Sample records for acute ethanol sensitivity

  1. Fyn-Dependent Gene Networks in Acute Ethanol Sensitivity

    PubMed Central

    Farris, Sean P.; Miles, Michael F.

    2013-01-01

    Studies in humans and animal models document that acute behavioral responses to ethanol are predisposing factor for the risk of long-term drinking behavior. Prior microarray data from our laboratory document strain- and brain region-specific variation in gene expression profile responses to acute ethanol that may be underlying regulators of ethanol behavioral phenotypes. The non-receptor tyrosine kinase Fyn has previously been mechanistically implicated in the sedative-hypnotic response to acute ethanol. To further understand how Fyn may modulate ethanol behaviors, we used whole-genome expression profiling. We characterized basal and acute ethanol-evoked (3 g/kg) gene expression patterns in nucleus accumbens (NAC), prefrontal cortex (PFC), and ventral midbrain (VMB) of control and Fyn knockout mice. Bioinformatics analysis identified a set of Fyn-related gene networks differently regulated by acute ethanol across the three brain regions. In particular, our analysis suggested a coordinate basal decrease in myelin-associated gene expression within NAC and PFC as an underlying factor in sensitivity of Fyn null animals to ethanol sedation. An in silico analysis across the BXD recombinant inbred (RI) strains of mice identified a significant correlation between Fyn expression and a previously published ethanol loss-of-righting-reflex (LORR) phenotype. By combining PFC gene expression correlates to Fyn and LORR across multiple genomic datasets, we identified robust Fyn-centric gene networks related to LORR. Our results thus suggest that multiple system-wide changes exist within specific brain regions of Fyn knockout mice, and that distinct Fyn-dependent expression networks within PFC may be important determinates of the LORR due to acute ethanol. These results add to the interpretation of acute ethanol behavioral sensitivity in Fyn kinase null animals, and identify Fyn-centric gene networks influencing variance in ethanol LORR. Such networks may also inform future design

  2. Characteristics of ethanol-induced behavioral sensitization in rats: Molecular mediators and cross-sensitization between ethanol and cocaine.

    PubMed

    Xu, Shijie; Kang, Ung Gu

    2017-09-01

    Repeated exposure to drugs of abuse can induce a progressive increase in locomotor activity, known as behavioral sensitization. However, little is known about behavioral sensitization to ethanol. We examined whether ethanol could induce behavioral sensitization and investigated several molecular changes accompanying sensitization. We also assessed whether "cross-sensitization" occurred between ethanol and cocaine, another abused drug. Ethanol-induced sensitization was examined in rats after ethanol treatment (0.5 or 2g/kg) for 15days. The biochemical effects of low- or high-dose ethanol were examined in terms of N-methyl-d-aspartate (NMDA) receptor subunit phosphorylation or expression. Neuronal activity after ethanol treatment was assessed by measuring the level of early growth response (Egr-1) expression. Ethanol-induced behavioral sensitization was observed at the low dose (0.5g/kg) but not the high dose (2g/kg). Although acute treatment with the sensitizing dose of ethanol robustly increased Egr-1 protein and mRNA levels, the expression and phosphorylation of NMDA receptor subunits were not affected. The biochemical responses to ethanol seemed to be enhanced in ethanol-sensitized animals. Cross-sensitization between ethanol and cocaine was observed, which supports the hypothesis that there are commonalities among substances in the pathophysiology of substance dependence. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. The new kisspeptin derivative - kissorphin (KSO) - attenuates acute hyperlocomotion and sensitization induced by ethanol and morphine in mice.

    PubMed

    Gibula-Bruzda, Ewa; Marszalek-Grabska, Marta; Gawel, Kinga; Trzcinska, Roza; Silberring, Jerzy; Kotlinska, Jolanta H

    2017-11-01

    Kissorphin (KSO) is a new peptide derived from kisspeptin-10. This peptide possesses neuropeptide FF (NPFF)-like biological activity in vitro; NPFF, in many cases, inhibits opioid and ethanol effects in rodents. Therefore, the current study explored the influence of KSO on acute ethanol- and morphine-induced hyperactivity, and on the development and expression of locomotor sensitization induced by these drugs. In the present study, sensitization to locomotor effects was induced by repeated exposure to ethanol (2.4 g/kg, intraperitoneally [i.p.], 1 × 4 days) or morphine (10 mg/kg, subcutaneously [s.c.], 1 × 7 days). We found that KSO (1-10 nmol/300 μL, intravenously [i.v.]) did not have an impact on locomotor activity of naïve mice. However, it reduced both acute ethanol- (10 nmol/300 μL) and morphine-induced hyperactivity (3 and 10 nmol/300 μL). Pretreatment of animals with KSO (10 nmol/300 μL), before every ethanol or morphine injection during development of sensitization or before the ethanol or morphine challenge, attenuated the development, as well as the expression of locomotor sensitization to both substances. Moreover, prior administration of the NPFF receptor antagonist RF9 (10 nmol/300 μL, i.v.) inhibited the ability of KSO (10 nmol/300 μL) to reduce the expression of ethanol and morphine sensitization. KSO given alone, at all used doses, did not influence the motor coordination measured via the rotarod test. The results from this study show that KSO effectively attenuated acute and repeated effects of ethanol and morphine. Thus, KSO possesses NPFF-like anti-opioid activity in these behavioral studies. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Chronic intermittent ethanol exposure during adolescence: effects on social behavior and ethanol sensitivity in adulthood.

    PubMed

    Varlinskaya, Elena I; Truxell, Eric; Spear, Linda P

    2014-08-01

    This study assessed long-lasting consequences of repeated ethanol exposure during two different periods of adolescence on 1) baseline levels of social investigation, play fighting, and social preference and 2) sensitivity to the social consequences of acute ethanol challenge. Adult male and female Sprague-Dawley rats were tested 25 days after repeated exposure to ethanol (3.5 g/kg intragastrically [i.g.], every other day for a total of 11 exposures) in a modified social interaction test. Early-mid adolescent intermittent exposure (e-AIE) occurred between postnatal days (P) 25 and 45, whereas late adolescent intermittent exposure (l-AIE) was conducted between P45 and P65. Significant decreases in social investigation and social preference were evident in adult male rats, but not their female counterparts following e-AIE, whereas neither males nor females demonstrated these alterations following l-AIE. In contrast, both e-AIE and l-AIE produced alterations in sensitivity to acute ethanol challenge in males tested 25 days after adolescent exposure. Ethanol-induced facilitation of social investigation and play fighting, reminiscent of that normally seen during adolescence, was evident in adult males after e-AIE, whereas control males showed an age-typical inhibition of social behavior. Males after l-AIE were found to be insensitive to the socially suppressing effects of acute ethanol challenge, suggesting the development of chronic tolerance in these animals. In contrast, females showed little evidence for alterations in sensitivity to acute ethanol challenge following either early or late AIE. The results of the present study demonstrate a particular vulnerability of young adolescent males to long-lasting detrimental effects of repeated ethanol. Retention of adolescent-typical sensitivity to the socially facilitating effects of ethanol could potentially make ethanol especially appealing to these males, therefore promoting relatively high levels of ethanol intake later

  5. Acute ethanol responses in Drosophila are sexually dimorphic

    PubMed Central

    Devineni, Anita V.; Heberlein, Ulrike

    2012-01-01

    In mammalian and insect models of ethanol intoxication, low doses of ethanol stimulate locomotor activity whereas high doses induce sedation. Sex differences in acute ethanol responses, which occur in humans, have not been characterized in Drosophila. In this study, we find that male flies show increased ethanol hyperactivity and greater resistance to ethanol sedation compared with females. We show that the sex determination gene transformer (tra) acts in the developing nervous system, likely through regulation of fruitless (fru), to at least partially mediate the sexual dimorphism in ethanol sedation. Although pharmacokinetic differences may contribute to the increased sedation sensitivity of females, neuronal tra expression regulates ethanol sedation independently of ethanol pharmacokinetics. We also show that acute activation of fru-expressing neurons affects ethanol sedation, further supporting a role for fru in regulating this behavior. Thus, we have characterized previously undescribed sex differences in behavioral responses to ethanol, and implicated fru in mediating a subset of these differences. PMID:23213244

  6. JNK pathway activation is controlled by Tao/TAOK3 to modulate ethanol sensitivity.

    PubMed

    Kapfhamer, David; King, Ian; Zou, Mimi E; Lim, Jana P; Heberlein, Ulrike; Wolf, Fred W

    2012-01-01

    Neuronal signal transduction by the JNK MAP kinase pathway is altered by a broad array of stimuli including exposure to the widely abused drug ethanol, but the behavioral relevance and the regulation of JNK signaling is unclear. Here we demonstrate that JNK signaling functions downstream of the Sterile20 kinase family gene tao/Taok3 to regulate the behavioral effects of acute ethanol exposure in both the fruit fly Drosophila and mice. In flies tao is required in neurons to promote sensitivity to the locomotor stimulant effects of acute ethanol exposure and to establish specific brain structures. Reduced expression of key JNK pathway genes substantially rescued the structural and behavioral phenotypes of tao mutants. Decreasing and increasing JNK pathway activity resulted in increased and decreased sensitivity to the locomotor stimulant properties of acute ethanol exposure, respectively. Further, JNK expression in a limited pattern of neurons that included brain regions implicated in ethanol responses was sufficient to restore normal behavior. Mice heterozygous for a disrupted allele of the homologous Taok3 gene (Taok3Gt) were resistant to the acute sedative effects of ethanol. JNK activity was constitutively increased in brains of Taok3Gt/+ mice, and acute induction of phospho-JNK in brain tissue by ethanol was occluded in Taok3Gt/+ mice. Finally, acute administration of a JNK inhibitor conferred resistance to the sedative effects of ethanol in wild-type but not Taok3Gt/+ mice. Taken together, these data support a role of a TAO/TAOK3-JNK neuronal signaling pathway in regulating sensitivity to acute ethanol exposure in flies and in mice.

  7. gamma-Aminobutyric acid-activated chloride channels: relationship to genetic differences in ethanol sensitivity.

    PubMed

    Allan, A M; Spuhler, K P; Harris, R A

    1988-03-01

    We demonstrated recently that low concentrations of ethanol enhanced the muscimol-stimulated chloride influx in cerebellar membranes from long sleep (LS-ethanol sensitive) mice, but had no effect on membranes from short sleep (SS-ethanol resistant) mice. The LS and SS were selected from a heterogeneous stock (HS) of mice for differential sensitivity to the hypnotic effects of ethanol as measured by the duration of the loss of the righting reflex (sleep time). In the present study, we tested 100 HS for ethanol sleep time. The mice with the shortest sleep time (HS-SS) and the mice with the longest sleep time (HS-LS) were selected and tested for the effect of ethanol and muscimol on chloride flux in cerebellum. The effects of ethanol and muscimol on both cerebellar and cortical chloride flux were also examined in rats from the 7th generation selected for differential sensitivity to the hypnotic effects of ethanol (high acute ethanol sensitive rats-HAS and low acute ethanol sensitive rats-LAS). Low concentrations of ethanol (10-30 mM) potentiated muscimol stimulation of 36Cl- uptake in both cortical and cerebellar membranes prepared from ethanol-sensitive animals (HS-LS and HAS). None of the ethanol concentrations tested altered stimulated chloride uptake in ethanol-resistant animals (HS-SS and LAS). No differences in muscimol stimulation of chloride uptake were observed between the pairs of selected lines. These findings strongly suggest that genetic differences in ethanol hypnosis are related to differences in the sensitivity of gamma-aminobutyric acid-operated chloride channels to ethanol.

  8. Effects of Varenicline on Ethanol-Induced Conditioned Place Preference, Locomotor Stimulation, and Sensitization

    PubMed Central

    Gubner, Noah R.; McKinnon, Carrie S.; Phillips, Tamara J.

    2014-01-01

    Background Varenicline, a partial nicotinic acetylcholine receptor (nAChR) agonist, is a promising new drug for the treatment of alcohol (ethanol) dependence. Varenicline has been approved by the Food and Drug Administration as a smoking cessation therapeutic and has also been found to reduce ethanol consumption in humans and animal models of alcohol use. The current studies examined the hypotheses that varenicline attenuates the stimulant and sensitizing effects of ethanol, and reduces the motivational effects of ethanol-associated cues. The goal was to determine if these effects of varenicline contribute to its pharmacotherapeutic effects for alcohol dependence. In addition, effects of varenicline on acute stimulation and/or on the acquisition of sensitization would suggest a role for nAChR involvement in these effects of ethanol. Methods Dose-dependent effects of varenicline on the expression of ethanol-induced conditioned place preference (CPP), locomotor activation, and behavioral sensitization were examined. These measures model motivational effects of ethanol-associated cues, euphoric or stimulatory effects of ethanol, and ethanol-induced neuroadaptation. All studies used DBA/2J mice, an inbred strain with high sensitivity to these ethanol-related effects. Results Varenicline did not significantly attenuate the expression of ethanol-induced CPP. Varenicline reduced locomotor activity and had the most pronounced effect in the presence of ethanol, with the largest effect on acute ethanol-induced locomotor stimulation and a trend for varenicline to attenuate the expression of ethanol-induced sensitization. Conclusions Because varenicline did not attenuate the expression of ethanol-induced CPP, it may not be effective at reducing the motivational effects of ethanol-associated cues. This outcome suggests that reductions in the motivational effects of ethanol-associated cues may not be involved in how varenicline reduces ethanol consumption. However, varenicline

  9. Time-dependent negative reinforcement of ethanol intake by alleviation of acute withdrawal

    PubMed Central

    Cunningham, Christopher L.; Fidler, Tara L.; Murphy, Kevin V.; Mulgrew, Jennifer A.; Smitasin, Phoebe J.

    2012-01-01

    Background Drinking to alleviate the symptoms of acute withdrawal is included in diagnostic criteria for alcoholism, but the contribution of acute withdrawal relief to high alcohol intake has been difficult to model in animals. Methods Ethanol dependence was induced by passive intragastric ethanol infusions in C57BL/6J (B6) and DBA/2J (D2) mice; non-dependent controls received water infusions. Mice were then allowed to self-administer ethanol or water intragastrically. Results The time course of acute withdrawal was similar to that produced by chronic ethanol vapor exposure in mice, reaching a peak at 7-9 h and returning to baseline within 24 h; withdrawal severity was greater in D2 than in B6 mice (Exp. 1). Post-withdrawal delays in initial ethanol access (1, 3 or 5 days) reduced the enhancement in later ethanol intake normally seen in D2 (but not B6) mice allowed to self-infuse ethanol during acute withdrawal (Exp. 2). The post-withdrawal enhancement of ethanol intake persisted over a 5-d abstinence period in D2 mice (Exp. 3). D2 mice allowed to drink ethanol during acute withdrawal drank more ethanol and self-infused more ethanol than non-dependent mice (Exp. 4). Conclusions Alcohol access during acute withdrawal increased later alcohol intake in a time-dependent manner, an effect that may be related to a genetic difference in sensitivity to acute withdrawal. This promising model of negative reinforcement encourages additional research on the mechanisms underlying acute withdrawal relief and its role in determining risk for alcoholism. PMID:22999529

  10. Effects of Chronic Ethanol Consumption on Rat GABAA and Strychnine-sensitive Glycine Receptors Expressed by Lateral/Basolateral Amygdala Neurons

    PubMed Central

    McCool, Brian A.; Frye, Gerald D.; Pulido, Marisa D.; Botting, Shaleen K.

    2010-01-01

    It is well known that the anxiolytic potential of ethanol is maintained during chronic exposure. We have confirmed this using a light-dark box paradigm following chronic ethanol ingestion via a liquid diet. However, cessation from chronic ethanol exposure is known to cause severe withdrawal anxiety. These opposing effects on anxiety likely result from neuro-adaptations of neurotransmitter systems within the brain regions regulating anxiety. Recent work highlights the importance of amygdala ligand-gated chloride channels in the expression of anxiety. We have therefore examined the effects of chronic ethanol exposure on GABAA and strychnine-sensitive glycine receptors expressed by acutely isolated adult rat lateral/basolateral amygdala neurons. Chronic ethanol exposure increased the functional expression of GABAA receptors in acutely isolated basolateral amygdala neurons without altering strychnine-sensitive glycine receptors. Neither the acute ethanol nor benzodiazepine sensitivity of either receptor system was affected. We explored the likelihood that subunit composition might influence each receptor’s response to chronic ethanol. Importantly, when expressed in a mammalian heterologous system, GABAA receptors composed of unique α subunits were differentially sensitive to acute ethanol. Likewise, the presence of the β subunit appeared to influence the acute ethanol sensitivity of glycine receptors containing the α2 subunit. Our results suggest that the facilitation of GABAA receptors during chronic ethanol exposure may help explain the maintenance of ethanol’s anti-anxiety effects during chronic ethanol exposure. Furthermore, the subunit composition of GABAA and strychnine-sensitive glycine receptors may ultimately influence the response of each system to chronic ethanol exposure. PMID:12560122

  11. Effects of chronic ethanol consumption on rat GABA(A) and strychnine-sensitive glycine receptors expressed by lateral/basolateral amygdala neurons.

    PubMed

    McCool, Brian A; Frye, Gerald D; Pulido, Marisa D; Botting, Shaleen K

    2003-02-14

    It is well known that the anxiolytic potential of ethanol is maintained during chronic exposure. We have confirmed this using a light-dark box paradigm following chronic ethanol ingestion via a liquid diet. However, cessation from chronic ethanol exposure is known to cause severe withdrawal anxiety. These opposing effects on anxiety likely result from neuro-adaptations of neurotransmitter systems within the brain regions regulating anxiety. Recent work highlights the importance of amygdala ligand-gated chloride channels in the expression of anxiety. We have therefore examined the effects of chronic ethanol exposure on GABA(A) and strychnine-sensitive glycine receptors expressed by acutely isolated adult rat lateral/basolateral amygdala neurons. Chronic ethanol exposure increased the functional expression of GABA(A) receptors in acutely isolated basolateral amygdala neurons without altering strychnine-sensitive glycine receptors. Neither the acute ethanol nor benzodiazepine sensitivity of either receptor system was affected. We explored the likelihood that subunit composition might influence each receptor's response to chronic ethanol. Importantly, when expressed in a mammalian heterologous system, GABA(A) receptors composed of unique alpha subunits were differentially sensitive to acute ethanol. Likewise, the presence of the beta subunit appeared to influence the acute ethanol sensitivity of glycine receptors containing the alpha(2) subunit. Our results suggest that the facilitation of GABA(A) receptors during chronic ethanol exposure may help explain the maintenance of ethanol's anti-anxiety effects during chronic ethanol exposure. Furthermore, the subunit composition of GABA(A) and strychnine-sensitive glycine receptors may ultimately influence the response of each system to chronic ethanol exposure.

  12. Time-dependent negative reinforcement of ethanol intake by alleviation of acute withdrawal.

    PubMed

    Cunningham, Christopher L; Fidler, Tara L; Murphy, Kevin V; Mulgrew, Jennifer A; Smitasin, Phoebe J

    2013-02-01

    Drinking to alleviate the symptoms of acute withdrawal is included in diagnostic criteria for alcoholism, but the contribution of acute withdrawal relief to high alcohol intake has been difficult to model in animals. Ethanol dependence was induced by passive intragastric ethanol infusions in C57BL/6J (B6) and DBA/2J (D2) mice; nondependent control animals received water infusions. Mice were then allowed to self-administer ethanol or water intragastrically. The time course of acute withdrawal was similar to that produced by chronic ethanol vapor exposure in mice, reaching a peak at 7 to 9 hours and returning to baseline within 24 hours; withdrawal severity was greater in D2 than in B6 mice (experiment 1). Postwithdrawal delays in initial ethanol access (1, 3, or 5 days) reduced the enhancement in later ethanol intake normally seen in D2 (but not B6) mice allowed to self-infuse ethanol during acute withdrawal (experiment 2). The postwithdrawal enhancement of ethanol intake persisted over a 5-day abstinence period in D2 mice (experiment 3). D2 mice allowed to drink ethanol during acute withdrawal drank more ethanol and self-infused more ethanol than nondependent mice (experiment 4). Alcohol access during acute withdrawal increased later alcohol intake in a time-dependent manner, an effect that may be related to a genetic difference in sensitivity to acute withdrawal. This promising model of negative reinforcement encourages additional research on the mechanisms underlying acute withdrawal relief and its role in determining risk for alcoholism. Copyright © 2013 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  13. Adenylyl cylases 1 and 8 mediate select striatal-dependent behaviors and sensitivity to ethanol stimulation in the adolescent period following acute neonatal ethanol exposure.

    PubMed

    Susick, Laura L; Lowing, Jennifer L; Bosse, Kelly E; Hildebrandt, Clara C; Chrumka, Alexandria C; Conti, Alana C

    2014-08-01

    Neonatal alcohol exposure in rodents causes dramatic neurodegenerative effects throughout the developing nervous system, particularly in the striatum, acutely after exposure. These acute neurodegenerative effects are augmented in mice lacking adenylyl cyclases 1 and 8 (AC1/8) as neonatal mice with a genetic deletion of both AC isoforms (DKO) have increased vulnerability to ethanol-induced striatal neurotoxicity compared to wild type (WT) controls. While neonatal ethanol exposure is known to negatively impact cognitive behaviors, such as executive functioning and working memory in adolescent and adult animals, the threshold of ethanol exposure required to impinge upon developmental behaviors in mice has not been extensively examined. Therefore, the purpose of this study was to determine the behavioral effects of neonatal ethanol exposure using various striatal-dependent developmental benchmarks and to assess the impact of AC1/8 deletion on this developmental progression. WT and DKO mice were treated with 2.5 g/kg ethanol or saline on postnatal day (P)6 and later subjected to the wire suspension, negative geotaxis, postural reflex, grid hang, tail suspension and accelerating rotarod tests at various time points. At P30, mice were evaluated for their hypnotic responses to 4.0 g/kg ethanol by using the loss of righting reflex assay and ethanol-induced stimulation of locomotor activity after 2.0 g/kg ethanol. Ethanol exposure significantly impaired DKO performance in the negative geotaxis test while genetic deletion of AC1/8 alone increased grid hang time and decreased immobility time in the tail suspension test with a concomitant increase in hindlimb clasping behavior. Locomotor stimulation was significantly increased in animals that received ethanol as neonates, peaking significantly in ethanol-treated DKO mice compared to ethanol-treated WT controls, while sedation duration following high-dose ethanol challenge was unaffected. These data indicate that the

  14. Role of Adrenal Glucocorticoid Signaling in Prefrontal Cortex Gene Expression and Acute Behavioral Responses to Ethanol

    PubMed Central

    Costin, Blair N.; Wolen, Aaron R.; Fitting, Sylvia; Shelton, Keith L.; Miles, Michael F.

    2012-01-01

    Background Glucocorticoid hormones modulate acute and chronic behavioral and molecular responses to drugs of abuse including psychostimulants and opioids. There is growing evidence that glucocorticoids might also modulate behavioral responses to ethanol. Acute ethanol activates the HPA axis, causing release of adrenal glucocorticoid hormones. Our prior genomic studies suggest glucocorticoids play a role in regulating gene expression in the prefrontal cortex (PFC) of DBA2/J (D2) mice following acute ethanol administration. However, few studies have analyzed the role of glucocorticoid signaling in behavioral responses to acute ethanol. Such work could be significant, given the predictive value for level of response to acute ethanol in the risk for alcoholism. Methods We studied whether the glucocorticoid receptor (GR) antagonist, RU-486, or adrenalectomy (ADX) altered male D2 mouse behavioral responses to acute (locomotor activation, anxiolysis or loss-of-righting reflex (LORR)) or repeated (sensitization) ethanol treatment. Whole genome microarray analysis and bioinformatics approaches were used to identify PFC candidate genes possibly responsible for altered behavioral responses to ethanol following ADX. Results ADX and RU-486 both impaired acute ethanol (2 g/kg) induced locomotor activation in D2 mice without affecting basal locomotor activity. However, neither ADX nor RU-486 altered initiation of ethanol sensitization (locomotor activation or jump counts), ethanol-induced anxiolysis or LORR. ADX mice showed microarray gene expression changes in PFC that significantly overlapped with acute ethanol-responsive gene sets derived by our prior microarray studies. Q-rtPCR analysis verified that ADX decreased PFC expression of Fkbp5 while significantly increasing Gpr6 expression. In addition, high dose RU-486 pre-treatment blunted ethanol-induced Fkbp5 expression. Conclusions Our studies suggest that ethanol’s activation of adrenal glucocorticoid release and subsequent

  15. An assay for evoked locomotor behavior in Drosophila reveals a role for integrins in ethanol sensitivity and rapid ethanol tolerance.

    PubMed

    Bhandari, Poonam; Kendler, Kenneth S; Bettinger, Jill C; Davies, Andrew G; Grotewiel, Mike

    2009-10-01

    Ethanol induces similar behavioral responses in mammals and the fruit fly, Drosophila melanogaster. By coupling assays for ethanol-related behavior to the genetic tools available in flies, a number of genes have been identified that influence physiological responses to ethanol. To enhance the utility of the Drosophila model for investigating genes involved in ethanol-related behavior, we explored the value of an assay that measures the sedative effects of ethanol on negative geotaxis, an evoked locomotor response. We established eRING (ethanol Rapid Iterative Negative Geotaxis) as an assay for quantitating the sedative effects of ethanol on negative geotaxis (i.e., startle-induced climbing). We validated the assay by assessing acute sensitivity to ethanol and rapid ethanol tolerance in several different control strains and in flies with mutations known to disrupt these behaviors. We also used eRING in a candidate screen to identify mutants with altered ethanol-related behaviors. Negative geotaxis measured in eRING assays was dose-dependently impaired by ethanol exposure. Flies developed tolerance to the intoxicating effects of ethanol when tested during a second exposure. Ethanol sensitivity and rapid ethanol tolerance varied across 4 control strains, but internal ethanol concentrations were indistinguishable in the 4 strains during a first and second challenge with ethanol. Ethanol sensitivity and rapid ethanol tolerance, respectively, were altered in flies with mutations in amnesiac and hangover, genes known to influence these traits. Additionally, mutations in the beta integrin gene myospheroid and the alpha integrin gene scab increased the initial sensitivity to ethanol and enhanced the development of rapid ethanol tolerance without altering internal ethanol concentrations. The eRING assay is suitable for investigating genetic mechanisms that influence ethanol sensitivity and rapid ethanol tolerance. Ethanol sensitivity and rapid ethanol tolerance depend on the

  16. The novel gene tank, a tumor suppressor homolog, regulates ethanol sensitivity in Drosophila.

    PubMed

    Devineni, Anita V; Eddison, Mark; Heberlein, Ulrike

    2013-05-08

    In both mammalian and insect models of ethanol intoxication, high doses of ethanol induce motor impairment and eventually sedation. Sensitivity to the sedative effects of ethanol is inversely correlated with risk for alcoholism. However, the genes regulating ethanol sensitivity are largely unknown. Based on a previous genetic screen in Drosophila for ethanol sedation mutants, we identified a novel gene, tank (CG15626), the homolog of the mammalian tumor suppressor EI24/PIG8, which has a strong role in regulating ethanol sedation sensitivity. Genetic and behavioral analyses revealed that tank acts in the adult nervous system to promote ethanol sensitivity. We localized the function of tank in regulating ethanol sensitivity to neurons within the pars intercerebralis that have not been implicated previously in ethanol responses. We show that acutely manipulating the activity of all tank-expressing neurons, or of pars intercerebralis neurons in particular, alters ethanol sensitivity in a sexually dimorphic manner, since neuronal activation enhanced ethanol sedation in males, but not females. Finally, we provide anatomical evidence that tank-expressing neurons form likely synaptic connections with neurons expressing the neural sex determination factor fruitless (fru), which have been implicated recently in the regulation of ethanol sensitivity. We suggest that a functional interaction with fru neurons, many of which are sexually dimorphic, may account for the sex-specific effect induced by activating tank neurons. Overall, we have characterized a novel gene and corresponding set of neurons that regulate ethanol sensitivity in Drosophila.

  17. The Novel Gene tank, a Tumor Suppressor Homolog, Regulates Ethanol Sensitivity in Drosophila

    PubMed Central

    Eddison, Mark; Heberlein, Ulrike

    2013-01-01

    In both mammalian and insect models of ethanol intoxication, high doses of ethanol induce motor impairment and eventually sedation. Sensitivity to the sedative effects of ethanol is inversely correlated with risk for alcoholism. However, the genes regulating ethanol sensitivity are largely unknown. Based on a previous genetic screen in Drosophila for ethanol sedation mutants, we identified a novel gene, tank (CG15626), the homolog of the mammalian tumor suppressor EI24/PIG8, which has a strong role in regulating ethanol sedation sensitivity. Genetic and behavioral analyses revealed that tank acts in the adult nervous system to promote ethanol sensitivity. We localized the function of tank in regulating ethanol sensitivity to neurons within the pars intercerebralis that have not been implicated previously in ethanol responses. We show that acutely manipulating the activity of all tank-expressing neurons, or of pars intercerebralis neurons in particular, alters ethanol sensitivity in a sexually dimorphic manner, since neuronal activation enhanced ethanol sedation in males, but not females. Finally, we provide anatomical evidence that tank-expressing neurons form likely synaptic connections with neurons expressing the neural sex determination factor fruitless (fru), which have been implicated recently in the regulation of ethanol sensitivity. We suggest that a functional interaction with fru neurons, many of which are sexually dimorphic, may account for the sex-specific effect induced by activating tank neurons. Overall, we have characterized a novel gene and corresponding set of neurons that regulate ethanol sensitivity in Drosophila. PMID:23658154

  18. SENSITIZATION TO SOCIAL ANXIOLYTIC EFFECTS OF ETHANOL IN ADOLESCENT AND ADULT SPRAGUE-DAWLEY RATS FOLLOWING REPEATED ETHANOL EXPOSURE

    PubMed Central

    Varlinskaya, Elena; Spear, Linda Patia

    2009-01-01

    Ontogenetic studies using a social interaction paradigm have shown that adolescent rats are less sensitive to anxiolytic properties of acute ethanol than their adult counterparts. It is not known, however, whether adaptations to these anxiolytic effects upon repeated experiences with ethanol would be similar in adolescents and adults. The present study investigated sensitivity to the anxiolytic effects of ethanol in adolescent and adult male and female Sprague-Dawley rats following 7 days of exposure [postnatal day (P) 27–33 for adolescents and P62–68 for adults] to 1 g/kg ethanol or saline (i.p.), as well as in animals left non-manipulated during this time. Anxiolytic effects of ethanol (0, 0.75, 1.0, 1.25, and 1.5 g/kg for adolescents and 0, 0.25, 0.5, 0.75, 1.0, and 1.25 g/kg for adults in Experiments 1 and 2, respectively) were examined 48 hours after the last exposure using a modified social interaction test under unfamiliar test circumstances. At both ages, repeated ethanol exposure resulted in the development of apparent sensitization to anxiolytic effects of ethanol indexed via enhancement of social investigation and transformation of social avoidance into social indifference or preference, as well as expression of tolerance to the socially inhibiting effects induced by higher ethanol doses. Evidence for the emergence of sensitization in adults and tolerance at both ages was seen not only following chronic ethanol, but also after chronic saline exposure, suggesting that chronic manipulation per se may be sufficient to alter the sensitivity of both adolescents and adults to socially-relevant effects of ethanol. PMID:20113878

  19. [Ethanol changes sensitivity of Kupffer cells to endotoxin].

    PubMed

    Yamashina, Shunhei; Ikejima, Kenichi; Enomoto, Nobuyuki; Takei, Yoshiyuki; Sato, Nobuhiro

    2003-10-01

    early after ethanol exhibited tolerance to LPS, whereas sensitization was observed later. In conclusion, acute ethanol alters the expression of endotoxin receptors and intracellular signaling molecules, and causes both tolerance and sensitization of Kupffer cells to endotoxin. It is postulated that tolerance of Kupffer cells contributes to the impairment of innate immune system in alcoholism, while sensitization to endotoxin enhances progression of alcoholic liver injury.

  20. Chronic tolerance to ethanol-induced sedation: implication for age-related differences in locomotor sensitization.

    PubMed

    Quoilin, Caroline; Didone, Vincent; Tirelli, Ezio; Quertemont, Etienne

    2013-06-01

    The adolescent brain has been suggested to be particularly sensitive to ethanol-induced neuroadaptations, which in turn could increase the risk of youths for alcohol abuse and dependence. Sensitization to the locomotor stimulant effects of ethanol has often been used as an animal model of ethanol-induced neuroadaptations. Previously, we showed that young mice were more sensitive than adults to the locomotor sensitization induced by high ethanol doses. However, this effect could be due to age-related differences in chronic tolerance to the sedative effects of ethanol. The aim of the present study is to assess chronic tolerance to the sedative effects of ethanol in weaning 21-day-old (P21), adolescent 35-day-old (P35) and adult 63-day-old (P63) female Swiss mice. After a daily injection of saline or 4 g/kg ethanol during 6 consecutive days, all P21, P35 and P63 mice were injected with 4 g/kg ethanol and submitted to the loss of righting reflex procedure. Our results confirm that the sensitivity to the acute sedative effects of ethanol gradually increases with age. Although this schedule of ethanol injections induces significant age-related differences in ethanol sensitization, it did not reveal significant differences between P21, P35 and P63 mice in the development of a chronic ethanol tolerance to its sedative effects. The present results show that age-related differences in the development of ethanol sensitization cannot be explained by differences in chronic ethanol tolerance to its sedative effects. More broadly, they do not support the idea that ethanol-induced sensitization is a by-product of chronic ethanol tolerance. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Effect of bromocriptine on acute ethanol tolerance in UChB rats.

    PubMed

    Tampier, L; Prado, C; Quintanilla, M E; Mardones, J

    1999-07-01

    It has been suggested that a higher capacity to develop acute tolerance during a single dose of ethanol may promote higher ethanol consumption in alcohol-preferring rodents. Several studies have shown that the dopaminergic system may be involved in voluntary ethanol consumption. In the present paper we studied the effect of bromocriptine, a dopaminergic agonist drug, that is known to reduce voluntary consumption of ethanol, on acute tolerance in high (UChB) ethanol consumer rats. Acute tolerance was evaluated in bromocriptine and saline-treated rats by motor impairment induced by a subnarcotic dose of ethanol of 2.3 g/kg IP using a modified tilting plane test. Results showed a highly significant positive correlation between acute tolerance and the voluntary ethanol consumption by the rat. Bromocriptine treatment decreased ethanol consumption and also decreased acute tolerance development. This adds further support to the postulate that the acquisition of acute tolerance to ethanol may promote increased alcohol consumption. Moreover, these results also suggest that dopaminergic receptors involved in ethanol voluntary consumption may also be in acute tolerance development.

  2. Acute ethanol ingestion impairs appetitive olfactory learning and odor discrimination in the honey bee

    PubMed Central

    Mustard, Julie A; Wright, Geraldine A; Edgar, Elaina A; Mazade, Reece E.; Wu, Chen; Lillvis, Joshua L

    2008-01-01

    Invertebrates are valuable models for increasing our understanding of the effects of ethanol on the nervous system, but most studies on invertebrates and ethanol have focused on the effects of ethanol on locomotor behavior. In this work we investigate the influence of an acute dose of ethanol on appetitive olfactory learning in the honey bee (Apis mellifera), a model system for learning and memory. Adult worker honey bees were fed a range of doses (2.5, 5, 10 or 25%) of ethanol and then conditioned to associate an odor with a sucrose reward using either a simple or differential conditioning paradigm. Consumption of ethanol before conditioning significantly reduced both the rate of acquisition and the asymptotic strength of the association. Honey bees also exhibited a dose dependent reduction in arousal/attention during conditioning. Consumption of ethanol after conditioning did not affect recall 24 h later. The observed deficits in acquisition were not due to the affect of ethanol on gustatory sensitivity or motor function. However, honey bees given higher doses of ethanol had difficulty discriminating amongst different odors suggesting that ethanol consumption influences olfactory processing. Taken together, these results demonstrate that an acute dose of ethanol affects appetitive learning and olfactory perception in the honey bee. PMID:18723103

  3. Increases in anxiety-like behavior induced by acute stress are reversed by ethanol in adolescent but not adult rats.

    PubMed

    Varlinskaya, Elena I; Spear, Linda P

    2012-01-01

    Repeated exposure to stressors has been found to increase anxiety-like behavior in laboratory rodents, with the social anxiety induced by repeated restraint being extremely sensitive to anxiolytic effects of ethanol in both adolescent and adult rats. No studies, however, have compared social anxiogenic effects of acute stress or the capacity of ethanol to reverse this anxiety in adolescent and adult animals. Therefore, the present study was designed to investigate whether adolescent [postnatal day (P35)] Sprague-Dawley rats differ from their adult counterparts (P70) in the impact of acute restraint stress on social anxiety and in their sensitivity to the social anxiolytic effects of ethanol. Animals were restrained for 90 min, followed by examination of stress- and ethanol-induced (0, 0.25, 0.5, 0.75, and 1 g/kg) alterations in social behavior using a modified social interaction test in a familiar environment. Acute restraint stress increased anxiety, as indexed by reduced levels of social investigation at both ages, and decreased social preference among adolescents. These increases in anxiety were dramatically reversed among adolescents by acute ethanol. No anxiolytic-like effects of ethanol emerged following restraint stress in adults. The social suppression seen in response to higher doses of ethanol was reversed by restraint stress in animals of both ages. To the extent that these data are applicable to humans, the results of the present study provide some experimental evidence that stressful life events may increase the attractiveness of alcohol as an anxiolytic agent for adolescents. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Contrasting influences of Drosophila white/mini-white on ethanol sensitivity in two different behavioral assays

    PubMed Central

    Chan, Robin F.; Lewellyn, Lara; DeLoyht, Jacqueline M.; Sennett, Kristyn; Coffman, Scarlett; Hewitt, Matthew; Bettinger, Jill C.; Warrick, John M.; Grotewiel, Mike

    2014-01-01

    Background The fruit fly Drosophila melanogaster has been used extensively to investigate genetic mechanisms of ethanol-related behaviors. Many past studies in flies, including studies from our laboratory, have manipulated gene expression using transposons carrying the genetic-phenotypic marker mini-white, a derivative of the endogenous gene white. Whether the mini-white transgenic marker or the endogenous white gene influence behavioral responses to acute ethanol exposure in flies has not been systematically investigated. Methods We manipulated mini-white and white expression via (i) transposons marked with mini-white, (ii) RNAi against mini-white and white and (iii) a null allele of white. We assessed ethanol sensitivity and tolerance using a previously described eRING assay (based on climbing in the presence of ethanol) and an assay based on ethanol-induced sedation. Results In eRING assays, ethanol-induced impairment of climbing correlated inversely with expression of the mini-white marker from a series of transposon insertions. Additionally, flies harboring a null allele of white or flies with RNAi-mediated knockdown of mini-white were significantly more sensitive to ethanol in eRING assays than controls expressing endogenous white or the mini-white marker. In contrast, ethanol sensitivity and rapid tolerance measured in the ethanol sedation assay were not affected by decreased expression of mini-white or endogenous white in flies. Conclusions Ethanol sensitivity measured in the eRING assay is noticeably influenced by white and mini-white, making eRING problematic for studies on ethanol-related behavior in Drosophila using transgenes marked with mini-white. In contrast, the ethanol sedation assay described here is a suitable behavioral paradigm for studies on ethanol sedation and rapid tolerance in Drosophila including those that use widely available transgenes marked with mini-white. PMID:24890118

  5. Cilnidipine, an L/N-type calcium channel blocker prevents acquisition and expression of ethanol-induced locomotor sensitization in mice.

    PubMed

    Bhutada, Pravinkumar; Mundhada, Yogita; Patil, Jayshree; Rahigude, Anand; Zambare, Krushna; Deshmukh, Prashant; Tanwar, Dhanshree; Jain, Kishor

    2012-04-11

    Several evidences indicated the involvement of L- and N-type calcium channels in behavioral effects of drugs of abuse, including ethanol. Calcium channels are implicated in ethanol-induced behaviors and neurochemical responses. Calcium channel antagonists block the psychostimulants induced behavioral sensitization. Recently, it is demonstrated that L-, N- and T-type calcium channel blockers attenuate the acute locomotor stimulant effects of ethanol. However, no evidence indicated the role of calcium channels in ethanol-induced psychomotor sensitization. Therefore, present study evaluated the influence of cilnidipine, an L/N-type calcium channel blocker on acquisition and expression of ethanol-induced locomotor sensitization. The results revealed that cilnidipine (0.1 and 1.0μg/mouse, i.c.v.) attenuates the expression of sensitization to locomotor stimulant effect of ethanol (2.0g/kg, i.p.), whereas pre- treatment of cilnidipine (0.1 and 1.0μg/mouse, i.c.v.) during development of sensitization blocks acquisition and attenuates expression of sensitization to locomotor stimulant effect of ethanol. Cilnidipine per se did not influence locomotor activity in tested doses. Further, cilnidipine had no influence on effect of ethanol on rotarod performance. These results support the hypothesis that neuroadaptive changes in calcium channels participate in the acquisition and the expression of ethanol-induced locomotor sensitization. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  6. Sensitivity of inbred and selectively bred mice to ethanol.

    PubMed

    Smolen, A; Smolen, T N; van de Kamp, J L

    1987-01-01

    The Long-Sleep (LS) and Short-Sleep (SS) mice were bred for differences in sensitivity to ethanol as measured by duration of loss of the righting response (sleep time). The foundation population was a heterogeneous stock (HS) which was derived from a cross of eight inbred strains. Ethanol-induced sleep time and waking blood and brain ethanol levels were measured in the eight inbred strains, LS, SS and HS mice. The C3H and ISBI strains were quite resistant to ethanol as measured by sleep time, and only one, RIII, was very sensitive. Waking ethanol concentrations were similar for all of the inbreds, implying a narrow range of central nervous system sensitivity to ethanol. The HS mice had relatively short sleep times and blood ethanol levels equal to most of the inbred. The LS mice were significantly more, and the SS mice significantly less sensitive to ethanol than any of the inbreds or HS mice. These studies suggest that the extremes of CNS sensitivities to ethanol manifested by the LS and SS mice cannot be traced to any of the inbred strains, and must have arisen through the selection process by changes in allelic frequencies of those genes conferring ethanol sensitivity and resistance.

  7. PKCε plays a causal role in acute ethanol-induced steatosis

    PubMed Central

    Kaiser, J. Phillip; Beier, Juliane I.; Zhang, Jun; Hoetker, J. David; von Montfort, Claudia; Guo, Luping; Zheng, Yuting; Monia, Brett P.; Bhatnagar, Aruni; Arteel, Gavin E.

    2009-01-01

    Steatosis is a critical stage in the pathology of alcoholic liver disease (ALD), and preventing steatosis could protect against later stages of ALD. PKCε has been shown to contribute to hepatic steatosis in experimental non-alcoholic fatty liver disease (NAFLD); however, the role of PKCε in ethanol-induced steatosis has not been determined. The purpose of this study was to therefore test the hypothesis that PKCε contributes to ethanol-induced steatosis. Accordingly, the effect of acute ethanol on indices of hepatic steatosis and insulin signaling were determined in PKCε knockout mice and in wild-type mice that received an antisense oligonucleotide (ASO) to knockdown PKCε expression. Acute ethanol (6 g/kg i.g.) caused a robust increase in hepatic non-esterified free fatty acids (NEFA), which peaked 1 h after ethanol exposure. This increase in NEFA was followed by elevated diacylglycerols (DAG), as well as by the concomitant activation of PKCε. Acute ethanol also changed the expression of insulin-responsive genes (i.e. increased G6Pase, downregulated GK), in a pattern indicative of impaired insulin signaling. Acute ethanol exposure subsequently caused a robust increase in hepatic triglycerides. The accumulation of triglycerides caused by ethanol was blunted in ASO-treated or in PKCε−/− mice. Taken together, these data suggest that the increase in NEFA caused by hepatic ethanol metabolism leads to an increase in DAG production via the triacylglycerol pathway. DAG then subsequently activates PKCε, which then exacerbates hepatic lipid accumulation by inducing insulin resistance. These data also suggest that PKCε plays a causal role in at least the early phases of ethanol-induced liver injury. PMID:19022218

  8. Ethanol-Sensitive Pacemaker Neurons in the Mouse External Globus Pallidus

    PubMed Central

    Abrahao, Karina P; Chancey, Jessica H; Chan, C Savio; Lovinger, David M

    2017-01-01

    Although ethanol is one of the most widely used drugs, we still lack a full understanding of which neuronal subtypes are affected by this drug. Pacemaker neurons exert powerful control over brain circuit function, but little is known about ethanol effects on these types of neurons. Neurons in the external globus pallidus (GPe) generate pacemaker activity that controls basal ganglia, circuitry associated with habitual and compulsive drug use. We performed patch-clamp recordings from GPe neurons and found that bath application of ethanol dose-dependently decreased the firing rate of low-frequency GPe neurons, but did not alter the firing of high-frequency neurons. GABA or glutamate receptor antagonists did not block the ethanol effect. The GPe is comprised of a heterogeneous population of neurons. We used Lhx6-EGFP and Npas1-tdTm mice strains to identify low-frequency neurons. Lhx6 and Npas1 neurons exhibited decreased firing with ethanol, but only Npas1 neurons were sensitive to 10 mM ethanol. Large-conductance voltage and Ca2+-activated K+ (BK) channel have a key role in the ethanol effect on GPe neurons, as the application of BK channel inhibitors blocked the ethanol-induced firing decrease. Ethanol also increased BK channel open probability measured in single-channel recordings from Npas1-tdTm neurons. In addition, in vivo electrophysiological recordings from GPe showed that ethanol decreased the firing of a large subset of low-frequency neurons. These findings indicate how selectivity of ethanol effects on pacemaker neurons can occur, and enhance our understanding of the mechanisms contributing to acute ethanol effects on the basal ganglia. PMID:27827370

  9. Effects of Acute Withdrawal on Ethanol-Induced Conditioned Place Preference in DBA/2J mice

    PubMed Central

    Dreumont, Sarah E.; Cunningham, Christopher L.

    2013-01-01

    Rationale Re-exposure to ethanol during acute withdrawal might facilitate the transition to alcoholism by enhancing the rewarding effect of ethanol. Objective The conditioned place preference (CPP) procedure was used to test whether ethanol reward is enhanced during acute withdrawal. Methods DBA/2J mice were exposed to an unbiased one-compartment CPP procedure. Ethanol (0.75, 1.0 or 1.5 g/kg IP) was paired with a distinctive floor cue (CS+), whereas saline was paired with a different floor cue (CS−). The Withdrawal (W) group received CS+ trials during acute withdrawal produced by a large dose of ethanol (4 g/kg) given 8 h before each trial. The No Withdrawal (NW) group did not experience acute withdrawal during conditioning trials, but was matched for acute withdrawal experience. Floor preference was tested in the absence of ethanol or acute withdrawal. Results All groups eventually showed a dose-dependent preference for the ethanol-paired cue, but development of CPP was generally more rapid and stable in the W groups than in the NW groups. Acute withdrawal suppressed the normal activating effect of ethanol during CS+ trials, but there were no group differences in test activity. Conclusions Acute withdrawal enhanced ethanol’s rewarding effect as indexed by CPP. Since this effect depended on ethanol exposure during acute withdrawal, the enhancement of ethanol reward was likely mediated by the alleviation of acute withdrawal, i.e., negative reinforcement. Enhancement of ethanol reward during acute withdrawal may be a key component in the shift from episodic to chronic ethanol consumption that characterizes alcoholism. PMID:24096534

  10. Neurosteroid Influences on Sensitivity to Ethanol

    PubMed Central

    Helms, Christa M.; Rossi, David J.; Grant, Kathleen A.

    2011-01-01

    This review will highlight a variety of mechanisms by which neurosteroids affect sensitivity to ethanol, including physiological states associated with activity of the hypothalamic–pituitary–adrenal (HPA) and hypothalamic–pituitary–gonadal (HPG) axes, and the effects of chronic exposure to ethanol, in addition to behavioral implications. To date, γ-aminobutyric acid (GABAA) receptor mechanisms are a major focus of the modulation of ethanol effects by neuroactive steroids. While NMDA receptor mechanisms are gaining prominence in the literature, these complex data would be best discussed separately. Accordingly, GABAA receptor mechanisms are emphasized in this review with brief mention of some NMDA receptor mechanisms to point out contrasting neuroactive steroid pharmacology. Overall, the data suggest that neurosteroids are virtually ubiquitous modulators of inhibitory neurotransmission. Neurosteroids appear to affect sensitivity to ethanol in specific brain regions and, consequently, specific behavioral tests, possibly related to the efficacy and potency of ethanol to potentiate the release of GABA and increase neurosteroid concentrations. Although direct interaction of ethanol and neuroactive steroids at common receptor binding sites has been suggested in some studies, this proposition is still controversial. It is currently difficult to assign a specific mechanism by which neuroactive steroids could modulate the effects of ethanol in particular behavioral tasks. PMID:22654852

  11. Adolescent and adult rat cortical protein kinase A display divergent responses to acute ethanol exposure

    PubMed Central

    Gigante, Eduardo D.; Santerre, Jessica L.; Carter, Jenna M.; Werner, David F.

    2014-01-01

    Adolescent rats display reduced sensitivity to many dysphoria-related effects of alcohol (ethanol) including motor ataxia and sedative hypnosis, but the underlying neurobiological factors that contribute to these differences remain unknown. The cyclic adenosine monophosphate (cAMP)-dependent protein kinase A (PKA) pathway, particularly the type II regulatory subunit (RII), has been implicated in ethanol-induced molecular and behavioral responses in adults. Therefore, the current study examined cerebral cortical PKA in adolescent and adult ethanol responses. With the exception of early adolescence, PKA RIIα and RIIβ subunit levels largely did not differ from adult levels in either whole cell lysate or P2 synaptosomal expression. However, following acute ethanol exposure, PKA RIIβ P2 synaptosomal expression and activity were increased in adults, but not in adolescents. Behaviorally, intracerebroventricular administration of the PKA activator Sp-cAMP and inhibitor Rp-cAMP prior to ethanol administration increased adolescent sensitivity to the sedative-hypnotic effects of ethanol compared to controls. Sp-cAMP was ineffective in adults whereas Rp-cAMP suggestively reduced loss of righting reflex (LORR) with paralleled increases in blood ethanol concentrations. Overall, these data suggest that PKA activity modulates the sedative/hypnotic effects of ethanol and may potentially play a wider role in the differential ethanol responses observed between adolescents and adults. PMID:24874150

  12. Differential effects of context on psychomotor sensitization to ethanol and cocaine.

    PubMed

    Didone, Vincent; Quoilin, Caroline; Dieupart, Julie; Tirelli, Ezio; Quertemont, Etienne

    2016-04-01

    Repeated drug injections lead to sensitization of their stimulant effects in mice, a phenomenon sometimes referred to as drug psychomotor sensitization. Previous studies showed that sensitization to cocaine is context dependent as its expression is reduced in an environment that was not paired with cocaine administration. In contrast, the effects of the test context on ethanol sensitization remain unclear. In the present study, female OF1 mice were repeatedly injected with 1.5 g/kg ethanol to test for both the effects of context novelty/familiarity and association on ethanol sensitization. A first group of mice was extensively pre-exposed to the test context before ethanol sensitization and ethanol injections were paired with the test context (familiar and paired group). A second group was not pre-exposed to the test context, but ethanol injections were paired with the test context (nonfamiliar and paired group). Finally, a third group of mice was not pre-exposed to the test context and ethanol was repeatedly injected in the home cage (unpaired group). Control groups were similarly exposed to the test context, but were injected with saline. In a second experiment, cocaine was used as a positive control. The same behavioral procedure was used, except that mice were injected with 10 mg/kg cocaine instead of ethanol. The results show a differential involvement of the test context in the sensitization to ethanol and cocaine. Cocaine sensitization is strongly context dependent and is not expressed in the unpaired group. In contrast, the expression of ethanol sensitization is independent of the context in which it was administered, but is strongly affected by the relative novelty/familiarity of the environment. Extensive pre-exposure to the test context prevented the expression of ethanol sensitization. One possible explanation is that expression of ethanol sensitization requires an arousing environment.

  13. Neuroprotective effect of ethanol in acute carbon monoxide intoxication: A retrospective study.

    PubMed

    Kim, Hyuk-Hoon; Choi, Sang Chun; Chae, Minjung Kathy; Min, Young-Gi

    2018-01-01

    In acute carbon monoxide (CO) intoxication, treatment of neurologic injury and prevention of neurological sequelae are primary concerns. Ethanol is the one of the frequent substances which is co-ingested in intentional CO poisoning. Neuroprotective effect of ethanol was highlighted and demonstrated in isolated brain injury recently. We assessed the neuroprotective effect of ethanol in acute CO intoxication using magnetic resonance imaging (MRI).We retrospectively reviewed medical records for patients who visited an emergency medical center of a university-affiliated hospital during a period of 73 months, from March 2009 to April 2015. Enrolled patients were divided into 2 groups, patients with or without abnormal brain lesion in brain MRI. Multivariate logistic regression analysis was performed to assess the factors associated with brain injury in MRI.A total of 109 patients with acute CO intoxication were evaluated of which 66 (60.55%) tested positive in brain MRI. MRI lesion-positive patients were more likely to have electrocardiogram change, elevation of serum troponin I and s100 protein level and lower serum ethanol level. Serum ethanol positivity was an independent factor for prevalence of brain injury in MRI in acute CO poisoning.This study revealed that ethanol which is co-ingested in acute CO intoxication may work the neuroprotective effect and could consequence more favorable neurological outcome in acute CO intoxication. Copyright © 2017 The Authors. Published by Wolters Kluwer Health, Inc. All rights reserved.

  14. Ethanol-nicotine interactions in long-sleep and short-sleep mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Fiebre, C.M.; Marks, M.J.; Collins, A.C.

    The possibility that common genetic factors regulate initial sensitivities to ethanol and nicotine as well as the development of cross-tolerance between these agents was explored using the long-sleep (LS) and short-sleep (SS) mice. The LS mice proved to be more sensitive to an acute challenge with nicotine than were the SS mice. Segregation analysis (F1, F2, backcross) indicated that ethanol sensitivity and nicotine sensitivity segregate together. Acute pretreatment with nicotine did not significantly affect sensitivity to ethanol, but ethanol pretreatment altered nicotine responsiveness. The LS mice develop more tolerance to nicotine and ethanol than do the SS and they alsomore » develop more cross-tolerance. These genetically determined differences in initial sensitivities, and tolerance and cross-tolerance development are not readily explained by differences in brain nicotinic receptor numbers.« less

  15. Effects of topiramate and other anti-glutamatergic drugs on the acute intoxicating actions of ethanol in mice: modulation by genetic strain and stress

    PubMed Central

    Chen, Yi-Chyan; Holmes, Andrew

    2008-01-01

    Compounds with anti-glutamatergic properties currently in clinical use for various indications (e.g., Alzheimer's disease, epilepsy, psychosis, mood disorders) have potential utility as novel treatments for alcoholism. Enhanced sensitivity to certain acute intoxicating effects (ataxia, sedative) of alcohol may be one mechanism by which anti-glutamatergic drugs modulate alcohol use. We examined the effects of six compounds (memantine, dextromethorphan, haloperidol, lamotrigine, oxcarbazepine, topiramate) on sensitivity to acute intoxicating effects of ethanol (ataxia, hypothermia, sedation/hypnosis) in C57BL/6J mice. Analysis of topiramate was extended to determine the influence of genetic background (via comparison of the 129S1, BALB/cJ, C57BL/6J, DBA/2J inbred strains) and prior stress history (via chronic exposure of C57BL/6J to swim stress) on topiramate's effects on ethanol-induced sedation/hypnosis. Results showed that one N-methyl-D-aspartate receptor (NMDAR) antagonist, memantine, but not another, dextromethorphan, potentiated the ataxic but not hypothermic or sedative/hypnotic effects of ethanol. Haloperidol increased ethanol-induced ataxia and sedation/hypnosis to a similar extent as the prototypical NMDAR antagonist MK-801. Of the anticonvulsants tested, lamotrigine accentuated ethanol-induced sedation/hypnosis, while oxcarbazepine was without effect. Topiramate was without effect per se under baseline conditions in C57BL/6J, but had a synergistic effect with MK-801 on ethanol-induced sedation/hypnosis. Comparing inbred strains, topiramate was found to significantly potentiated ethanol's sedative/hypnotic effects in BALB/cJ, but not 129S1, C57BL/6J or DBA/2J strains. Topiramate also increased ethanol-induced sedation/hypnosis in C57BL/6J after exposure to chronic stress exposure. Current data demonstrate that, with the exception of MK-801 and haloperidol, the compounds tested had either no significant or assay-selective effects on sensitivity to acute

  16. Actions of Acute and Chronic Ethanol on Presynaptic Terminals

    PubMed Central

    Roberto, Marisa; Treistman, Steven N.; Pietrzykowski, Andrzej Z.; Weiner, Jeff; Galindo, Rafael; Mameli, Manuel; Valenzuela, Fernando; Zhu, Ping Jun; Lovinger, David; Zhang, Tao A.; Hendricson, Adam H.; Morrisett, Richard; Siggins, George Robert

    2014-01-01

    This article presents the proceedings of a symposium entitled “The Tipsy Terminal: Presynaptic Effects of Ethanol” (held at the annual meeting of the Research Society on Alcoholism, in Santa Barbara, CA, June 27, 2005). The objective of this symposium was to focus on a cellular site of ethanol action underrepresented in the alcohol literature, but quickly becoming a “hot” topic. The chairs of the session were Marisa Roberto and George Robert Siggins. Our speakers were chosen on the basis of the diverse electrophysiological and other methods used to discern the effects of acute and chronic ethanol on presynaptic terminals and on the basis of significant insights that their data provide for understanding ethanol actions on neurons in general, as mechanisms underlying problematic behavioral effects of alcohol. The 5 presenters drew from their recent studies examining the effects of acute and chronic ethanol using a range of sophisticated methods from electrophysiological analysis of paired-pulse facilitation and spontaneous and miniature synaptic currents (Drs. Weiner, Valenzuela, Zhu, and Morrisett), to direct recording of ion channel activity and peptide release from acutely isolated synaptic terminals (Dr. Treistman), to direct microscopic observation of vesicular release (Dr. Morrisett). They showed that ethanol administration could both increase and decrease the probability of release of different transmitters from synaptic terminals. The effects of ethanol on synaptic terminals could often be correlated with important behavioral or developmental actions of alcohol. These and other novel findings suggest that future analyses of synaptic effects of ethanol should attempt to ascertain, in multiple brain regions, the role of presynaptic terminals, relevant presynaptic receptors and signal transduction linkages, exocytotic mechanisms, and their involvement in alcohol’s behavioral actions. Such studies could lead to new treatment strategies for alcohol

  17. Acute Ethanol Withdrawal Impairs Contextual Learning and Enhances Cued Learning

    PubMed Central

    Tipps, Megan E.; Raybuck, Jonathan D.; Buck, Kari J.; Lattal, K. Matthew

    2014-01-01

    Background Alcohol affects many of the brain regions and neural processes that support learning and memory, and these effects are thought to underlie, at least in part, the development of addiction. Although much work has been done regarding the effects of alcohol intoxication on learning and memory, little is known about the effects of acute withdrawal from a single alcohol exposure. Methods We assess the effects of acute ethanol withdrawal (6 h post-injection with 4 g/kg ethanol) on two forms of fear conditioning (delay and trace fear conditioning) in C57BL/6J and DBA/2J mice. The influence of a number of experimental parameters (pre- and post-training withdrawal exposure; foreground/background processing; training strength; non-associative effects) is also investigated. Results Acute ethanol withdrawal during training had a bidirectional effect on fear conditioned responses, decreasing contextual responses and increasing cued responses. These effects were apparent for both trace and delay conditioning in DBA/2J mice and for trace conditioning in C57BL/6J mice; however, C57BL/6J mice were selectively resistant to the effects of acute withdrawal on delay cued responses. Conclusions Our results show that acute withdrawal from a single, initial ethanol exposure is sufficient to alter long-term learning in mice. In addition, the differences between the strains and conditioning paradigms used suggest that specific learning processes can be differentially affected by acute withdrawal in a manner that is distinct from the reported effects of both alcohol intoxication and withdrawal following chronic alcohol exposure. Thus, our results suggest a unique effect of acute alcohol withdrawal on learning and memory processes. PMID:25684050

  18. ACUTE ETHANOL DISRUPTS PHOTIC AND SEROTONERGIC CIRCADIAN CLOCK PHASE-RESETTING IN THE MOUSE

    PubMed Central

    Brager, Allison J.; Ruby, Christina L.; Prosser, Rebecca A.; Glass, J. David

    2011-01-01

    Background Alcohol abuse is associated with impaired circadian rhythms and sleep. Ethanol administration disrupts circadian clock phase-resetting, suggesting a mode for the disruptive effect of alcohol abuse on the circadian timing system. In this study, we extend previous work in C57BL/6J mice to: 1) characterize the SCN pharmacokinetics of acute systemic ethanol administration; 2) explore the effects of acute ethanol on photic and non-photic phase-resetting; and 2) determine if the SCN is a direct target for photic effects. Methods First, microdialysis was used to characterize the pharmacokinetics of acute i.p. injections of 3 doses of ethanol (0.5, 1.0 and 2.0 g/kg) in the mouse suprachiasmatic (SCN) circadian clock. Second, the effects of acute i.p. ethanol administration on photic phase-delays and serotonergic ([+]8-OH-DPAT-induced) phase-advances of the circadian activity rhythm were assessed. Third, the effects of reverse-microdialysis ethanol perfusion of the SCN on photic phase-resetting were characterized. Results Peak ethanol levels from the 3 doses of ethanol in the SCN occurred within 20–40 min post-injection with half-lives for clearance ranging from 0.6–1.8 hr. Systemic ethanol treatment dose-dependently attenuated photic and serotonergic phase-resetting. This treatment also did not affect basal SCN neuronal activity as assessed by Fos expression. Intra-SCN perfusion with ethanol markedly reduced photic phase-delays. Conclusions These results confirm that acute ethanol attenuates photic phase-delay shifts and serotonergic phase-advance shifts in the mouse. This dual effect could disrupt photic and non-photic entrainment mechanisms governing circadian clock timing. It is also significant that the SCN clock is a direct target for disruptive effects of ethanol on photic shifting. Such actions by ethanol could underlie the disruptive effects of alcohol abuse on behavioral, physiological, and endocrine rhythms associated with alcoholism. PMID:21463340

  19. Stereological study of rat spleen following acute ethanol treatment.

    PubMed

    Budec, M; Milićević, Z; Koko, V

    2000-05-01

    To investigate the acute effect of ethanol (4 g/kg, i.p.) on spleen adult female Wistar rats were treated intraperitoneally with: a) ethanol (4 g/kg body wt), b) naltrexone (5 mg/kg body wt) followed 45 minutes later by ethanol (4 g/kg body wt) and c) naltrexone (5 mg/kg body wt) alone. Untreated and saline-treated rats were used as controls. Twenty hours after the ethanol treatment the animals were sacrificed and the spleens were removed. A piece of tissue from the central part of each organ was fixed in Bouin's solution. Paraffin sections were stained with hematoxylin-eosin and analysed using stereological measurements. The volume densities of the following tissue compartments: red pulp, white pulp (divided in follicles, periarterioral lymphatic sheath and marginal zone) and the connective tissue were determined. Stereological analysis also included parameters of follicles: the areal numerical density (the number of follicles per 1 mm2 of tissue section), the numerical density (the number of follicles per mm3 of tissue) and the mean follicle diameter. The immunoarchitecture of the spleen was preserved following acute ethanol treatment. Unlike other parameters that were unaffected, ethanol evoked a decrease in both volume density of follicle and the mean follicle diameter. Naltrexone pretreatment had no influence on ethanol-induced changes. The data obtained indicate that a single dose of ethanol has a profound effect on rat spleen affecting the follicles, but the mechanism of its action remains to be elucidated.

  20. Acute ethanol does not always affect delay discounting in rats selected to prefer or avoid ethanol.

    PubMed

    Wilhelm, Clare J; Mitchell, Suzanne H

    2012-01-01

    The purpose of this study was to determine whether animals predisposed to prefer alcohol possess an altered acute response to alcohol on a delay discounting task relative to animals predisposed to avoid alcohol. We used rats selected to prefer or avoid alcohol to assess whether genotype moderates changes in delay discounting induced by acute ethanol exposure. Selectively bred rat lines of Sardinian alcohol-preferring (sP; n = 8) and non-preferring (sNP; n = 8) rats, and alko alcohol (AA, n = 8) and alko non-alcohol (ANA, n = 8) rats were trained in an adjusting amount task to assess delay discounting. There were no significant effects of line on baseline discounting; however, both lines of alcohol-preferring rats exhibit slowed reaction times. Acute ethanol (0, 0.25, 0.5 g/kg) treatment also had no effect on delay discounting in any of the selectively bred rat lines. Our data indicate that in these lines of animals, alcohol preference or avoidance has no impact on delay discounting following acute ethanol exposure. It is possible that other genetic models or lines may be differentially affected by alcohol and exhibit qualitatively and quantitatively different responses in delay discounting tasks.

  1. Lack of relation between drug-seeking behavior in an addiction model and the expression of behavioral sensitization in response to ethanol challenge in mice.

    PubMed

    Ribeiro, A F; Pigatto, G; Goeldner, F O; Lopes, J F; de Lacerda, R B

    2008-01-01

    Drug-induced sensitization has been associated with enhanced self-administration and may contribute to addiction. The possible association between sensitization and voluntary ethanol consumption using an addiction model was investigated. Mice (n = 60) were individually housed with ad libitum access to food and had free choice between ethanol (5% and 10%) and water in a four-phase paradigm: free choice (12 weeks), withdrawal (2 weeks), re-exposure (2 weeks), and quinine-adulteration (2 weeks). Control mice (n = 10) had access to water. Mice were characterized as addicted (n = 10, ethanol preference without reducing intake with adulterated ethanol), heavy (n = 22, ethanol preference but reduced intake with adulterated ethanol), and light (n = 21, water preference). Oral ethanol then was withdrawn, and 24 h later mice received a 2 g/kg ethanol (i.p.) challenge dose or saline, and ambulation was evaluated 10 min later. Half of the classified mice received daily 2 g/kg ethanol injections for 14 days, and ambulation was assessed 10 min after the last dose. Acute ethanol increased ambulation in all groups compared to the control group, and chronic ethanol induced sensitization, showing no difference among ethanol-treated mice. The data suggest that independent neural mechanisms are responsible for the development of addiction and sensitization.

  2. Acute and chronic ethanol exposure differentially alters alcohol dehydrogenase and aldehyde dehydrogenase activity in the zebrafish liver.

    PubMed

    Tran, Steven; Nowicki, Magda; Chatterjee, Diptendu; Gerlai, Robert

    2015-01-02

    Chronic ethanol exposure paradigms have been successfully used in the past to induce behavioral and central nervous system related changes in zebrafish. However, it is currently unknown whether chronic ethanol exposure alters ethanol metabolism in adult zebrafish. In the current study we examine the effect of acute ethanol exposure on adult zebrafish behavioral responses, as well as alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) activity in the liver. We then examine how two different chronic ethanol exposure paradigms (continuous and repeated ethanol exposure) alter behavioral responses and liver enzyme activity during a subsequent acute ethanol challenge. Acute ethanol exposure increased locomotor activity in a dose-dependent manner. ADH activity was shown to exhibit an inverted U-shaped curve and ALDH activity was decreased by ethanol exposure at all doses. During the acute ethanol challenge, animals that were continuously housed in ethanol exhibited a significantly reduced locomotor response and increased ADH activity, however, ALDH activity did not change. Zebrafish that were repeatedly exposed to ethanol demonstrated a small but significant attenuation of the locomotor response during the acute ethanol challenge but ADH and ALDH activity was similar to controls. Overall, we identified two different chronic ethanol exposure paradigms that differentially alter behavioral and physiological responses in zebrafish. We speculate that these two paradigms may allow dissociation of central nervous system-related and liver enzyme-dependent ethanol induced changes in zebrafish. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Effect of acute ethanol administration on zebrafish tail-beat motion.

    PubMed

    Bartolini, Tiziana; Mwaffo, Violet; Butail, Sachit; Porfiri, Maurizio

    2015-11-01

    Zebrafish is becoming a species of choice in neurobiological and behavioral studies of alcohol-related disorders. In these efforts, the activity of adult zebrafish is typically quantified using indirect activity measures that are either scored manually or identified automatically from the fish trajectory. The analysis of such activity measures has produced important insight into the effect of acute ethanol exposure on individual and social behavior of this vertebrate species. Here, we leverage a recently developed tracking algorithm that reconstructs fish body shape to investigate the effect of acute ethanol administration on zebrafish tail-beat motion in terms of amplitude and frequency. Our results demonstrate a significant effect of ethanol on the tail-beat amplitude as well as the tail-beat frequency, both of which were found to robustly decrease for high ethanol concentrations. Such a direct measurement of zebrafish motor functions is in agreement with evidence based on indirect activity measures, offering a complementary perspective in behavioral screening. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. MeCP2 regulates ethanol sensitivity and intake.

    PubMed

    Repunte-Canonigo, Vez; Chen, Jihuan; Lefebvre, Celine; Kawamura, Tomoya; Kreifeldt, Max; Basson, Oan; Roberts, Amanda J; Sanna, Pietro Paolo

    2014-09-01

    We have investigated the expression of chromatin-regulating genes in the prefrontal cortex and in the shell subdivision of the nucleus accumbens during protracted withdrawal in mice with increased ethanol drinking after chronic intermittent ethanol (CIE) vapor exposure and in mice with a history of non-dependent drinking. We observed that the methyl-CpG binding protein 2 (MeCP2) was one of the few chromatin-regulating genes to be differentially regulated by a history of dependence. As MeCP2 has the potential of acting as a broad gene regulator, we investigated sensitivity to ethanol and ethanol drinking in MeCP2(308/) (Y) mice, which harbor a truncated MeCP2 allele but have a milder phenotype than MeCP2 null mice. We observed that MeCP2(308/) (Y) mice were more sensitive to ethanol's stimulatory and sedative effects than wild-type (WT) mice, drank less ethanol in a limited access 2 bottle choice paradigm and did not show increased drinking after induction of dependence with exposure to CIE vapors. Alcohol metabolism did not differ in MeCP2(308/) (Y) and WT mice. Additionally, MeCP2(308/) (Y) mice did not differ from WT mice in ethanol preference in a 24-hour paradigm nor in their intake of graded solutions of saccharin or quinine, suggesting that the MeCP2(308/) (Y) mutation did not alter taste function. Lastly, using the Gene Set Enrichment Analysis algorithm, we found a significant overlap in the genes regulated by alcohol and by MeCP2. Together, these results suggest that MeCP2 contributes to the regulation of ethanol sensitivity and drinking. © 2013 The Authors, Addiction Biology © 2013 Society for the Study of Addiction.

  5. Differential Sensitivity to Ethanol-Induced Circadian Rhythm Disruption in Adolescent and Adult Mice

    PubMed Central

    Ruby, Christina L.; Palmer, Kaitlyn N.; Zhang, Jiawen; Risinger, Megan O.; Butkowski, Melissa A.; Swartzwelder, H. Scott

    2016-01-01

    Background Growing evidence supports a central role for the circadian system in alcohol use disorders, but few studies have examined this relationship during adolescence. In mammals, circadian rhythms are regulated by the suprachiasmatic nucleus (SCN), a biological clock whose timing is synchronized (reset) to the environment primarily by light (photic) input. Alcohol (ethanol) disrupts circadian timing in part by attenuating photic phase-resetting responses in adult rodents. However, circadian rhythms change throughout life and it is not yet known whether ethanol has similar effects on circadian regulation during adolescence. Methods General circadian locomotor activity was monitored in male C57BL6/J mice beginning in adolescence (P27) or adulthood (P61) in a 12 h light, 12 h dark photocycle for ~2 weeks to establish baseline circadian activity measures. On the day of the experiment, mice received an acute injection of ethanol (1.5 g/kg, i.p.) or equal volume saline 15 min prior to a 30-min light pulse at Zeitgeber Time 14 (2 h into the dark phase), then were released into constant darkness (DD) for ~2 weeks to assess phase-resetting responses. Control mice of each age group received injections but no light pulse prior to DD. Results While adults showed the expected decrease in photic phase-delays induced by acute ethanol, this effect was absent in adolescent mice. Adolescents also showed baseline differences in circadian rhythmicity compared to adults, including advanced photocycle entrainment, larger photic phase-delays, a shorter free-running (endogenous) circadian period, and greater circadian rhythm amplitude. Conclusions Collectively, our results indicate that adolescent mice are less sensitive to the effect of ethanol on circadian photic phase-resetting and that their daily activity rhythms are markedly different than those of adults. PMID:27997028

  6. HINDBRAIN AND CRANIAL NERVE DYSMORPHOGENESIS RESULT FROM ACUTE MATERNAL ETHANOL ADMINISTRATION

    EPA Science Inventory

    Acute exposure of mouse embryos to ethanol during stages of hindbrain segmentation results in excessive cell death in specific cell populations. This study details the ethanol-induced cell loss and defines the subsequent effects of this early insult on rhombomere and cranial ner...

  7. Acute Ethanol Causes Hepatic Mitochondrial Depolarization in Mice: Role of Ethanol Metabolism

    PubMed Central

    Zhong, Zhi; Ramshesh, Venkat K.; Rehman, Hasibur; Liu, Qinlong; Theruvath, Tom P.; Krishnasamy, Yasodha; Lemasters, John J.

    2014-01-01

    Background/Aims An increase of ethanol metabolism and hepatic mitochondrial respiration occurs in vivo after a single binge of alcohol. Here, our aim was to determine how ethanol intake affects hepatic mitochondrial polarization status in vivo in relation to ethanol metabolism and steatosis. Methods Hepatic mitochondrial polarization, permeability transition (MPT), and reduce pyridine nucleotides, and steatosis in mice were monitored by intravital confocal/multiphoton microscopy of the fluorescence of rhodamine 123 (Rh123), calcein, NAD(P)H, and BODIPY493/503, respectively, after gavage with ethanol (1–6 g/kg). Results Mitochondria depolarized in an all-or-nothing fashion in individual hepatocytes as early as 1 h after alcohol. Depolarization was dose- and time-dependent, peaked after 6 to 12 h and maximally affected 94% of hepatocytes. This mitochondrial depolarization was not due to onset of the MPT. After 24 h, mitochondria of most hepatocytes recovered normal polarization and were indistinguishable from untreated after 7 days. Cell death monitored by propidium iodide staining, histology and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) was low throughout. After alcohol, mitochondrial NAD(P)H autofluorescence increased and decreased, respectively, in hepatocytes with polarized and depolarized mitochondria. Ethanol also caused steatosis mainly in hepatocytes with depolarized mitochondria. Depolarization was linked to ethanol metabolism, since deficiency of alcohol dehydrogenase and cytochrome-P450 2E1 (CYP2E1), the major ethanol-metabolizing enzymes, decreased mitochondrial depolarization by ∼70% and ∼20%, respectively. Activation of aldehyde dehydrogenase decreased depolarization, whereas inhibition of aldehyde dehydrogenase enhanced depolarization. Activation of aldehyde dehydrogenase also markedly decreased steatosis. Conclusions Acute ethanol causes reversible hepatic mitochondrial depolarization in vivo that may contribute to

  8. Sensitivity to ethanol hypnosis and modulation of chloride channels does not cosegregate with pentobarbital sensitivity in HS mice.

    PubMed

    Allan, A M; Harris, R A

    1989-06-01

    Several findings suggest that barbiturates and alcohol produce their sedative effects through a common neural and possibly a common genetic mechanism. We tested this hypothesis by examining the correlation between ethanol and pentobarbital sedative effects in individual animals from a genetically heterogeneous population. The duration of pentobarbital-induced hypnosis (sleep-time) was unrelated to the sleep-time produced by ethanol in heterogeneous stock (HS) mice. Therefore, the present study also examined the effect of ethanol, pentobarbital, and flunitrazepam on muscimol-stimulated chloride flux into brain membranes prepared from HS mice selected for differences in pentobarbital- and ethanol-induced sleep-time. Brain membranes from mice selected for differences in ethanol sleep-time were differentially responsive to ethanol- and flunitrazepam-, but not to pentobarbital-induced augmentation of muscimol-stimulated chloride flux. No differences in augmentation of chloride flux by ethanol, pentobarbital, or flunitrazepam were found in membranes prepared from mice differentially sensitive to pentobarbital hypnosis. The ability of muscimol to stimulate chloride uptake was not related to ethanol or pentobarbital sensitivity. These findings suggest that sensitivity to ethanol is not likely to be genetically linked to pentobarbital sensitivity.

  9. In situ rat brain and liver spontaneous chemiluminescence after acute ethanol intake.

    PubMed

    Boveris, A; Llesuy, S; Azzalis, L A; Giavarotti, L; Simon, K A; Junqueira, V B; Porta, E A; Videla, L A; Lissi, E A

    1997-09-19

    The influence of acute ethanol administration on the oxidative stress status of rat brain and liver was assessed by in situ spontaneous organ chemiluminescence (CL). Brain and liver CL was significantly increased after acute ethanol administration to fed rats, a response that is time-dependent and evidenced at doses higher than 1 g/kg. Ethanol-induced CL development is faster in liver compared with brain probably due to the greater ethanol metabolic capacity of the liver, whereas the net enhancement in brain light emission at 3 h after ethanol treatment is higher than that of the liver, which could reflect the greater susceptibility of brain to oxidative stress. The effect of ethanol on brain and liver CL seems to be mediated by acetaldehyde, due to its abolishment by the alcohol dehydrogenase inhibitor 4-methylpyrazole and exacerbation by the aldehyde dehydrogenase inhibitor disulfiram. In brain, these findings were observed in the absence of changes in the activity of superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, and glucose-6-phosphate dehydrogenase. However, the content of brain glutathione was significantly decreased by 31%, by ethanol, thus establishing an enhanced oxidative stress in this tissue.

  10. Acute ethanol treatment increases level of progesterone in ovariectomized rats.

    PubMed

    Budec, Mirela; Koko, Vesna; Milovanović, Tatjana; Balint-Perić, Ljiljana; Petković, Aleksandra

    2002-04-01

    To determine whether an increased level of progesterone in adult female rats after acute ethanol treatment, described previously in our study, is the result of activation of adrenal glands, we analyzed adrenal cortex morphologically and measured serum levels of corticosterone and progesterone in ovariectomized rats. In addition, a possible involvement of the opioid system in an observed phenomenon was tested. Adult female Wistar rats were ovariectomized, and 3 weeks after surgery they were treated intraperitoneally with (a) ethanol (4 g/kg), (b) naltrexone (5 mg/kg), followed by ethanol (4 g/kg) 45 min later, and (c) naltrexone (5 mg/kg), followed by saline 45 min later. Untreated and saline-injected rats were used as controls. The animals were killed 0.5 h after ethanol administration. Morphometric analysis was carried out on paraffin sections of adrenal glands, stained with hematoxylin-eosin, and the following parameters were determined: absolute volume of the zona glomerulosa, the zona fasciculata, and the zona reticularis; numerical density, volume, and the mean diameter of adrenocortical cells and of their nuclei; and mean diameter and length of capillaries. The results showed that acute ethanol treatment significantly increased absolute volume of the zona fasciculata and length of its capillaries but did not alter other stereological parameters. Also, serum levels of corticosterone and progesterone were enhanced. Pretreatment with naltrexone had no effect on ethanol-induced changes. These findings are consistent with our previous hypothesis that an ethanol-induced increase of the progesterone level in adult female rats originates from the adrenal cortex.

  11. Biliopancreatic duct injection of ethanol as an experimental model of acute and chronic pancreatitis in rats

    PubMed Central

    Unal, Ethem; Atalay, Suleyman; Tolan, Huseyin Kerem; Yuksekdag, Sema; Yucel, Metin; Acar, Aylin; Basak, Fatih; Gunes, Pembegul; Bas, Gurhan

    2015-01-01

    In the present study, we described an easily reproducable experimental pancreatits model induced by biliopancreatic duct injection of ethyl alcohol. Seventy Wistar albino rats were divided equally into seven groups randomly: the control group (group 1), acute pancreatitis groups; induced by 20% ethanol (group 2), 48% ethanol (group 3), 80% ethanol (group 4), chronic pancreatitis groups; induced by 20% ethanol (group 5), 48% ethanol (group 6) and by 80% ethanol (group 7). Acute pancreatitis groups were sacrified on postoperative day 3, while the control group and chronic pancreatitis groups were killed on postoperative day 7. Histopathologic evaluation was done, and P < 0.05 was accepted as statistically significant. All rats in group 3 developed acute pancreatitis (100%). Inflammatory infiltration of neutrophils and mononuclear cells, interstitial edema, and focal necrotic areas were seen in the pancreatic tissues. Similarly, all rats in group 6 developed chronic pancreatitis (100%). Interstitial fibrosis, lymphotic infiltration, ductal dilatation, acinar cell atrophy, periductal hyperplasia were seen in the pancreatic tissues. Mortality was seen only in group 7. The biliopancreatic ductal injection of 48% ethanol induced acute and chronic pancreatitis has 100% success rate. PMID:25785001

  12. Differential neural representation of oral ethanol by central taste-sensitive neurons in ethanol-preferring and genetically heterogeneous rats

    PubMed Central

    Wilson, David M.; Brasser, Susan M.

    2011-01-01

    In randomly bred rats, orally applied ethanol stimulates neural substrates for appetitive sweet taste. To study associations between ethanol's oral sensory characteristics and genetically mediated ethanol preference, we made electrophysiological recordings of oral responses (spike density) by taste-sensitive nucleus tractus solitarii neurons in anesthetized selectively bred ethanol-preferring (P) rats and their genetically heterogeneous Wistar (W) control strain. Stimuli (25 total) included ethanol [3%, 5%, 10%, 15%, 25%, and 40% (vol/vol)], a sucrose series (0.01, 0.03, 0.1, 0.3, 0.5, and 1 M), and other sweet, salt, acidic, and bitter stimuli; 50 P and 39 W neurons were sampled. k-means clustering applied to the sucrose response series identified cells showing high (S1) or relatively low (S0) sensitivity to sucrose. A three-way factorial analysis revealed that activity to ethanol was influenced by a neuron's sensitivity to sucrose, ethanol concentration, and rat line (P = 0.01). Ethanol produced concentration-dependent responses in S1 neurons that were larger than those in S0 cells. Although responses to ethanol by S1 cells did not differ between lines, neuronal firing rates to ethanol in S0 cells increased across concentration only in P rats. Correlation and multivariate analyses revealed that ethanol evoked responses in W neurons that were strongly and selectively associated with activity to sweet stimuli, whereas responses to ethanol by P neurons were not easily associated with activity to representative sweet, sodium salt, acidic, or bitter stimuli. These findings show differential central neural representation of oral ethanol between genetically heterogeneous rats and P rats genetically selected to prefer alcohol. PMID:21918002

  13. Differential neural representation of oral ethanol by central taste-sensitive neurons in ethanol-preferring and genetically heterogeneous rats.

    PubMed

    Lemon, Christian H; Wilson, David M; Brasser, Susan M

    2011-12-01

    In randomly bred rats, orally applied ethanol stimulates neural substrates for appetitive sweet taste. To study associations between ethanol's oral sensory characteristics and genetically mediated ethanol preference, we made electrophysiological recordings of oral responses (spike density) by taste-sensitive nucleus tractus solitarii neurons in anesthetized selectively bred ethanol-preferring (P) rats and their genetically heterogeneous Wistar (W) control strain. Stimuli (25 total) included ethanol [3%, 5%, 10%, 15%, 25%, and 40% (vol/vol)], a sucrose series (0.01, 0.03, 0.1, 0.3, 0.5, and 1 M), and other sweet, salt, acidic, and bitter stimuli; 50 P and 39 W neurons were sampled. k-means clustering applied to the sucrose response series identified cells showing high (S(1)) or relatively low (S(0)) sensitivity to sucrose. A three-way factorial analysis revealed that activity to ethanol was influenced by a neuron's sensitivity to sucrose, ethanol concentration, and rat line (P = 0.01). Ethanol produced concentration-dependent responses in S(1) neurons that were larger than those in S(0) cells. Although responses to ethanol by S(1) cells did not differ between lines, neuronal firing rates to ethanol in S(0) cells increased across concentration only in P rats. Correlation and multivariate analyses revealed that ethanol evoked responses in W neurons that were strongly and selectively associated with activity to sweet stimuli, whereas responses to ethanol by P neurons were not easily associated with activity to representative sweet, sodium salt, acidic, or bitter stimuli. These findings show differential central neural representation of oral ethanol between genetically heterogeneous rats and P rats genetically selected to prefer alcohol.

  14. Effects of nicotine on ethanol-induced locomotor sensitization: A model of neuroadaptation.

    PubMed

    Gubner, Noah R; Phillips, Tamara J

    2015-07-15

    Co-morbid use of nicotine-containing tobacco products and alcohol (ethanol) is prevalent in young adults initiating use and in alcohol dependent adults, suggesting that these drugs in combination may increase risk to develop dependence on one or both drugs. Neuroadaptations caused by repeated drug exposure are related to the development of drug dependence and vulnerability to relapse. Locomotor sensitization has been used as a behavioral measure used to detect changes in neural drug sensitivity that are thought to contribute to drug dependence and relapse. Locomotor sensitization was measured in the current studies to examine potential differences in the effects of nicotine and ethanol given alone and in combination. Baseline activity levels of DBA/2J mice were assessed on 2 days, then mice were treated for 10 days with saline, nicotine (1 or 2mg/kg of nicotine tartrate), ethanol (1 or 2g/kg), or nicotine plus ethanol and locomotor activity was assessed every third day. On the following day, all mice were challenged with ethanol to measure the expression of sensitization. Mice treated with both nicotine and ethanol exhibited greater stimulation than predicted from the combined independent effects of these drugs, consistent with our previously published results. The combined effects of nicotine and ethanol on locomotor sensitization were dependent on the dose of ethanol and whether testing was performed after the drugs were given together, or after challenge with ethanol alone. These results suggest that nicotine and ethanol in combination can have neuroadaptive effects that differ from the independent effects of these drugs. Published by Elsevier B.V.

  15. Differences of acute versus chronic ethanol exposure on anxiety-like behavioral responses in zebrafish.

    PubMed

    Mathur, Priya; Guo, Su

    2011-06-01

    Zebrafish, a vertebrate model organism amenable to high throughput screening, is an attractive system to model and study the mechanisms underlying human diseases. Alcoholism and alcoholic medical disorders are among the most debilitating diseases, yet the mechanisms by which ethanol inflicts the disease states are not well understood. In recent years zebrafish behavior assays have been used to study learning and memory, fear and anxiety, and social behavior. It is important to characterize the effects of ethanol on zebrafish behavioral repertoires in order to successfully harvest the strength of zebrafish for alcohol research. One prominent effect of alcohol in humans is its effect on anxiety, with acute intermediate doses relieving anxiety and withdrawal from chronic exposure increasing anxiety, both of which have significant contributions to alcohol dependence. In this study, we assess the effects of both acute and chronic ethanol exposure on anxiety-like behaviors in zebrafish, using two behavioral paradigms, the Novel Tank Diving Test and the Light/Dark Choice Assay. Acute ethanol exposure exerted significant dose-dependent anxiolytic effects. However, withdrawal from repeated intermittent ethanol exposure disabled recovery from heightened anxiety. These results demonstrate that zebrafish exhibit different anxiety-like behavioral responses to acute and chronic ethanol exposure, which are remarkably similar to these effects of alcohol in humans. Because of the accessibility of zebrafish to high throughput screening, our results suggest that genes and small molecules identified in zebrafish will be of relevance to understand how acute versus chronic alcohol exposure have opposing effects on the state of anxiety in humans. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Alpha1-adrenergic drugs affect the development and expression of ethanol-induced behavioral sensitization.

    PubMed

    Kim, Andrezza Kyunmi; Souza-Formigoni, Maria Lucia Oliveira

    2013-11-01

    According to the incentive sensitization theory, addiction is caused primarily by drug-induced sensitization in the brain mesocorticolimbic systems. After repeated ethanol administration, some animals develop psychomotor sensitization, a phenomenon which occurs simultaneously with the incentive sensitization. Recent evidence suggests the involvement of norepinephrine (NE) in drug addiction, with a critical role in the ethanol reinforcing properties. In this study we evaluated the influence of an agonist (phenylephrine) and an antagonist (prazosin) of alpha1-adrenergic receptors on the development and expression of behavioral sensitization to ethanol. Male Swiss mice, previously treated with ethanol or saline, were challenged with the combined administration of ethanol (or saline) with alpha1-adrenergic drugs. Prazosin (0.1; 0.5 and 1.0 mg/kg) and phenylephrine (1.0 and 2.0 mg/kg) administration blocked the expression of behavioral sensitization to ethanol. In another set of experiments, mice treated with 0.5mg/kg of prazosin+ethanol did not present the development of behavioral sensitization. However, when challenged with ethanol alone, they showed the same sensitized levels of locomotor activity of those presented by mice previously treated with ethanol and saline. Phenylephrine (1.0 mg/kg) treatment did not affect the development of behavioral sensitization. Based on this data, we concluded that the alteration of alpha1-adrenergic receptors functioning, by the administration agonists or antagonists, affected the locomotor sensitization to the stimulant effect of ethanol, suggesting that the normal functioning of the noradrenergic system is essential to its development and expression. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. The relation of age to the acute effects of ethanol on acetanilide disposition.

    PubMed

    Wynne, H A; Mutch, E; Williams, F M; James, O F; Rawlins, M D; Woodhouse, K W

    1989-03-01

    The activity of the major drug-metabolizing enzymes, the mono-oxygenases, can be inhibited by an acute dose of ethanol. We set out to determine whether age has any relation to the degree of inhibition produced by ethanol, using acetanilide as a model substrate. Eight healthy young subjects (mean age 26 years) and eight healthy elderly subjects (mean age 72 years) were studied on two occasions, once receiving acetanilide alone and once acetanilide with 75 ml vodka (30 g ethanol). The clearance of acetanilide was significantly lower (p less than 0.05) in the elderly subjects at 27 +/- 3 l/h compared to 38 +/- 2 l/h in young subjects. No age-related differences in peak blood ethanol concentrations or ethanol elimination rates were noted. After ethanol, acetanilide clearance fell 18% to 31 +/- 3 l/h in young subjects (p = 0.05) and by 15% to 23 +/- 2 l/h in elderly subjects (p = 0.08). This suggests that the elderly do not suffer greater impairment of drug oxidation after acute ethanol ingestion than do the young.

  18. THC inhibits the expression of ethanol-induced locomotor sensitization in mice.

    PubMed

    Filev, Renato; Engelke, Douglas S; Da Silveira, Dartiu X; Mello, Luiz E; Santos-Junior, Jair G

    2017-12-01

    The motivational circuit activated by ethanol leads to behavioral changes that recruit the endocannabinoid system (ECS). Case reports and observational studies suggest that the use of Cannabis sp. mitigates problematic ethanol consumption in humans. Here, we verified the effects of the two main phytocannabinoid compounds of Cannabis sp., cannabidiol (CBD) and delta-9-tetrahydrocannabinol (THC), in the expression of ethanol-induced locomotor sensitization in mice. Male adult DBA/2 mice were exposed to locomotor sensitization by daily intraperitoneal injections of ethanol (2.5 g/kg) for 12 days; control groups received saline. After the acquisition phase, animals were treated with cannabinoids: CBD (2.5 mg/kg); THC (2.5 mg/kg); CBD + THC (1:1 ratio), or vehicle for 4 days with no access to ethanol during this period. One day after the last cannabinoid injection, all animals were challenged with ethanol (2.0 g/kg) to evaluate the expression of the locomotor sensitization. Mice treated with THC alone or THC + CBD showed reduced expression of locomotor sensitization, compared to the vehicle control group. No effects were observed with CBD treatment alone. Our findings showing that phytocannabinoid treatment prevents the expression of behavioral sensitization in mice provide insight into the potential therapeutic use of phytocannabinoids in alcohol-related problems. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. SR Ca2+-leak and disordered excitation-contraction coupling as the basis for arrhythmogenic and negative inotropic effects of acute ethanol exposure.

    PubMed

    Mustroph, Julian; Wagemann, Olivia; Lebek, Simon; Tarnowski, Daniel; Ackermann, Jasmin; Drzymalski, Marzena; Pabel, Steffen; Schmid, Christof; Wagner, Stefan; Sossalla, Samuel; Maier, Lars S; Neef, Stefan

    2018-03-01

    Ethanol has acute negative inotropic and arrhythmogenic effects. The underlying mechanisms, however, are largely unknown. Sarcoplasmic reticulum Ca 2+ -leak is an important mechanism for reduced contractility and arrhythmias. Ca 2+ -leak can be induced by oxidative stress and Ca 2+ /Calmodulin-dependent protein kinase II (CaMKII). Therefore, we investigated the influence of acute ethanol exposure on excitation-contraction coupling in atrial and ventricular cardiomyocytes. Isolated human atrial and murine atrial or ventricular cardiomyocytes were preincubated for 30 min and then superfused with control solution or solution containing ethanol. Ethanol had acute negative inotropic and positive lusitropic effects in human atrial muscle strips and murine ventricular cardiomyocytes. Accordingly, Ca 2+ -imaging indicated lower Ca 2+ -transient amplitudes and increased SERCA2a activity, while myofilament Ca 2+ -sensitivity was reduced. SR Ca 2+ -leak was assessed by measuring Ca 2+ -sparks. Ethanol induced severe SR Ca 2+ -leak in human atrial cardiomyocytes (calculated leak: 4.60 ± 0.45 mF/F 0 vs 1.86 ± 0.26 in control, n ≥ 80). This effect was dose-dependent, while spontaneous arrhythmogenic Ca 2+ -waves increased ~5-fold, as investigated in murine cardiomyocytes. Delayed afterdepolarizations, which can result from increased SR Ca 2+ -leak, were significantly increased by ethanol. Measurements using the reactive oxygen species (ROS) sensor CM-H 2 DCFDA showed increased ROS-stress in ethanol treated cells. ROS-scavenging with N-acetylcysteine prevented negative inotropic and positive lusitropic effects in human muscle strips. Ethanol-induced Ca 2+ -leak was abolished in mice with knockout of NOX2 (the main source for ROS in cardiomyocytes). Importantly, mice with oxidation-resistant CaMKII (Met281/282Val mutation) were protected from ethanol-induced Ca 2+ -leak. We show for the first time that ethanol acutely induces strong SR Ca 2+ -leak, also altering

  20. Manipulations of extracellular Loop 2 in α1 GlyR ultra-sensitive ethanol receptors (USERs) enhance receptor sensitivity to isoflurane, ethanol, and lidocaine, but not propofol

    PubMed Central

    Naito, Anna; Muchhala, Karan H.; Trang, Janice; Asatryan, Liana; Trudell, James R.; Homanics, Gregg E.; Alkana, Ronald L.; Davies, Daryl L.

    2015-01-01

    We recently developed Ultra-Sensitive Ethanol Receptors (USERs) as a novel tool for investigation of single receptor subunit populations sensitized to extremely low ethanol concentrations that do not affect other receptors in the nervous system. To this end, we found that mutations within the extracellular Loop 2 region of glycine receptors (GlyRs) and γ-aminobutyric acid type A receptors (GABAARs) can significantly increase receptor sensitivity to micro-molar concentrations of ethanol resulting in up to a 100-fold increase in ethanol sensitivity relative to wild type (WT) receptors. The current study investigated: 1) Whether structural manipulations of Loop 2 in α1 GlyRs could similarly increase receptor sensitivity to other anesthetics; and 2) If mutations exclusive to the C-terminal end of Loop 2 are sufficient to impart these changes. We expressed α1 GlyR USERs in Xenopus oocytes and tested the effects of three classes of anesthetics, isoflurane (volatile), propofol (intravenous), and lidocaine (local), known to enhance glycine-induced chloride currents using two-electrode voltage clamp electrophysiology. Loop 2 mutations produced a significant 10-fold increase in isoflurane and lidocaine sensitivity, but no increase in propofol sensitivity compared to WT α1 GlyRs. Interestingly, we also found that structural manipulations in the C-terminal end of Loop 2 were sufficient and selective for α1 GlyR modulation by ethanol, isoflurane, and lidocaine. These studies are the first to report the extracellular region of α1 GlyRs as a site of lidocaine action. Overall, the findings suggest that Loop 2 of α1 GlyRs is a key region that mediates isoflurane and lidocaine modulation. Moreover, the results identify important amino acids in Loop 2 that regulate isoflurane, lidocaine, and ethanol action. Collectively, these data indicate the commonality of the sites for isoflurane, lidocaine, and ethanol action, and the structural requirements for allosteric modulation on

  1. [Metabolic disturbances and ways of their pharmacological correction in acute poisoning with ethanol in patients with chronic alcoholism].

    PubMed

    Livanov, G A; Lodyagin, A N; Lubsanova, S V; Kovalenko, A L; Batotsyrenov, B V; Sergeev, O A; Loladze, A T; Andrianov, A Yu

    2015-01-01

    To study an influence of chronic alcoholism on the clinical course and severity of metabolic disturbances in patients with acute poisoning with ethanol and to improve the treatment. Authors examined 93 patients stratified into three groups (acute poisoning with ethanol in patients with chronic alcoholism, without chronic alcoholism and those treated with reamberin). The presence of chronic alcoholism significantly augmented metabolic disturbances and influenced the disturbance of oxygen-transport function and free-radical processes in patients with acute intoxication with ethanol. Using of reamberin in the complex intensive therapy led to the decrease in metabolic disorders, which improved the clinical course of acute poisoning with ethanol in patients with chronic alcoholism.

  2. Role of acute ethanol exposure and TLR4 in early events of sepsis in a mouse model

    PubMed Central

    Bhatty, Minny; Jan, Basit L; Tan, Wei; Pruett, Stephen B; Nanduri, Bindu

    2011-01-01

    Sepsis is a major cause of death worldwide. The associated risks and mortality are known to significantly increase on exposure to alcohol (chronic or acute). The underlying mechanisms of the association of acute ethanol ingestion and poor prognosis of sepsis are largely unknown. The study described here was designed to determine in detail the role of ethanol and TLR4 in the pathogenesis of the sepsis syndrome. The effects of acute ethanol exposure and TLR4 on bacterial clearance, spleen cell numbers, peritoneal macrophage numbers, and cytokine production were evaluated using wild type and TLR4 hypo-responsive mice treated with ethanol and then challenged with a non pathogenic strain of Escherichia. coli (E. coli). Ethanol treated mice exhibited a decreased clearance of bacteria and produced lesser amounts of most pro-inflammatory cytokines in both strains of mice at two hours after challenge. Neither ethanol treatment nor a hypo-responsive TLR4 had significant effects on the cell numbers in the peritoneal cavity and spleen 2 hours post infection. The suppressive effect of acute ethanol exposure on cytokine and chemokine production was more pronounced in the wild type mice, but the untreated hyporesponsive mice produced less of most cytokines than untreated wild type mice. The major conclusion of this study is that acute ethanol exposure suppresses pro-inflammatory cytokine production and that a hypo-responsive TLR4 (in C3H/HeJ mice) decreases pro-inflammatory cytokine levels but the cytokines and other mediators induced through other receptors are sufficient to ultimately clear the infection but not enough to induce lethal septic shock. In addition, results reported here demonstrate previously unknown effects of acute ethanol exposure on LIF (leukemia inhibitory factor) and eotaxin and provide the first evidence that IL-9 is induced through TLR4 in vivo. PMID:21872420

  3. Possible mechanism of acute effect of ethanol on intestinal IgA expression in rat.

    PubMed

    Budec, Mirela; Koko, Vesna; Todorović, Vera; Marković, Dragana; Postić, Marija; Drndarević, Neda; Spasić, Andelka; Mitrović, Olivera

    2007-06-01

    The purpose of this study was to investigate the possible mechanism of acute effect of ethanol on IgA expression in rat intestine. To this end, adult female Wistar rats showing diestrus day 1 were treated with (a) ethanol (2 or 4 g/kg, i.p.); (b) N omega-nitro-L-arginine-methyl ester (L-NAME), which inhibits the activity of all isoforms of nitric oxide synthase, (30 mg/kg, s.c.) followed by ethanol 3 h later; and (c) L-NAME (30 mg/kg, s.c.) followed by saline 3 h later. Saline-injected and untreated rats were used as controls. The animals were sacrificed 0.5 h after ethanol administration. Intestinal expression of IgA was evaluated by both immunohistochemistry and Western immunoblotting. Morphometric analysis showed that acute ethanol treatment increased the number of IgA-immunoreactive cells in a dose-dependent manner. Pretreatment with L-NAME abolished this action of alcohol. Injection of L-NAME followed by saline had no influence on the number of IgA+cells. The results, obtained by Western immunoblotting, paralleled our immunohistochemical findings. Taken together, these data suggest that acute effect of ethanol on intestinal IgA might be mediated by endogenous nitric oxide.

  4. Dopamine modulates acute responses to cocaine, nicotine and ethanol in Drosophila.

    PubMed

    Bainton, R J; Tsai, L T; Singh, C M; Moore, M S; Neckameyer, W S; Heberlein, U

    2000-02-24

    Drugs of abuse have a common property in mammals, which is their ability to facilitate the release of the neurotransmitter and neuromodulator dopamine in specific brain regions involved in reward and motivation. This increase in synaptic dopamine levels is believed to act as a positive reinforcer and to mediate some of the acute responses to drugs. The mechanisms by which dopamine regulates acute drug responses and addiction remain unknown. We present evidence that dopamine plays a role in the responses of Drosophila to cocaine, nicotine or ethanol. We used a startle-induced negative geotaxis assay and a locomotor tracking system to measure the effect of psychostimulants on fly behavior. Using these assays, we show that acute responses to cocaine and nicotine are blunted by pharmacologically induced reductions in dopamine levels. Cocaine and nicotine showed a high degree of synergy in their effects, which is consistent with an action through convergent pathways. In addition, we found that dopamine is involved in the acute locomotor-activating effect, but not the sedating effect, of ethanol. We show that in Drosophila, as in mammals, dopaminergic pathways play a role in modulating specific behavioral responses to cocaine, nicotine or ethanol. We therefore suggest that Drosophila can be used as a genetically tractable model system in which to study the mechanisms underlying behavioral responses to multiple drugs of abuse.

  5. Acute and Chronic Ethanol Exposure Differentially Regulate CB1 Receptor Function at Glutamatergic Synapses in the Rat Basolateral Amygdala

    PubMed Central

    Robinson, Stacey L.; Alexander, Nancy J.; Bluett, Rebecca J.; Patel, Sachin; McCool, Brian A.

    2016-01-01

    The endogenous cannabinoid (eCB) system has been suggested to play a key role in ethanol preference and intake, the acute effects of ethanol, and in the development of withdrawal symptoms following ethanol dependence. Ethanol-dependent alterations in glutamatergic signaling within the lateral/basolateral nucleus of the amygdala (BLA) are critical for the development and expression of withdrawal-induced anxiety. Notably, the eCB system significantly regulates both glutamatergic and GABAergic synaptic activity within the BLA. Chronic ethanol exposure significantly alters eCB system expression within regions critical to the expression of emotionality and anxiety-related behavior, including the BLA. Here, we investigated specific interactions between the BLA eCB system and its functional regulation of synaptic activity during acute and chronic ethanol exposure. In tissue from ethanol naïve-rats, a prolonged acute ethanol exposure caused a dose dependent inhibition of glutamatergic synaptic activity via a presynaptic mechanism that was occluded by CB1 antagonist/inverse agonists SR141716a and AM251. Importantly, this acute ethanol inhibition was attenuated following 10 day chronic intermittent ethanol vapor exposure (CIE). CIE exposure also significantly down-regulated CB1-mediated presynaptic inhibition at glutamatergic afferent terminals but spared CB1-inhibition of GABAergic synapses arising from local inhibitory-interneurons. CIE also significantly elevated BLA N-arachidonoylethanolamine (AEA or anandamide) levels and decreased CB1 receptor protein levels. Collectively, these data suggest a dynamic regulation of the BLA eCB system by acute and chronic ethanol. PMID:26707595

  6. Adenylyl Cyclase 1 Is Required for Ethanol-Induced Locomotor Sensitization and Associated Increases in NMDA Receptor Phosphorylation and Function in the Dorsal Medial Striatum

    PubMed Central

    Bosse, Kelly E.; Oginsky, Max F.; Susick, Laura L.; Ramalingam, Sailesh; Ferrario, Carrie R.

    2017-01-01

    Neuroadaptive responses to chronic ethanol, such as behavioral sensitization, are associated with N-methyl-D-aspartate receptor (NMDAR) recruitment. Ethanol enhances GluN2B-containing NMDAR function and phosphorylation (Tyr-1472) of the GluN2B-NMDAR subunit in the dorsal medial striatum (DMS) through a protein kinase A (PKA)–dependent pathway. Ethanol-induced phosphorylation of PKA substrates is partially mediated by calcium-stimulated adenylyl cyclase 1 (AC1), which is enriched in the dorsal striatum. As such, AC1 is poised as an upstream modulator of ethanol-induced DMS neuroadaptations that promote drug responding, and thus represents a therapeutic target. Our hypothesis is that loss of AC1 activity will prevent ethanol-induced locomotor sensitization and associated DMS GluN2B-NMDAR adaptations. We evaluated AC1’s contribution to ethanol-evoked locomotor responses and DMS GluN2B-NMDAR phosphorylation and function using AC1 knockout (AC1KO) mice. Results were mechanistically validated with the AC1 inhibitor, NB001. Acute ethanol (2.0 g/kg) locomotor responses in AC1KO and wild-type (WT) mice pretreated with NB001 (10 mg/kg) were comparable to WT ethanol controls. However, repeated ethanol treatment (10 days, 2.5 g/kg) failed to produce sensitization in AC1KO or NB001 pretreated mice, as observed in WT ethanol controls, following challenge exposure (2.0 g/kg). Repeated exposure to ethanol in the sensitization procedure significantly increased pTyr-1472 GluN2B levels and GluN2B-containing NMDAR transmission in the DMS of WT mice. Loss of AC1 signaling impaired ethanol-induced increases in DMS pGluN2B levels and NMDAR-mediated transmission. Together, these data support a critical and specific role for AC1 in striatal signaling that mediates ethanol-induced behavioral sensitization, and identify GluN2B-containing NMDARs as an important AC1 target. PMID:28838956

  7. [Involvement of distal fragment of chromosome 13 in the regulation of sensitivity to ethanol in mice].

    PubMed

    Bazovkina, D V; Kulikov, A V

    2015-01-01

    The role of the fragment 57-65 cM of mouse chromosome 13 was studied in the regulation of ethanol action on locomotor activity, anxiety and sensitivity to hypnotic and hypothermic effects of ethanol. We used male mice of recombinant lines AKR/J and AKR.CBA-D13Mit76C, differing only in this fragment. After acute administration of ethanol only AKR mice showed the increase in the length of traveled distance in the open-field test (p < 0.05), only the AKR.CBA-D13Mit76C mice demonstrated the increase the time spent in the center of open-field arena (p < 0.05). Intact animals of both lines did not differ in sleep duration and intensity of hypothermia induced by injections of high doses of ethanol. At the same time, long-term alcohol treatment led to the weakening of the hypnotic effect of ethanol in the males of both lines compared to intact animals (p < 0.01 for the AKR, p < 0.001 for AKR.CBA-D13Mit76C). Chronic alcoholization led to increased ethanol-induced hypothermia in AKR males compared to intact animals (p < 0.01) and did not affect the intensity of ethanol hypothermic effect in AKR.CBA-D13Mit76C mice. The results suggest the involvement of the distal fragment 57-65 cM of chromosome 13 in the mechanisms of ethanol action in mice.

  8. Acute and Chronic Effects of Ethanol on Learning-Related Synaptic Plasticity

    PubMed Central

    Zorumski, Charles F.; Mennerick, Steven; Izumi, Yukitoshi

    2014-01-01

    Alcoholism is associated with acute and long-term cognitive dysfunction including memory impairment, resulting in substantial disability and cost to society. Thus, understanding how ethanol impairs cognition is essential for developing treatment strategies to dampen its adverse impact. Memory processing is thought to involve persistent, use-dependent changes in synaptic transmission, and ethanol alters the activity of multiple signaling molecules involved in synaptic processing, including modulation of the glutamate and gamma-aminobutyric acid (GABA) transmitter systems that mediate most fast excitatory and inhibitory transmission in the brain. Effects on glutamate and GABA receptors contribute to ethanol-induced changes in long-term potentiation (LTP) and long-term depression (LTD), forms of synaptic plasticity thought to underlie memory acquisition. In this paper, we review the effects of ethanol on learning-related forms of synaptic plasticity with emphasis on changes observed in the hippocampus, a brain region that is critical for encoding contextual and episodic memories. We also include studies in other brain regions as they pertain to altered cognitive and mental function. Comparison of effects in the hippocampus to other brain regions is instructive for understanding the complexities of ethanol’s acute and long-term pharmacological consequences. PMID:24447472

  9. Sex Differences in Acute Ethanol Withdrawal Severity After Adrenalectomy and Gonadectomy in WSP and WSR Mice

    PubMed Central

    Strong, Moriah N.; Kaufman, Katherine R.; Crabbe, John C.; Finn, Deborah A.

    2009-01-01

    Recent findings suggest that the ability of ethanol (EtOH) to increase the levels of neurosteroids with potent γ-aminobutyric acid (GABA)ergic properties can influence measures of EtOH sensitivity. Earlier studies determined that removal of the adrenals and gonads diminished the steroidogenic effect of EtOH and significantly increased acute EtOH withdrawal severity in two inbred mouse strains that differed in withdrawal severity, suggesting the contribution of anticonvulsant GABAergic steroids to acute withdrawal in intact animals. Thus, the goal of the present studies was to investigate the consequence of steroid removal on acute EtOH withdrawal through excision of the adrenals and gonads, in another genetic animal model of EtOH withdrawal differences, the Withdrawal Seizure-Prone (WSP) and -Resistant (WSR) selected lines. Male and female WSP and WSR mice underwent surgical removal of the adrenals and gonads or no organ removal (SHAM). One to two weeks later, baseline handling-induced convulsions (HICs) were assessed, mice were given a 4 g/kg dose of ethanol, and HICs were measured hourly for 12 hours and then at 24 hours. The combination surgery significantly increased EtOH withdrawal in WSP and WSR female mice, as measured by area under the curve (AUC) and peak HIC scores. AUC was significantly positively correlated with plasma corticosterone levels and significantly negatively correlated with progesterone levels. In contrast, surgical status did not alter withdrawal severity in male WSP and WSR mice. Overall, the increase in acute ethanol withdrawal severity in female WSP and WSR mice following adrenalectomy and gonadectomy corroborate our recent evidence that withdrawal from a high dose of EtOH can be modulated by anticonvulsant steroids produced in the periphery. PMID:19671463

  10. Transgenic Mice with Increased Astrocyte Expression of IL-6 Show Altered Effects of Acute Ethanol on Synaptic Function

    PubMed Central

    Hernandez, Ruben V.; Puro, Alana C.; Manos, Jessica C.; Huitron-Resendiz, Salvador; Reyes, Kenneth C.; Liu, Kevin; Vo, Khanh; Roberts, Amanda J.; Gruol, Donna L.

    2015-01-01

    A growing body of evidence has revealed that resident cells of the central nervous system (CNS), and particularly the glial cells, comprise a neuroimmune system that serves a number of functions in the normal CNS and during adverse conditions. Cells of the neuroimmune system regulate CNS functions through the production of signaling factors, referred to as neuroimmune factors. Recent studies show that ethanol can activate cells of the neuroimmune system, resulting in the elevated production of neuroimmune factors, including the cytokine interleukin-6 (IL-6). Here we analyzed the consequences of this CNS action of ethanol using transgenic mice that express elevated levels of IL-6 through increased astrocyte expression (IL-6-tg) to model the increased IL-6 expression that occurs with ethanol use. Results show that increased IL-6 expression induces neuroadaptive changes that alter the effects of ethanol. In hippocampal slices from non-transgenic (non-tg) littermate control mice, synaptically evoked dendritic field excitatory postsynaptic potential (fEPSP) and somatic population spike (PS) at the Schaffer collateral to CA1 pyramidal neuron synapse were reduced by acute ethanol (20 or 60 mM). In contrast, acute ethanol enhanced the fEPSP and PS in hippocampal slices from IL-6 tg mice. Long-term synaptic plasticity of the fEPSP (i.e., LTP) showed the expected dose-dependent reduction by acute ethanol in non-tg hippocampal slices, whereas LTP in the IL-6 tg hippocampal slices was resistant to this depressive effect of acute ethanol. Consistent with altered effects of acute ethanol on synaptic function in the IL-6 tg mice, EEG recordings showed a higher level of CNS activity in the IL-6 tg mice than in the non-tg mice during the period of withdrawal from an acute high dose of ethanol. These results suggest a potential role for neuroadaptive effects of ethanol-induced astrocyte production of IL-6 as a mediator or modulator of the actions of ethanol on the CNS, including

  11. ACUTE ETHANOL MODULATES GLUTAMATERGIC AND SEROTONERGIC PHASE SHIFTS OF THE MOUSE CIRCADIAN LOCK IN VITRO

    PubMed Central

    Prosser, Rebecca A.; Mangrum, Charles A.; Glass, J. David

    2008-01-01

    Alcohol abuse is associated with sleep problems, which are often linked to circadian rhythm disturbances. However, there is no information on the direct effects of ethanol on the mammalian circadian clock. Acute ethanol inhibits glutamate signaling, which is the primary mechanism through which light resets the mammalian clock in the suprachiasmatic nucleus (SCN). Glutamate and light also inhibit circadian clock resetting induced by non-photic signals, including serotonin. Thus, we investigated the effects of acute ethanol on both glutamatergic and serotoninergic resetting of the SCN clock in vitro. We show that ethanol dose-dependently inhibits glutamate-induced phase shifts and enhances serotonergic phase shifts. The inhibition of glutamate-induced phase shifts is not affected by excess glutamate, glycine or D-serine, but is prevented by excess brain-derived neurotrophic factor (BDNF). BDNF is known to augment glutamate signaling in the SCN and to be necessary for glutamate/light-induced phase shifts. Thus, ethanol may inhibit glutamate-induced clock resetting at least in part by blocking BDNF enhancement of glutamate signaling. Ethanol enhancement of serotonergic phase shifts is mimicked by treatments that suppress glutamate signaling in the SCN, including antagonists of glutamate receptors, BDNF signaling and nitric oxide synthase. The combined effect of ethanol with these treatments is not additive, suggesting they act through a common pathway. Our data indicate further that the interaction between serotonin and glutamate in the SCN may occur downstream from nitric oxide synthase activation. Thus, acute ethanol disrupts normal circadian clock phase regulation, which could contribute to the physiological and psychological problems associated with alcohol abuse. PMID:18313227

  12. Glycine and GABAA Ultra-Sensitive Ethanol Receptors as Novel Tools for Alcohol and Brain Research

    PubMed Central

    Naito, Anna; Muchhala, Karan H.; Asatryan, Liana; Trudell, James R.; Homanics, Gregg E.; Perkins, Daya I.; Alkana, Ronald L.

    2014-01-01

    A critical obstacle to developing effective medications to prevent and/or treat alcohol use disorders is the lack of specific knowledge regarding the plethora of molecular targets and mechanisms underlying alcohol (ethanol) action in the brain. To identify the role of individual receptor subunits in ethanol-induced behaviors, we developed a novel class of ultra-sensitive ethanol receptors (USERs) that allow activation of a single receptor subunit population sensitized to extremely low ethanol concentrations. USERs were created by mutating as few as four residues in the extracellular loop 2 region of glycine receptors (GlyRs) or γ-aminobutyric acid type A receptors (GABAARs), which are implicated in causing many behavioral effects linked to ethanol abuse. USERs, expressed in Xenopus oocytes and tested using two-electrode voltage clamp, demonstrated an increase in ethanol sensitivity of 100-fold over wild-type receptors by significantly decreasing the threshold and increasing the magnitude of ethanol response, without altering general receptor properties including sensitivity to the neurosteroid, allopregnanolone. These profound changes in ethanol sensitivity were observed across multiple subunits of GlyRs and GABAARs. Collectively, our studies set the stage for using USER technology in genetically engineered animals as a unique tool to increase understanding of the neurobiological basis of the behavioral effects of ethanol. PMID:25245406

  13. ACUTE EFFECT OF ETHANOL ON HEPATIC RETICULAR G6Pase AND Ca2+ POOL

    PubMed Central

    Jacobs-Harper, Amy; Crumbly, Ashlee; Romani, Andrea

    2012-01-01

    Background Hydrolysis of glucose 6-phosphate via glucose 6-phosphatase enlarges the reticular Ca2+ pool of the hepatocyte. Exposure of liver cells to ethanol impairs reticular Ca2+ homeostasis. The present study investigated the effect of acute ethanol administration on glucose 6-phosphate supported Ca2+ accumulation in liver cells. Methods Total microsomes were isolated from rat livers acutely perfused with varying doses of ethanol (0.01%, 0.1%, or 1% v/v) for 8 minutes. Calcium uptake was assessed by 45Ca redistribution. Inorganic phosphate (Pi) formation was measured as an indicator of glucose 6-phosphatase hydrolytic activity. Results Glucose 6-phosphate-supported Ca2+ uptake decreased in a manner directly proportional to the dose of ethanol infused in the liver whereas Ca2+ uptake via SERCA pumps was decreased by ~25% only at the highest dose of alcohol administered. The reduced accumulation of Ca2+ within the microsomes resulted in a smaller IP3-induced Ca2+ release. Kinetic assessment of IP3 and passive Ca2+ release indicated a faster mobilization in microsomes from ethanol-treated livers, suggesting alcohol-induced alteration of Ca2+ releasing mechanisms. Pre-treatment of livers with chloromethiazole or dithio-threitol, but not 4-methyl-pyrazole prevented the inhibitory effect of ethanol on glucose 6-phosphatase activity and Ca2+ homeostasis. Conclusions Liver glucose 6-phosphatase activity and IP3-mediated Ca2+ release are rapidly inhibited following acute (8 min) exposure to ethanol, thus compromising the ability of the endoplasmic reticulum to dynamically modulate Ca2+ homeostasis in the hepatocyte. The protective effect of chloromethiazole and di-thio-threitol suggests that the inhibitory effect of ethanol is mediated through its metabolism via reticular cyP4502E1 and consequent free radicals formation. PMID:22958133

  14. Acute ethanol intoxication suppresses pentraxin 3 expression in a mouse sepsis model involving cecal ligation and puncture.

    PubMed

    Kasuda, Shogo; Kudo, Risa; Yuui, Katsuya; Sakurai, Yoshihiko; Hatake, Katsuhiko

    2017-11-01

    Acute ethanol intoxication impairs immunological reactions and increases the risk of sepsis; however, the underlying mechanism remains unclear. Pentraxin (PTX) 3 is a humoral pattern recognition receptor whose levels rapidly increase in response to inflammation. PTX3 production is triggered by tumor necrosis factor (TNF)-α and is mediated by c-Jun N-terminal kinase (JNK). As PTX3 exerts protective effects against sepsis as well as acute lung injury, we investigated whether acute ethanol exposure exacerbates sepsis by altering PTX3 expression. Sepsis was induced in C57/BL6 mice by cecal ligation and puncture (CLP) after ethanol/saline administration. Survival rates were significantly lower in ethanol-treated than in saline-treated mice. Increased vascular permeability and attenuation of PTX3 expression were observed in the lungs of ethanol-treated mice 4 h after CLP. Concomitant with a delayed increase of plasma TNF-α in ethanol-treated mice, plasma PTX3 was also suppressed in the early phase of sepsis. Although TNF-α level in ethanol-treated mice exceeded that in saline-treated mice 16 h after CLP, PTX3 levels were still suppressed in the former group. JNK phosphorylation in lung tissue was suppressed in both groups 4 and 16 h after CLP. Furthermore, JNK phosphorylation in ethanol-treated human umbilical vein endothelial cells was suppressed even in the presence of exogenous TNF-α, resulting in inhibition of PTX3 mRNA and protein expression. Our results suggest that ethanol suppresses de novo PTX3 synthesis via two mechanisms - i.e., suppression of TNF-α production and inhibition of JNK phosphorylation. PTX3 suppression may therefore contribute to exacerbation of sepsis in acute ethanol intoxication. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. The acute effect of ethanol on adrenal cortex in female rats--possible role of nitric oxide.

    PubMed

    Dikić, Dragoslava; Budeč, Mirela; Vranješ-Durić, Sanja; Koko, Vesna; Vignjević, Sanja; Mitrović, Olivera

    2011-01-01

    The present study was designed to investigate a possible role of endogenous nitric oxide (NO) in the adrenal response to an acute alcohol administration in female rats. To this end, N(ω)-nitro-L-arginine-methyl ester (L-NAME), a competitive inhibitor of all isoforms of NO synthase, was used. Adult female Wistar rats showing diestrus Day 1 were treated with: (a) ethanol (2 or 4 g/kg, intraperitoneally); (b) L-NAME (30 or 50 mg/kg, subcutaneously) followed by either ethanol or saline 3 h later. Untreated and saline-injected rats were used as controls. The animals were killed 30 min after last injection. Adrenal cortex was analyzed morphometrically, and plasma levels of adrenocorticotropic hormone (ACTH) and serum concentrations of corticosterone were determined. Acute ethanol treatment enhanced the levels of ACTH and corticosterone in a dose-dependent manner. Stereological analysis revealed that acute alcohol administration induced a significant increase in absolute volume of the cortex and the zona fasciculata (ZF). In addition, ethanol at a dose of 4 g/kg increased volume density and length of the capillaries in the ZF. However, other stereological parameters were unaffected by alcohol exposure. Pretreatment with both doses of L-NAME had no effect on ethanol-induced changes. Obtained findings indicate that acute ethanol treatment stimulates the activity of the adrenal cortex and that this effect is not mediated by endogenous NO in female rats under these experimental conditions.

  16. Acute Ethanol Inhibition of γ Oscillations Is Mediated by Akt and GSK3β

    PubMed Central

    Wang, JianGang; Zhao, JingXi; Liu, ZhiHua; Guo, FangLi; Wang, Yali; Wang, Xiaofang; Zhang, RuiLing; Vreugdenhil, Martin; Lu, Chengbiao

    2016-01-01

    Hippocampal network oscillations at gamma band frequency (γ, 30–80 Hz) are closely associated with higher brain functions such as learning and memory. Acute ethanol exposure at intoxicating concentrations (≥50 mM) impairs cognitive function. This study aimed to determine the effects and the mechanisms of acute ethanol exposure on γ oscillations in an in vitro model. Ethanol (25–100 mM) suppressed kainate-induced γ oscillations in CA3 area of the rat hippocampal slices, in a concentration-dependent, reversible manner. The ethanol-induced suppression was reduced by the D1R antagonist SCH23390 or the PKA inhibitor H89, was prevented by the Akt inhibitor triciribine or the GSk3β inhibitor SB415286, was enhanced by the NMDA receptor antagonist D-AP5, but was not affected by the MAPK inhibitor U0126 or PI3K inhibitor wortmanin. Our results indicate that the intracellular kinases Akt and GSk3β play a critical role in the ethanol-induced suppression of γ oscillations and reveal new cellular pathways involved in the ethanol-induced cognitive impairment. PMID:27582689

  17. Genetic differences in ethanol-induced hyperglycemia and conditioned taste aversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Risinger, F.O.; Cunningham, C.L.

    1992-01-01

    Genetic differences in the hyperglycemic response to acute ethanol exposure and ethanol-induced conditioned taste aversion were examined using inbred mice. Adult male C57BL/6J and DBA/2J mice were injected with ethanol and blood glucose levels determined over 4 h. C57 mice demonstrated greater dose-dependent elevations in blood glucose compared to DBA mice. In a conditioned taste aversion procedure, water deprived mice received ethanol injections immediately after access to a NaCl flavored solution. DBA mice developed aversion to the ethanol-paired flavor at a lower dose than C57 mice. These results provide further support for a possible inverse genetic relationship between sensitivity tomore » ethanol-induced hyperglycemia and sensitivity to conditioned taste aversion.« less

  18. Acute ethanol intake induces superoxide anion generation and mitogen-activated protein kinase phosphorylation in rat aorta: A role for angiotensin type 1 receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yogi, Alvaro; Callera, Glaucia E.; Mecawi, André S.

    Ethanol intake is associated with increase in blood pressure, through unknown mechanisms. We hypothesized that acute ethanol intake enhances vascular oxidative stress and induces vascular dysfunction through renin–angiotensin system (RAS) activation. Ethanol (1 g/kg; p.o. gavage) effects were assessed within 30 min in male Wistar rats. The transient decrease in blood pressure induced by ethanol was not affected by the previous administration of losartan (10 mg/kg; p.o. gavage), a selective AT{sub 1} receptor antagonist. Acute ethanol intake increased plasma renin activity (PRA), angiotensin converting enzyme (ACE) activity, plasma angiotensin I (ANG I) and angiotensin II (ANG II) levels. Ethanol inducedmore » systemic and vascular oxidative stress, evidenced by increased plasma thiobarbituric acid-reacting substances (TBARS) levels, NAD(P)H oxidase‐mediated vascular generation of superoxide anion and p47phox translocation (cytosol to membrane). These effects were prevented by losartan. Isolated aortas from ethanol-treated rats displayed increased p38MAPK and SAPK/JNK phosphorylation. Losartan inhibited ethanol-induced increase in the phosphorylation of these kinases. Ethanol intake decreased acetylcholine-induced relaxation and increased phenylephrine-induced contraction in endothelium-intact aortas. Ethanol significantly decreased plasma and aortic nitrate levels. These changes in vascular reactivity and in the end product of endogenous nitric oxide metabolism were not affected by losartan. Our study provides novel evidence that acute ethanol intake stimulates RAS activity and induces vascular oxidative stress and redox-signaling activation through AT{sub 1}-dependent mechanisms. These findings highlight the importance of RAS in acute ethanol-induced oxidative damage. -- Highlights: ► Acute ethanol intake stimulates RAS activity and vascular oxidative stress. ► RAS plays a role in acute ethanol-induced oxidative damage via AT{sub 1} receptor activation

  19. Effects of acute ethanol administration on nocturnal pineal serotonin N-acetyltransferase activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Creighton, J.A.; Rudeen, P.K.

    The effect of acute ethanol administration on pineal serotonin N-acetyltransferase (NAT) activity, norepinephrine and indoleamine content was examined in male rats. When ethanol was administered in two equal doses (2 g/kg body weight) over a 4 hour period during the light phase, the nocturnal rise in NAT activity was delayed by seven hours. The nocturnal pineal norepinephrine content was not altered by ethanol except for a delay in the reduction of NE with the onset of the following light phase. Although ethanol treatment led to a significant reduction in nocturnal levels of pineal serotonin content, there was no significant effectmore » upon pineal content of 5-hydroxyindoleacetic acid (5-HIAA). The data indicate that ethanol delays the onset of the rise of nocturnal pineal NAT activity.« less

  20. Short-term selection for high and low ethanol intake yields differential sensitivity to ethanol's motivational effects and anxiety-like responses in adolescent Wistar rats.

    PubMed

    Fernández, Macarena Soledad; Báez, Bárbara; Bordón, Ana; Espinosa, Laura; Martínez, Eliana; Pautassi, Ricardo Marcos

    2017-10-03

    Alcohol use disorders are modulated by genetic factors, but the identification of specific genes and their concomitant biological changes that are associated with a higher risk for these disorders has proven difficult. Alterations in the sensitivity to the motivational effects of ethanol may be one way by which genes modulate the initiation and escalation of ethanol intake. Rats and mice have been selectively bred for high and low ethanol consumption during adulthood. However, selective breeding programs for ethanol intake have not focused on adolescence. This phase of development is associated with the initiation and escalation of ethanol intake and characterized by an increase in the sensitivity to ethanol's appetitive effects and a decrease in the sensitivity to ethanol's aversive effects compared with adulthood. The present study performed short-term behavioral selection to select rat lines that diverge in the expression of ethanol drinking during adolescence. A progenitor nucleus of Wistar rats (F 0 ) and filial generation 1 (F 1 ), F 2 , and F 3 adolescent rats were derived from parents that were selected for high (STDRHI) and low (STDRLO) ethanol consumption during adolescence and were tested for ethanol intake and responsivity to ethanol's motivational effects. STDRHI rats exhibited significantly greater ethanol intake and preference than STDRLO rats. Compared with STDRLO rats, STDRHI F 2 and F 3 rats exhibited a blunted response to ethanol in the conditioned taste aversion test. F 2 and F 3 STDRHI rats but not STDRLO rats exhibited ethanol-induced motor stimulation. STDRHI rats exhibited avoidance of the white compartment of the light-dark box, a reduction of locomotion, and a reduction of saccharin consumption, suggesting an anxiety-prone phenotype. The results suggest that the genetic risk for enhanced ethanol intake during adolescence is associated with lower sensitivity to the aversive effects of ethanol, heightened reactivity to ethanol's stimulating

  1. Acute Ethanol Administration Rapidly Increases Phosphorylation of Conventional Protein Kinase C in Specific Mammalian Brain Regions in Vivo

    PubMed Central

    Wilkie, Mary Beth; Besheer, Joyce; Kelley, Stephen P.; Kumar, Sandeep; O’Buckley, Todd K.; Morrow, A. Leslie; Hodge, Clyde W.

    2010-01-01

    Background Protein kinase C (PKC) is a family of isoenzymes that regulate a variety of functions in the central nervous system including neurotransmitter release, ion channel activity, and cell differentiation. Growing evidence suggests that specific isoforms of PKC influence a variety of behavioral, biochemical, and physiological effects of ethanol in mammals. The purpose of this study was to determine whether acute ethanol exposure alters phosphorylation of conventional PKC isoforms at a threonine 674 (p-cPKC) site in the hydrophobic domain of the kinase, which is required for its catalytic activity. Methods Male rats were administered a dose range of ethanol (0, 0.5, 1, or 2 g/kg, intragastric) and brain tissue was removed 10 minutes later for evaluation of changes in p-cPKC expression using immunohistochemistry and Western blot methods. Results Immunohistochemical data show that the highest dose of ethanol (2 g/kg) rapidly increases p-cPKC immunoreactivity specifically in the nucleus accumbens (core and shell), lateral septum, and hippocampus (CA3 and dentate gyrus). Western blot analysis further showed that ethanol (2 g/kg) increased p-cPKC expression in the P2 membrane fraction of tissue from the nucleus accumbens and hippocampus. Although p-cPKC was expressed in numerous other brain regions, including the caudate nucleus, amygdala, and cortex, no changes were observed in response to acute ethanol. Total PKCγ immunoreactivity was surveyed throughout the brain and showed no change following acute ethanol injection. Conclusions These results suggest that ethanol rapidly promotes phosphorylation of cPKC in limbic brain regions, which may underlie effects of acute ethanol on the nervous system and behavior. PMID:17511744

  2. Genetic differences in the ethanol sensitivity of GABA sub A receptors expressed in Xenopus oocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wafford, K.A.; Burnett, D.M.; Dunwiddie, T.V.

    1990-07-20

    Animal lines selected for differences in drug sensitivity can be used to help determine the molecular basis of drug action. Long-sleep (LS) and short-sleep (SS) mice differ markedly in their genetic sensitivity to ethanol. To investigate the molecular basis for this difference, mRNA from brains of LS and SS mice was expressed in Xenopus oocytes and the ethanol sensitivity of gamma-aminobutyric acid A (GABA{sub A})- and N-methyl D-aspartate (NMDA) - activated ion channels was tested. Ethanol facilitated GABA responses in oocytes injected with mRNA from LS mice but antagonized responses in oocytes injected with mRNA from SS animals. Ethanol inhibitedmore » NMDA responses equally in the two lines. Thus, genes coding for the GABA{sub A} receptor or associated proteins may be critical determinants of individual differences in ethanol sensitivity.« less

  3. FOREBRAIN AND HINDBRAIN DEVELOPMENT IN ZEBRAFISH IS SENSITIVE TO ETHANOL EXPOSURE INVOLVING AGRIN, FGF AND SONIC HEDGEHOG FUNCTION

    PubMed Central

    Zhang, Chengjin; Ojiaku, Princess; Cole, Gregory J.

    2014-01-01

    BACKGROUND Ethanol is a teratogen that affects numerous developmental processes in the nervous system, which includes development and survival of GABAergic and glutamatergic neurons. Possible molecular mechanisms accounting for ethanol’s effects on nervous system development include perturbed fibroblast growth factor (Fgf) and Sonic hedgehog (Shh) signaling. In zebrafish, forebrain GABAergic neuron development is dependent on Fgf19 and Shh signaling. The present study was conducted to test the hypothesis that ethanol affects GABAergic and glutamatergic neuron development by disrupting Fgf, Shh, and agrin function. METHODS Zebrafish embryos were exposed to varying concentrations of ethanol during a range of developmental stages, in the absence or presence of morpholino oligonucleotides (MOs) that disrupt agrin or Shh function. In situ hybridization was employed to analyze glutamic acid decarboxylase (GAD1) gene expression, as well as markers of glutamatergic neurons. RESULTS Acute ethanol exposure results in marked reduction in GAD1 gene expression in forebrain and hindbrain, and reduction of glutamatergic neuronal markers in hindbrain. Subthreshold ethanol exposure, combined with agrin or Shh MO treatment, produces a similar diminution in expression of markers for GABAergic and glutamatergic neurons. Consistent with the ethanol effects on Fgf and Shh pathways, Fgf19, Fgf8 or Shh mRNA overexpression rescues ethanol-induced decreases in GAD1 and atonal1a gene expression. CONCLUSIONS These studies demonstrate that GABAergic and glutamatergic neuron development in zebrafish forebrain or cerebellum is sensitive to ethanol exposure, and provides additional evidence that a signaling pathway involving agrin, Fgfs and Shh may be a critical target of ethanol exposure during zebrafish embryogenesis. PMID:23184466

  4. A small group of neurosecretory cells expressing the transcriptional regulator apontic and the neuropeptide corazonin mediate ethanol sedation in Drosophila.

    PubMed

    McClure, Kimberly D; Heberlein, Ulrike

    2013-02-27

    In the fruit fly Drosophila melanogaster, as in mammals, acute exposure to a high dose of ethanol leads to stereotypical behavioral changes beginning with increased activity, followed by incoordination, loss of postural control, and eventually, sedation. The mechanism(s) by which ethanol impacts the CNS leading to ethanol-induced sedation and the genes required for normal sedation sensitivity remain largely unknown. Here we identify the gene apontic (apt), an Myb/SANT-containing transcription factor that is required in the nervous system for normal sensitivity to ethanol sedation. Using genetic and behavioral analyses, we show that apt mediates sensitivity to ethanol sedation by acting in a small set of neurons that express Corazonin (Crz), a neuropeptide likely involved in the physiological response to stress. The activity of Crz neurons regulates the behavioral response to ethanol, as silencing and activating these neurons affects sedation sensitivity in opposite ways. Furthermore, this effect is mediated by Crz, as flies with reduced crz expression show reduced sensitivity to ethanol sedation. Finally, we find that both apt and crz are rapidly upregulated by acute ethanol exposure. Thus, we have identified two genes and a small set of peptidergic neurons that regulate sensitivity to ethanol-induced sedation. We propose that Apt regulates the activity of Crz neurons and/or release of the neuropeptide during ethanol exposure.

  5. A Small Group of Neurosecretory Cells Expressing the Transcriptional Regulator apontic and the Neuropeptide corazonin Mediate Ethanol Sedation in Drosophila

    PubMed Central

    2013-01-01

    In the fruit fly Drosophila melanogaster, as in mammals, acute exposure to a high dose of ethanol leads to stereotypical behavioral changes beginning with increased activity, followed by incoordination, loss of postural control, and eventually, sedation. The mechanism(s) by which ethanol impacts the CNS leading to ethanol-induced sedation and the genes required for normal sedation sensitivity remain largely unknown. Here we identify the gene apontic (apt), an Myb/SANT-containing transcription factor that is required in the nervous system for normal sensitivity to ethanol sedation. Using genetic and behavioral analyses, we show that apt mediates sensitivity to ethanol sedation by acting in a small set of neurons that express Corazonin (Crz), a neuropeptide likely involved in the physiological response to stress. The activity of Crz neurons regulates the behavioral response to ethanol, as silencing and activating these neurons affects sedation sensitivity in opposite ways. Furthermore, this effect is mediated by Crz, as flies with reduced crz expression show reduced sensitivity to ethanol sedation. Finally, we find that both apt and crz are rapidly upregulated by acute ethanol exposure. Thus, we have identified two genes and a small set of peptidergic neurons that regulate sensitivity to ethanol-induced sedation. We propose that Apt regulates the activity of Crz neurons and/or release of the neuropeptide during ethanol exposure. PMID:23447613

  6. [The effects of ethanol on the evolution of the acute benzodiazepine poisoning].

    PubMed

    Puha, Gabriela; Hurjui, J; Lupuşoru, Cătălina Elena; Sorodoc, L

    2011-01-01

    The depressing effects on the nervous central system (NCS) induced by benzodiazepines and ethanol are similar. The complications are rare in the benzodiazepine poisoning, but are a lot more frequent in association with other depressing drugs for the NCS (especially alcohol). We analyzed retrospectively patients with benzodiazepine poisoning admitted in the Internal Medicine Clinic - Toxicology during 2003 - 2009.The study attempted a complex evaluation of the consequences of acute and chronic alcoholism on the evolution of acute benzodiazepinepoisoning and the description of the clinic evolution and paraclinical particularities of the patients under investigation. 343 patients with benzodiazepine poisoning were admitted, 150 were tested through measurement of alcohol level, leading to values between 1 - 415 mg/dl. Chronic alcoholism in personal pathological antecedents of the patients determined a relative risk of intoxication 1.46 times higher. The hospitalization period varied from 1 to 8 days for patients with chronic alcoholism and from 1 to 14 days for patients with acute alcoholism, a statistically important difference. During the period under investigation, from the total of patients admitted for acute benzodiazepine poisoning, 2 deaths were registered. Of the two deaths, one patient showed ethanol coingestion.

  7. GABAA Receptor Regulation of Voluntary Ethanol Drinking Requires PKCε

    PubMed Central

    Besheer, Joyce; Lepoutre, Veronique; Mole, Beth; Hodge, Clyde W.

    2010-01-01

    Protein kinase C (PKC) regulates a variety of neural functions, including ion channel activity, neurotransmitter release, receptor desensitization and differentiation. We have shown previously that mice lacking the ε-isoform of PKC (PKCε) self-administer 75% less ethanol and exhibit supersensitivity to acute ethanol and allosteric positive modulators of GABAA receptors when compared with wild-type controls. The purpose of the present study was to examine involvement of PKCε in GABAA receptor regulation of voluntary ethanol drinking. To address this question, PKCε null-mutant and wild-type control mice were allowed to drink ethanol (10% v/v) vs. water on a two-bottle continuous access protocol. The effects of diazepam (nonselective GABAA BZ positive modulator), zolpidem (GABAA α1 agonist), L-655,708 (BZ-sensitive GABAA α5 inverse agonist), and flumazenil (BZ antagonist) were then tested on ethanol drinking. Ethanol intake (grams/kg/day) by wild-type mice decreased significantly after diazepam or zolpidem but increased after L-655,708 administration. Flumazenil antagonized diazepam-induced reductions in ethanol drinking in wild-type mice. However, ethanol intake by PKCε null mice was not altered by any of the GABAergic compounds even though effects were seen on water drinking in these mice. Increased acute sensitivity to ethanol and diazepam, which was previously reported, was confirmed in PKCε null mice. Thus, results of the present study show that PKCε null mice do not respond to doses of GABAA BZ receptor ligands that regulate ethanol drinking by wild-type control mice. This suggests that PKCε may be required for GABAA receptor regulation of chronic ethanol drinking. PMID:16881070

  8. Role of Interleukin-1 Receptor Signaling in the Behavioral Effects of Ethanol and Benzodiazepines

    PubMed Central

    Blednov, Yuri A.; Benavidez, Jillian M.; Black, Mendy; Mayfield, Jody; Harris, R. Adron

    2015-01-01

    Gene expression studies identified the interleukin-1 receptor type I (IL-1R1) as part of a pathway associated with a genetic predisposition to high alcohol consumption, and lack of the endogenous IL-1 receptor antagonist (IL-1ra) strongly reduced ethanol intake in mice. Here, we compared ethanol-mediated behaviors in mice lacking Il1rn or Il1r1. Deletion of Il1rn (the gene encoding IL-1ra) increases sensitivity to the sedative/hypnotic effects of ethanol and flurazepam and reduces severity of acute ethanol withdrawal. Conversely, deletion of Il1r1 (the gene encoding the IL-1 receptor type I, IL-1R1) reduces sensitivity to the sedative effects of ethanol and flurazepam and increases the severity of acute ethanol withdrawal. The sedative effects of ketamine and pentobarbital were not altered in the knockout (KO) strains. Ethanol intake and preference were not changed in mice lacking Il1r1 in three different tests of ethanol consumption. Recovery from ethanol-induced motor incoordination was only altered in female mice lacking Il1r1. Mice lacking Il1rn (but not Il1r1) showed increased ethanol clearance and decreased ethanol-induced conditioned taste aversion. The increased ethanol- and flurazepam-induced sedation in Il1rn KO mice was decreased by administration of IL-1ra (Kineret), and pre-treatment with Kineret also restored the severity of acute ethanol withdrawal. Ethanol-induced sedation and withdrawal severity were changed in opposite directions in the null mutants, indicating that these responses are likely regulated by IL-1R1 signaling, whereas ethanol intake and preference do not appear to be solely regulated by this pathway. PMID:25839897

  9. Role of interleukin-1 receptor signaling in the behavioral effects of ethanol and benzodiazepines.

    PubMed

    Blednov, Yuri A; Benavidez, Jillian M; Black, Mendy; Mayfield, Jody; Harris, R Adron

    2015-08-01

    Gene expression studies identified the interleukin-1 receptor type I (IL-1R1) as part of a pathway associated with a genetic predisposition to high alcohol consumption, and lack of the endogenous IL-1 receptor antagonist (IL-1ra) strongly reduced ethanol intake in mice. Here, we compared ethanol-mediated behaviors in mice lacking Il1rn or Il1r1. Deletion of Il1rn (the gene encoding IL-1ra) increases sensitivity to the sedative/hypnotic effects of ethanol and flurazepam and reduces severity of acute ethanol withdrawal. Conversely, deletion of Il1r1 (the gene encoding the IL-1 receptor type I, IL-1R1) reduces sensitivity to the sedative effects of ethanol and flurazepam and increases the severity of acute ethanol withdrawal. The sedative effects of ketamine and pentobarbital were not altered in the knockout (KO) strains. Ethanol intake and preference were not changed in mice lacking Il1r1 in three different tests of ethanol consumption. Recovery from ethanol-induced motor incoordination was only altered in female mice lacking Il1r1. Mice lacking Il1rn (but not Il1r1) showed increased ethanol clearance and decreased ethanol-induced conditioned taste aversion. The increased ethanol- and flurazepam-induced sedation in Il1rn KO mice was decreased by administration of IL-1ra (Kineret), and pre-treatment with Kineret also restored the severity of acute ethanol withdrawal. Ethanol-induced sedation and withdrawal severity were changed in opposite directions in the null mutants, indicating that these responses are likely regulated by IL-1R1 signaling, whereas ethanol intake and preference do not appear to be solely regulated by this pathway. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Effects of acute administration of ethanol on the rat adrenal cortex.

    PubMed

    Milovanović, Tatjana; Budec, Mirela; Balint-Perić, Ljiljana; Koko, Vesna; Todorović, Vera

    2003-09-01

    The purpose of this study was to investigate the effect of a single dose of ethanol on rat adrenal cortex and to determine whether the estrous cycle can influence this effect of ethanol. Adult female Wistar rats showing proestrus or diestrus Day 1 (n = 12) were treated intraperitoneally with ethanol (4 g/kg body weight). Untreated (n = 15) and saline-injected (n = 14) rats were used as controls. The animals were sacrificed by decapitation 0.5 hour after ethanol administration. Stereological analysis was performed on paraffin sections of adrenal glands stained with AZAN, and the following parameters were determined: absolute volume of the zona glomerulosa, the zona fasciculata and the zona reticularis, numerical density, volume and the mean diameter of adrenocortical cells and of their nuclei, and diameter and length of capillaries. The diameter and volume of adrenocortical cells in the zona fasciculata and the zona reticularis were significantly increased by acute ethanol treatment at proestrus. In the same group of animals, a single dose of ethanol induced significant decrease in numerical density of adrenocortical cells and of their nuclei in all three zones. Increased length of capillaries of the zona fasciculata as well as enhanced level of serum corticosterone was found in ethanol-treated rats at both phases of the estrous cycle, proestrus and diestrus Day 1. The obtained results indicate that a single dose of ethanol activates adrenal cortex in female rats and that the effect is more pronounced on morphometric parameters at proestrus.

  11. Nociceptin/orphanin FQ decreases glutamate transmission and blocks ethanol-induced effects in the central amygdala of naive and ethanol-dependent rats.

    PubMed

    Kallupi, Marsida; Varodayan, Florence P; Oleata, Christopher S; Correia, Diego; Luu, George; Roberto, Marisa

    2014-04-01

    The central nucleus of the amygdala (CeA) mediates several addiction-related processes and nociceptin/orphanin FQ (nociceptin) regulates ethanol intake and anxiety-like behaviors. Glutamatergic synapses, in the CeA and throughout the brain, are very sensitive to ethanol and contribute to alcohol reinforcement, tolerance, and dependence. Previously, we reported that in the rat CeA, acute and chronic ethanol exposures significantly decrease glutamate transmission by both pre- and postsynaptic actions. In this study, using electrophysiological techniques in an in vitro CeA slice preparation, we investigated the effects of nociceptin on glutamatergic transmission and its interaction with acute ethanol in naive and ethanol-dependent rats. We found that nociceptin (100-1000 nM) diminished basal-evoked compound glutamatergic receptor-mediated excitatory postsynaptic potentials (EPSPs) and spontaneous and miniature EPSCs (s/mEPSCs) by mainly decreasing glutamate release in the CeA of naive rats. Notably, nociceptin blocked the inhibition induced by acute ethanol (44 mM) and ethanol blocked the nociceptin-induced inhibition of evoked EPSPs in CeA neurons of naive rats. In neurons from chronic ethanol-treated (ethanol-dependent) rats, the nociceptin-induced inhibition of evoked EPSP amplitude was not significantly different from that in naive rats. Application of [Nphe1]Nociceptin(1-13)NH2, a nociceptin receptor (NOP) antagonist, revealed tonic inhibitory activity of NOP on evoked CeA glutamatergic transmission only in ethanol-dependent rats. The antagonist also blocked nociceptin-induced decreases in glutamatergic responses, but did not affect ethanol-induced decreases in evoked EPSP amplitude. Taken together, these studies implicate a potential role for the nociceptin system in regulating glutamatergic transmission and a complex interaction with ethanol at CeA glutamatergic synapses.

  12. The effects of lubrol WX on brain membrane Ca2+/Mg2+ ATPase and ATP-dependent Ca2+ uptake activity following acute and chronic ethanol.

    PubMed

    Ross, D H; Garrett, K M; Cardenas, H L

    1985-02-01

    Acute administration of ethanol (2.5 gm/kg, i.p.) to rats inhibits the cytosolic buffering of Ca2+ in nerve terminals. Ca2+ ATPase and ATP-dependent Ca2+ uptake are both inhibited 30 min after a single dose of ethanol. Chronic ethanol administration (6%, 14 days) did not inhibit Ca2+ ATPase but significantly stimulated ATP-dependent Ca2+ uptake. Lubrol WX treatment of acute ethanolic membranes reverses the inhibition of Ca2+ ATPase seen following ethanol. Lubrol WX treatment of chronic ethanolic membranes prevents the increase in ATP-dependent Ca2+ uptake seen in ethanolic membranes. Both acute and chronic ethanol-induced changes in Ca2+ transport within nerve terminals may involve lipid-dependent parameters of the membrane which may underlie neuronal adaptation.

  13. Pharmacological effects of ethanol on ingestive behavior of the preweanling rat

    PubMed Central

    Kozlov, Andrey P.; Nizhnikov, Michael E.; Varlinskaya, Elena I.; Spear, Norman E.

    2009-01-01

    The present study was designed to test the hypothesis that sensitivity of ingestive behavior of infant rat to the pharmacological effects of ethanol changes between postnatal (P) days 9 and 12. The intake of 0.1% saccharin and water, general motor activity, and myoclonic twitching activity were assessed following administration of three doses of ethanol (0, 0.25, 0.5g/kg) while fluids were free available to the animals. The 0.5g/kg dose of ethanol attenuated saccharin intake in P9 pups and enhanced saccharin intake in P12 rats. On P12 some sex-related differences emerged at 0.5g/kg of ethanol, with saccharin intake being higher in females than in their male counterparts. Taste reactivity probe revealed that 0.5 g/kg of ethanol increased taste responsiveness to saccharin on P12 but only to infusions presented at a high rate. The results of the present study indicate that ontogenetic changes in sensitivity to the effects of ethanol on ingestive behavior occur during the second postnatal week, with P9 animals being more sensitive to the inhibitory (sedative) effects on saccharin intake and P12 rats being more sensitive to the stimulatory effects of ethanol. We suggest that acute ethanol enhanced saccharin intake via sensitization of oral response to appetitive taste stimulation. PMID:19549546

  14. The influence of gastric pentadecapeptide BPC 157 on acute and chronic ethanol administration in mice.

    PubMed

    Blagaic, Alenka Boban; Blagaic, Vladimir; Romic, Zeljko; Sikiric, Predrag

    2004-09-24

    The stable gastric pentadecapeptide BPC 157 (GEPPPGKPADDAGLV, M.W.1419), which was promising in inflammatory bowel disease (PL-10, PLD-116, PL-14736, Pliva) trials, protects against both acute and chronic alcohol-induced lesions in stomach and liver, but also, given peripherally, affects various centrally mediated disturbances. Now, in male NMRI mice BPC 157 (10 pg intraperitoneally, 10 ng and 10 microg, intraperitoneally or intragastrically) (i) strongly opposed acute alcohol (4 g/kg intraperitoneally) intoxication (i.e., quickly produced and sustained anesthesia, hypothermia, increased ethanol blood values, 25% fatality, 90-min assessment period) given before or after ethanol, and (ii) when given after abrupt cessation of ethanol (at 0 or 3 or 7 h withdrawal time), attenuated withdrawal (assessed through 24 hours) after 20%-alcohol drinking (7.6 g/kg) through 13 days, with provocation on the 14th day.

  15. ATF3 mediates inhibitory effects of ethanol on hepatic gluconeogenesis

    PubMed Central

    Tsai, Wen-Wei; Matsumura, Shigenobu; Liu, Weiyi; Phillips, Naomi G.; Sonntag, Tim; Hao, Ergeng; Lee, Soon; Hai, Tsonwin; Montminy, Marc

    2015-01-01

    Increases in circulating glucagon during fasting maintain glucose balance by stimulating hepatic gluconeogenesis. Acute ethanol intoxication promotes fasting hypoglycemia through an increase in hepatic NADH, which inhibits hepatic gluconeogenesis by reducing the conversion of lactate to pyruvate. Here we show that acute ethanol exposure also lowers fasting blood glucose concentrations by inhibiting the CREB-mediated activation of the gluconeogenic program in response to glucagon. Ethanol exposure blocked the recruitment of CREB and its coactivator CRTC2 to gluconeogenic promoters by up-regulating ATF3, a transcriptional repressor that also binds to cAMP-responsive elements and thereby down-regulates gluconeogenic genes. Targeted disruption of ATF3 decreased the effects of ethanol in fasted mice and in cultured hepatocytes. These results illustrate how the induction of transcription factors with overlapping specificity can lead to cross-coupling between stress and hormone-sensitive pathways. PMID:25730876

  16. ATF3 mediates inhibitory effects of ethanol on hepatic gluconeogenesis.

    PubMed

    Tsai, Wen-Wei; Matsumura, Shigenobu; Liu, Weiyi; Phillips, Naomi G; Sonntag, Tim; Hao, Ergeng; Lee, Soon; Hai, Tsonwin; Montminy, Marc

    2015-03-03

    Increases in circulating glucagon during fasting maintain glucose balance by stimulating hepatic gluconeogenesis. Acute ethanol intoxication promotes fasting hypoglycemia through an increase in hepatic NADH, which inhibits hepatic gluconeogenesis by reducing the conversion of lactate to pyruvate. Here we show that acute ethanol exposure also lowers fasting blood glucose concentrations by inhibiting the CREB-mediated activation of the gluconeogenic program in response to glucagon. Ethanol exposure blocked the recruitment of CREB and its coactivator CRTC2 to gluconeogenic promoters by up-regulating ATF3, a transcriptional repressor that also binds to cAMP-responsive elements and thereby down-regulates gluconeogenic genes. Targeted disruption of ATF3 decreased the effects of ethanol in fasted mice and in cultured hepatocytes. These results illustrate how the induction of transcription factors with overlapping specificity can lead to cross-coupling between stress and hormone-sensitive pathways.

  17. Determining the Heritability of Ethanol-induced Locomotor Sensitization in Mice Using Short-term Behavioral Selection

    PubMed Central

    Linsenbardt, David N.; Boehm, Stephen L.

    2013-01-01

    Rationale Sensitization to the locomotor stimulant effects of alcohol (ethanol) is thought to be a heritable risk factor for the development of alcoholism that reflects progressive increases in the positive motivational effects of this substance. However, very little is known about the degree to which genes influence this complex behavioral phenomenon. Objectives The primary goal of this work was to determine the heritability of ethanol-induced locomotor sensitization in mice using short-term behavioral selection. Methods Genetically heterogeneous C57BL/6J (B6) × DBA/2J (D2) F2 mice were generated from B6D2F1 progenitors, phenotyped for the expression of locomotor sensitization, and bred for high (HLS) and low (LLS) expression of this behavior. Selective breeding was conducted in two independently generated replicate sets to increase the confidence of our heritability estimates and for future correlated trait analyses. Results Large and significant differences in locomotor sensitization between HLS and LLS lines were evident by the fourth generation. Twenty-two percent of the observed line difference(s) were attributable to genes (h2=.22). Interestingly, locomotor activity in the absence of ethanol was genetically correlated with ethanol sensitization; high activity was associated with high sensitization. Conclusions That changes in ethanol sensitivity following repeated exposures are genetically regulated highlights the relevance of studies aimed at determining how genes regulate susceptibility to ethanol-induced behavioral and neural adaptations. As alcohol use and abuse disorders develop following many repeated alcohol exposures, these data emphasize the need for future studies determining the genetic basis by which changes in response to alcohol occur. PMID:23732838

  18. Hypothalamic-pituitary-adrenal axis modulation of GABAergic neuroactive steroids influences ethanol sensitivity and drinking behavior

    PubMed Central

    Morrow, A. Leslie; Porcu, Patrizia; Boyd, Kevin N.; Grant, Kathleen A.

    2006-01-01

    Activation of the hypothalamic-pituitary-adrenal (HPA) axis leads to élévations in γ-aminobutyric acid (GABA)-ergic neuroactive steroids that enhance GABA neurotransmission and restore homeostasis following stress. This régulation of the HPA axis maintains healthy brain function and protects against neuropsychiatrie disease. Ethanol sensitivity is influenced by élévations in neuroactive steroids that enhance the GABAergic effects of ethanol, and mayprevent excessive drinking in rodents and humans. Low ethanol sensitivity is associated with greater alcohol consumption and increased risk ofalcoholism. Indeed, ethanol-dependent rats show blunted neurosteroid responses to ethanol admin­istration that may contribute to ethanol tolérance and the propensity to drink greater amounts of ethanol. The review présents évidence to support the hypothesis that neurosteroids contribute to ethanol actions and prevent excessive drinking, while the lack of neurosteroid responses to ethanol may underlie innate or chronic tolérance and increased risk of excessive drinking. Neurosteroids may have therapeutic use in alcohol withdrawal or for relapse prévention. PMID:17290803

  19. Acute and chronic ethanol intake: effects on spatial and non-spatial memory in rats.

    PubMed

    García-Moreno, Luis M; Cimadevilla, Jose M

    2012-12-01

    Abusive alcohol consumption produces neuronal damage and biochemical alterations in the mammal brain followed by cognitive disturbances. In this work rats receiving chronic and acute alcohol intake were evaluated in a spontaneous delayed non-matching to sample/position test. Chronic alcohol-treated rats had free access to an aqueous ethanol solution as the only available liquid source from the postnatal day 21 to the end of experiment (postnatal day 90). Acute alcoholic animals received an injection of 2 g/kg ethanol solution once per week. Subjects were evaluated in two tests (object recognition and spatial recognition) based on the spontaneous delayed non-matching to sample or to position paradigm using delays of 1 min, 15 min and 60 min. Results showed that chronic and acute alcohol intake impairs the rats' performance in both tests. Moreover, chronic alcohol-treated rats were more altered than acute treated animals in both tasks. Our results support the idea that chronic and acute alcohol administration during postnatal development caused widespread brain damage resulting in behavioral disturbances and learning disabilities. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Effects of ayahuasca on the development of ethanol-induced behavioral sensitization and on a post-sensitization treatment in mice.

    PubMed

    Oliveira-Lima, A J; Santos, R; Hollais, A W; Gerardi-Junior, C A; Baldaia, M A; Wuo-Silva, R; Yokoyama, T S; Costa, J L; Malpezzi-Marinho, E L A; Ribeiro-Barbosa, P C; Berro, L F; Frussa-Filho, R; Marinho, E A V

    2015-04-01

    Hallucinogenic drugs were used to treat alcoholic patients in the past, and recent developments in the study of hallucinogens led to a renewal of interest regarding the application of these drugs in the treatment of addiction. In this scenario, accumulating evidence suggests that the hallucinogenic brew ayahuasca (Aya) may have therapeutic effects on substance abuse problems. We investigated the effects of Aya on spontaneous locomotor activity and ethanol(Eth)-induced hyperlocomotion and subsequent locomotor sensitization by a two-injection protocol. Additionally, we tested the effect of Aya on an 8-day counter-sensitization protocol to modify sensitized responses induced by a repeated treatment with Eth (1.8g/kg) for 8 alternate days. Aya showed high sensitivity in preventing the development of Eth-induced behavioral sensitization, attenuating it at all doses (30, 100, 200, 300 or 500 mg/kg) without modifying spontaneous locomotor activity. At the highest doses (300 and 500 mg/kg), Aya also showed selectivity to both acute and sensitized Eth responses. Finally, a counter-sensitization strategy with 100 or 300 mg/kg of Aya for 8 consecutive days after the establishment of Eth-induced behavioral sensitization was effective in blocking its subsequent expression on an Eth challenge. We demonstrated that Aya not only inhibits early behaviors associated with the initiation and development of Eth addiction, but also showed effectiveness in reversing long-term drug effects expression, inhibiting the reinstatement of Eth-induced behavioral sensitization when administered in the Eth-associated environment. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. GABAergic miniature postsynaptic currents in septal neurons show differential allosteric sensitivity after binge-like ethanol exposure.

    PubMed

    DuBois, Dustin W; Trzeciakowski, Jerome P; Parrish, Alan R; Frye, Gerald D

    2006-05-17

    Binge-like ethanol treatment of septal neurons blunts GABAAR-mediated miniature postsynaptic currents (mPSCs), suggesting it arrests synaptic development. Ethanol may disrupt postsynaptic maturation by blunting feedback signaling through immature GABAARs. Here, the impact of ethanol on the sensitivity of mPSCs to zolpidem, zinc and 3alpha-hydroxy-5alpha-pregnan-20-one (3alpha-OH-DHP) was tested. The decay phase of mPSCs showed concentration-dependent potentiation by zolpidem (0.03-100 microM), which was substantially blunted after ethanol exposure. Since zolpidem potentiation exhibited a substantial age-dependent increase in untreated neurons, this finding supported the idea that ethanol arrests synaptic development. GABAAR alpha1 subunit protein also increased with age in untreated neurons, paralleling enhanced sensitivity to zolpidem. Surprisingly, alpha1 levels were not reduced by binge ethanol even though mPSCs were relatively zolpidem-insensitive. Zinc (3-30 microM) decreased mPSC parameters in a concentration- and age-related manner with older untreated cells showing less inhibition. However, there was no increase in mPSC zinc sensitivity after binge ethanol as would be expected if a general arrest of synaptic maturation had occurred. 3alpha-OH-DHP (3-1000 nM) induced concentration-dependent potentiation of mPSC decay. Although potentiation was age-independent, binge ethanol treatment exaggerated sensitivity to this neurosteroid. Finally, chronic picrotoxin pretreatment (100 microM) intended to mimic GABAAR inhibition from ethanol pretreatment did not significantly change mPSC modulation by zolpidem, zinc or 3alpha-OH-DHP. These results suggest that binge ethanol treatment selectively arrests a subset of processes important for maturation of postsynaptic GABAA Rs. However, it is unlikely that ethanol causes a broad arrest of postsynaptic development through a direct inhibition of GABAAR signaling.

  2. Mutation of the inhibitory ethanol site in GABAA ρ1 receptors promotes tolerance to ethanol-induced motor incoordination.

    PubMed

    Blednov, Yuri A; Borghese, Cecilia M; Ruiz, Carlos I; Cullins, Madeline A; Da Costa, Adriana; Osterndorff-Kahanek, Elizabeth A; Homanics, Gregg E; Harris, R Adron

    2017-09-01

    Genes encoding the ρ1/2 subunits of GABA A receptors have been associated with alcohol (ethanol) dependence in humans, and ρ1 was also shown to regulate some of the behavioral effects of ethanol in animal models. Ethanol inhibits GABA-mediated responses in wild-type (WT) ρ1, but not ρ1(T6'Y) mutant receptors expressed in Xenopus laevis oocytes, indicating the presence of an inhibitory site for ethanol in the second transmembrane helix. In this study, we found that ρ1(T6'Y) receptors expressed in oocytes display overall normal responses to GABA, the endogenous GABA modulator (zinc), and partial agonists (β-alanine and taurine). We generated ρ1 (T6'Y) knockin (KI) mice using CRISPR/Cas9 to test the behavioral importance of the inhibitory actions of ethanol on this receptor. Both ρ1 KI and knockout (KO) mice showed faster recovery from acute ethanol-induced motor incoordination compared to WT mice. Both KI and KO mutant strains also showed increased tolerance to motor impairment produced by ethanol. The KI mice did not differ from WT mice in other behavioral actions, including ethanol intake and preference, conditioned taste aversion to ethanol, and duration of ethanol-induced loss of righting reflex. WT and KI mice did not differ in levels of ρ1 or ρ2 mRNA in cerebellum or in ethanol clearance. Our findings indicate that the inhibitory site for ethanol in GABA A ρ1 receptors regulates acute functional tolerance to moderate ethanol intoxication. We note that low sensitivity to alcohol intoxication has been linked to risk for development of alcohol dependence in humans. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Frontline Science: ATF3 is responsible for the inhibition of TNF-α release and the impaired migration of acute ethanol-exposed monocytes and macrophages.

    PubMed

    Hu, Chaojie; Meng, Xiaoming; Huang, Cheng; Shen, Chenlin; Li, Jun

    2017-03-01

    Binge drinking represses host innate immunity and leads to a high risk of infection. Acute EtOH-pretreated macrophages exhibit a decreased production of proinflammatory mediators in response to LPS. ATF3 is induced and counter-regulates the LPS/TLR4 inflammatory cascade. Here, we investigated the potential role of ATF3 in LPS tolerance in acute ethanol-pretreated macrophages. We found that there was an inverse correlation between ATF3 and LPS-induced TNF-α production in acute ethanol-pretreated murine monocytes and macrophages. The knockdown of ATF3 attenuated the inhibitory effects of acute ethanol treatment on LPS-induced TNF-α production. Furthermore, ChIP assays and co-IP demonstrated that ATF3, together with HDAC1, negatively modulated the transcription of TNF-α. In binge-drinking mice challenged with LPS, an up-regulation of ATF3 and HDAC1 and a concomitant decrease in TNF-α were observed. Given that HDAC1 was concomitantly induced in acute ethanol-exposed monocytes and macrophages, we used the HDACi TSA or silenced HDAC1 to explore the role of HDAC1 in acute ethanol-treated macrophages. Our results revealed that TSA treatment and HDAC1 knockdown prevented acute ethanol-induced ATF3 expression and the inhibition of TNF-α transcription. These data indicated a dual role for HDAC1 in acute ethanol-induced LPS tolerance. Furthermore, we showed that the induction of ATF3 led to the impaired migration of BM monocytes and macrophages. Overall, we present a novel role for ATF3 in the inhibition of LPS-induced TNF-α and in the impairment of monocyte and macrophage migration. © Society for Leukocyte Biology.

  4. Acute neuropsychological effects of MDMA and ethanol (co-)administration in healthy volunteers.

    PubMed

    Dumont, G J H; Wezenberg, E; Valkenberg, M M G J; de Jong, C A J; Buitelaar, J K; van Gerven, J M A; Verkes, R J

    2008-04-01

    In Western societies, a considerable percentage of young people expose themselves to 3,4-methylenedioxymethamphetamine (MDMA or "ecstasy"). Commonly, ecstasy is used in combination with other substances, in particular alcohol (ethanol). MDMA induces both arousing as well as hallucinogenic effects, whereas ethanol is a general central nervous system depressant. The aim of the present study is to assess the acute effects of single and co-administration of MDMA and ethanol on executive, memory, psychomotor, visuomotor, visuospatial and attention function, as well as on subjective experience. We performed a four-way, double-blind, randomised, crossover, placebo-controlled study in 16 healthy volunteers (nine male, seven female) between the ages of 18-29. MDMA was given orally (100 mg) and blood alcohol concentration was maintained at 0.6 per thousand by an ethanol infusion regime. Co-administration of MDMA and ethanol was well tolerated and did not show greater impairment of performance compared to the single-drug conditions. Impaired memory function was consistently observed after all drug conditions, whereas impairment of psychomotor function and attention was less consistent across drug conditions. Co-administration of MDMA and ethanol did not exacerbate the effects of either drug alone. Although the impairment of performance by all drug conditions was relatively moderate, all induced significant impairment of cognitive function.

  5. Age-related effects of chronic restraint stress on ethanol drinking, ethanol-induced sedation, and on basal and stress-induced anxiety response

    PubMed Central

    Fernández, Macarena Soledad; Fabio, María Carolina; Miranda-Morales, Roberto Sebastián; Virgolini, Miriam B.; De Giovanni, Laura N.; Hansen, Cristian; Wille-Bille, Aranza; Nizhnikov, Michael E.; Spear, Linda P.; Pautassi, Ricardo Marcos

    2016-01-01

    Adolescents are sensitive to the anxiolytic effect of ethanol, and evidence suggests that they may be more sensitive to stress than adults. Relatively little is known, however, about age-related differences in stress modulation of ethanol drinking or stress modulation of ethanol-induced sedation and hypnosis. We observed that chronic restraint stress transiently exacerbated free-choice ethanol drinking in adolescent, but not in adult, rats. Restraint stress altered exploration patterns of a light-dark box apparatus in adolescents and adults. Stressed animals spent significantly more time in the white area of the maze and made significantly more transfers between compartments than their non-stressed peers. Behavioral response to acute stress, on the other hand, was modulated by prior restraint stress only in adults. Adolescents, unlike adults, exhibited ethanol-induced motor stimulation in an open field. Stress increased the duration of loss of the righting reflex after a high ethanol dose, yet this effect was similar at both ages. Ethanol-induced sleep time was much higher in adult than in adolescent rats, yet stress diminished ethanol-induced sleep time only in adults. The study indicates age-related differences that may increase the risk for initiation and escalation in alcohol drinking. PMID:26830848

  6. Development of Ethanol Withdrawal-Related Sensitization and Relapse Drinking in Mice Selected for High or Low Ethanol Preference

    PubMed Central

    Lopez, Marcelo F.; Grahame, Nicholas J.; Becker, Howard C.

    2010-01-01

    Background Previous studies have shown that high alcohol consumption is associated with low withdrawal susceptiblility, while at the same time, other studies have shown that exposure to ethanol vapor increases alcohol drinking in rats and mice. In the present studies, we sought to shed light on this seeming contradiction by using mice selectively bred for High- (HAP) and Low- (LAP) Alcohol Preference, first, assessing these lines for differences in signs of ethanol withdrawal and second, for differences in the efficacy of intermittent alcohol vapor exposure on elevating subsequent ethanol intake. Methods Experiment 1 examined whether these lines of mice differed in ethanol withdrawal-induced CNS hyperexcitability and the development of sensitization to this effect following intermittent ethanol vapor exposure. Adult HAP and LAP lines (replicates 1 and 2), and the C3H/HeNcr inbred strain (included as a control genotype for comparison purposes) received intermittent exposure to ethanol vapor and were evaluated for ethanol withdrawal-induced seizures assessed by scoring handling-induced convulsions (HIC). Experiment 2 examined the influence of chronic intermittent ethanol exposure on voluntary ethanol drinking. Adult male and female HAP-2 and LAP-2 mice, along with male C57BL/6J (included as comparative controls) were trained to drink 10% ethanol using a limited access (2 hr/day) 2-bottle choice paradigm. After stable baseline daily intake was established, mice received chronic intermittent ethanol vapor exposure in inhalation chambers. Ethanol intake sessions resumed 72 hr after final ethanol (or air) exposure for 5 consecutive days. Results Following chronic ethanol treatment, LAP mice exhibited overall greater withdrawal seizure activity compared to HAP mice. In Experiment 2, chronic ethanol exposure/withdrawal resulted in a significant increase in ethanol intake in male C57BL/6J, and modestly elevated intake in HAP-2 male mice. Ethanol intake for male control mice

  7. Adapting to alcohol: Dwarf hamster (Phodopus campbelli) ethanol consumption, sensitivity, and hoard fermentation.

    PubMed

    Lupfer, Gwen; Murphy, Eric S; Merculieff, Zoe; Radcliffe, Kori; Duddleston, Khrystyne N

    2015-06-01

    Ethanol consumption and sensitivity in many species are influenced by the frequency with which ethanol is encountered in their niches. In Experiment 1, dwarf hamsters (Phodopus campbelli) with ad libitum access to food and water consumed high amounts of unsweetened alcohol solutions. Their consumption of 15%, but not 30%, ethanol was reduced when they were fed a high-fat diet; a high carbohydrate diet did not affect ethanol consumption. In Experiment 2, intraperitoneal injections of ethanol caused significant dose-related motor impairment. Much larger doses administered orally, however, had no effect. In Experiment 3, ryegrass seeds, a common food source for wild dwarf hamsters, supported ethanol fermentation. Results of these experiments suggest that dwarf hamsters may have adapted to consume foods in which ethanol production naturally occurs. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Chronic Intermittent Ethanol Inhalation Increases Ethanol Self-administration in both C57BL/6J and DBA/2J Mice

    PubMed Central

    McCool, Brian A.; Chappell, Ann M.

    2015-01-01

    Inbred mouse strains provide significant opportunities to understand the genetic mechanisms controlling ethanol-directed behaviors and neurobiology. They have been specifically employed to understand cellular mechanisms contributing to ethanol consumption, acute intoxication, and sensitivities to chronic effects. However, limited ethanol consumption by some strains has restricted our understanding of clinically relevant endpoints such as dependence-related ethanol intake. Previous work with a novel tastant-substitution procedure using monosodium glutamate (MSG or umami flavor) has shown that the procedure greatly enhances ethanol consumption by mouse strains that express limited drinking phenotypes using other methods. In the current study, we employ this MSG-substitution procedure to examine how ethanol dependence, induced with passive vapor inhalation, modifies ethanol drinking in C57BL/6J and DBA/2J mice. These strains represent ‘high’ and ‘low’ drinking phenotypes, respectively. We found that the MSG substitution greatly facilitates ethanol drinking in both strains, and likewise, ethanol dependence increased ethanol consumption regardless of strain. However, DBA/2J mice exhibited greater sensitivity dependence-enhanced drinking, as represented by consumption behaviors directed at lower ethanol concentrations and relative to baseline intake levels. DBA/2J mice also exhibited significant withdrawal-associated anxiety-like behavior while C57BL/6J mice did not. These findings suggest that the MSG-substitution procedure can be employed to examine dependence-enhanced ethanol consumption across a range of drinking phenotypes, and that C57BL/6J and DBA/2J mice may represent unique neurobehavioral pathways for developing dependence-enhanced ethanol consumption. PMID:25659650

  9. Chronic intermittent ethanol inhalation increases ethanol self-administration in both C57BL/6J and DBA/2J mice.

    PubMed

    McCool, Brian A; Chappell, Ann M

    2015-03-01

    Inbred mouse strains provide significant opportunities to understand the genetic mechanisms controlling ethanol-directed behaviors and neurobiology. They have been specifically employed to understand cellular mechanisms contributing to ethanol consumption, acute intoxication, and sensitivities to chronic effects. However, limited ethanol consumption by some strains has restricted our understanding of clinically relevant endpoints such as dependence-related ethanol intake. Previous work with a novel tastant-substitution procedure using monosodium glutamate (MSG or umami flavor) has shown that the procedure greatly enhances ethanol consumption by mouse strains that express limited drinking phenotypes using other methods. In the current study, we employ this MSG-substitution procedure to examine how ethanol dependence, induced with passive vapor inhalation, modifies ethanol drinking in C57BL/6J and DBA/2J mice. These strains represent 'high' and 'low' drinking phenotypes, respectively. We found that the MSG substitution greatly facilitates ethanol drinking in both strains, and likewise, ethanol dependence increased ethanol consumption regardless of strain. However, DBA/2J mice exhibited greater sensitivity dependence-enhanced drinking, as represented by consumption behaviors directed at lower ethanol concentrations and relative to baseline intake levels. DBA/2J mice also exhibited significant withdrawal-associated anxiety-like behavior while C57BL/6J mice did not. These findings suggest that the MSG-substitution procedure can be employed to examine dependence-enhanced ethanol consumption across a range of drinking phenotypes, and that C57BL/6J and DBA/2J mice may represent unique neurobehavioral pathways for developing dependence-enhanced ethanol consumption. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Acute Cor Pulmonale and Right Heat Failure Complicating Ethanol Ablative Therapy: Anesthetic and Radiologic Considerations and Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naik, Bhiken, E-mail: bin4n@virginia.edu; Matsumoto, Alan H.

    2013-10-15

    Ethanol is an effective ablative agent used for the treatment of certain solid organ tumors and vascular malformations (VMs). The egress of ethanol beyond the target tissue can be associated with significant changes to the cardiopulmonary system that can lead to cardiac arrest. This article reviews the contemporary role of ethanol in tumor and VM treatment and discusses the physiological mechanisms of acute pulmonary hypertension and cardiovascular collapse. The importance of periprocedural recognition of the hemodynamic changes that can occur with the use of ethanol and the treatment of this condition are discussed.

  11. Acute and subacute toxicity evaluation of ethanolic extract from fruits of Schinus molle in rats.

    PubMed

    Ferrero, Adriana; Minetti, Alejandra; Bras, Cristina; Zanetti, Noelia

    2007-09-25

    Ethanolic and hexanic extracts from fruits and leaves of Schinus molle showed ability to control several insect pests. Potential vertebrate toxicity associated with insecticidal plants requires investigation before institutional promotion. The aim of the present study was to evaluate the acute and subacute toxicity of ethanolic extracts from fruits of Schinus molle in rats. The plant extract was added to the diet at 2g/kg body weight/day during 1 day to evaluate acute toxicity and at 1g/kg body weight/day during 14 days to evaluate subacute toxicity. At the end of the exposure and after 7 days, behavioral and functional parameters in a functional observational battery and motor activity in an open field were assessed. Finally, histopathological examinations were conducted on several organs. In both exposures, an increase in the arousal level was observed in experimental groups. Also, the landing foot splay parameter increased in the experimental group after acute exposure. Only the subacute exposure produced a significant increase in the motor activity in the open field. All these changes disappeared after 7 days. None of the exposures affected the different organs evaluated. Our results suggest that ethanolic extracts from fruits and leaves of Schinus molle should be relatively safe to use as insecticide.

  12. The role of glycerol-3-phosphate dehydrogenase 1 in the progression of fatty liver after acute ethanol administration in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sato, Tomoki, E-mail: s13220@u-shizuoka-ken.ac.jp; Morita, Akihito, E-mail: moritaa@u-shizuoka-ken.ac.jp; Mori, Nobuko, E-mail: morin@b.s.osakafu-u.ac.jp

    2014-02-21

    Highlights: • Ethanol administration increased GPD1 mRNA expression. • Ethanol administration increased glucose incorporation into TG glycerol moieties. • No increase in hepatic TG levels was observed in ethanol-injected GPD1 null mice. • We propose that GPD1 is required for ethanol-induced TG accumulation in the liver. - Abstract: Acute ethanol consumption leads to the accumulation of triglycerides (TGs) in hepatocytes. The increase in lipogenesis and reduction of fatty acid oxidation are implicated as the mechanisms underlying ethanol-induced hepatic TG accumulation. Although glycerol-3-phosphate (Gro3P), formed by glycerol kinase (GYK) or glycerol-3-phosphate dehydrogenase 1 (GPD1), is also required for TG synthesis, themore » roles of GYK and GPD1 have been the subject of some debate. In this study, we examine (1) the expression of genes involved in Gro3P production in the liver of C57BL/6J mice in the context of hepatic TG accumulation after acute ethanol intake, and (2) the role of GPD1 in the progression of ethanol-induced fatty liver using GPD1 null mice. As a result, in C57BL/6J mice, ethanol-induced hepatic TG accumulation began within 2 h and was 1.7-fold greater than that observed in the control group after 6 h. The up-regulation of GPD1 began 2 h after administering ethanol, and significantly increased 6 h later with the concomitant escalation in the glycolytic gene expression. The incorporation of {sup 14}C-labelled glucose into TG glycerol moieties increased during the same period. On the other hand, in GPD1 null mice carrying normal GYK activity, no significant increase in hepatic TG level was observed after acute ethanol intake. In conclusion, GPD1 and glycolytic gene expression is up-regulated by ethanol, and GPD1-mediated incorporation of glucose into TG glycerol moieties together with increased lipogenesis, is suggested to play an important role in ethanol-induced hepatic TG accumulation.« less

  13. Simian Immunodeficiency Virus Infection Increases Blood Ethanol Concentration Duration After Both Acute and Chronic Administration.

    PubMed

    Simon, Liz; Siggins, Robert; Winsauer, Peter; Brashear, Meghan; Ferguson, Tekeda; Mercante, Don; Song, Kejing; Vande Stouwe, Curtis; Nelson, Steve; Bagby, Gregory; Amedee, Angela; Molina, Patricia E

    2018-02-01

    Alcohol use disorder (AUD) is a frequent comorbidity among people living with HIV/AIDS (PLWHA). Alcohol consumption is a significant predictor of nonadherence to antiretroviral therapy (ART), as well as worsening immunological and virological indicators among PLWHA. Clinical studies indicate that higher viral loads increase sensitivity to alcohol in PLWHA. The factors that influence alcohol kinetics after HIV infection and initiation of ART are not well understood, limiting the information upon which interventions can be designed to ameliorate the impact of alcohol misuse on this vulnerable patient population. To better understand the relationship between viral load and alcohol kinetics, we measured changes in doses of intragastric ethanol administration to achieve target blood ethanol concentration (BEC) in a rhesus macaque model of chronic binge alcohol (CBA) administration and acute changes following a single acute binge dose of alcohol (ABA) pre- and post-simian immunodeficiency virus (SIV) infection, and following ART initiation. Our results from CBA (14 months)-administered SIV-infected male macaques showed that, following ART initiation, macaques required higher doses of alcohol to achieve a target peak BEC compared with non-ART-treated SIV-infected macaques. In animals given ABA, we found prolonged duration of elevated BEC and decreased elimination rate of alcohol that was not corrected following 7 weeks of ART. These findings suggest that binge drinking associated with AUD could negatively interact with HIV infection and enhance disease progression. These findings further support the need for implementation of behavioral or therapeutic interventions to decrease alcohol consumption to improve the quality of life in PLWHA.

  14. Highly Sensitive and Selective Ethanol Sensor Fabricated with In-Doped 3DOM ZnO.

    PubMed

    Wang, Zhihua; Tian, Ziwei; Han, Dongmei; Gu, Fubo

    2016-03-02

    ZnO is an important n-type semiconductor sensing material. Currently, much attention has been attracted to finding an effective method to prepare ZnO nanomaterials with high sensing sensitivity and excellent selectivity. A three-dimensionally ordered macroporous (3DOM) ZnO nanostructure with a large surface area is beneficial to gas and electron transfer, which can enhance the gas sensitivity of ZnO. Indium (In) doping is an effective way to improve the sensing properties of ZnO. In this paper, In-doped 3DOM ZnO with enhanced sensitivity and selectivity has been synthesized by using a colloidal crystal templating method. The 3DOM ZnO with 5 at. % of In-doping exhibits the highest sensitivity (∼88) to 100 ppm ethanol at 250 °C, which is approximately 3 times higher than that of pure 3DOM ZnO. The huge improvement to the sensitivity to ethanol was attributed to the increase in the surface area and the electron carrier concentration. The doping by In introduces more electrons into the matrix, which is helpful for increasing the amount of adsorbed oxygen, leading to high sensitivity. The In-doped 3DOM ZnO is a promising material for a new type of ethanol sensor.

  15. Rates of Ethanol Metabolism Decrease in Sons of Alcoholics Following a Priming Dose of Ethanol

    PubMed Central

    Bradford, Blair U.; Jackson, Jennifer K.; Powell, Linda L.; Garbutt, James C.

    2007-01-01

    Rapid changes in rates of ethanol metabolism in response to acute ethanol administration have been observed in animals and humans. To examine whether this phenomenon might vary by risk for alcoholism, 23 young men with a positive family history of alcoholism (FHP) were compared to 15 young men without a family history of alcoholism (FHN). Rates of ethanol metabolism were measured in all subjects first after an initial ethanol dose (0.85 g/kg) and then, several hours later, a second dose (0.3 g/kg), and the two rates were compared. The two groups of subjects were similar in their histories of ethanol consumption. FHP subjects demonstrated faster initial rates of ethanol metabolism, 148 ± 36 mg/kg/hr, compared to FHN subjects, 124 ± 18 mg/kg/hr, p=.01. However, FHN subjects increased their rate of metabolism by 10 ± 27 percent compared to a decrease of -15 ± 24 percent in FHP subjects, p =.007. Fifty-two percent of the FHP and none of the FHN subjects exhibited a decline in metabolic rate of 20% or more, p=.0008. Since a significant proportion of FHP subjects exhibited a decrease in the second rate of ethanol metabolism, these preliminary data might help to partly explain why FHP individuals differ in their sensitivity to ethanol and are more likely to develop alcohol dependence. PMID:17521843

  16. Male adolescent rats display blunted cytokine responses in the CNS after acute ethanol or lipopolysaccharide exposure

    PubMed Central

    Doremus-Fitzwater, Tamara L.; Gano, Anny; Paniccia, Jacqueline E.; Deak, Terrence

    2015-01-01

    Alcohol induces widespread changes in cytokine expression, with recent data from our laboratory having demonstrated that, during acute ethanol intoxication, adult rats exhibit consistent increases in interleukin (IL)-6 mRNA expression in several brain regions, while showing reductions in IL-1 and TNFα expression. Given evidence indicating that adolescence may be an ontogenetic period in which some neuroimmune processes and cells may not yet have fully matured, the purpose of the current experiments was to examine potential age differences in the central cytokine response of adolescent (P31–33 days of age) and adult (69–71 days of age) rats to either an acute immune (lipopolysaccharide; LPS) or non-immune challenge (ethanol). In Experiment 1, male Sprague-Dawley rats were given an intraperitoneal (i.p.) injection of either sterile saline, LPS (250 µg/kg), or ethanol (4-g/kg), and then trunk blood and brain tissue were collected 3 hr later for measurement of blood EtOH concentrations (BECs), plasma endotoxin, and central mRNA expression of several immune-related gene targets. In Experiment 2, the response to intragastrically (i.g.) administered ethanol was examined and compared to animals given tap water (i.g.). Results showed that LPS stimulated robust increases in expression of IL-1, IL-6, TNFα, and IκBα in the hippocampus, PVN, and amygdala, and that these increases were generally less pronounced in adolescents relative to adults. Following an i.p. EtOH challenge, IL-6 and IκBα expression were significantly increased in both ages in the PVN and amygdala, and adults exhibited even greater increases in IκBα than adolescents. I.g. administration of ethanol also increased IL-6 and IκBα expression in all three brain regions, with hippocampal IL-6 expression elevated even more so in adults compared to adolescents. Furthermore, assessment of plasma endotoxin concentrations revealed (i) whereas robust increases in plasma endotoxin were observed in adults

  17. Food deprivation increases the low-dose locomotor stimulant response to ethanol in Drosophila melanogaster.

    PubMed

    Kliethermes, Christopher L

    2013-10-01

    Acute and chronic states of food deprivation result in increased sensitivity to a variety of natural reinforcers as well as to drugs of abuse. Food deprived animals show increased locomotor activity during periods of food deprivation, as well as increased locomotor stimulant responses to drugs of abuse, including cocaine, amphetamine, morphine, and ethanol, implying that drugs of abuse act in part on neural systems that underlie responses towards food. To determine whether this effect extends to an invertebrate, highly genetically tractable animal, the locomotor stimulant effects of low dose ethanol were assessed under a variety of feeding conditions in the fruit fly, Drosophila melanogaster. Food deprivation resulted in strain specific increases in ethanol-stimulated locomotor activity in most strains tested, although elevated baseline activity confounded interpretation in some strains. Experiments conducted with Canton S flies found that the effects of food deprivation on the locomotor stimulant response to ethanol increased with the duration of deprivation, and could be blocked by refeeding the flies with standard food or sucrose, but not yeast, immediately prior to the ethanol exposure. Life-span extending dietary depletion procedures or previous periods of food deprivation did not affect the response to ethanol, indicating that only animals in an acutely food deprived state are more sensitive to the stimulant effects of ethanol. These results suggest that increased sensitivity to the stimulant effects of some drugs of abuse might reflect an evolutionarily conserved neural mechanism that underlies behavioral responses to natural reinforcers and drugs of abuse. The identification of this mechanism, and the genes that underlie its development and function, will constitute a novel approach towards the study of alcohol abuse and dependence. © 2013.

  18. Long-term effects of chronic intermittent ethanol exposure in adolescent and adult rats: radial-arm maze performance and operant food reinforced responding.

    PubMed

    Risher, Mary-Louise; Fleming, Rebekah L; Boutros, Nathalie; Semenova, Svetlana; Wilson, Wilkie A; Levin, Edward D; Markou, Athina; Swartzwelder, H Scott; Acheson, Shawn K

    2013-01-01

    Adolescence is not only a critical period of late-stage neurological development in humans, but is also a period in which ethanol consumption is often at its highest. Given the prevalence of ethanol use during this vulnerable developmental period we assessed the long-term effects of chronic intermittent ethanol (CIE) exposure during adolescence, compared to adulthood, on performance in the radial-arm maze (RAM) and operant food-reinforced responding in male rats. Male Sprague Dawley rats were exposed to CIE (or saline) and then allowed to recover. Animals were then trained in either the RAM task or an operant task using fixed- and progressive- ratio schedules. After baseline testing was completed all animals received an acute ethanol challenge while blood ethanol levels (BECs) were monitored in a subset of animals. CIE exposure during adolescence, but not adulthood decreased the amount of time that animals spent in the open portions of the RAM arms (reminiscent of deficits in risk-reward integration) and rendered animals more susceptible to the acute effects of an ethanol challenge on working memory tasks. The operant food reinforced task showed that these effects were not due to altered food motivation or to differential sensitivity to the nonspecific performance-disrupting effects of ethanol. However, CIE pre-treated animals had lower BEC levels than controls during the acute ethanol challenges indicating persistent pharmacokinetic tolerance to ethanol after the CIE treatment. There was little evidence of enduring effects of CIE alone on traditional measures of spatial and working memory. These effects indicate that adolescence is a time of selective vulnerability to the long-term effects of repeated ethanol exposure on neurobehavioral function and acute ethanol sensitivity. The positive and negative findings reported here help to further define the nature and extent of the impairments observed after adolescent CIE and provide direction for future research.

  19. Physicochemical properties, antioxidant activities and protective effect against acute ethanol-induced hepatic injury in mice of foxtail millet (Setaria italica) bran oil.

    PubMed

    Pang, Min; He, Shujian; Wang, Lu; Cao, Xinmin; Cao, Lili; Jiang, Shaotong

    2014-08-01

    This study was designed to investigate physicochemical characterization of the oil extracted from foxtail millet bran (FMBO), and the antioxidant and hepatoprotective effects against acute ethanol-induced hepatic injury in mice. GC-MS analysis revealed that unsaturated fatty acids (UFAs) account for 83.76% of the total fatty acids; in particular, the linoleic acid (C18:2) is the predominant polyunsaturated fatty acid (PUFA), and the compounds of squalene and six phytosterols (or phytostanols) were identified in unsaponifiable matter of FMBO. The antioxidant activity examination of FMBO in vitro showed highly ferric-reducing antioxidant power and scavenging effects against DPPH· and HO· radicals. Furthermore, the protective effect of FMBO against acute hepatic injuries induced by ethanol was verified in mice. In this, intragastric administration with different dosages of FMBO in mice ahead of acute ethanol administration could observably antagonize the ethanol-induced increases in serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), triglyceride (TG), and the hepatic malondialdehyde (MDA) levels, respectively, along with enhanced hepatic superoxide dismutase (SOD) levels relative to the control. Hepatic histological changes were also observed and confirmed that FMBO is capable of attenuating ethanol-induced hepatic injury.

  20. Short Communication: Is Ethanol-Based Hand Sanitizer Involved in Acute Pancreatitis after Excessive Disinfection?-An Evaluation with the Use of PBPK Model.

    PubMed

    Huynh-Delerme, Céline; Artigou, Catherine; Bodin, Laurent; Tardif, Robert; Charest-Tardif, Ginette; Verdier, Cécile; Sater, Nessryne; Ould-Elhkim, Mostafa; Desmares, Catherine

    2012-01-01

    An occupational physician reported to the French Health Products Safety Agency (Afssaps) a case of adverse effect of acute pancreatitis (AP) in a teaching nurse, after multiple demonstrations with ethanol-based hand sanitizers (EBHSs) used in a classroom with defective mechanical ventilation. It was suggested by the occupational physician that the exposure to ethanol may have produced a significant blood ethanol concentration and subsequently the AP. In order to verify if the confinement situation due to defective mechanical ventilation could increase the systemic exposure to ethanol via inhalation route, a physiologically based pharmacokinetic (PBPK) modeling was used to predict ethanol blood levels. Under the worst case scenario, the simulation by PBPK modeling showed that the maximum blood ethanol concentration which can be predicted of 5.9 mg/l is of the same order of magnitude to endogenous ethanol concentration (mean = 1.1 mg/L; median = 0.4 mg/L; range = 0-35 mg/L) in nondrinker humans (Al-Awadhi et al., 2004). The present study does not support the likelihood that EBHS leads to an increase in systemic ethanol concentration high enough to provoke an acute pancreatitis.

  1. N-acetylcysteine treatment blocks the development of ethanol-induced behavioural sensitization and related ΔFosB alterations.

    PubMed

    Morais-Silva, Gessynger; Alves, Gabrielle Cunha; Marin, Marcelo T

    2016-11-01

    Ethanol addiction is a serious public health problem that still needs more effective pharmacological treatment. A key factor in the development and maintenance of this disease is the advent of neuroadaptations in the mesocorticolimbic brain pathway upon chronic ethanol abuse. In general, these neuroadaptations are maladaptive and affect numerous neurotransmitter systems and intracellular molecules. One of these molecules is ΔFosB, a transcription factor that is altered after chronic drug use. Behavioural sensitization is a useful model for the study of the neuroadaptations related to addiction. Recent works have shown a role for the imbalance of glutamatergic neurotransmission in the symptoms found in addicted people. In this sense, the treatment with N-acetylcysteine, a l-cysteine prodrug that acts by restoring extrasynaptic concentrations of glutamate through the activation of cystine-glutamate antiporter, has shown promising results in the treatment of addiction. Thus, an animal model of behavioural sensitization was used to evaluate the effects of N-acetylcysteine treatment in the behavioural and molecular alterations induced by chronic ethanol administration. Swiss mice were subject to 13 days of daily ethanol administration to induce behavioural sensitization. Two hours before each ethanol administration and locomotor activity evaluation, the animals received intraperitoneally N-acetylcysteine injections. Immediately after the last test session, their brains were removed for ΔFosB and cystine-glutamate antiporter quantification. It was found that N-acetylcysteine treatment blocked ethanol-induced behavioural sensitization, the increase of ΔFosB content in the prefrontal cortex, and its reduction in the nucleus accumbens. The results suggest a possible use of N-acetylcysteine in ethanol-related disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Acute Ethanol Intake Induces NAD(P)H Oxidase Activation and Rhoa Translocation in Resistance Arteries.

    PubMed

    Simplicio, Janaina A; Hipólito, Ulisses Vilela; Vale, Gabriel Tavares do; Callera, Glaucia Elena; Pereira, Camila André; Touyz, Rhian M; Tostes, Rita de Cássia; Tirapelli, Carlos R

    2016-11-01

    The mechanism underlying the vascular dysfunction induced by ethanol is not totally understood. Identification of biochemical/molecular mechanisms that could explain such effects is warranted. To investigate whether acute ethanol intake activates the vascular RhoA/Rho kinase pathway in resistance arteries and the role of NAD(P)H oxidase-derived reactive oxygen species (ROS) on such response. We also evaluated the requirement of p47phox translocation for ethanol-induced NAD(P)H oxidase activation. Male Wistar rats were orally treated with ethanol (1g/kg, p.o. gavage) or water (control). Some rats were treated with vitamin C (250 mg/kg, p.o. gavage, 5 days) before administration of water or ethanol. The mesenteric arterial bed (MAB) was collected 30 min after ethanol administration. Vitamin C prevented ethanol-induced increase in superoxide anion (O2-) generation and lipoperoxidation in the MAB. Catalase and superoxide dismutase activities and the reduced glutathione, nitrate and hydrogen peroxide (H2O2) levels were not affected by ethanol. Vitamin C and 4-methylpyrazole prevented the increase on O2- generation induced by ethanol in cultured MAB vascular smooth muscle cells. Ethanol had no effect on phosphorylation levels of protein kinase B (Akt) and eNOS (Ser1177 or Thr495 residues) or MAB vascular reactivity. Vitamin C prevented ethanol-induced increase in the membrane: cytosol fraction ratio of p47phox and RhoA expression in the rat MAB. Acute ethanol intake induces activation of the RhoA/Rho kinase pathway by a mechanism that involves ROS generation. In resistance arteries, ethanol activates NAD(P)H oxidase by inducing p47phox translocation by a redox-sensitive mechanism. O mecanismo da disfunção vascular induzido pelo consumo de etanol não é totalmente compreendido. Justifica-se, assim a identificação de mecanismos bioquímicos e moleculares que poderiam explicar tais efeitos. Investigar se a ingestão aguda de etanol ativa a via vascular RhoA/Rho quinase

  3. Corticotropin-Releasing Factor Critical for Zebrafish Camouflage Behavior Is Regulated by Light and Sensitive to Ethanol

    PubMed Central

    Wagle, Mahendra; Mathur, Priya; Guo, Su

    2011-01-01

    The zebrafish camouflage response is an innate “hard-wired” behavior that offers an excellent opportunity to explore neural circuit assembly and function. Moreover, the camouflage response is sensitive to ethanol, making it a tractable system for understanding how ethanol influences neural circuit development and function. Here we report the identification of corticotropin releasing factor (CRF) as a critical component of the camouflage response pathway. We further show that ethanol, having no direct effect on the visual sensory system or the melanocytes, acts downstream of retinal ganglion cells and requires the CRF-proopiomelanocortin (POMC) pathway to exert its effect on camouflage. Treatment with ethanol, as well as alteration of light exposure that changes sensory input into the camouflage circuit, robustly modifies CRF expression in subsets of neurons. Activity of both Adenylyl Cyclase 5 and Extracellular signal Regulated Kinase (ERK) is required for such ethanol- or light- induced plasticity of crf expression. These results reveal an essential role of a peptidergic pathway in camouflage that is regulated by light and influenced by ethanol at concentrations relevant to abuse and anxiolysis, in a cAMP- and ERK- dependent manner. We conclude that this ethanol-modulated camouflage response represents a novel and relevant system for molecular genetic dissection of a neural circuit that is regulated by light and sensitive to ethanol. PMID:21209207

  4. Corticotropin-releasing factor critical for zebrafish camouflage behavior is regulated by light and sensitive to ethanol.

    PubMed

    Wagle, Mahendra; Mathur, Priya; Guo, Su

    2011-01-05

    The zebrafish camouflage response is an innate "hard-wired" behavior that offers an excellent opportunity to explore neural circuit assembly and function. Moreover, the camouflage response is sensitive to ethanol, making it a tractable system for understanding how ethanol influences neural circuit development and function. Here we report the identification of corticotropin-releasing factor (CRF) as a critical component of the camouflage response pathway. We further show that ethanol, having no direct effect on the visual sensory system or the melanocytes, acts downstream of retinal ganglion cells and requires the CRF-proopiomelanocortin pathway to exert its effect on camouflage. Treatment with ethanol, as well as alteration of light exposure that changes sensory input into the camouflage circuit, robustly modifies CRF expression in subsets of neurons. Activity of both adenylyl cyclase 5 and extracellular signal-regulated kinase (ERK) is required for such ethanol-induced or light-induced plasticity of crf expression. These results reveal an essential role of a peptidergic pathway in camouflage that is regulated by light and influenced by ethanol at concentrations relevant to abuse and anxiolysis, in a cAMP-dependent and ERK-dependent manner. We conclude that this ethanol-modulated camouflage response represents a novel and relevant system for molecular genetic dissection of a neural circuit that is regulated by light and sensitive to ethanol.

  5. Extrasynaptic Glycine Receptors of Rodent Dorsal Raphe Serotonergic Neurons: A Sensitive Target for Ethanol

    PubMed Central

    Maguire, Edward P; Mitchell, Elizabeth A; Greig, Scott J; Corteen, Nicole; Balfour, David J K; Swinny, Jerome D; Lambert, Jeremy J; Belelli, Delia

    2014-01-01

    Alcohol abuse is a significant medical and social problem. Several neurotransmitter systems are implicated in ethanol's actions, with certain receptors and ion channels emerging as putative targets. The dorsal raphe (DR) nucleus is associated with the behavioral actions of alcohol, but ethanol actions on these neurons are not well understood. Here, using immunohistochemistry and electrophysiology we characterize DR inhibitory transmission and its sensitivity to ethanol. DR neurons exhibit inhibitory ‘phasic' post-synaptic currents mediated primarily by synaptic GABAA receptors (GABAAR) and, to a lesser extent, by synaptic glycine receptors (GlyR). In addition to such phasic transmission mediated by the vesicular release of neurotransmitter, the activity of certain neurons may be governed by a ‘tonic' conductance resulting from ambient GABA activating extrasynaptic GABAARs. However, for DR neurons extrasynaptic GABAARs exert only a limited influence. By contrast, we report that unusually the GlyR antagonist strychnine reveals a large tonic conductance mediated by extrasynaptic GlyRs, which dominates DR inhibition. In agreement, for DR neurons strychnine increases their input resistance, induces membrane depolarization, and consequently augments their excitability. Importantly, this glycinergic conductance is greatly enhanced in a strychnine-sensitive fashion, by behaviorally relevant ethanol concentrations, by drugs used for the treatment of alcohol withdrawal, and by taurine, an ingredient of certain ‘energy drinks' often imbibed with ethanol. These findings identify extrasynaptic GlyRs as critical regulators of DR excitability and a novel molecular target for ethanol. PMID:24264816

  6. Ethanol Mediated Inhibition of Synaptic Vesicle Recycling at Amygdala Glutamate Synapses Is Dependent upon Munc13-2

    PubMed Central

    Gioia, Dominic A.; Alexander, Nancy; McCool, Brian A.

    2017-01-01

    Chronic exposure to alcohol produces adaptations within the basolateral amygdala (BLA) that are associated with the development of anxiety-like behaviors during withdrawal. In part, these adaptations are mediated by plasticity in glutamatergic synapses occurring through an AMPA receptor mediated form of post-synaptic facilitation in addition to a unique form of presynaptic facilitation. In comparison to the post-synaptic compartment, relatively less is understood about the mechanisms involved in the acute and chronic effects of ethanol in the presynaptic terminal. Previous research has demonstrated that glutamatergic terminals in the mouse BLA are sensitive to ethanol mediated inhibition of synaptic vesicle recycling in a strain-dependent fashion. Importantly, the strain-dependent differences in presynaptic ethanol sensitivity are in accordance with known strain-dependent differences in ethanol/anxiety interactions. In the present study, we have used a short-hairpin RNA to knockdown the expression of the presynaptic Munc13-2 protein in C57BL/6J mice, whose BLA glutamate terminals are normally ethanol-insensitive. We injected this shRNA, or a scrambled control virus, into the medial prefrontal cortex (mPFC) which sends dense projections to the BLA. Accordingly, this knockdown strategy reduces the expression of the Munc13-2 isoform in mPFC terminals within the BLA and alters presynaptic terminal function in C57BL/6J mice in a manner that phenocopies DBA/2J glutamate terminals which are normally ethanol-sensitive. Here, we provide evidence that manipulation of this single protein, Munc13-2, renders C57BL/6J terminals sensitive to ethanol mediated inhibition of synaptic vesicle recycling and post-tetanic potentiation. Furthermore, we found that this ethanol inhibition was dose dependent. Considering the important role of Munc13 proteins in synaptic plasticity, this study potentially identifies a molecular mechanism regulating the acute presynaptic effects of ethanol to

  7. Sex Differences in Ethanol's Anxiolytic Effect and Chronic Ethanol Withdrawal Severity in Mice with a Null Mutation of the 5α-Reductase Type 1 Gene.

    PubMed

    Tanchuck-Nipper, Michelle A; Ford, Matthew M; Hertzberg, Anna; Beadles-Bohling, Amy; Cozzoli, Debra K; Finn, Deborah A

    2015-05-01

    Manipulation of endogenous levels of the GABAergic neurosteroid allopregnanolone alters sensitivity to some effects of ethanol. Chronic ethanol withdrawal decreases activity and expression of 5α-reductase-1, an important enzyme in allopregnanolone biosynthesis encoded by the 5α-reductase-1 gene (Srd5a1). The present studies examined the impact of Srd5a1 deletion in male and female mice on several acute effects of ethanol and on chronic ethanol withdrawal severity. Genotype and sex did not differentially alter ethanol-induced hypothermia, ataxia, hypnosis, or metabolism, but ethanol withdrawal was significantly lower in female versus male mice. On the elevated plus maze, deletion of the Srd5a1 gene significantly decreased ethanol's effect on total entries versus wildtype (WT) mice and significantly decreased ethanol's anxiolytic effect in female knockout (KO) versus WT mice. The limited sex differences in the ability of Srd5a1 genotype to modulate select ethanol effects may reflect an interaction between developmental compensations to deletion of the Srd5a1 gene with sex hormones and levels of endogenous neurosteroids.

  8. Ethanol Inhibition of Recombinant NMDA Receptors Is Not Altered by Co-Expression of CaMKII-α or CaMKII-β

    PubMed Central

    Xu, Minfu; Chandler, L. Judson; Woodward, John J.

    2008-01-01

    Previous studies have shown that the N-methyl-D-aspartate (NMDA) receptor is an important target for the actions of ethanol in the brain. NMDA receptors are glutamate-activated ion channels that are highly expressed in neurons. They are activated during periods of significant glutamatergic synaptic activity and are an important source of the signaling molecule calcium in the post-synaptic spine. Alterations in the function of NMDA receptors by drugs or disease are associated with deficits in motor, sensory and cognitive processes of the brain. Acutely, ethanol inhibits ion flow through NMDA receptors while sustained exposure to ethanol can induce compensatory changes in the density and localization of the receptor. Defining factors that govern the acute ethanol sensitivity of NMDA receptors is an important step in how an individual responds to ethanol. In the present study, we investigated the effect of calcium-calmodulin dependent protein kinase II (CaMKII) on the ethanol sensitivity of recombinant NMDA receptors. CaMKII is a major constituent of the post-synaptic density and is critically involved in various forms of learning and memory. NMDA receptor subunits were transiently expressed in human embryonic kidney 293 cells (HEK 293) along with CaMKII-α or CaMKII-β tagged with the green fluorescent protein (GFP). Whole cell currents were elicited by brief exposures to glutamate and were measured using patchclamp electrophysiology. Neither CaMKII-α or CaMKII-β had any significant effect on the ethanol inhibition of NR1/2A or NR1/2B receptors. Ethanol inhibition was also unaltered by deletion of CaMKII binding domains in NR1 or NR2 subunits or by phospho-site mutants that mimic or occlude CaMKII phosphorylation. Chronic treatment of cortical neurons with ethanol had no significant effect on the expression of CaMKII-α or CaMKII-β. The results of this study suggest that CaMKII is not involved in regulating the acute ethanol sensitivity of NMDA receptors. PMID

  9. Genotype Modulates Age-Related Alterations in Sensitivity to the Aversive Effects of Ethanol: An 8 Inbred Strain Analysis of Conditioned Taste Aversion

    PubMed Central

    Moore, Eileen M.; Forrest, Robert D.; Boehm, Stephen L.

    2012-01-01

    Adolescent individuals display altered behavioral sensitivity to ethanol, which may contribute to the increased ethanol consumption seen in this age-group. However, genetics also exert considerable influence on both ethanol intake and sensitivity. Thus far there is little research assessing the combined influence of developmental and genetic alcohol sensitivities. Sensitivity to the aversive effects of ethanol using a conditioned taste aversion (CTA) procedure was measured during both adolescence (P30) and adulthood (P75) in 8 inbred mouse strains (C57BL/6J, DBA/2J, 129S1/SvImJ, A/J, BALB/cByJ, BTBR T+tf/J, C3H/HeJ, and FVB/NJ). Adolescent and adult mice were water deprived, and subsequently provided with access to 0.9% (v/v) NaCl solution for 1h. Immediately following access mice were administered ethanol (0, 1.5, 2.25, 3g/kg, ip). This procedure was repeated in 72h intervals for a total of 5 CTA trials. Sensitivity to the aversive effects of ethanol was highly dependent upon both strain and age. Within an inbred strain, adolescent animals were consistently less sensitive to the aversive effects of ethanol than their adult counterparts. However, the dose of ethanol required to produce an aversion response differed as a function of both age and strain. PMID:23171343

  10. Sex differences in the behavioral sequelae of chronic ethanol exposure.

    PubMed

    Jury, Nicholas J; DiBerto, Jeffrey F; Kash, Thomas L; Holmes, Andrew

    2017-02-01

    Rates of alcohol use disorders (AUDs) differ between men and women, and there is also marked variation between sexes in the effects of acute and chronic alcohol. In parallel to observations in humans, prior studies in rodents have described male/female differences across a range of ethanol-related behaviors, including ethanol drinking. Nonetheless, there remain gaps in our knowledge of the role of sex in moderating the effects of ethanol, particularly in models of chronic ethanol exposure. The goal of the current study was to assess various behavioral sequelae of exposing female C57BL/6J mice to chronic intermittent ethanol (CIE) via ethanol vapors. Following four weeks of CIE exposure, adult male and female mice were compared for ethanol drinking in a two-bottle paradigm, for sensitivity to acute ethanol intoxication (via loss of righting reflex [LORR]) and for anxiety-like behaviors in the novelty-suppressed feeding and marble burying assays. Next, adult and adolescent females were tested on two different two-bottle drinking preparations (fixed or escalating ethanol concentration) after CIE. Results showed that males and females exhibited significantly blunted ethanol-induced LORR following CIE, whereas only males showed increased anxiety-like behavior after CIE. Increased ethanol drinking after CIE was also specific to males, but high baseline drinking in females may have occluded detection of a CIE-induced effect. The failure to observe elevated drinking in females in response to CIE was also seen in females exposed to CIE during adolescence, regardless of whether a fixed or escalating ethanol-concentration two-bottle procedure was employed. Collectively, these data add to the literature on sex differences in ethanol-related behaviors and provide a foundation for future studies examining how the neural consequences of CIE might differ between males and females. Published by Elsevier Inc.

  11. Sex differences in the behavioral sequelae of chronic ethanol exposure

    PubMed Central

    Jury, Nicholas J.; DiBerto, Jeffrey F.; Kash, Thomas L.; Holmes, Andrew

    2016-01-01

    Rates of alcohol use disorders (AUDs) differ between men and women, and there is also marked variation between sexes in the effects of acute and chronic alcohol. In parallel to observations in humans, prior studies in rodents have described male/female differences across a range of ethanol-related behaviors, including ethanol drinking. Nonetheless, there remain gaps in our knowledge of the role of sex in moderating the effects of ethanol, particularly in models of chronic ethanol exposure. The goal of the current study was to assess various behavioral sequelae of exposing female C57BL/6J mice to chronic intermittent ethanol (CIE) via ethanol vapors. Following four weeks of CIE exposure, adult male and female mice were compared for ethanol drinking in a two-bottle paradigm, for sensitivity to acute ethanol intoxication (via loss of righting reflex [LORR]) and for anxiety-like behaviors in the novelty-suppressed feeding and marble burying assays. Next, adult and adolescent females were tested on two different two-bottle drinking preparations (fixed or escalating ethanol concentration) after CIE. Results showed that males and females exhibited significantly blunted ethanol-induced LORR following CIE, whereas only males showed increased anxiety-like behavior after CIE. Increased ethanol drinking after CIE was also specific to males, but high baseline drinking in females may have occluded detection of a CIE-induced effect. The failure to observe elevated drinking in females in response to CIE was also seen in females exposed to CIE during adolescence, regardless of whether a fixed or escalating ethanol-concentration two-bottle procedure was employed. Collectively, these data add to the literature on sex differences in ethanol-related behaviors and provide a foundation for future studies examining how the neural consequences of CIE might differ between males and females. PMID:27624846

  12. Adolescent rats are resistant to the development of ethanol-induced chronic tolerance and ethanol-induced conditioned aversion.

    PubMed

    Pautassi, Ricardo Marcos; Godoy, Juan Carlos; Molina, Juan Carlos

    2015-11-01

    The analysis of chronic tolerance to ethanol in adult and adolescent rats has yielded mixed results. Tolerance to some effects of ethanol has been reported in adolescents, yet other studies found adults to exhibit greater tolerance than adolescents or comparable expression of the phenomena at both ages. Another unanswered question is how chronic ethanol exposure affects subsequent ethanol-mediated motivational learning at these ages. The present study examined the development of chronic tolerance to ethanol's hypothermic and motor stimulating effects, and subsequent acquisition of ethanol-mediated odor conditioning, in adolescent and adult male Wistar rats given every-other-day intragastric administrations of ethanol. Adolescent and adult rats exhibited lack of tolerance to the hypothermic effects of ethanol during an induction phase; whereas adults, but not adolescents, exhibited a trend towards a reduction in hypothermia at a challenge phase (Experiment 1). Adolescents, unlike adults, exhibited ethanol-induced motor activation after the first ethanol administration. Adults, but not adolescents, exhibited conditioned odor aversion by ethanol. Subsequent experiments conducted only in adolescents (Experiment 2, Experiment 3 and Experiment 4) manipulated the context, length and predictability of ethanol administration. These manipulations did not promote the expression of ethanol-induced tolerance. This study indicated that, when moderate ethanol doses are given every-other day for a relatively short period, adolescents are less likely than adults to develop chronic tolerance to ethanol-induced hypothermia. This resistance to tolerance development could limit long-term maintenance of ethanol intake. Adolescents, however, exhibited greater sensitivity than adults to the acute motor stimulating effects of ethanol and a blunted response to the aversive effects of ethanol. This pattern of response may put adolescents at risk for early initiation of ethanol intake

  13. [Acute ethanol intoxication among children and adolescents. A retrospective analysis of 173 patients admitted to a university children hospital].

    PubMed

    Schöberl, S; Nickel, P; Schmutzer, G; Siekmeyer, W; Kiess, W

    2008-01-01

    In the last time the alcohol consumption among children and adolescents is a big theme in all kind of media. The ethanol consumption among children and adolescents has risen during the last years, but also new hazardous drinking patterns like "binge-drinking" are increasing. These drinking episodes are responsible for many hospital presentations of children and adolescents with acute ethanol intoxication. This study is a retrospective analysis of 173 patients admitted to the university children hospital of Leipzig due to acute ethanol intoxication during the period 1998-2004. Investigated parameters were: socio-demographic factors, clinical presentation and management as well as quantity and type of alcohol. During the years 1998-2004 the rate of alcohol intoxicated patients in this study increased, from 1998-2003 at about 171.4%. Totally 173 patients with an average age of 14.5 years were admitted to the university children hospital. There were significantly more boys than girls. The mean blood alcohol concentration of these patients was 1.77%. Some of the patients had severe symptoms. 62 were unconscious, 2 were in coma and at least 3 patients had to be ventilated. A difference between socioeconomic groups could be observed by comparing the different school types. 44.8% of the patients went to the middle school. Furthermore 17 patients of this study had mental disorders or psychosocial problems and were therefore in psychological or psychiatric treatment. In this study a significant influence of social classes or psychosocial problems on alcohol consumption such as binge-drinking leading to acute ethanol intoxication could not be found. Alarming is the increasing number of ethanol intoxicated patients, the young age, the high measured blood ethanol concentrations and the severe symptoms of these patients. This is the reason why early and intensive prevention strategies are required.

  14. PRENATAL ETHANOL EXPOSURE LEADS TO GREATER ETHANOL-INDUCED APPETITIVE REINFORCEMENT

    PubMed Central

    Pautassi, Ricardo M.; Nizhnikov, Michael E.; Spear, Norman E.; Molina, Juan C.

    2012-01-01

    Prenatal ethanol significantly heightens later alcohol consumption, but the mechanisms that underlie this phenomenon are poorly understood. Little is known about the basis of this effect of prenatal ethanol on the sensitivity to ethanol’s reinforcing effects. One possibility is that prenatal ethanol exposure makes subjects more sensitive to the appetitive effects of ethanol or less sensitive to ethanol’s aversive consequences. The present study assessed ethanol-induced second-order conditioned place preference (CPP) and aversion and ethanol-induced conditioned taste aversion (CTA) in infant rats prenatally exposed to ethanol (2.0 g/kg) or vehicle (water) or left untreated. The involvement of the κ opioid receptor system in ethanol-induced CTA was also explored. When place conditioning occurred during the ascending limb of the blood-ethanol curve (Experiment 1), the pups exposed to ethanol in utero exhibited greater CPP than untreated controls, with a shift to the right of the dose-response curve. Conditioning during a later phase of intoxication (30–45 min post-administration; Experiment 2) resulted in place aversion in control pups exposed to vehicle during late gestation but not in pups that were exposed to ethanol in utero. Ethanol induced a reliable and similar CTA (Experiment 3) in the pups treated with vehicle or ethanol during gestation, and CTA was insensitive to κ antagonism. These results suggest that brief exposure to a moderate ethanol dose during late gestation promotes ethanol-mediated reinforcement and alters the expression of conditioned aversion by ethanol. This shift in the motivational reactivity to ethanol may be an underlying basis of the effect of prenatal ethanol on later ethanol acceptance. PMID:22698870

  15. [Acute diuretic effect of ethanolic and aqueous extracts of Ceratopteris pteridoides (Hook) in normal rats].

    PubMed

    Alviz, Antistio Aníbal; Salas, Rubén Darío; Franco, Luis Alberto

    2013-01-01

    Ceratopteris pteridoides is a semiaquatic fern of the Parkeriacea family, widely used in the Colombian folk medicine as a diuretic and cholelithiasic, of which there are no scientific reports that validate its popular use. To evaluate the acute and short-term repeated-dose diuretic effect of the ethanolic and aqueous extracts of C. pteridoides in an in vivo model. The total ethanolic extract was obtained by maceration of the whole plant of C. pteridoides with ethanol and the aqueous extract by decoction at 60°C for 15 minutes. Both extracts were evaluated in preliminary phytochemical analysis and histological studies after the administration of the extracts for 8 consecutive days (1000 mg/Kg). The diuretic effect was evaluated using Wistar rats treated with the extracts (500 mg/Kg), using an acute and a short-term repeated-dose model, and quantifying water elimination, sodium and potassium excretion by atomic absorption spectrophotometry, and chloride excretion by mercurimetric titration. In the acute model both extracts showed significant diuretic, natriuretic, and kaliuretic effect compared to the control group. Whereas, a short-term repeated-dose administration showed a diuretic effect without elimination of electrolytes. The histopathologic study did not suggest a toxic effect in liver or kidney. The results represent evidence of the diuretic activity of C. pteridoides and give support the popular use given to this plant in the north coast of Colombia. Further studies are required to isolate and identify the compounds responsible for the activity and the mechanism of action involved.

  16. Synthesis and Characterization of CuO Nanodisks for High-Sensitive and Selective Ethanol Gas Sensor Applications.

    PubMed

    Umar, Ahmad; Lee, Jong-Heun; Kumar, Rajesh; Al-Dossary, O

    2017-02-01

    Herein, the fabrication and characterization of highly sensitive and selective ethanol gas sensor based on CuO nanodisks is reported. The CuO nanodisks were synthesized by facile hydrothermal process and detailed characterization revealed the well-crystallinity, high-purity and high density growth of the prepared material. To fabricate the ethanol gas sensor, the prepared nanodisks were coated on alumina substrate. The fabricated sensor exhibited high-sensitivity and the recorded gas response (resistance-ratio), response time (τ res) and recovery time (τ recov) were 6.2, 119 and 35 s, respectively for 100 ppm of C₂H₅OH at 300 °C. Further, the fabricated sensor shows high selectivity towards ethanol gas compared to H₂ and CO gases.

  17. Charge and Geometry of Residues in the Loop 2 β Hairpin Differentially Affect Agonist and Ethanol Sensitivity in Glycine Receptors

    PubMed Central

    Perkins, Daya I.; Trudell, James R.; Asatryan, Liana; Alkana, Ronald L.

    2012-01-01

    Recent studies highlighted the importance of loop 2 of α1 glycine receptors (GlyRs) in the propagation of ligand-binding energy to the channel gate. Mutations that changed polarity at position 52 in the β hairpin of loop 2 significantly affected sensitivity to ethanol. The present study extends the investigation to charged residues. We found that substituting alanine with the negative glutamate at position 52 (A52E) significantly left-shifted the glycine concentration response curve and increased sensitivity to ethanol, whereas the negative aspartate substitution (A52D) significantly right-shifted the glycine EC50 but did not affect ethanol sensitivity. It is noteworthy that the uncharged glutamine at position 52 (A52Q) caused only a small right shift of the glycine EC50 while increasing ethanol sensitivity as much as A52E. In contrast, the shorter uncharged asparagine (A52N) caused the greatest right shift of glycine EC50 and reduced ethanol sensitivity to half of wild type. Collectively, these findings suggest that charge interactions determined by the specific geometry of the amino acid at position 52 (e.g., the 1-Å chain length difference between aspartate and glutamate) play differential roles in receptor sensitivity to agonist and ethanol. We interpret these results in terms of a new homology model of GlyR based on a prokaryotic ion channel and propose that these mutations form salt bridges to residues across the β hairpin (A52E-R59 and A52N-D57). We hypothesize that these electrostatic interactions distort loop 2, thereby changing agonist activation and ethanol modulation. This knowledge will help to define the key physical-chemical parameters that cause the actions of ethanol in GlyRs. PMID:22357974

  18. Short Communication: Is Ethanol-Based Hand Sanitizer Involved in Acute Pancreatitis after Excessive Disinfection?—An Evaluation with the Use of PBPK Model

    PubMed Central

    Huynh-Delerme, Céline; Artigou, Catherine; Bodin, Laurent; Tardif, Robert; Charest-Tardif, Ginette; Verdier, Cécile; Sater, Nessryne; Ould-Elhkim, Mostafa; Desmares, Catherine

    2012-01-01

    An occupational physician reported to the French Health Products Safety Agency (Afssaps) a case of adverse effect of acute pancreatitis (AP) in a teaching nurse, after multiple demonstrations with ethanol-based hand sanitizers (EBHSs) used in a classroom with defective mechanical ventilation. It was suggested by the occupational physician that the exposure to ethanol may have produced a significant blood ethanol concentration and subsequently the AP. In order to verify if the confinement situation due to defective mechanical ventilation could increase the systemic exposure to ethanol via inhalation route, a physiologically based pharmacokinetic (PBPK) modeling was used to predict ethanol blood levels. Under the worst case scenario, the simulation by PBPK modeling showed that the maximum blood ethanol concentration which can be predicted of 5.9 mg/l is of the same order of magnitude to endogenous ethanol concentration (mean = 1.1 mg/L; median = 0.4 mg/L; range = 0–35 mg/L) in nondrinker humans (Al-Awadhi et al., 2004). The present study does not support the likelihood that EBHS leads to an increase in systemic ethanol concentration high enough to provoke an acute pancreatitis. PMID:22577377

  19. Modifications in adrenal hormones response to ethanol by prior ethanol dependence.

    PubMed

    Guaza, C; Borrell, S

    1985-03-01

    Ethanol was administered to rats by means of a liquid diet for 16 days; after an ethanol-free interval of four weeks, animals received a test (IP) dose of ethanol (2 g/kg), and the adrenocortical and adrenomedullary responses were evaluated. Chronically ethanol-exposed animals showed tolerance to the stimulatory effect of ethanol in the pituitary-adrenal axis. Likewise, previously dependent rats showed tolerance to the increase in the activity of the adrenomedullary function induced by acute administration of the drug. Our results indicate that chronic ethanol ingestion can induce persistent changes after complete alcohol abstinence.

  20. Distinct behavioral phenotypes in ethanol-induced place preference are associated with different extinction and reinstatement but not behavioral sensitization responses

    PubMed Central

    Pildervasser, João V. N.; Abrahao, Karina P.; Souza-Formigoni, Maria L. O.

    2014-01-01

    Conditioned place preference (CPP) is a model to study the role of drug conditioning properties. In outbred strains, individual variability may affect some behavioral measures. However, there are few studies focusing on understanding how different phenotypes of ethanol conditioned behavior may influence its extinction, reinstatement, and behavioral adaptation measures. We used male Swiss Webster mice to study different phenotypes related to ethanol conditioning strength, reinstatement and behavioral sensitization. Mice went through a CPP procedure with ethanol (2.2 g/kg, i.p.). After that, one group of mice was submitted to repeated extinction sessions, while another group remained in their home cages without any drug treatment. Mice went through environmental and ethanol priming (1.0 g/kg, i.p.) reinstatement tests. Ethanol priming test reinstated the conditioned behavior only in the animals kept in the home-cage during the abstinence period. Besides, the ethanol conditioned behavior strength was positively correlated with the time required to be extinguished. In the second set of experiments, some mice went through a CPP protocol followed by behavioral sensitization (five i.p. administrations of ethanol 2.2 g/kg or saline per week, for 3 weeks) and another group of mice went through sensitization followed by CPP. No positive correlation was observed between ethanol CPP strength and the intensity of behavioral sensitization. Considering that different phenotypes observed in CPP strength predicted the variability in other CPP measures, we developed a statistics-based method to classify mice according to CPP strength to be used in the evaluation of ethanol conditioning properties. PMID:25152719

  1. Distinct behavioral phenotypes in ethanol-induced place preference are associated with different extinction and reinstatement but not behavioral sensitization responses.

    PubMed

    Pildervasser, João V N; Abrahao, Karina P; Souza-Formigoni, Maria L O

    2014-01-01

    Conditioned place preference (CPP) is a model to study the role of drug conditioning properties. In outbred strains, individual variability may affect some behavioral measures. However, there are few studies focusing on understanding how different phenotypes of ethanol conditioned behavior may influence its extinction, reinstatement, and behavioral adaptation measures. We used male Swiss Webster mice to study different phenotypes related to ethanol conditioning strength, reinstatement and behavioral sensitization. Mice went through a CPP procedure with ethanol (2.2 g/kg, i.p.). After that, one group of mice was submitted to repeated extinction sessions, while another group remained in their home cages without any drug treatment. Mice went through environmental and ethanol priming (1.0 g/kg, i.p.) reinstatement tests. Ethanol priming test reinstated the conditioned behavior only in the animals kept in the home-cage during the abstinence period. Besides, the ethanol conditioned behavior strength was positively correlated with the time required to be extinguished. In the second set of experiments, some mice went through a CPP protocol followed by behavioral sensitization (five i.p. administrations of ethanol 2.2 g/kg or saline per week, for 3 weeks) and another group of mice went through sensitization followed by CPP. No positive correlation was observed between ethanol CPP strength and the intensity of behavioral sensitization. Considering that different phenotypes observed in CPP strength predicted the variability in other CPP measures, we developed a statistics-based method to classify mice according to CPP strength to be used in the evaluation of ethanol conditioning properties.

  2. Temporal Profiles Dissociate Regional Extracellular Ethanol versus Dopamine Concentrations

    PubMed Central

    2015-01-01

    In vivo monitoring of dopamine via microdialysis has demonstrated that acute, systemic ethanol increases extracellular dopamine in regions innervated by dopaminergic neurons originating in the ventral tegmental area and substantia nigra. Simultaneous measurement of dialysate dopamine and ethanol allows comparison of the time courses of their extracellular concentrations. Early studies demonstrated dissociations between the time courses of brain ethanol concentrations and dopaminergic responses in the nucleus accumbens (NAc) elicited by acute ethanol administration. Both brain ethanol and extracellular dopamine levels peak during the first 5 min following systemic ethanol administration, but the dopamine response returns to baseline while brain ethanol concentrations remain elevated. Post hoc analyses examined ratios of the dopamine response (represented as a percent above baseline) to tissue concentrations of ethanol at different time points within the first 25–30 min in the prefrontal cortex, NAc core and shell, and dorsomedial striatum following a single intravenous infusion of ethanol (1 g/kg). The temporal patterns of these “response ratios” differed across brain regions, possibly due to regional differences in the mechanisms underlying the decline of the dopamine signal associated with acute intravenous ethanol administration and/or to the differential effects of acute ethanol on the properties of subpopulations of midbrain dopamine neurons. This Review draws on neurochemical, physiological, and molecular studies to summarize the effects of acute ethanol administration on dopamine activity in the prefrontal cortex and striatal regions, to explore the potential reasons for the regional differences observed in the decline of ethanol-induced dopamine signals, and to suggest directions for future research. PMID:25537116

  3. Genotype modulates age-related alterations in sensitivity to the aversive effects of ethanol: an eight inbred strain analysis of conditioned taste aversion.

    PubMed

    Moore, E M; Forrest, R D; Boehm, S L

    2013-02-01

    Adolescent individuals display altered behavioral sensitivity to ethanol, which may contribute to the increased ethanol consumption seen in this age-group. However, genetics also exert considerable influence on both ethanol intake and sensitivity. Currently there is little research assessing the combined influence of developmental and genetic alcohol sensitivities. Sensitivity to the aversive effects of ethanol using a conditioned taste aversion (CTA) procedure was measured during both adolescence (P30) and adulthood (P75) in eight inbred mouse strains (C57BL/6J, DBA/2J, 129S1/SvImJ, A/J, BALB/cByJ, BTBR T(+) tf/J, C3H/HeJ and FVB/NJ). Adolescent and adult mice were water deprived, and subsequently provided with access to 0.9% (v/v) NaCl solution for 1 h. Immediately following access mice were administered ethanol (0, 1.5, 2.25 and 3 g/kg, ip). This procedure was repeated in 72 h intervals for a total of five CTA trials. Sensitivity to the aversive effects of ethanol was highly dependent upon both strain and age. Within an inbred strain, adolescent animals were consistently less sensitive to the aversive effects of ethanol than their adult counterparts. However, the dose of ethanol required to produce an aversion response differed as a function of both age and strain. © 2012 Blackwell Publishing Ltd and International Behavioural and Neural Genetics Society.

  4. The sap of Acer okamotoanum decreases serum alcohol levels after acute ethanol ingestion in rats.

    PubMed

    Yoo, Yeong-Min; Jung, Eui-Man; Kang, Ha-Young; Choi, In-Gyu; Choi, Kyung-Chul; Jeung, Eui-Bae

    2011-10-01

    In the present study, we examined whether Acer okamotoanum (A. okamotoanum) sap decreased the serum alcohol and acetaldehyde levels after acute ethanol treatment in a rat model. Male rats were orally administered 25, 50 or 100% A. okamotoanum sap 30 min prior to oral challenge with 3 ml of ethanol (15 ml/kg of a 20% ethanol solution in water), and the blood concentrations of alcohol and acetaldehyde were analyzed up to 7 h after the treatment. Pre-treatment with the sap significantly decreased the blood ethanol and acetaldehyde concentrations after 5 h when compared with ethanol treatment alone (a negative control). The expression levels of liver alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) mRNA were increased significantly in animals pre-treated with A. okamotoanum sap when compared with negative and positive controls. The data suggest that sap pre-treatment enhanced the alcohol metabolism rate in the rat liver. To investigate the involvement of mitochondrial regulation in the ethanol-induced hepatocyte apoptosis, we carried out an immunohistochemical analysis of Bax and Bcl-2. Pre-treatment with sap significantly decreased Bax expression and increased Bcl-2 expression 7 h after ethanol administration when compared with the negative control. The data suggest that A. okamotoanum sap pre-treatment may reduce the alcohol-induced oxidative stress in the rat liver.

  5. Fatty acid ethyl ester synthase inhibition ameliorates ethanol-induced Ca2+-dependent mitochondrial dysfunction and acute pancreatitis

    PubMed Central

    Huang, Wei; Booth, David M; Cane, Matthew C; Chvanov, Michael; Javed, Muhammad A; Elliott, Victoria L; Armstrong, Jane A; Dingsdale, Hayley; Cash, Nicole; Li, Yan; Greenhalf, William; Mukherjee, Rajarshi; Kaphalia, Bhupendra S; Jaffar, Mohammed; Petersen, Ole H; Tepikin, Alexei V; Sutton, Robert; Criddle, David N

    2014-01-01

    Objective Non-oxidative metabolism of ethanol (NOME) produces fatty acid ethyl esters (FAEEs) via carboxylester lipase (CEL) and other enzyme action implicated in mitochondrial injury and acute pancreatitis (AP). This study investigated the relative importance of oxidative and non-oxidative pathways in mitochondrial dysfunction, pancreatic damage and development of alcoholic AP, and whether deleterious effects of NOME are preventable. Design Intracellular calcium ([Ca2+]C), NAD(P)H, mitochondrial membrane potential and activation of apoptotic and necrotic cell death pathways were examined in isolated pancreatic acinar cells in response to ethanol and/or palmitoleic acid (POA) in the presence or absence of 4-methylpyrazole (4-MP) to inhibit oxidative metabolism. A novel in vivo model of alcoholic AP induced by intraperitoneal administration of ethanol and POA was developed to assess the effects of manipulating alcohol metabolism. Results Inhibition of OME with 4-MP converted predominantly transient [Ca2+]C rises induced by low ethanol/POA combination to sustained elevations, with concurrent mitochondrial depolarisation, fall of NAD(P)H and cellular necrosis in vitro. All effects were prevented by 3-benzyl-6-chloro-2-pyrone (3-BCP), a CEL inhibitor. 3-BCP also significantly inhibited rises of pancreatic FAEE in vivo and ameliorated acute pancreatic damage and inflammation induced by administration of ethanol and POA to mice. Conclusions A combination of low ethanol and fatty acid that did not exert deleterious effects per se became toxic when oxidative metabolism was inhibited. The in vitro and in vivo damage was markedly inhibited by blockade of CEL, indicating the potential for development of specific therapy for treatment of alcoholic AP via inhibition of FAEE generation. PMID:24162590

  6. Ethanol wet-bonding technique sensitivity assessed by AFM.

    PubMed

    Osorio, E; Toledano, M; Aguilera, F S; Tay, F R; Osorio, R

    2010-11-01

    In ethanol wet bonding, water is replaced by ethanol to maintain dehydrated collagen matrices in an extended state to facilitate resin infiltration. Since short ethanol dehydration protocols may be ineffective, this study tested the null hypothesis that there are no differences in ethanol dehydration protocols for maintaining the surface roughness, fibril diameter, and interfibrillar spaces of acid-etched dentin. Polished human dentin surfaces were etched with phosphoric acid and water-rinsed. Tested protocols were: (1) water-rinse (control); (2) 100% ethanol-rinse (1-min); (3) 100% ethanol-rinse (5-min); and (4) progressive ethanol replacement (50-100%). Surface roughness, fibril diameter, and interfibrillar spaces were determined with atomic force microscopy and analyzed by one-way analysis of variance and the Student-Newman-Keuls test (α = 0.05). Dentin roughness and fibril diameter significantly decreased when 100% ethanol (1-5 min) was used for rinsing (p < 0.001). Absolute ethanol produced collapse and shrinkage of collagen fibrils. Ascending ethanol concentrations did not collapse the matrix and shrank the fibrils less than absolute ethanol-rinses.

  7. Ethanol production improvement driven by genome-scale metabolic modeling and sensitivity analysis in Scheffersomyces stipitis

    PubMed Central

    2017-01-01

    The yeast Scheffersomyces stipitis naturally produces ethanol from xylose, however reaching high ethanol yields is strongly dependent on aeration conditions. It has been reported that changes in the availability of NAD(H/+) cofactors can improve fermentation in some microorganisms. In this work genome-scale metabolic modeling and phenotypic phase plane analysis were used to characterize metabolic response on a range of uptake rates. Sensitivity analysis was used to assess the effect of ARC on ethanol production indicating that modifying ARC by inhibiting the respiratory chain ethanol production can be improved. It was shown experimentally in batch culture using Rotenone as an inhibitor of the mitochondrial NADH dehydrogenase complex I (CINADH), increasing ethanol yield by 18%. Furthermore, trajectories for uptakes rates, specific productivity and specific growth rate were determined by modeling the batch culture, to calculate ARC associated to the addition of CINADH inhibitor. Results showed that the increment in ethanol production via respiratory inhibition is due to excess in ARC, which generates an increase in ethanol production. Thus ethanol production improvement could be predicted by a change in ARC. PMID:28658270

  8. Ethanol production improvement driven by genome-scale metabolic modeling and sensitivity analysis in Scheffersomyces stipitis.

    PubMed

    Acevedo, Alejandro; Conejeros, Raúl; Aroca, Germán

    2017-01-01

    The yeast Scheffersomyces stipitis naturally produces ethanol from xylose, however reaching high ethanol yields is strongly dependent on aeration conditions. It has been reported that changes in the availability of NAD(H/+) cofactors can improve fermentation in some microorganisms. In this work genome-scale metabolic modeling and phenotypic phase plane analysis were used to characterize metabolic response on a range of uptake rates. Sensitivity analysis was used to assess the effect of ARC on ethanol production indicating that modifying ARC by inhibiting the respiratory chain ethanol production can be improved. It was shown experimentally in batch culture using Rotenone as an inhibitor of the mitochondrial NADH dehydrogenase complex I (CINADH), increasing ethanol yield by 18%. Furthermore, trajectories for uptakes rates, specific productivity and specific growth rate were determined by modeling the batch culture, to calculate ARC associated to the addition of CINADH inhibitor. Results showed that the increment in ethanol production via respiratory inhibition is due to excess in ARC, which generates an increase in ethanol production. Thus ethanol production improvement could be predicted by a change in ARC.

  9. Neuroprotective effect of acute ethanol intoxication in TBI is associated to the hierarchical modulation of early transcriptional responses.

    PubMed

    Chandrasekar, Akila; Aksan, Bahar; Heuvel, Florian Olde; Förstner, Philip; Sinske, Daniela; Rehman, Rida; Palmer, Annette; Ludolph, Albert; Huber-Lang, Markus; Böckers, Tobias; Mauceri, Daniela; Knöll, Bernd; Roselli, Francesco

    2018-04-01

    Ethanol intoxication is a risk factor for traumatic brain injury (TBI) but clinical evidence suggests that it may actually improve the prognosis of intoxicated TBI patients. We have employed a closed, weight-drop TBI model of different severity (2cm or 3cm falling height), preceded (-30min) or followed (+20min) by ethanol administration (5g/Kg). This protocol allows us to study the interaction of binge ethanol intoxication in TBI, monitoring behavioral changes, histological responses and the transcriptional regulation of a series of activity-regulated genes (immediate early genes, IEGs). We demonstrate that ethanol pretreatment before moderate TBI (2cm) significantly reduces neurological impairment and accelerates recovery. In addition, better preservation of neuronal numbers and cFos+cells was observed 7days after TBI. At transcriptional level, ethanol reduced the upregulation of a subset of IEGs encoding for transcription factors such as Atf3, c-Fos, FosB, Egr1, Egr3 and Npas4 but did not affect the upregulation of others (e.g. Gadd45b and Gadd45c). While a subset of IEGs encoding for effector proteins (such as Bdnf, InhbA and Dusp5) were downregulated by ethanol, others (such as Il-6) were unaffected. Notably, the majority of genes were sensitive to ethanol only when administered before TBI and not afterwards (the exceptions being c-Fos, Egr1 and Dusp5). Furthermore, while severe TBI (3cm) induced a qualitatively similar (but quantitatively larger) transcriptional response to moderate TBI, it was no longer sensitive to ethanol pretreatment. Thus, we have shown that a subset of the TBI-induced transcriptional responses were sensitive to ethanol intoxication at the instance of trauma (ultimately resulting in beneficial outcomes) and that the effect of ethanol was restricted to a certain time window (pre TBI treatment) and to TBI severity (moderate). This information could be critical for the translational value of ethanol in TBI and for the design of clinical

  10. Protective effect of Allium neapolitanum Cyr. versus Allium sativum L. on acute ethanol-induced oxidative stress in rat liver.

    PubMed

    Nencini, Cristina; Franchi, Gian Gabriele; Cavallo, Federica; Micheli, Lucia

    2010-04-01

    This study investigated the protective effect of Allium neapolitanum Cyr., a spontaneous species of the Italian flora, compared with garlic (Allium sativum L.) on liver injury induced by ethanol in rats. Male albino Wistar rats were orally treated with fresh Allium homogenates (leaves or bulbs, 250 mg/kg) daily for 5 days, whereas controls received vehicle only. At the end of the experimental 5-day period, the animals received an acute ethanol dose (6 mL/kg, i.p.) 2 hours before the last Allium administration and were sacrificed 6 hours after ethanol administration. The activities of catalase (CAT), superoxide dismutase (SOD), and glutathione reductase (GR) and the levels of malondialdehyde (MDA), ascorbic acid (AA), and reduced (GSH) and oxidized glutathione in liver tissue were determined. Administration of both Allium species for 5 days (leaves or bulbs) led to no statistical variation of nonenzymatic parameters versus the control group; otherwise Allium treatment caused an increase of GSH and AA levels compared with the ethanol group and a diminution of MDA levels, showing in addition that A. neapolitanum bulb had the best protective effect. Regarding to enzymatic parameters, GR and CAT activities were enhanced significantly compared with the ethanol group, whereas SOD activity showed a trend different from other parameters estimated. However, the treatment with both Allium species followed by acute ethanol administration reestablished the nonenzymatic parameters similar to control values and enhanced the activities of the enzymes measured. These results suggest that fresh Allium homogenates (leaves or bulbs) possess antioxidant properties and provide protection against ethanol-induced liver injury.

  11. Optical bio-sniffer for ethanol vapor using an oxygen-sensitive optical fiber.

    PubMed

    Mitsubayashi, Kohji; Kon, Takuo; Hashimoto, Yuki

    2003-11-30

    An optical bio-sniffer for ethanol was constructed by immobilizing alcohol oxidase (AOD) onto a tip of a fiber optic oxygen sensor with a tube-ring, using an oxygen sensitive ruthenium organic complex (excitation, 470 nm; fluorescent, 600 nm). A reaction unit for circulating buffer solution was applied to the tip of the device. After the experiment in the liquid phase, the sniffer-device was applied for gas analysis using a gas flow measurement system with a gas generator. The optical device was applied to detect the oxygen consumption induced by AOD enzymatic reaction with alcohol application. The sensor in the liquid phase was used to measure ethanol solution from 0.50 to 9.09 mmol/l. Then, the bio-sniffer was calibrated against ethanol vapor from 0.71 to 51.49 ppm with good gas-selectivity based on the AOD substrate specificity. The bio-sniffer with the reaction unit was also used to monitor the concentration change of gaseous ethanol by rinsing and cleaning the fiber tip and the enzyme membrane with buffer solution.

  12. Electrolyzed-reduced water inhibits acute ethanol-induced hangovers in Sprague-Dawley rats.

    PubMed

    Park, Seung-Kyu; Qi, Xu-Feng; Song, Soon-Bong; Kim, Dong-Heui; Teng, Yung-Chien; Yoon, Yang-Suk; Kim, Kwang-Yong; Li, Jian-Hong; Jin, Dan; Lee, Kyu-Jae

    2009-10-01

    Ethanol consumption disturbs the balance between the pro- and anti-oxidant systems of the organism, leading to oxidative stress. Electrolyzed-reduced water (ERW) is widely used by people in East Asia for drinking purposes because of its therapeutic properties including scavenging effect of reactive oxygen species. This study was performed to investigate the effect of ERW on acute ethanol-induced hangovers in Sprague-Dawley rats. Alcohol concentration in serum of ERW-treated rats showed significant difference at 1 h, 3 h and 5 h respectively as compared with the rats treated with distilled water. Both alcohol dehydrogenase type 1 and acetaldehyde dehydrogenase related with oxidation of alcohol were significantly increased in liver tissue while the level of aspartate aminotransferase and alanine aminotransferase in serum was markedly decreased 24 h after pre-oral administration of ERW. Moreover, oral administration of ERW significantly activated non-ezymatic (glutathione) and enzymatic (glutathione peroxidase, glutathione-S-transferase, Cu/Zn-superoxide dismutase and catalase) antioxidants in liver tissues compared with the control group. These results suggest that drinking ERW has an effect of alcohol detoxification by antioxidant mechanism and has potentiality for relief of ethanol-induced hangover symptoms.

  13. Moderate (2%, v/v) Ethanol Feeding Alters Hepatic Wound Healing after Acute Carbon Tetrachloride Exposure in Mice

    PubMed Central

    Deshpande, Krutika T.; Liu, Shinlan; McCracken, Jennifer M.; Jiang, Lu; Gaw, Ta Ehpaw; Kaydo, Lindsey N.; Richard, Zachary C.; O’Neil, Maura F.; Pritchard, Michele T.

    2016-01-01

    Wound healing consists of three overlapping phases: inflammation, proliferation, and matrix synthesis and remodeling. Prolonged alcohol abuse can cause liver fibrosis due to deregulated matrix remodeling. Previous studies demonstrated that moderate ethanol feeding enhances liver fibrogenic markers and frank fibrosis independent of differences in CCl4-induced liver injury. Our objective was to determine whether or not other phases of the hepatic wound healing response were affected by moderate ethanol after CCl4 exposure. Mice were fed moderate ethanol (2% v/v) for two days and then were exposed to CCl4 and euthanized 24–96 h later. Liver injury was not different between pair- and ethanol-fed mice; however, removal of necrotic tissue was delayed after CCl4-induced liver injury in ethanol-fed mice. Inflammation, measured by TNFα mRNA and protein and hepatic Ly6c transcript accumulation, was reduced and associated with enhanced hepatocyte apoptosis after ethanol feeding. Hepatocytes entered the cell cycle equivalently in pair- and ethanol-fed mice after CCl4 exposure, but hepatocyte proliferation was prolonged in livers from ethanol-fed mice. CCl4-induced hepatic stellate cell activation was increased and matrix remodeling was prolonged in ethanol-fed mice compared to controls. Taken together, moderate ethanol affected each phase of the wound healing response to CCl4. These data highlight previously unknown effects of moderate ethanol exposure on hepatic wound healing after acute hepatotoxicant exposure. PMID:26751492

  14. Acute effects of ethanol on the transfer of nicotine and two dietary carcinogens in human placental perfusion.

    PubMed

    Veid, Jenni; Karttunen, Vesa; Myöhänen, Kirsi; Myllynen, Päivi; Auriola, Seppo; Halonen, Toivo; Vähäkangas, Kirsi

    2011-09-10

    Many mothers use, against instructions, alcohol during pregnancy. Simultaneously mothers are exposed to a wide range of other environmental chemicals. These chemicals may also harm the developing fetus, because almost all toxic compounds can go through human placenta. Toxicokinetic effects of ethanol on the transfer of other environmental compounds through human placenta have not been studied before. It is known that ethanol has lytic properties and increases the permeability and fluidity of cell membranes. We studied the effects of ethanol on the transfer of three different environmental toxins: nicotine, PhIP (2-amino-1-methyl-6-phenylimidazo(4,5-b)pyridine) and NDMA (N-nitrosodimethylamine) in placental perfusion. We tested in human breast cancer adenocarcinoma cell line MCF-7 whether ethanol affects ABCG2/BCRP, which is also the major transporter in human placenta. We found that the transfer of ethanol is comparable to that of antipyrine, which points to passive diffusion as the transfer mechanism. Unexpectedly, ethanol had no statistically significant effect on the transfer of the other studied compounds. Neither did ethanol inhibit the function of ABCG2/BCRP. These experiments represent only the effects of acute exposure to ethanol and chronic exposure remains to be studied. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  15. Acute ethanol administration results in a protective cytokine and neuroinflammatory profile in traumatic brain injury.

    PubMed

    Chandrasekar, Akila; Heuvel, Florian Olde; Palmer, Annette; Linkus, Birgit; Ludolph, Albert C; Boeckers, Tobias M; Relja, Borna; Huber-Lang, Markus; Roselli, Francesco

    2017-10-01

    Ethanol intoxication is a common comorbidity in traumatic brain injury. To date, the effect of ethanol on TBI pathogenic cascades and resulting outcomes remains debated. A closed blunt weight-drop murine TBI model has been implemented to investigate behavioral (by sensorimotor and neurological tests), and neuro-immunological (by tissue cytokine arrays and immuno-histology) effects of ethanol intoxication on TBI. The effect of the occurrence of traumatic intracerebral hemorrhage was also studied. The results indicate that ethanol pretreatment results in a faster and better recovery after TBI with reduced infiltration of leukocytes and reduced microglia activation. These outcomes correspond to reduced parenchymal levels of GM-CSF, IL-6 and IL-3 and to the transient upregulation of IL-13 and VEGF, indicating an early shift in the cytokine profile towards reduced inflammation. A significant difference in the cytokine profile was still observed 24h post injury in the ethanol pretreated mice, as shown by the delayed peak in IL-6 and by the suppression of GM-CSF, IFN-γ, and IL-3. Seven days post-injury, ethanol-pretreated mice displayed a significant decrease both in CD45+ cells infiltration and in microglial activation. On the other hand, in the case of traumatic intracerebral hemorrhage, the cytokine profile was dominated by KC, CCL5, M-CSF and several interleukins and ethanol pretreatment did not produce any modification. We can thus conclude that ethanol intoxication suppresses the acute neuro-inflammatory response to TBI, an effect which is correlated with a faster and complete neurological recovery, whereas, the presence of traumatic intracerebral hemorrhage overrides the effects of ethanol. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Acute ethanol effects on neural encoding of reward size and delay in the nucleus accumbens

    PubMed Central

    Gutman, Andrea L.

    2016-01-01

    Acute ethanol administration can cause impulsivity, resulting in increased preference for immediately available rewards over delayed but more valuable alternatives. The manner in which reward size and delay are represented in neural firing is not fully understood, and very little is known about ethanol effects on this encoding. To address this issue, we used in vivo electrophysiology to characterize neural firing in the core of the nucleus accumbens (NAcc) in rats responding for rewards that varied in size or delay after vehicle or ethanol administration. The NAcc is a central element in the circuit that governs decision-making and importantly, promotes choice of delayed rewards. We found that NAcc firing in response to reward-predictive cues encoded anticipated reward value after vehicle administration, but ethanol administration disrupted this encoding, resulting in a loss of discrimination between immediate and delayed rewards in cue-evoked neural responses. In addition, NAcc firing occurring at the time of the operant response (lever pressing) was inversely correlated with behavioral response latency, such that increased firing rates were associated with decreased latencies to lever press. Ethanol administration selectively attenuated this lever press-evoked firing when delayed but not immediate rewards were expected. These effects on neural firing were accompanied by increased behavioral latencies to respond for delayed rewards. Our results suggest that ethanol effects on NAcc cue- and lever press-evoked encoding may contribute to ethanol-induced impulsivity. PMID:27169507

  17. [Evaluation of selected socioeconomic factors in patients with acute ethanol intoxication and alcohol withdrawal syndrome].

    PubMed

    Lukasik-Głębocka, Magdalena; Sommerfeld, Karina

    2014-01-01

    Ethanol is commonly overused psychoactive substance in Poland and all around the world. It causes addiction, which occurs as a result of its chronic administration. One of the main symptoms of addiction is hunger due to psychoactive substance that prevents interruption of its adoption and contributes to relapse drinking. Acute poisoning with ethyl alcohol and alcohol withdrawal syndrome are diseases causing a potential danger to life. The prevalence of use and abuse of alcoholic beverages is a potential risk, causing health problems, including permanent damage of the central and peripheral nervous system and socio-economic problems. The aim of this study is to analyze certain aspects of the socio-economic situation of the patients hospitalized in the Department of Toxicology in Raszeja City Hospital in Poznan due to acute ethanol intoxication or alcohol withdrawal syndrome in 2010. 299 patients history was evaluated, among which 161 were treated for acute intoxication with ethanol and 138 due to alcohol withdrawal syndrome. Objects of interest were elements of subjective tests including: marital status of patients, their education and professional activity and the problem of homelessness. The study group consisted of 299 patients in age from 16 to 77 years, hospitalized in the Department of Toxicology in Raszeja City Hospital in Poznan due to acute ethanol intoxication or alcohol withdrawal syndrome. It was found that the largest group consisted of patients remaining married (42.81%) and unmarried (30.43%). Alcohol abuse affects people of all levels of education. In the present study, most patients had a vocational education (37.79%) and medium (23.08%). Patients were analyzed in terms of economic activity, among which about 40% were unemployed. In the whole group more than 10% of those were homeless. Ethyl alcohol intoxication and alcohol withdrawal represents a significant hazard. As a result of reliance, patients lose control of alcohol consumption and they

  18. Acute Ethanol Exposure Prevents PMA-mediated Augmentation of N-methyl-d-aspartate Receptor Function in Primary Cultured Cerebellar Granule Cells

    PubMed Central

    Reneau, Jason; Reyland, Mary E.; Popp, R. Lisa

    2011-01-01

    Many intracellular proteins and signaling cascades contribute to the ethanol sensitivity of native N-methyl-d-aspartate receptors (NMDARs). One putative protein is the serine / threonine kinase, Protein kinase C (PKC). The purpose of this study was to assess if PKC modulates the ethanol sensitivity of native NMDARs expressed in primary cultured cerebellar granule cells (CGCs). With the whole-cell patch-clamp technique, we assessed if ethanol inhibition of NMDA-induced currents (INMDA) (100 μM NMDA plus 10 μM glycine) were altered in CGCs in which the novel and classical PKC isoforms were activated by phorbol-12-myristate-13-acetate (PMA). Percent inhibition by 10, 50 or 100 mM ethanol of NMDA-induced steady-state (ISS) or peak current amplitudes (IPk) of NMDARs expressed in CGCs in which PKC was activated by a 12.5 min, 100 nM PMA exposure at 37° C did not differ from currents obtained from receptors contained in control cells. However, PMA-mediated augmentation of IPk in the absence of ethanol was abolished after brief applications of 10 or 1 mM ethanol co-applied with agonists, and this suppression of enhanced receptor function was observed for up to eight minutes post-ethanol exposure. Because we had previously shown that PMA-mediated augmentation of INMDA of NMDARs expressed in these cells is by activation of PKCα, we assessed the effect of ethanol (1, 10, 50 and 100 mM) on PKCα activity. Ethanol decreased PKCα activity by 18% for 1 mM ethanol and activity decreased with increasing ethanol concentrations with a 50% inhibition observed with 100 mM ethanol. The data suggest that ethanol disruption of PMA-mediated augmentation of INMDA may be due to a decrease in PKCα activity by ethanol. However, given the incomplete blockade of PKCα activity and the low concentration of ethanol at which this phenomenon is observed, other ethanol-sensitive signaling cascades must also be involved. PMID:21624785

  19. Event-Related Potential responses to the acute and chronic effects of alcohol in adolescent and adult Wistar rats

    PubMed Central

    Ehlers, Cindy L.; Desikan, Anita; Wills, Derek N.

    2014-01-01

    Background The present study explored the hypothesis that adolescent ethanol exposure may cause long lasting changes in ethanol sensitivity by exploring the age-related effects of acute alcohol on intoxication and on event-related potential (ERP) responses to acoustic stimuli in ethanol naïve adolescent and adult male Wistar rats and in adult rats that were exposed to chronic ethanol/control conditions during adolescence. Methods Ethanol naïve adolescent (postnatal day 32 (PD32)) and adult male rats (PD99) were included in the first study. In a second study, rats were exposed to 5 weeks of ethanol vapor (Blood ethanol concentrations @ 175 mg%) or air from PD24 to PD59 and allowed to mature until PD90. In both studies rats were implanted with cortical recording electrodes, and the effects of acute ethanol (0.0, 1.5, and 3.0 g/kg) on behavioral and ERP responses were assessed. Results Adolescents were found to have higher amplitude and longer latency P3a and P3b components at baseline as compared to adult rats, and ethanol was found to produce a robust dose-dependent increase in the latency of the P3a and P3b components of the auditory ERP recorded in cortical sites in both adolescents and adults. However, ethanol produced significantly larger delays in P3a and P3b latencies in adults as compared to adolescents. Acute ethanol administration was also found to produce a robust dose dependent increase in the latency of the P3a and P3b components in adult animals exposed to ethanol vapor as adolescents and air exposed controls; however, larger acute ethanol-induced increases in P3a and P3b latencies were seen in controls as compared to adolescent vapor exposed rats. Conclusions Adolescent rats have a less intense P3 latency response to acute ethanol administration when compared to adult rats. Exposure to chronic ethanol during adolescence can cause “retention” of the adolescent phenotype of reduced P3 latency sensitivity to ethanol. PMID:24483322

  20. Loss of ethanol conditioned taste aversion and motor stimulation in knockin mice with ethanol-insensitive α2-containing GABA(A) receptors.

    PubMed

    Blednov, Y A; Borghese, C M; McCracken, M L; Benavidez, J M; Geil, C R; Osterndorff-Kahanek, E; Werner, D F; Iyer, S; Swihart, A; Harrison, N L; Homanics, G E; Harris, R A

    2011-01-01

    GABA type A receptors (GABA(A)-Rs) are potential targets of ethanol. However, there are multiple subtypes of this receptor, and, thus far, individual subunits have not been definitively linked with specific ethanol behavioral actions. Interestingly, though, a chromosomal cluster of four GABA(A)-R subunit genes, including α2 (Gabra2), was associated with human alcoholism (Am J Hum Genet 74:705-714, 2004; Pharmacol Biochem Behav 90:95-104, 2008; J Psychiatr Res 42:184-191, 2008). The goal of our study was to determine the role of receptors containing this subunit in alcohol action. We designed an α2 subunit with serine 270 to histidine and leucine 277 to alanine mutations that was insensitive to potentiation by ethanol yet retained normal GABA sensitivity in a recombinant expression system. Knockin mice containing this mutant subunit were tested in a range of ethanol behavioral tests. These mutant mice did not develop the typical conditioned taste aversion in response to ethanol and showed complete loss of the motor stimulant effects of ethanol. Conversely, they also demonstrated changes in ethanol intake and preference in multiple tests. The knockin mice showed increased ethanol-induced hypnosis but no difference in anxiolytic effects or recovery from acute ethanol-induced motor incoordination. Overall, these studies demonstrate that the effects of ethanol at GABAergic synapses containing the α2 subunit are important for specific behavioral effects of ethanol that may be relevant to the genetic linkage of this subunit with human alcoholism.

  1. Acute exposure to ethanol on gestational day 15 affects social motivation of female offspring.

    PubMed

    Varlinskaya, Elena I; Mooney, Sandra M

    2014-03-15

    Alterations in social behavior are a hallmark of many neurodevelopmental disorders in humans. In rodents, social behavior is affected by prenatal insults. The outcomes are dependent on the timing of the insult as well as the sex and age of the animal tested. The limbic system is particularly important for social behavior, and a peak of neurogenesis within this system occurs on gestational day (G)15. Neurons appear particularly vulnerable to ethanol insult around the time they become post-mitotic. We tested the hypothesis that acute exposure to ethanol on G15 would result in significant social behavior deficits. Accordingly, Long Evans pregnant females were injected with ethanol (2.9 g/kg) or an equivalent volume of saline on G15. Offspring were assessed in a modified social interaction test on postnatal day (P) 28, P42, or P75, i.e., during early adolescence, late adolescence, or young adulthood. Prenatal ethanol exposure decreased social investigation in P28 females and transformed social preference into social avoidance in 75-day-old females. Contact behavior, play fighting, and locomotor activity differed as a function of age, but were not significantly affected by ethanol exposure. Males demonstrated significantly more contact behavior and play fighting at P42 than at P28 or P70, whereas there were no age-related changes in females. Adult females showed more locomotor activity than adult males. Overall, prenatal ethanol exposure on G15 enhanced social anxiety in females, with these effects seen in adulthood only. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Accentuating effects of nicotine on ethanol response in mice with high genetic predisposition to ethanol-induced locomotor stimulation.

    PubMed

    Gubner, N R; McKinnon, C S; Reed, C; Phillips, T J

    2013-01-01

    Co-morbid use of nicotine-containing tobacco products and alcohol is prevalent in alcohol dependent individuals. Common genetic factors could influence initial sensitivity to the independent or interactive effects of these drugs and play a role in their co-abuse. Locomotor sensitivity to nicotine and ethanol, alone and in combination, was assessed in mice bred for high (FAST) and low (SLOW) sensitivity to the locomotor stimulant effects of ethanol and in an inbred strain of mouse (DBA/2J) that has been shown to have extreme sensitivity to ethanol-induced stimulation in comparison to other strains. The effects of nicotine and ethanol, alone and in combination, were dependent on genotype. In FAST and DBA/2J mice that show high sensitivity to ethanol-induced stimulation, nicotine accentuated the locomotor stimulant response to ethanol. This effect was not found in SLOW mice that are not stimulated by ethanol alone. These data indicate that genes underlying differential sensitivity to the stimulant effects of ethanol alone also influence sensitivity to nicotine in combination with ethanol. Sensitivity to the stimulant effects of nicotine alone does not appear to predict the response to the drug combination, as FAST mice are sensitive to nicotine-induced stimulation, whereas SLOW and DBA/2J mice are not. The combination of nicotine and ethanol may have genotype-dependent effects that could impact co-abuse liability. Published by Elsevier Ireland Ltd.

  3. Acute ethanol exposure-induced autophagy-mediated cardiac injury via activation of the ROS-JNK-Bcl-2 pathway.

    PubMed

    Zhu, Zhongxin; Huang, Yewei; Lv, Lingchun; Tao, Youli; Shao, Minglong; Zhao, Congcong; Xue, Mei; Sun, Jia; Niu, Chao; Wang, Yang; Kim, Sunam; Cong, Weitao; Mao, Wei; Jin, Litai

    2018-02-01

    Binge drinking is associated with increased cardiac autophagy, and often triggers heart injury. Given the essential role of autophagy in various cardiac diseases, this study was designed to investigate the role of autophagy in ethanol-induced cardiac injury and the underlying mechanism. Our study showed that ethanol exposure enhanced the levels of LC3-II and LC3-II positive puncta and promoted cardiomyocyte apoptosis in vivo and in vitro. In addition, we found that ethanol induced autophagy and cardiac injury largely via the sequential triggering of reactive oxygen species (ROS) accumulation, activation of c-Jun NH2-terminal kinase (JNK), phosphorylation of Bcl-2, and dissociation of the Beclin 1/Bcl-2 complex. By contrast, inhibition of ethanol-induced autophagic flux with pharmacologic agents in the hearts of mice and cultured cells significantly alleviated ethanol-induced cardiomyocyte apoptosis and heart injury. Elimination of ROS with the antioxidant N-acetyl cysteine (NAC) or inhibition of JNK with the JNK inhibitor SP600125 reduced ethanol-induced autophagy and subsequent autophagy-mediated apoptosis. Moreover, metallothionein (MT), which can scavenge reactive oxygen and nitrogen species, also attenuated ethanol-induced autophagy and cell apoptosis in MT-TG mice. In conclusion, our findings suggest that acute ethanol exposure induced autophagy-mediated heart toxicity and injury mainly through the ROS-JNK-Bcl-2 signaling pathway. © 2017 Wiley Periodicals, Inc.

  4. Preclinical Evaluation of Riluzole: Assessments of Ethanol Self-Administration and Ethanol Withdrawal Symptoms

    PubMed Central

    Besheer, Joyce; Lepoutre, Veronique; Hodge, Clyde W.

    2010-01-01

    Background Many of the neurobehavioral effects of ethanol are mediated by inhibition of excitatory N-methyl-d-aspartate (NMDA) and enhancement of inhibitory γ-amino-butyric-acid (GABA) receptor systems. There is growing interest in drugs that alter these systems as potential medications for problems associated with alcoholism. The drug riluzole, approved for treatment of amyotrophic lateral sclerosis (ALS), inhibits NMDA and enhances GABAA receptor system activity. This study was designed to determine the preclinical efficacy of riluzole to modulate ethanol self-administration and withdrawal. Methods Male C57BL/6J mice were trained to lever press on a concurrent fixed-ratio 1 schedule of ethanol (10% v/v) versus water reinforcement during daily 16-hour sessions. Riluzole (1 to 40 mg/kg, IP) was evaluated on ethanol self-administration after acute and chronic (2 week) treatment. To determine if riluzole influences ethanol withdrawal-associated seizures, mice were fed an ethanol-containing or control liquid diet for 18 days. The effects of a single injection of riluzole (30 mg/kg) were examined on handling-induced convulsions after ethanol withdrawal. Results Acute riluzole (30 and 40 mg/kg) reduced ethanol self-administration during the first 4 hours of the session, which corresponds to the known pharmacokinetics of this drug. Ethanol self-administration was also reduced by riluzole after chronic treatment. Riluzole (30 mg/kg) significantly decreased the severity of ethanol-induced convulsions 2 hours after ethanol withdrawal. Conclusions These results demonstrate that riluzole decreases ethanol self-administration and may reduce ethanol withdrawal severity in mice. Thus, riluzole may have utility in the treatment of problems associated with alcoholism. PMID:19426166

  5. Biofilm formation and antimicrobial sensitivity of lactobacilli contaminants from sugarcane-based fuel ethanol fermentation.

    PubMed

    Dellias, Marina de Toledo Ferraz; Borges, Clóvis Daniel; Lopes, Mário Lúcio; da Cruz, Sandra Helena; de Amorim, Henrique Vianna; Tsai, Siu Mui

    2018-02-24

    Industrial ethanol fermentation is subject to bacterial contamination that causes significant economic losses in ethanol fuel plants. Chronic contamination has been associated with biofilms that are normally more resistant to antimicrobials and cleaning efforts than planktonic cells. In this study, contaminant species of Lactobacillus isolated from biofilms (source of sessile cells) and wine (source of planktonic cells) from industrial and pilot-scale fermentations were compared regarding their ability to form biofilms and their sensitivity to different antimicrobials. Fifty lactobacilli were isolated and the most abundant species were Lactobacillus casei, Lactobacillus fermentum and Lactobacillus plantarum. The majority of the isolates (87.8%) were able to produce biofilms in pure culture. The capability to form biofilms and sensitivity to virginiamycin, monensin and beta-acids from hops, showed inter- and intra-specific variability. In the pilot-scale fermentation, Lactobacillus brevis, L. casei and the majority of L. plantarum isolates were less sensitive to beta-acids than their counterparts from wine; L. brevis isolates from biofilms were also less sensitive to monensin when compared to the wine isolates. Biofilm formation and sensitivity to beta-acids showed a positive and negative correlation for L. casei and L. plantarum, respectively.

  6. Loss of Ethanol Conditioned Taste Aversion and Motor Stimulation in Knockin Mice with Ethanol-Insensitive α2-Containing GABAA Receptors

    PubMed Central

    Borghese, C. M.; McCracken, M. L.; Benavidez, J. M.; Geil, C. R.; Osterndorff-Kahanek, E.; Werner, D. F.; Iyer, S.; Swihart, A.; Harrison, N. L.; Homanics, G. E.; Harris, R. A.

    2011-01-01

    GABA type A receptors (GABAA-Rs) are potential targets of ethanol. However, there are multiple subtypes of this receptor, and, thus far, individual subunits have not been definitively linked with specific ethanol behavioral actions. Interestingly, though, a chromosomal cluster of four GABAA-R subunit genes, including α2 (Gabra2), was associated with human alcoholism (Am J Hum Genet 74:705–714, 2004; Pharmacol Biochem Behav 90:95–104, 2008; J Psychiatr Res 42:184–191, 2008). The goal of our study was to determine the role of receptors containing this subunit in alcohol action. We designed an α2 subunit with serine 270 to histidine and leucine 277 to alanine mutations that was insensitive to potentiation by ethanol yet retained normal GABA sensitivity in a recombinant expression system. Knockin mice containing this mutant subunit were tested in a range of ethanol behavioral tests. These mutant mice did not develop the typical conditioned taste aversion in response to ethanol and showed complete loss of the motor stimulant effects of ethanol. Conversely, they also demonstrated changes in ethanol intake and preference in multiple tests. The knockin mice showed increased ethanol-induced hypnosis but no difference in anxiolytic effects or recovery from acute ethanol-induced motor incoordination. Overall, these studies demonstrate that the effects of ethanol at GABAergic synapses containing the α2 subunit are important for specific behavioral effects of ethanol that may be relevant to the genetic linkage of this subunit with human alcoholism. PMID:20876231

  7. Dependence-induced ethanol drinking and GABA neurotransmission are altered in Alk deficient mice

    PubMed Central

    Schweitzer, Paul; Cates-Gatto, Chelsea; Varodayan, Florence P.; Nadav, Tali; Roberto, Marisa; Lasek, Amy W.; Roberts, Amanda J.

    2016-01-01

    Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase that is expressed in the brain and implicated in alcohol abuse in humans and behavioral responses to ethanol in mice. Previous studies have shown an association of human ALK with acute responses to alcohol and alcohol dependence. In addition, Alk knockout (Alk −/−) mice consume more ethanol in a binge-drinking test and show increased sensitivity to ethanol sedation. However, the function of ALK in excessive drinking following the establishment of ethanol dependence has not been examined. In this study, we tested Alk −/− mice for dependence-induced drinking using the chronic intermittent ethanol-two bottle choice drinking (CIE-2BC) protocol. We found that Alk −/− mice initially consume more ethanol prior to CIE exposure, but do not escalate ethanol consumption after exposure, suggesting that ALK may promote the escalation of drinking after ethanol dependence. To determine the mechanism(s) responsible for this behavioral phenotype we used an electrophysiological approach to examine GABA neurotransmission in the central nucleus of the amygdala (CeA), a brain region that regulates alcohol consumption and shows increased GABA signaling after chronic ethanol exposure. GABA transmission in ethanol-naïve Alk −/− mice was enhanced at baseline and potentiated in response to acute ethanol application when compared to wild-type (Alk +/+) mice. Moreover, basal GABA transmission was not elevated by CIE exposure in Alk −/− mice as it was in Alk +/+ mice. These data suggest that ALK plays a role in dependence-induced drinking and the regulation of presynaptic GABA release in the CeA. PMID:26946429

  8. Gastroprotective effect of Cymbopogon citratus infusion on acute ethanol-induced gastric lesions in rats.

    PubMed

    Sagradas, Joana; Costa, Gustavo; Figueirinha, Artur; Castel-Branco, Maria Margarida; Silvério Cabrita, António Manuel; Figueiredo, Isabel Vitória; Batista, Maria Teresa

    2015-09-15

    Treatment of gastric ulcers with medicinal plants is quite common in traditional medicine worldwide. Cymbopogon citratus (DC) Stapf. leaves infusion has been used in folk medicine of many tropical and subtropical regions to treat gastric disturbances. The aim of this study was to assess the potential gastroprotective activity of an essential oil-free infusion from C. citratus leaves in acute gastric lesions induced by ethanol in rat. The study was performed on adult male Wistar rats (234.0±22.7g) fasted for 24h but with free access to water. The extract was given orally before (prevention) or after (treatment) intragastric administration of absolute ethanol. Effects of dose (28 or 56mg/kg of body weight) and time of contact of the extract with gastric mucosa (1 or 2h) were also assessed. Animals were sacrificed, being the stomachs removed and the lesions were assessed by macroscopic observation and histopathology. C. citratus extract, given orally before or after ethanol, significantly (P<0.01) reduced gastric mucosal injury compared with control group (vehicle+ethanol). The effect does not appear to be dose-dependent. Results also suggested that the extract is more effective when the time of contact with gastric mucosa increases. The results of this assay confirm the gastroprotective activity of C. citratus extract on experimental gastric lesions induced by ethanol, contributing for the pharmacological validation of its traditional use. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. ARGININOSUCCINATE SYNTHASE CONDITIONS THE RESPONSE TO ACUTE AND CHRONIC ETHANOL-INDUCED LIVER INJURY IN MICE

    PubMed Central

    Yan, Wei; Morón-Concepción, Jose A.; Ward, Stephen C.; Ge, Xiaodong; de la Rosa, Laura Conde; Nieto, Natalia

    2012-01-01

    Background and Aim Argininosuccinate synthase (ASS) is the rate-limiting enzyme in both the urea and the l-citrulline/nitric oxide (NO·) cycles regulating protein catabolism, ammonia levels and NO· generation (1-2). Since a proteomics analysis identified ASS and nitric oxide synthase-2 (NOS2) as co-induced in rat hepatocytes by chronic ethanol consumption, which also occurred in alcoholic liver disease (ALD) and in cirrhotic patients, we hypothesized that ASS could play a role in ethanol binge and chronic ethanol-induced liver damage. Methods To investigate the contribution of ASS to the pathophysiology of ALD, wild-type (WT) and Ass+/− mice (Ass−/− are lethal due to hyperammonemia) were exposed to an ethanol binge or to chronic ethanol drinking. Results Compared with WT, Ass+/− mice given an ethanol binge exhibited decreased steatosis, lower NOS2 induction and less 3-nitrotyrosine (3-NT) protein residues, indicating that reducing nitrosative stress via the l-citrulline/NO· pathway plays a significant role in preventing liver damage. However, chronic ethanol treated Ass+/− mice displayed enhanced liver injury compared with WT mice. This was due to hyperammonemia, lower phosphorylated AMP-activated protein kinase (pAMPKα) to total AMPKα ratio, decreased sirtuin (Sirt-1) and peroxisomal proliferator-activated receptor coactivator-1α (Pgc1α) mRNAs, lower fatty acid β-oxidation due to down-regulation of carnitine palmitoyl transferase-II (CPT-II), decreased antioxidant defense and elevated lipid peroxidation end-products in spite of comparable nitrosative stress but likely reduced NOS3. Conclusion Partial Ass ablation protects only in acute ethanol-induced liver injury by decreasing nitrosative stress but not in a more chronic scenario where oxidative stress and impaired fatty acid β-oxidation are key events. PMID:22213272

  10. Argininosuccinate synthase conditions the response to acute and chronic ethanol-induced liver injury in mice.

    PubMed

    Leung, Tung Ming; Lu, Yongke; Yan, Wei; Morón-Concepción, Jose A; Ward, Stephen C; Ge, Xiaodong; Conde de la Rosa, Laura; Nieto, Natalia

    2012-05-01

    Argininosuccinate synthase (ASS) is the rate-limiting enzyme in both the urea and the L-citrulline/nitric oxide (NO·) cycles regulating protein catabolism, ammonia levels, and NO· generation. Because a proteomics analysis identified ASS and nitric oxide synthase-2 (NOS2) as coinduced in rat hepatocytes by chronic ethanol consumption, which also occurred in alcoholic liver disease (ALD) and in cirrhosis patients, we hypothesized that ASS could play a role in ethanol binge and chronic ethanol-induced liver damage. To investigate the contribution of ASS to the pathophysiology of ALD, wildtype (WT) and Ass(+/-) mice (Ass(-/-) are lethal due to hyperammonemia) were exposed to an ethanol binge or to chronic ethanol drinking. Compared with WT, Ass(+/-) mice given an ethanol binge exhibited decreased steatosis, lower NOS2 induction, and less 3-nitrotyrosine (3-NT) protein residues, indicating that reducing nitrosative stress by way of the L-citrulline/NO· pathway plays a significant role in preventing liver damage. However, chronic ethanol-treated Ass(+/-) mice displayed enhanced liver injury compared with WT mice. This was due to hyperammonemia, lower phosphorylated AMP-activated protein kinase alpha (pAMPKα) to total AMPKα ratio, decreased sirtuin-1 (Sirt-1) and peroxisomal proliferator-activated receptor coactivator-1α (Pgc1α) messenger RNAs (mRNAs), lower fatty acid β-oxidation due to down-regulation of carnitine palmitoyl transferase-II (CPT-II), decreased antioxidant defense, and elevated lipid peroxidation end-products in spite of comparable nitrosative stress but likely reduced NOS3. Partial Ass ablation protects only in acute ethanol-induced liver injury by decreasing nitrosative stress but not in a more chronic scenario where oxidative stress and impaired fatty acid β-oxidation are key events. Copyright © 2011 American Association for the Study of Liver Diseases.

  11. Neuromotor effects of acute ethanol inhalation exposure in humans: a preliminary study.

    PubMed

    Nadeau, Véronique; Lamoureux, Daniel; Beuter, Anne; Charbonneau, Michel; Tardif, Robert

    2003-07-01

    Ethanol (ETOH) is added to unleaded gasoline to decrease environmental levels of carbon monoxide from automobiles emissions. Therefore, addition of ETOH in reformulated fuel will most likely increase and the involuntarily human exposure to this chemical will also increase. This preliminary study was undertaken to evaluate the possible neuromotor effects resulting from acute ETOH exposure by inhalation in humans. Five healthy non-smoking adult males, with no history of alcohol abuse, were exposed by inhalation, in a dynamic, controlled-environment exposure chamber, to various concentrations of ETOH (0, 250, 500 and 1,000 ppm in air) for six hours. Reaction time, body sway, hand tremor and rapid alternating movements were measured before and after each exposure session by using the CATSYS 7.0 system and a diadochokinesimeter. The concentrations of ETOH in blood and in alveolar air were also measured. ETOH was not detected in blood nor in alveolar air when volunteers were exposed to 250 and 500 ppm, but at the end of exposure to 1,000 ppm, blood and alveolar air concentrations were 0.443 mg/100ml and 253.1 ppm, respectively. The neuromotor tests did not show conclusively significant differences between the exposed and non-exposed conditions. In conclusion, this study suggests that acute exposure to ethanol at 1,000 ppm or lower or to concentrations that could be encountered upon refueling is not likely to cause any significant neuromotor alterations in healthy males.

  12. Acute prenatal exposure to ethanol on gestational day 12 elicits opposing deficits in social behaviors and anxiety-like behaviors in Sprague Dawley rats

    PubMed Central

    Diaz, Marvin R.; Mooney, Sandra M.; Varlinskaya, Elena I.

    2016-01-01

    Our previous research has shown that in Long Evans rats acute prenatal exposure to a high dose of ethanol on gestational day (G) 12 produces social deficits in male offspring and elicits substantial decreases in social preference relative to controls, in late adolescents and adults regardless of sex. In order to generalize the observed detrimental effects of ethanol exposure on G12, pregnant female Sprague Dawley rats were exposed to ethanol or saline and their offspring were assessed in a modified social interaction (SI) test as early adolescents, late adolescents, or young adults. Anxiety-like behavior was also assessed in adults using the elevated plus maze (EPM) or the light/dark box (LDB) test. Age- and sex-dependent social alterations were evident in ethanol-exposed animals. Ethanol-exposed males showed deficits in social investigation at all ages and age-dependent alterations in social preference. Play fighting was not affected in males. In contrast, ethanol-exposed early adolescent females showed no changes in social interactions, whereas older females demonstrated social deficits and social indifference. In adulthood, anxiety-like behavior was decreased in males and females prenatally exposed to ethanol in the EPM, but not the LDB. These findings suggest that social alterations associated with acute exposure to ethanol on G12 are not strain-specific, although they are more pronounced in Long Evans males and Sprague Dawley females. Furthermore, given that anxiety-like behaviors were attenuated in a test-specific manner, this study indicates that early ethanol exposure can have differential effects on different forms of anxiety. PMID:27154534

  13. Contrasting influences of Drosophila white/mini-white on ethanol sensitivity in two different behavioral assays.

    PubMed

    Chan, Robin F; Lewellyn, Lara; DeLoyht, Jacqueline M; Sennett, Kristyn; Coffman, Scarlett; Hewitt, Matthew; Bettinger, Jill C; Warrick, John M; Grotewiel, Mike

    2014-06-01

    The fruit fly Drosophila melanogaster has been used extensively to investigate genetic mechanisms of ethanol (EtOH)-related behaviors. Many past studies in flies, including studies from our laboratory, have manipulated gene expression using transposons carrying the genetic-phenotypic marker mini-white(mini-w), a derivative of the endogenous gene white(w). Whether the mini-w transgenic marker or the endogenous w gene influences behavioral responses to acute EtOH exposure in flies has not been systematically investigated. We manipulated mini-w and w expression via (i) transposons marked with mini-w, (ii) RNAi against mini-w and w, and (iii) a null allele of w. We assessed EtOH sensitivity and tolerance using a previously described eRING assay (based on climbing in the presence of EtOH) and an assay based on EtOH-induced sedation. In eRING assays, EtOH-induced impairment of climbing correlated inversely with expression of the mini-w marker from a series of transposon insertions. Additionally, flies harboring a null allele of w or flies with RNAi-mediated knockdown of mini-w were significantly more sensitive to EtOH in eRING assays than controls expressing endogenous w or the mini-w marker. In contrast, EtOH sensitivity and rapid tolerance measured in the EtOH sedation assay were not affected by decreased expression of mini-w or endogenous w in flies. EtOH sensitivity measured in the eRING assay is noticeably influenced by w and mini-w, making eRING problematic for studies on EtOH-related behavior in Drosophila using transgenes marked with mini-w. In contrast, the EtOH sensitivity assay described here is a suitable behavioral paradigm for studies on EtOH sensitivity and rapid tolerance in Drosophila including those that use widely available transgenes marked with mini-w. Copyright © 2014 by the Research Society on Alcoholism.

  14. The Metabotropic Glutamate Receptor Subtype 5 (mGluR5) Mediates Sensitivity to the Sedative Properties of Ethanol

    PubMed Central

    Downing, Chris; Marks, Michael J.; Larson, Colin; Johnson, Thomas E.

    2010-01-01

    Objective Inbred Long-Sleep and Short-Sleep mice (ILS and ISS) were selectively bred for differential sensitivity to the sedative effects of ethanol. Lines of mice derived from these progenitors have been used to identify several Quantitative Trait Loci (QTLs) mediating Loss Of the Righting reflex due to Ethanol (LORE). The present study investigated mGluR5 as a candidate gene underlying Lore7, a QTL mediating differential LORE sensitivity. Methods We used knockout mice, a quantitative complementation test, pharmacological antagonism of mGluR5, real-time quantitative PCR, radioligand binding, DNA sequencing and bioinformatics to examine the role of mGluR5 in ethanol-induced sedation. Results mGluR5 knockout mice had a significantly longer LORE duration than wild-type controls. Administration of the mGluR5 antagonist 2-methyl-6-(phenylethyl)-pyridine (MPEP) had differential effects on LORE in ILS and ISS mice. A quantitative complementation test also supported mGluR5 mediating LORE. Two intronic single-nucleotide polymorphisms in mGluR5 were highly correlated with LORE in recombinant inbred mice derived from a cross between ILS and ISS (LXS RIs). Differences in mGluR5 mRNA level and receptor density were observed between ILS and ISS in distinct brain regions. Finally, data from WebQTL showed that mGluR5 expression was highly correlated with several LORE phenotypes in the LXS RIs. Conclusions Taken together, this data provides convincing evidence that mGluR5 mediates differential sensitivity to the sedative effects of ethanol. Studies from the human literature have also identified MGLUR5 as a potential candidate gene for ethanol sensitivity. PMID:20657349

  15. Ethanol Sensitivity of Cu1-xSnxO (x = 0.00, 0.03, and 0.05) Nanoflakes

    NASA Astrophysics Data System (ADS)

    Mariammal, R. N.; Ramachandran, K.

    2011-07-01

    Cu1-xSnxO (x = 0.00, 0.03, and 0.05) nanoflakes were synthesized by a simple wet chemical method and X-Ray diffraction (XRD) result confirms the monoclinic structure of CuO with no secondary phases due to Sn doping. The scanning electron microscopic images indicate the formation of nanoflakes. The fundamental Raman modes were observed at 273, 318, 610, and 1084 cm-1 for undoped CuO sample and theses modes were slightly shifted towards lower frequency side for Sn-doped samples, which indicates the inclusion of Sn in CuO. In addition, XRD and Raman studies infer the decrease of crystallinity in doped samples, which is reflected in the sensitivity towards ethanol. The ethanol sensitivity (resistivity measurement) increases with ethanol gas concentration and decreases with Sn-doping in CuO nanoflakes.

  16. The allostatic impact of chronic ethanol on gene expression: A genetic analysis of chronic intermittent ethanol treatment in the BXD cohort

    PubMed Central

    van der Vaart, Andrew D.; Wolstenholme, Jennifer T.; Smith, Maren L.; Harris, Guy M.; Lopez, Marcelo F.; Wolen, Aaron R.; Becker, Howard C.; Williams, Robert W.; Miles, Michael F.

    2016-01-01

    The transition from acute to chronic ethanol exposure leads to lasting behavioral and physiological changes such as increased consumption, dependence, and withdrawal. Changes in brain gene expression are hypothesized to underlie these adaptive responses to ethanol. Previous studies on acute ethanol identified genetic variation in brain gene expression networks and behavioral responses to ethanol across the BXD panel of recombinant inbred mice. In this work, we have performed the first joint genetic and genomic analysis of transcriptome shifts in response to chronic intermittent ethanol (CIE) by vapor chamber exposure in a BXD cohort. CIE treatment is known to produce significant and sustained changes in ethanol consumption with repeated cycles of ethanol vapor. Using Affymetrix microarray analysis of prefrontal cortex (PFC) and nucleus accumbens (NAC) RNA, we compared CIE expression responses to those seen following acute ethanol treatment, and to voluntary ethanol consumption. Gene expression changes in PFC and NAC after CIE overlapped significantly across brain regions and with previously published expression following acute ethanol. Genes highly modulated by CIE were enriched for specific biological processes including synaptic transmission, neuron ensheathment, intracellular signaling, and neuronal projection development. Expression quantitative trait locus (eQTL) analyses identified genomic loci associated with ethanol-induced transcriptional changes with largely distinct loci identified between brain regions. Correlating CIE-regulated genes to ethanol consumption data identified specific genes highly associated with variation in the increase in drinking seen with repeated cycles of CIE. In particular, multiple myelin-related genes were identified. Furthermore, genetic variance in or near dynamin3 (Dnm3) on Chr1 at ~164 Mb may have a major regulatory role in CIE-responsive gene expression. Dnm3 expression correlates significantly with ethanol consumption, is

  17. Microarray characterization of gene expression changes in blood during acute ethanol exposure

    PubMed Central

    2013-01-01

    and hepatic function. Five of the seven clusters showed links to the p38 MAPK pathway. Conclusions The results of this study provide a first look at changing gene expression patterns in human blood during an acute rise in blood ethanol concentration and its depletion because of metabolism and excretion, and demonstrate that it is possible to detect changes in gene expression using total RNA isolated from whole blood. The analysis approach for this study serves as a workflow to investigate the biology linked to expression changes across a time course and from these changes, to identify target genes that could serve as biomarkers linked to pilot performance. PMID:23883607

  18. Differential sensitivity of ethanol-elicited ERK phosphorylation in nucleus accumbens of Sardinian alcohol-preferring and -non preferring rats.

    PubMed

    Rosas, Michela; Zaru, Alessandro; Sabariego, Marta; Giugliano, Valentina; Carboni, Ezio; Colombo, Giancarlo; Acquas, Elio

    2014-08-01

    Sardinian alcohol-preferring (sP) and -non preferring (sNP) rats have been selectively bred for opposite ethanol preference and consumption; sP rats represent a validated experimental tool to model several aspects of excessive ethanol drinking in humans. Phosphorylated Extracellular signal-Regulated Kinase (pERK) in dopamine-rich terminal areas plays a critical role in several psychopharmacological effects of addictive drugs, including ethanol. This study was aimed at investigating whether ethanol-elicited ERK activation may differ in key brain areas of ethanol-naïve sP and sNP rats. To this end, the effects of ethanol (0, 0.5, 1, and 2 g/kg, administered intra-gastrically [i.g.]) on ERK phosphorylation were assessed by pERK immunohistochemistry in the shell (AcbSh) and core (AcbC) of the nucleus accumbens (Acb) as well as in the prelimbic (PrL) and infralimbic (IL) prefrontal cortex (PFCx), in the bed nucleus of stria terminalis (BSTL) and in the central nucleus of the amygdala (CeA). Ethanol (1 g/kg) significantly increased pERK immunoreactivity in AcbSh and AcbC of sP but not sNP rats. Conversely, ethanol failed to affect pERK expression in PrL and IL PFCx as well as in BSTL and CeA of both sP and sNP rats. These results suggest that selective breeding of these rat lines results in differential effects of acute ethanol on ERK phosphorylation in brain regions critical for the psychopharmacological effects of ethanol. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Intoxication- and withdrawal-dependent expression of central and peripheral cytokines following initial ethanol exposure

    PubMed Central

    Doremus-Fitzwater, Tamara L.; Buck, Hollin M.; Bordner, Kelly A.; Richey, Laura; Jones, Megan E.; Deak, Terrence

    2016-01-01

    Background Evidence has emerged demonstrating that ethanol influences cytokine expression within the CNS, although most studies have examined long-term exposure. Thus, the cytokine response to an acute ethanol challenge was investigated, in order to characterize profiles of cytokine changes following acute exposure. Methods Rats pups were injected intraperitoneally (i.p.) with 2-g/kg ethanol and IL-1 mRNA and protein assessed 0, 60, 120, 180, and 240 min post-injection (Exp. 1). In Exps. 2-5, the expression of several cytokines was examined in adult male rats during acute intoxication (3 hr after 4-g/kg ethanol), as well as withdrawal (18 hr post-injection), after i.p. and intragastric (i.g.) ethanol administration. Results Early in ontogeny, acute ethanol significantly decreased brain IL-1 mRNA and protein. Subsequently, when adult rats were examined, significant and temporally dynamic alterations in central and peripheral cytokines were observed following acute i.p. ethanol exposure (4-g/kg). Although cytokine- and region-dependent, central IL-6 expression was generally increased and TNFα decreased during intoxication, whereas IL-1 expression exhibited increases during withdrawal. In the periphery, acute i.p. ethanol elevated expression of all cytokines, with the response growing in magnitude as the time post-injection increased. Following acute i.g. ethanol (4-g/kg), intoxication-related increases in IL-6 expression were again observed in the PVN, although to a lesser extent. Long-term, voluntary, intermittent ethanol consumption resulted in tolerance to the effects of an i.g. ethanol challenge (4-g/kg) on PVN IL-6 expression, whereas these same elevations in IL-6 expression were still seen in the amygdala in rats with a history of moderate ethanol intake. Treatment with minocycline did not significantly attenuate i.p. or i.g. ethanol-induced changes in central cytokine expression. Conclusions Together, these studies provide a foundation for understanding

  20. The effect of prolonged ethanol administration on central alpha 2-adrenoceptors sensitivity.

    PubMed

    Szmigielski, A; Szmigielska, H; Wejman, I

    1989-01-01

    The response of an endogenous inhibitor of protein kinases (type II inhibitor) to clonidine was used as an index of sensitivity of central alpha 2-adrenoceptors. Low doses of clonidine (20-50 micrograms/kg) induced an increase in type II inhibitor activity in the nucleus accumbens, hippocampus and in the anterior and posterior hypothalamus by stimulating presynaptic alpha 2-adrenoceptors. Stimulation of postsynaptic alpha 2-adrenoceptors by high doses of clonidine 0.5-1.0 mg/kg resulted in a dose-dependent decrease in type II inhibitor activity. Prolonged treatment with ethanol (5 g/kg/day po for 21 days) greatly reduced the action of high doses of clonidine in all the examined brain areas, suggesting subsensitivity of postsynaptic alpha 2-adrenoceptors lasting for at least 48 h after the last ethanol administration. A single dose of ethanol induced a short lasting subsensitivity of postsynaptic alpha 2-adrenoceptors in the anterior hypothalamus. 12 h after administration of alcohol the response of type II inhibitor to high doses of clonidine in this brain area was the same as in untreated rats.

  1. Acute prenatal exposure to ethanol on gestational day 12 elicits opposing deficits in social behaviors and anxiety-like behaviors in Sprague Dawley rats.

    PubMed

    Diaz, Marvin R; Mooney, Sandra M; Varlinskaya, Elena I

    2016-09-01

    Our previous research has shown that in Long Evans rats acute prenatal exposure to a high dose of ethanol on gestational day (G) 12 produces social deficits in male offspring and elicits substantial decreases in social preference relative to controls, in late adolescents and adults regardless of sex. In order to generalize the observed detrimental effects of ethanol exposure on G12, pregnant female Sprague Dawley rats were exposed to ethanol or saline and their offspring were assessed in a modified social interaction (SI) test as early adolescents, late adolescents, or young adults. Anxiety-like behavior was also assessed in adults using the elevated plus maze (EPM) or the light/dark box (LDB) test. Age- and sex-dependent social alterations were evident in ethanol-exposed animals. Ethanol-exposed males showed deficits in social investigation at all ages and age-dependent alterations in social preference. Play fighting was not affected in males. In contrast, ethanol-exposed early adolescent females showed no changes in social interactions, whereas older females demonstrated social deficits and social indifference. In adulthood, anxiety-like behavior was decreased in males and females prenatally exposed to ethanol in the EPM, but not the LDB. These findings suggest that social alterations associated with acute exposure to ethanol on G12 are not strain-specific, although they are more pronounced in Long Evans males and Sprague Dawley females. Furthermore, given that anxiety-like behaviors were attenuated in a test-specific manner, this study indicates that early ethanol exposure can have differential effects on different forms of anxiety. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Cholinesterase inhibitors, donepezil and rivastigmine, attenuate spatial memory and cognitive flexibility impairment induced by acute ethanol in the Barnes maze task in rats.

    PubMed

    Gawel, Kinga; Labuz, Krzysztof; Gibula-Bruzda, Ewa; Jenda, Malgorzata; Marszalek-Grabska, Marta; Filarowska, Joanna; Silberring, Jerzy; Kotlinska, Jolanta H

    2016-10-01

    Central cholinergic dysfunction contributes to acute spatial memory deficits produced by ethanol administration. Donepezil and rivastigmine elevate acetylcholine levels in the synaptic cleft through the inhibition of cholinesterases-enzymes involved in acetylcholine degradation. The aim of our study was to reveal whether donepezil (acetylcholinesterase inhibitor) and rivastigmine (also butyrylcholinesterase inhibitor) attenuate spatial memory impairment as induced by acute ethanol administration in the Barnes maze task (primary latency and number of errors in finding the escape box) in rats. Additionally, we compared the influence of these drugs on ethanol-disturbed memory. In the first experiment, the dose of ethanol (1.75 g/kg, i.p.) was selected that impaired spatial memory, but did not induce motor impairment. Next, we studied the influence of donepezil (1 and 3 mg/kg, i.p.), as well as rivastigmine (0.5 and 1 mg/kg, i.p.), given either before the probe trial or the reversal learning on ethanol-induced memory impairment. Our study demonstrated that these drugs, when given before the probe trial, were equally effective in attenuating ethanol-induced impairment in both test situations, whereas rivastigmine, at both doses (0.5 and 1 mg/kg, i.p.), and donepezil only at a higher dose (3 mg/kg, i.p.) given prior the reversal learning, attenuated the ethanol-induced impairment in cognitive flexibility. Thus, rivastigmine appears to exert more beneficial effect than donepezil in reversing ethanol-induced cognitive impairments-probably due to its wider spectrum of activity. In conclusion, the ethanol-induced spatial memory impairment may be attenuated by pharmacological manipulation of central cholinergic neurotransmission.

  3. Sir2/Sirt1 Links Acute Inebriation to Presynaptic Changes and the Development of Alcohol Tolerance, Preference, and Reward.

    PubMed

    Engel, Gregory L; Marella, Sunanda; Kaun, Karla R; Wu, Julia; Adhikari, Pratik; Kong, Eric C; Wolf, Fred W

    2016-05-11

    Acute ethanol inebriation causes neuroadaptive changes in behavior that favor increased intake. Ethanol-induced alterations in gene expression, through epigenetic and other means, are likely to change cellular and neural circuit function. Ethanol markedly changes histone acetylation, and the sirtuin Sir2/SIRT1 that deacetylates histones and transcription factors is essential for the rewarding effects of long-term drug use. The molecular transformations leading from short-term to long-term ethanol responses mostly remain to be discovered. We find that Sir2 in the mushroom bodies of the fruit fly Drosophila promotes short-term ethanol-induced behavioral plasticity by allowing changes in the expression of presynaptic molecules. Acute inebriation strongly reduces Sir2 levels and increases histone H3 acetylation in the brain. Flies lacking Sir2 globally, in the adult nervous system, or specifically in the mushroom body α/β-lobes show reduced ethanol sensitivity and tolerance. Sir2-dependent ethanol reward is also localized to the mushroom bodies, and Sir2 mutants prefer ethanol even without a priming ethanol pre-exposure. Transcriptomic analysis reveals that specific presynaptic molecules, including the synaptic vesicle pool regulator Synapsin, depend on Sir2 to be regulated by ethanol. Synapsin is required for ethanol sensitivity and tolerance. We propose that the regulation of Sir2/SIRT1 by acute inebriation forms part of a transcriptional program in mushroom body neurons to alter presynaptic properties and neural responses to favor the development of ethanol tolerance, preference, and reward. We identify a mechanism by which acute ethanol inebriation leads to changes in nervous system function that may be an important basis for increasing ethanol intake and addiction liability. The findings are significant because they identify ethanol-driven transcriptional events that target presynaptic properties and direct behavioral plasticity. They also demonstrate that

  4. An overview of exposure to ethanol-containing substances and ethanol intoxication in children based on three illustrated cases.

    PubMed

    Hon, Kam Lun; Leung, Alexander Kc; Cheung, Eddie; Lee, Bryan; Tsang, Michelle Mc; Torres, Alcy R

    2018-01-01

    Alcohol addiction and intoxication are major health problems worldwide. Acute alcohol intoxication is well reported in adults and adolescents but less frequently reported in children of younger ages. We report three anonymized cases of pediatric ethanol exposure and illustrate the different mechanisms of intoxication. In all cases, a focused history is the key to prompt diagnosis and timely management. Physicians should be aware of this potential poison in children presented with acute confusional or encephalopathic state. In contrast, neonates with ethanol intoxication may present with nonspecific gastrointestinal symptomatology. Urgent exclusion of sepsis, electrolyte imbalance, drug intoxication, and surgical abdominal condition is critical. Using these illustrated cases, we performed a narrative literature review on issues of exposure to ethanol-containing substances and ethanol intoxication in children. In conclusion, a high level of suspicion and interrogation on ethanol or substance use are essential particularly in the lactating mother for an accurate and timely diagnosis of ethanol intoxication to be made.

  5. An overview of exposure to ethanol-containing substances and ethanol intoxication in children based on three illustrated cases

    PubMed Central

    Hon, Kam Lun; Leung, Alexander KC; Cheung, Eddie; Lee, Bryan; Tsang, Michelle MC; Torres, Alcy R

    2018-01-01

    Alcohol addiction and intoxication are major health problems worldwide. Acute alcohol intoxication is well reported in adults and adolescents but less frequently reported in children of younger ages. We report three anonymized cases of pediatric ethanol exposure and illustrate the different mechanisms of intoxication. In all cases, a focused history is the key to prompt diagnosis and timely management. Physicians should be aware of this potential poison in children presented with acute confusional or encephalopathic state. In contrast, neonates with ethanol intoxication may present with nonspecific gastrointestinal symptomatology. Urgent exclusion of sepsis, electrolyte imbalance, drug intoxication, and surgical abdominal condition is critical. Using these illustrated cases, we performed a narrative literature review on issues of exposure to ethanol-containing substances and ethanol intoxication in children. In conclusion, a high level of suspicion and interrogation on ethanol or substance use are essential particularly in the lactating mother for an accurate and timely diagnosis of ethanol intoxication to be made. PMID:29344053

  6. Evaluation of acute toxicity, genotoxicity and inhibitory effect on acute inflammation of an ethanol extract of Morus alba L. (Moraceae) in mice.

    PubMed

    Oliveira, Alisson Macário de; Nascimento, Matheus Ferreira do; Ferreira, Magda Rhayanny Assunção; Moura, Danielle Feijó de; Souza, Talita Giselly Dos Santos; Silva, Gabriela Cavalcante da; Ramos, Eduardo Henrique da Silva; Paiva, Patrícia Maria Guedes; Medeiros, Paloma Lys de; Silva, Teresinha Gonçalves da; Soares, Luiz Alberto Lira; Chagas, Cristiano Aparecido; Souza, Ivone Antônia de; Napoleão, Thiago Henrique

    2016-12-24

    Morus alba L. (white mulberry) is used in traditional medicine worldwide, including Brazil. The leaves of this plant are used to treat inflammatory disorders. Universal interest in this plant necessitates studies on the toxicological safety and scientific substantiation of the medicinal properties of M. alba. In previous work, we investigated the acute toxicity of orally administered M. alba ethanol extract in mice. This work was designed to investigate the ethanol extract obtained from M. alba leaves for acute toxicity when intraperitoneally administered, in vivo genotoxicity, and potential to reduce acute inflammation. In order to further investigate the constituents of the extract, we also obtained the high-performance liquid chromatography (HPLC) fingerprint of the extract. Phytochemical analysis by thin layer chromatography (TLC) was performed and the results were used to obtain the HPLC fingerprint. Acute toxicity of 300 and 2000mg/kg b.w. i.p. doses administered to mice for 14 days was evaluated. Genotoxicity was evaluated by counting the number of micronucleated polychromatic erythrocytes in the blood of mice that either received or did not receive the extract at 75, 150 and 300mg/kg b.w. per os. The anti-inflammatory effect of the same doses administered per os was investigated using the carrageenan air pouch model. The TLC analysis of the extract revealed the presence of a remarkable amount of flavonoids and cinnamic acids. The HPLC fingerprint showed the presence of one major peak corresponding to chlorogenic acid and two smaller peaks corresponding to flavonoids. In the toxicity assays, there were no deaths or deviations in behavior of treated mice as compared to the control at any dose. However, biochemical, hematological, and histological analyses showed that intraperitoneal injection caused several forms of damage to the mice, which were not observed in case of oral administration, studied in our previous work. Oral administration of the extract did

  7. A highly sensitive ethanol sensor based on mesoporous ZnO-SnO2 nanofibers.

    PubMed

    Song, Xiaofeng; Wang, Zhaojie; Liu, Yongben; Wang, Ce; Li, Lijuan

    2009-02-18

    A facile and versatile method for the large-scale synthesis of sensitive mesoporous ZnO-SnO(2) (m-Z-S) nanofibers through a combination of surfactant-directed assembly and an electrospinning approach is reported. The morphology and the structure were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), x-ray diffraction (XRD), and nitrogen adsorption-desorption isotherm analysis. The results showed that the diameters of fibers ranged from 100 to 150 nm with mixed structures of wurtzite (ZnO) and rutile (SnO(2)), and a mesoporous structure was observed in the m-Z-S nanofibers. The sensor performance of the prepared m-Z-S nanofibers was measured for ethanol. It is found that the mesoporous fiber film obtained exhibited excellent ethanol sensing properties, such as high sensitivity, quick response and recovery, good reproducibility, and linearity in the range 3-500 ppm.

  8. The anesthetic action of ethanol analyzed by genetics in Caenorhabditis elegans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Mingi; Choi, Myung Kyu; Lee, Junho

    2008-02-29

    Acute exposure to ethanol causes paralysis at high concentrations in the nematode Caenorhabditis elegans. We set out to elucidate the mechanism of the anesthetic action of ethanol by genetic approaches. We identified nine mutations that conferred reduced sensitivity to ethanol after chemical, irradiation, or transposon insertion mutagenesis. Of these nine, we further characterized five mutations that defined four genes, jud-1-jud-4. Analysis of the phenotypes of the animals heterozygous for two unlinked genes revealed that jud-1 and jud-3 act synergistically in a gene dose-dependent manner. We cloned jud-4 and found that it encodes a protein with limited homology to human Homermore » proteins. jud-4 was expressed in the hypodermis and vulva muscles, suggesting that this gene acts in tissues directly exposed to the external environment. Characterization of the other mutations identified in this study will facilitate the elucidation of the molecular mechanism for the anesthetic action of ethanol.« less

  9. Protective Effect of Camellia Oil (Camellia oleifera Abel.) against Ethanol-Induced Acute Oxidative Injury of the Gastric Mucosa in Mice.

    PubMed

    Tu, Pang-Shuo; Tung, Yu-Tang; Lee, Wei-Ting; Yen, Gow-Chin

    2017-06-21

    Camellia oil, a common edible oil in Taiwan and China, has health effects for the gastrointestinal tract in folk medicine, and it contains abundant unsaturated fatty acids and phytochemicals. However, the preventive effect of camellia oil on ethanol-induced gastric ulcers remains unclear. This study was aimed to evaluate the preventive effect of camellia oil on ethanol-induced gastric injury in vitro and in vivo as well as its mechanisms of action. In an in vitro study, our results showed that pretreatment of RGM-1 cells with camellia oil enhanced the migration ability as well as increased heat shock protein expression and reduced apoptotic protein expression. In animal experiments, mice pretreated with camellia oil effectively showed improved ethanol-induced acute injury of the gastric muscosa and oxidative damage through the enhancement of antioxidant enzyme activities and heat shock protein and PGE 2 production, as well as the suppression of lipid peroxidation, apoptosis-related proteins, pro-inflammatory cytokines, and NO production. Histological injury score and hemorrhage score in ethanol-induced gastric mucosal damage dramatically elevated from the control group (0.00 ± 0.0) to 3.40 ± 0.7 and 2.60 ± 0.5, respectively. However, treatments with camellia oil or olive oil (2 mL/kg bw) and lansoprazole (30 mg/kg bw) showed significant decreases in elevation of injury score and hemorrhage score (p < 0.05). Therefore, camellia oil has the potential to ameliorate ethanol-induced acute gastric mucosal injury through the inhibition of inflammation and oxidative stress.

  10. Deletion of vanilloid receptor (TRPV1) in mice alters behavioral effects of ethanol

    PubMed Central

    Blednov, Y.A.; Harris, R.A.

    2009-01-01

    The vanilloid receptor TRPV1 is activated by ethanol and this may be important for some of the central and peripheral actions of ethanol. To determine if this receptor has a role in ethanol-mediated behaviors, we studied null mutant mice in which the Trpv1 gene was deleted. Mice lacking this gene showed significantly higher preference for ethanol and consumed more ethanol in a two-bottle choice test as compared with wild type littermates. Null mutant mice showed shorter duration of loss of righting reflex induced by low doses of ethanol (3.2 and 3.4 g/kg) and faster recovery from motor incoordination induced by ethanol (2 g/kg). However, there were no differences between null mutant and wild type mice in severity of ethanol-induced acute withdrawal (4 g/kg) or conditioned taste aversion to ethanol (2.5 g/kg). Two behavioral phenotypes (decreased sensitivity to ethanol-induced sedation and faster recovery from ethanol-induced motor incoordination) seen in null mutant mice were reproduced in wild type mice by injection of a TRPV1 antagonist, capsazepine (10 mg/kg). These two ethanol behaviors were changed in the opposite direction after injection of capsaicin, a selective TRPV1 agonist, in wild type mice. The studies provide the first evidence that TRPV1 is important for specific behavioral actions of ethanol. PMID:19705551

  11. Ethanol-Induced Neurodegeneration and Glial Activation in the Developing Brain.

    PubMed

    Saito, Mariko; Chakraborty, Goutam; Hui, Maria; Masiello, Kurt; Saito, Mitsuo

    2016-08-16

    Ethanol induces neurodegeneration in the developing brain, which may partially explain the long-lasting adverse effects of prenatal ethanol exposure in fetal alcohol spectrum disorders (FASD). While animal models of FASD show that ethanol-induced neurodegeneration is associated with glial activation, the relationship between glial activation and neurodegeneration has not been clarified. This review focuses on the roles of activated microglia and astrocytes in neurodegeneration triggered by ethanol in rodents during the early postnatal period (equivalent to the third trimester of human pregnancy). Previous literature indicates that acute binge-like ethanol exposure in postnatal day 7 (P7) mice induces apoptotic neurodegeneration, transient activation of microglia resulting in phagocytosis of degenerating neurons, and a prolonged increase in glial fibrillary acidic protein-positive astrocytes. In our present study, systemic administration of a moderate dose of lipopolysaccharides, which causes glial activation, attenuates ethanol-induced neurodegeneration. These studies suggest that activation of microglia and astrocytes by acute ethanol in the neonatal brain may provide neuroprotection. However, repeated or chronic ethanol can induce significant proinflammatory glial reaction and neurotoxicity. Further studies are necessary to elucidate whether acute or sustained glial activation caused by ethanol exposure in the developing brain can affect long-lasting cellular and behavioral abnormalities observed in the adult brain.

  12. Acute administration of 3-nitropropionic acid, a reactive oxygen species generator, boosts ethanol-induced locomotor stimulation. New support for the role of brain catalase in the behavioural effects of ethanol.

    PubMed

    Manrique, Héctor M; Miquel, Marta; Aragon, Carlos M G

    2006-12-01

    The antioxidant enzyme catalase by reacting with H(2)O(2), forms the compound known as compound I (catalase-H(2)O(2)). This compound is able to oxidise ethanol to acetaldehyde in the CNS. It has been demonstrated that 3-nitropropionic acid (3-NPA) induces the activity of the brain catalase-H(2)O(2) system. In this study, we tested the effect of 3-NPA on both the brain catalase-H(2)O(2) system and on the acute locomotor effect of ethanol. To find the optimal interval for the 3-NPA-ethanol interaction mice were treated with 3-NPA 0, 45, 90 and 135min before an ethanol injection (2.4mg/kg). In a second study, 3-NPA (0, 15, 30 or 45mg/kg) was administered SC to animals 90min before saline or several doses of ethanol (1.6 or 2.4g/kg), and the open-field behaviour was registered. The specificity of the effect of 3-NPA (45mg/kg) was evaluated on caffeine (10mg/kg IP) and cocaine (4mg/kg)-induced locomotion. The prevention of 3-NPA effects on both ethanol-induced locomotion and brain catalase activity by L-carnitine, a potent antioxidant, was also studied. Nitropropionic acid boosted ethanol-induced locomotion and brain catalase activity after 90min. The effect of 3-NPA was prevented by l-carnitine administration. These results indicate that 3-NPA enhanced ethanol-induced locomotion by increasing the activity of the brain catalase system.

  13. Dietary Omega-3 Fatty Acids Differentially Impact Acute Ethanol-Responsive Behaviors and Ethanol Consumption in DBA/2J Versus C57BL/6J Mice.

    PubMed

    Wolstenholme, Jennifer T; Bowers, M Scott; Pais, Alexander B; Pais, A Christian; Poland, Ryan S; Poklis, Justin L; Davies, Andrew G; Bettinger, Jill C

    2018-05-22

    Complex interactions between environmental and genetic factors influence the risk of developing alcohol use disorder (AUD) in humans. To date, studies of the impact of environment on AUD risk have primarily focused on psychological characteristics or on the effects of developmental exposure to ethanol (EtOH). We recently observed that modifying levels of the long-chain ω-3 (LC ω-3) fatty acid, eicosapentaenoic acid (EPA), alters acute physiological responses to EtOH in Caenorhabditis elegans. Because mammals derive ω-3 fatty acids from their diet, here we asked if manipulating dietary levels of LC ω-3 fatty acids can affect EtOH-responsive behaviors in mice. We used 2 well-characterized inbred mouse strains, C57BL/6J (B6) and DBA/2J (D2), which differ in their responses to EtOH. Age-matched young adult male mice were maintained on isocaloric diets that differed only by being enriched or depleted in LC ω-3 fatty acids. Animals were subsequently tested for acute EtOH sensitivity (locomotor activation and sedation), voluntary consumption, and metabolism. Fat deposition was also determined. We found that dietary levels of LC ω-3s altered EtOH sensitivity and consumption in a genotype-specific manner. Both B6 and D2 animals fed high LC ω-3 diets demonstrated lower EtOH-induced locomotor stimulation than those fed low LC ω-3 diets. EtOH sedation and EtOH metabolism were greater in D2, but not B6 mice on the high LC ω-3 diet. Conversely, LC ω-3 dietary manipulation altered EtOH consumption in B6, but not in D2 mice. B6 mice on a high LC ω-3 diet consumed more EtOH in a 2-bottle choice intermittent access model than B6 mice on a low LC ω-3 diet. Because EtOH sensitivity is predictive of risk of developing AUD in humans, our data indicate that dietary LC ω-3 levels should be evaluated for their impact on AUD risk in humans. Further, these studies indicate that genetic background can interact with fatty acids in the diet to significantly alter Et

  14. Chronic Ethanol Intake Alters Circadian Phase Shifting and Free-Running Period in Mice

    PubMed Central

    Seggio, Joseph A.; Fixaris, Michael C.; Reed, Jeffrey D.; Logan, Ryan W.; Rosenwasser, Alan M.

    2011-01-01

    Chronic alcohol intake is associated with widespread disruptions in sleep and circadian rhythms in both human alcoholics and in experimental animals. Recent studies have demonstrated that chronic and acute ethanol treatments alter fundamental properties of the circadian pacemaker—including free-running period and responsiveness to photic and nonphotic phase-shifting stimuli—in rats and hamsters. In the present work, the authors extend these observations to the C57BL/6J mouse, an inbred strain characterized by very high levels of voluntary ethanol intake and by reliable and stable free-running circadian activity rhythms. Mice were housed individually in running-wheel cages under conditions of either voluntary or forced ethanol intake, whereas controls were maintained on plain water. Forced ethanol intake significantly attenuated photic phase delays (but not phase advances) and shortened free-running period in constant darkness, but voluntary ethanol intake failed to affect either of these parameters. Thus, high levels of chronic ethanol intake, beyond those normally achieved under voluntary drinking conditions, are required to alter fundamental circadian pacemaker properties in C57BL/6J mice. These observations may be related to the relative ethanol insensitivity displayed by this strain in several other phenotypic domains, including ethanol-induced sedation, ataxia, and withdrawal. Additional experiments will investigate chronobiological sensitivity to ethanol in a range of inbred strains showing diverse ethanol-related phenotypes. PMID:19625732

  15. Chronic ethanol intake alters circadian phase shifting and free-running period in mice.

    PubMed

    Seggio, Joseph A; Fixaris, Michael C; Reed, Jeffrey D; Logan, Ryan W; Rosenwasser, Alan M

    2009-08-01

    Chronic alcohol intake is associated with widespread disruptions in sleep and circadian rhythms in both human alcoholics and in experimental animals. Recent studies have demonstrated that chronic and acute ethanol treatments alter fundamental properties of the circadian pacemaker--including free-running period and responsiveness to photic and nonphotic phase-shifting stimuli--in rats and hamsters. In the present work, the authors extend these observations to the C57BL/6J mouse, an inbred strain characterized by very high levels of voluntary ethanol intake and by reliable and stable free-running circadian activity rhythms. Mice were housed individually in running-wheel cages under conditions of either voluntary or forced ethanol intake, whereas controls were maintained on plain water. Forced ethanol intake significantly attenuated photic phase delays (but not phase advances) and shortened free-running period in constant darkness, but voluntary ethanol intake failed to affect either of these parameters. Thus, high levels of chronic ethanol intake, beyond those normally achieved under voluntary drinking conditions, are required to alter fundamental circadian pacemaker properties in C57BL/6J mice. These observations may be related to the relative ethanol insensitivity displayed by this strain in several other phenotypic domains, including ethanol-induced sedation, ataxia, and withdrawal. Additional experiments will investigate chronobiological sensitivity to ethanol in a range of inbred strains showing diverse ethanol-related phenotypes.

  16. Delta receptor antagonism, ethanol taste reactivity, and ethanol consumption in outbred male rats.

    PubMed

    Higley, Amanda E; Kiefer, Stephen W

    2006-11-01

    Naltrexone, a nonspecific opioid antagonist, produces significant changes in ethanol responsivity in rats by rendering the taste of ethanol aversive as well as producing a decrease in voluntary ethanol consumption. The present study investigated the effect of naltrindole, a specific antagonist of delta opioid receptors, on ethanol taste reactivity and ethanol consumption in outbred rats. In the first experiment, rats received acute treatment of naltrexone, naltrindole, or saline followed by the measurement of ethanol consumption in a short-term access period. The second experiment involved the same treatments and investigated ethanol palatability (using the taste-reactivity test) as well as ethanol consumption. Results indicated that treatment with 3 mg/kg naltrexone significantly affected palatability (rendered ethanol more aversive, Experiment 2) and decreased voluntary ethanol consumption (Experiments 1 and 2). The effects of naltrindole were inconsistent. In Experiment 1, 8 mg/kg naltrindole significantly decreased voluntary ethanol consumption but this was not replicated in Experiment 2. The 8 mg/kg dose produced a significant increase in aversive responding (Experiment 2) but did not affect ingestive responding. Lower doses of naltrindole (2 and 4 mg/kg) were ineffective in altering rats' taste-reactivity response to and consumption of ethanol. While these data suggest that delta receptors are involved in rats' taste-reactivity response to ethanol and rats' ethanol consumption, it is likely that multiple opioid receptors mediate both behavioral responses.

  17. Transgenic over expression of nicotinic receptor alpha 5, alpha 3, and beta 4 subunit genes reduces ethanol intake in mice.

    PubMed

    Gallego, Xavier; Ruiz-Medina, Jessica; Valverde, Olga; Molas, Susanna; Robles, Noemí; Sabrià, Josefa; Crabbe, John C; Dierssen, Mara

    2012-05-01

    Abuse of alcohol and smoking are extensively co-morbid. Some studies suggest partial commonality of action of alcohol and nicotine mediated through nicotinic acetylcholine receptors (nAChRs). We tested mice with transgenic over expression of the alpha 5, alpha 3, beta 4 receptor subunit genes, which lie in a cluster on human chromosome 15, that were previously shown to have increased nicotine self-administration, for several responses to ethanol. Transgenic and wild-type mice did not differ in sensitivity to several acute behavioral responses to ethanol. However, transgenic mice drank less ethanol than wild-type in a two-bottle (ethanol vs. water) preference test. These results suggest a complex role for this receptor subunit gene cluster in the modulation of ethanol's as well as nicotine's effects. Copyright © 2012. Published by Elsevier Inc.

  18. Molecular Genetic Analysis of Ethanol Intoxication in Drosophila melanogaster.

    PubMed

    Heberlein, Ulrike; Wolf, Fred W; Rothenfluh, Adrian; Guarnieri, Douglas J

    2004-08-01

    Recently, the fruit fly Drosophila melanogaster has been introduced as a model system to study the molecular bases of a variety of ethanol-induced behaviors. It became immediately apparent that the behavioral changes elicited by acute ethanol exposure are remarkably similar in flies and mammals. Flies show signs of acute intoxication, which range from locomotor stimulation at low doses to complete sedation at higher doses and they develop tolerance upon intermittent ethanol exposure. Genetic screens for mutants with altered responsiveness to ethanol have been carried out and a few of the disrupted genes have been identified. This analysis, while still in its early stages, has already revealed some surprising molecular parallels with mammals. The availability of powerful tools for genetic manipulation in Drosophila, together with the high degree of conservation at the genomic level, make Drosophila a promising model organism to study the mechanism by which ethanol regulates behavior and the mechanisms underlying the organism's adaptation to long-term ethanol exposure.

  19. Norepinephrine transporter: a candidate gene for initial ethanol sensitivity in inbred long-sleep and short-sleep mice.

    PubMed

    Haughey, Heather M; Kaiser, Alan L; Johnson, Thomas E; Bennett, Beth; Sikela, James M; Zahniser, Nancy R

    2005-10-01

    Altered noradrenergic neurotransmission is associated with depression and may contribute to drug abuse and alcoholism. Differential initial sensitivity to ethanol is an important predictor of risk for future alcoholism, making the inbred long-sleep (ILS) and inbred short-sleep (ISS) mice a useful model for identifying genes that may contribute to alcoholism. In this study, molecular biological, neurochemical, and behavioral approaches were used to test the hypothesis that the norepinephrine transporter (NET) contributes to the differences in ethanol-induced loss of righting reflex (LORR) in ILS and ISS mice. We used these mice to investigate the NET as a candidate gene contributing to this phenotype. The ILS and ISS mice carry different DNA haplotypes for NET, showing eight silent differences between allelic coding regions. Only the ILS haplotype is found in other mouse strains thus far sequenced. Brain regional analyses revealed that ILS mice have 30 to 50% lower [3H]NE uptake, NET binding, and NET mRNA levels than ISS mice. Maximal [3H]NE uptake and NET number were reduced, with no change in affinity, in the ILS mice. These neurobiological changes were associated with significant influences on the behavioral phenotype of these mice, as demonstrated by (1) a differential response in the duration of ethanol-induced LORR in ILS and ISS mice pretreated with a NET inhibitor and (2) increased ethanol-induced LORR in LXS recombinant inbred (RI) strains, homozygous for ILS in the NET chromosomal region (44-47 cM), compared with ISS homozygous strains. This is the first report to suggest that the NET gene is one of many possible genetic factors influencing ethanol sensitivity in ILS, ISS, and LXS RI mouse strains.

  20. Acute illness-induced behavioral alterations are similar to those observed during withdrawal from acute alcohol exposure

    PubMed Central

    Richey, Laura; Doremus-Fitzwater, Tamara L.; Buck, Hollin M.; Deak, Terrence

    2012-01-01

    Exposure to an immunogen results in a constellation of behavioral changes collectively referred to as “sickness behaviors,” with alterations in cytokine expression previously shown to contribute to this sickness response. Since behaviors observed during ethanol withdrawal are strikingly similar to sickness behaviors, we hypothesized that behavioral manifestations of ethanol withdrawal might be an expression of sickness behaviors induced by ethanol-related changes in peripheral and/or central cytokine expression. Accordingly, behaviors exhibited during a modified social investigation test were first characterized in male rats following an acute injection of lipopolysaccharide (LPS; 100 μg/kg). Subsequently, behavioral changes after either a high (4-g/kg; Experiment 2) or low dose (0.5 g/kg; Experiment 3) of ethanol were also examined in the same social investigation test, as well as in the forced-swim test (FST; Experiment 4). Results from these experiments demonstrated similar reductions in both exploration and social investigatory behavior during acute illness and ethanol withdrawal, while a seemingly paradoxical decrease in immobility was observed in the FST during acute ethanol withdrawal. In follow-up studies, neither indomethacin (Experiment 5) nor interleukin-1 receptor antagonist (Experiment 6) pre-exposure reversed the ethanol withdrawal-induced behavioral changes observed in this social investigation test. Taken together, these studies demonstrate that the behavioral sequelae of acute illness and ethanol withdrawal are similar in nature, while antagonist studies suggest that these behavioral alterations are not reversed by blockade of IL-1 receptors or inhibition of prostaglandin synthesis. Though a direct mechanistic link between cytokines and the expression of acute ethanol withdrawal-related behaviors has yet to be found, future studies examining the involvement of brain cytokines as potential mediators of ethanol effects are greatly needed. PMID

  1. Gas chromatography-mass spectrometry of ethyl palmitate calibration and resolution with ethyl oleate as biomarker ethanol sub acute in urine application study

    NASA Astrophysics Data System (ADS)

    Suaniti, Ni Made; Manurung, Manuntun

    2016-03-01

    Gas Chromatography-Mass Spectrometry is used to separate two and more compounds and identify fragment ion specific of biomarker ethanol such as palmitic acid ethyl ester (PAEE), as one of the fatty acid ethyl esters as early detection through conyugated reaction. This study aims to calibrate ethyl palmitate and develop analysis with oleate acid. This methode can be used analysis ethanol and its chemistry biomarker in ethanol sub-acute consumption as analytical forensic toxicology. The result show that ethanol level in urine rats Wistar were 9.21 and decreased 6.59 ppm after 48 hours consumption. Calibration curve of ethyl palmitate was y = 0.2035 x + 1.0465 and R2 = 0.9886. Resolution between ethyl palmitate and oleate were >1.5 as good separation with fragment ion specific was 88 and the retention time was 18 minutes.

  2. Gastroprotective actions of Taraxacum coreanum Nakai water extracts in ethanol-induced rat models of acute and chronic gastritis.

    PubMed

    Yang, Hye Jeong; Kim, Min Jung; Kwon, Dae Young; Kang, Eun Seon; Kang, Suna; Park, Sunmin

    2017-08-17

    Taraxacum coreanum Nakai has been traditionally used for treating inflammatory diseases including gastrointestinal diseases. We studied whether water extracts of Taraxacum coreanum Nakai (TCN) had a protective effect on acute and chronic gastritis induced by ethanol/HCl in an animal model of gastritis and its mechanism was also explored. In the acute study, rats were orally administered 0.15g/mL dextrin (normal-control), 0.15g/mL dextrin (control), 0.05g/mL TCN (TCN-L), 0.15g/mL TCN (TCN-H), or 0.01g/mL omeprazole (orally; positive-control), followed by oral administration of 1mL of 60% ethanol plus 150mM HCl (inducer). In the chronic study, rats were administered 10% diluted inducer in drinking water, and 0.6% dextrin, 0.2% or 0.6% TCN, and 0.05% omeprazole were administered in chow for 4 weeks. Acid content, gastric structure, oxidative stress, and markers of inflammation in the stomach tissue were measured at the end of experiment. Acute and chronic ethanol/HCl administration caused the inner layer of the stomach to redden, hemorrhage, and edema in the control group; TCN-H reduced these symptoms more effectively than did the omeprazole positive-control. Acid production and total acidity in the stomach increased in the control group, which was markedly suppressed by omeprazole. TCN also reduced the acid production and acidity, but not to the same degree as omeprazole. H-E and PAS staining revealed that in the inner layer of the stomach, cellular structure was disrupted, with an increased nuclear size and thickness, disarrangement, and decreased mucin in the control group. TCN prevented the cellular disruption in the inner layer, and TCN-H was more effective than the positive-control. This was associated with oxidative stress and inflammation. TCN dose-dependently reduced the infiltration of mast cells and TNF-α expression in the inner layer of the stomach, and decreased lipid peroxides by increasing superoxide dismutase and glutathione peroxidase expression. TCN

  3. Acute oral administration of the novel, competitive and selective glucocorticoid receptor antagonist ORG 34517 reduces the severity of ethanol withdrawal and related hypothalamic- pituitary-adrenal axis activation

    PubMed Central

    Reynolds, Anna R.; Saunders, Meredith A.; Brewton, Honoree’ W.; Winchester, Sydney R.; Elgumati, Ibrahim S.; Prendergast, Mark A.

    2015-01-01

    Background The development of ethanol dependence is associated with alterations in hypothalamic-pituitary-adrenal (HPA) axis and activation of type II glucocorticoid receptors (GR). These effects may contribute to withdrawal-associated anxiety, craving and relapse to drinking. The present studies examined acute and oral administration of the novel, selective and competitive GR antagonist ORG 34517 on the severity of ethanol withdrawal. Methods Adult, male Sprague-Dawley rats were administered ethanol (4g/kg/i.g.) twice daily for 5 days followed by 2 days of withdrawal for 1, 2 or 3 consecutive cycles. Blood ethanol levels (BELs) were determined at 0930 on Day 4 of each week, while blood corticosterone levels (BCLs) were obtained at 1100 hrs on the first day of each ethanol withdrawal. During early withdrawal, subjects received oral administration of ORG 345617 (60 mg/kg/i.g.) or a placebo and withdrawal was monitored. Results Peak BELs of 225.52 mg/dl were observed during the third week. Withdrawal from three cycles of the regimen produced marked behavioral abnormalities (e.g. aggression, rigidity, and hypoactivity) and significant increases in BCLs of ethanol-dependent subjects. Acute, oral administration of ORG 34517 during early withdrawal significantly reduced both the severity of ethanol withdrawal, as reflected in reduced rigidity, aggression, and hypoactivity, and elevations in BCL without producing any sedative-like effects. Conclusions The present findings demonstrate that repeated ethanol exposure and withdrawal is associated with significant behavioral abnormalities and dysregulation of HPA axis activation. Further these data suggest that selective GR antagonists should be further considered as putative pharmacotherapies for treatment of ethanol dependence. PMID:26143299

  4. Acute oral administration of the novel, competitive and selective glucocorticoid receptor antagonist ORG 34517 reduces the severity of ethanol withdrawal and related hypothalamic-pituitary-adrenal axis activation.

    PubMed

    Reynolds, Anna R; Saunders, Meredith A; Brewton, Honoree' W; Winchester, Sydney R; Elgumati, Ibrahim S; Prendergast, Mark A

    2015-09-01

    The development of ethanol dependence is associated with alterations in hypothalamic-pituitary-adrenal (HPA) axis and activation of type II glucocorticoid receptors (GR). These effects may contribute to withdrawal-associated anxiety, craving and relapse to drinking. The present studies examined acute and oral administration of the novel, selective and competitive GR antagonist ORG 34517 on the severity of ethanol withdrawal. Adult, male Sprague-Dawley rats were administered ethanol (4g/kg/i.g.) twice daily for 5 days followed by 2 days of withdrawal for 1, 2 or 3 consecutive cycles. Blood ethanol levels (BELs) were determined at 0930 on Day 4 of each week, while blood corticosterone levels (BCLs) were obtained at 11:00hours on the first day of each ethanol withdrawal. During early withdrawal, subjects received oral administration of ORG 345617 (60mg/kg/i.g.) or a placebo and withdrawal was monitored. Peak BELs of 225.52mg/dl were observed during the third week. Withdrawal from three cycles of the regimen produced marked behavioral abnormalities (e.g., aggression, rigidity, and hypoactivity) and significant increases in BCLs of ethanol-dependent subjects. Acute, oral administration of ORG 34517 during early withdrawal significantly reduced both the severity of ethanol withdrawal, as reflected in reduced rigidity, aggression, and hypoactivity, and elevations in BCL without producing any sedative-like effects. The present findings demonstrate that repeated ethanol exposure and withdrawal is associated with significant behavioral abnormalities and dysregulation of HPA axis activation. Further these data suggest that selective GR antagonists should be further considered as putative pharmacotherapies for treatment of ethanol dependence. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. Chronic ethanol exposure decreases CB1 receptor function at GABAergic synapses in the rat central amygdala

    PubMed Central

    Varodayan, Florence P.; Soni, Neeraj; Bajo, Michal; Luu, George; Madamba, Samuel G.; Schweitzer, Paul; Parsons, Loren H.; Roberto, Marisa

    2015-01-01

    The endogenous cannabinoids (eCBs) influence the acute response to ethanol and the development of tolerance, dependence and relapse. Chronic alcohol exposure alters eCB levels and type 1 cannabinoid receptor (CB1) expression and function in brain regions associated with addiction. CB1 inhibits GABA release, and GABAergic dysregulation in the central nucleus of the amygdala (CeA) is critical in the transition to alcohol dependence. We investigated possible disruptions in CB1 signaling of rat CeA GABAergic transmission following intermittent ethanol exposure. In the CeA of alcohol-naïve rats, CB1 agonist WIN 55,212-2 (WIN) decreased the frequency of spontaneous and miniature GABAA receptor-mediated inhibitory postsynaptic currents (s/mIPSCs). This effect was prevented by CB1 antagonism, but not type 2 cannabinoid receptor (CB2) antagonism. After 2–3 weeks of intermittent ethanol exposure, these WIN inhibitory effects were attenuated, suggesting ethanol-induced impairments in CB1 function. The CB1 antagonist AM251 revealed a tonic eCB/CB1 control of GABAergic transmission in the alcohol-naïve CeA that was occluded by calcium chelation in the postsynaptic cell. Chronic ethanol exposure abolished this tonic CB1 influence on mIPSC, but not sIPSC, frequency. Finally, acute ethanol increased CeA GABA release in both naïve and ethanol exposed rats. Although CB1 activation prevented this effect, the AM251- and ethanol-induced GABA release were additive, ruling out a direct participation of CB1 signaling in the ethanol effect. Collectively, these observations demonstrate an important CB1 influence on CeA GABAergic transmission and indicate that the CeA is particularly sensitive to alcohol-induced disruptions of CB1 signaling. PMID:25940135

  6. Effect of ethanol at clinically relevant concentrations on atrial inward rectifier potassium current sensitive to acetylcholine.

    PubMed

    Bébarová, Markéta; Matejovič, Peter; Pásek, Michal; Hořáková, Zuzana; Hošek, Jan; Šimurdová, Milena; Šimurda, Jiří

    2016-10-01

    Alcohol intoxication tends to induce arrhythmias, most often the atrial fibrillation. To elucidate arrhythmogenic mechanisms related to alcohol consumption, the effect of ethanol on main components of the ionic membrane current is investigated step by step. Considering limited knowledge, we aimed to examine the effect of clinically relevant concentrations of ethanol (0.8-80 mM) on acetylcholine-sensitive inward rectifier potassium current I K(Ach). Experiments were performed by the whole-cell patch clamp technique at 23 ± 1 °C on isolated rat and guinea-pig atrial myocytes, and on expressed human Kir3.1/3.4 channels. Ethanol induced changes of I K(Ach) in the whole range of concentrations applied; the effect was not voltage dependent. The constitutively active component of I K(Ach) was significantly increased by ethanol with the maximum effect (an increase by ∼100 %) between 8 and 20 mM. The changes were comparable in rat and guinea-pig atrial myocytes and also in expressed human Kir3.1/3.4 channels (i.e., structural correlate of I K(Ach)). In the case of the acetylcholine-induced component of I K(Ach), a dual ethanol effect was apparent with a striking heterogeneity of changes in individual cells. The effect correlated with the current magnitude in control: the current was increased by eth-anol in the cells showing small current in control and vice versa. The average effect peaked at 20 mM ethanol (an increase of the current by ∼20 %). Observed changes of action potential duration agreed well with the voltage clamp data. Ethanol significantly affected both components of I K(Ach) even in concentrations corresponding to light alcohol consumption.

  7. Effects of S-Adenosylmethionine and Its Combinations With Taurine and/or Betaine on Glutathione Homeostasis in Ethanol-induced Acute Hepatotoxicity

    PubMed Central

    Lee, Seo Yeon; Ko, Kwang Suk

    2016-01-01

    Background Exposure to ethanol abuse and severe oxidative stress are risk factors for hepatocarcinoma. The aim of this study was to evaluate the effects of S-adenosylmethionine (SAMe) and its combinations with taurine and/or betaine on the level of glutathione (GSH), a powerful antioxidant in the liver, in acute hepatotoxicity induced by ethanol. Methods To examine the effects of SAMe and its combinations with taurine and/or betaine on ethanol-induced hepatotoxicity, AML12 cells and C57BL/6 mice were pretreated with SAMe, taurine, and/or betaine, followed by ethanol challenge. Cell viability was detected with an MTT assay. GSH concentration and mRNA levels of GSH synthetic enzymes were measured using GSH reductase and quantitative real-time reverse transcriptase-PCR. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities were measured with commercially available kits. Results Pretreatment of SAMe, with or without taurine and/or betaine, attenuated decreases in GSH levels and mRNA expression of the catalytic subunit of glutamate-cysteine ligase (GCL), the rate-limiting enzyme for GSH synthesis, in ethanol-treated cells and mice. mRNA levels of the modifier subunit of GCL and glutathione synthetase were increased in mice treated with SAMe combinations. SAMe, taurine, and/or betaine pretreatment restored serum ALT and AST levels to control levels in the ethanol-treated group. Conclusions Combinations of SAMe with taurine and/or betaine have a hepatoprotective effect against ethanol-induced liver injury by maintaining GSH homeostasis. PMID:27722142

  8. Ethanol Tolerance Affects Endogenous Adenosine Signaling in Mouse Hippocampus

    PubMed Central

    Zhang, Dali; Xiong, Wei; Jackson, Michael F.

    2016-01-01

    Ethanol has many pharmacological effects, including increases in endogenous adenosine levels and adenosine receptor activity in brain. Ethanol consumption is associated with both positive and negative health outcomes, but tolerance to the behavioral effects of ethanol can lead to increased consumption, which increases the risk of negative health outcomes. The present study was performed to test whether a 7-day treatment with ethanol is linked to reduced adenosine signaling and whether this is a consequence of reduced ecto-5′-nucleotidase activity. Wild-type (CD73+/+) and ecto-5′-nucleotidase-deficient (CD73−/−) mice were treated with ethanol (2 g/kg) or saline for 7 days. In CD73+/+ mice, repeated ethanol treatment reduced the hypothermic and ataxic effects of acute ethanol, indicating the development of tolerance to the acute effects of ethanol. In CD73+/+ mice, this 7-day ethanol treatment led to increased hippocampal synaptic activity and reduced adenosine A1 receptor activity under both basal and low Mg2+ conditions. These effects of ethanol tolerance were associated with an 18% decrease in activity of ecto-5′-nucleotidase activity in hippocampal cell membranes. In contrast, ethanol treatment was not associated with changes in synaptic activity or adenosine signaling in hippocampus from CD73−/− mice. These data indicate that ethanol treatment is associated with a reduction in adenosine signaling through adenosine A1 receptors in hippocampus, mediated, at least in part, via reduced ecto-5′-nucleotidase activity. PMID:27189965

  9. Ethanol Tolerance Affects Endogenous Adenosine Signaling in Mouse Hippocampus.

    PubMed

    Zhang, Dali; Xiong, Wei; Jackson, Michael F; Parkinson, Fiona E

    2016-07-01

    Ethanol has many pharmacological effects, including increases in endogenous adenosine levels and adenosine receptor activity in brain. Ethanol consumption is associated with both positive and negative health outcomes, but tolerance to the behavioral effects of ethanol can lead to increased consumption, which increases the risk of negative health outcomes. The present study was performed to test whether a 7-day treatment with ethanol is linked to reduced adenosine signaling and whether this is a consequence of reduced ecto-5'-nucleotidase activity. Wild-type (CD73(+/+)) and ecto-5'-nucleotidase-deficient (CD73(-/-)) mice were treated with ethanol (2 g/kg) or saline for 7 days. In CD73(+/+) mice, repeated ethanol treatment reduced the hypothermic and ataxic effects of acute ethanol, indicating the development of tolerance to the acute effects of ethanol. In CD73(+/+) mice, this 7-day ethanol treatment led to increased hippocampal synaptic activity and reduced adenosine A1 receptor activity under both basal and low Mg(2+) conditions. These effects of ethanol tolerance were associated with an 18% decrease in activity of ecto-5'-nucleotidase activity in hippocampal cell membranes. In contrast, ethanol treatment was not associated with changes in synaptic activity or adenosine signaling in hippocampus from CD73(-/-) mice. These data indicate that ethanol treatment is associated with a reduction in adenosine signaling through adenosine A1 receptors in hippocampus, mediated, at least in part, via reduced ecto-5'-nucleotidase activity. Copyright © 2016 The Author(s).

  10. Effects of Acute Prenatal Exposure to Ethanol on microRNA Expression are Ameliorated by Social Enrichment

    PubMed Central

    Ignacio, Cherry; Mooney, Sandra M.; Middleton, Frank A.

    2014-01-01

    Fetal alcohol spectrum disorders (FASDs) are associated with abnormal social behavior. These behavioral changes may resemble those seen in autism. Rats acutely exposed to ethanol on gestational day 12 show decreased social motivation at postnatal day 42. We previously showed that housing these ethanol-exposed rats with non-exposed controls normalized this deficit. The amygdala is critical for social behavior and regulates it, in part, through connections with the basal ganglia, particularly the ventral striatum. MicroRNAs (miRNAs) are short, hairpin-derived RNAs that repress mRNA expression. Many brain disorders, including FASD, show dysregulation of miRNAs. In this study, we tested if miRNA and mRNA networks are altered in the amygdala and ventral striatum as a consequence of prenatal ethanol exposure and show any evidence of reversal as a result of social enrichment. RNA samples from two different brain regions in 72 male and female adolescent rats were analyzed by RNA-Seq and microarray analysis. Several miRNAs showed significant changes due to prenatal ethanol exposure and/or social enrichment in one or both brain regions. The top predicted gene targets of these miRNAs were mapped and subjected to pathway enrichment analysis. Several miRNA changes caused by ethanol were reversed by social enrichment, including mir-204, mir-299a, miR-384-5p, miR-222-3p, miR-301b-3p, and mir-6239. Moreover, enriched gene networks incorporating the targets of these miRNAs also showed reversal. We also extended our previously published mRNA expression analysis by directly examining all annotated brain-related canonical pathways. The additional pathways that were most strongly affected at the mRNA level included p53, CREB, glutamate, and GABA signaling. Together, our data suggest a number of novel epigenetic mechanisms for social enrichment to reverse the effects of ethanol exposure through widespread influences on gene expression. PMID:25309888

  11. Consequences of adolescent ethanol exposure in male Sprague-Dawley rats on fear conditioning and extinction in adulthood

    NASA Astrophysics Data System (ADS)

    Broadwater, Margaret A.

    Some evidence suggests that adolescents are more vulnerable than adults to alcohol-induced cognitive deficits and that these deficits may persist into adulthood. Five experiments were conducted to assess long-term consequences of ethanol exposure on tone and context Pavlovian fear conditioning in male Sprague-Dawley rats. Experiment 1 examined age-related differences in sensitivity to ethanol-induced disruptions of fear conditioning to a pre-conditioning ethanol challenge. Experiments 2 examined fear conditioning 22 days after early-mid adolescent (P28-48) or adult (P70-90) exposure to 4 g/kg i.g. ethanol or water given every other day (total of 11 exposures). In Experiment 3, mid-late adolescents (P35-55) were exposed in the same manner to assess whether timing of ethanol exposure within the adolescent period would differentially affect later fear conditioning. Experiment 4 assessed the influence of prior adolescent or adult ethanol exposure on the disrupting effects of a pre-conditioning ethanol challenge. In Experiment 5, neurogenesis (doublecortin---DCX) and cholinergic (choline acetyltransferase---ChAT) markers were measured to assess potential long-term ethanol-induced changes in neural mechanisms important for learning and memory. Results indicated that the long-lasting behavioral effects of ethanol exposure varied depending on exposure age, with early-mid adolescent exposed animals showing attenuated context fear retention (a relatively hippocampal-dependent task), whereas mid-late adolescent and adult exposed animals showed slower context extinction (thought to be reliant on the mPFC). Early-mid adolescent ethanol-exposed animals also had significantly less DCX and ChAT expression than their water-exposed counterparts, possibly contributing to deficits in context fear. Tone fear was not influenced by prior ethanol exposure at any age. In terms of age differences in ethanol sensitivity, adolescents were less sensitive than adults to ethanol

  12. Transgenic Over Expression of Nicotinic Receptor Alpha 5, Alpha 3, and Beta 4 Subunit Genes Reduces Ethanol Intake in Mice

    PubMed Central

    Gallego, Xavier; Ruiz, Jessica; Valverde, Olga; Molas, Susanna; Robles, Noemí; Sabrià, Josefa; Crabbe, John C.; Dierssen, Mara

    2012-01-01

    Abuse of alcohol and smoking are extensively co-morbid. Some studies suggest partial commonality of action of alcohol and nicotine mediated through nicotinic acetylcholine receptors (nAChRs). We tested mice with transgenic over expression of the alpha 5, alpha 3, beta 4 receptor subunit genes, which lie in a cluster on human chromosome 15, that were previously shown to have increased nicotine self-administration, for several responses to ethanol. Transgenic and wild-type mice did not differ in sensitivity to several acute behavioral responses to ethanol. However, transgenic mice drank less ethanol than wild-type in a two-bottle (ethanol vs. water) preference test. These results suggest a complex role for this receptor subunit gene cluster in the modulation of ethanol’s as well as nicotine’s effects. PMID:22459873

  13. Single High-Sensitivity Cardiac Troponin I to Rule Out Acute Myocardial Infarction.

    PubMed

    Sandoval, Yader; Smith, Stephen W; Love, Sara A; Sexter, Anne; Schulz, Karen; Apple, Fred S

    2017-09-01

    This study examined the performance of single high-sensitivity cardiac troponin I (hs-cTnI) measurement strategies to rule out acute myocardial infarction. This was a prospective, observational study of consecutive patients presenting to the emergency department (n = 1631) in whom cTnI measurements were obtained using an investigational hs-cTnI assay. The goals of the study were to determine 1) negative predictive value (NPV) and sensitivity for the diagnosis of acute myocardial infarction, type 1 myocardial infarction, and type 2 myocardial infarction; and 2) safety outcome of acute myocardial infarction or cardiac death at 30 days using hs-cTnI less than the limit of detection (LoD) (<1.9 ng/L) or the High-STEACS threshold (<5 ng/L) alone and in combination with normal electrocardiogram (ECG). Acute myocardial infarction occurred in 170 patients (10.4%), including 68 (4.2%) type 1 myocardial infarction and 102 (6.3%) type 2 myocardial infarction. For hs-cTnIsensitivity for acute myocardial infarction were 99.6% (95% confidence interval 98.9%-100%) and 98.8 (97.2%-100%). For hs-cTnI<5 ng/L (50%), the NPV and sensitivity for acute myocardial infarction were 98.9% (98.2%-99.6%) and 94.7% (91.3%-98.1%). In combination with a normal ECG, 1) hs-cTnIsensitivity of 99.4% (98.3%-100%); and 2) hs-cTnI<5 ng/L had an NPV of 99.5% (98.8%-100%) and sensitivity of 98.8% (97.2%-100%). The NPV and sensitivity for the safety outcome were excellent for hs-cTnIacute myocardial infarction and who are at very low risk for adverse events at 30 days. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Ethanol Reversal of Cellular Tolerance to Morphine in Rat Locus Coeruleus Neurons

    PubMed Central

    Llorente, Javier; Withey, Sarah; Rivero, Guadalupe; Cunningham, Margaret; Cooke, Alex; Saxena, Kunal; McPherson, Jamie; Oldfield, Sue; Dewey, William L.; Bailey, Chris P.; Kelly, Eamonn; Henderson, Graeme

    2013-01-01

    Consumption of ethanol is a considerable risk factor for death in heroin overdose. We sought to determine whether a mildly intoxicating concentration of ethanol could alter morphine tolerance at the cellular level. In rat locus coeruleus (LC) neurons, tolerance to morphine was reversed by acute exposure of the brain slice to ethanol (20 mM). Tolerance to the opioid peptide [d-Ala2,N-MePhe4,Gly-ol]-enkephalin was not reversed by ethanol. Previous studies in LC neurons have revealed a role for protein kinase C (PKC)α in μ-opioid receptor (MOPr) desensitization by morphine and in the induction and maintenance of morphine tolerance, but we have been unable to demonstrate that 20 mM ethanol produces significant inhibition of PKCα. The ability of ethanol to reverse cellular tolerance to morphine in LC neurons was absent in the presence of the phosphatase inhibitor okadaic acid, indicating that dephosphorylation is involved. In human embryonic kidney 293 cells expressing the MOPr, ethanol reduced the level of MOPr phosphorylation induced by morphine. Ethanol reversal of tolerance did not appear to result from a direct effect on MOPr since acute exposure to ethanol (20 mM) did not modify the affinity of binding of morphine to the MOPr or the efficacy of morphine for G-protein activation as measured by guanosine 5′-O-(3-[35S]thio)triphosphate binding. Similarly, ethanol did not affect MOPr trafficking. We conclude that acute exposure to ethanol enhances the effects of morphine by reversing the processes underlying morphine cellular tolerance. PMID:23716621

  15. Effect of copper doping sol-gel ZnO thin films: physical properties and sensitivity to ethanol vapor

    NASA Astrophysics Data System (ADS)

    Boukaous, Chahra; Benhaoua, Boubaker; Telia, Azzedine; Ghanem, Salah

    2017-10-01

    In the present paper, the effect of copper doping ZnO thin films, deposited using a sol-gel dip-coating technique, on the structural, optical and ethanol vapor-sensing properties, was investigated. The range of the doping content is 0 wt. %-5 wt. % Cu/Zn and the films’ properties were studied using x-ray diffraction, scanning electron microscopy and a UV-vis spectrophotometer. The obtained results indicated that undoped and copper-doped zinc oxide thin films have polycrystalline wurtzite structure with (1 0 1) preferred orientation. All samples have a smooth and dense structure free of pinholes. A decrease in the band gap with Cu concentration in the ZnO network was observed. The influence of the dopant on ethanol vapor-sensing properties shows an increase in the film sensitivity to the ethanol vapor within the Cu concentration.

  16. Adolescent and Adult Rats Differ in the Amnesic Effects of Acute Ethanol in Two Hippocampus-Dependent Tasks: Trace and Contextual Fear Conditioning

    PubMed Central

    Hunt, Pamela S.; Barnet, Robert C.

    2015-01-01

    Experience-produced deficits in trace conditioning and context conditioning have been useful tools for examining the role of the hippocampus in learning. It has also been suggested that learning in these tasks is especially vulnerable to neurotoxic effects of alcohol during key developmental periods such as adolescence. In five experiments we systematically examined the presence and source of age-dependent vulnerability to the memory-disrupting effects of acute ethanol in trace conditioning and contextual fear conditioning. In Experiment 1a pre-training ethanol disrupted trace conditioning more strongly in adolescent (postnatal day, PD30-35) than adult rats (PD65-75). In Experiment 1b when pre-training ethanol was accompanied by pre-test ethanol no deficit in trace conditioning was observed in adolescents, suggesting that state-dependent retrieval failure mediated ethanol's disruption of trace conditioning at this age. Experiments 2a and 2b examined the effect of ethanol pretreatment on context conditioning. Here, adult but not adolescent rats were impaired in conditioned freezing to context cues. Experiment 2c explored state-dependency of this effect. Pre-training ethanol continued to disrupt context conditioning in adults even when ethanol was also administered prior to test. Collectively these findings reveal clear age-dependent and task-dependent vulnerabilities in ethanol's disruptive effects on hippocampus-dependent memory. Adolescents were more disrupted by ethanol in trace conditioning than adults, and adults were more disrupted by ethanol in context conditioning than adolescents. We suggest that adolescents may be more susceptible to changes in internal state (state-dependent retrieval failure) than adults and that ethanol disrupted performance in trace and context conditioning through different mechanisms. Relevance of these findings to theories of hippocampus function is discussed. PMID:26192910

  17. Repeated Binge-Like Ethanol Drinking Alters Ethanol Drinking Patterns and Depresses Striatal GABAergic Transmission

    PubMed Central

    Wilcox, Mark V; Carlson, Verginia C Cuzon; Sherazee, Nyssa; Sprow, Gretchen M; Bock, Roland; Thiele, Todd E; Lovinger, David M; Alvarez, Veronica A

    2014-01-01

    Repeated cycles of binge alcohol drinking and abstinence are key components in the development of dependence. However, the precise behavioral mechanisms underlying binge-like drinking and its consequences on striatal synaptic physiology remain unclear. In the present study, ethanol and water drinking patterns were recorded with high temporal resolution over 6 weeks of binge-like ethanol drinking using the ‘drinking in the dark' (DID) protocol. The bottle exchange occurring at the beginning of each session prompted a transient increase in the drinking rate that might facilitate the acquisition of ethanol binge-like drinking. Ethanol drinking mice also displayed a ‘front-loading' behavior, in which the highest rate of drinking was recorded during the first 15 min. This rate increased over weeks and paralleled the mild escalation of blood ethanol concentrations. GABAergic and glutamatergic transmission in the dorsal striatum were examined following DID. Spontaneous glutamatergic transmission and the density of dendritic spines were unchanged after ethanol drinking. However, the frequency of GABAA receptor-mediated inhibitory postsynaptic currents was depressed in medium spiny neurons of ethanol drinking mice. A history of ethanol drinking also increased ethanol preference and altered the acute ethanol effects on GABAergic transmission differentially in dorsolateral and dorsomedial striatum. Together, the study shows that the bottle exchange during DID promotes fast, voluntary ethanol drinking and that this intermittent pattern of ethanol drinking causes a depression of GABAergic transmission in the dorsal striatum. PMID:23995582

  18. Agmatine blocks ethanol-induced locomotor hyperactivity in male mice.

    PubMed

    Ozden, Onder; Kayir, Hakan; Ozturk, Yusuf; Uzbay, Tayfun

    2011-05-20

    Ethanol-induced locomotor activity is associated to rewarding effects of ethanol and ethanol dependence. Agmatine is a novel endogenous ligand at α2-adrenoceptors, imidazoline and N-methyl-d-aspartate (NMDA) receptors, as well as a nitric oxide synthase (NOS) inhibitor. There is no evidence presented for the relationship between the acute locomotor stimulating effect of ethanol and agmatine. Thus, the present study investigated the effects of agmatine on acute ethanol-induced locomotor hyperactivity in mice. Adult male Swiss-Webster mice (26-36g) were used as subjects. Locomotor activity of the mice was recorded for 30min immediately following intraperitoneal administration of ethanol (0.5, 1 and 2g/kg) or saline (n=8 for each group). Agmatine (5, 10 and 20mg/kg) or saline was administered intraperitoneally to another four individual groups (n=8 for each group) of the mice 20min before the ethanol injection. In these groups, locomotor activity was also recorded immediately following ethanol (0.5g/kg) injection for 30min. Ethanol (0.5g/kg) produced some significant increases in locomotor activity of the mice. Agmatine (5-20mg/kg) significantly blocked the ethanol (0.5g/kg)-induced locomotor hyperactivity. These doses of agmatine did not affect the locomotor activity in naive mice when they were administered alone. Our results suggest that agmatine has an important role in ethanol-induced locomotor hyperactivity in mice. There may be a relationship between the addictive psychostimulant effects of the ethanol and central agmatinergic system. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Ethanol Induction of CYP2A5: Role of CYP2E1-ROS-Nrf2 Pathway

    PubMed Central

    Lu, Yongke; Zhang, Xu Hannah

    2012-01-01

    Chronic ethanol consumption was previously shown to induce CYP2A5 in mice, and this induction of CYP2A5 by ethanol was CYP2E1 dependent. In this study, the mechanisms of CYP2E1-dependent ethanol induction of CYP2A5 were investigated. CYP2E1 was induced by chronic ethanol consumption to the same degree in wild-type (WT) mice and CYP2A5 knockout (Cyp2a5 –/–) mice, suggesting that unlike the CYP2E1-dependent ethanol induction of CYP2A5, ethanol induction of CYP2E1 is not CYP2A5 dependent. Microsomal ethanol oxidation was about 25% lower in Cyp2a5 –/– mice compared with that in WT mice, suggesting that CYP2A5 can oxidize ethanol although to a lesser extent than CYP2E1 does. CYP2A5 was induced by short-term ethanol consumption in human CYP2E1 transgenic knockin (Cyp2e1 –/– KI) mice but not in CYP2E1 knockout (Cyp2e1 –/–) mice. The redox-sensitive transcription factor nuclear factor-erythroid 2-related factor 2 (Nrf2) was also induced by acute ethanol in Cyp2e1 –/– KI mice but not in Cyp2e1 –/– mice. Ethanol induction of CYP2A5 in Nrf2 knockout (Nrf2 –/–) mice was lower compared with that in WT mice, whereas CYP2E1 induction by ethanol was comparable in WT and Nrf2 –/– mice. Antioxidants (N-acetyl-cysteine and vitamin C), which blocked oxidative stress induced by chronic ethanol in WT mice and acute ethanol in Cyp2e1 –/– KI mice, also blunted the induction of CYP2A5 and Nrf2 by ethanol but not the induction of CYP2E1 by ethanol. These results suggest that oxidative stress induced by ethanol via induction of CYP2E1 upregulates Nrf2 activity, which in turn regulates ethanol induction of CYP2A5. Results obtained from primary hepatocytes, mice gavaged with binge ethanol or fed chronic ethanol, show that Nrf2-regulated ethanol induction of CYP2A5 protects against ethanol-induced steatosis. PMID:22552773

  20. Repeated episodes of chronic intermittent ethanol promote insensitivity to devaluation of the reinforcing effect of ethanol

    PubMed Central

    Lopez, M. F.; Becker, H. C.; Chandler, L. J.

    2014-01-01

    Studies in animal models have shown that repeated episodes of alcohol dependence and withdrawal promote escalation of drinking that is presumably associated with alterations in the addiction neurocircuitry. Using a lithium chloride-ethanol pairing procedure to devalue the reinforcing properties of ethanol, the present study determined whether multiple cycles of chronic intermittent ethanol (CIE) exposure by vapor inhalation also alters the sensitivity of drinking behavior to the devaluation of ethanol's reinforcing effects. The effect of devaluation on operant ethanol self-administration and extinction was examined in mice prior to initiation of CIE (short drinking history) and after repeated cycles of CIE or air control exposure (long drinking history). Devaluation significantly attenuated the recovery of baseline ethanol self-administration when tested either prior to CIE or in the air-exposed controls that had experienced repeated bouts of drinking but no CIE. In contrast, in mice that had undergone repeated cycles of CIE exposure that promoted escalation of ethanol drinking, self-administration was completely resistant to the effect of devaluation. Devaluation had no effect on the time course of extinction training in either pre-CIE or post-CIE mice. Taken together, these results are consistent with the suggestion that repeated cycles of ethanol dependence and withdrawal produce escalation of ethanol self-administration that is associated with a change in sensitivity to devaluation of the reinforcing properties of ethanol. PMID:25266936

  1. Protective Effects of Ethanolic Extracts from Artichoke, an Edible Herbal Medicine, against Acute Alcohol-Induced Liver Injury in Mice

    PubMed Central

    Tang, Xuchong; Wei, Ruofan; Deng, Aihua; Lei, Tingping

    2017-01-01

    Oxidative stress and inflammation are well-documented pathological factors in alcoholic liver disease (ALD). Artichoke (Cynara scolymus L.) is a healthy food and folk medicine with anti-oxidative and anti-inflammatory properties. This study aimed to evaluate the preventive effects of ethanolic extract from artichoke against acute alcohol-induced liver injury in mice. Male Institute of Cancer Research mice were treated with an ethanolic extract of artichoke (0.4, 0.8, and 1.6 g/kg body weight) by gavage once daily. Up to 40% alcohol (12 mL/kg body weight) was administered orally 1 h after artichoke treatment. All mice were fed for 10 consecutive days. Results showed that artichoke extract significantly prevented elevated levels of aspartate aminotransferase, alanine aminotransferase, triglyceride, total cholesterol, and malondialdehyde. Meanwhile, the decreased levels of superoxide dismutase and glutathione were elevated by artichoke administration. Histopathological examination showed that artichoke attenuated degeneration, inflammatory infiltration and necrosis of hepatocytes. Immunohistochemical analysis revealed that expression levels of toll-like receptor (TLR) 4 and nuclear factor-kappa B (NF-κB) in liver tissues were significantly suppressed by artichoke treatment. Results obtained demonstrated that artichoke extract exhibited significant preventive protective effect against acute alcohol-induced liver injury. This finding is mainly attributed to its ability to attenuate oxidative stress and suppress the TLR4/NF-κB inflammatory pathway. To the best of our knowledge, the underlying mechanisms of artichoke on acute ALD have been rarely reported. PMID:28891983

  2. Protective Effects of Ethanolic Extracts from Artichoke, an Edible Herbal Medicine, against Acute Alcohol-Induced Liver Injury in Mice.

    PubMed

    Tang, Xuchong; Wei, Ruofan; Deng, Aihua; Lei, Tingping

    2017-09-11

    Oxidative stress and inflammation are well-documented pathological factors in alcoholic liver disease (ALD). Artichoke ( Cynara scolymus L.) is a healthy food and folk medicine with anti-oxidative and anti-inflammatory properties. This study aimed to evaluate the preventive effects of ethanolic extract from artichoke against acute alcohol-induced liver injury in mice. Male Institute of Cancer Research mice were treated with an ethanolic extract of artichoke (0.4, 0.8, and 1.6 g/kg body weight) by gavage once daily. Up to 40% alcohol (12 mL/kg body weight) was administered orally 1 h after artichoke treatment. All mice were fed for 10 consecutive days. Results showed that artichoke extract significantly prevented elevated levels of aspartate aminotransferase, alanine aminotransferase, triglyceride, total cholesterol, and malondialdehyde. Meanwhile, the decreased levels of superoxide dismutase and glutathione were elevated by artichoke administration. Histopathological examination showed that artichoke attenuated degeneration, inflammatory infiltration and necrosis of hepatocytes. Immunohistochemical analysis revealed that expression levels of toll-like receptor (TLR) 4 and nuclear factor-kappa B (NF-κB) in liver tissues were significantly suppressed by artichoke treatment. Results obtained demonstrated that artichoke extract exhibited significant preventive protective effect against acute alcohol-induced liver injury. This finding is mainly attributed to its ability to attenuate oxidative stress and suppress the TLR4/NF-κB inflammatory pathway. To the best of our knowledge, the underlying mechanisms of artichoke on acute ALD have been rarely reported.

  3. Acute effects of ethanol and acetate on glucose kinetics in normal subjects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yki-Jaervinen, H.; Koivisto, V.A.; Ylikahri, R.

    1988-02-01

    The authors compared the effects of two ethanol doses on glucose kinetics and assessed the role of acetate as a mediator of ethanol-induced insulin resistance. Ten normal males were studied on four occasions, during which either a low or moderate ethanol, acetate, or saline dose was administered. Both ethanol doses similarly inhibited basal glucose production. The decrease in R{sub a} was matched by a comparable decrease in glucose utilization (R{sub d}), resulting in maintenance of normoglycemia. During hyperinsulinemia glucose disposal was lower in the moderate than the low-dose ethanol or saline studies. During acetate infusion, the blood acetate level wasmore » comparable with those in the ethanol studies. Acetate had no effect on glucose kinetics. In conclusion, (1) in overnight fasted subjects, ethanol does not cause hypoglycemia because its inhibitory effect on R{sub a} is counterbalanced by equal inhibition of R{sub d}; (2) basal R{sub a} and R{sub d} are maximally inhibited already by small ethanol doses, whereas inhibition of insulin-stimulated glucose disposal requires a moderate ethanol dose; and (3) acetate is not the mediator of ethanol-induced insulin resistance.« less

  4. Ethanol-induced dopamine elevation in the rat--modulatory effects by subchronic treatment with nicotinic drugs.

    PubMed

    Löf, Elin; Chau, Pei Pei; Stomberg, Rosita; Söderpalm, Bo

    2007-01-26

    Chronic nicotine administration is associated with increased ethanol consumption in laboratory animals and in humans. Some smokers report less sedation during acute ethanol intoxication after nicotine administration and the sedative effects from ethanol are mediated by inhibitory GABA(A)-receptors. In a series of in vivo microdialysis experiments we investigated whether subchronic pre-treatment with nicotinic drugs known to enhance ethanol consumption in the rat (nicotine or the peripheral nicotinic antagonist hexamethonium) could modulate the alterations in extracellular dopamine observed in response to administration of ethanol or the sedative GABA(A)-agonist diazepam. In the nucleus accumbens and the dorsal striatum, systemic and/or local ethanol administration resulted in transient increases in extracellular dopamine levels that returned to baseline before the local levels of ethanol started to decline. In hexamethonium pre-treated rats, however, the nucleus accumbens dopamine levels were time-locked to the ethanol levels in the same area after systemic or local ethanol administration. Perfusion of diazepam into the nucleus accumbens produced a significant reduction in nucleus accumbens dopamine in controls. Prior subchronic treatment with nicotine or hexamethonium abolished this effect. The present results suggest that subchronic treatment with the nicotinic acetylcholine receptor antagonist hexamethonium reduces a GABA(A)-R mediated counteraction of the nucleus accumbens dopamine response to ethanol. Additionally, we demonstrate that modulation of nicotinic receptors may reduce the sensitivity of GABA(A) receptors to benzodiazepines. These phenomena may offer a novel explanation to why nicotine and alcohol are often co-abused.

  5. Refeeding after acute food restriction: differential reduction in preference for ethanol and ethanol-paired flavors in selectively bred rats.

    PubMed

    Dess, Nancy K; Chapman, Clinton D; Cousins, Laura A; Monroe, Derek C; Nguyen, Phuong

    2013-01-17

    Rats' voluntary ethanol intake varies with dispositional factors and energy status. The joint influences of these were of interest here. We previously reported that rats selectively bred for high voluntary saccharin intake (HiS) consume more ethanol and express more robust conditioning of preference for flavors paired with voluntarily consumed ethanol than do low-saccharin consuming counterparts (LoS). Three new experiments examined the effect of refeeding after an episode of food restriction on ethanol intake and on preference for ethanol-paired flavors in HiS and LoS rats. A 48-h episode of food restriction with wheel running reduced intake of and preference for 4% ethanol (Exp. 1a) and preference for an ethanol-paired flavor (Exp. 1b) during refeeding. Food restriction alone was sufficient to reduce the flavor preference (Exp. 2). Adding fat to the refeeding diet or extending the food restriction period exacerbated the effect (Exp. 3), yielding a frank aversion to ethanol-paired flavors in LoS rats. These studies indicate that rebound from negative energy balance shifts responses to ethanol-associated cues from preference toward aversion. Analyses of bodyweight changes and caloric intake during refeeding support this conclusion and further suggest that lower metabolic efficiency may be a marker for enhanced preference mutability. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. The ontogeny of ethanol aversion.

    PubMed

    Saalfield, Jessica; Spear, Linda

    2016-03-15

    Recent work has suggested separate developmental periods within the broader framework of adolescence, with data suggesting distinct alterations and vulnerabilities within these intervals. While previous research has suggested reduced sensitivity to the aversive effects of alcohol in adolescence relative to adults, a more detailed ontogeny of this effect has yet to be conducted. The adolescent brain undergoes significant transitions throughout adolescence, including in regions linked with drug reward and aversion. The current study aimed to determine the ontogeny of ethanol aversion by utilizing a conditioned taste aversion procedure at six different ages to test the hypothesis that the transitions into, through, and out of adolescence are associated with ontogenetic alterations in sensitivity to the aversive properties of ethanol. Non-deprived animals given Boost® as the conditioned stimulus (CS) were used in Experiment 1, whereas Experiment 2 used water-restricted animals provided with a saccharin/sucrose solution as the CS. In both experiments, an attenuated sensitivity to the aversive properties of ethanol was evident in adolescents compared to adults, although more age differences were apparent in water deprived animals than when a highly palatable CS was given to ad libitum animals. Overall, the data suggest an attenuated sensitivity to the aversive properties of ethanol that is most pronounced during pre- and early adolescence, declining thereafter to reach the enhanced aversive sensitivity of adults. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Ethanol Forensic Toxicology.

    PubMed

    Perry, Paul J; Doroudgar, Shadi; Van Dyke, Priscilla

    2017-12-01

    Ethanol abuse can lead to negative consequences that oftentimes result in criminal charges and civil lawsuits. When an individual is suspected of driving under the influence, law enforcement agents can determine the extent of intoxication by measuring the blood alcohol concentration (BAC) and performing a standardized field sobriety test. The BAC is dependent on rates of absorption, distribution, and elimination, which are influenced mostly by the dose of ethanol ingested and rate of consumption. Other factors contributing to BAC are gender, body mass and composition, food effects, type of alcohol, and chronic alcohol exposure. Because of individual variability in ethanol pharmacology and toxicology, careful extrapolation and interpretation of the BAC is needed, to justify an arrest and assignment of criminal liability. This review provides a summary of the pharmacokinetic properties of ethanol and the clinical effects of acute intoxication as they relate to common forensic questions. Concerns regarding the extrapolation of BAC and the implications of impaired memory caused by alcohol-induced blackouts are discussed. © 2017 American Academy of Psychiatry and the Law.

  8. Pharmacokinetic and pharmacodynamic drug interactions with ethanol (alcohol).

    PubMed

    Chan, Lingtak-Neander; Anderson, Gail D

    2014-12-01

    Ethanol (alcohol) is one of the most widely used legal drugs in the world. Ethanol is metabolized by alcohol dehydrogenase (ADH) and the cytochrome P450 (CYP) 2E1 drug-metabolizing enzyme that is also responsible for the biotransformation of xenobiotics and fatty acids. Drugs that inhibit ADH or CYP2E1 are the most likely theoretical compounds that would lead to a clinically significant pharmacokinetic interaction with ethanol, which include only a limited number of drugs. Acute ethanol primarily alters the pharmacokinetics of other drugs by changing the rate and extent of absorption, with more limited effects on clearance. Both acute and chronic ethanol use can cause transient changes to many physiologic responses in different organ systems such as hypotension and impairment of motor and cognitive functions, resulting in both pharmacokinetic and pharmacodynamic interactions. Evaluating drug interactions with long-term use of ethanol is uniquely challenging. Specifically, it is difficult to distinguish between the effects of long-term ethanol use on liver pathology and chronic malnutrition. Ethanol-induced liver disease results in decreased activity of hepatic metabolic enzymes and changes in protein binding. Clinical studies that include patients with chronic alcohol use may be evaluating the effects of mild cirrhosis on liver metabolism, and not just ethanol itself. The definition of chronic alcohol use is very inconsistent, which greatly affects the quality of the data and clinical application of the results. Our study of the literature has shown that a significantly higher volume of clinical studies have focused on the pharmacokinetic interactions of ethanol and other drugs. The data on pharmacodynamic interactions are more limited and future research addressing pharmacodynamic interactions with ethanol, especially regarding the non-central nervous system effects, is much needed.

  9. Chronic Intermittent Ethanol Exposure Enhances the Excitability and Synaptic Plasticity of Lateral Orbitofrontal Cortex Neurons and Induces a Tolerance to the Acute Inhibitory Actions of Ethanol

    PubMed Central

    Nimitvilai, Sudarat; Lopez, Marcelo F; Mulholland, Patrick J; Woodward, John J

    2016-01-01

    Alcoholism is associated with changes in brain reward and control systems, including the prefrontal cortex. In prefrontal areas, the orbitofrontal cortex (OFC) has been suggested to have an important role in the development of alcohol-abuse disorders and studies from this laboratory demonstrate that OFC-mediated behaviors are impaired in alcohol-dependent animals. However, it is not known whether chronic alcohol (ethanol) exposure alters the fundamental properties of OFC neurons. In this study, mice were exposed to repeated cycles of chronic intermittent ethanol (CIE) exposure to induce dependence and whole-cell patch-clamp electrophysiology was used to examine the effects of CIE treatment on lateral OFC (lOFC) neuron excitability, synaptic transmission, and plasticity. Repeated cycles of CIE exposure and withdrawal enhanced current-evoked action potential (AP) spiking and this was accompanied by a reduction in the after-hyperpolarization and a decrease in the functional activity of SK channels. CIE mice also showed an increase in the AMPA/NMDA ratio, and this was associated with an increase in GluA1/GluA2 AMPA receptor expression and a decrease in GluN2B NMDA receptor subunits. Following CIE treatment, lOFC neurons displayed a persistent long-term potentiation of glutamatergic synaptic transmission following a spike-timing-dependent protocol. Lastly, CIE treatment diminished the inhibitory effect of acute ethanol on AP spiking of lOFC neurons and reduced expression of the GlyT1 transporter. Taken together, these results suggest that chronic exposure to ethanol leads to enhanced intrinsic excitability and glutamatergic synaptic signaling of lOFC neurons. These alterations may contribute to the impairment of OFC-dependent behaviors in alcohol-dependent individuals. PMID:26286839

  10. Mechanisms of Ethanol Tolerance in Saccharomyces cerevisiae

    USDA-ARS?s Scientific Manuscript database

    Saccharomyces cerevisiae is a superb ethanol producer, yet is also sensitive to higher ethanol concentrations especially under high gravity or very high gravity fermentation conditions. Ethanol tolerance is associated with interplay of complex networks at the genome level. Although significant eff...

  11. Repeated episodes of chronic intermittent ethanol promote insensitivity to devaluation of the reinforcing effect of ethanol.

    PubMed

    Lopez, M F; Becker, H C; Chandler, L J

    2014-11-01

    Studies in animal models have shown that repeated episodes of alcohol dependence and withdrawal promote escalation of drinking that is presumably associated with alterations in the addiction neurocircuitry. Using a lithium chloride-ethanol pairing procedure to devalue the reinforcing properties of ethanol, the present study determined whether multiple cycles of chronic intermittent ethanol (CIE) exposure by vapor inhalation also alters the sensitivity of drinking behavior to the devaluation of ethanol's reinforcing effects. The effect of devaluation on operant ethanol self-administration and extinction was examined in mice prior to initiation of CIE (short drinking history) and after repeated cycles of CIE or air control exposure (long drinking history). Devaluation significantly attenuated the recovery of baseline ethanol self-administration when tested either prior to CIE or in the air-exposed controls that had experienced repeated bouts of drinking but no CIE. In contrast, in mice that had undergone repeated cycles of CIE exposure that promoted escalation of ethanol drinking, self-administration was completely resistant to the effect of devaluation. Devaluation had no effect on the time course of extinction training in either pre-CIE or post-CIE mice. Taken together, these results are consistent with the suggestion that repeated cycles of ethanol dependence and withdrawal produce escalation of ethanol self-administration that is associated with a change in sensitivity to devaluation of the reinforcing properties of ethanol. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Chronic intermittent ethanol exposure in early adolescent and adult male rats: effects on tolerance, social behavior, and ethanol intake.

    PubMed

    Broadwater, Margaret; Varlinskaya, Elena I; Spear, Linda P

    2011-08-01

    Given the prevalence of alcohol use in adolescence, it is important to understand the consequences of chronic ethanol exposure during this critical period in development. The purpose of this study was to assess possible age-related differences in susceptibility to tolerance development to ethanol-induced sedation and withdrawal-related anxiety, as well as voluntary ethanol intake after chronic exposure to relatively high doses of ethanol during adolescence or adulthood. Juvenile/adolescent and adult male Sprague-Dawley rats were assigned to one of five 10-day exposure conditions: chronic ethanol (4 g/kg every 48 hours), chronic saline (equivalent volume every 24 hours), chronic saline/acutely challenged with ethanol (4 g/kg on day 10), nonmanipulated/acutely challenged with ethanol (4 g/kg on day 10), or nonmanipulated. For assessment of tolerance development, duration of the loss of righting reflex (LORR) and blood ethanol concentrations (BECs) upon regaining of righting reflex (RORR) were tested on the first and last ethanol exposure days in the chronic ethanol group, with both saline and nonmanipulated animals likewise challenged on the last exposure day. Withdrawal-induced anxiety was indexed in a social interaction test 24 hours after the last ethanol exposure, with ethanol-naïve chronic saline and nonmanipulated animals serving as controls. Voluntary intake was assessed 48 hours after the chronic exposure period in chronic ethanol, chronic saline and nonmanipulated animals using an 8-day 2 bottle choice, limited-access ethanol intake procedure. In general, adolescent animals showed shorter durations of LORR and higher BECs upon RORR than adults on the first and last ethanol exposure days, regardless of chronic exposure condition. Adults, but not adolescents, developed chronic tolerance to the sedative effects of ethanol, tolerance that appeared to be metabolic in nature. Social deficits were observed after chronic ethanol in both adolescents and adults

  13. GABAA Receptors Containing ρ1 Subunits Contribute to In Vivo Effects of Ethanol in Mice

    PubMed Central

    Blednov, Yuri A.; Benavidez, Jillian M.; Black, Mendy; Leiter, Courtney R.; Osterndorff-Kahanek, Elizabeth; Johnson, David; Borghese, Cecilia M.; Hanrahan, Jane R.; Johnston, Graham A. R.; Chebib, Mary; Harris, R. Adron

    2014-01-01

    GABAA receptors consisting of ρ1, ρ2, or ρ3 subunits in homo- or hetero-pentamers have been studied mainly in retina but are detected in many brain regions. Receptors formed from ρ1 are inhibited by low ethanol concentrations, and family-based association analyses have linked ρ subunit genes with alcohol dependence. We determined if genetic deletion of ρ1 in mice altered in vivo ethanol effects. Null mutant male mice showed reduced ethanol consumption and preference in a two-bottle choice test with no differences in preference for saccharin or quinine. Null mutant mice of both sexes demonstrated longer duration of ethanol-induced loss of righting reflex (LORR), and males were more sensitive to ethanol-induced motor sedation. In contrast, ρ1 null mice showed faster recovery from acute motor incoordination produced by ethanol. Null mutant females were less sensitive to ethanol-induced development of conditioned taste aversion. Measurement of mRNA levels in cerebellum showed that deletion of ρ1 did not change expression of ρ2, α2, or α6 GABAA receptor subunits. (S)-4-amino-cyclopent-1-enyl butylphosphinic acid (“ρ1” antagonist), when administered to wild type mice, mimicked the changes that ethanol induced in ρ1 null mice (LORR and rotarod tests), but the ρ1 antagonist did not produce these effects in ρ1 null mice. In contrast, (R)-4-amino-cyclopent-1-enyl butylphosphinic acid (“ρ2” antagonist) did not change ethanol actions in wild type but produced effects in mice lacking ρ1 that were opposite of the effects of deleting (or inhibiting) ρ1. These results suggest that ρ1 has a predominant role in two in vivo effects of ethanol, and a role for ρ2 may be revealed when ρ1 is deleted. We also found that ethanol produces similar inhibition of function of recombinant ρ1 and ρ2 receptors. These data indicate that ethanol action on GABAA receptors containing ρ1/ρ2 subunits may be important for specific effects of ethanol in vivo. PMID:24454882

  14. Concomitant stress potentiates the preference for, and consumption of, ethanol induced by chronic pre-exposure to ethanol.

    PubMed

    Morais-Silva, G; Fernandes-Santos, J; Moreira-Silva, D; Marin, M T

    2016-01-01

    Ethanol abuse is linked to several acute and chronic injuries that can lead to health problems. Ethanol addiction is one of the most severe diseases linked to the abuse of this drug. Symptoms of ethanol addiction include compulsive substance intake and withdrawal syndrome. Stress exposure has an important role in addictive behavior for many drugs of abuse (including ethanol), but the consequences of stress and ethanol in the organism when these factors are concomitant results in a complex interaction. We investigated the effects of concomitant, chronic administration of ethanol and stress exposure on the withdrawal and consumption of, as well as the preference for, ethanol in mice. Male Swiss mice (30-35 g, 8-10 per group) were exposed to an ethanol liquid diet as the only source of food for 15 days. In the final 5 days, they were exposed to forced swimming stress. Twelve hours after removal of the ethanol liquid diet, animals were evaluated for ethanol withdrawal by measuring anxiety-related behaviors and locomotor activity. Twenty-four hours after evaluation of ethanol withdrawal, they were evaluated for voluntary consumption of ethanol in a "three-bottle choice" paradigm. Mice exposed to chronic consumption of ethanol had decreased locomotor activity during withdrawal. Contrary to our expectations, a concomitant forced swimming stress did not aggravate ethanol withdrawal. Nevertheless, simultaneous ethanol administration and stress exposure increased voluntary consumption of ethanol, mainly solutions containing high concentrations of ethanol. These results showed that stressful situations during ethanol intake may aggravate specific addiction-related behaviors.

  15. Autophagy Constitutes a Protective Mechanism against Ethanol Toxicity in Mouse Astrocytes and Neurons.

    PubMed

    Pla, Antoni; Pascual, María; Guerri, Consuelo

    2016-01-01

    Ethanol induces brain damage and neurodegeneration by triggering inflammatory processes in glial cells through activation of Toll-like receptor 4 (TLR4) signaling. Recent evidence indicates the role of protein degradation pathways in neurodegeneration and alcoholic liver disease, but how these processes affect the brain remains elusive. We have demonstrated that chronic ethanol consumption impairs proteolytic pathways in mouse brain, and the immune response mediated by TLR4 receptors participates in these dysfunctions. We evaluate the in vitro effects of an acute ethanol dose on the autophagy-lysosome pathway (ALP) on WT and TLR4-/- mouse astrocytes and neurons in primary culture, and how these changes affect cell survival. Our results show that ethanol induces overexpression of several autophagy markers (ATG12, LC3-II, CTSB), and increases the number of lysosomes in WT astrocytes, effects accompanied by a basification of lysosomal pH and by lowered phosphorylation levels of autophagy inhibitor mTOR, along with activation of complexes beclin-1 and ULK1. Notably, we found only minor changes between control and ethanol-treated TLR4-/- mouse astroglial cells. Ethanol also triggers the expression of the inflammatory mediators iNOS and COX-2, but induces astroglial death only slightly. Blocking autophagy by using specific inhibitors increases both inflammation and cell death. Conversely, in neurons, ethanol down-regulates the autophagy pathway and triggers cell death, which is partially recovered by using autophagy enhancers. These results support the protective role of the ALP against ethanol-induced astroglial cell damage in a TLR4-dependent manner, and provide new insight into the mechanisms that underlie ethanol-induced brain damage and are neuronal sensitive to the ethanol effects.

  16. Real-time monitoring of intracellular cAMP during acute ethanol exposure

    PubMed Central

    Gupta, Ratna; Qualls-Creekmore, Emily; Yoshimura, Masami

    2013-01-01

    Background In previous studies we have shown that ethanol enhances the activity of Gs-stimulated membrane-bound adenylyl cyclase (AC). The effect is AC isoform specific and the type 7 AC (AC7) is most responsive to ethanol. In this study, we employed a fluorescence resonance energy transfer (FRET) based cAMP sensor, Epac1-camps, to examine real-time temporal dynamics of ethanol effects on cAMP concentrations. To our knowledge, this is the first report on real-time detection of the ethanol effect on intracellular cAMP. Methods Hela cells were transfected with Epac1-camps, dopamine D1A receptor, and one isoform of AC (AC7 or AC3). Fluorescent images were captured using a specific filter set for cyan fluorescent protein (CFP), yellow fluorescent protein (YFP), and FRET, respectively and FRET intensity was calculated on a pixel-by-pixel basis to examine changes in cAMP. Results During 2-minute stimulation with dopamine (DA), the cytoplasmic cAMP level quickly increased, then decreased to a plateau, where the cAMP level was higher than the level prior to stimulation with DA. Ethanol concentration dependently increased cytoplasmic cAMP in cells transfected with AC7, while ethanol did not have effect on cells transfected with AC3. Similar trends were observed for cAMP at the plasma membrane and in the nucleus during 2-minute stimulation with DA. Unexpectedly, when cells expressing AC7 were stimulated with DA or other Gs protein-coupled receptor’s ligand plus ethanol for 5 seconds, ethanol reduced cAMP concentration. Conclusion These results suggest that ethanol has two opposing effects on the cAMP generating system in an AC isoform specific manner, the enhancing effect on AC activity and the short lived inhibitory effect. Thus, ethanol may have a different effect on cAMP depending on not only AC isoform but also the duration of exposure. PMID:23731206

  17. Cytokine involvement in stress may depend on corticotrophin releasing factor to sensitize ethanol withdrawal anxiety

    PubMed Central

    Knapp, Darin J.; Whitman, Buddy A.; Wills, Tiffany A.; Angel, Robert A.; Overstreet, David H.; Criswell, Hugh E.; Ming, Zhen; Breese, George R.

    2011-01-01

    Stress has been shown to facilitate ethanol withdrawal-induced anxiety. Defining neurobiological mechanisms through which stress has such actions is important given the associated risk of relapse. While CRF has long been implicated in the action of stress, current results show that stress elevates the cytokine TNFα in the rat brain and thereby implicates cytokines in stress effects. In support of this view, prior TNFα microinjection into the central amygdala (CeA) of rats facilitated ethanol withdrawal-induced anxiety—a response that could not be attributed to an increase in plasma corticosterone. To test for a possible interaction between cytokines and CRF, a CRF1-receptor antagonist (SSR125543) administered prior to the repeated administration of TNFα or MCP-1/CCL2 reduced the magnitude of the withdrawal-induced anxiety. This finding provided evidence for cytokine action being dependent upon CRF. Additionally, the sensitizing effect of stress on withdrawal-induced anxiety was reduced by treating the repeated stress exposure prior to ethanol with the MEK inhibitor SL327. Consistent with cytokines having a neuromediator function distinct from a neuroimmune action, TNFα increased firing rate and GABA release from CeA neurons. Thus, an interaction of glial and neuronal function is proposed to contribute to the interaction of stress and chronic ethanol. Interrupting this potential glial-neuronal interaction could provide a novel means by which to alter the development of emotional states induced by stress that predict relapse in the alcoholic. PMID:21377524

  18. A role for dynamin in triggering ethanol tolerance.

    PubMed

    Krishnan, Harish R; Al-Hasan, Yazan M; Pohl, Jascha B; Ghezzi, Alfredo; Atkinson, Nigel S

    2012-01-01

    A prevailing hypothesis is that the set of genes that underlie the endophenotypes of alcoholism overlap with those responsible for the addicted state. Functional ethanol tolerance, an endophenotype of alcoholism, is defined as a reduced response to ethanol caused by prior ethanol exposure. The neuronal origins of functional rapid tolerance are thought to be a homeostatic response of the nervous system that counters the effects of the drug. Synaptic proteins that regulate neuronal activity are an important evolutionarily conserved target of ethanol. We used mutant analysis in Drosophila to identify synaptic proteins that are important for the acquisition of rapid tolerance to sedation with ethanol. Tolerance was assayed by sedating flies with ethanol vapor and comparing the recovery time of flies after their first sedation and their second sedation. Temperature-sensitive paralytic mutants that alter key facets of synaptic neurotransmission, such as the propagation of action potentials, synaptic vesicle fusion, exocytosis, and endocytosis, were tested for the ability to acquire functional tolerance at both the permissive and restrictive temperatures. The shibire gene encodes Drosophila Dynamin. We tested 2 temperature-sensitive alleles of the gene. The shi(ts1) allele blocked tolerance at both the permissive and restrictive temperatures, while shi(ts2) blocked only at the restrictive temperature. Using the temperature-sensitive property of shi(ts2) , we showed that Dynamin function is required concomitant with exposure to ethanol. A temperature-sensitive allele of the Syntaxin 1A gene, Syx1A(3-69), also blocked the acquisition of ethanol tolerance. We have shown that shibire and Syntaxin 1A are required for the acquisition of rapid functional tolerance to ethanol. Furthermore, the shibire gene product, Dynamin, appears to be required for an immediate early response to ethanol that triggers a cellular response leading to rapid functional tolerance. Copyright © 2011

  19. Ethanol induces impulsive-like responding in a delay-of-reward operant choice procedure: impulsivity predicts autoshaping.

    PubMed

    Tomie, A; Aguado, A S; Pohorecky, L A; Benjamin, D

    1998-10-01

    Autoshaping conditioned responses (CRs) are reflexive and targeted motor responses expressed as a result of experience with reward. To evaluate the hypothesis that autoshaping may be a form of impulsive responding, within-subjects correlations between performance on autoshaping and impulsivity tasks were assessed in 15 Long-Evans hooded rats. Autoshaping procedures [insertion of retractable lever conditioned stimulus (CS) followed by the response-independent delivery of food (US)] were followed by testing for impulsive-like responding in a two-choice lever-press operant delay-of-reward procedure (immediate small food reward versus delayed large food reward). Delay-of-reward functions revealed two distinct subject populations. Subjects in the Sensitive group (n=7) were more impulsive-like, increasing immediate reward choices at longer delays for large reward, while those in the Insensitive group (n=8) responded predominantly on only one lever. During the prior autoshaping phase, the Sensitive group had performed more autoshaping CRs, and correlations revealed that impulsive subjects acquired the autoshaping CR in fewer trials. In the Sensitive group, acute injections of ethanol (0, 0.25, 0.50, 1.00, 1.50 g/kg) given immediately before delay-of-reward sessions yielded an inverted U-shaped dose-response curve with increased impulsivity induced by the 0.25, 0.50, and 1.00 g/kg doses of ethanol, while choice strategy of the Insensitive group was not influenced by ethanol dose. Ethanol induced impulsive-like responding only in rats that were flexible in their response strategy (Sensitive group), and this group also performed more autoshaping CRs. Data support the hypothesis that autoshaping and impulsivity are linked.

  20. Neuronal nitric oxide synthase mediates the effect of ethanol on IgA.

    PubMed

    Budec, Mirela; Markovic, Dragana; Vignjevic, Sanja; Mitrovic, Olivera; Dikic, Dragoslava; Koko, Vesna; Cokic, Vladan P

    2013-01-01

    We showed previously that the acute effect of ethanol on intestinal immunoglobulin A (IgA) expression might be mediated by endogenous nitric oxide (NO). To extend these findings, this study was designed to investigate a possible role of neuronal NO synthase (nNOS) in the observed phenomenon, using 7-nitroindazole (7-NI), a selective inhibitor of its activity. Adult male Wistar rats were treated with: (a) ethanol (4 g/kg, intraperitoneally, i.p.), (b) 7-NI (25 mg/kg, i.p.) followed by ethanol (4 g/kg, i.p.) 30 min later and (c) 7-NI (25 mg/kg, i.p.) followed by saline 30 min later. Untreated rats were used as controls. The concentrations of serum and intestinal IgA were measured by enzyme-linked immunosorbent assay, while the expression of nNOS was determined using western blot and immunohistochemistry. Acute ethanol treatment significantly increased the concentration of IgA in the ileal extracts, whereas it decreased its serum level. Inhibition of nNOS activity by 7-NI abolished this action of alcohol on IgA. Additionally, western blot analysis revealed that the acute alcohol administration induced an increase in the expression of intestinal nNOS. Furthermore, nNOS-immunoreactive cells, observed within the lamina propria of small intestine, were numerous in ethanol-treated rats. Taken together, these results extended our previous findings suggesting that nNOS mediates the acute effect of ethanol on IgA and supported an immunomodulatory role of this enzyme isoform.

  1. Angiotensin (1-7) contributes to nitric oxide tonic inhibition of vasopressin release during hemorrhagic shock in acute ethanol intoxicated rodents

    PubMed Central

    Whitaker, Annie M.; Molina, Patricia E.

    2013-01-01

    Aims Acute ethanol intoxication (AEI) attenuates the arginine vasopressin (AVP) response to hemorrhage leading to impaired hemodynamic counter-regulation and accentuated hemodynamic stability. Previously we identified that the ethanol-induced impairment of circulating AVP concentrations in response to hemorrhage was the result of augmented central nitric oxide (NO) inhibition. The aim of the current study was to examine the mechanisms underlying ethanol-induced up-regulation of paraventricular nucleus (PVN) NO concentration. Angiotensin (ANG) (1-7) is an important mediator of NO production through activation of the Mas receptor. We hypothesized that Mas receptor inhibition would decrease central NO concentration and thus restore the rise in circulating AVP levels during hemorrhagic shock in AEI rats. Main Methods Conscious male Sprague Dawley rats (300-325 g) received a 15h intra-gastric infusion of ethanol (2.5g/kg + 300mg/kg/h) or dextrose prior to a fixed-pressure (~40mmHg) 60 minute hemorrhage. The Mas receptor antagonist A-779 was injected through an intracerebroventricular (ICV) cannula 15 min prior to hemorrhage. Key Findings PVN NOS activity and NO were significantly higher in AEI compared to DEX-treated controls at the completion of hemorrhage. ICV A-779 administration decreased NOS activity and NO concentration, partially restoring the rise in circulating AVP levels completion of hemorrhage in AEI rats. Significance These results suggest that Mas receptor activation contributes to the NO-mediated inhibitory tone of AVP release in the ethanol-intoxicated hemorrhaged host. PMID:24002017

  2. Polyaniline-ZnO nanocomposites as ethanol gas sensors

    NASA Astrophysics Data System (ADS)

    Talegaonkar, Janhavi; Patil, Y. B.; Patil, D. R.

    2018-05-01

    Polyaniline and it`s nanocomposites with ZnO were successfully synthesized by photo-induced polymerization method with various concentrations of ZnO, followed by characterizations viz. SEM, EDAX, XRD, FTIR and UV-Vis. Thick films of synthesized powders were fabricated by screen printing technique for monitoring various gases at different operating temperatures and at various gas concentrations. CuO activated polyaniline-ZnO nano-composite exhibits maximum response of ethanol gas at room temperature. The sensor exhibits high sensitivity, highest selectivity, quick response, fast recovery, long term stability, etc. An exceptional sensitivity was found to low concentrations of ethanol gas at room temperature and no cross sensitivity was observed even to high concentrations of other hazardous and polluting gases. The efforts have been made to develop the ethanol sensor based on PANI and its nanocomposites. The effects of microstructure and surfactant concentration on the ethanol response, selectivity, response and recovery of the sensor in the presence of ethanol gas were studied and discussed.

  3. Effects of Ethanol on Phosphorylation Site Mutants of Recombinant NMDA Receptors

    PubMed Central

    Xu, Minfu; Smothers, Corigan T.; Woodward, John J.

    2010-01-01

    serine-substituted mutant. Ethanol inhibition was increased when T900E was added to the five serine/threonine substituted mutant but again this was selective for NR2A containing receptors. Together with previously published data, these findings suggest that modification of putative phosphorylation sites could contribute to the overall acute ethanol sensitivity of recombinant NMDA receptors. Supported by R37 AA009986. PMID:21163614

  4. Galanin knockout mice show disturbances in ethanol consumption and expression of hypothalamic peptides that stimulate ethanol intake

    PubMed Central

    Karatayev, Olga; Baylan, Jessica; Weed, Valerie; Chang, Siyi; Wynick, David; Leibowitz, Sarah F.

    2009-01-01

    Background There is growing evidence suggesting that hypothalamic galanin (GAL), which is known to stimulate intake of a fat-rich diet, has a role in promoting the consumption of ethanol. The present study further examined this possibility in GAL knockout (GALKO) mice. Methods Two groups of female and male GALKO mice, compared to wild-type (WT) controls, were trained to voluntarily drink increasing concentrations of ethanol, while maintained on lab chow and water. They were examined in terms of their daily ethanol intake and preference, acute consumption of a high-fat diet, preference for flavored solutions, and expression of different peptides shown to stimulate ethanol intake. Results In the GALKO mice compared to WT, the results revealed: 1) a 35-45% decrease in ethanol intake and preference, which was evident only at the highest (15%) ethanol concentration, was stronger in female than in male mice, and was seen with comparisons to littermate as well as non-littermate WT mice; 2) a 48% decrease in acute intake of a fat-rich diet, again stronger in female than male mice; 3) no difference in consumption of sucrose or quinine solutions in preference tests; 4) a total loss of GAL mRNA in the hypothalamic paraventricular nucleus (PVN) of female and male mice; and 5) a gender-specific change in mRNA levels of peptides in the perifornical lateral hypothalamus (PFLH), orexin and melanin-concentrating hormone, which are known to stimulate ethanol and food intake and were markedly decreased in females while increased in males Conclusions These results provide strong support for a physiological role of PVN GAL in stimulating the consumption of ethanol, as well as a fat-rich diet. Ablation of the GAL gene produced a behavioral phenotype, particularly in females, which may reflect the functional relationship of galanin to ovarian steroids. It also altered the peptides in the PFLH, with their reduced expression contributing to the larger behavioral effects observed in females

  5. Adolescent binge-like alcohol alters sensitivity to acute alcohol effects on dopamine release in the nucleus accumbens of adult rats

    PubMed Central

    Shnitko, Tatiana A.; Spear, Linda P.; Robinson, Donita L.

    2015-01-01

    Rationale Early onset of alcohol drinking has been associated with alcohol abuse in adulthood. The neurobiology of this phenomenon is unclear, but mesolimbic dopamine pathways, which are dynamic during adolescence, may play a role. Objectives We investigated the impact of adolescent binge-like alcohol on phasic dopaminergic neurotransmission during adulthood. Methods Rats received intermittent intragastric ethanol, water or nothing during adolescence. In adulthood, electrically-evoked dopamine release and subsequent uptake were measured in the nucleus accumbens core at baseline and after acute challenge of ethanol or saline. Results Adolescent ethanol exposure did not alter basal measures of evoked dopamine release or uptake. Ethanol challenge dose-dependently decreased the amplitude of evoked dopamine release in rats by 30–50% in control groups, as previously reported, but did not alter evoked release in ethanol-exposed animals. To address the mechanism by which ethanol altered dopamine signaling, the evoked signals were modeled to estimate dopamine efflux per impulse and the velocity of the dopamine transporter. Dopamine uptake was slower in all exposure groups after ethanol challenge compared to saline, while dopamine efflux per pulse of electrical stimulation was reduced by ethanol only in ethanol-naive rats. Conclusions The results demonstrate that exposure to binge levels of ethanol during adolescence blunts the effect of ethanol challenge to reduce the amplitude of phasic dopamine release in adulthood. Large dopamine transients may result in more extracellular dopamine after alcohol challenge in adolescent-exposed rats, and may be one mechanism by which alcohol is more reinforcing in people who initiated drinking at an early age. PMID:26487039

  6. Ethanol induces taurine release in the amygdala: an in vivo microdialysis study.

    PubMed

    Quertemont, E; Dahchour, A; Ward, R J; Witte, P

    1999-01-01

    The effect of acute IP ethanol injections on the extracellular aspartate, glutamate, taurine and GABA content of the basolateral amygdala microdialysate was investigated in relationship with total brain ethanol. Each acute intraperitoneal injection of ethanol, 0.5, 1.0, 2.0 and 3.0 g/kg body weight, induced an immediate increase in microdialysate taurine; both 0.5 and 1.0 g/kg ethanol evoked an increase during the first 20 minutes following injection which returned to baseline value by 40 minutes, despite the fact that ethanol was detectable in the brain until 60 or 120 minutes, respectively. After either 2.0 or 3.0 g/kg ethanol there was an increase in taurine of gradual intensity which gradually declined to reach baseline values by 100 minutes. In contrast, the ethanol concentration for 2.0 g/kg remained elevated at the end of the 120 minutes; approximately 25 mg ethanol/mg protein. The stimulated release of taurine within the amygdala could participate in the regulation of ethanoli-nduced changes in osmolarity, since taurine is postulated to act as an osmoregulator in the brain. Taurine could also mediate or interact with ethanol-induced central nervous system effects, as it exerts a modulatory action on cell excitability and neurotransmitter processes.

  7. Evaluation of the acute dermal exposure of the ethanolic and hexanic extracts from leaves of Schinus molle var. areira L. in rats.

    PubMed

    Bras, Cristina; Gumilar, Fernanda; Gandini, Norberto; Minetti, Alejandra; Ferrero, Adriana

    2011-10-11

    Schinus molle var. areira L. (Anacardiaceae) is employed in herbal medicine for many conditions, including respiratory, urinary and menstrual disorders, and as a digestive stimulant, diuretic, astringent and antidepressant. It is also known for its topical use as wound healer, antiseptic, for skin disorders and as repellent and insecticide. In the present work, the acute dermal exposure to ethanolic and hexanic extracts from leaves of Schinus molle var. areira was studied in rats. A single dose of 2000 mg/kg of body weight of ethanolic and hexanic extracts from leaves was applied on the shaved skin of male and female rats. After 24h of exposure, the patch was removed and any sign of irritation was recorded. Behavioral and functional parameters in a functional observational battery and motor activity in an open field were assessed after the exposure to the extracts. Then, after 14 days of observation, animals were retested. Finally, histopathological studies were conducted on several organs. Slight signs of erythema and edema were observed in the skin site of exposure, but they disappeared after 48 h. The exposure to the hexanic extract produced an increase in parameters of activity, rearing and arousal assessed in the functional observational battery, which reversed after 14 days. On the other hand, the ethanolic extract caused an increase in locomotor activity, reflected in a higher number of rearings performed in the open field in the evaluation carried out on Day 14. No histopathological alterations were detected in the analyzed organs. The results show that the acute dermal exposure of the ethanolic and hexanic extracts from leaves of Schinus molle var. areira only causes a slight and reversible skin irritation, and a mild stimulatory effect in rats. All these indicate that the topical use of these extracts would be safe. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  8. Transient Exposure to Ethanol during Zebrafish Embryogenesis Results in Defects in Neuronal Differentiation: An Alternative Model System to Study FASD

    PubMed Central

    Joya, Xavier; Garcia-Algar, Oscar; Vall, Oriol; Pujades, Cristina

    2014-01-01

    Background The exposure of the human embryo to ethanol results in a spectrum of disorders involving multiple organ systems, including the impairment of the development of the central nervous system (CNS). In spite of the importance for human health, the molecular basis of prenatal ethanol exposure remains poorly understood, mainly to the difficulty of sample collection. Zebrafish is now emerging as a powerful organism for the modeling and the study of human diseases. In this work, we have assessed the sensitivity of specific subsets of neurons to ethanol exposure during embryogenesis and we have visualized the sensitive embryonic developmental periods for specific neuronal groups by the use of different transgenic zebrafish lines. Methodology/Principal Findings In order to evaluate the teratogenic effects of acute ethanol exposure, we exposed zebrafish embryos to ethanol in a given time window and analyzed the effects in neurogenesis, neuronal differentiation and brain patterning. Zebrafish larvae exposed to ethanol displayed small eyes and/or a reduction of the body length, phenotypical features similar to the observed in children with prenatal exposure to ethanol. When neuronal populations were analyzed, we observed a clear reduction in the number of differentiated neurons in the spinal cord upon ethanol exposure. There was a decrease in the population of sensory neurons mainly due to a decrease in cell proliferation and subsequent apoptosis during neuronal differentiation, with no effect in motoneuron specification. Conclusion Our investigation highlights that transient exposure to ethanol during early embryonic development affects neuronal differentiation although does not result in defects in early neurogenesis. These results establish the use of zebrafish embryos as an alternative research model to elucidate the molecular mechanism(s) of ethanol-induced developmental toxicity at very early stages of embryonic development. PMID:25383948

  9. Quantification of ethanol in plasma by electrochemical detection with an unmodified screen printed carbon electrode

    NASA Astrophysics Data System (ADS)

    Tian, Gang; Zhang, Xiao-Qing; Zhu, Ming-Song; Zhang, Zhong; Shi, Zheng-Hu; Ding, Min

    2016-03-01

    Simple, rapid and accurate detection of ethanol concentration in blood is very crucial in the diagnosis and management of potential acute ethanol intoxication patients. A novel electrochemical detection method was developed for the quantification of ethanol in human plasma with disposable unmodified screen-printed carbon electrode (SPCE) without sample preparation procedure. Ethanol was detected indirectly by the reaction product of ethanol dehydrogenase (ADH) and cofactor nicotinamide adenine dinucleotide (NAD+). Method validation indicated good quantitation precisions with intra-day and inter-day relative standard deviations of ≤9.4% and 8.0%, respectively. Ethanol concentration in plasma is linear ranging from 0.10 to 3.20 mg/mL, and the detection limit is 40.0 μg/mL (S/N > 3). The method shows satisfactory correlation with the reference method of headspace gas chromatography in twenty human plasma samples (correlation coefficient 0.9311). The proposed method could be applied to diagnose acute ethanol toxicity or ethanol-related death.

  10. Quantification of ethanol in plasma by electrochemical detection with an unmodified screen printed carbon electrode

    PubMed Central

    Tian, Gang; Zhang, Xiao-Qing; Zhu, Ming-Song; Zhang, Zhong; Shi, Zheng-Hu; Ding, Min

    2016-01-01

    Simple, rapid and accurate detection of ethanol concentration in blood is very crucial in the diagnosis and management of potential acute ethanol intoxication patients. A novel electrochemical detection method was developed for the quantification of ethanol in human plasma with disposable unmodified screen-printed carbon electrode (SPCE) without sample preparation procedure. Ethanol was detected indirectly by the reaction product of ethanol dehydrogenase (ADH) and cofactor nicotinamide adenine dinucleotide (NAD+). Method validation indicated good quantitation precisions with intra-day and inter-day relative standard deviations of ≤9.4% and 8.0%, respectively. Ethanol concentration in plasma is linear ranging from 0.10 to 3.20 mg/mL, and the detection limit is 40.0 μg/mL (S/N > 3). The method shows satisfactory correlation with the reference method of headspace gas chromatography in twenty human plasma samples (correlation coefficient 0.9311). The proposed method could be applied to diagnose acute ethanol toxicity or ethanol-related death. PMID:27006081

  11. Period 2 gene deletion abolishes β-endorphin neuronal response to ethanol

    PubMed Central

    Agapito, Maria; Mian, Nadia; Boyadjieva, Nadka I.; Sarkar, Dipak K.

    2010-01-01

    Background Ethanol exposure during early life has been shown to permanently alter the circadian expression of clock regulatory genes and the β-endorphin precursor proopiomelanocortin (POMC) gene in the hypothalamus. Ethanol also alters the stress- and immune-regulatory functions of β-endorphin neurons in laboratory rodents. Our aim was to determine whether the circadian clock regulatory Per2 gene modulates the action of ethanol on β-endorphin neurons in mice. Methods Per2 mutant (mPer2Brdml) and wild type (C57BL/6J) mice were used to determine the effect of Per2 mutation on ethanol-regulated β-endorphin neuronal activity during neonatal period using an in vitro mediobasal hypothalamic (MBH) cell culture model and an in vivo milk formula feeding animal model. The β-endorphin neuronal activity following acute and chronic ethanol treatments, was evaluated by measuring the peptide released from cultured cells or peptide levels in the MBH tissues, using enzyme-linked immunosorbent assay (ELISA). Results Per2 mutant mice showed a higher basal level of β-endorphin release from cultured MBH cells and a moderate increase in the peptide content in the MBH in comparison to control mice. However, unlike wild type mice, Per2 mutant mice showed no stimulatory or inhibitory β-endorphin secretory responses to acute and chronic ethanol challenges in vitro. Furthermore, Per2 mutant mice, but not wild type mice, failed to show the stimulatory and inhibitory responses of MBH β-endorphin levels to acute and chronic ethanol challenges in vivo. Conclusions These results suggest for the first time that the Per2 gene may be critically involved in regulating β-endorphin neuronal function. Furthermore, the data revealed an involvement of the Per2 gene in regulating β-endorphin neuronal responses to ethanol. PMID:20586752

  12. Molecular mechanisms of ethanol tolerance in Saccharomyces cerevisiae

    USDA-ARS?s Scientific Manuscript database

    The yeast Saccharomyces cerevisiae is a superb ethanol producer, yet sensitive to ethanol at higher concentrations especially under high gravity or very high gravity fermentation conditions. Although significant efforts have been made to study ethanol-stress response in past decades, molecular mecha...

  13. CD24 Expression Identifies Teratogen-Sensitive Fetal Neural Stem Cell Subpopulations: Evidence from Developmental Ethanol Exposure and Orthotopic Cell Transfer Models

    PubMed Central

    Tingling, Joseph D.; Bake, Shameena; Holgate, Rhonda; Rawlings, Jeremy; Nagsuk, Phillips P.; Chandrasekharan, Jayashree; Schneider, Sarah L.; Miranda, Rajesh C.

    2013-01-01

    Background Ethanol is a potent teratogen. Its adverse neural effects are partly mediated by disrupting fetal neurogenesis. The teratogenic process is poorly understood, and vulnerable neurogenic stages have not been identified. Identifying these is a prerequisite for therapeutic interventions to mitigate effects of teratogen exposures. Methods We used flow cytometry and qRT-PCR to screen fetal mouse-derived neurosphere cultures for ethanol-sensitive neural stem cell (NSC) subpopulations, to study NSC renewal and differentiation. The identity of vulnerable NSC populations was validated in vivo, using a maternal ethanol exposure model. Finally, the effect of ethanol exposure on the ability of vulnerable NSC subpopulations to integrate into the fetal neurogenic environment was assessed following ultrasound guided, adoptive transfer. Results Ethanol decreased NSC mRNAs for c-kit, Musashi-1and GFAP. The CD24+ NSC population, specifically the CD24+CD15+ double-positive subpopulation, was selectively decreased by ethanol. Maternal ethanol exposure also resulted in decreased fetal forebrain CD24 expression. Ethanol pre-exposed CD24+ cells exhibited increased proliferation, and deficits in cell-autonomous and cue-directed neuronal differentiation, and following orthotopic transplantation into naïve fetuses, were unable to integrate into neurogenic niches. CD24depleted cells retained neurosphere regeneration capacity, but following ethanol exposure, generated increased numbers of CD24+ cells relative to controls. Conclusions Neuronal lineage committed CD24+ cells exhibit specific vulnerability, and ethanol exposure persistently impairs this population’s cell-autonomous differentiation capacity. CD24+ cells may additionally serve as quorum sensors within neurogenic niches; their loss, leading to compensatory NSC activation, perhaps depleting renewal capacity. These data collectively advance a mechanistic hypothesis for teratogenesis leading to microencephaly. PMID:23894503

  14. Ethanol Reversal of Oxycodone Tolerance in Dorsal Root Ganglia Neurons.

    PubMed

    Jacob, Joanna C; Sakakibara, Kensuke; Mischel, Ryan A; Henderson, Graeme; Dewey, William L; Akbarali, Hamid I

    2018-05-01

    Oxycodone is a semisynthetic opioid compound that is widely prescribed, used, and abused today, and has a well-established role in shaping the current opioid epidemic. Previously, we have shown that tolerance develops to the antinociceptive and respiratory depressive effects of oxycodone in mice, and that a moderate dose of acute ethanol or a protein kinase C (PKC) inhibitor reversed that tolerance. To investigate further if tolerance was occurring through neuronal mechanisms, our aims for this study were to assess the effects of acute and prolonged oxycodone in isolated dorsal root ganglia (DRG) neurons and to determine if this tolerance was reversed by either ethanol or a PKC inhibitor. We found that an acute exposure to 3 μ M oxycodone reduced neuronal excitability, as measured by increased threshold potentials and reduced action potential amplitude, without eliciting measurable changes in resting membrane potential. Exposure to 10 μ M oxycodone for 18-24 hours prevented oxycodone's effect on neuronal excitability, indicative of tolerance development. The development of opioid tolerance was mitigated in DRG neurons from β -arrestin 2 knockout mice. Oxycodone tolerance was reversed in isolated DRG neurons by the acute application of either ethanol (20 mM) or the PKC inhibitor, bisindolylmaleimide XI hydrochloride (Bis XI), when a challenge of 3 µ M oxycodone significantly reduced neuronal excitability following prolonged exposure. Through these studies, we concluded that oxycodone acutely reduced neuronal excitability, tolerance developed to this effect, and reversal of that tolerance occurred at the level of a single neuron, suggesting that reversal of oxycodone tolerance by either ethanol or Bis XI involves cellular mechanisms. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.

  15. The estimated sensitivity and specificity of compartment pressure monitoring for acute compartment syndrome.

    PubMed

    McQueen, Margaret M; Duckworth, Andrew D; Aitken, Stuart A; Court-Brown, Charles M

    2013-04-17

    The aim of our study was to document the estimated sensitivity and specificity of continuous intracompartmental pressure monitoring for the diagnosis of acute compartment syndrome. From our prospective trauma database, we identified all patients who had sustained a tibial diaphyseal fracture over a ten-year period. A retrospective analysis of 1184 patients was performed to record and analyze the documented use of continuous intracompartmental pressure monitoring and the use of fasciotomy. A diagnosis of acute compartment syndrome was made if there was escape of muscles at fasciotomy and/or color change in the muscles or muscle necrosis intraoperatively. A diagnosis of acute compartment syndrome was considered incorrect if it was possible to close the fasciotomy wounds primarily at forty-eight hours. The absence of acute compartment syndrome was confirmed by the absence of neurological abnormality or contracture at the time of the latest follow-up. Of 979 monitored patients identified, 850 fit the inclusion criteria with a mean age of thirty-eight years (range, twelve to ninety-four years), and 598 (70.4%) were male (p < 0.001). A total of 152 patients (17.9%) underwent fasciotomy for the treatment of acute compartment syndrome: 141 had acute compartment syndrome (true positives), six did not have it (false positives), and five underwent fasciotomy despite having a normal differential pressure reading, with subsequent operative findings consistent with acute compartment syndrome (false negatives). Of the 698 patients (82.1%) who did not undergo fasciotomy, 689 had no evidence of any late sequelae of acute compartment syndrome (true negatives) at a mean follow-up time of fifty-nine weeks. The estimated sensitivity of intracompartmental pressure monitoring for suspected acute compartment syndrome was 94%, with an estimated specificity of 98%, an estimated positive predictive value of 93%, and an estimated negative predictive value of 99%. The estimated sensitivity and

  16. Ethanol-induced locomotor activity in adolescent rats and the relationship with ethanol-induced conditioned place preference and conditioned taste aversion.

    PubMed

    Acevedo, María Belén; Nizhnikov, Michael E; Spear, Norman E; Molina, Juan C; Pautassi, Ricardo M

    2013-05-01

    Adolescent rats exhibit ethanol-induced locomotor activity (LMA), which is considered an index of ethanol's motivational properties likely to predict ethanol self-administration, but few studies have reported or correlated ethanol-induced LMA with conditioned place preference (CPP) by ethanol at this age. The present study assessed age-related differences in ethanol's motor stimulating effects and analyzed the association between ethanol-induced LMA and conventional measures of ethanol-induced reinforcement. Experiment 1 compared ethanol-induced LMA in adolescent and adult rats. Subsequent experiments analyzed ethanol-induced CPP and conditioned taste aversion (CTA) in adolescent rats evaluated for ethanol-induced LMA. Adolescent rats exhibit a robust LMA after high-dose ethanol. Ethanol-induced LMA was fairly similar across adolescents and adults. As expected, adolescents were sensitive to ethanol's aversive reinforcement, but they also exhibited CPP. These measures of ethanol reinforcement, however, were not related to ethanol-induced LMA. Spontaneous LMA in an open field was, however, negatively associated with ethanol-induced CTA. Copyright © 2012 Wiley Periodicals, Inc.

  17. The protective activity of Conyza blinii saponin against acute gastric ulcer induced by ethanol.

    PubMed

    Ma, Long; Liu, Jiangguang

    2014-12-02

    Conyza blinii H.Lév., is a type of natural plant. Its dried overground section is used to treat infections and inflammations in traditional Chinese medicine. Triterpenoidal saponins have a wide range of bioactivities, for instance, anti-cancer, anti-virus and anti-anaphylaxis. Conyza blinii saponin (CBS), mainly composed of triterpenoidal saponins, is the total saponin of Conyza blinii H.Lév. It has been reported that CBS also has gastric mucous membrane protection activity. This study aims to test CBS׳s protective activity of gastric׳s mucous membrane against ethanol. This investigation may lead to the development of novel drug from natural products as anti-ulcer agent, or as gastric mucous protective against chemical damage. CBS (Conyza blinii saponin) is the total saponin of Conyza blinii H.Lév., which was obtained as described previously. We tested the protective activity of CBS against ethanol-induced ulcer. Thirty six rats were grouped randomly as 'NORMAL', 'CONTROL', 'MODEL', 'LOW DOSE', 'MEDIUM DOSE' and 'HIGH DOSE'. The 'NORMAL' group were rats with no pathological model established within it. The 'CONTROL' group was administrated with colloidal bismuth subcitrate, while 'MODEL' group was not given any active agents apart from absolute ethanol in order to obtain gastric ulcer model. The three 'DOSE' groups were treated with different concentrations of CBS (5, 10, 20mg/mL) before administration followed by absolute ethanol. All rats were sacrificed after the experiment to acquire the gastric tissue. The ulcer index (UI), malondialdehyde (MDA) and superoxide dismutase (SOD) were measured to monitor the activity of CBS. Besides, the rat gastric tissue was made to paraffin section and stained using the Hematoxylin-Eosin (HE) method. The histopathology examination was carried out to examine CBS efficacy in terms of gastric mucous protection. We found that CBS had a profound protection activity against acute gastric ulcer induced by ethanol and this

  18. Graphene-oxide-coated interferometric optical microfiber ethanol vapor sensor.

    PubMed

    Zhang, Jingle; Fu, Haiwei; Ding, Jijun; Zhang, Min; Zhu, Yi

    2017-11-01

    A graphene-oxide-coated interferometric microfiber-sensor-based polarization-maintaining optical fiber is proposed for highly sensitive detecting for ethanol vapor concentration at room temperature in this paper. The strong sensing capability of the sensor to detect the concentration of ethanol vapor is demonstrated, taking advantage of the evanescent field enhancement and gas absorption of a graphene-oxide-coated microfiber. The transmission spectrum of the sensor varies with concentrations of ethanol vapor, and the redshift of the transmission spectrum has been analyzed for the concentration range from 0 to 80 ppm with sensitivity as high as 0.138 nm/ppm. The coated graphene oxide layer induces the evanescent field enhancement and gas selective adsorption, which improves sensitivity and selectivity of the microfiber gas sensor for ethanol vapor detection.

  19. Ethanol increases HSP70 concentrations in honeybee (Apis mellifera L.) brain tissue.

    PubMed

    Hranitz, John M; Abramson, Charles I; Carter, Richard P

    2010-05-01

    Previous research on the honeybee ethanol model established how acute ethanol exposure altered function at different levels of organization: behavior and learning, ecology, and physiology. The purpose of this study was to evaluate whether ethanol doses that affect honeybee behavior also induce a significant stress response, measured by heat shock protein 70 (HSP70) concentrations, in honeybee brain tissues. Experiment 1 examined how pretreatment handling influenced brain HSP70 concentrations in three pretreatment groups of bees; immediately after being collected, after being harnessed and fed, and after 22-24h in a harness. HSP70 concentrations did not differ among pretreatment groups within replicates, although we observed significantly different HSP70 concentrations between the two replicates. Experiment 2 investigated the relationship between ethanol dose and brain HSP70 concentrations. Bees were placed in seven experimental groups, the three pretreatment groups as in Experiment 1 and four ethanol-fed groups. Bees in ethanol treatments were fed 1.5M sucrose (control) and 1.5M sucrose-ethanol solutions containing 2.5, 5, and 10% ethanol, allowed to sit for 4h, and dissected brains were assayed for HSP70. We observed ethanol-induced increases in honeybee brain HSP70 concentrations from the control group through the 5% ethanol group. Only bees in the 5% ethanol group had HSP70 concentrations significantly higher than the control group. The inverted U-shaped ethanol dose-HSP70 concentration response curve indicated that ingestion of 2.5% ethanol and 5% ethanol stimulated the stress response, whereas ingestion of 10% ethanol inhibited the stress response. Doses that show maximum HSP70 concentration (5% ethanol) or HSP70 inhibition (10% ethanol) correspond to those (> or =5% ethanol) that also impaired honeybees in previous studies. We conclude that acute ethanol intoxication by solutions containing > or =5% ethanol causes significant ethanol-induced stress in brain

  20. S-adenosylmethionine decreases the peak blood alcohol levels 3 h after an acute bolus of ethanol by inducing alcohol metabolizing enzymes in the liver.

    PubMed

    Bardag-Gorce, Fawzia; Oliva, Joan; Wong, Wesley; Fong, Stephanie; Li, Jun; French, Barbara A; French, Samuel W

    2010-12-01

    An alcohol bolus causes the blood alcohol level (BAL) to peak at 1-2 h post ingestion. The ethanol elimination rate is regulated by alcohol metabolizing enzymes, primarily alcohol dehydrogenase (ADH1), acetaldehyde dehydrogenase (ALDH), and cytochrome P450 (CYP2E1). Recently, S-adenosylmethionine (SAMe) was found to reduce acute BALs 3 h after an alcohol bolus. The question, then, was: what is the mechanism involved in this reduction of BAL by feeding SAMe? To answer this question, we investigated the changes in ethanol metabolizing enzymes and the epigenetic changes that regulate the expression of these enzymes during acute binge drinking and chronic drinking. Rats were fed a bolus of ethanol with or without SAMe, and were sacrificed at 3 h or 12 h after the bolus. RT-PCR and Western blot analyses showed that SAMe significantly induced ADH1 levels in the 3 h liver samples. However, SAMe did not affect the changes in ADH1 protein levels 12 h post bolus. Since SAMe is a methyl donor, it was postulated that the ADH1 gene expression up regulation at 3 h was due to a histone modification induced by methylation from methyl transferases. Dimethylated histone 3 lysine 4 (H3K4me2), a modification responsible for gene expression activation, was found to be significantly increased by SAMe at 3 h post bolus. These results correlated with the low BAL found at 3 h post bolus, and support the concept that SAMe increased the gene expression to increase the elimination rate of ethanol in binge drinking by increasing H3K4me2. Copyright © 2010 Elsevier Inc. All rights reserved.

  1. Modulation of Ethanol Withdrawal–Induced Anxiety-Like Behavior During Later Withdrawals by Treatment of Early Withdrawals With Benzodiazepine/γ-Aminobutyric Acid Ligands

    PubMed Central

    Knapp, Darin J.; Overstreet, David H.; Breese, George R.

    2010-01-01

    Background Anxiety states, including those arising during acute or protracted withdrawal periods, may be precipitating factors in alcoholic relapse. Given the cyclical nature of ethanol withdrawal associated with repeated cycles of ethanol intake and abstinence in a pattern that often spans years, meaningful attempts to model ethanol withdrawal–associated anxiety should incorporate cycled ethanol treatments. The studies reported herein examined the effects of γ-aminobutyric acid–modulating drugs on social interaction behavior—an established model of anxiety—in rats exposed to repeated cycles of ethanol treatment and withdrawal. Methods Rats were exposed to 8 to 12 g/kg/day ethanol during three 7-day dietary cycles (5 days on ethanol diet followed by 2 days on control diet). Ethanol was administered either at hour 4 of withdrawal after cessation of each of the first 2 ethanol cycles or during the final withdrawal only. In other groups, the early withdrawals were treated with alphaxalone, diazepam, PK11159, or flumazenil to block anxiety-like behavior during an untreated later (third) withdrawal. The benzodiazepine inverse agonist DMCM (methyl–6, 7–dymerhoxy–4–ethyl–beta–carboline–3–carboxylate) was also given repeatedly to determine whether it would sensitize anxiety-like behavior during a future withdrawal. Finally, the effects of all drugs on deficits in locomotor behavior were assessed. Results Pretreatment of earlier withdrawals with alphaxalone, diazepam, ethanol, or flumazenil reduced social interaction deficits during a later withdrawal, but pretreatment with PK11195 did not. In contrast, DMCM administered in lieu of early withdrawals increased social interaction deficits during an untreated later withdrawal. Locomotor deficits were significantly reversed only by the acute ethanol and diazepam treatment during the final withdrawal. Conclusions Single-dose administration of drugs that enhance or diminish activity at benzodiazepine

  2. Modulation of ethanol withdrawal-induced anxiety-like behavior during later withdrawals by treatment of early withdrawals with benzodiazepine/gamma-aminobutyric acid ligands.

    PubMed

    Knapp, Darin J; Overstreet, David H; Breese, George R

    2005-04-01

    Anxiety states, including those arising during acute or protracted withdrawal periods, may be precipitating factors in alcoholic relapse. Given the cyclical nature of ethanol withdrawal associated with repeated cycles of ethanol intake and abstinence in a pattern that often spans years, meaningful attempts to model ethanol withdrawal-associated anxiety should incorporate cycled ethanol treatments. The studies reported herein examined the effects of gamma-aminobutyric acid-modulating drugs on social interaction behavior-an established model of anxiety-in rats exposed to repeated cycles of ethanol treatment and withdrawal. Rats were exposed to 8 to 12 g/kg/day ethanol during three 7-day dietary cycles (5 days on ethanol diet followed by 2 days on control diet). Ethanol was administered either at hour 4 of withdrawal after cessation of each of the first 2 ethanol cycles or during the final withdrawal only. In other groups, the early withdrawals were treated with alphaxalone, diazepam, PK11159, or flumazenil to block anxiety-like behavior during an untreated later (third) withdrawal. The benzodiazepine inverse agonist DMCM (methyl-6, 7-dymerhoxy-4-ethyl-beta-carboline-3-carboxylate) was also given repeatedly to determine whether it would sensitize anxiety-like behavior during a future withdrawal. Finally, the effects of all drugs on deficits in locomotor behavior were assessed. Pretreatment of earlier withdrawals with alphaxalone, diazepam, ethanol, or flumazenil reduced social interaction deficits during a later withdrawal, but pretreatment with PK11195 did not. In contrast, DMCM administered in lieu of early withdrawals increased social interaction deficits during an untreated later withdrawal. Locomotor deficits were significantly reversed only by the acute ethanol and diazepam treatment during the final withdrawal. Single-dose administration of drugs that enhance or diminish activity at benzodiazepine-gamma-aminobutyric acid- receptors during earlier withdrawals

  3. Effects of the Acute and Chronic Ethanol Intoxication on Acetate Metabolism and Kinetics in the Rat Brain.

    PubMed

    Hsieh, Ya-Ju; Wu, Liang-Chih; Ke, Chien-Chih; Chang, Chi-Wei; Kuo, Jung-Wen; Huang, Wen-Sheng; Chen, Fu-Du; Yang, Bang-Hung; Tai, Hsiao-Ting; Chen, Sharon Chia-Ju; Liu, Ren-Shyan

    2018-02-01

    Ethanol (EtOH) intoxication inhibits glucose transport and decreases overall brain glucose metabolism; however, humans with long-term EtOH consumption were found to have a significant increase in [1- 11 C]-acetate uptake in the brain. The relationship between the cause and effect of [1- 11 C]-acetate kinetics and acute/chronic EtOH intoxication, however, is still unclear. [1- 11 C]-acetate positron emission tomography (PET) with dynamic measurement of K 1 and k 2 rate constants was used to investigate the changes in acetate metabolism in different brain regions of rats with acute or chronic EtOH intoxication. PET imaging demonstrated decreased [1- 11 C]-acetate uptake in rat brain with acute EtOH intoxication, but this increased with chronic EtOH intoxication. Tracer uptake rate constant K 1 and clearance rate constant k 2 were decreased in acutely intoxicated rats. No significant change was noted in K 1 and k 2 in chronic EtOH intoxication, although 6 of 7 brain regions showed slightly higher k 2 than baseline. These results indicate that acute EtOH intoxication accelerated acetate transport and metabolism in the rat brain, whereas chronic EtOH intoxication status showed no significant effect. In vivo PET study confirmed the modulatory role of EtOH, administered acutely or chronically, in [1- 11 C]-acetate kinetics and metabolism in the rat brain. Acute EtOH intoxication may inhibit the transport and metabolism of acetate in the brain, whereas chronic EtOH exposure may lead to the adaptation of the rat brain to EtOH in acetate utilization. [1- 11 C]-acetate PET imaging is a feasible approach to study the effect of EtOH on acetate metabolism in rat brain. Copyright © 2017 by the Research Society on Alcoholism.

  4. Reduced fear-recognition sensitivity following acute buprenorphine administration in healthy volunteers.

    PubMed

    Ipser, Jonathan C; Terburg, David; Syal, Supriya; Phillips, Nicole; Solms, Mark; Panksepp, Jaak; Malcolm-Smith, Susan; Thomas, Kevin; Stein, Dan J; van Honk, Jack

    2013-01-01

    In rodents, the endogenous opioid system has been implicated in emotion regulation, and in the reduction of fear in particular. In humans, while there is evidence that the opioid antagonist naloxone acutely enhances the acquisition of conditioned fear, there are no corresponding data on the effect of opioid agonists in moderating responses to fear. We investigated whether a single 0.2mg administration of the mu-opioid agonist buprenorphine would decrease fear sensitivity with an emotion-recognition paradigm. Healthy human subjects participated in a randomized placebo-controlled within-subject design, in which they performed a dynamic emotion recognition task 120min after administration of buprenorphine and placebo. In the recognition task, basic emotional expressions were morphed between their full expression and neutral in 2% steps, and presented as dynamic video-clips with final frames of different emotional intensity for each trial, which allows for a fine-grained measurement of emotion sensitivity. Additionally, visual analog scales were used to investigate acute effects of buprenorphine on mood. Compared to placebo, buprenorphine resulted in a significant reduction in the sensitivity for recognizing fearful facial expressions exclusively. Our data demonstrate, for the first time in humans, that acute up-regulation of the opioid system reduces fear recognition sensitivity. Moreover, the absence of an effect of buprenorphine on mood provides evidence of a direct influence of opioids upon the core fear system in the human brain. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Ethanol Microsensors with a Readout Circuit Manufactured Using the CMOS-MEMS Technique

    PubMed Central

    Yang, Ming-Zhi; Dai, Ching-Liang

    2015-01-01

    The design and fabrication of an ethanol microsensor integrated with a readout circuit on-a-chip using the complementary metal oxide semiconductor (CMOS)-microelectro-mechanical system (MEMS) technique are investigated. The ethanol sensor is made up of a heater, a sensitive film and interdigitated electrodes. The sensitive film is tin dioxide that is prepared by the sol-gel method. The heater is located under the interdigitated electrodes, and the sensitive film is coated on the interdigitated electrodes. The sensitive film needs a working temperature of 220 °C. The heater is employed to provide the working temperature of sensitive film. The sensor generates a change in capacitance when the sensitive film senses ethanol gas. A readout circuit is used to convert the capacitance variation of the sensor into the output frequency. Experiments show that the sensitivity of the ethanol sensor is 0.9 MHz/ppm. PMID:25594598

  6. Ethanol microsensors with a readout circuit manufactured using the CMOS-MEMS technique.

    PubMed

    Yang, Ming-Zhi; Dai, Ching-Liang

    2015-01-14

    The design and fabrication of an ethanol microsensor integrated with a readout circuit on-a-chip using the complementary metal oxide semiconductor (CMOS)-microelectro -mechanical system (MEMS) technique are investigated. The ethanol sensor is made up of a heater, a sensitive film and interdigitated electrodes. The sensitive film is tin dioxide that is prepared by the sol-gel method. The heater is located under the interdigitated electrodes, and the sensitive film is coated on the interdigitated electrodes. The sensitive film needs a working temperature of 220 °C. The heater is employed to provide the working temperature of sensitive film. The sensor generates a change in capacitance when the sensitive film senses ethanol gas. A readout circuit is used to convert the capacitance variation of the sensor into the output frequency. Experiments show that the sensitivity of the ethanol sensor is 0.9 MHz/ppm.

  7. Sex Differences in Ethanol’s Anxiolytic Effect and Chronic Ethanol Withdrawal Severity in Mice With a Null Mutation of the 5α-Reductase Type 1 Gene

    PubMed Central

    Tanchuck-Nipper, Michelle A.; Ford, Matthew M.; Hertzberg, Anna; Beadles-Bohling, Amy; Cozzoli, Debra K.; Finn, Deborah A.

    2015-01-01

    Manipulation of endogenous levels of the GABAergic neurosteroid allopregnanolone alters sensitivity to some effects of ethanol. Chronic ethanol withdrawal decreases activity and expression of 5α-reductase-1, an important enzyme in allopregnanolone biosynthesis encoded by the 5α-reductase-1 gene (Srd5a1). The present studies examined the impact of Srd5a1 deletion in male and female mice on several acute effects of ethanol and on chronic ethanol withdrawal severity. Genotype and sex did not differentially alter ethanol-induced hypothermia, ataxia, hypnosis, or metabolism, but ethanol withdrawal was significantly lower in female versus male mice. On the elevated plus maze, deletion of the Srd5a1 gene significantly decreased ethanol’s effect on total entries versus wildtype (WT) mice and significantly decreased ethanol’s anxiolytic effect in female knockout (KO) versus WT mice. The limited sex differences in the ability of Srd5a1 genotype to modulate select ethanol effects may reflect an interaction between developmental compensations to deletion of the Srd5a1 gene with sex hormones and levels of endogenous neurosteroids. PMID:25355320

  8. Effects of acute ethanol administration and chronic stress exposure on social investigation and 50kHz ultrasonic vocalizations in adolescent and adult male Sprague-Dawley rats.

    PubMed

    Willey, Amanda R; Spear, Linda P

    2013-04-01

    Adolescents drink largely in social situations, likely in an attempt to facilitate social interactions. This study sought to examine alterations in the incentive salience of a social stimulus following repeated stress exposure and acute ethanol administration in adolescent and adult male Sprague-Dawley rats. Subjects were either exposed to 5days of restraint stress, chronic variable stress (CVS), which consisted of a different stressor every day, or non-stressed. On test day, the animals were injected with 0, 0.25, 0.5, or 0.75g/kg ethanol and placed in a social approach test in which they could see, hear, and smell a social conspecific, but could not physically interact with it. All the animals showed an interest in the social stimulus, with adolescents engaging in more social investigation than adults. Restraint stressed adults showed ethanol-induced increases in social investigation, while ethanol effects were not seen in any other group. An ethanol-associated increase in 50kHz ultrasonic vocalization (USV) production was only evident in restraint stressed adolescents following 0.75g/kg ethanol. 50kHz USVs were not correlated with time spent investigating the social stimulus in any test condition. These results show that age differences in the facilitatory effects of ethanol on incentive salience of social stimuli are moderated by stress, with the facilitation of social approach by ethanol only evident in restraint stressed adults. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Reversal of ethanol-induced hepatotoxicity by cinnamic and syringic acids in mice.

    PubMed

    Yan, Sheng-Lei; Wang, Zhi-Hong; Yen, Hsiu-Fang; Lee, Yi-Ju; Yin, Mei-Chin

    2016-12-01

    Ethanol was used to induce acute hepatotoxicity in mice. Effects of cinnamic acid (CA) and syringic acid (SA) post-intake for hepatic recovery from alcoholic injury was investigated. Ethanol treated mice were supplied by CA or SA at 40 or 80 mg/kg BW/day for 5 days. Results showed that ethanol stimulated protein expression of CYP2E1, p47 phox , gp91 phox , cyclooxygenase-2 and nuclear factor kappa B in liver. CA or SA post-intake restricted hepatic expression of these molecules. Ethanol suppressed nuclear factor erythroid 2-related factor (Nrf2) expression, and CA or SA enhanced Nrf2 expression in cytosolic and nuclear fractions. Ethanol increased the release of reactive oxygen species, oxidized glutathione, interleukin-6, tumor necrosis factor-alpha, nitric acid and prostaglandin E 2 . CA or SA lowered hepatic production of these oxidative and inflammatory factors. Histological data revealed that ethanol administration caused obvious foci of inflammatory cell infiltration, and CA or SA post-intake improved hepatic inflammatory infiltration. These findings support that cinnamic acid and syringic acid are potent nutraceutical agents for acute alcoholic liver disease therapy. However, potential additive or synergistic benefits of cinnamic and syringic acids against ethanol-induced hepatotoxicity need to be investigated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. A preliminary study on the effects of acute ethanol ingestion on default mode network and temporal fractal properties of the brain.

    PubMed

    Weber, Alexander M; Soreni, Noam; Noseworthy, Michael D

    2014-08-01

    To study the effect of acute alcohol intoxication on the functional connectivity of the default mode network (DMN) and temporal fractal properties of the healthy adult brain. Eleven healthy male volunteers were asked to drink 0.59 g/kg of ethanol. Resting state blood oxygen level dependent (rsBOLD) MRI scans were obtained before consumption, 60 min post-consumption and 90 min post-consumption. Before each rsBOLD scan, pointed-resolved spectroscopy (PRESS) (1)H-MRS (magnetic resonance spectroscopy) scans were acquired to measure ethanol levels in the right basal ganglia. Significant changes in DMN connectivity were found following alcohol consumption (p < 0.01). Both increased and decreased regional connectivity were found after 60 min, whereas mostly decreased connectivity was found after 90 min. The fractal behaviour of the rsBOLD signal, which is believed to help reveal complexity of small-scale neuronal circuitry, became more ordered after both 60 and 90 min of alcohol consumption (p < 0.01). The DMN has been linked to personal identity and social behavior. As such, our preliminary findings may provide insight into the neuro-functional underpinnings of the cognitive and behavioral changes observed during acute alcohol intoxication. The reduced fractal dimension implies a change in function of small-scale neural networks towards less complex signaling.

  11. The influence of Adh function on ethanol preference and tolerance in adult Drosophila melanogaster.

    PubMed

    Ogueta, Maite; Cibik, Osman; Eltrop, Rouven; Schneider, Andrea; Scholz, Henrike

    2010-11-01

    Preference determines behavioral choices such as choosing among food sources and mates. One preference-affecting chemical is ethanol, which guides insects to fermenting fruits or leaves. Here, we show that adult Drosophila melanogaster prefer food containing up to 5% ethanol over food without ethanol and avoid food with high levels (23%) of ethanol. Although female and male flies behaved differently at ethanol-containing food sources, there was no sexual dimorphism in the preference for food containing modest ethanol levels. We also investigated whether Drosophila preference, sensitivity and tolerance to ethanol was related to the activity of alcohol dehydrogenase (Adh), the primary ethanol-metabolizing enzyme in D. melanogaster. Impaired Adh function reduced ethanol preference in both D. melanogaster and a related species, D. sechellia. Adh-impaired flies also displayed reduced aversion to high ethanol concentrations, increased sensitivity to the effects of ethanol on postural control, and negative tolerance/sensitization (i.e., a reduction of the increased resistance to ethanol's effects that normally occurs upon repeated exposure). These data strongly indicate a linkage between ethanol-induced behavior and ethanol metabolism in adult fruit flies: Adh deficiency resulted in reduced preference to low ethanol concentrations and reduced aversion to high ones, despite recovery from ethanol being strongly impaired.

  12. Acute Stress Decreases but Chronic Stress Increases Myocardial Sensitivity to Ischemic Injury in Rodents

    PubMed Central

    Eisenmann, Eric D.; Rorabaugh, Boyd R.; Zoladz, Phillip R.

    2016-01-01

    Cardiovascular disease (CVD) is the largest cause of mortality worldwide, and stress is a significant contributor to the development of CVD. The relationship between acute and chronic stress and CVD is well evidenced. Acute stress can lead to arrhythmias and ischemic injury. However, recent evidence in rodent models suggests that acute stress can decrease sensitivity to myocardial ischemia–reperfusion injury (IRI). Conversely, chronic stress is arrhythmogenic and increases sensitivity to myocardial IRI. Few studies have examined the impact of validated animal models of stress-related psychological disorders on the ischemic heart. This review examines the work that has been completed using rat models to study the effects of stress on myocardial sensitivity to ischemic injury. Utilization of animal models of stress-related psychological disorders is critical in the prevention and treatment of cardiovascular disorders in patients experiencing stress-related psychiatric conditions. PMID:27199778

  13. Acute Stress Decreases but Chronic Stress Increases Myocardial Sensitivity to Ischemic Injury in Rodents.

    PubMed

    Eisenmann, Eric D; Rorabaugh, Boyd R; Zoladz, Phillip R

    2016-01-01

    Cardiovascular disease (CVD) is the largest cause of mortality worldwide, and stress is a significant contributor to the development of CVD. The relationship between acute and chronic stress and CVD is well evidenced. Acute stress can lead to arrhythmias and ischemic injury. However, recent evidence in rodent models suggests that acute stress can decrease sensitivity to myocardial ischemia-reperfusion injury (IRI). Conversely, chronic stress is arrhythmogenic and increases sensitivity to myocardial IRI. Few studies have examined the impact of validated animal models of stress-related psychological disorders on the ischemic heart. This review examines the work that has been completed using rat models to study the effects of stress on myocardial sensitivity to ischemic injury. Utilization of animal models of stress-related psychological disorders is critical in the prevention and treatment of cardiovascular disorders in patients experiencing stress-related psychiatric conditions.

  14. Highly Sensitive Ethanol Chemical Sensor Based on Novel Ag-Doped Mesoporous α-Fe2O3 Prepared by Modified Sol-Gel Process

    NASA Astrophysics Data System (ADS)

    Alqahtani, Moteb M.; Ali, Atif M.; Harraz, Farid A.; Faisal, M.; Ismail, Adel A.; Sayed, Mahmoud A.; Al-Assiri, M. S.

    2018-05-01

    Mesoporous α-Fe2O3 has been synthesized via a simple sol-gel procedure in the presence of Pluronic (F-127) triblock copolymer as structure directing agent. Silver (Ag) nanoparticles were deposited onto α-Fe2O3 matrix by the photochemical reduction approach. Morphological analysis revealed the formation of Ag nanoparticles with small sizes < 20 nm onto the mesoporous structure of α-Fe2O3 possessing < 50 nm semi-spherical shape. The XRD, FTIR, Raman, UV-vis, PL, and N2 sorption isotherm studies confirmed the high crystallinity, mesoporosity, and optical characteristics of the synthesized product. The electrochemical sensing toward liquid ethanol has been performed using the current devolved Ag/α-Fe2O3-modified glassy carbon electrode (GCE) by cyclic voltammetry ( CV) and current potential ( I-V) techniques, and the obtained results were compared with bare GCE or pure α-Fe2O3. Mesoporous Ag/α-Fe2O3 was found to largely enhance the sensor sensitivity and it exhibited excellent sensing characteristics during the precision detection of low concentrations of ethanol. High and reproducible sensitivity of 41.27 μAmM- 1 cm- 2 at lower ethanol concentration region (0.05 to 0.8 mM) and 2.93 μAmM- 1 cm- 2 at higher concentration zone (0.8 to 15 mM), with a limit of detection (LOD) of 15.4 μM have been achieved. Investigation on reaction kinetics revealed a characteristic behavior of mixed surface and diffusion-controlled processes. Detailed sensing studies revealed also that the sensitivity toward ethanol was higher than that of methanol or isopropanol. With further effort in developing the synthesis and fabrication approaches, a proper utility for the current proposed protocol for fabricating a better sensor device performance is possible.

  15. ETHANOL-INDUCED LOCOMOTOR ACTIVITY IN ADOLESCENT RATS AND THE RELATIONSHIP WITH ETHANOL-INDUCED CONDITIONED PLACE PREFERENCE AND CONDITIONED TASTE AVERSION

    PubMed Central

    Acevedo, María Belén; Nizhnikov, Michael E.; Spear, Norman E.; Molina, Juan C.; Pautassi, Ricardo Marcos

    2012-01-01

    Adolescent rats exhibit ethanol-induced locomotor activity (LMA), which is considered an index of ethanol’s motivational properties likely to predict ethanol self-administration, but few studies have reported or correlated ethanol-induced LMA with conditioned place preference by ethanol at this age. The present study assessed age-related differences in ethanol’s motor stimulating effects and analysed the association between ethanol-induced LMA and conventional measures of ethanol-induced reinforcement. Experiment 1 compared ethanol-induced LMA in adolescent and adult rats. Subsequent experiments analyzed ethanol-induced conditioned place preference and conditioned taste aversion in adolescent rats evaluated for ethanol-induced LMA. Adolescent rats exhibit a robust LMA after high-dose ethanol. Ethanol-induced LMA was fairly similar across adolescents and adults. As expected, adolescents were sensitive to ethanol’s aversive reinforcement, but they also exhibited conditioned place preference. These measures of ethanol reinforcement, however, were not related to ethanol-induced LMA. Spontaneous LMA in an open field was, however, negatively associated with ethanol-induced CTA. PMID:22592597

  16. Pharmacokinetics of ethanol and its metabolite, acetaldehyde, and fetolethality in the third-trimester pregnant guinea pig for oral administration of acute, multiple-dose ethanol.

    PubMed

    Clarke, D W; Steenaart, N A; Slack, C J; Brien, J F

    1986-08-01

    The pharmacokinetics of ethanol and its metabolite, acetaldehyde, were determined in the third-trimester pregnant guinea pig (56-59 days gestation) for oral intubation of four doses of 1 g ethanol/kg maternal body weight, administered at 1-h intervals. Animals (n = 4-7) were sacrificed at each of selected times during the 26-h study. Ethanol and acetaldehyde concentrations were determined by headspace gas-liquid chromatography. The maternal and fetal blood ethanol concentration-time curves were virtually superimposable, which indicated unimpeded bidirectional placental transfer of ethanol in the maternal-fetal unit. The blood and brain ethanol concentrations were similar in each of the maternal and fetal compartments during the study, which indicated rapid equilibrium distribution of ethanol. There was accumulation of ethanol in the amniotic fluid resulting in higher ethanol concentration compared with maternal and fetal blood during the elimination phase, which indicated that the amniotic fluid may serve as a reservoir for ethanol in utero. Acetaldehyde was measurable in all the biological fluids and tissues at concentrations that were at least 1,000-fold less than the respective ethanol concentrations and were variable. There was ethanol-induced fetolethality that was delayed and variable among animals, and was 55% at 23 h. At this time interval, the ethanol concentrations in maternal blood and brain, fetal brain, and amniotic fluid were 35- to 53-fold greater and the acetaldehyde concentrations in maternal blood and fetal brain were four- to five-fold higher in the animals with dead fetuses compared with the guinea pigs with live litters. These data indicated that decreased ethanol elimination from the maternal-fetal unit was related temporally to the fetolethality.

  17. Acute ethanol administration affects zebrafish preference for a biologically inspired robot.

    PubMed

    Spinello, Chiara; Macrì, Simone; Porfiri, Maurizio

    2013-08-01

    Preclinical animal models constitute a cornerstone against which the reward processes involved in drug addiction are often studied and dissected. While rodents have traditionally represented the species of choice, a growing body of literature indicates that zebrafish are emerging as a valuable model organism. Specifically, several studies demonstrate that the effects of ethanol at the level of emotional- and cognitive-related domains can be reliably investigated using zebrafish. The rapidly evolving nature of these efforts allows substantial room for the development of novel experimental paradigms suited to this freshwater species. The field of ethorobotics may prove particularly beneficial, due to its ability to convey fully controllable and easily reproducible experimental tools. In this study, we addressed the possibility of using a biologically inspired robot to investigate the emotionally related properties of ethanol in a preference task in zebrafish. To this aim, we evaluated wild-type zebrafish preference toward a robotic stimulus and addressed whether ethanol administration (0.25% and 1.00% ethanol/water concentration) may alter such preferences. In accordance with our previous studies, we observed that zebrafish exhibit a natural attraction toward the robot. Additionally, in agreement with our predictions, we showed that ethanol administration abolishes such preferences. This work is the first to demonstrate that robotic stimuli can be used in zebrafish to investigate the reward-related properties of alcohol. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Environmental novelty and illumination modify ethanol-induced open-field behavioral effects in mice.

    PubMed

    Fukushiro, Daniela F; Benetti, Liliane F; Josino, Fabiana S; Oliveira, Gabriela P; Fernandes, Maiara deM; Saito, Luis P; Uehara, Regina A; Wuo-Silva, Raphael; Oliveira, Camila S; Frussa-Filho, Roberto

    2010-03-01

    Both spontaneous and drug-induced animal behaviors can be modified by exposure to novel stimuli or different levels of environmental illumination. However, research into how these factors specifically impact ethanol (ETH)-induced behavioral effects is currently lacking. We aimed to investigate the effects of these two factors, considered separately or in conjunction, on ETH-induced acute hyperlocomotor effect and its sensitization in adult male Swiss mice. Mice were placed in a novel or familiar open-field under normal light (200 lx) or low light (9 lx) immediately after receiving an ip injection of either 1.8 g/kg ETH or saline (SAL). After 7 days, all animals received an ip challenge injection of 1.8 g/kg ETH, and were placed in the open-field under the same light conditions described above. Novelty increased central locomotion and decreased grooming, while low light increased grooming. Acute ETH administration increased both total and peripheral locomotion and these effects were potentiated by low light. Both low light and novelty were able to facilitate ETH-induced locomotor sensitization, which was detected by the central locomotion parameter. However, there was no synergism between the effects of these two modulating factors on ETH-induced behavioral sensitization. We conclude that both the acute behavioral effects of ETH and behavioral sensitization induced by previous administration of this drug can be critically modified by environmental factors. In addition, our study stresses the importance of using different behavioral parameters to evaluate the interaction between environmental factors and ETH effects. (c) 2009 Elsevier Inc. All rights reserved.

  19. Biomarkers of Acute Respiratory Allergen Exposure: Screening For Sensitization Potential

    EPA Science Inventory

    Rationale: An in vitro assay to identify respiratory sensitizers will provide a rapid screen and reduce animal use. The study goal was to identify biomarkers that differentiate allergen versus non-allergen responses following an acute exposure. Methods: Female BALB/c mice rec...

  20. Genomewide Association Study of Alcohol Dependence Identifies Risk Loci Altering Ethanol-response Behaviors in Model Organisms

    PubMed Central

    Adkins, Amy E.; Hack, Laura M.; Bigdeli, Tim B.; Williamson, Vernell S.; McMichael, G. Omari; Mamdani, Mohammed; Edwards, Alexis; Aliev, Fazil; Chan, Robin F.; Bhandari, Poonam; Raabe, Richard C.; Alaimo, Joseph T.; Blackwell, GinaMari G.; Moscati, Arden A.; Poland, Ryan S.; Rood, Benjamin; Patterson, Diana G.; Walsh, Dermot; Whitfield, John B.; Zhu, Gu; Montgomery, Grant W.; Henders, Anjali K.; Martin, Nicholas G.; Heath, Andrew C.; Madden, Pamela A.F.; Frank, Josef; Ridinger, Monika; Wodarz, Norbert; Soyka, Michael; Zill, Peter; Ising, Marcus; Nöthen, Markus M; Kiefer, Falk; Rietschel, Marcella; Gelernter, Joel; Sherva, Richard; Koesterer, Ryan; Almasy, Laura; Zhao, Hongyu; Kranzler, Henry R.; Farrer, Lindsay A.; Maher, Brion S.; Prescott, Carol A.; Dick, Danielle M.; Bacanu, Silviu A.; Mathies, Laura D.; Davies, Andrew G.; Vladimirov, Vladimir I.; Grotewiel, Mike; Bowers, M. Scott; Bettinger, Jill C.; Webb, Bradley T.; Miles, Michael F.; Kendler, Kenneth S.; Riley, Brien P.

    2017-01-01

    Background Alcohol Dependence (AD) shows evidence for genetic liability, but genes influencing risk remain largely unidentified. Methods We conducted a genomewide association study in 706 related AD cases and 1748 unscreened population controls from Ireland. We sought replication in 15,496 samples of European descent. We used model organisms to assess the role of orthologous genes in ethanol response behaviors. We tested one primate-specific gene for expression differences in case/control post-mortem brain tissue. Results We detected significant association in COL6A3 and suggestive association in two previously implicated loci, KLF12 and RYR3. None of these signals are significant in replication. A suggestive signal in the long noncoding RNA LOC339975 is significant in case:control meta-analysis, but not in a population sample. Knockdown of a COL6A3 ortholog in C. elegans reduced ethanol sensitivity. Col6a3 expression correlated with handling-induced convulsions in mice. Loss of function of the KLF12 ortholog in C. elegans impaired development of acute functional tolerance. Klf12 expression correlated with locomotor activation following ethanol injection in mice. Loss of function of the RYR3 ortholog reduced ethanol sensitivity in C. elegans and rapid tolerance in Drosophila. The ryanodine receptor antagonist dantrolene reduced motivation to self-administer ethanol in rats. Expression of LOC339975 does not differ between cases and controls but is reduced in carriers of the associated rs11726136 allele in nucleus accumbens. Conclusions We detect association between AD and COL6A3, KLF12, RYR3 and LOC339975. Despite non-replication of COL6A3, KLF12 and RYR3 signals, orthologs of these genes influence behavioral response to ethanol in model organisms, suggesting potential involvement in human ethanol response and AD liability. The associated LOC339975 allele may influence gene expression in human nucleus accumbens. Although the functions of long noncoding RNAs are

  1. Pulmonary hypertensive crisis following ethanol sclerotherapy for a complex vascular malformation.

    PubMed

    Cordero-Schmidt, G; Wallenstein, M B; Ozen, M; Shah, N A; Jackson, E; Hovsepian, D M; Palma, J P

    2014-09-01

    Anhydrous ethanol is a commonly used sclerotic agent for treating vascular malformations. We describe the case of a full-term 15-day-old female with a complex venolymphatic malformation involving the face and orbit. During treatment of the lesion with ethanol sclerotherapy, she suffered acute pulmonary hypertensive crisis. We discuss the pathophysiology of pulmonary hypertension related to ethanol sclerotherapy, and propose that hemolysis plays a significant role. Recommendations for evaluation, monitoring and management of this complication are also discussed.

  2. Effects of ethanol and water extracts of propolis (bee glue) on acute inflammatory animal models.

    PubMed

    Hu, Fuliang; Hepburn, H R; Li, Yinghua; Chen, M; Radloff, S E; Daya, S

    2005-09-14

    The anti-inflammatory effects of ethanol (EEP) and water (WSD) extracts in ICR mice and Wistar rats were analyzed. Both WSD and EEP exhibited significant anti-inflammatory effects in animal models with respect to thoracic capillary vessel leakage in mice, carrageenan-induced oedema, carrageenan-induced pleurisy, acute lung damage in rats. The mechanisms for the anti-inflammatory effects probably involve decreasing prostaglandin-E(2) (PGE(2)) and nitric oxide (NO) levels. In rats with Freund's complete adjuvant (FCA) induced arthritis, propolis extracts significantly inhibited the increase of interleukin-6 (IL-6) in inflamed tissues, but had no significant effect on levels of interleukin-2 (IL-2) and interferon-gamma (IFN-gamma). The results are consistent with the interpretation that EEP and WSD may exert these effects by inhibiting the activation and differentiation of mononuclear macrophages.

  3. Hydroethanolic extract of Baccharis trimera promotes gastroprotection and healing of acute and chronic gastric ulcers induced by ethanol and acetic acid.

    PubMed

    Dos Reis Lívero, Francislaine Aparecida; da Silva, Luisa Mota; Ferreira, Daniele Maria; Galuppo, Larissa Favaretto; Borato, Debora Gasparin; Prando, Thiago Bruno Lima; Lourenço, Emerson Luiz Botelho; Strapasson, Regiane Lauriano Batista; Stefanello, Maria Élida Alves; Werner, Maria Fernanda de Paula; Acco, Alexandra

    2016-09-01

    Ethanol is a psychoactive substance highly consumed around the world whose health problems include gastric lesions. Baccharis trimera is used in folk medicine for the treatment of gastrointestinal disorders. However, few studies have evaluated its biological and toxic effects. To validate the popular use of B. trimera and elucidate its possible antiulcerogenic and cytotoxic mechanisms, a hydroethanolic extract of B. trimera (HEBT) was evaluated in models of gastric lesions. Rats and mice were used to evaluate the protective and antiulcerogenic effects of HEBT on gastric lesions induced by ethanol, acetic acid, and chronic ethanol consumption. The effects of HEBT were also evaluated in a pylorus ligature model and on gastrointestinal motility. The LD50 of HEBT in mice was additionally estimated. HEBT was analyzed by nuclear magnetic resonance, and a high-performance liquid chromatography fingerprint analysis was performed. Oral HEBT administration significantly reduced the lesion area and the oxidative stress induced by acute and chronic ethanol consumption. However, HEBT did not protect against gastric wall mucus depletion and did not alter gastric secretory volume, pH, or total acidity in the pylorus ligature model. Histologically, HEBT accelerated the healing of chronic gastric ulcers in rats, reflected by contractions of the ulcer base. Flavonoids and caffeoylquinic acids were detected in HEBT, which likely contributed to the therapeutic efficacy of HEBT, preventing or reversing ethanol- and acetic acid-induced ulcers, respectively. HEBT antiulcerogenic activity may be partially attributable to the inhibition of free radical generation and subsequent prevention of lipid peroxidation. Our results indicate that HEBT has both gastroprotective and curative activity in animal models, with no toxicity.

  4. Diagnostic Accuracy of a New High-Sensitivity Troponin I Assay and Five Accelerated Diagnostic Pathways for Ruling Out Acute Myocardial Infarction and Acute Coronary Syndrome.

    PubMed

    Greenslade, Jaimi H; Carlton, Edward W; Van Hise, Christopher; Cho, Elizabeth; Hawkins, Tracey; Parsonage, William A; Tate, Jillian; Ungerer, Jacobus; Cullen, Louise

    2018-04-01

    This diagnostic accuracy study describes the performance of 5 accelerated chest pain pathways, calculated with the new Beckman's Access high-sensitivity troponin I assay. High-sensitivity troponin I was measured with presentation and 2-hour blood samples in 1,811 patients who presented to an emergency department (ED) in Australia. Patients were classified as being at low risk according to 5 rules: modified accelerated diagnostic protocol to assess patients with chest pain symptoms using troponin as the only biomarker (m-ADAPT), the Emergency Department Assessment of Chest Pain Score (EDACS) pathway, the History, ECG, Age, Risk Factors, and Troponin (HEART) pathway, the No Objective Testing Rule, and the new Vancouver Chest Pain Rule. Endpoints were 30-day acute myocardial infarction and acute coronary syndrome. Measures of diagnostic accuracy for each rule were calculated. Data included 96 patients (5.3%) with acute myocardial infarction and 139 (7.7%) with acute coronary syndrome. The new Vancouver Chest Pain Rule and No Objective Testing Rule had high sensitivity for acute myocardial infarction (100%; 95% confidence interval [CI] 96.2% to 100% for both) and acute coronary syndrome (98.6% [95% CI 94.9% to 99.8%] and 99.3% [95% CI 96.1% to 100%]). The m-ADAPT, EDACS, and HEART pathways also yielded high sensitivity for acute myocardial infarction (96.9% [95% CI 91.1% to 99.4%] for m-ADAPT and 97.9% [95% CI 92.7% to 99.7%] for EDACS and HEART), but lower sensitivity for acute coronary syndrome (≤95.0% for all). The m-ADAPT, EDACS, and HEART rules classified more patients as being at low risk (64.3%, 62.5%, and 49.8%, respectively) than the new Vancouver Chest Pain Rule and No Objective Testing Rule (28.2% and 34.5%, respectively). In this cohort with a low prevalence of acute myocardial infarction and acute coronary syndrome, using the Beckman's Access high-sensitivity troponin I assay with the new Vancouver Chest Pain Rule or No Objective Testing Rule enabled

  5. Comprehensive mechanism and structure-sensitivity of ethanol oxidation on platinum: new transition-state searching method for resolving the complex reaction network.

    PubMed

    Wang, Hui-Fang; Liu, Zhi-Pan

    2008-08-20

    Ethanol oxidation on Pt is a typical multistep and multiselectivity heterogeneous catalytic process. A comprehensive understanding of this fundamental reaction would greatly benefit design of catalysts for use in direct ethanol fuel cells and the degradation of biomass-derived oxygenates. In this work, the reaction network of ethanol oxidation on different Pt surfaces, including close-packed Pt{111}, stepped Pt{211}, and open Pt{100}, is explored thoroughly with an efficient reaction path searching method, which integrates our new transition-state searching technique with periodic density functional theory calculations. Our new technique enables the location of the transition state and saddle points for most surface reactions simply and efficiently by optimization of local minima. We show that the selectivity of ethanol oxidation on Pt depends markedly on the surface structure, which can be attributed to the structure-sensitivity of two key reaction steps: (i) the initial dehydrogenation of ethanol and (ii) the oxidation of acetyl (CH3CO). On open surface sites, ethanol prefers C-C bond cleavage via strongly adsorbed intermediates (CH2CO or CHCO), which leads to complete oxidation to CO2. However, only partial oxidizations to CH3CHO and CH3COOH occur on Pt{111}. Our mechanism points out that the open surface Pt{100} is the best facet to fully oxidize ethanol at low coverages, which sheds light on the origin of the remarkable catalytic performance of Pt tetrahexahedra nanocrystals found recently. The physical origin of the structure-selectivity is rationalized in terms of both thermodynamics and kinetics. Two fundamental quantities that dictate the selectivity of ethanol oxidation are identified: (i) the ability of surface metal atoms to bond with unsaturated C-containing fragments and (ii) the relative stability of hydroxyl at surface atop sites with respect to other sites.

  6. Increase in ethanol yield via elimination of lactate production in an ethanol-tolerant mutant of Clostridium thermocellum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biswas, Ranjita; Prabhu, Sandeep; Lynd, Lee R

    2014-01-01

    Large-scale production of lignocellulosic biofuel is a potential solution to sustainably meet global energy needs. One-step consolidated bioprocessing (CBP) is a potentially advantageous approach for the production of biofuels, but requires an organism capable of hydrolyzing biomass to sugars and fermenting the sugars to ethanol at commercially viable titers and yields. Clostridium thermocellum, a thermophilic anaerobe, can ferment cellulosic biomass to ethanol and organic acids, but low yield, low titer, and ethanol sensitivity remain barriers to industrial production. Here, we deleted the hypoxanthine phosphoribosyltransferase gene in ethanol tolerant strain of C. thermocellum adhE*(EA) in order to allow use of previouslymore » developed gene deletion tools, then deleted lactate dehydrogenase (ldh) to redirect carbon flux towards ethanol. Upon deletion of ldh, the adhE*(EA) ldh strain produced 30% more ethanol than wild type on minimal medium. The adhE*(EA) ldh strain retained tolerance to 5% v/v ethanol, resulting in an ethanol tolerant platform strain of C. thermocellum for future metabolic engineering efforts.« less

  7. Diminished neutrophil extracellular trap (NET) formation is a novel innate immune deficiency induced by acute ethanol exposure in polymicrobial sepsis, which can be rescued by CXCL1

    PubMed Central

    Jin, Liliang; Batra, Sanjay

    2017-01-01

    Polymicrobial sepsis is the result of an exaggerated host immune response to bacterial pathogens. Animal models and human studies demonstrate that alcohol intoxication is a key risk factor for sepsis-induced mortality. Multiple chemokines, such as CXCL1, CXCL2 and CXCL5 are critical for neutrophil recruitment and proper function of neutrophils. However, it is not quite clear the mechanisms by which acute alcohol suppresses immune responses and whether alcohol-induced immunosuppression can be rescued by chemokines. Thus, we assessed whether acute ethanol challenge via gavage diminishes antibacterial host defense in a sepsis model using cecal ligation and puncture (CLP) and whether this immunosuppression can be rescued by exogenous CXCL1. We found acute alcohol intoxication augments mortality and enhances bacterial growth in mice following CLP. Ethanol exposure impairs critical antibacterial functions of mouse and human neutrophils including reactive oxygen species production, neutrophil extracellular trap (NET) formation, and NET-mediated killing in response to both Gram-negative (E. coli) and Gram-positive (Staphylococcus aureus) pathogens. As compared with WT (C57Bl/6) mice, CXCL1 knockout mice display early mortality following acute alcohol exposure followed by CLP. Recombinant CXCL1 (rCXCL1) in acute alcohol challenged CLP mice increases survival, enhances bacterial clearance, improves neutrophil recruitment, and enhances NET formation (NETosis). Recombinant CXCL1 (rCXCL1) administration also augments bacterial killing by alcohol-treated and E. coli- and S. aureus-infected neutrophils. Taken together, our data unveils novel mechanisms underlying acute alcohol-induced dysregulation of the immune responses in polymicrobial sepsis, and CXCL1 is a critical mediator to rescue alcohol-induced immune dysregulation in polymicrobial sepsis. PMID:28922428

  8. Rapid Rule-Out of Acute Myocardial Injury Using a Single High-Sensitivity Cardiac Troponin I Measurement.

    PubMed

    Sandoval, Yader; Smith, Stephen W; Shah, Anoop S V; Anand, Atul; Chapman, Andrew R; Love, Sara A; Schulz, Karen; Cao, Jing; Mills, Nicholas L; Apple, Fred S

    2017-01-01

    Rapid rule-out strategies using high-sensitivity cardiac troponin assays are largely supported by studies performed outside the US in selected cohorts of patients with chest pain that are atypical of US practice, and focused exclusively on ruling out acute myocardial infarction (AMI), rather than acute myocardial injury, which is more common and associated with a poor prognosis. Prospective, observational study of consecutive patients presenting to emergency departments [derivation (n = 1647) and validation (n = 2198) cohorts], where high-sensitivity cardiac troponin I (hs-cTnI) was measured on clinical indication. The negative predictive value (NPV) and diagnostic sensitivity of an hs-cTnI concentration acute myocardial injury and for AMI or cardiac death at 30 days. In patients with hs-cTnI concentrations <99th percentile at presentation, acute myocardial injury occurred in 8.3% and 11.0% in the derivation and validation cohorts, respectively. In the derivation cohort, 27% had hs-cTnI < LoD, with NPV and diagnostic sensitivity for acute myocardial injury of 99.1% (95% CI, 97.7-99.8) and 99.0% (97.5-99.7) and an NPV for AMI or cardiac death at 30 days of 99.6% (98.4-100). In the validation cohort, 22% had hs-cTnI sensitivity for acute myocardial injury of 98.8% (97.9-99.7) and 99.3% (98.7-99.8) and an NPV for AMI or cardiac death at 30 days of 99.1% (98.2-99.8). A single hs-cTnI concentration acute myocardial injury, regardless of etiology, with an excellent NPV and diagnostic sensitivity, and identifies patients at minimal risk of AMI or cardiac death at 30 days. ClinicalTrials.gov Identifier: NCT02060760. © 2016 American Association for Clinical Chemistry.

  9. Ethanol Reversal of Tolerance to the Antinociceptive Effects of Oxycodone and Hydrocodone.

    PubMed

    Jacob, Joanna C; Poklis, Justin L; Akbarali, Hamid I; Henderson, Graeme; Dewey, William L

    2017-07-01

    This study compared the development of tolerance to two orally bioavailable prescription opioids, oxycodone and hydrocodone, to that of morphine, and the reversal of this tolerance by ethanol. Oxycodone (s.c.) was significantly more potent in the mouse tail-withdrawal assay than either morphine or hydrocodone. Oxycodone was also significantly more potent in this assay than hydrocodone when administered orally. Tolerance was seen following chronic subcutaneous administration of each of the three drugs and by the chronic administration of oral oxycodone, but not following the chronic oral administration of hydrocodone. Ethanol (1 g/kg i.p.) significantly reversed the tolerance to the subcutaneous administration of each of the three opioids that developed when given 30 minutes prior to challenge doses. It took twice as much ethanol, when given orally, to reverse the tolerance to oxycodone. We investigated whether the observed tolerance to oxycodone and its reversal by ethanol were due to biodispositional changes or reflected a true neuronal tolerance. As expected, a relationship between brain oxycodone concentrations and activity in the tail-immersion test existed following administration of acute oral oxycodone. Following chronic treatment, brain oxycodone concentrations were significantly lower than acute concentrations. Oral ethanol (2 g/kg) reversed the tolerance to chronic oxycodone, but did not alter brain concentrations of either acute or chronic oxycodone. These studies show that there is a metabolic component of tolerance to oxycodone; however, the reversal of that tolerance by ethanol is not due to an alteration of the biodisposition of oxycodone, but rather is neuronal in nature. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  10. Intrinsic Properties of Larval Zebrafish Neurons in Ethanol

    PubMed Central

    Ikeda, Hiromi; Delargy, Alison H.; Yokogawa, Tohei; Urban, Jason M.; Burgess, Harold A.; Ono, Fumihito

    2013-01-01

    The behavioral effects of ethanol have been studied in multiple animal models including zebrafish. Locomotion of zebrafish larvae is resistant to high concentrations of ethanol in bath solution. This resistance has been attributed to a lower systemic concentration of ethanol in zebrafish when compared with bath solution, although the mechanism to maintain such a steep gradient is unclear. Here we examined whether the intrinsic properties of neurons play roles in this resistance. In order to minimize the contribution of metabolism and diffusional barriers, larvae were hemisected and the anterior half immersed in a range of ethanol concentrations thereby ensuring the free access of bath ethanol to the brain. The response to vibrational stimuli of three types of reticulospinal neurons: Mauthner neurons, vestibulospinal neurons, and MiD3 neurons were examined using an intracellular calcium indicator. The intracellular [Ca2+] response in MiD3 neurons decreased in 100 mM ethanol, while Mauthner neurons and vestibulospinal neurons required >300 mM ethanol to elicit similar effects. The ethanol effect in Mauthner neurons was reversible following removal of ethanol. Interestingly, activities of MiD3 neurons displayed spontaneous recovery in 300 mM ethanol, suggestive of acute tolerance. Finally, we examined with mechanical vibration the startle response of free-swimming larvae in 300 mM ethanol. Ethanol treatment abolished long latency startle responses, suggesting a functional change in neural processing. These data support the hypothesis that individual neurons in larval zebrafish brains have distinct patterns of response to ethanol dictated by specific molecular targets. PMID:23658822

  11. Effect of age increase on metabolism and toxicity of ethanol in female rats.

    PubMed

    Kim, Young C; Kim, Sung Y; Sohn, Young R

    2003-12-12

    Age-dependent change in the effects of acute ethanol administration on female rat liver was investigated. Female Sprague-Dawley rats, each aged 4, 12, or 50 weeks, received ethanol (2 g/kg) via a catheter inserted into a jugular vein. Ethanol elimination rate (EER), most rapid in the 4 weeks old rats, was decreased as the age advanced. Hepatic alcohol dehydrogenase activity was not altered by age, but microsomal p-nitrophenol hydroxylase activity was significantly greater in the 4 weeks old rats. Relative liver weight decreased with age increase in proportion to reduction of EER. Hepatic triglyceride and malondialdehyde concentrations increased spontaneously in the 50 weeks old nai;ve rats. Ethanol administration (3 g/kg, ip) elevated malondialdehyde and triglyceride contents only in the 4 and the 12 weeks old rats. Hepatic glutathione concentration was increasingly reduced by ethanol with age increase. Ethanol decreased cysteine concentration in the 4 weeks old rats, but elevated it significantly in the older rats. Inhibition of gamma-glutamylcysteine synthetase activity by ethanol was greater with age increase, which appeared to be responsible for the increase in hepatic cysteine. The results indicate that age does not affect the ethanol metabolizing capacity of female rat liver, but the overall ethanol metabolism is decreased in accordance with the reduction of relative liver size. Accordingly induction of acute alcoholic fatty liver is less significant in the old rats. However, progressively greater depletion of glutathione by ethanol in older rats suggests that susceptibility of liver to oxidative damage would be increased as animals grow old.

  12. STRAIN-SPECIFIC PROGRAMMING OF PRENATAL ETHANOL EXPOSURE ACROSS GENERATIONS

    PubMed Central

    Popoola, Daniel O.; Nizhnikov, Michael E.; Cameron, Nicole M.

    2017-01-01

    Behavioral consequences of prenatal alcohol exposure (PAE) can be transmitted from in utero-exposed F1 generation to their F2 offspring. This type of transmission is modulated by genetic and epigenetic mechanism. This study investigated the intergenerational consequences of prenatal exposure to low ethanol dose (1g/kg) during gestational days 17–20, on ethanol-induced hypnosis in adolescent male F1 and F2 generations, in two strains of rats. Adolescent Long Evans and Sprague Dawley male rats were tested for sensitivity to ethanol-induced hypnosis at 3.5g/kg or 4.5g/kg ethanol dose using the loss of righting reflex (LORR) paradigm. We hypothesized that PAE would attenuate sensitivity to ethanol-induced hypnosis in the ethanol-exposed animals in these two strains and in both generations. Interestingly, we only found this effect in Sprague Dawley rats. Lastly, we investigated PAE related changes in expression of GABAA receptor α1, α4, and δ subunits in the cerebral cortex of the PAE sensitive Sprague Dawley strain. We hypothesized a reduction in the cerebral cortex GABAA receptor subunits’ expression in the F1 and F2 PAE groups compared to control animals. GABAA receptor α1, α4, and δ subunits protein expressions were quantified in the cerebral cortex of F1 and F2 male adolescents by western blotting. PAE didn’t alter cerebral cortical GABAA receptor subunit expressions in the F1 generation, but it decreased GABAA receptor α4 and δ subunits’ expressions in the F2 generation, and had a tendency to decrease α1 subunit expression. We also found correlations between some of the subunits in both generations. These strain-dependent vulnerabilities to ethanol sensitivity, and intergenerational PAE-mediated changes in sensitivity to alcohol indicate that genetic and epigenetic factors interact to determine the outcomes of PAE animals and their offspring. PMID:28433421

  13. Strain-specific programming of prenatal ethanol exposure across generations.

    PubMed

    Popoola, Daniel O; Nizhnikov, Michael E; Cameron, Nicole M

    2017-05-01

    Behavioral consequences of prenatal alcohol exposure (PAE) can be transmitted from in utero-exposed F1 generation to their F2 offspring. This type of transmission is modulated by genetic and epigenetic mechanisms. This study investigated the intergenerational consequences of prenatal exposure to a low ethanol dose (1 g/kg) during gestational days 17-20, on ethanol-induced hypnosis in adolescent male F1 and F2 generations, in two strains of rats. Adolescent Long-Evans and Sprague-Dawley male rats were tested for sensitivity to ethanol-induced hypnosis at a 3.5-g/kg or 4.5-g/kg ethanol dose using the loss of righting reflex (LORR) paradigm. We hypothesized that PAE would attenuate sensitivity to ethanol-induced hypnosis in the ethanol-exposed animals in these two strains and in both generations. Interestingly, we only found this effect in Sprague-Dawley rats. Lastly, we investigated PAE related changes in expression of GABA A receptor α1, α4, and δ subunits in the cerebral cortex of the PAE sensitive Sprague-Dawley strain. We hypothesized a reduction in the cerebral cortex GABA A receptor subunits' expression in the F1 and F2 PAE groups compared to control animals. GABA A receptor α1, α4, and δ subunits protein expressions were quantified in the cerebral cortex of F1 and F2 male adolescents by western blotting. PAE did not alter cerebral cortical GABA A receptor subunit expressions in the F1 generation, but it decreased GABA A receptor α4 and δ subunits' expressions in the F2 generation, and had a tendency to decrease α1 subunit expression. We also found correlations between some of the subunits in both generations. These strain-dependent vulnerabilities to ethanol sensitivity, and intergenerational PAE-mediated changes in sensitivity to alcohol indicate that genetic and epigenetic factors interact to determine the outcomes of PAE animals and their offspring. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Differential effects of ethanol on regional glutamatergic and GABAergic neurotransmitter pathways in mouse brain.

    PubMed

    Tiwari, Vivek; Veeraiah, Pandichelvam; Subramaniam, Vaidyanathan; Patel, Anant Bahadur

    2014-03-01

    This study investigates the effects of ethanol on neuronal and astroglial metabolism using (1)H-[(13)C]-NMR spectroscopy in conjunction with infusion of [1,6-(13)C2]/[1-(13)C]glucose or [2-(13)C]acetate, respectively. A three-compartment metabolic model was fitted to the (13)C turnover of GluC3 , GluC4, GABAC 2, GABAC 3, AspC3 , and GlnC4 from [1,6-(13)C2 ]glucose to determine the rates of tricarboxylic acid (TCA) and neurotransmitter cycle associated with glutamatergic and GABAergic neurons. The ratio of neurotransmitter cycle to TCA cycle fluxes for glutamatergic and GABAegic neurons was obtained from the steady-state [2-(13)C]acetate experiment and used as constraints during the metabolic model fitting. (1)H MRS measurement suggests that depletion of ethanol from cerebral cortex follows zero order kinetics with rate 0.18 ± 0.04 μmol/g/min. Acute exposure of ethanol reduces the level of glutamate and aspartate in cortical region. GlnC4 labeling was found to be unchanged from a 15 min infusion of [2-(13)C]acetate suggesting that acute ethanol exposure does not affect astroglial metabolism in naive mice. Rates of TCA and neurotransmitter cycle associated with glutamatergic and GABAergic neurons were found to be significantly reduced in cortical and subcortical regions. Acute exposure of ethanol perturbs the level of neurometabolites and decreases the excitatory and inhibitory activity differentially across the regions of brain. Depletion of ethanol and its effect on brain functions were measured using (1)H and (1)H-[(13)C]-NMR spectroscopy in conjunction with infusion of (13)C-labeled substrates. Ethanol depletion from brain follows zero order kinetics. Ethanol perturbs level of glutamate, and the excitatory and inhibitory activity in mice brain. © 2013 International Society for Neurochemistry.

  15. Role of adenosine and the orexinergic perifornical hypothalamus in sleep-promoting effects of ethanol.

    PubMed

    Sharma, Rishi; Sahota, Pradeep; Thakkar, Mahesh M

    2014-03-01

    Strong clinical and preclinical evidence suggests that acute ethanol promotes sleep. However, very little is known about how and where ethanol acts to promote sleep. We hypothesized that ethanol may induce sleep by increasing extracellular levels of adenosine and inhibiting orexin neurons in the perifornical hypothalamus. Experiments 1 and 2: Within-Subject Design; Experiment 3: Between-Subject Design. N/A. N/A. N/A. Using adult male Sprague-Dawley rats as our animal model, we performed three experiments to test our hypothesis. Our first experiment examined the effect of A1 receptor blockade in the orexinergic perifornical hypothalamus on sleep- promoting effects of ethanol. Bilateral microinjection of the selective A1 receptor antagonist 1,3-dipropyl-8-phenylxanthine (500 μM; 250 nL/side) into orexinergic perifornical hypothalamus significantly reduced nonrapid eye movement sleep with a concomitant increase in wakefulness, suggesting that blockade of adenosine A1 receptor attenuates ethanol-induced sleep promotion. Our second experiment examined adenosine release in the orexinergic perifornical hypothalamus during local ethanol infusion. Local infusion of pharmacologically relevant doses of ethanol significantly and dose-dependently increased adenosine release. Our final experiment used c-Fos immunohistochemistry to examine the effects of ethanol on the activation of orexin neurons. Acute ethanol exposure significantly reduced the number of orexin neurons containing c-Fos, suggesting an inhibition of orexin neurons after ethanol intake. Based on our results, we believe that ethanol promotes sleep by increasing adenosine in the orexinergic perifornical hypothalamus, resulting in A1 receptor-mediated inhibition of orexin neurons.

  16. Inflammatory PAF Receptor Signaling Initiates Hedgehog Signaling and Kidney Fibrogenesis During Ethanol Consumption

    PubMed Central

    Latchoumycandane, Calivarathan; Hanouneh, Mohamad; Nagy, Laura E.; McIntyre, Thomas M.

    2015-01-01

    Acute inflammation either resolves or proceeds to fibrotic repair that replaces functional tissue. Pro-fibrotic hedgehog signaling and induction of its Gli transcription factor in pericytes induces fibrosis in kidney, but molecular instructions connecting inflammation to fibrosis are opaque. We show acute kidney inflammation resulting from chronic ingestion of the common xenobiotic ethanol initiates Gli1 transcription and hedgehog synthesis in kidney pericytes, and promotes renal fibrosis. Ethanol ingestion stimulated transcription of TGF-ß, collagens I and IV, and alpha-smooth muscle actin with accumulation of these proteins. This was accompanied by deposition of extracellular fibrils. Ethanol catabolism by CYP2E1 in kidney generates local reactive oxygen species that oxidize cellular phospholipids to phospholipid products that activate the Platelet-activating Factor receptor (PTAFR) for inflammatory phospholipids. Genetically deleting this ptafr locus abolished accumulation of mRNA for TGF-ß, collagen IV, and α-smooth muscle actin. Loss of PTAFR also abolished ethanol-stimulated Sonic (Shh) and Indian hedgehog (Ihh) expression, and abolished transcription and accumulation of Gli1. Shh induced in pericytes and Ihh in tubules escaped to urine of ethanol-fed mice. Neutrophil myeloperoxidase (MPO) is required for ethanol-induced kidney inflammation, and Shh was not present in kidney or urine of mpo -/- mice. Shh also was present in urine of patients with acute kidney injury, but not in normal individuals or those with fibrotic liver cirrhosis We conclude neither endogenous PTAFR signaling nor CYP2E1-generated radicals alone are sufficient to initiate hedgehog signaling, but instead PTAFR-dependent neutrophil infiltration with myeloperoxidase activation is necessary to initiate ethanol-induced fibrosis in kidney. We also show fibrogenic mediators escape to urine, defining a new class of urinary mechanistic biomarkers of fibrogenesis for an organ not commonly

  17. A high-sensitivity temperature sensor based on Sagnac interferometer employing photonic crystal fiber fully filled with ethanol

    NASA Astrophysics Data System (ADS)

    Shi, Min; Li, Shuguang; Chen, Hailiang

    2018-06-01

    A high-sensitivity temperature sensor based on photonic crystal fiber Sagnac interferometer is proposed and studied. All holes of the PCF are filled with ethanol with capillarity. The cladding air holes are uniform arrangements. The two air holes around the core are removed to form new core modes with high birefringence. The sensitivities of the temperature can be up to -8.7657 and 16.8142 nm/°C when temperature rises from 45 to 75 °C and the fiber length is 5.05 cm. And when temperature rises from 10 to 45 °C, the sensitivity can reach -7.848 and 16.655 nm/°C with fiber length 2.11 cm. The performance of the selective-filled and the fully-filled PCF with temperature from 45 to 75 °C and fiber length 5.05 cm are analyzed and compared. The fully filling can better achieve PCF's sensing performance. The simple structure and high sensitivities make the temperature sensor easy to achieve. The temperature sensor with high sensitivities and good linearity has great application value for environmental temperature detecting.

  18. Increased Sensitivity to Alcohol Induced Changes in ERK Map Kinase Phosphorylation and Memory Disruption in Adolescent as Compared to Adult C57BL/6J Mice

    PubMed Central

    Spanos, Marina; Besheer, Joyce; Hodge, Clyde W.

    2012-01-01

    Adolescence is a critical period of brain development that is accompanied by increased probability of risky behavior, such as alcohol use. Emerging research indicates that adolescents are differentially sensitive to the behavioral effects of acute ethanol as compared to adults but the neurobiological mechanisms of this effect remain to be fully elucidated. This study was designed to evaluate effects of acute ethanol on extracellular signal-regulated kinase phosphorylation (p-ERK1/2) in mesocorticolimbic brain regions. We also sought to determine if age-specific effects of ethanol on p-ERK1/2 are associated with ethanol-induced behavioral deficits on acquisition of the hippocampal-dependent novel object recognition (NOR) test. Adolescent and adult C57BL/6J mice were administered acute ethanol (0 0.5, 1, or 3 g/kg, i.p.). Brains were removed 30-min post injection and processed for analysis of p-ERK1/2 immunoreactivity (IR). Additional groups of mice were administered ethanol (0 or 1 g/kg) prior to the NOR test. Analysis of p-ERK1/2 IR showed that untreated adolescent mice had significantly higher levels of p-ERK1/2 IR in the nucleus accumbens shell, basolateral amygdala (BLA), central amygdala (CeA), and medial prefrontal cortex (mPFC) as compared to adults. Ethanol (1 g/kg) selectively reduced p-ERK1/2 IR in the dentate gyrus and increased p-ERK1/2 IR in the BLA only in adolescent mice. Ethanol (3 g/kg) produced the same effects on p-ERK1/2 IR in both age groups with increases in CeA and mPFC, but a decrease in the dentate gyrus, as compared to age-matched saline controls. Pretreatment with ethanol (1 g/kg) disrupted performance on the NOR test specifically in adolescents, which corresponds with the ethanol-induced inhibition of p-ERK1/2 IR in the hippocampus. These data show that adolescent mice have differential expression of basal p-ERK1/2 IR in mesocorticolimbic brain regions. Acute ethanol produces a unique set of changes in ERK1/2 phosphorylation in the

  19. Estradiol increases the sensitivity of ventral tegmental area dopamine neurons to dopamine and ethanol

    PubMed Central

    Vandegrift, Bertha J.; You, Chang; Satta, Rosalba; Brodie, Mark S.

    2017-01-01

    Gender differences in psychiatric disorders such as addiction may be modulated by the steroid hormone estrogen. For instance, 17β-estradiol (E2), the predominant form of circulating estrogen in pre-menopausal females, increases ethanol consumption, suggesting that E2 may affect the rewarding properties of ethanol and thus the development of alcohol use disorder in females. The ventral tegmental area (VTA) is critically involved in the rewarding and reinforcing effects of ethanol. In order to determine the role of E2 in VTA physiology, gonadally intact female mice were sacrificed during diestrus II (high E2) or estrus (low E2) for electrophysiology recordings. We measured the excitation by ethanol and inhibition by dopamine (DA) of VTA DA neurons and found that both excitation by ethanol and inhibition by dopamine were greater in diestrus II compared with estrus. Treatment of VTA slices from mice in diestrus II with an estrogen receptor antagonist (ICI 182,780) reduced ethanol-stimulated neuronal firing, but had no effect on ethanol-stimulated firing of neurons in slices from mice in estrus. Surprisingly, ICI 182,780 did not affect the inhibition by DA, indicating different mechanisms of action of estrogen receptors in altering ethanol and DA responses. We also examined the responses of VTA DA neurons to ethanol and DA in ovariectomized mice treated with E2 and found that E2 treatment enhanced the responses to ethanol and DA in a manner similar to what we observed in mice in diestrus II. Our data indicate that E2 modulates VTA neuron physiology, which may contribute to both the enhanced reinforcing and rewarding effects of alcohol and the development of other psychiatric disorders in females that involve alterations in DA neurotransmission. PMID:29107956

  20. Estradiol increases the sensitivity of ventral tegmental area dopamine neurons to dopamine and ethanol.

    PubMed

    Vandegrift, Bertha J; You, Chang; Satta, Rosalba; Brodie, Mark S; Lasek, Amy W

    2017-01-01

    Gender differences in psychiatric disorders such as addiction may be modulated by the steroid hormone estrogen. For instance, 17β-estradiol (E2), the predominant form of circulating estrogen in pre-menopausal females, increases ethanol consumption, suggesting that E2 may affect the rewarding properties of ethanol and thus the development of alcohol use disorder in females. The ventral tegmental area (VTA) is critically involved in the rewarding and reinforcing effects of ethanol. In order to determine the role of E2 in VTA physiology, gonadally intact female mice were sacrificed during diestrus II (high E2) or estrus (low E2) for electrophysiology recordings. We measured the excitation by ethanol and inhibition by dopamine (DA) of VTA DA neurons and found that both excitation by ethanol and inhibition by dopamine were greater in diestrus II compared with estrus. Treatment of VTA slices from mice in diestrus II with an estrogen receptor antagonist (ICI 182,780) reduced ethanol-stimulated neuronal firing, but had no effect on ethanol-stimulated firing of neurons in slices from mice in estrus. Surprisingly, ICI 182,780 did not affect the inhibition by DA, indicating different mechanisms of action of estrogen receptors in altering ethanol and DA responses. We also examined the responses of VTA DA neurons to ethanol and DA in ovariectomized mice treated with E2 and found that E2 treatment enhanced the responses to ethanol and DA in a manner similar to what we observed in mice in diestrus II. Our data indicate that E2 modulates VTA neuron physiology, which may contribute to both the enhanced reinforcing and rewarding effects of alcohol and the development of other psychiatric disorders in females that involve alterations in DA neurotransmission.

  1. Bismuth molybdate thick films as ethanol sensor

    NASA Astrophysics Data System (ADS)

    Jain, Kiran; Kumar, Vipin; Gupta, H. P.; Rastogi, A. C.

    2003-10-01

    Ethanol sensitivity of bismuth molybdate thick films and sintered pellets were investigated. Sintered pellets were prepared by traditional ceramic processing. Thick films were prepared by metallorganic decomposition process. Ethanol gas sensitivity was measured at various temperatures and concentrations. Thick films of alpha phase bismuth molybdate prepared by spray pyrolysis showed a very fast response to ethanol detection. The response time for the bulk samples is about 40 sec which decreased to about 6 sec for thick films at an operating temperature of 300°C. An extremely low level approximately 10 ppm detection and fast response makes this technique ideal for sensor element fabrication for detection and estimation of alcohol in breath-analyzer. Unlike SnO2, the resistance of these sensors is not affected by humidity at the operating temperature.

  2. The influence of gastric pentadecapeptide BPC 157 on acute and chronic ethanol administration in mice. The effect of N(G)-nitro-L-arginine methyl ester and L-arginine.

    PubMed

    Boban-Blagaic, Alenka; Blagaic, Vladimir; Romic, Zeljko; Jelovac, Nikola; Dodig, Goran; Rucman, Rudolf; Petek, Marijan; Turkovic, Branko; Seiwerth, Sven; Sikiric, Predrag

    2006-01-01

    Alcohol disturbances, NO stimulation (by the NO-precursor L-arginine), and/or NO-synthesis blockade (by N(G)-nitro-L-arginine methyl ester, i.e. L-NAME) were challenged with stable gastric pentadecapeptide BPC 157, which inhibits both acute alcohol intoxication and alcohol withdrawal symptoms. Mice received intraperitoneally (i.p.) BPC 157 (10 microg/kg), L-NAME (10 mg/kg), and L-arginine (400 mg/kg), alone or in combination, 5 minutes before or after acute ethanol (4 g/kg i.p.) intoxication or after 0, 3, or 7 hours of withdrawal after drinking 20% alcohol for 13 days. BPC 157 rapidly opposes the strongest disturbance presentations in acute intoxication (sustained ethanol anesthesia, complete loss of righting reflex, no reaction to external stimuli, hypothermia, 25% mortality) and withdrawal (prominent seizures). NO-agents: Aggravation of acute alcohol intoxication and opposition to withdrawal are common, but the later intervals affected by L-arginine and the action throughout the experiment by L-NAME are distinctive. Given together, L-arginine and L-NAME counteract each other, while either the "L-NAME presentation" (acute intoxication) or the "L-arginine presentation" (withdrawal) predominates. BPC157+NO-agent: In acute intoxication (L-NAME predominating in NO-system functioning to aggravate intoxication), both BPC157+L-NAME and BPC157+L-arginine follow the presentation of L-NAME, but without worsened mortality. In withdrawal (L-arginine predominating in NO-system functioning to oppose disturbance symptoms), BPC157+L-NAME follows the presentation of L-NAME, while BPC 157+L-arginine imitates that of L-arginine. The relationships among pentadecapeptide BPC 157, the NO-system, acute alcohol intoxication, and opposed withdrawal may be important, presenting pentadecapeptide BPC 157 as a suitable alcohol antagonist.

  3. Ethanol-related behaviors in mice lacking the sigma-1 receptor.

    PubMed

    Valenza, Marta; DiLeo, Alyssa; Steardo, Luca; Cottone, Pietro; Sabino, Valentina

    2016-01-15

    The Sigma-1 receptor (Sig-1R) is a chaperone protein that has been implicated in drug abuse and addiction. Multiple studies have characterized the role the Sig-1R plays in psychostimulant addiction; however, fewer studies have specifically investigated its role in alcohol addiction. We have previously shown that antagonism of the Sig-1R reduces excessive drinking and motivation to drink, whereas agonism induces binge-like drinking in rodents. The objectives of these studies were to investigate the impact of Sig-1R gene deletion in C57Bl/6J mice on ethanol drinking and other ethanol-related behaviors. We used an extensive panel of behavioral tests to examine ethanol actions in male, adult mice lacking Oprs1, the gene encoding the Sig-1R. To compare ethanol drinking behavior, Sig-1 knockout (KO) and wild type (WT) mice were subject to a two-bottle choice, continuous access paradigm with different concentrations of ethanol (3-20% v/v) vs. water. Consumption of sweet and bitter solutions was also assessed in Sig-1R KO and WT mice. Finally, motor stimulant sensitivity, taste aversion and ataxic effects of ethanol were assessed. Sig-1R KO mice displayed higher ethanol intake compared to WT mice; the two genotypes did not differ in their sweet or bitter taste perception. Sig-1R KO mice showed lower sensitivity to ethanol stimulant effects, but greater sensitivity to its taste aversive effects. Ethanol-induced sedation was instead unaltered in the mutants. Our results prove that the deletion of the Sig-1R increases ethanol consumption, likely by decreasing its rewarding effects, and therefore indicating that the Sig-1R is involved in modulation of the reinforcing effects of alcohol. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Ethanol-related behaviors in mice lacking the sigma-1 receptor

    PubMed Central

    Valenza, Marta; DiLeo, Alyssa; Steardo, Luca; Cottone, Pietro; Sabino, Valentina

    2015-01-01

    Rationale The Sigma-1 receptor (Sig-1R) is a chaperone protein that has been implicated in drug abuse and addiction. Multiple studies have characterized the role the Sig-1R plays in psychostimulants addiction, but fewer studies have specifically investigated its role in alcohol addiction. We have previously shown that antagonism of the Sig-1R reduces excessive drinking and motivation to drink, whereas agonism induces binge-like drinking in rodents. Objectives The objectives of these studies were to investigate the impact of Sig-1R gene deletion in C57Bl/6J mice on ethanol drinking and other ethanol-related behaviors. Methods We used an extensive panel of behavioral tests to examine ethanol actions in male, adult mice lacking Oprs1, the gene encoding the Sig-1R. To compare ethanol drinking behavior, Sig-1 knockout (KO) and wild type (WT) mice were subject to a two-bottle choice, continuous access paradigm with different concentrations of ethanol (3%–20% v/v) vs. water. Consumption of sweet and bitter solutions was also assessed in Sig-1R KO and WT mice. Finally, motor stimulant sensitivity, taste aversion and ataxic effects of ethanol were assessed. Results Sig-1R KO mice displayed higher ethanol intake compared to WT mice; the two genotypes did not differ in their sweet or bitter taste perception. Sig-1R KO mice showed lower sensitivity to ethanol stimulant effects, but greater sensitivity to its taste aversive effects. Ethanol-induced sedation was unaltered in the mutants. Conclusions Our results suggest that the deletion of the Sig-1R increases ethanol consumption, likely by decreasing its rewarding effects, and therefore indicating that the Sig-1R is involved in modulation of the reinforcing effects of alcohol. PMID:26462569

  5. Ablation of capsaicin sensitive afferent nerves impairs defence but not rapid repair of rat gastric mucosa.

    PubMed

    Pabst, M A; Schöninkle, E; Holzer, P

    1993-07-01

    Capsaicin sensitive afferent neurones have previously been reported to play a part in gastric mucosal protection. The aim of this study was to investigate whether these nociceptive neurones strengthen mucosal defence against injury or promote rapid repair of the damaged mucosa, or both. This hypothesis was examined in anaesthetised rats whose stomachs were perfused with ethanol (25 or 50% in saline, wt/wt) for 30 minutes. The gastric mucosa was inspected 0 and 180 minutes after ethanol had been given at the macroscopic, light, and scanning electron microscopic level. Rapid repair of the ethanol injured gastric mucosa (reduction of deep injury, partial re-epithelialisation of the denuded surface) took place in rats anaesthetised with phenobarbital, but not in those anaesthetised with urethane. Afferent nerve ablation as a result of treating rats with a neurotoxic dose of capsaicin before the experiment significantly aggravated ethanol induced damage as shown by an increase in the area and depth of mucosal erosions. Rapid repair of the injured mucosa, however, as seen in rats anesthetised with phenobarbital 180 minutes after ethanol was given, was similar in capsaicin and vehicle pretreated animals. Ablation of capsaicin sensitive afferent neurones was verified by a depletion of calcitonin gene related peptide from the gastric corpus wall. These findings indicate that nociceptive neurones control mechanisms of defence against acute injury but are not required for rapid repair of injured mucosa.

  6. Involvement of the mitochondrial permeability transition pore in chronic ethanol-mediated liver injury in mice

    PubMed Central

    King, Adrienne L.; Swain, Telisha M.; Mao, Zhengkuan; Udoh, Uduak S.; Oliva, Claudia R.; Betancourt, Angela M.; Griguer, Corrine E.; Crowe, David R.; Lesort, Mathieu

    2013-01-01

    Chronic ethanol consumption increases sensitivity of the mitochondrial permeability transition (MPT) pore induction in liver. Ca2+ promotes MPT pore opening, and genetic ablation of cyclophilin D (CypD) increases the Ca2+ threshold for the MPT. We used wild-type (WT) and CypD-null (CypD−/−) mice fed a control or an ethanol-containing diet to investigate the role of the MPT in ethanol-mediated liver injury. Ca2+-mediated induction of the MPT and mitochondrial respiration were measured in isolated liver mitochondria. Steatosis was present in WT and CypD−/− mice fed ethanol and accompanied by increased terminal deoxynucleotidyl transferase dUTP-mediated nick-end label-positive nuclei. Autophagy was increased in ethanol-fed WT mice compared with ethanol-fed CypD−/− mice, as reflected by an increase in the ratio of microtubule protein 1 light chain 3B II to microtubule protein 1 light chain 3B I. Higher levels of p62 were measured in CypD−/− than WT mice. Ethanol decreased mitochondrial respiratory control ratios and select complex activities in WT and CypD−/− mice. Ethanol also increased CypD protein in liver of WT mice. Mitochondria from control- and ethanol-fed WT mice were more sensitive to Ca2+-mediated MPT pore induction than mitochondria from their CypD−/− counterparts. Mitochondria from ethanol-fed CypD−/− mice were also more sensitive to Ca2+-induced swelling than mitochondria from control-fed CypD−/− mice but were less sensitive than mitochondria from ethanol-fed WT mice. In summary, CypD deficiency was associated with impaired autophagy and did not prevent ethanol-mediated steatosis. Furthermore, increased MPT sensitivity was observed in mitochondria from ethanol-fed WT and CypD−/− mice. We conclude that chronic ethanol consumption likely lowers the threshold for CypD-regulated and -independent characteristics of the ethanol-mediated MPT pore in liver mitochondria. PMID:24356880

  7. Solvent sensitivity of protein unfolding: dynamical study of chicken villin headpiece subdomain in water-ethanol binary mixture.

    PubMed

    Ghosh, Rikhia; Roy, Susmita; Bagchi, Biman

    2013-12-12

    We carry out a series of long atomistic molecular dynamics simulations to study the unfolding of a small protein, chicken villin headpiece (HP-36), in water-ethanol (EtOH) binary mixture. The prime objective of this work is to explore the sensitivity of protein unfolding dynamics toward increasing concentration of the cosolvent and unravel essential features of intermediates formed in search of a dynamical pathway toward unfolding. In water-ethanol binary mixtures, HP-36 is found to unfold partially, under ambient conditions, that otherwise requires temperature as high as ∼600 K to denature in pure aqueous solvent. However, an interesting course of pathway is observed to be followed in the process, guided by the formation of unique intermediates. The first step of unfolding is essentially the separation of the cluster formed by three hydrophobic (phenylalanine) residues, namely, Phe-7, Phe-11, and Phe-18, which constitute the hydrophobic core, thereby initiating melting of helix-2 of the protein. The initial steps are similar to temperature-induced unfolding as well as chemical unfolding using DMSO as cosolvent. Subsequent unfolding steps follow a unique path. As water-ethanol shows composition-dependent anomalies, so do the details of unfolding dynamics. With an increase in cosolvent concentration, different partially unfolded intermediates are found to be formed. This is reflected in a remarkable nonmonotonic composition dependence of several order parameters, including fraction of native contacts and protein-solvent interaction energy. The emergence of such partially unfolded states can be attributed to the preferential solvation of the hydrophobic residues by the ethyl groups of ethanol. We further quantify the local dynamics of unfolding by using a Marcus-type theory.

  8. Choline Ameliorates Deficits in Balance Caused by Acute Neonatal Ethanol Exposure.

    PubMed

    Bearer, Cynthia F; Wellmann, Kristen A; Tang, Ningfeng; He, Min; Mooney, Sandra M

    2015-08-01

    Fetal alcohol spectrum disorder (FASD) is estimated to occur in 1 % of all live births. The developing cerebellum is vulnerable to the toxic effects of alcohol. People with FASD have cerebellar hypoplasia and developmental deficits associated with cerebellar injury. Choline is an essential nutrient, but many diets in the USA are choline deficient. In rats, choline given with or following alcohol exposure reduces many alcohol-induced neurobehavioral deficits but not those associated with cerebellar function. Our objective was to determine if choline supplementation prior to alcohol exposure would ameliorate the impact of ethanol on a cerebellar-associated behavioral test in mice. Pregnant C57Bl6/J mice were maintained on a choline-deficient diet from embryonic day 4.5. On postnatal day 1 (P1), pups were assigned to one of eight treatment groups: choline (C) or saline (S) pre-treatment from P1 to P5, ethanol (6 g/kg) or Intralipid(®) on P5, C and or S post-treatment from P6 to P20. On P30, balance and coordination were tested using the dowel crossing test. Overall, there was a significant effect of treatment and females crossed longer distances than males. Ethanol exposure significantly reduced the total distance crossed. Choline pre-treatment increased the distance crossed by males, and both pre- and post-treatment with choline significantly increased total distance crossed for females and males. There was no effect of choline on Intralipid®-exposed animals. This is the first study to show that choline ameliorates ethanol-induced effects on balance and coordination when given before ethanol exposure. Choline fortification of common foodstuffs may reduce the effects of alcohol.

  9. CHOLINE AMELIORATES DEFICITS IN BALANCE CAUSED BY ACUTE NEONATAL ETHANOL EXPOSURE

    PubMed Central

    Bearer, Cynthia F.; Wellmann, Kristen A.; Tang, Ningfeng; He, Min; Mooney, Sandra M.

    2015-01-01

    Fetal alcohol spectrum disorder (FASD) is estimated to occur in 1% of all live births. The developing cerebellum is vulnerable to the toxic effects of alcohol. People with FASD have cerebellar hypoplasia and developmental deficits associated with cerebellar injury. Choline is an essential nutrient but many diets in the USA are choline deficient. In rats, choline given with or following alcohol exposure reduces many alcohol-induced neurobehavioral deficits, but not those associated with cerebellar function. Our objective was to determine if choline supplementation prior to alcohol exposure would ameliorate the impact of ethanol on a cerebellar-associated behavioral test in mice. Pregnant C57Bl6/J mice were maintained on a choline deficient diet from embryonic day 4.5. On postnatal day 1 (P1), pups were assigned to one of 8 treatment groups: choline (C) or saline (S) pre-treatment from P1-5, ethanol (6 g/kg) or Intralipid® on P5, C or S post-treatment from P6-20. On P30, balance and coordination were tested using the dowel crossing test. Overall, there was a significant effect of treatment and females crossed longer distances than males. Ethanol exposure significantly reduced the total distance crossed. Choline pre-treatment increased the distance crossed by males, and both pre- and post-treatment with choline significantly increased total distance crossed for females and males. There was no effect of choline on Intralipid®-exposed animals. This is the first study to show that choline ameliorates ethanol-induced effects on balance and coordination when given before ethanol exposure. Choline fortification of common foodstuffs may reduce the effects of alcohol. PMID:26085462

  10. Acute ethanol and taurine intake affect absolute alpha power in frontal cortex before and after exercise.

    PubMed

    Paulucio, Dailson; da Costa, Bruno M; Santos, Caleb G; Velasques, Bruna; Ribeiro, Pedro; Gongora, Mariana; Cagy, Mauricio; Alvarenga, Renato L; Pompeu, Fernando A M S

    2017-09-14

    Taurine and alcohol has been popularly ingested through energy drinks. Reports from both compounds shows they are active on nervous system but little is known about the acute effect of these substances on the frontal cortex in an exercise approach. The aim of this study was to determine the effects of 0,6mldL -1 of ethanol (ET), 6g of taurine (TA), and taurine with ethanol (TA+ET) intake on absolute alpha power (AAP) in the frontal region, before and after exercise. Nine participants were recruited, five women (22±3years) and four men (26±5years), for a counterbalanced experimental design. For each treatment, the tests were performed considering three moments: "baseline", "peak" and "post-exercise". In the placebo treatment (PL), the frontal areas showed AAP decrease at the post-exercise. However, in the TA, AAP decreased at peak and increased at post-exercise. In the ET treatment, AAP increased at the peak moment for the left frontal electrodes. In the TA+ET treatment, an AAP increase was observed at peak, and it continued after exercise ended. These substances were able to produce electrocortical activity changes in the frontal regions after a short duration and low intensity exercise. Left and right regions showed different AAP dynamics during peak and post-exercise moments when treatments were compared. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. ESTIMATION OF AQUATIC SPECIES SENSITIVITY USING INTERSPECIES CORRELATION AND ACUTE TO CHRONIC TOXICITY MODELS

    EPA Science Inventory

    Abstract for presentation

    Estimation of aquatic species sensitivity using interspecies correlation and acute to chronic toxicity models

    Determining species sensitivity of aquatic organisms to contaminants is a critical component of criteria development and ecolog...

  12. Effects of chronic fluvoxamine on ethanol- and food-maintained behaviors

    PubMed Central

    Ginsburg, Brett C.; Lamb, R.J.

    2011-01-01

    Acute treatment with fluvoxamine reduces responding for ethanol more than responding for food. However, pharmacotherapy for alcoholism is likely to require chronic treatment. These experiments were performed to assess the effects of chronic fluvoxamine on ethanol- and food-maintained behaviors. Effects of chronic fluvoxamine (10 and 17.8 mg/kg/day × 30 days) on ethanol- and food-maintained responding were compared to responding during saline treatment in four Sprague-Dawley rats responding for ethanol and food under a multiple fixed-ratio 5, fixed-ratio 5 schedule. In two subjects, chronic fluvoxamine reduced ethanol-maintained responding more than food-maintained responding; however this effect was transient. In another subject, treatment persistently decreased food-maintained responding relative to ethanol-maintained responding. Finally, in one subject, fluvoxamine nonspecifically disrupted responding for food and ethanol. Similar to results in humans, outbred Sprague-Dawley rats had differential responses to chronic fluvoxamine. The effect was transient in rats that responded favorably (greater reduction of ethanol relative to food responding), while response reductions persisted throughout treatment in rats that responded unfavorably (greater reduction of food relative to ethanol or nonspecific reductions). PMID:16647721

  13. Highly Sensitive Ethanol Chemical Sensor Based on Novel Ag-Doped Mesoporous α-Fe2O3 Prepared by Modified Sol-Gel Process.

    PubMed

    Alqahtani, Moteb M; Ali, Atif M; Harraz, Farid A; Faisal, M; Ismail, Adel A; Sayed, Mahmoud A; Al-Assiri, M S

    2018-05-21

    Mesoporous α-Fe 2 O 3 has been synthesized via a simple sol-gel procedure in the presence of Pluronic (F-127) triblock copolymer as structure directing agent. Silver (Ag) nanoparticles were deposited onto α-Fe 2 O 3 matrix by the photochemical reduction approach. Morphological analysis revealed the formation of Ag nanoparticles with small sizes < 20 nm onto the mesoporous structure of α-Fe 2 O 3 possessing < 50 nm semi-spherical shape. The XRD, FTIR, Raman, UV-vis, PL, and N 2 sorption isotherm studies confirmed the high crystallinity, mesoporosity, and optical characteristics of the synthesized product. The electrochemical sensing toward liquid ethanol has been performed using the current devolved Ag/α-Fe 2 O 3 -modified glassy carbon electrode (GCE) by cyclic voltammetry (CV) and current potential (I-V) techniques, and the obtained results were compared with bare GCE or pure α-Fe 2 O 3 . Mesoporous Ag/α-Fe 2 O 3 was found to largely enhance the sensor sensitivity and it exhibited excellent sensing characteristics during the precision detection of low concentrations of ethanol. High and reproducible sensitivity of 41.27 μAmM - 1  cm - 2 at lower ethanol concentration region (0.05 to 0.8 mM) and 2.93 μAmM - 1  cm - 2 at higher concentration zone (0.8 to 15 mM), with a limit of detection (LOD) of 15.4 μM have been achieved. Investigation on reaction kinetics revealed a characteristic behavior of mixed surface and diffusion-controlled processes. Detailed sensing studies revealed also that the sensitivity toward ethanol was higher than that of methanol or isopropanol. With further effort in developing the synthesis and fabrication approaches, a proper utility for the current proposed protocol for fabricating a better sensor device performance is possible.

  14. Inhibitors of biofilm formation by fuel ethanol contaminants

    USDA-ARS?s Scientific Manuscript database

    Industrial fuel ethanol production suffers from chronic and acute infections that reduce yields and cause “stuck fermentations” that result in costly shutdowns. Lactic acid bacteria, particularly Lactobacillus sp., are recognized as major contaminants. In previous studies, we observed that certain...

  15. Acute ethanol ingestion produces dose-dependent effects on motor behavior in the honey bee (Apis mellifera).

    PubMed

    Maze, Ian S; Wright, Geraldine A; Mustard, Julie A

    2006-01-01

    Ethanol consumption produces characteristic behavioral states in animals that include sedation, disorientation, and disruption of motor function. Using individual honey bees, we assessed the effects of ethanol ingestion on motor function via continuous observations of their behavior. Consumption of 1 M sucrose solutions containing a range of ethanol doses led to hemolymph ethanol levels of approximately 40-100 mM. Using ethanol doses in this range, we observed time and dose-dependent effects of ethanol on the percent of time our subjects spent walking, stopped, or upside down, and on the duration and frequency of bouts of behavior. The effects on grooming and flying behavior were more complex. Behavioral recovery from ethanol treatment was both time and ethanol dose dependent, occurring between 12 and 24 h post-ingestion for low doses and at 24-48 h for higher doses. Furthermore, the amount of ethanol measured in honey bee hemolymph appeared to correlate with recovery. We predict that the honey bee will prove to be an excellent model system for studying the influence of ethanol on the neural mechanisms underlying behavior.

  16. Increased Extracellular Glutamate In the Nucleus Accumbens Promotes Excessive Ethanol Drinking in Ethanol Dependent Mice

    PubMed Central

    Griffin III, William C; Haun, Harold L; Hazelbaker, Callan L; Ramachandra, Vorani S; Becker, Howard C

    2014-01-01

    Using a well-established model of ethanol dependence and relapse, this study examined adaptations in glutamatergic transmission in the nucleus accumbens (NAc) and their role in regulating voluntary ethanol drinking. Mice were first trained to drink ethanol in a free-choice, limited access (2 h/day) paradigm. One group (EtOH mice) received repeated weekly cycles of chronic intermittent ethanol (CIE) exposure with intervening weeks of test drinking sessions, whereas the remaining mice (CTL mice) were similarly treated but did not receive CIE treatment. Over repeated cycles of CIE exposure, EtOH mice exhibited significant escalation in drinking (up to ∼3.5 g/kg), whereas drinking remained relatively stable at baseline levels (2–2.5 g/kg) in CTL mice. Using in vivo microdialysis procedures, extracellular glutamate (GLUEX) levels in the NAc were increased approximately twofold in EtOH mice compared with CTL mice, and this difference was observed 7 days after final CIE exposure, indicating that this hyperglutamatergic state persisted beyond acute withdrawal. This finding prompted additional studies examining the effects of pharmacologically manipulating GLUEX in the NAc on ethanol drinking in the CIE model. The non-selective glutamate reuptake antagonist, threo-β-benzyloxyaspartate (TBOA), was bilaterally microinjected into the NAc and found to dose-dependently increase drinking in nondependent (CTL) mice to levels attained by dependent (EtOH) mice. TBOA also further increased drinking in EtOH mice. In contrast, reducing glutamatergic transmission in the NAc via bilateral injections of the metabotropic glutamate receptor-2/3 agonist LY379268 reduced drinking in dependent (EtOH) mice to nondependent (CTL) levels, whereas having a more modest effect in decreasing ethanol consumption in CTL mice. Taken together, these data support an important role of glutamatergic transmission in the NAc in regulating ethanol drinking. Additionally, these results indicate that

  17. Ethanol enhances carbachol-induced protease activation and accelerates Ca2+ waves in isolated rat pancreatic acini.

    PubMed

    Orabi, Abrahim I; Shah, Ahsan U; Muili, Kamaldeen; Luo, Yuhuan; Mahmood, Syeda Maham; Ahmad, Asim; Reed, Anamika; Husain, Sohail Z

    2011-04-22

    Alcohol abuse is a leading cause of pancreatitis, accounting for 30% of acute cases and 70-90% of chronic cases, yet the mechanisms leading to alcohol-associated pancreatic injury are unclear. An early and critical feature of pancreatitis is the aberrant signaling of Ca(2+) within the pancreatic acinar cell. An important conductor of this Ca(2+) is the basolaterally localized, intracellular Ca(2+) channel ryanodine receptor (RYR). In this study, we examined the effect of ethanol on mediating both pathologic intra-acinar protease activation, a precursor to pancreatitis, as well as RYR Ca(2+) signals. We hypothesized that ethanol sensitizes the acinar cell to protease activation by modulating RYR Ca(2+). Acinar cells were freshly isolated from rat, pretreated with ethanol, and stimulated with the muscarinic agonist carbachol (1 μM). Ethanol caused a doubling in the carbachol-induced activation of the proteases trypsin and chymotrypsin (p < 0.02). The RYR inhibitor dantrolene abrogated the enhancement of trypsin and chymotrypsin activity by ethanol (p < 0.005 for both proteases). Further, ethanol accelerated the speed of the apical to basolateral Ca(2+) wave from 9 to 18 μm/s (p < 0.0005; n = 18-22 cells/group); an increase in Ca(2+) wave speed was also observed with a change from physiologic concentrations of carbachol (1 μM) to a supraphysiologic concentration (1 mM) that leads to protease activation. Dantrolene abrogated the ethanol-induced acceleration of wave speed (p < 0.05; n = 10-16 cells/group). Our results suggest that the enhancement of pathologic protease activation by ethanol is dependent on the RYR and that a novel mechanism for this enhancement may involve RYR-mediated acceleration of Ca(2+) waves.

  18. Ethanol Enhances Carbachol-induced Protease Activation and Accelerates Ca2+ Waves in Isolated Rat Pancreatic Acini*

    PubMed Central

    Orabi, Abrahim I.; Shah, Ahsan U.; Muili, Kamaldeen; Luo, Yuhuan; Mahmood, Syeda Maham; Ahmad, Asim; Reed, Anamika; Husain, Sohail Z.

    2011-01-01

    Alcohol abuse is a leading cause of pancreatitis, accounting for 30% of acute cases and 70–90% of chronic cases, yet the mechanisms leading to alcohol-associated pancreatic injury are unclear. An early and critical feature of pancreatitis is the aberrant signaling of Ca2+ within the pancreatic acinar cell. An important conductor of this Ca2+ is the basolaterally localized, intracellular Ca2+ channel ryanodine receptor (RYR). In this study, we examined the effect of ethanol on mediating both pathologic intra-acinar protease activation, a precursor to pancreatitis, as well as RYR Ca2+ signals. We hypothesized that ethanol sensitizes the acinar cell to protease activation by modulating RYR Ca2+. Acinar cells were freshly isolated from rat, pretreated with ethanol, and stimulated with the muscarinic agonist carbachol (1 μm). Ethanol caused a doubling in the carbachol-induced activation of the proteases trypsin and chymotrypsin (p < 0.02). The RYR inhibitor dantrolene abrogated the enhancement of trypsin and chymotrypsin activity by ethanol (p < 0.005 for both proteases). Further, ethanol accelerated the speed of the apical to basolateral Ca2+ wave from 9 to 18 μm/s (p < 0.0005; n = 18–22 cells/group); an increase in Ca2+ wave speed was also observed with a change from physiologic concentrations of carbachol (1 μm) to a supraphysiologic concentration (1 mm) that leads to protease activation. Dantrolene abrogated the ethanol-induced acceleration of wave speed (p < 0.05; n = 10–16 cells/group). Our results suggest that the enhancement of pathologic protease activation by ethanol is dependent on the RYR and that a novel mechanism for this enhancement may involve RYR-mediated acceleration of Ca2+ waves. PMID:21372126

  19. An integrative analysis of ethanol tolerance and withdrawal in zebrafish (Danio rerio)

    PubMed Central

    Tran, Steven; Chatterjee, Diptendu; Gerlai, Robert

    2014-01-01

    The zebrafish is emerging as a popular animal model for alcohol (ethanol or EtOH) addiction due to its simplicity and practical advantages. Two phenomena associated with ethanol addiction are the development of tolerance and withdrawal. Using a multi-level approach in the current study, we characterize ethanol tolerance and withdrawal in zebrafish. We first investigate the temporal trajectory of ethanol concentration in the zebrafish brain in response to an acute exposure and during withdrawal. We report that ethanol concentrations approach a steady state within 60 minutes of exposure to 0.50% and 1.00% v/v ethanol and rapidly decline and return to zero within 60 minutes following withdrawal from chronic ethanol exposure (0.50% v/v). We characterize the changes associated with ethanol tolerance and withdrawal in zebrafish by focusing on 3 domains relevant to ethanol addiction: motor patterns, physiological responses (i.e. cortisol levels), and neurochemical alterations. The use of multiple domains of investigation allowed an in-depth analysis of ethanol induced changes in zebrafish. PMID:24598276

  20. Effects of acute alcohol withdrawal on nest building in mice selectively bred for alcohol withdrawal severity

    PubMed Central

    Greenberg, Gian D.; Phillips, Tamara J.; Crabbe, John C.

    2017-01-01

    Nest building has been used to assess thermoregulatory behavior and positive motivational states in mice. There are known genetic influences on ethanol withdrawal severity as well as individual/thermoregulatory nest building. Withdrawal Seizure-Prone (WSP-1, WSP-2) and Withdrawal Seizure-Resistant (WSR-1, WSR-2) mice were selectively bred for high vs low handling-induced convulsion (HIC) severity, respectively, during withdrawal from chronic ethanol vapor inhalation. They also differ in HIC severity during withdrawal from an acute, 4 g/kg ethanol injection. In our initial study, withdrawal from an acute dose of ethanol dose-dependently impaired nest building over the initial 24 h of withdrawal in genetically segregating Withdrawal Seizure Control (WSC) mice. In two further studies, acute ethanol withdrawal suppressed nest building for up to two days in WSP-1 females. Deficits in nest building from ethanol were limited to the initial 10 h of withdrawal in WSR-1 females and to the initial 24 h of withdrawal in WSP-1 and WSR-1 males. Effects of ethanol on nest building for up to two days were found in WSP-2 and WSR-2 mice of both sexes. Nest building deficits in female mice from the first replicate could not be explained by a general decrease in locomotor behavior. These results suggest that nest building is a novel behavioral phenotype for indexing the severity of acute ethanol withdrawal, and that genes contributing to this trait differ from those affecting acute withdrawal HIC severity. PMID:27503811

  1. Conversion of paper sludge to ethanol, II: process design and economic analysis.

    PubMed

    Fan, Zhiliang; Lynd, Lee R

    2007-01-01

    Process design and economics are considered for conversion of paper sludge to ethanol. A particular site, a bleached kraft mill operated in Gorham, NH by Fraser Papers (15 tons dry sludge processed per day), is considered. In addition, profitability is examined for a larger plant (50 dry tons per day) and sensitivity analysis is carried out with respect to capacity, tipping fee, and ethanol price. Conversion based on simultaneous saccharification and fermentation with intermittent feeding is examined, with ethanol recovery provided by distillation and molecular sieve adsorption. It was found that the Fraser plant achieves positive cash flow with or without xylose conversion and mineral recovery. Sensitivity analysis indicates economics are very sensitive to ethanol selling price and scale; significant but less sensitive to the tipping fee, and rather insensitive to the prices of cellulase and power. Internal rates of return exceeding 15% are projected for larger plants at most combinations of scale, tipping fee, and ethanol price. Our analysis lends support to the proposition that paper sludge is a leading point-of-entry and proving ground for emergent industrial processes featuring enzymatic hydrolysis of cellulosic biomass.

  2. Acute ethanol ingestion produces dose-dependent effects on motor behavior in the honey bee (Apis mellifera)

    PubMed Central

    Maze, Ian S.; Wright, Geraldine A.; Mustard, Julie A.

    2006-01-01

    Ethanol consumption produces characteristic behavioral states in animals that include sedation, disorientation, and disruption of motor function. Using individual honey bees, we assessed the effects of ethanol ingestion on motor function via continuous observations of their behavior. Consumption of 1 M sucrose solutions containing a range of ethanol doses lead to hemolymph ethanol levels of approximately 40 to 100 mM. Using ethanol doses in this range, we observed time and dose-dependent effects of ethanol on the percent of time our subjects spent walking, stopped, or upside down, and on the duration and frequency of bouts of behavior. The effects on grooming and flying behavior were more complex. Behavioral recovery from ethanol treatment was both time and ethanol dose dependent, occurring between 12 and 24 hr post-ingestion for low doses and at 24 to 48 hours for higher doses. Furthermore, the amount of ethanol measured in honey bee hemolymph appeared to correlate with recovery. We predict that the honey bee will prove to be an excellent model system for studying the influence of ethanol on the neural mechanisms underlying behavior. PMID:17070538

  3. Paternal preconception ethanol exposure blunts hypothalamic-pituitary-adrenal axis responsivity and stress-induced excessive fluid intake in male mice.

    PubMed

    Rompala, Gregory R; Finegersh, Andrey; Homanics, Gregg E

    2016-06-01

    A growing number of environmental insults have been shown to induce epigenetic effects that persist across generations. For instance, paternal preconception exposures to ethanol or stress have independently been shown to exert such intergenerational effects. Since ethanol exposure is a physiological stressor that activates the hypothalamic-pituitary-adrenal (HPA) axis, we hypothesized that paternal ethanol exposure would impact stress responsivity of offspring. Adult male mice were exposed to chronic intermittent vapor ethanol or control conditions for 5 weeks before being mated with ethanol-naïve females to produce ethanol (E)- and control (C)-sired offspring. Adult male and female offspring were tested for plasma corticosterone (CORT) levels following acute restraint stress and the male offspring were further examined for stress-evoked 2-bottle choice ethanol-drinking. Paternal ethanol exposure blunted plasma CORT levels following acute restraint stress selectively in male offspring; females were unaffected. In a stress-evoked ethanol-drinking assay, there was no effect of stress on ethanol consumption. However, C-sired males exhibited increased total fluid intake (polydipsia) in response to stress while E-sired males were resistant to this stress-induced phenotype. Taken together, these data suggest that paternal ethanol exposure imparts stress hyporesponsivity to male offspring. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Paternal preconception ethanol exposure blunts hypothalamic-pituitary-adrenal axis responsivity and stress-induced excessive fluid intake in male mice

    PubMed Central

    Rompala, Gregory R.; Finegersh, Andrey; Homanics, Gregg E.

    2016-01-01

    A growing number of environmental insults have been shown to induce epigenetic effects that persist across generations. For instance, paternal preconception exposures to ethanol or stress have independently been shown to exert such intergenerational effects. Since ethanol exposure is a physiological stressor that activates the hypothalamic-pituitary-adrenal (HPA) axis, we hypothesized that paternal ethanol exposure would impact stress responsivity of offspring. Adult male mice were exposed to chronic intermittent vapor ethanol or control conditions for 5 weeks before being mated with ethanol-naïve females to produce ethanol (E)- and control (C)-sired offspring. Adult male and female offspring were tested for plasma corticosterone (CORT) levels following acute restraint stress and the male offspring were further examined for stress-evoked 2-bottle choice ethanol drinking. Paternal ethanol exposure blunted plasma CORT levels following acute restraint stress selectively in male offspring; females were unaffected. In a stress-evoked ethanol-drinking assay, there was no effect of stress on ethanol consumption. However, C-sired males exhibited increased total fluid intake (polydipsia) in response to stress while E-sired males were resistant to this stress-induced phenotype. Taken together, these data suggest that paternal ethanol exposure imparts stress hyporesponsivity to male offspring. PMID:27286933

  5. A highly sensitive and temporal visualization system for gaseous ethanol with chemiluminescence enhancer.

    PubMed

    Arakawa, Takahiro; Ando, Eri; Wang, Xin; Kumiko, Miyajima; Kudo, Hiroyuki; Saito, Hirokazu; Mitani, Tomoyo; Takahashi, Mitsuo; Mitsubayashi, Kohji

    2012-01-01

    A two-dimensional gaseous ethanol visualization system has been developed and demonstrated using a horseradish peroxidase-luminol-hydrogen peroxide system with high-purity luminol solution and a chemiluminescence (CL) enhancer. This system measures ethanol concentrations as intensities of CL via the luminol reaction. CL was emitted when the gaseous ethanol was injected onto an enzyme-immobilized membrane, which was employed as a screen for two-dimensional gas visualization. The average intensity of CL on the substrate was linearly related to the concentration of standard ethanol gas. These results were compared with the CL intensity of the CCD camera recording image in the visualization system. This system is available for gas components not only for spatial but also for temporal analysis in real time. A high-purity sodium salt HG solution (L-HG) instead of standard luminol solution and an enhancer, eosin Y (EY) solution, were adapted for improvement of CL intensity of the system. The visualization of gaseous ethanol was achieved at a detection limit of 3 ppm at optimized concentrations of L-HG solution and EY. Copyright © 2011 John Wiley & Sons, Ltd.

  6. Acute Alcohol Intoxication Exacerbates Rhabdomyolysis-Induced Acute Renal Failure in Rats.

    PubMed

    Tsai, Jen-Pi; Lee, Chung-Jen; Subeq, Yi-Maun; Lee, Ru-Ping; Hsu, Bang-Gee

    2017-01-01

    Traumatic and nontraumatic rhabdomyolysis can lead to acute renal failure (ARF), and acute alcohol intoxication can lead to multiple abnormalities of the renal tubules. We examined the effect of acute alcohol intoxication in a rat model of rhabdomyolysis and ARF. Intravenous injections of 5 g/kg ethanol were given to rats over 3 h, followed by glycerol-induced rhabdomyolysis. Biochemical parameters, including blood urea nitrogen (BUN), creatinine (Cre), glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), and creatine phosphokinase (CPK), were measured before and after induction of rhabdomyolysis. Renal tissue injury score, renal tubular cell expression of E-cadherin, nuclear factor-κB (NF-κB), and inducible nitric oxide synthase (iNOS) were determined. Relative to rats in the vehicle group, rats in the glycerol-induced rhabdomyolysis group had significantly increased serum levels of BUN, Cre, GOT, GPT, and CPK, elevated renal tissue injury scores, increased expression of NF-κB and iNOS, and decreased expression of E-cadherin. Ethanol exacerbated all of these pathological responses. Our results suggest that acute alcohol intoxication exacerbates rhabdomyolysis-induced ARF through its pro-oxidant and inflammatory effects.

  7. Acute Alcohol Intoxication Exacerbates Rhabdomyolysis-Induced Acute Renal Failure in Rats

    PubMed Central

    Tsai, Jen-Pi; Lee, Chung-Jen; Subeq, Yi-Maun; Lee, Ru-Ping; Hsu, Bang-Gee

    2017-01-01

    Traumatic and nontraumatic rhabdomyolysis can lead to acute renal failure (ARF), and acute alcohol intoxication can lead to multiple abnormalities of the renal tubules. We examined the effect of acute alcohol intoxication in a rat model of rhabdomyolysis and ARF. Intravenous injections of 5 g/kg ethanol were given to rats over 3 h, followed by glycerol-induced rhabdomyolysis. Biochemical parameters, including blood urea nitrogen (BUN), creatinine (Cre), glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), and creatine phosphokinase (CPK), were measured before and after induction of rhabdomyolysis. Renal tissue injury score, renal tubular cell expression of E-cadherin, nuclear factor-κB (NF-κB), and inducible nitric oxide synthase (iNOS) were determined. Relative to rats in the vehicle group, rats in the glycerol-induced rhabdomyolysis group had significantly increased serum levels of BUN, Cre, GOT, GPT, and CPK, elevated renal tissue injury scores, increased expression of NF-κB and iNOS, and decreased expression of E-cadherin. Ethanol exacerbated all of these pathological responses. Our results suggest that acute alcohol intoxication exacerbates rhabdomyolysis-induced ARF through its pro-oxidant and inflammatory effects. PMID:28824301

  8. A hot water extract of turmeric (Curcuma longa) suppresses acute ethanol-induced liver injury in mice by inhibiting hepatic oxidative stress and inflammatory cytokine production.

    PubMed

    Uchio, Ryusei; Higashi, Yohei; Kohama, Yusuke; Kawasaki, Kengo; Hirao, Takashi; Muroyama, Koutarou; Murosaki, Shinji

    2017-01-01

    Turmeric ( Curcuma longa ) is a widely used spice that has various biological effects, and aqueous extracts of turmeric exhibit potent antioxidant activity and anti-inflammatory activity. Bisacurone, a component of turmeric extract, is known to have similar effects. Oxidative stress and inflammatory cytokines play an important role in ethanol-induced liver injury. This study was performed to evaluate the influence of a hot water extract of C. longa (WEC) or bisacurone on acute ethanol-induced liver injury. C57BL/6 mice were orally administered WEC (20 mg/kg body weight; BW) or bisacurone (60 µg/kg BW) at 30 min before a single dose of ethanol was given by oral administration (3·0 g/kg BW). Plasma levels of aspartate aminotransferase and alanine aminotransferase were markedly increased in ethanol-treated mice, while the increase of these enzymes was significantly suppressed by prior administration of WEC. The increase of alanine aminotransferase was also significantly suppressed by pretreatment with bisacurone. Compared with control mice, animals given WEC had higher hepatic tissue levels of superoxide dismutase and glutathione, as well as lower hepatic tissue levels of thiobarbituric acid-reactive substances, TNF-α protein and IL-6 mRNA. These results suggest that oral administration of WEC may have a protective effect against ethanol-induced liver injury by suppressing hepatic oxidation and inflammation, at least partly through the effects of bisacurone.

  9. ACUTE SENSITIVITY OF JUVENILE SHORTNOSE STURGEON TO LOW DISSOLVED OXYGEN CONCENTRATIONS

    EPA Science Inventory

    Campbell, Jed G. and Larry R. Goodman. 2004. Acute Sensitivity of Juvenile Shortnose Sturgeon to Low Dissolved Oxygen Concentrations. EPA/600/J-04/175. Trans. Am. Fish. Soc. 133(3):772-776. (ERL,GB 1155).

    There is considerable concern that factors such as eutrophication, ...

  10. Ethanol-induced conditioned taste avoidance: reward or aversion?

    PubMed

    Liu, Chuang; Showalter, John; Grigson, Patricia Sue

    2009-03-01

    Rats avoid intake of a palatable taste cue when paired with all drugs of abuse tested. Evidence suggests that, at least for morphine and cocaine, rats avoid the taste cue because they are anticipating the rewarding properties of the drug. Thus, the suppressive effects of a rewarding sucrose solution and cocaine, but not those of the putatively aversive agent, lithium chloride (LiCl), are exaggerated in drug-sensitive Lewis rats. Likewise, the suppressive effects of sucrose and morphine, but not those of LiCl, are eliminated by bilateral lesions of the gustatory thalamus. Unlike morphine and cocaine, it is less clear whether rewarding or aversive drug properties are responsible for ethanol-induced suppression of intake of a taste cue. The present set of studies tests whether, like cocaine, ethanol-induced suppression of intake of a taste cue also is greater in the drug-sensitive Lewis rats and whether the suppressive effects of the drug are prevented by bilateral lesions of the taste thalamus. In Experiment 1, fluid-deprived Lewis and Fischer rats were given 5-minute access to 0.15% saccharin and then injected with saline or a range of doses of ethanol (0.5, 0.75, 1.0, or 1.5 g/kg). There was a total of 6 such pairings. In Experiments 2 and 3, Sprague-Dawley rats received bilateral electrophysiologically guided lesions of the gustatory thalamus. After recovery, suppression of intake of the saccharin cue was evaluated following repeated daily pairings with either a high (1.5 g/kg) or a low (0.75 g/kg) dose of ethanol. Ethanol-induced suppression of intake of the saccharin conditioned stimulus (CS) did not differ between the drug-sensitive Lewis rats relative to the less-sensitive Fischer rats. Lesions of the taste thalamus, however, prevented the suppressive effect of the 0.75 g/kg dose of the drug, but had no impact on the suppressive effect of the 1.5 g/kg dose of ethanol. The results suggest that the suppressive effects of ethanol on CS intake are mediated by both

  11. Acute dermal toxicity and sensitization studies of novel nano-enhanced UV absorbers.

    PubMed

    Piasecka-Zelga, Joanna; Zelga, Piotr; Górnicz, Magdalena; Strzelczyk, Paweł; Sójka-Ledakowicz, Jadwiga

    2015-01-01

    Many employees working outside are exposed to the harmful effects of UV radiation. A growing problem is also sensitization to textile materials and allergic reactions to active compounds. Groups of inorganic UV blockers with nanoparticles may provide superior properties over organic UV absorbers with relatively less potential of provoking dermatitis. To assess acute dermal irritation and sensitization of nano UV absorbers. Five UV absorbers with nano-sized particles (Z11, TiO2 - SiO2 [TDPK], TK44, TK11, A8G) and 2 vehicles (paste-based on 10% PEG, and dispersion with 1% HEC) were tested. Acute dermal irritation was tested using group of 3 rabbits for each absorber. The sensitization study was carried out on groups of 15 guinea pigs for each tested textile with a UV absorber showing an Ultraviolet Protection Factor (UPF)>40. This research was designed according to OECD Test Guideline No. 404 and 406, and 21 rabbits and 60 guinea pigs were used in the study. In acute dermal irritation, Z11 and A8G modifiers and the analyzed paste gave results of 0.047 to 0.33 which classifies them as barely perceptible irritants, whereas the other analyzed modifiers and dispersion gave results of 0.00 and were classified as nonirritating. Only the textile with TK 11 did not have UPF>40. The analyzed barrier materials were classified as nonsenitizers (TDPK, A8G) or mild sensitizers (TK44, Z11). None of the analyzed materials or modifiers induced major skin reactions in animals. Therefore, they present low risk of provoking skin reactions in humans.

  12. Ethanol Influences on Bax Associations with Mitochondrial Membrane Proteins in Neonatal Rat Cerebellum

    PubMed Central

    Heaton, Marieta Barrow; Siler-Marsiglio, Kendra; Paiva, Michael; Kotler, Alexandra; Rogozinski, Jonathan; Kubovec, Stacey; Coursen, Mary; Madorsky, Vladimir

    2012-01-01

    These studies investigated interactions taking place at the mitochondrial membrane in neonatal rat cerebellum following ethanol exposure, and focused on interactions between pro-apoptotic Bax and proteins of the permeability transition pore (PTP), voltage-dependent anion channel (VDAC), and adenine nucleotide translocator (ANT), of the outer and inner mitochondrial membranes, respectively. Cultured cerebellar granule cells were used to assess the role of these interactions in ethanol neurotoxicity. Analyses were made at the age of maximal cerebellar ethanol vulnerability (P4), compared to the later age of relative resistance (P7), to determine whether differential ethanol sensitivity was mirrored by differences in these molecular interactions. We found that following ethanol exposure, Bax pro-apoptotic associations with both VDAC and ANT were increased, particularly at the age of greater ethanol sensitivity, and these interactions were sustained at this age for at least two hours post-exposure. Since Bax:VDAC interactions disrupt protective VDAC interactions with mitochondrial hexokinase (HXK), we also assessed VDAC:HXK associations following ethanol treatment, and found such interactions were altered by ethanol treatment, but only at two-hours post-exposure, and only in the P4, ethanol-sensitive cerebellum. Ethanol neurotoxicity in cultured neuronal preparations was abolished by pharmacological inhibition of both VDAC and ANT interactions with Bax, but not by a Bax channel blocker. Therefore, we conclude that at this age, within the constraints of our experimental model, a primary mode of Bax-induced initiation of the apoptosis cascade following ethanol insult involves interactions with proteins of the PTP complex, and not channel formation independent of PTP constituents. PMID:22767450

  13. Land usage attributed to corn ethanol production in the United States: sensitivity to technological advances in corn grain yield, ethanol conversion, and co-product utilization.

    PubMed

    Mumm, Rita H; Goldsmith, Peter D; Rausch, Kent D; Stein, Hans H

    2014-01-01

    Although the system for producing yellow corn grain is well established in the US, its role among other biofeedstock alternatives to petroleum-based energy sources has to be balanced with its predominant purpose for food and feed as well as economics, land use, and environmental stewardship. We model land usage attributed to corn ethanol production in the US to evaluate the effects of anticipated technological change in corn grain production, ethanol processing, and livestock feeding through a multi-disciplinary approach. Seven scenarios are evaluated: four considering the impact of technological advances on corn grain production, two focused on improved efficiencies in ethanol processing, and one reflecting greater use of ethanol co-products (that is, distillers dried grains with solubles) in diets for dairy cattle, pigs, and poultry. For each scenario, land area attributed to corn ethanol production is estimated for three time horizons: 2011 (current), the time period at which the 15 billion gallon cap for corn ethanol as per the Renewable Fuel Standard is achieved, and 2026 (15 years out). Although 40.5% of corn grain was channeled to ethanol processing in 2011, only 25% of US corn acreage was attributable to ethanol when accounting for feed co-product utilization. By 2026, land area attributed to corn ethanol production is reduced to 11% to 19% depending on the corn grain yield level associated with the four corn production scenarios, considering oil replacement associated with the soybean meal substituted in livestock diets with distillers dried grains with solubles. Efficiencies in ethanol processing, although producing more ethanol per bushel of processed corn, result in less co-products and therefore less offset of corn acreage. Shifting the use of distillers dried grains with solubles in feed to dairy cattle, pigs, and poultry substantially reduces land area attributed to corn ethanol production. However, because distillers dried grains with solubles

  14. Land usage attributed to corn ethanol production in the United States: sensitivity to technological advances in corn grain yield, ethanol conversion, and co-product utilization

    PubMed Central

    2014-01-01

    Background Although the system for producing yellow corn grain is well established in the US, its role among other biofeedstock alternatives to petroleum-based energy sources has to be balanced with its predominant purpose for food and feed as well as economics, land use, and environmental stewardship. We model land usage attributed to corn ethanol production in the US to evaluate the effects of anticipated technological change in corn grain production, ethanol processing, and livestock feeding through a multi-disciplinary approach. Seven scenarios are evaluated: four considering the impact of technological advances on corn grain production, two focused on improved efficiencies in ethanol processing, and one reflecting greater use of ethanol co-products (that is, distillers dried grains with solubles) in diets for dairy cattle, pigs, and poultry. For each scenario, land area attributed to corn ethanol production is estimated for three time horizons: 2011 (current), the time period at which the 15 billion gallon cap for corn ethanol as per the Renewable Fuel Standard is achieved, and 2026 (15 years out). Results Although 40.5% of corn grain was channeled to ethanol processing in 2011, only 25% of US corn acreage was attributable to ethanol when accounting for feed co-product utilization. By 2026, land area attributed to corn ethanol production is reduced to 11% to 19% depending on the corn grain yield level associated with the four corn production scenarios, considering oil replacement associated with the soybean meal substituted in livestock diets with distillers dried grains with solubles. Efficiencies in ethanol processing, although producing more ethanol per bushel of processed corn, result in less co-products and therefore less offset of corn acreage. Shifting the use of distillers dried grains with solubles in feed to dairy cattle, pigs, and poultry substantially reduces land area attributed to corn ethanol production. However, because distillers dried grains

  15. Intermittent Ethanol during Adolescence Leads to Lasting Behavioral Changes in Adulthood and Alters Gene Expression and Histone Methylation in the PFC.

    PubMed

    Wolstenholme, Jennifer T; Mahmood, Tariq; Harris, Guy M; Abbas, Shahroze; Miles, Michael F

    2017-01-01

    Adolescents primarily consume alcohol in binges, which can be particularly harmful to the developing frontal cortex and increase risk for an adult alcohol use disorder. We conducted a study investigating immediate and long lasting changes to the prefrontal cortex (PFC) transcriptome to determine the molecular mechanisms underlying adult ethanol behavioral sensitivity following binge ethanol in adolescence. DBA/2J mice were orally dosed with 4 g/kg ethanol intermittently from day 29 to 42. Adolescent mice were tested for anxiety-like behavior and ethanol sensitivity using the loss of righting reflex task. As adults, mice were tested for cognitive changes using the novel object recognition task, ethanol-induced anxiolysis and ethanol sensitivity. Adolescent binge ethanol altered ethanol sensitivity in young mice and led to lasting memory deficits in the object recognition test and greater ethanol sensitivity in adulthood. Using genomic profiling of transcripts in the PFC, we found that binge ethanol reduced myelin-related gene expression and altered chromatin modifying genes involved in histone demethylation at H3K9 and H3K36. We hypothesize that ethanol's actions on histone methylation may be a switch for future transcriptional changes that underlie the behavioral changes lasting into adulthood.

  16. Effects of acute alcohol withdrawal on nest building in mice selectively bred for alcohol withdrawal severity.

    PubMed

    Greenberg, Gian D; Phillips, Tamara J; Crabbe, John C

    2016-10-15

    Nest building has been used to assess thermoregulatory behavior and positive motivational states in mice. There are known genetic influences on ethanol withdrawal severity as well as individual/thermoregulatory nest building. Withdrawal Seizure-Prone (WSP-1, WSP-2) and Withdrawal Seizure-Resistant (WSR-1, WSR-2) mice were selectively bred for high vs low handling-induced convulsion (HIC) severity, respectively, during withdrawal from chronic ethanol vapor inhalation. They also differ in HIC severity during withdrawal from an acute, 4g/kg ethanol injection. In our initial study, withdrawal from an acute dose of ethanol dose-dependently impaired nest building over the initial 24h of withdrawal in genetically segregating Withdrawal Seizure Control (WSC) mice. In two further studies, acute ethanol withdrawal suppressed nest building for up to two days in WSP-1 females. Deficits in nest building from ethanol were limited to the initial 10h of withdrawal in WSR-1 females and to the initial 24h of withdrawal in WSP-1 and WSR-1 males. Effects of ethanol on nest building for up to two days were found in WSP-2 and WSR-2 mice of both sexes. Nest building deficits in female mice from the first replicate could not be explained by a general decrease in locomotor behavior. These results suggest that nest building is a novel behavioral phenotype for indexing the severity of acute ethanol withdrawal, and that genes contributing to this trait differ from those affecting acute withdrawal HIC severity. Published by Elsevier Inc.

  17. Ethanol causes desensitization of receptor-mediated phospholipase C activation in isolated hepatocytes.

    PubMed

    Higashi, K; Hoek, J B

    1991-02-05

    The effect of ethanol on receptor-mediated phospholipase C-linked signal transduction processes was investigated in isolated rat hepatocytes. Pretreatment of the cells with ethanol (6-300 mM) markedly inhibited a subsequent stimulation of phospholipase C by vasopressin, angiotensin II, or epidermal growth factor. By contrast, the effects of the alpha 1-adrenergic agonist phenylephrine and of glucagon were not affected by ethanol pretreatment. Ethanol inhibited the agonist-induced decrease in polyphosphoinositides, the formation of inositol phosphates, and the increase in cytosolic free Ca2+ levels, as detected with the intracellular Ca2+ indicator indo-1. The effects of ethanol were concentration dependent and were pronounced at low concentrations of agonists but were not significant at saturating levels. Pretreatment of the cells with the protein kinase C inhibitor H7 partly prevented the inhibition by ethanol of vasopressin-induced phospholipase C activation. By contrast, pretreatment of the cells with (Rp)-adenosine cyclic 3':5'-phosphorothioate [Rp)-cAMP-S), a competitive inhibitor of protein kinase A, potentiated the inhibitory effect of ethanol on the Ca2+ mobilization by vasopressin. (Rp)-cAMP-S similarly potentiated the inhibition of phospholipase C by the protein kinase C-activating phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA). The kinase A inhibitor also made the Ca2+ mobilization by phenylephrine sensitive to ethanol, indicating that the formation of cAMP in the cells played a role in suppressing the sensitivity to ethanol. Pretreatment of the cells with ethanol enhanced the inhibitory effects of TPA on the vasopressin-induced phospholipase C activation at all concentrations of the hormone; however, these synergistic effects were prevented when TPA was added prior to ethanol, a condition that prevents the activation of phospholipase C by ethanol. The data indicate that ethanol causes desensitization of the receptor-mediated phospholipase C

  18. Rsu1 regulates ethanol consumption in Drosophila and humans.

    PubMed

    Ojelade, Shamsideen A; Jia, Tianye; Rodan, Aylin R; Chenyang, Tao; Kadrmas, Julie L; Cattrell, Anna; Ruggeri, Barbara; Charoen, Pimphen; Lemaitre, Hervé; Banaschewski, Tobias; Büchel, Christian; Bokde, Arun L W; Carvalho, Fabiana; Conrod, Patricia J; Flor, Herta; Frouin, Vincent; Gallinat, Jürgen; Garavan, Hugh; Gowland, Penny A; Heinz, Andreas; Ittermann, Bernd; Lathrop, Mark; Lubbe, Steven; Martinot, Jean-Luc; Paus, Tomás; Smolka, Michael N; Spanagel, Rainer; O'Reilly, Paul F; Laitinen, Jaana; Veijola, Juha M; Feng, Jianfeng; Desrivières, Sylvane; Jarvelin, Marjo-Riitta; Schumann, Gunter; Rothenfluh, Adrian

    2015-07-28

    Alcohol abuse is highly prevalent, but little is understood about the molecular causes. Here, we report that Ras suppressor 1 (Rsu1) affects ethanol consumption in flies and humans. Drosophila lacking Rsu1 show reduced sensitivity to ethanol-induced sedation. We show that Rsu1 is required in the adult nervous system for normal sensitivity and that it acts downstream of the integrin cell adhesion molecule and upstream of the Ras-related C3 botulinum toxin substrate 1 (Rac1) GTPase to regulate the actin cytoskeleton. In an ethanol preference assay, global loss of Rsu1 causes high naïve preference. In contrast, flies lacking Rsu1 only in the mushroom bodies of the brain show normal naïve preference but then fail to acquire ethanol preference like normal flies. Rsu1 is, thus, required in distinct neurons to modulate naïve and acquired ethanol preference. In humans, we find that polymorphisms in RSU1 are associated with brain activation in the ventral striatum during reward anticipation in adolescents and alcohol consumption in both adolescents and adults. Together, these data suggest a conserved role for integrin/Rsu1/Rac1/actin signaling in modulating reward-related phenotypes, including ethanol consumption, across phyla.

  19. Referral Regions for Time-Sensitive Acute Care Conditions in the United States.

    PubMed

    Wallace, David J; Mohan, Deepika; Angus, Derek C; Driessen, Julia R; Seymour, Christopher M; Yealy, Donald M; Roberts, Mark M; Kurland, Kristen S; Kahn, Jeremy M

    2018-03-24

    Regional, coordinated care for time-sensitive and high-risk medical conditions is a priority in the United States. A necessary precursor to coordinated regional care is regions that are actionable from clinical and policy standpoints. The Dartmouth Atlas of Health Care, the major health care referral construct in the United States, uses regions that cross state and county boundaries, limiting fiscal or political ownership by key governmental stakeholders in positions to create incentive and regulate regional care coordination. Our objective is to develop and evaluate referral regions that define care patterns for patients with acute myocardial infraction, acute stroke, or trauma, yet also preserve essential political boundaries. We developed a novel set of acute care referral regions using Medicare data in the United States from 2011. For acute myocardial infraction, acute stroke, or trauma, we iteratively aggregated counties according to patient home location and treating hospital address, using a spatial algorithm. We evaluated referral political boundary preservation and spatial accuracy for each set of referral regions. The new set of referral regions, the Pittsburgh Atlas, had 326 distinct regions. These referral regions did not cross any county or state borders, whereas 43.1% and 98.1% of all Dartmouth Atlas hospital referral regions crossed county and state borders. The Pittsburgh Atlas was comparable to the Dartmouth Atlas in measures of spatial accuracy and identified larger at-risk populations for all 3 conditions. A novel and straightforward spatial algorithm generated referral regions that were politically actionable and accountable for time-sensitive medical emergencies. Copyright © 2018 American College of Emergency Physicians. Published by Elsevier Inc. All rights reserved.

  20. Fluvoxamine effects on concurrent ethanol- and food-maintained behaviors

    PubMed Central

    Ginsburg, Brett C.; Lamb, R.J.

    2011-01-01

    In previous studies, the selective serotonin reuptake inhibitor fluvoxamine preferentially reduced responding for ethanol compared with responding for food under conditions in which each was available alone in separate groups or in the same subjects under a multiple schedule in which baseline response rates were matched. The impact of providing concurrent access to food on pharmacological effects on ethanol self-administration remains largely unexplored. In this study, acute doses of fluvoxamine (3.0-17.8 mg/kg) were administered 30-min before the experimental session to Lewis rats responding under a concurrent fixed-ratio, fixed-ratio schedule of ethanol and food presentation. Ratios for food were adjusted for each subject to provide matched rates of food and ethanol reinforcement across the 30-min session. Although the number of ethanol and food deliveries did not significantly differ under baseline conditions, response rates did differ. Following fluvoxamine administration, responding for food was decreased more than responding for ethanol. This differential effect did not appear to be related to response rate or fixed-ratio size. Thus, the selectivity of fluvoxamine on ethanol- versus food-maintained responding depends upon the context in which the behavior occurs. Such results may help explain inconsistencies between preclinical results and those in humans, and could provide insight into the behavioral determinants of pharmacological effects on ethanol self-administration. PMID:17115876

  1. Ethanol Administration Impairs Pancreatic Repair Following Injury

    PubMed Central

    Mahan Schneider, Katrina J.; Scheer, Marc; Suhr, Mallory; Clemens, Dahn L.

    2012-01-01

    Objectives Alcohol abuse is one of the most common factors associated with acute and chronic pancreatitis. Although it is evident that alcohol abuse can have an important role in the development of pancreatitis, it does not appear that alcohol abuse alone is responsible for this disease. We investigated the involvement of ethanol in impairment of pancreatic repair after induction of pancreatitis. Methods A biologically relevant mouse model of alcoholic pancreatitis, combining chronic ethanol consumption and coxsackievirus infection, was used to investigate the effects of ethanol on pancreatic regeneration. Tissues were harvested and analyzed by RT-PCR and immunoblot. Results These studies demonstrate that chronic ethanol consumption impairs the structural repair of the exocrine pancreas. This is accompanied by a delay in the restitution of lipase expression. Additionally, impaired expression of the critical pancreatic transcription factors, PDX1 and PTF1, and the mediator of Notch signaling, HES1, were observed. Conclusions Chronic ethanol consumption impairs the structural repair and functional restitution of the pancreas after severe injury. These impairments may, in part, be explained by impaired expression of factors important in the development and maintenance of the exocrine pancreas. Impaired pancreatic regeneration may have a role in the pathogenesis of alcoholic pancreatitis. PMID:22617711

  2. Differences in hepatic microsomal cytochrome P-450 isoenzyme induction by pyrazole, chronic ethanol, 3-methylcholanthrene, and phenobarbital in high alcohol sensitivity (HAS) and low alcohol sensitivity (LAS) rats.

    PubMed

    Lucas, D; Ménez, J F; Berthou, F; Cauvin, J M; Deitrich, R A

    1992-10-01

    High and low alcohol sensitivity (HAS and LAS) rats have been selected for their differences in ethanol-induced sleep time. Liver monooxygenase activities were studied in HAS and LAS rats before and after treatments with known inducers such as chronic ethanol, pyrazole, 3-methylcholanthrene (3-MC) and phenobarbital (PB) to determine whether the selection procedure also selected for differences in the cytochrome P-450 (P-450) inducibility. This previously has been shown with long sleep (LS) and short sleep (SS) mice, which were selected using a similar criterion. 3-MC and PB, in conjunction with chronic ethanol treatment, were used in order to evaluate the interactions of ethanol with these inducers. Prior to treatment, total P-450 content was slightly lower in LAS than in HAS rats. However, both lines displayed the same microsomal monooxygenase activities related to different P-450 isozymes. This was demonstrated by ethoxyresorufin deethylation (EROD) for cytochrome P-450 1A1 (CYP1A1), acetanilide hydroxylation (ACET) for CYP1A2, pentoxyresorufin dealkylation (PROD) for CYP2B, 1-butanol oxidation (BUTAN) and N-nitrosodimethylamine demethylation (NDMA) for CYP2E1. After the different treatments, HAS rats did not differ from LAS rats in their CYP2E1 inducibility. However, pyrazole, PB and 3-MC treatment led to differences in CYP1A and CYP2B monooxygenase activities between the two lines. The enhancement of PROD by pyrazole treatment was less prominent in LAS (1.7-fold of the control value) than in HAS rats (3.8-fold).(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Effect of acute beer ingestion on the liver: studies in female mice.

    PubMed

    Kanuri, Giridhar; Wagnerberger, Sabine; Landmann, Marianne; Prigl, Eva; Hellerbrand, Claus; Bischoff, Stephan C; Bergheim, Ina

    2015-04-01

    The aim of the present study was to assess whether the effects of acute consumption of stout or pilsner beer on the liver differ from those of plain ethanol in a mouse model. Seven-week-old female C57BL/6J mice received either ethanol, stout or pilsner beer (ethanol content: 6 g/kg body weight) or isocaloric maltodextrin solution. Plasma alanine transaminase, markers of steatosis, lipogenesis, activation of the toll-like receptor-4 signaling cascade as well as lipid peroxidation and fibrogenesis in the liver were measured 12 h after acute ethanol or beer intake. Acute alcohol ingestion caused a marked ~11-fold increase in hepatic triglyceride accumulation in comparison to controls, whereas in mice exposed to stout and pilsner beer, hepatic triglyceride levels were increased only by ~6.5- and ~4-fold, respectively. mRNA expression of sterol regulatory element-binding protein 1c and fatty acid synthase in the liver did not differ between alcohol and beer groups. In contrast, expression of myeloid differentiation primary response gene 88, inducible nitric oxide synthases, but also the concentrations of 4-hydroxynonenal protein adducts, nuclear factor κB and plasminogen activator inhibitor-1 were induced in livers of ethanol treated mice but not in those exposed to the two beers. Taken together, our results suggest that acute ingestion of beer and herein especially of pilsner beer is less harmful to the liver than the ingestion of plain ethanol.

  4. Further characterization of the effect of ethanol on voltage-gated Ca(2+) channel function in developing CA3 hippocampal pyramidal neurons.

    PubMed

    Morton, Russell A; Valenzuela, C Fernando

    2016-02-15

    Developmental ethanol exposure damages the hippocampus, a brain region involved in learning and memory. Alterations in synaptic transmission and plasticity may play a role in this effect of ethanol. We previously reported that acute and repeated exposure to ethanol during the third trimester-equivalent inhibits long-term potentiation of GABAA receptor-dependent synaptic currents in CA3 pyramidal neurons through a mechanism that depends on retrograde release of brain-derived neurotrophic factor driven by activation of voltage-gated Ca(2+) channels (Zucca and Valenzuela, 2010). We found evidence indicating that voltage-gated Ca(2+) channels are inhibited in the presence of ethanol, an effect that may play a role in its mechanism of action. Here, we further investigated the acute effect of ethanol on the function of voltage-gated Ca(2+) channels in CA3 pyramidal neurons using Ca(2+) imaging techniques. These experiments revealed that acute ethanol exposure inhibits voltage-gated Ca(2+) channels both in somatic and proximal dendritic compartments. To investigate the long-term consequences of ethanol on voltage-gated Ca(2+) channels, we used patch-clamp electrophysiological techniques to assess the function of L-type voltage-gated Ca(2+) channels during and following ten days of vapor ethanol exposure. During ethanol withdrawal periods, the function of these channels was not significantly affected by vapor chamber exposure. Taken together with our previous findings, our results suggest that 3(rd) trimester-equivalent ethanol exposure transiently inhibits L-type voltage-gated Ca(2+) channel function in CA3 pyramidal neurons and that compensatory mechanisms restore their function during ethanol withdrawal. Transient inhibition of these channels by ethanol may be, in part, responsible for the hippocampal abnormalities associated with developmental exposure to this agent. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Ethanol-mediated facilitation of AMPA receptor function in the dorsomedial striatum: implications for alcohol drinking behavior.

    PubMed

    Wang, Jun; Ben Hamida, Sami; Darcq, Emmanuel; Zhu, Wenheng; Gibb, Stuart L; Lanfranco, Maria Fe; Carnicella, Sebastien; Ron, Dorit

    2012-10-24

    We found previously that acute ex vivo as well as repeated cycles of in vivo ethanol exposure and withdrawal, including excessive voluntary consumption of ethanol, produces a long-lasting increase in the activity of NR2B-containing NMDA receptors (NR2B-NMDARs) in the dorsomedial striatum (DMS) of rats (Wang et al., 2010a). Activation of NMDARs is required for the induction of long-term potentiation (LTP) of AMPA receptor (AMPAR)-mediated synaptic response. We therefore examined whether the ethanol-mediated upregulation of NMDAR activity alters the induction of LTP in the DMS. We found that ex vivo acute exposure of striatal slices to, and withdrawal from, ethanol facilitates the induction of LTP in DMS neurons, which is abolished by the inhibition of NR2B-NMDARs. We also report that repeated systemic administration of ethanol causes an NR2B-NMDAR-dependent facilitation of LTP in the DMS. LTP is mediated by the insertion of AMPAR subunits into the synaptic membrane, and we found that repeated systemic administration of ethanol, as well as cycles of excessive ethanol consumption and withdrawal, produced a long-lasting increase in synaptic localization of the GluR1 and GluR2 subunits of AMPARs in the DMS. Importantly, we report that inhibition of AMPARs in the DMS attenuates operant self-administration of ethanol, but not of sucrose. Together, our data suggest that aberrant synaptic plasticity in the DMS induced by repeated cycles of ethanol exposure and withdrawal contributes to the molecular mechanisms underlying the development and/or maintenance of excessive ethanol consumption.

  6. Ethanol induced antidepressant-like effect in the mouse forced swimming test: modulation by serotonergic system.

    PubMed

    Jain, Nishant S; Kannamwar, Uday; Verma, Lokesh

    2017-02-01

    The present investigation explored the modulatory role of serotonergic transmission in the acute ethanol-induced effects on immobility time in the mouse forced swim test (FST). Acute i.p. administration of ethanol (20% w/v, 2 or 2.5 g/kg, i.p.) decreased the immobility time in FST of mice, indicating its antidepressant-like effect while lower doses of ethanol (1, 1.5 g/kg, i.p.) were devoid of any effect in the FST. The mice pre-treated with a sub-effective dose of 5-HT 2A agonist, DOI (10 μg/mouse, i.c.v.) or 5-HT 1A receptor antagonist, WAY 100635 (0.1 μg/mouse, i.c.v.) but not with the 5-HT 2A/2C antagonist, ketanserin (1.5 μg/mouse, i.c.v.) exhibited a synergistic reduction in the immobility time induced by sub-effective dose of ethanol (1.5 g/kg, i.p.). On the other hand, ethanol (2.5 g/kg, i.p.) failed to decrease the immobility time in mice, pre-treated with 5-HT 1A agonist, 8-OH-DPAT (0.1 μg/mouse, i.c.v.) or ketanserin (1.5 μg/mouse, i.c.v.). In addition, pre-treatment with a 5-HT neuronal synthesis inhibitor, p-CPA (300 mg/kg, i.p. × 3 days) attenuated the anti-immobility effect ethanol (2.5 g/kg, i.p.) in mouse FST. Thus, the results of the present study points towards the essentiality of the central 5-HT transmission at the synapse for the ethanol-induced antidepressant-like effect in the FST wherein the regulatory role of the 5-HT 1A receptor or contributory role of the 5-HT 2A/2C receptor-mediated mechanism is proposed in the anti-immobility effect of acute ethanol in mouse FST.

  7. Adolescent, but not adult, rats exhibit ethanol-mediated appetitive second-order conditioning

    PubMed Central

    Pautassi, Ricardo Marcos; Myers, Mallory; Spear, Linda Patia; Molina, Juan Carlos; Spear, Norman E.

    2008-01-01

    Background Adolescent rats are less sensitive to the sedative effects of ethanol than older animals. They also seem to perceive the reinforcing properties of ethanol. However, unlike neonates or infants, ethanol-mediated appetitive behavior has yet to be clearly shown in adolescents. Appetitive ethanol reinforcement was assessed in adolescent (postnatal day 33, P33) and adult rats (P71) through second-order conditioning (SOC). Methods On P32 or P70 animals were intragastrically administered ethanol (0.5 or 2.0 g/kg) paired with intraoral pulses of sucrose (CS1, first-order conditioning phase). CS1 delivery took place either 5-20 (Early pairing) or 30-45 (Late pairing) min following ethanol. CS1 exposure and ethanol administration were separated by 240 min in unpaired controls. On P33 or P71, animals were presented the CS1 (second-order conditioning phase) while in a distinctive chamber (CS2). Then, they were tested for CS2 preference. Results Early and late paired adolescents, but not adults, had greater preference for the CS2 than controls, a result indicative of ontogenetic variation in ethanol-mediated reinforcement. During the CS1 - CS2 associative phase, paired adolescents given 2.0 g/kg ethanol wall-climbed more than controls. Blood and brain ethanol levels associated with the 0.5 and 2.0 g/kg doses at the onset of each conditioning phase did not differ substantially across age, with mean BECs of 38 and 112 mg %. Conclusions These data indicate age-related differences between adolescent and adult rats in terms of sensitivity to ethanol’s motivational effects. Adolescents exhibit high sensitivity for ethanol’s appetitive effects. These animals also showed EtOH-mediated behavioral activation during the second-order conditioning phase. The SOC preparation provides a valuable conditioning model for assessing ethanol’s motivational effects across ontogeny. PMID:18782343

  8. The determination of ethanol in blood and urine by mass fragmentography

    NASA Technical Reports Server (NTRS)

    Pereira, W. E.; Summons, R. E.; Rindfleisch, T. C.; Duffield, A. M.

    1974-01-01

    A mass fragmentographic technique for a rapid, specific and sensitive determination of ethanol in blood and urine is described. A Varian gas chromatograph coupled through an all-glass membrane separator to a Finnigan quadripole mass spectrometer and interfaced to a computer system is used for ethanol determination in blood and urine samples. A procedure for plotting calibration curves for ethanol quantitation is also described. Quantitation is achieved by plotting the peak area ratios of undeuterated-to-deuterated ethanol fragment ions against the amount of ethanol added. Representative results obtained by this technique are included.

  9. Cue-Induced Ethanol Seeking in Drosophila melanogaster Is Dose-Dependent

    PubMed Central

    Nunez, Kavin M.; Azanchi, Reza; Kaun, Karla R.

    2018-01-01

    Alcohol use disorder generates devastating social, medical and economic burdens, making it a major global health issue. The persistent nature of memories associated with intoxication experiences often induces cravings and triggers relapse in recovering individuals. Despite recent advances, the neural and molecular mechanisms underlying these memories are complex and not well understood. This makes finding effective pharmacological targets challenging. The investigation of persistent alcohol-associated memories in the fruit fly, Drosophila melanogaster, presents a unique opportunity to gain a comprehensive understanding of the memories for ethanol reward at the level of genes, molecules, neurons and circuits. Here we characterize the dose-dependent nature of ethanol on the expression of memory for an intoxication experience. We report that the concentration of ethanol, number of ethanol exposures, length of ethanol exposures, and timing between ethanol exposures are critical in determining whether ethanol is perceived as aversive or appetitive, and in how long the memory for the intoxicating properties of ethanol last. Our study highlights that fruit flies display both acute and persistent memories for ethanol-conditioned odor cues, and that a combination of parameters that determine the intoxication state of the fly influence the seemingly complex retention and expression of memories associated with intoxication. Our thorough behavioral characterization provides the opportunity to interrogate the biological underpinnings of these observed preference differences in future studies. PMID:29740347

  10. Pleiotrophin differentially regulates the rewarding and sedative effects of ethanol.

    PubMed

    Vicente-Rodríguez, Marta; Pérez-García, Carmen; Ferrer-Alcón, Marcel; Uribarri, María; Sánchez-Alonso, María G; Ramos, María P; Herradón, Gonzalo

    2014-12-01

    Pleiotrophin (PTN) is a cytokine with important roles in dopaminergic neurons. We found that an acute ethanol (2.0 g/kg, i.p.) administration causes a significant up-regulation of PTN mRNA and protein levels in the mouse prefrontal cortex, suggesting that endogenous PTN could modulate behavioural responses to ethanol. To test this hypothesis, we studied the behavioural effects of ethanol in PTN knockout (PTN(-/-) ) mice and in mice with cortex- and hippocampus-specific transgenic PTN over-expression (PTN-Tg). Ethanol (1.0 and 2.0 g/kg) induced an enhanced conditioned place preference in PTN(-/-) compared to wild type mice, suggesting that PTN prevents ethanol rewarding effects. Accordingly, the conditioning effects of ethanol were completely abolished in PTN-Tg mice. The ataxic effects induced by ethanol (2.0 g/kg) were not affected by the genotype. However, the sedative effects of ethanol (3.6 g/kg) tested in a loss of righting reflex paradigm were significantly reduced in PTN-Tg mice, suggesting that up-regulation of PTN levels prevents the sedative effects of ethanol. These results indicate that PTN may be a novel genetic factor of importance in alcohol use disorders, and that potentiation of the PTN signalling pathway may be a promising therapeutic strategy in the treatment of these disorders. © 2014 International Society for Neurochemistry.

  11. Antitumor activity of ethanol extract from Hippophae rhamnoides L. leaves towards human acute myeloid leukemia cells in vitro.

    PubMed

    Zhamanbaeva, G T; Murzakhmetova, M K; Tuleukhanov, S T; Danilenko, M P

    2014-12-01

    We studied the effects of ethanol extract from Hippophae rhamnoides L. leaves on the growth and differentiation of human acute myeloid leukemia cells (KG-1a, HL60, and U937). The extract of Hippophae rhamnoides L. leaves inhibited cell growth depending on the cell strain and extract dose. In a high concentration (100 μg/ml), the extract also exhibited a cytotoxic effect on HL60 cells. Hippophae rhamnoides L. leaves extract did not affect cell differentiation and did not modify the differentiating effect of calcitriol, active vitamin D metabolite. Inhibition of cell proliferation was paralleled by paradoxical accumulation of phase S cells (synthetic phase) with a reciprocal decrease in the count of G1 cells (presynthetic phase). The extract in a concentration of 100 μg/ml induced the appearance of cells with a subdiploid DNA content (sub-G1 phase cells), which indicated induction of apoptosis. The antiproliferative effect of Hippophae rhamnoides L. extract on acute myeloid leukemia cells was at least partially determined by activation of the S phase checkpoint, which probably led to deceleration of the cell cycle and apoptosis induction.

  12. High-sensitive nitrogen dioxide and ethanol gas sensor using a reduced graphene oxide-loaded double split ring resonator

    NASA Astrophysics Data System (ADS)

    Singh, Sandeep Kumar; Azad, Prakrati; Akhtar, M. J.; Kar, Kamal K.

    2017-08-01

    A reduced graphene oxide (rGO) incorporated double split ring resonator (DSRR) portable microwave gas sensor is proposed in this work. The sensor is fabricated using two major steps: the DSRR is fabricated on the FR-4 substrate, which is excited by a high impedance microstrip line. The rGO is synthesized via a chemical route and coated inside the smaller ring of the DSRR. The SEM micrographs reveal crumpled sheets of rGO that provide a large surface area, and the XRD patterns of the as-synthesized rGO reveal the two-dimensional structure of the rGO nanosheets. The sensor performance is measured at room temperature using 100-400 ppm of ethanol and NO2 target gases. At 400 ppm, the sensor reveals a shift of 420 and 390 MHz in the S 21 frequency for NO2 and ethanol gases, respectively. The frequency shifts of 130 and 120 MHz in the S 21 resonance frequency are obtained for NO2 and ethanol gases, respectively, at a very low concentration of 100 ppm. The high sensitivity of the proposed rGO gas sensor is achieved due to the combined effect of the large surface area of the rGO responsible for accommodating more gas molecules, and its increased conductivity due to the transfer of the electron from the rGO. Moreover, an exceedingly short response time is observed for NO2 in comparison to ethanol, which allows the proposed sensor to be used for the selective detection of NO2 in a harsh environment. The overall approach used in this study is quite simple, and has great potential to enhance the gas detection behaviour of rGO.

  13. Sex Differences in the Effect of Finasteride on Acute Ethanol Withdrawal Severity in C57BL/6J and DBA/2J Mice

    PubMed Central

    Gorin-Meyer, Rebecca E.; Wiren, Kristine M.; Tanchuck, Michelle A.; Long, Season L.; Yoneyama, Naomi; Finn, Deborah A.

    2007-01-01

    The neurosteroid allopregnanolone (ALLO) is a potent positive modulator of γ-aminobutyric acidA (GABAA) receptors that can modulate ethanol (EtOH) withdrawal. The 5α-reductase inhibitor finasteride can block the formation of ALLO and other GABAergic neurosteroids and also reduce certain effects of EtOH. Treatment with finasteride during chronic EtOH exposure decreased EtOH withdrawal severity and blood EtOH concentrations (BECs), suggesting an additional effect of finasteride on EtOH pharmacokinetics. Thus, the purpose of the present study was to determine the effect of finasteride on acute EtOH withdrawal severity, to minimize the effect of finasteride on EtOH metabolism. Male and female C57BL/6J and DBA/2J mice received a pretreatment of finasteride (50 mg/kg i.p.) or vehicle 24 hours prior to an injection of EtOH (4 g/kg i.p.) or saline. Handling-induced convulsions (HICs) were scored at baseline, and then over a 24 hr period after EtOH or saline injection. In another experiment, plasma estradiol and corticosterone levels were assessed at selected time points (0, 2, 8, and 24 hrs). In a final study, retro-orbital blood samples were collected at 30, 60, 120, and 240 minutes post-EtOH administration to access finasteride’s effects on EtOH clearance parameters. Pretreatment with finasteride increased acute EtOH withdrawal severity in female C57BL/6J and DBA/2J mice but decreased withdrawal severity in male mice of both strains. Finasteride did not alter BECs, EtOH clearance, estradiol, or corticosterone concentrations in a manner that appeared to contribute to the sex difference in finasteride’s effect on acute EtOH withdrawal severity. These findings suggest that male and female C57BL/6J and DBA/2J mice differ in their sensitivity to changes in ALLO or other GABAergic neurosteroid levels during acute EtOH withdrawal. Sex differences in the modulation of GABAergic 5α-reduced steroids may be an important consideration in understanding and developing

  14. Electron transport in ethanol & methanol absorbed defected graphene

    NASA Astrophysics Data System (ADS)

    Dandeliya, Sushmita; Srivastava, Anurag

    2018-05-01

    In the present paper, the sensitivity of ethanol and methanol molecules on surface of single vacancy defected graphene has been investigated using density functional theory (DFT). The changes in structural and electronic properties before and after adsorption of ethanol and methanol were analyzed and the obtained results show high adsorption energy and charge transfer. High adsorption happens at the active site with monovacancy defect on graphene surface. Present work confirms that the defected graphene increases the surface reactivity towards ethanol and methanol molecules. The presence of molecules near the active site affects the electronic and transport properties of defected graphene which makes it a promising choice for designing methanol and ethanol sensor.

  15. Persistent Enhancement of Ethanol Drinking Following a Monosodium Glutamate-Substitution Procedure in C57BL6/J and DBA/2J Mice

    PubMed Central

    McCool, Brian A.; Chappell, Ann M.

    2014-01-01

    Inbred mouse strains such as C57BL/6J (B6) and DBA/2J (D2) and related strains have been used extensively to help identify genetic controls for a number of ethanol-related behaviors, including acute intoxication and sensitivity to repeated exposures. The disparate ethanol drinking behaviors of B6 mice expressing high-drinking/preference and D2 mice expressing low-drinking/preference have yielded considerable insight into the heritable control of alcohol drinking. However, the B6-high and D2-low drinking phenotypes are contrasted with ethanol-conditioned reward-like behaviors, which are robustly expressed by D2 mice and considerably less expressed by B6 mice. This suggests that peripheral factors, chiefly ethanol taste, may help drive ethanol drinking by these and related strains, which complicates mouse genetic studies designed to understand the relationships between reward-related behaviors and ethanol drinking. Traditional approaches such as the sucrose/saccharin-substitution procedure that normally accentuate ethanol drinking in rodents have had limited success in low drinking/preferring mice such as the D2 line. This may be due to allelic variations of the sweet taste receptor subunit, expressed by many ethanol low-drinking/preferring strains, which would limit the utility of these types of substitution approaches. We have recently shown (McCool & Chappell, 2012) that monosodium glutamate (MSG), the primary component of umami taste, can be used in a substitution procedure to initiate ethanol drinking in both B6 and D2 mice that greatly surpasses that initiated by a more traditional sucrose-substitution procedure. In this study, we show that ethanol drinking initiated by MSG substitution in D2 mice, but not sucrose substitution, can persist for several weeks following removal of the flavor. These findings further illustrate the utility of MSG substitution to initiate ethanol drinking in distinct mouse strains. PMID:24355071

  16. Long-lasting reductions of ethanol drinking, enhanced ethanol-induced sedation, and decreased c-fos expression in the Edinger-Westphal nucleus in Wistar rats exposed to the organophosphate chlorpyrifos.

    PubMed

    Carvajal, Francisca; López-Grancha, Matilde; Navarro, Montserrat; Sánchez-Amate, Maria del Carmen; Cubero, Inmaculada

    2007-04-01

    Intermittent or continuous exposure to a wide variety of chemically unrelated environmental pollutants might result in the development of multiple chemical intolerance and increased sensitivity to drugs of abuse. Interestingly, clinical evidence suggests that exposure to organophosphates might be linked to increased ethanol sensitivity and reduced voluntary consumption of ethanol-containing beverages in humans. The growing body of clinical and experimental evidence emerging in this new scientific field that bridges environmental health sciences, toxicology, and drug research calls for well-controlled studies aimed to analyze the nature of the neurobiological interactions of drugs and pollutants. Present study specifically evaluated neurobiological and behavioral responses to ethanol in Wistar rats that were previously exposed to the pesticide organophosphate chlorpyrifos (CPF). In agreement with clinical data, animals pretreated with a single injection of CPF showed long-lasting ethanol avoidance that was not secondary to altered gustatory processing or enhancement of the aversive properties of ethanol. Furthermore, CPF pretreatment increased ethanol-induced sedation without altering blood ethanol levels. An immunocytochemical assay revealed reduced c-fos expression in the Edinger-Westphal nucleus following CPF treatment, a critical brain area that has been implicated in ethanol intake and sedation. We hypothesize that CPF might modulate cellular mechanisms (decreased intracellular cAMP signaling, alpha-7-nicotinic receptors, and/or cerebral acetylcholinesterase inhibition) in neuronal pathways critically involved in neurobiological responses to ethanol.

  17. Effect of ethanol on the visual-evoked potential in rat: dynamics of ON and OFF responses.

    PubMed

    Dulinskas, Redas; Buisas, Rokas; Vengeliene, Valentina; Ruksenas, Osvaldas

    2017-01-01

    The effect of acute ethanol administration on the flash visual-evoked potential (VEP) was investigated in numerous studies. However, it is still unclear which brain structures are responsible for the differences observed in stimulus onset (ON) and offset (OFF) responses and how these responses are modulated by ethanol. The aim of our study was to investigate the pattern of ON and OFF responses in the visual system, measured as amplitude and latency of each VEP component following acute administration of ethanol. VEPs were recorded at the onset and offset of a 500 ms visual stimulus in anesthetized male Wistar rats. The effect of alcohol on VEP latency and amplitude was measured for one hour after injection of 2 g/kg ethanol dose. Three VEP components - N63, P89 and N143 - were analyzed. Our results showed that, except for component N143, ethanol increased the latency of both ON and OFF responses in a similar manner. The latency of N143 during OFF response was not affected by ethanol but its amplitude was reduced. Our study demonstrated that the activation of the visual system during the ON response to a 500 ms visual stimulus is qualitatively different from that during the OFF response. Ethanol interfered with processing of the stimulus duration at the level of the visual cortex and reduced the activation of cortical regions.

  18. Intermittent Ethanol during Adolescence Leads to Lasting Behavioral Changes in Adulthood and Alters Gene Expression and Histone Methylation in the PFC

    PubMed Central

    Wolstenholme, Jennifer T.; Mahmood, Tariq; Harris, Guy M.; Abbas, Shahroze; Miles, Michael F.

    2017-01-01

    Adolescents primarily consume alcohol in binges, which can be particularly harmful to the developing frontal cortex and increase risk for an adult alcohol use disorder. We conducted a study investigating immediate and long lasting changes to the prefrontal cortex (PFC) transcriptome to determine the molecular mechanisms underlying adult ethanol behavioral sensitivity following binge ethanol in adolescence. DBA/2J mice were orally dosed with 4 g/kg ethanol intermittently from day 29 to 42. Adolescent mice were tested for anxiety-like behavior and ethanol sensitivity using the loss of righting reflex task. As adults, mice were tested for cognitive changes using the novel object recognition task, ethanol-induced anxiolysis and ethanol sensitivity. Adolescent binge ethanol altered ethanol sensitivity in young mice and led to lasting memory deficits in the object recognition test and greater ethanol sensitivity in adulthood. Using genomic profiling of transcripts in the PFC, we found that binge ethanol reduced myelin-related gene expression and altered chromatin modifying genes involved in histone demethylation at H3K9 and H3K36. We hypothesize that ethanol’s actions on histone methylation may be a switch for future transcriptional changes that underlie the behavioral changes lasting into adulthood. PMID:29018328

  19. Highly sensitive ethanol chemical sensor based on Ni-doped SnO₂ nanostructure materials.

    PubMed

    Rahman, Mohammed M; Jamal, Aslam; Khan, Sher Bahadar; Faisal, M

    2011-10-15

    Due to potential applications of semiconductor transition doped nanostructure materials and the important advantages of synthesis in cost-effective and environmental concerns, a significant effort has been consummated for improvement of Ni-doped SnO(2) nanomaterials using hydrothermal technique at room conditions. The structural and optical properties of the low-dimensional (average diameter, 52.4 nm) Ni-doped SnO(2) nanostructures were demonstrated using various conventional techniques such as UV/visible spectroscopy, FT-IR spectroscopy, X-ray powder diffraction (XRD), and Field-emission scanning electron microscopy (FE-SEM). The calcined doped material is an attractive semiconductor nanoparticle for accomplishment in chemical sensing by simple I-V technique, where toxic chemical (ethanol) is used as a target chemical. Thin-film of Ni-doped SnO(2) nanostructure materials with conducting coating agents on silver electrodes (AgE, surface area, 0.0216 cm(2)) revealed higher sensitivity and repeatability. The calibration plot is linear (R, 0.8440) over the large dynamic range (1.0 nM-1.0 mM), where the sensitivity is approximately 2.3148 μA cm(-2) mM(-1) with a detection limit of 0.6 nM, based on signal/noise ratio in short response time. Consequently on the basis of the sensitive communication among structures, morphologies, and properties, it is exemplified that the morphologies and the optical characteristics can be extended to a large scale in doping nanomaterials and proficient chemical sensors applications. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Long-term alterations in vulnerability to addiction to drugs of abuse and in brain gene expression after early life ethanol exposure.

    PubMed

    Barbier, Estelle; Pierrefiche, Olivier; Vaudry, David; Vaudry, Hubert; Daoust, Martine; Naassila, Mickaël

    2008-12-01

    Exposure to ethanol early in life can have long-lasting implications on brain function and drug of abuse response later in life. The present study investigated in rats, the long-term consequences of pre- and postnatal (early life) ethanol exposure on drug consumption/reward and the molecular targets potentially associated with these behavioral alterations. Since a relationship has been demonstrated between heightened drugs intake and susceptibility to drugs-induced locomotor activity/sensitization, anxiolysis, we tested these behavioral responses, depending on the drug, in control and early life ethanol-exposed animals. Our results show that progeny exposed to early life ethanol displayed increased consumption of ethanol solutions and increased sensitivity to cocaine rewarding effects assessed in the conditioned place preference test. Offspring exposed to ethanol were more sensitive to the anxiolytic effect of ethanol and the increased sensitivity could, at least in part, explain the alteration in the consumption of ethanol for its anxiolytic effects. In addition, the sensitivity to hypothermic effects of ethanol and ethanol metabolism were not altered by early life ethanol exposure. The sensitization to cocaine (20 mg/kg) and to amphetamine (1.2 mg/kg) was increased after early life ethanol exposure and, could partly explain, an increase in the rewarding properties of psychostimulants. Gene expression analysis revealed that expression of a large number of genes was altered in brain regions involved in the reinforcing effects of drugs of abuse. Dopaminergic receptors and transporter binding sites were also down-regulated in the striatum of ethanol-exposed offspring. Such long-term neurochemical alterations in transmitter systems and in the behavioral responses to ethanol and other drugs of abuse may confer an increased liability for addiction in exposed offspring.

  1. Alcohol dehydrogenase accentuates ethanol-induced myocardial dysfunction and mitochondrial damage in mice: role of mitochondrial death pathway.

    PubMed

    Guo, Rui; Ren, Jun

    2010-01-18

    Binge drinking and alcohol toxicity are often associated with myocardial dysfunction possibly due to accumulation of the ethanol metabolite acetaldehyde although the underlying mechanism is unknown. This study was designed to examine the impact of accelerated ethanol metabolism on myocardial contractility, mitochondrial function and apoptosis using a murine model of cardiac-specific overexpression of alcohol dehydrogenase (ADH). ADH and wild-type FVB mice were acutely challenged with ethanol (3 g/kg/d, i.p.) for 3 days. Myocardial contractility, mitochondrial damage and apoptosis (death receptor and mitochondrial pathways) were examined. Ethanol led to reduced cardiac contractility, enlarged cardiomyocyte, mitochondrial damage and apoptosis, the effects of which were exaggerated by ADH transgene. In particular, ADH exacerbated mitochondrial dysfunction manifested as decreased mitochondrial membrane potential and accumulation of mitochondrial O(2) (*-). Myocardium from ethanol-treated mice displayed enhanced Bax, Caspase-3 and decreased Bcl-2 expression, the effect of which with the exception of Caspase-3 was augmented by ADH. ADH accentuated ethanol-induced increase in the mitochondrial death domain components pro-caspase-9 and cytochrome C in the cytoplasm. Neither ethanol nor ADH affected the expression of ANP, total pro-caspase-9, cytosolic and total pro-caspase-8, TNF-alpha, Fas receptor, Fas L and cytosolic AIF. Taken together, these data suggest that enhanced acetaldehyde production through ADH overexpression following acute ethanol exposure exacerbated ethanol-induced myocardial contractile dysfunction, cardiomyocyte enlargement, mitochondrial damage and apoptosis, indicating a pivotal role of ADH in ethanol-induced cardiac dysfunction possibly through mitochondrial death pathway of apoptosis.

  2. Acetaldehyde involvement in ethanol's postabsortive effects during early ontogeny.

    PubMed

    March, Samanta M; Abate, P; Molina, Juan C

    2013-01-01

    Clinical and biomedical studies sustains the notion that early ontogeny is a vulnerable window to the impact of alcohol. Experiences with the drug during these stages increase latter disposition to prefer, use or abuse ethanol. This period of enhanced sensitivity to ethanol is accompanied by a high rate of activity in the central catalase system, which metabolizes ethanol in the brain. Acetaldehyde (ACD), the first oxidation product of ethanol, has been found to share many neurobehavioral effects with the drug. Cumulative evidence supports this notion in models employing adults. Nevertheless very few studies have been conducted to analyze the role of ACD in ethanol postabsorptive effects, in newborns or infant rats. In this work we review recent experimental literature that syndicates ACD as a mediator agent of reinforcing aspects of ethanol, during early ontogenetic stages. We also show a meta-analytical correlational approach that proposes how differences in the activity of brain catalase across ontogeny, could be modulating patterns of ethanol consumption.

  3. Sex differences in adult Wistar rats in the voluntary consumption of ethanol after pre-exposure to ethanol-induced flavor avoidance learning.

    PubMed

    de la Torre, M Lourdes; Escarabajal, M Dolores; Agüero, Ángeles

    2015-10-01

    Vulnerability to ethanol abuse may be a function of the balance between the opposing (aversive and rewarding) motivational effects of the drug. The study of these effects is particularly important for understanding alcohol addiction. Research in this field seems to point out that ethanol effects are determined by a set of internal factors (sex, ethanol intake history, etc.), as well as by environmental conditions surrounding the individual (i.e., stress) and, of course, the interactions between all these factors. This work explores sex differences in sensitivity to aversive effects of ethanol using the procedure of flavor avoidance learning (FAL), as well as the effect of this learning experience on subsequent voluntary ethanol consumption, in adult rats. The results obtained indicated a slight sex based difference in the amount of FAL acquired in that females acquisition was weaker (experiment 1), and a differing influence of previous experience with the aversive effects of ethanol on the voluntary consumption of the drug for each sex (experiment 2). In particular, it was observed that female ethanol-naive rats showed a higher intake level and preference for ethanol than both ethanol-experienced female rats and ethanol-naive male rats. In contrast, the ethanol-experienced male rats showed a greater consumption of and preference for ethanol than ethanol-naive male rats and ethanol-experienced female rats. These data are discussed noting a range of possible explicative factors (sex hormones, hedonic processing, etc.), but further studies are warranted to elucidate the mechanisms by which ethanol pre-exposure influences the subsequent intake of ethanol differently by sex. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. ZnO:Al Thin Film Gas Sensor for Detection of Ethanol Vapor

    PubMed Central

    Chou, Shih Min; Teoh, Lay Gaik; Lai, Wei Hao; Su, Yen Hsun; Hon, Min Hsiung

    2006-01-01

    The ZnO:Al thin films were prepared by RF magnetron sputtering on Si substrate using Pt as interdigitated electrodes. The structure was characterized by XRD and SEM analyses, and the ethanol vapor gas sensing as well as electrical properties have been investigated and discussed. The gas sensing results show that the sensitivity for detecting 400 ppm ethanol vapor was ∼20 at an operating temperature of 250°C. The high sensitivity, fast recovery, and reliability suggest that ZnO:Al thin film prepared by RF magnetron sputtering can be used for ethanol vapor gas sensing.

  5. Slo1 regulates ethanol-induced scrunching in freshwater planarians

    NASA Astrophysics Data System (ADS)

    Cochet-Escartin, Olivier; Carter, Jason A.; Chakraverti-Wuerthwein, Milena; Sinha, Joydeb; Collins, Eva-Maria S.

    2016-10-01

    When freshwater planarians are exposed to a low-percentage (0.5%-1%) alcohol solution, they display a characteristic ‘drunken’ phenotype. Here we show that this drunken phenotype is a mixture of cilia-mediated gliding and scrunching, a muscular-based planarian gait which we recently demonstrated to be triggered by adverse environmental stimuli. At exogenous ethanol concentrations ≥2% (v/v), planarians become gradually immobilized and ultimately die. Using RNA interference (RNAi) for targeted gene knockdown, we elucidate the molecular basis for ethanol sensing and show that the big potassium ion channel SLO1 is necessary for ethanol sensitivity in planarians. Because slo1(RNAi) animals maintain their ability to scrunch in response to other adverse triggers, these results suggest that slo1 specifically regulates ethanol sensitivity and not the scrunching gait per se. Furthermore, this study demonstrates the ease of performing pharmacological studies in planarians. Combined with the worms’ amenability to quantitative behavioral assays and targeted gene knockdown, planarians are a valuable model organism for studying the effect of neuroactive compounds on brain function and behavior.

  6. Slo1 regulates ethanol-induced scrunching in freshwater planarians.

    PubMed

    Cochet-Escartin, Olivier; Carter, Jason A; Chakraverti-Wuerthwein, Milena; Sinha, Joydeb; Collins, Eva-Maria S

    2016-09-09

    When freshwater planarians are exposed to a low-percentage (0.5%-1%) alcohol solution, they display a characteristic 'drunken' phenotype. Here we show that this drunken phenotype is a mixture of cilia-mediated gliding and scrunching, a muscular-based planarian gait which we recently demonstrated to be triggered by adverse environmental stimuli. At exogenous ethanol concentrations ≥2% (v/v), planarians become gradually immobilized and ultimately die. Using RNA interference (RNAi) for targeted gene knockdown, we elucidate the molecular basis for ethanol sensing and show that the big potassium ion channel SLO1 is necessary for ethanol sensitivity in planarians. Because slo1(RNAi) animals maintain their ability to scrunch in response to other adverse triggers, these results suggest that slo1 specifically regulates ethanol sensitivity and not the scrunching gait per se. Furthermore, this study demonstrates the ease of performing pharmacological studies in planarians. Combined with the worms' amenability to quantitative behavioral assays and targeted gene knockdown, planarians are a valuable model organism for studying the effect of neuroactive compounds on brain function and behavior.

  7. Chemiluminescent imaging of transpired ethanol from the palm for evaluation of alcohol metabolism.

    PubMed

    Arakawa, Takahiro; Kita, Kazutaka; Wang, Xin; Miyajima, Kumiko; Toma, Koji; Mitsubayashi, Kohji

    2015-05-15

    A 2-dimensional imaging system was constructed and applied in measurements of gaseous ethanol emissions from the human palm. This imaging system measures gaseous ethanol concentrations as intensities of chemiluminescence by luminol reaction induced by alcohol oxidase and luminol-hydrogen peroxide-horseradish peroxidase system. Conversions of ethanol distributions and concentrations to 2-dimensional chemiluminescence were conducted on an enzyme-immobilized mesh substrate in a dark box, which contained a luminol solution. In order to visualize ethanol emissions from human palm skin, we developed highly sensitive and selective imaging system for transpired gaseous ethanol at sub ppm-levels. Thus, a mixture of a high-purity luminol solution of luminol sodium salt HG solution instead of standard luminol solution and an enhancer of eosin Y solution was adapted to refine the chemiluminescent intensity of the imaging system, and improved the detection limit to 3 ppm gaseous ethanol. The highly sensitive imaging allows us to successfully visualize the emissions dynamics of transdermal gaseous ethanol. The intensity of each site on the palm shows the reflection of ethanol concentrations distributions corresponding to the amount of alcohol metabolized upon consumption. This imaging system is significant and useful for the assessment of ethanol measurement of the palmar skin. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Effect of zinc intake on hepatic autophagy during acute alcohol intoxication.

    PubMed

    Liuzzi, Juan P; Narayanan, Vijaya; Doan, Huong; Yoo, Changwon

    2018-04-01

    Autophagy is a conserved mechanism that plays a housekeeping role by eliminating protein aggregates and damaged organelles. Recent studies have demonstrated that acute ethanol intoxication induces hepatic autophagy in mice. The effect of dietary zinc intake on hepatic autophagic flux during ethanol intoxication has not been evaluated using animal models. Herein, we investigated whether zinc deficiency and excess can affect autophagic flux in the liver in mice and in human hepatoma cells acutely exposed to ethanol. A mouse model of binge ethanol feeding was utilized to analyze the effect of low, adequate, and high zinc intake on hepatic autophagic flux during ethanol intoxication. Autophagic flux was inferred by analyzing LC3II/LC3I ratio, protein levels of p62/SQSTM1, Beclin1 and Atg7, and phosphorylation of 4EBP1. In addition, the degradation of the fusion protein LC3-GFP and the formation of autophagosomes and autolysosomes were evaluated in cells. Ethanol treatment stimulated autophagy in mice and cells. High zinc intake resulted in enhanced autophagy in mice exposed to ethanol. Conversely, zinc deficiency was consistently associated with impaired ethanol-induced autophagy in mice and cells. Zinc-deficient mice exhibited a high degree of ethanol-driven steatosis. Furthermore, zinc depletion increased apoptosis in cells exposed to ethanol. The results of this study suggest that adequate zinc intake is necessary for proper stimulation of autophagy by ethanol. Poor zinc status is commonly found among alcoholics and could likely contribute to faulty autophagy.

  9. Micro Ethanol Sensors with a Heater Fabricated Using the Commercial 0.18 μm CMOS Process

    PubMed Central

    Liao, Wei-Zhen; Dai, Ching-Liang; Yang, Ming-Zhi

    2013-01-01

    The study investigates the fabrication and characterization of an ethanol microsensor equipped with a heater. The ethanol sensor is manufactured using the commercial 0.18 μm complementary metal oxide semiconductor (CMOS) process. The sensor consists of a sensitive film, a heater and interdigitated electrodes. The sensitive film is zinc oxide prepared by the sol-gel method, and it is coated on the interdigitated electrodes. The heater is located under the interdigitated electrodes, and it is used to supply a working temperature to the sensitive film. The sensor needs a post-processing step to remove the sacrificial oxide layer, and to coat zinc oxide on the interdigitated electrodes. When the sensitive film senses ethanol gas, the resistance of the sensor generates a change. An inverting amplifier circuit is utilized to convert the resistance variation of the sensor into the output voltage. Experiments show that the sensitivity of the ethanol sensor is 0.35 mV/ppm. PMID:24072022

  10. Micro ethanol sensors with a heater fabricated using the commercial 0.18 μm CMOS process.

    PubMed

    Liao, Wei-Zhen; Dai, Ching-Liang; Yang, Ming-Zhi

    2013-09-25

    The study investigates the fabrication and characterization of an ethanol microsensor equipped with a heater. The ethanol sensor is manufactured using the commercial 0.18 µm complementary metal oxide semiconductor (CMOS) process. The sensor consists of a sensitive film, a heater and interdigitated electrodes. The sensitive film is zinc oxide prepared by the sol-gel method, and it is coated on the interdigitated electrodes. The heater is located under the interdigitated electrodes, and it is used to supply a working temperature to the sensitive film. The sensor needs a post-processing step to remove the sacrificial oxide layer, and to coat zinc oxide on the interdigitated electrodes. When the sensitive film senses ethanol gas, the resistance of the sensor generates a change. An inverting amplifier circuit is utilized to convert the resistance variation of the sensor into the output voltage. Experiments show that the sensitivity of the ethanol sensor is 0.35 mV/ppm.

  11. Effect of chronic ethanol consumption on the response of parathyroid hormone to hypocalcemia in the pregnant rat.

    PubMed

    Duggal, Shalu; Simpson, Mary Elizabeth; Keiver, Kathy

    2007-01-01

    Chronic alcohol (ethanol) consumption during pregnancy results in maternal/fetal hypocalcemia, which may underlie some of ethanol's adverse effects on maternal and fetal bone, and fetal/neonatal health. Ethanol appears to alter the relationship between parathyroid hormone (PTH) and blood calcium (Ca) level, and PTH does not increase in response to ethanol-induced hypocalcemia. However, it is not known whether ethanol actually prevents PTH from responding, or whether the ability to regulate blood Ca is intact, but ethanol lowers the level of Ca maintained. The objective of this study was to determine whether chronic ethanol consumption impairs the ability of the pregnant female to increase PTH in response to acute hypocalcemia. Rats were fed isocaloric diets with ethanol (36% ethanol-derived calories, E group) or without ethanol [pair-fed (PF) and control (C) groups], before and throughout 21 days of gestation. On day 21 gestation, rats received an intraperitoneal injection of ethylene glycol-bis (beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) (300 or 500 mumol/kg body weight) or saline (saline group), or no injection (baseline group). Blood was collected from the baseline group, and at 30 or 60 minutes postinjection (saline and EGTA groups), and analyzed for ionized Ca (iCa), pH, and PTH. Consistent with previous studies, ethanol consumption decreased blood iCa levels at baseline, but PTH levels did not differ among groups. Administration of EGTA significantly decreased blood iCa levels by 30 minutes, but ethanol did not prevent PTH from increasing in response to the hypocalcemia. In all diet groups, PTH levels were significantly increased by 30 minutes. Ethanol did, however, appear to decrease the maximum PTH level achievable in blood. These data suggest that chronic ethanol consumption does not impair the ability of the pregnant rat to raise serum PTH levels in response to acute hypocalcemia, but ethanol's effect on maximal PTH secretion could impair

  12. Beer Is Less Harmful for the Liver than Plain Ethanol: Studies in Male Mice Using a Binge-Drinking Model.

    PubMed

    Landmann, Marianne; Wagnerberger, Sabine; Kanuri, Giridhar; Ziegenhardt, Doreen; Bergheim, Ina

    2015-09-01

    Mechanisms involved in the less damaging effects of beer in comparison to hard spirits have not yet been fully understood. The aim of the study was to determine if the effect of beer intake on the liver differs from that of plain ethanol and if so to determine mechanisms involved. Male C57BL/6J mice received either ethanol, beer (ethanol content: 6 g/kg body weight) or iso-caloric maltodextrin solution. Markers of steatosis, lipogenesis, activation of the toll-like receptor-4 signaling cascade and lipid export in liver and tight junction proteins in duodenum were measured 6 and 12 h after acute ethanol or beer intake. Alcohol ingestion resulted in a significant increase of hepatic triglyceride accumulation 6 and 12 h after ingestion, respectively, being markedly lower in mice fed beer. Expression of sterol regulatory element-binding protein-1c mRNA was significantly lower 12 h after alcohol or beer exposure, while fatty acid synthase mRNA expression was induced in livers of ethanol-fed mice and to a lesser extent in mice fed beer 6 h after acute alcohol ingestion. Protein levels of tight junction proteins in the small intestine were similar between groups while expression of myeloid differentiation primary response gene 88 in livers was significantly induced in ethanol- but not in beer-fed mice. Concentrations of 4-hydroxynonenal protein adducts and inducible nitric oxide synthase protein were also only induced in livers of mice fed ethanol. Protein levels of apolipoprotein B were induced in livers of beer-fed mice only. Our data suggest that beer is less harmful on the development of acute alcohol-induced liver damage than plain ethanol in male mice. © The Author 2015. Medical Council on Alcohol and Oxford University Press. All rights reserved.

  13. Performance of the high-sensitivity troponin assay in diagnosing acute myocardial infarction: systematic review and meta-analysis

    PubMed Central

    Al-Saleh, Ayman; Alazzoni, Ashraf; Al Shalash, Saleh; Ye, Chenglin; Mbuagbaw, Lawrence; Thabane, Lehana; Jolly, Sanjit S.

    2014-01-01

    Background High-sensitivity cardiac troponin assays have been adopted by many clinical centres worldwide; however, clinicians are uncertain how to interpret the results. We sought to assess the utility of these assays in diagnosing acute myocardial infarction (MI). Methods We carried out a systematic review and meta-analysis of studies comparing high-sensitivity with conventional assays of cardiac troponin levels among adults with suspected acute MI in the emergency department. We searched MEDLINE, EMBASE and Cochrane databases up to April 2013 and used bivariable random-effects modelling to obtain summary parameters for diagnostic accuracy. Results We identified 9 studies that assessed the use of high-sensitivity troponin T assays (n = 9186 patients). The summary sensitivity of these tests in diagnosing acute MI at presentation to the emergency department was estimated to be 0.94 (95% confidence interval [CI] 0.89–0.97); for conventional tests, it was 0.72 (95% CI 0.63–0.79). The summary specificity was 0.73 (95% CI 0.64–0.81) for the high-sensitivity assay compared with 0.95 (95% CI 0.93–0.97) for the conventional assay. The differences in estimates of the summary sensitivity and specificity between the high-sensitivity and conventional assays were statistically significant (p < 0.01). The area under the curve was similar for both tests carried out 3–6 hours after presentation. Three studies assessed the use of high-sensitivity troponin I assays and showed similar results. Interpretation Used at presentation to the emergency department, the high-sensitivity cardiac troponin assay has improved sensitivity, but reduced specificity, compared with the conventional troponin assay. With repeated measurements over 6 hours, the area under the curve is similar for both tests, indicating that the major advantage of the high-sensitivity test is early diagnosis. PMID:25295240

  14. Fabrication and Characterizations of Ethanol Sensor Based on CuO Nanoparticles.

    PubMed

    Al-Hadeethi, Yas; Umar, Ahmad; Kumar, Rajesh; Al-Heniti, Saleh H; Raffah, Bahaaudin M

    2018-04-01

    In this paper, we report the synthesis, characterization and ethanol sensing applications of CuO nanoparticles. The CuO nanoparticles were prepared by a facile, low-temperature hydrothermal method and characterized in detail in terms of their structural, morphological, compositional and crystalline properties, through different characterization techniques including X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) attached with energy dispersive spectroscopy (EDS), and Fourier transform infrared (FTIR) spectroscopy. The detailed studies revealed that the synthesized CuO nanoparticles were well-crystalline and possessed monoclinic crystal structure. The synthesized CuO nanoparticles were utilized for the fabrication of highly sensitive ethanol gas sensor. At an optimized temperature of 320 °C, high sensitivity (Ra/Rg) of 39.29 was observed for 200 ppm of ethanol gas. Additionally, very low response (τres = 14 s) and recovery (τrec = 30 s) times were observed for 100 ppm of ethanol.

  15. Acute activation of GLP-1-expressing neurons promotes glucose homeostasis and insulin sensitivity.

    PubMed

    Shi, Xuemei; Chacko, Shaji; Li, Feng; Li, Depei; Burrin, Douglas; Chan, Lawrence; Guan, Xinfu

    2017-11-01

    Glucagon-like peptides are co-released from enteroendocrine L cells in the gut and preproglucagon (PPG) neurons in the brainstem. PPG-derived GLP-1/2 are probably key neuroendocrine signals for the control of energy balance and glucose homeostasis. The objective of this study was to determine whether activation of PPG neurons per se modulates glucose homeostasis and insulin sensitivity in vivo. We generated glucagon (Gcg) promoter-driven Cre transgenic mice and injected excitatory hM3Dq-mCherry AAV into their brainstem NTS. We characterized the metabolic impact of PPG neuron activation on glucose homeostasis and insulin sensitivity using stable isotopic tracers coupled with hyperinsulinemic euglycemic clamp. We showed that after ip injection of clozapine N-oxide, Gcg-Cre lean mice transduced with hM3Dq in the brainstem NTS downregulated basal endogenous glucose production and enhanced glucose tolerance following ip glucose tolerance test. Moreover, acute activation of PPG neurons NTS enhanced whole-body insulin sensitivity as indicated by increased glucose infusion rate as well as augmented insulin-suppression of endogenous glucose production and gluconeogenesis. In contrast, insulin-stimulation of glucose disposal was not altered significantly. We conclude that acute activation of PPG neurons in the brainstem reduces basal glucose production, enhances intraperitoneal glucose tolerance, and augments hepatic insulin sensitivity, suggesting an important physiological role of PPG neurons-mediated circuitry in promoting glycemic control and insulin sensitivity. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.

  16. Mutations in the Circadian Gene period Alter Behavioral and Biochemical Responses to Ethanol in Drosophila

    PubMed Central

    Liao, Jennifer; Seggio, Joseph A.; Ahmad, S. Tariq

    2016-01-01

    Clock genes, such as period, which maintain an organism’s circadian rhythm, can have profound effects on metabolic activity, including ethanol metabolism. In turn, ethanol exposure has been shown in Drosophila and mammals to cause disruptions of the circadian rhythm. Previous studies from our labs have shown that larval ethanol exposure disrupted the free-running period and period expression of Drosophila. In addition, a recent study has shown that arrhythmic flies show no tolerance to ethanol exposure. As such, Drosophila period mutants, which have either a shorter than wild-type free-running period (perS) or a longer one (perL), may also exhibit altered responses to ethanol due to their intrinsic circadian differences. In this study, we tested the initial sensitivity and tolerance of ethanol exposure on Canton-S, perS, and perL, and then measured their Alcohol Dehydrogenase (ADH) and body ethanol levels. We showed that perL flies had slower sedation rate, longer recovery from ethanol sedation, and generated higher tolerance for sedation upon repeated ethanol exposure compared to Canton-S wild-type flies. Furthermore, perL flies had lower ADH activity and had a slower ethanol clearance compared to wild-type flies. The findings of this study suggest that period mutations influence ethanol induced behavior and ethanol metabolism in Drosophila and that flies with longer circadian periods are more sensitive to ethanol exposure. PMID:26802726

  17. Zebrafish retinal defects induced by ethanol exposure are rescued by retinoic acid and folic acid supplement

    PubMed Central

    Muralidharan, Pooja; Sarmah, Swapnalee; Marrs, James A.

    2014-01-01

    Fetal Alcohol Spectrum Disorder (FASD) is caused by prenatal alcohol exposure, producing craniofacial, sensory, motor, and cognitive defects. FASD is highly prevalent in low socioeconomic populations, which are frequently accompanied by malnutrition. FASD-associated ocular pathologies include microphthalmia, optic nerve hypoplasia, and cataracts. The present study characterizes specific retinal tissue defects, identifies ethanol-sensitive stages during retinal development, and dissects the effect of nutrient supplements, such as retinoic acid (RA) and folic acid (FA) on ethanol-induced retinal defects. Exposure to pathophysiological concentrations of ethanol (during midblastula transition through somitogenesis; 2–24 hours post fertilization [hpf]) altered critical transcription factor expression involved in retinal cell differentiation, and produced severe retinal ganglion cell, photoreceptor, and Müller glial differentiation defects. Ethanol exposure did not alter retinal cell differentiation induction, but increased retinal cell death and proliferation. RA and FA nutrient co-supplementation rescued retinal photoreceptor and ganglion cell differentiation defects. Ethanol exposure during retinal morphogenesis stages (16–24 hpf) produced retinal defects like those seen with ethanol exposure between 2–24 hpf. Significantly, during an ethanol-sensitive time window (16–24 hpf), RA co-supplementation moderately rescued these defects, whereas FA co-supplementation showed significant rescue of optic nerve and photoreceptor differentiation defects. Interestingly, RA, but not FA, supplementation after ethanol exposure could reverse ethanol-induced optic nerve and photoreceptor differentiation defects. Our results indicate that various ethanol-sensitive events underlie FASD-associated retinal defects. Nutrient supplements like retinoids and folate were effective in alleviating ethanol-induced retinal defects. PMID:25541501

  18. Zebrafish retinal defects induced by ethanol exposure are rescued by retinoic acid and folic acid supplement.

    PubMed

    Muralidharan, Pooja; Sarmah, Swapnalee; Marrs, James A

    2015-03-01

    Fetal Alcohol Spectrum Disorder (FASD) is caused by prenatal alcohol exposure, producing craniofacial, sensory, motor, and cognitive defects. FASD is highly prevalent in low socioeconomic populations, which are frequently accompanied by malnutrition. FASD-associated ocular pathologies include microphthalmia, optic nerve hypoplasia, and cataracts. The present study characterizes specific retinal tissue defects, identifies ethanol-sensitive stages during retinal development, and dissects the effect of nutrient supplements, such as retinoic acid (RA) and folic acid (FA) on ethanol-induced retinal defects. Exposure to pathophysiological concentrations of ethanol (during midblastula transition through somitogenesis; 2-24 h post fertilization [hpf]) altered critical transcription factor expression involved in retinal cell differentiation, and produced severe retinal ganglion cell, photoreceptor, and Müller glial differentiation defects. Ethanol exposure did not alter retinal cell differentiation induction, but increased retinal cell death and proliferation. RA and FA nutrient co-supplementation rescued retinal photoreceptor and ganglion cell differentiation defects. Ethanol exposure during retinal morphogenesis stages (16-24 hpf) produced retinal defects like those seen with ethanol exposure between 2 and 24 hpf. Significantly, during an ethanol-sensitive time window (16-24 hpf), RA co-supplementation moderately rescued these defects, whereas FA co-supplementation showed significant rescue of optic nerve and photoreceptor differentiation defects. Interestingly, RA, but not FA, supplementation after ethanol exposure could reverse ethanol-induced optic nerve and photoreceptor differentiation defects. Our results indicate that various ethanol-sensitive events underlie FASD-associated retinal defects. Nutrient supplements like retinoids and folate were effective in alleviating ethanol-induced retinal defects. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Safety assessment of ethanolic extract of Olea europaea L. leaves after acute and subacute administration to Wistar rats.

    PubMed

    Guex, Camille Gaube; Reginato, Fernanda Ziegler; Figueredo, Kássia Caroline; da Silva, Andreia Regina Haas da; Pires, Fernanda Brum; Jesus, Roberta da Silva; Lhamas, Cibele Lima; Lopes, Gilberti Helena Hübscher; Bauermann, Liliane de Freitas

    2018-06-01

    Olea europaea L., popularly known as olive, is a plant widely used worldwide. Its leaves, fruit and oil are extensively consumed and present important pharmacological properties. However, studies regarding the toxicity of olive leaves are still limited in the literature. Therefore, the aim of the study was to investigate acute and subacute oral toxicities of the ethanolic extract of olive leaves (EEO) in Wistar rats through histopathology and biochemical and hematological parameters. Acute toxicity was assessed using a single dose of 2000 mg/kg of EEO administered by oral gavage to male and female rats. To assess subacute toxicity, EEO was administered during 28 days at different doses (100, 200 and 400 mg/kg) to male and female rats. At the end of the experiments, the liver and kidney were removed and examined microscopically, and blood was collected for hematological and biochemical parameters. A single dose of 2000 mg/kg did not induce mortality or any signs of toxicity among the animals treated. Animals exposed to EEO during 28 days did not present sign of abnormalities. Results demonstrated that EEO did not induce toxicity after exposure to single and repeated doses. However, more studies are needed to fully understand implications for human safety. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Age differences in fear retention and extinction in male Sprague-Dawley rats: Effects of ethanol challenge during conditioning

    PubMed Central

    Broadwater, Margaret; Spear, Linda P.

    2013-01-01

    Pavlovian fear conditioning is an ideal model to investigate how learning and memory are influenced by alcohol use during adolescence because the neural mechanisms involved have been studied extensively. In Exp 1, adolescent and adult male Sprague-Dawley rats were non-injected or injected with saline, 1 or 1.5 g/kg ethanol intraperitoneally 10 minutes prior to tone or context conditioning. Twenty-four hours later, animals were tested for tone or context retention and extinction, with examination of extinction retention conducted 24 hours thereafter. In Exp 2, a context extinction session was inserted between the tone conditioning and the tone fear retention/extinction days to reduce pre-CS baseline freezing levels at test. Basal levels of acquisition, fear retention, extinction, and extinction retention after tone conditioning were similar between adolescent and adult rats. In contrast adolescents showed faster context extinction than adults, while again not differing from adults during context acquisition, retention or extinction retention. In terms of ethanol effects, adolescents were less sensitive to ethanol-induced context retention deficits than adults. No age differences emerged in terms of tone fear retention, with ethanol disrupting tone fear retention at both ages in Exp1, but at neither age in Exp 2, a difference seemingly due to group differences in pre-CS freezing during tone testing in Exp 1, but not Exp 2. These results suggest that age differences in the acute effects of ethanol on cognitive function are task-specific, and provide further evidence for age differences cognitive functioning in a task thought to be hippocampally-related. PMID:23810415

  1. Abstinence from prolonged ethanol exposure affects plasma corticosterone, glucocorticoid receptor signaling and stress-related behaviors.

    PubMed

    Somkuwar, Sucharita S; Vendruscolo, Leandro F; Fannon, McKenzie J; Schmeichel, Brooke E; Nguyen, Tran Bao; Guevara, Jasmin; Sidhu, Harpreet; Contet, Candice; Zorrilla, Eric P; Mandyam, Chitra D

    2017-10-01

    Alcohol dependence is linked to dysregulation of the hypothalamic-pituitary-adrenal axis. Here, we investigated effects of repeated ethanol intoxication-withdrawal cycles (using chronic intermittent ethanol vapor inhalation; CIE) and abstinence from CIE on peak and nadir plasma corticosterone (CORT) levels. Irritability- and anxiety-like behaviors as well as glucocorticoid receptors (GR) in the medial prefrontal cortex (mPFC) were assessed at various intervals (2h-28d) after cessation of CIE. Results show that peak CORT increased during CIE, transiently decreased during early abstinence (1-11d), and returned to pre-abstinence levels during protracted abstinence (17-27d). Acute withdrawal from CIE enhanced aggression- and anxiety-like behaviors. Early abstinence from CIE reduced anxiety-like behavior. mPFC-GR signaling (indexed by relative phosphorylation of GR at Ser211) was transiently decreased when measured at time points during early and protracted abstinence. Further, voluntary ethanol drinking in CIE (CIE-ED) and CIE-naïve (ED) rats, and effects of CIE-ED and ED on peak CORT levels and mPFC-GR were investigated during acute withdrawal (8h) and protracted abstinence (28d). CIE-ED and ED increased peak CORT during drinking. CIE-ED and ED decreased expression and signaling of mPFC-GR during acute withdrawal, an effect that was reversed by systemic mifepristone treatment. CIE-ED and ED demonstrate robust reinstatement of ethanol seeking during protracted abstinence and show increases in mPFC-GR expression. Collectively, the data demonstrate that acute withdrawal from CIE produces robust alterations in GR signaling, CORT and negative affect symptoms which could facilitate excessive drinking. The findings also show that CIE-ED and ED demonstrate enhanced relapse vulnerability triggered by ethanol cues and these changes are partially mediated by altered GR expression in the mPFC. Taken together, transition to alcohol dependence could be accompanied by alterations

  2. The acute effects of MDMA and ethanol administration on electrophysiological correlates of performance monitoring in healthy volunteers.

    PubMed

    Spronk, D B; Dumont, G J H; Verkes, R J; De Bruijn, E R A

    2014-07-01

    Knowing how commonly used drugs affect performance monitoring is of great importance, because drug use is often associated with compromised behavioral control. Two of the most commonly used recreational drugs in the western world, 3,4-methylenedioxymethamphetamine (MDMA or "ecstasy") and ethanol (alcohol), are also often used in combination. The error-related negativity (ERN), correct-related negativity (CRN), and N2 are electrophysiological indices of performance monitoring. The present study aimed to investigate how ethanol, MDMA, and their co-administration affect performance monitoring as indexed by the electrophysiological correlates. Behavioral and EEG data were obtained from 14 healthy volunteers during execution of a speeded choice-reaction-time task after administration of ethanol, MDMA, and combined ethanol and MDMA, in a double-blind, placebo-controlled, randomized crossover design. Ethanol significantly reduced ERN amplitudes, while administration of MDMA did not affect the ERN. Co-administration of MDMA and ethanol did not further impair nor ameliorate the effect of ethanol alone. No drug effects on CRN nor N2 were observed. A decreased ERN following ethanol administration is in line with previous work and offers further support for the impairing effects of alcohol intoxication on performance monitoring. This impairment may underlie maladaptive behavior in people who are under influence. Moreover, these data demonstrate for the first time that MDMA does not affect performance monitoring nor does it interact with ethanol in this process. These findings corroborate the notion that MDMA leaves central executive functions relatively unaffected.

  3. Sex differences in the effects of ethanol pre-exposure during adolescence on ethanol-induced conditioned taste aversion in adult rats.

    PubMed

    Sherrill, Luke K; Berthold, Claire; Koss, Wendy A; Juraska, Janice M; Gulley, Joshua M

    2011-11-20

    Alcohol use, which typically begins during adolescence and differs between males and females, is influenced by both the rewarding and aversive properties of the drug. One way adolescent alcohol use may modulate later consumption is by reducing alcohol's aversive properties. Here, we used a conditioned taste aversion (CTA) paradigm to determine if pre-exposure to alcohol (ethanol) during adolescence would attenuate ethanol-induced CTA assessed in adulthood in a sex-dependent manner. Male and female Long-Evans rats were given intraperitoneal (i.p.) injections of saline or 3.0g/kg ethanol in a binge-like pattern during postnatal days (PD) 35-45. In adulthood (>PD 100), rats were given access to 0.1% saccharin, followed by saline or ethanol (1.0 or 1.5g/kg, i.p.), over four conditioning sessions. We found sex differences in ethanol-induced CTA, with males developing a more robust aversion earlier in conditioning. Sex differences in the effects of pre-exposure were also evident: males, but not females, showed an attenuated CTA in adulthood following ethanol pre-exposure, which occurred approximately nine weeks earlier. Taken together, these findings indicate that males are more sensitive to the aversive properties of ethanol than females. In addition, the ability of pre-exposure to the ethanol US to attenuate CTA is enhanced in males compared to females. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Sex differences in the effects of ethanol pre-exposure during adolescence on ethanol-induced conditioned taste aversion in adult rats

    PubMed Central

    Sherrill, Luke K.; Berthold, Claire; Koss, Wendy A.; Juraska, Janice M.; Gulley, Joshua M.

    2011-01-01

    Alcohol use, which typically begins during adolescence and differs between males and females, is influenced by both the rewarding and aversive properties of the drug. One way adolescent alcohol use may modulate later consumption is by reducing alcohol s aversive properties. Here, we used a conditioned taste aversion (CTA) paradigm to determine if pre-exposure to alcohol (ethanol) during adolescence would attenuate ethanol-induced CTA assessed in adulthood in a sex-dependent manner. Male and female Long-Evans rats were given intraperitoneal (i.p.) injections of saline or 3.0 g/kg ethanol in a binge-like pattern during postnatal days (PD) 35–45. In adulthood (> PD 100), rats were given access to 0.1% saccharin, followed by saline or ethanol (1.0 or 1.5 g/kg, i.p.), over four conditioning sessions. We found sex differences in ethanol-induced CTA, with males developing a more robust aversion earlier in conditioning. Sex differences in the effects of pre-exposure were also evident: males, but not females, showed an attenuated CTA in adulthood following ethanol pre-exposure, which occurred approximately nine weeks earlier. Taken together, these findings indicate that males are more sensitive to the aversive properties of ethanol than females. In addition, the ability of pre-exposure to the ethanol US to attenuate CTA is enhanced in males compared to females. PMID:21767576

  5. Assessing the role of the medial preoptic area in ethanol-induced hypothermia.

    PubMed

    Westerman, Ashley T; Roma, Peter G; Price, Rebecca C; Dominguez, Juan M

    2010-05-07

    Administration of ethanol produces hypothermia. The preoptic area/anterior hypothalamus (POA/AH) contains warm- and cold-sensitive neurons that are important for temperature regulation. The present study evaluated the effect of ethanol on Fos immunoreactivity (Fos-ir) in the medial preoptic area (MPOA) and the effect of lesions to the MPOA on ethanol-induced hypothermia. Rats receiving 1.5-g/kg ethanol showed an increase in Fos-ir in the MPOA. However, lesions to the MPOA did not affect core body temperature. These findings indicate that ethanol increases neural activity in the MPOA, but this increased activity does not influence ethanol-induced changes in core body temperature. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  6. The cannabinoid receptor 2 agonist, β-caryophyllene, reduced voluntary alcohol intake and attenuated ethanol-induced place preference and sensitivity in mice.

    PubMed

    Al Mansouri, Shamma; Ojha, Shreesh; Al Maamari, Elyazia; Al Ameri, Mouza; Nurulain, Syed M; Bahi, Amine

    2014-09-01

    Several recent studies have suggested that brain CB2 cannabinoid receptors play a major role in alcohol reward. In fact, the implication of cannabinoid neurotransmission in the reinforcing effects of ethanol (EtOH) is becoming increasingly evident. The CB2 receptor agonist, β-caryophyllene (BCP) was used to investigate the role of the CB2 receptors in mediating alcohol intake and ethanol-induced conditioned place preference (EtOH-CPP) and sensitivity in mice. The effect of BCP on alcohol intake was evaluated using the standard two-bottle choice drinking method. The mice were presented with increasing EtOH concentrations and its consumption was measured daily. Consumption of saccharin and quinine solutions was measured following the EtOH preference tests. Finally, the effect of BCP on alcohol reward and sensitivity was tested using an unbiased EtOH-CPP and loss of righting-reflex (LORR) procedures, respectively. BCP dose-dependently decreased alcohol consumption and preference. Additionally, BCP-injected mice did not show any difference from vehicle mice in total fluid intake in a 24-hour paradigm nor in their intake of graded concentrations of saccharin or quinine, suggesting that the CB2 receptor activation did not alter taste function. More importantly, BCP inhibited EtOH-CPP acquisition and exacerbated LORR duration. Interestingly, these effects were abrogated when mice were pre-injected with a selective CB2 receptor antagonist, AM630. Overall, the CB2 receptor system appears to be involved in alcohol dependence and sensitivity and may represent a potential pharmacological target for the treatment of alcoholism. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Positive relationship between dietary fat, ethanol intake, triglycerides, and hypothalamic peptides: counteraction by lipid-lowering drugs.

    PubMed

    Barson, Jessica R; Karatayev, Olga; Chang, Guo-Qing; Johnson, Deanne F; Bocarsly, Miriam E; Hoebel, Bartley G; Leibowitz, Sarah F

    2009-09-01

    Studies in both humans and animals suggest a positive relationship between the intake of ethanol and intake of fat, which may contribute to alcohol abuse. This relationship may be mediated, in part, by hypothalamic orexigenic peptides such as orexin (OX), which stimulate both consumption of ethanol and fat, and circulating triglycerides (TGs), which stimulate these peptides and promote consummatory behavior. The present study investigated this vicious cycle between ethanol and fat, to further characterize its relation to TGs and to test the effects of lowering TG levels. In Experiment 1, the behavioral relationship between fat intake and ethanol was confirmed. Adult male Sprague-Dawley rats, chronically injected intraperitoneally with ethanol (1g/kg) and tested in terms of their preference for a high-fat diet (HFD) compared with low-fat diet (LFD), showed a significant increase in their fat preference, compared with rats injected with saline, in measures of 2h and 24h intake. Experiment 2 tested the relationship of circulating TGs in this positive association between ethanol and fat, in rats chronically consuming 9% ethanol versus water and given acute meal tests (25kcal) of a HFD versus LFD. Levels of TGs were elevated in response to both chronic drinking of ethanol versus water and acute eating of a high-fat versus low-fat meal. Most importantly, ethanol and a HFD showed an interaction effect, whereby their combination produced a considerably larger increase in TG levels (+172%) compared to ethanol with a LFD (+111%). In Experiment 3, a direct manipulation of TG levels was found to affect ethanol intake. After intragastric administration of gemfibrozil (50mg/kg) compared with vehicle, TG levels were lowered by 37%, and ethanol intake was significantly reduced. In Experiment 4, the TG-lowering drug gemfibrozil also caused a significant reduction in the expression of the orexigenic peptide, OX, in the perifornical lateral hypothalamus. These results support the

  8. Positive relationship between dietary fat, ethanol intake, triglycerides and hypothalamic peptides: Counteraction by lipid-lowering drugs

    PubMed Central

    Barson, Jessica R.; Karatayev, Olga; Chang, Guo-Qing; Johnson, Deanne F.; Bocarsly, Miriam E.; Hoebel, Bartley G.; Leibowitz, Sarah F.

    2009-01-01

    Studies in both humans and animals suggest a positive relationship between the intake of ethanol and intake of fat, which may contribute to alcohol abuse. This relationship may be mediated, in part, by hypothalamic orexigenic peptides such as orexin (OX), which stimulate both consumption of ethanol and fat, and circulating triglycerides (TG), which stimulate these peptides and promote consummatory behavior. The present study investigated this vicious cycle between ethanol and fat, to further characterize its relation to TG and to test the effects of lowering TG levels. In Experiment 1, the behavioral relationship between fat intake and ethanol was confirmed. Adult male Sprague-Dawley rats, chronically injected with ethanol (1 g/kg i.p.) and tested in terms of their preference for a high-fat compared to low-fat diet, showed a significant increase in their fat preference, compared to rats injected with saline, in measures of 2 h and 24 h intake. Experiment 2 tested the relationship of circulating TG in this positive association between ethanol and fat, in rats chronically consuming 9% ethanol vs. water and given acute meal tests (25 kcal) of a high-fat vs. low-fat diet. Levels of TG were elevated in response to both chronic drinking of ethanol vs. water and acute eating of a high-fat vs. low-fat meal. Most importantly, ethanol and a high-fat diet showed an interaction effect, whereby their combination produced a considerably larger increase in TG levels (+172%) compared to ethanol with a low-fat diet (+111%). In Experiment 3, a direct manipulation of TG levels was found to affect ethanol intake. After administration of gemfibrozil (50 mg/kg i.g.) compared to vehicle, TG levels were lowered by 37%, and ethanol intake was significantly reduced. In Experiment 4, the TG-lowering drug gemfibrozil also caused a significant reduction in the expression of the orexigenic peptide OX, in the perifornical lateral hypothalamus. These results support the existence of a vicious

  9. Ethanol Inhibition of Constitutively Open N-Methyl-d-Aspartate Receptors

    PubMed Central

    Xu, Minfu; Smothers, C. Thetford; Trudell, James

    2012-01-01

    N-Methyl-d-aspartate (NMDA) receptors gate a slow and calcium-rich component of the postsynaptic glutamate response. Like all ionotropic glutamate receptors, NMDA subunits contain a highly conserved motif (SYTANLAAF) in the transmembrane (TM) 3 domain that is critically involved in channel gating. Mutation of an alanine in this domain (A7; underlined above) results in constitutively open receptors that show reduced sensitivity to several allosteric modulators. In this study, we examined the effects of ethanol, a substance that inhibits NMDA currents via an unknown mechanism, on tonically active NMDA receptors expressed in human embryonic kidney 293 cells. Ethanol (100 mM) inhibited currents from GluN1(A7R)/GluN2A and GluN1(A7R)/GluN2B receptors by approximately 50%, whereas those from GluN1/GluN2B(A7R) receptors were reduced by less than 10%. In cysteine-substituted GluN1 and GluN2 A7 mutants, estimated ethanol IC50 values for agonist-gated currents were 101, 117, 103, and 69 mM for GluN1(A7C)/GluN2A, GluN1(A7C)/GluN2B, GluN1/GluN2A(A7C), and GluN1/GluN2B(A7C) receptors, respectively. After exposure to the thiol-modifying reagent 2-(trimethylammonium)ethyl methanethiosulfonate (MTSET), A7C mutants showed robust agonist-independent currents and reduced sensitivity to ethanol (IC50 values of 371, 256, 715, and 958 mM, respectively, as above). In contrast, cysteine modification of the ligand-binding domain resulted in constitutively open receptors that showed robust ethanol inhibition. Ethanol inhibition of MTSET-treated GluN1(A7C) receptors was further reduced by TM3/TM4 mutations previously shown to reduce ethanol sensitivity of agonist-gated receptors. Overall, these results show that ethanol affects NMDA receptor function at a site distal from agonist binding and appears to exert greater effects via perturbation of GluN2 subunits. PMID:22005043

  10. Action of ethanol low doses on heart rate variability following intravenous administration in rabbits.

    PubMed

    Khvedelidze, M; Chitanava, E; Nadareishvili, D; Jiqia, G; Gvasalia, M

    2007-05-01

    Effects of low ethanol doses on the vagosympathetic mechanisms of heart rate regulation were studied in rabbits. Analysis of heart rate variability showed that single intravenous administration of 0.5 mg/kg ethanol caused a higher probability of heart electrophysiological instability in sympathicotonics in contrast to vagotonics. This was associated with activation of the whole complex of regulatory mechanisms. In vagotonics, perturbations in power spectrum indicated on rapidly shunting of regulatory activity from lower to high levels of regulatory mechanisms to realize a "first class" undifferentiated response on stress induction. Sympathicotonics were unready to ethanol intravenous administration that resulted in reduction of all spectral component. Intravenous administration of ethanol caused a higher probability of heart electrophysiological instability in sympathicotonics then in vagotonics. It is important to consider these differences for therapeutic application of ethanol to some acute poisoning (methyl alcohol, ethylene glycol).

  11. Innate BDNF expression is associated with ethanol intake in alcohol-preferring AA and alcohol-avoiding ANA rats.

    PubMed

    Raivio, Noora; Miettinen, Pekka; Kiianmaa, Kalervo

    2014-09-04

    We have shown recently that acute administration of ethanol modulates the expression of brain-derived neurotrophic factor (BDNF) in several rat brain areas known to be involved in the development of addiction to ethanol and other drugs of abuse, suggesting that BDNF may be a factor contributing to the neuroadaptive changes set in motion by ethanol exposure. The purpose of the present study was to further clarify the role of BDNF in reinforcement from ethanol and in the development of addiction to ethanol by specifying the effect of acute administration of ethanol (1.5 or 3.0 g/kg i.p.) on the expression profile of BDNF mRNA in the ventral tegmental area and in the terminal areas of the mesolimbic dopamine pathway in the brain of alcohol-preferring AA and alcohol-avoiding ANA rats, selected for high and low voluntary ethanol intake, respectively. The level of BDNF mRNA expression was higher in the amygdala and ventral tegmental area of AA than in those of ANA rats, and there was a trend for a higher level in the nucleus accumbens. In the amygdala and hippocampus, a biphasic change in the BDNF mRNA levels was detected: the levels were decreased at 3 and 6h but increased above the basal levels at 24h. Furthermore, there was a difference between the AA and ANA lines in the effect of ethanol, the ANA rats showing an increase in BDNF mRNA levels while such a change was not seen in AA rats. These findings suggest that the innate levels of BDNF expression may play a role in the mediation of the reinforcing effects of ethanol and in the control of ethanol intake. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Conditioned effects of ethanol on the immune system.

    PubMed

    Gano, Anny; Pautassi, Ricardo Marcos; Doremus-Fitzwater, Tamara L; Deak, Terrence

    2017-04-01

    Several studies indicate that the immune system can be subjected to classical conditioning. Acute ethanol intoxication significantly modulates several pro-inflammatory cytokines (e.g. interleukins-1 and 6 [IL-1β and IL-6, respectively] and tumor necrosis factor alpha [TNFα])) in several brain areas, including amygdala (AMG), paraventricular nucleus (PVN), and hippocampus (HPC). It is unknown, however, whether cues associated with ethanol can elicit conditioned alterations in cytokine expression. The present study analyzed, in male Sprague-Dawley rats, whether ethanol-induced changes in the central cytokine response may be amenable to conditioning. In Experiments 1 and 2, the rats were given one or two pairings between a distinctive odor (conditional stimulus, CS) and the post-absorptive effects of a high (3.0 or 4.0 g/kg, Experiments 1 and 2, respectively) ethanol dose. Neither of these experiments revealed conditioning of IL-6, IL-1β, or TNFα, as measured via mRNA levels. Yet, re-exposure to the lemon-odor CS in Experiment 1 significantly increased C-Fos levels in the PVN. In Experiment 3, the rats were given four pairings between an odor CS and a moderate ethanol dose (2.0 g/kg), delivered intraperitoneally (i.p.) or intragastrically (i.g.). Re-exposure to the odor CS significantly increased IL-6 levels in HPC and AMG, an effect only evident in paired rats administered ethanol i.p. Overall, this study suggests that ethanol exposure can regulate the levels of IL-6 at HPC and AMG via classical conditioning mechanisms. These ethanol-induced, conditioned alterations in cytokine levels may ultimately affect the intake and motivational effects of ethanol. Impact statement This study examines, across three experiments, whether odor cues associated with ethanol exposure can condition changes in cytokine expression. The analysis of ethanol-induced conditioning of immune responses is a novel niche that can help understand the transition from social drinking to

  13. Age-Dependent Effects of Acute Alcohol Administration in the Hippocampal Phosphoproteome.

    PubMed

    Contreras, Ana; Morales, Lidia; Tebourbi, Ali; Miguéns, Miguel; Olmo, Nuria Del; Pérez-García, Carmen

    2017-12-18

    Alcohol consumption during adolescence is deleterious to the developing brain and leads to persistent deficits in adulthood. Several results provide strong evidence for ethanol-associated alterations in glutamatergic signaling and impaired synaptic plasticity in the hippocampus. Protein phosphorylation is a well-known and well-documented mechanism in memory processes, but information on phosphoprotein alterations in hippocampus after ethanol exposure is limited. This study focuses on age-related changes in the hippocampal phosphoproteome after acute alcohol administration. We have compared the phosphoprotein expression in the hippocampus of adult and adolescent Wistar rats treated with a single dose of ethanol (5 g/kg i.p.), using a proteomic approach including phosphoprotein enrichment by immobilized metal affinity chromatography (IMAC). Our proteomic analysis revealed that 13 proteins were differentially affected by age, ethanol administration, or both. Most of these proteins are involved in neuroprotection and are expressed less in young rats treated with ethanol. We conclude that acute alcohol induces important changes in the expression of phosphoproteins in the hippocampus that could increase the risk of neurodegenerative disorders, especially when the alcohol exposure begins in adolescence.

  14. Diurnal Spectral Sensitivity of the Acute Alerting Effects of Light

    PubMed Central

    Rahman, Shadab A.; Flynn-Evans, Erin E.; Aeschbach, Daniel; Brainard, George C.; Czeisler, Charles A.; Lockley, Steven W.

    2014-01-01

    Study Objectives: Previous studies have demonstrated short-wavelength sensitivity for the acute alerting response to nocturnal light exposure. We assessed daytime spectral sensitivity in alertness, performance, and waking electroencephalogram (EEG). Design: Between-subjects (n = 8 per group). Setting: Inpatient intensive physiologic monitoring unit. Participants: Sixteen healthy young adults (mean age ± standard deviation = 23.8 ± 2.7 y). Interventions: Equal photon density exposure (2.8 × 1013 photons/cm2/s) to monochromatic 460 nm (blue) or 555 nm (green) light for 6.5 h centered in the middle of the 16-h episode of wakefulness during the biological day. Results were compared retrospectively to 16 individuals who were administered the same light exposure during the night. Measurements and Results: Daytime and nighttime 460-nm light exposure significantly improved auditory reaction time (P < 0.01 and P < 0.05, respectively) and reduced attentional lapses (P < 0.05), and improved EEG correlates of alertness compared to 555-nm exposure. Whereas subjective sleepiness ratings did not differ between the two spectral conditions during the daytime (P > 0.05), 460-nm light exposure at night significantly reduced subjective sleepiness compared to 555-nm light exposure at night (P < 0.05). Moreover, nighttime 460-nm exposure improved alertness to near-daytime levels. Conclusions: The alerting effects of short-wavelength 460-nm light are mediated by counteracting both the circadian drive for sleepiness and homeostatic sleep pressure at night, but only via reducing the effects of homeostatic sleep pressure during the day. Citation: Rahman SA; Flynn-Evans EE; Aeschbach D; Brainard GC; Czeisler CA; Lockley SW. Diurnal spectral sensitivity of the acute alerting effects of light. SLEEP 2014;37(2):271-281. PMID:24501435

  15. Ethanol Effects on Dopaminergic Ventral Tegmental Area Neurons During Block of Ih: Involvement of Barium-Sensitive Potassium Currents

    PubMed Central

    McDaid, John; McElvain, Maureen A.; Brodie, Mark S.

    2008-01-01

    The dopaminergic neurons of the ventral tegmental area (DA VTA neurons) are important for the rewarding and reinforcing properties of drugs of abuse, including ethanol. Ethanol increases the firing frequency of DA VTA neurons from rats and mice. Because of a recent report on block of ethanol excitation in mouse DA VTA neurons with ZD7288, a selective blocker of the hyperpolarization-activated cationic current Ih, we examined the effect of ZD7288 on ethanol excitation in DA VTA neurons from C57Bl/6J and DBA/2J mice and Fisher 344 rats. Ethanol (80 mM) caused only increases in firing rate in mouse DA VTA neurons in the absence of ZD7288, but in the presence of ZD7288 (30 μM), ethanol produced a more transient excitation followed by a decrease of firing. This same biphasic phenomenon was observed in DA VTA neurons from rats in the presence of ZD7288 only at very high ethanol concentrations (160–240 mM) but not at lower pharmacologically relevant concentrations. The longer latency ethanol-induced inhibition was not observed in DA VTA neurons from mice or rats in the presence of barium (100 μM), which blocks G protein–linked potassium channels (GIRKs) and other inwardly rectifying potassium channels. Ethanol may have a direct effect to increase an inhibitory potassium conductance, but this effect of ethanol can only decrease the firing rate if Ih is blocked. PMID:18614756

  16. Adaptation to High Ethanol Reveals Complex Evolutionary Pathways

    PubMed Central

    Das, Anupam; Espinosa-Cantú, Adriana; De Maeyer, Dries; Arslan, Ahmed; Van Pee, Michiel; van der Zande, Elisa; Meert, Wim; Yang, Yudi; Zhu, Bo; Marchal, Kathleen; DeLuna, Alexander; Van Noort, Vera; Jelier, Rob; Verstrepen, Kevin J.

    2015-01-01

    Tolerance to high levels of ethanol is an ecologically and industrially relevant phenotype of microbes, but the molecular mechanisms underlying this complex trait remain largely unknown. Here, we use long-term experimental evolution of isogenic yeast populations of different initial ploidy to study adaptation to increasing levels of ethanol. Whole-genome sequencing of more than 30 evolved populations and over 100 adapted clones isolated throughout this two-year evolution experiment revealed how a complex interplay of de novo single nucleotide mutations, copy number variation, ploidy changes, mutator phenotypes, and clonal interference led to a significant increase in ethanol tolerance. Although the specific mutations differ between different evolved lineages, application of a novel computational pipeline, PheNetic, revealed that many mutations target functional modules involved in stress response, cell cycle regulation, DNA repair and respiration. Measuring the fitness effects of selected mutations introduced in non-evolved ethanol-sensitive cells revealed several adaptive mutations that had previously not been implicated in ethanol tolerance, including mutations in PRT1, VPS70 and MEX67. Interestingly, variation in VPS70 was recently identified as a QTL for ethanol tolerance in an industrial bio-ethanol strain. Taken together, our results show how, in contrast to adaptation to some other stresses, adaptation to a continuous complex and severe stress involves interplay of different evolutionary mechanisms. In addition, our study reveals functional modules involved in ethanol resistance and identifies several mutations that could help to improve the ethanol tolerance of industrial yeasts. PMID:26545090

  17. Ethanol-assisted multi-sensitive poly(vinyl alcohol) photonic crystal sensor.

    PubMed

    Chen, Cheng; Zhu, Yihua; Bao, Hua; Shen, Jianhua; Jiang, Hongliang; Peng, Liming; Yang, Xiaoling; Li, Chunzhong; Chen, Guorong

    2011-05-21

    An ethanol-assisted method is utilized to generate a robust gelated crystalline colloidal array (GCCA) photonic crystal sensor. The functionalized sensor efficiently diffracts the visible light and responds to various stimuli involving solvent, pH, cation, and compressive strain; the related color change can be easily distinguished by the naked eye. © The Royal Society of Chemistry 2011

  18. Genetic dissection of quantitative trait locus for ethanol sensitivity in long- and short-sleep mice.

    PubMed

    Bennett, B; Carosone-Link, P; Beeson, M; Gordon, L; Phares-Zook, N; Johnson, T E

    2008-08-01

    Interval-specific congenic strains (ISCS) allow fine mapping of a quantitative trait locus (QTL), narrowing its confidence interval by an order of magnitude or more. In earlier work, we mapped four QTL specifying differential ethanol sensitivity, assessed by loss of righting reflex because of ethanol (LORE), in the inbred long-sleep (ILS) and inbred short-sleep (ISS) strains, accounting for approximately 50% of the genetic variance for this trait. Subsequently, we generated reciprocal congenic strains in which each full QTL interval from ILS was bred onto the ISS background and vice versa. An earlier paper reported construction and results of the ISCS on the ISS background; here, we describe this process and report results on the ILS background. We developed multiple ISCS for each Lore QTL in which the QTL interval was broken into a number of smaller intervals. For each of the four QTL regions (chromosomes 1, 2, 11 and 15), we were successful in reducing the intervals significantly. Multiple, positive strains were overlapped to generate a single, reduced interval. Subsequently, this reduced region was overlaid on previous reductions from the ISS background congenics, resulting in substantial reductions in all QTL regions by approximately 75% from the initial mapping study. Genes with sequence or expression polymorphisms in the reduced intervals are potential candidates; evidence for these is presented. Genetic background effects can be important in detection of single QTL; combining this information with the generation of congenics on both backgrounds, as described here, is a powerful approach for fine mapping QTL.

  19. Neuroactive steroid stereospecificity of ethanol-like discriminative stimulus effects in monkeys

    PubMed Central

    Grant, Kathleen A.; Helms, Christa M.; Rogers, Laura S.M.; Purdy, Robert H.

    2008-01-01

    Positive modulation of GABAA and antagonism of NMDA receptors mediate the discriminative stimulus effects of ethanol. Endogenous neuroactive steroids produce effects similar to ethanol suggesting that these steroids may modulate ethanol addiction. The 4 isomers of the functional esters at C-3 of the 3-hydroxy metabolites of 4-pregnene-3,20-dione (progesterone) [allopregnanolone (3α,5α-P), pregnanolone (3α,5β-P), epiallopregnanolone (3β,5α-P), epipregnanolone (3β,5β-P)], a synthetic analogue of steroids modified by endogenous sulfation [pregnanolone hemisuccinate (3α,5β-P HS)], and a structurally-similar, adrenally-derived steroid [3α-hydroxy-5-androstan-17-one (3α,5α-A, androsterone)], were assessed for ethanol-like discriminative stimulus effects 30 or 60 min after administration in male (n=9) and female (n=8) cynomolgus monkeys (Macaca fascicularis) trained to discriminate 1.0 or 2.0 g/kg ethanol (i.g.) with a 30-min pre-treatment interval. The 3α-hydroxysteroids completely substituted for ethanol (80% of cases) whereas the 3β-hydroxysteroids and 3α,5β-P HS rarely substituted for ethanol (6% of cases). There were no sex differences. Compared to monkeys trained to discriminate 2.0 g/kg ethanol, 3α,5β-P and 3α,5α-A substituted more potently in monkeys trained to discriminate 1.0 g/kg ethanol. Compared to the 5β-reduced isomer (3α,5β-P), the 5α isomer of pregnanolone (3α,5α-P) substituted for ethanol with 3–40-fold greater potency but was least efficacious in female monkeys trained to discriminate 2.0 g/kg ethanol. The data suggest that the discriminative stimulus effects of lower doses (1.0 g/kg) of ethanol are mediated to a greater extent by 3α,5β-P-and 3α,5α-A-sensitive receptors compared to higher doses (2.0 g/kg). Furthermore, the discriminative stimulus effects of ethanol appear to be mediated by activity at binding sites that are particularly sensitive to 3α,5α-P. PMID:18436788

  20. Neuroactive steroid stereospecificity of ethanol-like discriminative stimulus effects in monkeys.

    PubMed

    Grant, Kathleen A; Helms, Christa M; Rogers, Laura S M; Purdy, Robert H

    2008-07-01

    Positive modulation of GABA(A) and antagonism of N-methyl-D-aspartate receptors mediate the discriminative stimulus effects of ethanol. Endogenous neuroactive steroids produce effects similar to ethanol, suggesting that these steroids may modulate ethanol addiction. The four isomers of the functional esters at C-3 of the 3-hydroxy metabolites of 4-pregnene-3,20-dione (progesterone) [allopregnanolone (3alpha,5alpha-P), pregnanolone (3alpha,5beta-P), epiallopregnanolone (3beta,5alpha-P), and epipregnanolone (3beta,5beta-P)], a synthetic analog of steroids modified by endogenous sulfation [pregnanolone hemisuccinate (3alpha,5beta-P HS)], and a structurally similar, adrenally derived steroid [3alpha-hydroxy-5-androstan-17-one (3alpha,5alpha-A, androsterone)] were assessed for ethanol-like discriminative stimulus effects at 30 or 60 min after administration in male (n = 9) and female (n = 8) cynomolgus monkeys (Macaca fascicularis) trained to discriminate 1.0 or 2.0 g/kg ethanol (i.g.) with a 30-min pretreatment interval. The 3alpha-hydroxysteroids completely substituted for ethanol (80% of cases), whereas the 3beta-hydroxysteroids and 3alpha,5beta-P HS rarely substituted for ethanol (6% of cases). There were no sex differences. Compared with monkeys trained to discriminate 2.0 g/kg ethanol, 3alpha,5beta-P and 3alpha,5alpha-A substituted more potently in monkeys trained to discriminate 1.0 g/kg ethanol. Compared with the 5beta-reduced isomer (3alpha,5beta-P), the 5alpha isomer of pregnanolone (3alpha,5alpha-P) substituted for ethanol with 3 to 40-fold greater potency but was least efficacious in female monkeys trained to discriminate 2.0 g/kg ethanol. The data suggest that the discriminative stimulus effects of lower doses (1.0 g/kg) of ethanol are mediated to a greater extent by 3alpha,5beta-P- and 3alpha,5alpha-A-sensitive receptors compared with higher doses (2.0 g/kg). Furthermore, the discriminative stimulus effects of ethanol appear to be mediated by activity at

  1. Complementary Split-Ring Resonator-Loaded Microfluidic Ethanol Chemical Sensor.

    PubMed

    Salim, Ahmed; Lim, Sungjoon

    2016-10-28

    In this paper, a complementary split-ring resonator (CSRR)-loaded patch is proposed as a microfluidic ethanol chemical sensor. The primary objective of this chemical sensor is to detect ethanol's concentration. First, two tightly coupled concentric CSRRs loaded on a patch are realized on a Rogers RT/Duroid 5870 substrate, and then a microfluidic channel engraved on polydimethylsiloxane (PDMS) is integrated for ethanol chemical sensor applications. The resonant frequency of the structure before loading the microfluidic channel is 4.72 GHz. After loading the microfluidic channel, the 550 MHz shift in the resonant frequency is ascribed to the dielectric perturbation phenomenon when the ethanol concentration is varied from 0% to 100%. In order to assess the sensitivity range of our proposed sensor, various concentrations of ethanol are tested and analyzed. Our proposed sensor exhibits repeatability and successfully detects 10% ethanol as verified by the measurement set-up. It has created headway to a miniaturized, non-contact, low-cost, reliable, reusable, and easily fabricated design using extremely small liquid volumes.

  2. Critical features of acute stress-induced cross-sensitization identified through the hypothalamic-pituitary-adrenal axis output.

    PubMed

    Belda, Xavier; Nadal, Roser; Armario, Antonio

    2016-08-11

    Stress-induced sensitization represents a process whereby prior exposure to severe stressors leaves animals or humans in a hyper-responsive state to further stressors. Indeed, this phenomenon is assumed to be the basis of certain stress-associated pathologies, including post-traumatic stress disorder and psychosis. One biological system particularly prone to sensitization is the hypothalamic-pituitary-adrenal (HPA) axis, the prototypic stress system. It is well established that under certain conditions, prior exposure of animals to acute and chronic (triggering) stressors enhances HPA responses to novel (heterotypic) stressors on subsequent days (e.g. raised plasma ACTH and corticosterone levels). However, such changes remain somewhat controversial and thus, the present study aimed to identify the critical characteristics of the triggering and challenging stressors that affect acute stress-induced HPA cross-sensitization in adult rats. We found that HPA cross-sensitization is markedly influenced by the intensity of the triggering stressor, whereas the length of exposure mainly affects its persistence. Importantly, HPA sensitization is more evident with mild than strong challenging stressors, and it may remain unnoticed if exposure to the challenging stressor is prolonged beyond 15 min. We speculate that heterotypic HPA sensitization might have developed to optimize biologically adaptive responses to further brief stressors.

  3. Critical features of acute stress-induced cross-sensitization identified through the hypothalamic-pituitary-adrenal axis output

    PubMed Central

    Belda, Xavier; Nadal, Roser; Armario, Antonio

    2016-01-01

    Stress-induced sensitization represents a process whereby prior exposure to severe stressors leaves animals or humans in a hyper-responsive state to further stressors. Indeed, this phenomenon is assumed to be the basis of certain stress-associated pathologies, including post-traumatic stress disorder and psychosis. One biological system particularly prone to sensitization is the hypothalamic-pituitary-adrenal (HPA) axis, the prototypic stress system. It is well established that under certain conditions, prior exposure of animals to acute and chronic (triggering) stressors enhances HPA responses to novel (heterotypic) stressors on subsequent days (e.g. raised plasma ACTH and corticosterone levels). However, such changes remain somewhat controversial and thus, the present study aimed to identify the critical characteristics of the triggering and challenging stressors that affect acute stress-induced HPA cross-sensitization in adult rats. We found that HPA cross-sensitization is markedly influenced by the intensity of the triggering stressor, whereas the length of exposure mainly affects its persistence. Importantly, HPA sensitization is more evident with mild than strong challenging stressors, and it may remain unnoticed if exposure to the challenging stressor is prolonged beyond 15 min. We speculate that heterotypic HPA sensitization might have developed to optimize biologically adaptive responses to further brief stressors. PMID:27511270

  4. A pair of dopamine neurons target the D1-like dopamine receptor DopR in the central complex to promote ethanol-stimulated locomotion in Drosophila.

    PubMed

    Kong, Eric C; Woo, Katherine; Li, Haiyan; Lebestky, Tim; Mayer, Nasima; Sniffen, Melissa R; Heberlein, Ulrike; Bainton, Roland J; Hirsh, Jay; Wolf, Fred W

    2010-04-01

    Dopamine is a mediator of the stimulant properties of drugs of abuse, including ethanol, in mammals and in the fruit fly Drosophila. The neural substrates for the stimulant actions of ethanol in flies are not known. We show that a subset of dopamine neurons and their targets, through the action of the D1-like dopamine receptor DopR, promote locomotor activation in response to acute ethanol exposure. A bilateral pair of dopaminergic neurons in the fly brain mediates the enhanced locomotor activity induced by ethanol exposure, and promotes locomotion when directly activated. These neurons project to the central complex ellipsoid body, a structure implicated in regulating motor behaviors. Ellipsoid body neurons are required for ethanol-induced locomotor activity and they express DopR. Elimination of DopR blunts the locomotor activating effects of ethanol, and this behavior can be restored by selective expression of DopR in the ellipsoid body. These data tie the activity of defined dopamine neurons to D1-like DopR-expressing neurons to form a neural circuit that governs acute responding to ethanol.

  5. Increased ethanol consumption after interruption of fat bingeing.

    PubMed

    Blanco-Gandía, M Carmen; Miñarro, José; Aguilar, Maria Asuncion; Rodríguez-Arias, Marta

    2018-01-01

    There is a marked comorbidity between alcohol abuse and eating disorders, especially in the young population. We have previously reported that bingeing on fat during adolescence increases the rewarding effects of ethanol (EtOH). The aim of the present work was to study if vulnerability to EtOH persists after cessation of binge eating. OF1 mice binged on fat (HFB: high-fat binge) during adolescence (PND 25-43) and were tested for 15 days after the last access to HFB (on PND 59) using the self-administration paradigm, the conditioned place preference (CPP) and locomotor sensitization to ethanol. Our results showed that after 15 days of cessation of fat ingestion, mice increased their consumption of ethanol and showed greater motivation to obtain ethanol. On the other hand, no effects were observed in the CPP, while an increased locomotor response to ethanol was detected. The present results confirm and extend our previous study demonstrating that the compulsive intake of fat induces long-lasting effects on the reward system that lead to an increased consumption of EtOH.

  6. Increased ethanol consumption after interruption of fat bingeing

    PubMed Central

    Blanco-Gandía, M. Carmen; Miñarro, José; Aguilar, Maria Asuncion

    2018-01-01

    There is a marked comorbidity between alcohol abuse and eating disorders, especially in the young population. We have previously reported that bingeing on fat during adolescence increases the rewarding effects of ethanol (EtOH). The aim of the present work was to study if vulnerability to EtOH persists after cessation of binge eating. OF1 mice binged on fat (HFB: high-fat binge) during adolescence (PND 25–43) and were tested for 15 days after the last access to HFB (on PND 59) using the self-administration paradigm, the conditioned place preference (CPP) and locomotor sensitization to ethanol. Our results showed that after 15 days of cessation of fat ingestion, mice increased their consumption of ethanol and showed greater motivation to obtain ethanol. On the other hand, no effects were observed in the CPP, while an increased locomotor response to ethanol was detected. The present results confirm and extend our previous study demonstrating that the compulsive intake of fat induces long-lasting effects on the reward system that lead to an increased consumption of EtOH. PMID:29590149

  7. Effects of ethanol on social avoidance induced by chronic social defeat stress in mice.

    PubMed

    Favoretto, Cristiane A; Macedo, Giovana C; Quadros, Isabel M H

    2017-01-01

    In rodents, chronic social defeat stress promotes deficits in social interest and social interaction. We further explored these antisocial effects by comparing the consequences of two different defeat stress protocols (episodic vs. continuous stress) in a social investigation test. We expected that continuous, but not episodic, stress would induce social deficits in this model. Furthermore, we tested whether a potentially anxiolytic dose of ethanol reverses social deficits induced by defeat stress. Male Swiss mice were exposed to a 10-day social defeat protocol, using daily confrontations with an aggressive resident mouse. Episodic stress consisted of brief defeat episodes, after which the defeated mouse was returned to its home cage, until the next defeat 24 h later (n = 7-11/group). For continuous stress, similar defeat episodes were followed by cohabitation with the aggressive resident for 24 h, separated by a perforated divider, until the following defeat (n = 8-14/group). Eight days after stress termination, defeated and control mice were assessed in a social investigation test, after treatment with ethanol (1.0 g/kg, i.p.) or 0.9% saline. Considering the time spent investigating a social target, mice exposed to episodic or continuous social stress showed less social investigation than controls (p < .05). Deficits in social interest were not reversed by acute ethanol treatment. However, ethanol reduced time spent in social interaction in one control group (p < .05). Locomotor activity was not affected by social stress or ethanol. Thus, a history of social defeat stress, whether episodic or continuous, promotes deficits in social investigation that were not reversed by acute treatment with ethanol.

  8. Acute toxicity of gasoline and some additives.

    PubMed Central

    Reese, E; Kimbrough, R D

    1993-01-01

    The acute toxicity of gasoline; its components benzene, toluene, and xylene; and the additives ethanol, methanol, and methyl tertiary butyl ether are reviewed. All of these chemicals are only moderately to mildly toxic at acute doses. Because of their volatility, these compounds are not extensively absorbed dermally unless the exposed skin is occluded. Absorption through the lungs and the gastrointestinal tract is quite efficient. After ingestion, the principal danger for a number of these chemicals, particularly gasoline, is aspiration pneumonia, which occurs mainly in children. It is currently not clear whether aspiration pneumonia would still be a problem if gasoline were diluted with ethanol or methanol. During the normal use of gasoline or mixtures of gasoline and the other solvents as a fuel, exposures would be much lower than the doses that have resulted in poisoning. No acute toxic health effects would occur during the normal course of using automotive fuels. PMID:8020435

  9. A Low Concentration of Ethanol Impairs Learning but Not Motor and Sensory Behavior in Drosophila Larvae

    PubMed Central

    Ghezzi, Alfredo; Cady, Amanda M.; Najjar, Kristina; Hatch, Michael M.; Shah, Ruchita R.; Bhat, Amar; Hariri, Omar; Haroun, Kareem B.; Young, Melvin C.; Fife, Kathryn; Hooten, Jeff; Tran, Tuan; Goan, Daniel; Desai, Foram; Husain, Farhan; Godinez, Ryan M.; Sun, Jeffrey C.; Corpuz, Jonathan; Moran, Jacxelyn; Zhong, Allen C.; Chen, William Y.; Atkinson, Nigel S.

    2012-01-01

    Drosophila melanogaster has proven to be a useful model system for the genetic analysis of ethanol-associated behaviors. However, past studies have focused on the response of the adult fly to large, and often sedating, doses of ethanol. The pharmacological effects of low and moderate quantities of ethanol have remained understudied. In this study, we tested the acute effects of low doses of ethanol (∼7 mM internal concentration) on Drosophila larvae. While ethanol did not affect locomotion or the response to an odorant, we observed that ethanol impaired associative olfactory learning when the heat shock unconditioned stimulus (US) intensity was low but not when the heat shock US intensity was high. We determined that the reduction in learning at low US intensity was not a result of ethanol anesthesia since ethanol-treated larvae responded to the heat shock in the same manner as untreated animals. Instead, low doses of ethanol likely impair the neuronal plasticity that underlies olfactory associative learning. This impairment in learning was reversible indicating that exposure to low doses of ethanol does not leave any long lasting behavioral or physiological effects. PMID:22624024

  10. Metabolic engineering of Escherichia coli for ethanol production without foreign genes

    NASA Astrophysics Data System (ADS)

    Kim, Youngnyun

    Worldwide dependence on finite petroleum-based energy necessitates alternative energy sources that can be produced from renewable resources. A successful example of an alternative transportation fuel is bioethanol, produced by microorganisms, from corn starch that is blended with gasoline. However, corn, currently the main feedstock for bioethanol production, also occupies a significant role in human food and animal feed chains. As more corn is diverted to bioethanol, the cost of corn is expected to increase with an increase in the price of food, feed and ethanol. Using lignocellulosic biomass for ethanol production is considered to resolve this problem. However, this requires a microbial biocatalyst that can ferment hexoses and pentoses to ethanol. Escherichia coli is an efficient biocatalyst that can use all the monomeric sugars in lignocellulose, and recombinant derivatives of E. coli have been engineered to produce ethanol as the major fermentation product. In my study, ethanologenic E. coli strains were isolated from a ldhA-, pflB- derivative without introduction of foreign genes. These isolates grew anaerobically and produced ethanol as the main fermentation product. The mutation responsible for anaerobic growth and ethanol production was mapped in the lpdA gene and the mutation was identified as E354K in three of the isolates tested. Another three isolates carried an lpdA mutation, H352Y. Enzyme kinetic studies revealed that the mutated form of the dihydrolipoamide dehydrogenase (LPD) encoded by the lpdA was significantly less sensitive to NADH inhibition than the native LPD. This reduced NADH sensitivity of the mutated LPD was translated into lower sensitivity to NADH of the pyruvate dehydrogenase complex in strain SE2378. The net yield of 4 moles of NADH and 2 moles of acetyl-CoA per mole of glucose produced by a combination of glycolysis and PDH provided a logical basis to explain the production of 2 moles of ethanol per glucose. The development of E

  11. Initial Observations on the Burning of an Ethanol Droplet in Microgravity

    NASA Technical Reports Server (NTRS)

    Kazakov, Andrei; Urban, Bradley; Conley, Jordan; Dryer, Frederick L.; Ferkul, Paul (Technical Monitor)

    1999-01-01

    Combustion of liquid ethanol represents an important system both from fundamental and practical points of view, Ethanol is currently being used as an additive to gasoline in order to reduce carbon monoxide and particulate emissions as well as to improve the fuel octane rating. A detailed physical understanding of liquid ethanol combustion is therefore necessary to achieve an optimal performance of such fuel blends in practical conditions. Ethanol is also a relatively simple model compound suitable for investigation of important combustion characteristics typical of more complex fuels. In particular, ethanol has been proposed for studies of sooting behavior during droplet burning. The sooting nature of ethanol has pressure sensitivities similar to that of n-heptane, but shifted to a higher range of pressures (1-3 atm). Additionally, liquid ethanol is miscible with water produced during its combustion forming mixtures with azeotropic behavior, a phenomenon important for understanding multi-component, liquid fuel combustion. In this work, we present initial results obtained in a series of recent space-based experiments and develop a detailed model describing the burning of ethanol droplet in microgravity.

  12. The antinociceptive effects of a standardized ethanol extract of the Bidens odorata Cav (Asteraceae) leaves are mediated by ATP-sensitive K+ channels.

    PubMed

    Zapata-Morales, Juan Ramón; Alonso-Castro, Angel Josabad; Domínguez, Fabiola; Carranza-Álvarez, Candy; Isiordia-Espinoza, Mario; Hernández-Morales, Alejandro; Solorio-Alvarado, Cesar

    2017-07-31

    Bidens odorata Cav (Asteraceae) is used for the empirical treatment of inflammation and pain. This work evaluated the in vitro and in vivo toxicity, antioxidant activity, as well as the anti-inflammatory and antinociceptive effects of an ethanol extract from Bidens odorata leaves (BOE). The in vitro toxicity of BOE (10-1000µg/ml) was evaluated with the comet assay in PBMC. The in vivo acute toxicity of BOE (500-5000mg/kg) and the effect of BOE (10-1000µg/ml) on the level of ROS in PBMC were determined. The in vivo anti-inflammatory activity of BOE was assessed using the TPA-induced ear edema in mice. The antinociceptive activities of BOE (50-200mg/kg p.o.) were assessed using the acetic acid and formalin tests. The antinociceptive mechanism of BOE was determined using naloxone and glibenclamide. BOE lacked DNA damage, and showed low in vivo toxicity (LD 50 > 5000mg/kg p.o.). BOE inhibited ROS production (IC 50 = 252.13 ± 20.54µg/ml), and decreased inflammation by 36.1 ± 3.66%. In both antinociceptive test, BOE (200mg/kg) exerted activity with similar activity than the reference drugs. B. odorata exerts low in vitro and in vivo toxicity, antioxidant effects, moderate in vivo anti-inflammatory activity, and antinociceptive effects mediated by ATP-sensitive K + channels. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  13. Involvement of delta and mu opioid receptors in the acute and sensitized locomotor action of cocaine in mice.

    PubMed

    Kotlinska, J H; Gibula-Bruzda, E; Witkowska, E; Izdebski, J

    2013-10-01

    Analogs of deltorphins, such as cyclo(Nδ, Nδ-carbonyl-d-Orn2, Orn4)deltorphin (DEL-6) and deltorphin II N-(ureidoethyl)amide (DK-4) are functional agonists predominantly for the delta opioid receptors (DOR) in the guinea-pig ileum and mouse vas deferens bioassays. The purpose of this study was to examine an influence of these peptides (5, 10 or 20 nmol, i.c.v.) on the acute cocaine-induced (10mg/kg, i.p.) locomotor activity and the expression of sensitization to cocaine locomotor effect. Sensitization to locomotor effect of cocaine was developed by five injections of cocaine at the dose of 10mg/kg, i.p. every 3 days. Our results indicated that DK-4 and DEL-6 differently affected the acute and sensitized cocaine locomotion. Co-administration of DEL-6 with cocaine enhanced acute cocaine locomotion only at the dose of 10 nmol, with minimal effects at the doses 5 and 20 nmol, whereas co-administration of DK-4 with cocaine enhanced acute cocaine-induced locomotion in a dose-dependent manner. Similarly to the acute effects, DEL-6 only at the dose of 10 nmol but DK-4 dose-dependently enhanced the expression of cocaine sensitization. Pre-treatment with DOR antagonist - naltrindole (5 nmol, i.c.v.) and mu opioid receptor (MOR) antagonist, β-funaltrexamine abolished the ability of both peptides to potentiate the effects of cocaine. Our study suggests that MOR and DOR are involved in the interactions between cocaine and both deltorphins analogs. A distinct dose-response effects of these peptides on cocaine locomotion probably arise from differential functional activation (targeting) of the DOR and MOR by both deltorphins analogs. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Role of neutrophilic elastase in ethanol induced injury to the gastric mucosa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kvietys, P.R.; Carter, P.R.

    1990-02-26

    Intragastric administration of ethanol (at concentrations likely to be encountered by the mucosa during acute intoxication) produces gastritis. Recent studies have implicated neutrophils in the gastric mucosal injury induced by luminal ethanol. The objective of the present study was to assess whether neutrophilic elastase contributes to the ethanol-induced gastric mucosal injury. Sprague-Dawley rats were instrumented for perfusion of the gastric lumen with saline or ethanol. Mucosal injury was quantitated by continuously measuring the blood-to-lumen clearance of {sup 51}Cr-EDTA. The experimental protocol consisted of a 40 minute control period (saline perfusion) followed by three successive 40 minute experimental periods (ethanol perfusion).more » During the three experimental periods the concentration of ethanol was progressively increased to 10, 20, and 30%. The experiments were performed in untreated animals and in animals pretreated with either Eglin c (an inhibitor of elastase and cathepsin G activity) or L 658 (a specific inhibitor of elastase activity). The effects of ethanol on EDTA clearance (x control) in untreated (n = 9) and L658 treated (n = 5) animals are shown in the Table below. Pretreatment with L 658 significantly attenuated the ethanol-induced increases in EDTA clearance. Pretreatment with Eglin c (n = 6) also provided some protection against ethanol-induced injury, but not to the extent as that provided by L658. The results of the authors studies suggest that neutrophilic elastase contributes to a gastric mucosal injury induced by luminal perfusion of the stomach with physiologically relevant concentrations of ethanol.« less

  15. Effect of corn stover compositional variability on minimum ethanol selling price (MESP).

    PubMed

    Tao, Ling; Templeton, David W; Humbird, David; Aden, Andy

    2013-07-01

    A techno-economic sensitivity analysis was performed using a National Renewable Energy Laboratory (NREL) 2011 biochemical conversion design model varying feedstock compositions. A total of 496 feedstock near infrared (NIR) compositions from 47 locations in eight US Corn Belt states were used as the inputs to calculate minimum ethanol selling price (MESP), ethanol yield (gallons per dry ton biomass feedstock), ethanol annual production, as well as total installed project cost for each composition. From this study, the calculated MESP is $2.20 ± 0.21 (average ± 3 SD) per gallon ethanol. Copyright © 2013. Published by Elsevier Ltd.

  16. Emergency department length of stay for ethanol intoxication encounters.

    PubMed

    Klein, Lauren R; Driver, Brian E; Miner, James R; Martel, Marc L; Cole, Jon B

    2017-12-08

    Emergency Department (ED) encounters for ethanol intoxication are becoming increasingly common. The purpose of this study was to explore factors associated with ED length of stay (LOS) for ethanol intoxication encounters. This was a multi-center, retrospective, observational study of patients presenting to the ED for ethanol intoxication. Data were abstracted from the electronic medical record. To explore factors associated with ED LOS, we created a mixed-effects generalized linear model. We identified 18,664 eligible patients from 6 different EDs during the study period (2012-2016). The median age was 37years, 69% were male, and the median ethanol concentration was 213mg/dL. Median LOS was 348min (range 43-1658). Using a mixed-effects generalized linear model, independent variables associated with a significant increase in ED LOS included use of parenteral sedation (beta=0.30, increase in LOS=34%), laboratory testing (beta=0.21, increase in LOS=23%), as well as the hour of arrival to the ED, such that patients arriving to the ED during evening hours (between 18:00 and midnight) had up to an 86% increase in LOS. Variables not significantly associated with an increase in LOS included age, gender, ethanol concentration, psychiatric disposition, using the ED frequently for ethanol intoxication, CT use, and daily ED volume. Variables such as diagnostic testing, treatments, and hour of arrival may influence ED LOS in patients with acute ethanol intoxication. Identification and further exploration of these factors may assist in developing hospital and community based improvements to modify LOS in this population. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Metabolomic approach for improving ethanol stress tolerance in Saccharomyces cerevisiae.

    PubMed

    Ohta, Erika; Nakayama, Yasumune; Mukai, Yukio; Bamba, Takeshi; Fukusaki, Eiichiro

    2016-04-01

    The budding yeast Saccharomyces cerevisiae is widely used for brewing and ethanol production. The ethanol sensitivity of yeast cells is still a serious problem during ethanol fermentation, and a variety of genetic approaches (e.g., random mutant screening under selective pressure of ethanol) have been developed to improve ethanol tolerance. In this study, we developed a strategy for improving ethanol tolerance of yeast cells based on metabolomics as a high-resolution quantitative phenotypic analysis. We performed gas chromatography-mass spectrometry analysis to identify and quantify 36 compounds on 14 mutant strains including knockout strains for transcription factor and metabolic enzyme genes. A strong relation between metabolome of these mutants and their ethanol tolerance was observed. Data mining of the metabolomic analysis showed that several compounds (such as trehalose, valine, inositol and proline) contributed highly to ethanol tolerance. Our approach successfully detected well-known ethanol stress related metabolites such as trehalose and proline thus, to further prove our strategy, we focused on valine and inositol as the most promising target metabolites in our study. Our results show that simultaneous deletion of LEU4 and LEU9 (leading to accumulation of valine) or INM1 and INM2 (leading to reduction of inositol) significantly enhanced ethanol tolerance. This study shows the potential of the metabolomic approach to identify target genes for strain improvement of S. cerevisiae with higher ethanol tolerance. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  18. Conditioned effects of ethanol on the immune system

    PubMed Central

    Gano, Anny; Doremus-Fitzwater, Tamara L; Deak, Terrence

    2017-01-01

    Several studies indicate that the immune system can be subjected to classical conditioning. Acute ethanol intoxication significantly modulates several pro-inflammatory cytokines (e.g. interleukins-1 and 6 [IL-1β and IL-6, respectively] and tumor necrosis factor alpha [TNFα])) in several brain areas, including amygdala (AMG), paraventricular nucleus (PVN), and hippocampus (HPC). It is unknown, however, whether cues associated with ethanol can elicit conditioned alterations in cytokine expression. The present study analyzed, in male Sprague-Dawley rats, whether ethanol-induced changes in the central cytokine response may be amenable to conditioning. In Experiments 1 and 2, the rats were given one or two pairings between a distinctive odor (conditional stimulus, CS) and the post-absorptive effects of a high (3.0 or 4.0 g/kg, Experiments 1 and 2, respectively) ethanol dose. Neither of these experiments revealed conditioning of IL-6, IL-1β, or TNFα, as measured via mRNA levels. Yet, re-exposure to the lemon-odor CS in Experiment 1 significantly increased C-Fos levels in the PVN. In Experiment 3, the rats were given four pairings between an odor CS and a moderate ethanol dose (2.0 g/kg), delivered intraperitoneally (i.p.) or intragastrically (i.g.). Re-exposure to the odor CS significantly increased IL-6 levels in HPC and AMG, an effect only evident in paired rats administered ethanol i.p. Overall, this study suggests that ethanol exposure can regulate the levels of IL-6 at HPC and AMG via classical conditioning mechanisms. These ethanol-induced, conditioned alterations in cytokine levels may ultimately affect the intake and motivational effects of ethanol. Impact statement This study examines, across three experiments, whether odor cues associated with ethanol exposure can condition changes in cytokine expression. The analysis of ethanol-induced conditioning of immune responses is a novel niche that can help understand the transition from social drinking to

  19. Chronic ethanol exposure increases voluntary home cage intake in adult male, but not female, Long-Evans rats

    PubMed Central

    Morales, Melissa; McGinnis, Molly M.; McCool, Brian A.

    2016-01-01

    The current experiment examined the effects of 10 days of chronic intermittent ethanol (CIE) exposure on anxiety-like behavior and home cage ethanol intake using a 20% intermittent access (M, W, F) paradigm in male and female Long-Evans rats. Withdrawal from alcohol dependence contributes to relapse in humans and increases in anxiety-like behavior and voluntary ethanol consumption in preclinical models. Our laboratory has shown that 10 days of CIE exposure produces both behavioral and neurophysiological alterations associated with withdrawal in male rats; however, we have yet to examine the effects of this exposure regime on ethanol intake in females. During baseline, females consumed more ethanol than males but, unlike males, did not show escalations in intake. Rats were then exposed to CIE and were again given intermittent access to 20% ethanol. CIE males increased their intake compared to baseline, whereas air-exposed males did not. Ethanol intake in females was unaffected by CIE exposure. Notably, both sexes expressed significantly elevated withdrawal-associated anxiety-like behavior in the plus maze. Finally, rats were injected with the cannabinoid CB1 receptor antagonist, SR141716A (0, 1, 3, 10 mg/kg, i.p.) which reduced ethanol intake in both sexes. However, females appear to be more sensitive to lower doses of this CB1 receptor antagonist. Our results show that females consume more ethanol than males; however, they did not escalate their intake using the intermittent access paradigm. Unlike males, CIE exposure had no effect on drinking in females. It is possible that females may be less sensitive than males to ethanol-induced increases in drinking after a short CIE exposure. Lastly, our results demonstrate that males and females may have different pharmacological sensitivities to CB1 receptor blockade on ethanol intake, at least under the current conditions. PMID:26515190

  20. Chronic ethanol exposure increases voluntary home cage intake in adult male, but not female, Long-Evans rats.

    PubMed

    Morales, Melissa; McGinnis, Molly M; McCool, Brian A

    2015-12-01

    The current experiment examined the effects of 10 days of chronic intermittent ethanol (CIE) exposure on anxiety-like behavior and home cage ethanol intake using a 20% intermittent access (M, W, F) paradigm in male and female Long-Evans rats. Withdrawal from alcohol dependence contributes to relapse in humans and increases in anxiety-like behavior and voluntary ethanol consumption in preclinical models. Our laboratory has shown that 10 days of CIE exposure produces both behavioral and neurophysiological alterations associated with withdrawal in male rats; however, we have yet to examine the effects of this exposure regime on ethanol intake in females. During baseline, females consumed more ethanol than males but, unlike males, did not show escalations in intake. Rats were then exposed to CIE and were again given intermittent access to 20% ethanol. CIE males increased their intake compared to baseline, whereas air-exposed males did not. Ethanol intake in females was unaffected by CIE exposure. Notably, both sexes expressed significantly elevated withdrawal-associated anxiety-like behavior in the plus maze. Finally, rats were injected with the cannabinoid CB1 receptor antagonist, SR141716A (0, 1, 3, 10mg/kg, i.p.) which reduced ethanol intake in both sexes. However, females appear to be more sensitive to lower doses of this CB1 receptor antagonist. Our results show that females consume more ethanol than males; however, they did not escalate their intake using the intermittent access paradigm. Unlike males, CIE exposure had no effect on drinking in females. It is possible that females may be less sensitive than males to ethanol-induced increases in drinking after a short CIE exposure. Lastly, our results demonstrate that males and females may have different pharmacological sensitivities to CB1 receptor blockade on ethanol intake, at least under the current conditions. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Examination of Acute Sensitivity to Morphine and Morphine Self-Administration Following Physical and Environmental Stressors in Fischer-344 and Lewis Female Rats

    DTIC Science & Technology

    1997-01-16

    Administration Following Physical and Environmental Stressors in Fischer-344 and Lewis Female Rats" Name of Candidate: Kelly Brown Doctor...Title ofDissertation: Examination ofAcute Sensitivity to Morphine and Morphine Self- Administration Following Physical and Environmental Stressors in...to tolerance, toxicity, or addiction liability. IV Examination ofAcute Sensitivity to Morphine and Morphine Self-Administration Following Physical and

  2. The acute effects of ethanol on acetanilide disposition in normal subjects, and in patients with liver disease.

    PubMed Central

    McKay, J; Rawlings, M D; Cobden, I; James, O F

    1982-01-01

    1 The effects of single doses (25 g and 50 g) oral ethanol on the disposition of acetanilide (50 mg/kg metabolic active mass) has been studied in normal subjects, and in patients with chronic non-alcoholic liver disease. 2 In normal subjects, ethanol produced a dose-dependent increase in acetanilide half-life, and a decrease in acetenilide clearance. There was a significant correlation (rs = 0.71, P less than 0.01) between the 90 min blood ethanol concentration and the reduction in acetanilide clearance. 3 In patients with liver disease, ethanol produced a similar proportional change in acetanilide half-life and clearance, but these were less consistent. Moreover, liver disease itself was associated with an increase in acetenilide half-life, and a reduction in clearance. 4 It is concluded that single oral doses of ethanol, comparable to those consumed during social drinking, may inhibit some forms of microsomal oxidation and thus have important clinical implications. PMID:7138735

  3. The acute effects of ethanol on acetanilide disposition in normal subjects, and in patients with liver disease.

    PubMed

    McKay, J; Rawlings, M D; Cobden, I; James, O F

    1982-10-01

    1 The effects of single doses (25 g and 50 g) oral ethanol on the disposition of acetanilide (50 mg/kg metabolic active mass) has been studied in normal subjects, and in patients with chronic non-alcoholic liver disease. 2 In normal subjects, ethanol produced a dose-dependent increase in acetanilide half-life, and a decrease in acetenilide clearance. There was a significant correlation (rs = 0.71, P less than 0.01) between the 90 min blood ethanol concentration and the reduction in acetanilide clearance. 3 In patients with liver disease, ethanol produced a similar proportional change in acetanilide half-life and clearance, but these were less consistent. Moreover, liver disease itself was associated with an increase in acetenilide half-life, and a reduction in clearance. 4 It is concluded that single oral doses of ethanol, comparable to those consumed during social drinking, may inhibit some forms of microsomal oxidation and thus have important clinical implications.

  4. Involvement of the Beta-Endorphin Neurons of the Hypothalamic Arcuate Nucleus in Ethanol-Induced Place Preference Conditioning in Mice

    PubMed Central

    Pastor, Raúl; Font, Laura; Miquel, Marta; Phillips, Tamara J.; Aragon, Carlos M.G.

    2014-01-01

    Background Increasing evidence indicates that mu- and delta-opioid receptors are decisively involved in the retrieval of memories underlying conditioned effects of ethanol. The precise mechanism by which these receptors participate in such effects remains unclear. Given the important role of the proopiomelanocortin (POMc)-derived opioid peptide beta-endorphin, an endogenous mu- and delta-opioid receptor agonist, in some of the behavioral effects of ethanol, we hypothesized that beta-endorphin would also be involved in ethanol conditioning. Methods In the present study we treated female Swiss mice with estradiol valerate (EV), which induces a neurotoxic lesion of the beta-endorphin neurons of the hypothalamic arcuate nucleus (ArcN). These mice were compared to saline-treated controls to investigate the role of beta-endorphin in the acquisition, extinction and reinstatement of ethanol (0 or 2 g/kg; i.p.)-induced conditioned place preference (CPP). Results Immunohistochemical analyses confirmed a decreased number of POMc-containing neurons of the ArcN with EV treatment. EV did not affect the acquisition or reinstatement of ethanol-induced CPP, but facilitated its extinction. Behavioral sensitization to ethanol, seen during the conditioning days, was not present in EV-treated animals. Conclusions The present data suggest that ArcN beta-endorphins are involved in the retrieval of conditioned memories of ethanol, and are implicated in the processes that underlie extinction of ethanol-cue associations. Results also reveal a dissociated neurobiology supporting behavioral sensitization to ethanol and its conditioning properties, as a beta-endorphin deficit affected sensitization to ethanol, while leaving acquisition and reinstatement of ethanol-induced CPP unaffected. PMID:22014186

  5. Antimicrobial activity, acute toxicity and cytoprotective effect of Crassocephalum vitellinum (Benth.) S. Moore extract in a rat ethanol-HCl gastric ulcer model

    PubMed Central

    2014-01-01

    Background A decoction of Crassocephallum vitellinum (Benth.) S. Moore (Asteraceae) is used in Kagera Region to treat peptic ulcers. This study seeks to evaluate an aqueous ethanol extract of aerial parts of the plant for safety and efficacy. Methods An 80% ethanolic extract of C. vitellinum at doses of 100, 200, 400 and 800 mg/kg body wt was evaluated for ability to protect Sprague Dawley rats from acidified ethanol gastric ulceration in comparison with 40 mg/kg body wt pantoprazole. The extract and its dichloromethane, ethyl acetate, and aqueous fractions were also evaluated for acute toxicity in mice, brine shrimp toxicity, and antibacterial activity against four Gram negative bacteria; Escherichia coli (ATCC 25922), Salmonella typhi (NCTC 8385), Vibrio cholera (clinical isolate), and Streptococcus faecalis (clinical isolate). The groups of phytochemicals present in the extract were also determined. Results The ethanolic extract of C. vitellinum dose-dependently protected rat gastric mucosa against ethanol/HCl insult to a maximum of 88.3% at 800 mg/kg body wt, affording the same level of protection as by 40 mg/kg body wt pantoprazole. The extract also exhibited weak antibacterial activity against S. typhi and E. coli, while its ethyl acetate, dichloromethane and aqueous fractions showed weak activity against K. pneumonia, S.typhi, E. coli and V. cholera. The extract was non-toxic to mice up to 5000 mg/kg body wt, and the total extract (LC50 = 37.49 μg/ml) and the aqueous (LC50 = 87.92 μg/ml), ethyl acetate (LC50 = 119.45 μg/ml) and dichloromethane fractions (88.79 μg/ml) showed low toxicity against brine shrimps. Phytochemical screening showed that the extract contains tannins, saponins, flavonoids, and terpenoids. Conclusion The results support the claims by traditional healers that a decoction of C.vitellinum has antiulcer activity. The mechanism of cytoprotection is yet to be determined but the phenolic compounds present in the

  6. Ethanol Seeking by Long Evans Rats Is Not Always a Goal-Directed Behavior

    PubMed Central

    Mangieri, Regina A.; Cofresí, Roberto U.; Gonzales, Rueben A.

    2012-01-01

    Background Two parallel and interacting processes are said to underlie animal behavior, whereby learning and performance of a behavior is at first via conscious and deliberate (goal-directed) processes, but after initial acquisition, the behavior can become automatic and stimulus-elicited (habitual). With respect to instrumental behaviors, animal learning studies suggest that the duration of training and the action-outcome contingency are two factors involved in the emergence of habitual seeking of “natural” reinforcers (e.g., sweet solutions, food or sucrose pellets). To rigorously test whether behaviors reinforced by abused substances such as ethanol, in particular, similarly become habitual was the primary aim of this study. Methodology/Principal Findings Male Long Evans rats underwent extended or limited operant lever press training with 10% sucrose/10% ethanol (10S10E) reinforcement (variable interval (VI) or (VR) ratio schedule of reinforcement), or with 10% sucrose (10S) reinforcement (VI schedule only). Once training and pretesting were complete, the impact of outcome devaluation on operant behavior was evaluated after lithium chloride injections were paired with the reinforcer, or unpaired 24 hours later. After limited, but not extended instrumental training, lever pressing by groups trained under VR with 10S10E and under VI with 10S was sensitive to outcome devaluation. In contrast, responding by both the extended and limited training 10S10E VI groups was not sensitive to ethanol devaluation during the test for habitual behavior. Conclusions/Significance Operant behavior by rats trained to self-administer an ethanol-sucrose solution showed variable sensitivity to a change in the value of ethanol, with relative insensitivity developing sooner in animals that received time-variable ethanol reinforcement during training sessions. One important implication, with respect to substance abuse in humans, is that initial learning about the relationship between

  7. Acute sensitivity of a broad range of freshwater mussels to chemicals with different modes of toxic action

    USGS Publications Warehouse

    Wang, Ning; Ivey, Chris D.; Ingersoll, Christopher G.; Brumbaugh, William G.; Alvarez, David; Hammer, Edward J.; Bauer, Candice R.; Augspurger, Tom; Raimondo, Sandy; Barnhart, M.Christopher

    2017-01-01

    Freshwater mussels, one of the most imperiled groups of animals in the world, are generally underrepresented in toxicity databases used for the development of ambient water quality criteria and other environmental guidance values. Acute 96-h toxicity tests were conducted to evaluate the sensitivity of 5 species of juvenile mussels from 2 families and 4 tribes to 10 chemicals (ammonia, metals, major ions, and organic compounds) and to screen 10 additional chemicals (mainly organic compounds) with a commonly tested mussel species, fatmucket (Lampsilis siliquoidea). In the multi-species study, median effect concentrations (EC50s) among the 5 species differed by a factor of ≤2 for chloride, potassium, sulfate, and zinc; a factor of ≤5 for ammonia, chromium, copper, and nickel; and factors of 6 and 12 for metolachlor and alachlor, respectively, indicating that mussels representing different families or tribes had similar sensitivity to most of the tested chemicals, regardless of modes of action. There was a strong linear relationship between EC50s for fatmucket and the other 4 mussel species across the 10 chemicals (r2 = 0.97, slope close to 1.0), indicating that fatmucket was similar to other mussel species; thus, this commonly tested species can be a good surrogate for protecting other mussels in acute exposures. The sensitivity of juvenile fatmucket among different populations or cultured from larvae of wild adults and captive-cultured adults was also similar in acute exposures to copper or chloride, indicating captive-cultured adult mussels can reliably be used to reproduce juveniles for toxicity testing. In compiled databases for all freshwater species, 1 or more mussel species were among the 4 most sensitive species for alachlor, ammonia, chloride, potassium, sulfate, copper, nickel, and zinc; therefore, the development of water quality criteria and other environmental guidance values for these chemicals should reflect the sensitivity of mussels. In

  8. Antimicrobial activity of grapefruit seed and pulp ethanolic extract.

    PubMed

    Cvetnić, Zdenka; Vladimir-Knezević, Sanda

    2004-09-01

    Antibacterial and antifungal activity of ethanolic extract of grapefruit (Citrus paradisi Macf., Rutaceae) seed and pulp was examined against 20 bacterial and 10 yeast strains. The level of antimicrobial effects was established using an in vitro agar assay and standard broth dilution susceptibility test. The contents of 3.92% of total polyphenols and 0.11% of flavonoids were determined spectrometrically in crude ethanolic extract. The presence of flavanones naringin and hesperidin in the extract was confirmed by TLC analysis. Ethanolic extract exibited the strongest antimicrobial effect against Salmonella enteritidis (MIC 2.06%, m/V). Other tested bacteria and yeasts were sensitive to extract concentrations ranging from 4.13% to 16.50% (m/V).

  9. Hepatoprotective effect of ethanol extract from Berchemia lineate against CCl4-induced acute hepatotoxicity in mice.

    PubMed

    Li, Cong; Yi, Li-Tao; Geng, Di; Han, Yuan-Yuan; Weng, Lian-Jin

    2015-05-01

    The roots of Berchemia lineate (L.) DC. (Rhamnaceae) have been long used as a remedy for the treatment of some diseases in Guangxi Province, China. The present study investigates the hepatoprotective effect of Berchemia lineate ethanol extract (BELE) on CCl4-induced acute liver damage in mice. Effect of BELE administrated for 7 consecutive days was evaluated in mice by the serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), total bilirubin (TBIL), albulin (ALB), globulin (GLB), and total protein (TP) levels, as well as liver superoxide dismutase (SOD) activity and malondialdehyde (MDA) level. Moreover, histopathological examinations were also taken. Compared with the model group, administration of 400 mg/kg BELE for 7 d in mice significantly decreased the serum ALT (56.25 U/L), AST (297.67 U/L), ALP (188.20 U/L), and TBIL (17.90 mol/L), along with the elevation of TP (64.67 g/L). In addition, BELE (100, 200, and 400 mg/kg, i.g.) treated mice recorded a dose-dependent increment of SOD (291.17, 310.32, and 325.67 U/mg prot) and reduction of MDA (7.27, 6.77, and 5.33 nmol/mg prot) levels. Histopathological examinations also confirmed that BELE can ameliorate CCl4-induced liver injuries, characterized by extensive hepatocellular degeneration/necrosis, inflammatory cell infiltration, congestion, and sinusoidal dilatation. The results indicated that BELE possessed remarkable protective effect against acute hepatotoxicity and oxidative injuries induced by CCl4, and that the hepatoprotective effects of BELE may be due to both the inhibition of lipid peroxidation and the increase of antioxidant activity.

  10. The role of social isolation in ethanol effects on the preweanling rat

    PubMed Central

    Kozlov, Andrey P.; Nizhnikov, Michael; Varlinskaya, Elena I.; Spear, Norman E.

    2011-01-01

    The present experiments investigated the effects of acute ethanol exposure on voluntary intake of 0.1% saccharin or water as well as behavioral and nociceptive reactivity in twelve–day-old (P12) rats exposed to differing levels of isolation. The effects of ethanol emerged only during short-term social isolation (STSI) with different patterns observed in males and females and in pups exposed to saccharin or water. The 0.5 g/kg ethanol dose selectively increased saccharin intake in females, decreased rearing activity in males and attenuated isolation-induced analgesia (IIA) in all water-exposed pups. Ingestion of saccharin decreased IIA, and the 0.5 g/kg ethanol dose further reduced IIA. The 1.0 g/kg ethanol dose, administered either intragastrically or intraparentionally, also decreased IIA in P12 females, but not in P9 pups. A significant correlation between voluntary saccharin intake and baseline nociceptive reactivity was revealed in saline injected animals, saccharin intake was inversely correlated with behavioral activation and latency of reaction to noxious heat after 0.5 g/kg ethanol in females. The 0.5 g/kg ethanol dose did not affect plasma corticosterone (CORT) measured 5 hours after maternal separation or 20 minutes after ethanol injection. Female pups CORT level was inversely correlated with magnitude of IIA that accompanied the first episode of STSI (pretest isolation) 1.5–2 hours before CORT measurement. The present findings suggest that the anxiolytic properties of ethanol are responsible for enhancement of saccharin intake during STSI. Furthermore, differential reactivity of P12 males and females to STSI plays an important role in ethanol effects observed at this age. PMID:22051944

  11. Alcohol and acute pancreatitis. An experimental study in the rat.

    PubMed

    Jalovaara, P; Apaja, M

    1978-01-01

    The effect of chronic alcohol pretreatment and various pancreatobiliary secretions on the severity of experimental pancreatitis was studied in the rat. 95 rats were pretreated with ethanol (20% w/v, 1.1 ml/100 g body weight) five times weekly for 10 to 12 weeks by gastric intubation. 88 rats served as controls. Pancreatic lesions were produced by retograde injection of different pancreatobiliary secretions into the pancreatic ducts. The secretions were collected from both normal and chronically alcohol-fed rats, and each was used for induction of experimental pancreatitis in the control and alcohol pretreated rats. Bile obtained from normal rats was no more toxic to the pancreas than 0.9% saline solution, while bile obtained from the chronically alcohol-fed rats caused significantly more serious lesions to the pancreas than did normal rat bile. Bile-pancreatic juice (mixture of secretions at papilla of Vater) of normal and chronically alcohol-fed rats was as toxic as the bile of the alcohol-fed rats. Alcohol pretreatment had no significant effect on the severity of pancreatitis when control and alcohol-fed groups separately or the whole material according to pretreatment was examined. These results suggest that the metabolic effects of ethanol on the pancreas as such do not sensitize the pancreas to acute pancreatitis. An exogenous mechanism is required. The reflux of toxic alcoholic bile into the pancreas might act as an induction factor in acute alcohol pancreatitis.

  12. A novel ethanol gas sensor-ZnS/ cyclohexylamine hybrid nanowires.

    PubMed

    Xu, Lin; Song, Hongwei; Zhang, Tong; Fan, Huitao; Fan, Libo; Wang, Yu; Dong, Biao; Bai, Xue

    2011-03-01

    We fabricated a novel ethanol gas sensor based on organic-inorganic ZnS/cyclohexylamine (CHA) nanowires via a solvothermal route. The sensor exhibited significantly better performance with response time of approximately 0.6 s and recovery time of approximately 10 s even under a low ethanol concentration and the high surface area, small nanofiber diameter, and hybrid nature made the ZnS/CHA nanowire gas sensor have high sensitivity to ethanol gas at a lower operating current of 160 mA. Moreover, the gas sensing mechanism was proposed on the basis of the two simultaneous steps to explain the adsorbing process due to the hybrid nature. This work indicates that the ZnS/CHA hybrid can be a novel candidate for the ethanol gas sensor with high performance.

  13. Evaluation of antiallergic and anti-anaphylactic activity of ethanolic extract of Sanseveiria trifasciata leaves (EEST) in rodents.

    PubMed

    Andhare, Rohan N; Raut, Mayuresh K; Naik, Suresh R

    2012-08-01

    The leaves and rhizomes of Sansevieria trifasciata are used in folk medicine for treating bronchitis, asthma, cough, snake bite and insect bite etc. The ethanolic extract elicited analgesic, anti-inflammatory and antipyretic activity. Hence, it was decided to study the antiallergic activity of ethanolic extract of S. trifasciata (EEST) on various animal models as well as in vitro conditions, and also to understand possible mechanism of action. Ethanolic extract of S. trifasciata leaves (EEST) were prepared by cold maceration followed by concentration and evaporation under reduced pressure on a rotary evaporator to obtain semisolid mass. The various phytoconstituents were analyzed. The acute toxicity study of EEST was carried out in mice. The antiallergic and anaphylactic activities were evaluated using animal models viz. milk induced eosinophilia and leukocytosis, compound 48/80 induced mast cell degranulation, active and passive cutaneous anaphylaxis and histamine induced pedal edema. In addition, EEST effect on Shultz-Dale reaction in sensitized guinea pig ileum in ex vivo and antioxidant activity by free radical scavenging by DPPH method (in vitro) were also studied. EEST treatment at 100mg/kg and 200mg/kg p.o inhibited (a) milk-induced increased eosinophilia, leukocytosis, monocytes and neutrophils. (b) Prevented passive cutaneous and active anaphylactoid reactions. (c) Prevented compound 48/80 induced degranulation of sensitized mesenteric mast cells. (d) Inhibited histamine induced pedal edema formation significantly. EEST pretreatment inhibited Shultz-Dale reaction in guinea pig ileum and also elicited potent antioxidant activity. Experimental findings demonstrate promising antiallergic and anti-anaphylactic activity of EEST and also elicited potent antioxidant activity. The antiallergic and anti-anphylactic activity might be due to inhibition of release of chemical mediators from mast cells largely by phytoconstituents like steroidal saponins, triterpenoids

  14. In vivo relationship between monoamine oxidase type B and alcohol dehydrogenase: effects of ethanol and phenylethylamine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aliyu, S.U.; Upahi, L.

    The role of acute ethanol and phenylethylamine on the brain and platelet monoamine oxidase activities, hepatic cytosolic alcohol dehydrogenase, redox state and motor behavior were studied in male rats. Ethanol on its own decreased the redox couple ratio, as well as, alcohol dehydrogenase activity in the liver while at the same time it increased brain and platelet monoamine oxidase activity due to lower Km with no change in Vmax. The elevation in both brain and platelet MAO activity was associated with ethanol-induced hypomotility in the rats. Co-administration of phenylethylamine and ethanol to the animals, caused antagonism of the ethanol-induced effectsmore » described above. The effects of phenylethylamine alone, on the above mentioned biochemical and behavioral indices, are more complex. Phenylethylamine on its own, like ethanol, caused reduction of the cytosolic redox, ratio and elevation of monoamine oxidase activity in the brain and platelets. However, in contrast to ethanol, this monoamine produced hypermotility and activation of the hepatic cytosolic alcohol dehydrogenase activity in the animals.« less

  15. Operant ethanol self-administration in ethanol dependent mice.

    PubMed

    Lopez, Marcelo F; Becker, Howard C

    2014-05-01

    While rats have been predominantly used to study operant ethanol self-administration behavior in the context of dependence, several studies have employed operant conditioning procedures to examine changes in ethanol self-administration behavior as a function of chronic ethanol exposure and withdrawal experience in mice. This review highlights some of the advantages of using operant conditioning procedures for examining the motivational effects of ethanol in animals with a history of dependence. As reported in rats, studies using various operant conditioning procedures in mice have demonstrated significant escalation of ethanol self-administration behavior in mice rendered dependent via forced chronic ethanol exposure in comparison to nondependent mice. This paper also presents a summary of these findings, as well as suggestions for future studies. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. A study of antimicrobial activity, acute toxicity and cytoprotective effect of a polyherbal extract in a rat ethanol-HCl gastric ulcer model

    PubMed Central

    2012-01-01

    Background The decoction of the aerial parts of Rhynchosia recinosa (A.Rich.) Bak. [Fabaceae] is used in combination with the stem barks of Ozoroa insignis Del. (Anacardiaceae), Maytenus senegalensis (Lam.) Excell. [Celastraceae] Entada abyssinica Steud. ex A.Rich [Fabaceae] and Lannea schimperi (Hochst.)Engl. [Anacardiaceae] as a traditional remedy for managing peptic ulcers. However, the safety and efficacy of this polyherbal preparation has not been evaluated. This study reports on the phytochemical profile and some biological activities of the individual plant extracts and a combination of extracts of the five plants. Methods A mixture of 80% ethanol extracts of R. recinosa, O. insignis, M. senegalensis, E. abyssinica and L. schimperi at doses of 100, 200, 400 and 800 mg/kg body wt were evaluated for ability to protect Sprague Dawley rats from gastric ulceration by an ethanol-HCl mixture. Cytoprotective effect was assessed by comparison with a negative control group given 1% tween 80 in normal saline and a positive control group given 40 mg/kg body wt pantoprazole. The individual extracts and their combinations were also tested for antibacterial activity against four Gram negative bacteria; Escherichia coli (ATCC 25922), Salmonella typhi (NCTC 8385), Vibrio cholerae (clinical isolate), and Klebsiella pneumoniae (clinical isolate) using the microdilution method. In addition the extracts were evaluated for brine shrimp toxicity and acute toxicity in mice. Phytochemical tests were done using standard methods to determine the presence of tannins, saponins, steroids, cardiac glycosides, flavonoids, alkaloids and terpenoids in the individual plant extracts and in the mixed extract of the five plants. Results The combined ethanolic extracts of the 5 plants caused a dose-dependent protection against ethanol/HCl induced ulceration of rat gastric mucosa, reaching 81.7% mean protection as compared to 87.5% protection by 40 mg/kg body wt pantoprazole. Both the individual

  17. Complementary Split-Ring Resonator-Loaded Microfluidic Ethanol Chemical Sensor

    PubMed Central

    Salim, Ahmed; Lim, Sungjoon

    2016-01-01

    In this paper, a complementary split-ring resonator (CSRR)-loaded patch is proposed as a microfluidic ethanol chemical sensor. The primary objective of this chemical sensor is to detect ethanol’s concentration. First, two tightly coupled concentric CSRRs loaded on a patch are realized on a Rogers RT/Duroid 5870 substrate, and then a microfluidic channel engraved on polydimethylsiloxane (PDMS) is integrated for ethanol chemical sensor applications. The resonant frequency of the structure before loading the microfluidic channel is 4.72 GHz. After loading the microfluidic channel, the 550 MHz shift in the resonant frequency is ascribed to the dielectric perturbation phenomenon when the ethanol concentration is varied from 0% to 100%. In order to assess the sensitivity range of our proposed sensor, various concentrations of ethanol are tested and analyzed. Our proposed sensor exhibits repeatability and successfully detects 10% ethanol as verified by the measurement set-up. It has created headway to a miniaturized, non-contact, low-cost, reliable, reusable, and easily fabricated design using extremely small liquid volumes. PMID:27801842

  18. Deletion of the N-terminal Domain (NTD) Alters the Ethanol Inhibition of NMDA Receptors in a Subunit-Dependent Manner

    PubMed Central

    Smothers, C. Thetford; Jin, Chun; Woodward, John J.

    2013-01-01

    Background Ethanol inhibition of NMDA receptors is poorly understood due in part to the organizational complexity of the receptor that provides ample locations for sites of action. Among these the N-terminal domain of NMDA receptor subunits contains binding sites for a variety of modulatory agents including zinc, protons and GluN2B selective antagonists such as ifenprodil or Ro-25–6981. Ethanol inhibition of neuronal NMDA receptors expressed in some brain areas has been reported to be occluded by the presence of ifenprodil or similar compounds suggesting that the N-terminal domain may be important in regulating the ethanol sensitivity of NMDA receptors. Methods Wild-type GluN1 and GluN2 subunits and those in which the coding sequence for the N-terminal domain was deleted were expressed in HEK293 cells. Whole-cell voltage-clamp recording was used to assess ethanol inhibition of wild-type and mutant receptors lacking the N-terminal domain. Results As compared to wild-type GluN1/GluN2A receptors, ethanol inhibition was slightly greater in cells expressing GluN2A subunits lacking the N-terminal domain. In contrast, GluN2B N-terminal deletion mutants showed normal ethanol inhibition while those lacking the N-terminal domain in both GluN1 and GluN2B subunits had decreased ethanol inhibition as compared to wild-type receptors. N-terminal domain lacking GluN2B receptors were insensitive to ifenprodil but retained normal sensitivity to ethanol. Conclusions These findings indicate that the N-terminal domain modestly influences the ethanol sensitivity of NMDA receptors in a subunit-dependent manner. They also show that ifenprodil’s actions on GluN2B containing receptors can be dissociated from those of ethanol. These results suggest that while the N-terminal domain is not a primary site of action for ethanol on NMDA receptors, it likely affects sensitivity via actions on intrinsic channel properties. PMID:23905549

  19. Switch from excitatory to inhibitory actions of ethanol on dopamine levels after chronic exposure: Role of kappa opioid receptors

    PubMed Central

    Karkhanis, Anushree N.; Huggins, Kimberly N.; Rose, Jamie H.; Jones, Sara R.

    2016-01-01

    Acute ethanol exposure is known to stimulate the dopamine system; however, chronic exposure has been shown to downregulate the dopamine system. In rodents, chronic intermittent exposure (CIE) to ethanol also increases negative affect during withdrawal, such as, increases in anxiety- and depressive-like behavior. Moreover, CIE exposure results in increased ethanol drinking and preference during withdrawal. Previous literature documents reductions in CIE-induced anxiety-, depressive-like behaviors and ethanol intake in response to kappa opioid receptor (KOR) blockade. KORs are located on presynaptic dopamine terminals in the nucleus accumbens (NAc) and inhibit release, an effect which has been linked to negative affective behaviors. Previous reports show an upregulation in KOR function following extended CIE exposure; however it is not clear whether there is a direct link between KOR upregulation and dopamine downregulation during withdrawal from CIE. This study aimed to examine the effects of KOR modulation on dopamine responses to ethanol of behaving mice exposed to air or ethanol vapor in a repeated intermittent pattern. First, we showed that KORs have a greater response to an agonist after moderate CIE compared to air exposed mice using ex vivo fast scan cyclic voltammetry. Second, using in vivo microdialysis, we showed that, in contrast to the expected increase in extracellular levels of dopamine following an acute ethanol challenge in air exposed mice, CIE exposed mice exhibited a robust decrease in dopamine levels. Third, we showed that blockade of KORs reversed the aberrant inhibitory dopamine response to ethanol in CIE exposed mice while not affecting the air exposed mice demonstrating that inhibition of KORs “rescued” dopamine responses in CIE exposed mice. Taken together, these findings indicate that augmentation of dynorphin/KOR system activity drives the reduction in stimulated (electrical and ethanol) dopamine release in the NAc. Thus, blockade of

  20. Roles for the endocannabinoid system in ethanol-motivated behavior

    PubMed Central

    Henderson-Redmond, Angela N; Guindon, Josée; Morgan, Daniel J

    2015-01-01

    Alcohol use disorder represents a significant human health problem that leads to substantial loss of human life and financial cost to society. Currently available treatment options do not adequately address this human health problem, and thus, additional therapies are desperately needed. The endocannabinoid system has been shown, using animal models, to modulate ethanol-motivated behavior, and it has also been demonstrated that chronic ethanol exposure can have potentially long-lasting effects on the endocannabinoid system. For example, chronic exposure to ethanol, in either cell culture or preclinical rodent models, causes an increase in endocannabinoid levels that results in down-regulation of the cannabinoid receptor 1 (CB1) and uncoupling of this receptor from downstream G protein signaling pathways. Using positron emission tomography (PET), similar down-regulation of CB1 has been noted in multiple regions of the brain in human alcoholic patients. In rodents, treatment with the CB1 inverse agonist SR141716A (Rimonabant), or genetic deletion of CB1 leads to a reduction in voluntary ethanol drinking, ethanol-stimulated dopamine release in the nucleus accumbens, operant self-administration of ethanol, sensitization to the locomotor effects of ethanol, and reinstatement/relapse of ethanol-motivated behavior. Although the clinical utility of Rimonabant or other antagonists/inverse agonists for CB1 is limited due to negative neuropsychiatric side effects, negative allosteric modulators of CB1 and inhibitors of endocannabinoid catabolism represent therapeutic targets worthy of additional examination. PMID:26123153

  1. Roles for the endocannabinoid system in ethanol-motivated behavior.

    PubMed

    Henderson-Redmond, Angela N; Guindon, Josée; Morgan, Daniel J

    2016-02-04

    Alcohol use disorder represents a significant human health problem that leads to substantial loss of human life and financial cost to society. Currently available treatment options do not adequately address this human health problem, and thus, additional therapies are desperately needed. The endocannabinoid system has been shown, using animal models, to modulate ethanol-motivated behavior, and it has also been demonstrated that chronic ethanol exposure can have potentially long-lasting effects on the endocannabinoid system. For example, chronic exposure to ethanol, in either cell culture or preclinical rodent models, causes an increase in endocannabinoid levels that results in down-regulation of the cannabinoid receptor 1 (CB1) and uncoupling of this receptor from downstream G protein signaling pathways. Using positron emission tomography (PET), similar down-regulation of CB1 has been noted in multiple regions of the brain in human alcoholic patients. In rodents, treatment with the CB1 inverse agonist SR141716A (Rimonabant), or genetic deletion of CB1 leads to a reduction in voluntary ethanol drinking, ethanol-stimulated dopamine release in the nucleus accumbens, operant self-administration of ethanol, sensitization to the locomotor effects of ethanol, and reinstatement/relapse of ethanol-motivated behavior. Although the clinical utility of Rimonabant or other antagonists/inverse agonists for CB1 is limited due to negative neuropsychiatric side effects, negative allosteric modulators of CB1 and inhibitors of endocannabinoid catabolism represent therapeutic targets worthy of additional examination. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Ethanol exposure during the early first trimester equivalent impairs reflexive motor activity and heightens fearfulness in an avian model.

    PubMed

    Smith, Susan M; Flentke, George R; Kragtorp, Katherine A; Tessmer, Laura

    2011-02-01

    Prenatal alcohol exposure is a leading cause of childhood neurodevelopmental disability. The adverse behavioral effects of alcohol exposure during the second and third trimester are well documented; less clear is whether early first trimester-equivalent exposures also alter behavior. We investigated this question using an established chick model of alcohol exposure. In ovo embryos experienced a single, acute ethanol exposure that spanned gastrulation through neuroectoderm induction and early brain patterning (19-22h incubation). At 7 days posthatch, the chicks were evaluated for reflexive motor function (wingflap extension, righting reflex), fearfulness (tonic immobility [TI]), and fear/social reinstatement (open-field behavior). Chicks exposed to a peak ethanol level of 0.23-0.28% were compared against untreated and saline-treated controls. Birds receiving early ethanol exposure had a normal righting reflex and a significantly reduced wingflap extension in response to a sudden descent. The ethanol-treated chicks also displayed heightened fearfulness, reflected in increased frequency of TI, and they required significantly fewer trials for its induction. In an open-field test, ethanol treatment did not affect latency to move, steps taken, vocalizations, defecations, or escape attempts. The current findings demonstrate that early ethanol exposure can increase fearfulness and impair aspects of motor function. Importantly, the observed dysfunctions resulted from an acute ethanol exposure during the period when the major brain components are induced and patterned. The equivalent period in human development is 3-4 weeks postconception. The current findings emphasize that ethanol exposure during the early first trimester equivalent can produce neurodevelopmental disability in the offspring. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Protection by Ethanolic Extract from Ulva lactuca L. against Acute Myocardial Infarction: Antioxidant and Antiapoptotic Activities.

    PubMed

    Widyaningsih, Wahyu; Pramono, Suwidjiyo; Zulaela; Sugiyanto; Widyarini, Sitarina

    2017-12-01

    Reactive oxygen species (ROS) play a major role in myocardial damage during acute myocardial infarction (AMI). This study aimed to determine the antioxidant and antiapoptotic activities of an ethanolic extract from Ulva lactuca L. (EEUL) against AMI. Thirty-six male Wistar rats were divided into six groups: one control group and five treatment groups. Treatment group II was given 85 mg/kg body weight (BW) of isoproterenol (ISO). Group III, IV and V were given ISO and EEUL at 250, 500 and 750 mg/kg BW, respectively. Group VI were given 10 mg/kg BW of ISO and melatonin. EEUL and melatonin were orally administered for 28 days. ISO was injected subcutaneously on day 29 and 30 to chemically induce AMI. On day 31, blood was collected for antioxidant assay and heart tissues were collected for histological examination. The activity of catalase (CAT), an endogenous antioxidant, in the EEUL-treatment groups was significantly increased compared to the ISO-treatment group ( P < 0.001). The EEUL-treatment groups showed significantly decreased expression of caspase-3 ( P < 0.001) and better myocardial tissue morphology. EEUL possibly protects against AMI because of its antioxidant and antiapoptotic properties.

  4. Farnesoid X receptor regulates forkhead Box O3a activation in ethanol-induced autophagy and hepatotoxicity

    PubMed Central

    Manley, Sharon; Ni, Hong-Min; Williams, Jessica A.; Kong, Bo; DiTacchio, Luciano; Guo, Grace; Ding, Wen-Xing

    2014-01-01

    Alcoholic liver disease encompasses a wide spectrum of pathogenesis including steatosis, fibrosis, cirrhosis, and alcoholic steatohepatitis. Autophagy is a lysosomal degradation process that degrades cellular proteins and damaged/excess organelles, and serves as a protective mechanism in response to various stresses. Acute alcohol treatment induces autophagy via FoxO3a-mediated autophagy gene expression and protects against alcohol-induced steatosis and liver injury in mice. Farnesoid X Receptor (FXR) is a nuclear receptor that regulates cellular bile acid homeostasis. In the present study, wild type and FXR knockout (KO) mice were treated with acute ethanol for 16 h. We found that ethanol treated-FXR KO mice had exacerbated hepatotoxicity and steatosis compared to wild type mice. Furthermore, we found that ethanol treatment had decreased expression of various essential autophagy genes and several other FoxO3 target genes in FXR KO mice compared with wild type mice. Mechanistically, we did not find a direct interaction between FXR and FoxO3. Ethanol-treated FXR KO mice had increased Akt activation, increased phosphorylation of FoxO3 resulting in decreased FoxO3a nuclear retention and DNA binding. Furthermore, ethanol treatment induced hepatic mitochondrial spheroid formation in FXR KO mice but not in wild type mice, which may serve as a compensatory alternative pathway to remove ethanol-induced damaged mitochondria in FXR KO mice. These results suggest that lack of FXR impaired FoxO3a-mediated autophagy and in turn exacerbated alcohol-induced liver injury. PMID:25460735

  5. Assessing appetitive, aversive, and negative ethanol-mediated reinforcement through an immature rat model.

    PubMed

    Pautassi, Ricardo M; Nizhnikov, Michael E; Spear, Norman E

    2009-06-01

    The motivational effects of drugs play a key role during the transition from casual use to abuse and dependence. Ethanol reinforcement has been successfully studied through Pavlovian and operant conditioning in adult rats and mice genetically selected for their ready acceptance of ethanol. Another model for studying ethanol reinforcement is the immature (preweanling) rat, which consumes ethanol and exhibits the capacity to process tactile, odor and taste cues and transfer information between different sensorial modalities. This review describes the motivational effects of ethanol in preweanling, heterogeneous non-selected rats. Preweanlings exhibit ethanol-mediated conditioned taste avoidance and conditioned place aversion. Ethanol's appetitive effects, however, are evident when using first- and second-order conditioning and operant procedures. Ethanol also devalues the motivational representation of aversive stimuli, suggesting early negative reinforcement. It seems that preweanlings are highly sensitive not only to the aversive motivational effects of ethanol but also to its positive and negative (anti-anxiety) reinforcement potential. The review underscores the advantages of using a developing rat to evaluate alcohol's motivational effects.

  6. Assessing appetitive, aversive, and negative ethanol-mediated reinforcement through an immature rat model

    PubMed Central

    Pautassi, Ricardo M.; Nizhnikov, Michael E.; Spear, Norman E.

    2009-01-01

    The motivational effects of drugs play a key role during the transition from casual use to abuse and dependence. Ethanol reinforcement has been successfully studied through Pavlovian and operant conditioning in adult rats and mice genetically selected for their ready acceptance of ethanol. Another model for studying ethanol reinforcement is the immature (preweanling) rat, which consumes ethanol and exhibits the capacity to process tactile, odor and taste cues and transfer information between different sensorial modalities. This review describes the motivational effects of ethanol in preweanling, heterogeneous non-selected rats. Preweanlings exhibit ethanol-mediated conditioned taste avoidance and conditioned place aversion. Ethanol's appetitive effects, however, are evident when using first- and second-order conditioning and operant procedures. Ethanol also devalues the motivational representation of aversive stimuli, suggesting early negative reinforcement. It seems that preweanlings are highly sensitive not only to the aversive motivational effects of ethanol but also to its positive and negative (anti-anxiety) reinforcement potential. The review underscores the advantages of using a developing rat to evaluate alcohol's motivational effects. PMID:19428502

  7. Ghrelin Increases GABAergic Transmission and Interacts with Ethanol Actions in the Rat Central Nucleus of the Amygdala

    PubMed Central

    Cruz, Maureen T; Herman, Melissa A; Cote, Dawn M; Ryabinin, Andrey E; Roberto, Marisa

    2013-01-01

    The neural circuitry that processes natural rewards converges with that engaged by addictive drugs. Because of this common neurocircuitry, drugs of abuse have been able to engage the hedonic mechanisms normally associated with the processing of natural rewards. Ghrelin is an orexigenic peptide that stimulates food intake by activating GHS-R1A receptors in the hypothalamus. However, ghrelin also activates GHS-R1A receptors on extrahypothalamic targets that mediate alcohol reward. The central nucleus of the amygdala (CeA) has a critical role in regulating ethanol consumption and the response to ethanol withdrawal. We previously demonstrated that rat CeA GABAergic transmission is enhanced by acute and chronic ethanol treatment. Here, we used quantitative RT-PCR (qRT-PCR) to detect Ghsr mRNA in the CeA and performed electrophysiological recordings to measure ghrelin effects on GABA transmission in this brain region. Furthermore, we examined whether acute or chronic ethanol treatment would alter these electrophysiological effects. Our qRT-PCR studies show the presence of Ghsr mRNA in the CeA. In naive animals, superfusion of ghrelin increased the amplitude of evoked inhibitory postsynaptic potentials (IPSPs) and the frequency of miniature inhibitory postsynaptic currents (mIPSCs). Coapplication of ethanol further increased the ghrelin-induced enhancement of IPSP amplitude, but to a lesser extent than ethanol alone. When applied alone, ethanol significantly increased IPSP amplitude, but this effect was attenuated by the application of ghrelin. In neurons from chronic ethanol-treated (CET) animals, the magnitude of ghrelin-induced increases in IPSP amplitude was not significantly different from that in naive animals, but the ethanol-induced increase in amplitude was abolished. Superfusion of the GHS-R1A antagonists 𝒟-Lys3-GHRP-6 and JMV 3002 decreased evoked IPSP and mIPSC frequency, revealing tonic ghrelin activity in the CeA. 𝒟-Lys3-GHRP-6 and JMV 3002

  8. Trait anxiety and ethanol: anxiolysis in high-anxiety mice and no relation to intake behavior in an addiction model.

    PubMed

    Correia, Diego; Ribeiro, Andrea Frozino; Brunialti Godard, Ana Lúcia; Boerngen-Lacerda, Roseli

    2009-08-01

    Anxiety has been proposed to play a role in the development of alcohol addiction, but the exact mechanisms by which this occurs remain unclear. The present study aimed to verify the relationship between basal anxiety levels, the anxiolytic-like effect of ethanol, and ethanol intake in mice exposed to an addiction model. In one experiment Swiss mice were characterized as high-anxiety (HA), medium-anxiety (MA), or non-anxiety (NA) in the elevated plus maze and then received saline or ethanol 2 g/kg acutely and chronically and were again exposed to the same test. NA mice decreased while MA mice maintained anxiety indices over the test days, regardless of treatment. HA ethanol-treated mice showed an anxiolytic-like effect, both acutely and chronically, while the saline-treated ones maintained their basal anxiety levels. In another experiment HA and MA mice were exposed to an addiction model based on a 3-bottle free-choice paradigm (ethanol 5% and 10%, and water) consisting of four phases: acquisition (10 weeks), withdrawal (W, 2 weeks), reexposure (2 weeks), and quinine-adulteration (2 weeks). HA and MA control mice had access only to water. Mice were characterized as addicted, heavy-drinker and light-drinker [Fachin-Scheit DJ, Ribeiro AF, Pigatto G, Goeldner FO, Boerngen-Lacerda R. Development of a mouse model of ethanol addiction: naltrexone efficacy in reducing consumption but not craving. J Neural Transm 2006;113:1305-21.]. No difference was observed between HA and MA mice in their preference for and intake of ethanol. No correlation was observed between ethanol intake, during any phase, and anxiety indices measured in the basal tests and during the W phase. The differences in anxiety indices between HA and MA groups persisted in the test performed during ethanol withdrawal, suggesting a "trait" anxiety profile. The data suggest that despite the fact that high anxiety trait levels are important for the anxiolytic-like effects of ethanol, they are not a determining

  9. Acute Toxicity and Gastroprotective Role of M. pruriens in Ethanol-Induced Gastric Mucosal Injuries in Rats

    PubMed Central

    Hassandarvish, Pouya; Abdul Majid, Nazia; Hadi, A. Hamid A.; Nordin, Noraziah; Abdulla, Mahmood A.

    2013-01-01

    The investigation was to evaluate gastroprotective effects of ethanolic extract of M. pruriens leaves on ethanol-induced gastric mucosal injuries in rats. Forty-eight rats were divided into 8 groups: negative control, extract control, ulcer control, reference control, and four experimental groups. As a pretreatment, the negative control and the ulcer control groups were orally administered carboxymethylcellulose (CMC). The reference control was administered omeprazole orally (20 mg/kg). The ethanolic extract of M. pruriens leaves was given orally to the extract control group (500 mg/kg) and the experimental groups (62.5, 125, 250, and 500 mg/kg). After 1 h, CMC was given orally to the negative and the extract control groups. The other groups received absolute ethanol. The rats were sacrificed after 1 h. The ulcer control group exhibited significant mucosal injuries with decreased gastric wall mucus and severe damage to the gastric mucosa. The extract caused upregulation of Hsp70 protein, downregulation of Bax protein, and intense periodic acid schiff uptake of glandular portion of stomach. Gastric mucosal homogenate showed significant antioxidant properties with increase in synthesis of PGE2, while MDA was significantly decreased. The ethanolic extract of M. pruriens leaves was nontoxic (<5 g/kg) and could enhance defensive mechanisms against hemorrhagic mucosal lesions. PMID:23781513

  10. Unexpected gender difference in sensitivity to the acute toxicity of dioxin in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pohjanvirta, Raimo, E-mail: raimo.pohjanvirta@helsinki.fi; Miettinen, Hanna, E-mail: hanna.miettinen@crl.com; Sankari, Satu, E-mail: satu.sankari@helsinki.fi

    The acute toxicity of the ubiquitous environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) varies widely among species and strains. Previous studies in rats have established that females are approximately 2-fold more sensitive to TCDD lethality than males. However, there is a surprising gap in the literature regarding possible gender-related sensitivity differences in mice. In the present study, by using three substrains of TCDD-sensitive C57BL/6 mice and transgenic mice on this background, we demonstrated that: 1) in contrast to the situation in rats, female mice are the more resistant gender; 2) the magnitude of the divergence between male and female mice depends on themore » substrain, but can amount to over 10-fold; 3) AH receptor protein expression levels or mutations in the primary structure of this receptor are not involved in the resistance of female mice of a C57BL/6 substrain, despite their acute LD{sub 50} for TCDD being over 5000 μg/kg; 4) transgenic mice that globally express the rat wildtype AH receptor follow the mouse type of gender difference; 5) in gonadectomized mice, ovarian estrogens appear to enhance TCDD resistance, whereas testicular androgens seem to augment TCDD susceptibility; and 6) the gender difference correlates best with the severity of liver damage, which is also reflected in hepatic histopathology and the expression of pro-inflammatory cytokines, especially IL-6. Hence, the two closely related rodent species most often employed in toxicological risk characterization studies, rat and mouse, represent opposite examples of the influence of gender on dioxin sensitivity, further complicating the risk assessment of halogenated aromatic hydrocarbons. -- Highlights: ► In contrast to rats, male mice are more sensitive to TCDD toxicity than female mice. ► The resistance of female C57BL/6Kuo mice matches or exceeds that of male DBA/2 mice. ► The resistance of female C57BL/6Kuo mice is not based on AHR structure or

  11. Metabolomics-based prediction models of yeast strains for screening of metabolites contributing to ethanol stress tolerance

    NASA Astrophysics Data System (ADS)

    Hashim, Z.; Fukusaki, E.

    2016-06-01

    The increased demand for clean, sustainable and renewable energy resources has driven the development of various microbial systems to produce biofuels. One of such systems is the ethanol-producing yeast. Although yeast produces ethanol naturally using its native pathways, production yield is low and requires improvement for commercial biofuel production. Moreover, ethanol is toxic to yeast and thus ethanol tolerance should be improved to further enhance ethanol production. In this study, we employed metabolomics-based strategy using 30 single-gene deleted yeast strains to construct multivariate models for ethanol tolerance and screen metabolites that relate to ethanol sensitivity/tolerance. The information obtained from this study can be used as an input for strain improvement via metabolic engineering.

  12. Headspace analysis of volatile organic compounds from ethanolic systems by direct APCI-MS

    NASA Astrophysics Data System (ADS)

    Aznar, Margarita; Tsachaki, Maroussa; Linforth, Robert S. T.; Ferreira, Vicente; Taylor, Andrew J.

    2004-12-01

    Measuring the dynamic release of aroma compounds from ethanolic solutions by direct gas phase mass spectrometry (MS) techniques is an important technique for flavor chemists but presents technical difficulties as the changing ethanol concentration in the source makes quantitative measurements impossible. The effect of adding ethanol into the source via the sweep gas (0-565 [mu]L ethanol/L N2), to act as the proton transfer reagent ion and thereby control ionization was studied. With increasing concentrations of ethanol in the source, the water ions were replaced by ethanol ions above 3.2 [mu]L/L. The effect of source ethanol on the ionization of eleven aroma compounds was then measured. Some compounds showed reduced signal (10-40%), others increased signal (150-400%) when ionized via ethanol reagent ions compared to water reagent ions. Noise also increased in most cases so there was no overall increase in sensitivity. Providing the ethanol concentration in the source was >6.5 [mu]L/L N2 and maintained at a fixed value, ionization was consistent and quantitative. The technique was successfully applied to measure the partition of the test volatile compounds from aqueous and 12% ethanol solutions at equilibrium. Ethanolic solutions decreased the partition coefficient of most of the aroma compounds, as a function of hydrophobicity.

  13. Evaluation of a dengue NS1 antigen detection assay sensitivity and specificity for the diagnosis of acute dengue virus infection.

    PubMed

    Hermann, Laura L; Thaisomboonsuk, Butsaya; Poolpanichupatam, Yongyuth; Jarman, Richard G; Kalayanarooj, Siripen; Nisalak, Ananda; Yoon, In-Kyu; Fernandez, Stefan

    2014-10-01

    Currently, no dengue NS1 detection kit has regulatory approval for the diagnosis of acute dengue fever. Here we report the sensitivity and specificity of the InBios DEN Detect NS1 ELISA using a panel of well characterized human acute fever serum specimens. The InBios DENV Detect NS1 ELISA was tested using a panel composed of 334 serum specimens collected from acute febrile patients seeking care in a Bangkok hospital in 2010 and 2011. Of these patients, 314 were found to have acute dengue by either RT-PCR and/or anti-dengue IgM/IgG ELISA. Alongside the InBios NS1 ELISA kit, we compared the performance characteristics of the BioRad Platelia NS1 antigen kit. The InBios NS1 ELISA Ag kit had a higher overall sensitivity (86% vs 72.8%) but equal specificity (100%) compared to the BioRad Platelia kit. The serological status of the patient significantly influenced the outcome. In primary infections, the InBios NS1 kit demonstrated a higher sensitivity (98.8%) than in secondary infections (83.5%). We found significant variation in the sensitivity of the InBios NS1 ELISA kit depending on the serotype of the dengue virus and also found decreasing sensitivity the longer after the onset of illness, showing 100% sensitivity early during illness, but dropping below 50% by Day 7. The InBios NS1 ELISA kit demonstrated high accuracy when compared to the initial clinical diagnosis with greater than 85% agreement when patients were clinically diagnosed with dengue illness. Results presented here suggest the accurate detection of circulating dengue NS1 by the InBios DENV Detect NS1 ELISA can provide clinicians with a useful tool for diagnosis of early dengue infections.

  14. Overexpression of NGF ameliorates ethanol neurotoxicity in the developing cerebellum.

    PubMed

    Heaton, M B; Mitchell, J J; Paiva, M

    2000-11-05

    Transgenic mice overexpressing NGF in the central nervous system under the control of the glial fibrillary acidic protein (GFAP) promoter were exposed to ethanol via vapor inhalation on postnatal days 4 and 5 (P4-5), the period of maximal cerebellar Purkinje cell sensitivity to ethanol. Wild-type controls were exposed in a similar manner. There were no differences in body weight or size following these procedures, but the transgenic brain weights at this age were significantly greater than wild-type controls. In the wild-type animals, a significant 33.3% ethanol-mediated loss of Purkinje cells in lobule I was detected via unbiased three-dimensional stereological counting on P5. In the GFAP-NGF transgenic animals, however, the 17.6% difference in Purkinje cell number in control and ethanol-exposed animals was not significant. There was a similar difference in Purkinje cell density in both groups, which did reach statistical significance (-32.7% in wild-type ethanol-treated animals, -17% in transgenic ethanol-exposed animals). These results suggest that endogenous overexpression of neurotrophic factors, which have previously been shown to protect against ethanol neurotoxicity in culture, can serve a similar protective function in the intact animal. Copyright 2000 John Wiley & Sons, Inc.

  15. Interactions of Stress and CRF in Ethanol-Withdrawal Induced Anxiety in Adolescent and Adult Rats

    PubMed Central

    Wills, Tiffany A.; Knapp, Darin J.; Overstreet, David H.; Breese, George R.

    2010-01-01

    Background Repeated stress or administration of corticotropin-releasing factor (CRF) prior to ethanol exposure sensitizes anxiety-like behavior in adult rats. Current experiments determined whether adolescent rats were more sensitive to these challenges in sensitizing ethanol withdrawal-induced anxiety and altering CRF levels in brain during withdrawal. Methods Male adult and adolescent Sprague–Dawley rats were restraint stressed (1 hour) twice 1 week apart prior to a single 5-day cycle of ethanol diet (ED; stress/withdrawal paradigm). Other rats received control diet (CD) and three 1-hour restraint stress sessions. Rats were then tested 5, 24, or 48 hours after the final withdrawal for anxiety-like behavior in the social interaction (SI) test. In other experiments, adolescent rats were given two microinjections of CRF icv 1 week apart followed by 5-days of either CD or ED and tested in social interaction 5 hours into withdrawal. Finally, CRF immunoreactivity was measured in the central nucleus of the amygdala (CeA) and paraventricular nucleus (PVN) after rats experienced control diet, repeated ethanol withdrawals, or stress/withdrawal. Results Rats of both ages had reduced SI following the stress/withdrawal paradigm, and this effect recovered within 24 hours. Higher CRF doses were required to reduce SI in adolescents than previously reported in adults. CRF immunohistochemical levels were higher in the PVN and CeA of CD-exposed adolescents. In adolescent rats, repeated ethanol withdrawals decreased CRF in the CeA but was not associated with decreased CRF cell number. There was no change in CRF from adult treatments. Conclusions In the production of anxiety-like behavior, adolescent rats have equal sensitivity with stress and lower sensitivity with CRF compared to adults. Further, adolescents had higher basal levels of CRF within the PVN and CeA and reduced CRF levels following repeated ethanol withdrawals. This reduced CRF within the CeA could indicate increased

  16. Chronic ethanol increases systemic TLR3 agonist-induced neuroinflammation and neurodegeneration

    PubMed Central

    2012-01-01

    Background Increasing evidence links systemic inflammation to neuroinflammation and neurodegeneration. We previously found that systemic endotoxin, a TLR4 agonist or TNFα, increased blood TNFα that entered the brain activating microglia and persistent neuroinflammation. Further, we found that models of ethanol binge drinking sensitized blood and brain proinflammatory responses. We hypothesized that blood cytokines contribute to the magnitude of neuroinflammation and that ethanol primes proinflammatory responses. Here, we investigate the effects of chronic ethanol on neuroinflammation and neurodegeneration triggered by toll-like receptor 3 (TLR3) agonist poly I:C. Methods Polyinosine-polycytidylic acid (poly I:C) was used to induce inflammatory responses when sensitized with D-galactosamine (D-GalN). Male C57BL/6 mice were treated with water or ethanol (5 g/kg/day, i.g., 10 days) or poly I:C (250 μg/kg, i.p.) alone or sequentially 24 hours after ethanol exposure. Cytokines, chemokines, microglial morphology, NADPH oxidase (NOX), reactive oxygen species (ROS), high-mobility group box 1 (HMGB1), TLR3 and cell death markers were examined using real-time PCR, ELISA, immunohistochemistry and hydroethidine histochemistry. Results Poly I:C increased blood and brain TNFα that peaked at three hours. Blood levels returned within one day, whereas brain levels remained elevated for at least three days. Escalating blood and brain proinflammatory responses were found with ethanol, poly I:C, and ethanol-poly I:C treatment. Ethanol pretreatment potentiated poly I:C-induced brain TNFα (345%), IL-1β (331%), IL-6 (255%), and MCP-1(190%). Increased levels of brain cytokines coincided with increased microglial activation, NOX gp91phox, superoxide and markers of neurodegeneration (activated caspase-3 and Fluoro-Jade B). Ethanol potentiation of poly I:C was associated with ethanol-increased expression of TLR3 and endogenous agonist HMGB1 in the brain. Minocycline and

  17. Chronic nicotine treatment differentially modifies acute nicotine and alcohol actions on GABA(A) and glutamate receptors in hippocampal brain slices.

    PubMed

    Proctor, William R; Dobelis, Peter; Moritz, Anna T; Wu, Peter H

    2011-03-01

    Tobacco and alcohol are often co-abused producing interactive effects in the brain. Although nicotine enhances memory while ethanol impairs it, variable cognitive changes have been reported from concomitant use. This study was designed to determine how nicotine and alcohol interact at synaptic sites to modulate neuronal processes. Acute effects of nicotine, ethanol, and both drugs on synaptic excitatory glutamatergic and inhibitory GABAergic transmission were measured using whole-cell recording in hippocampal CA1 pyramidal neurons from brain slices of mice on control or nicotine-containing diets. Acute nicotine (50 nM) enhanced both GABAergic and glutamatergic synaptic transmission; potentiated GABA(A) receptor currents via activation of α7* and α4β2* nAChRs, and increased N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor currents through α7* receptors. While ethanol (80 mM) also increased GABA(A) currents, it inhibited NMDA currents. Although ethanol had no effect on AMPA currents, it blocked nicotine-induced increases in NMDA and AMPA currents. Following chronic nicotine treatment, acute nicotine or ethanol did not affect NMDA currents, while the effects of GABAergic responses were not altered. Acute ethanol ingestion selectively attenuated nicotine enhancement of excitatory glutamatergic NMDA and AMPA receptor function, suggesting an overall reduction in excitatory output from the hippocampus. It also indicated that ethanol could decrease the beneficial effects of nicotine on memory performance. In addition, chronic nicotine treatment produced tolerance to the effects of nicotine and cross-tolerance to the effects of ethanol on glutamatergic activity, leading to a potential increase in the use of these drugs. British Journal of Pharmacology © 2011 The British Pharmacological Society. No claim to original US government works.

  18. Cytochrome P4502E1 inhibitor, chlormethiazole, decreases lipopolysaccharide-induced inflammation in rat Kupffer cells with ethanol treatment

    USDA-ARS?s Scientific Manuscript database

    To investigate the role of Cytochrome P4502E1 in sensitizing Kupffer cells to lipopolysaccharide (LPS)-mediated inflammation after ethanol induction. Sprague-Dawley rats were fed a liquid ethanol diet, control diet or ethanol diet supplemented with CYP2E1 inhibitor, chlormethiazole (CMZ), for 4'week...

  19. Energy and precious fuels requirements of fuel alcohol production. Volume 2, appendices A and B: Ethanol from grain

    NASA Technical Reports Server (NTRS)

    Weinblatt, H.; Reddy, T. S.; Turhollow, A., Jr.

    1982-01-01

    Energy currently used in grain production, the effect of ethanol production on agricultural energy consumption, energy credits for ethanol by-products, and land availability and the potential for obtaining ethanol from grain are discussed. Dry milling, wet milling, sensitivity analysis, potential for reduced energy consumption are also discussed.

  20. Voluntary Ethanol Intake Predicts κ-Opioid Receptor Supersensitivity and Regionally Distinct Dopaminergic Adaptations in Macaques

    PubMed Central

    Siciliano, Cody A.; Calipari, Erin S.; Cuzon Carlson, Verginia C.; Helms, Christa M.; Lovinger, David M.; Grant, Kathleen A.

    2015-01-01

    The dopaminergic projections from the ventral midbrain to the striatum have long been implicated in mediating motivated behaviors and addiction. Previously it was demonstrated that κ-opioid receptor (KOR) signaling in the striatum plays a critical role in the increased reinforcing efficacy of ethanol following ethanol vapor exposure in rodent models. Although rodents have been used extensively to determine the neurochemical consequences of chronic ethanol exposure, establishing high levels of voluntary drinking in these models has proven difficult. Conversely, nonhuman primates exhibit similar intake and pattern to humans in regard to drinking. Here we examine the effects of chronic voluntary ethanol self-administration on dopamine neurotransmission and the ability of KORs to regulate dopamine release in the dorsolateral caudate (DLC) and nucleus accumbens (NAc) core. Using voltammetry in brain slices from cynomolgus macaques after 6 months of ad libitum ethanol drinking, we found increased KOR sensitivity in both the DLC and NAc. The magnitude of ethanol intake predicted increases in KOR sensitivity in the NAc core, but not the DLC. Additionally, ethanol drinking increased dopamine release and uptake in the NAc, but decreased both of these measures in the DLC. These data suggest that chronic daily drinking may result in regionally distinct disruptions of striatal outputs. In concert with previous reports showing increased KOR regulation of drinking behaviors induced by ethanol exposure, the strong relationship between KOR activity and voluntary ethanol intake observed here gives further support to the hypothesis that KORs may provide a promising pharmacotherapeutic target in the treatment of alcoholism. PMID:25878269

  1. Low and moderate prenatal ethanol exposures of mice during gastrulation or neurulation delays neurobehavioral development.

    PubMed

    Schambra, Uta B; Goldsmith, Jeff; Nunley, Kevin; Liu, Yali; Harirforoosh, Sam; Schambra, Heidi M

    2015-01-01

    Human and animal studies show significant delays in neurobehavioral development in offspring after prolonged prenatal exposure to moderate and high ethanol doses resulting in high blood alcohol concentration (BECs). However, none have investigated the effects of lower ethanol doses given acutely during specific developmental time periods. Here, we sought to create a mouse model for modest and circumscribed human drinking during the 3rd and 4th weeks of pregnancy. We acutely treated mice during embryo gastrulation on gestational day (GD) 7 or neurulation on GD8 with a low or moderate ethanol dose given via gavage that resulted in BECs of 107 and 177 mg/dl, respectively. We assessed neonatal physical development (pinnae unfolding, and eye opening); weight gain from postnatal day (PD) 3-65; and neurobehavioral maturation (pivoting, walking, cliff aversion, surface righting, vertical screen grasp, and rope balance) from PD3 to 17. We used a multiple linear regression model to determine the effects of dose, sex, day of treatment and birth in animals dosed during gastrulation or neurulation, relative to their vehicle controls. We found that ethanol exposure during both time points (GD7 and GD8) resulted in some delays of physical development and significant sensorimotor delays of pivoting, walking, and thick rope balance, as well as additional significant delays in cliff aversion and surface righting after GD8 treatment. We also found that treatment with the low ethanol dose more frequently affected neurobehavioral development of the surviving pups than treatment with the moderate ethanol dose, possibly due to a loss of severely affected offspring. Finally, mice born prematurely were delayed in their physical and sensorimotor development. Importantly, we showed that brief exposure to low dose ethanol, if administered during vulnerable periods of neuroanatomical development, results in significant neurobehavioral delays in neonatal mice. We thus expand concerns about

  2. Circadian activity rhythms and voluntary ethanol intake in male and female ethanol-preferring rats: effects of long-term ethanol access.

    PubMed

    Rosenwasser, Alan M; McCulley, Walter D; Fecteau, Matthew

    2014-11-01

    Chronic alcohol (ethanol) intake alters fundamental properties of the circadian clock. While previous studies have reported significant alterations in free-running circadian period during chronic ethanol access, these effects are typically subtle and appear to require high levels of intake. In the present study we examined the effects of long-term voluntary ethanol intake on ethanol consumption and free-running circadian period in male and female, selectively bred ethanol-preferring P and HAD2 rats. In light of previous reports that intermittent access can result in escalated ethanol intake, an initial 2-week water-only baseline was followed by either continuous or intermittent ethanol access (i.e., alternating 15-day epochs of ethanol access and ethanol deprivation) in separate groups of rats. Thus, animals were exposed to either 135 days of continuous ethanol access or to five 15-day access periods alternating with four 15-day periods of ethanol deprivation. Animals were maintained individually in running-wheel cages under continuous darkness throughout the experiment to allow monitoring of free-running activity and drinking rhythms, and 10% (v/v) ethanol and plain water were available continuously via separate drinking tubes during ethanol access. While there were no initial sex differences in ethanol drinking, ethanol preference increased progressively in male P and HAD2 rats under both continuous and intermittent-access conditions, and eventually exceeded that seen in females. Free-running period shortened during the initial ethanol-access epoch in all groups, but the persistence of this effect showed complex dependence on sex, breeding line, and ethanol-access schedule. Finally, while females of both breeding lines displayed higher levels of locomotor activity than males, there was little evidence for modulation of activity level by ethanol access. These results are consistent with previous findings that chronic ethanol intake alters free-running circadian

  3. Circadian Activity Rhythms and Voluntary Ethanol Intake in Male and Female Ethanol-Preferring Rats: Effects of Long-Term Ethanol Access

    PubMed Central

    Rosenwasser, Alan M.; McCulley, Walter D.; Fecteau, Matthew

    2014-01-01

    Chronic alcohol (ethanol) intake alters fundamental properties of the circadian clock. While previous studies have reported significant alterations in free-running circadian period during chronic ethanol access, these effects are typically subtle and appear to require high levels of intake. In the present study we examined the effects of long-term voluntary ethanol intake on ethanol consumption and free-running circadian period in male and female, selectively bred ethanol-preferring P and HAD2 rats. In light of previous reports that intermittent access can result in escalated ethanol intake, an initial 2-week water-only baseline was followed by either continuous or intermittent ethanol access (i.e., alternating 15-day epochs of ethanol access and ethanol deprivation) in separate groups of rats. Thus, animals were exposed to either 135 days of continuous ethanol access or to five 15-day access periods alternating with four 15-day periods of ethanol deprivation. Animals were maintained individually in running-wheel cages under continuous darkness throughout the experiment to allow monitoring of free-running activity and drinking rhythms, and 10% (v/v) ethanol and plain water were available continuously via separate drinking tubes during ethanol access. While there were no initial sex differences in ethanol drinking, ethanol preference increased progressively in male P and HAD2 rats under both continuous and intermittent-access conditions, and eventually exceeded that seen in females. Free-running period shortened during the initial ethanol-access epoch in all groups, but the persistence of this effect showed complex dependence on sex, breeding line, and ethanol-access schedule. Finally, while females of both breeding lines displayed higher levels of locomotor activity than males, there was little evidence for modulation of activity level by ethanol access. These results are consistent with previous findings that chronic ethanol intake alters free-running circadian

  4. Ethanol increases GABAergic transmission at both pre- and postsynaptic sites in rat central amygdala neurons

    PubMed Central

    Roberto, Marisa; Madamba, Samuel G.; Moore, Scott D.; Tallent, Melanie K.; Siggins, George R.

    2003-01-01

    We examined the interaction of ethanol with the γ-aminobutyric acid (GABA)ergic system in neurons of slices of the rat central amygdala nucleus (CeA), a brain region thought to be critical for the reinforcing effects of ethanol. Brief superfusion of 11–66 mM ethanol significantly increased GABA type A (GABAA) receptor-mediated inhibitory postsynaptic potentials (IPSPs) and currents (IPSCs) in most CeA neurons, with a low apparent EC50 of 20 mM. Acute superfusion of 44 mM ethanol increased the amplitude of evoked GABAA IPSPs and IPSCs in 70% of CeA neurons. The ethanol enhancement of IPSPs and IPSCs occurred to a similar extent in the presence of the GABA type B (GABAB) receptor antagonist CGP 55845A, suggesting that this receptor is not involved in the ethanol effect on CeA neurons. Ethanol superfusion also decreased paired-pulse facilitation of evoked GABAA IPSPs and IPSCs and always increased the frequency and sometimes the amplitude of spontaneous miniature GABAA IPSCs as well as responses to local GABA application, indicating both presynaptic and postsynaptic sites of action for ethanol. Thus, the CeA is the first brain region to reveal, without conditional treatments such as GABAB antagonists, consistent, low-dose ethanol enhancement of GABAergic transmission at both pre- and postsynaptic sites. These findings add further support to the contention that the ethanol–GABA interaction in CeA plays an important role in the reinforcing effects of ethanol. PMID:12566570

  5. Enhanced Ethanol Gas Sensing Properties of SnO2-Core/ZnO-Shell Nanostructures

    PubMed Central

    Tharsika, T.; Haseeb, A. S. M. A.; Akbar, Sheikh A.; Sabri, Mohd Faizul Mohd; Hoong, Wong Yew

    2014-01-01

    An inexpensive single-step carbon-assisted thermal evaporation method for the growth of SnO2-core/ZnO-shell nanostructures is described, and the ethanol sensing properties are presented. The structure and phases of the grown nanostructures are investigated by field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) techniques. XRD analysis indicates that the core-shell nanostructures have good crystallinity. At a lower growth duration of 15 min, only SnO2 nanowires with a rectangular cross-section are observed, while the ZnO shell is observed when the growth time is increased to 30 min. Core-shell hierarchical nanostructures are present for a growth time exceeding 60 min. The growth mechanism for SnO2-core/ZnO-shell nanowires and hierarchical nanostructures are also discussed. The sensitivity of the synthesized SnO2-core/ZnO-shell nanostructures towards ethanol sensing is investigated. Results show that the SnO2-core/ZnO-shell nanostructures deposited at 90 min exhibit enhanced sensitivity to ethanol. The sensitivity of SnO2-core/ZnO-shell nanostructures towards 20 ppm ethanol gas at 400 °C is about ∼5-times that of SnO2 nanowires. This improvement in ethanol gas response is attributed to high active sensing sites and the synergistic effect of the encapsulation of SnO2 by ZnO nanostructures. PMID:25116903

  6. An experimental test of the effect of acute anxious arousal and anxiety sensitivity on negative reinforcement smoking.

    PubMed

    Farris, Samantha G; Zvolensky, Michael J

    2016-07-01

    Although anxiety sensitivity has been reliably associated with smoking-anxiety comorbidity, there has not been a test of whether this construct moderates the effect of acute anxious arousal on actual smoking behavior. The present study utilized an experimental design to test the moderating role of anxiety sensitivity on laboratory-induced anxious arousal in terms of smoking urges and topography (puff style). Participants were adult daily smokers (n=90; Mage=43.6 SD =9.7); average 15.8 cigarettes per day). A between-subjects design was used; participants were randomly assigned to complete a biological challenge procedure consisting of either a single vital capacity inhalation of 35% carbon dioxide (CO2)-enriched air mixture or compressed room air. Smoking urges and smoking topography (puff behavior) were assessed before and after the challenge. Results revealed a significant interaction between anxiety sensitivity and experimental condition (b=-9.96, p=0.014), such that high anxiety sensitive smokers exposed to 35% CO2-enriched air reported significantly lower levels of smoking urges, relative to low anxiety sensitive smokers; the conditional effect of anxiety sensitivity was not observed for the room air condition. There were no significant interaction effects of experimental manipulation by anxiety sensitivity for any of the smoking topography outcomes. The present results suggest for smokers with higher levels of anxiety sensitivity, the acute experience of anxious arousal is related to decreased subjective smoking urges. These data invite future research to explore the reasons for dampened smoking urges, including cardiorespiratory symptom severity. © The Author(s) 2016.

  7. Sensitivity and specificity of the hyperdense artery sign for arterial obstruction in acute ischemic stroke.

    PubMed

    Mair, Grant; Boyd, Elena V; Chappell, Francesca M; von Kummer, Rüdiger; Lindley, Richard I; Sandercock, Peter; Wardlaw, Joanna M

    2015-01-01

    In acute ischemic stroke, the hyperdense artery sign (HAS) on noncontrast computed tomography (CT) is thought to represent intraluminal thrombus and, therefore, is a surrogate of arterial obstruction. We sought to assess the accuracy of HAS as a marker of arterial obstruction by thrombus. The Third International Stroke Trial (IST-3) was a randomized controlled trial testing the use of intravenous thrombolysis for acute ischemic stroke in patients who did not clearly meet the prevailing license criteria. Some participating IST-3 centers routinely performed CT or MR angiography at baseline. One reader assessed all relevant scans independently, blinded to all other data; we checked observer reliability. We combined IST-3 data with a systematic review and meta-analysis of all studies that assessed the accuracy of HAS using angiography (any modality). IST-3 had 273 patients with baseline CT or MR angiography and was the largest study of HAS accuracy. The meta-analysis (n=902+273=1175, including IST-3) found sensitivity and specificity of HAS for arterial obstruction on angiography to be 52% and 95%, respectively. HAS was more commonly identified in proximal than distal arteries (47% versus 37%; P=0.015), and its sensitivity increased with thinner CT slices (r=-0.73; P=0.001). Neither extent of obstruction nor time after stroke influenced HAS accuracy. When present in acute ischemic stroke, HAS indicates a high likelihood of arterial obstruction, but its absence indicates only a 50/50 chance of normal arterial patency. Thin-slice CT improves sensitivity of HAS detection. http://www.controlled-trials.com/ISRCTN25765518. Unique identifier: ISRCTN25765518. © 2014 American Heart Association, Inc.

  8. Combined determination of highly sensitive troponin T and copeptin for early exclusion of acute myocardial infarction: first experience in an emergency department of a general hospital.

    PubMed

    Lotze, Ulrich; Lemm, Holger; Heyer, Anke; Müller, Karin

    2011-01-01

    The purpose of this observational study was to test the diagnostic performance of the Elecsys® troponin T high-sensitive system combined with copeptin measurement for early exclusion of acute myocardial infarction (MI) in clinical practice. Troponin T high-sensitive (diagnostic cutoff: <14 pg/mL) and copeptin (diagnostic cutoff: <14 pmol/L) levels were determined at admission in addition to other routine laboratory parameters in patients with suspected acute MI presenting to the emergency department of a general hospital over a period of five months. Data from 142 consecutive patients (mean age 71.2 ± 13.5 years, 76 men) were analyzed. Final diagnoses were acute MI in 13 patients (nine ST elevation MI, four non-ST elevation MI, 9.2%) unstable angina pectoris in three (2.1%), cardiac symptoms not primarily associated with myocardial ischemia in 79 (55.6%), and noncardiac disease in 47 patients (33.1%). The patients with acute MI were younger and had higher troponin T high-sensitive and copeptin values than patients without acute MI. Seventeen patients had very high copeptin values (>150 pmol/L), one of whom had a level of >700 pmol/L and died of pulmonary embolism. A troponin T high-sensitive level of <14 pg/mL in combination with copeptin <14 pmol/L at initial presentation ruled out acute MI in 45 of the 142 patients (31.7%), each with a sensitivity and negative predictive value of 100%. According to this early experience, a single determination of troponin T high-sensitive and copeptin may enable early and accurate exclusion of acute MI in one third of patients, even in an emergency department of a general hospital.

  9. Highly sensitive troponin T for risk stratification of acutely destabilized heart failure.

    PubMed

    Pascual-Figal, Domingo A; Casas, Teresa; Ordonez-Llanos, Jordi; Manzano-Fernández, Sergio; Bonaque, Juan C; Boronat, Miguel; Muñoz-Esparza, Carmen; Valdés, Mariano; Januzzi, James L

    2012-06-01

    A highly sensitive assay for troponin T (hsTnT) has been recently developed, which allows for the detection of even minor myocardial necrosis with high precision. It remains unexplored whether hsTnT provides incremental prognostic accuracy beyond conventional (c)TnT in patients with acutely decompensated heart failure (ADHF). A total of 202 consecutive patients admitted with ADHF and without criteria for acute myocardial infarction were studied. Troponin T was measured using the highly sensitive assay and compared with the conventional method. Patients were clinically followed up at a median of 406 days, with a primary outcome measure of all-cause mortality. The high-sensitive assay detected measurable TnT in 98% of patients vs 56% for cTnT; 81% had an hsTnT above the 99th percentile for a healthy reference population, and it reclassified 60% of those with undetectable cTnT. Both TnT methods predicted the risk of death in adjusted multivariable Cox regression analyses, without a superiority of hsTnT over cTnT in the entire population (area under the curve 0.67 vs 0.71, P = .2). Among patients with a cTnT below 0.03 ng/mL (the lowest cut-point with <10% imprecision; n = 134), solely hsTnT improved the prediction of death over clinical risk factors (relative integrated discrimination improvement +36%, P = .01) and hsTnT above 20 pg/mL identified a significant higher risk of death (hazard ratio 4.7, 95% CI 1.6-13.8, P = .005). Among patients with ADHF, myocardial necrosis (as detected with the hsTnT assay) was nearly ubiquitous. The highly sensitive assay for TnT provides comparable prognostic information to cTnT overall, but among those in whom the cTnT method was less precise or frankly negative, the hsTnT assay provided prognostic information. Copyright © 2012 Mosby, Inc. All rights reserved.

  10. Effects of binge-like ethanol exposure during adolescence on the hyperalgesia observed during sickness syndrome in rats.

    PubMed

    de Oliveira, Bruna M T; Telles, Tatiane M B B; Lomba, Luiz A; Correia, Diego; Zampronio, Aleksander R

    2017-09-01

    Acute and chronic ethanol exposure increases the risk of infection by altering the innate host's defense system. Adolescence is a critical period for brain development. Insults during this period may have long-lasting consequences. The present study investigated the effects of binge-like ethanol exposure in adolescent rats on mechanical hyperalgesia during sickness syndrome that was induced by a systemic injection of lipopolysaccharide (LPS) or an intracerebroventricular (i.c.v.) injection of interleukin-1β (IL-1β) after the cessation of ethanol exposure. Male Wistar rats were exposed to ethanol from postnatal day (PND) 25 to PND 38 in a binge-like pattern. Hyperalgesia was assessed on the right hindpaw after an intraperitoneal injection of LPS (5 and 50μg/kg, intraperitoneally) on PND 51 and PND 63 or an i.c.v. or intraplantar (i.pl.) injection of IL-β (3 and 1ng, respectively) on PND 51. Ethanol exposure during adolescence did not alter mechanical thresholds which increased normally with age. The systemic injection of LPS (0.5-50μg/kg) in adult rats induced dose-related mechanical hyperalgesia. Binge-like ethanol exposure significantly increased mechanical hyperalgesia that was induced by 50μg/kg LPS on PND 51 and 63, which lasted until 24h after the injection. This change was not observed at a lower dose of LPS (5μg/kg). Acute oral treatment with ethanol 24h prior to LPS administration did not alter mechanical hyperalgesia. The i.c.v. injection of IL-1β (1-10ng) also induced dose-related mechanical hyperalgesia in the right hindpaw in non-exposed animals. In animals that were exposed to binge-like ethanol, the i.c.v. or i.pl. injection of IL-1β also increased hyperalgesia on PND 51. These results suggest that binge-like ethanol exposure during adolescence causes alterations in the central nervous system that can increase mechanical hyperalgesia that is observed during sickness syndrome, and this effect can be observed until adulthood after the cessation

  11. Attenuation of ethanol abstinence-induced anxiety- and depressive-like behavior by the phosphodiesterase-4 inhibitor rolipram in rodents.

    PubMed

    Gong, Mei-Fang; Wen, Rui-Ting; Xu, Ying; Pan, Jian-Chun; Fei, Ning; Zhou, Yan-Meng; Xu, Jiang-Ping; Liang, Jian-Hui; Zhang, Han-Ting

    2017-10-01

    Withdrawal symptoms stand as a core feature of alcohol dependence. Our previous results have shown that inhibition of phosphodiesterase-4 (PDE4) decreased ethanol seeking and drinking in alcohol-preferring rodents. However, little is known about whether PDE4 is involved in ethanol abstinence-related behavior. The objective of this study was to characterize the role of PDE4 in the development of anxiety- and depressive-like behavior induced by abstinence from ethanol exposure in different animal models. Using three rodent models of ethanol abstinence, we examined the effects of rolipram, a prototypical, selective PDE4 inhibitor, on (1) anxiety-like behavior induced by repeated ethanol abstinence in the elevated plus maze test in fawn-hooded (FH/Wjd) rats, (2) anxiety-like behavior in the open-field test and light-dark transition test following acute ethanol abstinence in C57BL/6J mice, and (3) anxiety- and depressive-like behavior induced by protracted ethanol abstinence in the elevated plus maze, forced-swim, and tail-suspension tests in C57BL/6J mice. Pretreatment with rolipram (0.1 or 0.2 mg/kg) significantly increased entries and time spent in the open arms of the elevated plus maze test in rats with repeated ethanol abstinence. Similarly, in mice with acute ethanol abstinence, administration of rolipram (0.25 or 0.5 mg/kg) dose-dependently increased the crossings in the central zone of the open-field test and duration and transitions on the light side of the light-dark transition test, suggesting anxiolytic-like effects of rolipram. Consistent with these, chronic treatment with rolipram (0.1, 0.3, or 1.0 mg/kg) increased entries in the open arms of the elevated plus maze test; it also reduced the increased duration of immobility in both the forced-swim and tail-suspension tests in mice after protracted ethanol abstinence, suggesting antidepressant-like effects of rolipram. These results provide the first demonstration for that PDE4 plays a role in modulating

  12. Effects of chronic binge-like ethanol consumption on cocaine self-administration in rhesus monkeys.

    PubMed

    Czoty, Paul W

    2015-08-01

    Most cocaine abusers also abuse alcohol, but little is known about interactions that promote co-abuse. These experiments in rhesus monkeys determined the effects of >8 weeks of ethanol (EtOH) consumption on cocaine self-administration (n=6), effects of dopamine (DA) receptor antagonists on cocaine reinforcement (n=3-4 per drug) and the ability of the D2-like DA receptor agonist quinpirole to elicit yawning (n=3). Monkeys self-administered cocaine (0.0-1.0mg/kg/injection, i.v.) under a 300-s fixed-interval schedule and the above-listed variables were measured before EtOH exposure. Next, monkeys consumed a sweetened, 4% EtOH solution in the home cage under binge-like conditions: 1h, 5 days/week with daily intake equaling 2.0g/kg EtOH. After approximately 8 weeks, measures were re-determined, then EtOH drinking was discontinued. Finally, acute effects of EtOH on cocaine self-administration were determined by infusing EtOH (0.0-1.0g/kg. i.v.) prior to cocaine self-administration sessions (n=4). In five of six monkeys, EtOH drinking increased self-administration of low cocaine doses but did not alter reinforcing effects of higher doses. Self-administration returned to baseline after EtOH access was terminated (n=3). Effects of DA receptor antagonists on cocaine self-administration were not consistently altered after EtOH consumption, but the ability of quinpirole to induce yawning was enhanced in two of three monkeys. Acute EtOH infusions only decreased self-administration of lower cocaine doses. Taken together, the data suggest that long-term EtOH exposure can increase sensitivity to cocaine, possibly by increasing D3 receptor sensitivity. Data do not support a role for acute pharmacological interactions in promoting cocaine/EtOH co-abuse. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Analysis of performance losses of direct ethanol fuel cells with the aid of a reference electrode

    NASA Astrophysics Data System (ADS)

    Li, Guangchun; Pickup, Peter G.

    The performances of direct ethanol fuel cells with different anode catalysts, different ethanol concentrations, and at different operating temperatures have been studied. The performance losses of the cell have been separated into individual electrode performance losses with the aid of a reference electrode, ethanol crossover has been quantified, and CO 2 and acetic acid production have been measured by titration. It has been shown that the cell performance strongly depends on the anode catalyst, ethanol concentration, and operating temperature. It was found that the cathode and anode exhibit different dependences on ethanol concentration and operating temperature. The performance of the cathode is very sensitive to the rate of ethanol crossover. Product analysis provides insights into the mechanisms of electro-oxidation of ethanol.

  14. Assessing contaminant sensitivity of endangered and threatened aquatic species: Part I. Acute toxicity of five chemicals

    USGS Publications Warehouse

    Dwyer, F.J.; Mayer, F.L.; Sappington, L.C.; Buckler, D.R.; Bridges, C.M.; Greer, I.E.; Hardesty, D.K.; Henke, C.E.; Ingersoll, C.G.; Kunz, J.L.; Whites, D.W.; Augspurger, T.; Mount, D.R.; Hattala, K.; Neuderfer, G.N.

    2005-01-01

    Assessment of contaminant impacts to federally identified endangered, threatened and candidate, and state-identified endangered species (collectively referred to as "listed" species) requires understanding of a species' sensitivities to particular chemicals. The most direct approach would be to determine the sensitivity of a listed species to a particular contaminant or perturbation. An indirect approach for aquatic species would be application of toxicity data obtained from standard test procedures and species commonly used in laboratory toxicity tests. Common test species (fathead minnow, Pimephales promelas; sheepshead minnow, Cyprinodon variegatus; and rainbow trout, Oncorhynchus mykiss) and 17 listed or closely related species were tested in acute 96-hour water exposures with five chemicals (carbaryl, copper, 4-nonylphenol, pentachlorophenol, and permethrin) representing a broad range of toxic modes of action. No single species was the most sensitive to all chemicals. For the three standard test species evaluated, the rainbow trout was more sensitive than either the fathead minnow or sheepshead minnow and was equal to or more sensitive than listed and related species 81% of the time. To estimate an LC50 for a listed species, a factor of 0.63 can be applied to the geometric mean LC50 of rainbow trout toxicity data, and more conservative factors can be determined using variance estimates (0.46 based on 1 SD of the mean and 0.33 based on 2 SD of the mean). Additionally, a low- or no-acute effect concentration can be estimated by multiplying the respective LC50 by a factor of approximately 0.56, which supports the United States Environmental Protection Agency approach of multiplying the final acute value by 0.5 (division by 2). When captive or locally abundant populations of listed fish are available, consideration should be given to direct testing. When direct toxicity testing cannot be performed, approaches for developing protective measures using common test

  15. Consumer Choice of E85 Denatured Ethanol Fuel Blend: Price Sensitivity and Cost of Limited Fuel Availability

    DOE PAGES

    Liu, Changzheng; Greene, David

    2014-12-01

    The promotion of greater use of E85, a fuel blend of 85% denatured ethanol, by flex-fuel vehicle owners is an important means of complying with the Renewable Fuel Standard 2. A good understanding of factors affecting E85 demand is necessary for effective policies that promote E85 and for developing models that forecast E85 sales in the United States. In this paper, the sensitivity of aggregate E85 demand to E85 and gasoline prices is estimated, as is the relative availability of E85 versus gasoline. The econometric analysis uses recent data from Minnesota, North Dakota, and Iowa. The more recent data allowmore » a better estimate of nonfleet demand and indicate that the market price elasticity of E85 choice is substantially higher than previously estimated.« less

  16. Protectiveness of species sensitivity distribution hazard concentrations for acute toxicity used in endangered species risk assessment.

    PubMed

    Raimondo, Sandy; Vivian, Deborah N; Delos, Charles; Barron, Mace G

    2008-12-01

    A primary objective of threatened and endangered species conservation is to ensure that chemical contaminants and other stressors do not adversely affect listed species. Assessments of the ecological risks of chemical exposures to listed species often rely on the use of surrogate species, safety factors, and species sensitivity distributions (SSDs) of chemical toxicity; however, the protectiveness of these approaches can be uncertain. We comprehensively evaluated the protectiveness of SSD first and fifth percentile hazard concentrations (HC1, HC5) relative to the application of safety factors using 68 SSDs generated from 1,482 acute (lethal concentration of 50%, or LC50) toxicity records for 291 species, including 24 endangered species (20 fish, four mussels). The SSD HC5s and HCls were lower than 97 and 99.5% of all endangered species mean acute LC50s, respectively. The HC5s were significantly less than the concentrations derived from applying safety factors of 5 and 10 to rainbow trout (Oncorhynchus mykiss) toxicity data, and the HCls were generally lower than the concentrations derived from a safety factor of 100 applied to rainbow trout toxicity values. Comparison of relative sensitivity (SSD percentiles) of broad taxonomic groups showed that crustaceans were generally the most sensitive taxa and taxa sensitivity was related to chemical mechanism of action. Comparison of relative sensitivity of narrow fish taxonomic groups showed that standard test fish species were generally less sensitive than salmonids and listed fish. We recommend the use of SSDs as a distribution-based risk assessment approach that is generally protective of listed species.

  17. The slowpoke gene is necessary for rapid ethanol tolerance in Drosophila.

    PubMed

    Cowmeadow, R B; Krishnan, H R; Atkinson, N S

    2005-10-01

    Ethanol is one of the most commonly used drugs in the world. We are interested in the compensatory mechanisms used by the nervous system to counter the effects of ethanol intoxication. Recently, the slowpoke BK-type calcium-activated potassium channel gene has been shown to be involved in ethanol sensitivity in Caenorhabditis elegans and in rapid tolerance to the anesthetic benzyl alcohol in Drosophila. We used Drosophila mutants to investigate the role of slowpoke in rapid tolerance to sedation with ethanol vapor. Rapid tolerance was defined as a reduction in the sedative phase caused by a single previous sedation. The ethanol and water contents of flies were measured to determine if pharmacodynamic changes could account for tolerance. A saturated ethanol air stream caused sedation in <20 min and resulted in rapid tolerance that was apparent 4 hr after sedation. Two independently isolated null mutations in the slowpoke gene eliminated the capacity for tolerance. In addition, a third mutation that blocked expression specifically in the nervous system also blocked rapid tolerance. Water measurements showed that both ethanol and mock sedation caused equivalent dehydration. Furthermore, a single prior exposure to ethanol did not cause a change in the ethanol clearance rate. Rapid tolerance, measured as a reduction in the duration of sedation, is a pharmacokinetic response to ethanol that does not occur without slowpoke expression in the nervous system in Drosophila. The slowpoke channel must be involved in triggering or producing a homeostatic mechanism that opposes the sedative effects of ethanol.

  18. ZnO nanomaterials based surface acoustic wave ethanol gas sensor.

    PubMed

    Wu, Y; Li, X; Liu, J H; He, Y N; Yu, L M; Liu, W H

    2012-08-01

    ZnO nanomaterials based surface acoustic wave (SAW) gas sensor has been investigated in ethanol environment at room temperature. The ZnO nanomaterials have been prepared through thermal evaporation of high-purity zinc powder. The as-prepared ZnO nanomaterials have been characterized with scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray Diffraction (XRD) techniques. The results indicate that the obtained ZnO nanomaterials, including many types of nanostructures such as nanobelts, nanorods, nanowires as well as nanosheets, are wurtzite with hexagonal structure and well-crystallized. The SAW sensor coated with the nanostructured ZnO materials has been tested in ethanol gas of various concentrations at room temperature. A network analyzer is used to monitor the change of the insertion loss of the SAW sensor when exposed to ethanol gas. The insertion loss of the SAW sensor varies significantly with the change of ethanol concentration. The experimental results manifest that the ZnO nanomaterials based SAW ethanol gas sensor exhibits excellent sensitivity and good short-term reproducibility at room temperature.

  19. Aversive effects of ethanol in adolescent versus adult rats: potential causes and implication for future drinking.

    PubMed

    Schramm-Sapyta, Nicole L; DiFeliceantonio, Alexandra G; Foscue, Ethan; Glowacz, Susan; Haseeb, Naadeyah; Wang, Nancy; Zhou, Cathy; Kuhn, Cynthia M

    2010-12-01

    Many people experiment with alcohol and other drugs of abuse during their teenage years. Epidemiological evidence suggests that younger initiates into drug taking are more likely to develop problematic drug seeking behavior, including binge and other high-intake behaviors. The level of drug intake for any individual depends on the balance of rewarding and aversive effects of the drug in that individual. Multiple rodent studies have demonstrated that aversive effects of drugs of abuse are reduced in adolescent compared to adult animals. In this study, we addressed 2 key questions: First, do reduced aversive effects of ethanol in younger rats correlate with increased ethanol consumption? Second, are the reduced aversive effects in adolescents attributable to reduced sensitivity to ethanol's physiologic effects? Adolescent and adult rats were tested for ethanol conditioned taste aversion (CTA) followed by a voluntary drinking period, including postdeprivation consumption. Multivariate regression was used to assess correlations. In separate experiments, adolescent and adult rats were tested for their sensitivity to the hypothermic and sedative effects of ethanol, and for blood ethanol concentrations (BECs). We observed that in adolescent rats but not adults, taste aversion was inversely correlated with postdeprivation consumption. Adolescents also exhibited a greater increase in consumption after deprivation than adults. Furthermore, the age difference in ethanol CTA was not attributable to differences in hypothermia, sedation, or BECs. These results suggest that during adolescence, individuals that are insensitive to aversive effects are most likely to develop problem drinking behaviors. These results underscore the importance of the interaction between developmental stage and individual variation in sensitivity to alcohol. Copyright © 2010 by the Research Society on Alcoholism.

  20. Behavioral and biochemical effects of ethanol withdrawal in zebrafish.

    PubMed

    da Silva Chaves, Suianny Nayara; Felício, Gabriel Rocha; Costa, Bruna Patrícia Dutra; de Oliveira, Witallo Etevaldo Araújo; Lima-Maximino, Monica Gomes; Siqueira Silva, Diógenes Henrique de; Maximino, Caio

    2018-06-01

    Chronic alcohol use induces adaptations and toxicity that can induce symptoms of anxiety, autonomic hyperarousal, and epileptic seizures when alcohol is removed (withdrawal syndrome). Zebrafish has recently gained wide attention as a behavioral model to study the neurobehavioral effects of acute and chronic alcohol use, including withdrawal. The literature, however, is very contradictory on findings regarding withdrawal effects, with some studies reporting increased anxiety, while others report no effect. A meta-analytic approach was taken to find the sources of this heterogeneity, and ethanol concentration during exposure and exposure duration were found to be the main sources of variation. A conceptual replication was also made using continuous exposure for 16 days in waterborne ethanol (0.5%) and assessing anxiety-like behavior in the light/dark test after 60 min withdrawal. Withdrawal was shown to reduce preference for darkness, consistent with decreased anxiety, but to increase risk assessment, consistent with increased anxiety. Animals were also subjected to the withdrawal protocol and injected with pilocarpine in a sub-convulsive dose to assess susceptibility to epileptic seizure-like behavior. The protocol was sufficient to increase susceptibility to epileptic seizure-like behavior in animals exposed to ethanol. Finally, withdrawal also decreased catalase activity in the brain, but not in the head kidney, suggesting mechanisms associated with the behavioral effects of ethanol withdrawal. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Ethanol modulates the VR-1 variant amiloride-insensitive salt taste receptor. II. Effect on chorda tympani salt responses.

    PubMed

    Lyall, Vijay; Heck, Gerard L; Phan, Tam-Hao T; Mummalaneni, Shobha; Malik, Shahbaz A; Vinnikova, Anna K; Desimone, John A

    2005-06-01

    The effect of ethanol on the amiloride- and benzamil (Bz)-insensitive salt taste receptor was investigated by direct measurement of intracellular Na(+) activity ([Na(+)](i)) using fluorescence imaging in polarized fungiform taste receptor cells (TRCs) and by chorda tympani (CT) taste nerve recordings. CT responses to KCl and NaCl were recorded in Sprague-Dawley rats, and in wild-type (WT) and vanilloid receptor-1 (VR-1) knockout mice (KO). CT responses were monitored in the presence of Bz, a specific blocker of the epithelial Na(+) channel (ENaC). CT responses were also recorded in the presence of agonists (resiniferatoxin and elevated temperature) and antagonists (capsazepine and SB-366791) of VR-1 that similarly modulate the Bz-insensitive VR-1 variant salt taste receptor. In the absence of mineral salts, ethanol induced a transient decrease in TRC volume and elicited only transient phasic CT responses. In the presence of mineral salts, ethanol increased the apical cation flux in TRCs without a change in volume, increased transepithelial electrical resistance across the tongue, and elicited CT responses that were similar to salt responses, consisting of both a phasic component and a sustained tonic component. At concentrations <50%, ethanol enhanced responses to KCl and NaCl, while at ethanol concentrations >50%, those CT responses were inhibited. Resiniferatoxin and elevated temperature increased the sensitivity of the CT response to ethanol in salt-containing media, and SB-366791 inhibited the effect of ethanol, resiniferatoxin, and elevated temperature on the CT responses to mineral salts. VR-1 KO mice demonstrated no Bz-insensitive CT response to NaCl and no sensitivity to ethanol. We conclude that ethanol increases salt taste sensitivity by its direct action on the Bz-insensitive VR-1 variant salt taste receptor.

  2. Voluntary ethanol intake predicts κ-opioid receptor supersensitivity and regionally distinct dopaminergic adaptations in macaques.

    PubMed

    Siciliano, Cody A; Calipari, Erin S; Cuzon Carlson, Verginia C; Helms, Christa M; Lovinger, David M; Grant, Kathleen A; Jones, Sara R

    2015-04-15

    The dopaminergic projections from the ventral midbrain to the striatum have long been implicated in mediating motivated behaviors and addiction. Previously it was demonstrated that κ-opioid receptor (KOR) signaling in the striatum plays a critical role in the increased reinforcing efficacy of ethanol following ethanol vapor exposure in rodent models. Although rodents have been used extensively to determine the neurochemical consequences of chronic ethanol exposure, establishing high levels of voluntary drinking in these models has proven difficult. Conversely, nonhuman primates exhibit similar intake and pattern to humans in regard to drinking. Here we examine the effects of chronic voluntary ethanol self-administration on dopamine neurotransmission and the ability of KORs to regulate dopamine release in the dorsolateral caudate (DLC) and nucleus accumbens (NAc) core. Using voltammetry in brain slices from cynomolgus macaques after 6 months of ad libitum ethanol drinking, we found increased KOR sensitivity in both the DLC and NAc. The magnitude of ethanol intake predicted increases in KOR sensitivity in the NAc core, but not the DLC. Additionally, ethanol drinking increased dopamine release and uptake in the NAc, but decreased both of these measures in the DLC. These data suggest that chronic daily drinking may result in regionally distinct disruptions of striatal outputs. In concert with previous reports showing increased KOR regulation of drinking behaviors induced by ethanol exposure, the strong relationship between KOR activity and voluntary ethanol intake observed here gives further support to the hypothesis that KORs may provide a promising pharmacotherapeutic target in the treatment of alcoholism. Copyright © 2015 the authors 0270-6474/15/355959-10$15.00/0.

  3. α6β2 nicotinic acetylcholine receptors influence locomotor activity and ethanol consumption.

    PubMed

    Kamens, Helen M; Peck, Colette; Garrity, Caitlin; Gechlik, Alex; Jenkins, Brenita C; Rajan, Akshat

    2017-06-01

    Nicotinic acetylcholine receptors (nAChRs) in the mesolimbic dopamine system have been implicated in ethanol behaviors. In particular, work in genetically engineered mice has demonstrated that α6-containing nAChRs are involved in ethanol consumption and sedation. A limitation of these studies is that the alteration in the receptor was present throughout development. The recently described α6β2 antagonist, N,N-decane-1,10-diyl-bis-3-picolinium diiodide (bPiDI), now makes it possible to test for the involvement of these receptors using a pharmacological approach. The aim of this study was to examine the role of α6β2 nAChRs in ethanol behaviors using a pharmacological approach. Adolescent C57BL/6J mice were treated with bPiDI 30 min prior to testing the mice for binge-like ethanol consumption in the drinking-in-the-dark (DID) test, ethanol-induced motor incoordination using the balance beam, and ethanol-induced sedation using the Loss of Righting Reflex (LORR) paradigm. Adolescent animals were chosen because they express a high amount of α6 mRNA relative to adult animals. Control studies were also performed to determine the effect of bPiDI on locomotor activity and ethanol metabolism. Female mice treated with 20 mg/kg bPiDI had reduced locomotor activity compared to saline-treated animals during the first 30 min following an acute injection. Pretreatment with the α6β2 antagonist reduced adolescent ethanol consumption but also reduced saccharin consumption. No significant effects were observed on ethanol-induced ataxia, sedation, or metabolism. This study provides evidence that α6β2 nAChRs are involved in locomotor activity as well as ethanol and saccharin consumption in adolescent animals. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Establishment of a methodology for investigating protectants against ethanol-induced hepatotoxicity.

    PubMed

    Ruan, Xueqing; Shen, Chong; Meng, Qin

    2010-05-01

    Ethanol-induced liver injury has been extensively reported in clinic, but still lacks an efficient in vitro platform for investigating its hepatotoxicity and protectants. This study aimed to establish a methodology on the culture conditions regarding the sealability against evaporation of ethanol, culture medium and 2D/3D culture of hepatocytes. Based on the experimental findings, it was indicated that the ethanol evaporation from culture plates was a severe problem reducing its toxicity in hepatocyte. According to the detected ethanol toxic response marked by reduced cell viability, 3D cultured hepatocytes in gel entrapment were suggested to be better than 2D hepatocyte in monolayer, but the cultures in either William's Medium E or DMEM exhibited comparable sensitivity to ethanol toxicity. Subsequently, 3D cultured hepatocytes with Parafilm sealing were systematically illustrated to well reflect the ethanol-induced lipid accumulation, reactive oxygen species/malondialdehyde generation, glutathione depletion and cytochrome 2E1 induction. Finally, such hepatocyte models were proposed as a platform for screening of herbal component against ethanol hepatotoxicity. Nano-silibinin, for the first time, found to perform significant protection against ethanol-induced hepatotoxicity while silibinin in normal particles could not inhibit such toxicity. This protection of nano-silibinin might relate to its improved bioavailability compared to normal insoluble silibinin and could act as an anti-oxidative and anti-steatosis agent against ethanol-induced hepatotoxicity. Copyright (c) 2010. Published by Elsevier Ltd.

  5. Study of sensing properties of SnO2 prepared by spray-pyrolysis deposition towards ethanol gas

    NASA Astrophysics Data System (ADS)

    Saadaldin, Nasser M.; Hussain, Nabiha; AlZouabi, Abla

    2018-05-01

    Ethanol is widely used in all kinds of products with direct exposure to the human skin (e.g. medicinal products like hand disinfectants in occupational settings, cosmetics like hairsprays or mouthwashes, in this study, thin films of (SnO2) were deposited by using the thermal spray method (SPD) on quartz at 450°C substrate temperature using tin chloride SnCl2.2H2O, (1.0M). A gas sensor was constructed with the prepared SnO2, used to detect ethanol gas and some other gases. The films were characterized by X-ray diffraction (XRD), and scanning electron microscopy (SEM). The grain size was calculated the results showed nanostructure polycrystalline and crystallize in a tetragonal, S.G:P42/m nm, reaching grain Size approximately 27nm. The sensing properties of the films were studied towards ethanol at different concentrations ranging within (1-200 ppm,) the results showed that the sensitivity of the film increases with the concentration of ethanol, the best operating temperature reached about 300 °C, We studied the sensing properties of the films towards Ethanol alcohol gas, The first and foremost concerns of topical ethanol applications for public health are its carcinogenic effects, high selectivity and sensitivity of the film towards ethanol gas was found compared to other tested toxic gases such as methanol gas, acetone and methylbenzene. Yet an upto-date risk assessment of ethanol application on the skin and inside the oral cavity is currently lacking.

  6. Differences in sensitivity to ethanol-induced conditioned taste aversions emerge after pre- or post-pubertal gonadectomy in male and female rats.

    PubMed

    Morales, Melissa; Spear, Linda P

    2013-03-01

    We have previously demonstrated that gonadectomy either prior to (early) or after (late) puberty elevated ethanol consumption in males to levels similar to intact adult females-effects that were attenuated by testosterone replacement. To assess whether alterations in the aversive effects of ethanol might contribute to gonadectomy-associated increases in ethanol intake in males, the present study examined the impact of gonadectomy on conditioned taste aversions (CTA) to ethanol in male and female Sprague-Dawley rats. Animals were gonadectomized, received sham surgery (SH) or non-manipulated (NM) on postnatal (P) day 23 (early) or 67 (late) and tested for CTA to ethanol in adulthood. Water-deprived rats were given 1 hr access every-other-day to 10% sucrose followed by an injection of ethanol (0, 1g/kg) for 5 test sessions. Test data were analyzed to determine the first day significant aversions emerged in each ethanol group (i.e., sucrose intakes significantly less than their saline-injected counterparts). Early gonadectomized males acquired the CTA more rapidly than did early SH and NM males (day 1 vs 3 and 4 respectively), whereas a gonadectomy-associated enhancement in ethanol CTA was not evident in late males. Among females, gonadectomy had little impact on ethanol-induced CTA, with females in all groups showing an aversion by the first or second day, regardless of surgery age. These data suggest that previously observed elevations in ethanol intake induced by either pre- or post-pubertal gonadectomy in males are not related simply to gonadectomy-induced alterations in the aversive effects of ethanol indexed via CTA. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Alcohol-induced tolerance and physical dependence in mice with ethanol insensitive α1 GABAA receptors

    PubMed Central

    Werner, David F.; Swihart, Andrew R.; Ferguson, Carolyn; Lariviere, William R.; Harrison, Neil L.; Homanics, Gregg E.

    2009-01-01

    Background Although many people consume alcohol (ethanol), it remains unknown why some become addicted. Elucidating the molecular mechanisms of tolerance and physical dependence (withdrawal) may provide insight into alcohol addiction. While the exact molecular mechanisms of ethanol action are unclear, γ-aminobutyric acid type A receptors (GABAA-Rs) have been extensively implicated in ethanol action. The α1 GABAA-R subunit is associated with tolerance and physical dependence, but its exact role remains unknown. In this report, we tested the hypothesis that α1-GABAA-Rs mediate in part these effects of ethanol. Methods Ethanol-induced behavioral responses related to tolerance and physical dependence were investigated in knockin mice that have ethanol-insensitive α1 GABAA-Rs and wildtype controls. Acute functional tolerance (AFT) was assessed using the stationary dowel and loss of righting reflex assays. Chronic tolerance was assessed on the loss of righting reflex, fixed speed rotarod, hypothermia, and radiant tail flick assays following ten consecutive days of ethanol exposure. Withdrawal-related hyperexcitability was assessed by handling-induced convulsions following 3 cycles of ethanol vapor exposure/withdrawal. Immunoblots were used to assess α1 protein levels. Results Compared to controls, knockin mice displayed decreased AFT and chronic tolerance to ethanol-induced motor ataxia, and also displayed heightened ethanol-withdrawal hyperexcitability. No differences between wildtype and knockin mice were seen in other ethanol-induced behavioral measures. Following chronic exposure to ethanol, control mice displayed reductions in α1 protein levels, but knockins did not. Conclusions We conclude that α1-GABAA-Rs play a role in tolerance to ethanol-induced motor ataxia and withdrawal-related hyperexcitability. However, other aspects of behavioral tolerance and physical dependence do not rely on α1-containing GABAA-Rs. PMID:19032579

  8. Ethanol Basics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2015-01-30

    Ethanol is a widely-used, domestically-produced renewable fuel made from corn and other plant materials. More than 96% of gasoline sold in the United States contains ethanol. Learn more about this alternative fuel in the Ethanol Basics Fact Sheet, produced by the U.S. Department of Energy's Clean Cities program.

  9. Aeroallergen sensitization predicts acute chest syndrome in children with sickle cell anaemia.

    PubMed

    Willen, Shaina M; Rodeghier, Mark; Strunk, Robert C; Bacharier, Leonard B; Rosen, Carol L; Kirkham, Fenella J; DeBaun, Michael R; Cohen, Robyn T

    2018-02-01

    Asthma is associated with higher rates of acute chest syndrome (ACS) and vaso-occlusive pain episodes among children with sickle cell anaemia (SCA). Aeroallergen sensitization is a risk factor for asthma. We hypothesized that aeroallergen sensitization is associated with an increased incidence of hospitalizations for ACS and pain. Participants in a multicentre, longitudinal cohort study, aged 4-18 years with SCA, underwent skin prick testing to ten aeroallergens. ACS and pain episodes were collected from birth until the end of the follow-up period. The number of positive skin tests were tested for associations with prospective rates of ACS and pain. Multivariable models demonstrated additive effects of having positive skin tests on future rates of ACS (incidence rate ratio (IRR) for each positive test 1·23, 95% confidence interval [CI] 1·11-1·36, P < 0·001). Aeroallergen sensitization was not associated with future pain (IRR 1·14, 95%CI 0·97-1·33, P = 0·11). Our study demonstrated that children with SCA and aeroallergen sensitization are at increased risk for future ACS. Future research is needed to determine whether identification of specific sensitizations and allergen avoidance and treatment reduce the risk of ACS for children with SCA. © 2018 John Wiley & Sons Ltd.

  10. Estimates of Ethanol Exposure in Children from Food not Labeled as Alcohol-Containing

    PubMed Central

    Gorgus, Eva; Hittinger, Maike; Schrenk, Dieter

    2016-01-01

    Abstract Ethanol is widely used in herbal medicines, e.g., for children. Furthermore, alcohol is a constituent of fermented food such as bread or yogurt and “non-fermented” food such as fruit juices. At the same time, exposure to very low levels of ethanol in children is discussed as possibly having adverse effects on psychomotoric functions. Here, we have analyzed alcohol levels in different food products from the German market. It was found that orange, apple and grape juice contain substantial amounts of ethanol (up to 0.77 g/L). Furthermore, certain packed bakery products such as burger rolls or sweet milk rolls contained more than 1.2 g ethanol/100 g. We designed a scenario for average ethanol exposure by a 6-year-old child. Consumption data for the “categories” bananas, bread and bakery products and apple juice were derived from US and German surveys. An average daily exposure of 10.3 mg ethanol/kg body weight (b.w.) was estimated. If a high (acute) consumption level was assumed for one of the “categories,” exposure rose to 12.5–23.3 mg/kg b.w. This amount is almost 2-fold (average) or up to 4-fold (high) higher than the lowest exposure from herbal medicines (6 mg/kg b.w.) suggested to require warning hints for the use in children. PMID:27405361

  11. Ethanol, saccharin, and quinine: early ontogeny of taste responsiveness and intake.

    PubMed

    Kozlov, Andrey P; Varlinskaya, Elena I; Spear, Norman E

    2008-02-01

    Rat pups demonstrate high levels of immediate acceptance of ethanol during the first 2 weeks of postnatal life. Given that the taste of ethanol is most likely perceived by infant rats as a combination of sweet and bitter, high intake of ethanol early in ontogeny may be associated with age-related enhanced responsiveness to the sweet component of ethanol taste, as well as with ontogenetic decreases in sensitivity to its bitter component. Therefore, the present study compared responsiveness to ethanol and solutions with bitter (quinine) and sweet (saccharin) taste in terms of intake and palatability across the first 2 weeks of postnatal life. Characteristic patterns of responsiveness to 10% (v/v) ethanol, 0.1% saccharin, 0.2% quinine, and water in terms of taste reactivity and fluid intake were assessed in rat pups tested on postnatal day (P) 4, 9, or 12 using a new technique of on-line monitoring of fluid flow through a two-channel intraoral cannula. Taste reactivity included analysis of ingestive and aversive responses following six intraoral infusions of the test fluids. This taste reactivity probe was followed by the intake test, in which animals were allowed to voluntarily ingest fluids from an intraoral cannula. Pups of all ages showed more appetitive responses to saccharin and ethanol than to water or quinine. No age-related differences were apparent in taste responsiveness to saccharin and ethanol. However, the age-related pattern of ethanol intake drastically differed from that of saccharin. Intake of saccharin increased from P4 to P9 and decreased substantially by P12, whereas intake of ethanol gradually increased from P4 to P12. Intake of ethanol was significantly lower than intake of saccharin on P9, whereas P12 pups took in more ethanol than saccharin. The findings of the present study indicate ontogenetic dissociations between taste reactivity to ethanol and saccharin and intake of these solutions, and suggest that high acceptance of ethanol early in

  12. Conditional rescue of protein kinase C epsilon regulates ethanol preference and hypnotic sensitivity in adult mice.

    PubMed

    Choi, Doo-Sup; Wang, Dan; Dadgar, Jahan; Chang, Wesley S; Messing, Robert O

    2002-11-15

    Conventional gene targeting is a powerful tool to study the influence of specific genes on behavior. However, conclusions relevant for adult animals are limited by consequences of gene loss during development. Mice lacking protein kinase C epsilon (PKCepsilon) consume less alcohol and show greater acute sensitivity to alcohol than do wild-type mice. There are no selective inhibitors of PKCepsilon that can be administered systemically and cross the blood-brain barrier to test whether these phenotypes result from loss of PKCepsilon during development or in adulthood. Here we used conditional expression of PKCepsilon in the basal forebrain, amygdala, and cerebellum to rescue wild-type responses to alcohol in adult PKCepsilon(-/-) mice. Subsequent suppression of transgenic PKCepsilon restored PKCepsilon(-/-) behaviors. These findings establish that PKCepsilon signaling in the adult brain regulates alcohol consumption and sensitivity. If this extends to humans, then PKCepsilon inhibitors might prove useful as novel therapeutics for alcoholism.

  13. Focused Flow During Infiltration Into Ethanol-Contaminated Unsaturated Porous Media

    NASA Astrophysics Data System (ADS)

    Jazwiec, A.; Smith, J. E.

    2017-12-01

    The increasing commercial and industrial use of ethanol, e.g. in biofuels, has generated increased incidents of vadose zone contamination by way of ethanol spills and releases. This has increased the interest in better understanding behaviors of ethanol in unsaturated porous media and it's multiphase interactions in the vadose zone. This study uses highly controlled laboratory experiments in a 2-D (0.6mx0.6mx0.01m) flow cell to investigate water infiltration behaviors into ethanol-contaminated porous media. Ethanol and water were applied by either constant head or constant flux methods onto the surface of sands homogenously packed into the flow cell. The constant flux experiments at both low and high application rates were conducted using a rainulator with a row of hypodermic needles connected to a peristaltic pump. The constant head experiments were conducted using an 8cm diameter tension disk infiltrometer set to both low and high tensions. The presence of ethanol contamination generated solute-dependent capillarity induced focused flow (SCIFF) of water infiltration, which was primarily due to decreases in interfacial tensions at the air-liquid interfaces in the unsaturated sands as a function of ethanol concentration. SCIFF was clearly expressed as an unsaturated water flow phenomenon comprised of narrowly focused vertical flow fingers of water within the initially ethanol contaminated porous media. Using analyses of photos and video, comparisons were made between constant flux and constant head application methods. Further comparisons were made between low and high infiltration rates and the two sand textures used. A high degree of sensitivity to minor heterogeneity in relatively homogeneous sands was also observed. The results of this research have implications for rainfall infiltration into ethanol contaminated vadose zones expressing SCIFF, including implications for associated mass fluxes and the nature of flushing of ethanol from the unsaturated zone to

  14. Ethanol-Induced Effects on Sting Extension Response and Punishment Learning in the Western Honey Bee (Apis mellifera)

    PubMed Central

    Giannoni-Guzmán, Manuel A.; Giray, Tugrul; Agosto-Rivera, Jose Luis; Stevison, Blake K.; Freeman, Brett; Ricci, Paige; Brown, Erika A.; Abramson, Charles I.

    2014-01-01

    Acute ethanol administration is associated with sedation and analgesia as well as behavioral disinhibition and memory loss but the mechanisms underlying these effects remain to be elucidated. During the past decade, insects have emerged as important model systems to understand the neural and genetic bases of alcohol effects. However, novel assays to assess ethanol's effects on complex behaviors in social or isolated contexts are necessary. Here we used the honey bee as an especially relevant model system since bees are typically exposed to ethanol in nature when collecting standing nectar crop of flowers, and there is recent evidence for independent biological significance of this exposure for social behavior. Bee's inhibitory control of the sting extension response (SER) and a conditioned-place aversion assay were used to study ethanol effects on analgesia, behavioral disinhibition, and associative learning. Our findings indicate that although ethanol, in a dose-dependent manner, increases SER thresholds (analgesic effects), it disrupts the ability of honey bees to inhibit SER and to associate aversive stimuli with their environment. These results suggest that ethanol's effects on analgesia, behavioral disinhibition and associative learning are common across vertebrates and invertebrates. These results add to the use of honey bees as an ethanol model to understand ethanol's effects on complex, socially relevant behaviors. PMID:24988309

  15. Stress sensitizes the brain: increased processing of unpleasant pictures after exposure to acute stress.

    PubMed

    Weymar, Mathias; Schwabe, Lars; Löw, Andreas; Hamm, Alfons O

    2012-07-01

    A key component of acute stress is a surge in vigilance that enables a prioritized processing of highly salient information to promote the organism's survival. In this study, we investigated the neural effects of acute stress on emotional picture processing. ERPs were measured during a deep encoding task, in which 40 male participants categorized 50 unpleasant and 50 neutral pictures according to arousal and valence. Before picture encoding, participants were subjected either to the Socially Evaluated Cold Pressor Test (SECPT) or to a warm water control procedure. The exposure to the SECPT resulted in increased subjective and autonomic (heart rate and blood pressure) stress responses relative to the control condition. Viewing of unpleasant relative to neutral pictures evoked enhanced late positive potentials (LPPs) over centro-parietal scalp sites around 400 msec after picture onset. Prior exposure to acute stress selectively increased the LPPs for unpleasant pictures. Moreover, the LPP magnitude for unpleasant pictures following the SECPT was positively associated with incidental free recall performance 24 hr later. The present results suggest that acute stress sensitizes the brain for increased processing of cues in the environment, particularly priming the processing of unpleasant cues. This increased processing is related to later long-term memory performance.

  16. Acute sensitivity of a broad range of freshwater mussels to chemicals with different modes of toxic action.

    PubMed

    Wang, Ning; Ivey, Christopher D; Ingersoll, Christopher G; Brumbaugh, William G; Alvarez, David; Hammer, Edward J; Bauer, Candice R; Augspurger, Tom; Raimondo, Sandy; Barnhart, M Christopher

    2017-03-01

    Freshwater mussels, one of the most imperiled groups of animals in the world, are generally underrepresented in toxicity databases used for the development of ambient water quality criteria and other environmental guidance values. Acute 96-h toxicity tests were conducted to evaluate the sensitivity of 5 species of juvenile mussels from 2 families and 4 tribes to 10 chemicals (ammonia, metals, major ions, and organic compounds) and to screen 10 additional chemicals (mainly organic compounds) with a commonly tested mussel species, fatmucket (Lampsilis siliquoidea). In the multi-species study, median effect concentrations (EC50s) among the 5 species differed by a factor of ≤2 for chloride, potassium, sulfate, and zinc; a factor of ≤5 for ammonia, chromium, copper, and nickel; and factors of 6 and 12 for metolachlor and alachlor, respectively, indicating that mussels representing different families or tribes had similar sensitivity to most of the tested chemicals, regardless of modes of action. There was a strong linear relationship between EC50s for fatmucket and the other 4 mussel species across the 10 chemicals (r 2  = 0.97, slope close to 1.0), indicating that fatmucket was similar to other mussel species; thus, this commonly tested species can be a good surrogate for protecting other mussels in acute exposures. The sensitivity of juvenile fatmucket among different populations or cultured from larvae of wild adults and captive-cultured adults was also similar in acute exposures to copper or chloride, indicating captive-cultured adult mussels can reliably be used to reproduce juveniles for toxicity testing. In compiled databases for all freshwater species, 1 or more mussel species were among the 4 most sensitive species for alachlor, ammonia, chloride, potassium, sulfate, copper, nickel, and zinc; therefore, the development of water quality criteria and other environmental guidance values for these chemicals should reflect the sensitivity of mussels. In

  17. Reduced ultrafine particle levels in São Paulo's atmosphere during shifts from gasoline to ethanol use.

    PubMed

    Salvo, Alberto; Brito, Joel; Artaxo, Paulo; Geiger, Franz M

    2017-07-18

    Despite ethanol's penetration into urban transportation, observational evidence quantifying the consequence for the atmospheric particulate burden during actual, not hypothetical, fuel-fleet shifts, has been lacking. Here we analyze aerosol, meteorological, traffic, and consumer behavior data and find, empirically, that ambient number concentrations of 7-100-nm diameter particles rise by one-third during the morning commute when higher ethanol prices induce 2 million drivers in the real-world megacity of São Paulo to substitute to gasoline use (95% confidence intervals: +4,154 to +13,272 cm -3 ). Similarly, concentrations fall when consumers return to ethanol. Changes in larger particle concentrations, including US-regulated PM2.5, are statistically indistinguishable from zero. The prospect of increased biofuel use and mounting evidence on ultrafines' health effects make our result acutely policy relevant, to be weighed against possible ozone increases. The finding motivates further studies in real-world environments. We innovate in using econometrics to quantify a key source of urban ultrafine particles.The biofuel ethanol has been introduced into urban transportation in many countries. Here, by measuring aerosols in São Paulo, the authors find that high ethanol prices coincided with an increase in harmful nanoparticles by a third, as drivers switched from ethanol to cheaper gasoline, showing a benefit of ethanol.

  18. Chronic intracerebroventricular infusion of nociceptin/orphanin FQ increases food and ethanol intake in alcohol-preferring rats.

    PubMed

    Cifani, Carlo; Guerrini, Remo; Massi, Maurizio; Polidori, Carlo

    2006-11-01

    Central administration of low doses of nociceptin/orphanin FQ (N/OFQ), the endogenous ligand of the opioid-like orphan receptor NOP, have been shown to reduce ethanol consumption, ethanol-induced conditioned place preference and stress-induced reinstatement of alcohol-seeking behavior in alcohol preferring rats. The present study evaluated the effect of continuous (7 days) lateral brain ventricle infusions of N/OFQ (0, 0.25, 1, 4, and 8 microg/h), by means of osmotic mini-pumps, on 10% ethanol intake in Marchigian-Sardinian alcohol-preferring (msP) rats provided 2h or 24h access to it. N/OFQ dose-dependently increased food intake in msP rats. On the other hand, in contrast to previous studies with acute injections, continuous lateral brain ventricle infusion of high doses of N/OFQ increased ethanol consumption when the ethanol solution was available for 24h/day or 2h/day. The present study demonstrates that continuous activation of the opioidergic N/OFQ receptor does not blunt the reinforcing effects of ethanol. Moreover, the data suggest that continuous activation of the opioidergic N/OFQ receptor is not a suitable way to reduce alcohol abuse.

  19. Fetal ethanol exposure increases ethanol intake by making it smell and taste better

    PubMed Central

    Youngentob, Steven L.; Glendinning, John I.

    2009-01-01

    Human epidemiologic studies reveal that fetal ethanol exposure is highly predictive of adolescent ethanol avidity and abuse. Little is known about how fetal exposure produces these effects. It is hypothesized that fetal ethanol exposure results in stimulus-induced chemosensory plasticity. Here, we asked whether gestational ethanol exposure increases postnatal ethanol avidity in rats by altering its taste and odor. Experimental rats were exposed to ethanol in utero via the dam's diet, whereas control rats were either pair-fed an iso-caloric diet or given food ad libitum. We found that fetal ethanol exposure increased the taste-mediated acceptability of both ethanol and quinine hydrochloride (bitter), but not sucrose (sweet). Importantly, a significant proportion of the increased ethanol acceptability could be attributed directly to the attenuated aversion to ethanol's quinine-like taste quality. Fetal ethanol exposure also enhanced ethanol intake and the behavioral response to ethanol odor. Notably, the elevated intake of ethanol was also causally linked to the enhanced odor response. Our results demonstrate that fetal exposure specifically increases ethanol avidity by, in part, making it taste and smell better. More generally, they establish an epigenetic chemosensory mechanism by which maternal patterns of drug use can be transferred to offspring. Given that many licit (e.g., tobacco products) and illicit (e.g., marijuana) drugs have noteworthy chemosensory components, our findings have broad implications for the relationship between maternal patterns of drug use, child development, and postnatal vulnerability. PMID:19273846

  20. Fetal ethanol exposure increases ethanol intake by making it smell and taste better.

    PubMed

    Youngentob, Steven L; Glendinning, John I

    2009-03-31

    Human epidemiologic studies reveal that fetal ethanol exposure is highly predictive of adolescent ethanol avidity and abuse. Little is known about how fetal exposure produces these effects. It is hypothesized that fetal ethanol exposure results in stimulus-induced chemosensory plasticity. Here, we asked whether gestational ethanol exposure increases postnatal ethanol avidity in rats by altering its taste and odor. Experimental rats were exposed to ethanol in utero via the dam's diet, whereas control rats were either pair-fed an iso-caloric diet or given food ad libitum. We found that fetal ethanol exposure increased the taste-mediated acceptability of both ethanol and quinine hydrochloride (bitter), but not sucrose (sweet). Importantly, a significant proportion of the increased ethanol acceptability could be attributed directly to the attenuated aversion to ethanol's quinine-like taste quality. Fetal ethanol exposure also enhanced ethanol intake and the behavioral response to ethanol odor. Notably, the elevated intake of ethanol was also causally linked to the enhanced odor response. Our results demonstrate that fetal exposure specifically increases ethanol avidity by, in part, making it taste and smell better. More generally, they establish an epigenetic chemosensory mechanism by which maternal patterns of drug use can be transferred to offspring. Given that many licit (e.g., tobacco products) and illicit (e.g., marijuana) drugs have noteworthy chemosensory components, our findings have broad implications for the relationship between maternal patterns of drug use, child development, and postnatal vulnerability.