficle/Vanco). The colonic histology score and Keratinocyte derived-chemokine level in the colon were also lower in BC30 treated mice. Summary In BC30-treated mice, there was evidence of better stool consistency, as well as improved biochemical and histological indices of colitis, following initial treatment of animals with vancomycin. Conclusion BC30 limited the recurrence of CD-induced colitis following vancomycin withdrawal in mice. PMID

  11. Sodium 4-phenylbutyrate suppresses the development of dextran sulfate sodium-induced colitis in mice.

    PubMed

    Ono, Kazuhiko; Nimura, Satoshi; Nishinakagawa, Takuya; Hideshima, Yuko; Enjyoji, Munechika; Nabeshima, Kazuki; Nakashima, Manabu

    2014-03-01

    Sodium 4-phenylbutyrate (PBA) exhibits anti-inflammatory effects by suppressing nuclear factor-κB (NF-κB) activation. In the present study, the effects of PBA on a mouse model of dextran sulfate sodium (DSS)-induced colitis were investigated. The therapeutic efficacy of PBA (150 mg/kg body weight) in DSS-induced colitis was assessed based on the disease activity index (DAI), colon length, the production of inflammatory cytokines and histopathological examination. The results showed an increase in the median survival time in the PBA-treated group compared with that of the untreated DSS control group. DAI scores were lower in the PBA-treated group than in the DSS control group during the 12 days of the experiment. Additionally, PBA treatment inhibited shortening of the colon and the production of the inflammatory cytokines tumor necrosis factor-α, interleukin-1β and IL-6, which were measured in the colonic lavage fluids. Histopathological examination of the DSS control group showed diffused clusters of chronic inflammatory cells infiltrating the lamina propria, partial exfoliation of the surface epithelium and decreased numbers of mature goblet cells. By contrast, in the PBA-treated group the histopathological findings were the same as those of the normal healthy controls. These results suggest that PBA strongly prevents DSS-induced colitis by suppressing the mechanisms involved in its pathogenesis.

  12. Interleukin-10 is differentially expressed in the small intestine and the colon experiencing chronic inflammation and ulcerative colitis induced by dextran sodium sulfate in young pigs.

    PubMed

    Lackeyram, D; Young, D; Kim, C J; Yang, C; Archbold, T L; Mine, Y; Fan, M Z

    2017-03-31

    Intestinal inflammation induced with dextran sodium sulfate (DSS) is used to study acute or chronic ulcerative colitis in animal models. Decreased gut tissue anti-inflammatory cytokine IL-10 concentration and mRNA abundance are associated with the development of chronic bowel inflammation. Twelve piglets of 3 days old were fitted with an intragastric catheter and randomly allocated into control and DSS groups by administrating either sterile saline or 1.25 g of DSS/kg body weight (BW) in saline per day, respectively, for 10 days. Growth rate and food conversion efficiency were reduced (p<0.05) in the DSS piglets compared with the control group. Quantitative histopathological grading of inflammation in the jejunum and colon collectively showed that the DSS treatment resulted in 12 fold greater (p<0.05) inflammation severity scoring in the colon than in the jejunum, indicative of chronic ulcerative colitis in the colon. Upper gut permeability endpoint was 27.4 fold higher (p<0.05) in the DSS group compared with the control group. The DSS group had higher concentrations and mRNA abundances (p<0.05) of TNF-alpha and IL-6 in the jejunal and colonic tissues compared with the control group. Colonic concentration and mRNA abundance of IL-10 were reduced (p<0.05), however, jejunal IL-10 mRNA abundance was increased (p<0.05) in the DSS group compared with the control group. In conclusion, administration of DSS at 1.25 g/kg BW for 10 days respectively induced acute inflammation in the jejunum and chronic inflammation and ulcerative colitis in the colon with substantially decreased colonic concentration and mRNA abundance of IL-10 in the young pigs, mimicking the IL-10 expression pattern in humans Associated with chronic bowel inflammation.

  13. Synergic Interaction of Rifaximin and Mutaflor (Escherichia coli Nissle 1917) in the Treatment of Acetic Acid-Induced Colitis in Rats.

    PubMed

    Dembiński, Artur; Warzecha, Zygmunt; Ceranowicz, Piotr; Dembiński, Marcin; Cieszkowski, Jakub; Gosiewski, Tomasz; Bulanda, Małgorzata; Kuśnierz-Cabala, Beata; Gałązka, Krystyna; Konturek, Peter Christopher

    2016-01-01

    Background. Inflammatory bowel disease results from the dysregulation of immune response to environmental and microbial agents in genetically susceptible individuals. The aim of the present study was to examine the effect of rifaximin and/or Mutaflor (Escherichia coli Nissle 1917, EcN) administration on the healing of acetic acid-induced colitis. Methods. Colitis was induced in male Wistar rats by rectal enema with 3.5% acetic acid solution. Rifaximin (50 mg/kg/dose) and/or Mutaflor (10(9) CFU/dose) were given intragastrically once a day. The severity of colitis was assessed at the 8th day after induction of inflammation. Results. Treatment with rifaximin significantly accelerated the healing of colonic damage. This effect was associated with significant reversion of the acetic acid-evoked decrease in mucosal blood flow and DNA synthesis. Moreover, administration of rifaximin significantly reduced concentration of proinflammatory TNF-α and activity of myeloperoxidase in colonic mucosa. Mutaflor given alone was without significant effect on activity of colitis. In contrast, Mutaflor given in combination with rifaximin significantly enhanced therapeutic effect of rifaximin. Moreover, Mutaflor led to settle of the colon by EcN and this effect was augmented by pretreatment with rifaximin. Conclusion. Rifaximin and Mutaflor exhibit synergic anti-inflammatory and therapeutic effect in acetic acid-induced colitis in rats.

  14. Impact of dextran sulphate sodium-induced colitis on the intestinal transport of the colon carcinogen PhIP.

    PubMed

    Nicken, Petra; von Keutz, Anne; Willenberg, Ina; Ostermann, Annika I; Schebb, Nils Helge; Giovannini, Samoa; Kershaw, Olivia; Breves, Gerhard; Steinberg, Pablo

    2016-05-01

    Colorectal cancer is one of the most frequent cancers in Western countries. Chronic intestinal diseases such as Crohn's disease and ulcerative colitis, in which the intestinal barrier is massively disturbed, significantly raise the risk of developing a colorectal tumour. 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is a genotoxic heterocyclic aromatic amine that is formed after strongly heating fish and meat. In this study, the hypothesis that PhIP uptake in the gut is increased during chronic colitis was tested. Chronic colitis was induced by oral administration of dextran sulphate sodium (DSS) to Fischer 344 rats. The transport of PhIP in eight different rat intestinal segments was examined in Ussing chambers. The tissues were incubated with 10 µM PhIP for 90 min, and the concentration of PhIP was determined in the mucosal and serosal compartments of the Ussing chambers as well as in the clamped tissues by LC-MS. Although chronic colitis was clearly induced in the rats, no differences in the intestinal transport of PhIP were observed between control and DSS-treated animals. The hypothesis that in the course of chronic colitis more PhIP is taken up by the intestinal epithelium, thereby increasing the risk of developing colorectal cancer, could not be confirmed in the present report.

  15. Colitis induced bone loss is gender dependent and associated with increased inflammation

    PubMed Central

    Irwin, Regina; Lee, Taehyung; Young, Vincent B.; Parameswaran, Narayanan; McCabe, Laura R.

    2014-01-01

    Background Patients with inflammatory bowel disease (IBD) are at increase risk for bone loss and fractures. Therefore, in the present study, we examined the effect of experimental IBD on bone health. Methods We used a murine model of colitis, H. hepaticus-infected IL-10 deficient animals. Molecular and histological properties of bone and intestine were examined to identify the immunopathological consequences of colitis in male and female mice. Results At 6 weeks post-infection we observed significant trabecular bone loss in male but surprisingly not in female mice. This was true for both distal femur and vertebral locations. In addition, H. hepaticus infection suppressed osteoblast markers only in males. Consistent with effects on bone health, male mice with H. hepaticus infection had more severe colitis as determined by histology and elevated levels of inflammatory cytokines in the colon. While H. hepaticus levels in the stool appeared similar in male and female mice 1-week after infection, by 6-weeks H. hepaticus levels were greater in male mice, indicating that H. hepaticus survival and virulence within the GI tract could be gender-dependent. Conclusion In summary, H. hepaticus induced colitis severity and associated bone loss is gender regulated, possibly as a result of gender-specific effects on H. hepaticus colonization in the mouse GI tract and the consequent immunopathologic responses. PMID:23702805

  16. Dietary Supplementation of Fermented Rice Bran Effectively Alleviates Dextran Sodium Sulfate-Induced Colitis in Mice

    PubMed Central

    Islam, Jahidul; Koseki, Takuya; Watanabe, Kouichi; Ardiansyah; Budijanto, Slamet; Oikawa, Akira; Alauddin, Md; Goto, Tomoko; Aso, Hisahi; Komai, Michio; Shirakawa, Hitoshi

    2017-01-01

    Rice bran (RB) is a major by-product of rice polishing and a rich source of bioactive compounds. Here, we investigated the anti-colitis effect of diet supplementation with fermented rice bran (FRB) in a murine model of ulcerative colitis. FRB was prepared by dual fermentation of RB using fungi and lactic acid bacteria. Colitis was induced in C57Bl/6N male mice (n = 8/group) by dextran sodium sulfate (DSS). Body weight change, disease activity index (DAI), histopathology score, tissue myeloperoxidase (MPO) activity, cytokine and chemokine transcript levels, and the production of short-chain fatty acids (SCFAs) and mucin in the colonic tissue were monitored. Based on histopathology scores, DSS induced severe mucosal inflammation, with an increased loss of crypts, and inflammatory cell infiltration in the control and RB groups, but not in the FRB group. MPO activity, thiobarbituric acid-reactive substance levels, and pro-inflammatory cytokine transcript (Tnf-α, Il-1β, Il-6, and Il-17) levels were significantly higher in the control and RB groups than in the FRB group. Thus, dietary FRB attenuated intestinal inflammation owing to elevated SCFAs and tryptamine production, which might regulate tight junction barrier integrity and intestinal homeostasis. These results suggest that FRB could comprise an effective potential preventive agent for ulcerative colitis. PMID:28703759

  17. Post-operative morbidity and mortality of a cohort of steroid refractory acute severe ulcerative colitis: Nationwide multicenter study of the GETECCU ENEIDA Registry.

    PubMed

    Ordás, I; Domènech, E; Mañosa, M; García-Sánchez, V; Iglesias-Flores, E; Rodríguez-Moranta, F; Márquez, L; Merino, O; Fernández-Bañares, F; Gomollón, F; Vera, M; Gutiérrez, A; LLaó, J; Gisbert, J P; Aguas, M; Arias, L; Rodríguez-Lago, I; Muñoz, C; Alcaide, N; Calvet, X; Rodríguez, C; Montoro, M A; García, S; De Castro, M L; Piqueras, M; Pareja, L; Ribes, J; Panés, J; Esteve, M

    2018-05-01

    Despite the increased use of rescue medical therapies for steroid refractory acute severe ulcerative colitis, mortality related to this entity still remains high. We aimed to assess the mortality and morbidity related to colectomy and their predictive factors in steroid refractory acute severe ulcerative colitis, and to evaluate the changes in mortality rates, complications, indications of colectomy, and the use of rescue therapy over time. We performed a multicenter observational study of patients with steroid refractory acute severe ulcerative colitis requiring colectomy, admitted to 23 Spanish hospitals included in the ENEIDA registry (GETECCU) from 1989 to 2014. Independent predictive factors of mortality were assessed by binary logistic regression analysis. Mortality along the study was calculated using the age-standardized rate. During the study period, 429 patients underwent colectomy, presenting an overall mortality rate of 6.3% (range, 0-30%). The main causes of death were infections and post-operative complications. Independent predictive factors of mortality were: age ≥50 years (OR 23.34; 95% CI: 6.46-84.311; p < 0.0001), undergoing surgery in a secondary care hospital (OR 3.07; 95% CI: 1.01-9.35; p = 0.047), and in an emergency setting (OR 10.47; 95% CI: 1.26-86.55; p = 0.029). Neither the use of rescue medical treatment nor the type of surgical technique used (laparoscopy vs. open laparotomy) influenced mortality. The proportion of patients undergoing surgery in an emergency setting decreased over time (p < 0.0001), whereas the use of rescue medical therapy prior to colectomy progressively increased (p > 0.001). The mortality rate related to colectomy in steroid refractory acute severe ulcerative colitis varies greatly among hospitals, reinforcing the need for a continuous audit to achieve quality standards. The increasing use of rescue therapy is not associated with a worse outcome and may contribute to reducing emergency

  18. Bacillus Coagulans GBI-30 (BC30) improves indices of Clostridium difficile-Induced colitis in mice

    PubMed Central

    2011-01-01

    Background Probiotics have beneficial effects in rodent models of Clostridium difficile (C. diffiicle)-induced colitis. The spore forming probiotic strain Bacillus Coagulans GBI-30, 6086 (BC30) has demonstrated anti-inflammatory and immune-modulating effects in vitro. Our goal was to determine if BC30 improved C. difficile-induced colitis in mice. Starting on study day 0, female C57BL/6 mice were dosed by oro-gastric gavage for 15 days with vehicle (saline) or BC30 (2 × 109 CFU per day). Mice in the C. difficile groups received an antibiotic mixture (study days 5 to 8 in the drinking water), and clindamycin (10 mg/kg, i.p., on study day 10). The C. difficile strain VPI 10463 was given by gavage at 104 CFU to induce colitis on day 11. On day 16, stools and colons were collected for further analyses. Results All mice treated with BC30 survived on study day 13, while two mice treated with vehicle did not survive. On day 12, a significant difference (p = 0.0002) in the percentage of mice with normal stools (66.7%) was found in the BC30/C. difficile group, as compared to the vehicle/C. diffcile group (13.0%). On study day 16, 23.8% of mice treated with BC30 had normal stools, while this value was 0% with vehicle treatment (p value = 0.0187). On this day, the stool consistency score for the BC30/C. difficile group (1.1 ± 0.2) was significantly lower (p < 0.05) than for the vehicle/C. difficile cohort (1.9 ± 0.2). BC30 modestly attenuated the colonic pathology (crypt damage, edema, leukocyte influx) that was present following C. difficile infection. Colonic MIP-2 chemokine contents (pg/2 cm colon) were: 10.2 ± 0.5 (vehicle/no C. difficile), 24.6 ± 9.5 (vehicle/C. difficile) and 16.3 ± 4.3 (BC30/C. difficle). Conclusion The probiotic BC30 improved some parameters of C. difficile-induced colitis in mice. BC30 prolonged the survival of C. diffiicle infected mice. Particularly, this probiotic improved the stool consistency of mice, in this infectious colitis model. PMID

  19. Orally administered sodium 4-phenylbutyrate suppresses the development of dextran sulfate sodium-induced colitis in mice.

    PubMed

    Ono, Kazuhiko; Nimura, Satoshi; Hideshima, Yuko; Nabeshima, Kazuki; Nakashima, Manabu

    2017-12-01

    Sodium 4-phenylbutyrate (PBA) exerts therapeutic effects in a wide range of pathologies. A previous study by the present authors revealed that intraperitoneal administration of PBA suppresses the onset of dextran sulfate sodium (DSS)-induced colitis in mice. In the present study, the effects of orally administered PBA are investigated, as this route of administration is more clinically relevant. The therapeutic efficacy of PBA (10 mg/12 h) in mice with experimental colitis was assessed based on the disease activity index, production of inflammatory cytokines, colon length and histopathological investigations. The results of the present study demonstrated a significantly higher survival rate in the PBA-treated group compared with the PBA-untreated (DSS control) group (P=0.0156). PBA treatment improved pathological indices of experimental colitis (P<0.05). Furthermore, the oral administration of PBA significantly inhibited the DSS-induced shortening of the colon (P<0.05) and overproduction of interleukin (IL)-1β and IL-6 (both P<0.05) as measured in colonic lavage fluids. A marked attenuation of the DSS-induced overproduction of tumor necrosis factor was also observed. For histopathological analysis, a marked decrease in mature goblet cells and increase in enlarged nuclei of the absorptive cells was observed in colon lesions of DSS control mice as compared with normal untreated mice. However, in the PBA-treated mice, no such lesions were observed and the mucosa resembled that of DSS-untreated mice. The results of the present study, combined with those results of a previous study, suggest that oral and intraperitoneal administration of PBA have similar preventative effects on DSS-induced colitis, achieved by suppressing its pathogenesis.

  20. Cathelicidin Signaling via the Toll-Like Receptor Protects Against Colitis in Mice

    PubMed Central

    Koon, Hon Wai; Shih, David Quan; Chen, Jeremy; Bakirtzi, Kyriaki; Hing, Tressia C; Law, Ivy; Ho, Samantha; Ichikawa, Ryan; Zhao, Dezheng; Xu, Hua; Gallo, Richard; Dempsey, Paul; Cheng, Genhong; Targan, Stephan R; Pothoulakis, Charalabos

    2011-01-01

    Background & Aims Cathelicidin (encoded by Camp) is an anti-microbial peptide in the innate immune system. We examined whether macrophages express cathelicidin in colons of mice with experimental colitis and patients with inflammatory bowel disease; we investigated its signaling mechanisms. Methods Quantitative, real-time, reverse transcription PCR, bacterial 16S PCR, immunofluorescence, and small interfering (si)RNA analyses were performed. Colitis was induced in mice using sodium dextran sulfate (DSS); levels of cathelicidin were measured in human primary monocytes. Results Expression of cathelicidin increased in the inflamed colonic mucosa of mice with DSS-induced colitis, compared with controls. Cathelicidin expression localized to mucosal macrophages in inflamed colon tissues of patients and mice. Exposure of human primary monocytes to E coli DNA induced expression of Camp mRNA, which required signaling by ERK; expression was reduced by siRNAs against toll-like receptor (TLR)9 and MyD88. Intracolonic administration of bacterial DNA to wild-type mice induced expression of cathelicidin in colons of control mice and mice with DSS-induced colitis. Colon expression of cathelicidin was significantly reduced in TLR9 −/− mice with DSS-induced colitis. Compared with wild-type mice, Camp −/− mice developed a more severe form of DSS-induced colitis, particularly after intracolonic administration of E coli DNA. Expression of cathelicidin from bone marrow-derived immune cells regulated DSS induction of colitis in transplantation studies in mice. Conclusions Cathelicidin protects against colitis induction in mice. Increased expression of cathelicidin in monocytes and experimental models of colitis involves activation of TLR9–ERK signaling by bacterial DNA. This pathway might be involved in pathogenesis of ulcerative colitis. PMID:21762664

  1. Essential Role of Growth Hormone and IGF-1 in Therapeutic Effect of Ghrelin in the Course of Acetic Acid-Induced Colitis.

    PubMed

    Ceranowicz, Piotr; Warzecha, Zygmunt; Cieszkowski, Jakub; Ceranowicz, Dagmara; Kuśnierz-Cabala, Beata; Bonior, Joanna; Jaworek, Jolanta; Ambroży, Tadeusz; Gil, Krzysztof; Olszanecki, Rafał; Pihut, Małgorzata; Dembiński, Artur

    2017-05-24

    Previous studies have shown that ghrelin exhibits a protective and therapeutic effect in the gut. The aim of the present study was to examine whether administration of ghrelin affects the course of acetic acid-induced colitis and to determine what is the role of growth hormone (GH) and insulin-like growth factor-1 (IGF-1) in this effect. In sham-operated or hypophysectomized male Wistar rats, colitis was induced by enema with 1 mL of 3% solution of acetic acid. Saline or ghrelin (given at the dose of 8 nmol/kg/dose) was administered intraperitoneally twice a day. Seven days after colitis induction, rats were anesthetized and the severity of the colitis was assessed. Treatment with ghrelin reduced the area of colonic mucosa damage in pituitary-intact rat. This effect was associated with increase in serum levels of GH and IGF-1. Moreover, administration of ghrelin improved blood flow in colonic mucosa and mucosal cell proliferation, as well as reduced mucosal concentration of proinflammatory interleukin-1β (IL-1β) and activity of myeloperoxidase. Hypophysectomy reduced serum levels of GH and IGF-1 and increased the area of colonic damage in rats with colitis. These effects were associated with additional reduction in mucosal blood follow and DNA synthesis when compared to pituitary-intact rats. Mucosal concentration of IL-1β and mucosal activity of myeloperoxidase were maximally increased. Moreover, in hypophysectomized rats, administration of ghrelin failed to affect serum levels of GH or IGF-1, as well as the healing rate of colitis, mucosal cell proliferation, and mucosal concentration of IL-1β, or activity of myeloperoxidase. We conclude that administration of ghrelin accelerates the healing of the acetic acid-induced colitis. Therapeutic effect of ghrelin in experimental colitis is mainly mediated by the release of endogenous growth hormone and IGF-1.

  2. Salvia miltiorrhiza (Dan Shen) Significantly Ameliorates Colon Inflammation in Dextran Sulfate Sodium Induced Colitis

    PubMed Central

    Wen, Xiao-Dong; Wang, Chong-Zhi; Yu, Chunhao; Zhang, Zhiyu; Calway, Tyler; Wang, Yunwei; Li, Ping; Yuan, Chun-Su

    2014-01-01

    Inflammatory bowel disease increases the risks of human colorectal cancer. In this study, the effects of Salvia miltiorrhiza extract (SME) on chemically-induced colitis in a mouse model were evaluated. Chemical composition of SME was determined by HPLC analysis. A/J mice received a single injection of AOM 7.5 mg/kg. After one week, these mice received 2.5% DSS for 8 days, or DSS plus SME (25 or 50 mg/kg). DSS-induced colitis was scored with the disease activity index (DAI). Body weight and colon length were also measured. The severity of inflammatory lesions was further evaluated by colon tissue histological assessment. HPLC assay showed that the major constituents in the tested SME were danshensu, protocatechuic aldehyde, salvianolic acid D and salvianolic acid B. In the model group, the DAI score reached its highest level on Day 8, while the SME group on both doses showed a significantly reduced DAI score (both P < 0.01). As an objective index of the severity of inflammation, colon length was reduced significantly from the vehicle group to model group. Treatment with 25 and 50 mg/kg of SME inhibited the reduction of colon in a dose-related manner (P < 0.05 and P < 0.01, respectively). SME groups also significantly reduced weight reduction (P < 0.05). Colitis histological data supported the pharmacological observations. Thus, Salvia miltiorrhiza could be a promising candidate in preventing and treating colitis and in reducing the risks of inflammation-associated colorectal cancer. PMID:24117071

  3. Constitutive activation of epithelial TLR4 augments inflammatory responses to mucosal injury and drives colitis-associated tumorigenesis

    PubMed Central

    Fukata, Masayuki; Shang, Limin; Santaolalla, Rebeca; Sotolongo, John; Pastorini, Cristhine; España, Cecilia; Ungaro, Ryan; Harpaz, Noam; Cooper, Harry S.; Elson, Greg; Kosco-Vilbois, Marie; Zaias, Julia; Perez, Maria T.; Mayer, Lloyd; Vamadevan, Arunan S.; Lira, Sergio A.; Abreu, Maria T.

    2010-01-01

    Chronic intestinal inflammation culminates in cancer and a link to TLR4 has been suggested by our observation that TLR4 deficiency prevents colitis-associated neoplasia. In the current study, we address the effect of the aberrant activation of epithelial TLR4 on induction of colitis and colitis-associated tumor development. We take a translational approach to address the consequences of increased TLR signaling in the intestinal mucosa. Mice transgenic for a constitutively-active TLR4 under the intestine-specific villin promoter (villin-TLR4 mice) were treated with DSS for acute colitis and azoxymethane-dextran sulfate sodium. TLR4 expression was analyzed by immunohistochemistry in colonic tissue from patients with ulcerative colitis and ulcerative colitis associated cancer. The effect of an antagonist TLR4 Ab was tested in prevention of colitis-associated neoplasia in the AOM-DSS model. Villin-TLR4 mice were highly susceptible to both acute colitis and colitis-associated neoplasia. Villin-TLR4 mice had increased epithelial expression of COX-2 and mucosal PGE2 production at baseline. Increased severity of colitis in villin-TLR4 mice was characterized by enhanced expression of inflammatory mediators and increased neutrophilic infiltration. In human UC samples, TLR4 expression was upregulated in almost all CAC and progressively increases with grade of dysplasia. As a proof of principle, a TLR4/MD-2 antagonist antibody inhibited colitis-associated neoplasia in the mouse model. Our results show that regulation of TLR's can affect the outcome of both acute colitis and its consequences—cancer. Targeting TLR4 and other TLR's may ultimately play a role in prevention or treatment of colitis-associated cancer. PMID:21674704

  4. Ameliorative effect of IDS 30, a stinging nettle leaf extract, on chronic colitis.

    PubMed

    Konrad, Astrid; Mähler, Michael; Arni, Stephan; Flogerzi, Beatrice; Klingelhöfer, Sonja; Seibold, Frank

    2005-01-01

    Anti-TNF-alpha antibodies are very effective in the treatment of acute Crohn's disease, but are limited by the decline of their effectiveness after repeated applications. The stinging nettle leaf extract, IDS 30, is an adjuvant remedy in rheumatic diseases dependent on a cytokine suppressive effect. We investigated the effect of IDS 30 on disease activity of murine colitis in different models. C3H.IL-10-/- and BALB/c mice with colitis induced by dextran sodium sulphate (DSS) were treated with either IDS 30 or water. Mice were monitored for clinical signs of colitis. Inflammation was scored histologically, and faecal IL-1beta and mucosal cytokines were measured by ELISA. Mononuclear cell proliferation of spleen and Peyer's patches were quantified by 3H-thymidine. Mice with chronic DSS colitis or IL-10-/- mice treated with IDS 30 clinically and histologically revealed significantly (p < 0.05) fewer signs of colitis than untreated animals. Furthermore, faecal IL-1beta and mucosal TNF-alpha concentrations were significantly lower (p < 0.05) in treated mice. Mononuclear cell proliferation after stimulation with lipopolysaccharide was significantly (p < 0.001) reduced in mice treated with IDS 30. The long-term use of IDS 30 is effective in the prevention of chronic murine colitis. This effect seems to be due to a decrease in the Th1 response and may be a new therapeutic option for prolonging remission in inflammatory bowel disease.

  5. Importance of the Evaluation of N-Acetyltransferase Enzyme Activity Prior to 5-Aminosalicylic Acid Medication for Ulcerative Colitis.

    PubMed

    Matthis, Andrea L; Zhang, Bin; Denson, Lee A; Yacyshyn, Bruce R; Aihara, Eitaro; Montrose, Marshall H

    2016-08-01

    5-aminosalicylic acid (5-ASA) is a classic anti-inflammatory drug for the treatment of ulcerative colitis. N-acetyltransferase (NAT) enzymes convert 5-ASA to its metabolite N-acetyl-5-ASA, and it is unresolved whether 5-ASA or N-acetyl-5-ASA is the effective therapeutic molecule. We previously demonstrated that colonic production of N-acetyl-5-ASA (NAT activity) is decreased in dextran sulfate sodium-induced colitis. Our hypothesis is that 5-ASA is the therapeutic molecule to improve colitis, with the corollary that altered NAT activity affects drug efficacy. Since varying clinical effectiveness of 5-ASA has been reported, we also ask if NAT activity varies with inflammation in pediatric or adult patients. Acute colonic inflammation was induced in C57BL/6 NAT wild-type (WT) or knockout mice, using 3.5% dextran sulfate sodium (w/v) concurrent with 5-ASA treatment. Adult and pediatric rectosigmoid biopsies were collected from control or patients with ulcerative colitis. Tissue was analyzed for NAT and myeloperoxidase activity. Dextran sulfate sodium-induced colitis was of similar severity in both NAT WT and knockout mice, and NAT activity was significantly decreased in NAT WT mice. In the setting of colitis, 5-ASA significantly restored colon length and decreased myeloperoxidase activity in NAT knockout but not in WT mice. Myeloperoxidase activity negatively correlated with NAT activity in pediatric patients, but correlation was not observed in adult patients. Inflammation decreases NAT activity in the colon of mice and human pediatric patients. Decreased NAT activity enhances the therapeutic effect of 5-ASA in mice. A NAT activity assay could be useful to help predict the efficacy of 5-ASA therapy.

  6. Healing Effect of Pistacia Atlantica Fruit Oil Extract in Acetic Acid-Induced Colitis in Rats

    PubMed Central

    Tanideh, Nader; Masoumi, Samira; Hosseinzadeh, Massood; Safarpour, Ali Reza; Erjaee, Hoda; Koohi-Hosseinabadi, Omid; Rahimikazerooni, Salar

    2014-01-01

    Background: Considering the anti-oxidant properties of Pistacia atlantica and lack of data regarding its efficacy in the treatment of ulcerative colitis, this study aims at investigating the effect of the Pistacia atlantica fruit extract in treating experimentally induced colitis in a rat model. Methods: Seventy male Sprague-Dawley rats (weighing 220±20 g) were used. All rats fasted 24 hours before the experimental procedure. The rats were randomly divided into 7 groups, each containing 10 induced colitis with 2ml acetic acid (3%). Group 1 (Asacol), group 2 (base gel) and group 7 (without treatment) were assigned as control groups. Group 3 (300 mg/ml) and group 4 (600 mg/ml) received Pistacia atlantica fruit orally. Group 5 (10% gel) and group 6 (20% gel) received Pistacia atlantica in the form of gel as enema. Macroscopic, histopathological examination and MDA measurement were carried out. Results: All groups revealed significant macroscopic healing in comparison with group 7 (P<0.001). Regarding microscopic findings in the treatment groups compared with group 7, the latter group differed significantly with groups 1, 2, 4 and 6 (P<0.001). There was a significant statistical difference in MDA scores of the seven treatment groups (F(5,54)=76.61, P<0.001). Post-hoc comparisons indicated that the mean±SD score of Asacol treated group (1.57±0.045) was not significantly different from groups 4 (1.62±0.024) and 6 (1.58±0.028). Conclusion: Our study showed that a high dose of Pistacia atlantica fruit oil extract, administered orally and rectally can improve colitis physiologically and pathologically in a rat model, and may be efficient for ulcerative colitis. PMID:25429174

  7. BTLA associates with increased Foxp3 expression in CD4(+) T cells in dextran sulfate sodium-induced colitis.

    PubMed

    Zhang, Han-Xian; Zhu, Bin; Fu, Xiao-Xia; Zeng, Jin-Cheng; Zhang, Jun-Ai; Wang, Wan-Dang; Kong, Bin; Xiang, Wen-Yu; Zhong, Jixin; Wang, Cong-Yi; Zheng, Xue-Bao; Xu, Jun-Fa

    2015-01-01

    Ulcerative colitis (UC) is an inflammatory bowel disease, and its pathogenesis involves a variety of genetic, environmental, and immunological factors such as T helper cells and their secreted cytokines. B and T lymphocyte attenuator (BTLA) is an immunoregulatory receptor that has a strong suppressive effect on T-cell function. However the role of BTLA in UC remains poorly understood. Here we demonstrated that the frequency of BTLA-expressing CD3(+) T cells, especially CD4(+) T cells, increased in blood and mucosa in mice with DSS-induced colitis. The frequency of Foxp3-expressing cells in BTLA+ CD4(+) T cell from lamina propria mononuclear cells (LPMCs) was much higher in DSS-treated mice than that in controls. Similarly, the proportion of IL-17+ cells in BTLA+ CD4(+) T cells from LPMCs in DSS-treated mice is much higher than that in controls, while no perceptible difference for the proportion of IFN-γ+ cells in BTLA+ CD4(+) T cells was noted between DSS-treated mice and controls. Treatment of mesalazine, an anti-ulcerative colitis drug, down-regulated Foxp3 and IL-17 expression in BTLA positive T cells along with attenuated severity for colitis. Our findings indicate that BTLA may be involved in the control of inflammatory responses through increasing Foxp3 expression, rather than attenuating IL-17 production, in DSS-induced colitis.

  8. Loss of TLR2 Worsens Spontaneous Colitis in MDR1A Deficiency through Commensally Induced Pyroptosis

    PubMed Central

    Ey, Birgit; Eyking, Annette; Klepak, Magdalena; Salzman, Nita H.; Göthert, Joachim R.; Rünzi, Michael; Schmid, Kurt W.; Gerken, Guido; Podolsky, Daniel K.

    2013-01-01

    Variants of the multidrug resistance gene (MDR1/ABCB1) have been associated with increased susceptibility to severe ulcerative colitis (UC). In this study, we investigated the role of TLR/IL-1R signaling pathways including the common adaptor MyD88 in the pathogenesis of chronic colonic inflammation in MDR1A deficiency. Double- or triple-null mice lacking TLR2, MD-2, MyD88, and MDR1A were generated in the FVB/N background. Deletion of TLR2 in MDR1A deficiency resulted in fulminant pancolitis with early expansion of CD11b+ myeloid cells and rapid shift toward TH1-dominant immune responses in the lamina propria. Colitis exacerbation in TLR2/MDR1A double-knockout mice required the unaltered commensal microbiota and the LPS coreceptor MD-2. Blockade of IL-1β activity by treatment with IL-1R antagonist (IL-1Ra; Anakinra) inhibited colitis acceleration in TLR2/MDR1A double deficiency; intestinal CD11b+Ly6C+-derived IL-1β production and inflammation entirely depended on MyD88. TLR2/MDR1A double-knockout CD11b+ myeloid cells expressed MD-2/TLR4 and hyperresponded to nonpathogenic Escherichia coli or LPS with reactive oxygen species production and caspase-1 activation, leading to excessive cell death and release of proinflammatory IL-1β, consistent with pyroptosis. Inhibition of reactive oxygen species–mediated lysosome degradation suppressed LPS hyperresponsiveness. Finally, active UC in patients carrying the TLR2-R753Q and MDR1-C3435T polymorphisms was associated with increased nuclear expression of caspase-1 protein and cell death in areas of acute inflammation, compared with active UC patients without these variants. In conclusion, we show that the combined defect of two UC susceptibility genes, MDR1A and TLR2, sets the stage for spontaneous and uncontrolled colitis progression through MD-2 and IL-1R signaling via MyD88, and we identify commensally induced pyroptosis as a potential innate immune effector in severe UC pathogenesis. PMID:23636052

  9. Loss of TLR2 worsens spontaneous colitis in MDR1A deficiency through commensally induced pyroptosis.

    PubMed

    Ey, Birgit; Eyking, Annette; Klepak, Magdalena; Salzman, Nita H; Göthert, Joachim R; Rünzi, Michael; Schmid, Kurt W; Gerken, Guido; Podolsky, Daniel K; Cario, Elke

    2013-06-01

    Variants of the multidrug resistance gene (MDR1/ABCB1) have been associated with increased susceptibility to severe ulcerative colitis (UC). In this study, we investigated the role of TLR/IL-1R signaling pathways including the common adaptor MyD88 in the pathogenesis of chronic colonic inflammation in MDR1A deficiency. Double- or triple-null mice lacking TLR2, MD-2, MyD88, and MDR1A were generated in the FVB/N background. Deletion of TLR2 in MDR1A deficiency resulted in fulminant pancolitis with early expansion of CD11b(+) myeloid cells and rapid shift toward TH1-dominant immune responses in the lamina propria. Colitis exacerbation in TLR2/MDR1A double-knockout mice required the unaltered commensal microbiota and the LPS coreceptor MD-2. Blockade of IL-1β activity by treatment with IL-1R antagonist (IL-1Ra; Anakinra) inhibited colitis acceleration in TLR2/MDR1A double deficiency; intestinal CD11b(+)Ly6C(+)-derived IL-1β production and inflammation entirely depended on MyD88. TLR2/MDR1A double-knockout CD11b(+) myeloid cells expressed MD-2/TLR4 and hyperresponded to nonpathogenic Escherichia coli or LPS with reactive oxygen species production and caspase-1 activation, leading to excessive cell death and release of proinflammatory IL-1β, consistent with pyroptosis. Inhibition of reactive oxygen species-mediated lysosome degradation suppressed LPS hyperresponsiveness. Finally, active UC in patients carrying the TLR2-R753Q and MDR1-C3435T polymorphisms was associated with increased nuclear expression of caspase-1 protein and cell death in areas of acute inflammation, compared with active UC patients without these variants. In conclusion, we show that the combined defect of two UC susceptibility genes, MDR1A and TLR2, sets the stage for spontaneous and uncontrolled colitis progression through MD-2 and IL-1R signaling via MyD88, and we identify commensally induced pyroptosis as a potential innate immune effector in severe UC pathogenesis.

  10. Antibiotic treatment induces long-lasting changes in the fecal microbiota that protect against colitis

    PubMed Central

    Ward, Naomi L.; Phillips, Caleb D.; Nguyen, Deanna D.; Shanmugam, Nanda Kumar N.; Song, Yan; Hodin, Richard; Shi, Hai Ning; Cherayil, Bobby J.; Goldstein, Allan M.

    2017-01-01

    Background The interplay between host genetics, immunity, and microbiota is central to the pathogenesis of inflammatory bowel disease (IBD). Previous population-based studies suggested a link between antibiotic use and increased IBD risk, but the mechanisms are unknown. The purpose of this study was to determine the long-term effects of antibiotic administration on microbiota composition, innate immunity, and susceptibility to colitis, as well as the mechanism by which antibiotics alter host colitogenicity. Methods Wild-type mice were given broad-spectrum antibiotics or no antibiotics for two weeks, and subsequent immunophenotyping and 16S rRNA gene sequencing-based analysis of the fecal microbiome were performed six weeks later. In a separate experiment, control and antibiotic-treated mice were given seven days of DSS, six weeks after completing antibiotic treatment, and the severity of colitis scored histologically. Fecal transfer was performed from control or antibiotic-treated mice to recipient mice whose endogenous microbiota had been cleared with antibiotics, and the susceptibility of the recipients to DSS-induced colitis was analyzed. Naïve CD4+ T cells were transferred from control and antibiotic-treated mice to immunodeficient Rag-1-/- recipients and the severity of colitis compared. Results Antibiotics led to sustained dysbiosis and changes in T-cell subpopulations, including reductions in colonic lamina propria total T cells and CD4+ T cells. Antibiotics conferred protection against DSS colitis, and this effect was transferable by fecal transplant but not by naïve T cells. Conclusions Antibiotic exposure protects against colitis, and this effect is transferable with fecal microbiota from antibiotic-treated mice, supporting a protective effect of the microbial community. PMID:27607336

  11. Osthole pretreatment alleviates TNBS-induced colitis in mice via both cAMP/PKA-dependent and independent pathways.

    PubMed

    Sun, Wu; Cai, Yun; Zhang, Xin-Xin; Chen, Hao; Lin, Yan-Die; Li, Hao

    2017-08-01

    Osthole, a natural coumarin found in traditional Chinese medicinal plants, has shown multiple biological activities. In the present study, we investigated the preventive effects of osthole on inflammatory bowel disease (IBD). Colitis was induced in mice by infusing TNBS into the colonic lumen. Before TNBS treatment, the mice received osthole (100 mg·kg -1 ·d -1 , ip) for 3 d. Pretreatment with osthole significantly ameliorated the clinical scores, colon length shortening, colonic histopathological changes and the expression of inflammatory mediators in TNBS-induced colitis. Pretreatment with osthole elevated serum cAMP levels; but treatment with the PKA inhibitor H89 (10 mg·kg -1 ·d -1 , ip) did not abolish the beneficial effects of osthole on TNBS-induced colitis. In mouse peritoneal macrophages, pretreatment with osthole (50 μmol/L) significantly attenuated the LPS-induced elevation of cytokines at the mRNA level; inhibition of PKA completely reversed the inhibitory effects of osthole on IL-1β, IL-6, COX2, and MCP-1 but not on TNFα. In Raw264.7 cells, the p38 inhibitor SB203580 markedly suppressed LPS-induced upregulation of the cytokines, whereas the PKA inhibitors H89 or KT5720 did not abolish the inhibitory effects of SB203580. Moreover, in LPS-stimulated mouse peritoneal macrophages, SB203580 strongly inhibited the restored expression of IL-1β, IL-6, COX2, and MCP-1, which was achieved by abolishing the suppressive effects of osthole with the PKA inhibitors. Western blot analysis showed that osthole significantly suppressed the phosphorylation of p38, which was induced by TNBS in mice or by LPS in Raw264.7 cells. Inhibition of PKA partially reversed the suppressive effects of osthole on p38 phosphorylation in LPS-stimulated cells. Collectively, our results suggest that osthole is effective in the prevention of TNBS-induced colitis by reducing the expression of inflammatory mediators and attenuating p38 phosphorylation via both cAMP/PKA-dependent and

  12. Sodium selenite ameliorates both intestinal and extra-intestinal changes in acetic acid-induced colitis in rats.

    PubMed

    Soliman, Samar M; Wadie, Walaa; Shouman, Samia A; Ainshoka, Afaf A

    2018-06-01

    Selenium and its derivatives including sodium selenite (sod sel) belong to the group of essential trace elements needed for proper health and nutrition. They are fairly safe and possess antioxidant and anti-inflammatory properties. The aim of present investigation was to elucidate the effect of sod sel on experimental colitis model in rats. Colitis was induced by intrarectal instillation of 4% (v/v) acetic acid. Two hours later, sod sel was given to rats on a daily basis for 15 consecutive days. Clinical symptoms, colon mass index, spleen weight inflammatory markers, hematological, biochemical, macroscopic, and histological changes were determined. Sod sel markedly ameliorated colitis as evidenced by a significant decrease in macroscopic and microscopic score, disease activity index, colon mass index, and spleen weight. Treatment with sod sel attenuated oxidative stress in the colon by normalizing the colonic content of nitric oxide, malondialdehyde, and reduced glutathione, as well as the activities of catalase, superoxide dismutase, and junctional adhesion molecule (JAM-a). In addition, it significantly reduced colonic myeloperoxidase content, the intercellular adhesion molecule (ICAM-1), and the proinflammatory cytokines; TNF-α, IL-1β. Moreover, sod sel normalized hematological parameters, serum transaminases, and kidney and liver function enzymes. The current study indicates that sod sel was effective in ameliorating the intestinal and extra-intestinal manifestation in acetic acid-induced colitis through its antioxidant, anti-inflammatory, and immunomodulatory effects.

  13. Protective Effect of Amphipterygium adstringens Extract on Dextran Sulphate Sodium-Induced Ulcerative Colitis in Mice

    PubMed Central

    Rodriguez-Canales, Mario; Jimenez-Rivas, Ruben; Canales-Martinez, Maria Margarita; Garcia-Lopez, Ana Judith; Rivera-Yañez, Nelly; Nieto-Yañez, Oscar; Ledesma-Soto, Yadira; Sanchez-Torres, Luvia Enid; Rodriguez-Sosa, Miriam; Terrazas, Luis Ignacio

    2016-01-01

    Amphipterygium adstringens is an endemic species in Mexico commonly known as “cuachalalate.” Healers to treat gastritis, gastric ulcers, and gastrointestinal cancer have traditionally used the bark. We investigated the effects of alcoholic extract of A. adstringens (AaEE) in DSS-induced colitis in mice. The protective effect of AaEE was determined at 200 mg/kg by oral gavage for 10 days. We determine the effect of AaEE on clinical features (disease activity index), antioxidants, anti-inflammatory, and immunomodulatory activities in relation to the activity of SOD, CAT, and GPx, levels of proinflammatory cytokines, and changes both macroscopic and microscopic of the colonic mucosa. AaEE significantly reduced the inflammation of colon and significantly increased SOD and GPx activities. AaEE also significantly decreased TNF-α, IFN-γ, and IL-1β cytokine levels compared to DSS-treated mice and reduced both infiltration of inflammatory cells and the mucosal damage in colon. The results suggested the protective potential of AaEE in DSS-induced colitis and this might be attributed to its phytochemicals compounds that have been found to induce a wide spectrum of activities such as reduction in oxidative stress, suppression of inflammation, modulating numerous signal transduction pathways, and induction of apoptosis. The findings of this study suggest that AaEE has substantial potential for the treatment of inflammatory colitis. PMID:27635116

  14. Ferulic acid ameliorates TNBS-induced ulcerative colitis through modulation of cytokines, oxidative stress, iNOs, COX-2, and apoptosis in laboratory rats

    PubMed Central

    Sadar, Smeeta S.; Vyawahare, Niraj S.; Bodhankar, Subhash L.

    2016-01-01

    Ulcerative colitis (UC) is a chronic immune-inflammatory disorder characterized by oxido-nitrosative stress, the release of pro-inflammatory cytokines and apoptosis. Ferulic acid (FA), a phenolic compound is considered to possess potent antioxidant, anti-apoptotic and anti-inflammatory activities. The aim is to evaluate possible mechanism of action of FA against trinitrobenzensulfonic acid (TNBS) induced ulcerative colitis (UC) in rats. UC was induced in Sprague-Dawley rats (150-200 g) by intrarectal administration of TNBS (100 mg/kg). FA was administered (10, 20 and 40 mg/kg, p.o.) for 14 days after colitis was induced. Various biochemical, molecular and histological changes were assessed in the colon. Intrarectal administration of TNBS caused significant induction of ulcer in the colon with an elevation of oxido-nitrosative stress, myeloperoxidase and hydroxyproline activity in the colon. Administration of FA (20 and 40 mg/kg) significantly decrease oxido-nitrosative stress, myeloperoxidase, and hydroxyproline activities. Up-regulated mRNA expression of TNF-α, IL-1β, IL-6, COX-2, and iNOs, as well as down-regulated IL-10 mRNA expressions after TNBS administration, were significantly inhibited by FA (20 and 40 mg/kg) treatment. Flow cytometric analysis revealed that intrarectal administration of TNBS-induced significantly enhanced the colonic apoptosis whereas administration of FA (20 and 40 mg/kg) significantly restored the elevated apoptosis. FA administration also significantly restored the histopathological aberration induced by TNBS. The findings of the present study demonstrated that FA ameliorates TNBS-induced colitis via inhibition of oxido-nitrosative stress, apoptosis, proinflammatory cytokines production, and down- regulation of COX-2 synthesis. Graphical Abstract: TNBS caused activation of T cells which interact with CD40 on antigen presenting cells i.e. dendritic cells (DC) that induce the key Interleukin 12 (IL-12)-mediated Th1 T cell immune

  15. Recent advances in the management of radiation colitis

    PubMed Central

    Kountouras, Jannis; Zavos, Christos

    2008-01-01

    Radiation colitis, an insidious, progressive disease of increasing frequency, develops 6 mo to 5 years after regional radiotherapy for malignancy, owing to the deleterious effects of the latter on the colon and the small intestine. When dealing with radiation colitis and its complications, the most conservative modality should be employed because the areas of intestinal injury do not tend to heal. Acute radiation colitis is mostly self-limited, and usually, only supportive management is required. Chronic radiation colitis, a poorly predictable progressive disease, is considered as a precancerous lesion; radiation-associated malignancy has a tendency to be diagnosed at an advanced stage and to bear a dismal prognosis. Therefore, management of chronic radiation colitis remains a major challenge owing to the progressive evolution of the disease, including development of fibrosis, endarteritis, edema, fragility, perforation, partial obstruction, and cancer. Patients are commonly managed conservatively. Surgical intervention is difficult to perform because of the extension of fibrosis and alterations in the gut and mesentery, and should be reserved for intestinal obstruction, perforation, fistulas, and severe bleeding. Owing to the difficulty in managing the complications of acute and chronic radiation colitis, particular attention should be focused onto the prevention strategies. Uncovering the fibrosis mechanisms and the molecular events underlying radiation bowel disease could lead to the introduction of new therapeutic and/or preventive approaches. A variety of novel, mostly experimental, agents have been used mainly as a prophylaxis, and improvements have been made in radiotherapy delivery, including techniques to reduce the amount of exposed intestine in the radiation field, as a critical strategy for prevention. PMID:19109862

  16. Association between gastrointestinal motility and macrophage/mast cell distribution in mice during the healing stage after DSS‑induced colitis.

    PubMed

    Kodani, Mio; Fukui, Hirokazu; Tomita, Toshihiko; Oshima, Tadayuki; Watari, Jiro; Miwa, Hiroto

    2018-06-01

    Irritable bowel syndrome (IBS) frequently occurs after infectious colitis or inflammatory bowel disease in patients with complete remission. This suggests that post‑inflammation‑associated factors may serve a role in the pathophysiology of IBS; however, the mechanism responsible remains unclear. In the present study, the involvement of macrophages and mast cells in alteration of gastrointestinal (GI) motility was investigated in mice in the remission stage after acute colitis. C57BL/6 mice were administered 2% dextran sulfate sodium in drinking water for 5 days and their intestinal tissues were investigated at intervals for up to 24 weeks. Expression of the mannose receptor (MR) and tryptase was examined by immunohistochemistry, and the GI transit time (GITT) was measured by administration of carmine red solution. A minimal degree of inflammatory cell infiltration persisted in the colon and also the small intestine of mice in remission after colitis and the GITT was significantly shorter. The number of muscularis MR‑positive macrophages was significantly increased in the small intestine of mice in remission after colitis and negatively correlated with GITT. Furthermore, results indicated that the number of muscularis tryptase‑positive mast cells was significantly increased throughout the intestine of mice during the healing process after colitis and was positively correlated with GITT. The present findings suggested an increased number of macrophages and/or mast cells in the intestinal muscular layer may be associated with the pathophysiology of GI dysmotility after colitis.

  17. Effects of humanin on experimental colitis induced by 2,4,6-trinitrobenzene sulphonic acid in rats.

    PubMed

    Gultekin, Fatma A; Emre, Ali U; Celik, Sevim K; Barut, Figen; Tali, Ufuk; Sumer, Demet; Turkcu, Ummuhani O

    2017-01-01

    The excessive apoptosis of intestinal epithelial cells (IECs) partly accounts for the development of colonic inflammation and eventually results in ulcerative colitis (UC). Humanin, an endogenous anti-apoptotic peptide, has previously been shown to protect against Alzheimer's disease and a variety of cellular insults. The present study aimed to investigate the effects of glysin variant of humanin (HNG) on 2,4,6-trinitrobenzene sulphonic acid (TNBS)-induced colitis in rats. Rats were divided into four groups as follows: Group 1 (n = 8): control; isotonic saline solution 0.1 ml/rat rectally, Group 2 (n = 8): TNBS colitis; 0.1 ml of a 2.5% (w/v) TNBS solution in 50% ethanol rectally, Group 3 (n = 8): 10 μM HNG, and Group 4 (n = 8): 20 μM HNG intraperitoneal (ip) on day 2 and 6 after rectal TNBS administration. Rats were sacrificed 7 days after the induction of colitis. Blood and tissue samples were harvested for biochemical and histopathological analysis. HNG treatment significantly ameliorated weight loss and macroscopic and microscopic scores. TNBS-induced colitis significantly increased the colonic mRNA expression of tumor necrosis factor-alpha (TNF-α), interleukin-1beta (IL-1β), and caspase-3 activities in group II in comparison to the group I. HNG treatment was associated with an inhibition of mRNA expression of TNF-α and IL-1β, and a decrease in caspase-3 activities in colon tissues in group III and IV when compared to group II. The results of this study indicate that HNG treatment may exert beneficial effects in UC by decreasing inflammatory reactions and apoptosis.

  18. Onset of ulcerative colitis after thyrotoxicosis: a case report and review of the literature.

    PubMed

    Laterza, L; Piscaglia, A C; Lecce, S; Gasbarrini, A; Stefanelli, M L

    2016-01-01

    Ulcerative colitis is a chronic disease that could be triggered by acute stressful events, such as gastrointestinal infections or emotional stress. We reported the case of the onset of an ulcerative colitis after a thyrotoxicosis crisis and reviewed the literature about the relationships between thyroid dysfunctions and ulcerative colitis. A 38-year-old woman was diagnosed with ulcerative colitis after her third thyrotoxicosis crisis, two years after the diagnosis of Graves' disease. In this case, thyrotoxicosis acted as a trigger for ulcerative colitis onset. Hyperthyroidism could be a trigger able to elicit ulcerative colitis in susceptible patients.

  19. Novel mouse model of colitis characterized by hapten-protein visualization.

    PubMed

    Ishiguro, Kazuhiro; Ando, Takafumi; Maeda, Osamu; Watanabe, Osamu; Goto, Hidemi

    2010-09-01

    Trinitrobenzene sulfonic acid (TNBS) and oxazolone are used to induce colitis for the investigation of inflammatory reactions in the colon. Although these chemicals are presumed to bind proteins in the colonic mucosa and then induce colitis as haptens, hapten-protein formation has not yet been confirmed in the colonic mucosa. We developed a mouse model of colitis characterized by hapten-protein visualization, using 4-chloro-7-nitro-2,1,3-benzoxadiazole (NBD-Cl), which emits fluorescence after binding to proteins. The enema of 1 mg/mL NBD-Cl induced severe diarrhea, rectal bleeding, and body weight reductions in BALB/c mice. Mucosal signs indicative of colitis, such as redness and swelling observed under stereomicroscopy or inflammatory cell infiltration and crypt-epithelium destruction under microscopy, were manifested around NBD-proteins visualized with fluorescence. Fluorescence microscopy showed the infiltration of F4/80+ cells around areas of NBD-proteins, and flow cytometry indicated the uptake of NBD-proteins by CD11b+ cells. We also found critical roles for T cells and interleukin-6 in colitis induction with NBD-proteins. NBD-Cl-induced colitis presents a unique model to study the relevance between hapten-protein formation and inflammatory reactions and offers a method to assess experimental interventions on colitis induction in the mucosa, where hapten-protein formation is confirmed.

  20. Etiology of Tetracycline-Associated Pseudomembranous Colitis in Hamsters

    PubMed Central

    Toshniwal, Renu; Fekety, Robert; Silva, Joseph

    1979-01-01

    Tetracyclines were implicated in the 1950s in induction of protracted diarrhea and pseudomembranous colitis. Because the pathogenetic mechanism of these illnesses has been questioned recently, we studied tetracycline in hamster models of antibiotic-associated colitis. Orogastric administration of tetracycline caused diarrhea and death, with evidence of hemorrhagic typhlitis. Filtrates of cecal contents were toxic when inoculated into normal hamsters and cell culture monolayers, and toxicity was neutralized with Clostridium sordellii antitoxin. Tetracycline-resistant C. difficile was cultured from stools of these hamsters, but Staphylococcus aureus was not isolated. The value of tetracycline for treatment or prevention of clindamycin-induced colitis in hamsters was also studied, and it was found that daily orogastric administration of tetracycline was poorly protective against clindamycin-induced colitis. PMID:485127

  1. Detection and characterization of murine colitis and carcinogenesis by molecularly targeted contrast-enhanced ultrasound

    PubMed Central

    Brückner, Markus; Heidemann, Jan; Nowacki, Tobias M; Cordes, Friederike; Stypmann, Jörg; Lenz, Philipp; Gohar, Faekah; Lügering, Andreas; Bettenworth, Dominik

    2017-01-01

    AIM To study mucosal addressin cellular adhesion molecule-1 (MAdCAM-1) and vascular endothelial growth factor (VEGF)-targeted contrast enhanced ultrasound (CEUS) for the assessment of murine colitis and carcinogenesis. METHODS C57BL/6 mice were challenged with 3% dextran sodium-sulfate (DSS) for three, six or nine days to study the development of acute colitis. Ultrasound was performed with and without the addition of unspecific contrast agents. MAdCAM-1-targeted contrast agent was used to detect and quantify MAdCAM-1 expression. Inflammatory driven colorectal azoxymethane (AOM)/DSS-induced carcinogenesis was examined on day 42 and 84 using VEGF-targeted contrast agent. Highly specific tissue echogenicity was quantified using specialized software. Sonographic findings were correlated to tissue staining, western blot analysis and immunohistochemistry to quantify the degree of inflammation and stage of carcinogenesis. RESULTS Native ultrasound detected increased general bowel wall thickening that correlated with more progressed and more severe DSS-colitis (healthy mice: 0.3 mm ± 0.03 vs six days DSS: 0.5 mm ± 0.2 vs nine days DSS: 0.6 mm ± 0.2, P < 0.05). Moreover, these sonographic findings correlated well with clinical parameters such as weight loss (r2 = 0.74) and histological damage (r2 = 0.86) (P < 0.01). In acute DSS-induced murine colitis, CEUS targeted against MAdCAM-1 detected and differentiated stages of mild, moderate and severe colitis via calculation of mean pixel contrast intensity in decibel (9.6 dB ± 1.6 vs 12.9 dB ± 1.4 vs 18 dB ± 3.33, P < 0.05). Employing the AOM/DSS-induced carcinogenesis model, tumor development was monitored by CEUS targeted against VEGF and detected a significantly increased echogenicity in tumors as compared to adjacent healthy mucosa (healthy mucosa, 1.6 dB ± 1.4 vs 42 d, 18.2 dB ± 3.3 vs 84 d, 18.6 dB ± 4.9, P < 0.01). Tissue echogenicity strongly correlated with histological analysis and immunohistochemistry

  2. Detection and characterization of murine colitis and carcinogenesis by molecularly targeted contrast-enhanced ultrasound.

    PubMed

    Brückner, Markus; Heidemann, Jan; Nowacki, Tobias M; Cordes, Friederike; Stypmann, Jörg; Lenz, Philipp; Gohar, Faekah; Lügering, Andreas; Bettenworth, Dominik

    2017-04-28

    To study mucosal addressin cellular adhesion molecule-1 (MAdCAM-1) and vascular endothelial growth factor (VEGF)-targeted contrast enhanced ultrasound (CEUS) for the assessment of murine colitis and carcinogenesis. C57BL/6 mice were challenged with 3% dextran sodium-sulfate (DSS) for three, six or nine days to study the development of acute colitis. Ultrasound was performed with and without the addition of unspecific contrast agents. MAdCAM-1-targeted contrast agent was used to detect and quantify MAdCAM-1 expression. Inflammatory driven colorectal azoxymethane (AOM)/DSS-induced carcinogenesis was examined on day 42 and 84 using VEGF-targeted contrast agent. Highly specific tissue echogenicity was quantified using specialized software. Sonographic findings were correlated to tissue staining, western blot analysis and immunohistochemistry to quantify the degree of inflammation and stage of carcinogenesis. Native ultrasound detected increased general bowel wall thickening that correlated with more progressed and more severe DSS-colitis (healthy mice: 0.3 mm ± 0.03 vs six days DSS: 0.5 mm ± 0.2 vs nine days DSS: 0.6 mm ± 0.2, P < 0.05). Moreover, these sonographic findings correlated well with clinical parameters such as weight loss ( r 2 = 0.74) and histological damage ( r 2 = 0.86) ( P < 0.01). In acute DSS-induced murine colitis, CEUS targeted against MAdCAM-1 detected and differentiated stages of mild, moderate and severe colitis via calculation of mean pixel contrast intensity in decibel (9.6 dB ± 1.6 vs 12.9 dB ± 1.4 vs 18 dB ± 3.33, P < 0.05). Employing the AOM/DSS-induced carcinogenesis model, tumor development was monitored by CEUS targeted against VEGF and detected a significantly increased echogenicity in tumors as compared to adjacent healthy mucosa (healthy mucosa, 1.6 dB ± 1.4 vs 42 d, 18.2 dB ± 3.3 vs 84 d, 18.6 dB ± 4.9, P < 0.01). Tissue echogenicity strongly correlated with histological analysis and immunohistochemistry findings (VEGF

  3. Identification of inflammation-related proteins in a murine colitis model by 2D fluorescence difference gel electrophoresis and mass spectrometry.

    PubMed

    Naito, Yuji; Takagi, Tomohisa; Okada, Hitomi; Omatsu, Tatsushi; Mizushima, Katsura; Handa, Osamu; Kokura, Satoshi; Ichikawa, Hiroshi; Fujiwake, Hideshi; Yoshikawa, Toshikazu

    2010-05-01

    The aim of this study was to identify new intestinal proteins potentially associated with acute inflammation using proteomic profiling of an in vivo mice model of ulcerative colitis. 2D fluorescence difference gel electrophoresis (2D-DIGE) and matrix-assisted laser desorption/ionization time-of-flight spectrometer (MALDI-TOF) peptide mass fingerprinting were used to determine differentially expressed proteins between normal and inflamed intestinal mucosa. Acute colitis was induced by 8.0% dextran sodium sulfate (DSS) given p.o. for 7 days. Among a total of seven protein spots showing differential expression, we identified five different proteins, of which two were upregulated and three downregulated in colitis in comparison to normal mucosa, using the MASCOT search engine. 3-Hydroxy-3-methylglutaryl-coenzyme A synthase 2 and serpin b1a were upregulated proteins, and protein disulfide-isomerase A3, peroxiredoxin-6 and vimentin were identified as downregulated proteins. These identified proteins may be responsible for the development of the intestinal inflammation. 2D-DIGE and MALDI-TOF mass spectrometry are useful in the search for the differentially expressed proteins.

  4. Dietary medium-chain triglycerides prevent chemically induced experimental colitis in rats.

    PubMed

    Kono, Hiroshi; Fujii, Hideki; Ishii, Kenichi; Hosomura, Naohiro; Ogiku, Masahito

    2010-03-01

    The effects of dietary medium-chain triglycerides (MCTs) on experimental colitis induced by 2,4,6-trinitrobenzene sulphonic acid (TNBS) were investigated in rats. Male Wistar rats were given an intracolonic injection of TNBS and were then fed liquid diets containing MCTs or corn oil (AIN93) as controls. Serum and tissue samples were collected 1 week after TNBS enema. The severity of colitis was evaluated pathologically, and tissue myeloperoxidase (MPO) activity was measured. Furthermore, messenger RNA (mRNA) and protein levels for inflammatory cytokines and a chemokine were assessed by reverse-transcription polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. In another set of experiments, the protein expression of Toll-like receptor (TLR)-4 in the colon was measured 1 week after feeding of liquid diets. To investigate the effects of MCTs on macrophages, RAW246.7 macrophages were incubated with media containing albumin conjugated with MCT or linoleic acid, which is the major component of corn oil. Then, the production of tumor necrosis factor-alpha (TNF-alpha) was measured. Dietary MCTs blunted significantly the protein levels of TLR-4 in the colon. Furthermore, the expression of TLR-4 was significantly blunted in RAW264.7 cells incubated with MCTs compared with cells incubated with linoleic acid. Induction of interleukin 1beta (IL-1beta), TNF-alpha, and macrophage inflammatory protein-2 (MIP-2) in the colon was attenuated by dietary MCT. Furthermore, MPO activities in the colonic tissue were significantly blunted in animals fed the MCT diets compared with those fed the control diets. As a result, dietary MCTs improved chemically induced colitis significantly. MCTs most likely are useful for the therapy of inflammatory bowel disease as an anti-inflammatory immunomodulating nutrient. Copyright 2010 Mosby, Inc. All rights reserved.

  5. Predicting the Individual Risk of Acute Severe Colitis at Diagnosis

    PubMed Central

    Cesarini, Monica; Collins, Gary S.; Rönnblom, Anders; Santos, Antonieta; Wang, Lai Mun; Sjöberg, Daniel; Parkes, Miles; Keshav, Satish

    2017-01-01

    Abstract Background and Aims: Acute severe colitis [ASC] is associated with major morbidity. We aimed to develop and externally validate an index that predicted ASC within 3 years of diagnosis. Methods: The development cohort included patients aged 16–89 years, diagnosed with ulcerative colitis [UC] in Oxford and followed for 3 years. Primary outcome was hospitalization for ASC, excluding patients admitted within 1 month of diagnosis. Multivariable logistic regression examined the adjusted association of seven risk factors with ASC. Backwards elimination produced a parsimonious model that was simplified to create an easy-to-use index. External validation occurred in separate cohorts from Cambridge, UK, and Uppsala, Sweden. Results: The development cohort [Oxford] included 34/111 patients who developed ASC within a median 14 months [range 1–29]. The final model applied the sum of 1 point each for extensive disease, C-reactive protein [CRP] > 10mg/l, or haemoglobin < 12g/dl F or < 14g/dl M at diagnosis, to give a score from 0/3 to 3/3. This predicted a 70% risk of developing ASC within 3 years [score 3/3]. Validation cohorts included different proportions with ASC [Cambridge = 25/96; Uppsala = 18/298]. Of those scoring 3/3 at diagnosis, 18/18 [Cambridge] and 12/13 [Uppsala] subsequently developed ASC. Discriminant ability [c-index, where 1.0 = perfect discrimination] was 0.81 [Oxford], 0.95 [Cambridge], 0.97 [Uppsala]. Internal validation using bootstrapping showed good calibration, with similar predicted risk across all cohorts. A nomogram predicted individual risk. Conclusions: An index applied at diagnosis reliably predicts the risk of ASC within 3 years in different populations. Patients with a score 3/3 at diagnosis may merit early immunomodulator therapy. PMID:27647858

  6. Ischemic colitis related to sumatriptan overuse.

    PubMed

    Hodge, Joshua A; Hodge, Katherine D

    2010-01-01

    Serotonin-1 5-hydroxytryptamine (5-HT 1) receptor agonists are first line agents for migraine headaches. Patients with refractory headaches may use supratherapeutic doses of these medications. Described is a case of ischemic colitis related to overuse of sumatriptan. A 35-year-old woman presented with severe abdominal pain without diarrhea or hematochezia. For several days prior she had been self-treating a refractory migraine headache with frequent doses of sumatriptan. She is a nonsmoker and took no oral contraceptives or other serotonin agonists. A computed tomography scan of the abdomen revealed left-sided colitis. A colonoscopy with biopsy confirmed ischemic colitis and excluded inflammatory bowel disease (IBD). Previously published case reports have suggested an association between 5-HT 1 receptor agonists and ischemic colitis. These reports have been dismissed because the patients were taking oral contraceptives, serotonin agonists, or had other comorbidities. This healthy patient lacked risk factors for ischemia, is the youngest to be reported, and is the first without hematochezia. 5-HT 1 receptor agonists are generally considered safe. Ischemic colitis is a potentially serious complication of these agents. A retrospective review of 5-HT 1 receptor agonist users who have presented with acute onset abdominal pain or hematochezia is necessary to elucidate the incidence of this adverse event.

  7. Berberine inhibits macrophage M1 polarization via AKT1/SOCS1/NF-κB signaling pathway to protect against DSS-induced colitis.

    PubMed

    Liu, Yunxin; Liu, Xiang; Hua, Weiwei; Wei, Qingyan; Fang, Xianjun; Zhao, Zheng; Ge, Chun; Liu, Chao; Chen, Chen; Tao, Yifu; Zhu, Yubing

    2018-04-01

    Berberine has been reported to have protective effects in colitis treatment. However, the detailed mechanisms remain unclear. Herein, we demonstrated that berberine could protect against dextran sulfate sodium (DSS)-induced colitis in mice by regulating macrophage polarization. In the colitis mouse model, berberine ameliorated DSS-induced colon shortening and colon tissue injury. Moreover, berberine-treated mice showed significant reduction in the disease activity index (DAI), pro-inflammatory cytokines expression and macrophages infiltration compared with the DSS-treated mice. Notably, berberine significantly reduced the percentage of M1 macrophages. In vitro analysis also confirmed the inhibitory effects of berberine on macrophages M1 polarization in RAW267.4 cells. Further investigation showed that berberine promoted AKT1 expression in mRNA and protein level. Silence of AKT1 abolished the inhibitory effect of berberine on macrophages M1 polarization. The berberine-induced AKT1 expression promoted suppressers of cytokine signaling (SOCS1) activation, which inhibited nuclear factor-kappa B (NF-κB) phosphorylation. In addition, we also found that berberine activated AKT1/SOCS1 signaling pathway but inhibited p65 phosphorylation in macrophages in vivo. Therefore, we concluded that berberine played a regulatory role in macrophages M1 polarization in DSS-induced colitis via AKT1/SOCS1/NF-κB signaling pathway. This unexpected property of berberine may provide a potential explanation for its protective effects in colitis treatment. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. TRPA1 and substance P mediate colitis in mice.

    PubMed

    Engel, Matthias A; Leffler, Andreas; Niedermirtl, Florian; Babes, Alexandru; Zimmermann, Katharina; Filipović, Miloš R; Izydorczyk, Iwona; Eberhardt, Mirjam; Kichko, Tatjana I; Mueller-Tribbensee, Sonja M; Khalil, Mohammad; Siklosi, Norbert; Nau, Carla; Ivanović-Burmazović, Ivana; Neuhuber, Winfried L; Becker, Christoph; Neurath, Markus F; Reeh, Peter W

    2011-10-01

    The neuropeptides calcitonin gene-related peptide (CGRP) and substance P, and calcium channels, which control their release from extrinsic sensory neurons, have important roles in experimental colitis. We investigated the mechanisms of colitis in 2 different models, the involvement of the irritant receptor transient receptor potential of the ankyrin type-1 (TRPA1), and the effects of CGRP and substance P. We used calcium-imaging, patch-clamp, and neuropeptide-release assays to evaluate the effects of 2,4,6-trinitrobenzene-sulfonic-acid (TNBS) and dextran-sulfate-sodium-salt on neurons. Colitis was induced in wild-type, knockout, and desensitized mice. TNBS induced TRPA1-dependent release of colonic substance P and CGRP, influx of Ca2+, and sustained ionic inward currents in colonic sensory neurons and transfected HEK293t cells. Analysis of mutant forms of TRPA1 revealed that TNBS bound covalently to cysteine (and lysine) residues in the cytoplasmic N-terminus. A stable sulfinic acid transformation of the cysteine-SH group, shown by mass spectrometry, might contribute to sustained sensitization of TRPA1. Mice with colitis had increased colonic neuropeptide release, mediated by TRPA1. Endogenous products of inflammatory lipid peroxidation also induced TRPA1-dependent release of colonic neuropeptides; levels of 4-hydroxy-trans-2-nonenal increased in each model of colitis. Colitis induction by TNBS or dextran-sulfate-sodium-salt was inhibited or reduced in TRPA1-/- mice and by 2-(1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydro-7H-purin-7-yl)-N-(4-isopro-pylphenyl)-acetamide, a pharmacologic inhibitor of TRPA1. Substance P had a proinflammatory effect that was dominant over CGRP, based on studies of knockout mice. Ablation of extrinsic sensory neurons prevented or attenuated TNBS-induced release of neuropeptides and both forms of colitis. Neuroimmune interactions control intestinal inflammation. Activation and sensitization of TRPA1 and release of substance P induce and

  9. Regulatory role of NKG2D+ NK cells in intestinal lamina propria by secreting double-edged Th1 cytokines in ulcerative colitis

    PubMed Central

    Lin, Xue; Chang, Ying; Liu, Jing; Zhou, Rui; Nie, Jia-Yan; Dong, Wei-Guo; Zhao, Qiu; Li, Jin

    2017-01-01

    The role of intestinal lamina propria (LP) NKG2D+ NK cells is unclear in regulating Th1/Th2 balance in ulcerative colitis (UC). In this study, we investigated the frequency of LP NKG2D+ NK cells in DSS-induced colitis model and intestinal mucosal samples of UC patients, as well as the secretion of Th1/Th2/Th17 cytokines in NK cell lines after MICA stimulation. The role of Th1 cytokines in UC was validated by bioinformatics analysis. We found that DSS-induced colitis in mice was characterized by a Th2-mediated process. In acute phrase, the frequency of LP NKG2D+ lymphocytes increased significantly and decreased in remission, while the frequency of LP NKG2D+ NK cells decreased significantly in acute phase and increased in remission. No obvious change was found in the frequency of total LP NK cells. Similarly, severe UC patients had a higher expression of mucosal NKG2D and a lower number of NKG2D+ NK cells than mild to moderate UC. In NK cell lines, the MICA stimulation could induce a predominant secretion of Th1 cytokines (TNF, IFN-γ). Furthermore, in bioinformatics analysis, mucosal Th1 cytokine of TNF, showed a double-edged role in UC when compared to the Th1-mediated disease of Crohn's colitis. In conclusion, LP NKG2D+ NK cells partially played a regulatory role in UC through secreting Th1 cytokines to regulate the Th2-predominant Th1/Th2 imbalance, despite of the concomitant pro-inflammatory effects of Th1 cytokines. PMID:29228739

  10. Resveratrol (Trans-3,5,4′-trihydroxystilbene) Induces Silent Mating Type Information Regulation-1 and Down-Regulates Nuclear Transcription Factor-κB Activation to Abrogate Dextran Sulfate Sodium-Induced Colitis

    PubMed Central

    Singh, Udai P.; Singh, Narendra P.; Singh, Balwan; Hofseth, Lorne J.; Price, Robert L.; Nagarkatti, Mitzi

    2010-01-01

    Inflammatory bowel disease is a chronic, relapsing, and tissue-destructive disease. Resveratrol (3,4,5-trihydroxy-trans-stilbene), a naturally occurring polyphenol that exhibits beneficial pleiotropic health effects, is recognized as one of the most promising natural molecules in the prevention and treatment of chronic inflammatory disease and autoimmune disorders. In the present study, we investigated the effect of resveratrol on dextran sodium sulfate (DSS)-induced colitis in mice and found that it effectively attenuated overall clinical scores as well as various pathological markers of colitis. Resveratrol reversed the colitis-associated decrease in body weight and increased levels of serum amyloid A, tumor necrosis factor-α, interleukin (IL-6), and IL-1β. After resveratrol treatment, the percentage of CD4+ T cells in mesenteric lymph nodes (MLN) of colitis mice was restored to normal levels, and there was a decrease in these cells in the colon lamina propria (LP). Likewise, the percentages of macrophages in MLN and the LP of mice with colitis were decreased after resveratrol treatment. Resveratrol also suppressed cyclooxygenase-2 (COX-2) expression induced in DSS-exposed mice. Colitis was associated with a decrease in silent mating type information regulation-1 (SIRT1) gene expression and an increase in p-inhibitory κB expression and nuclear transcription factor-κB (NF-κB) activation. Resveratrol treatment of mice with colitis significantly reversed these changes. This study demonstrates for the first time that SIRT1 is involved in colitis, functioning as an inverse regulator of NF-κB activation and inflammation. Furthermore, our results indicate that resveratrol may protect against colitis through up-regulation of SIRT1 in immune cells in the colon. PMID:19940103

  11. Current Approach to the Evaluation and Management of Microscopic Colitis.

    PubMed

    Cotter, Thomas G; Pardi, Darrell S

    2017-02-01

    Microscopic colitis is a common cause of chronic watery diarrhea, particularly in the elderly. The accompanying symptoms, which include abdominal pain and fatigue, can markedly impair patients' quality of life. Diagnosis is based upon characteristic histologic findings of the colonic mucosa. This review focuses on the current approach to evaluation and management of patients with microscopic colitis. Although the incidence of microscopic colitis has been increasing over time, recent epidemiological studies show stabilization at 21.0-24.7 cases per 100,000 person-years. Recent research has further expanded our knowledge of the underlying pathophysiology and emphasized the entity of drug-induced microscopic colitis and the association with celiac disease. Two recent randomized studies have confirmed the effectiveness of oral budesonide for both induction and maintenance treatment of microscopic colitis and is now endorsed by the American Gastroenterological Association as first-line treatment. The incidence of microscopic colitis has stabilized at just over 20 cases per 100,000 person-years. Celiac disease and drug-induced microscopic colitis should be considered in all patients diagnosed with microscopic colitis. There are a number of treatments available for patients with microscopic colitis; however, budesonide is the only option well studied in controlled trials and is effective for both induction and maintenance treatment.

  12. The potential mechanism of Bawei Xileisan in the treatment of dextran sulfate sodium-induced ulcerative colitis in mice.

    PubMed

    Wen, Juan; Teng, Baoxia; Yang, Pingrong; Chen, Xinjun; Li, Chenhui; Jing, Yaping; Wei, Junshu; Zhang, Chunjiang

    2016-07-21

    Bawei Xileisan (BXS), a traditional Chinese compound medicine, has been historically used in the treatment of ulcers and inflammation. BXS is also used as a topical agent for the treatment of ulcerative colitis in China. The underlying mechanism, however, remains elusive. Thirty-six female C57BL/6 mice with average weight of 20±2g were used for an in vivo study. The present work was conducted in accordance with the protocols approved by the Ethics Committee of Animal Experiments of Lanzhou University. The mice were induced to develop acute colitis by treating these with 3% dextran sulfate sodium (DSS) solution for 5 days. Subsequently, BXS (200,400mg/kg) was rectally administered daily for one week. All mice were killed at day 12 and their body weight, colon length, and histological changes were all recorded. Serum T helper 17 (Th17) cytokine levels were determined by enzyme-linked immunosorbent assay (ELISA). Th17 and regulatory T cell (Treg) in splenocyte mononuclear cells were isolated and identified via flow cytometry. Stool DNA was extracted and the absolute number of Bacteroides and Lactobacillus were measured by using real-time Q-PCR. Shortened colon and damaged tissue structure were profoundly ameliorated by BXS enema. The expression level of Th17-related cytokines IL-17A/F and IL-22 was significantly and dose-dependently reduced, resulting in the restoration of Th17/Treg balance. Moreover, BXS also improved the feces Lactobacillus levels and manifested beneficial effects on Bacteroides. The findings of the present study suggest that BXS is curative in a mouse model of ulcerative colitis, and the underlying mechanism might involve disruption of the Th17 pathway and the induction of a Th17/Treg imbalance, as well as an the development of an opsonic effect on specific gut microbiota. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Extraintestinal Helminth Infection Limits Pathology and Proinflammatory Cytokine Expression during DSS-Induced Ulcerative Colitis: A Role for Alternatively Activated Macrophages and Prostaglandins

    PubMed Central

    Ledesma-Soto, Yadira; Callejas, Blanca E.; Terrazas, César A.; Reyes, Jose L.; Espinoza-Jiménez, Arlett; González, Marisol I.; León-Cabrera, Sonia; Morales, Rosario; Olguín, Jonadab E.; Saavedra, Rafael; Oghumu, Steve; Satoskar, Abhay R.; Terrazas, Luis I.

    2015-01-01

    Chronic inflammation of the intestinal mucosa is characteristic of inflammatory bowel diseases such as ulcerative colitis and Crohn's disease. Helminth parasites have developed immunomodulatory strategies that may impact the outcome of several inflammatory diseases. Therefore, we investigated whether Taenia crassiceps infection is able to decrease the inflammatory effects of dextran sulfate sodium- (DSS-) induced ulcerative colitis in BALB/c and C57BL/6 mice. Preinfection significantly reduced the manifestations of DSS-induced colitis, as weight loss and shortened colon length, and decreased the disease activity index independently of the genetic background of the mice. Taenia infection decreased systemic levels of proinflammatory cytokines while increasing levels of IL-4 and IL-10, and the inflammatory infiltrate into the colon was also markedly reduced. RT-PCR assays from colon showed that T. crassiceps-infected mice displayed increased expression of Arginase-1 but decreased expression of iNOS compared to DSS-treated uninfected mice. The percentages of T regulatory cells were not increased. The adoptive transfer of alternatively activated macrophages (AAMФs) from infected mice into mice with DSS-induced colitis reduced the severity of colon inflammation. Administration of indomethacin abrogated the anticolitic effect of Taenia. Thus, T. crassiceps infection limits the pathology of ulcerative colitis by suppressing inflammatory responses mechanistically associated with AAMФs and prostaglandins. PMID:26090422

  14. Bifidobacterium breve attenuates murine dextran sodium sulfate-induced colitis and increases regulatory T cell responses.

    PubMed

    Zheng, Bin; van Bergenhenegouwen, Jeroen; Overbeek, Saskia; van de Kant, Hendrik J G; Garssen, Johan; Folkerts, Gert; Vos, Paul; Morgan, Mary E; Kraneveld, Aletta D

    2014-01-01

    While some probiotics have shown beneficial effects on preventing or treating colitis development, others have shown no effects. In this study, we have assessed the immunomodulating effects of two probiotic strains, Lactobacillus rhamnosus (L. rhamnosus) and Bifidobacterium breve (B. breve) on T cell polarization in vitro, using human peripheral blood mononuclear cells (PBMC), and in vivo, using murine dextran sodium sulfate (DSS) colitis model. With respect to the latter, the mRNA expression of T cell subset-associated transcription factors and cytokines in the colon was measured and the T helper type (Th) 17 and regulatory T cell (Treg) subsets were determined in the Peyer's patches. Both L. rhamnosus and B. breve incubations in vitro reduced Th17 and increased Th2 cell subsets in human PBMCs. In addition, B. breve incubation was also able to reduce Th1 and increase Treg cell subsets in contrast to L. rhamnosus. In vivo intervention with B. breve, but not L. rhamnosus, significantly attenuated the severity of DSS-induced colitis. In DSS-treated C57BL/6 mice, intervention with B. breve increased the expression of mRNA encoding for Th2- and Treg-associated cytokines in the distal colon. In addition, intervention with B. breve led to increases of Treg and decreases of Th17 cell subsets in Peyer's patches of DSS-treated mice. B. breve modulates T cell polarization towards Th2 and Treg cell-associated responses in vitro and in vivo. In vivo B. breve intervention ameliorates DSS-induced colitis symptoms and this protective effect may mediated by its effects on the T-cell composition.

  15. Bifidobacterium breve Attenuates Murine Dextran Sodium Sulfate-Induced Colitis and Increases Regulatory T Cell Responses

    PubMed Central

    Zheng, Bin; van Bergenhenegouwen, Jeroen; Overbeek, Saskia; van de Kant, Hendrik J. G.; Garssen, Johan; Folkerts, Gert; Vos, Paul; Morgan, Mary E.; Kraneveld, Aletta D.

    2014-01-01

    While some probiotics have shown beneficial effects on preventing or treating colitis development, others have shown no effects. In this study, we have assessed the immunomodulating effects of two probiotic strains, Lactobacillus rhamnosus (L. rhamnosus) and Bifidobacterium breve (B. breve) on T cell polarization in vitro, using human peripheral blood mononuclear cells (PBMC), and in vivo, using murine dextran sodium sulfate (DSS) colitis model. With respect to the latter, the mRNA expression of T cell subset-associated transcription factors and cytokines in the colon was measured and the T helper type (Th) 17 and regulatory T cell (Treg) subsets were determined in the Peyer's patches. Both L. rhamnosus and B. breve incubations in vitro reduced Th17 and increased Th2 cell subsets in human PBMCs. In addition, B. breve incubation was also able to reduce Th1 and increase Treg cell subsets in contrast to L. rhamnosus. In vivo intervention with B. breve, but not L. rhamnosus, significantly attenuated the severity of DSS-induced colitis. In DSS-treated C57BL/6 mice, intervention with B. breve increased the expression of mRNA encoding for Th2- and Treg-associated cytokines in the distal colon. In addition, intervention with B. breve led to increases of Treg and decreases of Th17 cell subsets in Peyer's patches of DSS-treated mice. B. breve modulates T cell polarization towards Th2 and Treg cell-associated responses in vitro and in vivo. In vivo B. breve intervention ameliorates DSS-induced colitis symptoms and this protective effect may mediated by its effects on the T-cell composition. PMID:24787575

  16. TRPV2 in the development of experimental colitis.

    PubMed

    Issa, C M; Hambly, B D; Wang, Y; Maleki, S; Wang, W; Fei, J; Bao, S

    2014-11-01

    Colitis is still a significant disease challenge in humans, but its underlying mechanism remains to be fully elucidated. The transient receptor potential vanilloid (TRPV) ion channel plays an important pathological role in host immunity, as deficiency of TRPV compromises host defence in vivo and in vitro. Using a DSS-induced colitis mouse model, the function of TRPV2 in the development of colitis was investigated, utilizing TRPV2(-/-) and Wt mice. Less severe colitis was observed in TRPV2(-/-) , compared to that of Wt mice, at the clinical, histopathological and immunohistochemical levels. Compared to Wt mice, reduced severity of colitis in TRPV2(-/-) mice may be due to less intestinal inflammation via reduced recruitment of macrophages. The TRPV2 pathway contributes to the development of colitis. These data provide useful information for potential therapeutic intervention in colitis patients. © 2014 John Wiley & Sons Ltd.

  17. Carrageenan-induced colitis is associated with decreased population of anti-inflammatory bacterium, Akkermansia muciniphila, in the gut microbiota of C57BL/6J mice.

    PubMed

    Shang, Qingsen; Sun, Weixia; Shan, Xindi; Jiang, Hao; Cai, Chao; Hao, Jiejie; Li, Guoyun; Yu, Guangli

    2017-09-05

    Carrageenan as a food additive has been used for years. However, controversy exists regarding to the safety of carrageenan and accumulating evidence indicates that it could induce colitis in experimental models. Here, to provide more information on this issue and solve the debate, we studied and compared in detail the toxic effects of different isomers of carrageenan (κ-, ι-, and λ-) on the colon of C57BL/6J mice. Interestingly, all isomers of carrageenan were found to induce colitis with a comparable activity. Given that carrageenan is unabsorbed after oral administration, and also in light of the fact that gut microbiota plays a pivotal role in the pathogenesis of colitis, we further investigated the effect of carrageenan on gut microbiota using high-throughput sequencing. Intriguingly, carrageenan-induced colitis was observed to be robustly correlated with changes in the composition of gut microbiota. Specifically, all carrageenans significantly decreased the abundance of a potent anti-inflammatory bacterium, Akkermansia muciniphila, in the gut, which is highly relevant for understanding the toxic effect of carrageenan. Altogether, our results corroborate previous studies demonstrating harmful gastrointestinal effect of carrageenan and, from a gut microbiota perspective, shed new light into the mechanism by which carrageenan induces colitis in experimental animals. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Oral administration of geraniol ameliorates acute experimental murine colitis by inhibiting pro-inflammatory cytokines and NF-κB signaling.

    PubMed

    Medicherla, Kanakaraju; Sahu, Bidya Dhar; Kuncha, Madhusudana; Kumar, Jerald Mahesh; Sudhakar, Godi; Sistla, Ramakrishna

    2015-09-01

    Ulcerative colitis is associated with a considerable reduction in the quality of life of patients. The use of phyto-ingredients is becoming an increasingly attractive approach for the management of colitis. Geraniol is a monoterpene with anti-inflammatory and antioxidative properties. In this study, we investigated the therapeutic potential of geraniol as a complementary and alternative medicine against dextran sulphate sodium (DSS)-induced ulcerative colitis in mice. Disease activity indices (DAI) comprising body weight loss, presence of occult blood and stool consistency were assessed for evaluation of colitis symptoms. Intestinal damage was assessed by evaluating colon length and its histology. Pre-treatment with geraniol significantly reduced the DAI score, improved stool consistency (without occult blood) and increased the colon length. The amount of pro-inflammatory cytokines, specifically TNF-α, IL-1β and IL-6 and the activity of myeloperoxidase in colon tissue were significantly decreased in geraniol pre-treated mice. Western blot analyses revealed that geraniol interfered with NF-κB signaling by inhibiting NF-κB (p65)-DNA binding, and IκBα phosphorylation, degradation and subsequent increase in nuclear translocation. Moreover, the expressions of downstream target pro-inflammatory enzymes such as iNOS and COX-2 were significantly reduced by geraniol. Pre-treatment with geraniol also restored the DSS-induced decline in antioxidant parameters such as reduced glutathione and superoxide dismutase activity and attenuated the increase in lipid peroxidation marker, thiobarbituric acid reactive substances and nitrative stress marker, nitrites in colon tissue. Thus, our results suggest that geraniol is a potential therapeutic agent for inflammatory bowel disease.

  19. Propolis from Different Geographic Origins Suppress Intestinal Inflammation in a Model of DSS-Induced Colitis is Associated with Decreased Bacteroides spp. in the Gut.

    PubMed

    Wang, Kai; Jin, Xiaolu; Li, Qiangqiang; Sawaya, Alexandra Christine Helena Frankland; Leu, Richard K Le; Conlon, Michael A; Wu, Liming; Hu, Fuliang

    2018-06-11

    Dietary supplementation with polyphenol-rich propolis can protect against experimentally-induced colitis. We examined whether different polyphenol compositions of Chinese propolis (CP) and Brazilian propolis (BP) influences their ability to protect against dextran sulfate sodium (DSS)-induced colitis in rats. HPLC-DAD/Q-TOF-MS analysis confirmed that polyphenol compositions of CP and BP were dissimilar. Rats were given CP or BP by gavage (300 mg/kg body weight) throughout the study, starting 1 week prior to DSS treatment for 1 week followed by 3 d without DSS. CP and BP significantly reduced the colitis disease activity index relative to controls not receiving propolis, prevented significant DSS-induced colonic tissue damage and increased resistance to DSS-induced colonic oxidative stress as shown by reduced malonaldehyde levels and increased T-AOC levels. CP and BP significantly reduced DSS-induced colonic apoptosis. Colonic inflammatory markers IL-1β, IL-6 and MCP-1 were suppressed by CP and BP, whereas only BP induced expression of TGF-β. CP, not BP, increased the diversity and richness of gut microbiota populations. Both forms of propolis significantly reduced populations of Bacteroides spp. Despite the dissimilar polyphenol compositions of CP and BP, their ability to protect against DSS-induced colitis is similar. Nevertheless, some different physiological impacts were observed. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  20. Unique Gene Expression and MR T2 Relaxometry Patterns Define Chronic Murine Dextran Sodium Sulphate Colitis as a Model for Connective Tissue Changes in Human Crohn’s Disease

    PubMed Central

    Breynaert, Christine; Dresselaers, Tom; Perrier, Clémentine; Arijs, Ingrid; Cremer, Jonathan; Van Lommel, Leentje; Van Steen, Kristel; Ferrante, Marc; Schuit, Frans; Vermeire, Séverine; Rutgeerts, Paul; Himmelreich, Uwe; Ceuppens, Jan L.; Geboes, Karel; Van Assche, Gert

    2013-01-01

    Introduction Chronically relapsing inflammation, tissue remodeling and fibrosis are hallmarks of inflammatory bowel diseases. The aim of this study was to investigate changes in connective tissue in a chronic murine model resulting from repeated cycles of dextran sodium sulphate (DSS) ingestion, to mimic the relapsing nature of the human disease. Materials and Methods C57BL/6 mice were exposed to DSS in drinking water for 1 week, followed by a recovery phase of 2 weeks. This cycle of exposure was repeated for up to 3 times (9 weeks in total). Colonic inflammation, fibrosis, extracellular matrix proteins and colonic gene expression were studied. In vivo MRI T 2 relaxometry was studied as a potential non-invasive imaging tool to evaluate bowel wall inflammation and fibrosis. Results Repeated cycles of DSS resulted in a relapsing and remitting disease course, which induced a chronic segmental, transmural colitis after 2 and 3 cycles of DSS with clear induction of fibrosis and remodeling of the muscular layer. Tenascin expression mirrored its expression in Crohn’s colitis. Microarray data identified a gene expression profile different in chronic colitis from that in acute colitis. Additional recovery was associated with upregulation of unique genes, in particular keratins, pointing to activation of molecular pathways for healing and repair. In vivo MRI T2 relaxometry of the colon showed a clear shift towards higher T2 values in the acute stage and a gradual regression of T2 values with increasing cycles of DSS. Conclusions Repeated cycles of DSS exposure induce fibrosis and connective tissue changes with typical features, as occurring in Crohn’s disease. Colonic gene expression analysis revealed unique expression profiles in chronic colitis compared to acute colitis and after additional recovery, pointing to potential new targets to intervene with the induction of fibrosis. In vivo T2 relaxometry is a promising non-invasive assessment of inflammation and fibrosis

  1. Vinpocetine Ameliorates Acetic Acid-Induced Colitis by Inhibiting NF-κB Activation in Mice.

    PubMed

    Colombo, Bárbara B; Fattori, Victor; Guazelli, Carla F S; Zaninelli, Tiago H; Carvalho, Thacyana T; Ferraz, Camila R; Bussmann, Allan J C; Ruiz-Miyazawa, Kenji W; Baracat, Marcela M; Casagrande, Rúbia; Verri, Waldiceu A

    2018-04-10

    The idiopathic inflammatory bowel diseases (IBD) comprise two types of chronic intestinal disorders: Crohn's disease and ulcerative colitis. Recruited neutrophils and macrophages contribute to intestinal tissue damage via production of ROS and NF-κB-dependent pro-inflammatory cytokines. The introduction of anti-TNF-α therapies in the treatment of IBD patients was a seminal advance. This therapy is often limited by a loss of efficacy due to the development of adaptive immune response, underscoring the need for novel therapies targeting similar pathways. Vinpocetine is a nootropic drug and in addition to its antioxidant effect, it is known to have anti-inflammatory and analgesic properties, partly by inhibition of NF-κB and downstream cytokines. Therefore, the present study evaluated the effect of the vinpocetine in a model of acid acetic-induced colitis in mice. Treatment with vinpocetine reduced edema, MPO activity, microscopic score and macroscopic damage, and visceral mechanical hyperalgesia. Vinpocetine prevented the reduction of colonic levels of GSH, ABTS radical scavenging ability, and normalized levels of anti-inflammatory cytokine IL-10. Moreover, vinpocetine reduced NF-κB activation and thereby NF-κB-dependent pro-inflammatory cytokines IL-1β, TNF-α, and IL-33 in the colon. Thus, we demonstrate for the first time that vinpocetine has anti-inflammatory, antioxidant, and analgesic effects in a model of acid acetic-induced colitis in mice and deserves further screening to address its suitability as an approach for the treatment of IBD.

  2. Propionyl-L-Carnitine is Efficacious in Ulcerative Colitis Through its Action on the Immune Function and Microvasculature.

    PubMed

    Scioli, Maria Giovanna; Stasi, Maria Antonietta; Passeri, Daniela; Doldo, Elena; Costanza, Gaetana; Camerini, Roberto; Fociani, Paolo; Arcuri, Gaetano; Lombardo, Katia; Pace, Silvia; Borsini, Franco; Orlandi, Augusto

    2014-03-20

    Microvascular endothelial dysfunction characterizes ulcerative colitis (UC), the most widespread form of inflammatory bowel disease. Intestinal mucosal microvessels in UC display aberrant expression of cell adhesion molecules (CAMs) and increased inflammatory cell recruitment. Propionyl-L-carnitine (PLC), an ester of L-carnitine required for the mitochondrial transport of fatty acids, ameliorates propionyl-CoA bioavailability and reduces oxidative stress in ischemic tissues. The present study aimed to document the efficacy of anti-oxidative stress properties of PLC in counteracting intestinal microvascular endothelial dysfunction and inflammation. To evaluate the efficacy in vivo, we analyzed the effects in intestinal biopsies of patients with mild-to-moderate UC receiving oral PLC co-treatment and in rat TNBS-induced colitis; in addition, we investigated antioxidant PLC action in TNF-α-stimulated human intestinal microvascular endothelial cells (HIMECs) in vitro. Four-week PLC co-treatment reduced intestinal mucosal polymorph infiltration and CD4(+) lymphocytes, ICAM-1(+) and iNOS(+) microvessels compared with placebo-treated patients with UC. Oral and intrarectal administration of PLC but not L-carnitine or propionate reduced intestinal damage and microvascular dysfunction in rat TNBS-induced acute and reactivated colitis. In cultured TNF-α-stimulated HIMECs, PLC restored β-oxidation and counteracted NADPH oxidase 4-generated oxidative stress-induced CAM expression and leukocyte adhesion. Inhibition of β-oxidation by L-aminocarnitine increased reactive oxygen species production and PLC beneficial effects on endothelial dysfunction and leukocyte adhesion. Finally, PLC reduced iNOS activity and nitric oxide accumulation in rat TNBS-induced colitis and in HIMEC cultures. Our results show that the beneficial antioxidant effect of PLC targeting intestinal microvasculature restores endothelial β-oxidation and function, and reduces mucosal inflammation in UC

  3. Essential roles of high-mobility group box 1 in the development of murine colitis and colitis-associated cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maeda, Shin; Hikiba, Yohko; Shibata, Wataru

    2007-08-24

    High-mobility group box 1 (HMGB1) is a nuclear factor released extracellularly as a proinflammatory cytokine. We measured the HMGB1 concentration in the sera of mice with chemically induced colitis (DSS; dextran sulfate sodium salt) and found a marked increase. Inhibition of HMGB1 by neutralizing anti-HMGB1 antibody resulted in reduced inflammation in DSS-treated colons. In macrophages, HMGB1 induces several proinflammatory cytokines, such as IL-6, which are regulated by NF-{kappa}B activation. Two putative sources of HMGB1 were explored: in one, bacterial factors induce HMGB1 secretion from macrophages and in the other, necrotic epithelial cells directly release HMGB1. LPS induced a small amountmore » of HMGB1 in macrophages, but macrophages incubated with supernatant prepared from necrotic cells and containing large amounts of HMGB1 activated NF-{kappa}B and induced IL-6. Using the colitis-associated cancer model, we demonstrated that neutralizing anti-HMGB1 antibody decreases tumor incidence and size. These observations suggest that HMGB1 is a potentially useful target for IBD treatment and the prevention of colitis-associated cancer.« less

  4. Swimming attenuates inflammation, oxidative stress, and apoptosis in a rat model of dextran sulfate sodium-induced chronic colitis

    PubMed Central

    Zhu, Xiao-shan; Liu, Qin-qin; Wang, Li-feng; Yang, An-gang; Gao, Chun-fang; Li, Jun-tang

    2017-01-01

    Increasing evidence suggests that regular physical exercise suppresses chronic inflammation. However, the potential inhibitory effects of swimming on dextran sulfate sodium (DSS)-induced chronic colitis, and its underlying mechanisms, remain unclear. In this study, rats were orally administered DSS to induce chronic colitis, and subsequently treated with or without swimming exercise. A 7-week swimming program (1 or 1.5 hours per day, 5 days per week) ameliorated DSS-caused colon shortening, colon barrier disruption, spleen enlargement, serum LDH release, and reduction of body weight gain. Swimming for 1.5 hours per day afforded greater protection than 1 hour per day. Swimming ameliorated DSS-induced decrease in crypt depth, and increases in myeloperoxidase activity, infiltration of Ly6G+ neutrophils and TNF-a- and IFN-?-expressing CD3+ T cells, as well as fecal calprotectin and lactoferrin. Swimming inhibited pro-inflammatory cytokine and chemokine production and decreased the protein expression of phosphorylated nuclear factor-?B p65 and cyclooxygenase 2, whereas it elevated interleukin-10 levels. Swimming impeded the generation of reactive oxygen species, malondialdehyde, and nitric oxide; however, it boosted glutathione levels, total antioxidant capacity, and superoxide dismutase and glutathione peroxidase activities. Additionally, swimming decreased caspase-3 activity and expression of apoptosis-inducing factor, cytochrome c, Bax, and cleaved-caspase-3, but increased Bcl-2 levels. Overall, these results suggest that swimming exerts beneficial effects on DSS-induced chronic colitis by modulating inflammation, oxidative stress, and apoptosis. PMID:28030847

  5. Swimming attenuates inflammation, oxidative stress, and apoptosis in a rat model of dextran sulfate sodium-induced chronic colitis.

    PubMed

    Qin, Ling; Yao, Zhi-Qiang; Chang, Qi; Zhao, Ya-Li; Liu, Ning-Ning; Zhu, Xiao-Shan; Liu, Qin-Qin; Wang, Li-Feng; Yang, An-Gang; Gao, Chun-Fang; Li, Jun-Tang

    2017-01-31

    Increasing evidence suggests that regular physical exercise suppresses chronic inflammation. However, the potential inhibitory effects of swimming on dextran sulfate sodium (DSS)-induced chronic colitis, and its underlying mechanisms, remain unclear. In this study, rats were orally administered DSS to induce chronic colitis, and subsequently treated with or without swimming exercise. A 7-week swimming program (1 or 1.5 hours per day, 5 days per week) ameliorated DSS-caused colon shortening, colon barrier disruption, spleen enlargement, serum LDH release, and reduction of body weight gain. Swimming for 1.5 hours per day afforded greater protection than 1 hour per day. Swimming ameliorated DSS-induced decrease in crypt depth, and increases in myeloperoxidase activity, infiltration of Ly6G+ neutrophils and TNF-α- and IFN-γ-expressing CD3+ T cells, as well as fecal calprotectin and lactoferrin. Swimming inhibited pro-inflammatory cytokine and chemokine production and decreased the protein expression of phosphorylated nuclear factor-κB p65 and cyclooxygenase 2, whereas it elevated interleukin-10 levels. Swimming impeded the generation of reactive oxygen species, malondialdehyde, and nitric oxide; however, it boosted glutathione levels, total antioxidant capacity, and superoxide dismutase and glutathione peroxidase activities. Additionally, swimming decreased caspase-3 activity and expression of apoptosis-inducing factor, cytochrome c, Bax, and cleaved-caspase-3, but increased Bcl-2 levels. Overall, these results suggest that swimming exerts beneficial effects on DSS-induced chronic colitis by modulating inflammation, oxidative stress, and apoptosis.

  6. Protective effect of Lagerstroemia speciosa against dextran sulfate sodium induced ulcerative colitis in C57BL/6 mice.

    PubMed

    Chaudhary, Ghanshyam; Mahajan, Umesh B; Goyal, Sameer N; Ojha, Shreesh; Patil, Chandragouda R; Subramanya, Sandeep B

    2017-01-01

    The protective effect of methanolic extract of Lagerstroemia speciosaleaves (LS) was evaluated against dextran sulfate sodium (DSS) induced ulcerative colitis in C57BL/6 mice. The administration of DSS (2.5% in drinking water ad libitum) in C57BL/6 mice induced ulcerative colitis in 7 days. The LS was orally administered for 7 days at daily doses of 100 and 200 mg/kg. At the end of 7 days of treatment the animals were sacrificed, colonic tissues were removed and processed for further analysis of oxidative stress, and histopathology. In DSS treated mice the oxidative stress markers were elevated compared to controls. There was also significant reduction in the anti-oxidant defense levels marked by reduced cellular glutathione, catalase, and superoxide dismutase. The DSS-induced damage to the colon epithelium was evident from a significant increase in the lipid peroxidation. The histology of colon sections revealed inflammatory changes and marked impairment in the integrity of the mucosal lining with inflammatory changes. Both the doses of LS significantly prevented DSS-induced inflammatory and ulcerative damages of the colon, reduced lipid peroxidation and also restored the levels of innate antioxidants in the colon tissue. These findings indicate the protective effects of LS against the DSS-induced inflammatory and oxidative damage in the mouse colon. Further investigation involving bioactivity guided fractionation of the LS can yield potent constituent which may have a significant role in the treatment of inflammatory bowel disease and ulcerative colitis.

  7. Stem cells for murine interstitial cells of cajal suppress cellular immunity and colitis via prostaglandin E2 secretion.

    PubMed

    Dave, Maneesh; Hayashi, Yujiro; Gajdos, Gabriella B; Smyrk, Thomas C; Svingen, Phyllis A; Kvasha, Sergiy M; Lorincz, Andrea; Dong, Haidong; Faubion, William A; Ordog, Tamas

    2015-05-01

    After allogeneic transplantation, murine stem cells (SCs) for interstitial cells of Cajal (ICCs), electrical pacemaker, and neuromodulator cells of the gut, were incorporated into gastric ICC networks, indicating in vivo immunosuppression. Immunosuppression is characteristic of bone marrow- and other non-gut-derived mesenchymal stem cells (MSCs), which are emerging as potential therapeutic agents against autoimmune diseases, including inflammatory bowel disease. Therefore, we investigated whether gut-derived ICC-SCs could also mitigate experimental colitis and studied the mechanisms of ICC-SC-mediated immunosuppression in relation to MSC-induced pathways. Isolated ICC-SCs were studied by transcriptome profiling, cytokine assays, flow cytometry, mixed lymphocyte reaction, and T-cell proliferation assay. Mice with acute and chronic colitis induced by dextran sulfate sodium and T-cell transfer, respectively, were administered ICC-SCs intraperitoneally and evaluated for disease activity by clinical and pathological assessment and for ICC-SC homing by live imaging. Unlike strain-matched dermal fibroblasts, intraperitoneally administered ICC-SCs preferentially homed to the colon and reduced the severity of both acute and chronic colitis assessed by clinical and blind pathological scoring. ICC-SCs profoundly suppressed T-cell proliferation in vitro. Similar to MSCs, ICC-SCs strongly expressed cyclooxygenase 1/2 and basally secreted prostaglandin E2. Indomethacin, a cyclooxygenase inhibitor, countered the ICC-SC-mediated suppression of T-cell proliferation. In contrast, we found no role for regulatory T-cell-, programmed death receptor-, and transforming growth factor-β-mediated mechanisms reported in MSCs; and transcriptome profiling did not support a relationship between ICC-SCs and MSCs. Murine ICC-SCs belong to a class different from MSCs and potently mitigate experimental colitis via prostaglandin E2-mediated immunosuppression. Copyright © 2015 AGA Institute

  8. Therapeutic efficacy of osthole against dinitrobenzene sulphonic acid induced-colitis in rats.

    PubMed

    Khairy, Hanan; Saleh, Hanan; Badr, Abeer M; Marie, Mohamed-Assem S

    2018-04-01

    Several mediators were associated with the pathogenesis of inflammatory bowel disease such as oxidative stress through the production of reactive oxygen metabolites, neutrophils infiltration and release of pro-inflammatory cytokines. This study was designed to investigate the therapeutic efficacy of osthole against dinitrobenzene sulfonic acid (DNBS) induced-colitis in rats through its anti-oxidant and anti-inflammatory properties. Colitis was induced in rats by single intracolonic instillation of (250 μl DNBS-25 mg/rat). Then 4 days later, rats were received oral administration of either (osthole 50 mg/kg), (sulfasalazine 500 mg/kg) or both in combination for 7 consecutive days. Body weight, some hematological parameters, colonic malondialdehyde (MDA) and myeloperoxidase activity (MPO), antioxidant parameters, colon injury and mucosa architectures were assessed. T helper (Th1)-related cytokines [Tumor necrosis factor alpha (TNF-α) and interferon-gamma (INF-γ)], Th2-relarted cytokines (interleukin-4 [IL-4 and IL-10], and Th-17 related cytokines [IL-17] were determined by ELISA. Osthole significantly improved the loss in body weight. That was accompanied with a remarkable amelioration of the disruption of the colonic architecture as well as a significant improvement in the antioxidant defense system. A reduction in MPO and MDA was observed in flamed colon. Treatment with either osthole or combination therapy showed suppressive activities on pro-inflammatory Th2-related cytokines and upregulation of anti-inflammatory Th2-related cytokines The results of this study suggest that osthole exert beneficial therapeutic effect in experimental colitis and improved the efficacy of the synthetized drugs such as sulfasalazine. Therefore, osthole may have a valuable sound in the treatment of inflammatory bowel disease. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  9. Predicting outcome in acute severe ulcerative colitis: comparison of the Travis and Ho scores using UK IBD audit data.

    PubMed

    Lynch, R W; Churchhouse, A M D; Protheroe, A; Arnott, I D R

    2016-06-01

    Acute severe ulcerative colitis is categorised using the Truelove & Witts criteria. The Travis and the Ho scores are calculated following 72 h of steroid treatment to identify patients at risk of failing steroid therapy who require colectomy or second-line medical therapy. To compare the Travis and the Ho scores in a large unselected cohort to determine which might be more clinically relevant. We analysed 3049 patients with ulcerative colitis from the 2010 round of the UK IBD audit of which 984 had acute severe ulcerative colitis. 420 patients had sufficient data for analysis. Patients were allocated into either a Travis high- or low-risk group and either a Ho high-, intermediate- or low-risk group. We assessed whether further medical or surgical intervention and outcomes varied between groups. High-risk patients in Travis and the Ho groups, when compared to lower risk groups, were more likely to fail steroid therapy: 64.5% (131/203) vs. 38.7% (84/217) (P < 0.0001) for Travis and 66.2% (96/145) vs. 46.7% (85/182) vs. 36.6% (34/93) (P < 0.0001) for Ho. They were also more likely to undergo surgery 34.0% (69/203) vs. 9.7% (21/217) for Travis and 33.1% (48/145) vs. 17.0% (31/182) vs. 11.8% (11/93) (P < 0.0001) for Ho. Travis high patients were more likely to be refractory to second-line medical therapy: 44.6% (37/83) vs. 20.0% (9/45) (P = 0.01). Patients identified as high risk using the Travis or the Ho scoring systems are more likely to be resistant to IV steroids and require surgery. Risk of surgery in both high-risk populations is lower than previously reported. © 2016 John Wiley & Sons Ltd.

  10. Dietary Green Pea Protects against DSS-Induced Colitis in Mice Challenged with High-Fat Diet.

    PubMed

    Bibi, Shima; de Sousa Moraes, Luís Fernando; Lebow, Noelle; Zhu, Mei-Jun

    2017-05-18

    Obesity is a risk factor for developing inflammatory bowel disease. Pea is unique with its high content of dietary fiber, polyphenolics, and glycoproteins, all of which are known to be health beneficial. We aimed to investigate the impact of green pea (GP) supplementation on the susceptibility of high-fat diet (HFD)-fed mice to dextran sulfate sodium (DSS)-induced colitis. Six-week-old C57BL/6J female mice were fed a 45% HFD or HFD supplemented with 10% GP. After 7-week dietary supplementation, colitis was induced by adding 2.5% DSS in drinking water for 7 days followed by a 7-day recovery period. GP supplementation ameliorated the disease activity index score in HFD-fed mice during the recovery stage, and reduced neutrophil infiltration, mRNA expression of monocyte chemoattractant protein-1 (MCP-1) and inflammatory markers interleukin (IL)-6, cyclooxygenase-2 (COX-2), IL-17, interferon-γ (IFN-γ), and inducible nitric oxide synthase (iNOS) in HFD-fed mice. Further, GP supplementation increased mucin 2 content and mRNA expression of goblet cell differentiation markers including Trefoil factor 3 (Tff3), Krüppel-like factor 4 (Klf4), and SAM pointed domain ETS factor 1 (Spdef1) in HFD-fed mice. In addition, GP ameliorated endoplasmic reticulum (ER) stress as indicated by the reduced expression of Activating transcription factor-6 (ATF-6) protein and its target genes chaperone protein glucose-regulated protein 78 (Grp78), the CCAAT-enhancer-binding protein homologous protein (CHOP), the ER degradation-enhancing α-mannosidase-like 1 protein (Edem1), and the X-box binding protein 1 (Xbp1) in HFD-fed mice. In conclusion, GP supplementation ameliorated the severity of DSS-induced colitis in HFD-fed mice, which was associated with the suppression of inflammation, mucin depletion, and ER stress in the colon.

  11. Effect of Concentrated Apple Extract on Experimental Colitis Induced by Acetic Acid.

    PubMed

    Pastrelo, Maurício Mercaldi; Dias Ribeiro, Carla Caroline; Duarte, Joselmo Willamys; Bioago Gollücke, Andréa Pitelli; Artigiani-Neto, Ricardo; Ribeiro, Daniel Araki; Miszputen, Sender Jankiel; Fujiyama Oshima, Celina Tizuko; Ribeiro Paiotti, Ana Paula

    2017-01-01

    Reactive oxygen and nitrogen species (ROS/RNS) play a crucial role in inflammatory bowel disease (IBD) exacerbating the chronic inflammatory process. Endogenous and diet antioxidants can neutralize these compounds. The apple is widely consumed, with several antioxidant activity compounds. The present study evaluated the effects of concentrated apple extract (CAE) in acetic acid induced colitis. 29 Wistar male rats were randomized into 5 groups. G1-Sham/saline solution, G2-CAE/control, G3-acetic acid/control, G4-curative- CAE treatment and G5-preventive-CAE treatment. Eight days later, the animals were euthanized and the colonic segment resected for macroscopic and histological analysis. Gene expression was evaluated for inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), catalase and copper and zinc superoxide dismutase (CuZnSOD) by quantitative real time PCR, while protein expression was assessed for iNOS, COX-2 and 8-hydroxy-20-deoxyguanosine (8-OHdG) via immunohistochemistry. The groups G3, G4 and G5 had weight loss, while G5 had weight increase at the end of the experiment. The treatment with CAE reduced the macroscopic and microscopic injury, decreased iNOS mRNA expression and increased CuZnSOD mRNA expression in animals with induced acetic acid-colitis. The findings of the present study suggest that CAE treatment exerts an antioxidant role by downregulating iNOS and upregulating CuZnSOD.

  12. Naked gene therapy of hepatocyte growth factor for dextran sulfate sodium-induced colitis in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanbe, Takamasa; Murai, Rie; Mukoyama, Tomoyuki

    Ulcerative colitis (UC) is progressive and relapsing disease. To explore the therapeutic effects of naked gene therapy of hepatocyte growth factor (HGF) on UC, the SR{alpha} promoter driving HGF gene was intrarectally administered to the mice in which colitis was induced by dextran sulfate sodium (DSS). Expression of the transgene was seen in surface epithelium, lamina propria, and muscularis mucosae. The HGF-treated mice showed reduced colonic mucosal damage and increased body weights, compared with control mice (P < 0.01 and P < 0.05, respectively). The HGF-treated mice displayed increased number of PCNA-positive cells and decreased number of apoptotic cells thanmore » in control mice (P < 0.01, each). Phosphorylated AKT was dramatically increased after HGF gene administration, however, phosphorylated ERK1/2 was not altered. Microarray analysis revealed that HGF induced expression of proliferation- and apoptosis-associated genes. These data suggest that naked HGF gene delivery causes therapeutic effects through regulation of many downstream genes.« less

  13. Dextran sodium sulphate-induced colitis perturbs muscarinic cholinergic control of colonic epithelial ion transport

    PubMed Central

    Sayer, Brooke; Lu, Jun; Green, Christina; Söderholm, Johan D; Akhtar, Mahmood; McKay, Derek M

    2002-01-01

    Neuronal cholinergic input is an important regulator of epithelial electrolyte transport and hence water movement in the gut. In this study, colitis was induced by treating mice with 4% (w v−1) dextran sodium-sulphate (DSS)-water for 5 days followed by 3 days of normal water. Mid-colonic segments were mounted in Ussing chambers and short-circuit current (Isc, indicates net ion movement) responses to the cholinergic agonist, carbachol (CCh; 10−4 M)±tetrodotoxin, atropine (ATR), hexamethonium (HEX), naloxone or phenoxybenzamine were assessed. Tissues from mice with DSS-induced colitis displayed a drop in Isc in response to CCh (−11.3±3.3 μA/cm2), while those from control mice showed a transient increase in Isc (76.3±13.0 μA/cm2). The ΔIsc in colon from DSS-treated mice was tetrodotoxin-sensitive, atropine-insensitive and was reversed by hexamethonium (HEX+CCh=16.7±7.8 μA/cm2), indicating involvement of a nicotinic receptor. CCh induced a drop in Isc in tissues from controls only when they were pretreated with the cholinergic muscarinic receptor blocker, atropine: ATR+CCh=−21.3±7.0 μA/cm2. Nicotine elicited a drop in Isc in Ussing-chambered colon from both control and DSS-treated mice that was TTX-sensitive. The drop in Isc evoked by CCh challenge of colonic tissue from DSS-treated mice or ATR+CCh challenge of control tissue was not significantly affected by blockade of opiate or α-adrenergic receptors by naloxone or phenoxybenzamine, respectively. The data indicate that DSS-colitis reveals a nicotinic receptor that becomes important in cholinergic regulation of ion transport. PMID:11934821

  14. Dextran-5-(4-ethoxycarbonylphenylazo)salicylic acid ester, a polymeric colon-specific prodrug releasing 5-aminosalicylic acid and benzocaine, ameliorates TNBS-induced rat colitis.

    PubMed

    Nam, Joon; Kim, Wooseong; Lee, Sunyoung; Jeong, Seongkeun; Yoo, Jin-Wook; Kim, Min-Soo; Jung, Yunjin

    2016-01-01

    Local anesthetics have beneficial effects on colitis. Dextran-5-(4-ethoxycarbonylphenylazo)salicylic acid ester (Dex-5-ESA), designed as a polymeric colon-specific prodrug liberating 5-ASA and benzocaine in the large intestine, was prepared and its therapeutic activity against colitis was evaluated using a TNBS-induced rat colitis model. Dex-5-ESA liberated 5-ASA and benzocaine in the cecal contents while (bio)chemically stable in the small intestinal contents and mucosa. Oral administration of Dex-5-ESA (equivalent to 10 mg 5-ASA/kg, twice a day) alleviated colonic injury and reduced MPO activity in the inflamed colon. In parallel, pro-inflammatory mediators, COX-2, iNOS and CINC-3, elevated by TNBS-induced colitis, were substantially diminished in the inflamed colon. Dex-5-ESA was much more effective for the treatment of colitis than 5-(4-ethoxycarbonylphenylazo)salicylic acid (5-ESA) that may not deliver benzocaine to the large intestine. Our data suggest that Dex-5-ESA is a polymeric colon-specific prodrug, liberating 5-ASA and benzocaine in the target site (large intestine), probably exerting anti-colitic effects by combined action of 5-ASA and benzocaine.

  15. Probiotic yeasts: Anti-inflammatory potential of various non-pathogenic strains in experimental colitis in mice

    PubMed Central

    Foligné, Benoît; Dewulf, Joëlle; Vandekerckove, Pascal; Pignède, Georges; Pot, Bruno

    2010-01-01

    AIM: To evaluate the in vitro immunomodulation capacity of various non-pathogenic yeast strains and to investigate the ability of some of these food grade yeasts to prevent experimental colitis in mice. METHODS: In vitro immunomodulation was assessed by measuring cytokines [interleukin (IL)-12p70, IL-10, tumor necrosis factor and interferon γ] released by human peripheral blood mononuclear cells after 24 h stimulation with 6 live yeast strains (Saccharomyces ssp.) and with bacterial reference strains. A murine model of acute 2-4-6-trinitrobenzene sulfonic acid (TNBS)-colitis was next used to evaluate the distinct prophylactic protective capacities of three yeast strains compared with the performance of prednisolone treatment. RESULTS: The six yeast strains all showed similar non-discriminating anti-inflammatory potential when tested on immunocompetent cells in vitro. However, although they exhibited similar colonization patterns in vivo, some yeast strains showed significant anti-inflammatory activities in the TNBS-induced colitis model, whereas others had weaker or no preventive effect at all, as evidenced by colitis markers (body-weight loss, macroscopic and histological scores, myeloperoxidase activities and blood inflammatory markers). CONCLUSION: A careful selection of strains is required among the biodiversity of yeasts for specific clinical studies, including applications in inflammatory bowel disease and other therapeutic uses. PMID:20440854

  16. Immune-related Colitis Induced by the Long-term Use of Nivolumab in a Patient with Non-small Cell Lung Cancer.

    PubMed

    Yasuda, Yuichiro; Urata, Yoshiko; Tohnai, Rie; Ito, Shoichi; Kawa, Yoshitaka; Kono, Yuko; Hattori, Yoshihiro; Tsuda, Masahiro; Sakuma, Toshiko; Negoro, Shunichi; Satouchi, Miyako

    2018-05-01

    We herein report a case of immune-related colitis induced by the long-term use of nivolumab. A 62-year-old Japanese man was treated with nivolumab at 3 mg/kg every 2 weeks for advanced lung adenocarcinoma. The patient was admitted to our hospital due to non-bloody watery diarrhea after the 70th dose of nivolumab. A biopsy specimen of the colon mucosa revealed evidence of colitis with cryptitis and crypt microabscesses. He was diagnosed with immune-related colitis and started on predonisolone 60 mg/day. Subsequently, his symptoms remarkably resolved. Consideration of immune-related adverse events up to several years after the initiation of nivolumab is important.

  17. Ulcerative Colitis

    MedlinePlus

    ... Ulcerative colitis care at Mayo Clinic Symptoms Ulcerative colitis symptoms can vary, depending on the severity of inflammation ... children, failure to grow Most people with ulcerative colitis have mild to moderate symptoms. The course of ulcerative colitis may vary, with ...

  18. VBP15, a novel dissociative steroid compound, reduces NFκB-induced expression of inflammatory cytokines in vitro and symptoms of murine trinitrobenzene sulfonic acid-induced colitis.

    PubMed

    Damsker, Jesse M; Conklin, Laurie S; Sadri, Soheil; Dillingham, Blythe C; Panchapakesan, Karuna; Heier, Christopher R; McCall, John M; Sandler, Anthony D

    2016-09-01

    The goal of this study was to assess the capacity of VBP15, a dissociative steroidal compound, to reduce pro-inflammatory cytokine expression in vitro, to reduce symptoms of colitis in the trinitrobenzene sulfonic acid-induced murine model, and to assess the effect of VBP15 on growth stunting in juvenile mice. In vitro studies were performed in primary human intestinal epithelial cells. Colitis was induced in mice by administering trinitrobenzene sulfonic acid. Growth stunting studies were performed in wild type outbred mice. Cells were treated with VBP15 or prednisolone (10 μM) for 24 h. Mice were subjected to 3 days of VBP15 (30 mg/kg) or prednisolone (30 mg/kg) in the colitis study. In the growth stunting study, mice were subjected to VBP15 (10, 30, 45 mg/kg) or prednisolone (10 mg/kg) for 5 weeks. Cytokines were measured by PCR and via Luminex. Colitis symptoms were evaluated by assessing weight loss, intestinal blood, and stool consistency. Growth stunting was assessed using an electronic caliper. VBP15 significantly reduced the in vitro production of CCL5 (p < 0.001) IL-6 (p < 0.001), IL-8 (p < 0.05) and reduced colitis symptoms (p < 0.05). VBP15 caused less growth stunting than prednisolone (p < 0.001) in juvenile mice. VBP15 may reduce symptoms of IBD, while decreasing or avoiding detrimental side effects.

  19. Colitis and Colon Cancer in WASP-Deficient Mice Require Helicobacter Spp.

    PubMed Central

    Nguyen, Deanna D.; Muthupalani, Suresh; Goettel, Jeremy A.; Eston, Michelle A.; Mobley, Melissa; Taylor, Nancy S.; McCabe, Amanda; Marin, Romela; Snapper, Scott B.; Fox, James G.

    2014-01-01

    Background Wiskott-Aldrich Syndrome protein (WASP)-deficient patients and mice are immunodeficient and can develop inflammatory bowel disease. The intestinal microbiome is critical to the development of colitis in most animal models, in which, Helicobacter spp. have been implicated in disease pathogenesis. We sought to determine the role of Helicobacter spp. in colitis development in WASP-deficient (WKO) mice. Methods Feces from WKO mice raised under specific pathogen free conditions were evaluated for the presence of Helicobacter spp., after which, a subset of mice were rederived in Helicobacter spp.-free conditions. Helicobacter spp.-free WKO animals were subsequently infected with Helicobacter bilis. Results Helicobacter spp. were detected in feces from WKO mice. After re-derivation in Helicobacter spp.-free conditions, WKO mice did not develop spontaneous colitis but were susceptible to radiation-induced colitis. Moreover, a T-cell transfer model of colitis dependent on WASP-deficient innate immune cells also required Helicobacter spp. colonization. Helicobacter bilis infection of rederived WKO mice led to typhlitis and colitis. Most notably, several H. bilis-infected animals developed dysplasia with 10% demonstrating colon carcinoma, which was not observed in uninfected controls. Conclusions Spontaneous and T-cell transfer, but not radiation-induced, colitis in WKO mice is dependent on the presence of Helicobacter spp. Furthermore, H. bilis infection is sufficient to induce typhlocolitis and colon cancer in Helicobacter spp.-free WKO mice. This animal model of a human immunodeficiency with chronic colitis and increased risk of colon cancer parallels what is seen in human colitis and implicates specific microbial constituents in promoting immune dysregulation in the intestinal mucosa. PMID:23820270

  20. Short-term effect and adverse events of adalimumab versus placebo in inducing remission for moderate-to-severe ulcerative colitis: a meta-analysis.

    PubMed

    Yang, Zheng; Ye, Xiao-Qing; Zhu, Yu-Zhen; Liu, Zhou; Zou, Ying; Deng, Ying; Guo, Can-Can; Garg, Sushil Kumar; Feng, Jin-Shan

    2015-01-01

    Adalimumab is used in an attempt to maintain remission for Ulcerative colitis. This study was to evaluate the efficacy and adverse events of adalimumab compared with placebo in inducing remission of Ulcerative colitis. MEDLINE, EMBASE, the Cochrane Controlled Trials Register, OVID, BIOSIS, CNKI, and Google were searched. All randomized trials comparing adalimumab with placebo in inducing remission of moderate-to-severe ulcerative colitis were included. Two randomized controlled trials with a total of 754 participants met the inclusion criteria. The pooled risk ratio (RR) of clinical remission was 1.85 (95% confidence interval (CI) 1.26 to 2.72) following adalimumab treatment. RR of clinical response was 1.40 (95% CI 1.19 to 1.65) while that of mucosal healing was 1.23 (95% CI 1.03 to 1.47). RR of any adverse events was 1.00 (95% CI 0.93 to 1.09). Compared with placebo, administration of adalimumab may increase the proportion of patients with moderate-to-severe ulcerative colitis attaining clinical remission, clinical response and mucosal healing. Adalimumab is also tolerated well in these patients.

  1. Heme Oxygenase-1 Induction and Anti-inflammatory Actions of Atractylodes macrocephala and Taraxacum herba Extracts Prevented Colitis and Was More Effective than Sulfasalazine in Preventing Relapse

    PubMed Central

    Han, Kyu-Hyun; Park, Jong-Min; Jeong, Migyeong; Han, Young-Min; Go, Eun-Jin; Park, Juyeon; Kim, Hocheol; Han, Jae Gab; Kwon, Oran; Hahm, Ki Baik

    2017-01-01

    Background/Aims In inflammatory bowel disease (IBD), repeated bouts of remission and relapse occur in patients and can impose a risk of colitis-associated cancer. We hypothesized that plant extracts of Atractylodes macrocephala (AM) or Taraxacum herba (TH) may be better than sulfasalazine for treating this disease because these extracts can promote additional regeneration. Methods Murine intestinal epithelial IEC-6 cells were pretreated with AM or TH before a lipopolysaccharide (LPS)-induced challenge. Acute colitis was induced with 7 days of dextran sulfate sodium (DSS) in male C57BL/6 mice, and extracts of AM and TH were administered for 2 weeks before DSS administration. Results In vitro studies demonstrated that AM or TH treatment reduced LPS-induced COX-2 and tumor necrosis factor-α mRNA levels but increased heme oxygenase-1 (HO-1). Oral preadministration of AM and TH rescued mice from DSS-induced colitis by inhibiting inflammatory mediators via inactivated extracellular signal regulated kinase and repressed nuclear factor κB and signal transducer and activator of transcription 3, but the effect was weaker for sulfasalazine than that for the extracts. Anti-inflammatory activities occurred via the inhibition of macrophage and T lymphocyte infiltrations. Unlike sulfasalazine, which did not induce HO-1, TH extracts afforded significant HO-1 induction. Conclusions Because the AM or TH extracts were far superior in preventing DSS-induced colitis than sulfasalazine, AM or TH extracts can be considered natural agents that can prevent IBD relapse. PMID:28651306

  2. Heme Oxygenase-1 Induction and Anti-inflammatory Actions of Atractylodes macrocephala and Taraxacum herba Extracts Prevented Colitis and Was More Effective than Sulfasalazine in Preventing Relapse.

    PubMed

    Han, Kyu-Hyun; Park, Jong-Min; Jeong, Migyeong; Han, Young-Min; Go, Eun-Jin; Park, Juyeon; Kim, Hocheol; Han, Jae Gab; Kwon, Oran; Hahm, Ki Baik

    2017-09-15

    In inflammatory bowel disease (IBD), repeated bouts of remission and relapse occur in patients and can impose a risk of colitis-associated cancer. We hypothesized that plant extracts of Atractylodes macrocephala (AM) or Taraxacum herba (TH) may be better than sulfasalazine for treating this disease because these extracts can promote additional regeneration. Murine intestinal epithelial IEC-6 cells were pretreated with AM or TH before a lipopolysaccharide (LPS)-induced challenge. Acute colitis was induced with 7 days of dextran sulfate sodium (DSS) in male C57BL/6 mice, and extracts of AM and TH were administered for 2 weeks before DSS administration. In vitro studies demonstrated that AM or TH treatment reduced LPS-induced COX -2 and tumor necrosis factor -α mRNA levels but increased heme oxygenase-1 (HO-1). Oral preadministration of AM and TH rescued mice from DSS-induced colitis by inhibiting inflammatory mediators via inactivated extracellular signal regulated kinase and repressed nuclear factor κB and signal transducer and activator of transcription 3, but the effect was weaker for sulfasalazine than that for the extracts. Anti-inflammatory activities occurred via the inhibition of macrophage and T lymphocyte infiltrations. Unlike sulfasalazine, which did not induce HO-1, TH extracts afforded significant HO-1 induction. Because the AM or TH extracts were far superior in preventing DSS-induced colitis than sulfasalazine, AM or TH extracts can be considered natural agents that can prevent IBD relapse.

  3. Short-chain inulin-like fructans reduce endotoxin and bacterial translocations and attenuate development of TNBS-induced colitis in rats.

    PubMed

    Ito, Hiroyuki; Tanabe, Hiroki; Kawagishi, Hirokazu; Tadashi, Wada; Yasuhiko, Tomono; Sugiyama, Kimio; Kiriyama, Shuhachi; Morita, Tatsuya

    2009-10-01

    Anti-inflammatory effects of short-chain inulin-like fructans (SCF) on trinitrobenzene sulfonic acid (TNBS)-induced colitis were investigated in rats, focusing specifically on endotoxin and bacterial translocations. SCF with degrees of polymerization (DP) of 4 and 8 were used. Rats were fed either control diet or diets including 60 g DP4 or DP8 per kilogram for 7 days, and then received intracolonic TNBS and were fed the respective diets for a further 10 days. DP4 and DP8 significantly reduced colonic injuries as assessed by damage score, but the reduction of colonic myeloperoxidase activity was manifest solely with DP8. At 3 days after colitis induction, bacterial translocation to the mesenteric lymph node was significantly lower in the DP4 and DP8 groups, but significant reduction in the portal endotoxin concentration was achieved solely in the DP8 group. Immediately prior to colitis induction, cecal immunoglobulin A and mucin concentrations were higher in the DP4 and DP8 groups, but these changes were abolished at 10 days post colitis induction. The data suggest that SCF exert prophylactic effects against TNBS colitis, presumably as a result of inhibitory effects on endotoxin and bacterial translocations.

  4. Propionyl-L-Carnitine is Efficacious in Ulcerative Colitis Through its Action on the Immune Function and Microvasculature

    PubMed Central

    Scioli, Maria Giovanna; Stasi, Maria Antonietta; Passeri, Daniela; Doldo, Elena; Costanza, Gaetana; Camerini, Roberto; Fociani, Paolo; Arcuri, Gaetano; Lombardo, Katia; Pace, Silvia; Borsini, Franco; Orlandi, Augusto

    2014-01-01

    Objectives: Microvascular endothelial dysfunction characterizes ulcerative colitis (UC), the most widespread form of inflammatory bowel disease. Intestinal mucosal microvessels in UC display aberrant expression of cell adhesion molecules (CAMs) and increased inflammatory cell recruitment. Propionyl-L-carnitine (PLC), an ester of L-carnitine required for the mitochondrial transport of fatty acids, ameliorates propionyl-CoA bioavailability and reduces oxidative stress in ischemic tissues. The present study aimed to document the efficacy of anti-oxidative stress properties of PLC in counteracting intestinal microvascular endothelial dysfunction and inflammation. Methods: To evaluate the efficacy in vivo, we analyzed the effects in intestinal biopsies of patients with mild-to-moderate UC receiving oral PLC co-treatment and in rat TNBS-induced colitis; in addition, we investigated antioxidant PLC action in TNF-α-stimulated human intestinal microvascular endothelial cells (HIMECs) in vitro. Results: Four-week PLC co-treatment reduced intestinal mucosal polymorph infiltration and CD4+ lymphocytes, ICAM-1+ and iNOS+ microvessels compared with placebo-treated patients with UC. Oral and intrarectal administration of PLC but not L-carnitine or propionate reduced intestinal damage and microvascular dysfunction in rat TNBS-induced acute and reactivated colitis. In cultured TNF-α-stimulated HIMECs, PLC restored β-oxidation and counteracted NADPH oxidase 4-generated oxidative stress-induced CAM expression and leukocyte adhesion. Inhibition of β-oxidation by L-aminocarnitine increased reactive oxygen species production and PLC beneficial effects on endothelial dysfunction and leukocyte adhesion. Finally, PLC reduced iNOS activity and nitric oxide accumulation in rat TNBS-induced colitis and in HIMEC cultures. Conclusions: Our results show that the beneficial antioxidant effect of PLC targeting intestinal microvasculature restores endothelial β-oxidation and function, and

  5. Severe colitis associated with docetaxel use: A report of four cases

    PubMed Central

    Carrion, Andres F; Hosein, Peter J; Cooper, Eugene M; Lopes, Gilberto; Pelaez, Liset; Rocha-Lima, Caio M

    2010-01-01

    Diarrhea is a common side effect of chemotherapy. Pseudomembranous colitis is a well known complication of antibiotic treatment that can also be observed, albeit rarely, with certain chemotherapeutic agents. We present four cases of severe colitis in patients undergoing treatment with taxane-based chemotherapy for pancreatic, lung and breast cancer. None of them had recently received antibiotics. One patient presented with a bowel perforation and three had endoscopic findings of pseudomembranous colitis. Two of these three patients had negative stool toxin assays for Clostridium difficile. In the patient presenting with perforation, an emergency left hemicolectomy was performed and the pathological findings in the colon were acute inflammation and ischemic necrosis; the other three patients were treated with oral vancomycin and/or oral or intravenous metronidazole leading to complete resolution of the symptoms. Apart from pseudomembranous colitis, we describe patients presenting with neutropenic enterocolitis as well as ischemic colitis after docetaxel use. These cases provide some insight into the spectrum and varied clinical presentations of severe colitis associated with taxane-based chemotherapy. PMID:21160890

  6. Camellia Oil ( Camellia oleifera Abel.) Modifies the Composition of the Gut Microbiota and Alleviates Acetic Acid-induced Colitis in Rats.

    PubMed

    Lee, Wei-Ting; Tung, Yu-Tang; Wu, Chun-Ching; Tu, Pang-Shuo; Yen, Gow-Chin

    2018-06-13

    Ulcerative colitis (UC), one type of chronic inflammatory bowel disease (IBD), is a chronic and recurrent disorder of the gastrointestinal (GI) tract. As camellia oil (CO) is traditionally used to treat GI disorders, this study investigated the role of CO on acetic acid-induced colitis in the rat. The composition of the gut microbial community is related to many diseases, thus, this study also investigated the effects of CO on the composition of the gut microbiota. The rats were fed a dose of 2 mL/kg body weight CO, olive oil (OO), or soybean oil (SO) once a day for 20 days, and the gut microbiota was analyzed using 16S rRNA gene sequencing. Results of the gut microbiota examination showed significant clustering of feces after treatment with CO and OO; however, individual differences with OO varied considerably. Compared to SO and OO, the intake of CO increased the ratio of Firmicutes/Bacteroidetes, the α-diversity, relative abundance of the Bifidobacterium, and reduced Prevotella of the gut microbiota. On day 21, colitis was induced by a single transrectal administration of 2 mL of 4% acetic acid. However, pretreatment of rats with CO or OO for 24 days slightly enhanced antioxidant and antioxidant enzyme activities, and significantly reduced inflammatory damage and lipid peroxidation, thus ameliorating acetic acid-induced colitis. These results indicated that CO was better able to ameliorate impairment of the antioxidant system induced by acetic acid compared to OO and SO, which may have been due to CO modifying the composition of the gut microbiota or CO being a rich source of phytochemicals.

  7. A new therapeutic association to manage relapsing experimental colitis: Doxycycline plus Saccharomyces boulardii.

    PubMed

    Garrido-Mesa, José; Algieri, Francesca; Rodriguez-Nogales, Alba; Utrilla, Maria Pilar; Rodriguez-Cabezas, Maria Elena; Zarzuelo, Antonio; Ocete, Maria Angeles; Garrido-Mesa, Natividad; Galvez, Julio

    2015-07-01

    Immunomodulatory antibiotics have been proposed for the treatment of multifactorial conditions such as inflammatory bowel disease. Probiotics are able to attenuate intestinal inflammation, being considered as safe when chronically administered. The aim of the study was to evaluate the anti-inflammatory effects of doxycycline, a tetracycline with immunomodulatory properties, alone and in association with the probiotic Saccharomyces boulardii CNCMI-745. Doxycycline was assayed both in vitro (Caco-2 epithelial cells and RAW 264.7 macrophages) and in vivo, in the trinitrobenzenesulfonic acid (TNBS) model of rat colitis and the dextran sodium sulfate (DSS) model of mouse colitis. In addition, the anti-inflammatory effect of the association of doxycycline and the probiotic was evaluated in vitro and in vivo in a DSS model of reactivated colitis in mice. Doxycycline displayed immunomodulatory activity in vitro, reducing IL-8 production by intestinal epithelial cells and nitric oxide by macrophages. Doxycycline administration to TNBS-colitic rats (5, 10 and 25 mg/kg) ameliorated the intestinal inflammatory process, being its efficacy comparable to that previously showed by minocycline. Doxycycline treatment was also effective in reducing acute intestinal inflammation in the DSS model of mouse colitis. The association of doxycycline and S. boulardii helped managing colitis in a reactivated model of colitis, by reducing intestinal inflammation and accelerating the recovery and attenuating the relapse. This was evidenced by a reduced disease activity index, colonic tissue damage and expression of inflammatory mediators. This study confirms the intestinal anti-inflammatory activity of doxycycline and supports the potential use of its therapeutic association with S. boulardii for the treatment of inflammatory bowel diseases, in which doxycycline is used to induce remission and long term probiotic administration helps to prevent the relapses. Copyright © 2015 Elsevier Ltd. All

  8. Sulfhydryl blocker-induced colitis in the rat: immunological changes in thymus gland and colonic mucosa.

    PubMed

    Suzuki, H; Hibi, T; Oda, M; Hosoda, Y; Mori, M; Miura, S; Tanaka, S; Watanabe, M; Tsuchiya, M

    1994-01-01

    The study was designed to examine the changes of thymus in sulfhydryl blocker-induced colitis. We used N-ethylmaleimide (NEM) as sulfhydryl blockers. Fasted male Sprague-Dawley rats were given 3% NEM in 1% methyl cellulose into the colon. N-ethylmaleimide treatment caused severe diarrhoea with bleeding for the first 7 days. At autopsy, adhesions, colon dilatation, and single or multiple erosions and ulcers were observed. Time-course studies revealed that the lesions were most extensive and severe 3 or 7 days after the administration of NEM. Histological examination of colon on the 3rd day after NEM treatment demonstrated mucosal erosion, oedema and extensive infiltration of neutrophils. The mucosal lesions extended into the submucosa and muscle on the 7th day after NEM treatment. Immunohistochemical studies showed that T cells and macrophages were markedly increased in the lamina propria of colonic mucosa. After 3 weeks, the infiltration of chronic inflammatory cells was observed and regeneration of the mucosa was noticed. The thymus gland was significantly decreased in weight and size on the 3rd day after NEM treatment, but the weight loss of thymus gland was regained in 3 weeks. Transient atrophy of thymus gland was noticed in this colitis model. The phenotypes of thymocytes were not influenced by NEM treatment. It is concluded that the thymus abnormalities in human ulcerative colitis are not induced in this animal model and that other chronic models are necessary for the elucidation of the immunological abnormalities, including thymus abnormalities.

  9. Anti-inflammatory Effect of Amitriptyline on Ulcerative Colitis in Normal and Reserpine-Induced Depressed Rats

    PubMed Central

    Fattahian, Ehsan; Hajhashemi, Valiollah; Rabbani, Mohammad; Minaiyan, Mohsen; Mahzouni, Parvin

    2016-01-01

    Depressive disorders are more common among persons with chronic diseases such as inflammatory bowel disease and anti-inflammatory effect of some antidepressants such as amitriptyline has been reported. Acetic acid colitis was induced in both reserpinised (depressed) and non-reserpinised (normal) rats. Reserpinised groups received reserpine (6 mg/kg, i.p.) one hour prior to colitis induction. Then Amitriptyline (5, 10, 20 mg/kg, i.p.) was administered to separate groups of male Wistar rats. All treatments were carried out two hours after colitis induction and continued daily for four days. Dexamethasone (1 mg/kg) and normal saline (1 mL/kg) were used in reference and control groups, respectively. At day five, animals were euthanized and colonic tissue injuries were assessed macroscopically and pathologically. Myeloperoxidase activity as a marker of neutrophil infiltration was also measured in colonic tissues. Results showed that reserpine (6 mg/kg, i.p.) intensified colitic condition. Compared to control, amitriptyline (10, 20 mg/kg) and dexamethasone significantly decreased weight of colon and ulcer index in normal and reserpine-induced depressed rats. Myeloperoxidase activity and pathological assessments also proved anti-inflammatory effect of amitriptyline. Our results suggest that amitriptyline, a tricyclic antidepressant, could reduce inflammatory and ulcerative injuries of colon both in normal and depressed rats. So among the wide spread anti-depressant drugs, amitriptyline is a good choice to treat depression comorbidities in patients with IBD. PMID:28228811

  10. Rhenium-coated glass beads for intracolonic administration attenuate TNBS-induced colitis in mice: Proof-of-Concept Study.

    PubMed

    Siczek, Krzysztof; Zatorski, Hubert; Pawlak, Wojciech; Fichna, Jakub

    2015-01-01

    In search for novel effective treatments in inflammatory bowel diseases, a new strategy employing glass beads coated with rhenium nanolayer has been developed and validated in the mouse model of 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis. Briefly, mice were randomly divided into 5 experimental groups: control (vehicle alone, Group 1); control treated with rhenium-coated glass beads (Group 2); TNBS (Group 3); TNBS treated with rhenium-coated glass beads (Group 4); and TNBS treated with uncoated glass beads (Group 5). Mice from Group 2, 4 and 5 were treated with respective beads (once daily, 5 beads / animal, i.c.) between D3-D6 post-TNBS/vehicle and evaluation of colonic damage was performed on D7, based on macroscopic scoring and clinical parameters. Severe colonic inflammation developed in post-TNBS mice (Group 3) [P <0.001 vs. control (Group 1) for macroscopic score], which was significantly attenuated by treatment with rhenium-coated glass beads (Group 4) [P <0.01 vs. TNBS (Group 3), for macroscopic score]. Neither rhenium-coated glass beads had any effect in control animals (Group 2), nor uncoated glass beads influenced TNBS-induced colitis (Group 5). In conclusion, a novel and attractive strategy for the treatment of colonic inflammation has been proposed; therapy with rhenium-coated glass beads already proved effective in the mouse model of TNBS-induced colitis, now requires further characterization in clinical conditions.

  11. Saccharomyces cerevisiae CNCM I-3856 prevents colitis induced by AIEC bacteria in the transgenic mouse model mimicking Crohn's disease.

    PubMed

    Sivignon, Adeline; de Vallée, Amélie; Barnich, Nicolas; Denizot, Jérémy; Darcha, Claude; Pignède, Georges; Vandekerckove, Pascal; Darfeuille-Michaud, Arlette

    2015-02-01

    Adherent-invasive Escherichia coli (AIEC), which colonize the ileal mucosa of patients with Crohn's disease (CD), are able to adhere to and invade intestinal epithelial cells. Overexpression of the glycoprotein CEACAM6 on host cells favors AIEC attachment and inflammation. We investigated the ability of Saccharomyces cerevisiae CNCM I-3856 to inhibit AIEC adhesion and to reduce colitis. Adhesion experiments were performed on T84 cells and on enterocytes from patients with CD with AIEC LF82 in the presence of S. cerevisiae. Colonization and symptoms of colitis were assessed in LF82-infected transgenic CEABAC10 mice treated with live S. cerevisiae or S. cerevisiae derivatives. Proinflammatory cytokines were quantified by enzyme linked immunosorbent assay. Intestinal permeability was assessed by measuring the 4 kDa dextran-FITC flux in the serum. S. cerevisiae strongly inhibited LF82 adhesion to T84 cells and to the brush border of CD enterocytes. Yeasts decreased LF82 colonization and colitis in CEABAC10 mice and restored barrier function through prevention of the LF82-induced expression of pore-forming tight junction claudin-2 at the plasma membrane of intestinal epithelial cells. These effects were accompanied by a decrease in proinflammatory cytokines IL-6, IL-1β, and KC release by the gut mucosa. Yeast derivatives exerted similar effects on LF82 colonization and colitis demonstrating that yeast viability was not essential to exert beneficial effects. S. cerevisiae yeasts reduce colitis induced by AIEC bacteria in CEACAM6-expressing mice. Such a probiotic strategy could be envisaged in a subgroup of patients with CD abnormally expressing CEACAM6 at the ileal mucosa and therefore susceptible to being colonized by AIEC bacteria.

  12. Immune-related Colitis Induced by the Long-term Use of Nivolumab in a Patient with Non-small Cell Lung Cancer

    PubMed Central

    Yasuda, Yuichiro; Urata, Yoshiko; Tohnai, Rie; Ito, Shoichi; Kawa, Yoshitaka; Kono, Yuko; Hattori, Yoshihiro; Tsuda, Masahiro; Sakuma, Toshiko; Negoro, Shunichi; Satouchi, Miyako

    2017-01-01

    We herein report a case of immune-related colitis induced by the long-term use of nivolumab. A 62-year-old Japanese man was treated with nivolumab at 3 mg/kg every 2 weeks for advanced lung adenocarcinoma. The patient was admitted to our hospital due to non-bloody watery diarrhea after the 70th dose of nivolumab. A biopsy specimen of the colon mucosa revealed evidence of colitis with cryptitis and crypt microabscesses. He was diagnosed with immune-related colitis and started on predonisolone 60 mg/day. Subsequently, his symptoms remarkably resolved. Consideration of immune-related adverse events up to several years after the initiation of nivolumab is important. PMID:29279482

  13. Exploring the ameliorative potential of probiotic Dahi containing Lactobacillus acidophilus and Bifidobacterium bifidum on dextran sodium sulphate induced colitis in mice.

    PubMed

    Jadhav, Sagar R; Shandilya, Umesh Kr; Kansal, Vinod K

    2013-02-01

    Conventional medical therapies for ulcerative colitis (UC) are still limited due to the adverse side effects like dose-dependent diarrhoea and insufficient potency to keep in remission for long-term periods. So, new alternatives that provide more effective and safe therapies for ulcerative colitis are constantly being sought. In the present study, probiotic LaBb Dahi was selected for investigation of its therapeutic effect on DSS-induced colitis model in mice. LaBb Dahi was prepared by co-culturing Dahi culture of Lactococci along with selected strain of Lactobacillus acidophilus LaVK2 and Bifidobacterium bifidum BbVK3 in buffalo milk. Four groups of mice (12 each) were fed for 17 d with buffalo milk (normal control), buffalo milk plus DSS (Colitis control), Dahi plus DSS, and LaBb Dahi plus DSS, respectively, with basal diet. The disease activity scores, weight loss, organ weight, colon length, myeloperoxidase (MPO) and β-glucoronidase activity was assessed, and the histopathological picture of the colon of mice was studied. All colitis control mice evidenced significant increase in MPO, β-glucoronidase activity and showed high disease activity scores along with histological damage to colonic tissue. Feeding with LaBb Dahi offered significant reduction in MPO activity, β-glucoronidase activity and improved disease activity scores. We found significant decline in length of colon, organ weight and body weight in colitis induced controls which were improved significantly by feeding LaBb Dahi. The present study suggests that LaBb Dahi can be used as a potential nutraceutical intervention to combat UC related changes and may offer effective adjunctive treatment for management of UC.

  14. Characterization of Growth Hormone Resistance in Experimental and Ulcerative Colitis.

    PubMed

    Soendergaard, Christoffer; Kvist, Peter Helding; Thygesen, Peter; Reslow, Mats; Nielsen, Ole Haagen; Kopchick, John Joseph; Holm, Thomas Lindebo

    2017-09-23

    Growth hormone (GH) resistance may develop as a consequence of inflammation during conditions such as inflammatory bowel disease, encompassing ulcerative colitis (UC). However, the specific role of the GH-insulin growth factor (IGF)-1-axis and/or the functional consequences of GH resistance in this condition are unclear. In situ hybridization targeting the GH receptor (GHR) and relevant transcriptional analyses were performed in patients with UC and in IL-10 knock-out mice with piroxicam accelerated colitis (PAC). Using cultured primary epithelial cells, the effects of inflammation on the molecular mechanisms governing GH resistance was verified. Also, the therapeutic potential of GH on mucosal healing was tested in the PAC model. Inflammation induced intestinal GH resistance in UC and experimental colitis by down-regulating GHR expression and up-regulating suppressor of cytokine signalling (SOCS) proteins. These effects are driven by pro-inflammatory mediators (tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6) as confirmed using primary epithelial cells. Treatment of experimental colitis with GH increased IGF-1 and body weight of the mice, but had no effects on colonic inflammation or mucosal healing. The high transcriptional similarity between UC and experimental colitis accentuates the formation of intestinal GH resistance during inflammation. Inflammation-induced GH resistance not only impairs general growth but induces a state of local resistance, which potentially impairs the actions of GH on mucosal healing during colitis when using long-acting GH therapy.

  15. Characterization of Growth Hormone Resistance in Experimental and Ulcerative Colitis

    PubMed Central

    Kvist, Peter Helding; Thygesen, Peter; Reslow, Mats; Nielsen, Ole Haagen; Kopchick, John Joseph; Holm, Thomas Lindebo

    2017-01-01

    Growth hormone (GH) resistance may develop as a consequence of inflammation during conditions such as inflammatory bowel disease, encompassing ulcerative colitis (UC). However, the specific role of the GH–insulin growth factor (IGF)-1-axis and/or the functional consequences of GH resistance in this condition are unclear. In situ hybridization targeting the GH receptor (GHR) and relevant transcriptional analyses were performed in patients with UC and in IL-10 knock-out mice with piroxicam accelerated colitis (PAC). Using cultured primary epithelial cells, the effects of inflammation on the molecular mechanisms governing GH resistance was verified. Also, the therapeutic potential of GH on mucosal healing was tested in the PAC model. Inflammation induced intestinal GH resistance in UC and experimental colitis by down-regulating GHR expression and up-regulating suppressor of cytokine signalling (SOCS) proteins. These effects are driven by pro-inflammatory mediators (tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6) as confirmed using primary epithelial cells. Treatment of experimental colitis with GH increased IGF-1 and body weight of the mice, but had no effects on colonic inflammation or mucosal healing. The high transcriptional similarity between UC and experimental colitis accentuates the formation of intestinal GH resistance during inflammation. Inflammation-induced GH resistance not only impairs general growth but induces a state of local resistance, which potentially impairs the actions of GH on mucosal healing during colitis when using long-acting GH therapy. PMID:28946616

  16. Pharmaceutical Activation or Genetic Absence of ClC-2 Alters Tight Junctions During Experimental Colitis.

    PubMed

    Jin, Younggeon; Pridgen, Tiffany A; Blikslager, Anthony T

    2015-12-01

    We have previously reported that the ClC-2 chloride channel has an important role in regulation of tight junction barrier function during experimental colitis, and the pharmaceutical ClC-2 activator lubiprostone initiates intestinal barrier repair in ischemic-injured intestine. Thus, we hypothesized that pharmaceutical ClC-2 activation would have a protective and therapeutic effect in murine models of colitis, which would be absent in ClC-2 mice. We administered lubiprostone to wild-type or ClC-2 mice with dextran sulfate sodium (DSS) or 2, 4, 5-trinitrobenzene sulfonic acid-induced colitis. We determined the severity of colitis and assessed intestinal permeability. Selected tight junction proteins were analyzed by Western blotting and immunofluorescence/confocal microscopy, whereas proliferative and differentiated cells were examined with special staining and immunohistochemistry. Oral preventive or therapeutic administration of lubiprostone significantly reduced the severity of colitis and reduced intestinal permeability in both DSS and trinitrobenzene sulfonic acid-induced colitis. Preventive treatment with lubiprostone induced significant recovery of the expression and distribution of selected sealing tight junction proteins in mice with DSS-induced colitis. In addition, lubiprostone reduced crypt proliferation and increased the number of differentiated epithelial cells. Alternatively, when lubiprostone was administered to ClC-2 mice, the protective effect against DSS colitis was limited. This study suggests a central role for ClC-2 in restoration of barrier function and tight junction architecture in experimental murine colitis, which can be therapeutically targeted with lubiprostone.

  17. Laparoscopic treatment of fulminant ulcerative colitis.

    PubMed

    Bell, R L; Seymour, N E

    2002-12-01

    The complexity and risks of the surgical treatment of ulcerative colitis are greater in patients with fulminant disease. Subtotal colectomy is frequently offered to such patients to control acute disease and restore immunological and nutritional status prior to a restorative procedure. The role of laparoscopy in this setting is poorly defined. The records of 18 patients with poorly controlled fulminant colitis on aggressive immunosuppressive therapy who underwent laparoscopic subtotal colectomy were reviewed. Postoperative complications occurred in six patients (33%). Postoperative length of stay was 5.0 +/- 0.3 days vs 8.8 +/- 1.8 days (p<0.05) for a group of six patients who had undergone open subtotal colectomy for the same indications. Systemic steroids were withdrawn in all patients, and 17 patients subsequently underwent proctectomy and pelvic pouch construction. The relatively high morbidity rate in these patients is likely related to their compromised status at the time of surgery. Laparoscopic subtotal colectomy in patients with fulminant ulcerative colitis allows for earlier hospital discharge, facilitates subsequent pelvic pouch, construction, and provides an excellent alternative to conventional two- and three-stage surgical treatment.

  18. Anti-inflammatory and immunomodulatory effects of Spirulina platensis in comparison to Dunaliella salina in acetic acid-induced rat experimental colitis.

    PubMed

    Abdel-Daim, Mohamed M; Farouk, Sameh M; Madkour, Fedekar F; Azab, Samar S

    2015-04-01

    Spirulina platensis (SP) is used as a source of protein and vitamin supplement in humans without any significant side-effects. Dunaliella salina (DS) is also regarded as one of the richest natural producers of carotenoid, thus used as a source of antioxidants to protect cells from oxidative damage. The aim of the present study is to compare the ameliorative effect of Spirulina and Dunaliella in experimental colitis. Spirulina and Dunaliella were investigated at the same dose of 500 mg/kg body weight for their modulatory effect against acetic-acid induced ulcerative colitis (UC) in rats. The colonic lesion was analyzed by examining macroscopic damage, bloody diarrhea scores, colon weight/length and change in body weight of tested rats. Colon lipid peroxidation and oxidative stress markers were examined by evaluating malondialdehyde (MDA), protein carbonyl (PCO), catalase (CAT), reduced glutathione (GSH) and superoxide dismutase (SOD). Colon inflammatory markers; myeloperoxidase (MPO) and prostaglandin (PGE2) as well as proinflammatory cytokines; tumor necrosis factor (TNF-α) and interleukins (IL-1β, IL-6) were also studied. The colonic mucosal injury, biochemical and histopathologic results suggest that both SP and DS exhibit significant modulatory effect on acetic acid-induced colitis in rats, which may be due to a significant increase of antioxidant enzymes activity and significant inhibition of lipid peroxidation and inflammation markers. Results showed that in comparison to Sulfasalazine, SP exhibited better therapeutic and safety profile than DS against acetic acid-induced UC. This study suggests potential benefits of SP and DS in an experimental model of colitis.

  19. Mice deficient in Muc4 are resistant to experimental colitis and colitis-associated colorectal cancer.

    PubMed

    Das, S; Rachagani, S; Sheinin, Y; Smith, L M; Gurumurthy, C B; Roy, H K; Batra, S K

    2016-05-19

    MUC4, a large transmembrane mucin normally expressed in the small and large intestine, is differentially expressed during inflammatory and malignant conditions of the colon. However, the expression pattern and the role of MUC4 in colitis and colorectal cancer (CRC) are inconclusive. Therefore, the aim of this study was to understand the role of Muc4 during inflammatory and malignant conditions of the colon. Here, we generated Muc4(-/-) mice and addressed its role in colitis and colitis-associated CRC using dextran sodium sulfate (DSS) and azoxymethane (AOM)-DSS experimental models, respectively. Muc4(-/-) mice were viable, fertile with no apparent defects. Muc4(-/-) mice displayed increased resistance to DSS-induced colitis compared with wild-type (WT) littermates that was evaluated by survival rate, body weight loss, diarrhea and fecal blood score, and histological score. Reduced infiltration of inflammatory cells, that is, CD3(+) lymphocytes and F4/80(+) macrophages was observed in the inflamed mucosa along with reduction in the mRNA levels of inflammatory cytokines interleukin (IL)-1β and tumor necrosis factor (TNF)-α and anti-microbial genes Lysozyme M and SLPI in the colon of Muc4(-/-) mice compared with WT littermates. Compensatory upregulation of Muc2 and Muc3 mucins under basal and DSS treatment conditions partly explains the resistance observed in Muc4(-/-) mice. Accordingly, Muc4(-/-) mice exhibited significantly reduced tumor burden compared with WT mice assessed in a colitis-induced tumor model using AOM/DSS. An increased percentage of Ki67(+) nuclei was observed in the tumors from WT compared with Muc4(-/-) mice suggesting Muc4 to be critical in intestinal cell proliferation during tumorigenesis. Taken together, we conclusively demonstrate for the first time the role of Muc4 in driving intestinal inflammation and inflammation-associated tumorigenesis using a novel Muc4(-/-) mouse model.

  20. The effect of methylsulfonylmethane on the experimental colitis in the rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amirshahrokhi, K., E-mail: k.amirshahrokhi@arums.ac.ir; Bohlooli, S.; Chinifroush, M.M.

    2011-06-15

    Methylsulfonylmethane (MSM), naturally occurring in green plants, fruits and vegetables, has been shown to exert anti-inflammatory and antioxidant effects. MSM is an organosulfur compound and a normal oxidative metabolite of dimethyl sulfoxide. This study was carried out to investigate the effect of MSM in a rat model of experimental colitis. Colitis was induced by intracolonic instillation of 1 ml of 5% of acetic acid. Rats were treated with MSM (400 mg/kg/day, orally) for 4 days. Animals were euthanized and distal colon evaluated histologically and biochemically. Tissue samples were used to measurement of malondialdehyde (MDA), myeloperoxidase (MPO), catalase (CAT), glutathione (GSH)more » and proinflammatory cytokine (TNF-{alpha} and IL-1{beta}) levels. Results showed that MSM decreased macroscopic and microscopic colonic damage scores caused by administration of acetic acid. MSM treatment also significantly reduced colonic levels of MDA, MPO and IL-1{beta}, while increased the levels of GSH and CAT compared with acetic acid-induced colitis group. It seems that MSM as a natural product may have a protective effect in an experimental ulcerative colitis. - Research Highlights: > Methylsulfonylmethane occurs naturally in some green plants, fruits and vegetables. > Methylsulfonylmethane (MSM) has anti-inflammatory and antioxidant effects. > We evaluated the effects of MSM in a rat model of experimental ulcerative colitis. > MSM has protective effect against acetic acid-induced colitis in rat.« less

  1. Pseudomembranous colitis

    MedlinePlus

    ... colitis URL of this page: //medlineplus.gov/ency/article/000259.htm Pseudomembranous colitis To use the sharing features on this page, please enable JavaScript. Pseudomembranous colitis refers to swelling or inflammation of ...

  2. Enterotoxicity of a nonribosomal peptide causes antibiotic-associated colitis.

    PubMed

    Schneditz, Georg; Rentner, Jana; Roier, Sandro; Pletz, Jakob; Herzog, Kathrin A T; Bücker, Roland; Troeger, Hanno; Schild, Stefan; Weber, Hansjörg; Breinbauer, Rolf; Gorkiewicz, Gregor; Högenauer, Christoph; Zechner, Ellen L

    2014-09-09

    Antibiotic therapy disrupts the human intestinal microbiota. In some patients rapid overgrowth of the enteric bacterium Klebsiella oxytoca results in antibiotic-associated hemorrhagic colitis (AAHC). We isolated and identified a toxin produced by K. oxytoca as the pyrrolobenzodiazepine tilivalline and demonstrated its causative action in the pathogenesis of colitis in an animal model. Tilivalline induced apoptosis in cultured human cells in vitro and disrupted epithelial barrier function, consistent with the mucosal damage associated with colitis observed in human AAHC and the corresponding animal model. Our findings reveal the presence of pyrrolobenzodiazepines in the intestinal microbiota and provide a mechanism for colitis caused by a resident pathobiont. The data link pyrrolobenzodiazepines to human disease and identify tilivalline as a target for diagnosis and neutralizing strategies in prevention and treatment of colitis.

  3. Anti-inflammatory effects of nesfatin-1 in rats with acetic acid - induced colitis and underlying mechanisms.

    PubMed

    Ozturk, C C; Oktay, S; Yuksel, M; Akakin, D; Yarat, A; Kasimay Cakir, O

    2015-10-01

    Mucosal balance impairment, bacterial over-proliferation, cytokines, inflammatory mediators are known as responsible for inflammatory bowel disease. Besides known anorexigenic, neuroprotective, and anti-apoptotic effects, the major effect of nesfatin-1 on colitis is unknown. Our aim was to investigate the possible anti-inflammatory effects of nesfatin-1 in acetic acid induced colitis model and potential underlying mechanisms. Male Spraque-Dawley rats were anesthetized by intraperitoneal ketamine (100 mg/kg) and chlorpromazine (0.75 mg/kg). For nesfatin-1 and antagonist applications some of the rats were intracerebroventricularly (i.c.v.) cannulated. In colitis group, intrarectally (i.r.) 4% acetic acid solution (1 ml) and 10 minutes later i.c.v. nesfatin-1 (0.05 μg/5 μl) or vehicle (5 μl) were administered. Treatments continued for 3 days. In control group, physiological saline solution was used intrarectally. To identify the underlying effective mechanism of nesfatin-1, rats were divided into 3 subgroups, 5 minutes following colitis induction; i.c.v. atosiban (oxytocin receptor antagonist), SHU9119 (melanocortin receptor antagonist) or GHSR-1a antagonist (ghrelin receptor antagonist) were administered, 5 minutes later nesfatin-1 was administered for 3 days. On the fourth day, rats were decapitated, and colon tissues were sampled. Macroscopic and microscopic damage scores of distal colon, and colonic tissue malondialdehyde, glutathione, myeloperoxidase, superoxide dismutase, catalase, luminol and lucigenin chemiluminescence measurements were analysed. The increased myeloperoxidase activity, malondialdehyde levels, luminol and lucigenin chemiluminescence measurements, macroscopic and microscopic damage scores with colitis induction (P < 0.05 - 0.001) were decreased with nesfatin-1 treatment (P < 0.05 - 0.001). Nesfatin-1 may show this effect by inhibiting neutrophil infiltration through tissues and by decreasing formation of free oxygen radicals. Atosiban and

  4. Short-chain fatty acids administration is protective in colitis-associated colorectal cancer development.

    PubMed

    Tian, Yun; Xu, Qing; Sun, Liqun; Ye, Ying; Ji, Guozhong

    2018-03-17

    Reduced short-chain fatty acids (SCFAs) have been reported in patients with ulcerative colitis, and increased intake of dietary fiber has shown to be clinically beneficial for colitis. Whether SCFAs suppress tumorigenesis in colitis-associated colorectal cancer remains unknown. The chemopreventive effect of SCFAs in colitis-associated colorectal cancer was evaluated in this study. Model of colitis-associated colorectal cancer in male BALB/c mice was induced by azoxymethane (AOM) and dextran sodium sulfate (DSS). SCFAs mix (67.5 mM acetate, 40 mM butyrate, 25.9 mM propionate) was administered in drink water during the study period. Macroscopic and histological studies were performed to examine the colorectal inflammation and tumorigenesis in AOM/DSS-induced mice treated with or without SCFA mix. The effects of SCFAs mix on colonic epithelial cellular proliferation were also assessed using Ki67 immunohistochemistry and TUNEL staining. The administration of SCFAs mix significantly reduced the tumor incidence and size in mice with AOM/DSS-induced colitis associated colorectal cancer. SCFAs mix protected from AOM/DSS-induced colorectal cancer by improving colon inflammation and disease activity index score as well as suppressing the expression of proinflammatory cytokines including IL-6, TNF-α and IL-17. A decrease in cell proliferation markers and an increase in TUNEL-positive tumor epithelial cells were also demonstrated in AOM/DSS mice treated with SCFAs mix. SCFAs mix administration prevented development of tumor and attenuated the colonic inflammation in a mouse model of colitis-associated colorectal cancer. SCFAs mix may be a potential agent in the prevention and treatment of colitis-associated colorectal cancer. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Geraniol ameliorates TNBS-induced colitis: Involvement of Wnt/β-catenin, p38MAPK, NFκB, and PPARγ signaling pathways.

    PubMed

    Soubh, Ayman A; Abdallah, Dalaal M; El-Abhar, Hanan S

    2015-09-01

    Geraniol, a natural component of plant essential oils, exhibits potent chemopreventive effects in the colon; however, its possible role/mechanisms in experimental colitis have not been elucidated, which is the aim of this study. To fulfill this goal, rats were treated for 11days with geraniol and/or sulfasalazine using a TNBS-induced colitis model. Geraniol significantly hindered the colitis-clinical signs (weight loss, colon edema,ulcerative area, colon/spleen mass indices) and opposed the altered oxidative/nitrosative stress. It restored the depleted total antioxidant capacity and lessened the elevated levels of nitric oxide and lipid peroxide. TNBS induced apoptosis and inflammatory cell infiltration, whereas geraniol curtailed these effects by diminishing the levels of caspase-3, intercellular adhesion molecule-1, and myeloperoxidase. The anti-inflammatory effect was documented by inhibiting the colon contents of prostaglandin E2 and interleukin-1β. In order to delve into the anti-colitic signaling pathways, geraniol inhibited the content/expression of glycogen synthase kinase (GSK)-3β, β-catenin, p38 mitogen activated protein kinase (p38MAPK), and nuclear factor kappa B (NFκB), but upregulated that of peroxisome proliferator activated receptor γ (PPARγ). These effects were comparable to those of sulfasalazine, the standard drug, whereas its combination with geraniol mediated effects that surpassed either treatment alone. Geraniol in the current study improved experimental colitis partly via its antioxidant, anti-inflammatory, and immunosuppressive potentials, possibly by modulating the Wnt/GSK-3β/β-catenin, p38MAPK, NFκB, and PPARγ signaling pathways. The study also revealed that geraniol represents a valuable asset against colitis alone or in combination with the conventional anti-colitic therapies. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Diverticular colitis of the ascending colon preceding the onset of ulcerative colitis.

    PubMed

    Maeshiro, Tatsuji; Hokama, Akira; Kinjo, Tetsu; Fujita, Jiro

    2014-06-30

    We present a case of diverticular colitis of the ascending colon preceding the onset of ulcerative colitis. A 58-year-old man presented with positive faecal occult blood test. Colonoscopy disclosed diverticular colitis of the ascending colon. After a year's follow-up, typical ulcerative colitis developed and diverticular colitis improved. Diverticular colitis is a newly established disorder of chronic segmental mucosal inflammation affected by diverticular disease. There is increasing recognition of such cases with diverticular colitis preceding ulcerative colitis. There may be a possible pathogenic relationship between the two diseases. 2014 BMJ Publishing Group Ltd.

  7. Yes, We Are Still Talking about Cylosporin vs. Infliximab in Steroid Resistant Acute Severe Ulcerative Colitis.

    PubMed

    Bernstein, Charles N; Kornbluth, Asher

    2017-11-01

    The Spanish IBD Registry (ENEIDA) is reporting in this issue of the Journal on a retrospective assessment of outcomes of cyclosporine use and infliximab use to treat steroid refractory acute severe ulcerative colitis (SR-ASUC) between 1989 and 2013. Overall, they found similar outcomes in terms of 3 month and 1 year colectomy rates. Serious adverse events were lower in cyclosporine users. While this study does not meet the standard of a prospective randomized controlled trial, it does remind us that cyclosporine can be effective in (SR-ASUC) and should be considered in those who have already failed antibody to tumor necrosis factor therapy or as a bridge to immunomodulators that have a slower onset of action.

  8. Transforming growth factor beta induced FoxP3+ regulatory T cells suppress Th1 mediated experimental colitis.

    PubMed

    Fantini, M C; Becker, C; Tubbe, I; Nikolaev, A; Lehr, H A; Galle, P; Neurath, M F

    2006-05-01

    The imbalance between effector and regulatory T cells plays a central role in the pathogenesis of inflammatory bowel diseases. In addition to the thymus, CD4+CD25+ regulatory T cells can be induced in the periphery from a population of CD25- T cells by treatment with transforming growth factor beta (TGF-beta). Here, we analysed the in vivo function of TGF-beta induced regulatory T (Ti-Treg) cells in experimental colitis. Ti-Treg cells were generated in cell culture in the presence or absence of TGF-beta and tested for their regulatory potential in experimental colitis using the CD4+CD62L+ T cell transfer model. Ti-Treg cells significantly suppressed Th1 mediated colitis on CD4+CD62L+ T cell transfer in vivo, as shown by high resolution endoscopy, histology, immunohistochemistry, and cytokine analysis. Further analysis of in vivo and in vitro expanded Ti-Treg cells showed that exogenous interleukin 2 (IL-2) was crucial for survival and expansion of these cells. Our data suggest that regulatory Ti-Treg cells expand by TGF-beta and exogenous IL-2 derived from effector T cells at the site of inflammation. In addition to Tr1 and thymic CD4+CD25+ T cells, peripheral Ti-Treg cells emerge as a class of regulatory T cells with therapeutic potential in T cell mediated chronic intestinal inflammation.

  9. Hydroalcoholic extract of Brazilian red propolis exerts protective effects on acetic acid-induced ulcerative colitis in a rodent model.

    PubMed

    Barbosa Bezerra, Gislaine; de Menezes de Souza, Luana; Dos Santos, Adailma Santana; de Almeida, Grace Kelly Melo; Souza, Marília Trindade Santana; Santos, Sandra Lauton; Aparecido Camargo, Enilton; Dos Santos Lima, Bruno; de Souza Araújo, Adriano Antunes; Cardoso, Juliana Cordeiro; Gomes, Silvana Vieira Floresta; Gomes, Margarete Zanardo; de Albuquerque, Ricardo Luiz Cavalcanti

    2017-01-01

    Ulcerative colitis (UC) is a common intestinal inflammatory disease with an etiology that is not well understood. Although the anti-inflammatory and anti-oxidant effects of the hydroalcoholic extract of Brazilian red propolis (HERP) have been reported in various experimental models, its protective effect in models of UC have not been evaluated. The purpose of this study was to investigate the chemopreventive effect of hydroalcoholic extract of Brazilian red propolis (HERP) in acetic acid-induced colitis (AAIC) using a rodent model. The HERP was chemically characterised by HPLC/DAD analyses. Male rats were randomly assigned into four groups: sham, vehicle (with AAIC, treated with vehicle), P10 (with AAIC, treated with 10mg/kg HERP), and P100 (with AAIC, treated with 100mg/kg HERP). Treatments were performed for 7days, and colitis was induced on day seven. Animals were euthanized 24h after colitis induction and body weight, colon length, gross and histological scores, malondialdehyde (MDA) and myeloperoxidase (MPO) concentrations in colon tissue, and the immunohistochemical expression of inducible nitric oxide synthase (iNOS) were assessed. The major compounds found in HERP were liquiritigenin (68.8mg/g), formononetin (54.29mg/g), biochanin A (30.97mg/g), and daidzein (19.90mg/g). Rats treated with 10mg/kg HERP demonstrated significant decreases in MPO concentrations, gross and histological scores of tissue damage, and iNOS expression (p<0.05). Similarly, rats treated with 100mg/kg HERP demonstrated significant decreases in MPO levels (p<0.05) and histological scores of tissue damage (p<0.05). The results of this study indicate that oral administration of HERP attenuates AAIC in rats, which may be due to anti-inflammatory effects related to iNOS inhibition. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  10. Healing Acceleration of Acetic Acid-induced Colitis by Marigold (Calendula officinalis) in Male Rats

    PubMed Central

    Tanideh, Nader; Jamshidzadeh, Akram; Sepehrimanesh, Masood; Hosseinzadeh, Masood; Koohi-Hosseinabadi, Omid; Najibi, Asma; Raam, Mozhdeh; Daneshi, Sajad; Asadi-Yousefabad, Seyedeh-Leili

    2016-01-01

    Background/Aim: Ulcerative colitis (UC) is a type of chronic inflammatory bowel disease with unknown etiology. Several therapeutic strategies such as consumption of medicinal plants have been used for its treatment. The aim of this study was to evaluate healing effects of Calendula officinalis hydroalcoholic extract in experimentally induced UC in rat. Materials and Methods: Ninety-six rats, weighing 200 ± 20 g, were randomly divided into eight equal groups. UC induced by 3% acetic acid and oral doses of C. officinalis extract, 1500 and 3000 mg/kg, and enema (gel 10% and 20%) were given. Two groups as positive controls were given asacol (enema) and oral mesalamine. Negative control groups were given normal saline and base gel. On days 3 and 7, intestinal histopathology and weight changes, plus oxidative stress indices including malondialdehyde (MDA) level and myeloperoxidase (MPO) activity were assayed. Results: A significant increase in the body weight of rats was seen in the group given C. officinalis extract 3000 mg/kg orally, oral mesalamine, and 20% intracolonic gel form of marigold extract compared with negative control and base gel groups during the experimental period. Acute inflammation and granular atrophy after UC induction were resolved completely completely by both 20% intracolonic gel and 3000 mg/kg orally. An increase in MPO activity and a decrease in MDA level in response to oral and intracolonic gel form of C. officinalis were observed 3 and and 7 days after treatment (P < 0.05). Conclusion: Our results indicate that oral and enema forms of hydroalcoholic extract of C. officinalis can be offered as are potential therapeutic agents for UC induced in rats. PMID:26831607

  11. Healing acceleration of acetic acid-induced colitis by marigold (Calendula officinalis) in male rats.

    PubMed

    Tanideh, Nader; Jamshidzadeh, Akram; Sepehrimanesh, Masood; Hosseinzadeh, Masood; Koohi-Hosseinabadi, Omid; Najibi, Asma; Raam, Mozhdeh; Daneshi, Sajad; Asadi-Yousefabad, Seyedeh-Leili

    2016-01-01

    Ulcerative colitis (UC) is a type of chronic inflammatory bowel disease with unknown etiology. Several therapeutic strategies such as consumption of medicinal plants have been used for its treatment. The aim of this study was to evaluate healing effects of Calendula officinalis hydroalcoholic extract in experimentally induced UC in rat. Ninety-six rats, weighing 200 ± 20 g, were randomly divided into eight equal groups. UC induced by 3% acetic acid and oral doses of C. officinalis extract, 1500 and 3000 mg/kg, and enema (gel 10% and 20%) were given. Two groups as positive controls were given asacol (enema) and oral mesalamine. Negative control groups were given normal saline and base gel. On days 3 and 7, intestinal histopathology and weight changes, plus oxidative stress indices including malondialdehyde (MDA) level and myeloperoxidase (MPO) activity were assayed. A significant increase in the body weight of rats was seen in the group given C. officinalis extract 3000 mg/kg orally, oral mesalamine, and 20% intracolonic gel form of marigold extract compared with negative control and base gel groups during the experimental period. Acute inflammation and granular atrophy after UC induction were resolved completely completely by both 20% intracolonic gel and 3000 mg/kg orally. An increase in MPO activity and a decrease in MDA level in response to oral and intracolonic gel form of C. officinalis were observed 3 and and 7 days after treatment (P < 0.05). Our results indicate that oral and enema forms of hydroalcoholic extract of C. officinalis can be offered as are potential therapeutic agents for UC induced in rats.

  12. Changes in the Expression and Distribution of Claudins, Increased Epithelial Apoptosis, and a Mannan-Binding Lectin-Associated Immune Response Lead to Barrier Dysfunction in Dextran Sodium Sulfate-Induced Rat Colitis

    PubMed Central

    Yuan, Bosi; Zhou, Shuping; Lu, Youke; Liu, Jiong; Jin, Xinxin; Wan, Haijun; Wang, Fangyu

    2015-01-01

    Background/Aims This animal study aimed to define the underlying cellular mechanisms of intestinal barrier dysfunction. Methods Rats were fed 4% with dextran sodium sulfate (DSS) to induce experimental colitis. We analyzed the sugars in 24-hour urine output by high pressure liquid chromatography. The expression of claudins, mannan-binding lectin (MBL), and MBL-associated serine proteases 2 (MASP-2) were detected in the colonic mucosa by immunohistochemistry; and apoptotic cells in the colonic epithelium were detected by the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling method assay. Results The lactulose and sucralose excretion levels in the urine of rats with DSS-induced colitis were significantly higher than those in the control rats. Mannitol excretion was lower and lactulose/mannitol ratios and sucralose/mannitol ratios were significantly increased compared with those in the control group (p<0.05). Compared with the controls, the expression of sealing claudins (claudin 3, claudin 5, and claudin 8) was significantly decreased, but that of claudin 1 was increased. The expression of pore-forming claudin 2 was upregulated and claudin 7 was downregulated in DSS-induced colitis. The epithelial apoptotic ratio was 2.8%±1.2% in controls and was significantly increased to 7.2%±1.2% in DSS-induced colitis. The expression of MBL and MASP-2 in the intestinal mucosa showed intense staining in controls, whereas there was weak staining in the rats with colitis. Conclusions There was increased intestinal permeability in DSS-induced colitis. Changes in the expression and distribution of claudins, increased epithelial apoptosis, and the MASP-2-induced immune response impaired the intestinal epithelium and contributed to high intestinal permeability. PMID:25717051

  13. Changes in the Expression and Distribution of Claudins, Increased Epithelial Apoptosis, and a Mannan-Binding Lectin-Associated Immune Response Lead to Barrier Dysfunction in Dextran Sodium Sulfate-Induced Rat Colitis.

    PubMed

    Yuan, Bosi; Zhou, Shuping; Lu, Youke; Liu, Jiong; Jin, Xinxin; Wan, Haijun; Wang, Fangyu

    2015-11-23

    This animal study aimed to define the underlying cellular mechanisms of intestinal barrier dysfunction. Rats were fed 4% with dextran sodium sulfate (DSS) to induce experimental colitis. We analyzed the sugars in 24-hour urine output by high pressure liquid chromatography. The expression of claudins, mannan-binding lectin (MBL), and MBL-associated serine proteases 2 (MASP-2) were detected in the colonic mucosa by immunohistochemistry; and apoptotic cells in the colonic epithelium were detected by the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling method assay. The lactulose and sucralose excretion levels in the urine of rats with DSS-induced colitis were significantly higher than those in the control rats. Mannitol excretion was lower and lactulose/mannitol ratios and sucralose/mannitol ratios were significantly increased compared with those in the control group (p<0.05). Compared with the controls, the expression of sealing claudins (claudin 3, claudin 5, and claudin 8) was significantly decreased, but that of claudin 1 was increased. The expression of pore-forming claudin 2 was upregulated and claudin 7 was downregulated in DSS-induced colitis. The epithelial apoptotic ratio was 2.8%±1.2% in controls and was significantly increased to 7.2%±1.2% in DSS-induced colitis. The expression of MBL and MASP-2 in the intestinal mucosa showed intense staining in controls, whereas there was weak staining in the rats with colitis. There was increased intestinal permeability in DSS-induced colitis. Changes in the expression and distribution of claudins, increased epithelial apoptosis, and the MASP-2-induced immune response impaired the intestinal epithelium and contributed to high intestinal permeability.

  14. Metronidazole-induced encephalopathy after prolonged metronidazole course for treatment of C. difficile colitis

    PubMed Central

    Godfrey, Mark S; Finn, Arkadiy; Zainah, Hadeel; Dapaah-Afriyie, Kwame

    2015-01-01

    A 65-year-old woman with a diagnosis of Clostridium difficile colitis undergoing prolonged treatment with metronidazole was admitted to hospital for altered mentation, slurred speech and weakness. She was diagnosed with metronidazole-induced encephalopathy, confirmed with brain MRI and improved when the offending agent was removed. This case report highlights encephalopathy as a complication of prolonged metronidazole treatment, which has become more common in clinical practice for the treatment of C. difficile infection. PMID:25596288

  15. Partial replacement of dietary linoleic acid with long chain n-3 polyunsaturated fatty acids protects against dextran sulfate sodium-induced colitis in rats.

    PubMed

    Tyagi, Anupama; Kumar, Uday; Santosh, Vadakattu Sai; Reddy, Suryam; Mohammed, Saazida Bhanu; Ibrahim, Ahamed

    2014-12-01

    Imbalances in the dietary n-6 and n-3 polyunsaturated fatty acids have been implicated in the increased prevalence of inflammatory bowel disease. This study investigated the effects of substitution of linoleic acid with long chain n-3 polyunsaturated fatty acids and hence decreasing n-6:n-3 fatty acid ratio on inflammatory response in dextran sulfate sodium induced colitis. Male weanling Sprague Dawley rats were fed diets with n-6:n-3 fatty acid in the ratios of 215,50,10 or 5 for 3 months and colitis was induced by administration of dextran sulfate sodium in drinking water during last 11 days. Decreasing the dietary n-6:n-3 fatty acid ratio to 10 and 5 significantly attenuated the severity of colitis as evidenced by improvements in clinical symptoms, reversal of shortening of colon length, reduced severity of anemia, preservation of colonic architecture as well as reduced colonic mucosal myeloperoxidase activity. This protection was associated with suppression of colonic mucosal proinflammatory mediators such as TNFα, IL-1β and nitric oxide. These findings suggest that long chain n-3 polyunsaturated fatty acids at a level of 3.0 g/kg diet (n-6:n-3 ratio of 10) prevents dextran sulfate sodium induced colitis by suppressing the proinflammatory mediators. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. A study comparing the efficacy of antimicrobial agents versus enzyme (P-gp) inducers in the treatment of 2,4,6 trinitrobenzenesulfonic acid-induced colitis in rats.

    PubMed

    Toklu, H Z; Kabasakal, L; Imeryuz, N; Kan, B; Celikel, C; Cetinel, S; Orun, O; Yuksel, M; Dulger, G A

    2013-08-01

    The intestinal microflora is an important cofactor in the pathogenesis of intestinal inflammation; and the epithelial cell barrier function is critical in providing protection against the stimulation of mucosal immune system by the microflora. In the present study, therapeutic role of the antibacterial drugs rifampicin and ciprofloxacine were investigated in comparison to spironolactone, an enzyme inducer, in 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis of the rats. Drugs were administered for 14 days following induction of colitis. All drug treatments ameliorated the clinical hallmarks of colitis as determined by body weight loss and assessment of diarrhea, colon length, and histology. Oxidative damage and neutrophil infiltration as well as nuclear factor κB (NF-κB) and tumor necrosis factor α (TNF-α) expressions that were increased during colitis, were decreased significantly. Rifampicin and ciprofloxacin were probably effective due to their antibacterial and immunomodulating properties. The multidrug resistence gene (MDR1) and its product p-glycoprotein (P-gp) has been implicated in the pathogenesis of inflammatory bowel disease (IBD). In the present study, findings of the P-gp expression were inconclusive but regarding previous studies, it can be suggested that the beneficial effects of rifampicin and spironolactone may be partly due to their action as a P-gp ligand. Spironolactone has been reported to supress the transcription of proinflamatory cytokines that are considered to be of importance in immunoinflammatory diseases. It is also a powerful pregnane X receptor (PXR) inducer; thus, inhibition of the expression of NF-κB and TNF-α, and amelioration of inflammation by spironolactone suggest that this may have been through the activation of PXR. However, our findings regarding PXR expression were inconclusive. Activation of PXR by spironolactone probably also contributed to the induction of P-gp, resulting in extrusion of noxious substances

  17. Adoptive transfer of nontransgenic mesenteric lymph node cells induces colitis in athymic HLA-B27 transgenic nude rats

    PubMed Central

    Hoentjen, F; Tonkonogy, S L; Liu, B; Sartor, R B; Taurog, J D; Dieleman, L A

    2006-01-01

    HLA-B27 transgenic (TG) rats develop spontaneous colitis when colonized with intestinal bacteria, whereas athymic nude (rnu/rnu) HLA-B27 TG rats remain disease free. The present study was designed to determine whether or not HLA-B27 expression on T cells is required for development of colitis after transfer of mesenteric lymph node (MLN) cells into rnu/rnu HLA-B27 recipients. Athymic nontransgenic (non-TG) and HLA-B27 TG recipients received MLN cells from either TG or non-TG rnu/+ heterozygous donor rats that contain T cells. HLA-B27 TG rnu/rnu recipients receiving either non-TG or TG MLN cells developed severe colitis and had higher caecal MPO and IL-1β levels, and their MLN cells produced more IFN-γ and less IL-10 after in vitro stimulation with caecal bacterial lysate compared to rnu/rnu non-TG recipients that remained disease free after receiving either TG or non-TG cells. Interestingly, proliferating donor TG T cells were detectable one week after adoptive transfer into rnu/rnu TG recipients but not after transfer into non-TG recipients. T cells from either non-TG or TG donors induce colitis in rnu/rnu TG but not in non-TG rats, suggesting that activation of effector T cells by other cell types that express HLA-B27 is pivotal for the pathogenesis of colitis in this model. PMID:16487247

  18. Review article: Ulcerative colitis, smoking and nicotine therapy.

    PubMed

    Lunney, P C; Leong, R W L

    2012-12-01

    Smoking is the best-characterised environmental association of ulcerative colitis (UC). Smoking has been observed to exert protective effects on both the development and progression of UC. To examine the association between UC and smoking, possible pathogenic mechanisms and the potential of nicotine as a therapeutic agent in the treatment of UC. A literature search was conducted through MEDLINE, using the MeSH search terms 'ulcerative colitis' and 'smoking' or 'nicotine'. Relevant articles were identified through manual review. The reference lists of these articles were reviewed to include further appropriate articles. Ulcerative colitis is less prevalent in smokers. Current smokers with a prior diagnosis of UC are more likely to exhibit milder disease than ex-smokers and nonsmokers. There is conflicting evidence for smokers having reduced rates of hospitalisation, colectomy and need for oral corticosteroids and immunosuppressants to manage their disease. Multiple potential active mediators in smoke may be responsible for these clinical effects, including nicotine and carbon monoxide, but the precise mechanism remains unknown. Nicotine has demonstrated variable efficacy in the induction of remission in UC when compared to placebo and conventional medicines. Despite this, the high frequency of adverse events limits its clinical significance. Nicotine's application as a therapeutic treatment in ulcerative colitis is limited. Presently, it may be an option considered only in selected cases of acute ulcerative colitis refractory to conventional treatment options. This review also questions whether nicotine is the active component of smoking that modifies risk and inflammation in ulcerative colitis. © 2012 Blackwell Publishing Ltd.

  19. Bowel obsession syndrome in a patient with ulcerative colitis.

    PubMed

    Porcelli, Piero; Leandro, Gioacchino

    2007-01-01

    Gastroenterologists are often faced with the diagnostic problem of differentiating acute symptoms of ulcerative colitis from functional intestinal disorders. Bowel obsession syndrome (BOS) is an OCD-like, functional syndrome characterized by fear of fecal incontinence and compulsive behaviors of evacuation-checking. Only sparse case studies on treatment of BOS with antidepressants have been published. This is the first study on successful psychotherapy of a male patient with ulcerative colitis overlapping functional bowel symptoms and marked symptoms of BOS. Clinical recognition of BOS may help clinicians in differential diagnosis, prevent unnecessary investigations, and give patients the most appropriate treatment.

  20. Paclitaxel-carboplatin induced radiation recall colitis.

    PubMed

    Kundak, Isil; Oztop, Ilhan; Soyturk, Mujde; Ozcan, Mehmet Ali; Yilmaz, Ugur; Meydan, Nezih; Gorken, Ilknur Bilkay; Kupelioglu, Ali; Alakavuklar, Mehmet

    2004-01-01

    Some chemotherapeutic agents can "recall" the irradiated volumes by skin or pulmonary reactions in cancer patients who previously received radiation therapy. We report a recall colitis following the administration of paclitaxel-containing regimen in a patient who had been irradiated for a carcinoma of the uterine cervix. A 63-year-old woman underwent a Wertheim operation because of uterine cervix carcinoma. After 8 years of follow-up, a local recurrence was observed and she received curative external radiotherapy (45 Gy) to the pelvis. No significant adverse events were observed during the radiotherapy. Approximately one year later, she was hospitalized because of metastatic disease with multiple pulmonary nodules, and a chemotherapy regimen consisting of paclitaxel and carboplatin was administered. The day after the administration of chemotherapy the patient had diarrhea and rectal bleeding. Histological examination of the biopsy taken from rectal hyperemic lesions showed a radiation colitis. The symptoms reappeared after the administration of each course of chemotherapy and continued until the death of the patient despite the interruption of the chemotherapy. In conclusion, the probability of recall phenomena should be kept in mind in patients who received previously with pelvic radiotherapy and treated later with cytotoxic chemotherapy.

  1. Effects of Changtai granules, a traditional compound Chinese medicine, on chronic trinitrobenzene sulfonic acid-induced colitis in rats

    PubMed Central

    Cao, Yong-Bing; Zhang, Jun-Dong; Diao, Ya-Ying; Yan, Lan; Wang, De-Jun; Jia, Xin-Ming; Gao, Ping-Hui; Cheng, Ming-He; Xu, Zheng; Wang, Yan; Jiang, Yuan-Ying

    2005-01-01

    AIM: To study the effects of Changtai granules (CTG), a traditional compound Chinese medicine, on chronic trinitrobenzene sulfonic acid-induced colitis in rats. METHODS: Healthy adult Sprague-Dawley (SD) rats of both sexes, weighing 250-300 g, were employed in the present study. The rat colitis models were induced by 2,4,6-trinitrobenzene sulfonic acid (TNBS) enemas at a concentration of 100 mg/kg in 50% ethanol. The experimental animals were randomly divided into dexamethasone (DX) treatment, CTG treatment, and model control groups, which were intracolicly treated daily with DX (0.2 mg/kg), CTG at doses of 2.9, 5.7 and 11.4 g crude drug/kg, and the equal amount of saline respectively from 6 h following induction of the colitis in rats inflicted with TNBS to the end of study. A normal control group of rats treated without TNBS but saline enema was also included in the study. After 3 wk of treatment, the animals were assessed for colonal inflammatory and ulcerative responses with respect to mortality, frequency of diarrhea, histology and myeloperoxidase activity (MPO). RESULTS: The therapeutic effect of CTG on ulcerative colitis (UC) was better than DX. CTG effectively inhibited the activity of granulocytes, macrophages and monocytes in a dose-dependent manner. Also it reduced MPO and formation of inflammation in colonic mucosal tissue. Furthermore, administration of CTG significantly prevented body mass loss and death, and decreased frequency of diarrhea in UC rats, when compared with the model control group rats. CONCLUSION: CTG would prove to be an ideal drug for chronic UC, and is warranted to be studied further. PMID:15962370

  2. Anti-inflammatory effect of Prunus armeniaca L. (Apricot) extracts ameliorates TNBS-induced ulcerative colitis in rats

    PubMed Central

    Minaiyan, M.; Ghannadi, A.; Asadi, M.; Etemad, M.; Mahzouni, P.

    2014-01-01

    Prunus armeniaca L. (Apricot) is a tree cultivated in different parts of the world. Apricot kernel as a good dietary supplement has shown antioxidant, anti-inflammatory and other pharmacologic properties which suggest that it may be functional as an anticolitis agent. In this study we evaluated the effects of apricot kernel extract and oil on ulcerative colitis in rats. Rats were fasted for 36 h before the experiment. Colitis was induced by intra-rectal instillation of 50 mg/kg trinitrobenzene sulfonic acid in male Wistar rats. Treatments were started 6 h after colitis induction and continued every 24 h for 5 days. Apricot kernel extract (100, 200, 400 mg/kg p.o. and 100, 400 mg/kg i.p.) and apricot kernel extract/oil (100, 200, 400 mg/kg p.o.) were used as experimental treatments and prednisolone (4 mg/kg p.o. or i.p.) was used as reference drug. On the day 6, colon tissue was removed and macroscopic and pathologic parameters were evaluated. Ulcer index and total colitis index as representative of macroscopic and histologic parameters respectively showed ameliorating effects in experimental groups especially those treated by intraperitoneal administration route. Results also demonstrated that oil fraction was not able to potentiate the effects of extract. These data suggest that apricot kernel extracts (with or without oil) can be introduced for further mechanistic and clinical studies as a complementary medicine for inflammatory bowel disorders. PMID:25657793

  3. Colitis-induced oxidative damage of the colon and skeletal muscle is ameliorated by regular exercise in rats: the anxiolytic role of exercise.

    PubMed

    Kasimay, Ozgür; Güzel, Esra; Gemici, Ali; Abdyli, Asead; Sulovari, Admir; Ercan, Feriha; Yeğen, Berrak C

    2006-09-01

    Epidemiological studies have shown that exercise protects the gastrointestinal tract, reducing the risk of diverticulosis, gastrointestinal haemorrhage and inflammatory bowel disease, while many digestive complaints occurring during exercise are attributed to the adverse effects of exercise on the colon. In order to assess the effects of regular exercise on the pathogenesis of colitis, Sprague-Dawley rats of both sexes were either kept sedentary or given exercise on a running wheel (0.4 km h(-1), 30 min for 3 days week(-1)). At the end of 6 weeks, under anaesthesia, either saline or acetic acid (4%, 1 ml) was given intracolonically. Holeboard tests were performed for the evaluation of anxiety at 24 h before and 48 h after induction of colitis. Increased 'freezing time' in the colitis-induced sedentary group, representing increased anxiety, was reduced in the exercised colitis group (P < 0.05). On the third day following the colonic instillation, the rats were decapitated under brief ether anesthesia and the distal 8 cm of the colons were removed. In the sedentary colitis group, macroscopic and microscopic damage scores, malondialdehyde level and myeloperoxidase activity were increased when compared to the control group (P < 0.01-0.001), while exercise prior to colitis reduced all the measurements with respect to sedentary colitis group (P < 0.05-0.001). The results demonstrate that low-intensity, repetitive exercise protects against oxidative colonic injury, and that this appears to involve the anxiolytic effect of exercise, suggesting that exercise may have a therapeutic value in reducing stress-related exacerbation of colitis.

  4. Distinct Immunomodulatory Effects of Spermine Oxidase in Colitis Induced by Epithelial Injury or Infection.

    PubMed

    Gobert, Alain P; Al-Greene, Nicole T; Singh, Kshipra; Coburn, Lori A; Sierra, Johanna C; Verriere, Thomas G; Luis, Paula B; Schneider, Claus; Asim, Mohammad; Allaman, Margaret M; Barry, Daniel P; Cleveland, John L; Destefano Shields, Christina E; Casero, Robert A; Washington, M Kay; Piazuelo, M Blanca; Wilson, Keith T

    2018-01-01

    Polyamines have been implicated in numerous biological processes, including inflammation and carcinogenesis. Homeostatic regulation leads to interconversion of the polyamines putrescine and the downstream metabolites spermidine and spermine. The enzyme spermine oxidase (SMOX), which back-converts spermine to spermidine, contributes to regulation of polyamine levels, but can also have other effects. We have implicated SMOX in gastric inflammation and carcinogenesis due to infection by the pathogen Helicobacter pylori . In addition, we reported that SMOX can be upregulated in humans with inflammatory bowel disease. Herein, we utilized Smox -deficient mice to examine the role of SMOX in two murine colitis models, Citrobacter rodentium infection and dextran sulfate sodium (DSS)-induced epithelial injury. In C. rodentium -infected wild-type (WT) mice, there were marked increases in colon weight/length and histologic injury, with mucosal hyperplasia and inflammatory cell infiltration; these changes were ameliorated in Smox -/- mice. In contrast, with DSS, Smox -/- mice exhibited substantial mortality, and increased body weight loss, colon weight/length, and histologic damage. In C. rodentium -infected WT mice, there were increased colonic levels of the chemokines CCL2, CCL3, CCL4, CXCL1, CXCL2, and CXCL10, and the cytokines IL-6, TNF-α, CSF3, IFN-γ, and IL-17; each were downregulated in Smox -/- mice. In DSS colitis, increased levels of IL-6, CSF3, and IL-17 were further increased in Smox -/- mice. In both models, putrescine and spermidine were increased in WT mice; in Smox -/- mice, the main effect was decreased spermidine and spermidine/spermine ratio. With C. rodentium , polyamine levels correlated with histologic injury, while with DSS, spermidine was inversely correlated with injury. Our studies indicate that SMOX has immunomodulatory effects in experimental colitis via polyamine flux. Thus, SMOX contributes to the immunopathogenesis of C. rodentium infection, but

  5. Human umbilical cord mesenchymal stem cells ameliorate mice trinitrobenzene sulfonic acid (TNBS)-induced colitis.

    PubMed

    Liang, Lu; Dong, Chunlan; Chen, Xiaojun; Fang, Zhihong; Xu, Jie; Liu, Meng; Zhang, Xiaoguang; Gu, Dong Sheng; Wang, Ding; Du, Weiting; Zhu, Delin; Han, Zhong Chao

    2011-01-01

    Mesenchymal stem cells (MSCs), which are poorly immunogenic and have potent immunosuppressive activities, have emerged as a promising candidate for cellular therapeutics for the treatment of disorders caused by abnormal immune responses. In this study we investigated whether human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) could ameliorate colitis in a trinitrobenzene sulfonic acid (TNBS)-induced colitis model. TNBS-treated colitic mice were infused with hUC-MSCs or vehicle control. The mice were sacrificed on day 1, 3, and 5 after infusion, and their clinical and pathological conditions were evaluated by body weight, colon length, and histological analysis. The expression levels of proinflammatory cytokine proteins in colon were examined by ELISA. The homing of hUC-MSCs was studied by live in vivo imaging and immunofluorescent microscopy. hUC-MSCs were found to migrate to the inflamed colon and effectively treated the colitic mice with improved clinical and pathological signs. The levels of IL-17 and IL-23 as well as IFN-γ and IL-6 were significantly lower in the colon tissues of the hUC-MSC-treated mice in comparison with the vehicle-treated mice. Coculture experiments showed that hUC-MSCs not only could inhibit IFN-γ expression but also significantly inhibit IL-17 production by lamina propria mononuclear cells (LPMCs) or splenocytes of the colitic mice or by those isolated from normal animals and stimulated with IL-23. Systemically infused hUC-MSCs could home to the inflamed colon and effectively ameliorate colitis. In addition to the known suppressive effects on Th1-type immune responses, hUC-MSC-mediated modulation of IL-23/IL-17 regulated inflammatory reactions also plays an important role in the amelioration of colitis.

  6. Lactobacillus reuteri increases mucus thickness and ameliorates dextran sulphate sodium-induced colitis in mice.

    PubMed

    Ahl, D; Liu, H; Schreiber, O; Roos, S; Phillipson, M; Holm, L

    2016-08-01

    The aim of this study was to investigate whether two Lactobacillus reuteri strains (rat-derived R2LC and human-derived ATCC PTA 4659 (4659)) could protect mice against colitis, as well as delineate the mechanisms behind this protection. Mice were given L. reuteri R2LC or 4659 by gavage once daily for 14 days, and colitis was induced by addition of 3% DSS (dextran sulphate sodium) to drinking water for the last 7 days of this period. The severity of disease was assessed through clinical observations, histological evaluation and ELISA measurements of myeloperoxidase (MPO) and pro-inflammatory cytokines from colonic samples. Mucus thickness was measured in vivo with micropipettes, and tight junction protein expression was assessed using immunohistochemistry. Colitis severity was significantly reduced by L. reuteri R2LC or 4659 when evaluated both clinically and histologically. The inflammation markers MPO, IL-1β, IL-6 and mKC (mouse keratinocyte chemoattractant) were increased by DSS and significantly reduced by the L. reuteri strains. The firmly adherent mucus thickness was reduced by DSS, but significantly increased by L. reuteri in both control and DSS-treated mice. Expression of the tight junction proteins occludin and ZO-1 was significantly increased in the bottom of the colonic crypts by L. reuteri R2LC. These results demonstrate that each of the two different L. reuteri strains, one human-derived and one-rat-derived, protects against colitis in mice. Mechanisms behind this protection could at least partly be explained by the increased mucus thickness as well as a tightened epithelium in the stem cell area of the crypts. © 2016 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  7. High fat diet exacerbates dextran sulfate sodium induced colitis through disturbing mucosal dendritic cell homeostasis.

    PubMed

    Cheng, Lu; Jin, Huimin; Qiang, Yetao; Wu, Shuiyun; Yan, Cheng; Han, Mutian; Xiao, Tengfei; Yan, Nannan; An, Huazhang; Zhou, Xiaoming; Shao, Qixiang; Xia, Sheng

    2016-11-01

    Epidemiological studies have shown that fat rich western diet contributes to the high incidence of inflammatory bowel disease (IBD). Moreover, accumulated data indicated that fat dietary factor might promote the change of the composition and metabolism in commensal flora. But, the exact mechanisms for fatty diet in gut inflammation are not well demonstrated. In this study, we found that high fat diet (HFD) promoted inflammation and exacerbated the disease severity of dextran sulfate sodium (DSS) induced colitis in mice. Compared with low fat diet (LFD)/DSS mice, shorter colon length, more epithelial loss and crypt destruction and more Gr-1 + myeloid inflammatory cells infiltration in colons were observed in HFD/DSS cohorts. Interestingly, such HFD mediated inflammation accompanied with the dys-regulation of hematopoiesis, and more hematopoiesis stem and progenitor cells were detected in colon and spleen. We further analyzed the effects of HFD and DSS treatment on mucosal DC subsets, and found that DSS treatment in LFD mice mainly dramatically increased the percentage of CD11c + CD103 - CD11b + DCs in lamina propria (LP). While, in HFD/DSS mice, HFD pre-treatment not only increased the percentage of CD11c + CD103 - CD11b + DCs, but also decreased CD11c + CD103 + CD11b + in both LP and mesenteric lymph nodes (MLN) in mice with colitis. This disequilibrium of mucosal dendritic cells in HFD/DSS mice may depend on the reduced levels of buytrate and retinoic acid. Thus, this study declared the effects of HFD on gut microenviroment, and further indicated its potential role in the development of DSS induced colitis. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Colonic responses to Lactobacillus farciminis treatment in trinitrobenzene sulphonic acid-induced colitis in rats.

    PubMed

    Lamine, F; Eutamène, H; Fioramonti, J; Buéno, L; Théodorou, V

    2004-12-01

    It has recently been shown that Lactobacillus farciminis treatment exerts an anti-inflammatory effect in trinitrobenzene sulphonic acid (TNBS)-induced colitis partly through a nitric oxide release by this strain. The aim of this study was to evaluate whether L. farciminis treatment shares also the general mechanisms of action involved in the beneficial effect of probiotics in the colonic inflammatory process. Rats received L. farciminis for 15 days before and 4 days after intracolonic administration of TNBS or vehicle. The following parameters were evaluated: macroscopic damage of colonic mucosa, myeloperoxidase activity, cytokine mucosal levels, bacterial profile in colonic content and mucosa, bacterial translocation and colonic paracellular permeability. In the absence of TNBS, L. farciminis treatment reduced colonic paracellular permeability and increased the IL-10 level in the colonic wall. TNBS administration induced colonic macroscopic damage, associated with an increase of myeloperoxidase activity, bacterial translocation, colonic paracellular permeability and IL-1beta mucosal level, and a decrease in IL-10 mucosal level. Moreover, the bacterial profile of colonic content and mucosa was modified. All these alterations were abolished or significantly reduced by L. farciminis treatment. As previously shown, L. farciminis treatment improves TNBS-induced colitis. This study indicates that, in addition to the nitric oxide released by this bacterial strain, the anti-inflammatory action of L. farciminis involves also normalization of colonic microflora, prevention of bacterial translocation, enhancement of barrier integrity and a decrease in the IL-1beta mucosal level.

  9. B-vitamin deficiency is protective against DSS-induced colitis in mice

    PubMed Central

    Benight, Nancy M.; Stoll, Barbara; Chacko, Shaji; da Silva, Vanessa R.; Marini, Juan C.; Gregory, Jesse F.; Stabler, Sally P.

    2011-01-01

    Vitamin deficiencies are common in patients with inflammatory bowel disease (IBD). Homocysteine (Hcys) is a thrombogenic amino acid produced from methionine (Met), and its increase in patients with IBD indicates a disruption of Met metabolism; however, the role of Hcys and Met metabolism in IBD is not well understood. We hypothesized that disrupted Met metabolism from a B-vitamin-deficient diet would exacerbate experimental colitis. Mice were fed a B6-B12-deficient or control diet for 2 wk and then treated with dextran sodium sulfate (DSS) to induce colitis. We monitored disease activity during DSS treatment and collected plasma and tissue for analysis of inflammatory tissue injury and Met metabolites. We also quantified Met cycle activity by measurements of in vivo Met kinetics using [1-13C-methyl-2H3]methionine infusion in similarly treated mice. Unexpectedly, we found that mice given the B-vitamin-deficient diet had improved clinical outcomes, including increased survival, weight maintenance, and reduced disease scores. We also found lower histological disease activity and proinflammatory gene expression (TNF-α and inducible nitric oxide synthase) in the colon in deficient-diet mice. Metabolomic analysis showed evidence that these effects were associated with deficient B6, as markers of B12 function were only mildly altered. In vivo methionine kinetics corroborated these results, showing that the deficient diet suppressed transsulfuration but increased remethylation. Our findings suggest that disrupted Met metabolism attributable to B6 deficiency reduces the inflammatory response and disease activity in DSS-challenged mice. These results warrant further human clinical studies to determine whether B6 deficiency and elevated Hcys in patients with IBD contribute to disease pathobiology. PMID:21596995

  10. Ameliorative effects of bombesin and neurotensin on trinitrobenzene sulphonic acid-induced colitis, oxidative damage and apoptosis in rats.

    PubMed

    Akcan, Alper; Muhtaroglu, Sebahattin; Akgun, Hulya; Akyildiz, Hizir; Kucuk, Can; Sozuer, Erdogan; Yurci, Alper; Yilmaz, Namik

    2008-02-28

    To investigate the effects of bombesin (BBS) and neurotensin (NTS) on apoptosis and colitis in an ulcerative colitis model. In this study, a total of 50 rats were divided equally into 5 groups. In the control group, no colitis induction or drug administration was performed. Colitis was induced in all other groups. Following the induction of colitis, BBS, NTS or both were applied to three groups of rats. The remaining group (colitis group) received no treatment. On the 11th d after induction of colitis and drug treatment, blood samples were collected for TNF-alpha and IL-6 level studies. Malondialdehyde (MDA), carbonyl, myeloperoxidase (MPO) and caspase-3 activities, as well as histopathological findings, evaluated in colonic tissues. According to the macroscopic and microscopic findings, the study groups treated with BBS, NTS and BBS + NTS showed significantly lower damage and inflammation compared with the colitis group (macroscopic score, 2.1 +/- 0.87, 3.7 +/- 0.94 and 2.1 +/- 0.87 vs 7.3 +/- 0.94; microscopic score, 2.0 +/- 0.66, 3.3 +/- 0.82 and 1.8 +/- 0.63 vs 5.2 +/- 0.78, P < 0.01). TNF-alpha and IL-6 levels were increased significantly in all groups compared with the control group. These increases were significantly smaller in the BBS, NTS and BBS + NTS groups compared with the colitis group (TNF-alpha levels, 169.69 +/- 53.56, 245.86 +/- 64.85 and 175.54 +/- 42.19 vs 556.44 +/- 49.82; IL-6 levels, 443.30 +/- 53.99, 612.80 +/- 70.39 and 396.80 +/- 78.43 vs 1505.90 +/- 222.23, P < 0.05). The colonic MPO and MDA levels were significantly lower in control, BBS, NTS and BBS + NTS groups than in the colitis group (MPO levels, 24.36 +/- 8.10, 40.51 +/- 8.67 and 25.83 +/- 6.43 vs 161.47 +/- 38.24; MDA levels, 4.70 +/- 1.41, 6.55 +/- 1.12 and 4.51 +/- 0.54 vs 15.60 +/- 1.88, P < 0.05). Carbonyl content and caspase-3 levels were higher in the colitis and NTS groups than in control, BBS and BBS + NTS groups (carbonyl levels, 553.99 +/- 59.58 and 336.26 +/- 35.72 vs

  11. Evaluation of eight cephalosporins in hamster colitis model.

    PubMed Central

    Ebright, J R; Fekety, R; Silva, J; Wilson, K H

    1981-01-01

    Eight commonly used cephalosporins were evaluated in the hamster colitis mode. They were all found to cause hemorrhagic cecitis and death within 10 days of being given as subcutaneous or oral challenges. Necropsy findings were indistinguishable from clindamycin-induced cecitis. Bacteria-free cecal filtrate obtained from hamsters dying of cephalosporin-induced cecitis contained toxin similar or identical to hat produced by Clostridium difficile isolated from the cecum of a hamster. Daily oral administration of poorly absorbed cephalosporins protected hamsters from clindamycin-induced cecitis and death as long as the cephalosporins were continued. The absorbable cephalosporins were ineffective in protecting hamsters from clindamycin-induced cecitis. This difference probably relates to the lower concentrations of absorbable cephalosporins maintained in the ceca of the hamsters. The possible correlation of these findings to human cases of cephalosporin-induced pseudomembranous colitis is discussed. PMID:6973951

  12. Dietary ω-6/ω-3 Polyunsaturated Fatty Acid Ratios Affect the Homeostasis of Th/Treg Cells in Mice With Dextran Sulfate Sodium-Induced Colitis.

    PubMed

    Huang, Cyoung-Huei; Hou, Yu-Chen; Pai, Man-Hui; Yeh, Chiu-Li; Yeh, Sung-Ling

    2017-05-01

    This study evaluated the effect of different dietary ω-6/ω-3 polyunsaturated fatty acid (PUFA) ratios on modulating helper T (Th) and regulatory T (Treg) lymphocytes in mice with dextran sulfate sodium (DSS)-induced colitis. There were 3 control and 3 colitis groups. Mice were fed for 24 days with diets with soybean oil (S), a mixture of soybean oil and low fish oil content (LF), or high fish oil content (HF). The ratio of ω-6/ω-3 PUFA in the LF diet was 4:1, and that in the HF diet was 2:1. The control groups drank distilled water while colitis groups were provided 2% DSS in drinking water during days 15-19. All mice drank distilled water from days 20-24 for recovery and were sacrificed on day 25. Colitis resulted in higher blood Th1, Th2, and Th17 and lower Treg percentages. Also, plasma haptoglobin and proinflammatory chemokines were elevated in colon lavage fluid. Colitic groups with fish oil had lower inflammatory mediators in the plasma and colon lavage fluid. Furthermore, the percentages of blood Th1, Th2, and Th17 cells were lower, whereas Treg cell percentages were higher than those in the soybean oil group. The colitis group with an ω-6/ω-3 PUFA ratio of 2:1 had more pronounced effects than the group with a ratio of 4:1. Diets with an ω-6/ω-3 PUFA ratio of 2:1 or 4:1 regulate the Th/Treg balance and attenuate inflammatory mediator production in colitis. Compared with the ω-6/ω-3 PUFA ratio of 4:1, the ratio of 2:1 was more effective in reducing inflammatory reactions in DSS-induced colitis.

  13. A severe case of ipilimumab-induced guillain-barré syndrome revealed by an occlusive enteric neuropathy: a differential diagnosis for ipilimumab-induced colitis.

    PubMed

    Gaudy-Marqueste, Caroline; Monestier, Sandrine; Franques, Jérome; Cantais, Emmanuel; Richard, Marie-Aleth; Grob, Jean-Jacques

    2013-01-01

    Ipilimumab is a fully human monoclonal antibody directed against cytotoxic T-lymphocyte antigen-4 recently approved for the treatment of metastatic melanoma and currently under investigation in the adjuvant setting of high-risk stage III melanoma. The blockade of CTLA-4 induces activation of T cells, with an expected increase in the immunological reaction directed to cancer. We report a case of ipilimumab-induced Guillain-Barré syndrome revealed by an occlusive enteric neuropathy. Two weeks after the second dose of ipilimumab, our patient started to complain of abdominal meteorism and nausea. Within a few days, an occlusive syndrome developed. Wall biopsies during colonoscopy revealed a slight edema of the mucosa and a high number of lymphocytic follicles, leading to the diagnosis of ipilimumab-induced immune colitis. A respiratory failure occurred and a neurological deficiency developed rapidly. The diagnosis of polyradiculoneuritis was retained. Despite IV steroids, tacrolimus than plasmatic exchanges, the patient died within a few days because of multivisceral failure. Polyradiculoneuritis is a rare but very severe immune-mediated complication of ipilimumab. Occlusive enteric neuropathy may mimic the digestive symptoms of colitis, which is so frequent under ipilimumab.

  14. T-bet expression by Th cells promotes type 1 inflammation but is dispensable for colitis.

    PubMed

    Zimmermann, J; Kühl, A A; Weber, M; Grün, J R; Löffler, J; Haftmann, C; Riedel, R; Maschmeyer, P; Lehmann, K; Westendorf, K; Mashreghi, M-F; Löhning, M; Mack, M; Radbruch, A; Chang, H D

    2016-11-01

    The transcription factor T-bet is highly expressed by Th cells isolated from the inflamed intestine of Crohn's disease patients, and has been regarded a critical driver of murine T cell-induced colitis. However, we show here that T-bet expression by Th cells is not required for the manifestation of T-cell-induced colitis in the presence of segmented filamentous bacteria and Helicobacter hepaticus. T-bet expression by Th cells controls their survival and localization, their repertoire of chemokine and chemokine receptor expression, the accumulation of monocytes and macrophages in the inflamed colon, and their differentiation to the M1 type, i.e., type 1 inflammation. Nevertheless, T-bet-deficient Th cells efficiently induce colitis, as reflected by weight loss, diarrhea, and colon histopathology. T-bet-deficient Th cells differentiate into Th1/17 cells, able to express IFN-γ and IL-17A upon restimulation. While neutralization of IL-17A exacerbated colitis induced by wild-type or T-bet-deficient Th cells, neutralization of IFN-γ completely abolished colitis.

  15. Mice deficient in Muc4 are resistant to experimental colitis and colitis-associated colorectal cancer

    PubMed Central

    Das, S; Rachagani, S; Sheinin, Y; Smith, LM; Gurumurthy, CB; Roy, HK; Batra, SK

    2017-01-01

    MUC4, a large transmembrane mucin normally expressed in the small and large intestine, is differentially expressed during inflammatory and malignant conditions of the colon. However, the expression pattern and the role of MUC4 in colitis and colorectal cancer (CRC) are inconclusive. Therefore, the aim of this study was to understand the role of Muc4 during inflammatory and malignant conditions of the colon. Here, we generated Muc4−/− mice and addressed its role in colitis and colitis-associated CRC using dextran sodium sulfate (DSS) and azoxymethane (AOM)-DSS experimental models, respectively. Muc4−/− mice were viable, fertile with no apparent defects. Muc4−/− mice displayed increased resistance to DSS-induced colitis compared with wild-type (WT) littermates that was evaluated by survival rate, body weight loss, diarrhea and fecal blood score, and histological score. Reduced infiltration of inflammatory cells, that is, CD3+ lymphocytes and F4/80+ macrophages was observed in the inflamed mucosa along with reduction in the mRNA levels of inflammatory cytokines interleukin (IL)-1β and tumor necrosis factor (TNF)-α and anti-microbial genes Lysozyme M and SLPI in the colon of Muc4−/− mice compared with WT littermates. Compensatory upregulation of Muc2 and Muc3 mucins under basal and DSS treatment conditions partly explains the resistance observed in Muc4−/− mice. Accordingly, Muc4−/− mice exhibited significantly reduced tumor burden compared with WT mice assessed in a colitis-induced tumor model using AOM/DSS. An increased percentage of Ki67+ nuclei was observed in the tumors from WT compared with Muc4−/− mice suggesting Muc4 to be critical in intestinal cell proliferation during tumorigenesis. Taken together, we conclusively demonstrate for the first time the role of Muc4 in driving intestinal inflammation and inflammation-associated tumorigenesis using a novel Muc4−/− mouse model. PMID:26364605

  16. Role of α-lipoic acid in dextran sulfate sodium-induced ulcerative colitis in mice: studies on inflammation, oxidative stress, DNA damage and fibrosis.

    PubMed

    Trivedi, P P; Jena, G B

    2013-09-01

    Ulcerative colitis affects many people worldwide. Inflammation and oxidative stress play a vital role in its pathogenesis. Previously, we reported that ulcerative colitis leads to systemic genotoxicity in mice. The present study was aimed at elucidating the role of α-lipoic acid in ulcerative colitis-associated local and systemic damage in mice. Experimental colitis was induced using 3%w/v dextran sulfate sodium in drinking water for 2 cycles. α-Lipoic acid was administered in a co-treatment (20, 40, 80 mg/kg bw) and post-treatment (80 mg/kg bw) schedule. Various biochemical parameters, histological evaluation, comet and micronucleus assays, immunohistochemistry and western blot analysis were employed to evaluate the effect of α-lipoic acid in mice with ulcerative colitis. The protective effect of α-lipoic acid was mediated through the modulation of nuclear factor kappa B, cyclooxygenase-2, interleukin 17, signal transducer and activator of transcription 3, nuclear erythroid 2-related factor 2, NADPH: quinone oxidoreductase-1, matrix metalloproteinase-9 and connective tissue growth factor. Further, ulcerative colitis led to an increased gut permeability, plasma lipopolysaccharide level, systemic inflammation and genotoxicity in mice, which was reduced with α-lipoic acid treatment. The present study identifies the underlying mechanisms involved in α-lipoic acid-mediated protection against ulcerative colitis and the associated systemic damage in mice. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Schistosoma japonicum ova maintains epithelial barrier function during experimental colitis.

    PubMed

    Xia, Chen-Mei; Zhao, Yuan; Jiang, Li; Jiang, Jie; Zhang, Shun-Cai

    2011-11-21

    To evaluate the impacts of Schistosoma japonicum (S. japonicum) ova on the tight junction barriers in a trinitrobenzenesulfonic acid (TNBS)-induced colitis model. Balb/c mice were randomly divided into three groups: control group; TNBS(+)ova(-) group and TNBS(+)ova(+) group. TNBS was used intracolonic to induce colitis and mice of the TNBS(+)ova(+) group were pre-exposed to S. japonicum ova as a prophylactic intervention. Colon inflammation was quantified using following variables: mouse mortality, weight loss, colon extent and microscopic inflammation score. Serum expression of tumor necrosis factor-α and interferon-γ were assessed to evaluate the systemic inflammatory response. NOD2 and its mRNA were also tested. Bacterial translocations were tested by culturing blood and several tissues. ZO-1 and occludin were chosen as the representations of tight junction proteins. Both the proteins and mRNA were assessed. Ova pre-treatment contributed to the relief of colitis and decreased the mortality of the models. NOD2 expression was significantly downregulated when pretreated with the ova. The TNBS injection caused a significant downregulation of ZO-1 and occludin mRNA together with their proteins in the colon; ova pre-exposure reversed these alterations. Treatment with S. japonicum ova in the colitis model caused lower intestinal bacterial translocation frequency. S. japonicum ova can maintain epithelial barrier function through increasing tight junction proteins, thus causing less exposure of NOD2 to the luminal antigens which may activate a series of inflammatory factors and induce colitis.

  18. Pretreatment of Gymnema sylvestre revealed the protection against acetic acid-induced ulcerative colitis in rats

    PubMed Central

    2014-01-01

    Background Overproduction of free radicals and decreased antioxidant capacity are well-known risk factors for inflammatory bowel diseases. Gymnema sylvestre (GS) leaves extract is distinguished for its anti-diabetic, antioxidant and anti-inflammatory properties. Present study is designed to evaluate the preventative activities of GS against acetic acid (AA)-induced ulcerative colitis in Wistar rats. Methods Experimentally ulcerative colitis (UC) was induced by AA in animals pretreated with three different doses of GS leaves extract (50, 100, 200 mg/kg/day) and a single dose of mesalazine (MES, 300 mg/kg/day) for seven days. Twenty four hours later, animals were sacrificed and the colonic tissues were collected. Colonic mucus content was determined using Alcian blue dye binding technique. Levels of thiobarbituric acid reactive substances (TBARS), total glutathione sulfhydryl group (T-GSH) and non-protein sulfhydryl group (NPSH) as well as the activity of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) were estimated in colon tissues. Colonic nucleic acids (DNA and RNA) and total protein (TP) concentrations were also determined. Levels of pro-inflammatory cytokines including interleukin-1 beta (IL-1β), tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) as well as prostaglandin E2 (PGE2) and nitric oxide (NO) were estimated in colonic tissues. The histopathological changes of the colonic tissues were also observed. Results In AA administered group TBARS levels were increased, while colonic mucus content, T-GSH and NP-SH, SOD and CAT were reduced in colon. Pretreatment with GS inhibited TBARS elevation as well as mucus content, T-GSH and NP-SH reduction. Enzymatic activities of SOD and CAT were brought back to their normal levels in GS pretreated group. A significant reduction in DNA, RNA and TP levels was seen following AA administration and this inhibition was significantly eliminated by GS treatment. GS pretreatment also inhibited

  19. Pretreatment of Gymnema sylvestre revealed the protection against acetic acid-induced ulcerative colitis in rats.

    PubMed

    Aleisa, Abdulaziz M; Al-Rejaie, Salim S; Abuohashish, Hatem M; Ola, Mohammed S; Parmar, Mihir Y; Ahmed, Mohammed M

    2014-02-10

    Overproduction of free radicals and decreased antioxidant capacity are well-known risk factors for inflammatory bowel diseases. Gymnema sylvestre (GS) leaves extract is distinguished for its anti-diabetic, antioxidant and anti-inflammatory properties. Present study is designed to evaluate the preventative activities of GS against acetic acid (AA)-induced ulcerative colitis in Wistar rats. Experimentally ulcerative colitis (UC) was induced by AA in animals pretreated with three different doses of GS leaves extract (50, 100, 200 mg/kg/day) and a single dose of mesalazine (MES, 300 mg/kg/day) for seven days. Twenty four hours later, animals were sacrificed and the colonic tissues were collected. Colonic mucus content was determined using Alcian blue dye binding technique. Levels of thiobarbituric acid reactive substances (TBARS), total glutathione sulfhydryl group (T-GSH) and non-protein sulfhydryl group (NPSH) as well as the activity of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) were estimated in colon tissues. Colonic nucleic acids (DNA and RNA) and total protein (TP) concentrations were also determined. Levels of pro-inflammatory cytokines including interleukin-1 beta (IL-1β), tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) as well as prostaglandin E2 (PGE2) and nitric oxide (NO) were estimated in colonic tissues. The histopathological changes of the colonic tissues were also observed. In AA administered group TBARS levels were increased, while colonic mucus content, T-GSH and NP-SH, SOD and CAT were reduced in colon. Pretreatment with GS inhibited TBARS elevation as well as mucus content, T-GSH and NP-SH reduction. Enzymatic activities of SOD and CAT were brought back to their normal levels in GS pretreated group. A significant reduction in DNA, RNA and TP levels was seen following AA administration and this inhibition was significantly eliminated by GS treatment. GS pretreatment also inhibited AA-induced elevation of pro

  20. Immunotherapy-Induced Colitis: An Emerging Problem for the Hospitalist.

    PubMed

    Marin-Acevedo, Julian A; Harris, Dana M; Burton, M Caroline

    2018-06-01

    Since their introduction for melanoma treatment, the use of immune checkpoint inhibitors (ICIs) has rapidly expanded. Though their impact on survival is irrefutable, these medications have been associated with autoimmune-like adverse events related to their ability to induce the immune system. One of the most commonly affected organ systems is the gastrointestinal (GI) tract, in which manifestations range from mild diarrhea to severe colitis with intestinal perforation. Because of the increased use of ICIs, hospitalists are caring for an increasing number of patients experiencing their adverse events. We present a case-oriented review of the GI adverse events associated with the use of ICIs to familiarize the hospitalist with their mechanism of action and potential complications and to emphasize the importance of early diagnosis and treatment to decrease morbidity and mortality. © 2018 Society of Hospital Medicine.

  1. Prophylactic Oral Administration of Magnesium Ameliorates Dextran Sulfate Sodium-Induced Colitis in Mice through a Decrease of Colonic Accumulation of P2X7 Receptor-Expressing Mast Cells.

    PubMed

    Ohbori, Kenshi; Fujiwara, Makiko; Ohishi, Akihiro; Nishida, Kentaro; Uozumi, Yoshinobu; Nagasawa, Kazuki

    2017-01-01

    The number of patients with colitis has been increasing year by year. Recently, intestinal inflammation, as one of the factors for its onset, has been demonstrated to be induced by P2X7 receptor-mediated activation of colonic immune cells such as mast cells. Activation of P2X7 receptor (P2X7R) is known to be inhibited by divalent metal cations such as magnesium, but whether or not magnesium administration prevents/relieves colitis is unknown so far. Here, we report that oral (per os (p.o.)) administration of MgCl 2 and ingestion of commercially available magnesium-rich mineral hard water relieves dextran sulfate sodium (DSS)-induced colitis in mice. Colitis was induced through ingestion of a 3% (w/v) DSS solution ad libitum for 10 d. Brilliant blue G (BBG, a P2X7R antagonist), MgCl 2 or magnesium-rich mineral hard water was administered p.o. to mice via gastric intubation once a day or ad libitum from a day before DSS administration for 11 times or 11 d, respectively. DSS-treated mice exhibited a low disease activity index, a short colon and a high histological score compared to in control mice. As BBG (250 mg/kg, p.o.), administration of a MgCl 2 solution (100 or 500 mg/kg, p.o.) and ad libitum ingestion of the magnesium-rich mineral hard water (212 ppm as magnesium) partially, but significantly, attenuated the severity of colitis by decreasing the accumulation of P2X7R-immunopositive mast cells in the colon. Therefore, prophylactic p.o. administration/ingestion of magnesium is considered to be partially effective to protect mice against DSS-induced colitis by inhibiting P2X7R-mediated activation/accumulation of colonic mast cells.

  2. Matrix metalloproteinase 9-induced increase in intestinal epithelial tight junction permeability contributes to the severity of experimental DSS colitis

    PubMed Central

    Nighot, Prashant; Al-Sadi, Rana; Guo, Shuhong; Watterson, D. Martin; Ma, Thomas

    2015-01-01

    Recent studies have implicated a pathogenic role for matrix metalloproteinases 9 (MMP-9) in inflammatory bowel disease. Although loss of epithelial barrier function has been shown to be a key pathogenic factor for the development of intestinal inflammation, the role of MMP-9 in intestinal barrier function remains unclear. The aim of this study was to investigate the role of MMP-9 in intestinal barrier function and intestinal inflammation. Wild-type (WT) and MMP-9−/− mice were subjected to experimental dextran sodium sulfate (DSS) colitis by administration of 3% DSS in drinking water for 7 days. The mouse colonic permeability was measured in vivo by recycling perfusion of the entire colon using fluorescently labeled dextran. The DSS-induced increase in the colonic permeability was accompanied by an increase in intestinal epithelial cell MMP-9 expression in WT mice. The DSS-induced increase in intestinal permeability and the severity of DSS colitis was found to be attenuated in MMP-9−/− mice. The colonic protein expression of myosin light chain kinase (MLCK) and phospho-MLC was found to be significantly increased after DSS administration in WT mice but not in MMP-9−/− mice. The DSS-induced increase in colonic permeability and colonic inflammation was attenuated in MLCK−/− mice and MLCK inhibitor ML-7-treated WT mice. The DSS-induced increase in colonic surface epithelial cell MLCK mRNA was abolished in MMP-9−/− mice. Lastly, increased MMP-9 protein expression was detected within the colonic surface epithelial cells in ulcerative colitis cases. These data suggest a role of MMP-9 in modulation of colonic epithelial permeability and inflammation via MLCK. PMID:26514773

  3. Twice-daily Budesonide 2-mg Foam Induces Complete Mucosal Healing in Patients with Distal Ulcerative Colitis.

    PubMed

    Naganuma, Makoto; Aoyama, Nobuo; Suzuki, Yasuo; Nishino, Haruo; Kobayashi, Kiyonori; Hirai, Fumihito; Watanabe, Kenji; Hibi, Toshifumi

    2016-07-01

    Mucosal healing is an important therapeutic goal for ulcerative colitis. Once-daily administration of budesonide 2-mg foam is widely used for inducing clinical remission. No study has assessed the usefulness of twice-daily budesonide 2mg foam on mucosal healing in ulcerative colitis patients. We explored the efficacy for mucosal healing of once- or twice-daily budesonide foam in distal ulcerative colitis patients. This study was a multicentre, randomised, double-blind, placebo-controlled trial. In all, 165 patients with active, mild to moderate distal ulcerative colitis were randomised to three groups: once- or twice-daily budesonide 2mg/25ml foam, or placebo foam, for 6 weeks. Complete mucosal healing [endoscopic subscore = 0] and the safety profile were assessed at Week 6. Prespecified and post hoc analyses were used. The percentages of complete mucosal healing in the twice-daily budesonide foam group were 46.4% compared with 23.6% in the once-daily group [p = 0.0097], or 5.6% in the placebo group [p < 0.0001]. The percentages of clinical remission and the percentages of endoscopic subscore ≤ 1 in the twice-daily budesonide foam group were 48.2% and 76.8%, compared with 50.9% and 69.1% in the once-daily group [no difference], or 20.4% and 46.3% in the placebo group [p = 0.0029 and p = 0.0007], respectively. In the subgroup of patients with previous use of a 5-aminosalicylic acid suppository or enema, there was a greater percentage of complete mucosal healing in the twice-daily budesonide foam group [32.0%] compared with that in the once-daily [8.7%, p = 0.0774] or placebo groups [4.8%, p = 0.0763], though there was no significant difference. No serious adverse event occurred. A significantly greater percentage of patients receiving twice-daily administration of budesonide foam compared with once-daily administration/placebo achieved complete mucosal healing. This is the first study to evaluate the endoscopic efficacy of twice-daily administration of 6-week

  4. Nonacetaminophen Drug-Induced Acute Liver Failure.

    PubMed

    Thomas, Arul M; Lewis, James H

    2018-05-01

    Acute liver failure of all causes is diagnosed in between 2000 and 2500 patients annually in the United States. Drug-induced acute liver failure is the leading cause of acute liver failure, accounting for more than 50% of cases. Nonacetaminophen drug injury represents 11% of all cases in the latest registry from the US Acute Liver Failure Study Group. Although rare, acute liver failure is clinically dramatic when it occurs, and requires a multidisciplinary approach to management. In contrast with acetaminophen-induced acute liver failure, non-acetaminophen-induced acute liver failure has a more ominous prognosis with a lower liver transplant-free survival. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. The effect of stinging nettle (Urtica dioica) seed oil on experimental colitis in rats.

    PubMed

    Genc, Zeynep; Yarat, Aysen; Tunali-Akbay, Tugba; Sener, Goksel; Cetinel, Sule; Pisiriciler, Rabia; Caliskan-Ak, Esin; Altıntas, Ayhan; Demirci, Betul

    2011-12-01

    This study investigated the effect of Urtica dioica, known as stinging nettle, seed oil (UDO) treatment on colonic tissue and blood parameters of trinitrobenzene sulfonic acid (TNBS)-induced colitis in rats. Experimental colitis was induced with 1 mL of TNBS in 40% ethanol by intracolonic administration with a 8-cm-long cannula with rats under ether anesthesia, assigned to a colitis group and a colitis+UDO group. Rats in the control group were given saline at the same volume by intracolonic administration. UDO (2.5 mL/kg) was given to the colitis+UDO group by oral administration throughout a 3-day interval, 5 minutes later than colitis induction. Saline (2.5 mL/kg) was given to the control and colitis groups at the same volume by oral administration. At the end of the experiment macroscopic lesions were scored, and the degree of oxidant damage was evaluated by colonic total protein, sialic acid, malondialdehyde (MDA), and glutathione levels, collagen content, tissue factor activity, and superoxide dismutase and myeloperoxidase activities. Colonic tissues were also examined by histological and cytological analysis. Pro-inflammatory cytokines (tumor necrosis factor-α, interleukin-1β, and interleukin-6), lactate dehydrogenase activity, and triglyceride and cholesterol levels were analyzed in blood samples. We found that UDO decreased levels of pro-inflammatory cytokines, lactate dehydrogenase, triglyceride, and cholesterol, which were increased in colitis. UDO administration ameliorated the TNBS-induced disturbances in colonic tissue except for MDA. In conclusion, UDO, through its anti-inflammatory and antioxidant actions, merits consideration as a potential agent in ameliorating colonic inflammation.

  6. Oral administration of red ginseng powder fermented with probiotic alleviates the severity of dextran-sulfate sodium-induced colitis in a mouse model.

    PubMed

    Jang, Sun-Hee; Park, Jisang; Kim, Sae-Hae; Choi, Kyung-Min; Ko, Eun-Sil; Cha, Jeong-Dan; Lee, Young-Ran; Jang, Hyonseok; Jang, Yong-Suk

    2017-03-01

    Red ginseng is a well-known alternative medicine with anti-inflammatory activity. It exerts pharmacological effects through the transformation of saponin into metabolites by intestinal microbiota. Given that intestinal microflora vary among individuals, the pharmacological effects of red ginseng likely vary among individuals. In order to produce homogeneously effective red ginseng, we prepared probiotic-fermented red ginseng and evaluated its activity using a dextran sulfate sodium (DSS)-induced colitis model in mice. Initial analysis of intestinal damage indicated that the administration of probiotic-fermented red ginseng significantly decreased the severity of colitis, compared with the control and the activity was higher than that induced by oral administration of ginseng powder or probiotics only. Subsequent analysis of the levels of serum IL-6 and TNF-α, inflammatory biomarkers that are increased at the initiation stage of colitis, were significantly decreased in probiotic-fermented red ginseng-treated groups in comparison to the control group. The levels of inflammatory cytokines and mRNAs for inflammatory factors in colorectal tissues were also significantly decreased in probiotic-fermented red ginseng-treated groups. Collectively, oral administration of probiotic-fermented red ginseng reduced the severity of colitis in a mouse model, suggesting that it can be used as a uniformly effective red ginseng product. Copyright © 2017 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  7. Microscopic colitis syndrome.

    PubMed Central

    Veress, B; Löfberg, R; Bergman, L

    1995-01-01

    The colorectal biopsy specimens from 30 patients with chronic watery diarrhoea but normal endoscopic and radiographic findings were studied by light microscopy, morphometry, immunohistochemistry, and two patients with electron microscopy. The histological changes in the colorectum were originally diagnosed in six patients as lymphocytic colitis and in 24 patients as collagenous colitis. The analysis of the specimens for this study could delineate three distinct groups of microscopic colitis: lymphocytic colitis (six patients), collagenous colitis without lymphocytic attack on the surface epithelium (seven patients), and a mixed form presenting with both thickening of the collagen plate and increased number of intraepithelial lymphocytes (17 patients). No transformation was seen from one type to another during follow up of six patients for four to seven years. Increased numbers of active pericryptal myofibroblasts were found with the electron microscope in one patient with mixed microscopic colitis showing also myofibroblasts entrapped within the collagen layer. Hitherto undescribed flat mucosa of the ileum was found in one patient with lymphocytic colitis and both flat mucosa and thickening of the collagen plate in the ileum were seen in one patient with the mixed form of the disease. In another patient with mixed microscopic colitis, normalisation of the colorectal morphology occurred after temporary loop ileostomy, followed by the reappearance of both diarrhoea, inflammation, and thickening of the collagen plate after the ileostomy was reversed. No association was found between non-steroid anti-inflammatory drug (NSAID) consumption and collagenous or mixed microscopic colitis. The primary cause of microscopic colitis is probably an immunological reaction to luminal antigen/s, perhaps of ileal origin. The engagement of the pericryptal myofibroblasts in the disease process might result in the development of the various forms of microscopic colitis. An inverse

  8. Ameliorative effects of bombesin and neurotensin on trinitrobenzene sulphonic acid-induced colitis, oxidative damage and apoptosis in rats

    PubMed Central

    Akcan, Alper; Muhtaroglu, Sebahattin; Akgun, Hulya; Akyildiz, Hizir; Kucuk, Can; Sozuer, Erdogan; Yurci, Alper; Yilmaz, Namik

    2008-01-01

    AIM: To investigate the effects of bombesin (BBS) and neurotensin (NTS) on apoptosis and colitis in an ulcerative colitis model. METHODS: In this study, a total of 50 rats were divided equally into 5 groups. In the control group, no colitis induction or drug administration was performed. Colitis was induced in all other groups. Following the induction of colitis, BBS, NTS or both were applied to three groups of rats. The remaining group (colitis group) received no treatment. On the 11th d after induction of colitis and drug treatment, blood samples were collected for TNF-α and IL-6 level studies. Malondialdehyde (MDA), carbonyl, myeloperoxidase (MPO) and caspase-3 activities, as well as histopathological findings, evaluated in colonic tissues. RESULTS: According to the macroscopic and microscopic findings, the study groups treated with BBS, NTS and BBS + NTS showed significantly lower damage and inflammation compared with the colitis group (macroscopic score, 2.1 ± 0.87, 3.7 ± 0.94 and 2.1 ± 0.87 vs 7.3 ± 0.94; microscopic score, 2.0 ± 0.66, 3.3 ± 0.82 and 1.8 ± 0.63 vs 5.2 ± 0.78, P < 0.01). TNF-α and IL-6 levels were increased significantly in all groups compared with the control group. These increases were significantly smaller in the BBS, NTS and BBS + NTS groups compared with the colitis group (TNF-α levels, 169.69 ± 53.56, 245.86 ± 64.85 and 175.54 ± 42.19 vs 556.44 ± 49.82; IL-6 levels, 443.30 ± 53.99, 612.80 ± 70.39 and 396.80 ± 78.43 vs 1505.90 ± 222.23, P < 0.05). The colonic MPO and MDA levels were significantly lower in control, BBS, NTS and BBS + NTS groups than in the colitis group (MPO levels, 24.36 ± 8.10, 40.51 ± 8.67 and 25.83 ± 6.43 vs 161.47 ± 38.24; MDA levels, 4.70 ± 1.41, 6.55 ± 1.12 and 4.51 ± 0.54 vs 15.60 ± 1.88, P < 0.05). Carbonyl content and caspase-3 levels were higher in the colitis and NTS groups than in control, BBS and BBS + NTS groups (carbonyl levels, 553.99 ± 59.58 and 336.26 ± 35.72 vs 209.76 ± 30

  9. Pseudomembranous Colitis

    PubMed Central

    Farooq, Priya D.; Urrunaga, Nathalie H.; Tang, Derek M.; von Rosenvinge, Erik C.

    2015-01-01

    Pseudomembranous colitis is an inflammatory condition of the colon characterized by elevated yellow-white plaques that coalesce to form pseudomembranes on the mucosa. Patients with the condition commonly present with abdominal pain, diarrhea, fever, and leukocytosis. Because pseudomembranous colitis is often associated with C. difficile infection, stool testing and empiric antibiotic treatment should be initiated when suspected. When results of C. difficile testing are negative and symptoms persist despite escalating empiric treatment, early gastroenterology consultation and lower endoscopy would be the next step in the appropriate clinical setting. If pseudomembranous colitis is confirmed endoscopically, colonic biopsies should be obtained, as histology can offer helpful clues to the underlying diagnosis. The less common non-C. difficile causes of pseudomembranous colitis should be entertained, as a number of etiologies can result in this condition. Examples include Behcet’s disease, collagenous colitis, inflammatory bowel disease, ischemic colitis, other infections organisms (e.g. bacteria, parasites, viruses), and a handful of drugs and toxins. Pinpointing the correct underlying etiology would better direct patient care and disease management. Surgical specialists would be most helpful in colonic perforation, gangrenous colon, or severe disease. PMID:25769243

  10. Dietary protocatechuic acid ameliorates dextran sulphate sodium-induced ulcerative colitis and hepatotoxicity in rats.

    PubMed

    Farombi, Ebenezer O; Adedara, Isaac A; Awoyemi, Omolola V; Njoku, Chinonye R; Micah, Gabriel O; Esogwa, Cynthia U; Owumi, Solomon E; Olopade, James O

    2016-02-01

    The present study investigated the antioxidant and anti-inflammatory effects of dietary protocatechuic acid (PCA), a simple hydrophilic phenolic compound commonly found in many edible vegetables, on dextran sulphate sodium (DSS)-induced ulcerative colitis and its associated hepatotoxicity in rats. PCA was administered orally at 10 mg kg(-1) to dextran sulphate sodium exposed rats for five days. The result revealed that administration of PCA significantly (p < 0.05) prevented the incidence of diarrhea and bleeding, the decrease in the body weight gain, shortening of colon length and the increase in colon mass index in DSS-treated rats. Furthermore, PCA prevented the increase in the plasma levels of pro-inflammatory cytokines, markers of liver toxicity and markedly suppressed the DSS-mediated elevation in colonic nitric oxide concentration and myeloperoxidase activity in the treated rats. Administration of PCA significantly protected against colonic and hepatic oxidative damage by increasing the antioxidant status and concomitantly decreased hydrogen peroxide and lipid peroxidation levels in the DSS-treated rats. Moreover, histological examinations confirmed PCA chemoprotection against colon and liver damage. Immunohistochemical analysis showed that PCA significantly inhibited cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) protein expression in the colon of DSS-treated rats. In conclusion, the effective chemoprotective role of PCA in colitis and the associated hepatotoxicity is related to its intrinsic anti-inflammatory and anti-oxidative properties.

  11. Enteral diets enriched with medium-chain triglycerides and N-3 fatty acids prevent chemically induced experimental colitis in rats.

    PubMed

    Kono, Hiroshi; Fujii, Hideki; Ogiku, Masahito; Tsuchiya, Masato; Ishii, Kenichi; Hara, Michio

    2010-11-01

    The specific purpose of this study was to evaluate the significant effects of medium-chain triglycerides (MCTs) and N-3 fatty acids on chemically induced experimental colitis induced by 2,4,6-trinitrobenzene sulphonic acid (TNBS) in rats. Male Wistar rats were fed liquid diets enriched with N-6 fatty acid (control diets), N-3 fatty acid (MCT- diets), and N-3 fatty acid and MCT (MCT+ diets) for 2 weeks and then were given an intracolonic injection of TNBS. Serum and tissue samples were collected 5 days after ethanol or TNBS enema. The severity of colitis was evaluated pathologically, and tissue myeloperoxidase activity was measured in colonic tissues. Furthermore, protein levels for inflammatory cytokines and a chemokine were assessed by an enzyme-linked immunosorbent assay in colonic tissues. Induction of proinflammatory cytokines tumor necrosis factor-α and interleukin-1β in the colon by TNBS enema was markedly attenuated by the MCT+ diet among the 3 diets studied. Furthermore, the induction of chemokines macrophage inflammatory protein-2 and monocyte chemotactic protein-1 also was blunted significantly in animals fed the MCT+ diets. As a result, MPO activities in the colonic tissue also were blunted significantly in animals fed the MCT+ diets compared with those fed the control diets or the MCT- diets. Furthermore, the MCT+ diet improved chemically induced colitis significantly among the 3 diets studied. Diets enriched with both MCTs and N-3 fatty acids may be effective for the therapy of inflammatory bowel disease as antiinflammatory immunomodulating nutrients. Copyright © 2010 Mosby, Inc. All rights reserved.

  12. Effect of a probiotic beverage consumption (Enterococcus faecium CRL 183 and Bifidobacterium longum ATCC 15707) in rats with chemically induced colitis.

    PubMed

    Celiberto, Larissa Sbaglia; Bedani, Raquel; Dejani, Naiara Naiana; Ivo de Medeiros, Alexandra; Sampaio Zuanon, José Antonio; Spolidorio, Luis Carlos; Tallarico Adorno, Maria Angela; Amâncio Varesche, Maria Bernadete; Carrilho Galvão, Fábio; Valentini, Sandro Roberto; Font de Valdez, Graciela; Rossi, Elizeu Antonio; Cavallini, Daniela Cardoso Umbelino

    2017-01-01

    Some probiotic strains have the potential to assist in relieving the symptoms of inflammatory bowel disease. The impact of daily ingestion of a soy-based product fermented by Enterococcus faecium CRL 183 and Lactobacillus helveticus 416 with the addition of Bifidobacterium longum ATCC 15707 on chemically induced colitis has been investigated thereof within a period of 30 days. Colitis was induced by dextran sulfate sodium. The animals were randomly assigned into five groups: Group C: negative control; Group CL: positive control; Group CLF: DSS with the fermented product; Group CLP: DSS with the non-fermented product (placebo); Group CLS: DSS with sulfasalazine. The following parameters were monitored: disease activity index, fecal microbial analyses, gastrointestinal survival of probiotic microorganisms and short-chain fatty acids concentration in the feces. At the end of the protocol the animals' colons were removed so as to conduct a macroscopical and histopathological analysis, cytokines and nitrite quantification. Animals belonging to the CLF group showed fewer symptoms of colitis during the induction period and a lower degree of inflammation and ulceration in their colon compared to the CL, CLS and CLP groups (p<0.05). The colon of the animals in groups CL and CLS presented severe crypt damage, which was absent in CLF and CLP groups. A significant increase in the population of Lactobacillus spp. and Bifidobacterium spp. at the end of the protocol was verified only in the CLF animals (p<0.05). This group also showed an increase in short-chain fatty acids (propionate and acetate). Furthermore, the intestinal survival of E. faecium CRL 183 and B. longum ATCC 15707 in the CLF group has been confirmed by biochemical and molecular analyzes. The obtained results suggest that a regular intake of the probiotic product, and placebo to a lesser extent, can reduce the severity of DSS-induced colitis on rats.

  13. The Probiotic Lactobacillus Prevents Citrobacter rodentium-Induced Murine Colitis in a TLR2-Dependent Manner.

    PubMed

    Ryu, Seung-Hyun; Park, Jong-Hyung; Choi, Soo-Young; Jeon, Hee-Yeon; Park, Jin-Il; Kim, Jun-Young; Ham, Seung-Hoon; Choi, Yang-Kyu

    2016-07-28

    The main objective of this study was to investigate whether Lactobacillus rhamnosus GG (LGG) ameliorated the effects of Citrobactor rodentium infection in Toll-like receptor 2 (TLR2) knockout (KO) and TLR4 KO mice, as well as in wild-type C57BL/6 (B6) mice. TLR2 KO, TLR4 KO, and B6 mice were divided into three groups per each strain. Each group had an uninfected control group (n = 5), C. rodentium-infected group (n = 8), and LGG-pretreated C. rodentium-infected group (n = 8). The survival rate of B6 mice infected with C. rodentium was higher when pretreated with LGG. Pretreatment with LGG ameliorated C. rodentium-induced mucosal hyperplasia in B6 and TLR4 KO mice. However, in C-rodentium-infected TLR2 KO mice, mucosal hyperplasia persisted, regardless of pretreatment with LGG. In addition, LGG-pretreated B6 and TLR4 KO mice showed a decrease in spleen weight and downregulation of tumor necrosis factor alpha, interferon gamma, and monocyte chemotactic protein 1 mRNA expression compared with the non-pretreated group. In contrast, such changes were not observed in TLR2 KO mice, regardless of pretreatment with LGG. From the above results, we conclude that pretreatment with LGG ameliorates C. rodentium-induced colitis in B6 and TLR4 KO mice, but not in TLR2 KO mice. Therefore, LGG protects mice from C. rodentium-induced colitis in a TLR2-dependent manner.

  14. Chemopreventive effect of dietary glutamine on colitis-associated colon tumorigenesis in mice.

    PubMed

    Tian, Yun; Wang, Keming; Wang, Zhaoxia; Li, Nan; Ji, Guozhong

    2013-07-01

    Chronic colonic inflammation is a known risk factor for colorectal cancer (CRC). Glutamine (GLN) supplementation has shown its anti-inflammation benefit in experimental colitis. Whether GLN is effective in preventing colon carcinogenesis remains to be investigated. The chemopreventive activity of GLN was evaluated in the mouse model of dextran sulfate sodium (DSS)/azoxymethane (AOM)-induced colitis-associated CRC in this study. Mice were treated with DSS/AOM and randomized to receive either a control diet or GLN-enriched diet intermittently of the study. The disease activity index was evaluated weekly. On day 80 of the experiment, the entire colon and rectum were processed for histopathologic examination and further evaluation. Pro-inflammatory mediators and cytokines were measured by enzyme-linked immunosorbent assay, real-time-PCR and western blot analysis. Here, we show that after GLN-enriched diet, the colitis presented a statistical improvement and tumors burden decreased significantly. This was accompanied by lower activity of nuclear factor-κB (NF-κB), decreased expression of cyclooxygenase-2 and inducible nitric oxide synthase, lower expression of cytokines and chemokines as well as reduced proliferation and induced apoptosis in the colons of colitis-associated CRC mice. Our data demonstrate the protective/preventive effect of GLN in the progression of colitis-associated CRC, which was correlated with a dampening of inflammation and NF-κB activity and with a decrease of inflammatory protein overexpression.

  15. Distinct Immunomodulatory Effects of Spermine Oxidase in Colitis Induced by Epithelial Injury or Infection

    PubMed Central

    Gobert, Alain P.; Al-Greene, Nicole T.; Singh, Kshipra; Coburn, Lori A.; Sierra, Johanna C.; Verriere, Thomas G.; Luis, Paula B.; Schneider, Claus; Asim, Mohammad; Allaman, Margaret M.; Barry, Daniel P.; Cleveland, John L.; Destefano Shields, Christina E.; Casero, Robert A.; Washington, M. Kay; Piazuelo, M. Blanca; Wilson, Keith T.

    2018-01-01

    Polyamines have been implicated in numerous biological processes, including inflammation and carcinogenesis. Homeostatic regulation leads to interconversion of the polyamines putrescine and the downstream metabolites spermidine and spermine. The enzyme spermine oxidase (SMOX), which back-converts spermine to spermidine, contributes to regulation of polyamine levels, but can also have other effects. We have implicated SMOX in gastric inflammation and carcinogenesis due to infection by the pathogen Helicobacter pylori. In addition, we reported that SMOX can be upregulated in humans with inflammatory bowel disease. Herein, we utilized Smox-deficient mice to examine the role of SMOX in two murine colitis models, Citrobacter rodentium infection and dextran sulfate sodium (DSS)-induced epithelial injury. In C. rodentium-infected wild-type (WT) mice, there were marked increases in colon weight/length and histologic injury, with mucosal hyperplasia and inflammatory cell infiltration; these changes were ameliorated in Smox−/− mice. In contrast, with DSS, Smox−/− mice exhibited substantial mortality, and increased body weight loss, colon weight/length, and histologic damage. In C. rodentium-infected WT mice, there were increased colonic levels of the chemokines CCL2, CCL3, CCL4, CXCL1, CXCL2, and CXCL10, and the cytokines IL-6, TNF-α, CSF3, IFN-γ, and IL-17; each were downregulated in Smox−/− mice. In DSS colitis, increased levels of IL-6, CSF3, and IL-17 were further increased in Smox−/− mice. In both models, putrescine and spermidine were increased in WT mice; in Smox−/− mice, the main effect was decreased spermidine and spermidine/spermine ratio. With C. rodentium, polyamine levels correlated with histologic injury, while with DSS, spermidine was inversely correlated with injury. Our studies indicate that SMOX has immunomodulatory effects in experimental colitis via polyamine flux. Thus, SMOX contributes to the immunopathogenesis of C. rodentium

  16. Rapid development of colitis in NSAID-treated IL-10-deficient mice.

    PubMed

    Berg, Daniel J; Zhang, Juan; Weinstock, Joel V; Ismail, Hanan F; Earle, Keith A; Alila, Hector; Pamukcu, Rifat; Moore, Steven; Lynch, Richard G

    2002-11-01

    Interleukin (IL)-10 is an anti-inflammatory and immune regulatory cytokine. IL-10-deficient mice (IL-10(-/-)) develop chronic inflammatory bowel disease (IBD), indicating that endogenous IL-10 is a central regulator of the mucosal immune response. Prostaglandins are lipid mediators that may be important mediators of intestinal inflammation. In this study we assessed the role of prostaglandins in the regulation of mucosal inflammation in the IL-10(-/-) mouse model of IBD. Prostaglandin (PG) synthesis was inhibited with nonselective or cyclooxygenase (COX)-isoform selective inhibitors. Severity of inflammation was assessed histologically. Cytokine production was assessed by ribonuclease protection analysis and enzyme-linked immunosorbent assay. PGE(2) levels were assessed by enzyme immunoassay. COX-1 and COX-2 expression was assessed by Western blot analysis. Nonsteroidal anti-inflammatory drug (NSAID) treatment of wild-type mice had minimal effect on the colon. In contrast, NSAID treatment of 4-week-old IL-10(-/-) mice resulted in rapid development of colitis characterized by infiltration of the lamina propria with macrophages and interferon gamma-producing CD4(+) T cells. Colitis persisted after withdrawal of the NSAID. NSAID treatment decreased colonic PGE(2) levels by 75%. Treatment of IL-10(-/-) mice with sulindac sulfone (which does not inhibit PG production) did not induce colitis whereas the NSAID sulindac induced severe colitis. COX-1- or COX-2-selective inhibitors used alone did not induce IBD in IL-10(-/-) mice. However, the combination of COX-1- and COX-2-selective inhibitors did induce colitis. NSAID treatment of IL-10(-/-) mice results in the rapid development of severe, chronic IBD. Endogenous PGs are important inhibitors of the development of intestinal inflammation in IL-10(-/-) mice.

  17. The Matricellular Protein CCN1 Promotes Mucosal Healing in Murine Colitis through IL-6

    PubMed Central

    Choi, Jacob S.; Kim, Ki-Hyun; Lau, Lester F.

    2015-01-01

    The matricellular protein CCN1 (CYR61) is known to function in wound healing and is upregulated in colons of patients with Crohn’s disease and ulcerative colitis, yet its specific role in colitis is unknown. Here we have used Ccn1dm/dm knockin mice expressing a CCN1 mutant unable to bind integrins α6β1 and αMβ2 as a model to probe CCN1 function in dextran sodium sulfate (DSS)-induced colitis. Ccn1dm/dm mice exhibited high mortality, impaired mucosal healing, and diminished IL-6 expression during the repair phase of DSS-induced colitis compared to wild type mice, despite having comparable severity of initial inflammation and tissue injury. CCN1 induced IL-6 expression in macrophages through integrin αMβ2 and in fibroblasts through α6β1, and IL-6 promoted intestinal epithelial cell (IEC) proliferation. Administration of purified CCN1 protein fully rescued Ccn1dm/dm mice from DSS-induced mortality, restored IEC proliferation and enhanced mucosal healing, whereas delivery of IL-6 partially rectified these defects. CCN1 therapy accelerated mucosal healing and recovery from DSS-induced colitis even in wild type mice. These findings reveal a critical role for CCN1 in restoring mucosal homeostasis after intestinal injury in part through integrin-mediated induction of IL-6 expression, and suggest a therapeutic potential for activating the CCN1/IL-6 axis for treating inflammatory bowel disease. PMID:25807183

  18. Superoxide dismutase recombinant Lactobacillus fermentum ameliorates intestinal oxidative stress through inhibiting NF-κB activation in a trinitrobenzene sulphonic acid-induced colitis mouse model.

    PubMed

    Hou, C L; Zhang, J; Liu, X T; Liu, H; Zeng, X F; Qiao, S Y

    2014-06-01

    Superoxide dismutase (SOD) can prevent and cure inflammatory bowel diseases by decreasing the amount of reactive oxygen species. Unfortunately, short half-life of SOD in the gastrointestinal tract limited its application in the intestinal tract. This study aimed to investigate the treatment effects of recombinant SOD Lactobacillus fermentum in a colitis mouse model. In this study, we expressed the sodA gene in Lact. fermentum I5007 to obtain the SOD recombinant strain. Then, we determined the therapeutic effects of this SOD recombinant strain in a trinitrobenzene sulphonic acid (TNBS)-induced colitis mouse model. We found that SOD activity in the recombinant Lact. fermentum was increased by almost eightfold compared with that in the wild type. Additionally, both the wild type and the recombinant Lact. fermentum increased the numbers of lactobacilli in the colon of mice (P < 0·05). Colitis mice treated with recombinant Lact. fermentum showed a higher survival rate and lower disease activity index (P < 0·05). Recombinant Lact. fermentum significantly decreased colonic mucosa histological scoring for infiltration of inflammatory cells, lipid peroxidation, the expression of pro-inflammatory cytokines and myeloperoxidase (P < 0·05) and inhibited NF-κB activity in colitis mice (P < 0·05). SOD recombinant Lact. fermentum significantly reduced oxidative stress and inflammation through inhibiting NF-κB activation in the TNBS-induced colitis model. This study provides insights into the anti-inflammatory effects of SOD recombinant Lact. fermentum, indicating the potential therapeutic effects in preventing and curing intestinal bowel diseases. © 2014 The Society for Applied Microbiology.

  19. Increased lymphocyte trafficking to colonic microvessels is dependent on MAdCAM-1 and C-C chemokine mLARC/CCL20 in DSS-induced mice colitis.

    PubMed

    Teramoto, K; Miura, S; Tsuzuki, Y; Hokari, R; Watanabe, C; Inamura, T; Ogawa, T; Hosoe, N; Nagata, H; Ishii, H; Hibi, T

    2005-03-01

    Although enhanced lymphocyte trafficking is associated with colitis formation, little information about its regulation is available. The aim of this study was to examine how the murine liver and activation-regulated chemokine (mLARC/CCL20) contributes to lymphocyte recruitment in concert with vascular adhesion molecules in murine chronic experimental colitis. T and B lymphocytes isolated from the spleen were fluorescence-labelled and administered to recipient mice. Lymphocyte adhesion to microvessels of the colonic mucosa and submucosa was observed with an intravital microscope. To induce colitis, the mice received two cycles of treatment with 2% dextran sodium sulphate (DSS). In some of the experiments antibodies against the adhesion molecules or anti-mLARC/CCL20 were administered, or CC chemokine receptor 6 (CCR6) of the lymphocytes was desensitized with excess amounts of mLARC/CCL20. Significant increases in T and B cell adhesion to the microvessels of the DSS-treated mucosa and submucosa were observed. In chronic colitis, the accumulation of lymphocytes was significantly inhibited by anti-mucosal addressin cell adhesion molecule (MAdCAM)-1 mAb, but not by anti-vascular cell adhesion molecule-1. In DSS-treated colonic tissue, the expression of mLARC/CCL20 was significantly increased, the blocking of mLARC/CCL20 by monoclonal antibody or the desensitization of CCR6 with mLARC/CCL20 significantly attenuated the DSS-induced T and B cell accumulation. However, the combination of blocking CCR6 with MAdCAM-1 did not further inhibit these accumulations. These results suggest that in chronic DSS-induced colitis, both MAdCAM-1 and mLARC/CCL20 may play important roles in T and B lymphocyte adhesion in the inflamed colon under flow conditions.

  20. Usefulness of colonoscopy in ischemic colitis.

    PubMed

    Lozano-Maya, M; Ponferrada-Díaz, A; González-Asanza, C; Nogales-Rincón, O; Senent-Sánchez, C; Pérez-de-Ayala, V; Jiménez-Aleixandre, P; Cos-Arregui, E; Menchén-Fernández-Pacheco, P

    2010-07-01

    the ischemic colitis is intestinal the most frequent cause of ischemia. With this work we determine the demographic and clinical characteristics, and the usefulness of the colonoscopy in the patients with ischemic colitis diagnosed in our centre in relation to a change of therapeutic attitude. retrospective study in which were selected 112 patients diagnosed with ischemic colitis by colonoscopy and biopsy, in a period of five years. It was analyzed: age, sex, reason for examination, factors of cardiovascular risk, endoscopic degree of ischemia, change in the therapeutic attitude, treatment and outcome. the average age was of 73.64 + or - 12.10 years with an equal incidence in women (50.9%) and the men (49.1%). The associated factors were the HTA (61.1%), tobacco (37.2%) and antecedents of cardiovascular episode (52.2%). The most frequent reason for colonoscopy was rectorrhagia (53.6%) followed of the abdominal pain (30.4%), being urgent the 65.3%. Colonoscopy allowed a change in the therapeutic attitude in the 50 increasing in the urgent one to the 65.75%. Global mortality was of 27.67%. The serious ischemic colitis (25%) was more frequent in men (64.3%) in urgent indication (85.71%) and attends with high mortality (53.57%). Surgical treatment in the 57.14% was made with a good evolution in the 50%, whereas the patients with mild or moderate ischemic colitis had a better prognosis (favourable evolution in 80.95%) with smaller requirement of the surgical treatment (4.76%), p < 0.05. the colitis ischemic are more frequent in the older age. The most frequent symptoms are the rectorrhagia and the abdominal pain. The colonoscopy is a useful technique to evaluate the gravity and it induces a change of attitude according to the result of the same one. The evidence of a serious colitis supposed an increase of the necessity of surgery and worse prognosis.

  1. Salmon cartilage proteoglycan suppresses mouse experimental colitis through induction of Foxp3{sup +} regulatory T cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitsui, Toshihito; Department of Digestive Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562; Sashinami, Hiroshi

    Research highlights: {yields} Salmon proteoglycan suppresses IL-10{sup -/-} cell transfer-induced colitis progression. {yields} Salmon proteoglycan suppresses Th1- and Th17-related factors in colitis mice. {yields} Salmon proteoglycan enhances Foxp3 expression. -- Abstract: Proteoglycans (PGs) are complex glycohydrates which are widely distributed in extracellular matrix (ECM). PGs are involved in the construction of ECM, cell proliferation and differentiation. ECM components are involved in transduction of proinflammatory responses, but it is still unknown whether PGs are involved in inflammatory response. In this study, we investigated the effect of PG extracted from salmon cartilage on the progression of experimental colitis-induced in severe combined immunodeficiencymore » mice by cell transfer from interleukin-10 (IL-10){sup -/-} mice. IL-10{sup -/-} cell-transferred mice showed weight loss, colon shortening and histological appearance of mild colitis. Daily oral administration of PG attenuated the clinical progression of colitis in a dose-dependent manner. Colitis-induced mice showed the elevated expression of IFN-{gamma}, IL-12, TNF-{alpha}, IL-21, IL-23p19, IL-6, IL-17A and retinoic acid-related orphan receptor {gamma}t (ROR{gamma}t) in lamina propria mononuclear cells (LPMCs) and oral administration of PG suppressed the expression of these factors. Conversely, expression of Foxp3 that induces CD4{sup +}CD25{sup +} regulatory T cells in LPMCs was enhanced by PG administration. These findings suggested that salmon PG attenuated the progression of colitis due to suppression of inflammatory response by enhancement of regulatory T cell induction.« less

  2. Genetic deletion of IL-25 (IL-17E) confers resistance to dextran sulfate sodium-induced colitis in mice

    USDA-ARS?s Scientific Manuscript database

    IL-25 is emerging as a key regulator of inflammation in the intestinal mucosa because of its ability to promote Th2 while suppressing Th1 and Th17 cytokine responses. We investigated the contribution of endogenous IL-25 to DSS-induced colitis in mice. Mice were exposed to DSS in drinking water ad li...

  3. Pharmacokinetic alterations of rhubarb anthraquinones in experimental colitis induced by dextran sulfate sodium in the rat.

    PubMed

    Wu, Wen-Jin; Yan, Ru; Li, Ting; Li, Ya-Ping; Zhou, Rui-Na; Wang, Yi-Tao

    2017-02-23

    Rhubarb (Rhei Rhizoma et Radix) is used for the treatment of digestive diseases in traditional medicinal practice in China. Recent studies also support its beneficial activities in alleviating ulcerative colitis (UC). This study aimed to characterize the oral pharmacokinetics of rhubarb anthraquinones, the main bioactive components of this herb, in the experimental chronic colitis rat model induced by dextran sulfate sodium (DSS) and to identify the factors causing the pharmacokinetic alterations. Rats received drinking water (normal group) or 5% DSS for the first 7 days and 3% DSS for additional 14 days (UC group). On day 21 both groups received an oral dose of the rhubarb extract (equivalent to 5.0g crude drug/kg body weight). Plasma anthraquinone aglycones levels were determined directly by an LC-MS/MS method and the total of each anthraquinone (aglycone+conjugates) was quantified after β-glucuronidases hydrolysis. Rhubarb anthraquinones predominantly existed as conjugates in plasma samples from both groups and only free aloe-emodin, rhein and emodin were detected. Compared to the normal rats, both C max and AUC of the three free anthraquinones were increased, while the systemic exposure (AUC) of the total (aglycone+conjugates) of most anthraquinones decreased by UC accompanied by the disappearance of multiple-peak phenomenon in the plasma concentration-time profiles. Gut bacteria from UC rats exhibited a decreased activity in hydrolyzing anthraquinone glycosides to form respective aglycone and there were significant decreases in microbial β-glucosidases and β-glucuronidases activities. Moreover, the intestinal microsomes from UC rats catalyzed glucuronidation of free anthraquinones with higher activities, while the activities of hepatic microsomes were comparable to normal rats. The decreases of β-glucuronidases activity in DSS-induced chronic rat colitis should mainly account for the decreases in systemic exposure and abrogation of enterohepatic

  4. Comparison of multiple enzyme activatable near infrared fluorescent molecular probes for detection and quantification of inflammation in murine colitis models

    PubMed Central

    Ding, Shengli; Blue, Randal E.; Morgan, Douglas R.; Lund, Pauline K.

    2015-01-01

    Background Activatable near-infrared fluorescent (NIRF) probes have been used for ex vivo and in vivo detection of intestinal tumors in animal models. We hypothesized that NIRF probes activatable by cathepsins or MMPs will detect and quantify dextran sulphate sodium (DSS) induced acute colonic inflammation in wild type (WT) mice or chronic colitis in IL-10 null mice ex vivo or in vivo. Methods WT mice given DSS, water controls and IL-10 null mice with chronic colitis were administered probes by retro-orbital injection. FMT2500 LX system imaged fresh and fixed intestine ex vivo and mice in vivo. Inflammation detected by probes was verified by histology and colitis scoring. NIRF signal intensity was quantified using 2D region of interest (ROI) ex vivo or 3D ROI-analysis in vivo. Results Ex vivo, seven probes tested yielded significant higher NIRF signals in colon of DSS treated mice versus controls. A subset of probes was tested in IL-10 null mice and yielded strong ex vivo signals. Ex vivo fluorescence signal with 680 series probes was preserved after formalin fixation. In DSS and IL-10 null models, ex vivo NIRF signal strongly and significantly correlated with colitis scores. In vivo, ProSense680, CatK680FAST and MMPsense680 yielded significantly higher NIRF signals in DSS treated mice than controls but background was high in controls. Conclusion Both cathepsin or MMP-activated NIRF-probes can detect and quantify colonic inflammation ex vivo. ProSense680 yielded the strongest signals in DSS colitis ex vivo and in vivo, but background remains a problem for in vivo quantification of colitis. PMID:24374874

  5. Therapeutic activity of an interleukin-4/interleukin-13 dual antagonist on oxazolone-induced colitis in mice

    PubMed Central

    Kasaian, Marion T; Page, Karen M; Fish, Susan; Brennan, Agnes; Cook, Timothy A; Moreira, Karen; Zhang, Melvin; Jesson, Michael; Marquette, Kimberly; Agostinelli, Rita; Lee, Julie; Williams, Cara M M; Tchistiakova, Lioudmila; Thakker, Paresh

    2014-01-01

    Interleukin-4 (IL-4) and IL-13 are critical drivers of immune activation and inflammation in ulcerative colitis, asthma and other diseases. Because these cytokines may have redundant function, dual targeting holds promise for achieving greater efficacy. We have recently described a bifunctional therapeutic targeting IL-4 and IL-13 developed on a novel protein scaffold, generated by combining specific binding domains in an optimal configuration using appropriate linker regions. In the current study, the bifunctional IL-4/IL-13 antagonist was evaluated in the murine oxazolone-induced colitis model, which produces disease with features of ulcerative colitis. The bifunctional IL-4/IL-13 antagonist reduced body weight loss throughout the 7-day course of the model, and ameliorated the increased colon weight and decreased colon length that accompany disease. Colon tissue gene expression was modulated in accordance with the treatment effect. Concentrations of serum amyloid P were elevated in proportion to disease severity, making it an effective biomarker. Serum concentrations of the bifunctional IL-4/IL-13 antagonist were inversely proportional to disease severity, colon tissue expression of pro-inflammatory genes, and serum amyloid P concentration. Taken together, these results define a panel of biomarkers signifying engagement of the IL-4/IL-13 pathway, confirm the T helper type 2 nature of disease in this model, and demonstrate the effectiveness of dual cytokine blockade. PMID:24831554

  6. [Incidence and risk factors of ischemic colitis after AAA repair in our cohort of patients from 2005 through 2009].

    PubMed

    Biros, E; Staffa, R

    2011-12-01

    Using retrospective analysis, we sought to investigate the incidence, risk factors and therapeutic outcomes of ischemic colitis in patients after surgical and endovascular repair of abdominal aortic aneurysms (AAA). The complete inpatient and outpatient medical records of all patients undergoing surgical or endovascular AAA repair in our Department from January 2005 to December 2009 were retrospectively reviewed. We selected all patients who had developed an acute or chronic form of postoperative large or small bowel ischemia. We carried out data analysis and focused on determining the incidence and risk factors of this complication and the outcomes of its treatment. Two hundred and seven AAA repairs were performed in the 2nd Department of Surgery of St. Anne's University Hospital in Brno and the Faculty of Medicine of Masaryk University in Brno during the studied period. This number includes endovascular AAA repairs (13 patients; 6.3%) as well as one robot-assisted operation, and also the whole clinical spectrum of AAA manifestations, from non-symptomatic forms to ruptured aneurysm forms. The rest of the patients underwent open operation. Bowel ischemia developed in a total of 11 patients (5.3 %), who all underwent open AAA repair. Six of these patients presented with non-ruptured AAA and the remaining 5 with ruptured AAA. In 3 patients, bowel ischemia was diagnosed with a delay of several months from the original revascularization operation in the clinical form of postischemic stricture of the large bowel (2 patients) or postischemic colitis (1 patient). 8 patients were diagnosed with acute ischemic colitis affecting an isolated segment of the small bowel in one patient, extended segments of the large bowel (descending colon + sigmoid colon + rectum) in 2 patients, and typically the descending and sigmoid colon in 5 patients. None of the three patients with late manifestation of ischemic colitis died. Of the 8 patients with acute presentation, resection of the

  7. Protective Effect of Daikenchuto on Dextran Sulfate Sodium-Induced Colitis in Mice

    PubMed Central

    Matsunaga, Takaharu; Yamamoto, Naoki; Kawasato, Ryo; Shirasawa, Tomohiro; Goto, Atsushi; Fujisawa, Koichi; Takami, Taro; Okamoto, Takeshi; Nishikawa, Jun; Sakaida, Isao

    2017-01-01

    Aim. To investigate the effect of daikenchuto (TJ-100; DKT) for ulcerative colitis (UC) model mouse and assess its anti-inflammatory mechanisms. Methods. We evaluated the effects of DKT on dextran sulfate sodium- (DSS-) induced experimental colitis. First, we assessed the short-term effects of DKT using two groups: 5% DSS group and 5% DSS with DKT group. Colon length; histological scores; and interleukin- (IL-) 10, IL-1β, and tumor necrosis factor-α mRNA expression profiles were analyzed using real-time PCR. Second, we assessed the long-term effects of DKT, by comparing survival time between 2% DSS and 2% DSS with DKT groups. Results. After 7 days, the colon lengths of DSS + DKT group were longer than those of the DSS group (mean values: 6.11 versus 5.69 cm, p < 0.05). Furthermore, compared to DSS group, the DSS + DKT group maintained significantly higher levels of serum hemoglobin (13.1 versus 10.7 g/dL, p < 0.05) and exhibited significantly higher expression levels of IL-10 (p < 0.05). The 2% DSS + DKT group exhibited significantly longer survival time than the 2% DSS group (70 versus 44 days, p < 0.01). Conclusion. Our results indicate that DKT prevented inflammation in the colon, indicating its potential as a new therapeutic agent for UC. PMID:28210268

  8. Protective Effect of Daikenchuto on Dextran Sulfate Sodium-Induced Colitis in Mice.

    PubMed

    Matsunaga, Takaharu; Hashimoto, Shinichi; Yamamoto, Naoki; Kawasato, Ryo; Shirasawa, Tomohiro; Goto, Atsushi; Fujisawa, Koichi; Takami, Taro; Okamoto, Takeshi; Nishikawa, Jun; Sakaida, Isao

    2017-01-01

    Aim . To investigate the effect of daikenchuto (TJ-100; DKT) for ulcerative colitis (UC) model mouse and assess its anti-inflammatory mechanisms. Methods . We evaluated the effects of DKT on dextran sulfate sodium- (DSS-) induced experimental colitis. First, we assessed the short-term effects of DKT using two groups: 5% DSS group and 5% DSS with DKT group. Colon length; histological scores; and interleukin- (IL-) 10, IL-1 β , and tumor necrosis factor- α mRNA expression profiles were analyzed using real-time PCR. Second, we assessed the long-term effects of DKT, by comparing survival time between 2% DSS and 2% DSS with DKT groups. Results . After 7 days, the colon lengths of DSS + DKT group were longer than those of the DSS group (mean values: 6.11 versus 5.69 cm, p < 0.05). Furthermore, compared to DSS group, the DSS + DKT group maintained significantly higher levels of serum hemoglobin (13.1 versus 10.7 g/dL, p < 0.05) and exhibited significantly higher expression levels of IL-10 ( p < 0.05). The 2% DSS + DKT group exhibited significantly longer survival time than the 2% DSS group (70 versus 44 days, p < 0.01). Conclusion . Our results indicate that DKT prevented inflammation in the colon, indicating its potential as a new therapeutic agent for UC.

  9. c-Rel is Essential for the Development of Innate and T cell-Induced Colitis1

    PubMed Central

    Wang, Yanyan; Rickman, Barry H.; Poutahidis, Theofilos; Schlieper, Katherine; Jackson, Erin A.; Erdman, Susan E.; Fox, James G.; Horwitz, Bruce H.

    2008-01-01

    Inflammatory bowel disease is a chronic inflammatory response of the gastrointestinal tract mediated in part by an aberrant response to intestinal microflora. Expression of IL-23 subunits p40 and p19 within cells of the innate immune system plays a central role in the development of lower bowel inflammation in response inflammatory challenge. The NF-κB subunit c-Rel can regulate expression of IL-12/23 subunits suggesting that it could have a critical role in mediating the development of chronic inflammation within the lower bowel. Here we have analyzed the role of c-Rel within the innate immune system in the development of lower bowel inflammation, in two well-studied models of murine colitis. We have found that the absence of c-Rel significantly impaired the ability of H. hepaticus to induce colitis upon infection of RAG-2-deficient mice, and ameliorated the ability of CD4+CD45RBhigh T cells to induce disease upon adoptive transfer into RAG-deficient mice. The absence of c-Rel interfered with the expression of IL-12/23 subunits both in cultured primary macrophages and within the colon. Thus, c-Rel plays a critical role in regulating the innate inflammatory response to microflora within the lower bowel, likely through its ability to modulate expression of IL-12/23 family members. PMID:18523276

  10. Chlorogenic Acid Ameliorates Experimental Colitis by Promoting Growth of Akkermansia in Mice.

    PubMed

    Zhang, Zhan; Wu, Xinyue; Cao, Shuyuan; Cromie, Meghan; Shen, Yonghua; Feng, Yiming; Yang, Hui; Li, Lei

    2017-06-29

    Chlorogenic acid (ChA)-one of the most abundant polyphenol compounds in the human diet-exerts anti-inflammatory activities. The aim of this study was to investigate the effect of ChA on gut microbiota in ulcerative colitis (UC). Colitis was induced by 2.5% dextran sulfate sodium (DSS) in C57BL/6 mice, which were on a control diet or diet with ChA (1 mM). The histopathological changes and inflammation were evaluated. Fecal samples were analyzed by 16S rRNA gene sequencing. ChA attenuated several effects of DSS-induced colitis, including weight loss, increased disease activity index, and improved mucosal damage. Moreover, ChA could significantly suppress the secretion of IFNγ, TNFα, and IL-6 and the colonic infiltration of F4/80⁺ macrophages, CD3⁺ T cells, and CD177⁺ neutrophils via inhibition of the active NF-κB signaling pathway. In addition, ChA decreased the proportion of Firmicutes and Bacteroidetes . ChA also enhanced a reduction in fecal microbiota diversity in DSS treated mice. Interestingly, ChA treatment markedly increased the proportion of the mucin-degrading bacterium Akkermansia in colitis mice. ChA acted as the intestine-modifying gut microbial community structure, resulting in a lower intestinal and systemic inflammation and also improving the course of the DSS-induced colitis, which is associated with a proportional increase in Akkermansia .

  11. Brain endothelial adhesion molecule expression in experimental colitis.

    PubMed

    Sans, M; Kawachi, S; Soriano, A; Palacín, A; Morise, Z; Granger, D N; Piqué, J M; Grisham, M B; Panés, J

    2001-04-01

    1) To determine if endothelial expression of adhesion molecules involved in leukocyte recruitment is increased in the brain and other organs in four different models of experimental colitis, and 2) to investigate whether leukocyte infiltration occurs in the brain of colitic animals. Endothelial vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) expression was quantified, using the dual radiolabeled antibody technique in rats with trinitrobenzenesulfonic acid (TNBS)-induced colitis, in mice with dextran sulfate sodium (DSS)-induced colitis, in SCID mice reconstituted with CD45RBhigh T-cells, and in IL-10-/- mice. Leukocyte infiltration in the brain of TNBS-induced colitic rats was assessed by myeloperoxidase activity and immunohistochemical staining with anti-CD45 monoclonal antibody. Marked upregulation of brain endothelial VCAM-1 (2- to 5.5-fold) was consistently found in colitic animals in the four models studied. Brain VCAM-1 strongly correlated with colon VCAM-1 and colon weight. By contrast, upregulation of brain ICAM-1 in colitic animals was only observed in the CD45RBhigh transfer (3-fold) and the TNBS-induced (1.5-fold models). Heart and muscle VCAM-1 and ICAM-1 were not upregulated in colitic animals in the majority of models studied. There was no leukocyte infiltration into the brain of TNBS-induced colitic rats. Our study demonstrates a marked and specific upregulation of endothelial VCAM-1 in the brain of colitic animals. This activation of cerebral endothelial cells was not associated with an infiltration of leukocytes into brain tissue.

  12. Potential role for ET-2 acting through ETA receptors in experimental colitis in mice.

    PubMed

    Claudino, R F; Leite, D F; Bento, A F; Chichorro, J G; Calixto, J B; Rae, G A

    2017-02-01

    This study attempted to clarify the roles of endothelins and mechanisms associated with ET A /ET B receptors in mouse models of colitis. Colitis was induced by intracolonic administration of 2,4,6-trinitrobenzene sulfonic acid (TNBS, 1.5 mg/animal) or dextran sulfate sodium (DSS, 3%). After colitis establishment, mice received Atrasentan (ET A receptor antagonist, 10 mg/kg), A-192621 (ET B receptor antagonist, 20 mg/kg) or Dexamethasone (1 mg/kg) and several inflammatory parameters were assessed, as well as mRNA levels for ET-1, ET-2 and ET receptors. Atrasentan treatment ameliorates TNBS- and DSS-induced colitis. In the TNBS model was observed reduction in macroscopic and microscopic score, colon weight, neutrophil influx, IL-1β, MIP-2 and keratinocyte chemoattractant (KC) levels, inhibition of adhesion molecules expression and restoration of IL-10 levels. However, A192621 treatment did not modify any parameter. ET-1 and ET-2 mRNA was decreased 24 h, but ET-2 mRNA was markedly increased at 48 h after TNBS. ET-2 was able to potentiate LPS-induced KC production in vitro. ET A and ET B receptors mRNA were increased at 24, 48 and 72 h after colitis induction. Atrasentan treatment was effective in reducing the severity of colitis in DSS- and TNBS-treated mice, suggesting that ET A receptors might be a potential target for inflammatory bowel diseases.

  13. Initial surgical management of ulcerative colitis in the biologic era.

    PubMed

    Geltzeiler, Cristina B; Lu, Kim C; Diggs, Brian S; Deveney, Karen E; Keyashian, Kian; Herzig, Daniel O; Tsikitis, Vassiliki L

    2014-12-01

    The initial minimum operation for ulcerative colitis is a total abdominal colectomy. Healthy patients may undergo proctectomy at the same time; however, for ill patients, proctectomy is delayed. Since the introduction of biologic medications in 2005, ulcerative colitis medical management has changed dramatically. We examined how operative management for ulcerative colitis has changed from the prebiologic to biologic eras. We conducted a retrospective review of data on patients with ulcerative colitis who were included in the Nationwide Inpatient Sample database. This study was conducted at a single university. A total of 1,547,852 patients with ulcerative colitis who were admitted to a US hospital from 1991 to 2011 were included in the study. We examined patients whose initial operation consisted of total abdominal colectomy without proctectomy versus a total proctocolectomy with or without a pouch. We also examined which operation was done at the time of the construction of an ileoanal pouch. Patients who underwent colectomy and pouch construction in the same hospitalization were compared with those who received pouch formation at a subsequent hospitalization. Ulcerative colitis-related admissions rose by 170% during the years examined, and the number of patients who required total abdominal colectomy increased by 44%. Total abdominal colectomy increased by 15%, as opposed to total proctocolectomy (p < 0.001). Pouch construction at a subsequent operation increased by 16% (p = 0.002). Since 2008, total abdominal colectomy has surpassed total proctocolectomy as the most common initial surgical intervention for ulcerative colitis. The Nationwide Inpatient Sample is a retrospective database, and we were limited to examining the variables within it. Total abdominal colectomy is currently the most common initial operation for patients with ulcerative colitis, and an ileoanal pouch is more frequently constructed at a subsequent hospitalization. These trends coincide with

  14. Genetics Home Reference: ulcerative colitis

    MedlinePlus

    ... colitis is most common in North America and Western Europe; however the prevalence is increasing in other ... 3 links) Encyclopedia: Ulcerative Colitis Encyclopedia: Ulcerative Colitis (Image) Health Topic: Ulcerative Colitis Additional NIH Resources (1 ...

  15. Pglyrp-Regulated Gut Microflora Prevotella falsenii, Parabacteroides distasonis and Bacteroides eggerthii Enhance and Alistipes finegoldii Attenuates Colitis in Mice

    PubMed Central

    Dziarski, Roman; Dowd, Scot E.; Gupta, Dipika

    2016-01-01

    Dysbiosis is a hallmark of inflammatory bowel disease (IBD), but it is unclear which specific intestinal bacteria predispose to and which protect from IBD and how they are regulated. Peptidoglycan recognition proteins (Pglyrps) are antibacterial, participate in maintaining intestinal microflora, and modulate inflammatory responses. Mice deficient in any one of the four Pglyrp genes are more sensitive to dextran sulfate sodium (DSS)-induced colitis, and stools from Pglyrp-deficient mice transferred to wild type (WT) germ-free mice predispose them to much more severe colitis than stools from WT mice. However, the identities of these Pglyrp-regulated bacteria that predispose Pglyrp-deficient mice to colitis or protect WT mice from colitis are not known. Here we identified significant changes in β-diversity of stool bacteria in Pglyrp-deficient mice compared with WT mice. The most consistent changes in microbiome in all Pglyrp-deficient mice were in Bacteroidales, from which we selected four species, two with increased abundance (Prevotella falsenii and Parabacteroides distasonis) and two with decreased abundance (Bacteroides eggerthii and Alistipes finegoldii). We then gavaged WT mice with stock type strains of these species to test the hypothesis that they predispose to or protect from DSS-induced colitis. P. falsenii, P. distasonis, and B. eggerthii all enhanced DSS-induced colitis in both WT mice with otherwise undisturbed intestinal microflora and in WT mice with antibiotic-depleted intestinal microflora. By contrast, A. finegoldii (which is the most abundant species in WT mice) attenuated DSS-induced colitis both in WT mice with otherwise undisturbed intestinal microflora and in WT mice with antibiotic-depleted intestinal microflora, similar to the colitis protective effect of the entire normal microflora. These results identify P. falsenii, P. distasonis, and B. eggerthii as colitis-promoting species and A. finegoldii as colitis-protective species. PMID

  16. Disseminated refractory pyoderma gangraenosum during an ulcerative colitis flare. Treatment with infliximab.

    PubMed

    Zampeli, Vasiliki A; Lippert, Undine; Nikolakis, Georgios; Makrantonaki, Evgenia; Tzellos, Thrasivoulos G; Krause, Ulf; Zouboulis, Christos C

    2015-09-30

    Pyoderma gangraenosum is an immune-mediated, inflammatory, neutrophilic dermatosis of unknown etiology, which represents one of the extraintestinal manifestations of inflammatory bowel disease. It is a rare disease that occurs in less than 1% of patients with inflammatory bowel disease and with the same ratio in patients with Crohn's disease and ulcerative colitis. A 36-year-old woman was diagnosed with ulcerative colitis 6 years before admission to our dermatology department with an acute disseminated pyoderma gangraenosum with mucosal involvement, during a flare of ulcerative colitis. Disease progression was interrupted by intravenous administration of the tumor necrosis factor-α inhibitor infliximab at 5 mg/kg at weeks 0, 2, and 6 (1st cycle) and every 8 weeks thereafter. Improvement of intestinal, skin and oral manifestations was evident already after the 1st cycle of treatment and has been maintained since (at least 16 months). This case report is one of very few on disseminated pyoderma gangraenosum with oral involvement complicating ulcerative colitis, where infliximab was shown to have a rapid efficacy on skin, mucosal and bowel symptoms.

  17. Isothiocyanate-enriched moringa seed extract alleviates ulcerative colitis symptoms in mice

    PubMed Central

    Wu, Alex G.; Jaja-Chimedza, Asha; Graf, Brittany L.; Waterman, Carrie; Verzi, Michael P.; Raskin, Ilya

    2017-01-01

    Moringa (Moringa oleifera Lam.) seed extract (MSE) has anti-inflammatory and antioxidant activities. We investigated the effects of MSE enriched in moringa isothiocyanate-1 (MIC-1), its putative bioactive, on ulcerative colitis (UC) and its anti-inflammatory/antioxidant mechanism likely mediated through Nrf2-signaling pathway. Dextran sulfate sodium (DSS)-induced acute (n = 8/group; 3% DSS for 5 d) and chronic (n = 6/group; cyclic rotations of 2.5% DSS/water for 30 d) UC was induced in mice that were assigned to 4 experimental groups: healthy control (water/vehicle), disease control (DSS/vehicle), MSE treatment (DSS/MSE), or 5-aminosalicyic acid (5-ASA) treatment (positive control; DSS/5-ASA). Following UC induction, water (vehicle), 150 mg/kg MSE, or 50 mg/kg 5-ASA were orally administered for 1 or 2 wks. Disease activity index (DAI), spleen/colon sizes, and colonic histopathology were measured. From colon and/or fecal samples, pro-inflammatory biomarkers, tight-junction proteins, and Nrf2-mediated enzymes were analyzed at protein and/or gene expression levels. Compared to disease control, MSE decreased DAI scores, and showed an increase in colon lengths and decrease in colon weight/length ratios in both UC models. MSE also reduced colonic inflammation/damage and histopathological scores (modestly) in acute UC. MSE decreased colonic secretions of pro-inflammatory keratinocyte-derived cytokine (KC), tumor necrosis factor (TNF)-α, nitric oxide (NO), and myeloperoxidase (MPO) in acute and chronic UC; reduced fecal lipocalin-2 in acute UC; downregulated gene expression of pro-inflammatory interleukin (IL)-1, IL-6, TNF-α, and inducible nitric oxide synthase (iNOS) in acute UC; upregulated expression of claudin-1 and ZO-1 in acute and chronic UC; and upregulated GSTP1, an Nrf2-mediated phase II detoxifying enzyme, in chronic UC. MSE was effective in mitigating UC symptoms and reducing UC-induced colonic pathologies, likely by suppressing pro-inflammatory biomarkers

  18. Isothiocyanate-enriched moringa seed extract alleviates ulcerative colitis symptoms in mice.

    PubMed

    Kim, Youjin; Wu, Alex G; Jaja-Chimedza, Asha; Graf, Brittany L; Waterman, Carrie; Verzi, Michael P; Raskin, Ilya

    2017-01-01

    Moringa (Moringa oleifera Lam.) seed extract (MSE) has anti-inflammatory and antioxidant activities. We investigated the effects of MSE enriched in moringa isothiocyanate-1 (MIC-1), its putative bioactive, on ulcerative colitis (UC) and its anti-inflammatory/antioxidant mechanism likely mediated through Nrf2-signaling pathway. Dextran sulfate sodium (DSS)-induced acute (n = 8/group; 3% DSS for 5 d) and chronic (n = 6/group; cyclic rotations of 2.5% DSS/water for 30 d) UC was induced in mice that were assigned to 4 experimental groups: healthy control (water/vehicle), disease control (DSS/vehicle), MSE treatment (DSS/MSE), or 5-aminosalicyic acid (5-ASA) treatment (positive control; DSS/5-ASA). Following UC induction, water (vehicle), 150 mg/kg MSE, or 50 mg/kg 5-ASA were orally administered for 1 or 2 wks. Disease activity index (DAI), spleen/colon sizes, and colonic histopathology were measured. From colon and/or fecal samples, pro-inflammatory biomarkers, tight-junction proteins, and Nrf2-mediated enzymes were analyzed at protein and/or gene expression levels. Compared to disease control, MSE decreased DAI scores, and showed an increase in colon lengths and decrease in colon weight/length ratios in both UC models. MSE also reduced colonic inflammation/damage and histopathological scores (modestly) in acute UC. MSE decreased colonic secretions of pro-inflammatory keratinocyte-derived cytokine (KC), tumor necrosis factor (TNF)-α, nitric oxide (NO), and myeloperoxidase (MPO) in acute and chronic UC; reduced fecal lipocalin-2 in acute UC; downregulated gene expression of pro-inflammatory interleukin (IL)-1, IL-6, TNF-α, and inducible nitric oxide synthase (iNOS) in acute UC; upregulated expression of claudin-1 and ZO-1 in acute and chronic UC; and upregulated GSTP1, an Nrf2-mediated phase II detoxifying enzyme, in chronic UC. MSE was effective in mitigating UC symptoms and reducing UC-induced colonic pathologies, likely by suppressing pro-inflammatory biomarkers

  19. Lactobacillus acidophilus Improves Intestinal Inflammation in an Acute Colitis Mouse Model by Regulation of Th17 and Treg Cell Balance and Fibrosis Development.

    PubMed

    Park, Jin-Sil; Choi, Jeong Won; Jhun, JooYeon; Kwon, Ji Ye; Lee, Bo-In; Yang, Chul Woo; Park, Sung-Hwan; Cho, Mi-La

    2018-03-01

    Disruption of the balance among the microbiota, epithelial cells, and resident immune cells in the intestine is involved in the pathogenesis of inflammatory bowel disease (IBD). Probiotics exert protective effects against IBD, and probiotic commensal Lactobacillus species are common inhabitants of the natural microbiota, especially in the gut. To investigate the effects of Lactobacillus acidophilus on the development of IBD, L. acidophilus was administered orally in mice with dextran sodium sulfate (DSS)-induced colitis. DSS-induced damage and the therapeutic effect of L. acidophilus were investigated. Treatment with L. acidophilus attenuated the severity of DSS-induced colitis. Specifically, it suppressed proinflammatory cytokines such as interleukin (IL)-6, tumor necrosis factor-α, IL-1β, and IL-17 in the colon tissues, which are produced by T helper (Th) 17 cells. Moreover, in vitro L. acidophilus treatment directly induced T regulatory (Treg) cells and the production of IL-10, whereas the production of IL-17 was suppressed in splenocytes. In addition, we found that L. acidophilus treatment decreased the levels of α-smooth muscle actin, a marker of activated myofibroblasts, and type I collagen compared with control mice. These results suggest that L. acidophilus may be a novel treatment for IBD by modulating the balance between Th17 and Treg cells, as well as fibrosis development.

  20. Twice-daily Budesonide 2-mg Foam Induces Complete Mucosal Healing in Patients with Distal Ulcerative Colitis

    PubMed Central

    Aoyama, Nobuo; Suzuki, Yasuo; Nishino, Haruo; Kobayashi, Kiyonori; Hirai, Fumihito; Watanabe, Kenji; Hibi, Toshifumi

    2016-01-01

    Background and Aims: Mucosal healing is an important therapeutic goal for ulcerative colitis. Once-daily administration of budesonide 2-mg foam is widely used for inducing clinical remission. No study has assessed the usefulness of twice-daily budesonide 2mg foam on mucosal healing in ulcerative colitis patients. We explored the efficacy for mucosal healing of once- or twice-daily budesonide foam in distal ulcerative colitis patients. Methods: This study was a multicentre, randomised, double-blind, placebo-controlled trial. In all, 165 patients with active, mild to moderate distal ulcerative colitis were randomised to three groups: once- or twice-daily budesonide 2mg/25ml foam, or placebo foam, for 6 weeks. Complete mucosal healing [endoscopic subscore = 0] and the safety profile were assessed at Week 6. Prespecified and post hoc analyses were used. Results: The percentages of complete mucosal healing in the twice-daily budesonide foam group were 46.4% compared with 23.6% in the once-daily group [p = 0.0097], or 5.6% in the placebo group [p < 0.0001]. The percentages of clinical remission and the percentages of endoscopic subscore ≤ 1 in the twice-daily budesonide foam group were 48.2% and 76.8%, compared with 50.9% and 69.1% in the once-daily group [no difference], or 20.4% and 46.3% in the placebo group [p = 0.0029 and p = 0.0007], respectively. In the subgroup of patients with previous use of a 5-aminosalicylic acid suppository or enema, there was a greater percentage of complete mucosal healing in the twice-daily budesonide foam group [32.0%] compared with that in the once-daily [8.7%, p = 0.0774] or placebo groups [4.8%, p = 0.0763], though there was no significant difference. No serious adverse event occurred. Conclusions: A significantly greater percentage of patients receiving twice-daily administration of budesonide foam compared with once-daily administration/placebo achieved complete mucosal healing. This is the first study to evaluate the endoscopic

  1. Effect of a probiotic beverage consumption (Enterococcus faecium CRL 183 and Bifidobacterium longum ATCC 15707) in rats with chemically induced colitis

    PubMed Central

    Celiberto, Larissa Sbaglia; Bedani, Raquel; Dejani, Naiara Naiana; Ivo de Medeiros, Alexandra; Sampaio Zuanon, José Antonio; Spolidorio, Luis Carlos; Tallarico Adorno, Maria Angela; Amâncio Varesche, Maria Bernadete; Carrilho Galvão, Fábio; Valentini, Sandro Roberto; Font de Valdez, Graciela; Rossi, Elizeu Antonio

    2017-01-01

    Background Some probiotic strains have the potential to assist in relieving the symptoms of inflammatory bowel disease. The impact of daily ingestion of a soy-based product fermented by Enterococcus faecium CRL 183 and Lactobacillus helveticus 416 with the addition of Bifidobacterium longum ATCC 15707 on chemically induced colitis has been investigated thereof within a period of 30 days. Methods Colitis was induced by dextran sulfate sodium. The animals were randomly assigned into five groups: Group C: negative control; Group CL: positive control; Group CLF: DSS with the fermented product; Group CLP: DSS with the non-fermented product (placebo); Group CLS: DSS with sulfasalazine. The following parameters were monitored: disease activity index, fecal microbial analyses, gastrointestinal survival of probiotic microorganisms and short-chain fatty acids concentration in the feces. At the end of the protocol the animals’ colons were removed so as to conduct a macroscopical and histopathological analysis, cytokines and nitrite quantification. Results Animals belonging to the CLF group showed fewer symptoms of colitis during the induction period and a lower degree of inflammation and ulceration in their colon compared to the CL, CLS and CLP groups (p<0.05). The colon of the animals in groups CL and CLS presented severe crypt damage, which was absent in CLF and CLP groups. A significant increase in the population of Lactobacillus spp. and Bifidobacterium spp. at the end of the protocol was verified only in the CLF animals (p<0.05). This group also showed an increase in short-chain fatty acids (propionate and acetate). Furthermore, the intestinal survival of E. faecium CRL 183 and B. longum ATCC 15707 in the CLF group has been confirmed by biochemical and molecular analyzes. Conclusions The obtained results suggest that a regular intake of the probiotic product, and placebo to a lesser extent, can reduce the severity of DSS-induced colitis on rats. PMID:28437455

  2. Blueberry husks, rye bran and multi-strain probiotics affect the severity of colitis induced by dextran sulphate sodium.

    PubMed

    Håkansson, Asa; Bränning, Camilla; Adawi, Diya; Molin, Göran; Nyman, Margareta; Jeppsson, Bengt; Ahrné, Siv

    2009-01-01

    The enteric microbiota is a pivotal factor in the development of intestinal inflammation in humans but probiotics, dietary fibres and phytochemicals can have anti-inflammatory effects. The aim of this study was to evaluate the therapeutic effect of multi-strain probiotics and two conceivable prebiotics in an experimental colitis model. Sprague-Dawley rats were fed a fibre-free diet alone or in combination with Lactobacillus crispatus DSM 16743, L. gasseri DSM 16737 and Bifidobacterium infantis DSM 15158 and/or rye bran and blueberry husks. Colitis was induced by 5% dextran sulphate sodium (DSS) given by oro-gastric tube. Colitis severity, inflammatory markers, gut-load of lactobacilli and Enterobacteriaceae, bacterial translocation and formation of carboxylic acids (CAs) were analysed. The disease activity index (DAI) was lower in all treatment groups. Viable counts of Enterobacteriaceae were reduced and correlated positively with colitis severity, while DAI was negatively correlated with several CAs, e.g. butyric acid. The addition of probiotics to blueberry husks lowered the level of caecal acetic acid and increased that of propionic acid, while rye bran in combination with probiotics increased caecal CA levels and decreased distal colonic levels. Blueberry husks with probiotics reduced the incidence of bacterial translocation to the liver, colonic levels of myeloperoxidase, malondialdehyde and serum interleukin-12. Acetic and butyric acids in colonic content correlated negatively to malondialdehyde. A combination of probiotics and blueberry husks or rye bran enhanced the anti-inflammatory effects compared with probiotics or dietary fibres alone. These combinations can be used as a preventive or therapeutic approach to dietary amelioration of intestinal inflammation.

  3. Fulminant ischaemic colitis with atypical clinical features complicating sickle cell disease.

    PubMed

    Karim, Anita; Ahmed, S; Rossoff, Leonard J; Siddiqui, R; Fuchs, A; Multz, A S

    2002-06-01

    Clinically significant ischaemic bowel injury is an exceedingly rare complication of sickle cell disease. It manifests as acute surgical abdomen and may respond to conservative treatment. An unusual fatal case of ischaemic colitis with minimal abdominal findings in a young male during a sickle cell vaso-occlusive pain crisis is described. This case demonstrates that an acute surgical abdomen should be considered in such patients who fail to respond to conservative management as untreated this condition may be fatal.

  4. Ischemic Colitis

    PubMed Central

    Montessori, Gino; Liepa, Egils V.

    1970-01-01

    Twenty cases of ischemic colitis are reviewed; 19 were obtained from autopsy files and the diagnosis in one was made from a surgical specimen. The majority of the patients were elderly with generalized arteriosclerosis. In approximately two-thirds of the patients the ischemic colitis was precipitated by preceding trauma, operation or congestive heart failure. Clinically, ischemic colitis is characterized by abdominal pain, distension and bleeding per rectum. Perforation of large bowel may occur. The lesions tend to be localized around the splenic flexure and junction of the descending and sigmoid colon, and in cases following aortic graft surgery the rectum is involved. Microscopically, there is necrosis, hemorrhage and ulceration. In less severe cases the mucosa only is affected. Cases with perforation show necrosis of all layers. It is considered that ischemic colitis is comparatively frequent and should be distinguished from other inflammatory conditions of the colon. ImagesFIG. 1FIG. 2FIG. 3FIG. 4FIG. 5FIG. 6FIG. 7FIG. 8FIG. 9 PMID:5308923

  5. Anti-Colitic Effects of Kanjangs (Fermented Soy Sauce and Sesame Sauce) in Dextran Sulfate Sodium-Induced Colitis in Mice

    PubMed Central

    Song, Jia-Le; Choi, Jung-Ho; Seo, Jae-Hoon; Lim, Yaung-Iee

    2014-01-01

    Abstract This study was conducted to investigate the preventive effects of different kanjangs (Korean soy sauces), including acid-hydrolyzed soy sauce (AHSS), fermented soy sauce (FSS), and fermented sesame sauce (FSeS), on 2% dextran sulfate sodium (DSS)-induced ulcerative colitis in C57BL/6J mice. The fermented sauces, particularly FSeS, significantly suppressed DSS-induced body weight loss, increased colon length, and decreased colon weight/length ratios. Histological observations suggested that the fermented sauces prevented edema, mucosal damage, and the loss of crypts induced by DSS compared to the control mice and animals fed AHSS. FSeS and FSS decreased the serum levels of tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), interleukin (IL)-6, and IL-17α. mRNA expression of these cytokines as well as that of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in colon mucosa was also inhibited by the two sauces. Our results suggest that fermented sauces, especially FSeS, exert an anticolitic effect partially by reducing the serum levels of proinflammatory cytokines and inhibiting the mRNA expression of these factors in the colon tissue of mice treated with DSS. However, AHSS did not protect against DSS-induced colitis. In addition, low-dose treatment (4 mL/kg) with the fermented sauces resulted in greater anticolitic effects than consumption of a high quantity (8 mL/kg) of the sauces. PMID:25188463

  6. Anti-colitic effects of kanjangs (fermented soy sauce and sesame sauce) in dextran sulfate sodium-induced colitis in mice.

    PubMed

    Song, Jia-Le; Choi, Jung-Ho; Seo, Jae-Hoon; Lim, Yaung-Iee; Park, Kun-Young

    2014-09-01

    This study was conducted to investigate the preventive effects of different kanjangs (Korean soy sauces), including acid-hydrolyzed soy sauce (AHSS), fermented soy sauce (FSS), and fermented sesame sauce (FSeS), on 2% dextran sulfate sodium (DSS)-induced ulcerative colitis in C57BL/6J mice. The fermented sauces, particularly FSeS, significantly suppressed DSS-induced body weight loss, increased colon length, and decreased colon weight/length ratios. Histological observations suggested that the fermented sauces prevented edema, mucosal damage, and the loss of crypts induced by DSS compared to the control mice and animals fed AHSS. FSeS and FSS decreased the serum levels of tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), interleukin (IL)-6, and IL-17α. mRNA expression of these cytokines as well as that of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in colon mucosa was also inhibited by the two sauces. Our results suggest that fermented sauces, especially FSeS, exert an anticolitic effect partially by reducing the serum levels of proinflammatory cytokines and inhibiting the mRNA expression of these factors in the colon tissue of mice treated with DSS. However, AHSS did not protect against DSS-induced colitis. In addition, low-dose treatment (4 mL/kg) with the fermented sauces resulted in greater anticolitic effects than consumption of a high quantity (8 mL/kg) of the sauces.

  7. Intestinal Epithelial Toll-Like Receptor 4 Signaling Affects Epithelial Function and Colonic Microbiota and Promotes a Risk for Transmissible Colitis

    PubMed Central

    Dheer, Rishu; Santaolalla, Rebeca; Davies, Julie M.; Lang, Jessica K.; Phillips, Matthew C.; Pastorini, Cristhine; Vazquez-Pertejo, Maria T.

    2016-01-01

    Evidence obtained from gene knockout studies supports the role of Toll-like receptor 4 (TLR4) in intestinal inflammation and microbiota recognition. Increased epithelial TLR4 expression is observed in patients with inflammatory bowel disease. However, little is known of the effect of increased TLR4 signaling on intestinal homeostasis. Here, we examined the effect of increased TLR4 signaling on epithelial function and microbiota by using transgenic villin-TLR4 mice that overexpress TLR4 in the intestinal epithelium. Our results revealed that villin-TLR4 mice are characterized by increases in the density of mucosa-associated bacteria and bacterial translocation. Furthermore, increased epithelial TLR4 signaling was associated with an impaired epithelial barrier, altered expression of antimicrobial peptide genes, and altered epithelial cell differentiation. The composition of the colonic luminal and mucosa-associated microbiota differed between villin-TLR4 and wild-type (WT) littermates. Interestingly, WT mice cohoused with villin-TLR4 mice displayed greater susceptibility to acute colitis than singly housed WT mice did. The results of this study suggest that epithelial TLR4 expression shapes the microbiota and affects the functional properties of the epithelium. The changes in the microbiota induced by increased epithelial TLR4 signaling are transmissible and exacerbate dextran sodium sulfate-induced colitis. Together, our findings imply that host innate immune signaling can modulate intestinal bacteria and ultimately the host's susceptibility to colitis. PMID:26755160

  8. 4-Hydroxydocosahexaenoic acid, a potent peroxisome proliferator-activated receptor {gamma} agonist alleviates the symptoms of DSS-induced colitis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamoto, Keiko; Ninomiya, Yuichi; Iseki, Mioko

    2008-03-14

    (5E,7Z,10Z,13Z,16Z,19Z)-4-Hydroxy-5,7,10,13,16,19-docosahexaenoic acid (4-OHDHA) is a potential agonist of peroxisome proliferator-activated receptor-{gamma} (PPAR{gamma}) and antidiabetic agent as has been previously reported. As PPAR{gamma} agonists may also have anti-inflammatory functions, in this study, we investigated whether 4-OHDHA has an inhibitory effect on expression of inflammatory genes in vitro and whether 4-OHDHA could relieve the symptoms of dextran sodium sulfate (DSS)-induced colitis in a murine model of inflammatory bowel disease. 4-OHDHA inhibited production of nitric oxide and expression of a subset of inflammatory genes including inducible nitric oxide synthase (Nos2/iNOS) and interleukin 6 (Il6) by lipopolysaccharide (LPS)-activated macrophages. In addition, 4-OHDHA-treated mice whenmore » compared to control mice not receiving treatment recovered better from the weight loss caused by DSS-induced colitis. Changes in disease activity index (DAI) of 4-OHDHA-treated mice were also more favorable than for control mice and were comparable with mice treated with a typical anti-inflammatory-drug, 5-aminosalichylic acid (5-ASA). These results suggest that 4-OHDHA has potentially clinically useful anti-inflammatory effects mediated by suppression of inflammatory gene expression.« less

  9. Effect of intracolonic benzalkonium chloride on trinitrobenzene sulphonic acid-induced colitis in the rat.

    PubMed

    Miampamba, M; Parr, E J; McCafferty, D M; Wallace, J L; Sharkey, K A

    1998-03-01

    We investigated the effects of benzalkonium chloride (BAC) on trinitrobenzene sulphonic acid (TNBS)-induced colitis in rats. TNBS was administered intrarectally before and/or after BAC treatment. In the first study, the effects of treatment with BAC 6, 12 or 24 h after TNBS were examined. In the second study, animals were treated with BAC before, after or before and after TNBS, and were examined 7 days later. The severity of colitis was assessed by macroscopic and histological scoring of the colonic damage and by determination of colonic myeloperoxidase (MPO) activity. Macrophages and CD4+ and CD8+ T cells were examined by immunohistochemistry. When BAC was instilled into the colon 6, 12 or 24 h after TNBS, weight loss and macroscopic and histological features of the colon were similar to that of controls (TNBS alone). In contrast, MPO activity was significantly reduced in all three groups post-treated with BAC. In the groups examined 7 days after TNBS treatment, rats post-treated with BAC exhibited increased weight gain and significantly reduced macroscopic damage and MPO activity compared to the TNBS control group. Rats pre-treated with BAC exhibited less macroscopic damage of the colon than rats receiving only TNBS, but histological damage, MPO and weight gain were unchanged from TNBS controls. Immunohistochemistry revealed that BAC pre-treatment increased the numbers of macrophages and T cells in the colon. After TNBS treatment, macrophage accumulation was evident in the colon, but T cells were scarce. However, these cells were preserved or enhanced in the colonic mucosa in TNBS-treated rats that had been pre-treated with BAC. Treatment with BAC, particularly after induction of colitis, produces a significant reduction in the severity of tissue injury and inflammation through mechanisms that are not fully understood.

  10. Surgical treatment of ulcerative colitis in the biologic therapy era

    PubMed Central

    Biondi, Alberto; Zoccali, Marco; Costa, Stefano; Troci, Albert; Contessini-Avesani, Ettore; Fichera, Alessandro

    2012-01-01

    Recently introduced in the treatment algorithms and guidelines for the treatment of ulcerative colitis, biological therapy is an effective treatment option for patients with an acute severe flare not responsive to conventional treatments and for patients with steroid dependent disease. The reduction in hospitalization and surgical intervention for patients affected by ulcerative colitis after the introduction of biologic treatment remains to be proven. Furthermore, these agents seem to be associated with increase in cost of treatment and risk for serious postoperative complications. Restorative proctocolectomy with ileal pouch-anal anastomosis is the surgical treatment of choice in ulcerative colitis patients. Surgery is traditionally recommended as salvage therapy when medical management fails, and, despite advances in medical therapy, colectomy rates remain unchanged between 20% and 30%. To overcome the reported increase in postoperative complications in patients on biologic therapies, several surgical strategies have been developed to maintain long-term pouch failure rate around 10%, as previously reported. Surgical staging along with the development of minimally invasive surgery are among the most promising advances in this field. PMID:22563165

  11. Myo-inositol reduces β-catenin activation in colitis.

    PubMed

    Bradford, Emily M; Thompson, Corey A; Goretsky, Tatiana; Yang, Guang-Yu; Rodriguez, Luz M; Li, Linheng; Barrett, Terrence A

    2017-07-28

    To assess dietary myo-inositol in reducing stem cell activation in colitis, and validate pβ-catenin S552 as a biomarker of recurrent dysplasia. We examined the effects of dietary myo-inositol treatment on inflammation, pβ-catenin S552 and pAkt levels by histology and western blot in IL-10 -/- and dextran sodium sulfate-treated colitic mice. Additionally, we assessed nuclear pβ-catenin S552 in patients treated with myo-inositol in a clinical trial, and in patients with and without a history of colitis-induced dysplasia. In mice, pβ-catenin S552 staining faithfully reported the effects of myo-inositol in reducing inflammation and intestinal stem cell activation. In a pilot clinical trial of myo-inositol administration in patients with a history of low grade dysplasia (LGD), two patients had reduced numbers of intestinal stem cell activation compared to the placebo control patient. In humans, pβ-catenin S552 staining discriminated ulcerative colitis patients with a history of LGD from those with benign disease. Enumerating crypts with increased numbers of pβ-catenin S552 - positive cells can be utilized as a biomarker in colitis-associated cancer chemoprevention trials.

  12. Oral Delivery of Nanoparticles Loaded With Ginger Active Compound, 6-Shogaol, Attenuates Ulcerative Colitis and Promotes Wound Healing in a Murine Model of Ulcerative Colitis.

    PubMed

    Zhang, Mingzhen; Xu, Changlong; Liu, Dandan; Han, Moon Kwon; Wang, Lixin; Merlin, Didier

    2018-01-24

    Oral drug delivery is the most attractive pathway for ulcerative colitis [UC] therapy, since it has many advantages. However, this strategy has encountered many challenges, including the instability of drugs in the gastrointestinal tract [GT], low targeting of disease tissues, and severe adverse effects. Nanoparticles capable of colitis tissue-targeted delivery and site-specific drug release may offer a unique and therapeutically effective system that addresses these formidable challenges. We used a versatile single-step surface-functionalising technique to prepare PLGA/PLA-PEG-FA nanoparticles loaded with the ginger active compound, 6-shogaol [NPs-PEG-FA/6-shogaol]. The therapeutic efficacy of NPs-PEG-FA/6-shogaol was evaluated in the well-established mouse model of dextran sulphate sodium [DSS]-induced colitis. NPs-PEG-FA exhibited very good biocompatibility both in vitro and in vivo. Subsequent cellular uptake experiments demonstrated that NPs-PEG-FA could undergo efficient receptor-mediated uptake by colon-26 cells and activated Raw 264.7 macrophage cells. In vivo, oral administration of NPs-PEG-FA/6-shogaol encapsulated in a hydrogel system [chitosan/alginate] significantly alleviated colitis symptoms and accelerated colitis wound repair in DSS-treated mice by regulating the expression levels of pro-inflammatory [TNF-α, IL-6, IL-1β, and iNOS] and anti-inflammatory [Nrf-2 and HO-1] factors. Our study demonstrates a convenient, orally administered 6-shogaol drug delivery system that effectively targets colitis tissue, alleviates colitis symptoms, and accelerates colitis wound repair. This system may represent a promising therapeutic approach for treating inflammatory bowel disease [IBD]. Copyright © 2017 European Crohn’s and Colitis Organisation (ECCO). Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com

  13. Induction of Indoleamine 2,3 Dioxygenase-1 by Immunostimulatory-DNA Limits Severity of Experimental Colitis

    PubMed Central

    Ciorba, Matthew A; Bettonville, Ellen E; McDonald, Keely G; Metz, Richard; Prendergast, George C; Newberry, Rodney D; Stenson, William F

    2010-01-01

    The chronic inflammatory bowel diseases are characterized by aberrant innate and adaptive immune responses to commensal luminal bacteria. In both human IBD and in experimental models of colitis there is an increased expression of the enzyme indoleamine 2,3 dioxygenase (IDO). IDO expression has the capacity to exert antimicrobial effects and dampen adaptive immune responses. In the murine TNBS model of colitis, inhibition of this enzyme leads to worsened disease severity suggesting that IDO acts as a natural break in limiting colitis. In this investigation we show that induction of IDO-1 by a TLR-9 agonist, immunostimulatory-DNA (ISS-DNA), critically contributes to its colitis limiting capacities. ISS-DNA induces intestinal expression of IDO-1, but not the recently described paralog enzyme IDO-2. This induction occurred in both epithelial cells and in subsets of CD11c+ and CD11b+ cells of the lamina propria which also increase after ISS-ODN. Signaling required for intestinal IDO-1 induction involves interferon dependent pathways, as IDO-1 was not induced in STAT-1 knockout mice. Using both the TNBS and DSS models of colitis we show the importance of IDO-1s induction in limiting colitis severity. The clinical parameters and histologic correlates of colitis in these models were improved by administration of the TLR-9 agonist; however, when the function of IDO is inhibited, the colitis limiting effects of ISS-ODN were abrogated. These findings support the possibility that targeted induction of IDO-1 is an approach deserving further investigation as a therapeutic strategy for diseases of intestinal inflammation. PMID:20181893

  14. Hydrogen peroxide scavenger, catalase, alleviates ion transport dysfunction in murine colitis.

    PubMed

    Barrett, Kim E; McCole, Declan F

    2016-11-01

    Reactive oxygen species (ROS) such as hydrogen peroxide (H 2 O 2 ) contribute to epithelial damage and ion transport dysfunction (key events in inflammatory diarrhoea) in inflammatory bowel disease (IBD). The aim of this study was to identify if H 2 O 2 mediates suppression of colonic ion transport function in the murine dextran sulfate sodium (DSS) colitis model by using the H 2 O 2 degrading enzyme, catalase. Colitis was induced by administering DSS (4%) in drinking water for 5 days followed by 3 days on normal H 2 O. Mice were administered either pegylated catalase or saline at day -1, 0 and +1 of DSS treatment. Ion transport responses to the Ca 2+ -dependent agonist, carbachol (CCh), or the cAMP-dependent agonist, forskolin, were measured across distal colonic mucosa mounted in Ussing chambers. Parameters of DSS-induced inflammation (loss in body weight, decreased colon length, altered stool consistency), were only partially alleviated by catalase while histology was only minimally improved. However, catalase significantly reversed the DSS-induced reduction in baseline ion transport as well as colonic I sc responses to CCh. However, ion transport responses to forskolin were not significantly restored. Catalase also reduced activation of ERK MAP kinase in the setting of colitis, and increased expression of the Na + -K + -2Cl - cotransporter, NKCC1, consistent with restoration of ion transport function. Ex vivo treatment of inflamed colonic mucosae with catalase also partially restored ion transport function. Therefore, catalase partially prevents, and rescues, the loss of ion transport properties in DSS colitis even in the setting of unresolved tissue inflammation. These findings indicate a prominent role for ROS in ion transport dysfunction in colitis and may suggest novel strategies for the treatment of inflammatory diarrhoea. © 2016 John Wiley & Sons Australia, Ltd.

  15. [Effects-of combined calories restriction and polyunsaturated fatty acids on colitis in rats].

    PubMed

    Qian, Yan; Zhang, Ying; Liu, Hui; Wang, Lei; Li, Xiuhua; Qiu, Fubin

    2014-09-01

    To explore the effect of n-6 and n-3 polyunsaturated fatty acids combined with calorie restriction( CR) in DSS induced ulcerative colitis rats. Forty female rats were randomly divided into five groups, control group, model group, CR group, 5:1 PUFA ad libitum group, 5: 1 PUFA CR group. CR groups provided with a limited daily food allotment of 60% of that eaten by the ad libitum animals for 14 weeks. Ulcerative colitis model in rats were given 5. 0% dextran sulfate sodium in their drinking water for 7 days. 5:1 PUFA CR group significantly decreased body weight, disease activity index, macroscopic and histological score compared to model group. In addition, administration of 5: 1 PUFA CR effectively inhibited MPO activity. The levels of TNF-α and IL-6 in the serum with colitis were decreased by 5: 1 PUFA CR (P <0. 05). These results suggest that combination of calories restriction and n-6/n-3 =5:1 PUFA may be more beneficial in attenuating the progression of DSS induced ulcerative colitis.

  16. Treatment of dextran sodium sulfate-induced experimental colitis by adoptive transfer of peritoneal cells

    PubMed Central

    Liu, Ting; Ren, Jun; Wang, Wei; Wei, Xia-wei; Shen, Guo-bo; Liu, Yan-tong; Luo, Min; Xu, Guang-chao; Shao, Bin; Deng, Sen-yi; He, Zhi-yao; Liang, Xiao; Liu, Yu; Wen, Yan-Zhu; Xiang, Rong; Yang, Li; Deng, Hong-xin; Wei, Yu-quan

    2015-01-01

    The adoptive transfer of the natural regulatory B cells and macrophages should be a useful treatment for inflammation and autoimmune disease. However, it is usually difficult to isolate these cells from the tissues and expand them. Here, we investigated the feasibility of adoptively transferring peritoneal cells (PCs) as a treatment for DSS-induced colitis. We found that peritoneal cavity can provide an easily accessible site for harvesting enough number of PCs, namely, two-dose PCs for the treatment from a mouse in one operation. Adoptive therapy of these cells from healthy mice or those with disease is effectively in reducing the disease activity score. The natural B cells and macrophages of the infused PCs can selectively migrate to lesion sites and regulate the expression of Stat3, NF−κB, Smad3 and Smad7. Additionally, PCs exert dual activity of IL-10 and TGF-β secreted spontaneously by both peritoneal B cells and macrophages, which in turn enhance the induction of regulatory B cells and Macrophages in microenvironment of inflammation. Moreover, PCs can re-establish immunological tolerance in the OVA-immunized mice. Thus, our findings provide a new strategy for colitis therapy and could be of importance in additional exploration of other inflammation and autoimmune diseases therapy. PMID:26565726

  17. Increased permeability to polyethylene glycol 4000 in rabbits with experimental colitis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seidman, E.G.; Hanson, D.G.; Walker, W.A.

    1986-01-01

    Little information is available regarding colonic permeability to macromolecules in health or disease states. In vivo permeability of rabbit colon to (/sup 14/C)polyethylene glycol 4000 (/sup 14/C-PEG) was examined in the presence of immune complex-mediated experimental colitis and compared with that of partially treated (control) and normal rabbits. Permeability was assessed by urinary /sup 14/C-PEG excretion after intrarectal administration of 0.1 mM solution of /sup 14/C-PEG (1 ml/kg, 7.5 X 10(6) cpm/ml). Experimental colitis greatly increased colonic permeability (p less than 0.001 in two-way analysis of variance) compared with control and normal groups (2.06% +/- 0.19%, 0.14% +/- 0.04%, andmore » 0.01% +/- 0.004%, respectively, of rectally administered counts). Gel diffusion chromatography showed that absorbed /sup 14/C-PEG was excreted into urine unchanged, demonstrating its applicability as an inert, nonmetabolizable macromolecular probe. Urinary clearance after mesenteric vein administration of /sup 14/C-PEG was similar in normal animals and animals with colitis, implicating colonic absorption as the source of the group differences. Postmortem histology confirmed the acute colitis lesions in the experimental group. These findings support the hypothesis that nonspecific colonic inflammation is associated with significant alterations of mucosal permeability.« less

  18. Allogeneic guinea pig mesenchymal stem cells ameliorate neurological changes in experimental colitis.

    PubMed

    Stavely, Rhian; Robinson, Ainsley M; Miller, Sarah; Boyd, Richard; Sakkal, Samy; Nurgali, Kulmira

    2015-12-30

    The use of mesenchymal stem cells (MSCs) to treat inflammatory bowel disease (IBD) is of great interest because of their immunomodulatory properties. Damage to the enteric nervous system (ENS) is implicated in IBD pathophysiology and disease progression. The most commonly used model to study inflammation-induced changes to the ENS is 2,4,6-trinitrobenzene-sulfonate acid (TNBS)-induced colitis in guinea pigs; however, no studies using guinea pig MSCs in colitis have been performed. This study aims to isolate and characterise guinea pig MSCs and then test their therapeutic potential for the treatment of enteric neuropathy associated with intestinal inflammation. MSCs from guinea pig bone marrow and adipose tissue were isolated and characterised in vitro. In in vivo experiments, guinea pigs received either TNBS for the induction of colitis or sham treatment by enema. MSCs were administered at a dose of 1 × 10(6) cells via enema 3 h after the induction of colitis. Colon tissues were collected 24 and 72 h after TNBS administration to assess the level of inflammation and damage to the ENS. The secretion of transforming growth factor-β1 (TGF-β1) was analysed in MSC conditioned medium by flow cytometry. Cells isolated from both sources were adherent to plastic, multipotent and expressed some human MSC surface markers. In vitro characterisation revealed distinct differences in growth kinetics, clonogenicity and cell morphology between MSC types. In an in vivo model of TNBS-induced colitis, guinea pig bone marrow MSCs were comparatively more efficacious than adipose tissue MSCs in attenuating weight loss, colonic tissue damage and leukocyte infiltration into the mucosa and myenteric plexus. MSCs from both sources were equally neuroprotective in the amelioration of enteric neuronal loss and changes to the neurochemical coding of neuronal subpopulations. MSCs from both sources secreted TGF-β1 which exerted neuroprotective effects in vitro. This study is the first

  19. Effect of mesalamine and prednisolone on TNBS experimental colitis, following various doses of orally administered iron.

    PubMed

    Triantafillidis, John K; Douvi, Georgia; Agrogiannis, George; Patsouris, Efstratios; Gikas, Aristofanis; Papalois, Apostolos E

    2014-01-01

    Experimental data suggest that oral iron (I.) supplementation can worsen colitis in animals. To investigate the influence of various concentrations of orally administered I. in normal gut mucosa and mucosa of animals with TNBS colitis, as well as the influence of Mesalamine (M.) and Prednisolone (P.) on the severity of TNBS colitis following orally administered I. 156 Wistar rats were allocated into 10 groups. Colitis was induced by TNBS. On the 8th day, all animals were euthanatized. Activity of colitis and extent of tissue damage were assessed histologically. The levels of tissue tumor necrosis factor- α (t-TNF- α ) and tissue malondialdehyde (t-MDA) were estimated in all animal groups. Moderate and high I. supplementation induced inflammation in the healthy colon and increased the activity of the experimentally induced TNBS colitis. Administration of M. on TNBS colitis following moderate iron supplementation (0.3 g/Kg diet) resulted in a significant improvement in the overall histological score as well as in two individual histological parameters. M. administration, however, did not significantly reduce the t-TNF- α levels (17.67 ± 4.92 versus 14.58 ± 5.71, P = 0.102), although it significantly reduced the t-MDA levels (5.79 ± 1.55 versus 3.67 ± 1.39, P = 0.000). Administration of M. on TNBS colitis following high iron supplementation (3.0 g/Kg diet) did not improve the overall histological score and the individual histological parameters, neither reduced the levels of t-TNF- α (16.57 ± 5.61 versus 14.65 ± 3.88, P = 0.296). However, M. significantly reduced the t-MDA levels (5.99 ± 1.37 versus 4.04 ± 1.41, P = 0.000). Administration of P. on TNBS colitis after moderate iron supplementation resulted in a significant improvement in the overall histological score as well as in three individual histological parameters. P. also resulted in a significant reduction in the t-TNF- α levels (17.67 ± 4.92 versus 12.64 ± 3.97, P = 0.003) and the t-MDA levels

  20. Effect of Mesalamine and Prednisolone on TNBS Experimental Colitis, following Various Doses of Orally Administered Iron

    PubMed Central

    Triantafillidis, John K.; Douvi, Georgia; Agrogiannis, George; Patsouris, Efstratios; Gikas, Aristofanis; Papalois, Apostolos E.

    2014-01-01

    Background. Experimental data suggest that oral iron (I.) supplementation can worsen colitis in animals. Aim. To investigate the influence of various concentrations of orally administered I. in normal gut mucosa and mucosa of animals with TNBS colitis, as well as the influence of Mesalamine (M.) and Prednisolone (P.) on the severity of TNBS colitis following orally administered I. Methods and Materials. 156 Wistar rats were allocated into 10 groups. Colitis was induced by TNBS. On the 8th day, all animals were euthanatized. Activity of colitis and extent of tissue damage were assessed histologically. The levels of tissue tumor necrosis factor-α (t-TNF-α) and tissue malondialdehyde (t-MDA) were estimated in all animal groups. Results. Moderate and high I. supplementation induced inflammation in the healthy colon and increased the activity of the experimentally induced TNBS colitis. Administration of M. on TNBS colitis following moderate iron supplementation (0.3 g/Kg diet) resulted in a significant improvement in the overall histological score as well as in two individual histological parameters. M. administration, however, did not significantly reduce the t-TNF-α levels (17.67 ± 4.92 versus 14.58 ± 5.71, P = 0.102), although it significantly reduced the t-MDA levels (5.79 ± 1.55 versus 3.67 ± 1.39, P = 0.000). Administration of M. on TNBS colitis following high iron supplementation (3.0 g/Kg diet) did not improve the overall histological score and the individual histological parameters, neither reduced the levels of t-TNF-α (16.57  ± 5.61 versus 14.65 ± 3.88, P = 0.296). However, M. significantly reduced the t-MDA levels (5.99 ± 1.37 versus 4.04 ± 1.41, P = 0.000). Administration of P. on TNBS colitis after moderate iron supplementation resulted in a significant improvement in the overall histological score as well as in three individual histological parameters. P. also resulted in a significant reduction in the t-TNF-α levels (17.67 ± 4

  1. [Saccharomyces boulardii reduced intestinal inflammation in mice model of 2,4,6-trinitrobencene sulfonic acid induced colitis: based on microarray].

    PubMed

    Lee, Sang Kil; Kim, Hyo Jong; Chi, Sung Gil

    2010-01-01

    Saccharomyces boulardii has been reported to be beneficial in the treatment of inflammatory bowel disease. The aim of this work was to evaluate the effect of S. boulardii in a mice model of 2,4,6-trinitrobencene sulfonic acid (TNBS) induced colitis and analyze the expression of genes in S. boulardii treated mice by microarray. BALB/c mice received TNBS or TNBS and S. boulardii treatment for 4 days. Microarray was performed on total mRNA form colon, and histologic evaluation was also performed. In mice treated with S. boulardii, the histological appearance and mortality rate were significantly restored compared with rats receiving only TNBS. Among 330 genes which were altered by both S. boulardii and TNBS (>2 folds), 193 genes were down-regulated by S. boulardii in microarray. Most of genes which were down-regulated by S. bouardii were functionally classified as inflammatory and immune response related genes. S. boulardii may reduce colonic inflammation along with regulation of inflammatory and immune responsive genes in TNBS-induced colitis.

  2. Nicotinamide treatment ameliorates the course of experimental colitis mediated by enhanced neutrophil-specific antibacterial clearance.

    PubMed

    Bettenworth, Dominik; Nowacki, Tobias M; Ross, Matthias; Kyme, Pierre; Schwammbach, Daniela; Kerstiens, Linda; Thoennissen, Gabriela B; Bokemeyer, Carsten; Hengst, Karin; Berdel, Wolfgang E; Heidemann, Jan; Thoennissen, Nils H

    2014-07-01

    In previous studies, we could show that the B vitamin nicotinamide (NAM) enhanced antimicrobial activity of neutrophils. Here, we assessed the effects of NAM in two models of experimental colitis. Colitis was induced in C57BL/6 mice either by oral infection with Citrobacter rodentium or by DSS (dextran sodium sulphate) administration, and animals were systemically treated with NAM. Ex vivo bacterial clearance was assessed in murine and human whole blood, as well as isolated human neutrophils. In C. rodentium-induced colitis, NAM treatment resulted in markedly decreased systemic bacterial invasion, histological damage and increased fecal clearance of C. rodentium by up to 600-fold. In contrast, NAM had no effect when administered to neutrophil-depleted mice. Ex vivo stimulation of isolated human neutrophils, as well as murine and human whole blood with NAM led to increased clearance of C. rodentium and enhanced expression of antimicrobial peptides in neutrophils. Moreover, NAM treatment significantly ameliorated the course of DSS colitis, as assessed by body weight, histological damage and myeloperoxidase activity. Pharmacological application of NAM mediates beneficial effects in bacterial and chemically induced colitis. Future studies are needed to explore the clinical potential of NAM in the context of intestinal bacterial infections and human inflammatory bowel disease (IBD). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Therapeutic action of ghrelin in a mouse model of colitis.

    PubMed

    Gonzalez-Rey, Elena; Chorny, Alejo; Delgado, Mario

    2006-05-01

    Ghrelin is a novel growth hormone-releasing peptide with potential endogenous anti-inflammatory activities ameliorating some pathologic inflammatory conditions. Crohn's disease is a chronic debilitating disease characterized by severe T helper cell (Th)1-driven inflammation of the colon. The aim of this study was to investigate the therapeutic effect of ghrelin in a murine model of colitis. We examined the anti-inflammatory action of ghrelin in the colitis induced by intracolonic administration of trinitrobenzene sulfonic acid. Diverse clinical signs of the disease were evaluated, including weight loss, diarrhea, colitis, and histopathology. We also investigated the mechanisms involved in the potential therapeutic effect of ghrelin, such as inflammatory cytokines and chemokines, Th1-type response, and regulatory factors. Ghrelin ameliorated significantly the clinical and histopathologic severity of the trinitrobenzene sulfonic acid-induced colitis; abrogating body weight loss, diarrhea, and inflammation; and increasing survival. The therapeutic effect was associated with down-regulation of both inflammatory and Th1-driven autoimmune response through the regulation of a wide spectrum of inflammatory mediators. In addition, a partial involvement of interluekin-10/transforming growth factor-beta1-secreting regulatory T cells in this therapeutic effect was demonstrated. Importantly, the ghrelin treatment was therapeutically effective in established colitis and avoided the recurrence of the disease. Our data demonstrate novel anti-inflammatory actions for ghrelin in the gastrointestinal tract, ie, the capacity to deactivate the intestinal inflammatory response and to restore mucosal immune tolerance at multiple levels. Consequently, ghrelin administration represents a novel possible therapeutic approach for the treatment of Crohn's disease and other Th1-mediated inflammatory diseases, such as rheumatoid arthritis and multiple sclerosis.

  4. Rivastigmine Alleviates Experimentally Induced Colitis in Mice and Rats by Acting at Central and Peripheral Sites to Modulate Immune Responses

    PubMed Central

    Shifrin, Helena; Nadler-Milbauer, Mirela; Shoham, Shai; Weinstock, Marta

    2013-01-01

    The cholinergic anti-inflammatory system and α7 nicotinic receptors in macrophages have been proposed to play a role in neuroimmunomodulation and in the etiology of ulcerative colitis. We investigated the ability of a cholinesterase (ChE) inhibitor rivastigmine, to improve the pathology of ulcerative colitis by increasing the concentration of extracellular acetylcholine in the brain and periphery. In combination with carbachol (10 µM), rivastigmine (1 µM) significantly decreased the release of nitric oxide, TNF-α, IL-1β and IL-6 from lipopolysaccharide-activated RAW 264.7 macrophages and this effect was abolished by α7 nicotinic receptor blockade by bungarotoxin. Rivastigmine (1 mg/kg) but not (0.5 mg/kg), injected subcutaneously once daily in BALB/c mice with colitis induced by 4% dextran sodium sulphate (DSS), reduced the disease activity index (DAI) by 60% and damage to colon structure. Rivastigmine (1 mg/kg) also reduced myeloperoxidase activity and IL-6 by >60%, and the infiltration of CD11b expressing cells by 80%. These effects were accompanied by significantly greater ChE inhibition in cortex, brain stem, plasma and colon than that after 0.5 mg/kg. Co-administration of rivastigmine (1 mg/kg) with the muscarinic antagonist scopolamine significantly increased the number of CD11b expressing cells in the colon but did not change DAI compared to those treated with rivastigmine alone. Rivastigmine 1 and 2 mg given rectally to rats with colitis induced by rectal administration of 30 mg dintrobezene sulfonic acid (DNBS) also caused a dose related reduction in ChE activity in blood and colon, the number of ulcers and area of ulceration, levels of TNF-α and in MPO activity. The study revealed that the ChE inhibitor rivastigmine is able to reduce gastro-intestinal inflammation by actions at various sites at which it preserves ACh. These include ACh released from vagal nerve endings that activates alpha7 nicotinic receptors on circulating macrophages and in

  5. Rivastigmine alleviates experimentally induced colitis in mice and rats by acting at central and peripheral sites to modulate immune responses.

    PubMed

    Shifrin, Helena; Nadler-Milbauer, Mirela; Shoham, Shai; Weinstock, Marta

    2013-01-01

    The cholinergic anti-inflammatory system and α7 nicotinic receptors in macrophages have been proposed to play a role in neuroimmunomodulation and in the etiology of ulcerative colitis. We investigated the ability of a cholinesterase (ChE) inhibitor rivastigmine, to improve the pathology of ulcerative colitis by increasing the concentration of extracellular acetylcholine in the brain and periphery. In combination with carbachol (10 µM), rivastigmine (1 µM) significantly decreased the release of nitric oxide, TNF-α, IL-1β and IL-6 from lipopolysaccharide-activated RAW 264.7 macrophages and this effect was abolished by α7 nicotinic receptor blockade by bungarotoxin. Rivastigmine (1 mg/kg) but not (0.5 mg/kg), injected subcutaneously once daily in BALB/c mice with colitis induced by 4% dextran sodium sulphate (DSS), reduced the disease activity index (DAI) by 60% and damage to colon structure. Rivastigmine (1 mg/kg) also reduced myeloperoxidase activity and IL-6 by >60%, and the infiltration of CD11b expressing cells by 80%. These effects were accompanied by significantly greater ChE inhibition in cortex, brain stem, plasma and colon than that after 0.5 mg/kg. Co-administration of rivastigmine (1 mg/kg) with the muscarinic antagonist scopolamine significantly increased the number of CD11b expressing cells in the colon but did not change DAI compared to those treated with rivastigmine alone. Rivastigmine 1 and 2 mg given rectally to rats with colitis induced by rectal administration of 30 mg dintrobezene sulfonic acid (DNBS) also caused a dose related reduction in ChE activity in blood and colon, the number of ulcers and area of ulceration, levels of TNF-α and in MPO activity. The study revealed that the ChE inhibitor rivastigmine is able to reduce gastro-intestinal inflammation by actions at various sites at which it preserves ACh. These include ACh released from vagal nerve endings that activates alpha7 nicotinic receptors on circulating macrophages and in

  6. Diagnosis and management of microscopic colitis: current perspectives

    PubMed Central

    Bohr, Johan; Wickbom, Anna; Hegedus, Agnes; Nyhlin, Nils; Hultgren Hörnquist, Elisabeth; Tysk, Curt

    2014-01-01

    Collagenous colitis and lymphocytic colitis, together constituting microscopic colitis, are common causes of chronic diarrhea. They are characterized clinically by chronic nonbloody diarrhea and a macroscopically normal colonic mucosa where characteristic histopathological findings are seen. Previously considered rare, they now have emerged as common disorders that need to be considered in the investigation of the patient with chronic diarrhea. The annual incidence of each disorder is five to ten per 100,000 inhabitants, with a peak incidence in 60- to 70-year-old individuals and a predominance of female patients in collagenous colitis. The etiology and pathophysiology are not well understood, and the current view suggests an uncontrolled mucosal immune reaction to various luminal agents in predisposed individuals. Clinical symptoms comprise chronic diarrhea, abdominal pain, fatigue, weight loss, and fecal incontinence that may impair the patient’s health-related quality of life. An association is reported with other autoimmune disorders, such as celiac disease, thyroid disorders, diabetes mellitus, and arthritis. The best-documented treatment, both short-term and long-term, is budesonide, which induces clinical remission in up to 80% of patients after 8 weeks’ treatment. However, after successful budesonide therapy is ended, recurrence of clinical symptoms is common, and the best possible long-term management deserves further study. The long-term prognosis is good, and the risk of complications, including colonic cancer, is low. We present an update of the epidemiology, pathogenesis, diagnosis, and management of microscopic colitis. PMID:25170275

  7. High-Salt Diet Induces IL-17-Dependent Gut Inflammation and Exacerbates Colitis in Mice

    PubMed Central

    Aguiar, Sarah Leão Fiorini; Miranda, Mariana Camila Gonçalves; Guimarães, Mauro Andrade Freitas; Santiago, Helton Costa; Queiroz, Camila Pereira; Cunha, Pricila da Silva; Cara, Denise Carmona; Foureaux, Giselle; Ferreira, Anderson José; Cardoso, Valbert Nascimento; Barros, Patrícia Aparecida; Maioli, Tatiani Uceli; Faria, Ana Maria Caetano

    2018-01-01

    Excess intake of sodium is often associated with high risk for cardiovascular disease. More recently, some studies on the effects of high-salt diets (HSDs) have also demonstrated that they are able to activate Th17 cells and increase severity of autoimmune diseases. The purpose of the present study was to evaluate the effects of a diet supplemented with NaCl in the colonic mucosa at steady state and during inflammation. We showed that consumption of HSD by mice triggered a gut inflammatory reaction associated with IL-23 production, recruitment of neutrophils, and increased frequency of the IL-17-producing type 3 innate lymphoid cells (ILC3) in the colon. Moreover, gut inflammation was not observed in IL-17–/– mice but it was present, although at lower grade, in RAG−/− mice suggesting that the inflammatory effects of HSD was dependent on IL-17 but only partially on Th17 cells. Expression of SGK1, a kinase involved in sodium homeostasis, increased 90 min after ingestion of 50% NaCl solution and decreased 3 weeks after HSD consumption. Colitis induced by oral administration of either dextran sodium sulfate or 2,4,6-trinitrobenzenesulfonic acid was exacerbated by HSD consumption and this effect was associated with increased frequencies of RORγt+ CD4+ T cells and neutrophils in the colon. Therefore, our results demonstrated that consumption of HSD per se triggered a histologically detectable inflammation in the colon and also exacerbated chemically induced models of colitis in mice by a mechanism dependent on IL-17 production most likely by both ILC3 and Th17 cells. PMID:29379505

  8. [Drug induced diarrhea].

    PubMed

    Morard, Isabelle; Hadengue, Antoine

    2008-09-03

    Diarrhea is a frequent adverse event involving the most frequently antibiotics, laxatives and NSAI. Drug induced diarrhea may be acute or chronic. It may be due to expected, dose dependant properties of the drug, to immuno-allergic or bio-genomic mechanisms. Several pathophysiological mechanisms have been described resulting in osmotic, secretory or inflammatory diarrhea, shortened transit time, or malabsorption. Histopathological lesions sometimes associated with drug induced diarrhea are usually non specific and include ulcerations, inflammatory or ischemic lesions, fibrous diaphragms, microscopic colitis and apoptosis. The diagnosis of drug induced diarrhea, sometimes difficult to assess, relies on the absence of other obvious causes and on the rapid disappearance of the symptoms after withdrawal of the suspected drug.

  9. Use of Propolis Hydroalcoholic Extract to Treat Colitis Experimentally Induced in Rats by 2,4,6-Trinitrobenzenesulfonic Acid

    PubMed Central

    Gonçalves, Cely Cristina Martins; Hernandes, Luzmarina; Bersani-Amado, Ciomar Aparecida; Franco, Selma Lucy; Silva, Joaquim Felipe de Souza

    2013-01-01

    This study focused on the therapeutic effect of a propolis SLNC 106PI extract on experimental colitis. Wistar adult rats received 0.8 mL rectal dose of one of the following solutions: saline (group S), 20 mg TNBS in 50% ethanol (group TNBS), 20 mg TNBS in 50% ethanol and propolis extract in saline (group TNBS-P), propolis extract in saline (group SP), and 20 mg TNBS in 50% ethanol and 50 mg/kg mesalazine (group TNBS-M). The animals were euthanized 7 or 14 days after the colitis induction. Samples of the distal colon were harvested for the analysis of myeloperoxidase (MPO) enzyme activity and for morphometric analysis in paraffin-embedded histological sections with hematoxylin-eosin or histochemical staining. The animals treated with TNBS exhibited the typical clinical signs of colitis. Increased MPO activity confirmed the presence of inflammation. TNBS induced the development of megacolon, ulceration, transmural inflammatory infiltrate, and thickened bowel walls. Treatment with propolis moderately reduced the inflammatory response, decreased the number of cysts and abscesses, inhibited epithelial proliferation, and increased the number of goblet cells. The anti-inflammatory activity of the propolis SLNC 106 extract was confirmed by the reductions in both the inflammatory infiltrate and the number of cysts and abscesses in the colon mucosa. PMID:24101941

  10. Intestinal helminth infection drives carcinogenesis in colitis-associated colon cancer

    PubMed Central

    Pastille, Eva; Frede, Annika; McSorley, Henry J.; Gräb, Jessica; Adamczyk, Alexandra; Hansen, Wiebke; Buer, Jan; Maizels, Rick M.

    2017-01-01

    Inflammatory bowel diseases (IBD) are chronic inflammatory disorders of the gastrointestinal tract, strongly associated with an increased risk of colorectal cancer development. Parasitic infections caused by helminths have been shown to modulate the host’s immune response by releasing immunomodulatory molecules and inducing regulatory T cells (Tregs). This immunosuppressive state provoked in the host has been considered as a novel and promising approach to treat IBD patients and alleviate acute intestinal inflammation. On the contrary, specific parasite infections are well known to be directly linked to carcinogenesis. Whether a helminth infection interferes with the development of colitis-associated colon cancer (CAC) is not yet known. In the present study, we demonstrate that the treatment of mice with the intestinal helminth Heligmosomoides polygyrus at the onset of tumor progression in a mouse model of CAC does not alter tumor growth and distribution. In contrast, H. polygyrus infection in the early inflammatory phase of CAC strengthens the inflammatory response and significantly boosts tumor development. Here, H. polygyrus infection was accompanied by long-lasting alterations in the colonic immune cell compartment, with reduced frequencies of colonic CD8+ effector T cells. Moreover, H. polygyrus infection in the course of dextran sulfate sodium (DSS) mediated colitis significantly exacerbates intestinal inflammation by amplifying the release of colonic IL-6 and CXCL1. Thus, our findings indicate that the therapeutic application of helminths during CAC might have tumor-promoting effects and therefore should be well-considered. PMID:28938014

  11. Nicotine protects against DSS colitis through regulating microRNA-124 and STAT3.

    PubMed

    Qin, Zhen; Wan, Jing-Jing; Sun, Yang; Wu, Tingyu; Wang, Peng-Yuan; Du, Peng; Su, Ding-Feng; Yang, Yili; Liu, Xia

    2017-02-01

    Although it is generally believed that nicotine accounts for the beneficial effect of smoking on ulcerative colitis, the underlying mechanisms remain not well understood. Our previous finding that nicotine inhibits inflammatory responses through inducing miR-124 prompted us to ask whether the miRNA is involved in the protective action of nicotine against UC. Our present study found that miR-124 expression is upregulated in colon tissues from UC patients and DSS colitis mice. Nicotine treatment further augmented miR-124 expression in lymphocytes isolated from human ulcerative colonic mucosa and ulcerative colon tissues from DSS mice, both in infiltrated lymphocytes and epithelial cells. Moreover, knockdown of miR-124 significantly diminished the beneficial effect of nicotine on murine colitis and IL-6-treated Caco-2 colon epithelial cells. Further analysis indicated that nicotine inhibited STAT3 activation in vivo and in IL-6 treated Caco-2 cells and Jurkat human T lymphocytes, in which miR-124 knockdown led to increased activation of STAT3. Blocking STAT3 activity alone is beneficial for DSS colitis and also abolished nicotine's protective effect in this model. These data indicate that nicotine exerts its protective action in UC through inducing miR-124 and inhibiting STAT3, and suggest that the miR-124/STAT3 system is a potential target for the therapeutic intervention of UC. Nicotine upregulates miR-124 expression in ulcerative colon tissues and cells. MiR-124 is required for the protective role of nicotine in DSS colitis mice and epithelial cells. The protective effect of nicotine in murine DSS colitis depends on blocking STAT3 activation. MiR-124 mediates the inhibitory role of nicotine on STAT3/p-STAT3. Targeting miR-124 and STAT3 represents a novel approach for treating ulcerative colitis.

  12. IL-33 signaling protects from murine oxazolone colitis by supporting intestinal epithelial function

    PubMed Central

    Waddell, Amanda; Vallance, Jefferson E; Moore, Preston D; Hummel, Amy T; Wu, David; Shanmukhappa, Shiva K; Fei, Lin; Washington, M Kay; Minar, Phillip; Coburn, Lori A; Nakae, Susumu; Wilson, Keith T; Denson, Lee A; Hogan, Simon P; Rosen, Michael J

    2015-01-01

    Background IL-33, a member of the IL-1 cytokine family that signals through ST2, is upregulated in ulcerative colitis (UC); however, the role of IL-33 in colitis remains unclear. IL-33 augments type 2 immune responses, which have been implicated in UC pathogenesis. We sought to determine the role of IL-33 signaling in oxazolone (OXA) colitis, a type 2 cytokine-mediated murine model of UC. Methods Colon mucosal IL-33 expression was compared between pediatric and adult UC and non-IBD patients using immunohistochemistry and real-time PCR. OXA colitis was induced in WT, IL-33−/− and ST2−/− mice, and histopathology, cytokine levels, and goblet cells were assessed. Transepithelial resistance (TER) was measured across IL-33-treated T84 cell monolayers. Results Colon mucosal IL-33 was increased in pediatric patients with active UC and in OXA colitis. IL-33−/− and ST2−/− OXA mice exhibited increased disease severity compared to WT OXA mice. OXA induced a mixed mucosal cytokine response, but few differences were observed between OXA WT and IL-33−/− or ST2−/− mice. Goblet cells were significantly decreased in IL-33−/− and ST2−/− OXA compared to WT OXA mice. IL-33 augmented TER in T84 cells, and this effect was blocked by the ERK1/2 inhibitor PD98,059. Conclusions OXA colitis is exacerbated in IL-33−/− and ST2−/− mice. Increased mucosal IL-33 in human UC and murine colitis may be a homeostatic response to limit inflammation, potentially through effects on epithelial barrier function. Further investigation of IL-33 protective mechanisms would inform the development of novel therapeutic approaches. PMID:26313694

  13. Myo-inositol reduces β-catenin activation in colitis

    PubMed Central

    Bradford, Emily M; Thompson, Corey A; Goretsky, Tatiana; Yang, Guang-Yu; Rodriguez, Luz M; Li, Linheng; Barrett, Terrence A

    2017-01-01

    AIM To assess dietary myo-inositol in reducing stem cell activation in colitis, and validate pβ-cateninS552 as a biomarker of recurrent dysplasia. METHODS We examined the effects of dietary myo-inositol treatment on inflammation, pβ-cateninS552 and pAkt levels by histology and western blot in IL-10-/- and dextran sodium sulfate-treated colitic mice. Additionally, we assessed nuclear pβ-cateninS552 in patients treated with myo-inositol in a clinical trial, and in patients with and without a history of colitis-induced dysplasia. RESULTS In mice, pβ-cateninS552 staining faithfully reported the effects of myo-inositol in reducing inflammation and intestinal stem cell activation. In a pilot clinical trial of myo-inositol administration in patients with a history of low grade dysplasia (LGD), two patients had reduced numbers of intestinal stem cell activation compared to the placebo control patient. In humans, pβ-cateninS552 staining discriminated ulcerative colitis patients with a history of LGD from those with benign disease. CONCLUSION Enumerating crypts with increased numbers of pβ-cateninS552 - positive cells can be utilized as a biomarker in colitis-associated cancer chemoprevention trials. PMID:28811707

  14. Berberrubine attenuates mucosal lesions and inflammation in dextran sodium sulfate-induced colitis in mice

    PubMed Central

    Huang, Yan-Feng; Qu, Chang; Xu, Lie-Qiang; Su, Zi-Ren; Zeng, Hui-Fang; Zheng, Lin; Yi, Tie-Gang; Li, Hui-Lin; Chen, Jian-Ping

    2018-01-01

    Ulcerative colitis (UC) is a chronic relapsing disease without satisfactory treatments, in which intestinal inflammation and disrupted intestinal epithelial barrier are two main pathogeneses triggering UC. Berberrubine (BB) is deemed as one of the major active metabolite of berberine (BBR), a naturally-occurring isoquinoline alkaloid with appreciable anti-UC effect. This study aimed to comparatively investigate the therapeutic effects of BB and BBR on dextran sodium sulfate (DSS)-induced mouse colitis model, and explore the potential underlying mechanism. Results revealed that BB (20 mg/kg) produced a comparable therapeutic effect as BBR (50 mg/kg) and positive control sulfasalazine (200 mg/kg) by significantly reducing the disease activity index (DAI) with prolonged colon length and increased bodyweight as compared with the DSS group. BB treatment was shown to significantly ameliorate the DSS-induced colonic pathological alternations and decreased histological scores. In addition, BB markedly attenuated colonic inflammation by alleviating inflammatory cell infiltration and inhibiting myeloperoxidase (MPO) and cytokines (TNF-α, IFN-γ, IL-1β, IL-6, IL-4 and IL-10) productions in DSS mice. Furthermore, BB treatment substantially upregulated the expression of tight junction (TJ) proteins (zonula occludens-1, zonula occludens-2, claudin-1, occludin) and mRNA expression of mucins (mucin-1 and mucin-2), and decreased the Bax/Bcl-2 ratio. In summary, BB exerted similar effect to its analogue BBR and positive control in attenuating DSS-induced UC with much lower dosage and similar mechanism. The protective effect observed may be intimately associated with maintaining the integrity of the intestinal mucosal barrier and mitigating intestinal inflammation, which were mediated at least partially, via favorable modulation of TJ proteins and mucins and inhibition of inflammatory mediators productions in the colonic tissue. This is the first report to demonstrate that BB

  15. Colonic migrating motor complexes are inhibited in acute tri-nitro benzene sulphonic acid colitis.

    PubMed

    Hofma, Ben R; Wardill, Hannah R; Mavrangelos, Chris; Campaniello, Melissa A; Dimasi, David; Bowen, Joanne M; Smid, Scott D; Bonder, Claudine S; Beckett, Elizabeth A; Hughes, Patrick A

    2018-01-01

    Inflammatory Bowel Disease (IBD) is characterized by overt inflammation of the intestine and is typically accompanied by symptoms of bloody diarrhea, abdominal pain and cramping. The Colonic Migrating Motor Complex (CMMC) directs the movement of colonic luminal contents over long distances. The tri-nitrobenzene sulphonic acid (TNBS) model of colitis causes inflammatory damage to enteric nerves, however it remains to be determined whether these changes translate to functional outcomes in CMMC activity. We aimed to visualize innate immune cell infiltration into the colon using two-photon laser scanning intra-vital microscopy, and to determine whether CMMC activity is altered in the tri-nitro benzene sulphonic (TNBS) model of colitis. Epithelial barrier permeability was compared between TNBS treated and healthy control mice in-vitro and in-vivo. Innate immune activation was determined by ELISA, flow cytometry and by 2-photon intravital microscopy. The effects of TNBS treatment and IL-1β on CMMC function were determined using a specialized organ bath. TNBS colitis increased epithelial barrier permeability in-vitro and in-vivo. Colonic IL-1β concentrations, colonic and systemic CD11b+ cell infiltration, and the number of migrating CD11b+ cells on colonic blood vessels were all increased in TNBS treated mice relative to controls. CMMC frequency and amplitude were inhibited in the distal and mid colon of TNBS treated mice. CMMC activity was not altered by superfusion with IL-1β. TNBS colitis damages the epithelial barrier and increases innate immune cell activation in the colon and systemically. Innate cell migration into the colon is readily identifiable by two-photon intra-vital microscopy. CMMC are inhibited by inflammation, but this is not due to direct effects of IL-1β.

  16. DOWNREGULATION OF THE SYK SIGNALLING PATHWAY IN INTESTINAL DENDRITIC CELLS IS SUFFICIENT TO INDUCE DENDRITIC CELLS THAT INHIBIT COLITIS

    PubMed Central

    Hang, Long; Blum, Arthur M; Kumar, Sangeeta; Urban, Joseph F.; Mitreva, Makedonka; Geary, Timothy G.; Jardim, Armando; Stevenson, Mary M; Lowell, Clifford A.; Weinstock, Joel V.

    2016-01-01

    Helminthic infections modulate host immunity and may protect people in less developed countries from developing immunological diseases. In a murine colitis model, the helminth Heligmosomoides polygyrus bakeri (Hpb) prevents colitis via induction of regulatory dendritic cells (DCs). The mechanism driving the development of these regulatory DCs is unexplored. There is decreased expression of the intracellular signaling pathway spleen tyrosine kinase (Syk) in intestinal DCs from Hp- infected mice. To explore the importance of this observation, it was shown that intestinal DCs from DC-specific Syk −/− mice were powerful inhibitors of murine colitis suggesting that loss of Syk was sufficient to convert these cells into their regulatory phenotype. DCs sense gut flora and damaged epithelium via expression of C-type lectin receptors many of which signal through the Syk signaling pathway. It was observed that gut DCs express mRNA encoding for CLEC7A, 9A, 12A and 4N. Hpb infection down modulated CLEC mRNA expression in these cells. Focusing on CLEC7A, which encodes for the dectin-1 receptor, flow analysis showed that Hpb decreases dectin-1 display on the intestinal DC subsets that drive Th1/Th17 development. DCs become unresponsive to the dectin-1 agonist curdlan and fail to phosphorylate Syk after agonist stimulation. Soluble worm products can block CLEC7A and Syk mRNA expression in gut DCs from uninfected mice after a brief in vitro exposure. Thus, down-modulation of Syk expression and phosphorylation in intestinal DCs could be an important mechanism through which helminths induce regulatory DCs that limit colitis. PMID:27559049

  17. The Hydrogen Peroxide Scavenger, Catalase, Alleviates Ion Transport Dysfunction in Murine Colitis

    PubMed Central

    Barrett, Kim E.; McCole, Declan F.

    2016-01-01

    Reactive oxygen species (ROS) such as hydrogen peroxide (H2O2) contribute to epithelial damage and ion transport dysfunction (key events in inflammatory diarrhea) in inflammatory bowel disease (IBD). The aim of this study was to identify if H2O2 mediates suppression of colonic ion transport function in the murine dextran sulfate sodium (DSS) colitis model by using the H2O2 degrading enzyme, catalase. Colitis was induced by administering DSS (4%) in drinking water for 5 days followed by 3 days on normal H2O. Mice were administered either pegylated-catalase or saline at day −1, 0 and +1 of DSS treatment. Ion transport responses to the Ca2+-dependent agonist, carbachol (CCh), or the cAMP-dependent agonist, forskolin, were measured across distal colonic mucosa mounted in Ussing chambers. Parameters of DSS-induced inflammation (loss in body weight, decreased colon length, altered stool consistency), were only partially alleviated by catalase while histology was only minimally improved. However, catalase significantly reversed the DSS-induced reduction in baseline ion transport as well as colonic Isc responses to CCh. However, ion transport responses to forskolin were not significantly restored. Catalase also reduced activation of ERK MAP kinase in the setting of colitis, and increased expression of the Na+-K+-2Cl− cotransporter, NKCC1, consistent with restoration of ion transport function. Ex vivo treatment of inflamed colonic mucosae with catalase also partially restored ion transport function. Therefore, catalase partially prevents, and rescues, the loss of ion transport properties in DSS colitis even in the setting of unresolved tissue inflammation. These findings indicate a prominent role for ROS in ion transport dysfunction in colitis and may suggest novel strategies for the treatment of inflammatory diarrhea. PMID:27543846

  18. GL-V9, a new synthetic flavonoid derivative, ameliorates DSS-induced colitis against oxidative stress by up-regulating Trx-1 expression via activation of AMPK/FOXO3a pathway.

    PubMed

    Zhao, Yue; Sun, Yang; Ding, Youxiang; Wang, Xiaoping; Zhou, Yuxin; Li, Wenjun; Huang, Shaoliang; Li, Zhiyu; Kong, Lingyi; Guo, Qinglong; Lu, Na

    2015-09-22

    GL-V9, a new synthesized flavonoid derivative, has been reported to possess anti-cancer properties in our previous studies. Uncontrolled overproduction of reactive oxygen species (ROS) has been implicated in oxidative damage of inflammatory bowel disease (IBD). In this study, we aimed to investigate the protective effect of GL-V9 against dextran sulfate sodium (DSS)-induced colitis. GL-V9 attenuated DSS-induced body weight loss, colon length shortening and colonic pathological damage. GL-V9 also inhibited inflammatory cells infiltration and decreased myeloperoxidase (MPO) and inducible nitric oxide synthase (iNOS) activities. Moreover, GL-V9 inhibited ROS and malondialdehyde (MDA) generation, but enhanced superoxide dismutase (SOD), glutathione (GSH) and total antioxidant capacity. GL-V9 reduced pro-inflammatory cytokines production in serum and colon as well. Mechanically, GL-V9 could increase Trx-1 via activation of AMPK/FOXO3a to suppress DSS-induced colonic oxidative stress. Furthermore, GL-V9 decreased pro-inflammatory cytokines and ROS production and increased the antioxidant defenses in the mouse macrophage cells RAW264.7 by promoting Trx-1 expression. In conclusion, our study demonstrated that GL-V9 attenuated DSS-induced colitis against oxidative stress by up-regulating Trx-1 via activation of AMPK/FOXO3a pathway, suggesting that GL-V9 might be a potential effective drug for colitis.

  19. The dual anti-inflammatory and antioxidant activities of natural honey promote cell proliferation and neural regeneration in a rat model of colitis.

    PubMed

    Nooh, Hanaa Z; Nour-Eldien, Nermeen M

    2016-07-01

    A decreased antioxidant capacity and excessive inflammation are well-known features in the pathogenesis of ulcerative colitis (UC). Recent evidence has suggested a role of honey in reducing colitis-induced inflammatory and oxidative stress markers. In this study, we examined whether the anti-inflammatory and anti-oxidative properties of honey have a beneficial effect on the enteric innervation and cellular proliferation of UC in rat. The colitis was induced in rats by dextran sodium sulphate (DSS). The effect of natural honey on induced colitis was assessed by the following parameters in colonic samples: tissue injury, inflammatory infiltration, interleukin-1β and -6, superoxide dismutase and reduced glutathione. In addition, the expression of tumour necrosis factor-α, inducible NO synthase, caspase-3, CD34, Ki67, S100, c-kit, and neuron-specific enolase were examined by immunohistochemistry. Compared to the DSS-induced colitis group, the honey-treated group had significantly improved macroscopic and microscopic scores and exhibited the down-regulation of oxidative, inflammatory, and apoptotic markers. In addition, up-regulation of intrinsic muscular innervation and epithelial cellular proliferation markers was detected. These results provide new insight into the beneficial role of natural honey in the treatment of DSS-induced colitis via the inhibition of colonic motor dysfunction and the inflammatory-oxidative-apoptotic cascade. In addition, the role of honey in epithelial regeneration was clarified. Copyright © 2016 Elsevier GmbH. All rights reserved.

  20. Anti-inflammatory intestinal activity of Arctium lappa L. (Asteraceae) in TNBS colitis model.

    PubMed

    de Almeida, Ana Beatriz Albino; Sánchez-Hidalgo, Marina; Martín, Antonio Ramón; Luiz-Ferreira, Anderson; Trigo, José Roberto; Vilegas, Wagner; dos Santos, Lourdes Campaner; Souza-Brito, Alba Regina Monteiro; de la Lastra, Catalina Alarcón

    2013-03-07

    In Brazilian traditional medicine, Arctium lappa (Asteraceae), has been reported to relieve gastrointestinal symptoms. In the present study, we investigated the effects of the lactone sesquiterpene onopordopicrin enriched fraction (ONP fraction) from Arctium lappa in an experimental colitis model induced by 2,4,6 trinitrobenzene sulfonic acid and performed experiments to elucidate the underlying action mechanisms involved in that effect. ONP fraction (25 and 50 mg/kg/day) was orally administered 48, 24 and 1 h prior to the induction of colitis and 24 h after. The inflammatory response was assessed by gross appearance, myeloperoxidase (MPO) activity, tumor necrosis factor alpha (TNF-α) levels and a histological study of the lesions. We determined cyclooxygenase (COX)-1 and -2 protein expressions by western blotting and immunohistochemistry assays. TNBS group was characterized by increased colonic wall thickness, edema, diffuse inflammatory cell infiltration, increased MPO activity and TNF-α levels. On the contrary, ONP fraction (25 and 50 mg/kg) treatment significantly reduced the macroscopic inflammation scores (p<0.05 and p<0.01, respectively) and morphological alterations associated with an increase in the mucus secretion. Similarly, the degree of neutrophil infiltration and the cytokine levels were significantly ameliorated. Moreover, COX-2 expression was up regulated in TNBS-treated rats. In contrast, ONP fraction (50 mg/kg) administration reduced COX-2 overexpression. We have shown that the ONP fraction obtained from Arctium lappa exert marked protective effects in acute experimental colitis, confirming and justifying, at least in part, the popular use of this plant to treat gastrointestinal diseases. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  1. Dietary α-mangostin, a xanthone from mangosteen fruit, exacerbates experimental colitis and promotes dysbiosis in mice

    PubMed Central

    Gutierrez-Orozco, Fabiola; Thomas-Ahner, Jennifer M.; Berman-Booty, Lisa D.; Galley, Jeffrey D.; Chitchumroonchokchai, Chureeporn; Mace, Thomas; Suksamrarn, Sunit; Bailey, Michael T.; Clinton, Steven K.; Lesinski, Gregory B.; Failla, Mark L.

    2014-01-01

    Scope Ulcerative colitis (UC) is a chronic inflammatory disease of the colon. α-Mangostin (α-MG), the most abundant xanthone in mangosteen fruit, exerts anti-inflammatory and antibacterial activities in vitro. We evaluated the impact of dietary α-MG on murine experimental colitis and on the gut microbiota of healthy mice. Methods and results Colitis was induced in C57BL/6J mice by administration of dextran sulfate sodium (DSS). Mice were fed control diet or diet with α-MG (0.1%). α-MG exacerbated the pathology of DSS-induced colitis. Mice fed diet with α-MG had greater colonic inflammation and injury, as well as greater infiltration of CD3+ and F4/80+ cells, and colonic myeloperoxidase, than controls. Serum levels of granulocyte colony-stimulating factor, IL-6, and serum amyloid A were also greater in α-MG-fed animals than in controls. The colonic and cecal microbiota of healthy mice fed α-MG but no DSS shifted to an increased abundance of Proteobacteria and decreased abundance of Firmicutes and Bacteroidetes, a profile similar to that found in human UC. Conclusion α-MG exacerbated colonic pathology during DSS-induced colitis. These effects may be associated with an induction of intestinal dysbiosis by α-MG. Our results suggest that the use of α-MG-containing supplements by patients with UC may have unintentional risk. PMID:24668769

  2. The glucocorticoid budesonide has protective and deleterious effects in experimental colitis in mice.

    PubMed

    Ocón, Borja; Aranda, Carlos J; Gámez-Belmonte, Reyes; Suárez, María Dolores; Zarzuelo, Antonio; Martínez-Augustin, Olga; Sánchez de Medina, Fermín

    2016-09-15

    Glucocorticoids are widely used for the management of inflammatory bowel disease, albeit with known limitations for long-term use and relevant adverse effects. In turn, they have harmful effects in experimental colitis. We aimed to explore the mechanism and possible implications of this phenomenon. Regular and microbiota depleted C57BL/6 mice were exposed to dextran sulfate sodium (DSS) to induce colitis and treated with budesonide. Colonic inflammation and animal status were compared. In vitro epithelial models of wound healing were used to confirm the effects of glucocorticoids. Budesonide was also tested in lymphocyte transfer colitis. Budesonide (1-60μg/day) exerted substantial colonic antiinflammatory effects in DSS colitis. At the same time, it aggravated body weight loss, increased rectal bleeding, and induced general deterioration of animal status, bacterial translocation and endotoxemia. As a result, there was an associated increase in parameters of sepsis, such as plasma NOx, IL-1β, IL-6, lung myeloperoxidase and iNOS, as well as significant hypothermia. Budesonide also enhanced DSS induced colonic damage in microbiota depleted mice. These effects were correlated with antiproliferative effects at the epithelial level, which are expected to impair wound healing. In contrast, budesonide had significant but greatly diminished deleterious effects in noncolitic mice or in mice with lymphocyte transfer colitis. We conclude that budesonide weakens mucosal barrier function by interfering with epithelial dynamics and dampening the immune response in the context of significant mucosal injury, causing sepsis. This may be a contributing factor, at least in part, limiting clinical usefulness of corticoids in inflammatory bowel disease. Copyright © 2016. Published by Elsevier Inc.

  3. Crotoxin from Crotalus durissus terrificus Is Able to Down-Modulate the Acute Intestinal Inflammation in Mice

    PubMed Central

    Almeida, Caroline de Souza; Andrade-Oliveira, Vinicius; Câmara, Niels Olsen Saraiva; Jacysyn, Jacqueline F.; Faquim-Mauro, Eliana L.

    2015-01-01

    Inflammatory bowel diseases (IBD) is the result of dysregulation of mucosal innate and adaptive immune responses. Factors such as genetic, microbial and environmental are involved in the development of these disorders. Accordingly, animal models that mimic human diseases are tools for the understanding the immunological processes of the IBD as well as to evaluate new therapeutic strategies. Crotoxin (CTX) is the main component of Crotalus durissus terrificus snake venom and has an immunomodulatory effect. Thus, we aimed to evaluate the modulatory effect of CTX in a murine model of colitis induced by 2,4,6- trinitrobenzene sulfonic acid (TNBS). The CTX was administered intraperitoneally 18 hours after the TNBS intrarectal instillation in BALB/c mice. The CTX administration resulted in decreased weight loss, disease activity index (DAI), macroscopic tissue damage, histopathological score and myeloperoxidase (MPO) activity analyzed after 4 days of acute TNBS colitis. Furthermore, the levels of TNF-α, IL-1β and IL-6 were lower in colon tissue homogenates of TNBS-mice that received the CTX when compared with untreated TNBS mice. The analysis of distinct cell populations obtained from the intestinal lamina propria showed that CTX reduced the number of group 3 innate lymphoid cells (ILC3) and Th17 population; CTX decreased IL-17 secretion but did not alter the frequency of CD4+Tbet+ T cells induced by TNBS instillation in mice. In contrast, increased CD4+FoxP3+ cell population as well as secretion of TGF-β, prostaglandin E2 (PGE2) and lipoxin A4 (LXA4) was observed in TNBS-colitis mice treated with CTX compared with untreated TNBS-colitis mice. In conclusion, the CTX is able to modulate the intestinal acute inflammatory response induced by TNBS, resulting in the improvement of clinical status of the mice. This effect of CTX is complex and involves the suppression of the pro-inflammatory environment elicited by intrarectal instillation of TNBS due to the induction of a

  4. Systematic review: colitis associated with anti-CTLA-4 therapy.

    PubMed

    Gupta, A; De Felice, K M; Loftus, E V; Khanna, S

    2015-08-01

    Cytotoxic T-lymphocyte-associated protein-4 (CTLA-4) has an important role in T-cell regulation, proliferation and tolerance. Anti-CTLA-4 agents, such as ipilimumab and tremelimumab, have been shown to prolong overall survival in patients with metastatic melanoma, and their use is being investigated in the treatment of other malignancies. Their novel immunostimulatory mechanism, however, predisposes patients to immune-related adverse effects, of which gastrointestinal effects such as diarrhoea and colitis are the most common. To discuss the existing literature and summarise the epidemiology, pathogenesis and clinical features of anti-CTLA-4-associated colitis, and to present a management algorithm for it. We searched PubMed for studies published through October 2014 using the terms 'anti-CTLA,' 'ipilimumab,' 'tremelimumab,' 'colitis,' 'gastrointestinal,' 'immune-related adverse effect,' 'immunotherapy,' 'melanoma,' and 'diarrhoea.' Watery diarrhoea is commonly associated with anti-CTLA-4 therapy (27-54%), and symptoms occur within a few days to weeks of therapy. Diffuse acute and chronic colitis are the most common findings on endoscopy (8-22%). Concomitant infectious causes of diarrhoea must be evaluated. Most cases may be successfully managed with discontinuation of anti-CTLA-4 and conservative therapy. Those with persistent grade 2 and grade 3/4 diarrhoea should undergo endoscopic evaluation and require corticosteroid therapy. Corticosteroid-resistant cases may respond to anti-tumour necrosis factor-alpha therapy such as infliximab. Surgery is reserved for patients with bowel perforation or failure of medical therapy. Given the increasing use of anti-CTLA-4 therapy, clinicians must be aware of related adverse events and their management. © 2015 John Wiley & Sons Ltd.

  5. Passiflora edulis peel intake and ulcerative colitis: approaches for prevention and treatment.

    PubMed

    Cazarin, Cinthia Bb; da Silva, Juliana K; Colomeu, Talita C; Batista, Angela G; Vilella, Conceição A; Ferreira, Anderson L; Junior, Stanislau Bogusz; Fukuda, Karina; Augusto, Fabio; de Meirelles, Luciana R; Zollner, Ricardo de L; Junior, Mário R Maróstica

    2014-05-01

    Inflammatory bowel disease is a chronic relapsing disease that affects millions of people worldwide; its pathogenesis is influenced by genetic, environmental, microbiological, and immunological factors. The aim of this study was to evaluate the effects of short- and long-term Passiflora edulis peel intake on the antioxidant status, microbiota, and short-chain fatty acids formation in rats with 2,4,6-trinitrobenzenesulphonic acid-induced colitis using two "in vivo" experiments: chronic (prevention) and acute (treatment). The colitis damage score was determined using macroscopic and microscopic analyses. In addition, the antioxidant activity in serum and other tissues (liver and colon) was evaluated. Bifidobacteria, lactobacilli, aerobic bacteria and enterobacteria, and the amount of short-chain fatty acids (acetic, butyric, and propionic acids) in cecum content were counted. Differences in the colon damage scores were observed; P. edulis peel intake improved serum antioxidant status. In the treatment protocol, decreased colon lipid peroxidation, a decreased number of aerobic bacteria and enterobacteria, and an improvement in acetic and butyric acid levels in the feces were observed. An improvement in the bifidobacteria and lactobacilli was observed in the prevention protocol. These results suggested that P. edulis peel can modulate microbiota and could be used as source of fiber and polyphenols in the prevention of oxidative stress through the improvement of serum and tissue antioxidant status.

  6. Mesalamine treatment mimicking relapse in a child with ulcerative colitis.

    PubMed

    Hojsak, Iva; Pavić, Ana M; Kolaček, Sanja

    2014-11-01

    There are reports on mesalamine-induced bloody diarrhea mimicking ulcerative colitis (UC) relapse, mostly in adults. Herein we present a case of a child with UC who developed relapse of hemorrhagic colitis related to mesalamine. A 10-year-old girl developed severe symptoms mimicking UC relapse 3 weeks after introduction of mesalamine therapy. After mesalamine was withdrawn, her symptoms improved, but deteriorated again during the challenge of mesalamine despite concomitant use of corticosteroids. This is the first case report on such a young child during the concomitant use of corticosteroids.

  7. Low-dose oral microemulsion ciclosporin for severe, refractory ulcerative colitis.

    PubMed

    de Saussure, P; Soravia, C; Morel, P; Hadengue, A

    2005-08-01

    The optimal modalities of treatment with oral microemulsion ciclosporin in patients with severe, steroid-refractory ulcerative colitis are uncertain. To assess the applicability, in terms of efficacy and tolerability, of a standard oral microemulsion ciclosporin treatment protocol targeting relatively low blood ciclosporin concentrations, in patients with severe, steroid-resistant ulcerative colitis. Patients with a severe attack of ulcerative colitis and no satisfactory response to intravenous corticosteroids were started on oral microemulsion ciclosporin. Dosages were adapted according to a standard protocol, targeting a blood predose ciclosporin concentration (C0) of 100-200 ng/mL. Patients without a clinical response on day 8 were scheduled for colectomy. Sixteen patients were enrolled. A clinical response was observed in 14/16 (88%). The mean clinical activity index scores and concentrations of C-reactive protein on days 0, 4 and 8 were 11.8, 6.7 and 4.1, and 50.3, 19.3 and 9.7 mg/L respectively. The mean C0 (days 0-8) was 149 pg/mL. The mean creatinine clearance rates on days 0 and 8 were 88 and 96 mL/min. One patient had an acute elevation of transaminases that resulted in discontinuing ciclosporin. Even when dosed for a target C0 of 100-200 ng/mL, oral microemulsion ciclosporin for severe, steroid-refractory ulcerative colitis achieves an efficacy similar to that attained with higher, potentially more toxic levels. The oral route should replace intravenous treatment in this clinical setting.

  8. Impairment of skin barrier function via cholinergic signal transduction in a dextran sulphate sodium-induced colitis mouse model.

    PubMed

    Yokoyama, Satoshi; Hiramoto, Keiichi; Koyama, Mayu; Ooi, Kazuya

    2015-10-01

    Dry skin has been clinically associated with visceral diseases, including liver disease, as well as for our previously reported small intestinal injury mouse model, which have abnormalities in skin barrier function. To clarify this disease-induced skin disruption, we used a dextran sulphate sodium (DSS)-induced colitis mouse model. Following treatment with DSS, damage to the colon and skin was monitored using histological and protein analysis methods as well as the detection of inflammatory mediators in the plasma. Notably, transepidermal water loss was higher, and skin hydration was lower in DSS-treated mice compared to controls. Tumor necrosis factor-alpha (TNF-α), interleukin 6 and NO2-/NO3- levels were also upregulated in the plasma, and a decrease in body weight and colon length was observed in DSS-treated mice. However, when administered TNF-α antibody or an iNOS inhibitor, no change in skin condition was observed, indicating that another signalling mechanism is utilized. Interestingly, the number of tryptase-expressing mast cells, known for their role in immune function via cholinergic signal transduction, was elevated. To evaluate the function of cholinergic signalling in this context, atropine (a muscarinic cholinoceptor antagonist) or hexamethonium (a nicotinic cholinergic ganglion-blocking agent) was administered to DSS-treated mice. Our data indicate that muscarinic acetylcholine receptors (mAChRs) are the primary receptors functioning in colon-to-skin signal transduction, as DSS-induced skin disruption was suppressed by atropine. Thus, skin disruption is likely associated with DSS-induced colitis, and the activation of mast cells via mAChRs is critical to this association. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. A review on chemical-induced inflammatory bowel disease models in rodents.

    PubMed

    Randhawa, Puneet Kaur; Singh, Kavinder; Singh, Nirmal; Jaggi, Amteshwar Singh

    2014-08-01

    Ulcerative colitis and Crohn's disease are a set of chronic, idiopathic, immunological and relapsing inflammatory disorders of the gastrointestinal tract referred to as inflammatory bowel disorder (IBD). Although the etiological factors involved in the perpetuation of IBD remain uncertain, development of various animal models provides new insights to unveil the onset and the progression of IBD. Various chemical-induced colitis models are widely used on laboratory scale. Furthermore, these models closely mimic morphological, histopathological and symptomatical features of human IBD. Among the chemical-induced colitis models, trinitrobenzene sulfonic acid (TNBS)-induced colitis, oxazolone induced-colitis and dextran sulphate sodium (DSS)-induced colitis models are most widely used. TNBS elicits Th-1 driven immune response, whereas oxazolone predominantly exhibits immune response of Th-2 phenotype. DSS-induced colitis model also induces changes in Th-1/Th-2 cytokine profile. The present review discusses the methodology and rationale of using various chemical-induced colitis models for evaluating the pathogenesis of IBD.

  10. Interactions Between Diet and the Intestinal Microbiota Alter Intestinal Permeability and Colitis Severity in Mice.

    PubMed

    Llewellyn, Sean R; Britton, Graham J; Contijoch, Eduardo J; Vennaro, Olivia H; Mortha, Arthur; Colombel, Jean-Frederic; Grinspan, Ari; Clemente, Jose C; Merad, Miriam; Faith, Jeremiah J

    2018-03-01

    It is not clear how the complex interactions between diet and the intestinal microbiota affect development of mucosal inflammation or inflammatory bowel disease. We investigated interactions between dietary ingredients, nutrients, and the microbiota in specific pathogen-free (SPF) and germ-free (GF) mice given more than 40 unique diets; we quantified individual and synergistic effects of dietary macronutrients and the microbiota on intestinal health and development of colitis. C56BL/6J SPF and GF mice were placed on custom diets containing different concentrations and sources of protein, fat, digestible carbohydrates, and indigestible carbohydrates (fiber). After 1 week, SPF and GF mice were given dextran sulfate sodium (DSS) to induce colitis. Disease severity was determined based on the percent weight change from baseline, and modeled as a function of the concentration of each macronutrient in the diet. In unchallenged mice, we measured intestinal permeability by feeding mice labeled dextran and measuring levels in blood. Feces were collected and microbiota were analyzed by 16S rDNA sequencing. We collected colons from mice and performed transcriptome analyses. Fecal microbiota varied with diet; the concentration of protein and fiber had the strongest effect on colitis development. Among 9 fiber sources tested, psyllium, pectin, and cellulose fiber reduced the severity of colitis in SPF mice, whereas methylcellulose increased severity. Increasing dietary protein increased the density of the fecal microbiota and the severity of colitis in SPF mice, but not in GF mice or mice given antibiotics. Psyllium fiber reduced the severity of colitis through microbiota-dependent and microbiota-independent mechanisms. Combinatorial perturbations to dietary casein protein and psyllium fiber in parallel accounted for most variation in gut microbial density and intestinal permeability in unchallenged mice, as well as the severity of DSS-induced colitis; changes in 1 ingredient

  11. Heligmosomoides polygyrus bakeri infection activates colonic FoxP3+ T cells enhancing their capacity to prevent colitis

    USDA-ARS?s Scientific Manuscript database

    Helminthic infections protect mice from colitis in murine models of inflammatory bowel disease and also may protect people. Helminths like Heligmosomoides bakeri (Hpb) can induce Tregs. Experiments explored if Hpb infection could protect mice from colitis through activation of colonic Treg and exam...

  12. Mitochondria-targeted antioxidant MitoQ ameliorates experimental mouse colitis by suppressing NLRP3 inflammasome-mediated inflammatory cytokines.

    PubMed

    Dashdorj, Amarjargal; Jyothi, K R; Lim, Sangbin; Jo, Ara; Nguyen, Minh Nam; Ha, Joohun; Yoon, Kyung-Sik; Kim, Hyo Jong; Park, Jae-Hoon; Murphy, Michael P; Kim, Sung Soo

    2013-08-06

    MitoQ is a mitochondria-targeted derivative of the antioxidant ubiquinone, with antioxidant and anti-apoptotic functions. Reactive oxygen species are involved in many inflammatory diseases including inflammatory bowel disease. In this study, we assessed the therapeutic effects of MitoQ in a mouse model of experimental colitis and investigated the possible mechanisms underlying its effects on intestinal inflammation. Reactive oxygen species levels and mitochondrial function were measured in blood mononuclear cells of patients with inflammatory bowel disease. The effects of MitoQ were evaluated in a dextran sulfate sodium-induced colitis mouse model. Clinical and pathological markers of disease severity and oxidative injury, and levels of inflammatory cytokines in mouse colonic tissue were measured. The effect of MitoQ on inflammatory cytokines released in the human macrophage-like cell line THP-1 was also analyzed. Cellular and mitochondrial reactive oxygen species levels in mononuclear cells were significantly higher in patients with inflammatory bowel disease (P <0.003, cellular reactive oxygen species; P <0.001, mitochondrial reactive oxygen species). MitoQ significantly ameliorated colitis in the dextran sulfate sodium-induced mouse model in vivo, reduced the increased oxidative stress response (malondialdehyde and 3-nitrotyrosine formation), and suppressed mitochondrial and histopathological injury by decreasing levels of inflammatory cytokines IL-1 beta and IL-18 (P <0.001 and P <0.01 respectively). By decreasing mitochondrial reactive oxygen species, MitoQ also suppressed activation of the NLRP3 inflammasome that was responsible for maturation of IL-1 beta and IL-18. In vitro studies demonstrated that MitoQ decreases IL-1 beta and IL-18 production in human THP-1 cells. Taken together, our results suggest that MitoQ may have potential as a novel therapeutic agent for the treatment of acute phases of inflammatory bowel disease.

  13. Mitochondria-targeted antioxidant MitoQ ameliorates experimental mouse colitis by suppressing NLRP3 inflammasome-mediated inflammatory cytokines

    PubMed Central

    2013-01-01

    Background MitoQ is a mitochondria-targeted derivative of the antioxidant ubiquinone, with antioxidant and anti-apoptotic functions. Reactive oxygen species are involved in many inflammatory diseases including inflammatory bowel disease. In this study, we assessed the therapeutic effects of MitoQ in a mouse model of experimental colitis and investigated the possible mechanisms underlying its effects on intestinal inflammation. Methods Reactive oxygen species levels and mitochondrial function were measured in blood mononuclear cells of patients with inflammatory bowel disease. The effects of MitoQ were evaluated in a dextran sulfate sodium-induced colitis mouse model. Clinical and pathological markers of disease severity and oxidative injury, and levels of inflammatory cytokines in mouse colonic tissue were measured. The effect of MitoQ on inflammatory cytokines released in the human macrophage-like cell line THP-1 was also analyzed. Results Cellular and mitochondrial reactive oxygen species levels in mononuclear cells were significantly higher in patients with inflammatory bowel disease (P <0.003, cellular reactive oxygen species; P <0.001, mitochondrial reactive oxygen species). MitoQ significantly ameliorated colitis in the dextran sulfate sodium-induced mouse model in vivo, reduced the increased oxidative stress response (malondialdehyde and 3-nitrotyrosine formation), and suppressed mitochondrial and histopathological injury by decreasing levels of inflammatory cytokines IL-1 beta and IL-18 (P <0.001 and P <0.01 respectively). By decreasing mitochondrial reactive oxygen species, MitoQ also suppressed activation of the NLRP3 inflammasome that was responsible for maturation of IL-1 beta and IL-18. In vitro studies demonstrated that MitoQ decreases IL-1 beta and IL-18 production in human THP-1 cells. Conclusion Taken together, our results suggest that MitoQ may have potential as a novel therapeutic agent for the treatment of acute phases of inflammatory bowel

  14. New Perspective on Dextran Sodium Sulfate Colitis: Antigen-Specific T Cell Development during Intestinal Inflammation

    PubMed Central

    Morgan, Mary E.; Zheng, Bin; Koelink, Pim J.; van de Kant, Hendrick J. G.; Haazen, Lizette C. J. M.; van Roest, Manon; Garssen, Johan; Folkerts, Gert; Kraneveld, Aletta D.

    2013-01-01

    CD4+ T cell responses against oral antigens can develop in inflammatory bowel disease (IBD) patients, which may modulate disease. Dextran sodium sulfate (DSS) colitis is commonly used to study IBD, however, it is not considered the best model in which to study T cell involvement in intestinal disease. Our aim was to determine if antigen-specific T cells could be induced during DSS colitis and if they could be detected after disease resolution. To induce antigen-specific T cells, the tracking antigen, ovalbumin (OVA), was administered orally during colitis initiation. Disease severity was monitored, and the antigen-reactivity of CD4+ T cells examined using CD69 expression. While OVA-directed, CD4+ Foxp3+ regulatory T cells could be detected in the spleens of both OVA-treated control and DSS mice, OVA-reactive, CD4+ Foxp3-T cells were only found in the OVA and DSS-treated mice. These results indicate that during DSS colitis T cells develop that are specific against oral antigens, and they are found systemically after colitis resolution. This gives added depth and utility to the DSS model as well as a way to track T cells that are primed against luminal antigens. PMID:23936123

  15. Medication-induced acute esophageal necrosis: a case report.

    PubMed

    Pautola, Lauri; Hakala, Tapio

    2016-09-29

    Acute esophageal necrosis or Gurvits syndrome is a rare clinical condition characterized by necrotic esophageal mucosa with an abrupt end at the gastroesophageal junction. Its etiology is multifactorial, but mainly related to low-flow states. We describe a case in which a patient accidentally took the wrong medication, with clozapine and olanzapine most probably being the cause of his subsequent acute esophageal necrosis. This situation is, to the best of our knowledge, unprecedented in the medical literature. A 65-year-old Finnish male patient with schizoaffective disorder accidentally took another patient's medication, including clozapine 300 mg, olanzapine 30 mg, teofyllamine 200 mg, warfarin 5 mg, and potassium chloride 1 g. He arrived at our hospital for a routine examination 6 h after the incident. At hospital he started to vomit brownish liquid and had tachycardia and fever. Gastroparesis was found. An endoscopy revealed necrotic esophageal mucosa that was typical for Gurvits syndrome. A computed tomography scan showed an edematous esophagus and raised suspicion of a proximal jejunal obstruction. A laparotomy was performed but only healthy paralytic bowel was found. Our patient healed uneventfully within a week. There are analogous case reports describing ischemic colitis associated with the use of clozapine and olanzapine, but none describing the same for the other medications our patient took. We believe that in this case clozapine and olanzapine caused acute esophageal necrosis and this possibility should be taken into account when treating patients with acute ischemic enteropathy.

  16. Anti-inflammatory effect of diosmectite in hapten-induced colitis in the rat

    PubMed Central

    González, Raquel; Sánchez de Medina, Fermin; Martínez-Augustin, Olga; Nieto, Ana; Gálvez, Julio; Risco, Severiano; Zarzuelo, Antonio

    2004-01-01

    Diosmectite is a natural silicate effectively used in the treatment of infectious diarrhoea. Its antidiarrhoeal properties involve adsorption of toxins and bacteria and modifications of the rheological characteristics of gastrointestinal mucus. Hence, the aim of this study was to test the intestinal anti-inflammatory activity of diosmectite. Diosmectite (500 mg kg−1 day−1, p.o.) was administered as a post-treatment to rats with chronic trinitrobenzene sulphonic acid colitis. Colonic status was checked 1 and 2 weeks after colitis induction by macroscopic, histological and biochemical examination. Diosmectite post-treatment resulted in amelioration of the morphological signs (intestinal weight, macroscopic damage, necrosed area, histology) and biochemical markers (myeloperoxidase activity, glutathione levels, MUC2 expression, inducible nitric oxide synthase and interleukin-1β (IL-1β) and leukotriene B4 synthesis), as well as in the reduction of the severity of diarrhoea. The effect of the clay was comparable to that of sulphasalazine (50 mg kg−1 day−1). Diosmectite exhibited a dose-dependent capacity to adsorb proteins in vitro as well as a dose-dependent inhibitory effect on the basolateral secretion of IL-8 by lipopolysaccharide (LPS)-stimulated HT29 cells. Diosmectite had a dose-dependent inhibitory effect on IL-1β production by LPS-stimulated THP-1 cells. The effect of diosmectite on MUC2 was post-transcriptional, since mRNA levels were unaffected. However, diosmectite is able to upregulate MUC2 mRNA levels in HT29-MTX cells. Diosmectite has anti-inflammatory activity administered as a post-treatment. Possible mechanisms include adsorption of luminal antigens, increase of colonic mucin levels and possibly a direct modulatory action of cytokine production by mucosal cells. PMID:14993105

  17. Acute Alcohol Intoxication Exacerbates Rhabdomyolysis-Induced Acute Renal Failure in Rats.

    PubMed

    Tsai, Jen-Pi; Lee, Chung-Jen; Subeq, Yi-Maun; Lee, Ru-Ping; Hsu, Bang-Gee

    2017-01-01

    Traumatic and nontraumatic rhabdomyolysis can lead to acute renal failure (ARF), and acute alcohol intoxication can lead to multiple abnormalities of the renal tubules. We examined the effect of acute alcohol intoxication in a rat model of rhabdomyolysis and ARF. Intravenous injections of 5 g/kg ethanol were given to rats over 3 h, followed by glycerol-induced rhabdomyolysis. Biochemical parameters, including blood urea nitrogen (BUN), creatinine (Cre), glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), and creatine phosphokinase (CPK), were measured before and after induction of rhabdomyolysis. Renal tissue injury score, renal tubular cell expression of E-cadherin, nuclear factor-κB (NF-κB), and inducible nitric oxide synthase (iNOS) were determined. Relative to rats in the vehicle group, rats in the glycerol-induced rhabdomyolysis group had significantly increased serum levels of BUN, Cre, GOT, GPT, and CPK, elevated renal tissue injury scores, increased expression of NF-κB and iNOS, and decreased expression of E-cadherin. Ethanol exacerbated all of these pathological responses. Our results suggest that acute alcohol intoxication exacerbates rhabdomyolysis-induced ARF through its pro-oxidant and inflammatory effects.

  18. Acute Alcohol Intoxication Exacerbates Rhabdomyolysis-Induced Acute Renal Failure in Rats

    PubMed Central

    Tsai, Jen-Pi; Lee, Chung-Jen; Subeq, Yi-Maun; Lee, Ru-Ping; Hsu, Bang-Gee

    2017-01-01

    Traumatic and nontraumatic rhabdomyolysis can lead to acute renal failure (ARF), and acute alcohol intoxication can lead to multiple abnormalities of the renal tubules. We examined the effect of acute alcohol intoxication in a rat model of rhabdomyolysis and ARF. Intravenous injections of 5 g/kg ethanol were given to rats over 3 h, followed by glycerol-induced rhabdomyolysis. Biochemical parameters, including blood urea nitrogen (BUN), creatinine (Cre), glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), and creatine phosphokinase (CPK), were measured before and after induction of rhabdomyolysis. Renal tissue injury score, renal tubular cell expression of E-cadherin, nuclear factor-κB (NF-κB), and inducible nitric oxide synthase (iNOS) were determined. Relative to rats in the vehicle group, rats in the glycerol-induced rhabdomyolysis group had significantly increased serum levels of BUN, Cre, GOT, GPT, and CPK, elevated renal tissue injury scores, increased expression of NF-κB and iNOS, and decreased expression of E-cadherin. Ethanol exacerbated all of these pathological responses. Our results suggest that acute alcohol intoxication exacerbates rhabdomyolysis-induced ARF through its pro-oxidant and inflammatory effects. PMID:28824301

  19. Drug induced acute pancreatitis: incidence and severity.

    PubMed Central

    Lankisch, P G; Dröge, M; Gottesleben, F

    1995-01-01

    To determine the incidence and severity of drug induced acute pancreatitis, data from 45 German centres of gastroenterology were evaluated. Among 1613 patients treated for acute pancreatitis in 1993, drug induced acute pancreatitis was diagnosed in 22 patients (incidence 1.4%). Drugs held responsible were azathioprine, mesalazine/sulfasalazine, 2',3'-dideoxyinosine (ddI), oestrogens, frusemide, hydrochlorothiazide, and rifampicin. Pancreatic necrosis not exceeding 33% of the organ was found on ultrasonography or computed tomography, or both, in three patients (14%). Pancreatic pseudocysts did not occur. A decrease of arterial PO2 reflecting respiratory insufficiency, and an increase of serum creatinine, reflecting renal insufficiency as complications of acute pancreatitis were seen in two (9%) and four (18%) patients, respectively. Artificial ventilation was not needed, and dialysis was necessary in only one (5%) case. Two patients (9%) died of AIDS and tuberculosis, respectively; pancreatitis did not seem to have contributed materially to their death. In conclusion, drugs rarely cause acute pancreatitis, and drug induced acute pancreatitis usually runs a benign course. PMID:7489946

  20. Anti-inflammatory effect of chlorogenic acid on the IL-8 production in Caco-2 cells and the dextran sulphate sodium-induced colitis symptoms in C57BL/6 mice.

    PubMed

    Shin, Hee Soon; Satsu, Hideo; Bae, Min-Jung; Zhao, Zhaohui; Ogiwara, Haru; Totsuka, Mamoru; Shimizu, Makoto

    2015-02-01

    Chlorogenic acid (CHA) is an antioxidant polyphenol prevalent in human diet, with coffee, fruits, and vegetables being its main source. Effects of CHA and CHA metabolites were evaluated on the IL-8 production in human intestinal Caco-2 cells induced by combined stimulation with tumour necrosis factor alpha (TNFα) and H2O2. CHA and caffeic acid (CA) inhibited TNFα- and H2O2-induced IL-8 production. We also examined the in vivo effects of CHA and CA using dextran sulphate sodium (DSS)-induced colitis in mice. CHA attenuated DSS-induced body weight loss, diarrhea, fecal blood, and shortening of colon and dramatically improved colitis histological scores. Furthermore, increases in the mRNA expression of colonic macrophage inflammatory protein 2 and IL-1β, which were induced by DSS, were significantly suppressed by CHA supplementation. These results suggest that dietary CHA use may aid in the prevention of intestinal inflammatory conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Polyphenol-rich sorghum brans alter colon microbiota and impact species diversity and species richness after multiple bouts of dextran sodium sulfate-induced colitis.

    PubMed

    Ritchie, Lauren E; Sturino, Joseph M; Carroll, Raymond J; Rooney, Lloyd W; Azcarate-Peril, M Andrea; Turner, Nancy D

    2015-03-01

    The microbiota affects host health, and dysbiosis is involved in colitis. Sorghum bran influences butyrate concentrations during dextran sodium sulfate (DSS) colitis, suggesting microbiota changes. We aimed to characterize the microbiota during colitis, and ascertain if polyphenol-rich sorghum bran diets mitigate these effects. Rats (n = 80) were fed diets containing 6% fiber from cellulose, or Black (3-deoxyanthocyanins), Sumac (condensed tannins), or Hi Tannin black (both) sorghum bran. Inflammation was induced three times using 3% DSS for 48 h (40 rats, 2 week separation), and the microbiota characterized by pyrosequencing. The Firmicutes/Bacteroidetes ratio was higher in Cellulose DSS rats. Colonic injury negatively correlated with Firmicutes, Actinobacteria, Lactobacillales and Lactobacillus, and positively correlated with Unknown/Unclassified. Post DSS#2, richness was significantly lower in Sumac and Hi Tannin black. Post DSS#3 Bacteroidales, Bacteroides, Clostridiales, Lactobacillales and Lactobacillus were reduced, with no Clostridium identified. Diet significantly affected Bacteroidales, Bacteroides, Clostridiales and Lactobacillus post DSS#2 and #3. Post DSS#3 diet significantly affected all genus, including Bacteroides and Lactobacillus, and diversity and richness increased. Sumac and Hi Tannin black DSS had significantly higher richness compared to controls. Thus, these sorghum brans may protect against alterations observed during colitis including reduced microbial diversity and richness, and dysbiosis of Firmicutes/Bacteroidetes. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Mesalamine inhibits epithelial beta-catenin activation in chronic ulcerative colitis.

    PubMed

    Brown, Jeffrey B; Lee, Goo; Managlia, Elizabeth; Grimm, Gery R; Dirisina, Ramanarao; Goretsky, Tatiana; Cheresh, Paul; Blatner, Nichole R; Khazaie, Khashayarsha; Yang, Guang-Yu; Li, Linheng; Barrett, Terrence A

    2010-02-01

    Mesalamine is a mainstay therapeutic agent in chronic ulcerative colitis (CUC) in which condition it reverses crypt architectural changes and reduces colitis-associated cancer (CAC). The present study addressed the possibility that mesalamine reduces beta-catenin-associated progenitor cell activation, Akt-phosphorylated beta-catenin(Ser552) (P-beta-catenin), and colitis-induced dysplasia (CID). Effects of mesalamine on P-beta-catenin staining and function were assessed by immunohistochemistry and quantitative reverse-transcription polymerase chain reaction (qRT-PCR) in biopsy specimens of CUC in mild or "refractory" severe mucosal inflammation. Effects of mesalamine on epithelial proliferation and activation of Akt and beta-catenin were assessed in interleukin (IL)-10(-/-) colitis and CID by immunohistochemistry and Western blotting. Dysplasia was assessed by counting the number and lengths of lesions per colon. Data from IL-10(-/-) and human colitis samples show that mesalamine reduced Akt activation and P-beta-catenin levels in the middle and upper crypt. Reductions in P-beta-catenin in CUC biopsy specimens with severe inflammation suggested that mesalamine reduced P-beta-catenin levels in tissue refractory to mesalamine's anti-inflammatory effects. In IL-10(-/-) mice, mesalamine reduced CID concordant with inhibition of crypt Akt and beta-catenin signaling. The results are consistent with the model that mesalamine contributes to chemoprevention in CAC by reducing beta-catenin signaling within intestinal progenitors.

  3. Colitis-associated variant of TLR2 causes impaired mucosal repair due to TFF3 deficiency

    PubMed Central

    Podolsky, Daniel K.; Gerken, Guido; Eyking, Annette; Cario, Elke

    2009-01-01

    Background & aims Goblet cells (GC) facilitate mucosal protection and epithelial barrier repair, yet the innate immune mechanisms that selectively drive GC functions have not been defined. The aim of this study was to determine whether TLR2 and modulation of GC-derived TFF3 are functionally linked in the intestine. Methods GC modulation was assessed using qRT-PCR, western blotting and confocal microscopy. DSS colitis was induced in wild-type, TFF3−/− and TLR2−/− mice. Recombinant TLR2 ligand or TFF3 peptide were orally administered after DSS termination. Caco-2 overexpressing full-length TLR2 or mutant TLR2-R753Q were tested for TFF3 synthesis and functional-related effects in a wounding-assay. Results Data from in-vitro (Ls174T) and ex-vivo models of murine and human GC reveal that TLR2 activation selectively induces synthesis of TFF3. In-vivo studies using TFF3−/− or TLR2−/− mice demonstrate the ability for oral treatment with a TLR2 agonist to confer anti-apoptotic protection of the intestinal mucosa against inflammatory stress-induced damage through TFF3. Recombinant TFF3 rescues TLR2-deficient mice from increased morbidity and mortality during acute colonic injury. Severe ulcerative colitis has recently been found to be associated with the R753Q polymorphism of the TLR2 gene. The relevance of the observed functional effect of TLR2 in regulating GC is confirmed by the finding that the UC-associated TLR2-R753Q variant is functionally deficient in the ability to induce TFF3 synthesis, thus leading to impaired wound healing. Conclusions These data demonstrate a novel function of TLR2 in intestinal GC that links products of commensal bacteria to innate immune protection of the host via TFF3. PMID:19303021

  4. Colitis-associated variant of TLR2 causes impaired mucosal repair because of TFF3 deficiency.

    PubMed

    Podolsky, Daniel K; Gerken, Guido; Eyking, Annette; Cario, Elke

    2009-07-01

    Goblet cells (GC) facilitate mucosal protection and epithelial barrier repair, yet the innate immune mechanisms that selectively drive GC functions have not been defined. The aim of this study was to determine whether Toll-like receptor (TLR) 2 and modulation of GC-derived trefoil factor (TFF) 3 are functionally linked in the intestine. GC modulation was assessed using quantitative real-time polymerase chain reaction analysis (qRT-PCR), Western blotting, and confocal microscopy. Dextran sulfate sodium (DSS) colitis was induced in wild-type, TFF3(-/-), and TLR2(-/-) mice. Recombinant TLR2 ligand or TFF3 peptide were orally administered after DSS termination. Caco-2 cells overexpressing full-length TLR2 or mutant TLR2-R753Q were tested for TFF3 synthesis and functional-related effects in a wounding assay. Data from in vitro (Ls174T) and ex vivo models of murine and human GC reveal that TLR2 activation selectively induces synthesis of TFF3. In vivo studies using TFF3(-/-) or TLR2(-/-) mice demonstrate the ability for oral treatment with a TLR2 agonist to confer antiapoptotic protection of the intestinal mucosa against inflammatory stress-induced damage through TFF3. Recombinant TFF3 rescues TLR2-deficient mice from increased morbidity and mortality during acute colonic injury. Severe ulcerative colitis (UC) has recently been found to be associated with the R753Q polymorphism of the TLR2 gene. The relevance of the observed functional effect of TLR2 in regulating GC is confirmed by the finding that the UC-associated TLR2-R753Q variant is functionally deficient in the ability to induce TFF3 synthesis, thus leading to impaired wound healing. These data demonstrate a novel function of TLR2 in intestinal GC that links products of commensal bacteria to innate immune protection of the host via TFF3.

  5. Flaxseed extract exhibits mucosal protective effect in acetic acid induced colitis in mice by modulating cytokines, antioxidant and antiinflammatory mechanisms.

    PubMed

    Palla, Amber Hanif; Iqbal, Najeeha Talat; Minhas, Khurram; Gilani, Anwarul-Hassan

    2016-09-01

    New treatments for inflammatory bowel disease are of interest due to high rate of remission failure. Natural products have been effective in IBD therapeutics as they have multiple constituents. The aim of the present study was to evaluate the effect of Flaxseed extract (Fs.Cr) on ulcerative colitis and identify the possible mechanisms involved. Colitis was induced by intrarectal administration of 6% AA in BALB/c mice. Colonic mucosal damage was assessed after 24h by calculating disease activity index (DAI), macroscopic and histological damage scores, biochemical measurement of myeloperoxidase (MPO), malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), and total glutathione activities. Since cytokines are involved in exacerbating inflammatory cascade with emerging role of innate immune cytokines in IBD therapeutics, we hence assessed the effect on the levels of TNF-α, IFN-γ and IL-17, at 6, 12 and 24h by ELISA. Fs.Cr ameliorated the severity of AA colitis as evident by improved DAI, macroscopic damage and the histopathological scores along with restoration of goblet cells. Fs.Cr decreased MDA and MPO activities and enhanced antioxidant activity compared to the AA group. Finally, Fs.Cr in doses (300 and 500mg/kg) decreased TNF-α and IFN-γ levels at all time points with simultaneous increase in IL-17 levels at 24h as compared to the AA group. These results suggest that Fs.Cr ameliorates the severity of AA colitis by reducing goblet cell depletion, scavenging oxygen-derived free radicals, reduce neutrophil infiltration that may be attributed due to decreasing IFN-γ and TNF-α and increasing IL-17 levels. Copyright © 2016. Published by Elsevier B.V.

  6. Oral administration of Lentinus edodes β-glucans ameliorates DSS-induced ulcerative colitis in mice via MAPK-Elk-1 and MAPK-PPARγ pathways.

    PubMed

    Shi, Limin; Lin, Qinlu; Yang, Tao; Nie, Ying; Li, Xinhua; Liu, Bo; Shen, Junjun; Liang, Ying; Tang, Yiping; Luo, Feijun

    2016-11-09

    To evaluate the anti-inflammatory effect of β-glucans from Lentinus edodes, and its molecular mechanism, the dextran sulfate sodium salt (DSS) induced colitis model of mice and the LPS-stimulated RAW264.7 cell inflammation model were used in this study. 40 ICR male mice were randomly divided into 4 groups: Control, DSS (DSS treated only), DSS + low-βGs (500 mg kg -1 d -1 ) and DSS + high-βGs (1000 mg kg -1 d -1 ). The body weight of the mice with Lentinus edodes β-glucan supplementation increased significantly compared to the DSS group and the disease activity index (DAI) was improved in both βG-treated groups. Compared with the DSS group, histopathological analysis showed that the infiltration of inflammatory cells of both βG-treated groups decreased significantly in colonic tissues. Furthermore, oral administration of β-glucans decreases the concentration of malondialdehyde (MDA) and myeloperoxidase (MPO) and inhibits the expression of iNOS and several inflammatory factors: TNF-α, IL-1β and IL-6 as well as nitric oxide (NO) of the colonic tissues. The mitogen-activated protein kinase (MAPK) pathway is closely related to the expression of pro-inflammatory factors. In the DSS-induced colitis model and the LPS-stimulated RAW264.7 cell model, βGs inhibited the expression of pro-inflammatory factors and blocked the phosphorylation of JNK/ERK1/2 and p38; βGs also suppress the phosphorylation of Elk-1 at Ser84 and the phosphorylation of PPARγ at Ser112. Altogether, these results suggest that Lentinus edodes βGs could inhibit the DSS-induced ulcerative colitis and decrease inflammatory factor expressions. The molecular mechanism may be involved in suppressing MAPK signaling and inactivation of Elk-1 and activation of PPARγ.

  7. Prophylactic effects of Lonicera japonica extract on dextran sulphate sodium-induced colitis in a mouse model by the inhibition of the Th1/Th17 response.

    PubMed

    Park, Jae-Woo; Bae, Hyunsu; Lee, Gihyun; Hong, Beom-Gi; Yoo, Hye Hyun; Lim, Sung-Jig; Lee, Kyungjin; Kim, Jinsung; Ryu, Bongha; Lee, Beom-Joon; Bae, Jinhyun; Lee, Hyejung; Bu, Youngmin

    2013-01-28

    Inflammatory bowel diseases (IBD) are chronically relapsing inflammatory disorders of the intestine. Although some therapeutic agents, including steroids, are available for the treatment of IBD, these agents have limited use. Therefore, dietary supplements have emerged as possible interventions for IBD. Japanese honeysuckle flower, the flower of Lonicera japonica, is a well-known dietary supplement and has been used to prevent or treat various inflammatory diseases. In the present study, we investigated the effects of L. japonica on experimental murine colitis. Colitis was induced by 5 % dextran sulphate sodium (DSS) in Balb/c mice. The water extract of L. japonica (LJE) at doses of 20, 100 or 500 mg/kg was orally administered to mice twice per day for 7 d. Body weight, colon length and a histological damage score were assessed to determine the effects on colitis. Cytokine profiles were assessed to examine the effects on helper T (Th) cell-related immunological responses. In addition, CD4⁺CD25⁺Foxp3⁺T cells were analysed in vivo and in vitro for investigating the effects on regulatory T (Treg) cells. LJE showed dose-dependent inhibitory effects against colon shortening, weight loss and histological damage. LJE down-regulated IL-1β, TNF-α, interferon-γ, IL-6, IL-12 and IL-17. However, LJE did not show any significant effects on IL-10, IL-23, transforming growth factor-β1 and Treg cell populations. In conclusion, LJE showed protective effects against DSS-induced colitis via the Th1/Th17 pathway and not via Treg cell-related mechanisms.

  8. Dietary α-mangostin, a xanthone from mangosteen fruit, exacerbates experimental colitis and promotes dysbiosis in mice.

    PubMed

    Gutierrez-Orozco, Fabiola; Thomas-Ahner, Jennifer M; Berman-Booty, Lisa D; Galley, Jeffrey D; Chitchumroonchokchai, Chureeporn; Mace, Thomas; Suksamrarn, Sunit; Bailey, Michael T; Clinton, Steven K; Lesinski, Gregory B; Failla, Mark L

    2014-06-01

    Ulcerative colitis (UC) is a chronic inflammatory disease of the colon. α-Mangostin (α-MG), the most abundant xanthone in mangosteen fruit, exerts anti-inflammatory and antibacterial activities in vitro. We evaluated the impact of dietary α-MG on murine experimental colitis and on the gut microbiota of healthy mice. Colitis was induced in C57BL/6J mice by administration of dextran sulfate sodium (DSS). Mice were fed control diet or diet with α-MG (0.1%). α-MG exacerbated the pathology of DSS-induced colitis. Mice fed diet with α-MG had greater colonic inflammation and injury, as well as greater infiltration of CD3(+) and F4/80(+) cells, and colonic myeloperoxidase, than controls. Serum levels of granulocyte colony-stimulating factor, IL-6, and serum amyloid A were also greater in α-MG-fed animals than in controls. The colonic and cecal microbiota of healthy mice fed α-MG but no DSS shifted to an increased abundance of Proteobacteria and decreased abundance of Firmicutes and Bacteroidetes, a profile similar to that found in human UC. α-MG exacerbated colonic pathology during DSS-induced colitis. These effects may be associated with an induction of intestinal dysbiosis by α-MG. Our results suggest that the use of α-MG-containing supplements by patients with UC may have unintentional risk. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Involvement of PPARγ in the protective action of tropisetron in an experimental model of ulcerative colitis.

    PubMed

    Rahimian, Reza; Zirak, Mohammad Reza; Keshavarz, Mojtaba; Fakhraei, Nahid; Mohammadi-Farani, Ahmad; Hamdi, Hanan; Mousavizadeh, Kazem

    2016-09-20

    Inflammatory bowel disease (IBD) is a chronic inflammation of the gastrointestinal (GI) tract. Tropisetron, a selective 5-HT 3 receptor antagonist, is highly used to counteract chemotherapy-induced emesis. Previous studies revealed the anti-inflammatory properties of this drug. The aim of this study was to evaluate the role of peroxisome proliferator-activated receptor gamma (PPARγ) receptor in the protective effect of tropisetron in an animal model of ulcerative colitis. Experimental colitis was induced by a single intra-colonic instillation of 4% (V/V) acetic acid in male rats. Tropisetron (3 mg/kg) and GW9662 (PPARγ antagonist) (5 mg/kg) were given twice daily for 2 days after colitis induction. Forty-eight hours after induction of colitis, colon was removed and macroscopic and microscopic features were given. Moreover, colonic concentrations of malondialdehyde (MDA), nitric oxide (NO), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) levels, myeloperoxidase (MPO), and PPARγ activity were assessed. Both macroscopic and histopathological features of colonic injury were markedly ameliorated by tropisetron. Likewise, levels of NO, MDA, TNF-α, and IL-1β diminished significantly (p < .05). GW9662 reversed the effect of tropisetron on these markers partially or completely. In addition, tropisetron increased the PPARγ and decreased the MPO activity (p < .05). Tropisetron exerts notable anti-inflammatory effects in acetic acid-induced colitis in rats, which is probably mediated through PPARγ receptors.

  10. Influence of extra virgin olive oil diet enriched with hydroxytyrosol in a chronic DSS colitis model.

    PubMed

    Sánchez-Fidalgo, Susana; Sánchez de Ibargüen, L; Cárdeno, A; Alarcón de la Lastra, C

    2012-06-01

    Recent epidemiological studies have shown that habitual consumption of extra virgin olive oil (EVOO), the characteristic culinary fat of the Mediterranean area, is effective in the prevention of diverse types of digestive disorders such as inflammatory bowel disease. Many of these benefits are, in addition to its high proportion of oleic acid, due to the high content of phenolic compounds. Six-week-old mice were randomized into three dietary groups: standard, EVOO and hydroxytyrosol-enriched EVOO. After 30 days, mice that were exposed to 3% DSS for 5 days developed acute colitis that progressed to severe chronic inflammation during a regime of 21 days of water. Diets enriched with EVOO significantly attenuated the clinical and histological signs of damage, improving results from disease activity index and reducing about 50% the mortality caused by DSS. Moreover, hydroxytyrosol supplement showed better results. Cytokines study showed that TNF-α was maintained near to sham control and IL-10 levels were significantly improved in EVOO and EVOO plus hydroxytyrosol diet-DSS groups. In the same way, COX-2 and iNOS were downregulated, and the activation of p38 MAPK was reduced. We also observed a higher significant reduction in iNOS in hydroxytyrosol-enriched EVOO compared with EVOO alone. EVOO diets exerted a noteworthy beneficial effect in chronic DSS-induced colitis by cytokine modulation and COX-2 and iNOS reduction via downregulation of p38 MAPK. In addition to the beneficial effect by EVOO, supplementation of the diet with hydroxytyrosol may improve chronic colitis through iNOS downregulation plus its antioxidant capacity.

  11. Cutaneous sarcoidosis in a patient with ulcerative colitis on infliximab.

    PubMed

    Fok, Kum C; Ng, Watson W S; Henderson, Christopher J A; Connor, Susan J

    2012-07-01

    The advance of anti-tumour necrosis factor (TNF) therapy had dramatically changed the treatment algorithm of inflammatory bowel disease (IBD). This had significantly improved the quality of life for patients with Crohn's disease (CD) and ulcerative colitis (UC).(1) However, side-effects of anti-TNF treatment were unavoidable with paradoxical inflammation (for example leucocytoclastic vasculitis and psoriasis) being well-known phenomena of anti-TNF therapy.(2) We report a case of infliximab induced cutaneous sarcoidosis in a patient with ulcerative colitis and review the literature. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  12. Aluminum enhances inflammation and decreases mucosal healing in experimental colitis in mice

    PubMed Central

    Pineton de Chambrun, G; Body-Malapel, M; Frey-Wagner, I; Djouina, M; Deknuydt, F; Atrott, K; Esquerre, N; Altare, F; Neut, C; Arrieta, M C; Kanneganti, T-D; Rogler, G; Colombel, J-F; Cortot, A; Desreumaux, P; Vignal, C

    2014-01-01

    The increasing incidence of inflammatory bowel diseases (IBDs) in developing countries has highlighted the critical role of environmental pollutants as causative factors in their pathophysiology. Despite its ubiquity and immune toxicity, the impact of aluminum in the gut is not known. This study aimed to evaluate the effects of environmentally relevant intoxication with aluminum in murine models of colitis and to explore the underlying mechanisms. Oral administration of aluminum worsened intestinal inflammation in mice with 2,4,6-trinitrobenzene sulfonic acid- and dextran sodium sulfate-induced colitis and chronic colitis in interleukin 10-negative (IL10−/−) mice. Aluminum increased the intensity and duration of macroscopic and histologic inflammation, colonic myeloperoxidase activity, inflammatory cytokines expression, and decreased the epithelial cell renewal compared with control animals. Under basal conditions, aluminum impaired intestinal barrier function. In vitro, aluminum induced granuloma formation and synergized with lipopolysaccharide to stimulate inflammatory cytokines expression by epithelial cells. Deleterious effects of aluminum on intestinal inflammation and mucosal repair strongly suggest that aluminum might be an environmental IBD risk factor. PMID:24129165

  13. Methamphetamine colitis: a rare case of ischemic colitis in a young patient.

    PubMed

    Holubar, Stefan D; Hassinger, James P; Dozois, Eric J; Masuoka, Howard C

    2009-08-01

    Worldwide, methamphetamine (ie, "crystal meth") abuse is increasing, and is especially prevalent in rural America. However, ischemic colitis secondary to methamphetamine abuse has rarely been reported. We describe the case of a young man who presented with signs and symptoms suggestive of ischemic colitis.

  14. Choline Deficiency Causes Colonic Type II Natural Killer T (NKT) Cell Loss and Alleviates Murine Colitis under Type I NKT Cell Deficiency

    PubMed Central

    Sagami, Shintaro; Ueno, Yoshitaka; Tanaka, Shinji; Fujita, Akira; Niitsu, Hiroaki; Hayashi, Ryohei; Hyogo, Hideyuki; Hinoi, Takao; Kitadai, Yasuhiko; Chayama, Kazuaki

    2017-01-01

    Serum levels of choline and its derivatives are lower in patients with inflammatory bowel disease (IBD) than in healthy individuals. However, the effect of choline deficiency on the severity of colitis has not been investigated. In the present study, we investigated the role of choline deficiency in dextran sulfate sodium (DSS)-induced colitis in mice. Methionine-choline-deficient (MCD) diet lowered the levels of type II natural killer T (NKT) cells in the colonic lamina propria, peritoneal cavity, and mesenteric lymph nodes, and increased the levels of type II NKT cells in the livers of wild-type B6 mice compared with that in mice fed a control (CTR) diet. The gene expression pattern of the chemokine receptor CXCR6, which promotes NKT cell accumulation, varied between colon and liver in a manner dependent on the changes in the type II NKT cell levels. To examine the role of type II NKT cells in colitis under choline-deficient conditions, we assessed the severity of DSS-induced colitis in type I NKT cell-deficient (Jα18-/-) or type I and type II NKT cell-deficient (CD1d-/-) mice fed the MCD or CTR diets. The MCD diet led to amelioration of inflammation, decreases in interferon (IFN)-γ and interleukin (IL)-4 secretion, and a decrease in the number of IFN-γ and IL-4-producing NKT cells in Jα18-/- mice but not in CD1d-/- mice. Finally, adaptive transfer of lymphocytes with type II NKT cells exacerbated DSS-induced colitis in Jα18-/- mice with MCD diet. These results suggest that choline deficiency causes proinflammatory type II NKT cell loss and alleviates DSS-induced colitis. Thus, inflammation in DSS-induced colitis under choline deficiency is caused by type II NKT cell-dependent mechanisms, including decreased type II NKT cell and proinflammatory cytokine levels. PMID:28095507

  15. Choline Deficiency Causes Colonic Type II Natural Killer T (NKT) Cell Loss and Alleviates Murine Colitis under Type I NKT Cell Deficiency.

    PubMed

    Sagami, Shintaro; Ueno, Yoshitaka; Tanaka, Shinji; Fujita, Akira; Niitsu, Hiroaki; Hayashi, Ryohei; Hyogo, Hideyuki; Hinoi, Takao; Kitadai, Yasuhiko; Chayama, Kazuaki

    2017-01-01

    Serum levels of choline and its derivatives are lower in patients with inflammatory bowel disease (IBD) than in healthy individuals. However, the effect of choline deficiency on the severity of colitis has not been investigated. In the present study, we investigated the role of choline deficiency in dextran sulfate sodium (DSS)-induced colitis in mice. Methionine-choline-deficient (MCD) diet lowered the levels of type II natural killer T (NKT) cells in the colonic lamina propria, peritoneal cavity, and mesenteric lymph nodes, and increased the levels of type II NKT cells in the livers of wild-type B6 mice compared with that in mice fed a control (CTR) diet. The gene expression pattern of the chemokine receptor CXCR6, which promotes NKT cell accumulation, varied between colon and liver in a manner dependent on the changes in the type II NKT cell levels. To examine the role of type II NKT cells in colitis under choline-deficient conditions, we assessed the severity of DSS-induced colitis in type I NKT cell-deficient (Jα18-/-) or type I and type II NKT cell-deficient (CD1d-/-) mice fed the MCD or CTR diets. The MCD diet led to amelioration of inflammation, decreases in interferon (IFN)-γ and interleukin (IL)-4 secretion, and a decrease in the number of IFN-γ and IL-4-producing NKT cells in Jα18-/- mice but not in CD1d-/- mice. Finally, adaptive transfer of lymphocytes with type II NKT cells exacerbated DSS-induced colitis in Jα18-/- mice with MCD diet. These results suggest that choline deficiency causes proinflammatory type II NKT cell loss and alleviates DSS-induced colitis. Thus, inflammation in DSS-induced colitis under choline deficiency is caused by type II NKT cell-dependent mechanisms, including decreased type II NKT cell and proinflammatory cytokine levels.

  16. Psychological factors in ulcerative colitis.

    PubMed

    Murray, J B

    1984-04-01

    Almost 50 years ago ulcerative colitis was included among the seven classical psychosomatic diseases. The psychodynamics and personality structures specific to ulcerative colitis sufferers were sought and the main-stay of treatment was psychotherapy. However, for the past decade the psychogenic approach to this disorder has been replaced by physiological and immunological explanations and treatments. The history of medical and psychogenic explanations and treatments of ulcerative colitis has been traced to the present. Ulcerative colitis remains a "riddle," as it was described almost 50 years ago, a complex disorder whose pattern is to flare up and subside, its cause and cure still unknown despite almost 100 years of study.

  17. Perilla frutescens Extracts Protects against Dextran Sulfate Sodium-Induced Murine Colitis: NF-κB, STAT3, and Nrf2 as Putative Targets.

    PubMed

    Dae Park, Deung; Yum, Hye-Won; Zhong, Xiancai; Kim, Seung Hyeon; Kim, Seong Hoon; Kim, Do-Hee; Kim, Su-Jung; Na, Hye-Kyung; Sato, Atsuya; Miura, Takehito; Surh, Young-Joon

    2017-01-01

    Perilla frutescens is a culinary and medicinal herb which has a strong anti-inflammatory and antioxidative effects. In the present study, we investigated the effects of Perilla frutescens extract (PE) against dextran sulfate sodium (DSS)-induced mouse colitis, an animal model that mimics human inflammatory bowel disease (IBD). Five-week-old male ICR mice were treated with a daily dose of PE (20 or 100 mg/kg, p.o. ) for 1 week, followed by administration of 3% DSS in double distilled drinking water and PE by gavage for another week. DSS-induced colitis was characterized by body weight loss, colon length shortening, diarrhea and bloody stool, and these symptoms were significantly ameliorated by PE treatment. PE administration suppressed DSS-induced expression of proinflammatory enzymes, including cyclooxygenase-2 and inducible nitric oxide synthase as well as cyclin D1, in a dose-dependent fashion. Nuclear factor-kappa B (NF-κB) and signal transducer and activator of transcription 3 (STAT3) are major transcriptional regulators of inflammatory signaling. PE administration significantly inhibited the activation of both NF-κB and STAT3 induced by DSS, while it elevated the accumulation of Nrf2 and heme oxygenase-1 in the colon. In another experiment, treatment of CCD841CoN human normal colon epithelial cells with PE (10 mg/ml) resulted in the attenuation of the tumor necrosis factor-α-induced expression/activation of mediators of proinflammatory signaling. The above results indicate that PE has a preventive potential for use in the management of IBD.

  18. DNFB-DNS hapten-induced colitis in mice should not be considered a model of inflammatory bowel disease.

    PubMed

    Bailón, Elvira; Cueto-Sola, Margarita; Utrilla, Pilar; Nieto, Ana; Garrido-Mesa, Natividad; Celada, Antonio; Zarzuelo, Antonio; Xaus, Jordi; Gálvez, Julio; Comalada, Mònica

    2011-10-01

    The dinitrofluorobenzene/dinitrosulfonic acid (DNFB/DNS) model was originally described as an experimental model of intestinal inflammation resembling human ulcerative colitis (UC). Due to the absence of acceptable UC experimental models for pharmacological preclinical assays, here we examine the immune response induced in this model. Balb/c mice were sensitized by skin application of DNFB on day 1, followed by an intrarectal challenge with DNS on day 5. We further expanded this model by administering a second DNS challenge on day 15. The features of colonic inflammation and immune response were evaluated. The changes observed in colonic tissue corresponded, in comparison to the trinitrobenzene sulfonic acid (TNBS) colitis model, to a mild mucosal effect in the colon, which spontaneously resolved in less than 5 days. Furthermore, the second hapten challenge did not exacerbate the inflammatory response. In contrast to other studies, we did not observe any clear involvement of tumor necrosis factor alpha (TNF-α) or other Th1 cytokines during the initial inflammatory response; however, we found that a more Th2-humoral response appeared to mediate the first contact with the hapten. An increased humoral response was detected during the second challenge, although an increased Th1/Th17-cytokine expression profile was also simultaneously observed. On the basis of these results, although the DNFB/DNS model can display some features found in human UC, it should be considered as a model for the study of the intestinal hypersensitivity seen, for example, during food allergy or irritable bowel syndrome but not intestinal inflammation per se. Copyright © 2010 Crohn's & Colitis Foundation of America, Inc.

  19. Xilei San Ameliorates Experimental Colitis in Rats by Selectively Degrading Proinflammatory Mediators and Promoting Mucosal Repair

    PubMed Central

    Hori, Kazutoshi; Wang, Shenglan; Kogure, Yoko; Fukunaga, Ken; Kashiwamura, Shinichiro; Yamamoto, Satoshi; Nakamura, Shiro; Li, Junxiang; Miwa, Hiroto; Noguchi, Koichi

    2014-01-01

    Xilei san (XLS), a herbal preparation widely used in China for erosive and ulcerative diseases, has been shown to be effective in ulcerative colitis (UC). The present experiments were conducted to assess its efficacy and determine its mechanism of action in a rat model that resembles human UC. The model was induced by adding 4% dextran sulfate sodium (DSS) to the rats' drinking water for 7 days. XLS was administered daily by retention enema from day 2 to day 7; the rats were sacrificed on day 8. The colon tissues were obtained for further experiments. A histological damage score and the activity of tissue myeloperoxidase were used to evaluate the severity of the colitis. The colonic cytokine levels were detected in a suspension array, and epithelial proliferation was assessed using Ki-67 immunohistochemistry. Intrarectal administration of XLS attenuated the DSS-induced colitis, as evidenced by a reduction in both the histological damage score and myeloperoxidase activity. It also decreased the levels of proinflammatory cytokines, but increased the mucosal repair-related cytokines. In addition, the epithelial Ki-67 expression was upregulated by XLS. These results suggest that XLS attenuates DSS-induced colitis by degrading proinflammatory mediators and promoting mucosal repair. XLS could be a potential topical treatment for human UC. PMID:25120575

  20. Xilei san ameliorates experimental colitis in rats by selectively degrading proinflammatory mediators and promoting mucosal repair.

    PubMed

    Hao, Yongbiao; Nagase, Kazuko; Hori, Kazutoshi; Wang, Shenglan; Kogure, Yoko; Fukunaga, Ken; Kashiwamura, Shinichiro; Yamamoto, Satoshi; Nakamura, Shiro; Li, Junxiang; Miwa, Hiroto; Noguchi, Koichi; Dai, Yi

    2014-01-01

    Xilei san (XLS), a herbal preparation widely used in China for erosive and ulcerative diseases, has been shown to be effective in ulcerative colitis (UC). The present experiments were conducted to assess its efficacy and determine its mechanism of action in a rat model that resembles human UC. The model was induced by adding 4% dextran sulfate sodium (DSS) to the rats' drinking water for 7 days. XLS was administered daily by retention enema from day 2 to day 7; the rats were sacrificed on day 8. The colon tissues were obtained for further experiments. A histological damage score and the activity of tissue myeloperoxidase were used to evaluate the severity of the colitis. The colonic cytokine levels were detected in a suspension array, and epithelial proliferation was assessed using Ki-67 immunohistochemistry. Intrarectal administration of XLS attenuated the DSS-induced colitis, as evidenced by a reduction in both the histological damage score and myeloperoxidase activity. It also decreased the levels of proinflammatory cytokines, but increased the mucosal repair-related cytokines. In addition, the epithelial Ki-67 expression was upregulated by XLS. These results suggest that XLS attenuates DSS-induced colitis by degrading proinflammatory mediators and promoting mucosal repair. XLS could be a potential topical treatment for human UC.

  1. Efficacy and safety of granulocyte and monocyte adsorption apheresis for ulcerative colitis: a meta-analysis.

    PubMed

    Yoshino, Takuya; Nakase, Hiroshi; Minami, Naoki; Yamada, Satoshi; Matsuura, Minoru; Yazumi, Shujiro; Chiba, Tsutomu

    2014-03-01

    Safe and effective treatments are required for patients with ulcerative colitis. It was suggested that granulocyte and monocyte adsorption apheresis might play an important role for ulcerative colitis. Therefore, a meta-analysis was performed. Medline and the Cochrane controlled trials register were used to identify randomized controlled trials comparing granulocyte and monocyte adsorption apheresis with corticosteroids, and comparing intensive with conventional apheresis in patients with ulcerative colitis. Nine randomized trials were eligible for inclusion criteria. According to pooled data, granulocyte and monocyte adsorption apheresis is effective for inducing clinical remission in patients with ulcerative colitis compared with corticosteroids (odds ratio, 2.23; 95% confidence interval: 1.38-3.60). However, the efficacy of granulocyte and monocyte adsorption apheresis was not dependent on the number of apheresis sessions. The intensive apheresis (≥2 sessions per week) is more effective for inducing clinical remission than weekly apheresis (odds ratio, 2.10; 95% confidence interval: 1.12-3.93). The rate of adverse events by apheresis was significantly lower than that by corticosteroids (odds ratio, 0.24; 95% confidence interval: 0.15-0.37). Our meta-analysis reveals that intensive granulocyte and monocyte adsorption apheresis is a safe and effective treatment with higher rates of clinical remission and response for ulcerative colitis compared with corticosteroids. Copyright © 2013 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  2. Oral delivery of prolyl hydroxylase inhibitor: AKB-4924 promotes localized mucosal healing in a mouse model of colitis.

    PubMed

    Marks, Ellen; Goggins, Bridie J; Cardona, Jocelle; Cole, Siobhan; Minahan, Kyra; Mateer, Sean; Walker, Marjorie M; Shalwitz, Robert; Keely, Simon

    2015-02-01

    Pharmacological induction of hypoxia-inducible factor (HIF), a global transcriptional regulator of the hypoxic response, by prolyl hydroxylase inhibitors (PHDi) is protective in murine models of colitis, and epithelial cells are critical for the observed therapeutic efficacy. Because systemic HIF activation may lead to potentially negative off-target effects, we hypothesized that targeting epithelial HIF through oral delivery of PHDi would be sufficient to protect against colitis in a mouse model. Using a chemically induced trinitrobenzene sulfonic acid murine model of colitis, we compared the efficacy of oral and intraperitoneal (i.p.) delivery of the PHDi; AKB-4924 in preventing colitis, as measured by endoscopy, histology, barrier integrity, and immune profiling. Furthermore, we measured potential off-target effects, examining HIF and HIF target genes in the heart and kidney, as well as erythropoietin and hematocrit levels. Oral administration of AKB-4924 exhibited mucosal protection comparable i.p. dosing. Oral delivery of PHDi led to reduced colonic epithelial HIF stabilization compared with i.p. delivery, but this was still sufficient to induce transcription of downstream HIF targets. Furthermore, oral delivery of PHDi led to reduced stabilization of HIF and activation of HIF targets in extraintestinal organs. Oral delivery of PHDi therapies to this intestinal mucosa protects against colitis in animal models and represents a potential therapeutic strategy for inflammatory bowel disease, which also precludes unwanted extraintestinal effects.

  3. Effects of obesity on severity of colitis and cytokine expression in mouse mesenteric fat. Potential role of adiponectin receptor 1

    PubMed Central

    Sideri, Aristea; Stavrakis, Dimitris; Bowe, Collin; Shih, David Q.; Fleshner, Phillip; Arsenescu, Violeta; Arsenescu, Razvan; Turner, Jerrold R.; Pothoulakis, Charalabos

    2015-01-01

    In inflammatory bowel disease (IBD), obesity is associated with worsening of the course of disease. Here, we examined the role of obesity in the development of colitis and studied mesenteric fat-epithelial cell interactions in patients with IBD. We combined the diet-induce obesity with the trinitrobenzene sulfonic acid (TNBS) colitis mouse model to create groups with obesity, colitis, and their combination. Changes in the mesenteric fat and intestine were assessed by histology, myeloperoxidase assay, and cytokine mRNA expression by real-time PCR. Medium from human mesenteric fat and cultured preadipocytes was obtained from obese patients and those with IBD. Histological analysis showed inflammatory cell infiltrate and increased histological damage in the intestine and mesenteric fat of obese mice with colitis compared with all other groups. Obesity also increased the expression of proinflammatory cytokines including IL-1β, TNF-α, monocyte chemoattractant protein 1, and keratinocyte-derived chemokine, while it decreased the TNBS-induced increases in IL-2 and IFN-γ in mesenteric adipose and intestinal tissues. Human mesenteric fat isolated from obese patients and those with and IBD demonstrated differential release of adipokines and growth factors compared with controls. Fat-conditioned media reduced adiponectin receptor 1 (AdipoR1) expression in human NCM460 colonic epithelial cells. AdipoR1 intracolonic silencing in mice exacerbated TNBS-induced colitis. In conclusion, obesity worsens the outcome of experimental colitis, and obesity- and IBD-associated changes in adipose tissue promote differential mediator release in mesenteric fat that modulates colonocyte responses and may affect the course of colitis. Our results also suggest an important role for AdipoR1 for the fat-intestinal axis in the regulation of inflammation during colitis. PMID:25591865

  4. Infection of specific strains of Streptococcus mutans, oral bacteria, confers a risk of ulcerative colitis

    PubMed Central

    Kojima, Ayuchi; Nakano, Kazuhiko; Wada, Koichiro; Takahashi, Hirokazu; Katayama, Kazufumi; Yoneda, Masato; Higurashi, Takuma; Nomura, Ryota; Hokamura, Kazuya; Muranaka, Yoshinori; Matsuhashi, Nobuyuki; Umemura, Kazuo; Kamisaki, Yoshinori; Nakajima, Atsushi; Ooshima, Takashi

    2012-01-01

    Although oral bacteria-associated systemic diseases have been reported, association between Streptococcus mutans, pathogen of dental caries, and ulcerative colitis (UC) has not been reported. We investigated the effect of various S. mutans strains on dextran sodium sulfate (DSS)-induced mouse colitis. Administration of TW295, the specific strain of S. mutans, caused aggravation of colitis; the standard strain, MT8148 did not. Localization of TW295 in hepatocytes in liver was observed. Increased expression of interferon-γ in liver was also noted, indicating that the liver is target organ for the specific strain of S. mutans-mediated aggravation of colitis. The detection frequency of the specific strains in UC patients was significantly higher than in healthy subjects. Administration of the specific strains of S. mutans isolated from patients caused aggravation of colitis. Infection with highly-virulent specific types of S. mutans might be a potential risk factor in the aggravation of UC. PMID:22451861

  5. Reduction of experimental colitis in the rat by inhibitors of glycogen synthase kinase-3beta.

    PubMed

    Whittle, Brendan J R; Varga, Csaba; Pósa, Anikó; Molnár, Andor; Collin, Marika; Thiemermann, Christoph

    2006-03-01

    The effects of the inhibitors of glycogen synthase kinase-3beta (GSK-3beta), TDZD-8 and SB 415286, which can substantially reduce the systemic inflammation associated with endotoxic shock in vivo, have now been investigated on the acute colitis provoked by trinitrobenzene sulphonic acid (TNBS) in the rat. Administration of the GSK-3beta inhibitor TDZD-8 (0.1, 0.33 or 1.0 mg kg-1, s.c., b.i.d., for 3 days) caused a dose-dependent reduction in the colonic inflammation induced by intracolonic TNBS assessed after 3 days, both as the area of macroscopic involvement and as a score using 0-10 scale. Likewise, following administration of the GSK-3beta inhibitor SB 415286 (0.1, 0.33 or 1.0 mg kg-1, s.c., b.i.d., for 3 days), the extent and degree of the TNBS-provoked colonic inflammation was reduced. Administration of either TDZD-8 or SB 415286 reduced the fall in body weight following challenge with TNBS at each dose level studied. The increase in myeloperoxidase activity, an index of neutrophil infiltration into the TNBS-induced inflamed colon, was significantly inhibited by both TDZD-8 and SB 415286 at each dose level. The increase in the levels of the proinflammatory cytokine, TNF-alpha, in the inflamed colon was also significantly inhibited by either compound at the highest doses evaluated. The elevated levels of the transcription factor NF-kappaB subunit p65, as determined by Western blot in the nuclear extracts from the TNBS-provoked inflamed colonic tissue, were dose-dependently reduced by TDZD-8 or SB 415286 treatment. These findings demonstrate that two chemically distinct selective inhibitors of the activity of GSK-3beta reduce the inflammation and tissue injury in a rat model of acute colitis. The mechanisms underlying this anti-inflammatory action may be related to downregulation of NF-kappaB activity, involved in the generation of proinflammatory mediators.

  6. Caffeic acid ameliorates colitis in association with increased Akkermansia population in the gut microbiota of mice

    PubMed Central

    Zhang, Zhan; Wu, Xinyue; Cao, Shuyuan; Wang, Li; Wang, Di; Yang, Hui; Feng, Yiming; Wang, Shoulin; Li, Lei

    2016-01-01

    Emerging evidence shows that dietary agents and phytochemicals contribute to the prevention and treatment of ulcerative colitis (UC). We first reported the effects of dietary caffeic acid (CaA) on murine experimental colitis and on fecal microbiota. Colitis was induced in C57BL/6 mice by administration of 2.5% dextran sulfate sodium (DSS). Mice were fed a control diet or diet with CaA (1 mM). Our results showed that dietary CaA exerted anti-inflammatory effects in DSS colitis mice. Moreover, CaA could significantly suppress the secretion of IL-6, TNFα, and IFNγ and the colonic infiltration of CD3+ T cells, CD177+ neutrophils and F4/80+ macrophages via inhibition of the activation of NF-κB signaling pathway. Analysis of fecal microbiota showed that CaA could restore the reduction of richness and inhibit the increase of the ratio of Firmicute to Bacteroidetes in DSS colitis mice. And CaA could dramatically increase the proportion of the mucin-degrading bacterium Akkermansia in DSS colitis mice. Thus, CaA could ameliorate colonic pathology and inflammation in DSS colitis mice, and it might be associated with a proportional increase in Akkermansia. PMID:27177331

  7. Vedolizumab for induction and maintenance of remission in ulcerative colitis.

    PubMed

    Bickston, Stephen J; Behm, Brian W; Tsoulis, David J; Cheng, Jianfeng; MacDonald, John K; Khanna, Reena; Feagan, Brian G

    2014-08-08

    Cellular adhesion molecules play an important role in the pathogenesis of ulcerative colitis, making selective blockade of these molecules a promising therapeutic strategy. Vedolizumab, a recombinant humanized IgG1 monoclonal antibody, inhibits adhesion and migration of leukocytes into the gastrointestinal tract by binding the alpha4beta7 integrin. Animal studies have suggested that vedolizumab may be a useful therapy for ulcerative colitis. This updated systematic review summarizes the current evidence on the use of vedolizumab for induction and maintenance of remission in ulcerative colitis. The primary objectives were to determine the efficacy and safety of vedolizumab used for induction and maintenance of remission in ulcerative colitis. A computer-assisted search for relevant studies (inception to 15 June 2014) was performed using PubMed, MEDLINE, EMBASE and CENTRAL. References from published articles and conference proceedings were searched to identify additional citations. Randomized controlled trials comparing vedolizumab to placebo or a control therapy for induction or maintenance of remission in ulcerative colitis were included. Two authors independently extracted data and assessed the risk of bias for each trial. The primary outcomes were failure to induce clinical remission and relapse. Secondary outcomes included failure to induce a clinical response, failure to induce endoscopic remission, failure to induce an endoscopic response, quality of life, adverse events, serious adverse events and withdrawal due to adverse events. We calculated the relative risk (RR) and 95% confidence intervals (CI) for each outcome. Data were analyzed on an intention-to-treat basis. The overall quality of the evidence supporting the outcomes was evaluated using the GRADE criteria. Four studies (606 patients) were included. All of the studies were rated as having a low risk of bias. Pooled analyses revealed that vedolizumab was significantly superior to placebo for induction

  8. The Administration of Escherichia coli Nissle 1917 Ameliorates Development of DSS-Induced Colitis in Mice

    PubMed Central

    Rodríguez-Nogales, Alba; Algieri, Francesca; Garrido-Mesa, José; Vezza, Teresa; Utrilla, Maria P.; Chueca, Natalia; Fernández-Caballero, Jose A.; García, Federico; Rodríguez-Cabezas, Maria E.; Gálvez, Julio

    2018-01-01

    The beneficial effects of probiotics on immune-based pathologies such as inflammatory bowel disease (IBD) have been well reported. However, their exact mechanisms have not been fully elucidated. Few studies have focused on the impact of probiotics on the composition of the colonic microbiota. The aim of the present study was to correlate the intestinal anti-inflammatory activity of the probiotic Escherichia coli Nissle 1917 (EcN) in the dextran sodium sulfate (DSS) model of mouse colitis with the changes induced in colonic microbiota populations. EcN prevented the DSS-induced colonic damage, as evidenced by lower disease activity index (DAI) values and colonic weight/length ratio, when compared with untreated control mice. The beneficial effects were confirmed biochemically, since the probiotic treatment improved the colonic expression of different cytokines and proteins involved in epithelial integrity. In addition, it restored the expression of different micro-RNAs (miR-143, miR-150, miR-155, miR-223, and miR-375) involved in the inflammatory response that occurs in colitic mice. Finally, the characterization of the colonic microbiota by pyrosequencing showed that the probiotic administration was able to counteract the dysbiosis associated with the intestinal inflammatory process. This effect was evidenced by an increase in bacterial diversity in comparison with untreated colitic mice. The intestinal anti-inflammatory effects of the probiotic EcN were associated with an amelioration of the altered gut microbiome in mouse experimental colitis, especially when considering bacterial diversity, which is reduced in these intestinal conditions. Moreover, this probiotic has shown an ability to modulate expression levels of miRNAs and different mediators of the immune response involved in gut inflammation. This modulation could also be of great interest to understand the mechanism of action of this probiotic in the treatment of IBD.

  9. Randomised controlled trial. Comparison Of iNfliximab and ciclosporin in STeroid Resistant Ulcerative Colitis: Trial design and protocol (CONSTRUCT)

    PubMed Central

    Seagrove, Anne C; Alam, M Fasihul; Alrubaiy, Laith; Cheung, Wai-Yee; Clement, Clare; Cohen, David; Grey, Michelle; Hilton, Mike; Hutchings, Hayley; Morgan, Jayne; Rapport, Frances; Roberts, Stephen E; Russell, Daphne; Russell, Ian; Thomas, Linzi; Thorne, Kymberley; Watkins, Alan; Williams, John G

    2014-01-01

    Introduction Many patients with ulcerative colitis (UC) present with acute exacerbations needing hospital admission. Treatment includes intravenous steroids but up to 40% of patients do not respond and require emergency colectomy. Mortality following emergency colectomy has fallen, but 10% of patients still die within 3 months of surgery. Infliximab and ciclosporin, both immunosuppressive drugs, offer hope for treating steroid-resistant UC as there is evidence of their short-term effectiveness. As there is little long-term evidence, this pragmatic randomised trial, known as Comparison Of iNfliximab and ciclosporin in STeroid Resistant Ulcerative Colitis: a Trial (CONSTRUCT), aims to compare the clinical and cost-effectiveness of infliximab and ciclosporin for steroid-resistant UC. Methods and analysis Between May 2010 and February 2013, 52 UK centres recruited 270 patients admitted with acute severe UC who failed to respond to intravenous steroids but did not need surgery. We allocated them at random in equal proportions between infliximab and ciclosporin.The primary clinical outcome measure is quality-adjusted survival, that is survival weighted by Crohn's and Colitis Questionnaire (CCQ) participants’ scores, analysed by Cox regression. Secondary outcome measures include: the CCQ—an extension of the validated but community-focused UK Inflammatory Bowel Disease Questionnaire (IBDQ) to include patients with acute severe colitis and stoma; two general quality of life measures—EQ-5D and SF-12; mortality; survival weighted by EQ-5D; emergency and planned colectomies; readmissions; incidence of adverse events including malignancies, serious infections and renal disorders; disease activity; National Health Service (NHS) costs and patient-borne costs. Interviews investigate participants’ views on therapies for acute severe UC and healthcare professionals’ views on the two drugs and their administration. Ethics and dissemination The Research Ethics Committee

  10. Suppression of Murine Colitis and its Associated Cancer by Carcinoembryonic Antigen-Specific Regulatory T Cells

    PubMed Central

    Blat, Dan; Zigmond, Ehud; Alteber, Zoya; Waks, Tova; Eshhar, Zelig

    2014-01-01

    The adoptive transfer of regulatory T cells (Tregs) offers a promising strategy to combat pathologies that are characterized by aberrant immune activation, including graft rejection and autoinflammatory diseases. Expression of a chimeric antigen receptor (CAR) gene in Tregs redirects them to the site of autoimmune activity, thereby increasing their suppressive efficiency while avoiding systemic immunosuppression. Since carcinoembryonic antigen (CEA) has been shown to be overexpressed in both human colitis and colorectal cancer, we treated CEA-transgenic mice that were induced to develop colitis with CEA-specific CAR Tregs. Two disease models were employed: T-cell-transfer colitis as well as the azoxymethane–dextran sodium sulfate model for colitis-associated colorectal cancer. Systemically administered CEA-specific (but not control) CAR Tregs accumulated in the colons of diseased mice. In both model systems, CEA-specific CAR Tregs suppressed the severity of colitis compared to control Tregs. Moreover, in the azoxymethane–dextran sodium sulfate model, CEA-specific CAR Tregs significantly decreased the subsequent colorectal tumor burden. Our data demonstrate that CEA-specific CAR Tregs exhibit a promising potential in ameliorating ulcerative colitis and in hindering colorectal cancer development. Collectively, this study provides a proof of concept for the therapeutic potential of CAR Tregs in colitis patients as well as in other autoimmune inflammatory disorders. PMID:24686242

  11. Crohn's colitis perforation due to superimposed invasive amebic colitis: a case report.

    PubMed

    Ozdoğan, Mehmet; Küpelioğlu, Ali

    2006-06-01

    The clinical and microscopic appearances of inflammatory bowel disease may be very similar to those of amebic colitis. The coexistence of invasive amebiasis with inflammatory bowel disease may have disastrous results. Patients with inflammatory bowel disease have a greater prevalence of amebiasis, but this association is more significant for ulcerative colitis. There have been very few reports in the literature presenting the superimposition of amebiasis on Crohn's disease. In this report, a rare case of Crohn's colitis with superimposed amebiasis resulting in colonic perforation is presented. Patients with inflammatory bowel disease traveling to endemic areas may benefit from receiving a course of prophylactic anti-amebic medication.

  12. Recommendations for improved use of the murine TNBS-induced colitis model in evaluating anti-inflammatory properties of lactic acid bacteria: technical and microbiological aspects.

    PubMed

    Foligné, Benoit; Nutten, Sophie; Steidler, Lothar; Dennin, Véronique; Goudercourt, Denise; Mercenier, Annick; Pot, Bruno

    2006-02-01

    Probiotic bacteria have been shown to exert promising beneficial effects in different types of intestinal disorders, including chronic inflammation. In this context, animal models of inflammatory bowel disease are useful in studying the possible prophylactic role of candidate probiotic strains. This study aimed at evaluating the critical technological and microbiological parameters as well as the robustness of the murine trinitrobenzene sulfonic acid (TNBS)-induced model of colitis, after intragastric administration of lactic acid bacteria (LAB) preparations. A standardized methodology was applied to assess the protective effect achieved by various bacterial concentrations and culture conditions of the reference strain Lactobacillus plantarum NCIMB 8826. Not only was protection found to vary in function in different levels of colitis, but also repeated experiments showed a clear bacterial dose-dependent attenuation of colitis. The physiological stage of bacteria was shown to impact as well, with substantial, mild, or reduced improvement of inflammatory scores for exponentially growing, stationary-phase, or killed bacteria, respectively. A recombinant strain, secreting murine interleukin-10 (IL-10) and previously reported to successfully treat colitis in two different models of murine colitis (dextran sulfate sodium [DSS] and IL-10-deficient mice), was used to validate the final experimental conditions. In conclusion, we identified and optimized some of the key parameters that need to be controlled in order to ensure reliable comparison of results generated over a long period of time or independent experiments. The recommendations for an improved model presented here will prove to be helpful for reproducible, independent comparison of the anti-inflammatory potential of wild-type or recombinant candidate probiotic strains, whether administered as pure cultures or as blends.

  13. Pantoprazole-induced acute kidney injury: A case report.

    PubMed

    Peng, Tao; Hu, Zhao; Zheng, Hongnan; Zhen, Junhui; Ma, Chengjun; Yang, Xiangdong

    2018-06-01

    The present study reports a case of pantoprazole-induced acute kidney disease. The patient was diagnosed with acute kidney injury with wide interstitial inflammation and eosinophil infiltration. Following 1 month of glucocorticoid therapy, the patient's serum creatinine and urea nitrogen decreased to within normal ranges. The presentation, clinical course, diagnosis and prognosis of pantoprazole-induced acute kidney injury are discussed herein to highlight the importance of early and correct diagnosis for good prognosis. Disease characteristics include short-term increased serum creatinine levels that respond to glucocorticoid treatment. The patient had no history of chronic kidney disease or proteinuria and presented with increased serum creatinine following treatment with pantoprazole. Following the end of pantoprazole treatment, short-term RRT and long-term prednisolone was administered, then serum creatinine returned to normal. Pantoprazole-induced acute kidney injury is commonly misdiagnosed and late diagnosis results in poor patient prognoses. Misdiagnosis leads to the administration of treatments that may exacerbate the condition, so appropriate diagnosis and treatment for pantoprazole-induced acute kidney injury is necessary.

  14. Protective effects of Fc-fused PD-L1 on two different animal models of colitis.

    PubMed

    Song, Mi-Young; Hong, Chun-Pyo; Park, Seong Jeong; Kim, Jung-Hwan; Yang, Bo-Gie; Park, Yunji; Kim, Sae Won; Kim, Kwang Soon; Lee, Ji Yeung; Lee, Seung-Woo; Jang, Myoung Ho; Sung, Young-Chul

    2015-02-01

    Programmed death-ligand 1 (PD-L1) has been shown to negatively regulate immune responses via its interaction with PD-1 receptor. In this study, we investigated the effects of PD-L1-Fc treatment on intestinal inflammation using two murine models of inflammatory colitis induced by dextran sulfate sodium (DSS) and T-cell transfer. The anti-colitis effect of adenovirus expressing Fc-conjugated PD-L1 (Ad/PD-L1-Fc) and recombinant PD-L1-Fc protein was evaluated in DSS-treated wild-type and Rag-1 knockout (KO) mice. We examined differentiation of T-helper cells, frequency of innate immune cells, and cytokine production by dendritic cells (DCs) in the colon from DSS-treated mice after PD-L1-Fc administration. In Rag-1 KO mice reconstituted with CD4 CD45RB(high) T cells, we assessed the treatment effect of PD-L1-Fc protein on the development of colitis. Administration of Ad/PD-L1-Fc significantly ameliorated DSS-induced colitis, which was accompanied by diminished frequency of interleukin (IL)-17A-producing CD4 T cells and increased interferon-γ-producing CD4 T cells in the colon of DSS-fed mice. The anti-colitic effect of PD-L1-Fc treatment was also observed in DSS-treated Rag-1 KO mice, indicating lymphoid cell independency. PD-L1-Fc modulated cytokine production by colonic DCs and the effect was dependent on PD-1 expression. Furthermore, PD-L1-Fc protein could significantly reduce the severity of colitis in CD4 CD45RB(high) T-cell-transferred Rag-1 KO mice. Based on the protective effect of PD-L1-Fc against DSS-induced and T-cell-induced colitis, our results suggest that PD-1-mediated inhibitory signals have a crucial role in limiting the development of colonic inflammation. This implicates that PD-L1-Fc may provide a novel therapeutic approach to treat inflammatory bowel disease. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  15. Angiogenesis blockade as a new therapeutic approach to experimental colitis

    PubMed Central

    Danese, Silvio; Sans, Miquel; Spencer, David M; Beck, Ivy; Doñate, Fernando; Plunkett, Marian L; de la Motte, Carol; Redline, Raymond; Shaw, David E; Levine, Alan D; Mazar, Andrew P; Fiocchi, Claudio

    2007-01-01

    Background Neoangiogenesis is a critical component of chronic inflammatory disorders. Inhibition of angiogenesis is an effective treatment in animal models of inflammation, but has not been tested in experimental colitis. Aim To investigate the effect of ATN‐161, an anti‐angiogenic compound, on the course of experimental murine colitis. Method Interleukin 10‐deficient (IL10−/−) mice and wild‐type mice were kept in ultra‐barrier facilities (UBF) or conventional housing, and used for experimental conditions. Dextran sodium sulphate (DSS)‐treated mice were used as a model of acute colitis. Mice were treated with ATN‐161 or its scrambled peptide ATN‐163. Mucosal neoangiogenesis and mean vascular density (MVD) were assessed by CD31 staining. A Disease Activity Index (DAI) was determined, and the severity of colitis was determined by a histological score. Colonic cytokine production was measured by ELISA, and lamina propria mononuclear cell proliferation by thymidine incorporation. Result MVD increased in parallel with disease progression in IL10−/− mice kept in conventional housing, but not in IL10−/− mice kept in UBF. Angiogenesis also occurred in DSS‐treated animals. IL10−/− mice with established disease treated with ATN‐161, but not with ATN‐163, showed a significant and progressive decrease in DAI. The histological colitis score was significantly lower in ATN‐161‐treated mice than in scrambled peptide‐treated mice. Inhibition of angiogenesis was confirmed by a significant decrease of MVD in ATN‐161‐treated mice than in ATN‐163‐treated mice. No therapeutic effects were observed in the DSS model of colitis. ATN‐161 showed no direct immunomodulatory activity in vitro. Conclusion Active angiogenesis occurs in the gut of IL10−/− and DSS‐treated colitic mice and parallels disease progression. ATN‐161 effectively decreases angiogenesis as well as clinical severity and histological inflammation in IL10

  16. Diet Modifies Colonic Microbiota and CD4+ T Cell Repertoire to Induce Flares of Colitis in Mice With Myeloid-cell Expression of Interleukin 23.

    PubMed

    Chen, Lili; He, Zhengxiang; Iuga, Alina Cornelia; Martins Filho, Sebastião N; Faith, Jeremiah J; Clemente, Jose C; Deshpande, Madhura; Jayaprakash, Anitha; Colombel, Jean-Frederic; Lafaille, Juan J; Sachidanandam, Ravi; Furtado, Glaucia C; Lira, Sergio A

    2018-06-14

    Several studies have shown that signaling via the interleukin 23 (IL23) receptor is required for development of colitis. We studied the roles of IL23, dietary factors, alterations to the microbiota, and T cells in development and progression of colitis in mice. All mice were maintained on lab diet 5053, unless otherwise noted. We generated mice that express IL23 in CX3CR1-positive myeloid cells (R23FR mice) upon cyclic administration of tamoxifen dissolved in diet 2019. Diet 2019 and 5053 have minor differences in the overall composition of protein, fat, fiber, minerals, and vitamins. CX3CR1 CreER mice (FR mice) were used as controls. Some mice were given antibiotics and others were raised in a germ-free environment. Intestinal tissues were collected and analyzed by histology and flow cytometry. Feces were collected and analyzed by 16S rDNA sequencing. Feces from C57/Bl6, R23FR, or FR mice were fed to FR and R23FR germ-free mice in microbiota transplant experiments. We also performed studies with R23FR/Rag -/- , R23FR/Mu -/- , and R23FR/Tcrd -/- mice. R23FR mice were given injections of antibodies against CD4 or CD8 to deplete T cells. Mesenteric lymph nodes and large intestine CD4 + cells from R23FR or FR mice in remission from colitis were transferred into Rag -/- mice. CD4 + cells were isolated from donor R23FR mice and recipient Rag -/- mice, and T-cell receptor sequences were determined. Expression of IL23 led to development of a relapsing-remitting colitis that was dependent on the microbiota and CD4 + T cells. The relapses were caused by switching from the conventional diet used in our facility (diet 5053) to the diet 2019, and were not dependent on tamoxifen after the first cycle. The switch in the diet modified the microbiota, but did not alter levels of IL23 in intestinal tissues, compared to mice that remained on the conventional diet. Mesenteric lymph nodes and large intestine CD4 + cells from R23FR mice in remission, but not from FR mice, induced

  17. Deoxycholic Acid-Mediated Sphingosine-1-Phosphate Receptor 2 Signaling Exacerbates DSS-Induced Colitis through Promoting Cathepsin B Release.

    PubMed

    Zhao, Shengnan; Gong, Zizhen; Du, Xixi; Tian, Chunyan; Wang, Lingyu; Zhou, Jiefei; Xu, Congfeng; Chen, Yingwei; Cai, Wei; Wu, Jin

    2018-01-01

    We recently have proved that excessive fecal DCA caused by high-fat diet may serve as an endogenous danger-associated molecular pattern to activate NLRP3 inflammasome and thus contributes to the development of inflammatory bowel disease (IBD). Moreover, the effect of DCA on inflammasome activation is mainly mediated through bile acid receptor sphingosine-1-phosphate receptor 2 (S1PR2); however, the intermediate process remains unclear. Here, we sought to explore the detailed molecular mechanism involved and examine the effect of S1PR2 blockage in a colitis mouse model. In this study, we found that DCA could dose dependently upregulate S1PR2 expression. Meanwhile, DCA-induced NLRP3 inflammasome activation is at least partially achieved through stimulating extracellular regulated protein kinases (ERK) signaling pathway downstream of S1PR2 followed by promoting of lysosomal cathepsin B release. DCA enema significantly aggravated DSS-induced colitis in mice and S1PR2 inhibitor as well as inflammasome inhibition by cathepsin B antagonist substantially reducing the mature IL-1 β production and alleviated colonic inflammation superimposed by DCA. Therefore, our findings suggest that S1PR2/ERK1/2/cathepsin B signaling plays a critical role in triggering inflammasome activation by DCA and S1PR2 may represent a new potential therapeutic target for the management of intestinal inflammation in individuals on a high-fat diet.

  18. Stress activates pronociceptive endogenous opioid signalling in DRG neurons during chronic colitis.

    PubMed

    Guerrero-Alba, Raquel; Valdez-Morales, Eduardo E; Jimenez-Vargas, Nestor N; Lopez-Lopez, Cintya; Jaramillo-Polanco, Josue; Okamoto, Takanobu; Nasser, Yasmin; Bunnett, Nigel W; Lomax, Alan E; Vanner, Stephen J

    2017-12-01

    Psychological stress accompanies chronic inflammatory diseases such as IBD, and stress hormones can exacerbate pain signalling. In contrast, the endogenous opioid system has an important analgesic action during chronic inflammation. This study examined the interaction of these pathways. Mouse nociceptive dorsal root ganglia (DRG) neurons were incubated with supernatants from segments of inflamed colon collected from patients with chronic UC and mice with dextran sodium sulfate (cDSS)-induced chronic colitis. Stress effects were studied by adding stress hormones (epinephrine and corticosterone) to dissociated neurons or by exposing cDSS mice to water avoidance stress. Changes in excitability of colonic DRG nociceptors were measured using patch clamp and Ca 2+ imaging techniques. Supernatants from patients with chronic UC and from colons of mice with chronic colitis caused a naloxone-sensitive inhibition of neuronal excitability and capsaicin-evoked Ca 2+ responses. Stress hormones decreased signalling induced by human and mouse supernatants. This effect resulted from stress hormones signalling directly to DRG neurons and indirectly through signalling to the immune system, leading to decreased opioid levels and increased acute inflammation. The net effect of stress was a change endogenous opioid signalling in DRG neurons from an inhibitory to an excitatory effect. This switch was associated with a change in G protein-coupled receptor excitatory signalling to a pathway sensitive to inhibitors of protein kinase A-protein, phospholipase C-protein and G protein βϒ subunits. Stress hormones block the inhibitory actions of endogenous opioids and can change the effect of opioid signalling in DRG neurons to excitation. Targeting these pathways may prevent heavy opioid use in IBD. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  19. Use of Budesonide in the Treatment of Microscopic Colitis

    PubMed Central

    Tangri, Vikram; Chande, Nilesh

    2010-01-01

    Collagenous colitis and lymphocytic colitis, the two types of microscopic colitis, cause watery diarrhea. Budesonide, a glucocorticoid medication with limited systemic availability, is commonly used to treat these illnesses. Budesonide has proven efficacy in the induction of clinical remission in both collagenous colitis and lymphocytic colitis. Budesonide is effective as a maintenance drug for patients with collagenous colitis, but has not been studied for this indication in patients with lymphocytic colitis. This drug improves quality of life in patients while causing few mild adverse events. Budesonide is an effective treatment of microscopic colitis that is safe and well tolerated. PMID:20616427

  20. Ulcerative colitis masked by giant urticaria.

    PubMed

    Caroselli, C; Plocco, M; Pratticò, F; Bruno, C; Antonaglia, C; Rota, F; Curreli, I; Caroselli, A; Bruno, G

    2007-01-01

    The occurrence of giant urticaria and ulcerative colitis is very infrequent. A 23 year-old female reported the initial eruption of short-lived cutaneous itchy weals on her arms. Then lesions ran together and became confluent, extending to her legs, followed by undefined abdominal pain and a slight increase of body temperature. Exams showed hystologically confirmed ulcerative colitis, with perinuclear anti-neutrophil cytoplasmic antibody positivity. Ulcerative colitis therapy led not only to the remission of the colitic symptoms, but also to the prompt recovery of skin manifestations. Urticaria was the epiphenomenon of ulcerative colitis.

  1. Effect of Arctium lappa L. in the dextran sulfate sodium colitis mouse model.

    PubMed

    Huang, Tzou-Chi; Tsai, Shinn-Shyong; Liu, Li-Fang; Liu, Yu Lin; Liu, Hung-Jen; Chuang, Kuo Pin

    2010-09-07

    To analyze the possible protective role of Arctium lappa L. (AL) in a murine model of ulcerative colitis (UC). BALB/c mice were administered 100 mg/kg AL powder orally each day. After 7 d, colitis was induced by administration of dextran sulfate sodium (DSS) (5% W/V) in drinking water for a further 8 consecutive days. Diarrhea and bloody stools as well as colonic histology were observed. The level of interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-alpha) in colonic sections were detected by immunohistochemistry. There were significant differences in mean body weight values and disease activity indices between controls and AL-treated animals. Moreover, the histological findings showed that AL treatment can prevent mucosal edema, submucosal erosions, ulceration, inflammatory cell infiltration and colon damage. In addition, immunohistochemistry analysis showed that the levels of the inflammatory cytokines, IL-6 and TNF-alpha were also decreased in AL-treated groups. We suggest that AL can prevent intestinal damage and decrease inflammatory cytokines in mice with DSS-induced colitis. Thus, AL could prove to be a useful food for UC.

  2. Vancomycin-resistant Enterococcus faecium bacteraemia as a complication of Kayexalate (sodium polystyrene sulfonate, SPS) in sorbitol-induced ischaemic colitis.

    PubMed

    Cerrud-Rodriguez, Roberto Christian; Alcaraz-Alvarez, Diego; Chiong, Brian Bobby; Ahmed, Abdurhman

    2017-11-09

    We present the case report of an 80-year-old woman with chronic kidney disease stage G5 admitted to the hospital with fluid overload and hyperkalaemia. Sodium polystyrene sulfonate (SPS, Kayexalate) in sorbitol suspension was given orally to treat her hyperkalaemia, which precipitated an episode of SPS in sorbitol-induced ischaemic colitis with the subsequent complication of vancomycin-resistant Enterococcus (VRE) bacteraemia. SPS (Kayexalate) in sorbitol suspension has been implicated in the development of intestinal necrosis. Sorbitol, which is added as a cathartic agent to decrease the chance of faecal impaction, may be primarily responsible through several proposed mechanisms. The gold standard of diagnosis is the presence of SPS crystals in the colon biopsy. On a MEDLINE search, no previous reports of a VRE bacteraemia as a complication of biopsy-confirmed SPS in sorbitol ischaemic colitis were found. To the best of our knowledge, ours would be the first such case ever reported. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  3. Nitric oxide-releasing aspirin but not conventional aspirin improves healing of experimental colitis

    PubMed Central

    Zwolinska-Wcislo, Malgorzata; Brzozowski, Tomasz; Ptak-Belowska, Agata; Targosz, Aneta; Urbanczyk, Katarzyna; Kwiecien, Slawomir; Sliwowski, Zbigniew

    2011-01-01

    AIM: To determine the effect of non-selective cyclooxygenase (COX) inhibitors, selective COX-2 inhibitors and nitric oxide (NO)-releasing aspirin in the healing of ulcerative colitis. METHODS: Rats with 2,4,6 trinitrobenzenesulfon-ic acid (TNBS)-induced colitis received intragastric (ig) treatment with vehicle, aspirin (ASA) (a non-selective COX inhibitor), celecoxib (a selective COX-2 inhibitor) or NO-releasing ASA for a period of ten days. The area of colonic lesions, colonic blood flow (CBF), myeloperoxidase (MPO) activity and expression of proinflammatory markers COX-2, inducible form of nitric oxide synthase (iNOS), IL-1β and tumor necrosis factor (TNF)-α were assessed. The effects of glyceryl trinitrate (GTN), a NO donor, and 2-(4-carboxyphenyl)-4,5-dihydro-4,4,5,5-​tetramethyl-1H-imidazolyl-1-oxy-3-oxide, onopotassium salt (carboxy-PTIO), a NO scavenger, administered without and with ASA or NO-ASA, and the involvement of capsaicin-sensitive afferent nerves in the mechanism of healing the experimental colitis was also determined. RESULTS: Rats with colitis developed macroscopic and microscopic colonic lesions accompanied by a significant decrease in the CBF, a significant rise in colonic weight, MPO activity and plasma IL-1β and TNF-α levels. These effects were aggravated by ASA and 5-(4-chlorophenyl)-1-(4-methoxyphenyl)-3-(trifluoromethyl)-1H-pyrazole (SC-560), but not celecoxib and counteracted by concurrent treatment with a synthetic prostaglandin E2 (PGE2) analog. Treatment with NO-ASA dose-dependently accelerated colonic healing followed by a rise in plasma NOx content and CBF, suppression of MPO and downregulation of COX-2, iNOS, IL-1β and TNF-α mRNAs. Treatment with GTN, the NO donor, significantly inhibited the ASA-induced colonic lesions and increased CBF, while carboxy-PTIO or capsaicin-denervation counteracted the NO-ASA-induced improvement of colonic healing and the accompanying increase in the CBF. These effects were restored by co

  4. Plasma cytokine levels in ulcerative colitis.

    PubMed

    Goral, Vedat; Celenk, Tahir; Kaplan, Abdurahman; Sit, Dede

    2007-06-01

    Some immunological factors are responsible in the pathogenesis of ulcerative colitis. There is a relationship between cytokines and ulcerative colitis. In this study 20 ulcerative colitis patients (mean age 36.2 years old, 9 women, 11 men) and 20 healthy control groups (mean age 27.2 years old, 11 women, 9 men) were involved in the study. We established that IL-2Rsp, IL-6, IL-8 and IL-10 levels were different at the patients and control groups (p < 0.005). TNF-alpha and IL-1 beta were similar at the both groups. According to these results, IL-2Rsp, IL-6, 11-8 and IL-10 play an important role in the pathogenesis of ulcerative colitis. We consider that these cytokines are beneficial parameters in the diagnosis, treatment and prognosis of ulcerative colitis.

  5. A case of cytomegalovirus colitis following immunosuppressive treatment for pyoderma gangrenosum.

    PubMed

    Kikuchi, Hidezumi; Nagamine, Hidehiro; Setoyama, Mitsuru

    2005-04-01

    We report a case of pyoderma gangrenosum (PG) complicated by cytomegalovirus (CMV)-induced colitis. A 79-year-old woman with PG was treated with corticosteroid and cyclosporin. She had blood in her stool and advancing anemia during the treatment. A colonoscopic biopsy specimen from the colon revealed typical CMV-infected cells with CMV inclusions confirmed by immunohistochemistry. Furthermore, there were many CMV-antigen-positive leukocytes, suggesting an active CMV infection, which is serious in compromised hosts. Although ulcerative colitis and Crohn's disease are well known as complications of PG, CMV enterocolitis should be considered in the differential diagnosis of enterocolitis in immunocompromised patients.

  6. Acute colitis caused by caustic products.

    PubMed

    da Fonseca, J; Brito, M J; Freitas, J; Leal, C

    1998-12-01

    We report two cases of acute proctocolitis caused by rectal application of caustic products of domestic use. One 61-yr-old woman applied an ammonia solution enema; the other patient, a 63-yr-old woman, accidentally applied an enema containing lye. Both patients presented with intense anal pain, but the first patient also had abdominal pain with guarding, hematochezia, and leucocytosis. An acute proctocolitis was found at sigmoidoscopy in both patients. Only conservative and symptomatic measures were prescribed in both cases, and a clinical and endoscopic recovery was seen. In spite of persistent fibrosis in the lamina propria, no signs of stenosis were found.

  7. Constitutive ω-3 fatty acid production in fat-1 transgenic mice and docosahexaenoic acid administration to wild type mice protect against 2,4,6-trinitrobenzene sulfonic acid-induced colitis.

    PubMed

    Yum, Hye-Won; Kang, Jing X; Hahm, Ki Baik; Surh, Young-Joon

    2017-06-10

    Omega-3 (ω-3) polyunsaturated fatty acids (PUFAs) are known to have strong anti-inflammatory effects. In the present study, we investigated the protective effects of ω-3 PUFAs on experimentally induced murine colitis. Intrarectal administration of 2.5% 2,4,6-trinitrobenzene sulfonic acid (TNBS) caused inflammation in the colon of wild type mice, but this was less severe in fat-1 transgenic mice that constitutively produce ω-3 PUFAs from ω-6 PUFAs. The intraperitoneal administration of docosahexaenoic acid (DHA), a representative ω-3 PUFA, was also protective against TNBS-induced murine colitis. In addition, endogenously formed and exogenously introduced ω-3 PUFAs attenuated the production of malondialdehyde and 4-hydroxynonenal in the colon of TNBS-treated mice. The effective protection against inflammatory and oxidative colonic tissue damages in fat-1 and DHA-treated mice was associated with suppression of NF-κB activation and cyclooxygenase-2 expression and with elevated activation of Nrf2 and upregulation of its target gene, heme oxygenase-1. Taken together, these results provide mechanistic basis of protective action of ω-3 fatty PUFAs against experimental colitis. Copyright © 2017. Published by Elsevier Inc.

  8. Co-administration of α-lipoic acid and cyclosporine aggravates colon ulceration of acetic acid-induced ulcerative colitis via facilitation of NO/COX-2/miR-210 cascade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El-Gowelli, Hanan M., E-mail: dr_Hanan_el_gowali@hotmail.com; Saad, Evan I.; Abdel-Galil, Abdel-Galil A.

    In this work, α-lipoic acid and cyclosporine demonstrated significant protection against acetic acid-induced ulcerative colitis in rats. We proposed that α-lipoic acid and cyclosporine co-administration might modulate their individual effects. Induction of ulcerative colitis in rats was performed by intra-rectal acetic acid (5% v/v) administration for 3 consecutive days. Effects of individual or combined used of α-lipoic acid (35 mg/kg ip) or cyclosporine (5 mg/kg sc) for 6 days starting 2 days prior to acetic acid were assessed. Acetic acid caused colon ulceration, bloody diarrhea and weight loss. Histologically, there was mucosal atrophy and inflammatory cells infiltration in submucosa, associatedmore » with depletion of colon reduced glutathione, superoxide dismutase and catalase activities and elevated colon malondialdehyde, serum C-reactive protein (C-RP) and tumor necrosis factor-α (TNF-α). Colon gene expression of cyclooxygenase-2 and miR-210 was also elevated. These devastating effects of acetic acid were abolished upon concurrent administration of α-lipoic acid. Alternatively, cyclosporine caused partial protection against acetic acid-induced ulcerative colitis. Cyclosporine did not restore colon reduced glutathione, catalase activity, serum C-RP or TNF-α. Unexpectedly, co-administration of α-lipoic acid and cyclosporine aggravated colon ulceration. Concomitant use of α-lipoic acid and cyclosporine significantly increased nitric oxide production, cyclooxygenase-2 and miR-210 gene expression compared to all other studied groups. The current findings suggest that facilitation of nitric oxide/cyclooxygenase-2/miR-210 cascade constitutes, at least partially, the cellular mechanism by which concurrent use of α-lipoic acid and cyclosporine aggravates colon damage. Collectively, the present work highlights the probable risk of using α-lipoic acid/cyclosporine combination in ulcerative colitis patients. - Highlights: • Lipoic acid is more effective

  9. CT findings in ulcerative, granulomatous, and indeterminate colitis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gore, R.M.; Marn, C.S.; Kirby, D.F.

    1984-08-01

    Eight patients with ulcerative colitis, three with colitis indeterminate, and 15 patients with Crohn disease were studied by computed tomography (CT) to establish CT criteria for each disorder in hopes of providing a new diagnostic perspective useful in the radiographic evaluation of inflammatory colitis. The CT findings in ulcerative colitis included thickening of the colon wall, which was characterized by inhomogeneous attenuation and a target appearance of the rectum, and proliferation of perirectal fat. Bowel wall thickening with homogeneous attenuation, fistula and abscess formation, and mesenteric abnormalities were observed in patients with Crohn colitis. Patients with colitis indeterminate showed colonicmore » changes on CT observed in both disorders. Initial experience suggests that CT can differentiate patients with well established ulcerative and Crohn colitis.« less

  10. Disturbance in the Mucosa-Associated Commensal Bacteria Is Associated with the Exacerbation of Chronic Colitis by Repeated Psychological Stress; Is That the New Target of Probiotics?

    PubMed Central

    Arase, Sohei; Watanabe, Yohei; Setoyama, Hiromi; Nagaoka, Noriko; Kawai, Mitsuhisa; Matsumoto, Satoshi

    2016-01-01

    Psychological stress can exacerbate inflammatory bowel disease. However, the mechanisms underlying how psychological stress affects gut inflammation remain unclear. Here, we focused on the relationship between changes in the microbial community of mucosa-associated commensal bacteria (MACB) and mucosal immune responses induced by chronic psychological stress in a murine model of ulcerative colitis. Furthermore, we examined the effect of probiotic treatment on exacerbated colitis and MACB composition changes induced by chronic psychological stress. Repeated water avoidance stress (rWAS) in B6-Tcra-/- mice severely exacerbated colitis, which was evaluated by both colorectal tissue weight and histological score of colitis. rWAS treatment increased mRNA expression of UCN2 and IFN-γ in large intestinal lamina propria mononuclear cells (LI-LPMC). Interestingly, exacerbated colitis was associated with changes in the microbial community of MACB, specifically loss of bacterial species diversity and an increase in the component ratio of Clostridium, revealed by 16S rRNA gene amplicon analysis. Finally, the oral administration of a probiotic Lactobacillus strain was protective against the exacerbation of colitis and was associated with a change in the bacterial community of MACB in rWAS-exposed Tcra-/- mice. Taken together, these results suggested that loss of species diversity in MACB might play a key role in exacerbated colitis induced by chronic psychological stress. In addition, probiotic treatment may be used as a tool to preserve the diversity of bacterial species in MACB and alleviate gut inflammation induced by psychological stress. PMID:27500935

  11. MAG-EPA reduces severity of DSS-induced colitis in rats.

    PubMed

    Morin, Caroline; Blier, Pierre U; Fortin, Samuel

    2016-05-15

    Ulcerative colitis (UC) is a chronic disease characterized by diffuse inflammation of the intestinal mucosa of the large bowel. Omega-3 (ω3) fatty acid supplementation has been associated with a decreased production of inflammatory cytokines involved in UC pathogenesis. The aim of this study was to determine the preventive and therapeutic potential of eicosapentaenoic acid monoglyceride (MAG-EPA) in an in vivo rats model of UC induced by dextran sulfate sodium (DSS). DSS rats were untreated or treated per os with MAG-EPA. Morphological, histological, and biochemical analyses were performed following MAG-EPA administrations. Morphological and histological analyses revealed that MAG-EPA pretreatment (12 days pre-DSS) and treatment (6 days post-DSS) exhibited strong activity in reducing severity of disease in DSS rats. Following MAG-EPA administrations, tissue levels of the proinflammatory cytokines TNF-α, IL-1β, and IL-6 were markedly lower compared with rats treated only with DSS. MAG-EPA per os administration decrease neutrophil infiltration in colon tissues, as depicted by myelohyperoxidase activity. Results also revealed a reduced activation of NF-κB pathways correlated with a decreased expression of COX-2 in colon homogenates derived from MAG-EPA-pretreated and treated rats. Tension measurements performed on colon tissues revealed that contractile responses to methacholine and relaxing effect induced by sodium nitroprusside were largely increased following MAG-EPA treatment. The combined treatment of MAG-EPA and vitamin E displayed an antagonistic effect on anti-inflammatory properties of MAG-EPA in DSS rats. Copyright © 2016 the American Physiological Society.

  12. Food-Induced Acute Pancreatitis.

    PubMed

    Manohar, Murli; Verma, Alok K; Upparahalli Venkateshaiah, Sathisha; Goyal, Hemant; Mishra, Anil

    2017-12-01

    Food allergy, a commonly increasing problem worldwide, defined as an adverse immune response to food. A variety of immune-related effector cells such as mast cells, eosinophils, neutrophils, and T cells are involved in food-related allergic responses categorized as IgE mediated, non-IgE mediated, and mixed (IgE and non-IgE) depending upon underlying immunological mechanisms. The dietary antigens mainly target the gastrointestinal tract including pancreas that gets inflamed due to food allergy and leads acute pancreatitis. Reports indicate several food proteins induce pancreatitis; however, detailed underlying mechanism of food-induced pancreatitis is unexplored. The aim of the review is to understand and update the current scenario of food-induced pancreatitis. A comprehensive literature search of relevant research articles has been performed through PubMed, and articles were chosen based on their relevance to food allergen-mediated pancreatitis. Several cases in the literature indicate that acute pancreatitis has been provoked after the consumption of mustard, milk, egg, banana, fish, and kiwi fruits. Food-induced pancreatitis is an ignored and unexplored area of research. The review highlights the significance of food in the development of pancreatitis and draws the attention of physicians and scientists to consider food allergies as a possible cause for initiation of pancreatitis pathogenesis.

  13. Sickle cell 'girdle syndrome' progressing to ischaemic colitis and colonic perforation.

    PubMed

    Qureshi, A; Lang, N; Bevan, D H

    2006-02-01

    Abdominal pain of presumed vasocclusive origin, often termed 'girdle syndrome' because of the circumferential distribution of the pain, is common in sickle cell anaemia (SCA). Evidence of progression to bowel infarction is rare. A 27-year-old man with SCA developed chest and abdominal pain unresponsive to opiate analgesia. Abdominal X-ray showed dilated bowel loops because of partial obstruction. Despite reduction of HbS to 23% by automated red cell exchange, abdominal pain worsened. A CT scan was the most informative investigation and showed free peritoneal air. He underwent emergency hemicolectomy and reversible ileostomy formation. Histology of the resected colon was consistent with acute ischaemic colitis. Early surgical intervention remains essential in SCA when abdominal pain does not respond to maximal therapy including red cell exchange: as this case illustrates, sickle girdle syndrome has the capacity to progress to irreversible ischaemic colitis and necrotic perforation of the bowel wall.

  14. Cerebroside D, a glycoceramide compound, improves experimental colitis in mice with multiple targets against activated T lymphocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Xue-Feng; Wu, Xing-Xin; Guo, Wen-Jie

    2012-09-15

    In the present paper, we aimed to examine the novel effects of cerebroside D, a glycoceramide compound, on murine experimental colitis. Cerebroside D significantly reduced the weight loss, mortality rate and alleviated the macroscopic and microscopic appearances of colitis induced by dexran sulfate sodium. This compound also decreased the levels of TNF-α, IFN-γ and IL-1β in intestinal tissue of mice with experimental colitis in a concentration-dependent manner, accompanied with markedly increased serum level of IL-10. Cerebroside D inhibited proliferation and induced apoptosis of T cells activated by concanavalin A or anti-CD3 plus anti-CD28 antibodies. The compound did not show anmore » effect on naive lymphocytes but prevented cells from entering S phase and G2/M phase during T cells activation. Moreover, the treatment of cerebroside D led to apoptosis of activated T cells with the cleavage of caspase 3, 9, 12 and PARP. These results showed multiple effects of cerebroside D against activated T cells for a novel approach to treatment of colonic inflammation. Highlights: ► Cerebroside D, a glycoceramide compound, alleviated DSS induced colitis. ► The mechanism of the compound involved multiple effects against activated T cells. ► It regulated cytokine profiles in mice with experimental colitis. ► It prevented T cells from entering S and G2/M phases during activation. ► It led to apoptosis of activated T cells with the cleavage of caspases and PARP.« less

  15. Anti-colitis and -adhesion effects of daikenchuto via endogenous adrenomedullin enhancement in Crohn's disease mouse model.

    PubMed

    Kono, Toru; Kaneko, Atsushi; Hira, Yoshiki; Suzuki, Tatsuya; Chisato, Naoyuki; Ohtake, Nobuhiro; Miura, Naoko; Watanabe, Tsuyoshi

    2010-06-01

    Adrenomedullin (ADM) is a member of the calcitonin family of regulatory peptides, and is reported to have anti-inflammatory effects in animal models of Crohn's disease (CD). We investigated the therapeutic effects of daikenchuto (DKT), an extracted Japanese herbal medicine, on the regulation of endogenous ADM in the gastrointestinal tract in a CD mouse model. Colitis was induced in mice by intrarectal instillation of 2,4,6-trinitrobenzenesulfonic acid (TNBS); afterwards, DKT was given orally. Colonic damage was assessed on day 3 by macroscopic and microscopic observation, enzyme immunoassays of proinflammatory cytokines in the colonic mucosa, and serum amyloid A (SAA), a hepatic acute-phase protein. To determine the involvement of ADM, an ADM antagonist was instilled intrarectally before DKT administration. The effect of DKT on ADM production by intestinal epithelial cells was evaluated by enzyme immunoassay and real-time PCR. DKT significantly attenuated mucosal damage and colonic inflammatory adhesions, and inhibited elevations of SAA in plasma and the proinflammatory cytokines TNFα and IFNγ in the colon. Small and large intestinal epithelial cells produced higher levels of ADM after DKT stimulation. A DKT-treated IEC-6 cell line also showed enhanced ADM production at protein and mRNA levels. Abolition of this effect by pretreatment with an ADM antagonist shows that DKT appears to exert its anti-colitis effect via up-regulation of endogenous ADM in the intestinal tract. DKT exerts beneficial effects in a CD mouse model through endogenous release and production of ADM. Endogenous ADM may be a therapeutic target for CD. Copyright © 2009 European Crohn's and Colitis Organisation. Published by Elsevier B.V. All rights reserved.

  16. Anti-inflammatory natural product goniothalamin reduces colitis-associated and sporadic colorectal tumorigenesis

    PubMed Central

    Vendramini-Costa, Débora Barbosa; Francescone, Ralph; Posocco, David; Hou, Vivianty; Dmitrieva, Oxana; Hensley, Harvey; de Carvalho, João Ernesto; Pilli, Ronaldo Aloise; Grivennikov, Sergei I.

    2017-01-01

    The tumor microenvironment offers multiple targets for cancer therapy, including pro-tumorigenic inflammation. Natural compounds represent an enormous source of new anti-inflammatory and anticancer agents. We previously showed that the styryl lactone goniothalamin (GTN) has promising antiproliferative and anti-inflammatory activities. Because inflammation is a major driver of colorectal cancer (CRC), we therefore evaluated the therapeutic and preventive potentials of GTN in colitis, colitis-associated cancer (CAC) and spontaneous CRC. First, in a simplistic model of inflammation in vitro, GTN was able to inhibit cytokine production in bone marrow-derived macrophages induced by lipopolysaccharide. Next, in dextran sulfate sodium (DSS) induced-colitis model, mice treated with GTN displayed restored tissue architecture, increased cell proliferation in the colonic crypts and reduced epithelial damage. Moreover, colon tissue from GTN-treated mice had significantly less expression of the inflammatory genes interleukin 1β (IL-1β), tumor necrosis factor α (TNF-α), interleukin 6 (IL-6), S100A9, interleukin 23A (IL-23A), IL-22 and IL-17A. In the azoxymethane/DSS model of CAC, GTN reduced tumor multiplicity, load and size. Additionally, GTN suppressed production of IL-6, IL-17 and TNF-α in tumor tissue, as well as abrogated stromal immune cell activation and nuclear translocation of NF-κB. Finally, in a tamoxifen inducible model of sporadic CRC, GTN-treated mice had significantly fewer tumors and decreased levels of IL-17A, IL-6, S100A9 and TNF-α protein within the tumors. These results suggest that GTN possesses anti-inflammatory and antitumor activities and represents a preventive and therapeutic agent modulating the inflammatory environment in the colon during colitis as well as CAC and CRC development. PMID:27797827

  17. Microscopic colitis: the tip of the iceberg?

    PubMed

    Kitchen, Paul A; Levi, A Jonathen; Domizio, Paula; Talbot, Ian C; Forbes, Alastair; Price, Ashley B

    2002-11-01

    The aims were to determine whether a wide variation exists between hospitals in the diagnosis of microscopic colitis and to assimilate clinical data. Retrospective study of 90 patients with microscopic colitis aged between 16 and 92 years from 11 hospitals in south-east England. A questionnaire was designed to collect relevant data from all patients in whom a new diagnosis of microscopic colitis had been made at the source hospital between January 1990 and December 1996. The inclusion criteria were presentation with watery diarrhoea, a normal endoscopy and a histological report of microscopic colitis. Histology slides were then requested and reviewed. Clinical data were analysed with reference to the confirmed diagnosis. The number of patients diagnosed at each hospital ranged between zero and 30, with a median of six. Sixty-eight patients had histological slides reviewed. The numbers of patients with a final reviewed diagnosis of collagenous colitis, lymphocytic colitis and microscopic colitis, type undesignated, were 37, 18 and seven respectively. In thirty-one patients (34%) there was a recent history of the use of non-steroidal anti-inflammatory drugs. These data confirm that there is wide hospital variation in the diagnosis of microscopic colitis. Furthermore, the small group with the undesignated type may be associated with the use of non-steroidal anti-inflammatory drugs.

  18. Baseline gut microbiota predicts clinical response and colitis in metastatic melanoma patients treated with ipilimumab.

    PubMed

    Chaput, N; Lepage, P; Coutzac, C; Soularue, E; Le Roux, K; Monot, C; Boselli, L; Routier, E; Cassard, L; Collins, M; Vaysse, T; Marthey, L; Eggermont, A; Asvatourian, V; Lanoy, E; Mateus, C; Robert, C; Carbonnel, F

    2017-06-01

    Ipilimumab, an immune checkpoint inhibitor targeting CTLA-4, prolongs survival in a subset of patients with metastatic melanoma (MM) but can induce immune-related adverse events, including enterocolitis. We hypothesized that baseline gut microbiota could predict ipilimumab anti-tumor response and/or intestinal toxicity. Twenty-six patients with MM treated with ipilimumab were prospectively enrolled. Fecal microbiota composition was assessed using 16S rRNA gene sequencing at baseline and before each ipilimumab infusion. Patients were further clustered based on microbiota patterns. Peripheral blood lymphocytes immunophenotypes were studied in parallel. A distinct baseline gut microbiota composition was associated with both clinical response and colitis. Compared with patients whose baseline microbiota was driven by Bacteroides (cluster B, n = 10), patients whose baseline microbiota was enriched with Faecalibacterium genus and other Firmicutes (cluster A, n = 12) had longer progression-free survival (P = 0.0039) and overall survival (P = 0.051). Most of the baseline colitis-associated phylotypes were related to Firmicutes (e.g. relatives of Faecalibacterium prausnitzii and Gemmiger formicilis), whereas no colitis-related phylotypes were assigned to Bacteroidetes. A low proportion of peripheral blood regulatory T cells was associated with cluster A, long-term clinical benefit and colitis. Ipilimumab led to a higher inducible T-cell COStimulator induction on CD4+ T cells and to a higher increase in serum CD25 in patients who belonged to Faecalibacterium-driven cluster A. Baseline gut microbiota enriched with Faecalibacterium and other Firmicutes is associated with beneficial clinical response to ipilimumab and more frequent occurrence of ipilimumab-induced colitis. © The Author 2017. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  19. Pharmacological activity of 6-gingerol in dextran sulphate sodium-induced ulcerative colitis in BALB/c mice.

    PubMed

    Ajayi, Babajide O; Adedara, Isaac A; Farombi, Ebenezer O

    2015-04-01

    Gingerols are phenolic compounds in ginger (Zingiber officinale), which have been reported to exhibit antiinflammatory, antioxidant, and anticancer properties. The present study aimed at evaluating the possible pharmacologic activity of 6-gingerol in a mouse model of dextran sulphate sodium (DSS)-induced ulcerative colitis. Adult male mice were exposed to DSS in drinking water alone or co-treated with 6-gingerol orally at 50, 100, and 200 mg/kg for 7 days. Disease activity index, inflammatory mediators, oxidative stress indices, and histopathological examination of the colons were evaluated to monitor treatment-related effects of 6-gingerol in DSS-treated mice. Administration of 6-gingerol significantly reversed the DSS-mediated reduction in body weight, diarrhea, rectal bleeding, and colon shrinkage to near normal. Moreover, 6-gingerol significantly suppressed the circulating concentrations of interleukin-1β and tumor necrosis factor alpha and restored the colonic nitric oxide concentration and myeloperoxidase activity to normal in DSS-treated mice. 6-Gingerol efficiently prevented colonic oxidative damage by increasing the activities of antioxidant enzymes and glutathione content, decreasing the hydrogen peroxide and malondialdehyde levels, and ameliorated the colonic atrophy in DSS-treated mice. 6-Gingerol suppressed the induction of ulcerative colitis in mice via antioxidant and antiinflammatory activities, and may thus represent a potential anticolitis drug candidate. Copyright © 2015 John Wiley & Sons, Ltd.

  20. Intestinal anti-inflammatory effects of RGD-functionalized silk fibroin nanoparticles in trinitrobenzenesulfonic acid-induced experimental colitis in rats

    PubMed Central

    Rodriguez-Nogales, Alba; Algieri, Francesca; De Matteis, Laura; Lozano-Perez, A. Abel; Garrido-Mesa, Jose; Vezza, Teresa; de la Fuente, J M.; Cenis, Jose Luis; Gálvez, Julio; Rodriguez-Cabezas, Maria Elena

    2016-01-01

    Background Current treatment of inflammatory bowel disease is based on the use of immunosuppressants or anti-inflammatory drugs, which are characterized by important side effects that can limit their use. Previous research has been performed by administering these drugs as nanoparticles that target the ulcerated intestinal regions and increase their bioavailability. It has been reported that silk fibroin can act as a drug carrier and shows anti-inflammatory properties. Purpose This study was designed to enhance the interaction of the silk fibroin nanoparticles (SFNs) with the injured intestinal tissue by functionalizing them with the peptide motif RGD (arginine–glycine–aspartic acid) and to evaluate the intestinal anti-inflammatory properties of these RGD-functionalized silk fibroin nanoparticles (RGD-SFNs) in the trinitrobenzenesulfonic acid (TNBS) model of rat colitis. Materials and methods SFNs were prepared by nanoprecipitation in methanol, and the linear RGD peptide was linked to SFNs using glutaraldehyde as the crosslinker. The SFNs (1 mg/rat) and RGD-SFNs (1 mg/rat) were administered intrarectally to TNBS-induced colitic rats for 7 days. Results The SFN treatments ameliorated the colonic damage, reduced neutrophil infiltration, and improved the compromised oxidative status of the colon. However, only the rats treated with RGD-SFNs showed a significant reduction in the expression of different pro-inflammatory cytokines (interleukin [IL]-1β, IL-6, and IL-12) and inducible nitric oxide synthase in comparison with the TNBS control group. Moreover, the expression of both cytokine-induced neutrophil chemoattractant-1 and monocyte chemotactic protein-1 was significantly diminished by the RGD-SFN treatment. However, both treatments improved the intestinal wall integrity by increasing the gene expression of some of its markers (trefoil factor-3 and mucins). Conclusion SFNs displayed intestinal anti-inflammatory properties in the TNBS model of colitis in rats

  1. Oral administration of probiotic bacteria (E. coli Nissle, E. coli O83, Lactobacillus casei) influences the severity of dextran sodium sulfate-induced colitis in BALB/c mice.

    PubMed

    Kokesová, A; Frolová, L; Kverka, M; Sokol, D; Rossmann, P; Bártová, J; Tlaskalová-Hogenová, H

    2006-01-01

    Our study examined whether repeated preventive oral administration of live probiotic bacterial strains Escherichia coli O83:K24:H31 (Ec O83), Escherichia coli Nissle 1917 O6:K5:H1 (Ec Nis) and Lactobacillus casei DN 114001 (Lc) can protect mice against dextran sodium sulfate (DSS)-induced colitis. A significant decrease in average symptom score was observed in Ec O83-, Ec Nis- and Lc-pretreated group (p < 0.05). Significant differences in body mass loss between Lc pretreated mice with DSS-induced colitis were found when compared with nontreated mice (p < 0.05). PBS pretreated mice had a significantly shorter colon than Ec O83-, Ec Nis- and Lc-pretreated mice (p < 0.05). Administration of Lc significantly decreased the severity of DSS induced histological marks of inflammation (p < 0.05). A significant difference (p < 0.05) was also found in specific IgA level against given probiotic in enteral fluid between colitic mice and healthy mice pretreated with Ec 083 and Ec Nis.

  2. P2X7 receptor promotes intestinal inflammation in chemically induced colitis and triggers death of mucosal regulatory T cells.

    PubMed

    Figliuolo, Vanessa R; Savio, Luiz Eduardo Baggio; Safya, Hanaa; Nanini, Hayandra; Bernardazzi, Cláudio; Abalo, Alessandra; de Souza, Heitor S P; Kanellopoulos, Jean; Bobé, Pierre; Coutinho, Cláudia M L M; Coutinho-Silva, Robson

    2017-06-01

    P2X7 receptor activation contributes to inflammation development in different pathologies. We previously reported that the P2X7 receptor is over-expressed in the gut mucosa of patients with inflammatory bowel disease, and that P2X7 inhibition protects against chemically induced colitis. Here, we investigated in detail the role of the P2X7 receptor in inflammatory bowel disease development, by treating P2X7 knockout (KO) and WT mice with two different (and established) colitis inductors. P2X7 KO mice were protected against gut inflammation induced by 2,4,6-trinitrobenzenesulfonic acid or oxazolone, with no weight loss or gut histological alterations after treatment. P2X7 receptor knockout induced regulatory T cell accumulation in the colon, as evaluated by qRT-PCR for FoxP3 expression and immunostaining for CD90/CD45RB low . Flow cytometry analysis of mesenteric lymph node cells showed that P2X7 activation (by ATP) triggered regulatory T cell death. In addition, such cells from P2X7 KO mice expressed more CD103, suggesting increased migration of regulatory T cells to the colon (relative to the WT). Our results show that the P2X7 has a key role during inflammation development in inflammatory bowel disease, by triggering the death and retention in the mesenteric lymph nodes of regulatory T cells that would otherwise promote immune system tolerance in the gut. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Serum calprotectin levels correlate with biochemical and histological markers of disease activity in TNBS colitis

    PubMed Central

    Cury, Didia Bismara; Mizsputen, Sender Jankiel; Versolato, Clara; Miiji, Luciana Odashiro; Pereira, Edson; Delboni, Maria Aparecida; Schor, Nestor; Moss, Alan C.

    2014-01-01

    Background and aim Serum calprotectin is elevated in patients with inflammatory bowel disease (IBD). Whether it correlates other markers of disease activity is unknown. The aim of this study was to correlate serum calprotectin with biochemical and histological measures of intestinal inflammation. Materials and methods TNBS colitis was induced in wistar rats, and serial blood samples were collected at 0, 3, and 12 days. Animals were subsequently sacrificed for pathological evaluation at day 12. Serum calprotectin and cytokines were measured by ELISA. Pathologic changes were classified at the macroscopic and microscopic levels. Results TNBS colitis induced elevated serum calprotectin, TNF and IL-6 within 24 h. Levels of serum calprotectin remained elevated in parallel to persistence of loose stool and weight loss to day 12. Serum calprotectin levels correlated with serum levels of TNF-α and IL6 (p < 0.001), but not CRP. Animals with liquid stool had significantly higher levels of serum calprotectin than control animals. There was a correlation between macroscopic colitis scores, and levels of serum calprotectin. Conclusion Serum calprotectin levels correlate with biochemical and histological markers of inflammation in TNBS colitis. This biomarker may have potential for diagnostic use in patients with IBD. PMID:23685388

  4. Induction of colitis in young rats by dextran sulfate sodium.

    PubMed

    Vicario, María; Crespí, Mar; Franch, Angels; Amat, Concepció; Pelegrí, Carme; Moretó, Miquel

    2005-01-01

    Models using dextran sulfate sodium (DSS) to induce experimental colitis in rodents have been performed mostly in adult animals. For this reason, we aimed to develop a model of colitis in young rats. DSS was administered to 30-day-old rats at concentrations ranging from 0.5 to 5% in drinking water. Young rats were remarkably sensitive to DSS since clinical symptoms rapidly rose with 5% DSS and most animals died after the fifth day. With 1 and 2% DSS, the severity of mucosal lesions was also high on day 7, the animals showing leukocytosis and anemia. At 0.5% DSS, leukocytosis and mild colonic lesions were induced. This concentration of DSS significantly increased myeloperoxidase activity and goblet cell number in the colon, indicating mucosal inflammation. Since food consumption was not reduced by 0.5% DSS, we suggest that this protocol can be used to study the effects of dietary supplements on intestinal inflammatory processes.

  5. Induction of Colitis in Young Rats by Dextran Sulfate Sodium.

    PubMed

    Vicario, María; Crespí, Mar; Franch, Àngels; Amat, Concepció; Pelegrí, Carme; Moretó, Miquel

    2005-01-01

    Models using dextran sulfate sodium (DSS) to induce experimental colitis in rodents have been performed mostly in adult animals. For this reason, we aimed to develop a model of colitis in young rats. DSS was administered to 30-day-old rats at concentrations ranging from 0.5 to 5% in drinking water. Young rats were remarkably sensitive to DSS since clinical symptoms rapidly rose with 5% DSS and most animals died after the fifth day. With 1 and 2% DSS, the severity of mucosal lesions was also high on day 7, the animals showing leukocytosis and anemia. At 0.5% DSS, leukocytosis and mild colonic lesions were induced. This concentration of DSS significantly increased myeloperoxidase activity and goblet cell number in the colon, indicating mucosal inflammation. Since food consumption was not reduced by 0.5% DSS, we suggest that this protocol can be used to study the effects of dietary supplements on intestinal inflammatory processes.

  6. Vagotomy Affects the Development of Oral Tolerance and Increases Susceptibility to Develop Colitis Independently of α-7 Nicotinic Receptor

    PubMed Central

    Di Giovangiulio, Martina; Bosmans, Goele; Meroni, Elisa; Stakenborg, Nathalie; Florens, Morgane; Farro, Giovanna; Gomez-Pinilla, Pedro J; Matteoli, Gianluca; Boeckxstaens, Guy E

    2016-01-01

    Vagotomy (VGX) increases the susceptibility to develop colitis suggesting a crucial role for the cholinergic anti-inflammatory pathway in the regulation of the immune responses. Since oral tolerance and the generation of regulatory T cells (Tregs) are crucial to preserve mucosal immune homeostasis, we studied the effect of vagotomy and the involvement of α7 nicotinic receptors (α7nAChR) at the steady state and during colitis. Therefore, the development of both oral tolerance and colitis (induced by dextran sulfate sodium (DSS) or via T cell transfer) was studied in vagotomized mice and in α7nAChR-/- mice. VGX, but not α7nAChR deficiency, prevented oral tolerance establishment. This effect was associated with reduced Treg conversion in the lamina propria and mesenteric lymphnodes. To the same extent, vagotomized mice, but not α7nAChR-/- mice, developed a more severe DSS colitis compared with control mice treated with DSS, associated with a decreased number of colonic Tregs. However, neither VGX nor absence of α7nAChR in recipient mice affected colitis development in the T cell transfer model. In line, deficiency of α7nAChR exclusively in T cells did not influence the development of colitis induced by T cell transfer. Our results indicate a key role for the vagal intestinal innervation in the development of oral tolerance and colitis, most likely by modulating induction of Tregs independently of α7nAChR. PMID:27341335

  7. Apple polyphenols extract (APE) improves colon damage in a rat model of colitis.

    PubMed

    D'Argenio, Giuseppe; Mazzone, Giovanna; Tuccillo, Concetta; Ribecco, Maria T; Graziani, Giulia; Gravina, Antonietta G; Caserta, Sergio; Guido, Stefano; Fogliano, Vincenzo; Caporaso, Nicola; Romano, Marco

    2012-07-01

    Searching for alternative therapies that are effective, safe and less expensive of those currently used for ulcerative colitis, we investigated the efficacy of a polyphenol extract from apple in rat colitis. Rats with trinitrobenzensulphonic acid-induced colitis were treated daily with rectal administration of apple polyphenols 10(-4) M for 14 days. COX-2, TNF-α, tissue transglutaminase and calpain in colon mucosa samples were assessed by reverse transcription-polymerase chain reaction and western blot analyses. To ascertain the role of tissue transglutaminase in mucosal healing, wounded rat fibroblasts were incubated with cystamine (a tissue transglutaminase activity inhibitor). Colitis was associated with increased COX-2, TNF-α, calpain, and tissue transglutaminase mRNA. The protein expression of COX-2, TNF-α and calpain was increased whilst tissue transglutaminase was decreased. Apple extract treatment reduced the severity of colitis (p<0.05) and restored all the considered biomarkers at the baseline level. Apple polyphenols reduced the degradation of tissue transglutaminase protein occurring through calpain action. Apple polyphenols-treated wounded fibroblast recovered within 24h showing intense immunoreactivity for tissue transglutaminase. The efficacy of apple extract is mediated by its effects on COX-2 and TNF-α. The unbalance between calpain and tissue transglutaminase may play a role in colonic damage and future therapeutic interventions in ulcerative colitis can target this mechanisms. Copyright © 2012 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  8. Royal Jelly and Its Dual Role in TNBS Colitis in Mice

    PubMed Central

    Manzo, Luis Paulo; de-Faria, Felipe Meira; Dunder, Ricardo José; Rabelo-Socca, Eduardo Augusto; Consonni, Silvio Roberto; de Almeida, Ana Cristina Alves; Souza-Brito, Alba Regina Monteiro; Luiz-Ferreira, Anderson

    2015-01-01

    Royal Jelly (RJ) is widely consumed in diets throughout the world due to its beneficial effects: antioxidant, antitumor and anti-inflammatory. We have investigated the role of RJ in the development of TNBS colitis in mice. Colitis was induced by a rectal instillation of TNBS at 0.1 mL per mouse. Intestine samples of the animals orally treated with RJ (100, 150, and 200 mg/kg) were collected for antioxidant assays (GSH and GSH-Px), proinflammatory protein quantification (COX-2 and NF-κB), and histological analyses. RJ 100 mg/kg maintained GSH levels and increased the activity of GSH-Px, downregulated key inflammatory mediators (COX-2 and NF-κB), and decreased the lesions caused by TNBS as shown by the histological analyses. In conclusion, RJ showed anti-inflammatory and antioxidant properties in experimental colitis, resulting in the amelioration of the macroscopic and histological analyses. These results corroborate with the RJ supplementation in diets. PMID:25821860

  9. Suppressive effect of pectic polysaccharides extracted from Rauwolfia verticillata (Lour.) Baill.var.hainanensis Tsiang on inflammation by regulation of NF- κ B pathway and interleukin-17 in mice with dextran sulphatesodium-induced ulcerative colitis.

    PubMed

    Miao, Xin-Pu; Sun, Xiao-Ning; Cui, Lu-Jia; Cao, Qin-Fang; Zhuang, Gui-Feng; Deng, Tao-Zhi; Zhang, Dong-Yan

    2015-02-01

    To investigate the effects of pectic polysaccharides extracted from Rauwolfia verticillata (Lour.) Baill.var.hainanensis Tsiang on an experimental murine colitis model. Experimental colitis was induced by dextran sulfate sodium (DSS), and mice were divided into 4 groups: control, DSS alone, DSS plus SASP, DSS plus pectic polysaccharides. The disease activity index (DAI) and histological score were observed. The tumor necrosis factor (TNF)- α and interleukin (IL)-17 levels were measured by enzyme-linked immunosorbent assay. I κ B and NF- κ B p65 expression were assessed by western blot analysis. Myeloperoxidase (MPO) activity was determined by using MPO assay kit. Administration of pectic polysaccharides significantly reduced the severity of DSS-induced colitis as assessed by DAI and histological score, and resulted in down regulation of MPO activity and NF- κ B p65 expression and subsequent degradation of I κ B protein, strikingly reduced the production of TNF- a and IL-17. Pectic polysaccharides extracted from Rauvolfia verticillata (Lour.)Baill.var. hainanensis Tsiang exerts beneficial effects in experimental colitis and may therefore provide a useful therapeutic approach for the treatment of UC. Copyright © 2015 Hainan Medical College. Production and hosting by Elsevier B.V. All rights reserved.

  10. Infrared spectroscopy as a screening technique for colitis

    NASA Astrophysics Data System (ADS)

    Titus, Jitto; Ghimire, Hemendra; Viennois, Emilie; Merlin, Didier; Perera, A. G. Unil

    2017-05-01

    There remains a great need for diagnosis of inflammatory bowel disease (IBD), for which the current technique, colonoscopy, is not cost-effective and presents a non-negligible risk for complications. Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) spectroscopy is a new screening technique to evaluate colitis. Comparing infrared spectra of sera to study the differences between them can prove challenging due to the complexity of its biological constituents giving rise to a plethora of vibrational modes. Overcoming these inherent infrared spectral analysis difficulties involving highly overlapping absorbance peaks and the analysis of the data by curve fitting to improve the resolution is discussed. The proposed technique uses colitic and normal wild type mice dried serum to obtain ATR/FTIR spectra to effectively differentiate colitic mice from normal mice. Using this method, Amide I group frequency (specifically, alpha helix to beta sheet ratio of the protein secondary structure) was identified as disease associated spectral signature in addition to the previously reported glucose and mannose signatures in sera of chronic and acute mice models of colitis. Hence, this technique will be able to identify changes in the sera due to various diseases.

  11. [Topical therapy of ulcerative colitis].

    PubMed

    Rogler, G; Beglinger, C; Mottet, C; Seibold, F; Gross, V

    2011-11-16

    The availability of new topical preparations for the treatment of left sided ulcerative colitis ulcerosa offers a therapy optimization for many patients. Rectal application of steroids and 5-aminosalicylic acid (5-ASA) is associated with fewer side effects and has a higher therapeutic efficacy in mild to moderate-active left-sided colitis as compared to a systemic therapy. Often it is argued that the patients' compliance is insufficient with a rectal therapy. However, with sufficient information on the proven advantages this is usually not the case. The rectal application of drugs in distal ulcerative colitis is suitable also for the maintenance of remission. Therefore the new therapy guidelines recommend topical therapy more than in former times. Subsequently, these manuscripts focussed specifically on the topical therapy of distal colitis, to elucidate that clear treatment advantages are present in daily practice.

  12. A budesonide prodrug accelerates treatment of colitis in rats.

    PubMed Central

    Cui, N; Friend, D R; Fedorak, R N

    1994-01-01

    Although oral glucocorticoids are the treatment of choice for moderate to severe ulcerative pancolitis, their systemic side effects and adrenal suppression account for considerable morbidity. An oral glucocorticoid-conjugate (prodrug), budesonide-beta-D-glucuronide, which is not absorbed in the small intestine but is hydrolysed by colonic bacterial and mucosal beta-glucuronidase to release free budesonide into the colon was synthesised. The objective of this study was to compare treatment with budesonide-beta-D-glucuronide with treatment with free budesonide by examining: (1) the healing of experimental colitis and (2) the extent of adrenal suppression. Pancolitis was induced with 4% acetic acid. Animals were then randomised to receive oral therapy for 72 hours with (1) budesonide-beta-D-glucuronide, (2) free budesonide, or (3) vehicle. Drug efficacy and colitic healing was determined by measuring gross colonic ulceration, myeloperoxidase activity, and in vivo colonic fluid absorption. Adrenal suppression was determined by measuring plasma adrenocorticotrophic hormone and serum corticosterone. Vehicle-treated colitis animals had gross ulceration, increased myeloperoxidase activity, and net colonic fluid secretion. Treatment with oral budesonide-beta-D-glucuronide accelerated all measures of colitis healing at a fourfold lower dose than did free budesonide. Furthermore, treatment with budesonide-beta-D-glucuronide did not result in adrenal suppression whereas free budesonide treatment did. A newly synthesised orally administered glucocorticoid-conjugate accelerates colitis healing with limited adrenal suppression. Development of an orally administered colon-specific steroid delivery system represents a novel approach to inflammatory bowel disease treatment. PMID:7959202

  13. Anti-inflammatory Efficiency of Ankaferd Blood Stopper in Experimental Distal Colitis Model

    PubMed Central

    Koçak, Erdem; Akbal, Erdem; Taş, Adnan; Köklü, Seyfettin; Karaca, Gökhan; Can, Murat; Kösem, Bahadır; Üstün, Hüseyin

    2013-01-01

    Background/Aim: Ankaferd blood stopper (ABS) is a herbal extract that enhances mucosal healing. In this study, we aimed to investigate the efficiency of ABS in the treatment of experimental distal colitis. Materials and Methods: Twenty one male albino rats were divided into three groups: Sham control (Group 1), colitis induced by acetic acid and treated with saline (Group 2), colitis induced by acetic acid and treated with ABS (Group 3). At end of the 7th day of induction, all the rats were lightly anesthetized with intramuscular ketamine (8 mg/kg) and thereafter laparotomy and total colectomy were performed. The distal colon segment was assessed macroscopically and microscopically. In addition malondialdehyde (MDA), superoxide dismutase (SOD) and nitric oxide (NO) levels of the colonic tissue and changes in body weight were measured. Results: The MDA and NO levels of the colonic tissues and weight loss were significantly higher in Group 2 compared to Group 1 and Group 3. Microscopic and macroscopic damage scores were significantly higher in Group 2 and Group 3 than Group 1 (P: 0.001, P: 0.004, respectively). Although the microscopic and macroscopic damage scores in Group 3 were slightly lower than Group 2, the difference was not statistically significant. The SOD levels of the colonic tissues were not different between the three groups. Conclusion: Weight alterations and high-levels of the colonic tissue MDA and NO suggested that ABS might have anti-inflammatory effects on experimental distal colitis. However, this suggestion was not supported by histopathological findings. PMID:23680710

  14. Probiotics and prebiotics in ulcerative colitis.

    PubMed

    Derikx, Lauranne A A P; Dieleman, Levinus A; Hoentjen, Frank

    2016-02-01

    The intestinal microbiota is one of the key players in the etiology of ulcerative colitis. Manipulation of this microflora with probiotics and prebiotics is an attractive strategy in the management of ulcerative colitis. Several intervention studies for both the induction and maintenance of remission in ulcerative colitis patients have been performed. Most of these studies evaluated VSL#3 or E. Coli Nissle 1917 and in general there is evidence for efficacy of these agents for induction and maintenance of remission. However, studies are frequently underpowered, lack a control group, and are very heterogeneous investigating different probiotic strains in different study populations. The absence of well-powered robust randomized placebo-controlled trials impedes the widespread use of probiotics and prebiotics in ulcerative colitis. However, given the promising results that are currently available, probiotics and prebiotics may find their way to the treatment algorithm for ulcerative colitis in the near future. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Effect of Arctium lappa L. in the dextran sulfate sodium colitis mouse model

    PubMed Central

    Huang, Tzou-Chi; Tsai, Shinn-Shyong; Liu, Li-Fang; Liu, Yu Lin; Liu, Hung-Jen; Chuang, Kuo Pin

    2010-01-01

    AIM: To analyze the possible protective role of Arctium lappa L. (AL) in a murine model of ulcerative colitis (UC). METHODS: BALB/c mice were administered 100 mg/kg AL powder orally each day. After 7 d, colitis was induced by administration of dextran sulfate sodium (DSS) (5% W/V) in drinking water for a further 8 consecutive days. Diarrhea and bloody stools as well as colonic histology were observed. The level of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in colonic sections were detected by immunohistochemistry. RESULTS: There were significant differences in mean body weight values and disease activity indices between controls and AL-treated animals. Moreover, the histological findings showed that AL treatment can prevent mucosal edema, submucosal erosions, ulceration, inflammatory cell infiltration and colon damage. In addition, immunohistochemistry analysis showed that the levels of the inflammatory cytokines, IL-6 and TNF-α were also decreased in AL-treated groups. CONCLUSION: We suggest that AL can prevent intestinal damage and decrease inflammatory cytokines in mice with DSS-induced colitis. Thus, AL could prove to be a useful food for UC. PMID:20806438

  16. Lactobacillus GG prevents recurrence of colitis in HLA-B27 transgenic rats after antibiotic treatment

    PubMed Central

    Dieleman, L A; Goerres, M S; Arends, A; Sprengers, D; Torrice, C; Hoentjen, F; Grenther, W B; Sartor, R B

    2003-01-01

    Background and aims: Bacteroides vulgatus induces colitis in gnotobiotic HLA-B27 transgenic (TG) rats while broad spectrum antibiotics prevent and treat colitis in specific pathogen free (SPF) TG rats although disease recurs after treatment ends. Lactobacilli treat human pouchitis and experimental colitis. We investigated if Lactobacillus rhamnosus GG (L GG) can prevent colitis in TG rats monoassociated with B vulgatus and if L GG or Lactobacillus plantarum 299v (LP 299v) can treat established colitis in SPF TG rats and prevent recurrent disease after antibiotics were stopped. Methods: Germfree B27 TG rats were monoassociated with B vulgatus for four weeks following two weeks of colonisation with L GG or no bacteria. SPF B27 TG rats received oral vancomycin and imipenem for two weeks, or water alone, followed by four weeks of treatment with oral L GG, LP 299v, or water only. Disease activity was quantified by blinded gross and histological scores, caecal myeloperoxidase (MPO) activity, and levels of interleukin (IL)-1β, tumour necrosis factor (TNF), transforming growth factor β, and IL-10. Results: L GG did not prevent colitis in B vulgatus co-associated TG rats or treat established disease in SPF rats. However, L GG but not LP 299v prevented colitis relapse in antibiotic treated rats with reduced gross and histological scores, caecal MPO, IL-1β, and TNF whereas caecal IL-10 was increased. Conclusions: L GG does not prevent colitis in gnotobiotic TG rats or treat established disease in SPF rats, but is superior to LP 299v in the prevention of recurrent colitis. These studies suggest that antibiotics and probiotic agents provide synergistic therapeutic effects, perhaps mediated by altered immunomodulation with selective activity of different lactobacillus species. PMID:12584218

  17. Lactobacillus GG prevents recurrence of colitis in HLA-B27 transgenic rats after antibiotic treatment.

    PubMed

    Dieleman, L A; Goerres, M S; Arends, A; Sprengers, D; Torrice, C; Hoentjen, F; Grenther, W B; Sartor, R B

    2003-03-01

    Bacteroides vulgatus induces colitis in gnotobiotic HLA-B27 transgenic (TG) rats while broad spectrum antibiotics prevent and treat colitis in specific pathogen free (SPF) TG rats although disease recurs after treatment ends. Lactobacilli treat human pouchitis and experimental colitis. We investigated if Lactobacillus rhamnosus GG (L GG) can prevent colitis in TG rats monoassociated with B vulgatus and if L GG or Lactobacillus plantarum 299v (LP 299v) can treat established colitis in SPF TG rats and prevent recurrent disease after antibiotics were stopped. Germfree B27 TG rats were monoassociated with B vulgatus for four weeks following two weeks of colonisation with L GG or no bacteria. SPF B27 TG rats received oral vancomycin and imipenem for two weeks, or water alone, followed by four weeks of treatment with oral L GG, LP 299v, or water only. Disease activity was quantified by blinded gross and histological scores, caecal myeloperoxidase (MPO) activity, and levels of interleukin (IL)-1 beta, tumour necrosis factor (TNF), transforming growth factor beta, and IL-10. L GG did not prevent colitis in B vulgatus co-associated TG rats or treat established disease in SPF rats. However, L GG but not LP 299v prevented colitis relapse in antibiotic treated rats with reduced gross and histological scores, caecal MPO, IL-1 beta, and TNF whereas caecal IL-10 was increased. L GG does not prevent colitis in gnotobiotic TG rats or treat established disease in SPF rats, but is superior to LP 299v in the prevention of recurrent colitis. These studies suggest that antibiotics and probiotic agents provide synergistic therapeutic effects, perhaps mediated by altered immunomodulation with selective activity of different lactobacillus species.

  18. Co-administration of α-lipoic acid and cyclosporine aggravates colon ulceration of acetic acid-induced ulcerative colitis via facilitation of NO/COX-2/miR-210 cascade.

    PubMed

    El-Gowelli, Hanan M; Saad, Evan I; Abdel-Galil, Abdel-Galil A; Ibrahim, Einas R

    2015-11-01

    In this work, α-lipoic acid and cyclosporine demonstrated significant protection against acetic acid-induced ulcerative colitis in rats. We proposed that α-lipoic acid and cyclosporine co-administration might modulate their individual effects. Induction of ulcerative colitis in rats was performed by intra-rectal acetic acid (5% v/v) administration for 3 consecutive days. Effects of individual or combined used of α-lipoic acid (35 mg/kg ip) or cyclosporine (5mg/kg sc) for 6 days starting 2 days prior to acetic acid were assessed. Acetic acid caused colon ulceration, bloody diarrhea and weight loss. Histologically, there was mucosal atrophy and inflammatory cells infiltration in submucosa, associated with depletion of colon reduced glutathione, superoxide dismutase and catalase activities and elevated colon malondialdehyde, serum C-reactive protein (C-RP) and tumor necrosis factor-α (TNF-α). Colon gene expression of cyclooxygenase-2 and miR-210 was also elevated. These devastating effects of acetic acid were abolished upon concurrent administration of α-lipoic acid. Alternatively, cyclosporine caused partial protection against acetic acid-induced ulcerative colitis. Cyclosporine did not restore colon reduced glutathione, catalase activity, serum C-RP or TNF-α. Unexpectedly, co-administration of α-lipoic acid and cyclosporine aggravated colon ulceration. Concomitant use of α-lipoic acid and cyclosporine significantly increased nitric oxide production, cyclooxygenase-2 and miR-210 gene expression compared to all other studied groups. The current findings suggest that facilitation of nitric oxide/cyclooxygenase-2/miR-210 cascade constitutes, at least partially, the cellular mechanism by which concurrent use of α-lipoic acid and cyclosporine aggravates colon damage. Collectively, the present work highlights the probable risk of using α-lipoic acid/cyclosporine combination in ulcerative colitis patients. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Adeno-associated virus mediated delivery of Tregitope 167 ameliorates experimental colitis.

    PubMed

    van der Marel, Sander; Majowicz, Anna; Kwikkers, Karin; van Logtenstein, Richard; te Velde, Anje A; De Groot, Anne S; Meijer, Sybren L; van Deventer, Sander J; Petry, Harald; Hommes, Daniel W; Ferreira, Valerie

    2012-08-28

    To explore the anti-inflammatory potential of adeno-associated virus-mediated delivery of Tregitope 167 in an experimental colitis model. The trinitrobenzene sulfonate (TNBS) model of induced colitis was used in Balb/c mice. Subsequently after intravenous adeno-associated virus-mediated regulatory T-cell epitopes (Tregitope) delivery, acute colitis was initiated by intra-rectal administration of 1.5 mg TNBS in 40% ethanol followed by a second treatment with TNBS (0.75 mg in 20% ethanol) 8 d later. Control groups included mice not treated with TNBS (healthy control group) and mice treated by TNBS only (diseased group). At the time of sacrifice colon weight, the disease activity index and histology damage score were determined. Immunohistochemical staining of the colonic tissues was performed to asses the cellular infiltrate and the presence of transcription factor forkhead Box-P3 (Foxp3). Thymus, mesenteric lymph nodes, liver and spleen tissue were collected and the corresponding lymphocyte populations were further assessed by flow cytometry analysis for the expression of CD4+ T cell and regulatory T cell associated markers. The Tregitope 167 treated mice gained an average of 4% over their initial body weight at the time of sacrifice. In contrast, the mice treated with TNBS alone (no Tregitope) developed colitis, and lost 4% of their initial body weight at the time of sacrifice (P < 0.01). The body weight increase that had been observed in the mice pre-treated with Tregitope 167 was substantiated by a lower disease activity index and a decreased colon weight as compared to the diseased control group (P < 0.01 and P < 0.001, respectively). Immunohistochemical staining of the colonic tissues for CD4+ showed that inflammatory cell infiltrates were present in TNBS treated mice with or without administration with tregitope 167 and that these cellular infiltrates consisted mainly of CD4+ cells. For both TNBS treated groups CD4+ T cell infiltrates were observed in the sub

  20. Ablation of ceramide synthase 2 exacerbates dextran sodium sulphate-induced colitis in mice due to increased intestinal permeability.

    PubMed

    Kim, Ye-Ryung; Volpert, Giora; Shin, Kyong-Oh; Kim, So-Yeon; Shin, Sun-Hye; Lee, Younghay; Sung, Sun Hee; Lee, Yong-Moon; Ahn, Jung-Hyuck; Pewzner-Jung, Yael; Park, Woo-Jae; Futerman, Anthony H; Park, Joo-Won

    2017-12-01

    Ceramides mediate crucial cellular processes including cell death and inflammation and have recently been implicated in inflammatory bowel disease. Ceramides consist of a sphingoid long-chain base to which fatty acids of various length can be attached. We now investigate the effect of alerting the ceramide acyl chain length on a mouse model of colitis. Ceramide synthase (CerS) 2 null mice, which lack very-long acyl chain ceramides with concomitant increase of long chain bases and C16-ceramides, were more susceptible to dextran sodium sulphate-induced colitis, and their survival rate was markedly decreased compared with that of wild-type littermates. Using mixed bone-marrow chimeric mice, we showed that the host environment is primarily responsible for intestinal barrier dysfunction and increased intestinal permeability. In the colon of CerS2 null mice, the expression of junctional adhesion molecule-A was markedly decreased and the phosphorylation of myosin light chain 2 was increased. In vitro experiments using Caco-2 cells also confirmed an important role of CerS2 in maintaining epithelial barrier function; CerS2-knockdown via CRISPR-Cas9 technology impaired barrier function. In vivo myriocin administration, which normalized long-chain bases and C16-ceramides of the colon of CerS2 null mice, increased intestinal permeability as measured by serum FITC-dextran levels, indicating that altered SLs including deficiency of very-long-chain ceramides are critical for epithelial barrier function. In conclusion, deficiency of CerS2 influences intestinal barrier function and the severity of experimental colitis and may represent a potential mechanism for inflammatory bowel disease pathogenesis. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.