Science.gov

Sample records for acute exercise enhanced

  1. Acute moderate exercise enhances compensatory brain activation in older adults.

    PubMed

    Hyodo, Kazuki; Dan, Ippeita; Suwabe, Kazuya; Kyutoku, Yasushi; Yamada, Yuhki; Akahori, Mitsuya; Byun, Kyeongho; Kato, Morimasa; Soya, Hideaki

    2012-11-01

    A growing number of reports state that regular exercise enhances brain function in older adults. Recently a functional near-infrared spectroscopy (fNIRS) study revealed that an acute bout of moderate exercise enhanced activation of the left dorsolateral prefrontal cortex (L-DLPFC) associated with Stroop interference in young adults. Whether this acute effect is also applicable to older adults was examined. Sixteen older adults performed a color-word matching Stroop task before and after 10 minutes of exercise on a cycle ergometer at a moderate intensity. Cortical hemodynamics of the prefrontal area was monitored with a fNIRS during the Stroop task. We analyzed Stroop interference (incongruent-neutral) as Stroop performance. Though activation for Stroop interference was found in the bilateral prefrontal area before the acute bout of exercise, activation of the right frontopolar area (R-FPA) was enhanced after exercise. In the majority of participants, this coincided with improved performance reflected in Stroop interference results. Thus, an acute bout of moderate exercise improved Stroop performance in older adults, and this was associated with contralateral compensatory activation. PMID:22300952

  2. Cognitive enhancement by transcranial laser stimulation and acute aerobic exercise.

    PubMed

    Hwang, Jungyun; Castelli, Darla M; Gonzalez-Lima, F

    2016-08-01

    This is the first randomized, controlled study comparing the cognitive effects of transcranial laser stimulation and acute aerobic exercise on the same cognitive tasks. We examined whether transcranial infrared laser stimulation of the prefrontal cortex, acute high-intensity aerobic exercise, or the combination may enhance performance in sustained attention and working memory tasks. Sixty healthy young adults were randomly assigned to one of the following four treatments: (1) low-level laser therapy (LLLT) with infrared laser to two forehead sites while seated (total 8 min, 1064 nm continuous wave, 250 mW/cm(2), 60 J/cm(2) per site of 13.6 cm(2)); (2) acute exercise (EX) of high-intensity (total 20 min, with 10-min treadmill running at 85-90 % VO2max); (3) combined treatment (LLLT + EX); or (4) sham control (CON). Participants were tested for prefrontal measures of sustained attention with the psychomotor vigilance task (PVT) and working memory with the delayed match-to-sample task (DMS) before and after the treatments. As compared to CON, both LLLT and EX reduced reaction time in the PVT [F(1.56) = 4.134, p = 0.01, η (2)  = 0.181] and increased the number of correct responses in the DMS [F(1.56) = 4.690, p = 0.005, η (2)  = 0.201], demonstrating a significant enhancing effect of LLLT and EX on cognitive performance. LLLT + EX effects were similar but showed no significantly greater improvement on PVT and DMS than LLLT or EX alone. The transcranial infrared laser stimulation and acute aerobic exercise treatments were similarly effective for cognitive enhancement, suggesting that they augment prefrontal cognitive functions similarly. PMID:27220529

  3. Enhanced vagal baroreflex response during 24 h after acute exercise

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.; Adams, W. C.

    1991-01-01

    We evaluated carotid-cardiac baroreflex responses in eight normotensive men (25-41 yr) on two different test days, each separated by at least 1 wk. On one day, baroreflex response was tested before and at 3, 6, 12, 18, and 24 h after graded supine cycle exercise to volitional exhaustion. On another day, this 24-h protocol was repeated with no exercise (control). Beat-to-beat R-R intervals were measured during external application of graded pressures to the carotid sinuses from 40 to -65 mmHg; changes of R-R intervals were plotted against carotid pressure (systolic pressure minus neck chamber pressure). The maximum slope of the response relationship increased (P less than 0.05) from preexercise to 12 h (3.7 +/- 0.4 to 7.1 +/- 0.7 ms/mmHg) and remained significantly elevated through 24 h. The range of the R-R response was also increased from 217 +/- 24 to 274 +/- 32 ms (P less than 0.05). No significant differences were observed during the control 24-h period. An acute bout of graded exercise designed to elicit exhaustion increases the sensitivity and range of the carotid-cardiac baroreflex response for 24 h and enhances its capacity to buffer against hypotension by increasing heart rate. These results may represent an underlying mechanism that contributes to blood pressure stability after intense exercise.

  4. Anabolic responses to acute and chronic resistance exercise are enhanced when combined with aquatic treadmill exercise.

    PubMed

    Lambert, Brad S; Shimkus, Kevin L; Fluckey, James D; Riechman, Steven E; Greene, Nicholas P; Cardin, Jessica M; Crouse, Stephen F

    2015-02-01

    Aquatic treadmill (ATM) running may simultaneously promote aerobic fitness and enhance muscle growth when combined with resistance training (RT) compared with land-treadmill (LTM) running. Therefore, we examined acute and chronic physiological responses to RT, concurrent RT-LTM, and concurrent RT-ATM. Forty-seven untrained volunteers (men: n = 23, 37 ± 11 yr, 29.6 ± 4.6 kg/m(2); women: n = 24, 38 ± 12 yr, 27.53 ± 6.4 kg/m(2)) from the general population were tested for V̇o2max, body composition, and strength before and after training. All groups performed 12 wk of RT (2 wk, 3 × 8-12 sets at 60 to approximately 80% 1-repetition maximum). The RT-LTM and RT-ATM groups also performed 12 wk of LTM or ATM training (2 wk immediately post-RT and 1 wk in isolation, 60-85% V̇o2max, 250-500 kcal/session). Additionally, 25 subjects volunteered for muscle biopsy prior to and 24 h post-acute exercise before and after training. Stable isotope labeling (70% (2)H2O, 3 ml/kg) was utilized to quantify 24 h post-exercise myofibrillar fractional synthesis rates (myoFSR). Mixed-model ANOVA revealed that RT-ATM but not RT-LTM training produced greater chronic increases in lean mass than RT alone (P < 0.05). RT-LTM training was found to elicit the greatest decreases in percent body fat (-2.79%, P < 0.05). In the untrained state, acute RT-ATM exercise elicited higher 24-h myoFSRs compared with RT (+5.68%/day, P < 0.01) and RT-LTM (+4.08%/day, P < 0.05). Concurrent RT-ATM exercise and training elicit greater skeletal muscle anabolism than RT alone or RT-LTM. PMID:25425002

  5. Self-regulation strategies may enhance the acute effect of exercise on smoking delay.

    PubMed

    Hatzigeorgiadis, Antonis; Pappa, Vassiliki; Tsiami, Anastasia; Tzatzaki, Theodora; Georgakouli, Kalliopi; Zourbanos, Nikos; Goudas, Marios; Chatzisarantis, Nikos; Theodorakis, Yannis

    2016-06-01

    The present study examined the acute effect of a moderate intensity aerobic exercise session combined with self-regulation on smoking delay in physically inactive smokers. Participants were 11 adults (5 males and 6 females) that completed three experimental conditions: control, exercise, and exercise using self-regulation strategies (SR). Following the experimental treatment smoking for the two exercise conditions delayed significantly more than for the control condition; in addition exercise SR delayed smoking marginally more that the plain exercise condition. Findings supported previous research that acute exercise reduces cravings to smoke, and suggests that the use of self-regulation strategies may strengthen exercise for smoking cessation interventions. PMID:26851493

  6. DNA injury is acutely enhanced in response to increasing bulks of aerobic physical exercise.

    PubMed

    Lippi, Giuseppe; Buonocore, Ruggero; Tarperi, Cantor; Montagnana, Martina; Festa, Luca; Danese, Elisa; Benati, Marco; Salvagno, Gian Luca; Bonaguri, Chiara; Roggenbuck, Dirk; Schena, Federico

    2016-09-01

    The aim of this study was to evaluate DNA damage in response to increasing bulks of aerobic physical exercise. Fifteen adult and trained athletes performed four sequential trials with increasing running distance (5-, 10-, 21- and 42-km) in different periods of the year. The γ-H2AX foci parameters were analyzed before and 3h after the end of each trial. The values of all γ-H2AX foci parameters were enhanced after the end of each trial, with values gradually increasing from the 5- to the 42-km trial. Interestingly, a minor increase of γ-H2AX foci was still evident after 5- to 10-km running, but a much higher increase occurred when the running distance exceeded 21km. The generation of DNA injury was then magnified by running up to 42-km. The increase of each γ-H2AX foci parameter was then found to be associated with both running distance and average intensity. In multivariate linear regression analysis, the running distance was significantly associated with average intensity and post-run variation in the percentage of cells with γ-H2AX foci. We can hence conclude that aerobic exercise may generate an acute DNA damage in trained athletes, which is highly dependent upon running distance and average intensity. PMID:27374303

  7. Acute aerobic exercise enhances attentional modulation of somatosensory event-related potentials during a tactile discrimination task.

    PubMed

    Popovich, Christina; Staines, W Richard

    2015-03-15

    Neuroimaging research has shown that acute bouts of moderate intensity aerobic exercise can enhance attention-based neuronal activity in frontal brain regions, namely in the prefrontal cortex (PFC), as well as improve cognitive performance. The circuitry of the PFC is complex with extensive reciprocal corticocortical and thalamocortical connections, yet it remains unclear if aerobic exercise can also assist attentional control over modality-specific sensory cortices. To test this, we used a tactile discrimination task to compare tactile event-related potentials (ERPs) prior to and following an acute bout of moderate intensity aerobic exercise. We hypothesized that exercise preceding performance of the task would result in more efficient sensory gating of irrelevant/non-attended and enhancement of relevant/attended sensory information, respectively. Participants received vibrotactile stimulation to the second and fifth digit on the left hand and reported target stimuli on one digit only. ERP amplitudes for the P50, P100, N140 and long latency positivity (LLP) were quantified for attended and non-attended trials at FC4, C4, CP4 and P4 while P300 amplitudes were quantified in response to attended target stimuli at electrodes FCZ, CZ and CPZ. Results showed no effect of attention on the P50, however, both P100 and LLP amplitudes were significantly greater during attended, task-relevant trials, while the N140 was enhanced for non-attended, task-irrelevant stimuli. Moreover, unattended N140 amplitudes over parietal sites contralateral to stimulation were significantly greater post-exercise versus pre-exercise, while LLP modulation varied with greater unattended amplitudes post-exercise over frontal sites and greater attended amplitudes post-exercise over parietal sites. These results suggest that a single session of moderate intensity aerobic exercise facilitated the sensory gating of task-irrelevant tactile stimuli so that relevant sensory signals could be enhanced at

  8. Acute dietary nitrate supplementation enhances compensatory vasodilation during hypoxic exercise in older adults

    PubMed Central

    Treichler, David P.; Ganger, Charles T.; Schneider, Aaron C.; Ueda, Kenichi

    2014-01-01

    We have previously demonstrated that aging reduces the compensatory vasodilator response during hypoxic exercise due to blunted nitric oxide (NO) signaling. Recent evidence suggests that NO bioavailability can be augmented by dietary nitrate through the nitrate-nitrite pathway. Thus we tested the hypothesis that acute dietary nitrate supplementation increases the compensatory vasodilator response to hypoxic exercise, particularly in older adults. Thirteen young (25 ± 1 yr) and 12 older (64 ± 2 yr) adults performed rhythmic forearm exercise at 20% of maximum voluntary contraction during normoxia and hypoxia (∼80% O2 saturation); both before (control) and 3 h after beetroot juice (BR) consumption. Forearm vascular conductance (FVC; ml·min−1·100 mmHg−1) was calculated from forearm blood flow (ml/min) and blood pressure (mmHg). Compensatory vasodilation was defined as the relative increase in FVC due to hypoxic exercise (i.e., % increase compared with respective normoxic exercise trial). Plasma nitrite was determined from venous blood samples obtained before the control trials and each of the exercise trials (normoxia and hypoxia) after BR. Consumption of BR increased plasma nitrite in both young and older adults (P < 0.001). During the control condition, the compensatory vasodilator response to hypoxic exercise was attenuated in older compared with young adults (3.8 ± 1.7% vs. 14.2 ± 1.2%, P < 0.001). Following BR consumption, compensatory vasodilation did not change in young (13.7 ± 3.3%, P = 0.81) adults but was substantially augmented in older adults (11.4 ± 2.1%, P < 0.01). Our data suggest that acute dietary nitrate supplementation increases the compensatory vasodilator response to hypoxic exercise in older but not young adults. PMID:25414241

  9. Acute dietary nitrate supplementation enhances compensatory vasodilation during hypoxic exercise in older adults.

    PubMed

    Casey, Darren P; Treichler, David P; Ganger, Charles T; Schneider, Aaron C; Ueda, Kenichi

    2015-01-15

    We have previously demonstrated that aging reduces the compensatory vasodilator response during hypoxic exercise due to blunted nitric oxide (NO) signaling. Recent evidence suggests that NO bioavailability can be augmented by dietary nitrate through the nitrate-nitrite pathway. Thus we tested the hypothesis that acute dietary nitrate supplementation increases the compensatory vasodilator response to hypoxic exercise, particularly in older adults. Thirteen young (25 ± 1 yr) and 12 older (64 ± 2 yr) adults performed rhythmic forearm exercise at 20% of maximum voluntary contraction during normoxia and hypoxia (∼80% O2 saturation); both before (control) and 3 h after beetroot juice (BR) consumption. Forearm vascular conductance (FVC; ml·min(-1)·100 mmHg(-1)) was calculated from forearm blood flow (ml/min) and blood pressure (mmHg). Compensatory vasodilation was defined as the relative increase in FVC due to hypoxic exercise (i.e., % increase compared with respective normoxic exercise trial). Plasma nitrite was determined from venous blood samples obtained before the control trials and each of the exercise trials (normoxia and hypoxia) after BR. Consumption of BR increased plasma nitrite in both young and older adults (P < 0.001). During the control condition, the compensatory vasodilator response to hypoxic exercise was attenuated in older compared with young adults (3.8 ± 1.7% vs. 14.2 ± 1.2%, P < 0.001). Following BR consumption, compensatory vasodilation did not change in young (13.7 ± 3.3%, P = 0.81) adults but was substantially augmented in older adults (11.4 ± 2.1%, P < 0.01). Our data suggest that acute dietary nitrate supplementation increases the compensatory vasodilator response to hypoxic exercise in older but not young adults. PMID:25414241

  10. Acute high-intensity exercise-induced cognitive enhancement and brain-derived neurotrophic factor in young, healthy adults.

    PubMed

    Hwang, Jungyun; Brothers, R Matthew; Castelli, Darla M; Glowacki, Elizabeth M; Chen, Yen T; Salinas, Mandy M; Kim, Jihoon; Jung, Yeonhak; Calvert, Hannah G

    2016-09-01

    Acute exercise can positively impact cognition. The present study examined the effect of acute high-intensity aerobic exercise on prefrontal-dependent cognitive performance and brain-derived neurotrophic factor (BDNF). Fifty-eight young adults were randomly assigned to one of two experimental groups: (a) an acute bout of high-intensity exercise (n=29) or (b) a non-exercise control (n=29). Participants in the exercise group improved performance on inhibitory control in Stroop interference and on cognitive flexibility in Trail Making Test (TMT) Part-B compared with participants in the control group and increased BDNF immediately after exercise. There was a significant relationship between BDNF and TMT Part-B on the pre-post change following exercise. These findings provide support for the association between improved prefrontal-dependent cognitive performance and increased BDNF in response to acute exercise. We conclude that the changes in BDNF concentration may be partially responsible for prefrontal-dependent cognitive functioning following an acute bout of exercise. PMID:27450438

  11. Does acute side-alternating vibration exercise enhance ballistic upper-body power?

    PubMed

    Cochrane, D J; Black, M J; Barnes, M J

    2014-11-01

    The aim of this study was to investigate the effects of acute vibration exercise, at 2 different frequencies, on upper body power output. Muscle activity (EMG) and upper-body peak power was measured in 12 healthy males during ballistic bench press throws at 30% of 1-repetition maximum on a Smith machine. Measures were made prior to, 30 s and 5 min after one of 3 conditions performed for 30 s in a press-up position: side-alternating vibration at 20 Hz, 26 Hz and no vibration. EMG was recorded in the anterior deltoid, triceps brachii and pectoralis major during ballistic bench press throws as well as during application of each condition. While peak power output was higher at 5 min post condition across all conditions, compared to baseline measures (P<0.05), only 20 Hz vibration resulted in a significant increase in peak power output (P<0.05) compared to no vibration. EMG was greater during both vibration conditions, compared to no vibration (P<0.001). However, this difference was not evident during bench press throws when no difference was seen in muscle activity between conditions. These findings suggest that 20 Hz vibration has an ergogenic effect on upper-body power that may be due to peripheral, rather than central, mediated mechanisms. PMID:24838267

  12. Enhanced carotid-cardiac baroreflex response and elimination of orthostatic hypotension 24 hours after acute exercise in paraplegics

    NASA Technical Reports Server (NTRS)

    Engelke, K. A.; Shea, J. D.; Doerr, D. F.; Convertino, V. A.

    1992-01-01

    To test the hypothesis that an acute bout of maximal exercise can ameliorate orthostatic hypotension consequent to prolonged wheelchair confinement, we evaluated heart rate (HR), systolic (SBP) and diastolic (DBP) blood pressure responses during 15 minutes of 70 degrees head-up tilt (HUT) in 10 paraplegic subjects 24 hours after arm crank exercise designed to elicit maximal effort, and during a control (no exercise) conditions. Additionally, the carotid baroreceptor stimulus-cardiac response relationship was determined by measurement of R-R interval during external application of graded pressures to the carotid sinuses. One week separated the treatment conditions. The maximum slope of the carotid-cardiac baroreflex response was increased (p = 0.049) by exercise (6.2 +/- 1.7 msec/mmHg) compared to control (3.3 +/- 0.6). During control HUT, HR increased from 61 +/- 1 to 90 +/- 7 bpm (p = 0.001) while SBP decreased from 118 +/- 5 to 106 +/- 9 mmHg (p = 0.025). During HUT 24 hours after exercise, HR increased from 60 +/- 2 to 90 +/- 4 bpm (p = 0.001), but the reduction in SBP was essentially eliminated (116 +/- 5 to 113 +/- 5 mmHg).

  13. Acute cardiovascular exercise and executive control function.

    PubMed

    Hillman, Charles H; Snook, Erin M; Jerome, Gerald J

    2003-06-01

    Acute cardiovascular exercise effects on cognitive function were examined using an executive control task by comparing neuroelectric and behavioral performance at baseline with post-exercise in 20 undergraduates. A within-subjects design was used to assess the P3 component of an event-related brain potential (ERP) and behavioral performance using a task that varied the amount of executive control required. The baseline session involved participation on the Eriksen flankers task followed by a graded maximal exercise test to measure cardiovascular fitness. The exercise session consisted of a 30-min acute bout of exercise on a treadmill followed by the Eriksen flankers task after heart rate returned to within 10% of pre-exercise levels. Across midline recordings sites, results indicated larger P3 amplitude following acute exercise compared to baseline. Shorter P3 latency was observed during the baseline Eriksen flankers task for the neutral compared to the incompatible condition; an effect not found following the acute bout of exercise. These findings suggest that acute bouts of cardiovascular exercise affect neuroelectric processes underlying executive control through the increased allocation of neuroelectric resources and through changes in cognitive processing and stimulus classification speed. PMID:12798990

  14. Chronic exercise training versus acute endurance exercise in reducing neurotoxicity in rats exposed to lead acetate.

    PubMed

    Shahandeh, Mohammad; Roshan, Valiollah Dabidi; Hosseinzadeh, Somayeh; Mahjoub, Soleiman; Sarkisian, Vaginak

    2013-03-15

    After intraperitoneal injection of 20 mg/kg lead acetate, rats received 8 weeks of treadmill exercise (15-22 m/min, 25-64 minutes) and/or treadmill exercise at 1.6 km/h until exhaustion. The markers related to neurotoxicity were measured by enzyme-linked immunosorbent assay method. 8 weeks of treadmill exercise significantly increased brain-derived neurotrophic factor level in the hippocampus (P = 0.04) and plasma level of total antioxidant capacity of rats exposed to lead acetate (P < 0.001), and significantly decreased plasma level of malondialdehyde (P < 0.001). Acute exercise only decreased the hippocampal malondialdehyde level (P = 0.09) and increased brain-derived neurotrophic factor level in the hippocampus (P = 0.66). Acute exercise also enhanced the total antioxidant capacity in rats exposed to lead acetate, insignificantly (P = 0.99). These findings suggest that chronic treadmill exercise can significantly decrease neurotoxicity and alleviate oxidative stress in rats exposed to lead acetate. However, acute endurance exercise was not associated with these beneficial effects. PMID:25206718

  15. Chronic exercise training versus acute endurance exercise in reducing neurotoxicity in rats exposed to lead acetate☆

    PubMed Central

    Shahandeh, Mohammad; Roshan, Valiollah Dabidi; Hosseinzadeh, Somayeh; Mahjoub, Soleiman; Sarkisian, Vaginak

    2013-01-01

    After intraperitoneal injection of 20 mg/kg lead acetate, rats received 8 weeks of treadmill exercise (15–22 m/min, 25–64 minutes) and/or treadmill exercise at 1.6 km/h until exhaustion. The markers related to neurotoxicity were measured by enzyme-linked immunosorbent assay method. 8 weeks of treadmill exercise significantly increased brain-derived neurotrophic factor level in the hippocampus (P = 0.04) and plasma level of total antioxidant capacity of rats exposed to lead acetate (P < 0.001), and significantly decreased plasma level of malondialdehyde (P < 0.001). Acute exercise only decreased the hippocampal malondialdehyde level (P = 0.09) and increased brain-derived neurotrophic factor level in the hippocampus (P = 0.66). Acute exercise also enhanced the total antioxidant capacity in rats exposed to lead acetate, insignificantly (P = 0.99). These findings suggest that chronic treadmill exercise can significantly decrease neurotoxicity and alleviate oxidative stress in rats exposed to lead acetate. However, acute endurance exercise was not associated with these beneficial effects. PMID:25206718

  16. Acute salivary hormone responses to complex exercise bouts.

    PubMed

    Beaven, C Martyn; Gill, Nicholas D; Ingram, John R; Hopkins, Will G

    2011-04-01

    The combination of resistance and plyometric training, or complex training, may yield greater functional gains than either method alone. As steroid hormones respond to exercise stimuli and modulate the functional outcomes, it is possible that complex training creates an enhanced anabolic physiological milieu for adaptation. We investigated acute responses of salivary testosterone and cortisol to complex exercise bouts. After a standardized warm-up, 16 semiprofessional rugby players performed 1 of 4 exercise bouts in a cross-over manner: power-power; power-strength; strength-power; or strength-strength. Each player completed each of the 4 bouts twice over a 4-week period in a balanced random order such that each player performed a total of 8 bouts. The power block consisted of 3 sets of 3 repetitions of jump squat exercise at 50% of 1-repetition maximum load. The strength block consisted of three sets of three repetitions of box squat exercise at a 3-repetition maximum load. There were 3-minute rest periods between sets and 4-minute rest periods between exercise blocks. Saliva was sampled before, during, and immediately after the exercise bout. The greatest overall hormonal responses were a small increase in testosterone (13%; 90% confidence limits ± 7%) and a trivial increase in cortisol (27%; ± 30%) after the strength-power bout. A clear difference was observed between the strength-power and the power-power bouts immediately after exercise for testosterone (10%; ± 8%) and cortisol (29%; ± 17%). The preceding exercise block had little effect on subsequent strength and power performance. The hormonal response after the strength-power bout suggests that this exercise sequence provides an enhanced anabolic milieu for adaptation. PMID:20703172

  17. Meditation or Exercise May Help Acute Respiratory Infections

    MedlinePlus

    ... U V W X Y Z Meditation or Exercise May Help Acute Respiratory Infections, Study Finds Share: © ... of three groups: a mindfulness meditation group, an exercise group, or a wait-list control group. Participants ...

  18. The effect of chronic and acute exercise on immunity in rats.

    PubMed

    Lin, Y S; Jan, M S; Chen, H I

    1993-02-01

    The effects of exercise training and acute exercise on the immune system were investigated in rats. For chronic exercise training, the rats ran on a drum exerciser at the intensity of about 60-70% of maximal oxygen consumption (VO2max) for 30 min and then extended up to 60 min per day, 5 days per week for 10 weeks. The rats were at rest for 3 days before sacrifice. The mitogenic activity of spleen lymphocytes to concanavalin A (Con A) and staphylococcal enterotoxin B (SEB) decreased as compared to the sedentary control, while proliferative response to lipopolysaccharide (LPS) increased. The interleukin-2 (IL-2) production in the training group was reduced. The immunomodulatory effect after acute exercise has also been investigated and it showed profound enhancement of cell proliferation to Con A, SEB and LPS in mild (50% VO2max for 10 min) and moderate (70% VO2max for 10 min) exercise groups. The enhancing activity was less prominent after severe exercise (> 75%) VO2max until exhaustion). The IL2 production increased in all of these acute exercise groups. Nevertheless, there was no significant variation between exercise and control groups in the cell number per spleen and the percentages of various lymphocyte populations, i.e., total T, CD4+, CD8+ and IL-2R+ T cells as well as B cells. In summary, this study indicates that chronic exercise training may cause the reduction of T cell activity while acute exercise manifests an enhancing effect. However, B cell proliferation was elevated in both chronic and acute exercise groups. PMID:8463030

  19. Promoting Motor Cortical Plasticity with Acute Aerobic Exercise: A Role for Cerebellar Circuits

    PubMed Central

    Mang, Cameron S.; Brown, Katlyn E.; Neva, Jason L.; Snow, Nicholas J.; Campbell, Kristin L.; Boyd, Lara A.

    2016-01-01

    Acute aerobic exercise facilitated long-term potentiation-like plasticity in the human primary motor cortex (M1). Here, we investigated the effect of acute aerobic exercise on cerebellar circuits, and their potential contribution to altered M1 plasticity in healthy individuals (age: 24.8 ± 4.1 years). In Experiment   1, acute aerobic exercise reduced cerebellar inhibition (CBI) (n = 10, p = 0.01), elicited by dual-coil paired-pulse transcranial magnetic stimulation. In Experiment   2, we evaluated the facilitatory effects of aerobic exercise on responses to paired associative stimulation, delivered with a 25 ms (PAS25) or 21 ms (PAS21) interstimulus interval (n = 16 per group). Increased M1 excitability evoked by PAS25, but not PAS21, relies on trans-cerebellar sensory pathways. The magnitude of the aerobic exercise effect on PAS response was not significantly different between PAS protocols (interaction effect: p = 0.30); however, planned comparisons indicated that, relative to a period of rest, acute aerobic exercise enhanced the excitatory response to PAS25 (p = 0.02), but not PAS21 (p = 0.30). Thus, the results of these planned comparisons indirectly provide modest evidence that modulation of cerebellar circuits may contribute to exercise-induced increases in M1 plasticity. The findings have implications for developing aerobic exercise strategies to “prime” M1 plasticity for enhanced motor skill learning in applied settings. PMID:27127659

  20. Acute moderate exercise elicits increased dorsolateral prefrontal activation and improves cognitive performance with Stroop test.

    PubMed

    Yanagisawa, Hiroki; Dan, Ippeita; Tsuzuki, Daisuke; Kato, Morimasa; Okamoto, Masako; Kyutoku, Yasushi; Soya, Hideaki

    2010-05-01

    A growing number of human studies have reported the beneficial influences of acute as well as chronic exercise on cognitive functions. However, neuroimaging investigations into the neural substrates of the effects of acute exercise have yet to be performed. Using multichannel functional near-infrared spectroscopy (fNIRS), we sought cortical activation related to changes in the Stroop interference test, elicited by an acute bout of moderate exercise, in healthy volunteers (N=20). The compactness and portability of fNIRS allowed on-site cortical examination in a laboratory with a cycle ergometer, enabling strict control of the exercise intensity of each subject by assessing their peak oxygen intake (VO2peak). We defined moderate exercise intensity as 50% of a subject's peak oxygen uptake (50%VO2peak). An acute bout of moderate exercise caused significant improvement of cognitive performance reflecting Stroop interference as measured by reaction time. Consistent with previous functional neuroimaging studies, we detected brain activation due to Stroop interference (incongruent minus neutral) in the lateral prefrontal cortices in both hemispheres. This Stroop-interference-related activation was significantly enhanced in the left dorsolateral prefrontal cortex due to the acute bout of moderate exercise. The enhanced activation significantly coincided with the improved cognitive performance. This suggests that the left dorsolateral prefrontal cortex is likely the neural substrate for the improved Stroop performance elicited by an acute bout of moderate exercise. fNIRS, which allows physiological monitoring and functional neuroimaging to be combined, proved to be an effective tool for examining the cognitive effects of exercise. PMID:20006719

  1. Acute plasma volume change with high-intensity sprint exercise.

    PubMed

    Bloomer, Richard J; Farney, Tyler M

    2013-10-01

    When exercise is of long duration or of moderate to high intensity, a decrease in plasma volume can be observed. This has been noted for both aerobic and resistance exercise, but few data are available with regard to high-intensity sprint exercise. We measured plasma volume before and after 3 different bouts of acute exercise, of varying intensity, and/or duration. On different days, men (n = 12; 21-35 years) performed aerobic cycle exercise (60 minutes at 70% heart rate reserve) and 2 different bouts of cycle sprints (five 60-second sprints at 100% maximum wattage obtained during graded exercise testing (GXT) and ten 15-second sprints at 200% maximum wattage obtained during GXT). Blood was collected before and 0, 30, and 60 minutes postexercise and analyzed for hematocrit and hemoglobin and plasma volume was calculated. Plasma volume decreased significantly for all exercise bouts (p < 0.05), with the greatest decrease noted 0 minute postexercise for both sprint bouts (∼19%) compared with aerobic exercise bouts (∼11%). By 30 minutes postexercise, plasma volume approached pre-exercise values. We conclude that acute bouts of exercise, in particular high-intensity sprint exercise, significantly decrease plasma volume during the immediate postexercise period. It is unknown what, if any negative implications these transient changes may have on exercise performance. Strength and conditioning professionals may aim to rehydrate athletes appropriately after high-intensity exercise bouts. PMID:23302756

  2. The Effects of Acute Exercise and Exercise Training on Plasma Homocysteine: A Meta-Analysis

    PubMed Central

    Deminice, Rafael; Ribeiro, Diogo Farias; Frajacomo, Fernando Tadeu Trevisan

    2016-01-01

    Background Although studies have demonstrated that physical exercise alters homocysteine levels in the blood, meta-analyses of the effects of acute exercise and exercise training on homocysteine blood concentration have not been performed, especially regarding the duration and intensity of exercise, which could affect homocysteine levels differently. Objective The aim of this meta-analysis was to ascertain the effects of acute exercise and exercise training on homocysteine levels in the blood. Method A review was conducted according to the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses using the online databases PubMed, SPORTDiscus, and SciELO to identify relevant studies published through June 2015. Review Manager was used to calculate the effect size of acute exercise and exercise training using the change in Hcy plasmaserum concentration from baseline to post-acute exercise and trained vs. sedentary control groups, respectively. Weighted mean differences were calculated using random effect models. Results Given the abundance of studies, acute exercise trials were divided into two subgroups according to exercise volume and intensity, whereas the effects of exercise training were analyzed together. Overall, 22 studies with a total of 520 participants indicated increased plasma homocysteine concentration after acute exercise (1.18 μmol/L, 95% CI: 0.71 to 1.65, p < .01). Results of a subgroup analysis indicated that either long-term exercise of low-to-moderate intensity (1.39 μmol/L, 95% CI: 0.9 to 1.89, p < .01) or short-term exercise of high intensity (0.83 μmol/L, 95% CI: 0.19 to 1.40, p < .01) elevated homocysteine levels in the blood. Increased homocysteine induced by exercise was significantly associated with volume of exercise, but not intensity. By contrast, resistance training reduced plasma homocysteine concentration (-1.53 μmol/L, 95% CI: -2.77 to -0.28, p = .02), though aerobic training did not. The cumulative

  3. Genetic damage in multiple organs of acutely exercised rats.

    PubMed

    Pozzi, Renan; Rosa, Jose C; Eguchi, Ricardo; Oller do Nascimento, Claudia M; Oyama, Lila M; Aguiar, Odair; Chaves, Marcelo D; Ribeiro, Daniel A

    2010-12-01

    The aim of this study was to investigate the effects of acute exercise on genomic damage in an animal model. Male adult Wistar rats were divided into the following groups: control and acute exercised (experimental). For this purpose, 15 animals were accustomed to running on a rodent treadmill for 15 min per day for 5 days (10-20 m min(-1); 08 grade). After 4 days at rest, active animals ran on the treadmill (22 m min(-1), 58 grade) till exhaustion. Cells from peripheral blood, liver, heart, and brain were collected after 0, 2, and 6 h after exercise. The results showed that acute exercise was able to induce genetic damage in peripheral blood cells after 2 and 6 h of exercise, whereas liver pointed out genetic damage for all periods evaluated. No genetic damage was induced either in brain or in heart cells. In conclusion, our results suggest that acute exercise could contribute to the genetic damage in peripheral blood and liver cells. It seems that liver is a sensitive organ to the genotoxic insult after acute exercise. PMID:20979236

  4. Effects of Acute Exercise on Long-Term Memory

    ERIC Educational Resources Information Center

    Labban, Jeffrey D.; Etnier, Jennifer L.

    2011-01-01

    In this study, we tested the effect of acute exercise on long-term memory, specifically the timing of exercise relative to the memory challenge. We assessed memory via paragraph recall, in which participants listened to two paragraphs (exposure) and recounted them following a 35-min delay. Participants (n = 48) were randomly assigned to one of…

  5. Exercise test in acute myocardial infarction.

    PubMed

    Hsi, W L; Lai, J S

    1996-01-01

    Although maximal oxygen consumption (VO2max) and oxygen consumption at anaerobic threshold (VO2AT) were used to measure cardiac function, the clinical significance in acute myocardial infarction (MI) has not been reported. The purpose of this study was to compare VO2max and VO2AT between post-MI patients and healthy men and to correlate the parameters to other clinical measures. Forty-three active healthy men, 44 sedentary healthy men, and 43 post-MI patients were studied using incremental cycle exercise test. Their work rates, oxygen consumption, heart rates, oxygen pulses, ventilation, and other parameters at VO2max and VO2AT were determined with spirometer, gas concentration analyzer, and electrocardiograph. Anaerobic threshold was determined by analyzing the ventilatory parameters. Most of the exercise test parameters at VO2max were greatest in the active men, intermediate in the sedentary men, and least in the post-MI patients (P < 0.01) whereas the rate-pressure products of the active men and sedentary men were not significantly different from each other and were greater than those of the post-MI patients (P < 0.01). In the post-MI patients, VO2max was inversely correlated to the peak serum level of creatine phosphokinase MB isoenzyme (P < 0.01) and associated with extensive infarction (P < 0.05). Most of the parameters at VO2AT were greater in the active men than in the sedentary men (P < 0.01) but not significantly different between the sedentary men and post-MI patients. In the post-MI patients, VO2AT was significantly correlated to left ventricular ejection fraction (P < 0.01) and associated with heart failure (P < 0.05). The results revealed that VO2max and VO2AT had different clinical significance in post-MI patients; VO2max was related to the infarct size, and VO2AT was related to the pumping function of heart. PMID:8777021

  6. Effects of age on hemorheological responses to acute endurance exercise.

    PubMed

    Ahmadizad, Sajad; Moradi, Akram; Nikookheslat, Saeed; Ebrahimi, Hadi; Rahbaran, Adel; Connes, Philippe

    2011-01-01

    The purpose of this investigation was to examine the effects of age on the acute responses of hemorheological variables and biochemical parameters to a single bout of sub-maximal endurance exercise. Fifteen young (20-30 years), 15 middle-aged (40-50 years) and 12 old (60-70 years) male subjects participated in the study. All subjects performed one single bout of endurance exercise encompassed 30-min cycling at 70-75% of maximal heart rate which was followed by 30-min recovery. Three blood samples were taken before, immediately after exercise and after 30-min recovery. Resting levels of hematocrit, red blood cells count, plasma albumin and fibrinogen concentrations, plasma viscosity and whole blood viscosity were significantly different among the three groups (P < 0.01). Thirty minutes of cycling resulted in significant increases (P < 0.05) in all parameters; while these changes were temporary and returned to pre-exercise level at the end of recovery. Responses of all parameters to exercise and recovery were not significantly different among the three groups (P > 0.05). Fibrinogen changes during exercise and recovery were corrected for exercise- and recovery-induced changes in plasma volume. Data analysis showed effects of exercise and recovery only for raw data (P > 0.05). In addition, raw and corrected fibrinogen data in response to exercise and recovery were not age-related. Our results demonstrate that age does not affect the hemorheological responses to an acute endurance exercise in healthy men. PMID:22214687

  7. Resistance exercise enhances cognitive function in mouse.

    PubMed

    Suijo, K; Inoue, S; Ohya, Y; Odagiri, Y; Takamiya, T; Ishibashi, H; Itoh, M; Fujieda, Y; Shimomitsu, T

    2013-04-01

    Physical exercise has been shown to increase adult neurogenesis in the hippocampus and to enhance synaptic plasticity. It has been demonstrated that these neuroprotective effects can be observed following aerobic exercise. However, it remains unknown whether plasticity molecules, such as brain-derived neurotrophic factor (BDNF) and cyclic AMP response element-binding protein (CREB), are expressed in the hippocampus following resistance exercise. We applied voluntary progressive-resistance wheel exercise (RE) for 14 days, and measured BDNF and CREB in the hippocampus. The Morris water maze was also performed to estimate learning and memory. Furthermore, we measured RE effects on mammalian target of rapamycin (mTOR) and 70-kDa ribosomal protein S6 kinase (p70S6K) mediating muscle protein synthesis in the soleus. As a result, we found that RE enhanced cognition and elevated BDNF and CREB expressions in the hippocampus. Also, RE activated the mTOR-p70S6K signaling pathway in the soleus. We found that phosphorylated mTOR and p70S6K were significantly positively correlated with BDNF expression. Our results indicated that resistance exercise drove the protein synthesis signaling pathway in the soleus and enhanced hippocampal synaptic plasticity-related molecules. These results suggest the beneficial effects of resistance exercise on cognitive function. PMID:23041964

  8. The effects of exercise training and acute exercise duration on plasma folate and vitamin B12

    PubMed Central

    Kim, Young-Nam; Hwang, Ji Hyeon

    2016-01-01

    BACKGROUND/OBJECTIVES Energy production and the rebuilding and repair of muscle tissue by physical activity require folate and vitamin B12 as a cofactor. Thus, this study investigated the effects of regular moderate exercise training and durations of acute aerobic exercise on plasma folate and vitamin B12 concentrations in moderate exercise trained rats. MATERIALS/METHODS Fifty rats underwent non-exercise training (NT, n = 25) and regular exercise training (ET, n = 25) for 5 weeks. The ET group performed moderate exercise on a treadmill for 30 min/day, 5 days/week. At the end of week 5, each group was subdivided into 4 groups: non-exercise and 3 exercise groups. The non-exercise group (E0) was sacrificed without exercising and the 3 exercise groups were sacrificed immediately after exercising on a treadmill for 0.5 h (E0.5), 1 h (E1), and 2 h (E2). Blood samples were collected and plasma folate and vitamin B12 were analyzed. RESULTS After exercise training, plasma folate level was significantly lower and vitamin B12 concentration was significantly higher in the ET group compared with the NT group (P < 0.05). No significant associations were observed between plasma folate and vitamin B12 concentrations. In both the NT and ET groups, plasma folate and vitamin B12 were not significantly changed by increasing duration of aerobic exercise. Plasma folate concentration of E0.5 was significantly lower in the ET group compared with that in the NT group. Significantly higher vitamin B12 concentrations were observed in the E0 and E0.5 groups of the ET group compared to those of the NT group. CONCLUSION Regular moderate exercise training decreased plasma folate and increased plasma vitamin B12 levels. However, no significant changes in plasma folate and vitamin B12 concentrations were observed by increasing duration of acute aerobic exercise. PMID:27087899

  9. Acute Exercise Increases Sex Differences in Amateur Athletes' Risk Taking.

    PubMed

    Pighin, S; Savadori, L; Bonini, N; Andreozzi, L; Savoldelli, A; Schena, F

    2015-10-01

    The research presented here investigates the interaction between acute exercise, biological sex and risk-taking behavior. The study involved 20 amateur athletes (19-33 years old), 10 males and 10 females, who were asked to undergo subsequent experimental sessions designed to compare their risky behaviors on the Balloon Analogue Risk Task (BART) 34 at rest and while exercising at moderate intensity (60% of their maximal aerobic power). Results showed that physical exercise affected male and female participants differently: Whereas males became more risk seeking, females became more risk averse during exercise. PMID:26090877

  10. A single bout of resistance exercise can enhance episodic memory performance

    PubMed Central

    Weinberg, Lisa; Hasni, Anita; Shinohara, Minoru; Duarte, Audrey

    2014-01-01

    Acute aerobic exercise can be beneficial to episodic memory. This benefit may occur because exercise produces a similar physiological response as physical stressors. When administered during consolidation, acute stress, both physical and psychological, consistently enhances episodic memory, particularly memory for emotional materials. Here we investigated whether a single bout of resistance exercise performed during consolidation can produce episodic memory benefits 48 hours later. We used a one-leg knee extension/flexion task for the resistance exercise. To assess the physiological response to the exercise, we measured salivary alpha amylase (a biomarker of central norepinephrine), heart rate, and blood pressure. To test emotional episodic memory, we used a remember-know recognition memory paradigm with equal numbers of positive, negative, and neutral IAPS images as stimuli. The group that performed the exercise, the active group, had higher overall recognition accuracy than the group that did not exercise, the passive group. We found a robust effect of valence across groups, with better performance on emotional items as compared to neutral items and no difference between positive and negative items. This effect changed based on the physiological response to the exercise. Within the active group, participants with a high physiological response to the exercise were impaired for neutral items as compared to participants with a low physiological response to the exercise. Our results demonstrate that a single bout of resistance exercise performed during consolidation can enhance episodic memory and that the effect of valence on memory depends on the physiological response to the exercise. PMID:25262058

  11. Exercise enhances creativity independently of mood

    PubMed Central

    Steinberg, Hannah; Sykes, Elizabeth A; Moss, Tim; Lowery, Susan; LeBoutillier, Nick; Dewey, Alison

    1997-01-01

    Objectives It has been widely accepted in the literature that various forms of physical exercise, even in a single session, enhance positive mood. It has also been shown that physical exercise may sometimes enhance creative thinking, but the evidence is inconclusive. Positive moods can favour creative thinking, but the opposite has also been reported and these relations are unclear. There is a large anecdotal literature suggesting that creative people sometimes use bodily movement to help overcome “blocks”. The aim of this study was to establish whether post-exercise creative thinking was attributable to improved mood. Methods The responses of 63 participants to an exercise (aerobic workout or aerobic dance) and a “neutral” video watching condition were compared. Mood was measured using an adjective list, and creative thinking was tested by three measures of the Torrance test. Results Analysis of variance showed a large and significant increase in positive mood after exercise (P<0.001) and a significant decrease in positive mood after video watching (P<0.001). A significant increase between the creative thinking scores of the two conditions was found on the flexibility (variety of responses) measure (P<0.05). A multifactorial analysis of all data failed to show a significant covariance of creative thinking with the two measures of mood (P>0.05). Conclusions These results suggest that mood and creativity were improved by physical exercise independently of each other. ImagesFigure 1Figure 2 PMID:9298561

  12. Sprint training enhances ionic regulation during intense exercise in men.

    PubMed Central

    McKenna, M J; Heigenhauser, G J; McKelvie, R S; MacDougall, J D; Jones, N L

    1997-01-01

    1. This study investigated the effects of 7 weeks of sprint training on changes in electrolyte concentrations and acid-base status in arterial and femoral venous blood, during and following maximal exercise for 30 s on an isokinetic cycle ergometer. 2. Six healthy males performed maximal exercise, before and after training. Blood samples were drawn simultaneously from brachial arterial and femoral venous catheters, at rest, during the final 10 s of exercise and during 10 min of recovery, and analysed for whole blood and plasma ions and acid-base variables. 3. Maximal exercise performance was enhanced after training, with a 13% increase in total work output and a 14% less decline in power output during maximal cycling. 4. The acute changes in plasma volume, ions and acid-base variables during maximal exercise were similar to previous observations. Sprint training did not influence the decline in plasma volume during or following maximal exercise. After training, maximal exercise was accompanied by lower arterial and femoral venous plasma [K+] and [Na+] across all measurement times (P < 0.05). Arterial plasma lactate concentration ([Lac-]) was greater (P < 0.05), but femoral venous plasma [Lac-] was unchanged by training. 5. Net release into, or uptake of ions from plasma passing through the exercising muscle was assessed by arteriovenous concentration differences, corrected for fluid movements. K+ release into plasma during exercise, and a small net K+ uptake from plasma 1 min post-exercise (P < 0.05), were unchanged by training. A net Na+ loss from plasma during exercise (P < 0.05) tended to be reduced after training (P < 0.06). Release of Lac- into plasma during and after exercise (P < 0.05) was unchanged by training. 6. Arterial and venous plasma strong ion difference ([SID]; [SID] = [Na+] + [K+] - [Lac-] - [Cl-]) were lower after training (mean differences) by 2.7 and 1.8 mmol l-1, respectively (P < 0.05). Arterial and femoral venous CO2 tensions and arterial

  13. Executive function and endocrinological responses to acute resistance exercise

    PubMed Central

    Tsai, Chia-Liang; Wang, Chun-Hao; Pan, Chien-Yu; Chen, Fu-Chen; Huang, Tsang-Hai; Chou, Feng-Ying

    2014-01-01

    This study had the following two aims: First, to explore the effects of acute resistance exercise (RE, i.e., using exercise machines to contract and stretch muscles) on behavioral and electrophysiological performance when performing a cognitive task involving executive functioning in young male adults; Second, to investigate the potential biochemical mechanisms of such facilitative effects using two neurotrophic factors [i.e., growth hormone (GH) and insulin-like growth factor-1 (IGF-1)] and the cortisol levels elicited by such an exercise intervention mode with two different exercise intensities. Sixty young male adults were recruited and randomly assigned to a high-intensity (HI) exercise group, moderate-intensity (MI) exercise group, and non-exercise-intervention (NEI) group. Blood samples were taken, and the behavioral and electrophysiological indices were simultaneously measured when individuals performed a Go/No-Go task combined with the Erikson Flanker paradigm at baseline and after either an acute bout of 30 min of moderate- or high-intensity RE or a control period. The results showed that the acute RE could not only benefit the subjects' behavioral (i.e., RTs and accuracy) performance, as found in previous studies, but also increase the P3 amplitude. Although the serum GH and IGF-1 levels were significantly increased via moderate or high intensity RE in both the MI and HI groups, the increased serum levels of neurotrophic factors were significantly decreased about 20 min after exercise. In addition, such changes were not correlated with the changes in cognitive (i.e., behavioral and electrophysiological) performance. In contrast, the serum levels of cortisol in the HI and MI groups were significantly lower after acute RE, and the changes in cortisol levels were significantly associated with the changes in electrophysiological (i.e., P3 amplitude) performance. The findings suggest the beneficial effects of acute RE on executive functioning could be due to

  14. Specific effects of acute moderate exercise on cognitive control.

    PubMed

    Davranche, Karen; McMorris, Terry

    2009-04-01

    The main issue of this study was to determine whether cognitive control is affected by acute moderate exercise. Twelve participants [4 females (VO(2 max)=42 ml/kg/min) and 8 males (VO(2 max) = 48 ml/kg/min)] performed a Simon task while cycling at a carefully controlled workload intensity corresponding to their individual ventilatory threshold. The distribution-analytical technique and the delta plot analysis [Ridderinkhof, K. R. (2002). Activation and suppression in conflict tasks: Empirical clarification through distributional analyses. In W. Prinz & B. Hommel (Eds.), Common mechanisms in perception and action. Attention and performance (Vol. 19, pp. 494-519). Oxford: Oxford University Press.] were used to assess the role of selective response inhibition in resolving response conflict. Results showed that cognitive processes appeared to be differently affected by acute moderate exercise. Reaction time results confirmed that performance is better (faster without change in accuracy) when the cognitive task is performed simultaneously with exercise. Between-trial adjustments (post-conflict and post-error) highlighted that cognitive control adjustments are also fully efficient during exercise. However, the effect of congruency (Simon effect) appeared to be more pronounced during exercise compared to rest which suggests that the response inhibition is deteriorated during exercise. The present findings suggest that acute moderate exercise differently affects some specific aspects of cognitive functions. PMID:19138814

  15. Greater impact of acute high-intensity interval exercise on post-exercise executive function compared to moderate-intensity continuous exercise.

    PubMed

    Tsukamoto, Hayato; Suga, Tadashi; Takenaka, Saki; Tanaka, Daichi; Takeuchi, Tatsuya; Hamaoka, Takafumi; Isaka, Tadao; Hashimoto, Takeshi

    2016-03-01

    Aerobic moderate-intensity continuous exercise (MCE) can improve executive function (EF) acutely, potentially through the activation of both physiological and psychological factors. Recently, high-intensity interval exercise (HIIE) has been reported to be more beneficial for physical adaptation than MCE. Factors for EF improvement can potentially be more enhanced by HIIE than by MCE; but the effects of HIIE on EF remain unknown. Therefore, we aimed to examine to what extent HIIE impacts post-exercise EF immediately after exercise and during post-exercise recovery, compared with traditional MCE. Twelve healthy male subjects performed cycle ergometer exercise based on either HIIE or MCE protocols in a randomized and counterbalanced order. The HIIE protocol consisted of four 4-min bouts at 90% of peak VO2 with 3-min active recovery at 60% of peak VO2. A volume-matched MCE protocol was applied at 60% of peak VO2. To evaluate EF, a color-words Stroop task was performed pre- and post-exercise. Improvement in EF immediately after exercise was the same for the HIIE and MCE protocols. However, the improvement of EF by HIIE was sustained during 30 min of post-exercise recovery, during which MCE returned to the pre-exercise level. The EF response in the post-exercise recovery was associated with changes in physiological and psychological responses. The present findings showed that HIIE and MCE were capable of improving EF. Moreover, HIIE could prolong improvement in EF during post-exercise recovery. For the first time, we suggest that HIIE may be more effective strategy than MCE for improving EF. PMID:26723268

  16. Acute resistance exercise-induced IGF1 expression and subsequent GLUT4 translocation.

    PubMed

    Kido, Kohei; Ato, Satoru; Yokokawa, Takumi; Makanae, Yuhei; Sato, Koji; Fujita, Satoshi

    2016-08-01

    Acute aerobic exercise (AE) is a major physiological stimulus for skeletal muscle glucose uptake through activation of 5' AMP-activated protein kinase (AMPK). However, the regulation of glucose uptake by acute resistance exercise (RE) remains unclear. To investigate the intracellular regulation of glucose uptake after acute RE versus acute AE, male Sprague-Dawley rats were divided into three groups: RE, AE, or nonexercise control. After fasting for 12 h overnight, the right gastrocnemius muscle in the RE group was exercised at maximum isometric contraction via percutaneous electrical stimulation (3 × 10 sec, 5 sets). The AE group ran on a treadmill (25 m/min, 60 min). Muscle samples were taken 0, 1, and 3 h after completion of the exercises. AMPK, Ca(2+)/calmodulin-dependent protein kinase II, and TBC1D1 phosphorylation were increased immediately after both forms of exercise and returned to baseline levels by 3 h. Muscle IGF1 expression was increased by RE but not AE, and maintained until 3 h after RE Additionally, Akt and AS160 phosphorylation were sustained for 3 h after RE, whereas they returned to baseline levels by 3 h after AE Similarly, GLUT4 translocation remained elevated 3 h after RE, although it returned to the baseline level by 3 h after AE Overall, this study showed that AMPK/TBC1D1 and IGF1/Akt/AS160 signaling were enhanced by acute RE, and that GLUT4 translocation after acute RE was more prolonged than after acute AE These results suggest that acute RE-induced increases in intramuscular IGF1 expression might be a distinct regulator of GLUT4 translocation. PMID:27550988

  17. Decline in Executive Control during Acute Bouts of Exercise as a Function of Exercise Intensity and Fitness Level

    ERIC Educational Resources Information Center

    Labelle, Veronique; Bosquet, Laurent; Mekary, Said; Bherer, Louis

    2013-01-01

    Studies on the effects of acute bouts of cardiovascular exercise on cognitive performances show contradictory findings due to methodological differences (e.g., exercise intensity, cognitive function assessed, participants' aerobic fitness level, etc.). The present study assessed the acute effect of exercise intensity on cognition while controlling…

  18. Antecedent acute cycling exercise affects attention control: an ERP study using attention network test

    PubMed Central

    Chang, Yu-Kai; Pesce, Caterina; Chiang, Yi-Te; Kuo, Cheng-Yuh; Fong, Dong-Yang

    2015-01-01

    The purpose of this study was to investigate the after-effects of an acute bout of moderate intensity aerobic cycling exercise on neuroelectric and behavioral indices of efficiency of three attentional networks: alerting, orienting, and executive (conflict) control. Thirty young, highly fit amateur basketball players performed a multifunctional attentional reaction time task, the attention network test (ANT), with a two-group randomized experimental design after an acute bout of moderate intensity spinning wheel exercise or without antecedent exercise. The ANT combined warning signals prior to targets, spatial cueing of potential target locations and target stimuli surrounded by congruent or incongruent flankers, which were provided to assess three attentional networks. Event-related brain potentials and task performance were measured during the ANT. Exercise resulted in a larger P3 amplitude in the alerting and executive control subtasks across frontal, central and parietal midline sites that was paralleled by an enhanced reaction speed only on trials with incongruent flankers of the executive control network. The P3 latency and response accuracy were not affected by exercise. These findings suggest that after spinning, more resources are allocated to task-relevant stimuli in tasks that rely on the alerting and executive control networks. However, the improvement in performance was observed in only the executively challenging conflict condition, suggesting that whether the brain resources that are rendered available immediately after acute exercise translate into better attention performance depends on the cognitive task complexity. PMID:25914634

  19. Role of PGC-1α during acute exercise-induced autophagy and mitophagy in skeletal muscle

    PubMed Central

    Vainshtein, Anna; Tryon, Liam D.; Pauly, Marion

    2015-01-01

    Regular exercise leads to systemic metabolic benefits, which require remodeling of energy resources in skeletal muscle. During acute exercise, the increase in energy demands initiate mitochondrial biogenesis, orchestrated by the transcriptional coactivator peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α). Much less is known about the degradation of mitochondria following exercise, although new evidence implicates a cellular recycling mechanism, autophagy/mitophagy, in exercise-induced adaptations. How mitophagy is activated and what role PGC-1α plays in this process during exercise have yet to be evaluated. Thus we investigated autophagy/mitophagy in muscle immediately following an acute bout of exercise or 90 min following exercise in wild-type (WT) and PGC-1α knockout (KO) animals. Deletion of PGC-1α resulted in a 40% decrease in mitochondrial content, as well as a 25% decline in running performance, which was accompanied by severe acidosis in KO animals, indicating metabolic distress. Exercise induced significant increases in gene transcripts of various mitochondrial (e.g., cytochrome oxidase subunit IV and mitochondrial transcription factor A) and autophagy-related (e.g., p62 and light chain 3) genes in WT, but not KO, animals. Exercise also resulted in enhanced targeting of mitochondria for mitophagy, as well as increased autophagy and mitophagy flux, in WT animals. This effect was attenuated in the absence of PGC-1α. We also identified Niemann-Pick C1, a transmembrane protein involved in lysosomal lipid trafficking, as a target of PGC-1α that is induced with exercise. These results suggest that mitochondrial turnover is increased following exercise and that this effect is at least in part coordinated by PGC-1α. Anna Vainshtein received the AJP-Cell 2015 Paper of the Year award. Listen to a podcast with Anna Vainshtein and coauthor David A. Hood at http://ajpcell.podbean.com/e/ajp-cell-paper-of-the-year-2015-award-podcast/. PMID

  20. Acute effects of aerobic exercise promote learning.

    PubMed

    Perini, Renza; Bortoletto, Marta; Capogrosso, Michela; Fertonani, Anna; Miniussi, Carlo

    2016-01-01

    The benefits that physical exercise confers on cardiovascular health are well known, whereas the notion that physical exercise can also improve cognitive performance has only recently begun to be explored and has thus far yielded only controversial results. In the present study, we used a sample of young male subjects to test the effects that a single bout of aerobic exercise has on learning. Two tasks were run: the first was an orientation discrimination task involving the primary visual cortex, and the second was a simple thumb abduction motor task that relies on the primary motor cortex. Forty-four and forty volunteers participated in the first and second experiments, respectively. We found that a single bout of aerobic exercise can significantly facilitate learning mechanisms within visual and motor domains and that these positive effects can persist for at least 30 minutes following exercise. This finding suggests that physical activity, at least of moderate intensity, might promote brain plasticity. By combining physical activity-induced plasticity with specific cognitive training-induced plasticity, we favour a gradual up-regulation of a functional network due to a steady increase in synaptic strength, promoting associative Hebbian-like plasticity. PMID:27146330

  1. Acute effects of aerobic exercise promote learning

    PubMed Central

    Perini, Renza; Bortoletto, Marta; Capogrosso, Michela; Fertonani, Anna; Miniussi, Carlo

    2016-01-01

    The benefits that physical exercise confers on cardiovascular health are well known, whereas the notion that physical exercise can also improve cognitive performance has only recently begun to be explored and has thus far yielded only controversial results. In the present study, we used a sample of young male subjects to test the effects that a single bout of aerobic exercise has on learning. Two tasks were run: the first was an orientation discrimination task involving the primary visual cortex, and the second was a simple thumb abduction motor task that relies on the primary motor cortex. Forty-four and forty volunteers participated in the first and second experiments, respectively. We found that a single bout of aerobic exercise can significantly facilitate learning mechanisms within visual and motor domains and that these positive effects can persist for at least 30 minutes following exercise. This finding suggests that physical activity, at least of moderate intensity, might promote brain plasticity. By combining physical activity–induced plasticity with specific cognitive training–induced plasticity, we favour a gradual up-regulation of a functional network due to a steady increase in synaptic strength, promoting associative Hebbian-like plasticity. PMID:27146330

  2. Impaired sympathetic vascular regulation in humans after acute dynamic exercise.

    PubMed Central

    Halliwill, J R; Taylor, J A; Eckberg, D L

    1996-01-01

    1. The reduction in vascular resistance which accompanies acute dynamic exercise does not subside immediately during recovery, resulting in a post-exercise hypotension. This sustained vasodilatation suggests that sympathetic vascular regulation is altered after exercise. 2. Therefore, we assessed the baroreflex control of sympathetic outflow in response to arterial pressure changes, and transduction of sympathetic activity into vascular resistance during a sympatho-excitatory stimulus (isometric handgrip exercise) after either exercise (60 min cycling at 60% peak aerobic power (VO2,peak)) or sham treatment (60 min seated rest) in nine healthy subjects. 3. Both muscle sympathetic nerve activity and calf vascular resistance were reduced after exercise (-29.7 +/- 8.8 and -25.3 +/- 9.1%, both P < 0.05). The baroreflex relation between diastolic pressure and sympathetic outflow was shifted downward after exercise (post-exercise intercept, 218 +/- 38 total integrated activity (heartbeat)-1; post-sham intercept, 318 +/- 51 total integrated activity (heartbeat)-1, P < 0.05), indicating less sympathetic outflow across all diastolic pressures. Further, the relation between sympathetic activity and vascular resistance was attenuated after exercise (post-exercise slope, 0.0031 +/- 0.0007 units (total integrated activity)-1 min; post-sham slope, 0.0100 +/- 0.0033 units (total integrated activity)-1 min, P < 0.05), indicating less vasoconstriction with any increase in sympathetic activity. 4. Thus, both baroreflex control of sympathetic outflow and the transduction of sympathetic activity into vascular resistance are altered after dynamic exercise. We conclude that the vasodilation which underlies post-exercise hypotension results from both neural and vascular phenomena. Images Figure 7 PMID:8866370

  3. Impaired sympathetic vascular regulation in humans after acute dynamic exercise

    NASA Technical Reports Server (NTRS)

    Halliwill, J. R.; Taylor, J. A.; Eckberg, D. L.

    1996-01-01

    1. The reduction in vascular resistance which accompanies acute dynamic exercise does not subside immediately during recovery, resulting in a post-exercise hypotension. This sustained vasodilatation suggests that sympathetic vascular regulation is altered after exercise. 2. Therefore, we assessed the baroreflex control of sympathetic outflow in response to arterial pressure changes, and transduction of sympathetic activity into vascular resistance during a sympatho-excitatory stimulus (isometric handgrip exercise) after either exercise (60 min cycling at 60% peak aerobic power (VO2,peak)) or sham treatment (60 min seated rest) in nine healthy subjects. 3. Both muscle sympathetic nerve activity and calf vascular resistance were reduced after exercise (-29.7 +/- 8.8 and -25.3 +/- 9.1%, both P < 0.05). The baroreflex relation between diastolic pressure and sympathetic outflow was shifted downward after exercise (post-exercise intercept, 218 +/- 38 total integrated activity (heartbeat)-1; post-sham intercept, 318 +/- 51 total integrated activity (heartbeat)-1, P < 0.05), indicating less sympathetic outflow across all diastolic pressures. Further, the relation between sympathetic activity and vascular resistance was attenuated after exercise (post-exercise slope, 0.0031 +/- 0.0007 units (total integrated activity)-1 min; post-sham slope, 0.0100 +/- 0.0033 units (total integrated activity)-1 min, P < 0.05), indicating less vasoconstriction with any increase in sympathetic activity. 4. Thus, both baroreflex control of sympathetic outflow and the transduction of sympathetic activity into vascular resistance are altered after dynamic exercise. We conclude that the vasodilation which underlies post-exercise hypotension results from both neural and vascular phenomena.

  4. Acute Exercise-Induced Mitochondrial Stress Triggers an Inflammatory Response in the Myocardium via NLRP3 Inflammasome Activation with Mitophagy

    PubMed Central

    Li, Haiying; Miao, Weiguo; Ma, Jingfen; Xv, Zhen; Li, Jianyu; Zhang, Yong; Ji, Li Li

    2016-01-01

    Increasing evidence has indicated that acute strenuous exercise can induce a range of adverse reactions including oxidative stress and tissue inflammation. However, little is currently known regarding the mechanisms that underlie the regulation of the inflammatory response in the myocardium during acute heavy exercise. This study evaluated the mitochondrial function, NLRP3 inflammasome activation, and mitochondrial autophagy-related proteins to investigate the regulation and mechanism of mitochondrial stress regarding the inflammatory response of the rat myocardium during acute heavy exercise. The results indicated that the mitochondrial function of the myocardium was adaptively regulated to meet the challenge of stress during acute exercise. The exercise-induced mitochondrial stress also enhanced ROS generation and triggered an inflammatory reaction via the NLRP3 inflammasome activation. Moreover, the mitochondrial autophagy-related proteins including Beclin1, LC3, and Bnip3 were all significantly upregulated during acute exercise, which suggests that mitophagy was stimulated in response to the oxidative stress and inflammatory response in the myocardium. Taken together, our data suggest that, during acute exercise, mitochondrial stress triggers the rat myocardial inflammatory response via NLRP3 inflammasome activation and activates mitophagy to minimize myocardial injury. PMID:26770647

  5. Effects of acute physical exercise on executive functions: a comparison between aerobic and strength exercise.

    PubMed

    Alves, Christiano Rodrigues; Gualano, Bruno; Takao, Pollyana Pereira; Avakian, Paula; Fernandes, Rafael Mistura; Morine, Diego; Takito, Monica Yuri

    2012-08-01

    The aim of this study was to compare the effects of acute aerobic and strength exercises on selected executive functions. A counterbalanced, crossover, randomized trial was performed. Forty-two healthy women were randomly submitted to three different conditions: (1) aerobic exercise, (2) strength exercise, and (3) control condition. Before and after each condition, executive functions were measured by the Stroop Test and the Trail Making Test. Following the aerobic and strength sessions, the time to complete the Stroop "non-color word" and "color word" condition was lower when compared with that of the control session. The performance in the Trail Making Test was unchanged. In conclusion, both acute aerobic and strength exercises improve the executive functions. Nevertheless, this positive effect seems to be task and executive function dependent. PMID:22889693

  6. Specific Effects of Acute Moderate Exercise on Cognitive Control

    ERIC Educational Resources Information Center

    Davranche, Karen; McMorris, Terry

    2009-01-01

    The main issue of this study was to determine whether cognitive control is affected by acute moderate exercise. Twelve participants [4 females (VO[subscript 2 max]=42 ml/kg/min) and 8 males (VO[subscript 2 max]=48 ml/kg/min)] performed a Simon task while cycling at a carefully controlled workload intensity corresponding to their individual…

  7. The Effects of Acute Physical Exercise on Memory, Peripheral BDNF, and Cortisol in Young Adults.

    PubMed

    Hötting, Kirsten; Schickert, Nadine; Kaiser, Jochen; Röder, Brigitte; Schmidt-Kassow, Maren

    2016-01-01

    In animals, physical activity has been shown to induce functional and structural changes especially in the hippocampus and to improve memory, probably by upregulating the release of neurotrophic factors. In humans, results on the effect of acute exercise on memory are inconsistent so far. Therefore, the aim of the present study was to assess the effects of a single bout of physical exercise on memory consolidation and the underlying neuroendocrinological mechanisms in young adults. Participants encoded a list of German-Polish vocabulary before exercising for 30 minutes with either high intensity or low intensity or before a relaxing phase. Retention of the vocabulary was assessed 20 minutes after the intervention as well as 24 hours later. Serum BDNF and salivary cortisol were measured at baseline, after learning, and after the intervention. The high-intensity exercise group showed an increase in BDNF and cortisol after exercising compared to baseline. Exercise after learning did not enhance the absolute number of recalled words. Participants of the high-intensity exercise group, however, forgot less vocabulary than the relaxing group 24 hours after learning. There was no robust relationship between memory scores and the increase in BDNF and cortisol, respectively, suggesting that further parameters have to be taken into account to explain the effects of exercise on memory in humans. PMID:27437149

  8. The Effects of Acute Physical Exercise on Memory, Peripheral BDNF, and Cortisol in Young Adults

    PubMed Central

    Röder, Brigitte; Schmidt-Kassow, Maren

    2016-01-01

    In animals, physical activity has been shown to induce functional and structural changes especially in the hippocampus and to improve memory, probably by upregulating the release of neurotrophic factors. In humans, results on the effect of acute exercise on memory are inconsistent so far. Therefore, the aim of the present study was to assess the effects of a single bout of physical exercise on memory consolidation and the underlying neuroendocrinological mechanisms in young adults. Participants encoded a list of German-Polish vocabulary before exercising for 30 minutes with either high intensity or low intensity or before a relaxing phase. Retention of the vocabulary was assessed 20 minutes after the intervention as well as 24 hours later. Serum BDNF and salivary cortisol were measured at baseline, after learning, and after the intervention. The high-intensity exercise group showed an increase in BDNF and cortisol after exercising compared to baseline. Exercise after learning did not enhance the absolute number of recalled words. Participants of the high-intensity exercise group, however, forgot less vocabulary than the relaxing group 24 hours after learning. There was no robust relationship between memory scores and the increase in BDNF and cortisol, respectively, suggesting that further parameters have to be taken into account to explain the effects of exercise on memory in humans. PMID:27437149

  9. Effect of fluid ingestion on orthostatic responses following acute exercise

    NASA Technical Reports Server (NTRS)

    Davis, J. E.; Fortney, S. M.

    1997-01-01

    Orthostatic tolerance is impaired following an acute bout of exercise. This study examined the effect of fluid ingestion following treadmill exercise in restoring the cardiovascular responses to an orthostatic stress. Five men (age, 29.6 +/- 3.4 yrs) were exposed to a graded lower body negative (LBNP) pressure protocol (0 to -50 mmHg) during euhydration without exercise (C), 20 minutes after exercise dehydration (D), 20 minutes after exercise and fluid ingestion (FI20), and 60 minutes after exercise and fluid ingestion (FI60). Fluid ingestion (mean +/- SE) consisted of water-ingestion equivalent to 50% of the body weight lost during exercise (520 +/- 15 ml). Exercise dehydration resulted in significantly higher heart rates (119 +/- 8 vs 82 +/- 7 bpm), lower systolic blood pressures (95 +/- 1.7 vs 108 +/- 2.3 mmHg), a smaller increase in leg circumference (3.7 +/- 4 vs 6.9 +/- 1.0 mm), and an attenuated increase in total peripheral resistance (2.58 +/- 1.2 vs 4.28 +/- 0.9 mmHg/L/min) at -50 mmHg LBNP compared to the C condition. Fluid ingestion (both 20 and 60), partially restored the heart rate, systolic blood pressure, and total peripheral resistance responses to LBNP, but did not influence the change in leg circumference during LBNP (4 +/- 0.3 for R20 and 2.8 +/- 0.4 mm for R60). These data illustrate the effectiveness of fluid ingestion on improving orthostatic responses following exercise, and suggest that dehydration is a contributing factor to orthostatic intolerance following exercise.

  10. Influence of Acute and Chronic Exercise on Glucose Uptake

    PubMed Central

    Röhling, Martin; Herder, Christian; Stemper, Theodor; Müssig, Karsten

    2016-01-01

    Insulin resistance plays a key role in the development of type 2 diabetes. It arises from a combination of genetic predisposition and environmental and lifestyle factors including lack of physical exercise and poor nutrition habits. The increased risk of type 2 diabetes is molecularly based on defects in insulin signaling, insulin secretion, and inflammation. The present review aims to give an overview on the molecular mechanisms underlying the uptake of glucose and related signaling pathways after acute and chronic exercise. Physical exercise, as crucial part in the prevention and treatment of diabetes, has marked acute and chronic effects on glucose disposal and related inflammatory signaling pathways. Exercise can stimulate molecular signaling pathways leading to glucose transport into the cell. Furthermore, physical exercise has the potential to modulate inflammatory processes by affecting specific inflammatory signaling pathways which can interfere with signaling pathways of the glucose uptake. The intensity of physical training appears to be the primary determinant of the degree of metabolic improvement modulating the molecular signaling pathways in a dose-response pattern, whereas training modality seems to have a secondary role. PMID:27069930

  11. Acute exercise and oxidative stress: a 30 year history

    PubMed Central

    Fisher-Wellman, Kelsey; Bloomer, Richard J

    2009-01-01

    The topic of exercise-induced oxidative stress has received considerable attention in recent years, with close to 300 original investigations published since the early work of Dillard and colleagues in 1978. Single bouts of aerobic and anaerobic exercise can induce an acute state of oxidative stress. This is indicated by an increased presence of oxidized molecules in a variety of tissues. Exercise mode, intensity, and duration, as well as the subject population tested, all can impact the extent of oxidation. Moreover, the use of antioxidant supplements can impact the findings. Although a single bout of exercise often leads to an acute oxidative stress, in accordance with the principle of hormesis, such an increase appears necessary to allow for an up-regulation in endogenous antioxidant defenses. This review presents a comprehensive summary of original investigations focused on exercise-induced oxidative stress. This should provide the reader with a well-documented account of the research done within this area of science over the past 30 years. PMID:19144121

  12. Acute exercise modifies titin phosphorylation and increases cardiac myofilament stiffness.

    PubMed

    Müller, Anna E; Kreiner, Matthias; Kötter, Sebastian; Lassak, Philipp; Bloch, Wilhelm; Suhr, Frank; Krüger, Martina

    2014-01-01

    Titin-based myofilament stiffness is largely modulated by phosphorylation of its elastic I-band regions N2-Bus (decreases passive stiffness, PT) and PEVK (increases PT). Here, we tested the hypothesis that acute exercise changes titin phosphorylation and modifies myofilament stiffness. Adult rats were exercised on a treadmill for 15 min, untrained animals served as controls. Titin phosphorylation was determined by Western blot analysis using phosphospecific antibodies to Ser4099 and Ser4010 in the N2-Bus region (PKG and PKA-dependent. respectively), and to Ser11878 and Ser 12022 in the PEVK region (PKCα and CaMKIIδ-dependent, respectively). Passive tension was determined by step-wise stretching of isolated skinned cardiomyocytes to sarcomere length (SL) ranging from 1.9 to 2.4 μm and showed a significantly increased PT from exercised samples, compared to controls. In cardiac samples titin N2-Bus phosphorylation was significantly decreased by 40% at Ser4099, however, no significant changes were observed at Ser4010. PEVK phosphorylation at Ser11878 was significantly increased, which is probably mediated by the observed exercise-induced increase in PKCα activity. Interestingly, relative phosphorylation of Ser12022 was substantially decreased in the exercised samples. Surprisingly, in skeletal samples from acutely exercised animals we detected a significant decrease in PEVK phosphorylation at Ser11878 and an increase in Ser12022 phosphorylation; however, PKCα activity remained unchanged. In summary, our data show that a single exercise bout of 15 min affects titin domain phosphorylation and titin-based myocyte stiffness with obviously divergent effects in cardiac and skeletal muscle tissues. The observed changes in titin stiffness could play an important role in adapting the passive and active properties of the myocardium and the skeletal muscle to increased physical activity. PMID:25477822

  13. Acute exercise modifies titin phosphorylation and increases cardiac myofilament stiffness

    PubMed Central

    Müller, Anna E.; Kreiner, Matthias; Kötter, Sebastian; Lassak, Philipp; Bloch, Wilhelm; Suhr, Frank; Krüger, Martina

    2014-01-01

    Titin-based myofilament stiffness is largely modulated by phosphorylation of its elastic I-band regions N2-Bus (decreases passive stiffness, PT) and PEVK (increases PT). Here, we tested the hypothesis that acute exercise changes titin phosphorylation and modifies myofilament stiffness. Adult rats were exercised on a treadmill for 15 min, untrained animals served as controls. Titin phosphorylation was determined by Western blot analysis using phosphospecific antibodies to Ser4099 and Ser4010 in the N2-Bus region (PKG and PKA-dependent. respectively), and to Ser11878 and Ser 12022 in the PEVK region (PKCα and CaMKIIδ-dependent, respectively). Passive tension was determined by step-wise stretching of isolated skinned cardiomyocytes to sarcomere length (SL) ranging from 1.9 to 2.4 μm and showed a significantly increased PT from exercised samples, compared to controls. In cardiac samples titin N2-Bus phosphorylation was significantly decreased by 40% at Ser4099, however, no significant changes were observed at Ser4010. PEVK phosphorylation at Ser11878 was significantly increased, which is probably mediated by the observed exercise-induced increase in PKCα activity. Interestingly, relative phosphorylation of Ser12022 was substantially decreased in the exercised samples. Surprisingly, in skeletal samples from acutely exercised animals we detected a significant decrease in PEVK phosphorylation at Ser11878 and an increase in Ser12022 phosphorylation; however, PKCα activity remained unchanged. In summary, our data show that a single exercise bout of 15 min affects titin domain phosphorylation and titin-based myocyte stiffness with obviously divergent effects in cardiac and skeletal muscle tissues. The observed changes in titin stiffness could play an important role in adapting the passive and active properties of the myocardium and the skeletal muscle to increased physical activity. PMID:25477822

  14. Sleep disruption and its effect on lymphocyte redeployment following an acute bout of exercise.

    PubMed

    Ingram, Lesley A; Simpson, Richard J; Malone, Eva; Florida-James, Geraint D

    2015-07-01

    Sleep disruption and deprivation are common in contemporary society and have been linked with poor health, decreased job performance and increased life-stress. The rapid redeployment of lymphocytes between the blood and tissues is an archetypal feature of the acute stress response, but it is not known if short-term perturbations in sleep architecture affect lymphocyte redeployment. We examined the effects of a disrupted night sleep on the exercise-induced redeployment of lymphocytes and their subtypes. 10 healthy male cyclists performed 1h of cycling at a fixed power output on an indoor cycle ergometer, following a night of undisrupted sleep (US) or a night of disrupted sleep (DS). Blood was collected before, immediately after and 1h after exercise completion. Lymphocytes and their subtypes were enumerated using direct immunofluorescence assays and 4-colour flow cytometry. DS was associated with elevated concentrations of total lymphocytes and CD3(-)/CD56(+) NK-cells. Although not affecting baseline levels, DS augmented the exercise-induced redeployment of CD8(+) T-cells, with the naïve/early differentiated subtypes (KLRG1(-)/CD45RA(+)) being affected most. While the mobilisation of cytotoxic lymphocyte subsets (NK cells, CD8(+) T-cells γδ T-cells), tended to be larger in response to exercise following DS, their enhanced egress at 1h post-exercise was more marked. This occurred despite similar serum cortisol and catecholamine levels between the US and DS trials. NK-cells redeployed with exercise after DS retained their expression of perforin and Granzyme-B indicating that DS did not affect NK-cell 'arming'. Our findings indicate that short-term changes in sleep architecture may 'prime' the immune system and cause minor enhancements in lymphocyte trafficking in response to acute dynamic exercise. PMID:25582807

  15. Exercise, but not acute sleep loss, increases salivary antimicrobial protein secretion.

    PubMed

    Gillum, Trevor L; Kuennen, Matthew R; Castillo, Micaela N; Williams, Nicole L; Jordan-Patterson, Alex T

    2015-05-01

    Sleep deficiencies may play a role in depressing immune parameters. Little is known about the impact of exercise after sleep deprivation on mucosal immunity. The purpose of this study was to quantify salivary antimicrobial proteins (AMPs) in response to sleep loss before and after exercise. Four men and 4 women (age: 22.8 ± 2; : 49.1 ± 7.1 ml · kg(-1) · min(-1)) completed 2 exercise trials consisting of 45 minutes of running at 75% VO2peak after a normal night of sleep (CON) and after a night without sleep (WS). Exercise trials were separated by 10 ± 3 days. Saliva was collected before, immediately after, and 1 hour after exercise. LL-37, HNP1-3, Lactoferrin (Lac), and Lysozyme (Lys) were measured. Sleep loss did not affect the concentration or secretion rate of AMPs before or in response to exercise. However, exercise increased the concentration from pre- to post-exercise of LL-37 (pre: 15.5 ± 8.7; post: 22.3 ± 16.2 ng · ml(-1)), HNP1-3 (pre: 2.2 ± 2.3; post: 3.3 ± 2.5 µg · ml(-1)), Lac (pre: 5,234 ± 4,202; post: 12,283 ± 10,995 ng · ml(-1)), and Lys (pre: 5,831 ± 4,465; post: 12,542 ± 10,755 ng · ml(-1)), p <= 0.05. The secretion rates were higher immediately after and 1 hour after exercise compared with before exercise for LL-37 (pre: 3.1 ± 2.1; post: 5.1 ± 3.7; +1: 6.9 ± 8.4 ng · min(-1)), HNP1-3 (pre: 0.38 ± 0.38; post: 0.80 ± 0.75; +1: 0.84 ± 0.67 µg · min(-1)), Lac (pre: 1,096 ± 829; post: 2,948 ± 2,923; +1: 2,464 ± 3,785 ng · min(-1)), and Lys (pre: 1,534 ± 1,790; post: 3,042 ± 2,773; +1: 1,916 ± 1,682 ng · min-(1)), p <= 0.05. These data suggest that the major constituents of the mucosal immune system are unaffected by acute sleep loss and by exercise after acute sleep loss. Exercise increased the concentration and secretion rate of each AMP suggesting enhanced immunity and control of inflammation, despite limited sleep. PMID:25915527

  16. Enhancing Adherence in Clinical Exercise Trials.

    ERIC Educational Resources Information Center

    O'Neal, Heather A.; Blair, Steven N.

    2001-01-01

    Discusses exercise adherence from the perspective of adhering to an exercise treatment in a controlled trial, focusing on: adherence (to intervention and measurement); the development of randomized clinical trials; exemplary randomized clinical trials in exercise science (exercise training studies and physical activity interventions); and study…

  17. Acute Exercise and Motor Memory Consolidation: The Role of Exercise Intensity.

    PubMed

    Thomas, Richard; Johnsen, Line K; Geertsen, Svend S; Christiansen, Lasse; Ritz, Christian; Roig, Marc; Lundbye-Jensen, Jesper

    2016-01-01

    A single bout of high intensity aerobic exercise (~90% VO2peak) was previously demonstrated to amplify off-line gains in skill level during the consolidation phase of procedural memory. High intensity exercise is not always a viable option for many patient groups or in a rehabilitation setting where low to moderate intensities may be more suitable. The aim of this study was to investigate the role of intensity in mediating the effects of acute cardiovascular exercise on motor skill learning. We investigated the effects of different exercise intensities on the retention (performance score) of a visuomotor accuracy tracking task. Thirty six healthy male subjects were randomly assigned to one of three groups that performed either a single bout of aerobic exercise at 20 min post motor skill learning at 45% (EX45), 90% (EX90) maximal power output (Wmax) or rested (CON). Randomization was stratified to ensure that the groups were matched for relative peak oxygen consumption (ml O2/min/kg) and baseline score in the tracking task. Retention tests were carried out at 1 (R1) and 7 days (R7) post motor skill learning. At R1, changes in performance scores were greater for EX90 compared to CON (p<0.001) and EX45 (p = 0.011). The EX45 and EX90 groups demonstrated a greater change in performance score at R7 compared to the CON group (p = 0.003 and p<0.001, respectively). The change in performance score for EX90 at R7 was also greater than EX45 (p = 0.049). We suggest that exercise intensity plays an important role in modulating the effects that a single bout of cardiovascular exercise has on the consolidation phase following motor skill learning. There appears to be a dose-response relationship in favour of higher intensity exercise in order to augment off-line effects and strengthen procedural memory. PMID:27454423

  18. Acute Exercise and Motor Memory Consolidation: The Role of Exercise Intensity

    PubMed Central

    Geertsen, Svend S.; Christiansen, Lasse; Ritz, Christian; Roig, Marc

    2016-01-01

    A single bout of high intensity aerobic exercise (~90% VO2peak) was previously demonstrated to amplify off-line gains in skill level during the consolidation phase of procedural memory. High intensity exercise is not always a viable option for many patient groups or in a rehabilitation setting where low to moderate intensities may be more suitable. The aim of this study was to investigate the role of intensity in mediating the effects of acute cardiovascular exercise on motor skill learning. We investigated the effects of different exercise intensities on the retention (performance score) of a visuomotor accuracy tracking task. Thirty six healthy male subjects were randomly assigned to one of three groups that performed either a single bout of aerobic exercise at 20 min post motor skill learning at 45% (EX45), 90% (EX90) maximal power output (Wmax) or rested (CON). Randomization was stratified to ensure that the groups were matched for relative peak oxygen consumption (ml O2/min/kg) and baseline score in the tracking task. Retention tests were carried out at 1 (R1) and 7 days (R7) post motor skill learning. At R1, changes in performance scores were greater for EX90 compared to CON (p<0.001) and EX45 (p = 0.011). The EX45 and EX90 groups demonstrated a greater change in performance score at R7 compared to the CON group (p = 0.003 and p<0.001, respectively). The change in performance score for EX90 at R7 was also greater than EX45 (p = 0.049). We suggest that exercise intensity plays an important role in modulating the effects that a single bout of cardiovascular exercise has on the consolidation phase following motor skill learning. There appears to be a dose-response relationship in favour of higher intensity exercise in order to augment off-line effects and strengthen procedural memory. PMID:27454423

  19. Acute Cardiovascular Response to Sign Chi Do Exercise

    PubMed Central

    Rogers, Carol E.; Carlson, John; Garver, Kayla

    2015-01-01

    Safe and gentle exercise may be important for older adults overcoming a sedentary lifestyle. Sign Chi Do (SCD), a novel form of low impact exercise, has shown improved balance and endurance in healthy older adults, and there have been no SCD-related injuries reported. Sedentary older adults are known to have a greater cardiovascular (CV) response to physical activity than those who regularly exercise. However their CV response to SCD is unknown. This study explored the acute CV response of older adults to SCD. Cross-sectional study of 34 sedentary and moderately active adults over age 55 with no previous experience practicing SCD. Participants completed a 10 min session of SCD. CV outcomes of heart rate, blood pressure, rate pressure product were recorded at 0, 5, 10 min of SCD performance, and after 10 min of rest. HR was recorded every minute. There was no difference in CV scores of sedentary and moderately active older adults after a session of SCD-related activity. All CV scores increased at 5 min, were maintained at 10 min, and returned to baseline within 10 min post SCD (p < 0.05). SCD may be a safe way to increase participation in regular exercise by sedentary older adults.

  20. Acute versus chronic exercise-induced left-ventricular remodeling.

    PubMed

    Weiner, Rory B; Baggish, Aaron L

    2014-11-01

    Exercise-induced cardiac remodeling (EICR) is the process by which the heart adapts to the physiologic stress of exercise. Non-invasive cardiovascular imaging has led to advances in the understanding of EICR, with sport-specific changes in left-ventricular (LV) structure and function being described; however, the majority of data stem from cross-sectional and short-duration longitudinal studies. Due to the paucity of long-term longitudinal EICR studies, the time course of this process and any distinct differentiation between acute and chronic adaptations remain largely unexplored. In order to clarify the natural history of EICR, longer duration longitudinal study is required. Such work will determine whether exercise-induced changes in myocardial structure and function occur in discrete stages. Examination of prolonged exposures to exercise training will also be necessary to determine normative values across the age and training spectrums of athletic patients. This information will help to distinguish the boundary between physiology and pathology in athletic patients. PMID:25300444

  1. Acute Anteroseptal Myocardial Infarction after a Negative Exercise Stress Test

    PubMed Central

    Al-Alawi, Abdullah M.; Janardan, Jyotsna; Peck, Kah Y.; Soward, Alan

    2016-01-01

    A myocardial infarction is a rare complication which can occur after an exercise stress test. We report a 48-year-old male who was referred to the Mildura Cardiology Practice, Victoria, Australia, in August 2014 with left-sided chest pain. He underwent an exercise stress test which was negative for myocardial ischaemia. However, the patient presented to the Emergency Department of the Mildura Base Hospital 30 minutes after the test with severe retrosternal chest pain. An acute anteroseptal ST segment elevation myocardial infarction was observed on electrocardiography. After thrombolysis, he was transferred to a tertiary hospital where coronary angiography subsequently revealed significant left anterior descending coronary artery stenosis. Thrombus aspiration and a balloon angioplasty were performed. The patient was discharged three days after the surgical procedure in good health. PMID:27226918

  2. The acute hormonal response to the kettlebell swing exercise.

    PubMed

    Budnar, Ronald G; Duplanty, Anthony A; Hill, David W; McFarlin, Brian K; Vingren, Jakob L

    2014-10-01

    The purpose of this investigation was to examine the acute hormonal response to the kettlebell swing exercise. Ten recreationally resistance trained men (age, 24 ± 4 years; height, 175 ± 6 cm; body mass, 78.7 ± 9.9 kg) performed 12 rounds of 30 seconds of 16 kg kettlebell swings alternated with 30 seconds of rest. Blood samples were collected before (PRE), immediately after (IP), and 15 (P15) and 30 minutes after exercise (P30) and analyzed for testosterone (T), immunoreactive growth hormone, cortisol (C), and lactate concentrations. Heart rate and rating of perceived exertion were measured at the end of each round. Testosterone was significantly higher (p ≤ 0.05) at IP than at PRE, P15, or P30 (PRE: 28 ± 3; IP: 32 ± 4; P15: 29 ± 3; P30: 27 ± 3 nmol·L). Growth hormone was higher at IP, P15, and P30 than at PRE (PRE: 0.1 ± 0.1; IP: 1.8 ± 1.2; P15: 2.1 ± 1.1; P30: 1.6 ± 1.3 μg·L). Cortisol was higher at IP and P15 than at PRE and P30 (PRE: 617 ± 266; IP: 894 ± 354; P15: 875 ± 243; P30: 645 ± 285 nmol·L). Lactate was higher at IP, P15, and P30 than at PRE (PRE: 1.1 ± 0.5; IP: 7.0 ± 3.0; P15: 4.0 ± 2.7; P30: 2.5 ± 1.8 mmol·L). Heart rate increased progressively from 57 ± 12 at PRE to 170 ± 10 at IP. The exercise protocol produced an acute increase in hormones involved in muscle adaptations. Thus, the kettlebell swing exercise might provide a good supplement to resistance training programs. PMID:24714543

  3. Acute volume loading and exercise capacity in postural tachycardia syndrome

    PubMed Central

    Figueroa, Rocío A.; Arnold, Amy C.; Nwazue, Victor C.; Okamoto, Luis E.; Paranjape, Sachin Y.; Black, Bonnie K.; Diedrich, Andre; Robertson, David; Biaggioni, Italo; Raj, Satish R.

    2014-01-01

    Postural tachycardia syndrome (POTS) is associated with exercise intolerance, hypovolemia, and cardiac atrophy, which may contribute to reduced stroke volume and compensatory exaggerated heart rate (HR) increases. Acute volume loading with intravenous (iv) saline reduces HR and improves orthostatic tolerance and symptoms in POTS, but its effect on exercise capacity is unknown. In this study, we determined the effect of iv saline infusion on peak exercise capacity (V̇o2peak) in POTS. Nineteen patients with POTS participated in a sequential study. V̇o2peak was measured on two separate study days, following administration of placebo or 1 liter of iv saline (NaCl 0.9%). Patients exercised on a semirecumbent bicycle with resistance increased by 25 W every 2 min until maximal effort was achieved. Patients exhibited blood volume deficits (−13.4 ± 1.4% ideal volume), consistent with mild to moderate hypovolemia. At baseline, saline significantly increased stroke volume (saline 80 ± 8 ml vs. placebo 64 ± 4 ml; P = 0.010), increased cardiac output (saline 6.9 ± 0.5 liter/min vs. placebo 5.7 ± 0.2 liter/min; P = 0.021), and reduced systemic vascular resistance (saline 992.6 ± 70.0 dyn-s/cm5 vs. placebo 1,184.0 ± 50.8 dyn-s/cm5; P = 0.011), with no effect on HR or blood pressure. During exercise, saline did not produce differences in V̇o2peak (saline 26.3 ± 1.2 mg·kg−1·min−1 vs. placebo 27.7 ± 1.8 mg·kg−1·min−1; P = 0.615), peak HR [saline 174 ± 4 beats per minute (bpm) vs. placebo 175 ± 3 bpm; P = 0.672] or other cardiovascular parameters. These findings suggest that acute volume loading with saline does not improve V̇o2peak or cardiovascular responses to exercise in POTS, despite improvements in resting hemodynamic function. PMID:25059240

  4. Effects of acute aerobic exercise on a task-switching protocol and brain-derived neurotrophic factor concentrations in young adults with different levels of cardiorespiratory fitness.

    PubMed

    Tsai, Chia-Liang; Pan, Chien-Yu; Chen, Fu-Chen; Wang, Chun-Hao; Chou, Feng-Ying

    2016-07-01

    What is the central question of this study? Neurocognitive functions can be enhanced by acute aerobic exercise, which could be associated with changes in serum brain-derived neurotrophic factor (BDNF) concentrations. We aimed to explore acute exercise-induced changes in BDNF concentrations, neuropsychological and neurophysiological performances when individuals with different levels of cardiorespiratory fitness performed a cognitive task. What is the main finding and its importance? Only young adults with higher cardiorespiratory fitness could attain switching cost and neurophysiological benefits via acute aerobic exercise. The mechanisms might be fitness dependent. Although acute aerobic exercise could enhance serum BDNF concentrations, changes in peripheral BDNF concentrations could not be the potential factor involved in the beneficial effects on neurocognitive performance. This study investigated the effects of acute aerobic exercise on neuropsychological and neurophysiological performances in young adults with different cardiorespiratory fitness levels when performing a task-switching protocol and explored the potential associations between acute aerobic exercise-induced changes in serum brain-derived neurotrophic factor (BDNF) concentrations and various neurocognitive outcomes. Sixty young adults were categorized into one control group (i.e. non-exercise-intervention; n = 20) and two exercise-intervention (EI) groups [i.e. higher (EIH , n = 20) and lower (EIL , n = 20) cardiorespiratory fitness] according to their maximal oxygen consumption. At baseline and after either an acute bout of 30 min of moderate-intensity aerobic exercise or a control period, the neuropsychological and neurophysiological performances and serum BDNF concentrations were measured when the participants performed a task-switching protocol involving executive control and greater demands on working memory. The results revealed that although acute aerobic exercise decreased reaction

  5. Decline in executive control during acute bouts of exercise as a function of exercise intensity and fitness level.

    PubMed

    Labelle, Véronique; Bosquet, Laurent; Mekary, Saïd; Bherer, Louis

    2013-02-01

    Studies on the effects of acute bouts of cardiovascular exercise on cognitive performances show contradictory findings due to methodological differences (e.g., exercise intensity, cognitive function assessed, participants' aerobic fitness level, etc.). The present study assessed the acute effect of exercise intensity on cognition while controlling for key methodological confounds. Thirty-seven participants (M(age)=23. 8 years; SD=2.6) completed a computerized modified-Stroop task (involving denomination, inhibition and switching conditions) while pedalling at 40%, 60% and 80% of their peak power output (PPO). Results showed that in the switching condition of the task, error rates increased as a function of exercise intensity (from 60% to 80% of PPO) in all participants and that lower fit individuals showed increased reaction time variability. This suggests that acute bouts of cardiovascular exercise can momentarily alter executive control and increase performance instability in lower fit individuals. PMID:23146780

  6. Acute exercise increases fibroblast growth factor 21 in metabolic organs and circulation.

    PubMed

    Tanimura, Yuko; Aoi, Wataru; Takanami, Yoshikazu; Kawai, Yukari; Mizushima, Katsura; Naito, Yuji; Yoshikawa, Toshikazu

    2016-06-01

    Fibroblast growth factor 21, a metabolic regulator, plays roles in lipolysis and glucose uptake in adipose tissues and skeletal muscles. Its expression in skeletal muscle is upregulated upon activation of the phosphatidylinositol 3-kinase/Akt signaling pathway, which is induced by exercise and muscle contraction. We examined the increase of fibroblast growth factor 21 after acute exercise in metabolic organs, especially skeletal muscles and circulation. Participants exercised on bicycle ergometers for 60 min at 75% of their V˙O2max. Venous blood samples were taken before exercise and immediately after exercise. In an animal study, male ICR mice were divided into sedentary and exercise groups. Mice in the exercise group performed treadmill exercises at 30 m min(-1) for 60 min. Shortly thereafter, blood, liver, and skeletal muscle samples were taken from mice. Acute exercise induced the increase of serum fibroblast growth factor 21 in both humans and mice, and increased fibroblast growth factor 21 expression in the skeletal muscles and the liver of mice. Acute exercise activated Akt in mice skeletal muscle. Acute exercise increases fibroblast growth factor 21 concentrations in both serum and metabolic organs. Moreover, results show that acute exercise increased the expression of fibroblast growth factor 21 in skeletal muscle, accompanied by the phosphorylation of Akt in mice. PMID:27335433

  7. Vocal exercise may attenuate acute vocal fold inflammation

    PubMed Central

    Abbott, Katherine Verdolini; Li, Nicole Y.K.; Branski, Ryan C.; Rosen, Clark A.; Grillo, Elizabeth; Steinhauer, Kimberly; Hebda, Patricia A.

    2012-01-01

    Objectives/Hypotheses The objective was to assess the utility of selected “resonant voice” exercises for the reduction of acute vocal fold inflammation. The hypothesis was that relatively large-amplitude, low-impact exercises associated with resonant voice would reduce inflammation more than spontaneous speech and possibly more than voice rest. Study Design The study design was prospective, randomized, double-blind. Methods Nine vocally healthy adults underwent a 1-hr vocal loading procedure, followed by randomization to (a) a spontaneous speech condition, (b) a vocal rest condition, or (c) a resonant voice exercise condition. Treatments were monitored in clinic for 4 hr, and continued extra-clinically until the next morning. At baseline, immediately following loading, after the 4-hr in-clinic treatment, and 24 hr post baseline, secretions were suctioned from the vocal folds bilaterally and submitted to enzyme-linked immunosorbent assay (ELISA) to estimate concentrations of key markers of tissue injury and inflammation: IL-1β, IL-6, IL-8, TNF-α, MMP-8, and IL-10. Results Complete data sets were obtained for 3 markers -- IL-1β, IL-6, and MMP-8 -- for one subject in each treatment condition. For those markers, results were poorest at 24-hr follow-up in the spontaneous speech condition, sharply improved in the voice rest condition, and best in the resonant voice condition. Average results for all markers, for all responsive subjects with normal baseline mediator concentrations, revealed an almost identical pattern. Conclusions Some forms of tissue mobilization may be useful to attenuate acute vocal fold inflammation. PMID:23177745

  8. Medium-intensity acute exhaustive exercise induces neural cell apoptosis in the rat hippocampus.

    PubMed

    Li, Shanni; Liu, Jin; Yan, Hengmei

    2013-01-15

    The present study assessed the influence of medium-intensity (treadmill at a speed of 19.3 m/min until exhaustion) and high-intensity (treadmill at a speed of 26.8 m/min until exhaustion) acute exhaustive exercise on rat hippocampal neural cell apoptosis. TUNEL staining showed significantly increased neural cell apoptosis in the hippocampal CA1 region of rats after medium- and high-intensity acute exhaustive exercise, particularly the medium-intensity acute exhaustive exercise, when compared with the control. Immunohistochemistry showed significantly increased expression of the antiapoptotic protein Bcl-2 and the proapoptotic protein Bax in the hippocampal CA1 region of rats after medium- and high-intensity acute exhaustive exercise. Additionally, the ratio of Bax to Bcl-2 increased in both exercise groups. In particular, the medium-intensity acute exhaustive exercise group had significantly higher Bax and Bcl-2 protein expression and a higher Bax/Bcl-2 ratio. These findings indicate that acute exhaustive exercise of different intensities can induce neural cell apoptosis in the hippocampus, and that medium-intensity acute exhaustive exercise results in greater damage when compared with high-intensity exercise. PMID:25206482

  9. The Team Boat Exercise: Enhancing Team Communication Midsemester

    ERIC Educational Resources Information Center

    Cox, Pamela L.; Friedman, Barry A.

    2009-01-01

    This paper discusses the Team Boat Exercise, which was developed to provide students with a mechanism for addressing team problems and enhancing team communication midsemester. The inspiration for the exercise came from a video by Prentice Hall, Inc. (2001). Part III of the video, entitled "Corporate Coaching," shows senior staff members from the…

  10. Personality Does not Influence Exercise-Induced Mood Enhancement Among Female Exercisers.

    PubMed

    Lane, Andrew M; Milton, Karen E; Terry, Peter C

    2005-09-01

    The present study investigated the influence of personality on exercise-induced mood changes. It was hypothesised that (a) exercise would be associated with significant mood enhancement across all personality types, (b) extroversion would be associated with positive mood and neuroticism with negative mood both pre- and post-exercise, and (c) personality measures would interact with exercise-induced mood changes. Participants were 90 female exercisers (M = 25.8 yr, SD = 9.0 yr) who completed the Eysenck Personality Inventory (EPI) once and the Brunel Mood Scale (BRUMS) before and after a 60-minute exercise session. Median splits were used to group participants into four personality types: stable introverts (n = 25), stable extroverts (n = 20), neurotic introverts (n = 26), and neurotic extroverts (n = 19). Repeated measures MANOVA showed significant mood enhancement following exercise across all personality types. Neuroticism was associated with negative mood scores pre- and post-exercise but the effect of extroversion on reported mood was relatively weak. There was no significant interaction effect between exercise-induced mood enhancement and personality. In conclusion, findings lend support to the notion that exercise is associated with improved mood. However, findings show that personality did not influence this effect, although neuroticism was associated with negative mood. Key PointsResearch in general psychology has found that stable personality trait are associated changes in mood states. Ninety females exercisers completed a personality test and mood scales before and after exercise. Results indicated mood changes were not associated with personality, although neuroticism was associated with negative mood. PMID:24453525

  11. Effects of Acute Aerobic Exercise on Executive Function in Older Women

    PubMed Central

    Peiffer, Roseann; Darby, Lynn A.; Fullenkamp, Adam; Morgan, Amy L.

    2015-01-01

    Acute aerobic exercise may increase cognitive processing speed among tasks demanding a substantial degree of executive function. Few studies have investigated executive function after acute exercise in older adults across various exercise intensities. Healthy females 60-75 years of age (n = 11) who were not on medications completed 20-min exercise sessions at a moderate (50%VO2max) exercise intensity and a vigorous (75%VO2max) exercise intensity. Modified flanker tasks (reaction times) and d2 tests of sustained and selective attention (components of executive function) were completed before, immediately after, and 30-min post-exercise. Results indicated that older adult females had improved scores on the modified flanker task reaction times (RTT, RTI, RTC) and d2 tests immediately after both moderate and vigorous intensity aerobic exercise. Some of these effects were maintained 30 min post-exercise. These findings suggest that an acute bout of exercise, regardless of intensity, can improve performance on tests of executive function in older women. Key points Few studies have investigated the effects of the intensity of exercise on executive function in older women Executive function improved after 20-min of aerobic exercise regardless of exercise intensity in older women Findings from the study were not confounded by prescribed medications; all participants who were older women were not taking any medications PMID:26336345

  12. Effects of muscular strength, exercise order, and acute whole-body vibration exposure on bat swing speed.

    PubMed

    Reyes, G F Cisco; Dickin, D Clark; Dolny, Dennis G; Crusat, Nolan J K

    2010-12-01

    The purposes for this study were to investigate effects of acute whole-body vibration (WBV) exposure and exercise order on bat speed and to examine relationship between muscular strength and bat speed. All participants were recreationally trained men (n = 16; 22 ± 2 years; 181.4 ± 7.4 cm; 84.7 ± 9 kg), with previous baseball experience and were tested for 1 repetitive maximum (1RM) strength in squat and bench press. Subjects then participated in 4 randomized sessions on separate days, each consisting of 3 sets of 5 bat swings. Exercises (upper and lower body dynamic and static movements related to bat swing) with or without WBV exposure were performed after sets 1 and 2. Trials were as follows: no-exercise Control (CTRL), upper body followed by lower body exercises without WBV (Arm-Leg NOVIB), upper body followed by lower body exercises with WBV (Arm-Leg VIB), and lower body followed by upper body exercises with WBV (Leg-Arm VIB). Bat speed was recorded during each swing and averaged across sets. Statistical analyses were performed to assess differences across sets and trials. Linear regressions analyzed relationship between strength and bat speed. A significant relationship existed between bat speed and lower body strength (r = 0.406, p = 0.008) but not for upper body strength. The exercise order of Arm-Leg VIB significantly increased bat speed by 2.6% (p = 0.02). Performing identical order of exercises without vibration (Arm-Leg NOVIB) significantly decreased bat speed by 2% (p = 0.039). It was concluded that adding vibration exposure to total-body exercises can provide acute enhancements in bat speed. Additionally, leg strength was shown to influence bat speed suggesting that increasing leg strength may enhance bat speed. PMID:21088545

  13. Social facilitation in virtual reality-enhanced exercise: competitiveness moderates exercise effort of older adults

    PubMed Central

    Anderson-Hanley, Cay; Snyder, Amanda L; Nimon, Joseph P; Arciero, Paul J

    2011-01-01

    This study examined the effect of virtual social facilitation and competitiveness on exercise effort in exergaming older adults. Fourteen exergaming older adults participated. Competitiveness was assessed prior to the start of exercise. Participants were trained to ride a “cybercycle;” a virtual reality-enhanced stationary bike with interactive competition. After establishing a cybercycling baseline, competitive avatars were introduced. Pedaling effort (watts) was assessed. Repeated measures ANOVA revealed a significant group (high vs low competitiveness) × time (pre- to post-avatar) interaction (F[1,12] = 13.1, P = 0.003). Virtual social facilitation increased exercise effort among more competitive exercisers. Exercise programs that match competitiveness may maximize exercise effort. PMID:22087067

  14. Acute and training effects of resistance exercise on heart rate variability.

    PubMed

    Kingsley, J Derek; Figueroa, Arturo

    2016-05-01

    Heart rate variability (HRV) has been used as a non-invasive method to evaluate heart rate (HR) regulation by the parasympathetic and sympathetic divisions of the autonomic nervous system. In this review, we discuss the effect of resistance exercise both acutely and after training on HRV in healthy individuals and in those with diseases characterized by autonomic dysfunction, such as hypertension and fibromyalgia. HR recovery after exercise is influenced by parasympathetic reactivation and sympathetic recovery to resting levels. Therefore, examination of HRV in response to acute exercise yields valuable insight into autonomic cardiovascular modulation and possible underlying risk for disease. Acute resistance exercise has shown to decrease cardiac parasympathetic modulation more than aerobic exercise in young healthy adults suggesting an increased risk for cardiovascular dysfunction after resistance exercise. Resistance exercise training appears to have no effect on resting HRV in healthy young adults, while it may improve parasympathetic modulation in middle-aged adults with autonomic dysfunction. Acute resistance exercise appears to decrease parasympathetic activity regardless of age. This review examines the acute and chronic effects of resistance exercise on HRV in young and older adults. PMID:25524332

  15. Enhancing the Group Experience: Creative Writing Exercises.

    ERIC Educational Resources Information Center

    Wenz, Kathie; McWhirter, J. Jeffries

    1990-01-01

    Reviews the literature surrounding the use of personal/creative writing as an adjunct to group therapy. Several writing exercises, including a stain glass poem, personal logo, and epigram, as well as client responses, are discussed. The article concludes with suggestions for using writing with groups. (Author/TE)

  16. The effects of cardiorespiratory fitness and acute aerobic exercise on executive functioning and EEG entropy in adolescents

    PubMed Central

    Hogan, Michael J.; O’Hora, Denis; Kiefer, Markus; Kubesch, Sabine; Kilmartin, Liam; Collins, Peter; Dimitrova, Julia

    2015-01-01

    The current study examined the effects of cardiorespiratory fitness, identified with a continuous graded cycle ergometry, and aerobic exercise on cognitive functioning and entropy of the electroencephalogram (EEG) in 30 adolescents between the ages of 13 and 14 years. Higher and lower fit participants performed an executive function task after a bout of acute exercise and after rest while watching a film. EEG entropy, using the sample entropy measure, was repeatedly measured during the 1500 ms post-stimulus interval to evaluate changes in entropy over time. Analysis of the behavioral data for lower and higher fit groups revealed an interaction between fitness levels and acute physical exercise. Notably, lower fit, but not higher fit, participants had higher error rates (ER) for No Go relative to Go trials in the rest condition, whereas in the acute exercise condition there were no differences in ER between groups; higher fit participants also had significantly faster reaction times in the exercise condition in comparison with the rest condition. Analysis of EEG data revealed that higher fit participants demonstrated lower entropy post-stimulus than lower fit participants in the left frontal hemisphere, possibly indicating increased efficiency of early stage stimulus processing and more efficient allocation of cognitive resources to the task demands. The results suggest that EEG entropy is sensitive to stimulus processing demands and varies as a function of physical fitness levels, but not acute exercise. Physical fitness, in turn, may enhance cognition in adolescence by facilitating higher functionality of the attentional system in the context of lower levels of frontal EEG entropy. PMID:26539093

  17. Musical feedback during exercise machine workout enhances mood.

    PubMed

    Fritz, Thomas H; Halfpaap, Johanna; Grahl, Sophia; Kirkland, Ambika; Villringer, Arno

    2013-01-01

    Music making has a number of beneficial effects for motor tasks compared to passive music listening. Given that recent research suggests that high energy musical activities elevate positive affect more strongly than low energy musical activities, we here investigated a recent method that combined music making with systematically increasing physiological arousal by exercise machine workout. We compared mood and anxiety after two exercise conditions on non-cyclical exercise machines, one with passive music listening and the other with musical feedback (where participants could make music with the exercise machines). The results showed that agency during exercise machine workout (an activity we previously labeled jymmin - a cross between jammin and gym) had an enhancing effect on mood compared to workout with passive music listening. Furthermore, the order in which the conditions were presented mediated the effect of musical agency for this subscale when participants first listened passively, the difference in mood between the two conditions was greater, suggesting that a stronger increase in hormone levels (e.g., endorphins) during the active condition may have caused the observed effect. Given an enhanced mood after training with musical feedback compared to passively listening to the same type of music during workout, the results suggest that exercise machine workout with musical feedback (jymmin) makes the act of exercise machine training more desirable. PMID:24368905

  18. Musical feedback during exercise machine workout enhances mood

    PubMed Central

    Fritz, Thomas H.; Halfpaap, Johanna; Grahl, Sophia; Kirkland, Ambika; Villringer, Arno

    2013-01-01

    Music making has a number of beneficial effects for motor tasks compared to passive music listening. Given that recent research suggests that high energy musical activities elevate positive affect more strongly than low energy musical activities, we here investigated a recent method that combined music making with systematically increasing physiological arousal by exercise machine workout. We compared mood and anxiety after two exercise conditions on non-cyclical exercise machines, one with passive music listening and the other with musical feedback (where participants could make music with the exercise machines). The results showed that agency during exercise machine workout (an activity we previously labeled jymmin – a cross between jammin and gym) had an enhancing effect on mood compared to workout with passive music listening. Furthermore, the order in which the conditions were presented mediated the effect of musical agency for this subscale when participants first listened passively, the difference in mood between the two conditions was greater, suggesting that a stronger increase in hormone levels (e.g., endorphins) during the active condition may have caused the observed effect. Given an enhanced mood after training with musical feedback compared to passively listening to the same type of music during workout, the results suggest that exercise machine workout with musical feedback (jymmin) makes the act of exercise machine training more desirable. PMID:24368905

  19. Effect of a pre-workout energy supplement on acute multi-joint resistance exercise.

    PubMed

    Gonzalez, Adam M; Walsh, Allyson L; Ratamess, Nicholas A; Kang, Jie; Hoffman, Jay R

    2011-01-01

    The effect of a pre-workout energy supplement on acute multi- joint resistance exercise was examined in eight resistance-trained college-age men. Subjects were randomly provided either a placebo (P) or a supplement (S: containing caffeine, taurine, glucuronolactone, creatine, β-alanine, and the amino acids; leucine, isoleucine, valine, glutamine and arginine) 10 minutes prior to resistance exercise. Subjects performed 4 sets of no more than 10 repetitions of either barbell squat or bench press at 80% of their pre-determined 1 repetition- maximum (1RM) with 90 seconds of rest between sets. Dietary intake 24 hours prior to each of the two training trials was kept constant. Results indicate that consuming the pre-workout energy drink 10 minutes prior to resistance exercise enhances performance by significantly increasing the number of repetitions successfully performed (p = 0.022) in S (26.3 ± 9.2) compared to P (23.5 ± 9.4). In addition, the average peak and mean power performance for all four sets was significantly greater in S compared to P (p < 0.001 and p < 0.001, respectively). No differences were observed between trials in subjective feelings of energy during either pre (p = 0.660) or post (p = 0.179) meaures. Similary, no differences between groups, in either pre or post assessments, were observed in subjective feelings of focus (p = 0.465 and p = 0.063, respectively), or fatigue (p = 0.204 and p = 0.518, respectively). Results suggest that acute ingestion of a high-energy supplement 10 minutes prior to the onset of a multi-joint resistance training session can augment training volume and increase power performance during the workout. Key pointsConsumption of a pre-workout energy supplement containing caffeine, taurine, glucuronolactone, creatine, β-alanine, and amino acids consumed 10 minutes prior to a bout of resistance exercise enhances the total number of repetitions performed during the exercise bout.Power outputs for each repetition during the

  20. Plasma levels of microRNA in chronic kidney disease: patterns in acute and chronic exercise.

    PubMed

    Van Craenenbroeck, Amaryllis H; Ledeganck, Kristien J; Van Ackeren, Katrijn; Jürgens, Angelika; Hoymans, Vicky Y; Fransen, Erik; Adams, Volker; De Winter, Benedicte Y; Verpooten, Gert A; Vrints, Christiaan J; Couttenye, Marie M; Van Craenenbroeck, Emeline M

    2015-12-15

    Exercise training is an effective way to improve exercise capacity in chronic kidney disease (CKD), but the underlying mechanisms are only partly understood. In healthy subjects (HS), microRNA (miRNA or miR) are dynamically regulated following exercise and have, therefore, been suggested as regulators of cardiovascular adaptation to exercise. However, these effects were not studied in CKD before. The effect of acute exercise (i.e., an acute exercise bout) was assessed in 32 patients with CKD and 12 age- and sex-matched HS (study 1). miRNA expression in response to chronic exercise (i.e., a 3-mo exercise training program) was evaluated in 40 CKD patients (study 2). In a subgroup of study 2, the acute-exercise induced effect was evaluated at baseline and at follow-up. Plasma levels of a preselected panel miRNA, involved in exercise adaptation processes such as angiogenesis (miR-126, miR-210), inflammation (miR-21, miR-146a), hypoxia/ischemia (miR-21, miR-210), and progenitor cells (miR-150), were quantified by RT-PCR. Additionally, seven miRNA involved in similar biological processes were quantified in the subgroup of study 2. Baseline, studied miRNA were comparable in CKD and HS. Following acute exercise, miR-150 levels increased in both CKD (fold change 2.12 ± 0.39, P = 0.002; and HS: fold change 2.41 ± 0.48 P = 0.018, P for interaction > 0.05). miR-146a acutely decreased in CKD (fold change 0.92 ± 0.13, P = 0.024), whereas it remained unchanged in HS. Levels of miR-21, miR-126, and miR-210 remained unaltered. Chronic exercise did not elicit a significant change in the studied miRNA levels. However, an acute exercise-induced decrease in miR-210 was observed in CKD patients, only after training (fold change 0.76 ± 0.15). The differential expression in circulating miRNA in response to acute and chronic exercise may point toward a physiological role in cardiovascular adaptation to exercise, also in CKD. PMID:26475583

  1. The influence of an acute bout of aerobic exercise on cortical contributions to motor preparation and execution.

    PubMed

    Thacker, Jonathan S; Middleton, Laura E; McIlroy, William E; Staines, W Richard

    2014-10-01

    Increasing evidence supports the use of physical activity for modifying brain activity and overall neurological health. Specifically, aerobic exercise appears to have a positive effect on cognitive function, which some have suggested to be a result of increasing levels of arousal. However, the role of aerobic exercise on movement-related cortical activity is less clear. We tested the hypothesis that (1) an acute bout of exercise modulates excitability within motor areas and (2) transient effects would be sustained as long as sympathetic drive remained elevated (indicated by heart rate). In experiment 1, participants performed unimanual self-paced wrist extension movements before and after a 20-min, moderate intensity aerobic exercise intervention on a recumbent cycle ergometer. After the cessation of exercise, Bereitschaftspotentials (BP), representative cortical markers for motor preparation, were recorded immediately postexercise (Post) and following a return to baseline heart rate (Post[Rest]). Electroencephalography (EEG) was used to measure the BP time-locked to onset of muscle activity and separated into three main components: early, late and reafferent potentials. In experiment 2, two additional time points postexercise were added to the original protocol following the Post[Rest] condition. Early BP but not late BP was influenced by aerobic exercise, evidenced by an earlier onset, indicative of a regionally selective effect across BP generators. Moreover, this effect was sustained for up to an hour following exercise cessation and this effect was following a return to baseline heart rate. These data demonstrate that acute aerobic exercise may alter and possibly enhance the cortical substrates required for the preparation of movement. PMID:25355852

  2. The influence of an acute bout of aerobic exercise on cortical contributions to motor preparation and execution

    PubMed Central

    Thacker, Jonathan S.; Middleton, Laura E.; McIlroy, William E.; Staines, W. Richard

    2014-01-01

    Abstract Increasing evidence supports the use of physical activity for modifying brain activity and overall neurological health. Specifically, aerobic exercise appears to have a positive effect on cognitive function, which some have suggested to be a result of increasing levels of arousal. However, the role of aerobic exercise on movement‐related cortical activity is less clear. We tested the hypothesis that (1) an acute bout of exercise modulates excitability within motor areas and (2) transient effects would be sustained as long as sympathetic drive remained elevated (indicated by heart rate). In experiment 1, participants performed unimanual self‐paced wrist extension movements before and after a 20‐min, moderate intensity aerobic exercise intervention on a recumbent cycle ergometer. After the cessation of exercise, Bereitschaftspotentials (BP), representative cortical markers for motor preparation, were recorded immediately postexercise (Post) and following a return to baseline heart rate (Post[Rest]). Electroencephalography (EEG) was used to measure the BP time‐locked to onset of muscle activity and separated into three main components: early, late and reafferent potentials. In experiment 2, two additional time points postexercise were added to the original protocol following the Post[Rest] condition. Early BP but not late BP was influenced by aerobic exercise, evidenced by an earlier onset, indicative of a regionally selective effect across BP generators. Moreover, this effect was sustained for up to an hour following exercise cessation and this effect was following a return to baseline heart rate. These data demonstrate that acute aerobic exercise may alter and possibly enhance the cortical substrates required for the preparation of movement. PMID:25355852

  3. Attenuated Oxidative Stress following Acute Exhaustive Swimming Exercise Was Accompanied with Modified Gene Expression Profiles of Apoptosis in the Skeletal Muscle of Mice

    PubMed Central

    Sun, Yi; Cui, Di; Zhang, Zhe; Zhang, Tan; Shi, Jun; Jin, Haixiu; Ge, Zhe; Ji, Liu; Ding, Shuzhe

    2016-01-01

    Purpose. The purpose of the present study was to investigate the effect of acute exhaustive swimming exercise on apoptosis in the skeletal muscle of mice. Method. C57BL/6 mice were averagely divided into seven groups. One group was used as control (C), while the remaining six groups went through one-time exhaustive swimming exercise and were terminated at 0 h, 2 h, 6 h, 12 h, 24 h, and 48 h upon completion of exercise. Result. ABTS was significantly lowered at 12 h and 48 h after exercise. The MDA level was significantly decreased at any time points sampled following exercise. Total SOD activity was significantly decreased at 6 h, 12 h, 24 h, and 48 h after exercise. Neither mRNA of Bax nor Bax/Bcl-2 ratio was significantly altered by exercise. mRNA of Bcl-2 was significantly decreased since 6 h after exercise. mRNA and protein expressions of PGC-1α were significantly increased at different time points following exercise. Conclusion. Cellular oxidative stress level was decreased following low intensity, long duration acute exhaustive swimming exercise in mice, and the enzymatic antioxidant capacity was compromised. Apoptosis of the skeletal muscle was inhibited, which could partially be explained by the enhanced level of PGC-1α. PMID:27143996

  4. Attenuated Oxidative Stress following Acute Exhaustive Swimming Exercise Was Accompanied with Modified Gene Expression Profiles of Apoptosis in the Skeletal Muscle of Mice.

    PubMed

    Sun, Yi; Cui, Di; Zhang, Zhe; Zhang, Tan; Shi, Jun; Jin, Haixiu; Ge, Zhe; Ji, Liu; Ding, Shuzhe

    2016-01-01

    Purpose. The purpose of the present study was to investigate the effect of acute exhaustive swimming exercise on apoptosis in the skeletal muscle of mice. Method. C57BL/6 mice were averagely divided into seven groups. One group was used as control (C), while the remaining six groups went through one-time exhaustive swimming exercise and were terminated at 0 h, 2 h, 6 h, 12 h, 24 h, and 48 h upon completion of exercise. Result. ABTS was significantly lowered at 12 h and 48 h after exercise. The MDA level was significantly decreased at any time points sampled following exercise. Total SOD activity was significantly decreased at 6 h, 12 h, 24 h, and 48 h after exercise. Neither mRNA of Bax nor Bax/Bcl-2 ratio was significantly altered by exercise. mRNA of Bcl-2 was significantly decreased since 6 h after exercise. mRNA and protein expressions of PGC-1α were significantly increased at different time points following exercise. Conclusion. Cellular oxidative stress level was decreased following low intensity, long duration acute exhaustive swimming exercise in mice, and the enzymatic antioxidant capacity was compromised. Apoptosis of the skeletal muscle was inhibited, which could partially be explained by the enhanced level of PGC-1α. PMID:27143996

  5. Effect of acute exercise and cardiovascular fitness on cognitive function: an event-related cortical desynchronization study.

    PubMed

    Chang, Yu-Kai; Chu, Chien-Heng; Wang, Chun-Chih; Song, Tai-Fen; Wei, Gao-Xia

    2015-03-01

    This study aimed to clarify the effects of acute exercise and cardiovascular fitness on cognitive function using the Stroop test and event-related desynchronization (ERD) in an aged population. Old adults (63.10 ± 2.89 years) were first assigned to either a high-fitness or a low-fitness group, and they were then subjected to an acute exercise treatment and a reading control treatment in a counterbalanced order. Alpha ERD was recorded during the Stroop test, which was administered after both treatments. Acute exercise improved cognitive performance regardless of the level of cognition, and old adults with higher fitness levels received greater benefits from acute exercise. Additionally, acute exercise, rather than overall fitness, elicited greater lower and upper alpha ERDs relative to the control condition. These findings indirectly suggest that the beneficial effects of acute exercise on cognitive performance may result from exercise-induced attentional control observed during frontal neural excitation. PMID:25308605

  6. Effect of acute exercise on executive function in children with attention deficit hyperactivity disorder.

    PubMed

    Chang, Yu-Kai; Liu, Suyen; Yu, Hui-Hsiang; Lee, Yuan-Hung

    2012-03-01

    This study was conducted to determine the effect of acute aerobic exercise on executive function in children with attention deficit hyperactivity disorder (ADHD). Forty children with ADHD were randomly assigned into exercise or control groups. Participants in the exercise group performed a moderate intensity aerobic exercise for 30 min, whereas the control group watched a running/exercise-related video. Neuropsychological tasks, the Stroop Test and the Wisconsin Card Sorting Test (WCST), were assessed before and after each treatment. The results indicated that acute exercise facilitated performance in the Stroop Test, particularly in the Stroop Color-Word condition. Additionally, children in the exercise group demonstrated improvement in specific WCST performances in Non-perseverative Errors and Categories Completed, whereas no influences were found in those performances in the control group. Tentative explanations for the exercise effect postulate that exercise allocates attention resources, influences the dorsolateral prefrontal cortex, and is implicated in exercise-induced dopamine release. These findings are promising and additional investigations to explore the efficacy of exercise on executive function in children with ADHD are encouraged. PMID:22306962

  7. Acute Effect of Decaffeinated Coffee on Heart Rate, Blood Pressure, and Exercise Performance in Healthy Subjects

    PubMed Central

    Prakash, Ravi; Kaushik, Vidya S.

    1988-01-01

    The effect of decaffeinated coffee on the cardiovascular exercise performance in nine healthy volunteers was evaluated in a double-blind randomized fashion. The heart rate, blood pressure, and duration of exercise were unchanged, and no arrhythmias or ischemic changes were seen on the electrocardiogram after drinking decaffeinated coffee. It was concluded that decaffeinated coffee has no discernible, acute, adverse cardiovascular effects. PMID:3339645

  8. Acute Aerobic Exercise Impacts Selective Attention: An Exceptional Boost in Lower-Income Children

    ERIC Educational Resources Information Center

    Tine, Michele T.; Butler, Allison G.

    2012-01-01

    Educational research suggests that lower-income children exhibit poor general executive functioning relative to their higher-income peers. Meanwhile, sports psychology research suggests that an acute bout of aerobic exercise improves executive functioning in children. Yet, it has never been determined if such exercise (1) specifically improves the…

  9. Myocardial electrotonic response to submaximal exercise in dogs with healed myocardial infarctions: evidence for β-adrenoceptor mediated enhanced coupling during exercise testing

    PubMed Central

    del Rio, Carlos L.; Clymer, Bradley D.; Billman, George E.

    2015-01-01

    Introduction: Autonomic neural activation during cardiac stress testing is an established risk-stratification tool in post-myocardial infarction (MI) patients. However, autonomic activation can also modulate myocardial electrotonic coupling, a known factor to contribute to the genesis of arrhythmias. The present study tested the hypothesis that exercise-induced autonomic neural activation modulates electrotonic coupling (as measured by myocardial electrical impedance, MEI) in post-MI animals shown to be susceptible or resistant to ventricular fibrillation (VF). Methods: Dogs (n = 25) with healed MI instrumented for MEI measurements were trained to run on a treadmill and classified based on their susceptibility to VF (12 susceptible, 9 resistant). MEI and ECGs were recorded during 6-stage exercise tests (18 min/test; peak: 6.4 km/h @ 16%) performed under control conditions, and following complete β-adrenoceptor (β-AR) blockade (propranolol); MEI was also measured at rest during escalating β-AR stimulation (isoproterenol) or overdrive-pacing. Results: Exercise progressively increased heart rate (HR) and reduced heart rate variability (HRV). In parallel, MEI decreased gradually (enhanced electrotonic coupling) with exercise; at peak exercise, MEI was reduced by 5.3 ± 0.4% (or -23 ± 1.8Ω, P < 0.001). Notably, exercise-mediated electrotonic changes were linearly predicted by the degree of autonomic activation, as indicated by changes in either HR or in HRV (P < 0.001). Indeed, β-AR blockade attenuated the MEI response to exercise while direct β-AR stimulation (at rest) triggered MEI decreases comparable to those observed during exercise; ventricular pacing had no significant effects on MEI. Finally, animals prone to VF had a significantly larger MEI response to exercise. Conclusions: These data suggest that β-AR activation during exercise can acutely enhance electrotonic coupling in the myocardium, particularly in dogs susceptible to ischemia-induced VF. PMID

  10. Acute Effect of High-Intensity Eccentric Exercise on Vascular Endothelial Function in Young Men.

    PubMed

    Choi, Youngju; Akazawa, Nobuhiko; Zempo-Miyaki, Asako; Ra, Song-Gyu; Shiraki, Hitoshi; Ajisaka, Ryuichi; Maeda, Seiji

    2016-08-01

    Choi, Y, Akazawa, N, Zempo-Miyaki, A, Ra, S-G, Shiraki, H, Ajisaka, R, and Maeda, S. Acute effect of high-intensity eccentric exercise on vascular endothelial function in young men. J Strength Cond Res 30(8): 2279-2285, 2016-Increased central arterial stiffness is as an independent risk factor for cardiovascular disease. Evidence regarding the effects of high-intensity resistance exercise on vascular endothelial function and central arterial stiffness is conflicting. The purpose of this study was to examine the effects of acute high-intensity eccentric exercise on vascular endothelial function and central arterial stiffness. We evaluated the acute changes in endothelium-dependent flow-mediated dilation (FMD), low-flow-mediated constriction (L-FMC), and arterial stiffness after high-intensity eccentric exercise. Seven healthy, sedentary men (age, 24 ± 1 year) performed maximal eccentric elbow flexor exercise using their nondominant arm. Before and 45 minutes after eccentric exercise, carotid arterial compliance and brachial artery FMD and L-FMC in the nonexercised arm were measured. Carotid arterial compliance was significantly decreased, and β-stiffness index significantly increased after eccentric exercise. Brachial FMD was significantly reduced after eccentric exercise, whereas there was no significant difference in brachial L-FMC before and after eccentric exercise. A positive correlation was detected between change in arterial compliance and change in FMD (r = 0.779; p ≤ 0.05), and a negative correlation was detected between change in β-stiffness index and change in FMD (r = -0.891; p < 0.01) with eccentric exercise. In this study, acute high-intensity eccentric exercise increased central arterial stiffness; this increase was accompanied by a decrease in endothelial function caused by reduced endothelium-dependent vasodilation but not by a change in endothelium-dependent vasoconstriction. PMID:24832967

  11. Acute physical exercise under hypoxia improves sleep, mood and reaction time.

    PubMed

    de Aquino-Lemos, Valdir; Santos, Ronaldo Vagner T; Antunes, Hanna Karen Moreira; Lira, Fabio S; Luz Bittar, Irene G; Caris, Aline V; Tufik, Sergio; de Mello, Marco Tulio

    2016-02-01

    This study aimed to assess the effect of two sessions of acute physical exercise at 50% VO2peak performed under hypoxia (equivalent to an altitude of 4500 m for 28 h) on sleep, mood and reaction time. Forty healthy men were randomized into 4 groups: Normoxia (NG) (n = 10); Hypoxia (HG) (n = 10); Exercise under Normoxia (ENG) (n = 10); and Exercise under Hypoxia (EHG) (n = 10). All mood and reaction time assessments were performed 40 min after awakening. Sleep was reassessed on the first day at 14 h after the initiation of hypoxia; mood and reaction time were measured 28 h later. Two sessions of acute physical exercise at 50% VO2peak were performed for 60 min on the first and second days after 3 and 27 h, respectively, after starting to hypoxia. Improved sleep efficiency, stage N3 and REM sleep and reduced wake after sleep onset were observed under hypoxia after acute physical exercise. Tension, anger, depressed mood, vigor and reaction time scores improved after exercise under hypoxia. We conclude that hypoxia impairs sleep, reaction time and mood. Acute physical exercise at 50% VO2peak under hypoxia improves sleep efficiency, reversing the aspects that had been adversely affected under hypoxia, possibly contributing to improved mood and reaction time. PMID:26522742

  12. Acute exercise improves endothelial function despite increasing vascular resistance during stress in smokers and nonsmokers.

    PubMed

    Rooks, Cherie R; McCully, Kevin K; Dishman, Rod K

    2011-09-01

    The present study examined the effect of acute exercise on flow mediated dilation (FMD) and reactivity to neurovascular challenges among female smokers and nonsmokers. FMD was determined by arterial diameter, velocity, and blood flow measured by Doppler ultrasonography after forearm occlusion. Those measures and blood pressure and heart rate were also assessed in response to forehead cold and the Stroop Color-Word Conflict Test (CWT) before and after 30 min of rest or an acute bout of cycling exercise (∼50% VO₂ peak). Baseline FMD and stress responses were not different between smokers and nonsmokers. Compared to passive rest, exercise increased FMD and decreased arterial velocity and blood flow responses during the Stroop CWT and forehead cold in both groups. Overall, acute exercise improved endothelial function among smokers and nonsmokers despite increasing vascular resistance and reducing limb blood flow during neurovascular stress. PMID:21457274

  13. Acute effects of physical exercise in type 2 diabetes: A review

    PubMed Central

    Asano, Ricardo Yukio; Sales, Marcelo Magalhães; Browne, Rodrigo Alberto Vieira; Moraes, José Fernando Vila Nova; Coelho Júnior, Hélio José; Moraes, Milton Rocha; Simões, Herbert Gustavo

    2014-01-01

    The literature has shown the efficiency of exercise in the control of type 2 diabetes (T2D), being suggested as one of the best kinds of non-pharmacological treatments for its population. Thus, the scientific production related to this phenomenon has growing exponentially. However, despite its advances, still there is a lack of studies that have carried out a review on the acute effects of physical exercise on metabolic and hemodynamic markers and possible control mechanisms of these indicators in individuals with T2D, not to mention that in a related way, these themes have been very little studied today. Therefore, the aim of this study was to organize and analyze the current scientific production about the acute effects of physical exercise on metabolic and hemodynamic markers and possible control mechanisms of these indicators in T2D individuals. For such, a research with the following keywords was performed: -exercise; diabetes and post-exercise hypotension; diabetes and excess post-exercise oxygen consumption; diabetes and acute effects in PUBMED, SCIELO and HIGHWIRE databases. From the analyzed studies, it is possible to conclude that, a single exercise session can promote an increase in the bioavailability of nitric oxide and elicit decreases in postexercise blood pressure. Furthermore, the metabolic stress from physical exercise can increase the oxidation of carbohydrate during the exercise and keep it, in high levels, the post exercise consumption of O², this phenomenon increases the rate of fat oxidation during recovery periods after exercise, improves glucose tolerance and insulin sensitivity and reduces glycemia between 2-72 h, which seems to be dependent on the exercise intensity and duration of the effort. PMID:25317243

  14. Effect of acute exercise on some haematological parameters and neutrophil functions in active and inactive subjects.

    PubMed

    Benoni, G; Bellavite, P; Adami, A; Chirumbolo, S; Lippi, G; Brocco, G; Cuzzolin, L

    1995-01-01

    In this work we studied the possible effects of acute exercise on some haematological parameters and on some functions of neutrophils in seven active and six inactive subjects. Physical exercise (10 min on a cycle ergometer at a heart rate of 150 beats.min-1) induced a significant increase in total leucocyte, lymphocyte and neutrophil concentrations in active subjects; serum iron and ferritin concentrations were lower in active compared to inactive subjects. Cellular adhesion, bactericidal activity and superoxide anion production did not change after exercise, while we also observed some differences between active and inactive subjects before exercise. In particular, the neutrophils from active subjects showed a significantly higher percentage of adhesion, higher bactericidal activity and lower superoxide anion production. In conclusion, the training induced changes in some neutrophil functions, while acute exercise influenced, overall, leucocyte concentrations. PMID:7768243

  15. Supervised Phase II Cardiac Exercise Therapy Shortens the Recovery of Exercise Capacity in Patients with Acute Myocardial Infarction

    PubMed Central

    Lee, Chih-Wei; Wang, Ji-Hung; Hsieh, Jen-Che; Hsieh, Tsung-Cheng; Wu, Yu-Zu; Chen, Tung-Wei; Huang, Chien-Hui

    2014-01-01

    [Purpose] To investigate the effects of Phase II cardiac exercise therapy (CET) on exercise capacity and changes in coronary risk factors (CRFs) of patients with acute myocardial infarction (AMI). [Subjects] Thirty male subjects with AMI were divided into an experimental group (EG) and a control group (CG). Another 30 age-matched subjects with patent coronary arteries served as a normal-control group (NCG). [Methods] Subjects in EG (n=20) trained using a stationary bicycle for 30 min at their target heart rate twice a week for 8 weeks. Exercise capacity was defined as the maximal metabolic equivalents (METs) that subjects reached during the symptom-limited maximal exercise test. HR, BP and RPP were recorded. Subjects in EG and CG received exercise tests and screening for CRFs at the beginning of, end of, and 3 months after Phase II CET, while subjects in NCG participated only in the 1st test. [Results] METs of CG did not improve until the 3rd test, while RPP at the 2nd test showed a significant increase. However, EG showed increased METs at the 2nd test without increase of RPP, and increased their high density lipoprotein cholesterol (HDL-C) during the follow-up period between the 2nd and 3rd tests. [Conclusion] Phase II CET shortens the recovery time of exercise capacity, helps to maintain the gained exercise capacity and increases HDL-C in phase III. PMID:25276046

  16. Supervised Phase II Cardiac Exercise Therapy Shortens the Recovery of Exercise Capacity in Patients with Acute Myocardial Infarction.

    PubMed

    Lee, Chih-Wei; Wang, Ji-Hung; Hsieh, Jen-Che; Hsieh, Tsung-Cheng; Wu, Yu-Zu; Chen, Tung-Wei; Huang, Chien-Hui

    2014-09-01

    [Purpose] To investigate the effects of Phase II cardiac exercise therapy (CET) on exercise capacity and changes in coronary risk factors (CRFs) of patients with acute myocardial infarction (AMI). [Subjects] Thirty male subjects with AMI were divided into an experimental group (EG) and a control group (CG). Another 30 age-matched subjects with patent coronary arteries served as a normal-control group (NCG). [Methods] Subjects in EG (n=20) trained using a stationary bicycle for 30 min at their target heart rate twice a week for 8 weeks. Exercise capacity was defined as the maximal metabolic equivalents (METs) that subjects reached during the symptom-limited maximal exercise test. HR, BP and RPP were recorded. Subjects in EG and CG received exercise tests and screening for CRFs at the beginning of, end of, and 3 months after Phase II CET, while subjects in NCG participated only in the 1st test. [Results] METs of CG did not improve until the 3rd test, while RPP at the 2nd test showed a significant increase. However, EG showed increased METs at the 2nd test without increase of RPP, and increased their high density lipoprotein cholesterol (HDL-C) during the follow-up period between the 2nd and 3rd tests. [Conclusion] Phase II CET shortens the recovery time of exercise capacity, helps to maintain the gained exercise capacity and increases HDL-C in phase III. PMID:25276046

  17. Phosphorylation of the JAK2–STAT5 Pathway in Response to Acute Aerobic Exercise

    PubMed Central

    Consitt, Leslie A.; Wideman, Laurie; Hickey, Matthew S.; Morrison, Ron F.

    2010-01-01

    Growth hormone (GH) is a powerful stimulator of the Janus kinase 2 (JAK2)–signal transducer and activator of transcription 5 (STAT5) pathway. Acute exercise is a known stimulus for GH secretion. Purpose The purpose of this study was to determine the phosphorylation of the JAK2–STAT5 pathway in human skeletal muscle in response to acute aerobic exercise. Methods Eleven young (22.5 ± 0.6, mean ± SE), healthy, aerobically trained males performed 30 min of cycling at 70% V̇O2max. Blood samples were collected at 10- to 15-min intervals and analyzed for human GH, immunofunctional (IF) GH, GH binding protein, and insulin-like growth factor I (IGF-I). Muscle biopsies were taken from the vastus lateralis before exercise, immediately after exercise, as well as, 30 and 60 min postexercise. Muscle samples were analyzed for changes in JAK2 and STAT5 tyrosine phosphorylation, as well as changes in JAK2 and STAT5 protein content. Results Multivariate ANOVA with post hoc comparisons demonstrated that GH and IF GH were significantly elevated immediately after exercise compared with preexercise (P < 0.001). Exercise significantly increased the phosphorylation of JAK2 immediately after exercise (P = 0.004). A trend toward increasing levels of STAT5 phosphorylation was observed immediately after exercise (P = 0.08) and was significantly elevated 30 min after exercise (P = 0.002), compared with preexercise levels. Muscle JAK2 and STAT5 protein content did not change. Conclusion The results demonstrate that the JAK2–STAT5 pathway is activated in response to acute aerobic exercise in human skeletal muscle and suggests that the exercise-induced release of GH may play a role in the activation of this pathway. PMID:18461004

  18. Ambulatory blood pressure after acute exercise in older men with essential hypertension.

    PubMed

    Taylor-Tolbert, N S; Dengel, D R; Brown, M D; McCole, S D; Pratley, R E; Ferrell, R E; Hagberg, J M

    2000-01-01

    We sought to determine whether reductions in blood pressure in hypertensives after acute exercise persist for more than the 2 to 3 h found in controlled laboratory settings. Subjects (n = 11) were obese (32 +/- 4% body fat), sedentary (VO2max 27 +/- 4 mL/kg/min) 60 +/- 6-year-old men with stage 1 or 2 essential hypertension. Ambulatory blood pressure was recorded on 1 day preceded by 45 min of 70% VO2max treadmill exercise and on another day not preceded by exercise. Systolic blood pressure was lower by 6 to 13 mm Hg for the first 16 h after exercise (P < .05) compared to the day without prior exercise. Twenty-four-hour, day, and night average systolic blood pressures were significantly lower on the day after exercise. There was a trend for peak systolic blood pressure to be lower during the entire 24 h and the day portion of the recording; peak systolic blood pressure was significantly lower during the night portion of the recording after exercise. Systolic blood pressure load (percent of systolic blood pressure readings >140 mm Hg) was reduced during the entire 24 h and the day portion of the recording after exercise. Diastolic blood pressure was lower for 12 of the first 16 h after acute exercise (hours 0 to 4, 5 to 8, 13 to 16) (P < .05) compared to the day without prior exercise. Twenty-four-hour, day, and night average diastolic blood pressure was also significantly lower on the recording after exercise. Peak diastolic blood pressure was lower over the entire 24-h period. Diastolic blood pressure load (percent of diastolic blood pressure readings >90 mm Hg) was lower during the entire 24 h and the day portion of the day after exercise. Preliminary data also suggest that common genetic polymorphisms at the angiotensinogen, lipoprotein lipase, and angiotensin converting enzyme loci may affect the blood pressure-lowering response after acute exercise. Thus, in sedentary, obese hypertensive men a single aerobic exercise session reduced blood pressure enough to

  19. Ultrasound enhanced thrombolysis in acute arterial ischemia.

    PubMed

    Tsivgoulis, Georgios; Culp, William C; Alexandrov, Andrei V

    2008-08-01

    In vitro and animal studies have shown that thrombolysis with intravenous tissue plasminogen activator (tPA) can be enhanced with ultrasound. Ultrasound delivers mechanical pressure waves to the clot, thus exposing more thrombus surface to circulating drug. Moreover, intravenous gaseous microspheres with ultrasound have been shown to be a potential alternative to fibrinolytic agents to recanalize discrete peripheral thrombotic arterial occlusions or acute arteriovenous graft thromboses. Small phase I-II randomized and non-randomized clinical trials have shown promising results concerning the potential applications of ultrasound-enhanced thrombolysis in the setting of acute cerebral ischemia. CLOTBUST was an international four-center phase II trial, which demonstrated that, in patients with acute ischemic stroke, transcranial Doppler (TCD) monitoring augments tPA-induced arterial recanalization (sustained complete recanalization rates: 38% vs. 13%) with a non-significant trend toward an increased rate of clinical recovery from stroke, as compared with placebo. The rates of symptomatic intracerebral hemorrhage (sICH) were similar in the active and placebo group (4.8% vs. 4.8%). Smaller single-center clinical trials using transcranial color-coded sonography (TCCD) reported recanalization rates ranging from 27% to 64% and sICH rates of 0-18%. A separate clinical trial evaluating the safety and efficacy of therapeutic low-frequency ultrasound was discontinued because of a concerning sICH rate of 36% in the active group. To further enhance the ability of tPA to break up thrombi, current ongoing clinical trials include phase II studies of a single beam 2 MHz TCD with perflutren-lipid microspheres. Moreover, potential enhancement of intra-arterial tPA delivery is being clinically tested with 1.7-2.1 MHz pulsed wave ultrasound (EKOS catheter) in ongoing phase II-III clinical trials. Intravenous platelet-targeted microbubbles with low-frequency ultrasound are currently

  20. Similar Responses of Circulating MicroRNAs to Acute High-Intensity Interval Exercise and Vigorous-Intensity Continuous Exercise

    PubMed Central

    Cui, Shu F.; Wang, Cheng; Yin, Xin; Tian, Dong; Lu, Qiu J.; Zhang, Chen Y.; Chen, Xi; Ma, Ji Z.

    2016-01-01

    High-intensity interval exercise (HIIE) has been reported to be more beneficial for physical adaptation than low-to-moderate exercise intensity. Recently, it is becoming increasingly evident that circulating miRNAs (c-miRNAs) may distinguish between specific stress signals imposed by variations in the duration, modality, and type of exercise. The aim of this study is to investigate whether or not HIIE is superior to vigorous-intensity continuous exercise (VICE), which is contributing to develop effective fitness assessment. Twenty-six young males were enrolled, and plasma samples were collected prior to exercise and immediately after HIIE or distance-matched VICE. The miRNA level profiles in HIIE were initially determined using TaqMan Low Density Array (TLDA). And the differentially miRNAs levels were validated by stem-loop quantitative reverse-transcription PCR (RT-qPCR). Furthermore, these selective c-miRNAs were measured for VICE. Our results showed that some muscle-related miRNAs levels in the plasma, such as miR-1, miR-133a, miR-133b, and miR-206 significantly increased following HIIE or VICE compared to those at rest (P < 0.05), and there was only a significant reduction in miR-1 level for HIIE compared to VICE (P < 0.05), while no significant differences were observed for other muscle-related miRNAs between both exercises (P > 0.05). In addition, some tissue-related or unknown original miRNA levels, such as miR-485-5p, miR-509-5p, miR-517a, miR-518f, miR-520f, miR-522, miR-553, and miR-888, also significantly increased (P < 0.05) in both exercises compared to rest. However, no significant differences were found between both exercises (P > 0.05). Overall, endurance exercise assessed in this study both led to significant increases in selective c-miRNAs of comparable magnitude, suggesting that both types of endurance exercise have general stress processes. Accordingly, the similar responses to both acute exercises likely indicate both exercises can be used

  1. Similar Responses of Circulating MicroRNAs to Acute High-Intensity Interval Exercise and Vigorous-Intensity Continuous Exercise.

    PubMed

    Cui, Shu F; Wang, Cheng; Yin, Xin; Tian, Dong; Lu, Qiu J; Zhang, Chen Y; Chen, Xi; Ma, Ji Z

    2016-01-01

    High-intensity interval exercise (HIIE) has been reported to be more beneficial for physical adaptation than low-to-moderate exercise intensity. Recently, it is becoming increasingly evident that circulating miRNAs (c-miRNAs) may distinguish between specific stress signals imposed by variations in the duration, modality, and type of exercise. The aim of this study is to investigate whether or not HIIE is superior to vigorous-intensity continuous exercise (VICE), which is contributing to develop effective fitness assessment. Twenty-six young males were enrolled, and plasma samples were collected prior to exercise and immediately after HIIE or distance-matched VICE. The miRNA level profiles in HIIE were initially determined using TaqMan Low Density Array (TLDA). And the differentially miRNAs levels were validated by stem-loop quantitative reverse-transcription PCR (RT-qPCR). Furthermore, these selective c-miRNAs were measured for VICE. Our results showed that some muscle-related miRNAs levels in the plasma, such as miR-1, miR-133a, miR-133b, and miR-206 significantly increased following HIIE or VICE compared to those at rest (P < 0.05), and there was only a significant reduction in miR-1 level for HIIE compared to VICE (P < 0.05), while no significant differences were observed for other muscle-related miRNAs between both exercises (P > 0.05). In addition, some tissue-related or unknown original miRNA levels, such as miR-485-5p, miR-509-5p, miR-517a, miR-518f, miR-520f, miR-522, miR-553, and miR-888, also significantly increased (P < 0.05) in both exercises compared to rest. However, no significant differences were found between both exercises (P > 0.05). Overall, endurance exercise assessed in this study both led to significant increases in selective c-miRNAs of comparable magnitude, suggesting that both types of endurance exercise have general stress processes. Accordingly, the similar responses to both acute exercises likely indicate both exercises can be used

  2. Physical exercise and pancreatic islets: acute and chronic actions on insulin secretion.

    PubMed

    Almeida, Felipe N; Proença, André R G; Chimin, Patrícia; Marçal, Anderson C; Bessa-Lima, Fábio; Carvalho, Carla R O

    2012-01-01

    Diabetes mellitus (DM) is a great public health problem, which attacks part of the world population, being characterized by an imbalance in body glucose homeostasis. Physical exercise is pointed as a protective agent and is also recommended to people with DM. As pancreatic islets present an important role in glucose homeostasis, we aim to study the role of physical exercise (chronic adaptations and acute responses) in pancreatic islets functionality in Wistar male rats. First, animals were divided into two groups: sedentary (S) and aerobic trained (T). At the end of 8 weeks, half of them (S and T) were submitted to an acute exercise session (exercise until exhaustion), being subdivided as acute sedentary (AS) and acute trained (AT). After the experimental period, periepididymal, retroperitoneal and subcutaneous fat pads, blood, soleus muscle and pancreatic islets were collected and prepared for further analysis. From the pancreatic islets, total insulin content, insulin secretion stimulated by glucose, leucine, arginine and carbachol were analyzed. Our results pointed that body adiposity and glucose homeostasis improved with chronic physical exercise. In addition, total insulin content was reduced in group AT, insulin secretion stimulated by glucose was reduced in trained groups (T and AT) and insulin secretion stimulated by carbachol was increased in group AT. There were no significant differences in insulin secretion stimulated by arginine and leucine. We identified a possible modulating action on insulin secretion, probably related to the association of chronic adaptation with an acute response on cholinergic activity in pancreatic islets. PMID:22868676

  3. Acute physical exercise improves shifting in adolescents at school: evidence for a dopaminergic contribution

    PubMed Central

    Berse, Timo; Rolfes, Kathrin; Barenberg, Jonathan; Dutke, Stephan; Kuhlenbäumer, Gregor; Völker, Klaus; Winter, Bernward; Wittig, Michael; Knecht, Stefan

    2015-01-01

    The executive function of shifting between mental sets demands cognitive flexibility. Based on evidence that physical exercise fostered cognition, we tested whether acute physical exercise can improve shifting in an unselected sample of adolescents. Genetic polymorphisms were analyzed to gain more insight into possibly contributing neurophysiological processes. We examined 297 students aged between 13 and 17 years in their schools. Physical exercise was manipulated by an intense incremental exercise condition using bicycle ergometers and a control condition which involved watching an infotainment cartoon while sitting calm. The order of conditions was counterbalanced between participants. Shifting was assessed by a switching task after both conditions. Acute intense physical exercise significantly improved shifting as indicated by reduced switch costs. Exercise-induced performance gains in switch costs were predicted by a single nucleotide polymorphism (SNP) targeting the Dopamine Transporter (DAT1/SLCA6A3) gene suggesting that the brain dopamine system contributed to the effect. The results demonstrate the potential of acute physical exercise to improve cognitive flexibility in adolescents. The field conditions of the present approach suggest applications in schools. PMID:26283937

  4. Acute physical exercise improves shifting in adolescents at school: evidence for a dopaminergic contribution.

    PubMed

    Berse, Timo; Rolfes, Kathrin; Barenberg, Jonathan; Dutke, Stephan; Kuhlenbäumer, Gregor; Völker, Klaus; Winter, Bernward; Wittig, Michael; Knecht, Stefan

    2015-01-01

    The executive function of shifting between mental sets demands cognitive flexibility. Based on evidence that physical exercise fostered cognition, we tested whether acute physical exercise can improve shifting in an unselected sample of adolescents. Genetic polymorphisms were analyzed to gain more insight into possibly contributing neurophysiological processes. We examined 297 students aged between 13 and 17 years in their schools. Physical exercise was manipulated by an intense incremental exercise condition using bicycle ergometers and a control condition which involved watching an infotainment cartoon while sitting calm. The order of conditions was counterbalanced between participants. Shifting was assessed by a switching task after both conditions. Acute intense physical exercise significantly improved shifting as indicated by reduced switch costs. Exercise-induced performance gains in switch costs were predicted by a single nucleotide polymorphism (SNP) targeting the Dopamine Transporter (DAT1/SLCA6A3) gene suggesting that the brain dopamine system contributed to the effect. The results demonstrate the potential of acute physical exercise to improve cognitive flexibility in adolescents. The field conditions of the present approach suggest applications in schools. PMID:26283937

  5. Acute Resistance Exercise Induces Antinociception by Activation of the Endocannabinoid System in Rats

    PubMed Central

    Galdino, Giovane; Romero, Thiago; da Silva, José Felippe Pinho; Aguiar, Daniele; de Paula, Ana Maria; Cruz, Jader; Parrella, Cosimo; Piscitelli, Fabiana; Duarte, Igor; Di Marzo, Vincenzo; Perez, Andrea

    2014-01-01

    Background Resistance exercise (RE) is also known as strength training, and it is performed to increase the strength and mass of muscles, bone strength and metabolism. RE has been increasingly prescribed for pain relief. However, the endogenous mechanisms underlying this antinociceptive effect are still largely unexplored. Thus, we investigated the involvement of the endocannabinoid system in RE-induced antinociception. Methods Male Wistar rats were submitted to acute RE in a weight-lifting model. The nociceptive threshold was measured by a mechanical nociceptive test (paw pressure) before and after exercise. To investigate the involvement of cannabinoid receptors and endocannabinoids in RE-induced antinociception, cannabinoid receptor inverse agonists, endocannabinoid metabolizing enzyme inhibitors and an anandamide reuptake inhibitor were injected before RE. After RE, CB1 cannabinoid receptors were quantified in rat brain tissue by Western blot and immunofluorescence. In addition, endocannabinoid plasma levels were measured by isotope dilution-liquid chromatography mass spectrometry. Results RE-induced antinociception was prevented by preinjection with CB1 and CB2 cannabinoid receptor inverse agonists. By contrast, preadministration of metabolizing enzyme inhibitors and the anandamide reuptake inhibitor prolonged and enhanced this effect. RE also produced an increase in the expression and activation of CB1 cannabinoid receptors in rat brain tissue and in the dorsolateral and ventrolateral periaqueductal regions and an increase of endocannabinoid plasma levels. Conclusion The present study suggests that a single session of RE activates the endocannabinoid system to induce antinociception. PMID:24977916

  6. Enhancement of vasorelaxation in hypertension following high-intensity exercise.

    PubMed

    Yang, Ai-Lun; Lo, Chia-Wen; Lee, Jen-Ting; Su, Chia-Ting

    2011-04-30

    Exercise can ameliorate vascular dysfunction in hypertension, but its underlying mechanism has not been explored thoroughly. We aimed to investigate whether the high-intensity exercise could enhance vasorelaxation mediated by insulin and insulin-like growth factor-1 (IGF-1) in hypertension. Sixteen-week-old spontaneously hypertensive rats were randomly divided into non-exercise sedentary (SHR) and high-intensity exercise (SHR+Ex) groups conducted by treadmill running at a speed of 30 m/ min until exhaustion. Age-matched Wistar-Kyoto rats (WKY) were used as the normotensive control group. Immediately after exercise, the agonist-induced vasorelaxation of aortas was evaluated in organ baths with or without endothelial denudation. Selective inhibitors were used to examine the roles of nitric oxide synthase (NOS) and phosphatidylinositol-3 kinase (PI3K) in the vasorelaxation. By adding superoxide dismutase (SOD), a superoxide scavenger, the role of superoxide production in the vasorelaxation was also clarified. We found that, the high-intensity exercise significantly (P < 0.05) induced higher vasorelaxant responses to insulin and IGF-1 in the SHR+Ex group than that in the SHR group; after endothelial denudation and pre-treatment of the PI3K inhibitor, NOS inhibitor, or SOD, vasorelaxant responses to insulin and IGF-1 became similar among three groups; the protein expression of insulin receptor, IGF-1 receptor, and endothelial NOS (eNOS) was significantly (P < 0.05) increased in the SHR+Ex group compared with the SHR group;] the relaxation to sodium nitroprusside, a NO donor, was not different among three groups. Our findings suggested that the high-intensity exercise ameliorated the insulin- and IGF-1-mediated vasorelaxation through the endothelium-dependent pathway, which was associated with the reduced level of superoxide production. PMID:21789889

  7. Transient Increase in Homocysteine but Not Hyperhomocysteinemia during Acute Exercise at Different Intensities in Sedentary Individuals

    PubMed Central

    Iglesias-Gutiérrez, Eduardo; Egan, Brendan; Díaz-Martínez, Ángel Enrique; Peñalvo, José Luis; González-Medina, Antonio; Martínez-Camblor, Pablo; O’Gorman, Donal J.; Úbeda, Natalia

    2012-01-01

    Considering that hyperhomocysteinemia is an independent risk factor for cardiovascular disease, the purpose of this study was to determine the kinetics of serum homocysteine (tHcy) and the vitamins involved in its metabolism (folates, B12, and B6) in response to acute exercise at different intensities. Eight sedentary males (18–27 yr) took part in the study. Subjects were required to complete two isocaloric (400 kcal) acute exercise trials on separate occasions at 40% (low intensity, LI) and 80% VO2peak (high intensity, HI). Blood samples were drawn at different points before (pre4 and pre0 h), during (exer10, exer20, exer30, exer45, and exer60 min), and after exercise (post0, post3, and post19 h). Dietary, genetic, and lifestyle factors were controlled. Maximum tHcy occurred during exercise, both at LI (8.6 (8.0–10.1) µmol/L, 9.3% increase from pre0) and HI (9.4 (8.2–10.6) µmol/L, 25.7% increase from pre0), coinciding with an accumulated energy expenditure independent of the exercise intensity. From this point onwards tHcy declined until the cessation of exercise and continued descending. At post19, tHcy was not different from pre-exercise values. No values of hyperhomocysteinemia were observed at any sampling point and intensity. In conclusion, acute exercise in sedentary individuals, even at HI, shows no negative effect on tHcy when at least 400 kcal are spent during exercise and the nutritional status for folate, B12, and B6 is adequate, since no hyperhomocysteinemia has been observed and basal concentrations were recovered in less than 24 h. This could be relevant for further informing healthy exercise recommendations. PMID:23236449

  8. Effect of Acute Exercise on Clinically Measured Reaction Time in Collegiate Athletes

    PubMed Central

    Reddy, Shailesh; Eckner, James T.; Kutcher, Jeffrey S

    2014-01-01

    Purpose We have developed a reliable and valid clinical test of reaction time (RTclin) that is sensitive to the acute effects of concussion. If RTclin is to be used as a sideline concussion assessment tool then the acute effects of exercise on RTclin may need to be controlled for. The purpose of this study is therefore to determine the effect of exercise on RTclin. Methods A gender balanced group of 42 collegiate athletes were assigned to an exercise (n=28) and a control (n=14) group using 2:1 block randomization. The exercise group completed a graded 4-stage exercise protocol on a stationary bicycle (100W × 5min; 150W × 5min; 200W × 5min; sprint × 2min) while the control group was tested at identical time periods without exercising. Mean RTclin was calculated over 8 trials as the fall time of a vertically-suspended rigid shaft after its release by the examiner before being caught by the athlete; RTclin was measured at baseline and after each of the 4 stages. Results As both heart rate and rate of perceived exertion significantly increased over the 4 stages in the exercise group (p<.001), mean RTclin showed a significant overall decline during repeated test administration (p<.008). However, there were no significant group (exercise vs. control, p=0.822) or group-by-stage interaction (p=0.169) effects on RTclin as assessed by repeated measures analysis of variance. Conclusion Exercise did not appear to affect RTclin performance in this study. This suggests that RTclin measured during a sideline concussion assessment does not need to be adjusted to account for the acute effects of exercise. PMID:24002343

  9. Acute and long-term effects of captopril on exercise cardiac performance and exercise capacity in congestive heart failure

    PubMed Central

    Kramer, Barry; Topic, Nina; Massie, Barry

    1982-01-01

    1 Although in many studies patients in heart failure treated with captopril have shown acute haemodynamic improvement at rest, little information is available about the haemodynamic response to captopril during exercise or about its effect on exercise tolerance. 2 Haemodynamic measurements were taken at rest and during upright bicycle exercise before and during the first two days of captopril treatment in 15 patients with stable congestive heart failure. At rest, the heart rate and mean arterial pressure both declined (84 ± 11 to 78 ± 7 beats/min (p < 0.25) and 85 ± 9 to 64 ± 8 torr (p < 0.001), the left ventricular filling pressure dropped dramatically (26 ± 9 to 15 ± 7 torr (p < 0.001) while cardiac and stroke indices rose (2.0 ± 0.5 to 2.5 ± 0.61/min/m2 (p < 0.001) and 25 ± 8 to 33 ± 7 ml/min2 (p < 0.001). Similar directional changes occurred during exercise, with heart rate, mean arterial pressure, and left ventricular filling pressure at maximum exercise all falling (123 ± 15 to 115 ± 16 beats/min (p < 0.01); 93 ± 17 to 86 ± 14 torr (p < 0.05); and 35 ± 10 to 30 ± 11 torr (p < 0.001) respectively). Maximum cardiac index rose slightly, from 3.6 ± 0.7 to 3.9 ± 0.6 l/min/m2, acutely, but the change was not significant. 3 Six patients studied taking captopril long term underwent elective recatheterisation after 3 months. In these, either the beneficial haemodynamic changes seen with short-term treatment persisted or further improvement was noted, both at rest and during exercise. Most impressively, maximum exercise index rose from 3.6 ± 0.7 to 4.6 ± 1.01/min/m2 (p < 0.05) and this was associated with an increase in exercise duration (8.0 ± 2.2 to 11.5 ± 1.4 minutes (p < 0.05), exercise work load (332 ± 32 to 468 ± 52 kilopond-metres min, (p < 0.05) and maximum oxygen consumption (11.8 ± 2.6 to 15.6 ± 2.7 ml/min/kg, (p < 0.05). These findings indicate that captopril is beneficial during activity as well as at rest and that chronic

  10. Acute Exercise Improves Physical Sexual Arousal in Women Taking Antidepressants

    PubMed Central

    Lorenz, Tierney A.; Meston, Cindy M.

    2012-01-01

    Background Antidepressants can impair sexual arousal. Exercise increases genital arousal in healthy women, likely due to increasing sympathetic nervous system (SNS) activity. Purpose Test if exercise increases genital arousal in women taking antidepressants, including selective serotonin reuptake inhibitors (SSRIs), which suppress SNS activity, and selective serotonin and norepinephrine reuptake inhibitors (SNRIs), which suppress the SNS less. Method Women reporting antidepressant-related sexual arousal problems (N=47) participated in three counterbalanced sessions where they watched an erotic film while we recorded genital and SNS arousal. In two sessions, women exercised for 20 min, either 5 or 15 min prior to the films. Results During the no-exercise condition, women taking SSRIs showed significantly less genital response than women taking SNRIs. Exercise prior to sexual stimuli increased genital arousal in both groups. Women reporting greater sexual dysfunction had larger increases in genital arousal post-exercise. For women taking SSRIs, genital arousal was linked to SNS activity. Conclusions Exercise may improve antidepressant-related genital arousal problems. PMID:22403029

  11. Acute aerobic exercise increases exogenously infused bone marrow cell retention in the heart.

    PubMed

    Chirico, Erica N; Ding, Dennis; Muthukumaran, Geetha; Houser, Steven R; Starosta, Tim; Mu, Anbin; Margulies, Kenneth B; Libonati, Joseph R

    2015-10-01

    Stem cell therapy for myocardial infarction (MI) has been shown to improve cardiac function and reduce infarct size. Exercise training, in the form of cardiac rehabilitation, is an essential part of patient care post-MI. Hence, we tested the effects of acute and chronic aerobic exercise on stem cell retention and cardiac remodeling post-MI. Small epicardial MI's were induced in 12-month-old C57BL/6 mice via cryoinjury. Two weeks post-MI, vehicle infusion (N = 4) or GFP(+) bone marrow-derived cells (BMC) were injected (tail vein I.V.) immediately after acute exercise (N = 14) or sedentary conditions (N = 14). A subset of mice continued a 5-week intervention of chronic treadmill exercise (10-13 m/min; 45 min/day; 4 days/week; N = 7) or remained sedentary (N = 6). Exercise tolerance was assessed using a graded exercise test, and cardiac function was assessed with echocardiography. Acute exercise increased GFP(+) BMC retention in the infarcted zone of the heart by 30% versus sedentary (P < 0.05). This was not associated with alterations in myocardial function or gene expression of key cell adhesion molecules. Animals treated with chronic exercise increased exercise capacity (P < 0.05) and cardiac mass (P < 0.05) without change in left ventricular ejection fraction (LVEF), infarct size, or regional wall thickness (P = NS) compared with sedentary. While BMC's alone did not affect exercise capacity, they increased LVEF (P < 0.05) and Ki67(+) nuclei number in the border zone of the heart (P < 0.05), which was potentiated with chronic exercise training (P < 0.05). We conclude that acute exercise increases BMC retention in infarcted hearts and chronic training increases exogenous BMC-mediated effects on stimulating the cardiomyocyte cell cycle. These preclinical results suggest that exercise may help to optimize stem cell therapeutics following MI. PMID:26486160

  12. Acute Psychological Benefits of Exercise Performed at Self-Selected Workloads: Implications for Theory and Practice

    PubMed Central

    Szabo, Attila

    2003-01-01

    Given that most studies to date examined the connection between exercise and affect without considering the participants’ preferred exercise workload, in this research the affective-benefits of jogging or running at a participant-selected pace were investigated in a pilot field and a laboratory experiment. Ninety-six male and female students (19.5 yrs) took part in the pilot field experiment whereas 32 women (20.3 yrs) completed the laboratory experiment. In both experiments, the participants ran/jogged for 20 minutes at a self-selected pace. They completed an abbreviated version of a ‘right now form’ of the Profile of Mood States (POMS - Grove and Prapavessis, 1992) inventory before and after exercise. In both experiments all dependent measures changed significantly from pre- to post-exercise, except ‘fatigue’ and ‘vigor’ that did not change in the laboratory. Total mood disturbance (TMD) decreased significantly in both experiments (68% and 89%). No significant correlations were found between exercise intensity (expressed as percent (%) of maximal heart rate reserve) and the magnitude of changes seen in the dependent measures. It is concluded that exercising at a self-selected workload yields positive changes in affect that are unrelated to exercise intensity. These results suggest that the physiological theories linking exercise with positive changes in affect, in which exercise intensity is instrumental, could not account for the acute affective benefits of exercise. It is proposed that a ‘cognitive appraisal hypothesis’ may be more appropriate in explaining the acute affective benefits of exercise. PMID:24627659

  13. Glucose and acute exercise influence factors secreted by circulating angiogenic cells in vitro.

    PubMed

    Witkowski, Sarah; Guhanarayan, Gayatri; Burgess, Rachel

    2016-02-01

    Circulating angiogenic cells (CAC) influence vascular repair through the secretion of proangiogenic factors and cytokines. While CAC are deficient in patients with diabetes and exercise has a beneficial effect on CACs, the impact of these factors on paracrine secretion from CAC is unknown. We aimed to determine whether the in vitro secretion of selected cytokines and nitric oxide (NO) from CAC is influenced by hyperglycemia and acute exercise. Colony-forming unit CAC (CFU-CAC) were cultured from young active men (n = 9, 24 ± 2 years) at rest and after exercise under normal (5 mmol/L) and elevated (15 mmol/L) glucose. Preliminary relative multiplex cytokine analysis revealed that CAC conditioned culture media contained three of six measured cytokines: transforming growth factor-beta-1 (TGFβ1), tumor necrosis factor alpha (TNFα), and monocyte chemotactic protein-1 (MCP-1). Single quantitative cytokine analysis was used to determine the concentration of each cytokine from the four conditions. NO was measured via Griess assay. There was a significant effect of CAC exposure to in vivo exercise on in vitro TGFβ1 secretion (P = 0.024) that was independent of glucose concentration. There was no effect of glucose or acute exercise on TNFα or MCP-1 concentration (both P > 0.05). The concentration of NO from CFU-CAC cultured in elevated glucose was lower following acute exercise (P = 0.002) suggesting that exercise did not maintain NO secretion under hyperglycemic conditions. Our results identify paracrine signaling factors that may be responsible for the proangiogenic function of CFU-CAC and an influence of acute exercise and elevated glucose on CFU-CAC soluble factor secretion. PMID:26847726

  14. Early myogenic responses to acute exercise before and after resistance training in young men

    PubMed Central

    Caldow, Marissa K; Thomas, Emily E; Dale, Michael J; Tomkinson, Grant R; Buckley, Jonathan D; Cameron-Smith, David

    2015-01-01

    To enable dynamic regulation of muscle mass and myofiber repair following injury, a satellite cell precursor population exists to supply additional nuclei. Activated satellite cells express many genes and associated proteins necessary for maturation and incorporation into the damaged fiber. There is little knowledge about the response of these markers following whole-body resistance exercise training. We investigated the impact of 12 weeks of progressive whole-body resistance training on the expression of MRFs, PAX7, NCAM, and FA1, incorporating both acute and chronic resistance exercise components. Ten young recreationally active males (21.2 ± 3.5 years) performed 12 weeks of whole-body resistance training at 70–85% of their predetermined one-repetition maximum (1RM). At the initiation and completion of the training period, muscular strength was assessed by RM and dynamometer testing, and vastus lateralis samples were obtained prior to and 3 h following an acute resistance exercise test (both whole-body and isometric exercises). Increased mRNA expression of PAX7 (threefold), NCAM (threefold), MYF5 (threefold), MYOD (threefold) and MYOGENIN (twofold) was observed 3 h after the acute resistance exercise test, both pre and posttraining. Similarly, PAX7 (11-fold) and FA1 (twofold) protein abundance increased after acute exercise, while resting NCAM (eightfold) and FA1 (threefold) protein abundance increased following 12 weeks of resistance training. It is possible that these molecular changes are primarily due to the preceding exercise bout, and are not modified by long-term or whole-body exercise training. PMID:26359239

  15. Changes of central haemodynamic parameters during mental stress and acute bouts of static and dynamic exercise.

    PubMed

    Lydakis, C; Momen, A; Blaha, C; Gugoff, S; Gray, K; Herr, M; Leuenberger, U A; Sinoway, L I

    2008-05-01

    Chronic dynamic (aerobic) exercise decreases central arterial stiffness, whereas chronic resistance exercise evokes the opposite effect. Nevertheless, there is little information available on the effects of acute bouts of exercise. Also, there is limited data showing an increase of central arterial stiffness during acute mental stress. This study aimed to determine the effect of acute mental and physical (static and dynamic exercise) stress on indices of central arterial stiffness. Fifteen young healthy volunteers were studied. The following paradigms were performed: (1) 2 min of mental arithmetic, (2) short bouts (20 s) of static handgrip at 20 and 70% of maximal voluntary contraction (MVC), (3) fatiguing handgrip at 40% MVC and (4) incremental dynamic knee extensor exercise. Central aortic waveforms were assessed using SphygmoCor software. As compared to baseline, pulse wave transit time decreased significantly for all four interventions indicating that central arterial stiffness increased. During fatiguing handgrip there was a fall in the ratio of peripheral to central pulse pressure from 1.69+/-0.02 at baseline to 1.56+/-0.05 (P<0.05). In the knee extensor protocol a non-significant trend for the opposite effect was noted. The augmentation index increased significantly during the arithmetic, short static and fatiguing handgrip protocols, whereas there was no change in the knee extensor protocol. We conclude that (1) during all types of acute stress tested in this study (including dynamic exercise) estimated central stiffness increased, (2) during static exercise the workload posed on the left ventricle (expressed as change in central pulse pressure) is relatively higher than that posed during dynamic exercise (given the same pulse pressure change in the periphery). PMID:18273040

  16. Resistance exercise training modulates acute gene expression during human skeletal muscle hypertrophy.

    PubMed

    Nader, G A; von Walden, F; Liu, C; Lindvall, J; Gutmann, L; Pistilli, E E; Gordon, P M

    2014-03-15

    We sought to determine whether acute resistance exercise (RE)-induced gene expression is modified by RE training. We studied the expression patterns of a select group of genes following an acute bout of RE in naïve and hypertrophying muscle. Thirteen untrained subjects underwent supervised RE training for 12 wk of the nondominant arm and performed an acute bout of RE 1 wk after the last bout of the training program (training+acute). The dominant arm was either unexercised (control) or subjected to the same acute exercise bout as the trained arm (acute RE). Following training, men (14.8 ± 2.8%; P < 0.05) and women (12.6 ± 2.4%; P < 0.05) underwent muscle hypertrophy with increases in dynamic strength in the trained arm (48.2 ± 5.4% and 72.1 ± 9.1%, respectively; P < 0.01). RE training resulted in attenuated anabolic signaling as reflected by a reduction in rpS6 phosphorylation following acute RE. Changes in mRNA levels of genes involved in hypertrophic growth, protein degradation, angiogenesis, and metabolism commonly expressed in both men and women was determined 4 h following acute RE. We show that RE training can modify acute RE-induced gene expression in a divergent and gene-specific manner even in genes belonging to the same ontology. Changes in gene expression following acute RE are multidimensional, and may not necessarily reflect the actual adaptive response taking place during the training process. Thus RE training can selectively modify the acute response to RE, thereby challenging the use of gene expression as a marker of exercise-induced adaptations. PMID:24458751

  17. Supervised exercises for adults with acute lateral ankle sprain: a randomised controlled trial

    PubMed Central

    van Rijn, Rogier M; van Os, Anton G; Kleinrensink, Gert-Jan; Bernsen, Roos MD; Verhaar, Jan AN; Koes, Bart W; Bierma-Zeinstra, Sita MA

    2007-01-01

    Background During the recovery period after acute ankle sprain, it is unclear whether conventional treatment should be supported by supervised exercise. Aim To evaluate the short- and long-term effectiveness of conventional treatment combined with supervised exercises compared with conventional treatment alone in patients with an acute ankle sprain. Design Randomised controlled clinical trial. Setting A total of 32 Dutch general practices and the hospital emergency department. Method Adults with an acute lateral ankle sprain consulting general practices or the hospital emergency department were allocated to either conventional treatment combined with supervised exercises or conventional treatment alone. Primary outcomes were subjective recovery (0–10 point scale) and the occurrence of a re-sprain. Measurements were carried out at intake, 4 weeks, 8 weeks, 3 months, and 1 year after injury. Data were analysed using intention-to-treat analyses. Results A total of 102 patients were enrolled and randomised to either conventional treatment alone or conventional treatment combined with supervised exercise. There was no significant difference between treatment groups concerning subjective recovery or occurrence of re-sprains after 3 months and 1-year of follow-up. Conclusion Conventional treatment combined with supervised exercises compared to conventional treatment alone during the first year after an acute lateral ankle sprain does not lead to differences in the occurrence of re-sprains or in subjective recovery. PMID:17925136

  18. Acute and chronic cytokine responses to resistance exercise and training in people with multiple sclerosis.

    PubMed

    Kjølhede, T; Dalgas, U; Gade, A B; Bjerre, M; Stenager, E; Petersen, T; Vissing, K

    2016-07-01

    Exercise is a well-established part of rehabilitation for people with multiple sclerosis (PwMS), and it has been hypothesized to stimulate an anti-inflammatory environment that might be disease modifying. Yet, investigations on exercise-induced immune responses are scarce and generally not paying attention to the medical treatments of the patient. At present, PwMS are routinely enrolled in immunosuppressive medication, but exercise-induced immunomodulatory effects have not been investigated under these circumstances. The objective of this study was to investigate the acute and chronic cytokines responses to resistance exercise training in medicated PwMS. Thirty-five people with relapsing-remitting multiple sclerosis (MS) treated with interferon (IFN)-β, were randomized to a 24-week progressive resistance training (PRT) or control group. Plasma interleukin (IL)-1β, IL-4, IL-10, IL-17F, IL-23, tumor necrosis factor-α and IFN-γ were measured before and after 24 weeks of PRT. The acute effect was evaluated following standardized single-bout resistance exercise in the untrained and the trained state. No changes were observed in resting cytokine levels after PRT. However, an indication of reduced IL-17F secretion following resistance exercise was observed in the trained compared with the untrained state. This study suggests little acute and chronic effect of PRT on cytokine levels in IFN-treated PwMS. PMID:26105554

  19. Acute exercise performed close to the anaerobic threshold improves cognitive performance in elderly females.

    PubMed

    Córdova, C; Silva, V C; Moraes, C F; Simões, H G; Nóbrega, O T

    2009-05-01

    The objective of the present study was to compare the effect of acute exercise performed at different intensities in relation to the anaerobic threshold (AT) on abilities requiring control of executive functions or alertness in physically active elderly females. Forty-eight physically active elderly females (63.8 +/- 4.6 years old) were assigned to one of four groups by drawing lots: control group without exercise or trial groups with exercise performed at 60, 90, or 110% of AT (watts) and submitted to 5 cognitive tests before and after exercise. Following cognitive pretesting, an incremental cycle ergometer test was conducted to determine AT using a fixed blood lactate concentration of 3.5 mmol/L as cutoff. Acute exercise executed at 90% of AT resulted in significant (P < 0.05, ANOVA) improvement in the performance of executive functions when compared to control in 3 of 5 tests (verbal fluency, Tower of Hanoi test (number of movements), and Trail Making test B). Exercising at 60% of AT did not improve results of any tests for executive functions, whereas exercise executed at 110% of AT only improved the performance in one of these tests (verbal fluency) compared to control. Women from all trial groups exhibited a remarkable reduction in the Simple Response Time (alertness) test (P = 0.001). Thus, physical exercise performed close to AT is more effective to improve cognitive processing of older women even if conducted acutely, and using a customized exercise prescription based on the anaerobic threshold should optimize the beneficial effects. PMID:19377796

  20. Acute Supramaximal Exercise Increases the Brain Oxygenation in Relation to Cognitive Workload.

    PubMed

    Bediz, Cem Seref; Oniz, Adile; Guducu, Cagdas; Ural Demirci, Enise; Ogut, Hilmi; Gunay, Erkan; Cetinkaya, Caner; Ozgoren, Murat

    2016-01-01

    Single bout of exercise can improve the performance on cognitive tasks. However, cognitive responses may be controversial due to different type, intensity, and duration of exercise. In addition, the mechanism of the effect of acute exercise on brain is still unclear. This study was aimed to investigate the effects of supramaximal exercise on cognitive tasks by means of brain oxygenation monitoring. The brain oxygenation of Prefrontal cortex (PFC) was measured on 35 healthy male volunteers via functional near infrared spectroscopy (fNIRS) system. Subjects performed 2-Back test before and after the supramaximal exercise wingate anerobic test (WAnT) lasting 30-s on cycle ergometer. The PFC oxygenation change evaluation revealed that PFC oxygenation rise during post-exercise 2-Back task was considerably higher than those in pre-exercise 2-Back task. In order to describe the relationship between oxygenation change and exercise performance, subjects were divided into two groups as high performers (HP) and low performers (LP) according to their peak power values (PP) obtained from the supramaximal test. The oxy-hemoglobin (oxy-Hb) values were compared between pre- and post-exercise conditions within subjects and also between subjects according to peak power. When performers were compared, in the HP group, the oxy-Hb values in post-exercise 2-Back test were significantly higher than those in pre-exercise 2-Back test. HP had significantly higher post-exercise oxy-Hb change (Δ) than those of LP. In addition, PP of the total group were significantly correlated with Δoxy-Hb.The key findings of the present study revealed that acute supramaximal exercise has an impact on the brain oxygenation during a cognitive task. Also, the higher the anerobic PP describes the larger the oxy-Hb response in post-exercise cognitive task. The current study also demonstrated a significant correlation between peak power (exercise load) and post-exercise hemodynamic responses (oxy-, deoxy- and

  1. Acute Supramaximal Exercise Increases the Brain Oxygenation in Relation to Cognitive Workload

    PubMed Central

    Bediz, Cem Seref; Oniz, Adile; Guducu, Cagdas; Ural Demirci, Enise; Ogut, Hilmi; Gunay, Erkan; Cetinkaya, Caner; Ozgoren, Murat

    2016-01-01

    Single bout of exercise can improve the performance on cognitive tasks. However, cognitive responses may be controversial due to different type, intensity, and duration of exercise. In addition, the mechanism of the effect of acute exercise on brain is still unclear. This study was aimed to investigate the effects of supramaximal exercise on cognitive tasks by means of brain oxygenation monitoring. The brain oxygenation of Prefrontal cortex (PFC) was measured on 35 healthy male volunteers via functional near infrared spectroscopy (fNIRS) system. Subjects performed 2-Back test before and after the supramaximal exercise wingate anerobic test (WAnT) lasting 30-s on cycle ergometer. The PFC oxygenation change evaluation revealed that PFC oxygenation rise during post-exercise 2-Back task was considerably higher than those in pre-exercise 2-Back task. In order to describe the relationship between oxygenation change and exercise performance, subjects were divided into two groups as high performers (HP) and low performers (LP) according to their peak power values (PP) obtained from the supramaximal test. The oxy-hemoglobin (oxy-Hb) values were compared between pre- and post-exercise conditions within subjects and also between subjects according to peak power. When performers were compared, in the HP group, the oxy-Hb values in post-exercise 2-Back test were significantly higher than those in pre-exercise 2-Back test. HP had significantly higher post-exercise oxy-Hb change (Δ) than those of LP. In addition, PP of the total group were significantly correlated with Δoxy-Hb.The key findings of the present study revealed that acute supramaximal exercise has an impact on the brain oxygenation during a cognitive task. Also, the higher the anerobic PP describes the larger the oxy-Hb response in post-exercise cognitive task. The current study also demonstrated a significant correlation between peak power (exercise load) and post-exercise hemodynamic responses (oxy-, deoxy- and

  2. Treadmill exercise enhances NMDA receptor expression in schizophrenia mice

    PubMed Central

    Park, Joon-Ki; Lee, Sam-Jun; Kim, Tae-Won

    2014-01-01

    Schizophrenia is a serious psychiatric disorder with several symptoms including cognitive dysfunction. Although the causes of schizophrenia are still unclear, there is a strong suspicion that the abnormality in N-methyl-D-aspartate (NMDA) receptor may contribute to schizophrenia symptoms. In the present study, the effect of treadmill exercise on the NMDA receptor expression was evaluated using MK-801-induced schizophrenia mice. Immunohistochemistry for expressions of NMDA receptor tyrosine hydroxylase (TH) was conducted. Western blot for brain-derived neurotrophic factor (BDNF) was also performed. In the present results, the mice in the MK-801-treated group displayed reduced NMDA receptor expression. Enhanced TH expression and suppressed BDNF expression were also observed in the MK-801-treated mice. Treadmill exercise improved NMDA receptor expression in the MK-801-induced schizophrenia mice. Treadmill exercise also suppressed TH expression and enhanced BDNF expression in the MK-801-induced schizophrenia mice. The present study showed that down-regulation of NMDA receptor demonstrated schizophrenia-like parameters, meanwhile treadmill running improved schizophrenia-related parameters through enhancing NMDA receptor expression. PMID:24678500

  3. Acute aerobic exercise and information processing: energizing motor processes during a choice reaction time task.

    PubMed

    Audiffren, Michel; Tomporowski, Phillip D; Zagrodnik, James

    2008-11-01

    The immediate and short-term after effects of a bout of aerobic exercise on young adults' information processing were investigated. Seventeen participants performed an auditory two-choice reaction time (RT) task before, during, and after 40 min of ergometer cycling. In a separate session, the same sequence of testing was completed while seated on an ergometer without pedalling. Results indicate that exercise (1) improves the speed of reactions by energizing motor outputs; (2) interacts with the arousing effect of a loud auditory signal suggesting a direct link between arousal and activation; (3) gradually reduces RT and peaks between 15 and 20 min; (4) effects on RT disappear very quickly after exercise cessation; and (5) effects on motor processes cannot be explained by increases in body temperature caused by exercise. Taken together, these results support a selective influence of acute aerobic exercise on motor adjustment stage. PMID:18930445

  4. Acute Effects of Aerobic Exercise on Feelings of Energy in Relation to Age and Sex.

    PubMed

    Legrand, Fabien D; Bertucci, William M; Hudson, Joanne

    2016-01-01

    A crossover experiment was performed to determine whether age and sex, or their interaction, affect the impact of acute aerobic exercise on vigor-activity (VA). We also tested whether changes in VA mediated exercise effects on performance on various cognitive tasks. Sixty-eight physically inactive volunteers participated in exercise and TV-watching control conditions. They completed the VA subscale of the Profile of Mood States immediately before and 2 min after the intervention in each condition. They also performed the Trail Making Test 3 min after the intervention in each condition. Statistical analyses produced a condition . age . sex interaction characterized by a higher mean VA gain value in the exercise condition (compared with the VA gain value in the TV-watching condition) for young female participants only. In addition, the mediational analyses revealed that changes in VA fully mediated the effects of exercise on TMT-Part A performance. PMID:25880874

  5. Acute effect of vigorous aerobic exercise on the inhibitory control in adolescents

    PubMed Central

    Browne, Rodrigo Alberto Vieira; Costa, Eduardo Caldas; Sales, Marcelo Magalhães; Fonteles, André Igor; de Moraes, José Fernando Vila Nova; Barros, Jônatas de França

    2016-01-01

    Abstract Objective: To assess the acute effect of vigorous aerobic exercise on the inhibitory control in adolescents. Methods: Controlled, randomized study with crossover design. Twenty pubertal individuals underwent two 30-minute sessions: (1) aerobic exercise session performed between 65% and 75% of heart rate reserve, divided into 5 min of warm-up, 20 min at the target intensity and 5 min of cool down; and (2) control session watching a cartoon. Before and after the sessions, the computerized Stroop test-Testinpacs™ was applied to evaluate the inhibitory control. Reaction time (ms) and errors (n) were recorded. Results: The control session reaction time showed no significant difference. On the other hand, the reaction time of the exercise session decreased after the intervention (p<0.001). The number of errors made at the exercise session were lower than in the control session (p=0.011). Additionally, there was a positive association between reaction time (Δ) of the exercise session and age (r 2=0.404, p=0.003). Conclusions: Vigorous aerobic exercise seems to promote acute improvement in the inhibitory control in adolescents. The effect of exercise on the inhibitory control performance was associated with age, showing that it was reduced at older age ranges. PMID:26564328

  6. Flow-mediated dilation in the inactive limb following acute hypoxic exercise.

    PubMed

    Katayama, Keisho; Yamashita, Shin; Iwamoto, Erika; Ishida, Koji

    2016-01-01

    The purpose of this study was to elucidate the effect of acute aerobic exercise performed under hypoxic conditions on flow-mediated dilation (FMD) in the inactive limb. Seven males participated in the study. The subjects performed two submaximal leg cycling on a semirecumbent ergometer at the same relative intensity (60% peak oxygen uptake) in normoxia [inspired oxygen fraction (FIO2) = 0·21] and hypoxia (FIO2 = 0·12-0·13) for 30 min. The brachial artery diameter and blood velocity during exercise were measured via ultrasound, and the antegrade and retrograde shear rates were calculated. Before and 5, 30 and 60 min after exercise, brachial artery FMD was measured in normoxia. FMD was estimated as the percentage increase in peak diameter from the baseline diameter at prior occlusion (%FMD) and as the controlling changes in baseline diameter (the corrected-%FMD). No difference in antegrade shear rate during exercise was detected between the normoxic and hypoxic conditions, whereas the retrograde shear rate was larger during hypoxic exercise. The %FMD decreased significantly at 5 min after exercise in both normoxia and hypoxia, and it returned to pre-exercise levels within 60 min of recovery. Significant decreases in FMD at 5 min after exercise had disappeared when the baseline diameter was controlled using an analysis of covariance (the corrected-%FMD). No significant differences were observed between the normoxic and hypoxic trials in the %FMD and corrected-%FMD following exercise. These results suggest that hypoxia has no impact on endothelial function in the inactive limb following acute aerobic exercise. PMID:25257848

  7. Regular Exercise Enhances Task-Based Industriousness in Laboratory Rats

    PubMed Central

    Laurence, Nicholas C.; Labuschagne, Lisa G.; Lura, Brent G.; Hillman, Kristin L.

    2015-01-01

    Individuals vary greatly in their willingness to select and persist in effortful tasks, even when high-effort will knowingly result in high-reward. Individuals who select and successively complete effortful, goal-directed tasks can be described as industrious. Trying to increase one’s industriousness is desirable from a productivity standpoint, yet intrinsically challenging given that effort expenditure is generally aversive. Here we show that in laboratory rats, a basic physical exercise regimen (20 min/day, five days/week) is sufficient to increase industriousness across a battery of subsequent testing tasks. Exercised rats outperformed their non-exercised counterparts in tasks designed to tax effort expenditure, strategic decision-making, problem solving and persistence. These increases in performance led to quicker reward obtainment and greater reward gain over time, and could not be accounted for simply by increased locomotor activity. Our results suggest that a basic exercise regimen can enhance effortful goal-directed behaviour in goal-directed tasks, which highlights a potential productivity benefit of staying physically active. PMID:26083255

  8. Exercise science: research to sustain and enhance performance

    NASA Astrophysics Data System (ADS)

    Wingo, Jonathan E.

    2013-05-01

    Cardiovascular adjustments accompanying exercise in high ambient temperatures are likely responsible for diminished aerobic capacity and performance in such conditions. These adjustments include a phenomenon known as cardiovascular drift in which heart rate rises and stroke volume declines progressively over time during constant-rate exercise. A variety of factors modulate the magnitude of cardiovascular drift, e.g., elevated core and skin temperatures, dehydration, and exercise intensity. Regardless of the mode of manipulation, decreases in stroke volume associated with cardiovascular drift result in directionally and proportionally similar decreases in maximal aerobic capacity. Maximal aerobic capacity is determined by maximal heart rate, maximal tissue oxygen extraction, and maximal stroke volume. Because maximal heart rate and maximal tissue oxygen extraction are unaffected during exercise in the heat, decreased stroke volume associated with cardiovascular drift likely persists during maximal efforts and explains the decrease in maximal aerobic capacity. Decreased maximal aerobic capacity results in a greater perceptual and physiological strain accompanying any given level of work. Therefore, sustaining and enhancing performance involves sophisticated monitoring of physiological strain combined with development of countermeasures that mitigate the magnitude of deleterious phenomena like cardiovascular drift.

  9. Effects of an acute bout of moderate-intensity exercise on postprandial lipemia and airway inflammation.

    PubMed

    Johnson, Ariel M; Kurti, Stephanie P; Smith, Joshua R; Rosenkranz, Sara K; Harms, Craig A

    2016-03-01

    A high-fat meal (HFM) induces an increase in blood lipids (postprandial lipemia; PPL), systemic inflammation, and acute airway inflammation. While acute exercise has been shown to have anti-inflammatory and lipid-lowering effects, it is unknown whether exercise prior to an HFM will translate to reduced airway inflammation post-HFM. Our purpose was to determine the effects of an acute bout of exercise on airway inflammation post-HFM and to identify whether any protective effect of exercise on airway inflammation was associated with a reduction in PPL or systemic inflammation. In a randomized cross-over study, 12 healthy, 18- to 29-year-old men (age, 23.0 ± 3.2 years; height, 178.9 ± 5.5 cm; weight, 78.5 ± 11.7 kg) consumed an HFM (1 g fat/1 kg body weight) 12 h following exercise (EX; 60 min at 60% maximal oxygen uptake) or without exercise (CON). Fractional exhaled nitric oxide (FENO; measure of airway inflammation), triglycerides (TG), and inflammatory markers (high-sensitivity C-reactive protein, tumor-necrosis factor-alpha, and interleukin-6) were measured while fasted at 2 h and 4 h post-HFM. FENO increased over time (2 h: CON, p = 0.001; EX, p = 0.002, but not by condition (p = 0.991). TG significantly increased 2 and 4 h post-HFM (p < 0.001), but was not significant between conditions (p = 0.256). Inflammatory markers did not significantly increase by time or condition (p > 0.05). There were no relationships between FENO and TG or systemic inflammatory markers for any time point or condition (p > 0.05). In summary, an acute bout of moderate-intensity exercise performed 12 h prior to an HFM did not change postprandial airway inflammation or lipemia in healthy, 18- to 29-year-old men. PMID:26872295

  10. The effect of acute exercise on undercarboxylated osteocalcin and insulin sensitivity in obese men.

    PubMed

    Levinger, Itamar; Jerums, George; Stepto, Nigel K; Parker, Lewan; Serpiello, Fabio R; McConell, Glenn K; Anderson, Mitchell; Hare, David L; Byrnes, Elizabeth; Ebeling, Peter R; Seeman, Ego

    2014-12-01

    Acute exercise improves insulin sensitivity for hours after the exercise is ceased. The skeleton contributes to glucose metabolism and insulin sensitivity via osteocalcin (OC) in its undercarboxylated (ucOC) form in mice. We tested the hypothesis that insulin sensitivity over the hours after exercise is associated with circulating levels of ucOC. Eleven middle-aged (58.1 ± 2.2 years mean ± SEM), obese (body mass index [BMI] = 33.1 ± 1.4 kg/m(2) ) nondiabetic men completed a euglycemic-hyperinsulinemic clamp at rest (rest-control) and at 60 minutes after exercise (4 × 4 minutes of cycling at 95% of HRpeak ). Insulin sensitivity was determined by glucose infusion rate relative to body mass (GIR, mL/kg/min) as well as GIR per unit of insulin (M-value). Blood samples and five muscle biopsies were obtained; two at the resting-control session, one before and one after clamping, and three in the exercise session, at rest, 60 minutes after exercise, and after the clamp. Exercise increased serum ucOC (6.4 ± 2.1%, p = 0.013) but not total OC (p > 0.05). Blood glucose was ∼6% lower and insulin sensitivity was ∼35% higher after exercise compared with control (both p < 0.05). Phosphorylated (P)-AKT (Ak thymoma) was higher after exercise and insulin compared with exercise alone (no insulin) and insulin alone (no exercise, all p < 0.05). In a multiple-linear regression including BMI, age, and aerobic fitness, ucOC was associated with whole-body insulin sensitivity at rest (β = 0.59, p = 0.023) and after exercise (β = 0.66, p = 0.005). Insulin sensitivity, after acute exercise, is associated with circulating levels of ucOC in obese men. Whether ucOC has a direct effect on skeletal muscle insulin sensitivity after exercise is yet to be determined. PMID:24861730

  11. The Acute Effect of Aerobic Exercise on Measures of Stress.

    ERIC Educational Resources Information Center

    Fort, Inza L.; And Others

    The immediate response of stress to aerobic exercise was measured by utilizing the Palmar Sweat Index (PSI) and the State-Trait Anxiety Inventory (STAI). Forty subjects (20 male and 20 female) from the ages of 18-30 sustained a single bout of aerobic activity for 30 minutes at 60 percent of their maximum heart rate. Pre-treatment procedures…

  12. Exercise increases mitochondrial glutamate oxidation in the mouse cerebral cortex.

    PubMed

    Herbst, Eric A F; Holloway, Graham P

    2016-07-01

    The present study investigated the impact of acute exercise on stimulating mitochondrial respiratory function in mouse cerebral cortex. Where pyruvate-stimulated respiration was not affected by acute exercise, glutamate respiration was enhanced following the exercise bout. Additional assessment revealed that this affect was dependent on the presence of malate and did not occur when substituting glutamine for glutamate. As such, our results suggest that glutamate oxidation is enhanced with acute exercise through activation of the malate-aspartate shuttle. PMID:27184881

  13. Systolic blood pressure reactivity during submaximal exercise and acute psychological stress in youth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Studies in youth show an association between systolic blood-pressure (SBP) reactivity to acute psychological stress and carotid artery intima-media thickness (CIMT). However, it has not yet been determined whether SBP reactivity during submaximal exercise is also associated with CIMT i...

  14. The Chronic and Acute Effects of Exercise Upon Selected Blood Measures.

    ERIC Educational Resources Information Center

    Roitman, J. L.; Brewer, J. P.

    This study investigated the effects of chronic and acute exercise upon selected blood measures and indices. Nine male cross-country runners were studied. Red blood count, hemoglobin, and hematocrit were measured using standard laboratory techniques; mean corpuscular volume (MCV), mean corpuscular hemoglobin, and mean corpuscular hemoglobin…

  15. State/Trait Anxiety and Anxiolytic Effects of Acute Physical Exercises

    ERIC Educational Resources Information Center

    Guszkowska, Monika

    2009-01-01

    Study aim: To determine anxiolytic effects of acute physical exertions in relation to the initial anxiety state and trait in women. Material and methods: A group of 163 women aged 16-56 years, attending fitness clubs in Warsaw, participated in the study. They selected a single exercise to perform--strength, aerobic or mixed, lasting 30 to over 60…

  16. Case Comparison of Response To Aquatic Exercise: Acute versus Chronic Conditions.

    ERIC Educational Resources Information Center

    Mobily, Kenneth E.; Mobily, Paula R.; Lessard, Kerry A.; Berkenpas, Molly S.

    2000-01-01

    Describes the effects of individualized aquatic exercise programs on people with knee impairments. An adolescent athlete with an acute injury demonstrated significant functional improvement. A 33-year-old with arthritis demonstrated only marginal progress. Comparison of cases relative to valid data collection methods and response to aquatic…

  17. Load dependence of changes in forearm and peripheral vascular resistance after acute leg exercise in man.

    PubMed

    Piepoli, M; Isea, J E; Pannarale, G; Adamopoulos, S; Sleight, P; Coats, A J

    1994-07-15

    1. It is known that acute exercise is often followed by a reduction in arterial blood pressure. Little is known about the time course of the recovery of the blood pressure or the influence of the intensity of the exercise on this response. Controversy exists, in particular, concerning the changes in peripheral resistance that occur during this period. 2. Eight normal volunteers performed, in random order on separate days, voluntary upright bicycle exercise of three different intensities (maximal, moderate and minimal load) and, on another day, a control period of sitting on a bicycle. They were monitored for 60 min after each test. 3. Diastolic pressure fell after maximal exercise at 5 min (-15.45 mmHg) and 60 min (-9.45 mmHg), compared with the control day. Systolic and mean pressure also fell (non-significantly) after 45 min; heart rate was significantly elevated for the whole hour of recovery (at 60 min, +7.23 beats min-1). No changes in post-exercise blood pressure and heart rate were observed on the days of moderate and minimal exercises. 4. An increase in cardiac index was observed after maximal exercise compared with control (at 60 min, 2.6 +/- 0.3 vs. 1.9 +/- 0.2 l min-1 m-2). This was entirely accounted for by the persistent increase in heart rate, with no significant alteration in stroke volume after exercise on any day.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7965851

  18. Beta-adrenergic blockade and lipoprotein lipase activity in rat tissues after acute exercise.

    PubMed

    Paulin, A; Lalonde, J; Deshaies, Y

    1991-10-01

    The present experiments were aimed at evaluating the acute effects of exercise on lipoprotein lipase (LPL) activity in untrained rats. The activity of LPL was measured in postheparin plasma (PHP) before and at various times after a 1-h run on a treadmill (22 m/min, O degrees grade). LPL in PHP was 50% below pre-exercise levels immediately and 3 h after the run but was increased 65% over resting levels 24 h postexercise. To further characterize the very early fall in LPL activity in response to exercise and to assess the possible involvement therein of the beta-adrenergic pathway, LPL in heart, vastus lateralis muscle (VLM), and white (WAT) and brown (BAT) adipose tissues was determined at rest and immediately after exercise in rats that were treated or not with nadolol (25 mg.kg-1.day-1 for 30 days). Immediately after 1 h of exercise, there was a reduction in total enzyme activity in WAT (40% below resting levels), BAT (-58%), VLM (-53%), and heart (-30%). Exercise reduced serum triacylglycerol levels (-64%) and doubled those of nonesterified fatty acids. beta-Adrenergic blockade did not affect any of these variables. Both exercise and nadolol lowered serum cholesterol levels by approximately 20%, but the effects were not additive. These results show that the global intravascular pool of LPL undergoes divergent, time-dependent alterations in response to a single bout of moderate exercise. The acute downregulation of postheparin plasma LPL immediately after exercise reflected a fall in the total enzyme pool of all tissues studied.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1681747

  19. Acute Exercise and Motor Memory Consolidation: The Role of Exercise Timing.

    PubMed

    Thomas, Richard; Beck, Mikkel Malling; Lind, Rune Rasmussen; Korsgaard Johnsen, Line; Geertsen, Svend Sparre; Christiansen, Lasse; Ritz, Christian; Roig, Marc; Lundbye-Jensen, Jesper

    2016-01-01

    High intensity aerobic exercise amplifies offline gains in procedural memory acquired during motor practice. This effect seems to be evident when exercise is placed immediately after acquisition, during the first stages of memory consolidation, but the importance of temporal proximity of the exercise bout used to stimulate improvements in procedural memory is unknown. The effects of three different temporal placements of high intensity exercise were investigated following visuomotor skill acquisition on the retention of motor memory in 48 young (24.0 ± 2.5 yrs), healthy male subjects randomly assigned to one of four groups either performing a high intensity (90% Maximal Power Output) exercise bout at 20 min (EX90), 1 h (EX90+1), 2 h (EX90+2) after acquisition or rested (CON). Retention tests were performed at 1 d (R1) and 7 d (R7). At R1 changes in performance scores after acquisition were greater for EX90 than CON (p < 0.001) and EX90+2 (p = 0.001). At R7 changes in performance scores for EX90, EX90+1, and EX90+2 were higher than CON (p < 0.001, p = 0.008, and p = 0.008, resp.). Changes for EX90 at R7 were greater than EX90+2 (p = 0.049). Exercise-induced improvements in procedural memory diminish as the temporal proximity of exercise from acquisition is increased. Timing of exercise following motor practice is important for motor memory consolidation. PMID:27446616

  20. Acute Exercise and Motor Memory Consolidation: The Role of Exercise Timing

    PubMed Central

    Christiansen, Lasse; Roig, Marc

    2016-01-01

    High intensity aerobic exercise amplifies offline gains in procedural memory acquired during motor practice. This effect seems to be evident when exercise is placed immediately after acquisition, during the first stages of memory consolidation, but the importance of temporal proximity of the exercise bout used to stimulate improvements in procedural memory is unknown. The effects of three different temporal placements of high intensity exercise were investigated following visuomotor skill acquisition on the retention of motor memory in 48 young (24.0 ± 2.5 yrs), healthy male subjects randomly assigned to one of four groups either performing a high intensity (90% Maximal Power Output) exercise bout at 20 min (EX90), 1 h (EX90+1), 2 h (EX90+2) after acquisition or rested (CON). Retention tests were performed at 1 d (R1) and 7 d (R7). At R1 changes in performance scores after acquisition were greater for EX90 than CON (p < 0.001) and EX90+2 (p = 0.001). At R7 changes in performance scores for EX90, EX90+1, and EX90+2 were higher than CON (p < 0.001, p = 0.008, and p = 0.008, resp.). Changes for EX90 at R7 were greater than EX90+2 (p = 0.049). Exercise-induced improvements in procedural memory diminish as the temporal proximity of exercise from acquisition is increased. Timing of exercise following motor practice is important for motor memory consolidation. PMID:27446616

  1. Graded exercise in three cases of heart rupture after acute myocardial infarction.

    PubMed

    Mineo, K; Takizawa, A; Shimamoto, M; Yamazaki, F; Kimura, A; Chino, N; Izumi, S

    1995-01-01

    Despite advances in the study of exercise for acute myocardial infarction (AMI) patients, few studies on exercise for post-AMI heart rupture patients have been reported. We assessed three cases of heart rupture (of the left ventricular free wall in two cases and of the ventricular septum in one case) in post-AMI patients who underwent three-graded exercise. Two of the three patients were operated on, whereas one patient was managed conservatively for heart rupture. Two of the three cases had also suffered cerebral infarction post-AMI. The exercise program was composed of three grades, slow level walking (grade 1), mild reconditioning and activities of daily living (ADL) exercises (grade 2), and optional endurance training using machines below 75% of predicted maximal heart rate (grade 3). Electrocardiograms and blood pressure were monitored during all exercises. All patients had muscle weakness, poor endurance capacity, as well as low cardiac function (28-47% of left ventricular ejection fraction). Two patients underwent grades 1 and 2 exercise programs, and the other performed grades 1, 2, and 3 exercise programs over a 3- to 10-wk period. We observed improvement in the double product, work capacity, and ADL without congestive heart failure, ischemic attack, or serious arrhythmias. However, the youngest patient, who underwent the grade 3 exercise program, died from a cardiac event 10 mo after onset of AMI. We conclude that post-AMI heart rupture patients should undergo delayed, gradual, low-level graded exercise (4-6 metabolic equivalents), with monitoring of blood pressure and electrocardiograms to improve work capacity, ADL, and the quality of life. However, daily activity and exercise intensity should be promptly supervised for those with severely deteriorated cardiac functions to prevent sudden cardiac event. PMID:8534391

  2. THE POTENTIAL OF USING EXERCISE IN NATURE AS AN INTERVENTION TO ENHANCE EXERCISE BEHAVIOR: RESULTS FROM A PILOT STUDY.

    PubMed

    Calogiuri, Giovanna; Nordtug, Hildegunn; Weydahl, Andi

    2015-10-01

    According to attention-restoration theory (ART), natural environments can provide restorative experiences. In this pilot study, a mixed-methods approach was used to examine the potential of using exercise in a natural environment to enhance exercise behaviors. The study included an assessment study and an intervention study (overall n = 19). The participants underwent a standardized exercise program including biking and circuit strength training, either indoors or outdoors in nature. Measurements included connectedness to nature, perceived exertion, perceived environmental restorativeness, enjoyment, affect, future exercise intention, and self-reported exercise behavior. The participants also wrote a brief text describing the way in which the environment influenced their feelings while exercising. Quantitative data were analyzed using the Spearman rank correlation and linear mixed-effects modeling. The qualitative information was analyzed thematically. The integrated results indicated that, in accordance with ART, exercising in nature was associated with a greater potential for restoration and affective responses, which in some participants led to enhanced intention to exercise and increased exercise behavior. However, some perceived that the indoor exercise provided a more effective workout. Further studies on larger samples are needed. PMID:26348226

  3. Effects of an acute bout of exercise on memory in 6th grade children.

    PubMed

    Etnier, Jennifer; Labban, Jeffrey D; Piepmeier, Aaron; Davis, Matthew E; Henning, David A

    2014-08-01

    Research supports the positive effects of exercise on cognitive performance by children. However, a limited number of studies have explored the effects specifically on memory. The purpose of this study was to compare the effects of an acute bout of exercise on learning, short-term memory, and long-term memory in a sample of children. Children were randomly assigned to an exercise condition or to a no-treatment control condition and then performed repeated trials on an auditory verbal learning task. In the exercise condition, participants performed the PACER task, an aerobic fitness assessment, in their physical education class before performing the memory task. In the control condition, participants performed the memory task at the beginning of their physical education class. Results showed that participants in the exercise condition demonstrated significantly better learning of the word lists and significantly better recall of the words after a brief delay. There were not significant differences in recognition of the words after an approximately 24-hr delay. These results provide evidence in a school setting that an acute bout of exercise provides benefits for verbal learning and long-term memory. Future research should be designed to identify the extent to which these findings translate to academic measures. PMID:25050827

  4. Human Monocyte Heat Shock Protein 72 Responses to Acute Hypoxic Exercise after 3 Days of Exercise Heat Acclimation

    PubMed Central

    Lee, Ben J.; Mackenzie, Richard W. A.; Cox, Valerie; James, Rob S.; Thake, Charles D.

    2015-01-01

    The aim of this study was to determine whether short-term heat acclimation (STHA) could confer increased cellular tolerance to acute hypoxic exercise in humans as determined via monocyte HSP72 (mHSP72) expression. Sixteen males were separated into two matched groups. The STHA group completed 3 days of exercise heat acclimation; 60 minutes cycling at 50% V˙O2peak in 40°C 20% relative humidity (RH). The control group (CON) completed 3 days of exercise training in 20°C, 40% RH. Each group completed a hypoxic stress test (HST) one week before and 48 hours following the final day of CON or STHA. Percentage changes in HSP72 concentrations were similar between STHA and CON following HST1 (P = 0.97). STHA induced an increase in basal HSP72 (P = 0.03) with no change observed in CON (P = 0.218). Basal mHSP72 remained elevated before HST2 for the STHA group (P < 0.05) and was unchanged from HST1 in CON (P > 0.05). Percent change in mHSP72 was lower after HST2 in STHA compared to CON (P = 0.02). The mHSP72 response to hypoxic exercise was attenuated following 3 days of heat acclimation. This is indicative of improved tolerance and ability to cope with the hypoxic insult, potentially mediated in part by increased basal reserves of HSP72. PMID:25874231

  5. Acute ascorbic acid ingestion increases skeletal muscle blood flow and oxygen consumption via local vasodilation during graded handgrip exercise in older adults.

    PubMed

    Richards, Jennifer C; Crecelius, Anne R; Larson, Dennis G; Dinenno, Frank A

    2015-07-15

    Human aging is associated with reduced skeletal muscle perfusion during exercise, which may be a result of impaired endothelium-dependent dilation and/or attenuated ability to blunt sympathetically mediated vasoconstriction. Intra-arterial infusion of ascorbic acid (AA) increases nitric oxide-mediated vasodilation and forearm blood flow (FBF) during handgrip exercise in older adults, yet it remains unknown whether an acute oral dose can similarly improve FBF or enhance the ability to blunt sympathetic vasoconstriction during exercise. We hypothesized that 1) acute oral AA would improve FBF (Doppler ultrasound) and oxygen consumption (V̇o2) via local vasodilation during graded rhythmic handgrip exercise in older adults (protocol 1), and 2) AA ingestion would not enhance sympatholysis in older adults during handgrip exercise (protocol 2). In protocol 1 (n = 8; 65 ± 3 yr), AA did not influence FBF or V̇o2 during rest or 5% maximal voluntary contraction (MVC) exercise, but increased FBF (199 ± 13 vs. 248 ± 16 ml/min and 343 ± 24 vs. 403 ± 33 ml/min; P < 0.05) and V̇o2 (26 ± 2 vs. 34 ± 3 ml/min and 43 ± 4 vs. 50 ± 5 ml/min; P < 0.05) at both 15 and 25% MVC, respectively. The increased FBF was due to elevations in forearm vascular conductance (FVC). In protocol 2 (n = 10; 63 ± 2 yr), following AA, FBF was similarly elevated during 15% MVC (∼ 20%); however, vasoconstriction to reflex increases in sympathetic activity during -40 mmHg lower-body negative pressure at rest (ΔFVC: -16 ± 3 vs. -16 ± 2%) or during 15% MVC (ΔFVC: -12 ± 2 vs. -11 ± 4%) was unchanged. Our collective results indicate that acute oral ingestion of AA improves muscle blood flow and V̇o2 during exercise in older adults via local vasodilation. PMID:25980023

  6. Fitness's moderation of the facilitative effect of acute exercise on cognitive flexibility in older women.

    PubMed

    Netz, Yael; Argov, Esther; Inbar, Omri

    2009-04-01

    A recent study indicated that acute aerobic exercise improves cognitive flexibility in adults. The current study assessed age, habitual physical activity, and physical fitness as moderators of this improvement and examined whether the gains still exist an hour after the exercise session. The alternative-uses test, assessing cognitive flexibility, was administered individually to 20 older (age 63.67 +/- 3.55 yr) and 19 young (age 23.9 +/- 1.22) women before, immediately after, and an hour after a single moderate aerobic-exercise session. Results indicated significant improvement in cognitive flexibility in the older group immediately after the exercise but a decrease at the 1-hr follow-up. Further analysis indicated that physical fitness accounted for this improvement (R = -.622, p < .01). No such differences were observed in the young group. Further studies are needed to examine the duration of this effect, as well as the role of physical fitness as a moderator of it. PMID:19451665

  7. Acute Effects of Exercise on Blood Pressure: A Meta-Analytic Investigation.

    PubMed

    Carpio-Rivera, Elizabeth; Moncada-Jiménez, José; Salazar-Rojas, Walter; Solera-Herrera, Andrea

    2016-05-01

    Hypertension affects 25% of the world's population and is considered a risk factor for cardiovascular disorders and other diseases. The aim of this study was to examine the evidence regarding the acute effect of exercise on blood pressure (BP) using meta-analytic measures. Sixty-five studies were compared using effect sizes (ES), and heterogeneity and Z tests to determine whether the ES were different from zero. The mean corrected global ES for exercise conditions were -0.56 (-4.80 mmHg) for systolic BP (sBP) and -0.44 (-3.19 mmHg) for diastolic BP (dBP; z ≠ 0 for all; p < 0.05). The reduction in BP was significant regardless of the participant's initial BP level, gender, physical activity level, antihypertensive drug intake, type of BP measurement, time of day in which the BP was measured, type of exercise performed, and exercise training program (p < 0.05 for all). ANOVA tests revealed that BP reductions were greater if participants were males, not receiving antihypertensive medication, physically active, and if the exercise performed was jogging. A significant inverse correlation was found between age and BP ES, body mass index (BMI) and sBP ES, duration of the exercise's session and sBP ES, and between the number of sets performed in the resistance exercise program and sBP ES (p < 0.05). Regardless of the characteristics of the participants and exercise, there was a reduction in BP in the hours following an exercise session. However, the hypotensive effect was greater when the exercise was performed as a preventive strategy in those physically active and without antihypertensive medication. PMID:27168471

  8. Acute Effects of Exercise on Blood Pressure: A Meta-Analytic Investigation

    PubMed Central

    Carpio-Rivera, Elizabeth; Moncada-Jiménez, José; Salazar-Rojas, Walter; Solera-Herrera, Andrea

    2016-01-01

    Hypertension affects 25% of the world's population and is considered a risk factor for cardiovascular disorders and other diseases. The aim of this study was to examine the evidence regarding the acute effect of exercise on blood pressure (BP) using meta-analytic measures. Sixty-five studies were compared using effect sizes (ES), and heterogeneity and Z tests to determine whether the ES were different from zero. The mean corrected global ES for exercise conditions were -0.56 (-4.80 mmHg) for systolic BP (sBP) and -0.44 (-3.19 mmHg) for diastolic BP (dBP; z ≠ 0 for all; p < 0.05). The reduction in BP was significant regardless of the participant's initial BP level, gender, physical activity level, antihypertensive drug intake, type of BP measurement, time of day in which the BP was measured, type of exercise performed, and exercise training program (p < 0.05 for all). ANOVA tests revealed that BP reductions were greater if participants were males, not receiving antihypertensive medication, physically active, and if the exercise performed was jogging. A significant inverse correlation was found between age and BP ES, body mass index (BMI) and sBP ES, duration of the exercise's session and sBP ES, and between the number of sets performed in the resistance exercise program and sBP ES (p < 0.05). Regardless of the characteristics of the participants and exercise, there was a reduction in BP in the hours following an exercise session. However, the hypotensive effect was greater when the exercise was performed as a preventive strategy in those physically active and without antihypertensive medication. PMID:27168471

  9. Acute Mountain Sickness, Hypoxia, Hypobaria and Exercise Duration each Affect Heart Rate.

    PubMed

    DiPasquale, D M; Strangman, G E; Harris, N S; Muza, S R

    2015-07-01

    In this study, we quantified the changes in post-exercise resting heart rate (HRrst) associated with acute mountain sickness (AMS), and compared the effects of hypobaric hypoxia (HH) and normobaric hypoxia (NH) on HRrst. We also examined the modulating roles of exercise duration and exposure time on HRrst. Each subject participated in 2 of 6 conditions: normobaric normoxia (NN), NH, or HH (4 400 m altitude equivalent) combined with either 10 or 60 min of moderate cycling at the beginning of an 8-h exposure. AMS was associated with a 2 bpm higher HRrst than when not sick, after taking into account the ambient environment, exercise duration, and SpO2. In addition, HRrst was elevated in both NH and HH compared to NN with HRrst being 50% higher in HH than in NH. Participating in long duration exercise led to elevated resting HRs (0.8-1.4 bpm higher) compared with short exercise, while short exercise caused a progressive increase in HRrst over the exposure period in both NH and HH (0.77-1.2 bpm/h of exposure). This data suggests that AMS, NH, HH, exercise duration, time of exposure, and SpO2 have independent effects on HRrst. It further suggests that hypobaria exerts its own effect on HRrst in hypoxia. Thus NH and HH may not be interchangeable environments. PMID:25837245

  10. The Effects of Acute Dopamine Precursor Depletion on the Reinforcing Value of Exercise in Anorexia Nervosa

    PubMed Central

    O’Hara, Caitlin B.; Keyes, Alexandra; Renwick, Bethany; Leyton, Marco; Campbell, Iain C.; Schmidt, Ulrike

    2016-01-01

    This study investigated whether dopaminergic systems are involved in the motivation to engage in behaviours associated with anorexia nervosa (AN), specifically, the drive to exercise. Women recovered from AN (AN REC, n = 17) and healthy controls (HC, n = 15) were recruited. The acute phenylalanine/tyrosine depletion (APTD) method was used to transiently decrease dopamine synthesis and transmission. The effect of dopamine precursor depletion on drive to exercise was measured using a progressive ratio (PR) exercise breakpoint task. Both groups worked for the opportunity to exercise, and, at baseline, PR breakpoint scores were higher in AN REC than HC. Compared to values on the experimental control session, APTD did not decrease PR breakpoint scores in AN REC, but significantly decreased scores in HC. These data show that women recovered from AN are more motivated to exercise than HC, although in both groups, activity is more reinforcing than inactivity. Importantly, decreasing dopamine does not reduce the motivation to exercise in people recovered from AN, but in contrast, does so in HC. It is proposed that in AN, drive to exercise develops into a behaviour that is largely independent of dopamine mediated reward processes and becomes dependent on cortico-striatal neurocircuitry that regulates automated, habit- or compulsive-like behaviours. These data strengthen the case for the involvement of reward, learning, habit, and dopaminergic systems in the aetiology of AN. PMID:26808920

  11. Acute exercise increases oxygenated and deoxygenated hemoglobin in the prefrontal cortex.

    PubMed

    Giles, Grace E; Brunyé, Tad T; Eddy, Marianna D; Mahoney, Caroline R; Gagnon, Stephanie A; Taylor, Holly A; Kanarek, Robin B

    2014-11-12

    Both acute and chronic exercise is consistently associated with a number of benefits to physical and mental health, including cardiovascular function, body weight, mood, and cognition. Near-infrared spectroscopy is an ideal method to measure changes in oxygenated and deoxygenated hemoglobin (O2Hb and dHb) levels in the prefrontal cortex (PFC) during exercise, to better understand the locus of such changes in affective and cognitive processes. The present study tracked time-dependent changes in O2Hb and dHb levels in the PFC as a function of parametrically manipulated target exercise intensity. Near-infrared spectroscopy was conducted as regular exercisers completed a 30-min bout of exercise with one of three target intensities: 52% (low condition), 68% (moderate condition), or 84% (high condition) of age-adjusted maximum heart rate. Heart rate data confirmed that the participants reached their goal intensities immediately, after 10 min, or after 20 min, respectively. Data showed that O2Hb and dHb levels in the PFC increased as a function of both exercise load and duration. An 84%>68%>52% difference was evident after 18 min of cycling for O2Hb and after 23 min of cycling for dHb. The present results add to the growing body of literature showing that at submaximal levels, increasing exercise intensities reliably promote prefrontal cerebral oxygenation. PMID:25275640

  12. The Effects of Acute Dopamine Precursor Depletion on the Reinforcing Value of Exercise in Anorexia Nervosa.

    PubMed

    O'Hara, Caitlin B; Keyes, Alexandra; Renwick, Bethany; Leyton, Marco; Campbell, Iain C; Schmidt, Ulrike

    2016-01-01

    This study investigated whether dopaminergic systems are involved in the motivation to engage in behaviours associated with anorexia nervosa (AN), specifically, the drive to exercise. Women recovered from AN (AN REC, n = 17) and healthy controls (HC, n = 15) were recruited. The acute phenylalanine/tyrosine depletion (APTD) method was used to transiently decrease dopamine synthesis and transmission. The effect of dopamine precursor depletion on drive to exercise was measured using a progressive ratio (PR) exercise breakpoint task. Both groups worked for the opportunity to exercise, and, at baseline, PR breakpoint scores were higher in AN REC than HC. Compared to values on the experimental control session, APTD did not decrease PR breakpoint scores in AN REC, but significantly decreased scores in HC. These data show that women recovered from AN are more motivated to exercise than HC, although in both groups, activity is more reinforcing than inactivity. Importantly, decreasing dopamine does not reduce the motivation to exercise in people recovered from AN, but in contrast, does so in HC. It is proposed that in AN, drive to exercise develops into a behaviour that is largely independent of dopamine mediated reward processes and becomes dependent on cortico-striatal neurocircuitry that regulates automated, habit- or compulsive-like behaviours. These data strengthen the case for the involvement of reward, learning, habit, and dopaminergic systems in the aetiology of AN. PMID:26808920

  13. Effects of acute physical exercise on hepatocyte volume and function in rat.

    PubMed

    Latour, M G; Brault, A; Huet, P M; Lavoie, J M

    1999-05-01

    The goal of the present experiment was to measure the volume of the different compartments in liver of exercised rats and to get some insights into the appropriate working of the hepatic function following exercise. Hence, livers from male rats were isolated and perfused after treadmill exercise or rest. This procedure was performed on rats that were overnight semifasted (50% food restriction) or well fed. To evaluate the hepatocyte cell volume, the multiple-indicator dilution curve technique was used after 40 min of perfusion. Radioactive tracers for red blood cells, sucrose, and water were used to measure liver vascular space, liver interstitial space, and water cellular space, respectively. The hepatocyte function was assessed by taurocholate and propanolol clearance. Oxygen consumption, intrahepatic resistance, bile secretion, and lactate dehydrogenase release estimated liver viability. Liver viability and hepatocyte function were not changed following exercise either in the fed or in the semifasted animals. As expected, liver glycogen levels were significantly (P < 0.01) reduced in the food-restricted rats. Consequently, liver glycogen levels following exercise were decreased significantly (P < 0.01) only in the fed rats. Despite this, exercise decreased the hepatocyte water space in both food-restricted and fed groups ( approximately 15%; P < 0.01) without altering the sinusoidal and interstitial space. The present data show that acute exercise decreased the hepatocyte volume and that this volume change is not entirely linked to a decrease in hepatic glycogen level. PMID:10233015

  14. Application of acute maximal exercise to protect orthostatic tolerance after simulated microgravity

    NASA Technical Reports Server (NTRS)

    Engelke, K. A.; Doerr, D. F.; Crandall, C. G.; Convertino, V. A.

    1996-01-01

    We tested the hypothesis that one bout of maximal exercise performed at the conclusion of prolonged simulated microgravity would improve blood pressure stability during an orthostatic challenge. Heart rate (HR), mean arterial blood pressure (MAP), norepinephrine (NE), epinephrine (E), arginine vasopressin (AVP), plasma renin activity (PRA), atrial natriuretic peptide (ANP), cardiac output (Q), forearm vascular resistance (FVR), and changes in leg volume were measured during lower body negative pressure (LBNP) to presyncope in seven subjects immediately prior to reambulation from 16 days of 6 degrees head-down tilt (HDT) under two experimental conditions: 1) after maximal supine cycle ergometry performed 24 h before returning to the upright posture (exercise) and 2) without exercise (control). After HDT, the reduction of LBNP tolerance time from pre-HDT levels was greater (P = 0.041) in the control condition (-2.0 +/- 0.2 min) compared with the exercise condition (-0.4 +/- 0.2 min). At presyncope after HDT, FVR and NE were higher (P < 0.05) after exercise compared with control, whereas MAP, HR, E, AVP, PRA, ANP, and leg volume were similar in both conditions. Plasma volume (PV) and carotid-cardiac baroreflex sensitivity were reduced after control HDT, but were restored by the exercise treatment. Maintenance of orthostatic tolerance by application of acute intense exercise after 16 days of simulated microgravity was associated with greater circulating levels of NE, vasoconstriction, Q, baroreflex sensitivity, and PV.

  15. An acute bout of aerobic exercise can protect immediate offline motor sequence gains.

    PubMed

    Rhee, Joohyun; Chen, Jing; Riechman, Steven M; Handa, Atul; Bhatia, Sanjeev; Wright, David L

    2016-07-01

    The present study examined the efficacy of a short bout of moderately intensive exercise to protect knowledge of a newly acquired motor sequence. Previous work revealed that sleep-dependent offline gains in motor sequence performance are reduced by practicing an alternative motor sequence in close temporal proximity to the original practice with the target motor sequence. In the present work, a brief bout of exercise was inserted at two different temporal locations between practice of a to-be-learned motor sequence and the interfering practice that occurred 2 h later. At issue was whether exposure to exercise could reduce the impact of practice with the interfering task which was expected to be manifest as reemergence of offline gain observed in the case in which the learner is not exposed to the interfering practice. Acute exercise did influence the interfering quality of practice with an alternative motor sequence resulting in the return of broad offline gain. However, this benefit was immediate, emerging on the initial test trial, only when exercise was experienced some time after the original period of motor sequence practice and just prior to practice with the interfering motor sequence. Thus, while exercise can contribute to post-practice consolidation, there appears to be a fragile interplay between spontaneous memory consolidation occurring after task practice and the consolidation processes induced via exercise. PMID:26115758

  16. Creating an acute energy deficit without stimulating compensatory increases in appetite: is there an optimal exercise protocol?

    PubMed

    Deighton, Kevin; Stensel, David J

    2014-05-01

    Recent years have witnessed significant interest from both the scientific community and the media regarding the influence of exercise on subsequent appetite and energy intake responses. This review demonstrates a consensus among the majority of scientific investigations that an acute bout of land-based endurance exercise does not stimulate any compensatory increases in appetite and energy intake on the day of exercise. Alternatively, preliminary evidence suggests that low volume, supramaximal exercise may stimulate an increase in appetite perceptions during the subsequent hours. In accordance with the apparent insensitivity of energy intake to exercise in the short term, the daily energy balance response to exercise appears to be primarily determined by the energy cost of exercise. This finding supports the conclusions of recent training studies that the energy expenditure of exercise is the strongest predictor of fat loss during an exercise programme. PMID:24717417

  17. Salivary SIgA responses to acute moderate-vigorous exercise in monophasic oral contraceptive users.

    PubMed

    Hayashida, Harumi; Dolan, Nicola J; Hounsome, Charlotte; Alajmi, Nawal; Bishop, Nicolette C

    2015-09-01

    The purpose of this study was to examine the effect of oral contraceptive (OC) use on salivary secretory immunoglobulin A (SIgA) levels at rest and in response to an acute bout of moderate-vigorous exercise during 2 phases of the 4-week OC cycle corresponding to different phases of the synthetic menstrual cycle. Ten healthy active females completed a cycling at 70% peak oxygen uptake for 45 min at 2 time points of an OC cycle: during the equivalent in time to the mid-follicular phase (day 8 ± 2) and the mid-luteal phase (day 20 ± 2). Timed unstimulated saliva samples were obtained before, immediately postexercise, and 1 h postexercise and analyzed for salivary SIgA. Salivary SIgA secretion rate was 26% (95% confidence limits (CI) 6-46) lower at postexercise compared with pre-exercise during the synthetic follicular phase (p = 0.019) but no differences were observed during the synthetic luteal trial. Saliva flow rate was 11% (95% CI, 8-30) lower at postexercise compared with pre-exercise (main effect for time; p = 0.025). In conclusion, the pattern of salivary SIgA secretion rate response to moderate-vigorous exercise varies across the early and late phases of a monophasic OC cycle, with a transient reduction in salivary SIgA responses during the synthetic follicular phase. These findings indicate that monophasic OC use should be considered when assessing mucosal immune responses to acute exercise. PMID:26300012

  18. Acute aerobic exercise increases brain-derived neurotrophic factor levels in elderly with Alzheimer's disease.

    PubMed

    Coelho, Flávia Gomes de Melo; Vital, Thays Martins; Stein, Angelica Miki; Arantes, Franciel José; Rueda, André Veloso; Camarini, Rosana; Teodorov, Elizabeth; Santos-Galduróz, Ruth Ferreira

    2014-01-01

    Studies indicate the involvement of brain-derived neurotrophic factor (BDNF) in the pathogenesis of Alzheimer's disease (AD). Decreased BDNF levels may constitute a lack of trophic support and contribute to cognitive impairment in AD. The benefits of acute and chronic physical exercise on BDNF levels are well-documented in humans, however, exercise effects on BDNF levels have not been analyzed in older adults with AD. The aim of this study was to investigate the effects of acute aerobic exercise on BDNF levels in older adults with AD and to verify associations among BDNF levels, aerobic fitness, and level of physical activity. Using a controlled design, twenty-one patients with AD (76.3 ± 6.2 years) and eighteen healthy older adults (74.6 ± 4.7 years) completed an acute aerobic exercise. The outcomes included measures of BDNF plasma levels, aerobic fitness (treadmill grade, time to exhaustion, VO2, and maximal lactate) and level of physical activity (Baecke Questionnaire Modified for the Elderly). The independent t-test shows differences between groups with respect to the BDNF plasma levels at baseline (p = 0.04; t = 4.53; df = 37). In two-way ANOVA, a significant effect of time was found (p = 0.001; F = 13.63; df = 37), the aerobic exercise significantly increased BDNF plasma levels in AD patients and healthy controls. A significant correlation (p = 0.04; r = 0.33) was found between BDNF levels and the level of physical activity. The results of our study suggest that aerobic exercise increases BDNF plasma levels in patients with AD and healthy controls. In addition to that, BDNF levels had association with level of physical activity. PMID:24164734

  19. The miRNA Plasma Signature in Response to Acute Aerobic Exercise and Endurance Training

    PubMed Central

    Nielsen, Søren; Åkerström, Thorbjörn; Rinnov, Anders; Yfanti, Christina; Scheele, Camilla; Pedersen, Bente K.; Laye, Matthew J.

    2014-01-01

    MiRNAs are potent intracellular posttranscriptional regulators and are also selectively secreted into the circulation in a cell-specific fashion. Global changes in miRNA expression in skeletal muscle in response to endurance exercise training have been reported. Therefore, our aim was to establish the miRNA signature in human plasma in response to acute exercise and chronic endurance training by utilizing a novel methodological approach. RNA was isolated from human plasma collected from young healthy men before and after an acute endurance exercise bout and following 12 weeks of endurance training. Global miRNA (742 miRNAs) measurements were performed as a screening to identify detectable miRNAs in plasma. Using customized qPCR panels we quantified the expression levels of miRNAs detected in the screening procedure (188 miRNAs). We demonstrate a dynamic regulation of circulating miRNA (ci-miRNA) levels following 0 hour (miR-106a, miR-221, miR-30b, miR-151-5p, let-7i, miR-146, miR-652 and miR-151-3p), 1 hour (miR-338-3p, miR-330-3p, miR-223, miR-139-5p and miR-143) and 3 hours (miR-1) after an acute exercise bout (P<0.00032). Where ci-miRNAs were all downregulated immediately after an acute exercise bout (0 hour) the 1 and 3 hour post exercise timepoints were followed by upregulations. In response to chronic training, we identified seven ci-miRNAs with decreased levels in plasma (miR-342-3p, let-7d, miR-766, miR-25, miR-148a, miR-185 and miR-21) and two miRNAs that were present at higher levels after the training period (miR-103 and miR-107) (P<0.00032). In conclusion, acute exercise and chronic endurance training, likely through specific mechanisms unique to each stimulus, robustly modify the miRNA signature of human plasma. PMID:24586268

  20. Acute Exercise-Induced Response of Monocyte Subtypes in Chronic Heart and Renal Failure

    PubMed Central

    Van Craenenbroeck, Amaryllis H.; Hoymans, Vicky Y.; Verpooten, Gert A.; Vrints, Christiaan J.; Couttenye, Marie M.; Van Craenenbroeck, Emeline M.

    2014-01-01

    Purpose. Monocytes (Mon1-2-3) play a substantial role in low-grade inflammation associated with high cardiovascular morbidity and mortality of patients with chronic kidney disease (CKD) and chronic heart failure (CHF). The effect of an acute exercise bout on monocyte subsets in the setting of systemic inflammation is currently unknown. This study aims (1) to evaluate baseline distribution of monocyte subsets in CHF and CKD versus healthy subjects (HS) and (2) to evaluate the effect of an acute exercise bout. Exercise-induced IL-6 and MCP-1 release are related to the Mon1-2-3 response. Methods. Twenty CHF patients, 20 CKD patients, and 15 HS were included. Before and after a maximal cardiopulmonary exercise test, monocyte subsets were quantified by flow cytometry: CD14++CD16−CCR2+ (Mon1), CD14++CD16+CCR2+ (Mon2), and CD14+CD16++CCR2− (Mon3). Serum levels of IL-6 and MCP-1 were determined by ELISA. Results. Baseline distribution of Mon1-2-3 was comparable between the 3 groups. Following acute exercise, %Mon2 and %Mon3 increased significantly at the expense of a decrease in %Mon1 in HS and in CKD. This response was significantly attenuated in CHF (P < 0.05). In HS only, MCP-1 levels increased following exercise; IL-6 levels were unchanged. Circulatory power was a strong and independent predictor of the changes in Mon1 (β = −0.461, P < 0.001) and Mon3 (β = 0.449, P < 0.001); and baseline LVEF of the change in Mon2 (β = 0.441, P < 0.001). Conclusion. The response of monocytes to acute exercise is characterized by an increase in proangiogenic and proinflammatory Mon2 and Mon3 at the expense of phagocytic Mon1. This exercise-induced monocyte subset response is mainly driven by hemodynamic changes and not by preexistent low-grade inflammation. PMID:25587208

  1. Exercise capacity in patients 3 days after acute, uncomplicated myocardial infarction

    SciTech Connect

    Burek, K.A.; Kirscht, J.; Topol, E.J. )

    1989-11-01

    In a randomized, controlled trial of early hospital discharge after acute myocardial infarction (MI), a heart rate, symptom-limited exercise thallium test was performed after the onset of MI. Patients' exercise capacity was evaluated by the exercise treadmill with accompanying thallium scintigraphy. Of 507 consecutive patients screened, the condition of 179 was classified as uncomplicated, which is defined as the absence of angina, heart failure, or serious arrhythmias at 72 hours from admission. Of the patients with uncomplicated conditions, 126 had an exercise test on day 3 and 53 did not exercise on day 3. Of the 126 patients who exercised on day 3, 36 had a positive test and 90 had a negative test for ischemia. The 36 patients with a positive test result exercised a mean time of 6.71 +/- 2.8 minutes, achieved a mean peak heart rate of 120.9 +/- 21.4 beats/min, reached a peak systolic blood pressure of 144.7 +/- 33.3 mm Hg, and achieved a double product (rate-pressure product) of 183.4 +/- 67.6. The 90 patients with a negative test result for ischemia exercised 9.45 +/- 12.7 minutes, achieved a peak heart rate of 130.2 +/- 14.4 beats/min, reached a mean systolic blood pressure of 155.5 +/- 29.4 mm Hg, and achieved a rate-pressure product of 210.5 +/- 44.0. Of the 90 patients with uncomplicated conditions who had a negative exercise test for ischemia, 85 patients received reperfusion therapy, which included thrombolysis or coronary angioplasty or both.

  2. Effects of acute, intermittent exercise in hypoxic environments on the release of cardiac troponin.

    PubMed

    Li, F; Hu, Y; Nie, J; Fu, F H

    2016-04-01

    The purpose of this study was to examine the effects of acute, intermittent exercise performed in hypoxic environments on the release of cardiac troponin (cTn). Ten well-trained, male marathon runners (22.1 ± 2.6 years, 64.0 ± 4.9 kg and 177.3 ± 3.9 cm) completed three intermittent exercise protocols under normoxic (trial N) and hypoxic (trial AH and RH) conditions. In trial N, the fraction of inspiration oxygen (FIO2 ) was 21.0% and exercise intensity was 90% and 50% normoxic velocity of VO2max (vVO2max ). In trial AH, FIO2 was 14.4% (simulated altitude of 3000 m) and exercise intensity was 90% and 50% normoxic vVO2max . In trial RH, FIO2 was 14.4% and exercise intensity was 90% and 50% hypoxic vVO2max . High-sensitivity cardiac troponin T (hs-cTnT) and cardiac troponin I (cTnI) were measured pre- and 0, 2, 4, and 24 h post-exercise. Hs-cTnT was elevated in all three trials, peaking at 2 to 4 h and returning to the baseline 24 h post-exercise. CTnI increased in trial AH, peaking at 2 to 4 h and returning below the detection limit 24 h post-exercise. It is concluded that the stimulus of hypoxia did not in and of itself induce more cTn to be released, but exercise intensity could affect this response in hypoxic environments. PMID:25943765

  3. Effects of Acute Endurance Exercise on Plasma Protein Profiles of Endurance-Trained and Untrained Individuals over Time

    PubMed Central

    Schild, Marius; Eichner, Gerrit; Beiter, Thomas; Zügel, Martina; Krumholz-Wagner, Ilke; Hudemann, Jens; Pilat, Christian; Krüger, Karsten; Niess, Andreas M.; Steinacker, Jürgen M.; Mooren, Frank C.

    2016-01-01

    Acute physical exercise and repeated exercise stimuli affect whole-body metabolic and immunologic homeostasis. The aim of this study was to determine plasma protein profiles of trained (EET, n = 19) and untrained (SED, n = 17) individuals at rest and in response to an acute bout of endurance exercise. Participants completed a bicycle exercise test at an intensity corresponding to 80% of their VO2max. Plasma samples were taken before, directly after, and three hours after exercise and analyzed using multiplex immunoassays. Seventy-eight plasma variables were included in the final analysis. Twenty-nine variables displayed significant acute exercise effects in both groups. Seven proteins differed between groups, without being affected by acute exercise. Among these A2Macro and IL-5 were higher in EET individuals while leptin showed elevated levels in SED individuals. Fifteen variables revealed group and time differences with elevated levels for IL-3, IL-7, IL-10, and TNFR2 in EET individuals. An interaction effect could be observed for nine variables including IL-6, MMP-2, MMP-3, and muscle damage markers. The proteins that differ between groups indicate a long-term exercise effect on plasma protein concentrations. These findings might be of importance in the development of exercise-based strategies in the prevention and therapy of chronic metabolic and inflammatory diseases and for training monitoring. PMID:27239103

  4. Acute molecular responses to concurrent resistance and high-intensity interval exercise in untrained skeletal muscle

    PubMed Central

    Pugh, Jamie K; Faulkner, Steve H; Jackson, Andrew P; King, James A; Nimmo, Myra A

    2015-01-01

    Concurrent training involving resistance and endurance exercise may augment the benefits of single-mode training for the purpose of improving health. However, muscle adaptations, associated with resistance exercise, may be blunted by a subsequent bout of endurance exercise, via molecular interference. High-intensity interval training (HIIT), generating similar adaptations to endurance exercise, may offer an alternative exercise mode to traditional endurance exercise. This study examined the influence of an acute HIIT session on the molecular responses following resistance exercise in untrained skeletal muscle. Ten male participants performed resistance exercise (4 × 8 leg extensions, 70% 1RM, (RE)) or RE followed by HIIT (10 × 1 min at 90% HRmax, (RE+HIIT)). Muscle biopsies were collected from the vastus lateralis before, 2 and 6 h post-RE to determine intramuscular protein phosphorylation and mRNA responses. Phosphorylation of Akt (Ser473) decreased at 6 h in both trials (P < 0.05). Phosphorylation of mTOR (Ser2448) was higher in RE+HIIT (P < 0.05). All PGC-1α mRNA variants increased at 2 h in RE+HIIT with PGC-1α and PGC-1α-ex1b remaining elevated at 6 h, whereas RE-induced increases at 2 and 6 h for PGC-1α-ex1b only (P < 0.05). Myostatin expression decreased at 2 and 6 h in both trials (P < 0.05). MuRF-1 was elevated in RE+HIIT versus RE at 2 and 6 h (P < 0.05). Atrogin-1 was lower at 2 h, with FOXO3A downregulated at 6 h (P < 0.05). These data do not support the existence of an acute interference effect on protein signaling and mRNA expression, and suggest that HIIT may be an alternative to endurance exercise when performed after resistance exercise in the same training session to optimize adaptations. PMID:25902785

  5. Acute Dietary Nitrate Supplementation and Exercise Performance in COPD: A Double-Blind, Placebo-Controlled, Randomised Controlled Pilot Study

    PubMed Central

    Curtis, Katrina J.; O’Brien, Katie A.; Tanner, Rebecca J.; Polkey, Juliet I.; Minnion, Magdalena; Feelisch, Martin; Polkey, Michael I.; Edwards, Lindsay M.; Hopkinson, Nicholas S.

    2015-01-01

    Background Dietary nitrate supplementation can enhance exercise performance in healthy people, but it is not clear if it is beneficial in COPD. We investigated the hypotheses that acute nitrate dosing would improve exercise performance and reduce the oxygen cost of submaximal exercise in people with COPD. Methods We performed a double-blind, placebo-controlled, cross-over single dose study. Subjects were randomised to consume either nitrate-rich beetroot juice (containing 12.9mmoles nitrate) or placebo (nitrate-depleted beetroot juice) 3 hours prior to endurance cycle ergometry, performed at 70% of maximal workload assessed by a prior incremental exercise test. After a minimum washout period of 7 days the protocol was repeated with the crossover beverage. Results 21 subjects successfully completed the study (age 68±7years; BMI 25.2±5.5kg/m2; FEV1 percentage predicted 50.1±21.6%; peak VO2 18.0±5.9ml/min/kg). Resting diastolic blood pressure fell significantly with nitrate supplementation compared to placebo (-7±8mmHg nitrate vs. -1±8mmHg placebo; p = 0.008). Median endurance time did not differ significantly; nitrate 5.65 (3.90–10.40) minutes vs. placebo 6.40 (4.01–9.67) minutes (p = 0.50). However, isotime oxygen consumption (VO2) was lower following nitrate supplementation (16.6±6.0ml/min/kg nitrate vs. 17.2±6.0ml/min/kg placebo; p = 0.043), and consequently nitrate supplementation caused a significant lowering of the amplitude of the VO2-percentage isotime curve. Conclusions Acute administration of oral nitrate did not enhance endurance exercise performance; however the observation that beetroot juice caused reduced oxygen consumption at isotime suggests that further investigation of this treatment approach is warranted, perhaps targeting a more hypoxic phenotype. Trial Registration ISRCTN Registry ISRCTN66099139 PMID:26698120

  6. Dissociation of Increases in PGC-1α and Its Regulators from Exercise Intensity and Muscle Activation Following Acute Exercise

    PubMed Central

    Hankinson, Paul B.; Simpson, Craig A.; Little, Jonathan P.; Graham, Ryan B.; Gurd, Brendon J.

    2013-01-01

    Muscle activation as well as changes in peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) following high-intensity interval exercise (HIIE) were examined in young healthy men (n  = 8; age, 21.9±2.2 yrs; VO2peak, 53.1±6.4 ml/min/kg; peak work rate, 317±23.5 watts). On each of 3 visits HIIE was performed on a cycle ergometer at a target intensity of 73, 100, or 133% of peak work rate. Muscle biopsies were taken at rest and three hours after each exercise condition. Total work was not different between conditions (∼730 kJ) while average power output (73%, 237±21; 100%, 323±26; 133%, 384±35 watts) and EMG derived muscle activation (73%, 1262±605; 100%, 2089±737; 133%, 3029±1206 total integrated EMG per interval) increased in an intensity dependent fashion. PGC-1α mRNA was elevated after all three conditions (p<0.05), with a greater increase observed following the 100% condition (∼9 fold, p<0.05) compared to both the 73 and 133% conditions (∼4 fold). When expressed relative to muscle activation, the increase in PGC-1α mRNA for the 133% condition was less than that for the 73 and 100% conditions (p<0.05). SIRT1 mRNA was also elevated after all three conditions (∼1.4 fold, p<0.05), with no difference between conditions. These findings suggest that intensity-dependent increases in PGC-1α mRNA following submaximal exercise are largely due to increases in muscle recruitment. As well, the blunted response of PGC-1α mRNA expression following supramaximal exercise may indicate that signalling mediated activation of PGC-1α may also be blunted. We also indentify that increases in PDK4, SIRT1, and RIP140 mRNA following acute exercise are dissociated from exercise intensity and muscle activation, while increases in EGR1 are augmented with supramaximal HIIE (p<0.05). PMID:23951207

  7. Acute alcohol consumption aggravates the decline in muscle performance following strenuous eccentric exercise.

    PubMed

    Barnes, Matthew J; Mündel, Toby; Stannard, Stephen R

    2010-01-01

    This study investigated the effects of acute moderate alcohol intake on muscular performance during recovery from eccentric exercise-induced muscle damage. Eleven healthy males performed 300 maximal eccentric contractions of the quadriceps muscles of one leg on an isokinetic dynamometer. They then consumed a beverage containing 1g/kg bodyweight ethanol (as vodka and orange juice) (ALC). On another occasion they performed an equivalent bout of eccentric exercise on the contralateral leg after which they consumed an isocaloric quantity of orange juice (OJ). Measurement of maximal isokinetic (concentric and eccentric) and isometric torque produced across the knee, plasma creatine kinase (CK) concentrations and muscle soreness were made before and at 36 and 60h following each exercise bout. All measures of muscle performance were significantly reduced at 36 and 60h post-exercise compared to pre-exercise measures (all p<0.05). The greatest decreases in peak strength were observed at 36h with losses of 12%, 28% and 19% occurring for OJ isometric, concentric, and eccentric contractions, respectively. However, peak strength loss was significantly greater in ALC with the same performance measures decreasing by 34%, 40% and 34%, respectively. Post-exercise plasma creatine kinase activity and ratings of muscle soreness were not different between conditions (both p>0.05). These results indicate that consumption of even moderate amounts of alcohol following eccentric-based exercise magnifies the normally observed losses in dynamic and static strength. Therefore, to minimise exercise related losses in muscle function and expedite recovery, participants in sports involving eccentric muscle work should avoid alcohol-containing beverages in the post-event period. PMID:19230764

  8. Sildenafil improves cardiac output and exercise performance during acute hypoxia, but not normoxia.

    PubMed

    Hsu, Andrew R; Barnholt, Kimberly E; Grundmann, Nicolas K; Lin, Joseph H; McCallum, Stewart W; Friedlander, Anne L

    2006-06-01

    Sildenafil causes pulmonary vasodilation, thus potentially reducing impairments of hypoxia-induced pulmonary hypertension on exercise performance at altitude. The purpose of this study was to determine the effects of sildenafil during normoxic and hypoxic exercise. We hypothesized that 1) sildenafil would have no significant effects on normoxic exercise, and 2) sildenafil would improve cardiac output, arterial oxygen saturation (SaO2), and performance during hypoxic exercise. Ten trained men performed one practice and three experimental trials at sea level (SL) and simulated high altitude (HA) of 3,874 m. Each cycling test consisted of a set-work-rate portion (55% work capacity: 1 h SL, 30 min HA) followed immediately by a time trial (10 km SL, 6 km HA). Double-blinded capsules (placebo, 50, or 100 mg) were taken 1 h before exercise in a randomly counterbalanced order. For HA, subjects also began breathing hypoxic gas (12.8% oxygen) 1 h before exercise. At SL, sildenafil had no effects on any cardiovascular or performance measures. At HA, sildenafil increased stroke volume (measured by impedance cardiography), cardiac output, and SaO2 during set-work-rate exercise. Sildenafil lowered 6-km time-trial time by 15% (P<0.05). SaO2 was also higher during the time trial (P<0.05) in response to sildenafil, despite higher work rates. Post hoc analyses revealed two subject groups, sildenafil responders and nonresponders, who improved time-trial performance by 39% (P<0.05) and 1.0%, respectively. No dose-response effects were observed. During cycling exercise in acute hypoxia, sildenafil can greatly improve cardiovascular function, SaO2, and performance for certain individuals. PMID:16455814

  9. Exercise-mediated vasodilation in human obesity and metabolic syndrome: effect of acute ascorbic acid infusion

    PubMed Central

    Limberg, Jacqueline K.; Kellawan, J. Mikhail; Harrell, John W.; Johansson, Rebecca E.; Eldridge, Marlowe W.; Proctor, Lester T.; Sebranek, Joshua J.

    2014-01-01

    We tested the hypothesis that infusion of ascorbic acid (AA), a potent antioxidant, would alter vasodilator responses to exercise in human obesity and metabolic syndrome (MetSyn). Forearm blood flow (FBF, Doppler ultrasound) was measured in lean, obese, and MetSyn adults (n = 39, 32 ± 2 yr). A brachial artery catheter was inserted for blood pressure monitoring and local infusion of AA. FBF was measured during dynamic handgrip exercise (15% maximal effort) with and without AA infusion. To account for group differences in blood pressure and forearm size, and to assess vasodilation, forearm vascular conductance (FVC = FBF/mean arterial blood pressure/lean forearm mass) was calculated. We examined the time to achieve steady-state FVC (mean response time, MRT) and the rise in FVC from rest to steady-state exercise (Δ, exercise − rest) before and during acute AA infusion. The MRT (P = 0.26) and steady-state vasodilator responses to exercise (ΔFVC, P = 0.31) were not different between groups. Intra-arterial infusion of AA resulted in a significant increase in plasma total antioxidant capacity (174 ± 37%). AA infusion did not alter MRT or steady-state FVC in any group (P = 0.90 and P = 0.85, respectively). Interestingly, higher levels of C-reactive protein predicted longer MRT (r = 0.52, P < 0.01) and a greater reduction in MRT with AA infusion (r = −0.43, P = 0.02). We concluded that AA infusion during moderate-intensity, rhythmic forearm exercise does not alter the time course or magnitude of exercise-mediated vasodilation in groups of young lean, obese, or MetSyn adults. However, systemic inflammation may limit the MRT to exercise, which can be improved with AA. PMID:25038148

  10. Energy intake and appetite-related hormones following acute aerobic and resistance exercise.

    PubMed

    Balaguera-Cortes, Liliana; Wallman, Karen E; Fairchild, Timothy J; Guelfi, Kym J

    2011-12-01

    Previous research has shown that resistance and aerobic exercise have differing effects on perceived hunger and circulating levels of appetite-related hormones. However, the effect of resistance and aerobic exercise on actual energy intake has never been compared. This study investigated the effect of an acute bout of resistance exercise, compared with aerobic exercise, on subsequent energy intake and appetite-regulating hormones. Ten active men completed 3 trials in a counterbalanced design: 45 min of resistance exercise (RES; free and machine weights), aerobic exercise (AER; running), or a resting control trial (CON). Following exercise or CON, participants had access to a buffet-style array of breakfast foods and drinks to consume ad libitum. Plasma concentrations of a range of appetite-regulating hormones were measured throughout each trial. Despite significantly higher energy expenditure with AER compared with RES (p < 0.05), there was no difference in total energy intake from the postexercise meal between trials (p = 0.779). Pancreatic polypeptide was significantly higher prior to the meal after both RES and AER compared with CON. In contrast, active ghrelin was lower following RES compared with both CON and AER (p ≤ 0.05), while insulin was higher following RES compared with CON (p = 0.013). In summary, the differential response of appetite-regulating hormones to AER and RES does not appear to influence energy intake in the postexercise meal. However, given the greater energy expenditure associated with AER compared with RES, AER modes of exercise may be preferable for achieving short-term negative energy balance. PMID:22111518

  11. Acute effects of concentric and eccentric exercise on glucose metabolism and interleukin-6 concentration in healthy males

    PubMed Central

    Krüsmann, PJ; Mersa, L; Eder, EM; Gatterer, H; Melmer, A; Ebenbichler, C; Burtscher, M

    2016-01-01

    Acute muscle-damaging eccentric exercise (EE) negatively affects glucose metabolism. On the other hand, long-term eccentric endurance exercise seems to result in equal or superior positive effects on glucose metabolism compared to concentric endurance exercise. However, it is not known if acute non-muscle-damaging EE will have the same positive effects on glucose metabolism as acute concentric exercise (CE). Interleukin-6 (IL-6) released from the exercising muscles may be involved in the acute adaptations of glucose metabolism after CE and non-muscle-damaging EE. The aim of this study was to assess acute effects of uphill walking (CE) and non-muscle-damaging downhill walking (EE) on glucose metabolism and IL-6 secretion. Seven sedentary non-smoking, healthy males participated in a crossover trial consisting of a 1 h uphill (CE) and a 1 h downhill (EE) walking block on a treadmill. Venous blood samples were drawn before (pre), directly after (acute) and 24 h after (post) exercise. An oral glucose tolerance test (OGTT) was performed before and 24 h after exercise. Glucose tolerance after 1 and 2 hours significantly improved 24 hours after CE (-10.12±3.22%: P=0.039; -13.40±8.24%: P=0.028). After EE only the 1-hour value was improved (-5.03±5.48%: P=0.043). Acute IL-6 concentration rose significantly after CE but not after EE. We conclude that both a single bout of CE and a single bout of non-muscle-damaging EE elicit positive changes in glucose tolerance even in young, healthy subjects. Our experiment indicates that the overall metabolic cost is a major trigger for acute adaptations of glucose tolerance after exercise, but only the IL-6 production during EE was closely related to changes in glycaemic control. PMID:27274108

  12. Acute effects of concentric and eccentric exercise on glucose metabolism and interleukin-6 concentration in healthy males.

    PubMed

    Philippe, M; Krüsmann, P J; Mersa, L; Eder, E M; Gatterer, H; Melmer, A; Ebenbichler, C; Burtscher, M

    2016-06-01

    Acute muscle-damaging eccentric exercise (EE) negatively affects glucose metabolism. On the other hand, long-term eccentric endurance exercise seems to result in equal or superior positive effects on glucose metabolism compared to concentric endurance exercise. However, it is not known if acute non-muscle-damaging EE will have the same positive effects on glucose metabolism as acute concentric exercise (CE). Interleukin-6 (IL-6) released from the exercising muscles may be involved in the acute adaptations of glucose metabolism after CE and non-muscle-damaging EE. The aim of this study was to assess acute effects of uphill walking (CE) and non-muscle-damaging downhill walking (EE) on glucose metabolism and IL-6 secretion. Seven sedentary non-smoking, healthy males participated in a crossover trial consisting of a 1 h uphill (CE) and a 1 h downhill (EE) walking block on a treadmill. Venous blood samples were drawn before (pre), directly after (acute) and 24 h after (post) exercise. An oral glucose tolerance test (OGTT) was performed before and 24 h after exercise. Glucose tolerance after 1 and 2 hours significantly improved 24 hours after CE (-10.12±3.22%: P=0.039; -13.40±8.24%: P=0.028). After EE only the 1-hour value was improved (-5.03±5.48%: P=0.043). Acute IL-6 concentration rose significantly after CE but not after EE. We conclude that both a single bout of CE and a single bout of non-muscle-damaging EE elicit positive changes in glucose tolerance even in young, healthy subjects. Our experiment indicates that the overall metabolic cost is a major trigger for acute adaptations of glucose tolerance after exercise, but only the IL-6 production during EE was closely related to changes in glycaemic control. PMID:27274108

  13. TNF-α and TNFR1 responses to recovery therapies following acute resistance exercise

    PubMed Central

    Townsend, Jeremy R.; Hoffman, Jay R.; Fragala, Maren S.; Jajtner, Adam R.; Gonzalez, Adam M.; Wells, Adam J.; Mangine, Gerald T.; Fukuda, David H.; Stout, Jeffrey R.

    2015-01-01

    The purpose of this investigation was to compare the effect of two commonly used therapeutic modalities (a) neuromuscular electrical stimulation (NMES) and (b) cold water immersion (CWI) on circulating tumor necrosis factor alpha (TNF-α) and monocyte TNF-α receptor (TNFR1) expression following intense acute resistance exercise and subsequent recovery. Thirty (n = 30) resistance trained men (22.5 ± 2.7 y) performed an acute heavy resistance exercise protocol on three consecutive days followed by one of three recovery methods (CON, NMES, and CWI). Circulating TNF-α levels were assayed and TNFR1 expression on CD14+ monocytes was measured by flow cytometry measured PRE, immediately post (IP), 30-min post (30M), 24 h post (24H), and 48 h post (48H) exercise. Circulating TNF-α was elevated at IP (p = 0.001) and 30M (p = 0.005) and decreased at 24H and 48H recovery from IP in CON (p = 0.015) and CWI (p = 0.011). TNF-α did not significantly decrease from IP during recovery in NMES. TNFR1 expression was elevated (p < 0.001) at 30M compared to PRE and all other time points. No significant differences between groups were observed in TNFR1 expression. During recovery (24H, 48H) from muscle damaging exercise, NMES treatment appears to prevent the decline in circulating TNF-α observed during recovery in those receiving no treatment or CWI. PMID:25741287

  14. The effects of age and latent cytomegalovirus infection on the redeployment of CD8+ T cell subsets in response to acute exercise in humans.

    PubMed

    Spielmann, Guillaume; Bollard, Catherine M; Bigley, Austin B; Hanley, Patrick J; Blaney, James W; LaVoy, Emily C P; Pircher, Hanspeter; Simpson, Richard J

    2014-07-01

    Dynamic exercise evokes a rapid redeployment of cytotoxic T cell subsets with high expression of β2 adrenergic receptors, presumably to enhance immunosurveillance during acute stress. As this response is affected by age and infection history, this study examined latent CMV infection as a potential confounder to age-related differences in blood CD8+ T-cell responses to exercise. Healthy young (n=16) and older (n=16) humans counterbalanced by CMV IgG serostatus (positive or negative) exercised for 30-min at ∼80% peak cycling power. Those with CMV redeployed ∼2-times more CD8+ T-cells and ∼6-times more KLRG1+/CD28- and CD45RA+/CCR7- CD8+ subsets than non-infected exercisers. Seronegative older exercisers had an impaired redeployment of total CD8+ T-cells, CD45RA+/CCR7+ and KLRG1-/CD28+ CD8+ subsets compared to young. Redeployed CD8+ T-cell numbers were similar between infected young and old. CMVpp65 specific CD8+ cells in HLA/A2(∗) subjects increased ∼2.7-fold after exercise, a response that was driven by the KLRG1+/CD28-/CD8+ subset. Stimulating PBMCs before and after exercise with CMVpp65 and CMV IE-1 antigens and overlapping peptide pools revealed a 2.1 and 4.4-fold increases in CMVpp65 and CMV IE-1 IFN-γ secreting cells respectively. The breadth of the T cell response was maintained after exercise with the magnitude of the response being amplified across the entire epitope repertoire. To conclude, latent CMV infection overrides age-related impairments in CD8+ T-cell redeployment with exercise. We also show for the first time that many T-cells redeployed with exercise are specific to CMVpp65 and CMV IE-1 antigens, have broad epitope specificity, and are mostly of a high-differentiated effector memory phenotype. PMID:23684819

  15. Interleukin-1 polymorphisms are associated with the inflammatory response in human muscle to acute resistance exercise

    PubMed Central

    Dennis, Richard A; Trappe, Todd A; Simpson, Pippa; Carroll, Chad; Emma Huang, B; Nagarajan, Radhakrishnan; Bearden, Edward; Gurley, Cathy; Duff, Gordon W; Evans, William J; Kornman, Kenneth; Peterson, Charlotte A

    2004-01-01

    Inflammation appears to play an important role in the repair and regeneration of skeletal muscle after damage. We tested the hypothesis that the severity of the inflammatory response in muscle after an acute bout of resistance exercise is associated with single nucleotide polymorphisms (SNPs) previously shown to alter interleukin-1 (IL-1) activity. Using a double-blind prospective design, sedentary young men were screened (n = 100) for enrolment (n = 24) based upon having 1 of 4 haplotype patterns composed of five polymorphic sites in the IL-1 gene cluster: IL-1A (+4845), IL-1B (+3954), IL-1B (−511), IL-1B (−3737) and IL-1RN (+2018). Subjects performed a standard bout of resistance leg exercise and vastus lateralis biopsies were obtained pre-, and at 24, and 72 h post-exercise. Inflammatory marker mRNAs (IL-1β, IL-6 and tumor necrosis factor-α (TNF-α)) and the number of CD68+ macrophages were quantified. Considerable variation was observed in the expression of these gene products between subjects. At 72 h post-exercise, IL-1β had increased in a number of subjects (n = 10) and decreased (n = 4) or did not change (n = 10) in others. Inflammatory responses were significantly associated with specific haplotype patterns and were also influenced by individual SNPs. Subjects with genotypes 1.1 at IL-1B (+3954) or 2.2 at IL-1B (−3737) had approximately a 2-fold higher median induction of several markers, but no increase in macrophages, suggesting that cytokine gene expression is elevated per macrophage. The IL-1RN (+2018) SNP maximized the response specifically within these groups and was associated with increased macrophage recruitment. This is the first report that IL-1 genotype is associated with the inflammation of skeletal muscle following acute resistance exercise that may potentially affect the adaptations to chronic resistance exercise. PMID:15331687

  16. Bilevel ventilation during exercise in acute on chronic respiratory failure: a preliminary study.

    PubMed

    Menadue, Collette; Alison, J A; Piper, A J; Flunt, D; Ellis, E R

    2010-02-01

    To determine the immediate effects of bilevel non-invasive ventilation plus oxygen (NIV+O(2)) during exercise compared to exercise with O(2) alone in people recovering from acute on chronic hypercapnic respiratory failure (HRF), a randomised crossover study with repeated measures was performed. Eighteen participants performed six minute walk tests (6MWT) and 16 participants performed unsupported arm exercise (UAE) tests with NIV+O(2) and with O(2) alone in random order. Distance walked increased by a mean of 43.4m (95% CI 14.1 to 72.8, p=0.006) with NIV+O(2) compared to exercise with O(2) alone. In addition, isotime oxygen saturation increased by a mean of 5% (95% CI 2-7, p=0.001) and isotime dyspnoea was reduced [median 2 (interquartile range (IQR) 1-4) versus 4 (3-5), p=0.028] with NIV+O(2). A statistically significant increase was also observed in UAE endurance time with NIV+O(2) [median 201s (IQR 93-414) versus 157 (90-342), p=0.033], and isotime perceived exertion (arm muscle fatigue) was reduced by a mean of 1.0 on the Borg scale (95% CI -1.9 to -0.1, p=0.037) compared with O(2) alone. Non-invasive ventilation plus O(2) during walking resulted in an immediate improvement in distance walked and oxygen saturation, and a reduction in dyspnoea compared to exercise with O(2) alone in people recovering from acute on chronic HRF. The reduction of dyspnoea during walking and arm muscle fatigue during UAE observed with NIV+O(2) may allow patients to better tolerate exercise early in the recovery period. PMID:19804963

  17. Optimal hematocrit for maximal exercise performance in acute and chronic erythropoietin-treated mice.

    PubMed

    Schuler, Beat; Arras, Margarete; Keller, Stephan; Rettich, Andreas; Lundby, Carsten; Vogel, Johannes; Gassmann, Max

    2010-01-01

    Erythropoietin (Epo) treatment increases hematocrit (Htc) and, consequently, arterial O(2) content. This in turn improves exercise performance. However, because elevated blood viscosity associated with increasing Htc levels may limit cardiac performance, it was suggested that the highest attainable Htc may not necessarily be associated with the highest attainable exercise capacity. To test the proposed hypothesis that an optimal Htc in acute and chronic Epo-treated mice exists--i.e., the Htc that facilitates the greatest O(2) flux during maximal exercise--Htc levels of wild-type mice were acutely elevated by administering novel erythropoiesis-stimulating protein (NESP; wtNESP). Furthermore, in the transgenic mouse line tg6 that reaches Htc levels of up to 0.9 because of constitutive overexpression of human Epo, the Htc was gradually reduced by application of the hemolysis-inducing compound phenylhydrazine (PHZ; tg6PHZ). Maximal cardiovascular performance was measured by using telemetry in all exercising mice. Highest maximal O(2) uptake (VO(2max)) and maximal time to exhaustion at submaximal exercise intensities were reached at Htc values of 0.58 and 0.57 for wtNESP, and 0.68 and 0.66 for tg6PHZ, respectively. Rate pressure product, and thus also maximal working capacity of the heart, increased with elevated Htc values. Blood viscosity correlated with VO(2max). Apart from the confirmation of the Htc hypothesis, we conclude that tg6PHZ adapted better to varying Htc values than wtNESP because of the higher optimal Htc of tg6PHZ compared to wtNESP. Of note, blood viscosity plays a critical role in limiting exercise capacity. PMID:19966291

  18. Acute Effects of Classroom Exercise Breaks on Executive Function and Math Performance: A Dose-Response Study

    ERIC Educational Resources Information Center

    Howie, Erin K.; Schatz, Jeffrey; Pate, Russell R.

    2015-01-01

    Purpose: The purpose of this study was to determine the acute dose-response relationship of classroom exercise breaks with executive function and math performance in 9- to 12-year-old children by comparing 5-min, 10-min, or 20-min classroom exercise breaks to 10 min of sedentary classroom activity. Method: This study used a within-subjects…

  19. Differential Effects of Differing Intensities of Acute Exercise on Speed and Accuracy of Cognition: A Meta-Analytical Investigation

    ERIC Educational Resources Information Center

    McMorris, Terry; Hale, Beverley J.

    2012-01-01

    The primary purpose of this study was to examine, using meta-analytical techniques, the differential effects of differing intensities of acute exercise on speed and accuracy of cognition. Overall, exercise demonstrated a small, significant mean effect size (g = 0.14, p less than 0.01) on cognition. Examination of the comparison between speed and…

  20. Exercises

    MedlinePlus

    ... Obstructive Pulmonary Disease (COPD) COPD: Lifestyle Management Exercises Exercises Make an Appointment Refer a Patient Ask a ... riding a stationary bike. Medication to Help You Exercise People with COPD often use a metered-dose ...

  1. Acute Inflammatory Response to Low-, Moderate-, and High-Load Resistance Exercise in Women With Breast Cancer-Related Lymphedema.

    PubMed

    Cormie, Prue; Singh, Benjamin; Hayes, Sandi; Peake, Jonathan M; Galvão, Daniel A; Taaffe, Dennis R; Spry, Nigel; Nosaka, Kazunori; Cornish, Bruce; Schmitz, Kathryn H; Newton, Robert U

    2016-09-01

    Background Resistance exercise is emerging as a potential adjunct therapy to aid in the management of breast cancer-related lymphedema (BCRL). However, the mechanisms underlying the relationships between the acute and long-term benefits of resistance exercise on BCRL are not well understood. Purpose To examine the acute inflammatory response to upper-body resistance exercise in women with BCRL and to compare these effects between resistance exercises involving low, moderate, and high loads. The impact on lymphedema status and associated symptoms was also compared. Methods A total of 21 women, 62 ± 10 years old, with BCRL participated in the study. Participants completed low-load (15-20 repetition maximum [RM]), moderate-load (10-12 RM), and high-load (6-8 RM) exercise sessions consisting of 3 sets of 6 upper-body resistance exercises. Sessions were completed in a randomized order separated by a 7- to 10-day wash-out period. Venous blood samples were obtained to assess markers of exercise-induced muscle damage and inflammation. Lymphedema status was assessed using bioimpedance spectroscopy and arm circumferences, and associated symptoms were assessed using Visual Analogue Scales for pain, heaviness, and tightness. Measurements were conducted before and 24 hours after the exercise sessions. Results No significant changes in creatine kinase, C-reactive protein, interleukin-6, and tumor necrosis factor-α were observed following the 3 resistance exercise sessions. There were no significant changes in arm swelling or symptom severity scores across the 3 resistance exercise conditions. Conclusions The magnitude of acute exercise-induced inflammation following upper-body resistance exercise in women with BCRL does not vary between resistance exercise loads. PMID:26582633

  2. Glutathione depletion and acute exercise increase O-GlcNAc protein modification in rat skeletal muscle.

    PubMed

    Peternelj, Tina Tinkara; Marsh, Susan A; Strobel, Natalie A; Matsumoto, Aya; Briskey, David; Dalbo, Vincent J; Tucker, Patrick S; Coombes, Jeff S

    2015-02-01

    Post-translational modification of intracellular proteins with O-linked β-N-acetylglucosamine (O-GlcNAc) profoundly affects protein structure, function, and metabolism. Although many skeletal muscle proteins are O-GlcNAcylated, the modification has not been extensively studied in this tissue, especially in the context of exercise. This study investigated the effects of glutathione depletion and acute exercise on O-GlcNAc protein modification in rat skeletal muscle. Diethyl maleate (DEM) was used to deplete intracellular glutathione and rats were subjected to a treadmill run. White gastrocnemius and soleus muscles were analyzed for glutathione status, O-GlcNAc and O-GlcNAc transferase (OGT) protein levels, and mRNA expression of OGT, O-GlcNAcase and glutamine:fructose-6-phosphate amidotransferase. DEM and exercise both reduced intracellular glutathione and increased O-GlcNAc. DEM upregulated OGT protein expression. The effects of the interventions were significant 4 h after exercise (P < 0.05). The changes in the mRNA levels of O-GlcNAc enzymes were different in the two muscles, potentially resulting from different rates of oxidative stress and metabolic demands between the muscle types. These findings indicate that oxidative environment promotes O-GlcNAcylation in skeletal muscle and suggest an interrelationship between cellular redox state and O-GlcNAc protein modification. This could represent one mechanism underlying cellular adaptation to oxidative stress and health benefits of exercise. PMID:25416863

  3. Acute and chronic watercress supplementation attenuates exercise-induced peripheral mononuclear cell DNA damage and lipid peroxidation.

    PubMed

    Fogarty, Mark C; Hughes, Ciara M; Burke, George; Brown, John C; Davison, Gareth W

    2013-01-28

    Pharmacological antioxidant vitamins have previously been investigated for a prophylactic effect against exercise-induced oxidative stress. However, large doses are often required and may lead to a state of pro-oxidation and oxidative damage. Watercress contains an array of nutritional compounds such as β-carotene and α-tocopherol which may increase protection against exercise-induced oxidative stress. The present randomised controlled investigation was designed to test the hypothesis that acute (consumption 2 h before exercise) and chronic (8 weeks consumption) watercress supplementation can attenuate exercise-induced oxidative stress. A total of ten apparently healthy male subjects (age 23 (SD 4) years, stature 179 (SD 10) cm and body mass 74 (SD 15) kg) were recruited to complete the 8-week chronic watercress intervention period (and then 8 weeks of control, with no ingestion) of the experiment before crossing over in order to compete the single-dose acute phase (with control, no ingestion). Blood samples were taken at baseline (pre-supplementation), at rest (pre-exercise) and following exercise. Each subject completed an incremental exercise test to volitional exhaustion following chronic and acute watercress supplementation or control. The main findings show an exercise-induced increase in DNA damage and lipid peroxidation over both acute and chronic control supplementation phases (P< 0.05 v. supplementation), while acute and chronic watercress attenuated DNA damage and lipid peroxidation and decreased H₂O₂ accumulation following exhaustive exercise (P< 0.05 v. control). A marked increase in the main lipid-soluble antioxidants (α-tocopherol, γ-tocopherol and xanthophyll) was observed following watercress supplementation (P< 0.05 v. control) in both experimental phases. These findings suggest that short- and long-term watercress ingestion has potential antioxidant effects against exercise-induced DNA damage and lipid peroxidation. PMID:22475430

  4. Muscle activation during exercise in severe acute hypoxia: role of absolute and relative intensity.

    PubMed

    Torres-Peralta, Rafael; Losa-Reyna, José; González-Izal, Miriam; Perez-Suarez, Ismael; Calle-Herrero, Jaime; Izquierdo, Mikel; Calbet, José A L

    2014-12-01

    The aim of this study was to determine the influence of severe acute hypoxia on muscle activation during whole body dynamic exercise. Eleven young men performed four incremental cycle ergometer tests to exhaustion breathing normoxic (FIO2=0.21, two tests) or hypoxic gas (FIO2=0.108, two tests). Surface electromyography (EMG) activities of rectus femoris (RF), vastus medialis (VL), vastus lateralis (VL), and biceps femoris (BF) were recorded. The two normoxic and the two hypoxic tests were averaged to reduce EMG variability. Peak VO2 was 34% lower in hypoxia than in normoxia (p<0.05). The EMG root mean square (RMS) increased with exercise intensity in all muscles (p<0.05), with greater effect in hypoxia than in normoxia in the RF and VM (p<0.05), and a similar trend in VL (p=0.10). At the same relative intensity, the RMS was greater in normoxia than in hypoxia in RF, VL, and BF (p<0.05), with a similar trend in VM (p=0.08). Median frequency increased with exercise intensity (p<0.05), and was higher in hypoxia than in normoxia in VL (p<0.05). Muscle contraction burst duration increased with exercise intensity in VM and VL (p<0.05), without clear effects of FIO2. No significant FIO2 effects on frequency domain indices were observed when compared at the same relative intensity. In conclusion, muscle activation during whole body exercise increases almost linearly with exercise intensity, following a muscle-specific pattern, which is adjusted depending on the FIO2 and the relative intensity of exercise. Both VL and VM are increasingly involved in power output generation with the increase of intensity and the reduction in FIO2. PMID:25225839

  5. Can a Single Session of a Community-Based Group Exercise Program Combining Step Aerobics and Bodyweight Resistance Exercise Acutely Reduce Blood Pressure?

    PubMed Central

    Mendes, Romeu; Sousa, Nelson; Garrido, Nuno; Cavaco, Braulio; Quaresma, Luís; Reis, Victor Machado

    2014-01-01

    This study aimed to analyze the acute effects of a single session of a community-based group exercise program combining step aerobics and bodyweight resistance exercise on blood pressure in healthy young adult women. Twenty-three healthy young adult women (aged 31.57 ± 7.87 years) participated in two experimental sessions (exercise and control) in a crossover study design. Blood pressure was monitored before, immediately after and at 10, 20 and 30 min of recovery. The exercise session consisted of four phases: 1) a warm-up (5 min of dance aerobics); 2) aerobic exercise training (30 min of step aerobics); 3) resistance exercise training (six sets of 12 repetitions of three bodyweight exercises in a circuit mode, 10 min); and 4) a cool-down (5 min of breathing and flexibility exercises); totaling 50 min of duration. Systolic blood pressure after exercise was significantly lower compared to control at the 10th min (−10.83 ± 2.13 vs. −2.6 ± 2.13 mmHg; p = 0.009), 20th min (−11.26 ± 2.13 vs. −3.04 ± 2.13 mmHg; p = 0.009) and 30th min of recovery (−10.87 ± 2.39 vs. −0.48 ± 2.39 mmHg; p = 0.004). A single session of a community-based group exercise program combining step aerobics and bodyweight resistance exercise was effective in inducing significant post-exercise hypotension in healthy young adult women. This type of low-cost exercise interventions may have an important role in the prevention of cardiovascular diseases and in community health promotion. PMID:25713644

  6. Muscle Activation During Exercise in Severe Acute Hypoxia: Role of Absolute and Relative Intensity

    PubMed Central

    Torres-Peralta, Rafael; Losa-Reyna, José; González-Izal, Miriam; Perez-Suarez, Ismael; Calle-Herrero, Jaime; Izquierdo, Mikel

    2014-01-01

    Abstract Torres-Peralta, Rafael, José Losa-Reyna, Miriam González-Izal, Ismael Perez-Suarez, Jaime Calle-Herrero, Mikel Izquierdo, and José A.L. Calbet. Muscle activation during exercise in severe acute hypoxia: Role of absolute and relative intensity. High Alt Med Biol 15:472–482, 2014.—The aim of this study was to determine the influence of severe acute hypoxia on muscle activation during whole body dynamic exercise. Eleven young men performed four incremental cycle ergometer tests to exhaustion breathing normoxic (FIo2=0.21, two tests) or hypoxic gas (FIo2=0.108, two tests). Surface electromyography (EMG) activities of rectus femoris (RF), vastus medialis (VL), vastus lateralis (VL), and biceps femoris (BF) were recorded. The two normoxic and the two hypoxic tests were averaged to reduce EMG variability. Peak Vo2 was 34% lower in hypoxia than in normoxia (p<0.05). The EMG root mean square (RMS) increased with exercise intensity in all muscles (p<0.05), with greater effect in hypoxia than in normoxia in the RF and VM (p<0.05), and a similar trend in VL (p=0.10). At the same relative intensity, the RMS was greater in normoxia than in hypoxia in RF, VL, and BF (p<0.05), with a similar trend in VM (p=0.08). Median frequency increased with exercise intensity (p<0.05), and was higher in hypoxia than in normoxia in VL (p<0.05). Muscle contraction burst duration increased with exercise intensity in VM and VL (p<0.05), without clear effects of FIo2. No significant FIo2 effects on frequency domain indices were observed when compared at the same relative intensity. In conclusion, muscle activation during whole body exercise increases almost linearly with exercise intensity, following a muscle-specific pattern, which is adjusted depending on the FIo2 and the relative intensity of exercise. Both VL and VM are increasingly involved in power output generation with the increase of intensity and the reduction in FIo2. PMID:25225839

  7. Acute Cardiovascular Response during Resistance Exercise with Whole-body Vibration in Sedentary Subjects: A Randomized Cross-over Trial.

    PubMed

    Dias, Thaisa; Polito, Marcos

    2015-01-01

    This study aimed to compare the acute cardiovascular responses during and after resistance exercise with and without whole-body vibration. Nineteen sedentary adults randomly performed one session of isometric squats without vibration and the same exercise with vibration. Systolic (SBP) and diastolic blood pressure (DBP), heart rate (HR), stroke volume (SV), cardiac output (CO) and systemic vascular resistance (SVR) were measured. SBP, DBP and HR were also measured for 20 min after the sessions. The exercise with vibration demonstrated significant values ​​(P < 0.05) for SBP (second to sixth sets), DBP (third to sixth sets) and SVR (second to sixth sets) compared with the exercise without vibration. After the sessions, the values ​​of SBP for both exercises were significantly lower than the respective resting values; with no difference between the sessions. In conclusion, exercise with vibration caused increases in SBP, DBP and SVR compared with exercise with no vibration in sedentary adults. PMID:26031551

  8. Isometric exercise and cognitive function: an investigation of acute dose-response effects during submaximal fatiguing contractions.

    PubMed

    Brown, Denver M Y; Bray, Steven R

    2015-01-01

    The purpose of this study was to explore the dose-response relationship between exercise and cognitive performance using an acute bout of isometric exercise. University students (N = 55) were randomly assigned to control, 30%, 50% and 70% of maximum voluntary handgrip contraction groups. Participants performed a modified Stroop task before and after completion of an isometric handgrip endurance trial at their assigned exercise intensity. Ratings of perceived exertion (RPE) and forearm muscle activation (EMG) showed linear trends of progressively greater RPE and muscle activation at greater exercise intensity levels. Regression analysis showed significant (P < .05) linear degradations in frequency of errors on the Stroop task with increasing exercise intensity. We conclude that performing isometric exercise until exhaustion is associated with reduced cognitive performance and that higher intensity isometric exercise leads to greater performance impairments in a linear dose-response manner. PMID:25260112

  9. Effects of acute exercise on liver function and blood redox status in heavy drinkers

    PubMed Central

    GEORGAKOULI, KALLIOPI; MANTHOU, EIRINI; FATOUROS, IOANNIS G.; DELI, CHARIKLIA K.; SPANDIDOS, DEMETRIOS A.; TSATSAKIS, ARISTIDIS M.; KOURETAS, DEMETRIOS; KOUTEDAKIS, YIANNIS; THEODORAKIS, YANNIS; JAMURTAS, ATHANASIOS Z.

    2015-01-01

    Excessive alcohol consumption can induce oxidative stress, resulting in the development of several diseases. Exercise has been reported to prevent and/or improve a number of health issues through several mechanisms, including an improvement in redox status. It has also been previously suggested that exercise can help individuals with alcohol use disorders reduce their alcohol intake; however, research in this field is limited. The aim of the present study was to investigage the effects of acute exercise of moderate intensity on the liver function and blood redox status in heavy drinkers. For this purpose, a total of 17 heavy drinkers [age, 31.6±3.2 years; body mass index (BMI), 27.4±0.8 kg/m2; experimental group (EG)] and 17 controls [age, 33.5±1.3 years; BMI, 26.1±1.4 kg/m2; control group (CG), who did not exceed moderate alcohol consumption], underwent one trial of acute exercise of moderate intensity (50–60% of the heart rate reserve) for 30 min on a cycle ergometer, following an overnight fast, and abstaining from smoking and alcohol consumption. Blood samples were obtained before and immediately after exercise for later determination of the indices of liver function and blood redox status. The subjects in the EG had significantly higher (p<0.05) baseline γ-glutamyl transferase (γ-GT) levels compared to the subjects in the CG. Exercise thus resulted in significantly higher γ-GT levels (p<0.005) only in the EG. No significant differences in aspartate aminotransferase (AST) and alanine aminotransferase (ALT) baseline levels were observed between the 2 groups. Following exercise, the AST levels increased significantly (p<0.001) in both groups, whereas the ALT levels increased significantly (p<0.01) only in the EG. The baseline glutathione (GSH) levels were significantly lower (p<0.05) and remained low following exercise in the EG. In addition, we observed a trend for higher (p=0.07) baseline levels of thiobarbituric acid-reactive substances (TBARS), which

  10. Effects of acute exercise on attenuated vagal baroreflex function during bed rest

    NASA Technical Reports Server (NTRS)

    Convertino, Victor A.; Doerr, Donald F.; Guell, Antonio; Marini, J.-F.

    1992-01-01

    We measured carotid baroreceptor-cardiac reflex responses in six healthy men, 24 h before and 24 h after a bout of leg exercise during 6 deg head-down bed rest to determine if depressed vagal baroreflex function associated with exposure to microgravity environments could be reversed by a single exposure to acute intense exercise. Baroreflex responses were measured before bed rest and on day 7 of bed rest. An exercise bout consisting of dynamic and isometric actions of the quadriceps at graded speeds and resistances was performed on day 8 of bed rest and measurements of baroreflex response were repeated 24 h later. Vagally-mediated cardiac responses were provoked with ramped neck pressure-suction sequences comprising pressure elevations to +40 mm Hg, followed by serial, R-wave triggered 15 mm Hg reductions, to -65 mm Hg. Baroreceptor stimulus-cardiac response relationships were derived by plotting each R-R interval as a function of systolic pressure less the neck chamber pressure applied during the interval. Compared with pre-bed rest baseline measurements, 7 d of bed rest decreased the gain (maximum slope) of the baroreflex stimulus-response relationship by 16.8 +/- 3.4 percent (p less than 0.05). On day 9 of bed rest, 24 h after exercise, the maximum slope of the baroreflex stimulus-response relationship was increased (p less than 0.05) by 10.7 +/- 3.7 percent above pre-bed rest levels and 34.3 +/- 7.9 percent above bed rest day 7. Our data verify that vagally-mediated baroreflex function is depressed by exposure to simulated microgravity and demonstrate that this effect can be acutely reversed by exposure to a single bout of intense exercise.

  11. Acute dietary nitrate supplementation does not augment submaximal forearm exercise hyperemia in healthy young men

    PubMed Central

    Kim, Jin-Kwang; Moore, David J.; Maurer, David G.; Kim-Shapiro, Daniel B.; Basu, Swati; Flanagan, Michael P.; Skulas-Ray, Ann C.; Kris-Etherton, Penny; Proctor, David N.

    2014-01-01

    Despite the popularity of dietary nitrate supplementation and the growing evidence base of its potential ergogenic and vascular health benefits, there is no direct information about its effects on exercising limb blood flow in humans. We hypothesized that acute dietary nitrate supplementation from beetroot juice would augment the increases in forearm blood flow, as well as the progressive dilation of the brachial artery, during graded handgrip exercise in healthy young men. In a randomized, double-blind, placebo-controlled crossover study, 12 young (22 ± 2 years) healthy men consumed a beetroot juice (140 mL Beet-It Sport, James White Juice Company) that provided 12.9 mmol (0.8 g) of nitrate or placebo (nitrate-depleted Beet-It Sport) on 2 study visits. At 3 h postconsumption, brachial artery diameter, flow, and blood velocity were measured (Doppler ultrasound) at rest and during 6 exercise intensities. Nitrate supplementation raised plasma nitrate (19.5-fold) and nitrite (1.6-fold) concentrations, and lowered resting arterial pulse wave velocity (PWV) versus placebo (all p < 0.05) indicating absorption, conversion, and a biological effect of this supplement. The supplement-associated lowering of PWV was also negatively correlated with plasma nitrite (r = -0.72, p = 0.0127). Despite these systemic effects, nitrate supplementation had no effect on brachial artery diameter, flow, or shear rates at rest (all p ≥ 0.28) or during any exercise workload (all p ≥ 0.18). These findings suggest that acute dietary nitrate supplementation favorably modifies arterial PWV, but does not augment blood flow or brachial artery vasodilation during non-fatiguing forearm exercise in healthy young men. PMID:25536008

  12. Acute dietary nitrate supplementation does not augment submaximal forearm exercise hyperemia in healthy young men.

    PubMed

    Kim, Jin-Kwang; Moore, David J; Maurer, David G; Kim-Shapiro, Daniel B; Basu, Swati; Flanagan, Michael P; Skulas-Ray, Ann C; Kris-Etherton, Penny; Proctor, David N

    2015-02-01

    Despite the popularity of dietary nitrate supplementation and the growing evidence base of its potential ergogenic and vascular health benefits, there is no direct information about its effects on exercising limb blood flow in humans. We hypothesized that acute dietary nitrate supplementation from beetroot juice would augment the increases in forearm blood flow, as well as the progressive dilation of the brachial artery, during graded handgrip exercise in healthy young men. In a randomized, double-blind, placebo-controlled crossover study, 12 young (22 ± 2 years) healthy men consumed a beetroot juice (140 mL Beet-It Sport, James White Juice Company) that provided 12.9 mmol (0.8 g) of nitrate or placebo (nitrate-depleted Beet-It Sport) on 2 study visits. At 3 h postconsumption, brachial artery diameter, flow, and blood velocity were measured (Doppler ultrasound) at rest and during 6 exercise intensities. Nitrate supplementation raised plasma nitrate (19.5-fold) and nitrite (1.6-fold) concentrations, and lowered resting arterial pulse wave velocity (PWV) versus placebo (all p < 0.05), indicating absorption, conversion, and a biological effect of this supplement. The supplement-associated lowering of PWV was also negatively correlated with plasma nitrite (r = -0.72, p = 0.0127). Despite these systemic effects, nitrate supplementation had no effect on brachial artery diameter, flow, or shear rates at rest (all p ≥ 0.28) or during any exercise workload (all p ≥ 0.18). These findings suggest that acute dietary nitrate supplementation favorably modifies arterial PWV, but does not augment blood flow or brachial artery vasodilation during nonfatiguing forearm exercise in healthy young men. PMID:25536008

  13. Acute effects of a single exercise class on appetite, energy intake and mood. Is there a time of day effect?

    PubMed

    Maraki, M; Tsofliou, F; Pitsiladis, Y P; Malkova, D; Mutrie, N; Higgins, S

    2005-12-01

    This study aimed to investigate the acute effects of a single exercise class on appetite sensations, energy intake and mood, and to determine if there was a time of day effect. Twelve healthy, young, normal weight females, who were non-regular exercisers, participated in four trials: morning control, morning exercise, evening control and evening exercise. Exercise trials were a one-hour class of aerobic and muscle conditioning exercise of varying intensities, to music. Control trials were a one-hour rest. Ratings of perceived exertion were significantly greater during the warm-up and muscle conditioning parts of the morning exercise trial compared to those of the evening exercise trial. Although both exercise trials, compared to control trials, produced an increase in appetite sensations, they did not alter energy intake and produced a decrease in 'relative' energy intake. In relation to mood, both exercise trials increased positive affect and decreased negative affect. These results suggest that a single exercise class, representative of that offered by many sports centres, regardless of whether it is performed in the morning or evening produces a short-term negative energy balance and improves mood in normal weight women. However, when this type of exercise was performed in the morning it was perceived to require more effort. PMID:16157416

  14. Efficacy of a respiratory rehabilitation exercise training package in hospitalized elderly patients with acute exacerbation of COPD: a randomized control trial

    PubMed Central

    Liao, Lin-Yu; Chen, Kuei-Min; Chung, Wei-Sheng; Chien, Jung-Yien

    2015-01-01

    Clinical trials identifier NCT02329873 Background Acute exacerbation (AE) of COPD is characterized by a sudden worsening of COPD symptoms. Previous studies have explored the effectiveness of respiratory rehabilitation for patients with COPD; however, no training program specific to acute exacerbation in elderly patients or unstable periods during hospitalization has been developed. Objective To evaluate the effects of a respiratory rehabilitation exercise training package on dyspnea, cough, exercise tolerance, and sputum expectoration among hospitalized elderly patients with AECOPD. Methods A randomized control trial was conducted. Pretest and posttest evaluations of 61 elderly inpatients with AECOPD (experimental group n=30; control group n=31) were performed. The experimental group received respiratory rehabilitation exercise training twice a day, 10–30 minutes per session for 4 days. The clinical parameters (dyspnea, cough, exercise tolerance, and sputum expectoration) were assessed at the baseline and at the end of the fourth day. Results All participants (median age =70 years, male =60.70%, and peak expiratory flow 140 L) completed the study. In the patients of the experimental group, dyspnea and cough decreased and exercise tolerance and sputum expectoration increased significantly compared with those of the patients in the control group (all P<0.05). Within-group comparisons revealed that the dyspnea, cough, and exercise tolerance significantly improved in the experimental group by the end of the fourth day (all P<0.05). Conclusion Results of this study suggest that the respiratory rehabilitation exercise training package reduced symptoms and enhanced the effectiveness of the care of elderly inpatients with AECOPD. PMID:26345529

  15. Altered insulin response to an acute bout of exercise in pediatric obesity.

    PubMed

    Tran, Brian D; Leu, Szu-Yun; Oliver, Stacy; Graf, Scott; Vigil, Diana; Galassetti, Pietro

    2014-11-01

    Pediatric obesity typically induces insulin resistance, often later evolving into type 2 diabetes. While exercise, enhancing insulin sensitivity, is broadly used to prevent this transition, it is unknown whether alterations in the exercise insulin response pattern occur in obese children. Therefore, we measured exercise insulin responses in 57 healthy weight (NW), 20 overweight (OW), and 56 obese (Ob) children. Blood samples were drawn before and after 30 min of intermittent (2 min on, 1 min off) cycling at ~80% VO2max. In a smaller group (14 NW, 6 OW, 15 Ob), a high-fat meal was ingested 45 min preexercise. Baseline glycemia was similar and increased slightly and similarly in all groups during exercise. Basal insulin (pmol/L) was significantly higher in Ob vs. other groups; postexercise, insulin increased in NW (+7± 3) and OW (+5 ± 8), but decreased in Ob (-15±5, p < .0167 vs. NW). This insulin drop in Ob was disproportionately more pronounced in the half of Ob children with higher basal insulin (Ob-H). In all groups, high-fat feeding caused a rapid rise in insulin, promptly corrected by exercise. In Ob, however, insulin rose again 30 min postexercise. Our data indicates a distinct pattern of exercise-induced insulin modulation in pediatric obesity, possibly modulated by basal insulin concentrations. PMID:24723046

  16. Interleukin-6 and associated cytokine responses to an acute bout of high-intensity interval exercise: the effect of exercise intensity and volume.

    PubMed

    Cullen, Tom; Thomas, Andrew W; Webb, Richard; Hughes, Michael G

    2016-08-01

    Acute increases in interleukin (IL)-6 following prolonged exercise are associated with the induction of a transient anti-inflammatory state (e.g., increases in IL-10) that is partly responsible for the health benefits of regular exercise. The purposes of this study were to investigate the IL-6-related inflammatory response to high-intensity interval exercise (HIIE) and to determine the impact of exercise intensity and volume on this response. Ten participants (5 males and 5 females) completed 3 exercise bouts of contrasting intensity and volume (LOW, MOD, and HIGH). The HIGH protocol was based upon standard HIIE protocols, while the MOD and LOW protocols were designed to enable a comparison of exercise intensity and volume with a fixed duration. Inflammatory cytokine concentrations were measured in plasma (IL-6, IL-10) and also determined the level of gene expression (IL-6, IL-10, and IL-4R) in peripheral blood. The plasma IL-6 response to exercise (reported as fold changes) was significantly greater in HIGH (2.70 ± 1.51) than LOW (1.40 ± 0.32) (P = 0.04) and was also positively correlated to the mean exercise oxygen uptake (r = 0.54, P < 0.01). However, there was no change in anti-inflammatory IL-10 or IL-4R responses in plasma or at the level of gene expression. HIIE caused a significant increase in IL-6 and was greater than that seen in low-intensity exercise of the same duration. The increases in IL-6 were relatively small in magnitude, and appear to have been insufficient to induce the acute systemic anti-inflammatory effects, which are evident following longer duration exercise. PMID:27377137

  17. Acute aerobic exercise increases cortical activity during working memory: a functional MRI study in female college students.

    PubMed

    Li, Lin; Men, Wei-Wei; Chang, Yu-Kai; Fan, Ming-Xia; Ji, Liu; Wei, Gao-Xia

    2014-01-01

    There is increasing evidence that acute aerobic exercise is associated with improved cognitive function. However, neural correlates of its cognitive plasticity remain largely unknown. The present study examined the effect of a session of acute aerobic exercise on working memory task-evoked brain activity as well as task performance. A within-subjects design with a counterbalanced order was employed. Fifteen young female participants (M = 19.56, SD = 0.81) were scanned using functional magnetic resonance imaging while performing a working memory task, the N-back task, both following an acute exercise session with 20 minutes of moderate intensity and a control rest session. Although an acute session of exercise did not improve behavioral performance, we observed that it had a significant impact on brain activity during the 2-back condition of the N-back task. Specifically, acute exercise induced increased brain activation in the right middle prefrontal gyrus, the right lingual gyrus, and the left fusiform gyrus as well as deactivations in the anterior cingulate cortexes, the left inferior frontal gyrus, and the right paracentral lobule. Despite the lack of an effect on behavioral measures, significant changes after acute exercise with activation of the prefrontal and occipital cortexes and deactivation of the anterior cingulate cortexes and left frontal hemisphere reflect the improvement of executive control processes, indicating that acute exercise could benefit working memory at a macro-neural level. In addition to its effects on reversing recent obesity and disease trends, our results provide substantial evidence highlighting the importance of promoting physical activity across the lifespan to prevent or reverse cognitive and neural decline. PMID:24911975

  18. Senescence of human skeletal muscle impairs the local inflammatory cytokine response to acute eccentric exercise.

    PubMed

    Hamada, Koichiro; Vannier, Edouard; Sacheck, Jennifer M; Witsell, Alice L; Roubenoff, Ronenn

    2005-02-01

    The impact of aging on the cytokine response of human skeletal muscle to exercise-induced injury remains poorly understood. We enrolled physically active, young (23-35 years old, n=15) and old (66-78 years old, n=15) men to perform 45 min of downhill running (16% descent) at 75% VO2max. Biopsies of vastus lateralis were obtained 24 h before and 72 h after acute eccentric exercise. Transcripts for inflammatory (TNF-alpha, IL-1beta) and anti-inflammatory cytokines (IL-6, TGF-beta1) were quantified by real-time PCR. Before exercise, cytokine transcripts did not differ with age. At old age, exercise induced a blunted accumulation of transcripts encoding the pan-leukocyte surface marker CD18 (young: 10.1-fold increase, P<0.005; old: 4.7-fold increase, P=0.02; young vs. old: P<0.05). In both age groups, CD18 transcript accumulation strongly correlated with TNF-alpha (young, r=0.87, P<0.001; old, r=0.72, P=0.002) and TGF-beta1 transcript accumulation (young, r=0.80, P<0.001; old, r=0.64, P=0.008). At old age, there was no correlation between IL-1beta and CD18 transcript accumulation. Furthermore, exercise induced IL-6 transcript accumulation in young (3.6-fold, P=0.057) but not in old men. Our results suggest that aging impairs the adaptive response of human skeletal muscle to eccentric exercise by differential modulation of a discrete set of inflammatory and anti-inflammatory cytokine genes. PMID:15556970

  19. Acute Bone Marker Responses to Whole-Body Vibration and Resistance Exercise in Young Women

    PubMed Central

    Sherk, Vanessa D.; Chrisman, Carmen; Smith, Jessica; Young, Kaelin C.; Singh, Harshvardhan; Bemben, Michael G.; Bemben, Debra A.

    2014-01-01

    Whole-body vibration (WBV) augments the musculoskeletal effects of resistance exercise (RE). However, its acute effects on bone turnover markers (BTM) have not been determined. This study examined BTM responses to acute high intensity RE and high intensity RE with WBV (WBV+RE) in young women (n=10) taking oral contraceptives in a randomized, cross-over repeated measures design. WBV+RE exposed subjects to 5 one-minute bouts of vibration (20 Hz, 3.38 peak–peak displacement, separated by 1 minute of rest) prior to RE. Fasting blood samples were obtained before (Pre), immediately post WBV (PostVib), immediately post RE (IP), and 30 minutes post RE (P30). Bone ALP did not change at any time point. TRAP5b significantly (p<0.05) increased from the Pre to PostVib, then decreased from IP to P30 for both conditions. CTX significantly decreased (p<0.05) from Pre to PostVib and from Pre to P30 only for WBV+RE. WBV+RE showed a greater decrease in CTX than RE (-12.6 ± 4.7% vs. -1.13 ± 3.5%). In conclusion, WBV was associated with acute decreases in CTX levels not elicited with resistance exercise alone in young women. PMID:22902255

  20. The muscle oxidative regulatory response to acute exercise is not impaired in less advanced COPD despite a decreased oxidative phenotype.

    PubMed

    Slot, Ilse G M; van den Borst, Bram; Hellwig, Valéry A C V; Barreiro, Esther; Schols, Annemie M W J; Gosker, Harry R

    2014-01-01

    Already in an early disease stage, patients with chronic obstructive pulmonary disease (COPD) are confronted with impaired skeletal muscle function and physical performance due to a loss of oxidative type I muscle fibers and oxidative capacity (i.e. oxidative phenotype; Oxphen). Physical activity is a well-known stimulus of muscle Oxphen and crucial for its maintenance. We hypothesized that a blunted response of Oxphen genes to an acute bout of exercise could contribute to decreased Oxphen in COPD. For this, 28 patients with less advanced COPD (age 65 ± 7 yrs, FEV1 59 ± 16% predicted) and 15 age- and gender-matched healthy controls performed an incremental cycle ergometry test. The Oxphen response to exercise was determined by the measurement of gene expression levels of Oxphen markers in pre and 4h-post exercise quadriceps biopsies. Because exercise-induced hypoxia and oxidative stress may interfere with Oxphen response, oxygen saturation and oxidative stress markers were assessed as well. Regardless of oxygen desaturation and absolute exercise intensities, the Oxphen regulatory response to exercise was comparable between COPD patients and controls with no evidence of increased oxidative stress. In conclusion, the muscle Oxphen regulatory response to acute exercise is not blunted in less advanced COPD, regardless of exercise-induced hypoxia. Hence, this study provides further rationale for incorporation of exercise training as integrated part of disease management to prevent or slow down loss of muscle Oxphen and related functional impairment in COPD. PMID:24587251

  1. Acute moderate exercise does not attenuate cardiometabolic function associated with a bout of prolonged sitting.

    PubMed

    Younger, Amanda M; Pettitt, Robert W; Sexton, Patrick J; Maass, William J; Pettitt, Cherie D

    2016-01-01

    Epidemiological studies suggest that prolonged sitting increases all-cause mortality; yet, physiological causes underpinning prolonged sitting remain elusive. We evaluated cardiometabolic function during prolonged sitting (5 h) in 10 adults with and without 30 min of moderate exercise leading up to the sitting. Mean arterial blood pressure (MAP), heart rate (HR) and posterior tibial artery blood velocity were measured at baseline and every hour subsequently. Blood glucose was measured at baseline, 3 and 5 h, with consumption of a caloric beverage at 1 h. Seated MAP and HR values were ~17 mmHg (P < 0.001) and ~4 bpm (P < 0.05) higher for the moderate exercise versus sitting conditions. A ~ 4 cm·s(-1) (16%) (P < 0.05) decline in posterior tibial artery blood velocity from prolonged sitting was observed, with no benefit conferred from moderate exercise. Postprandial glucose metabolism was not different between conditions (P > 0.05). We conclude prolonged sitting may be related to decreased posterior tibial artery blood velocity. Moreover, an acute bout of moderate exercise does not seem to attenuate cardiometabolic function during prolonged sitting in healthy, young adults. PMID:26186044

  2. Acute and chronic hypoxia: implications for cerebral function and exercise tolerance

    PubMed Central

    Goodall, Stuart; Twomey, Rosie; Amann, Markus

    2015-01-01

    Purpose To outline how hypoxia profoundly affects neuronal functionality and thus compromise exercise-performance. Methods Investigations using electroencephalography (EEG) and transcranial magnetic stimulation (TMS) detecting neuronal changes at rest and those studying fatiguing effects on whole-body exercise performance in acute (AH) and chronic hypoxia (CH) were evaluated. Results At rest during very early hypoxia (<1-h), slowing of cerebral neuronal activity is evident despite no change in corticospinal excitability. As time in hypoxia progresses (3-h), increased corticospinal excitability becomes evident; however, changes in neuronal activity are unknown. Prolonged exposure (3–5 d) causes a respiratory alkalosis which modulates Na+ channels, potentially explaining reduced neuronal excitability. Locomotor exercise in AH exacerbates the development of peripheral-fatigue; as the severity of hypoxia increases, mechanisms of peripheral-fatigue become less dominant and CNS hypoxia becomes the predominant factor. The greatest central-fatigue in AH occurs when SaO2 is ≤75%, a level that coincides with increasing impairments in neuronal activity. CH does not improve the level of peripheral-fatigue observed in AH; however, it attenuates the development of central-fatigue paralleling increases in cerebral O2 availability and corticospinal excitability. Conclusions The attenuated development of central-fatigue in CH might explain, the improvements in locomotor exercise-performance commonly observed after acclimatisation to high altitude. PMID:25593787

  3. Acute Physical Exercise Affects Cognitive Functioning in Children With Cerebral Palsy.

    PubMed

    Maltais, Désirée B; Gane, Claire; Dufour, Sophie-Krystale; Wyss, Dominik; Bouyer, Laurent J; McFadyen, Bradford J; Zabjek, Karl; Andrysek, Jan; Voisen, Julien I

    2016-05-01

    Little is known about the effects of acute exercise on the cognitive functioning of children with cerebral palsy (CP). Selected cognitive functions were thus measured using a pediatric version of the Stroop test before and after maximal, locomotor based aerobic exercise in 16 independently ambulatory children (8 children with CP), 6-15 years old. Intense exercise had: 1) a significant, large, positive effect on reaction time (RT) for the CP group (preexercise: 892 ± 56.5 ms vs. postexercise: 798 ± 45.6 ms, p < .002, d = 1.87) with a trend for a similar but smaller response for the typically developing (TD) group (preexercise: 855 ± 56.5 ms vs. postexercise: 822 ± 45.6 ms, p < .08, d = 0.59), and 2) a significant, medium, negative effect on the interference effect for the CP group (preexercise: 4.5 ± 2.5%RT vs. postexercise: 13 ± 2.9%RT, p < .04, d = 0.77) with no significant effect for the TD group (preexercise: 7.2 ± 2.5%RT vs. postexercise: 6.9 ± 2.9%RT, p > .4, d = 0.03). Response accuracy was high in both groups pre- and postexercise (>96%). In conclusion, intense exercise impacts cognitive functioning in children with CP, both by increasing processing speed and decreasing executive function. PMID:26502458

  4. The Effect of an Acute Bout of Moderate-Intensity Aerobic Exercise on Motor Learning of a Continuous Tracking Task

    PubMed Central

    Snow, Nicholas J.; Mang, Cameron S.; Roig, Marc; Boyd, Lara A.

    2016-01-01

    Introduction There is evidence for beneficial effects of acute and long-term exercise interventions on several forms of memory, including procedural motor learning. In the present study we examined how performing a single bout of continuous moderate intensity aerobic exercise would impact motor skill acquisition and retention in young healthy adults, compared to a period of rest. We hypothesized that exercise would improve motor skill acquisition and retention, compared to motor practice alone. Materials and Methods Sixteen healthy adults completed sessions of aerobic exercise or seated rest that were immediately followed by practice of a novel motor task (practice). Exercise consisted of 30 minutes of continuous cycling at 60% peak O2 uptake. Twenty-four hours after practice, we assessed motor learning with a no-exercise retention test (retention). We also quantified changes in offline motor memory consolidation, which occurred between practice and retention (offline). Tracking error was separated into indices of temporal precision and spatial accuracy. Results There were no differences between conditions in the timing of movements during practice (p = 0.066), at retention (p = 0.761), or offline (p = 0.966). However, the exercise condition enabled participants to maintain spatial accuracy during practice (p = 0.477); whereas, following rest performance diminished (p = 0.050). There were no significant differences between conditions at retention (p = 0.532) or offline (p = 0.246). Discussion An acute bout of moderate-intensity aerobic exercise facilitated the maintenance of motor performance during skill acquisition, but did not influence motor learning. Given past work showing that pairing high intensity exercise with skilled motor practice benefits learning, it seems plausible that intensity is a key modulator of the effects of acute aerobic exercise on changes in complex motor behavior. Further work is necessary to establish a dose-response relationship between

  5. Effect of acute exercise on cognitive control required during an Eriksen flanker task.

    PubMed

    Davranche, Karen; Hall, Ben; McMorris, Terry

    2009-10-01

    This study aimed to determine how cognitive control, engaged in a task requiring selective inhibition, is affected by acute steady-state exercise. An adapted version of the Eriksen flanker task, involving three types of trials that varied according to their level of congruency (congruent trials, stimulus-incongruent trials, and response-incongruent trials) was performed during 2 periods of 20-min cycling at a carefully controlled intensity (50% of maximal aerobic power). The results indicated that moderate exercise improves reaction time (RT) performance on the Eriksen flanker task. This facilitating effect appeared to be neither dependent on the nature of the interference (stimulus level conflict vs. response level conflict) nor on the amount of cognitive control engaged in the task (congruent vs. incongruent trials). Distributional RT analyses did not highlight any sign of impairment in the efficiency of cognitive control. PMID:20016112

  6. Incidence of acute myocardial infarction in patients with exercise-induced silent myocardial ischemia

    SciTech Connect

    Assey, M.E.; Walters, G.L.; Hendrix, G.H.; Carabello, B.A.; Usher, B.W.; Spann, J.F. Jr.

    1987-03-01

    Fifty-five patients with angiographically proved coronary artery disease (CAD) underwent Bruce protocol exercise stress testing with thallium-201 imaging. Twenty-seven patients (group I) showed myocardial hypoperfusion without angina pectoris during stress, which normalized at rest, and 28 patients (group II) had a similar pattern of reversible myocardial hypoperfusion but also had angina during stress. Patients were followed for at least 30 months. Six patients in group I had an acute myocardial infarction (AMI), 3 of whom died, and only 1 patient in group II had an AMI (p = 0.05), and did not die. Silent myocardial ischemia uncovered during exercise stress thallium testing may predispose to subsequent AMI. The presence of silent myocardial ischemia identified in this manner is of prognostic value, independent of angiographic variables such as extent of CAD and left ventricular ejection fraction.

  7. The Acute Effect of Resistance Exercise with Blood Flow Restriction with Hemodynamic Variables on Hypertensive Subjects

    PubMed Central

    Araújo, Joamira P.; Silva, Eliney D.; Silva, Julio C. G.; Souza, Thiago S. P.; Lima, Eloíse O.; Guerra, Ialuska; Sousa, Maria S. C.

    2014-01-01

    The purpose of this study was to analyze systolic blood pressure (SBP), diastolic blood pressure (DBP) and the heart rate (HR) before, during and after training at moderate intensity (MI, 50%-1RM) and at low intensity with blood flow restriction (LIBFR). In a randomized controlled trial study, 14 subjects (average age 45±9,9 years) performed one of the exercise protocols during two separate visits to the laboratory. SBP, DBP and HR measurements were collected prior to the start of the set and 15, 30, 45 and 60 minutes after knee extension exercises. Repeated measures of analysis of variance (ANOVA) were used to identify significant variables (2 × 5; group × time). The results demonstrated a significant reduction in SBP in the LIBFR group. These results provide evidence that strength training performed acutely alters hemodynamic variables. However, training with blood flow restriction is more efficient in reducing blood pressure in hypertensive individuals than training with moderate intensity. PMID:25713647

  8. Differential effects of differing intensities of acute exercise on speed and accuracy of cognition: a meta-analytical investigation.

    PubMed

    McMorris, Terry; Hale, Beverley J

    2012-12-01

    The primary purpose of this study was to examine, using meta-analytical techniques, the differential effects of differing intensities of acute exercise on speed and accuracy of cognition. Overall, exercise demonstrated a small, significant mean effect size (g=0.14, p<0.01) on cognition. Examination of the comparison between speed and accuracy dependent variables showed that speed accounted for most of the effect. For speed, moderate intensity exercise demonstrated a significantly larger mean effect size than those for low and high intensities. For speed of processing during moderate intensity exercise, central executive tasks showed a larger effect size than recall and alertness/attention tasks; and mean effect size for counterbalanced or randomized studies was significantly greater than for studies in which a pre-exercise followed by during or post-exercise protocol was used. There was no significant difference between mean effect sizes when testing took place post-exercise compared to during exercise for speed but accuracy studies demonstrated a significantly larger mean effect size post-exercise. It was concluded that increased arousal during moderate intensity exercise resulted in faster speed of processing. The very limited effect on accuracy may be due to the failure to choose tests which are complex enough to measure exercise-induced changes in accuracy of performance. PMID:23064033

  9. SFRR-E Young Investigator AwardeeαB-crystallin modulation after acute exercise in skeletal muscle: the role of oxidative stress and fiber composition.

    PubMed

    Grazioli, Elisa; Dimauro, Ivan; Mercatelli, Neri; Barone, Rosario; Macaluso, Filippo; Fittipaldi, Simona; Di Felice, Valentina; Caporossi, Daniela

    2014-10-01

    αB-crystallin (CRYAB) is a member of the small heat shock proteins implicated in various biological functions, particularly in skeletal muscle where it is involved in adaptive remodelling processes, activation of gene transcription and stabilization of nascent proteins.In this research we analysed αB-crystallin' response in mouse gastrocnemius at 15' and 30' of recovery from an acute aerobic exercise (1hour), correlating its modulation with oxidative stress level and fiber composition, red (RG) and white gastrocnemius (WG).We found for the first time that the acute exercise lead to a short term, specific increase of phospho-αB-crystallin level (pCRYAB) in the RG, while no changes were observed in the WG. Moreover, this induction was correlated with increased level of 4-hydroxynonenal (HNE),suggesting a putative role for oxidative stress in driving CRYAB, but not hsp70 or hsp27, activity during exercise. Any increased level of αB-crystallin' protein was observed neither in RG nor in WG. These data were also supported by our in vitro experiments showing a significant enhancement of pCRYAB in H2O2-treated C2C12 myotubes.Although our results seem suggest a fiber-dependent role of CRYAB, further experiments are in progress to clarify both the molecular pathway driving CRYAB phosphorylation and its fiber-specific induction after exercise -induced oxidative stress.This work was supported by MIUR - PRIN 2012 grant. PMID:26461288

  10. The effect of an acute bout of resistance exercise on carotid artery strain and strain rate.

    PubMed

    Black, Jane M; Stöhr, Eric J; Stone, Keeron; Pugh, Christopher J A; Stembridge, Mike; Shave, Rob; Esformes, Joseph I

    2016-09-01

    Arterial wall mechanics likely play an integral role in arterial responses to acute physiological stress. Therefore, this study aimed to determine the impact of low and moderate intensity double-leg press exercise on common carotid artery (CCA) wall mechanics using 2D vascular strain imaging. Short-axis CCA ultrasound images were collected in 15 healthy men (age: 21 ± 3 years; stature: 176.5 ± 6.2 cm; body mass; 80.6 ± 15.3 kg) before, during, and immediately after short-duration isometric double-leg press exercise at 30% and 60% of participants' one-repetition maximum (1RM: 317 ± 72 kg). Images were analyzed for peak circumferential strain (PCS), peak systolic and diastolic strain rate (S-SR and D-SR), and arterial diameter. Heart rate (HR), systolic and diastolic blood pressure (SBP and DBP) were simultaneously assessed and arterial stiffness indices were calculated post hoc. A two-way repeated measures ANOVA revealed that during isometric contraction, PCS and S-SR decreased significantly (P < 0.01) before increasing significantly above resting levels post exercise (P < 0.05 and P < 0.01, respectively). Conversely, D-SR was unaltered throughout the protocol (P = 0.25). No significant differences were observed between the 30% and 60% 1RM trials. Multiple regression analysis highlighted that HR, BP, and arterial diameter did not fully explain the total variance in PCS, S-SR, and D-SR Acute double-leg press exercise is therefore associated with similar transient changes in CCA wall mechanics at low and moderate intensities. CCA wall mechanics likely provide additional insight into localized intrinsic vascular wall properties beyond current measures of arterial stiffness. PMID:27624687

  11. Human pharmacology of a performance-enhancing dietary supplement under resting and exercise conditions

    PubMed Central

    Haller, Christine A; Duan, Minjing; Jacob, Peyton; Benowitz, Neal

    2008-01-01

    AIMS Dietary supplements (DS) promoted to enhance athletic performance often contain herbal sympathomimetics such as Citrus aurantium (synephrine) and caffeine. We aimed to characterize the pharmacology of a performance-enhancing DS in the setting of exercise. METHODS Ten healthy adults (three women) aged 20–31 years participated in a three-arm, double-blind, placebo-controlled, crossover study. Subjects ingested one dose of DS (Ripped Fuel Extreme Cut® with 21 mg synephrine and 304 mg caffeine by analysis) under resting conditions and 1 h prior to moderately intense exercise (30 min on cycle ergometer at 75–80% HRmax), with a placebo (PLC)/exercise control. Plasma synephrine and caffeine concentrations were measured over 12 h, and vital signs, serum electrolytes, oxygen consumption and perceived exercise exertion were monitored. RESULTS No significant adverse events occurred. Synephrine and caffeine pharmacokinetics were unaffected by exercise. Post-exercise diastolic blood pressure was higher after DS (peak mean 71.7 ± 8.7 mmHg) than PLC (63.0 ± 4.9 mmHg) (p = 0.007). There were no substantial treatment-related differences in post-exercise HR, systolic blood pressure, or temperature. Postprandial plasma glucose increased to 121.0 ± 31.6 mg dl−1 with DS and exercise vs. 103.7 ± 25.5 mg dl−1 with PLC and exercise (P = 0.004). No treatment differences in exercise-related oxygen consumption, serum lactate, or insulin were observed. Exercise was rated less difficult with DS than PLC (P = 0.001). CONCLUSIONS Blood pressure and plasma glucose increased post-exercise with DS use, which could be detrimental in some people. Exercise was perceived as less strenuous after DS, presumably due to the stimulant effects of caffeine. WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT Performance-enhancing dietary supplements have not been clinically tested for safety or efficacy. In clinical trials performed under resting conditions, performance-enhancing supplements raise

  12. Effect of Acute Dietary Nitrate Consumption on Oxygen Consumption During Submaximal Exercise in Hypobaric Hypoxia.

    PubMed

    Carriker, Colin R; Mermier, Christine M; Van Dusseldorp, Trisha A; Johnson, Kelly E; Beltz, Nicholas M; Vaughan, Roger A; McCormick, James J; Cole, Nathan H; Witt, Christopher C; Gibson, Ann L

    2016-08-01

    Reduced partial pressure of oxygen impairs exercise performance at altitude. Acute nitrate supplementation, at sea level, may reduce oxygen cost during submaximal exercise in hypobaric hypoxia. Therefore, we investigated the metabolic response during exercise at altitude following acute nitrate consumption. Ten well-trained (61.0 ± 7.4 ml/kg/min) males (age 28 ± 7 yr) completed 3 experimental trials (T1, T2, T3). T1 included baseline demographics, a maximal aerobic capacity test (VO2max) and five submaximal intensity cycling determination bouts at an elevation of 1600 m. A 4-day dietary washout, minimizing consumption of nitrate-rich foods, preceded T2 and T3. In a randomized, double-blind, placebo-controlled, crossover fashion, subjects consumed either a nitrate-depleted beetroot juice (PL) or ~12.8 mmol nitrate rich (NR) beverage 2.5 hr before T2 and T3. Exercise at 3500 m (T2 and T3) via hypobaric hypoxia consisted of a 5-min warm-up (25% of normobaric VO2max) and four 5-min cycling bouts (40, 50, 60, 70% of normobaric VO2max) each separated by a 4-min rest period. Cycling RPM and watts for each submaximal bout during T2 and T3 were determined during T1. Preexercise plasma nitrite was elevated following NR consumption compared with PL (1.4 ± 1.2 and 0.7 ± 0.3 uM respectively; p < .05). There was no difference in oxygen consumption (-0.5 ± 1.8, 0.1 ± 1.7, 0.7 ± 2.1, and 1.0 ± 3.0 ml/kg/min) at any intensity (40, 50, 60, 70% of VO2max, respectively) between NR and PL. Further, respiratory exchange ratio, oxygen saturation, heart rate and rating of perceived exertion were not different at any submaximal intensity between NR and PL either. Blood lactate, however, was reduced following NR consumption compared with PL at 40 and 60% of VO2max (p < .0.05). Our findings suggest that acute nitrate supplementation before exercise at 3500 m does not reduce oxygen cost but may reduce blood lactate accumulation at lower intensity workloads. PMID:26630309

  13. Acute exercise stimulates macrophage function: possible role of NF-kappaB pathways.

    PubMed

    Silveira, Elza M S; Rodrigues, Mariana F; Krause, Maurício S; Vianna, Damiana R; Almeida, Bibiana S; Rossato, Juliane S; Oliveira, Lino P; Curi, Rui; de Bittencourt, Paulo I Homem

    2007-01-01

    Moderate physical activity when performed on a regular basis presents a number of benefits to the whole organism, especially regarding immune system function, such as augmenting resistance to infections and to cancer growth. Although glutamine production by active muscle cells as well as neuroendocrine alterations mediated by the chronic adaptation to exercise may play a role, the entire mechanism by which exercise makes the immune system aware of challenges remains mostly uncovered. This is particularly true for the effects of an acute exercise session on immune function. In this work, circulating monocytes/macrophages from sedentary rats submitted to an acute (1 h) swimming session were tested for the ability of phagocytosing zymosan particles, phorbol myristate acetate (PMA)-induced hydrogen peroxide production, nitric oxide (NO) release (assessed by nitrate and nitrite production) and the expression of NO synthases (NOS-1, NOS-2 and NOS-3). The results showed that an exercise bout induced a 2.4-fold rise in macrophage phagocytic capacity (p = 0.0041), a 9.6-fold elevation in PMA-induced hydrogen peroxide release into the incubation media (1-h, p = 0.0022) and a 95.5%-augmentation in nitrite basal production (1-h incubation; p = 0.0220), which was associated with a marked expression of NOS-2 (the inducible NOS isoform; p = 0.0319), but not in other NOS gene products. Although NOS-2 expression is nuclear factor-kappaB (NF-kappaB)-dependent, no systemic oxidative stress was found, as inferred from the data of plasma TBARS and glutathione disulphide (GSSG) to glutathione (GSH) ratio in circulating blood erythrocytes which remained constant after the acute exercise. Also, no stressful situation seemed to be faced by monocytes/macrophages, since the expression of the 70-kDa heat shock protein (HSP70) remained unchanged. We conclude that NF-kappaB-dependent induction of NOS-2 and macrophage activation must be related to local factor(s) produced in the surroundings of

  14. Exercise-induced acute compartment syndrome in a young man, occurring after a short race.

    PubMed

    Basnet, Bibhusan; Matar, Mousa; Vaitilingham, Siddharthan; Chalise, Shyam; Irooegbu, Nkem; Bang, Jane

    2016-04-01

    We describe a case of exercise-induced acute compartment syndrome (ACS) in a 23-year-old man who presented to his primary care physician 48 hours after he attempted to run a 5K race. He noticed searing pain in his left leg after the first half mile but had no other symptoms. He was referred to the emergency department and diagnosed with ACS, and a fasciotomy was done. A presentation of limb pain that is out of proportion to a known or suspected injury should prompt consideration of ACS. Early recognition and surgical management are essential to achieving the best possible outcome. PMID:27034546

  15. Exercise-induced acute compartment syndrome in a young man, occurring after a short race

    PubMed Central

    Matar, Mousa; Vaitilingham, Siddharthan; Chalise, Shyam; Irooegbu, Nkem; Bang, Jane

    2016-01-01

    We describe a case of exercise-induced acute compartment syndrome (ACS) in a 23-year-old man who presented to his primary care physician 48 hours after he attempted to run a 5K race. He noticed searing pain in his left leg after the first half mile but had no other symptoms. He was referred to the emergency department and diagnosed with ACS, and a fasciotomy was done. A presentation of limb pain that is out of proportion to a known or suspected injury should prompt consideration of ACS. Early recognition and surgical management are essential to achieving the best possible outcome. PMID:27034546

  16. Acute Exercise-Induced Compartment Syndrome of the Leg- Don’t Miss It

    PubMed Central

    Khare, Manish Kumar; Mishra, Sumanta; Marhual, Jogesh Chandra

    2016-01-01

    Acute exercise induced compartment syndrome of leg is a very rare and very oftenly missed entity which leads to delay in its management. We are presenting such case in which diagnosis was established two days after the onset of symptoms. Urgent decompressive fasciotomy was done. After 3 months of follow up, patient has got full functional recovery of his affected limb. This case highlights the importance of keeping high index of clinical suspicion to diagnose the problem and manage promptly. We have reviewed the English literature and found only about 40 cases since 1945. PMID:27042521

  17. Meditation or Exercise for Preventing Acute Respiratory Infection: A Randomized Controlled Trial

    PubMed Central

    Barrett, Bruce; Hayney, Mary S.; Muller, Daniel; Rakel, David; Ward, Ann; Obasi, Chidi N.; Brown, Roger; Zhang, Zhengjun; Zgierska, Aleksandra; Gern, James; West, Rebecca; Ewers, Tola; Barlow, Shari; Gassman, Michele; Coe, Christopher L.

    2012-01-01

    PURPOSE This study was designed to evaluate potential preventive effects of meditation or exercise on incidence, duration, and severity of acute respiratory infection (ARI) illness. METHODS Community-recruited adults aged 50 years and older were randomized to 1 of 3 study groups: 8-week training in mindfulness meditation, matched 8-week training in moderate-intensity sustained exercise, or observational control. The primary outcome was area-under-the-curve global illness severity during a single cold and influenza season, using the Wisconsin Upper Respiratory Symptom Survey (WURSS-24) to assess severity. Health care visits and days of missed work were counted. Nasal wash collected during ARI illness was assayed for neutrophils, interleukin-8, and viral nucleic acid. RESULTS Of 154 adults randomized into the study, 149 completed the trial (82% female, 94% white, mean age 59.3 ± 6.6 years). There were 27 ARI episodes and 257 days of ARI illness in the meditation group (n = 51), 26 episodes and 241 illness days in the exercise group (n = 47), and 40 episodes and 453 days in the control group (n = 51). Mean global severity was 144 for meditation, 248 for exercise, and 358 for control. Compared with control, global severity was significantly lower for meditation (P = .004). Both global severity and total days of illness (duration) trended toward being lower for the exercise group (P=.16 and P=.032, respectively), as did illness duration for the meditation group (P=.034). Adjusting for covariates using zero-inflated multivariate regression models gave similar results. There were 67 ARI-related days of-work missed in the control group, 32 in the exercise group (P = .041), and 16 in the meditation group (P <.001). Health care visits did not differ significantly. Viruses were identified in 54% of samples from meditation, 42% from exercise, and 54% from control groups. Neutrophil count and interleukin-8 levels were similar among intervention groups. CONCLUSIONS Training in

  18. Influence of Vitamin C Supplementation on Oxidative Stress and Neutrophil Inflammatory Response in Acute and Regular Exercise

    PubMed Central

    Popovic, Ljiljana M.; Mitic, Nebojsa R.; Bisevac, Boban; Miric, Mirjana; Popovic, Brankica

    2015-01-01

    Exercise induces a multitude of physiological and biochemical changes in blood affecting its redox status. Tissue damage resulting from exercise induces activation of inflammatory cells followed by the increased activity of myeloperoxidase (MPO) in circulation. Vitamin C readily scavenges free radicals and may thereby prevent oxidative damage of important biological macromolecules. The aim of this study was to examine the effect of vitamin C supplementation on oxidative stress and neutrophil inflammatory response induced by acute and regular exercise. Experiment was conducted on acute exercise group (performing Bruce Treadmill Protocol (BTP)) and regular training group. Markers of lipid peroxidation, malondialdehyde (MDA), MPO activity, and vitamin C status were estimated at rest and after BTP (acute exercise group) and before and after vitamin C supplementation in both groups. Our results showed increased postexercise Asc in serum independently of vitamin supplementation. They also showed that vitamin C can significantly decrease postexercise MDA level in both experimental groups. Increased postexercise MPO activity has been found in both groups and was not affected by vitamin C supplementation. We concluded that vitamin C supplementation can suppress lipid peroxidation process during exercise but cannot affect neutrophil inflammatory response in either exercise group. PMID:25802681

  19. Influence of vitamin C supplementation on oxidative stress and neutrophil inflammatory response in acute and regular exercise.

    PubMed

    Popovic, Ljiljana M; Mitic, Nebojsa R; Miric, Dijana; Bisevac, Boban; Miric, Mirjana; Popovic, Brankica

    2015-01-01

    Exercise induces a multitude of physiological and biochemical changes in blood affecting its redox status. Tissue damage resulting from exercise induces activation of inflammatory cells followed by the increased activity of myeloperoxidase (MPO) in circulation. Vitamin C readily scavenges free radicals and may thereby prevent oxidative damage of important biological macromolecules. The aim of this study was to examine the effect of vitamin C supplementation on oxidative stress and neutrophil inflammatory response induced by acute and regular exercise. Experiment was conducted on acute exercise group (performing Bruce Treadmill Protocol (BTP)) and regular training group. Markers of lipid peroxidation, malondialdehyde (MDA), MPO activity, and vitamin C status were estimated at rest and after BTP (acute exercise group) and before and after vitamin C supplementation in both groups. Our results showed increased postexercise Asc in serum independently of vitamin supplementation. They also showed that vitamin C can significantly decrease postexercise MDA level in both experimental groups. Increased postexercise MPO activity has been found in both groups and was not affected by vitamin C supplementation. We concluded that vitamin C supplementation can suppress lipid peroxidation process during exercise but cannot affect neutrophil inflammatory response in either exercise group. PMID:25802681

  20. Positive effect of acute mild exercise on executive function via arousal-related prefrontal activations: an fNIRS study.

    PubMed

    Byun, Kyeongho; Hyodo, Kazuki; Suwabe, Kazuya; Ochi, Genta; Sakairi, Yosuke; Kato, Morimasa; Dan, Ippeita; Soya, Hideaki

    2014-09-01

    Despite the practical implication of mild exercise, little is known about its influence on executive function and its neural substrates. To address these issues, the present study examined the effect of an acute bout of mild exercise on executive function and attempted to identify potential neural substrates using non-invasive functional near-infrared spectroscopy (fNIRS). Twenty-five young individuals performed a color-word matching Stroop task (CWST) and a two-dimensional scale to measure changes of psychological mood states both before and after a 10-minute exercise session on a cycle ergometer at light intensity (30% v(·)o2peak) and, for the control session, without exercise. Cortical hemodynamic changes in the prefrontal area were monitored with fNIRS during the CWST in both sessions. The acute bout of mild exercise led to improved Stroop performance, which was positively correlated with increased arousal levels. It also evoked cortical activations regarding Stroop interference on the left dorsolateral prefrontal cortex and frontopolar area. These activations significantly corresponded with both improved cognitive performance and increased arousal levels. Concurrently, this study provides empirical evidence that an acute bout of mild exercise improves executive function mediated by the exercise-induced arousal system, which intensifies cortical activation in task-related prefrontal sub-regions. PMID:24799137

  1. Efficacy of Exercise Interventions in Patients with Acute Leukemia: A Meta-Analysis

    PubMed Central

    Zhu, Jinjie; Gu, Zejuan; Yin, Xiangguang

    2016-01-01

    Background Decreased physical performance and impaired physiological and psychological fitness have been reported in patients with acute leukemia (AL). We performed a meta-analysis to assess the efficacy of exercise in patients with AL. Methods In this meta-analysis, the electronic databases MEDLINE, Embase, Cochrane, Web of Science, SPORTDiscus, CINAHL and PEDro were searched through November 2015. Three authors participated in the study selection, data extraction and quality assessment. The instrument used for quality assessment was derived from the Cochrane Handbook for Systematic Reviews of Interventions. Analyses were performed according to the recommendations of The Cochrane Collaboration using Review Manager 5.3. Results Nine trials (8 randomized controlled trials and 1 quasi-experimental design trial) with 314 AL participants were included in this meta-analysis. The pooled standardized mean differences between the exercise and control groups were 0.45 (95% confidence interval (CI): 0.09 to 0.80, P value = 0.01, P for heterogeneity = 0.23, I2 = 28%) for cardiorespiratory fitness and 0.67 (95% CI: 0.28 to 1.06, P value = 0.0007, P for heterogeneity = 0.14, I2 = 43%) for muscle strength. Based on the data for fatigue, anxiety, and depression, there were no significant differences in these parameters between the exercise and control groups. Conclusions Exercise has beneficial effects on cardiorespiratory fitness, muscle strength and functional mobility; however, no significant improvements in fatigue, anxiety, depression or quality of life were observed. Further large-scale randomized trials are needed to assess the safety, feasibility and efficacy of exercise programs for AL patients. PMID:27463234

  2. Inhibition of Myostatin Signaling through Notch Activation following Acute Resistance Exercise

    PubMed Central

    Pepin, Mark; Patton, Amy; Baar, Keith

    2013-01-01

    Myostatin is a TGFβ family member and negative regulator of muscle size. Due to the complexity of the molecular pathway between myostatin mRNA/protein and changes in transcription, it has been difficult to understand whether myostatin plays a role in resistance exercise-induced skeletal muscle hypertrophy. To circumvent this problem, we determined the expression of a unique myostatin target gene, Mighty, following resistance exercise. Mighty mRNA increased by 6 h (82.9±24.21%) and remained high out to 48 h (56.5±19.67%) after resistance exercise. Further examination of the soleus, plantaris and tibialis anterior muscles showed that the change in Mighty mRNA at 6 h correlated with the increase in muscle size associated with this protocol (R2 = 0.9996). The increase in Mighty mRNA occurred both independent of Smad2 phosphorylation and in spite of an increase in myostatin mRNA (341.8±147.14% at 3 h). The myostatin inhibitor SKI remained unchanged. However, activated Notch, another potential inhibitor of TGFβ signaling, increased immediately following resistance exercise (83±11.2%) and stayed elevated out to 6 h (78±16.6%). Electroportion of the Notch intracellular domain into the tibialis anterior resulted in an increase in Mighty mRNA (63±13.4%) that was equivalent to the canonical Notch target HES-1 (94.4±7.32%). These data suggest that acute resistance exercise decreases myostatin signaling through the activation of the TGFβ inhibitor Notch resulting in a decrease in myostatin transcriptional activity that correlates well with muscle hypertrophy. PMID:23844238

  3. Acute and Chronic Whole-Body Vibration Exercise does not Induce Health-Promoting Effects on The Blood Profile

    PubMed Central

    Theodorou, Anastasios A.; Gerodimos, Vassilis; Karatrantou, Konstantina; Paschalis, Vassilis; Chanou, Konstantina; Jamurtas, Athanasios Z.; Nikolaidis, Michalis G.

    2015-01-01

    Whole-body vibration (WBV) exercise is an alternative, popular and easy exercise that can be followed by general public. Therefore, the aim of the present study was to investigate the influence of acute and chronic WBV exercise on health-related parameters. Twenty-eight women were allocated into a control group (n=11, mean ±SEM: age, 43.5 ±1.5 yr; body mass, 66.1 ±3.1 kg; height, 160.6 ±1.5 cm) and a vibration group (n=17, mean ±SEM: age, 44.0 ±1.0 yr; body mass, 67.1 ±2.2 kg; height, 162.5 ±1.5 cm). After baseline assessments, participants of the experimental group performed WBV training 3 times/week for 8 weeks. Before and after the chronic WBV exercise, the participants of the vibration group performed one session of acute WBV exercise. Blood chemistry measurements (hematology, creatine kinase, lactate dehydrogenase, aspartate aminotransferase, alanine aminotransferase, C-reactive protein, glucose, insulin, triacylglycerols, total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, apolipoprotein A1, apolipoprotein B and lipoprotein, thiobarbituric-acid reactive substances, protein carbonyls, total antioxidant capacity, uric acid, albumin and bilirubin) were assessed pre-exercise and post-exercise at the first and eighth week of WBV exercise in both control and vibration groups. The results failed to support any effect of both acute and chronic WBV exercise on biochemical health-related parameters. However, it seems that WBV exercise is a safe way of training without a negative impact on muscle and liver functionality. PMID:26240654

  4. Effects of acute aerobic exercise on neural correlates of attention and inhibition in adolescents with bipolar disorder.

    PubMed

    Metcalfe, A W S; MacIntosh, B J; Scavone, A; Ou, X; Korczak, D; Goldstein, B I

    2016-01-01

    Executive dysfunction is common during and between mood episodes in bipolar disorder (BD), causing social and functional impairment. This study investigated the effect of acute exercise on adolescents with BD and healthy control subjects (HC) to test for positive or negative consequences on neural response during an executive task. Fifty adolescents (mean age 16.54±1.47 years, 56% female, 30 with BD) completed an attention and response inhibition task before and after 20 min of recumbent cycling at ~70% of age-predicted maximum heart rate. 3 T functional magnetic resonance imaging data were analyzed in a whole brain voxel-wise analysis and as regions of interest (ROI), examining Go and NoGo response events. In the whole brain analysis of Go trials, exercise had larger effect in BD vs HC throughout ventral prefrontal cortex, amygdala and hippocampus; the profile of these effects was of greater disengagement after exercise. Pre-exercise ROI analysis confirmed this 'deficit in deactivation' for BDs in rostral ACC and found an activation deficit on NoGo errors in accumbens. Pre-exercise accumbens NoGo error activity correlated with depression symptoms and Go activity with mania symptoms; no correlations were present after exercise. Performance was matched to controls and results survived a series of covariate analyses. This study provides evidence that acute aerobic exercise transiently changes neural response during an executive task among adolescents with BD, and that pre-exercise relationships between symptoms and neural response are absent after exercise. Acute aerobic exercise constitutes a biological probe that may provide insights regarding pathophysiology and treatment of BD. PMID:27187236

  5. Effect of early programmes of high and low intensity exercise on physical performance after transmural acute myocardial infarction.

    PubMed Central

    Goble, A J; Hare, D L; Macdonald, P S; Oliver, R G; Reid, M A; Worcester, M C

    1991-01-01

    Does a programme of light exercise training after acute myocardial infarction produce the same improvement in treadmill performance as aerobic exercise training? Three hundred and eight men from a consecutive series of 479 men with transmural (Q wave) acute myocardial infarction, admitted to a single coronary care unit, were randomly allocated to eight weeks of group aerobic exercise training or group light exercise. Groups were well matched for all characteristics other than site of infarction, which did not significantly affect results. Mean (SD) physical working capacity (metabolic equivalents) determined by treadmill testing at the start of the study (in the third week after infarction) was 6.8 (2.2) v 6.7 (2.5) METs, at the end (in the eleventh week after infarction) 10.8 (2.3) v 9.9 (2.4) METs, and at 12 month review 10.8 (2.4) v 10.7 (1.9) METs for the exercise training group and the light exercise group respectively. The difference of 0.9 METs at the end of the study was the only significant difference between groups. There were no significant intergroup differences at any stage in resting and maximal heart rate, resting and maximal systolic blood pressure, or rate-pressure product. Apart from a small temporarily greater physical working capacity, the physical benefits of aerobic exercise training were equally well achieved by group light exercise. PMID:2015119

  6. Physical Activity in the School Setting: Cognitive Performance Is Not Affected by Three Different Types of Acute Exercise.

    PubMed

    van den Berg, Vera; Saliasi, Emi; de Groot, Renate H M; Jolles, Jelle; Chinapaw, Mai J M; Singh, Amika S

    2016-01-01

    Recent studies indicate that a single bout of physical exercise can have immediate positive effects on cognitive performance of children and adolescents. However, the type of exercise that affects cognitive performance the most in young adolescents is not fully understood. Therefore, this controlled study examined the acute effects of three types of 12-min classroom-based exercise sessions on information processing speed and selective attention. The three conditions consisted of aerobic, coordination, and strength exercises, respectively. In particular, this study focused on the feasibility and efficiency of introducing short bouts of exercise in the classroom. One hundred and ninety five students (5th and 6th grade; 10-13 years old) participated in a double baseline within-subjects design, with students acting as their own control. Exercise type was randomly assigned to each class and acted as between-subject factor. Before and immediately after both the control and the exercise session, students performed two cognitive tests that measured information processing speed (Letter Digit Substitution Test) and selective attention (d2 Test of Attention). The results revealed that exercising at low to moderate intensity does not have an effect on the cognitive parameters tested in young adolescents. Furthermore, there were no differential effects of exercise type. The results of this study are discussed in terms of the caution which should be taken when conducting exercise sessions in a classroom setting aimed at improving cognitive performance. PMID:27242629

  7. Physical Activity in the School Setting: Cognitive Performance Is Not Affected by Three Different Types of Acute Exercise

    PubMed Central

    van den Berg, Vera; Saliasi, Emi; de Groot, Renate H. M.; Jolles, Jelle; Chinapaw, Mai J. M.; Singh, Amika S.

    2016-01-01

    Recent studies indicate that a single bout of physical exercise can have immediate positive effects on cognitive performance of children and adolescents. However, the type of exercise that affects cognitive performance the most in young adolescents is not fully understood. Therefore, this controlled study examined the acute effects of three types of 12-min classroom-based exercise sessions on information processing speed and selective attention. The three conditions consisted of aerobic, coordination, and strength exercises, respectively. In particular, this study focused on the feasibility and efficiency of introducing short bouts of exercise in the classroom. One hundred and ninety five students (5th and 6th grade; 10–13 years old) participated in a double baseline within-subjects design, with students acting as their own control. Exercise type was randomly assigned to each class and acted as between-subject factor. Before and immediately after both the control and the exercise session, students performed two cognitive tests that measured information processing speed (Letter Digit Substitution Test) and selective attention (d2 Test of Attention). The results revealed that exercising at low to moderate intensity does not have an effect on the cognitive parameters tested in young adolescents. Furthermore, there were no differential effects of exercise type. The results of this study are discussed in terms of the caution which should be taken when conducting exercise sessions in a classroom setting aimed at improving cognitive performance. PMID:27242629

  8. A Theory-Based Exercise App to Enhance Exercise Adherence: A Pilot Study

    PubMed Central

    Voth, Elizabeth C; Oelke, Nelly D

    2016-01-01

    Background Use of mobile health (mHealth) technology is on an exponential rise. mHealth apps have the capability to reach a large number of individuals, but until now have lacked the integration of evidence-based theoretical constructs to increase exercise behavior in users. Objective The purpose of this study was to assess the effectiveness of a theory-based, self-monitoring app on exercise and self-monitoring behavior over 8 weeks. Methods A total of 56 adults (mean age 40 years, SD 13) were randomly assigned to either receive the mHealth app (experimental; n=28) or not to receive the app (control; n=28). All participants engaged in an exercise goal-setting session at baseline. Experimental condition participants received weekly short message service (SMS) text messages grounded in social cognitive theory and were encouraged to self-monitor exercise bouts on the app on a daily basis. Exercise behavior, frequency of self-monitoring exercise behavior, self-efficacy to self-monitor, and self-management of exercise behavior were collected at baseline and at postintervention. Results Engagement in exercise bouts was greater in the experimental condition (mean 7.24, SD 3.40) as compared to the control condition (mean 4.74, SD 3.70, P=.03, d=0.70) at week 8 postintervention. Frequency of self-monitoring increased significantly over the 8-week investigation between the experimental and control conditions (P<.001, partial η2=.599), with participants in the experimental condition self-monitoring significantly more at postintervention (mean 6.00, SD 0.93) in comparison to those in the control condition (mean 1.95, SD 2.58, P<.001, d=2.10). Self-efficacy to self-monitor and perceived self-management of exercise behavior were unaffected by this intervention. Conclusions The successful integration of social cognitive theory into an mHealth exercise self-monitoring app provides support for future research to feasibly integrate theoretical constructs into existing exercise apps

  9. Acute Exercise and Oxidative Stress: CrossFit(™) vs. Treadmill Bout.

    PubMed

    Kliszczewicz, Brian; Quindry, C John; Blessing, L Daniel; Oliver, D Gretchen; Esco, R Michael; Taylor, J Kyle

    2015-09-29

    CrossFit(™), a popular high-intensity training modality, has been the subject of scrutiny, with concerns of elevated risk of injury and health. Despite these concerns empirical evidence regarding physiologic stresses including acute oxidative stress is lacking. Therefore, the purpose of this investigation was to examine the acute redox response to a CrossFit(™) bout. Furthermore, these findings were compared to a high-intensity treadmill bout as a point of reference. Ten males 26.4 ± 2.7 yrs having three or more months of CrossFit(™) experience participated in the present study. Blood plasma was collected at four time points: Pre-exercise (PRE), immediately-post-exercise (IPE), 1 hr-post (1-HP) and 2 hr-post (2-HP), to examine oxidative damage and antioxidant capacity. Regarding plasma oxidative damage, CrossFit(™) and Treadmill elicited a time-dependent increase of lipid peroxides 1-HP (CrossFit(™)=+143%, Treadmill=+115%) and 2-HP (CrossFit(™)=+256%, Treadmill+167%). Protein Carbonyls were increased IPE in CF only (+5%), while a time-dependent decrease occurred 1-HP (CrossFit(™)=-16%, Treadmill=-8%) and 2-HP (CF=-16%, TM=-1%) compared to IPE. Regarding antioxidant capacity, Ferric Reducing Antioxidant Power also demonstrated a time-dependent increase within CrossFit(™) and Treadmill: IPE (CrossFit(™)=+25%, Treadmill=+17%), 1-HP (CrossFit(™)=+26%, Treadmill=+4.8%), 2-HP (CrossFit(™)=+20%, Treadmill=+12%). Total Enzymatic Antioxidant Capacity showed a time-dependent decrease in IPE (CrossFit(™)=-10%, Treadmill=-12%), 1-HP (CrossFit(™)=-12%, Treadmill=-6%), 2-HP (CrossFit(™)=-7%, Treadmill=-11%). No trial-dependent differences were observed in any biomarker of oxidative stress. The CrossFit(™) bout elicited an acute blood oxidative stress response comparable to a traditional bout of high-intensity treadmill running. Results also confirm that exercise intensity and the time course of exercise recovery influence oxidative responses. PMID

  10. Acute Exercise and Oxidative Stress: CrossFit™ vs. Treadmill Bout

    PubMed Central

    Kliszczewicz, Brian; Quindry, C. John; Blessing, L. Daniel; Oliver, D. Gretchen; Esco, R. Michael; Taylor, J. Kyle

    2015-01-01

    CrossFit™, a popular high-intensity training modality, has been the subject of scrutiny, with concerns of elevated risk of injury and health. Despite these concerns empirical evidence regarding physiologic stresses including acute oxidative stress is lacking. Therefore, the purpose of this investigation was to examine the acute redox response to a CrossFit™ bout. Furthermore, these findings were compared to a high-intensity treadmill bout as a point of reference. Ten males 26.4 ± 2.7 yrs having three or more months of CrossFit™ experience participated in the present study. Blood plasma was collected at four time points: Pre-exercise (PRE), immediately-post-exercise (IPE), 1 hr-post (1-HP) and 2 hr-post (2-HP), to examine oxidative damage and antioxidant capacity. Regarding plasma oxidative damage, CrossFit™ and Treadmill elicited a time-dependent increase of lipid peroxides 1-HP (CrossFit™=+143%, Treadmill=+115%) and 2-HP (CrossFit™=+256%, Treadmill+167%). Protein Carbonyls were increased IPE in CF only (+5%), while a time-dependent decrease occurred 1-HP (CrossFit™=−16%, Treadmill=−8%) and 2-HP (CF=−16%, TM=−1%) compared to IPE. Regarding antioxidant capacity, Ferric Reducing Antioxidant Power also demonstrated a time-dependent increase within CrossFit™ and Treadmill: IPE (CrossFit™=+25%, Treadmill=+17%), 1-HP (CrossFit™=+26%, Treadmill=+4.8%), 2-HP (CrossFit™=+20%, Treadmill=+12%). Total Enzymatic Antioxidant Capacity showed a time-dependent decrease in IPE (CrossFit™=−10%, Treadmill=−12%), 1-HP (CrossFit™=−12%, Treadmill=−6%), 2-HP (CrossFit™=−7%, Treadmill=−11%). No trial-dependent differences were observed in any biomarker of oxidative stress. The CrossFit™ bout elicited an acute blood oxidative stress response comparable to a traditional bout of high-intensity treadmill running. Results also confirm that exercise intensity and the time course of exercise recovery influence oxidative responses. PMID:26557192

  11. Swimming Exercise in the Acute or Late Phase after Sciatic Nerve Crush Accelerates Nerve Regeneration

    PubMed Central

    Teodori, Rosana Macher; Betini, Joice; de Oliveira, Larissa Salgado; Sobral, Luciane Lobato; Takeda, Sibele Yoko Mattozo; Montebelo, Maria Imaculada de Lima

    2011-01-01

    There is no consensus about the best time to start exercise after peripheral nerve injury. We evaluated the morphological and functional characteristics of the sciatic nerves of rats that began to swim immediately after crush nerve injury (CS1), those that began to swim 14 days after injury (CS14), injured rats not submitted to swimming (C), and uninjured rats submitted to swimming (S). After 30 days the number of axons in CS1 and CS14 was lower than in C (P < 0.01). The diameter of axons and nerve fibers was larger in CS1 (P < 0.01) and CS14 (P < 0.05) than in C, and myelin sheath thickness was lower in all crushed groups (P < 0.05). There was no functional difference between CS1 and CS14 (P > 0.05). Swimming exercise applied during the acute or late phase of nerve injury accelerated nerve regeneration and synaptic elimination after axonotmesis, suggesting that exercise may be initiated immediately after injury. PMID:21876821

  12. Feasibility and Initial Effectiveness of Home Exercise During Maintenance Therapy for Childhood Acute Lymphoblastic Leukemia

    PubMed Central

    Esbenshade, Adam J.; Friedman, Debra L.; Smith, Webb A.; Jeha, Sima; Pui, Ching-Hon; Robison, Leslie L.; Ness, Kirsten K.

    2014-01-01

    Purpose Children with acute lymphoblastic leukemia (ALL) are at increased risk of obesity and deconditioning from cancer therapy. This pilot study assessed feasibility/initial efficacy of an exercise intervention for ALL patients undergoing maintenance therapy. Methods Participants were children with ALL, age 5-10 years, receiving maintenance therapy, in first remission. A 6-month home-based intervention, with written and video instruction, was supervised with weekly calls from an exercise coach. Pre- and post-study testing evaluated strength, flexibility, fitness and motor function. Results Seventeen patients enrolled (participation 63%). Twelve (71%) finished the intervention, completing 81.7±7.2% of prescribed sessions. Improvements ≥5% occurred in 67% for knee and 75% for grip strength, 58% for hamstring/low-back and 83% for ankle flexibility, 75% for the 6-minute-walk-test, and 33% for performance on the Bruininks-Oseretsky Test of Motor Proficiency Version 2. Conclusions This pilot study demonstrated that exercise intervention during ALL therapy is feasible and has promise for efficacy. PMID:24979081

  13. Patient Activation through Counseling and ExerciseAcute Leukemia (PACE-AL) – a randomized controlled trial

    PubMed Central

    2013-01-01

    Background Patients with acute leukemia experience a substantial symptom burden and are at risk of developing infections throughout the course of repeated cycles of intensive chemotherapy. Physical activity in recent years has been a strategy for rehabilitation in cancer patients to remedy disease and treatment related symptoms and side effects. To date, there are no clinical practice exercise guidelines for patients with acute leukemia undergoing induction and consolidation chemotherapy. A randomized controlled trial is needed to determine if patients with acute leukemia can benefit by a structured and supervised counseling and exercise program. Methods/design This paper presents the study protocol: Patient Activation through Counseling and ExerciseAcute Leukemia (PACE-AL) trial, a two center, randomized controlled trial of 70 patients with acute leukemia (35 patients/study arm) following induction chemotherapy in the outpatient setting. Eligible patients will be randomized to usual care or to the 12 week exercise and counseling program. The intervention includes 3 hours + 30 minutes per week of supervised and structured aerobic training (moderate to high intensity 70 - 80%) on an ergometer cycle, strength exercises using hand weights and relaxation exercise. Individual health counseling sessions include a self directed home walk program with a step counter. The primary endpoint is functional performance/exercise capacity (6 minute walk distance). The secondary endpoints are submaximal VO2 max test, sit to stand and bicep curl test, physical activity levels, patient reported outcomes (quality of life, anxiety and depression, symptom prevalence, intensity and interference). Evaluation of clinical outcomes will be explored including incidence of infection, hospitalization days, body mass index, time to recurrence and survival. Qualitative exploration of patients’ health behavior and experiences. Discussion PACE-AL will provide evidence of the effect of

  14. Acute Exercise Induced Mitochondrial H2O2 Production in Mouse Skeletal Muscle: Association with p66Shc and FOXO3a Signaling and Antioxidant Enzymes

    PubMed Central

    Wang, Ping; Qi, Zhengtang; Cui, Di; Ding, Shuzhe

    2015-01-01

    Exercise induced skeletal muscle phenotype change involves a complex interplay between signaling pathways and downstream regulators. This study aims to investigate the effect of acute exercise on mitochondrial H2O2 production and its association with p66Shc, FOXO3a, and antioxidant enzymes. Male ICR/CD-1 mice were subjected to an acute exercise. Muscle tissues (gastrocnemius and quadriceps femoris) were taken after exercise to measure mitochondrial H2O2 content, expression of p66Shc and FOXO3a, and the activity of antioxidant enzymes. The results showed that acute exercise significantly increased mitochondrial H2O2 content and expressions of p66Shc and FOXO3a in a time-dependent manner, with a linear correlation between the increase in H2O2 content and p66Shc or FOXO3a expression. The activity of mitochondrial catalase was slightly reduced in the 90 min exercise group, but it was significantly higher in groups with 120 and 150 min exercise compared to that of 90 min exercise group. The activity of SOD was not significantly affected. The results indicate that acute exercise increases mitochondrial H2O2 production in the skeletal muscle, which is associated with the upregulation of p66Shc and FOXO3a. The association of p66Shc and FOXO3a signaling with exercise induced H2O2 generation may play a role in regulating cellular oxidative stress during acute exercise. PMID:25874020

  15. Acute effects of dynamic exercises on the relationship between the motor unit firing rate and the recruitment threshold.

    PubMed

    Ye, Xin; Beck, Travis W; DeFreitas, Jason M; Wages, Nathan P

    2015-04-01

    The aim of this study was to compare the acute effects of concentric versus eccentric exercise on motor control strategies. Fifteen men performed six sets of 10 repetitions of maximal concentric exercises or eccentric isokinetic exercises with their dominant elbow flexors on separate experimental visits. Before and after the exercise, maximal strength testing and submaximal trapezoid isometric contractions (40% of the maximal force) were performed. Both exercise conditions caused significant strength loss in the elbow flexors, but the loss was greater following the eccentric exercise (t=2.401, P=.031). The surface electromyographic signals obtained from the submaximal trapezoid isometric contractions were decomposed into individual motor unit action potential trains. For each submaximal trapezoid isometric contraction, the relationship between the average motor unit firing rate and the recruitment threshold was examined using linear regression analysis. In contrast to the concentric exercise, which did not cause significant changes in the mean linear slope coefficient and y-intercept of the linear regression line, the eccentric exercise resulted in a lower mean linear slope and an increased mean y-intercept, thereby indicating that increasing the firing rates of low-threshold motor units may be more important than recruiting high-threshold motor units to compensate for eccentric exercise-induced strength loss. PMID:25514631

  16. Acute exercise increases feeding latency in healthy normal weight young males but does not alter energy intake.

    PubMed

    King, James A; Wasse, Lucy K; Stensel, David J

    2013-02-01

    This study investigated the acute influence of exercise on eating behaviour in an ecologically valid setting whereby healthy active males were permitted complete ad libitum access to food. Ten healthy males completed two, 8h trials (exercise and control) in a randomised-crossover design. In the exercise trials participants consumed a breakfast snack and then rested for 1h before undertaking a 60 min run (72% of VO(2)max) on a treadmill. Participants then rested in the laboratory for 6h during which time they were permitted complete ad libitum access to a buffet meal. The timing of meals, energy/macronutrient intake and eating frequency were assessed. Identical procedures were completed in the control trial except no exercise was performed. Exercise increased the length of time (35 min) before participants voluntarily requested to eat afterwards. Despite this, energy intake at the first meal consumed, or at subsequent eating episodes, was not influenced by exercise (total trial energy intake: control 7426 kJ, exercise 7418 kJ). Neither was there any difference in macronutrient intake or meal frequency between trials. These results confirm that food intake remains unaffected by exercise in the immediate hours after but suggest that exercise may invoke a delay before food is desired. PMID:23137828

  17. No effect of acute ingestion of Thai ginseng (Kaempferia parviflora) on sprint and endurance exercise performance in humans.

    PubMed

    Wasuntarawat, Chanchira; Pengnet, Sirinat; Walaikavinan, Nutchanon; Kamkaew, Natakorn; Bualoang, Tippaporn; Toskulkao, Chaivat; McConell, Glenn

    2010-09-01

    Thai ginseng, Kaempferia parviflora, is widely believed among the Mong hill tribe to reduce perceived effort and improve physical work capacity. Kaempferia parviflora is consumed before their daily work. Therefore, we conducted an acute study on the effects of K. parviflora on repeated bouts of sprint exercise and on endurance exercise time to exhaustion. Two studies were conducted in college males using a randomized, double-blind, crossover design. Ninety minutes after consumption of K. parviflora or a starch placebo, participants in study 1 (n = 19) completed three consecutive maximum 30-s sprint cycling Wingate tests, separated by 3 min recovery, while participants in study 2 (n = 16) performed submaximal cycling exercise to exhaustion. Peak and mean power output decreased with successive Wingate tests, while percent fatigue and blood lactate concentration increased after the third Wingate test (P < 0.05). There were no detectable differences in any measures with or without K. parviflora. There was also no effect of K. parviflora on time to exhaustion, rating of perceived exertion or heart rate during submaximal exercise. Our results indicate that acute ingestion of K. parviflora failed to improve exercise performance during repeated sprint exercise or submaximal exercise to exhaustion. However, chronic effects or actions in other populations cannot be excluded. PMID:20845210

  18. Effects of acute exhaustive physical exercise upon glutamine metabolism of lymphocytes from trained rats.

    PubMed

    Santos, Ronaldo Vagner Thomatieli; Caperuto, Erico Chagas; Costa Rosa, Luis Fernando Bicudo Pereira

    2007-01-16

    Transitory immunosupression is reported after intense exercise, especially after an increase in training overload and in overtraining. The influence of intense exercise on plasma hormones and glutamine concentration may contribute to this effect. However, the effect of such exercise-induced changes upon lymphocyte and glutamine metabolism is not known. We compared glutamine metabolism in lymphocytes in sedentary (SED) and trained rats. Rats from the moderate group (MOD) swam for 6 weeks, 1 h/day, in water at 32+/-1 degrees C, with a load of 5.5% body weight attached to the tail. Animals from the exhaustive group (EXT) trained like MOD, with training increasing to 3 times 1 h a day during the last week, with 150 min rest between each bout. Animals were killed immediately after the last training bout. We observed reduced concentrations of plasma glucose (p<0.05), glutamine (p<0.05), glutamate (p<0.05) in EXT compared to SED. In MOD, decreases in glutamine (p<0.05) were observed. Analyzing lymphocyte metabolism, we observed an increase in lactate production and glutamine consumption (p<0.05) in MOD (p<0.05) compared to SED and a decrease in glutamine consumption (p<0.05) and aspartate production in EXT. An increase in the proliferative response of lymphocytes in MOD and EXT was also observed when stimulated by ConA and LPS similarly to SED. Acute exercise promoted decreased glutamine plasma concentration and changes in glutamine metabolism that did not impair lymphocyte proliferation in exhaustive trained rats. PMID:17123550

  19. Functional significance of predischarge exercise thallium-201 findings following intravenous streptokinase therapy during acute myocardial infarction

    SciTech Connect

    Touchstone, D.A.; Beller, G.A.; Nygaard, T.W.; Watson, D.D.; Tedesco, C.; Kaul, S.

    1988-12-01

    The purpose of this study was to determine which predischarge exercise thallium-201 imaging pattern(s) best correlate with myocardial salvage following intravenous streptokinase therapy (IVSK). Myocardial salvage was defined as improvement in regional left ventricular function determined by two-dimensional echocardiography between the time of admission and time of discharge in 21 prospectively studied patients receiving IVSK within 4 hours of chest pain. All patients had coronary angiography 2 hours following IVSK. Whereas 16 of the 21 patients (76%) had patent infarct-related vessels, only seven (33%) showed significant improvement in regional function at hospital discharge. Eleven patients demonstrated persistent defects (PD), and five each showed delayed and reverse redistribution. Patients with both delayed and reverse redistribution demonstrated significant improvement in regional left ventricular function score, while those with PD did not (+3.9 +/- 3.3 versus -0.5 +/- 2.9, p = 0.004). All other clinical, exercise, electrocardiographic, scintigraphic, and angiographic variables were similar between all patients, with the exception of the interval between chest pain and the institution of IVSK, which was longer in patients with reverse compared to delayed redistribution (3.5 +/- 0.4 versus 2.2 +/- 0.4 hours, p = 0.001). It is concluded that both delayed and reverse redistribution seen on predischarge exercise thallium-201 imaging are associated with myocardial salvage, defined as serial improvement in regional systolic function. Despite a high infarct vessel patency rate in patients with acute myocardial infarction receiving IVSK within 4 hours of onset of symptoms, only one third demonstrated improvement in regional function that was associated with either delayed or reverse redistribution seen on predischarge exercise thallium-201 imaging.

  20. Exerciser

    NASA Technical Reports Server (NTRS)

    Lem, J. D.

    1977-01-01

    The Mark I exerciser which was added for the second and third Skylab missions, was used for a number of arm and leg exercises. This unit is a modified version of a commercial device. This is an iso-kinetic, or constant velocity, exerciser which retards the speed at which the user is allowed to move. The user applies a maximum effort and the device automatically varies the opposing resistance to maintain speed of translation at a constant preselected value.

  1. Acute Pro- and Anti-Inflammatory Responses to Resistance Exercise in Patients with Coronary Artery Disease: A Pilot Study

    PubMed Central

    Volaklis, Konstantinos A.; Smilios, Ilias; Spassis, Apostolos T.; Zois, Christos E.; Douda, Helen T.; Halle, Martin; Tokmakidis, Savvas P.

    2015-01-01

    Little is known about the inflammatory effects of resistance exercise in healthy and even less in diseased individuals such as cardiac patients. The purpose of this study was to examine the acute pro- and anti-inflammatory responses during resistance exercise (RE) in patients with coronary artery disease. Eight low risk patients completed two acute RE protocols at low (50% of 1 RM; 2x18 rps) and moderate intensity (75% of 1 RM; 3x8 rps) in random order. Both protocols included six exercises and had the same total load volume. Blood samples were obtained before, immediately after and 60 minutes after each protocol for the determination of lactate, TNFα, INF-γ, IL-6, IL-10, TGF-β1, and hsCRP concentrations. IL-6 and IL-10 levels increased (p < 0.05) immediately after both RE protocols with no differences between protocols. INF-γ was significantly lower (p < 0.05) 60 min after the low intensity protocol, whereas TGF-β1 increased (p < 0.05) immediately after the low intensity protocol. There were no differences in TNF-& and hs-CRP after both RE protocols or between protocols. The above data indicate that acute resistance exercise performed at low to moderate intensity in low risk, trained CAD patients is safe and does not exacerbate the inflammation associated with their disease. Key points Acute resistance exercise is safe without exacerbating inflammation in patients with CAD. Both exercise intensities (50 and 75% of 1 RM) elicit desirable pro-and anti-inflammatory responses. With both exercise intensities (50 and 75% of 1 RM) acceptable clinical hemodynamic alterations were observed. PMID:25729295

  2. Relationship between T-wave normalization on exercise ECG and myocardial functional recovery in patients with acute myocardial infarction

    PubMed Central

    Kim, Kyung Jin; Shim, Wan Joo; Jung, Seong Won; Pak, Hui Nam; Lee, Soo Jin; Song, Woo Hyuk; Kim, Young Hoon; Seo, Hong Seog; Oh, Dong Joo; Ro, Young Moo

    2002-01-01

    Background Several studies suggested that T-wave normalization (TWN) in exercise ECG indicates the presence of viable myocardium. But the clinical implication of this phenomenon in patients with acute myocardial infarction who received proper revascularization therapy was not determined. Precisely the aim of this study was to investigate the relationship between TWN in exercise ECG and myocardial functional recovery after acute myocardial infarction. Methods We studied 30 acute myocardial infarction patients with negative T waves in infarct related electrocardiographic leads and who had received successful revascularization therapy. Exercise ECG was performed 10–14days after infarct onset using Naughton protocol. Patients were divided into 2 groups according to presence (group I; n=14) or not (group II; n=16) of TWN in exercise ECG. Exercise parameters and coronary angiographic findings were compared between groups. Baseline and follow-up (mean 11 months) regional and global left ventricular function was analyzed by echocardiography. Results Exercise parameters were similar between groups. There was no difference in baseline ejection fraction and wall motion score between group I and II (EF; 56±12% vs 52±11%, p=ns. WMS; 21±3 vs 23±4, p=ns) and it was improved at the tenth month by similar magnitude (group I/group II, EF % change=12±12% vs 7±6%, p=ns, WMS % change=6±6% vs 7±5%, p=ns). The finding of no relation between TWN and functional recovery was observed also when the patients were analysed according to infarct location and presence or absence of Q-waves. Conclusion As the exercise-induced TWN in patients with acute myocardial infarction was not related with better functional recovery of dysfunctional regional wall motion and ejection fraction, TWN does not appear to be an indicator of myocardial viability. PMID:12164089

  3. Enhanced muscle activity during lumbar extension exercise with pelvic stabilization

    PubMed Central

    Lee, Ho-Seong

    2015-01-01

    The purpose of this study was to investigate whether pelvic stabilization affects multifidus (MF) and iliocostalis lumborum (IL) muscle activities during dynamic extension exercise. Nine males (age, 25.1±6.3 yr; height, 176.6±2.4 cm; body mass, 74.9±6.7 kg) performed an isometric lumbar extension strength test and dynamic exercise in an upright seated position with or without pelvic stabilization. The electromyography and muscle strength of the MF and IL muscles were measured when the subjects performed the isometric lumbar extension strength test at the trunk angle 110°, 146°, and 182°. In addition, the trunk extensor muscle activities were measured using 50% muscle strength of maximum isometric strength during a dynamic trunk extension exercise. The MF and IL muscle activities were significantly higher at 110°, 146°, and 182° with pelvic stabilization than that without pelvic stabilization during the isometric lumbar extension strength test (P<0.05) and the dynamic exercise (P<0.05). These results suggest that the lumbar extension exercise with pelvic stabilization may be more effective for MF and IL muscle activity compared to that without pelvic stabilization. PMID:26730390

  4. The effects of an acute dose of Rhodiola rosea on endurance exercise performance.

    PubMed

    Noreen, Eric E; Buckley, James G; Lewis, Stephanie L; Brandauer, Josef; Stuempfle, Kristin J

    2013-03-01

    The purpose of this study was to determine the effects of an acute oral dose of 3 mg·kg(-1) of Rhodiola rosea on endurance exercise performance, perceived exertion, mood, and cognitive function. Subjects (n = 18) ingested either R. rosea or a carbohydrate placebo 1 hour before testing in a double-blind, random crossover manner. Exercise testing consisted of a standardized 10-minute warm-up followed by a 6-mile time trial (TT) on a bicycle ergometer. Rating of perceived exertion (RPE) was measured every 5 minutes during the TT using a 10-point Borg scale. Blood lactate concentration, salivary cortisol, and salivary alpha amylase were measured before warm-up, 2 minutes after warm-up, and 2 minutes after TT (n = 15). A Profile of Mood States questionnaire and a Stroop Color Test were completed before warm-up and after TT. Testing was repeated 2-7 days later with the other condition. Rhodiola rosea ingestion significantly decreased heart rate during the standardized warm-up (R. rosea = 136 ± 17 b·min(-1); placebo = 140 ± 17 b·min(-1); mean ± SD; p = 0.001). Subjects completed the TT significantly faster after R. rosea ingestion (R. rosea = 25.4 ± 2.7 minutes; placebo = 25.8 ± 3.0 minutes; p = 0.037). The mean RPE was lower in the R. rosea trial (R. rosea = 6.0 ± 0.9; placebo = 6.6 ± 1.0; p = 0.04). This difference was even more pronounced when a ratio of the RPE relative to the workload was calculated (R. rosea = 0.048 ± 0.01; placebo = 0.057 ± 0.02; p = 0.007). No other statistically significant differences were observed. Acute R. rosea ingestion decreases heart rate response to submaximal exercise and appears to improve endurance exercise performance by decreasing the perception of effort. PMID:23443221

  5. Enhancing Facial Aesthetics with Muscle Retraining Exercises-A Review

    PubMed Central

    D’souza, Raina; Kini, Ashwini; D’souza, Henston; Shetty, Omkar

    2014-01-01

    Facial attractiveness plays a key role in social interaction. ‘Smile’ is not only a single category of facial behaviour, but also the emotion of frank joy which is expressed on the face by the combined contraction of the muscles involved. When a patient visits the dental clinic for aesthetic reasons, the dentist considers not only the chief complaint but also the overall harmony of the face. This article describes muscle retraining exercises to achieve control over facial movements and improve facial appearance which may be considered following any type of dental rehabilitation. Muscle conditioning, training and strengthening through daily exercises will help to counter balance the aging effects. PMID:25302289

  6. Application of principles of exercise training in sub-acute and chronic stroke survivors: a systematic review

    PubMed Central

    2014-01-01

    Background There is increasing evidence for the beneficial effects of exercise training in stroke survivors. In order to reach the desired training effects, exercise training principles must be considered as this ensures the prescription of adequate exercises at an adequate dose. Moreover, exercise training interventions must be designed in a way that maximizes patients’ adherence to the prescribed exercise regimen. The objectives of this systematic review were (1) to investigate whether training principles for physical exercise interventions are reported in RCTs for sub-acute and chronic stroke survivors, (2) to evaluate whether the RCTs reported the prescription of the FITT components of the exercise interventions as well as (3) patients’ adherence to this prescription, and (4) to assess the risk of bias of the included studies. Methods We performed a systematic review of RCTs with exercise training as the primary intervention and muscular strength and/or endurance as primary outcomes. The Cochrane library’s risk of bias (ROB) tool was used to judge the methodological quality of RCTs. Results Thirty-seven RCTs were included in this systematic review. Eighteen studies (48.7%) focused on aerobic, 8 (21.6%) on resistance and 11 (29.7%) on combined interventions of aerobic and resistive strength exercise. Twenty-nine studies (78.4%) included only chronic stroke survivors, 5 studies (13.5%) only sub-acute stroke survivors whilst 3 studies (8.1%) included both. In terms of principle of exercise training, 89% reported specificity, 75.7% progression, 48.7% overload, 37.8% initial values, 32.4% reversibility and 13.5% diminishing returns. One RCT described all principles of physical exercise training and 19 (51.4%) all FITT components. Patients’ adherence to exercise prescription was accounted for in 3 studies (8.1%). Failure to report blinding in patients and participants and failure to report allocation concealment were the most prevalent methodological

  7. Acute hypoxemia in humans enhances the neutrophil inflammatory response.

    PubMed

    Tamura, Douglas Y; Moore, Ernest E; Partrick, David A; Johnson, Jeffrey L; Offner, Patrick J; Silliman, Christopher C

    2002-04-01

    The neutrophil (PMN) is regarded as a key component in the hyperinflammatory response known as the systemic inflammatory response syndrome. Acute respiratory distress syndrome (ARDS) and subsequent multiple organ failure (MOF) are related to the severity of this hyperinflammation. ICU patients who are at highest risk of developing MOF may have acute hypoxic events that complicate their hospital course. This study was undertaken to evaluate the effects of acute hypoxia and subsequent hypoxemia on circulating PMNs in human volunteers. Healthy subjects were exposed to a changing O2/N2 mixture until their O2 saturation (SaO2) reached a level of 68% saturation. These subjects were then exposed to room air and then returned to their baseline SaO2. PMNs were isolated from pre- and post-hypoxemic arterial blood samples and were then either stimulated with N-formyl-methionyl-leucyl-phenylalanine (fMLP) or PMA alone, or they were primed with L-alpha-phosphatidylcholine, beta-acetyl-gamma-O-alkyl (PAF) followed by fMLP activation. Reactive oxygen species generation as measured by superoxide anion production was enhanced in primed PMNs after hypoxemia. Protease degranulation as measured by elastase release was enhanced in both quiescent PMNs and primed PMNs after fMLP activation following the hypoxemic event. Adhesion molecule upregulation as measured by CD11b/CD18, however, was not significantly changed after hypoxemia. Apoptosis of quiescent PMNs was delayed after the hypoxemic event. TNFalpha, IL-1, IL-6, and IL-8 cytokine levels were unchanged following hypoxemia. These results indicate that relevant acute hypoxemic events observed in the clinical setting enhance several PMN cytotoxic functions and suggest that a transient hypoxemic insult may promote hyperinflammation. PMID:11954825

  8. REINFORCEMENT ENHANCING EFFECTS OF ACUTE NICOTINE VIA ELECTRONIC CIGARETTES

    PubMed Central

    Perkins, Kenneth A.; Karelitz, Joshua L.; Michael, Valerie C.

    2015-01-01

    Background Recent human studies confirm animal research showing that nicotine enhances reinforcement from rewards unrelated to nicotine. These effects of acute nicotine via tobacco smoking may also occur when consumed from non-tobacco products. Methods We assessed acute effects of nicotine via electronic cigarettes (“e-cigarettes”) on responding reinforced by music, video, or monetary rewards, or for no reward (control). In a fully within-subjects design, adult dependent smokers (N=28) participated in three similar experimental sessions, each following overnight abstinence (verified by CO≤10 ppm). Varying only in e-cigarette condition, sessions involved controlled exposure to a nicotine (labeled “36 mg/ml”) or placebo (“0”) e-cigarette, or no e-cigarette use. A fourth session involved smoking one’s own tobacco cigarette brand after no abstinence, specifically to compare responses under typical nicotine satiation with these acute e-cigarette conditions after abstinence. Results Reinforced responding for video reward, but not the other rewards, was greater due to use of the nicotine versus placebo e-cigarette (i.e., nicotine per se), while no differences were found between the placebo e-cigarette and no e-cigarette conditions (i.e., e-cigarette use per se). For nicotine via tobacco smoking, responding compared to the nicotine e-cigarette was similar for video but greater for music, while both video and music reward were enhanced relative to the non-nicotine conditions (placebo and no e-cigarette). Conclusions Acute nicotine from a non-tobacco product has some reinforcement enhancing effects in humans, in a manner partly consistent with nicotine via tobacco smoking and perhaps contributing to the rising popularity of nicotine e-cigarette use. PMID:26070455

  9. Effects of Acute Exercise on Some Respiratory, Circulatory and Oxidative Stress Parameters of School Boys Aged 15-17 Years

    ERIC Educational Resources Information Center

    Kurkcu, Recep; Gokhan, Ismail

    2013-01-01

    The purpose of this study was to evaluate the effects of acute exercise on respiratory functions, heart-beats, blood pressure, total antioxidative capacity (TAC), oxidative stress index (OSI), lipid hydro-peroxide (LOOHs) and Paraoxonase (PON) in school boys. A sample of 18 male amateur wrestlers are selected for this study. The participants…

  10. Adventures in Exercise Physiology: Enhancing Problem Solving and Assessment

    ERIC Educational Resources Information Center

    FitzPatrick, Kathleen A.

    2004-01-01

    I altered the format of an exercise physiology course from traditional lecture to emphasizing daily reading quizzes and group problem-solving activities. I used the SALGains evaluation to compare the two approaches and saw significant improvements in the evaluation ratings of students who were taught using the new format. Narrative responses…

  11. Effect of Acute Hypoxia on Post-Exercise Parasympathetic Reactivation in Healthy Men

    PubMed Central

    Al Haddad, Hani; Mendez-Villanueva, Alberto; Bourdon, Pitre C.; Buchheit, Martin

    2012-01-01

    In this study we assessed the effect of acute hypoxia on post-exercise parasympathetic reactivation inferred from heart rate (HR) recovery (HRR) and HR variability (HRV) indices. Ten healthy males participated in this study. Following 10 min of seated rest, participants performed 5 min of submaximal running at the speed associated with the first ventilatory threshold (Sub) followed by a 20-s all-out supramaximal sprint (Supra). Both Sub and Supra runs were immediately followed by 15 min of seated passive recovery. The resting and exercise sequence were performed in both normoxia (N) and normobaric hypoxia (H; FiO2 = 15.4%). HRR indices (e.g., heart beats recovered in the first minute after exercise cessation, HRR60s) and vagal-related HRV indices [i.e., natural logarithm of the square root of the mean of the sum of the squared differences between adjacent normal R–R intervals (Ln rMSSD)] were calculated for both conditions. Difference in the changes between N and H for all HR-derived indices were also calculated for both Sub and Supra. HRR60s was greater in N compared with H following Sub only (60 ± 14 vs. 52 ± 19 beats min−1, P = 0.016). Ln rMSSD was greater in N compared with H (post Sub: 3.60 ± 0.45 vs. 3.28 ± 0.44 ms in N and H, respectively, and post Supra: 2.66 ± 0.54 vs. 2.65 ± 0.63 ms, main condition effect P = 0.02). When comparing the difference in the changes, hypoxia decreased HRR60s (−14.3% ± 17.2 vs. 5.2% ± 19.3; following Sub and Supra, respectively; P = 0.03) and Ln rMSSD (−8.6% ± 7.0 vs. 2.0% ± 13.3, following Sub and Supra, respectively; P = 0.08, Cohen’s effect size = 0.62) more following Sub than Supra. While hypoxia may delay parasympathetic reactivation following submaximal exercise, its effect is not apparent following supramaximal exercise. This may suggest that the effect of blood O2 partial pressure on parasympathetic reactivation is limited

  12. Acute Sodium Ingestion Before Exercise Increases Voluntary Water Consumption Resulting In Preexercise Hyperhydration and Improvement in Exercise Performance in the Heat.

    PubMed

    Morris, David M; Huot, Joshua R; Jetton, Adam M; Collier, Scott R; Utter, Alan C

    2015-10-01

    Dehydration has been shown to hinder performance of sustained exercise in the heat. Consuming fluids before exercise can result in hyperhydration, delay the onset of dehydration during exercise and improve exercise performance. However, humans normally drink only in response to thirst, which does not result in hyperhydration. Thirst and voluntary fluid consumption have been shown to increase following oral ingestion or infusion of sodium into the bloodstream. We measured the effects of acute sodium ingestion on voluntary water consumption and retention during a 2-hr hydration period before exercise. Subjects then performed a 60-min submaximal dehydration ride (DR) followed immediately by a 200 kJ performance time trial (PTT) in a warm (30 °C) environment. Water consumption and retention during the hydration period was greater following sodium ingestion (1380 ± 580 mL consumed, 821 ± 367 ml retained) compared with placebo (815 ± 483 ml consumed, 244 ± 402 mL retained) and no treatment (782 ± 454 ml consumed, 148 ± 289 mL retained). Dehydration levels following the DR were significantly less after sodium ingestion (0.7 ± 0.6%) compared with placebo (1.3 ± 0.7%) and no treatment (1.6 ± 0.4%). Time to complete the PTT was significantly less following sodium consumption (773 ± 158 s) compared with placebo (851 ± 156 s) and no treatment (872 ± 190 s). These results suggest that voluntary hyperhydration can be induced by acute consumption of sodium and has a favorable effect on hydration status and performance during subsequent exercise in the heat. PMID:25811813

  13. Effects of β-Hydroxy-β-methylbutyrate Free Acid Ingestion and Resistance Exercise on the Acute Endocrine Response

    PubMed Central

    Townsend, Jeremy R.; Hoffman, Jay R.; Gonzalez, Adam M.; Jajtner, Adam R.; Boone, Carleigh H.; Robinson, Edward H.; Mangine, Gerald T.; Wells, Adam J.; Fragala, Maren S.; Fukuda, David H.; Stout, Jeffrey R.

    2015-01-01

    Objective. To examine the endocrine response to a bout of heavy resistance exercise following acute β-hydroxy-β-methylbutyrate free acid (HMB-FA) ingestion. Design. Twenty resistance trained men were randomized and consumed either 1 g of HMB-FA (BetaTor) or placebo (PL) 30 min prior to performing an acute heavy resistance exercise protocol. Blood was obtained before (PRE), immediately after (IP), and 30 min after exercise (30P). Circulating concentrations of testosterone, growth hormone (GH), insulin-like growth factor (IGF-1), and insulin were assayed. Data were analyzed with a repeated measures ANOVA and area under the curve (AUC) was analyzed by the trapezoidal rule. Results. The resistance exercise protocol resulted in significant elevations from PRE in testosterone (P < 0.01), GH (P < 0.01), and insulin (P = 0.05) at IP, with GH (P < 0.01) and insulin (P < 0.01) remaining elevated at 30P. A significant interaction was noted between groups in the plasma GH response at IP, which was significantly higher following HMB-FA compared to PL (P < 0.01). AUC analysis revealed an elevated GH and IGF-1 response in the HMB-FA group compared to PL. Conclusion. HMB-FA prior to resistance exercise augments the GH response to high volume resistance exercise compared to PL. These findings provide further support for the potential anabolic benefits associated with HMB supplementation. PMID:25792982

  14. Proteomic and Carbonylation Profile Analysis of Rat Skeletal Muscles following Acute Swimming Exercise

    PubMed Central

    Pietrovito, Laura; Fiaschi, Tania; Bini, Luca; Esposito, Fabio; Marini, Marina; Abruzzo, Provvidenza Maria; Gulisano, Massimo; Modesti, Alessandra

    2013-01-01

    Previous studies by us and other groups characterized protein expression variation following long-term moderate training, whereas the effects of single bursts of exercise are less known. Making use of a proteomic approach, we investigated the effects of acute swimming exercise (ASE) on protein expression and carbonylation patterns in two hind limb muscles: the Extensor Digitorum Longus (EDL) and the Soleus, mostly composed of fast-twitch and slow-twitch fibres, respectively. Carbonylation is one of the most common oxidative modifications of proteins and a marker of oxidative stress. In fact, several studies suggest that physical activity and the consequent increase in oxygen consumption can lead to increase in reactive oxygen and nitrogen species (RONS) production, hence the interest in examining the impact of RONS on skeletal muscle proteins following ASE. Results indicate that protein expression is unaffected by ASE in both muscle types. Unexpectedly, the protein carbonylation level was reduced following ASE. In particular, the analysis found 31 and 5 spots, in Soleus and EDL muscles respectively, whose carbonylation is reduced after ASE. Lipid peroxidation levels in Soleus were markedly reduced as well. Most of the decarbonylated proteins are involved either in the regulation of muscle contractions or in the regulation of energy metabolism. A number of hypotheses may be advanced to account for such results, which will be addressed in future studies. PMID:23967250

  15. The effect of acute exercise on pistol shooting performance of police officers.

    PubMed

    Brown, Melissa J; Tandy, Richard D; Wulf, Gabriele; Young, John C

    2013-07-01

    Previous studies indicate that rifle shooting performance while standing is compromised when fatigued. Apprehension of suspects by police officers may involve foot pursuit and firing a weapon from a standing position. The purpose of the current study was to investigate pistol shooting performance in police officers under similar conditions of physical fatigue. Participants (mean age: 30.1 years; 4.4 years of experience as police officer) completed two shooting trials separated by an acute bout of exercise on a cycle ergometer to voluntary exhaustion. Each trial consisted of three rounds of five rapid-fire shots at a target, each round separated by a 15-s rest. Participants' backs were turned to the target between rounds. Despite physical exertion, with an average heart rate of 164 bpm, shooting accuracy (mean distance of the closest 4 shots from the center of the target) and precision (diameter of the tightest 4-shot grouping) remained unchanged on postexercise trials relative to preexercise trials. This suggests that automatic shooting reactions override the adverse consequences of fatiguing exercise on shooting performance. PMID:23756320

  16. Insulin Signaling and Glucose Uptake in the Soleus Muscle of 30-Month-Old Rats After Calorie Restriction With or Without Acute Exercise.

    PubMed

    Wang, Haiyan; Sharma, Naveen; Arias, Edward B; Cartee, Gregory D

    2016-03-01

    Exercise and calorie restriction (CR) can each improve insulin sensitivity in older individuals, but benefits of combining these treatments on skeletal muscle insulin signaling and glucose uptake are poorly understood, especially in predominantly slow-twitch muscles (eg, soleus). Accordingly, our purpose was to determine independent and combined effects of prior acute exercise and CR (beginning at 14 weeks old) on insulin signaling and glucose uptake in insulin-stimulated soleus muscles of 30-month-old rats. CR alone (but not exercise alone) versus ad libitum sedentary controls induced greater insulin-stimulated glucose uptake. There was a main effect of diet (CR > ad libitum) for insulin-stimulated Akt(Ser473) and Akt(Thr308) phosphorylation. CR alone versus ad libitum sedentary increased Akt substrate of 160 kDa (AS160) Ser(588) phosphorylation and TBC1D1 Thr(596), but not AS160 Thr(642) phosphorylation or abundance of GLUT4, GLUT1, or hexokinase II proteins. Combined CR and exercise versus CR alone did not further increase insulin-stimulated glucose uptake although phosphorylation of Akt(Ser473), Akt(Thr308), TBC1D1(Thr596), and AMPK(Thr172) for the combined group exceeded values for CR and/or exercise alone. These results revealed that although the soleus was highly responsive to a CR-induced enhancement of insulin-stimulated glucose uptake, the exercise protocol did not elevate insulin-stimulated glucose uptake, either alone or when combined with CR. PMID:26341783

  17. Changes in rest and exercise myocardial perfusion and left ventricular function 3 to 26 weeks after clinically uncomplicated acute myocardial infarction: effects of exercise training

    SciTech Connect

    Hung, J.; Gordon, E.P.; Houston, N.; Haskell, W.L.; Goris, M.L.; DeBusk, R.F.

    1984-11-01

    The effects of exercise training on exercise myocardial perfusion and left ventricular (LV) function in the first 6 months after clinically uncomplicated acute myocardial infarction (AMI) were assessed in 53 consecutive men aged 55 +/- 9 years. Symptom-limited treadmill exercise with thallium myocardial perfusion scintigraphy and symptom-limited upright bicycle ergometry with equilibrium gated radionuclide ventriculography were performed 3, 11 and 26 weeks after AMI by 23 men randomized to training and 30 randomized to no training. Peak cycle capacity increased in both groups between 3 and 26 weeks (p less than 0.01), but reached higher levels in trained than in untrained patients (803 +/- 149 vs 648 +/- 182 kg-m/min, p less than 0.01). Reversible thallium perfusion defects were significantly more frequent at 3 than at 26 weeks: 59% and 36% of patients, respectively (p less than 0.05), without significant inter-group differences. Values of LV ejection fraction at rest, submaximal and peak exercise did not change significantly in either group. The increase in functional capacity, i.e., peak treadmill or bicycle workload, that occurred 3 to 26 weeks after infarction was significantly correlated with the increase in peak exercise heart rate (p less than 0.001), but not with changes in myocardial perfusion or LV function determined by radionuclide techniques. Changes in myocardial perfusion or LV function do not appear to account for the improvement in peak functional capacity that occurs within the first 6 months after clinically uncomplicated AMI.

  18. Wide housing space and chronic exercise enhance physical fitness and adipose tissue morphology in rats.

    PubMed

    Scariot, Pedro Paulo Menezes; de Barros Manchado-Gobatto, Fúlvia; Torsoni, Adriana Souza; Torsoni, Marcio Alberto; dos Reis, Ivan Gustavo Masselli; Beck, Wladimir Rafael; Gobatto, Claudio Alexandre

    2015-05-01

    The current cages commonly used in animal experiments can prevent rats from engaging in most forms of natural locomotion behaviors. These animals tend to exhibit sedentary habits. Here, we show that a combination of wide housing space and training exercise helps to reduce white adipose mass and to increase brown adipose mass. Thus, this combination is a useful strategy for truly enhancing the physical fitness of captive rats commonly used in exercise-related interventional studies and to maximize their welfare. PMID:25906078

  19. Oral conjugated linoleic acid supplementation enhanced glycogen resynthesis in exercised human skeletal muscle.

    PubMed

    Tsao, Jung-Piao; Liao, Su-Fen; Korivi, Mallikarjuna; Hou, Chien-Wen; Kuo, Chia-Hua; Wang, Hsueh-Fang; Cheng, I-Shiung

    2015-01-01

    Present study examined the effects of conjugated linoleic acid (CLA) supplementation on glycogen resynthesis in exercised human skeletal muscle. Twelve male participants completed a cross-over trial with CLA (3.8 g/day for 8 week) or placebo supplements by separation of 8 weeks. CLA is a mixture of trans-10 cis-12 and cis-9 trans-11 isomers (50:50). On experiment day, all participants performed 60-min cycling exercise at 75% VO2 max, then consumed a carbohydrate meal immediately after exercise and recovered for 3 h. Biopsied muscle samples from vastus lateralis were obtained immediately (0 h) and 3 h following exercise. Simultaneously, blood and gaseous samples were collected for every 30 min during 3-h recovery. Results showed significantly increased muscle glycogen content with CLA after a single bout of exercise (P < 0.05). Muscle glucose transporter type 4 expression was significantly elevated immediately after exercise, and this elevation was continued until 3 h after exercise in CLA trial. However, P-Akt/Akt ratio was not significantly altered, while glucose tolerance was impaired with CLA. Gaseous exchange data showed no beneficial effect of CLA on fat oxidation, instead lower non-esterified fatty acid and glycerol levels were found at 0 h. Our findings conclude that CLA supplementation can enhance the glycogen resynthesis rate in exercised human skeletal muscle. PMID:25385360

  20. Dietary nitrate supplementation enhances exercise performance in peripheral arterial disease.

    PubMed

    Kenjale, Aarti A; Ham, Katherine L; Stabler, Thomas; Robbins, Jennifer L; Johnson, Johanna L; Vanbruggen, Mitch; Privette, Grayson; Yim, Eunji; Kraus, William E; Allen, Jason D

    2011-06-01

    Peripheral arterial disease (PAD) results in a failure to adequately supply blood and oxygen (O(2)) to working tissues and presents as claudication pain during walking. Nitric oxide (NO) bioavailability is essential for vascular health and function. Plasma nitrite (NO(2)(-)) is a marker of vascular NO production but may also be a protected circulating "source" that can be converted to NO during hypoxic conditions, possibly aiding perfusion. We hypothesized that dietary supplementation of inorganic nitrate in the form of beetroot (BR) juice would increase plasma NO(2)(-) concentration, increase exercise tolerance, and decrease gastrocnemius fractional O(2) extraction, compared with placebo (PL). This was a randomized, open-label, crossover study. At each visit, subjects (n = 8) underwent resting blood draws, followed by consumption of 500 ml BR or PL and subsequent blood draws prior to, during, and following a maximal cardiopulmonary exercise (CPX) test. Gastrocnemius oxygenation during the CPX was measured by near-infrared spectroscopy. There were no changes from rest for [NO(2)(-)] (152 ± 72 nM) following PL. BR increased plasma [NO(2)(-)] after 3 h (943 ± 826 nM; P ≤ 0.01). Subjects walked 18% longer before the onset of claudication pain (183 ± 84 s vs. 215 ± 99 s; P ≤ 0.01) and had a 17% longer peak walking time (467 ± 223 s vs. 533 ± 233 s; P ≤ 0.05) following BR vs. PL. Gastrocnemius tissue fractional O(2) extraction was lower during exercise following BR (7.3 ± 6.2 vs. 10.4 ± 6.1 arbitrary units; P ≤ 0.01). Diastolic blood pressure was lower in the BR group at rest and during CPX testing (P ≤ 0.05). These findings support the hypothesis that NO(2)(-)-related NO signaling increases peripheral tissue oxygenation in areas of hypoxia and increases exercise tolerance in PAD. PMID:21454745

  1. Dietary nitrate supplementation enhances exercise performance in peripheral arterial disease

    PubMed Central

    Kenjale, Aarti A.; Ham, Katherine L.; Stabler, Thomas; Robbins, Jennifer L.; Johnson, Johanna L.; VanBruggen, Mitch; Privette, Grayson; Yim, Eunji; Kraus, William E.

    2011-01-01

    Peripheral arterial disease (PAD) results in a failure to adequately supply blood and oxygen (O2) to working tissues and presents as claudication pain during walking. Nitric oxide (NO) bioavailability is essential for vascular health and function. Plasma nitrite (NO2−) is a marker of vascular NO production but may also be a protected circulating “source” that can be converted to NO during hypoxic conditions, possibly aiding perfusion. We hypothesized that dietary supplementation of inorganic nitrate in the form of beetroot (BR) juice would increase plasma NO2− concentration, increase exercise tolerance, and decrease gastrocnemius fractional O2 extraction, compared with placebo (PL). This was a randomized, open-label, crossover study. At each visit, subjects (n = 8) underwent resting blood draws, followed by consumption of 500 ml BR or PL and subsequent blood draws prior to, during, and following a maximal cardiopulmonary exercise (CPX) test. Gastrocnemius oxygenation during the CPX was measured by near-infrared spectroscopy. There were no changes from rest for [NO2−] (152 ± 72 nM) following PL. BR increased plasma [NO2−] after 3 h (943 ± 826 nM; P ≤ 0.01). Subjects walked 18% longer before the onset of claudication pain (183 ± 84 s vs. 215 ± 99 s; P ≤ 0.01) and had a 17% longer peak walking time (467 ± 223 s vs. 533 ± 233 s; P ≤ 0.05) following BR vs. PL. Gastrocnemius tissue fractional O2 extraction was lower during exercise following BR (7.3 ± 6.2 vs. 10.4 ± 6.1 arbitrary units; P ≤ 0.01). Diastolic blood pressure was lower in the BR group at rest and during CPX testing (P ≤ 0.05). These findings support the hypothesis that NO2−-related NO signaling increases peripheral tissue oxygenation in areas of hypoxia and increases exercise tolerance in PAD. PMID:21454745

  2. Exercise

    MedlinePlus

    ... article Exercise / physical activity with MS Judy Boone, physical therapist Lynn Williams, Dan Melfi and Dave Altman discuss ... adjusted as changes occur in MS symptoms. A physical therapist experienced with MS can be helpful in designing, ...

  3. The Acute Effect of Local Vibration As a Recovery Modality from Exercise-Induced Increased Muscle Stiffness.

    PubMed

    Pournot, Hervé; Tindel, Jérémy; Testa, Rodolphe; Mathevon, Laure; Lapole, Thomas

    2016-03-01

    Exercise involving eccentric muscle contractions is known to decrease range of motion and increase passive muscle stiffness. This study aimed at using ultrasound shear wave elastography to investigate acute changes in biceps brachii passive stiffness following intense barbell curl exercise involving both concentric and eccentric contractions. The effect of local vibration (LV) as a recovery modality from exercise-induced increased stiffness was further investigated. Eleven subjects performed 4 bouts of 10 bilateral barbell curl movements at 70% of the one-rep maximal flexion force. An arm-to-arm comparison model was then used with one arm randomly assigned to the passive recovery condition and the other arm assigned to the LV recovery condition (10 min of 55-Hz vibration frequency and 0.9-mm amplitude). Biceps brachii shear elastic modulus measurements were performed prior to exercise (PRE), immediately after exercise (POST-EX) and 5 min after the recovery period (POST-REC). Biceps brachii shear elastic modulus was significantly increased at POST-EX (+53 ± 48%; p < 0.001) and POST-REC (+31 ± 46%; p = 0.025) when compared to PRE. No differences were found between passive and LV recovery (p = 0.210). LV as a recovery strategy from exercise-induced increased muscle stiffness was not beneficial, probably due to an insufficient mechanical action of vibrations. Key pointsBouts of barbell curl exercise induce an immediate increased passive stiffness of the biceps brachii muscle, as evidenced by greater shear elastic modulus measured by supersonic shear imaging.The administration of a vibratory massage did not reduce this acute exercise-induced increased stiffness. PMID:26957937

  4. The Acute Effect of Local Vibration As a Recovery Modality from Exercise-Induced Increased Muscle Stiffness

    PubMed Central

    Pournot, Hervé; Tindel, Jérémy; Testa, Rodolphe; Mathevon, Laure; Lapole, Thomas

    2016-01-01

    Exercise involving eccentric muscle contractions is known to decrease range of motion and increase passive muscle stiffness. This study aimed at using ultrasound shear wave elastography to investigate acute changes in biceps brachii passive stiffness following intense barbell curl exercise involving both concentric and eccentric contractions. The effect of local vibration (LV) as a recovery modality from exercise-induced increased stiffness was further investigated. Eleven subjects performed 4 bouts of 10 bilateral barbell curl movements at 70% of the one-rep maximal flexion force. An arm-to-arm comparison model was then used with one arm randomly assigned to the passive recovery condition and the other arm assigned to the LV recovery condition (10 min of 55-Hz vibration frequency and 0.9-mm amplitude). Biceps brachii shear elastic modulus measurements were performed prior to exercise (PRE), immediately after exercise (POST-EX) and 5 min after the recovery period (POST-REC). Biceps brachii shear elastic modulus was significantly increased at POST-EX (+53 ± 48%; p < 0.001) and POST-REC (+31 ± 46%; p = 0.025) when compared to PRE. No differences were found between passive and LV recovery (p = 0.210). LV as a recovery strategy from exercise-induced increased muscle stiffness was not beneficial, probably due to an insufficient mechanical action of vibrations. Key points Bouts of barbell curl exercise induce an immediate increased passive stiffness of the biceps brachii muscle, as evidenced by greater shear elastic modulus measured by supersonic shear imaging. The administration of a vibratory massage did not reduce this acute exercise-induced increased stiffness. PMID:26957937

  5. Acute exercise decreases PTP-1B protein level and improves insulin signaling in the liver of old rats

    PubMed Central

    2013-01-01

    It is now commonly accepted that chronic inflammation associated with obesity during aging induces insulin resistance in the liver. In the present study, we investigated whether the improvement in insulin sensitivity and insulin signaling, mediated by acute exercise, could be associated with modulation of protein-tyrosine phosphatase 1B (PTP-1B) in the liver of old rats. Aging rats were subjected to swimming for two 1.5-h long bouts, separated by a 45 min rest period. Sixteen hours after the exercise, the rats were sacrificed and proteins from the insulin signaling pathway were analyzed by immunoblotting. Our results show that the fat mass was increased in old rats. The reduction in glucose disappearance rate (Kitt) observed in aged rats was restored 16 h after exercise. Aging increased the content of PTP-1B and attenuated insulin signaling in the liver of rats, a phenomenon that was reversed by exercise. Aging rats also increased the IRβ/PTP-1B and IRS-1/PTP-1B association in the liver when compared with young rats. Conversely, in the liver of exercised old rats, IRβ/PTP-1B and IRS-1/PTP-1B association was markedly decreased. Moreover, in the hepatic tissue of old rats, the insulin signalling was decreased and PEPCK and G6Pase levels were increased when compared with young rats. Interestingly, 16 h after acute exercise, the PEPCK and G6Pase protein level were decreased in the old exercised group. These results provide new insights into the mechanisms by which exercise restores insulin signalling in liver during aging. PMID:23442260

  6. Acute oxygen uptake and resistance exercise performance using different rest interval lengths: the influence of maximal aerobic capacity and exercise sequence.

    PubMed

    Ratamess, Nicholas A; Rosenberg, Joseph G; Kang, Jie; Sundberg, Samantha; Izer, Kerrie A; Levowsky, Jaclyn; Rzeszutko, Christina; Ross, Ryan E; Faigenbaum, Avery D

    2014-07-01

    The purpose of this study was to examine the relationship between VO2max and acute resistance exercise performance and the acute metabolic effects of exercise sequencing. Seventeen resistance-trained men were tested for VO2max and 1 repetition maximum (1RM) strength. Subjects were randomly assigned to either a group that performed the squat first in sequence followed by the bench press (S; n = 8) or a group that performed the bench press first followed by the squat (BP; n = 9). Each group performed 3 protocols (using 1-, 2-, or 3-minute rest intervals [RIs] between sets in random order) consisting of 5 sets of each exercise with 75% of their 1RM for up to 10 repetitions while oxygen consumption was measured. Total repetitions completed were highest with 3-minute RI and lowest with 1-minute RI. Mean VO2 was significantly highest with 1-minute RI and lowest using 3-minute RI. Analysis of each exercise revealed a tendency (p = 0.07) for mean bench press VO2 to be higher when it was performed after the squat using 1- and 2-minute RIs. VO2max was significantly negatively correlated to 1RM bench press and squat (r = -0.79 and -0.60, respectively) and was significantly correlated to squat repetitions (r = 0.43-0.57) but did not correlate to bench press performance. It seems that VO2max is related to lower-body resistance exercise performance when short RIs are used, and the metabolic response to the bench press is augmented when it follows the squat in sequence using short RIs. PMID:24714546

  7. Acute exercise modulates the Foxo1/PGC-1α pathway in the liver of diet-induced obesity rats

    PubMed Central

    Ropelle, Eduardo R; Pauli, José R; Cintra, Dennys E; Frederico, Marisa J S; de Pinho, Ricardo A; Velloso, Lício A; De Souza, Cláudio T

    2009-01-01

    PGC-1α expression is a tissue-specific regulatory feature that is extremely relevant to diabetes. Several studies have shown that PGC-1α activity is atypically activated in the liver of diabetic rodents and contributes to hepatic glucose production. PGC-1α and Foxo1 can physically interact with one another and represent an important signal transduction pathway that governs the synthesis of glucose in the liver. However, the effect of physical activity on PGC-1α/Foxo1 association is unknown. Here we investigate the expression of PGC-1α and the association of PGC-1α/Foxo1 in the liver of diet-induced obese rats after acute exercise. Wistar rats swam for two 3 h-long bouts, separated by a 45 min rest period. Eight hours after the acute exercise protocol, the rats were submitted to an insulin tolerance test (ITT) and biochemical and molecular analysis. Results demonstrate that acute exercise improved insulin signalling, increasing insulin-stimulated Akt and Foxo1 phosphorylation and decreasing PGC-1α expression and PGC-1α/Foxo1 interaction in the liver of diet-induced obesity rats under fasting conditions. These phenomena are accompanied by a reduction in the expression of gluconeogenesis genes, such as phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphate (G6Pase). Thus, these results provide new insights into the mechanism by which exercise could improve fasting hyperglycaemia. PMID:19273580

  8. Effects of Single Bouts of Walking Exercise and Yoga on Acute Mood Symptoms in People with Multiple Sclerosis

    PubMed Central

    Ensari, Ipek; Sandroff, Brian M.

    2016-01-01

    Background: Little is known about the acute or immediate effects of walking exercise and yoga on mood in people with multiple sclerosis (MS). Such an examination is important for identifying an exercise modality for inclusion in exercise-training interventions that yields mood benefits in MS. We examined the effects of single bouts of treadmill walking and yoga compared with a quiet, seated-rest control condition on acute mood symptoms in MS. Methods: Twenty-four participants with MS completed 20 minutes of treadmill walking, yoga, or quiet rest in a randomized, counterbalanced order with 1 week between sessions. Participants completed the Profile of Mood States questionnaire before and immediately after each condition. Total mood disturbance (TMD) and the six subscales of the Profile of Mood States were analyzed using repeated-measures analysis of variance and paired-samples t tests. Results: There was a significant condition × time interaction on TMD scores (ηp2 = 0.13). Walking and yoga conditions yielded comparable reductions in TMD scores. There was a significant condition × time interaction on vigor (ηp2 = 0.23) whereby walking but not yoga yielded an improvement in vigor. There was a significant main effect of time on anger, confusion, depression, and tension (P < .05) but not on fatigue. Conclusions: Walking and yoga yielded similar improvements in overall acute mood symptoms, and walking improved feelings of vigor. These effects should be further investigated in long-term exercise-training studies. PMID:26917992

  9. Nutritional regulation of muscle protein synthesis with resistance exercise: strategies to enhance anabolism

    PubMed Central

    2012-01-01

    Provision of dietary amino acids increases skeletal muscle protein synthesis (MPS), an effect that is enhanced by prior resistance exercise. As a fundamentally necessary process in the enhancement of muscle mass, strategies to enhance rates of MPS would be beneficial in the development of interventions aimed at increasing skeletal muscle mass particularly when combined with chronic resistance exercise. The purpose of this review article is to provide an update on current findings regarding the nutritional regulation of MPS and highlight nutrition based strategies that may serve to maximize skeletal muscle protein anabolism with resistance exercise. Such factors include timing of protein intake, dietary protein type, the role of leucine as a key anabolic amino acid, and the impact of other macronutrients (i.e. carbohydrate) on the regulation of MPS after resistance exercise. We contend that nutritional strategies that serve to maximally stimulate MPS may be useful in the development of nutrition and exercise based interventions aimed at enhancing skeletal muscle mass which may be of interest to elderly populations and to athletes. PMID:22594765

  10. [Effects of acute hypobaric hypoxia and exhaustive exercise on AMP-activated protein kinase phosphorylation in rat skeletal muscle].

    PubMed

    Yang, Tao; Huang, Qing-Yuan; Shan, Fa-Bo; Guan, Li-Bin; Cai, Ming-Chun

    2012-04-25

    The present study was aimed to explore the changes of phosphorylated AMP-activated protein kinase (pAMPK) level in skeletal muscle after exposure to acute hypobaric hypoxia and exhaustive exercise. Thirty-two male Sprague-Dawley (SD) rats were randomly divided into sea level and high altitude groups. The rats in high altitude group were submitted to simulated 5 000 m of high altitude in a hypobaric chamber for 24 h, and sea level group was maintained at normal conditions. All the rats were subjected to exhaustive swimming exercise. The exhaustion time was recorded. Before and after the exercise, blood lactate and glycogen content in skeletal muscle were determined; AMPK and pAMPK levels in skeletal muscle were detected by Western blot. The results showed that the exhaustion time was significantly decreased after exposure to high altitude. At the moment of exhaustion, high altitude group had lower blood lactate concentration and higher surplus glycogen content in gastrocnemius compared with sea level group. Exhaustive exercise significantly increased the pAMPK/AMPK ratio in rat skeletal muscles from both sea level and high altitude groups. However, high altitude group showed lower pAMPK/AMPK ratio after exhaustion compared to sea level group. These results suggest that, after exposure to acute hypobaric hypoxia, the decrement in exercise capacity may not be due to running out of glycogen, accumulation of lactate or disturbance in energy status in skeletal muscle. PMID:22513470

  11. The impact of acute aerobic exercise on chitinase 3-like protein 1 and intelectin-1 expression in obesity.

    PubMed

    Huang, Chun-Jung; Slusher, Aaron L; Whitehurst, Michael; Wells, Marie; Maharaj, Arun; Shibata, Yoshimi

    2016-01-01

    Chitinase 3-like 1 (CHI3L1) and intelectin 1 (ITLN-1) recognize microbial N-acetylglucosamine polymer and galactofuranosyl carbohydrates, respectively. Both lectins are highly abundant in plasma and seem to play pro- and anti-inflammatory roles, respectively, in obesity and inflammatory-related illnesses. The aim of this study was to examine whether plasma levels of these lectins in obese subjects are useful for monitoring inflammatory conditions immediately influenced by acute aerobic exercise. Plasma interleukin-6, a pro-inflammatory cytokine, was also examined. Twenty-two (11 obese and 11 normal-weight) healthy subjects, ages 18-30 years, were recruited to perform a 30 min bout of acute aerobic exercise at 75% VO2max. We confirmed higher baseline levels of plasma CHI3L1, but lower ITLN-1, in obese subjects than in normal-weight subjects. The baseline levels of CHI3L1 were negatively correlated with cardiorespiratory fitness (relative VO2max). However, when controlled for BMI, the relationship between baseline level of CHI3L1 and relative VO2max was no longer observed. While acute aerobic exercise elicited an elevation in these parameters, we found a lower ITLN-1 response in obese subjects compared to normal-weight subjects. Our study clearly indicates that acute aerobic exercise elicits a pro-inflammatory response (e.g. CHI3L1) with a lower anti-inflammatory effect (e.g. ITLN-1) in obese individuals. Furthermore, these lectins could be predictors of outcome of exercise interventions in obesity-associated inflammation. PMID:26316585

  12. Development and validation of a predictive model of acute glucose response to exercise in individuals with type 2 diabetes

    PubMed Central

    2013-01-01

    Background Our purpose was to develop and test a predictive model of the acute glucose response to exercise in individuals with type 2 diabetes. Design and methods Data from three previous exercise studies (56 subjects, 488 exercise sessions) were combined and used as a development dataset. A mixed-effects Least Absolute Shrinkage Selection Operator (LASSO) was used to select predictors among 12 potential predictors. Tests of the relative importance of each predictor were conducted using the Lindemann Merenda and Gold (LMG) algorithm. Model structure was tested using likelihood ratio tests. Model accuracy in the development dataset was assessed by leave-one-out cross-validation. Prospectively captured data (47 individuals, 436 sessions) was used as a test dataset. Model accuracy was calculated as the percentage of predictions within measurement error. Overall model utility was assessed as the number of subjects with ≤1 model error after the third exercise session. Model accuracy across individuals was assessed graphically. In a post-hoc analysis, a mixed-effects logistic regression tested the association of individuals’ attributes with model error. Results Minutes since eating, a non-linear transformation of minutes since eating, post-prandial state, hemoglobin A1c, sulfonylurea status, age, and exercise session number were identified as novel predictors. Minutes since eating, its transformations, and hemoglobin A1c combined to account for 19.6% of the variance in glucose response. Sulfonylurea status, age, and exercise session each accounted for <1.0% of the variance. In the development dataset, a model with random slopes for pre-exercise glucose improved fit over a model with random intercepts only (likelihood ratio 34.5, p < 0.001). Cross-validated model accuracy was 83.3%. In the test dataset, overall accuracy was 80.2%. The model was more accurate in pre-prandial than postprandial exercise (83.6% vs. 74.5% accuracy respectively). 31/47 subjects had

  13. The combined effect of green tea and acute interval sprinting exercise on fat oxidation of trained and untrained males

    PubMed Central

    Gahreman, Daniel E; Boutcher, Yati N; Bustamante, Sonia; Boutcher, Stephen H

    2016-01-01

    [Purpose] This study investigated the combined effect of green tea and acute interval sprinting exercise on fat oxidation of trained and untrained males. [Methods] Fourteen trained and 14 untrained males ingested one capsule containing either green tea or cellulose with breakfast, lunch, and dinner, 24 hours before two exercise sessions. A fourth capsule was consumed 90 minutes before exercise after overnight NPO (nil per os). Participants performed a 20-minute interval sprinting cycling protocol, consisting of repeated bouts of 8-seconds of sprint cycling (at 65% of maximum power output) and 12-seconds of recovery (at 25% of maximum power output), followed by 75 minutes of post-exercise recovery. [Results] Fat oxidation was significantly greater in the resting condition after green tea ingestion (p < 0.05) compared with the placebo. Fat oxidation was also significantly increased post-exercise in the green tea, compared with the placebo condition (p < 0.01). During and after exercise the plasma glycerol levels significantly increased in both groups after green tea consumption and were significantly higher in the untrained group compared with the trained group (p < 0.05). Compared with the placebo, the plasma epinephrine levels were significantly higher for both groups in the green tea condition during and after exercise, however, norepinephrine levels were only significantly greater, p < 0.05, during and after exercise in the untrained group. [Conclusion] Green tea significantly increased resting and post-exercise fat oxidation and also elevated plasma glycerol and epinephrine levels during and after interval sprinting. Glycerol and norepinephrine levels during interval sprinting were significantly higher in the untrained group compared with the trained group. PMID:27298806

  14. Comparative value of maximal treadmill testing, exercise thallium myocardial perfusion scintigraphy and exercise radionuclide ventriculography for distinguishing high- and low-risk patients soon after acute myocardial infarction

    SciTech Connect

    Hung, J.; Goris, M.L.; Nash, E.; Kraemer, H.C.; DeBusk, R.F.; Berger, W.E.; Lew, H.

    1984-05-01

    The prognostic value of symptom-limited treadmill exercise electrocardiography, exercise thallium myocardial perfusion scintigraphy and rest and exercise radionuclide ventriculography was compared in 117 men, aged 54 +/- 9 years, tested 3 weeks after a clinically uncomplicated acute myocardial infarction (MI). During a mean follow-up period of 11.6 months, 8 men experienced ''hard'' medical events (cardiac death, nonfatal ventricular fibrillation or recurrent MI) and 14 were hospitalized for unstable angina pectoris, congestive heart failure or coronary bypass surgery (total of 22 combined events). By multivariate analysis (Cox proportional hazards model), peak treadmill work load and the change in left ventricular ejection fraction (EF) during exercise were significant (p less than 0.01) predictors of hard medical events; these 2 risk factors and recurrent ischemic chest pain in the coronary care unit were also significantly predictive (p less than 0.001) for combined events. A peak treadmill work load of 4 METs or less or a decrease in EF of 5% or more below the value at rest during submaximal effort distinguished 22 high-risk patients (20% of the study population) from 89 low-risk patients. The rate of hard medical events within 12 months was 23% (5 of 22 patients), vs 2% (2 of 89 patients) in the high- and low-risk patient subsets, respectively (p less than 0.001). Thus, in patients who underwent evaluation 3 weeks after a clinically uncomplicated MI, exercise radionuclide ventriculography contributed independent prognostic information to that provided by symptom-limited treadmill testing and was superior to exercise thallium scintigraphy for this purpose.

  15. Enhanced pulmonary and active skeletal muscle gas exchange during intense exercise after sprint training in men.

    PubMed Central

    McKenna, M J; Heigenhauser, G J; McKelvie, R S; Obminski, G; MacDougall, J D; Jones, N L

    1997-01-01

    1. This study investigated the effects of 7 weeks of sprint training on gas exchange across the lungs and active skeletal muscle during and following maximal cycling exercise in eight healthy males. 2. Pulmonary oxygen uptake (VO2) and carbon dioxide output (VCO2) were measured before and after training during incremental exercise (n = 8) and during and in recovery from a maximal 30 s sprint exercise bout by breath-by-breath analysis (n = 6). To determine gas exchange by the exercising leg muscles, brachial arterial and femoral venous blood O2 and CO2 contents and lactate concentration were measured at rest, during the final 10 s of exercise and during 10 min of recovery. 3. Training increased (P < 0.05) the maximal incremental exercise values of ventilation (VE, by 15.7 +/- 7.1%), VCO2 (by 9.3 +/- 2.1%) and VO2 (by 15.0 +/- 4.2%). Sprint exercise peak power (3.9 +/- 1.0% increase) and cumulative 30 s work (11.7 +/- 2.8% increase) were increased and fatigue index was reduced (by -9.2 +/- 1.5%) after training (P < 0.05). The highest VE, VCO2 and VO2 values attained during sprint exercise were not significantly changed after training, but a significant (P < 0.05) training effect indicated increased VE (by 19.2 +/- 7.9%), VCO2 (by 9.3 +/- 2.1%) and VO2 (by 12.7 +/- 6.5%), primarily reflecting elevated post-exercise values after training. 4. Arterial O2 and CO2 contents were lower after training, by respective mean differences of 3.4 and 21.9 ml l-1 (P < 0.05), whereas the arteriovenous O2 and CO2 content differences and the respiratory exchange ratio across the leg were unchanged by training. 5. Arterial whole blood lactate concentration and the net lactate release by exercising muscle were unchanged by training. 6. The greater peak pulmonary VO2 and VCO2 with sprint exercise, the increased maximal incremental values, unchanged arterial blood lactate concentration and greater sprint performance all point strongly towards enhanced gas exchange across the lungs and in

  16. Acute Aerobic Swimming Exercise Induces Distinct Effects in the Contractile Reactivity of Rat Ileum to KCl and Carbachol

    PubMed Central

    Araujo, Layanne C. da Cunha; de Souza, Iara L. L.; Vasconcelos, Luiz H. C.; Brito, Aline de Freitas; Queiroga, Fernando R.; Silva, Alexandre S.; da Silva, Patrícia M.; Cavalcante, Fabiana de Andrade; da Silva, Bagnólia A.

    2016-01-01

    Aerobic exercise promotes short-term physiological changes in the intestinal smooth muscle associated to the ischemia-reperfusion process; however, few studies have demonstrated its effect on the intestinal contractile function. Thus, this work describes our observations regarding the influence of acute aerobic swimming exercise in the contractile reactivity, oxidative stress, and morphology of rat ileum. Wistar rats were divided into sedentary (SED) and acutely exercised (EX-AC) groups. Animals were acclimated by 10, 10, and 30 min of swimming exercise in intercalated days 1 week before exercise. Then they were submitted to forced swimming for 1 h with a metal of 3% of their body weight attached to their body. Animals were euthanized immediately after the exercise section and the ileum was suspended in organ baths for monitoring isotonic contractions. The analysis of lipid peroxidation was performed in order to determinate the malondialdehyde (MDA) levels as a marker of oxidative stress, and intestinal smooth muscle morphology by histological staining. Cumulative concentration-response curves to KCl were altered in the EX-AC with an increase in both its efficacy and potency (Emax = 153.2 ± 2.8%, EC50 = 1.3 ± 0.1 × 10−2 M) compared to the SED group (Emax = 100%, EC50 = 1.8 ± 0.1 × 10−2 M). Interestingly, carbachol had its efficacy and potency reduced in the EX-AC (Emax = 67.1 ± 1.4%, EC50 = 9.8 ± 1.4 × 10−7 M) compared to the SED group (Emax = 100%, EC50 = 2.0 ± 0.2 × 10−7 M). The exercise did not alter the MDA levels in the ileum (5.4 ± 0.6 μ mol/mL) in the EX-AC compared to the SED group (8.4 ± 1.7 μ mol/mL). Moreover, neither the circular nor the longitudinal smooth muscle layers thickness were modified by the exercise (66.2 ± 6.0 and 40.2 ± 2.6 μm, respectively), compared to the SED group (61.6 ± 6.4 and 34.8 ± 3.7 μm, respectively). Therefore, the ileum sensitivity to contractile agents is differentially altered by the acute aerobic

  17. Examination of the efficacy of acute L-alanyl-L-glutamine ingestion during hydration stress in endurance exercise

    PubMed Central

    2010-01-01

    Background The effect of acute L-alanyl-L-glutamine (AG; Sustamine™) ingestion on performance changes and markers of fluid regulation, immune, inflammatory, oxidative stress, and recovery was examined in response to exhaustive endurance exercise, during and in the absence of dehydration. Methods Ten physically active males (20.8 ± 0.6 y; 176.8 ± 7.2 cm; 77.4 ± 10.5 kg; 12.3 ± 4.6% body fat) volunteered to participate in this study. During the first visit (T1) subjects reported to the laboratory in a euhydrated state to provide a baseline (BL) blood draw and perform a maximal exercise test. In the four subsequent randomly ordered trials, subjects dehydrated to -2.5% of their baseline body mass. For T2, subjects achieved their goal weight and were not rehydrated. During T3 - T5, subjects reached their goal weight and then rehydrated to 1.5% of their baseline body mass by drinking either water (T3) or two different doses (T4 and T5) of the AG supplement (0.05 g·kg-1 and 0.2 g·kg-1, respectively). Subjects then exercised at a workload that elicited 75% of their VO2 max on a cycle ergometer. During T2 - T5 blood draws occurred once goal body mass was achieved (DHY), immediately prior to the exercise stress (RHY), and immediately following the exercise protocol (IP). Resting 24 hour (24P) blood samples were also obtained. Blood samples were analyzed for glutamine, potassium, sodium, aldosterone, arginine vasopressin (AVP), C-reactive protein (CRP), interleukin-6 (IL-6), malondialdehyde (MDA), testosterone, cortisol, ACTH, growth hormone and creatine kinase. Statistical evaluation of performance, hormonal and biochemical changes was accomplished using a repeated measures analysis of variance. Results Glutamine concentrations for T5 were significantly higher at RHY and IP than T2 - T4. When examining performance changes (difference between T2 - T5 and T1), significantly greater times to exhaustion occurred during T4 (130.2 ± 340.2 sec) and T5 (157.4 ± 263.1 sec

  18. Acute whole body UVA irradiation combined with nitrate ingestion enhances time trial performance in trained cyclists.

    PubMed

    Muggeridge, David J; Sculthorpe, Nicholas; Grace, Fergal M; Willis, Gareth; Thornhill, Laurence; Weller, Richard B; James, Philip E; Easton, Chris

    2015-08-01

    Dietary nitrate supplementation has been shown to increase nitric oxide (NO) metabolites, reduce blood pressure (BP) and enhance exercise performance. Acute exposure to ultraviolet (UV)-A light also increases NO bioavailability and reduces BP. We conducted a randomized, counterbalanced placebo-controlled trial to determine the effects of UV-A light alone and in combination with nitrate on the responses to sub-maximal steady-state exercise and time trial (TT) performance. Nine cyclists (VO2max 53.1 ± 4.4 ml/kg/min) completed five performance trials comprising 10 min submaximal steady-state cycling followed by a 16.1 km TT. Following a familiarization the final four trials were preceded, in random order, by either (1) Nitrate gels (NIT) + UV-A, (2) Placebo (PLA) + UV-A, (3) NIT + Sham light (SHAM) and (4) PLA + SHAM (control). The NIT gels (2 × 60 ml gels, ~8.1 mmol nitrate) or a low-nitrate PLA were ingested 2.5 h prior to the trial. The light exposure consisted of 20 J/cm(2) whole body irradiation with either UV-A or SHAM light. Plasma nitrite was measured pre- and post-irradiation and VO2 was measured continuously during steady-state exercise. Plasma nitrite was higher for NIT + SHAM (geometric mean (95% CI), 332 (292-377) nM; P = 0.029) and NIT + UV-A (456 (312-666) nM; P = 0.014) compared to PLA + SHAM (215 (167-277) nM). Differences between PLA + SHAM and PLA + UV-A (282 (248-356) nM) were small and non-significant. During steady-state exercise VO2 was reduced following NIT + UVA (P = 0.034) and tended to be lower in NIT + SHAM (P = 0.086) but not PLA + UV-A (P = 0.381) compared to PLA + SHAM. Performance in the TT was significantly faster following NIT + UV-A (mean ± SD 1447 ± 41 s P = 0.005; d = 0.47), but not PLA + UV-A (1450 ± 40 s; d = 0.41) or NIT + SHAM (1455 ± 47 s; d = 0.28) compared to PLA + SHAM (1469 ± 52 s). These findings demonstrate that exposure to UV-A light alone does not alter the physiological responses to exercise or improve

  19. Moderate cycling exercise enhances neurocognitive processing in adolescents with intellectual and developmental disabilities.

    PubMed

    Vogt, Tobias; Schneider, Stefan; Anneken, Volker; Strüder, Heiko K

    2013-09-01

    Research has shown that physical exercise enhances cognitive performance in individuals with intact cognition as well as in individuals diagnosed with intellectual and developmental disabilities. Although well identified in the field of health (for example, the transient hypofrontality theory), the underlying neurocognitive processes in intellectual and developmental disabilities remain widely unclear and thus characterize the primary aim of this research. Eleven adolescents with intellectual and developmental disabilities performed moderate cycling exercise and common relaxation. Cross-over designed, both 10-min meetings were randomly allocated at the same time of day with 24-h time lags in between. Conditions were embedded in ability-modified cognitive performance (decision-making processes). Participants' reaction times and their equivalent neurophysiological parameters were recorded using standard EEG and analyzed (spatial activity, N2). Exercise revealed a decrease in frontal electrocortical activity, most pronounced in the medial frontal gyrus (10%). To that effect, reaction time (p<0.01) was decreased and mirrored in decreased N2 latency (p<0.01) after exercise. In contrast, relaxation revealed no significant changes. Results of this research suggest exercise temporarily enhances neuronal activity in relation to cognitive performance for adolescents with intellectual and developmental disabilities; further research is needed to explore possible future effects on enhancing neurocognitive development. PMID:23770890

  20. Acute Physiological Responses to Short- and Long-Stage High-Intensity Interval Exercise in Cardiac Rehabilitation: A Pilot Study

    PubMed Central

    Tschakert, Gerhard; Kroepfl, Julia M.; Mueller, Alexander; Harpf, Hanns; Harpf, Leonhard; Traninger, Heimo; Wallner-Liebmann, Sandra; Stojakovic, Tatjana; Scharnagl, Hubert; Meinitzer, Andreas; Pichlhoefer, Patriz; Hofmann, Peter

    2016-01-01

    Despite described benefits of aerobic high-intensity interval exercise (HIIE), the acute responses during different HIIE modes and associated health risks have only been sparsely discovered in heart disease patients. Therefore, the aim of this study was to investigate the acute responses for physiological parameters, cardiovascular and inflammatory biomarkers, and catecholamines yielded by two different aerobic HIIE protocols compared to continuous exercise (CE) in phase III cardiac rehabilitation. Eight cardiac patients (7 with coronary heart disease, 1 with myocarditis; 7 males, 1 female; age: 63.0 ± 9.4 years; height: 1.74 ± 0.05 m; weight: 83.6 ± 8.7 kg), all but one treated with ß-blocking agents, performed a maximal symptom-limited incremental exercise test (IET) and three different exercise tests matched for mean load (Pmean) and total duration: 1) short HIIE with a peak workload duration (tpeak) of 20 s and a peak workload (Ppeak) equal to the maximum power output (Pmax) from IET; 2) long HIIE with a tpeak of 4 min, Ppeak was corresponding to the power output at 85 % of maximal heart rate (HRmax) from IET; 3) CE with a target workload equal to Pmean of both HIIE modes. Acute metabolic and peak cardiorespiratory responses were significantly higher during long HIIE compared to short HIIE and CE (p < 0.05) except HRpeak which tended to be higher in long HIIE than in short HIIE (p = 0.08). Between short HIIE and CE, no significant difference was found for any parameter. Acute responses of cardiovascular and inflammatory biomarkers and catecholamines didn’t show any significant difference between tests (p > 0.05). All health-related variables remained in a normal range in any test except NT-proBNP, which was already elevated at baseline. Despite a high Ppeak particularly in short HIIE, both HIIE modes were as safe and as well tolerated as moderate CE in cardiac patients by using our methodological approach. Key points High-intensity interval exercise (HIIE

  1. Acute Post-Exercise Myofibrillar Protein Synthesis Is Not Correlated with Resistance Training-Induced Muscle Hypertrophy in Young Men

    PubMed Central

    Mitchell, Cameron J.; Churchward-Venne, Tyler A.; Parise, Gianni; Bellamy, Leeann; Baker, Steven K.; Smith, Kenneth; Atherton, Philip J.; Phillips, Stuart M.

    2014-01-01

    Muscle hypertrophy following resistance training (RT) involves activation of myofibrillar protein synthesis (MPS) to expand the myofibrillar protein pool. The degree of hypertrophy following RT is, however, highly variable and thus we sought to determine the relationship between the acute activation of MPS and RT-induced hypertrophy. We measured MPS and signalling protein activation after the first session of resistance exercise (RE) in untrained men (n = 23) and then examined the relation between MPS with magnetic resonance image determined hypertrophy. To measure MPS, young men (24±1 yr; body mass index  = 26.4±0.9 kg•m2) underwent a primed constant infusion of L-[ring-13C6] phenylalanine to measure MPS at rest, and acutely following their first bout of RE prior to 16 wk of RT. Rates of MPS were increased 235±38% (P<0.001) above rest 60–180 min post-exercise and 184±28% (P = 0.037) 180–360 min post exercise. Quadriceps volume increased 7.9±1.6% (−1.9–24.7%) (P<0.001) after training. There was no correlation between changes in quadriceps muscle volume and acute rates of MPS measured over 1–3 h (r = 0.02), 3–6 h (r = 0.16) or the aggregate 1–6 h post-exercise period (r = 0.10). Hypertrophy after chronic RT was correlated (r = 0.42, P = 0.05) with phosphorylation of 4E-BP1Thr37/46 at 1 hour post RE. We conclude that acute measures of MPS following an initial exposure to RE in novices are not correlated with muscle hypertrophy following chronic RT. PMID:24586775

  2. The acute effect of neuromuscular activation in resistance exercise on human skeletal muscle with the interpolated twitch technique.

    PubMed

    Lee, Dae-Yeon; Yoon, Wan-Young

    2015-09-01

    [Purpose] The purpose of this study was to perform a quantitative assessment of neuromechanical adaptation in skeletal muscles and to propose the scientific underpinnings of the acute effects induced by resistance exercise. [Subjects] The subjects in this study were 11 healthy adult men in their 20s who had no orthopedic history at the time of the study. To examine any signs of resistance exercise-induced changes in the ankle plantar flexor, the subjects were directed to perform a standing barbell calf raise routine. [Methods] Subjects were to carry a load equal to their weights and to perform five sets of ten repetitions. The maximal voluntary isometric contraction torque, resting twitch torque, muscle inhibition, root mean square of muscular activation, contraction time, and half relaxation time were analyzed by synchronizing a dynamometer, an electrical stimulator, and an electromyography system. [Results] The maximal voluntary isometric contraction torque appeared to decline, but the change was not statistically significant. The decline of resting twitch torque, on the other hand, was found to be statistically significant. Muscle inhibition and root mean square of muscular activation were both reduced, but both changes were not statistically significant. Lastly, contraction time and half relaxation time both statistically decreased significantly after resistance exercise. [Conclusion] These results indicate that the acute effects of resistance exercise have a greater impact on the peripheral mechanical system itself, rather than on neurological factors, in terms of the generation of muscle force. PMID:26504316

  3. The acute effect of neuromuscular activation in resistance exercise on human skeletal muscle with the interpolated twitch technique

    PubMed Central

    Lee, Dae-Yeon; Yoon, Wan-Young

    2015-01-01

    [Purpose] The purpose of this study was to perform a quantitative assessment of neuromechanical adaptation in skeletal muscles and to propose the scientific underpinnings of the acute effects induced by resistance exercise. [Subjects] The subjects in this study were 11 healthy adult men in their 20s who had no orthopedic history at the time of the study. To examine any signs of resistance exercise-induced changes in the ankle plantar flexor, the subjects were directed to perform a standing barbell calf raise routine. [Methods] Subjects were to carry a load equal to their weights and to perform five sets of ten repetitions. The maximal voluntary isometric contraction torque, resting twitch torque, muscle inhibition, root mean square of muscular activation, contraction time, and half relaxation time were analyzed by synchronizing a dynamometer, an electrical stimulator, and an electromyography system. [Results] The maximal voluntary isometric contraction torque appeared to decline, but the change was not statistically significant. The decline of resting twitch torque, on the other hand, was found to be statistically significant. Muscle inhibition and root mean square of muscular activation were both reduced, but both changes were not statistically significant. Lastly, contraction time and half relaxation time both statistically decreased significantly after resistance exercise. [Conclusion] These results indicate that the acute effects of resistance exercise have a greater impact on the peripheral mechanical system itself, rather than on neurological factors, in terms of the generation of muscle force. PMID:26504316

  4. Inhalation of Shin-I essential oil enhances lactate clearance in treadmill exercise

    PubMed Central

    Chen, Hsuan-Ying; Wang, Ming-Fu; Lin, Jun-Ying; Tsai, Ying-Chieh; Cheng, Fu-Chou

    2014-01-01

    Objective To evaluate the effect of Shin-I essential oil inhalation on blood lactate changes in rats subjected to treadmill exercise. Methods : Adult male Sprague Dawley rats (n=12) were randomly divided into the control or the Shin-I group. Rats were subjected to a treadmill exercise program (15 m/min for 30 min). After exercise, rats were exposed to 200 µL of water or Shin-I essential oil, respectively, using a nebulizer for 180 min during the recovery period. Blood samples were collected every 15 min. Blood glucose and lactate concentrations were determined in a CMA 600 analyzer. Results : The basal glucose and lactate levels were no significantly different between two groups. After exercise, glucose levels were slightly increased to about 110%-120% of the basal level in both groups. Lactate levels of both groups reached to 110%-140% of basal levels during exercise. In the recovery period, lactate levels further increased to 180% of the basal level and were maintained at a plateau in the control group. However, lactate levels gradually decreased to 60%-65% of the basal level in the Shin-I group. Lactate clearance was significantly enhanced after Shin-I essential oil inhalation. Conclusions : Our results provide evidence that Shin-I essential oil inhalation may accelerate recovery after exercise in rats. PMID:25182288

  5. Acute Exercise Improves Insulin Clearance and Increases the Expression of Insulin-Degrading Enzyme in the Liver and Skeletal Muscle of Swiss Mice

    PubMed Central

    Ferreira, Sandra M.; Vettorazzi, Jean F.; Nardelli, Tarlliza R.; Araujo, Hygor N.; Santos, Gustavo J.; Carneiro, Everardo M.; Boschero, Antonio C.; Rezende, Luiz F.; Costa-Júnior, José M.

    2016-01-01

    The effects of exercise on insulin clearance and IDE expression are not yet fully elucidated. Here, we have explored the effect of acute exercise on insulin clearance and IDE expression in lean mice. Male Swiss mice were subjected to a single bout of exercise on a speed/angle controlled treadmill for 3-h at approximately 60–70% of maximum oxygen consumption. As expected, acute exercise reduced glycemia and insulinemia, and increased insulin tolerance. The activity of AMPK-ACC, but not of IR-Akt, pathway was increased in the liver and skeletal muscle of trained mice. In an apparent contrast to the reduced insulinemia, glucose-stimulated insulin secretion was increased in isolated islets of these mice. However, insulin clearance was increased after acute exercise and was accompanied by increased expression of the insulin-degrading enzyme (IDE), in the liver and skeletal muscle. Finally, C2C12, but not HEPG2 cells, incubated at different concentrations of 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR) for 3-h, showed increased expression of IDE. In conclusion, acute exercise increases insulin clearance, probably due to an augmentation of IDE expression in the liver and skeletal muscle. The elevated IDE expression, in the skeletal muscle, seems to be mediated by activation of AMPK-ACC pathway, in response to exercise. We believe that the increase in the IDE expression, comprise a safety measure to maintain glycemia at or close to physiological levels, turning physical exercise more effective and safe. PMID:27467214

  6. Acute Exercise Improves Insulin Clearance and Increases the Expression of Insulin-Degrading Enzyme in the Liver and Skeletal Muscle of Swiss Mice.

    PubMed

    Kurauti, Mirian A; Freitas-Dias, Ricardo; Ferreira, Sandra M; Vettorazzi, Jean F; Nardelli, Tarlliza R; Araujo, Hygor N; Santos, Gustavo J; Carneiro, Everardo M; Boschero, Antonio C; Rezende, Luiz F; Costa-Júnior, José M

    2016-01-01

    The effects of exercise on insulin clearance and IDE expression are not yet fully elucidated. Here, we have explored the effect of acute exercise on insulin clearance and IDE expression in lean mice. Male Swiss mice were subjected to a single bout of exercise on a speed/angle controlled treadmill for 3-h at approximately 60-70% of maximum oxygen consumption. As expected, acute exercise reduced glycemia and insulinemia, and increased insulin tolerance. The activity of AMPK-ACC, but not of IR-Akt, pathway was increased in the liver and skeletal muscle of trained mice. In an apparent contrast to the reduced insulinemia, glucose-stimulated insulin secretion was increased in isolated islets of these mice. However, insulin clearance was increased after acute exercise and was accompanied by increased expression of the insulin-degrading enzyme (IDE), in the liver and skeletal muscle. Finally, C2C12, but not HEPG2 cells, incubated at different concentrations of 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR) for 3-h, showed increased expression of IDE. In conclusion, acute exercise increases insulin clearance, probably due to an augmentation of IDE expression in the liver and skeletal muscle. The elevated IDE expression, in the skeletal muscle, seems to be mediated by activation of AMPK-ACC pathway, in response to exercise. We believe that the increase in the IDE expression, comprise a safety measure to maintain glycemia at or close to physiological levels, turning physical exercise more effective and safe. PMID:27467214

  7. Long-term mild exercise training enhances hippocampus-dependent memory in rats.

    PubMed

    Inoue, K; Hanaoka, Y; Nishijima, T; Okamoto, M; Chang, H; Saito, T; Soya, H

    2015-04-01

    Although exercise training improves hippocampus-related cognition, the optimum exercise intensity is still disputed. Based on the lactate threshold (LT, approximately 20 m/min on treadmill) of rats, we have shown that 2 weeks of training with stress-free mild exercise (ME, exercise (IE, >LT), comprising exercise stress, promotes adult hippocampal neurogenesis (Okamoto et al., PNAS, 2012), a potential substrate for memory improvement. These results led us to postulate that long-term ME, but not IE, training leads to improved hippocampal function as assessed with a Morris water maze (MWM) task. To test this hypothesis, we investigated the changes in physiological stress levels and MWM task performance in rats assigned to 6 weeks of sedentary control (CONT), ME-training or IE-training conditions. Results showed that, compared to the other conditions, only IE causes general adaptive syndrome (GAS), including adrenal hypertrophy, thymic atrophy and hypercorticosteronemia. In the MWM, ME led to enhanced memory, but not learning, compared with CONT, while IE produced no change in either capacity, probably due to GAS. These findings support the hypothesis that 6 weeks of continuous ME training leads to enhanced hippocampus-related memory, which may have implications for both healthy adults and subjects with low physical capacity. PMID:25429548

  8. Voluntary stand-up physical activity enhances endurance exercise capacity in rats.

    PubMed

    Seo, Dae Yun; Lee, Sung Ryul; Kwak, Hyo-Bum; Seo, Kyo Won; McGregor, Robin A; Yeo, Ji Young; Ko, Tae Hee; Bolorerdene, Saranhuu; Kim, Nari; Ko, Kyung Soo; Rhee, Byoung Doo; Han, Jin

    2016-05-01

    Involuntary physical activity induced by the avoidance of electrical shock leads to improved endurance exercise capacity in animals. However, it remains unknown whether voluntary stand-up physical activity (SPA) without forced simulating factors improves endurance exercise capacity in animals. We examined the eff ects of SPA on body weight, cardiac function, and endurance exercise capacity for 12 weeks. Twelve male Sprague-Dawley rats (aged 8 weeks, n=6 per group) were randomly assigned to a control group (CON) or a voluntary SPA group. The rats were induced to perform voluntary SPA (lifting a load equal to their body weight), while the food height (18.0 cm) in cages was increased progressively by 3.5 every 4 weeks until it reached 28.5 cm for 12 weeks. The SPA group showed a lower body weight compared to the CON group, but voluntary SPA did not affect the skeletal muscle and heart weights, food intake, and echocardiography results. Although the SPA group showed higher grip strength, running time, and distance compared to the CON group, the level of irisin, corticosterone, genetic expression of mitochondrial biogenesis, and nuclei numbers were not affected. These findings show that voluntary SPA without any forced stimuli in rats can eff ectively reduce body weight and enhance endurance exercise capacity, suggesting that it may be an important alternative strategy to enhance endurance exercise capacity. PMID:27162483

  9. Erythropoietin enhances whole body lipid oxidation during prolonged exercise in humans.

    PubMed

    Caillaud, Corinne; Connes, Philippe; Ben Saad, Helmi; Mercier, Jacques

    2015-03-01

    Animal studies have suggested that erythropoietin, besides its well-known hematopoietic effects, can modulate metabolism and prevent fat accumulation. We investigated the effects of repeated injections of recombinant human erythropoietin (EPO) on the balance of substrate oxidation during aerobic exercise in humans. Twelve healthy aerobically trained males received subcutaneously either moderate dose of EPO (50 U/kg, EPO) or saline injections (NaCl 0.9 %, control) three times a week for 4 weeks. Body weight, % fat, maximal aerobic capacity, and substrate utilization during exercise were assessed before and after treatment, while hemoglobin and hematocrit were monitored regularly during the treatment. Carbohydrate and fat oxidation were evaluated via indirect calorimetry, during a submaximal exercise performed at 75 % of the participants' maximal aerobic capacity (V̇(O2max)) for 60 min. Results showed that 4 weeks of EPO treatment significantly enhanced fat oxidation (+56 % in EPO versus -9 % in control) during exercise, independent of its effects on hematological parameters or V̇(O2max). This study shows that EPO can modulate substrate utilization during exercise, leading to enhanced fat utilization and lower use of carbohydrates. This opens new research directions exploring whether systemic EPO levels, in physiological conditions, participate to the modulation of fat oxidation. PMID:25567744

  10. Voluntary stand-up physical activity enhances endurance exercise capacity in rats

    PubMed Central

    Seo, Dae Yun; Lee, Sung Ryul; Kwak, Hyo-Bum; Seo, Kyo Won; McGregor, Robin A; Yeo, Ji Young; Ko, Tae Hee; Bolorerdene, Saranhuu; Kim, Nari; Ko, Kyung Soo; Rhee, Byoung Doo

    2016-01-01

    Involuntary physical activity induced by the avoidance of electrical shock leads to improved endurance exercise capacity in animals. However, it remains unknown whether voluntary stand-up physical activity (SPA) without forced simulating factors improves endurance exercise capacity in animals. We examined the eff ects of SPA on body weight, cardiac function, and endurance exercise capacity for 12 weeks. Twelve male Sprague-Dawley rats (aged 8 weeks, n=6 per group) were randomly assigned to a control group (CON) or a voluntary SPA group. The rats were induced to perform voluntary SPA (lifting a load equal to their body weight), while the food height (18.0 cm) in cages was increased progressively by 3.5 every 4 weeks until it reached 28.5 cm for 12 weeks. The SPA group showed a lower body weight compared to the CON group, but voluntary SPA did not affect the skeletal muscle and heart weights, food intake, and echocardiography results. Although the SPA group showed higher grip strength, running time, and distance compared to the CON group, the level of irisin, corticosterone, genetic expression of mitochondrial biogenesis, and nuclei numbers were not affected. These findings show that voluntary SPA without any forced stimuli in rats can eff ectively reduce body weight and enhance endurance exercise capacity, suggesting that it may be an important alternative strategy to enhance endurance exercise capacity. PMID:27162483

  11. Enhanced vagal modulation and exercise induced ischaemia of the inferoposterior myocardium

    PubMed Central

    Kawasaki, T; Azuma, A; Kuribayashi, T; Taniguchi, T; Asada, S; Kamitani, T; Kawasaki, S; Matsubara, H; Sugihara, H

    2006-01-01

    Objective To determine whether the Bezold‐Jarisch reflex or enhancement of vagal nerves, which are preferentially distributed in the inferoposterior myocardium, results from exercise induced ischaemia in this region. Methods On the basis of exercise myocardial scintigraphy and coronary angiography, 145 patients were classified as follows: group I, 34 patients with inferoposterior ischaemia; group A, 32 with anterior ischaemia; and control, 79 without ischaemia. The relation between ischaemic areas and ECG leads with ST segment changes and vagal modulation assessed by heart rate variability (HRV) (high frequency (HF) component (0.15–0.40 Hz) and coefficient of HF component variance (CCVHF), which is the square root of HF divided by mean RR interval) were assessed. Results The rate of ST segment depression in any lead did not differ between group I and group A. HF and CCVHF were similar before exercise but higher in group I than in group A and the control group after exercise (mean (SEM) HF: 94 (17) ms2, 41 (7) ms2, and 45 (6) ms2, respectively, p  =  0.021; CCVHF: 1.18 (0.09)%, 0.81 (0.07)%, and 0.89 (0.05)%, p  = 0.0053). Furthermore, the percentage change in CCVHF before and after exercise was higher in group I than in group A or controls (mean (SEM) 22 (10)%, −24 (4)%, and −21 (3)%, p < 0.0001). The optimal cut off for diagnosis of inferoposterior ischaemia was −5% with a sensitivity of 74%, specificity 75%, and accuracy 75%. Conclusions Vagal modulation as assessed by HRV analysis was enhanced in association with exercise induced inferoposterior ischaemia. Exercise ECG testing combined with HRV analysis would increase accuracy in the diagnosis of ischaemic areas in selected patients with angina pectoris. PMID:15939725

  12. Use of Martial Art Exercises in Performance Enhancement Training.

    ERIC Educational Resources Information Center

    McClellan, Tim; Anderson, Warren

    2002-01-01

    Details some of the many martial arts training techniques and their potential applications for inclusion in performance enhancement programs, focusing on the benefits of martial training, the arts continuum, and martial arts training modes. The article concludes that the various martial arts techniques provide a stimulating and intuitively…

  13. Acute supplementation of N-acetylcysteine does not affect muscle blood flow and oxygenation characteristics during handgrip exercise.

    PubMed

    Smith, Joshua R; Broxterman, Ryan M; Ade, Carl J; Evans, Kara K; Kurti, Stephanie P; Hammer, Shane M; Barstow, Thomas J; Harms, Craig A

    2016-04-01

    N-acetylcysteine (NAC; antioxidant and thiol donor) supplementation has improved exercise performance and delayed fatigue, but the underlying mechanisms are unknown. One possibility isNACsupplementation increases limb blood flow during severe-intensity exercise. The purpose was to determine ifNACsupplementation affected exercising arm blood flow and muscle oxygenation characteristics. We hypothesized thatNACwould lead to higher limb blood flow and lower muscle deoxygenation characteristics during severe-intensity exercise. Eight healthy nonendurance trained men (21.8 ± 1.2 years) were recruited and completed two constant power handgrip exercise tests at 80% peak power until exhaustion. Subjects orally consumed either placebo (PLA) orNAC(70 mg/kg) 60 min prior to handgrip exercise. Immediately prior to exercise, venous blood samples were collected for determination of plasma redox balance. Brachial artery blood flow (BABF) was measured via Doppler ultrasound and flexor digitorum superficialis oxygenation characteristics were measured via near-infrared spectroscopy. FollowingNACsupplementaiton, plasma cysteine (NAC: 47.2 ± 20.3 μmol/L vs.PLA: 9.6 ± 1.2 μmol/L;P = 0.001) and total cysteine (NAC: 156.2 ± 33.9 μmol/L vs.PLA: 132.2 ± 16.3 μmol/L;P = 0.048) increased. Time to exhaustion was not significantly different (P = 0.55) betweenNAC(473.0 ± 62.1 sec) andPLA(438.7 ± 58.1 sec). RestingBABFwas not different (P = 0.79) withNAC(99.3 ± 31.1 mL/min) andPLA(108.3 ± 46.0 mL/min).BABFwas not different (P = 0.42) during exercise or at end-exercise (NAC: 413 ± 109 mL/min;PLA: 445 ± 147 mL/min). Deoxy-[hemoglobin+myoglobin] and total-[hemoglobin+myoglobin] were not significantly different (P = 0.73 andP = 0.54, respectively) at rest or during exercise between conditions. We conclude that acuteNACsupplementation does not alter oxygen delivery during exercise in men. PMID:27044854

  14. Comparison of the effects of acute exercise after overnight fasting and breakfast on energy substrate and hormone levels in obese men

    PubMed Central

    Kim, Tae Woon; Lee, Sang Hoon; Choi, Kyu Hwan; Kim, Dong Hyun; Han, Tae Kyung

    2015-01-01

    [Purpose] We compared the effects of acute aerobic exercise following overnight fasting and breakfast on energy substrate and hormone levels in obese male college students. [Subjects and Methods] This crossover study recruited 10 obese male college students with a body mass index >25 kg/m2 or >20% body fat. One week post-recruitment, the subjects exercised in the morning after an overnight fast. At 2 weeks, they exercised post-breakfast. Energy substrate (glucose, free fatty acid) and metabolic hormone (insulin, growth hormone, and cortisol) levels were measured immediately before and after exercise and at 60 min post-exercise. [Results] We observed interaction effects between the measurement time and exercise treatment for glucose; significant differences between measurement times and between exercise treatments for free fatty acids; interaction effects between the measurement time and exercise treatment for insulin and significant differences in the measurement time; significance differences between measurement times and between exercise treatments for growth hormone; and significant differences between measurement times and between exercise treatments for cortisol. [Conclusion] Morning exercise following an overnight fast can be more effective in reducing body fat than post-prandial exercise. However, increased cortisol levels following exercise after overnight fasting may negatively affect long-term weight loss in obese men. PMID:26180350

  15. Comparison of the effects of acute exercise after overnight fasting and breakfast on energy substrate and hormone levels in obese men.

    PubMed

    Kim, Tae Woon; Lee, Sang Hoon; Choi, Kyu Hwan; Kim, Dong Hyun; Han, Tae Kyung

    2015-06-01

    [Purpose] We compared the effects of acute aerobic exercise following overnight fasting and breakfast on energy substrate and hormone levels in obese male college students. [Subjects and Methods] This crossover study recruited 10 obese male college students with a body mass index >25 kg/m(2) or >20% body fat. One week post-recruitment, the subjects exercised in the morning after an overnight fast. At 2 weeks, they exercised post-breakfast. Energy substrate (glucose, free fatty acid) and metabolic hormone (insulin, growth hormone, and cortisol) levels were measured immediately before and after exercise and at 60 min post-exercise. [Results] We observed interaction effects between the measurement time and exercise treatment for glucose; significant differences between measurement times and between exercise treatments for free fatty acids; interaction effects between the measurement time and exercise treatment for insulin and significant differences in the measurement time; significance differences between measurement times and between exercise treatments for growth hormone; and significant differences between measurement times and between exercise treatments for cortisol. [Conclusion] Morning exercise following an overnight fast can be more effective in reducing body fat than post-prandial exercise. However, increased cortisol levels following exercise after overnight fasting may negatively affect long-term weight loss in obese men. PMID:26180350

  16. Alterations in Red Blood Cells and Plasma Properties after Acute Single Bout of Exercise

    PubMed Central

    Gwozdzinski, Krzysztof; Pieniazek, Anna; Brzeszczynska, Joanna; Jegier, Anna

    2013-01-01

    The aim of this study was to investigate alterations in haemoglobin conformation and parameters related to oxidative stress in whole erythrocytes, membranes, and plasma after a single bout of exercise in a group of young untrained men. Venous blood samples from eleven healthy young untrained males (age = 22 ± 2 years, BMI = 23 ± 2.5 kg/m2) were taken from the antecubital vein before an incremental cycling exercise test, immediately after exercise, and 1 hour after exercise. Individual heart rate response to this exercise was 195 ± 12 beats/min and the maximum wattage was 292 ± 27 W. Immediately after exercise, significant increase in standard parameters (haemoglobin, haematocrit, lactate levels, and plasma volume) of blood was observed as well as plasma antioxidant capacity one hour after exercise. Reversible conformational changes in haemoglobin, measured using a maleimide spin label, were found immediately following exercise. The concentration of ascorbic acid inside erythrocytes significantly decreased after exercise. A significant decline in membrane thiols was observed one hour after exercise, but simultaneously an increase in plasma thiols immediately after and 1 h after exercise was also observed. This study shows that a single bout of exercise can lead to mobilization of defensive antioxidant systems in blood against oxidative stress in young untrained men. PMID:24453803

  17. Site-dependent effects of an acute intensive exercise on extracellular 5-HT and 5-HIAA levels in rat brain.

    PubMed

    Gomez-Merino, D; Béquet, F; Berthelot, M; Chennaoui, M; Guezennec, C Y

    2001-03-30

    Previous neurochemical studies have reported different pattern of 5-HT release during exercise varying across either exercise conditions or forebrain sites. This in vivo microdialysis study is the first to examine the impact of an acute intensive treadmill running (2 h at 25 m.min(-1), which is close to exhaustion time), on extracellular 5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) levels in two different brain areas in rats, the ventral hippocampus and the frontal cortex. Hippocampal and cortical 5-HT levels increased significantly after 90 min of exercise and were maximal in the first 30 min of recovery. Thereafter, cortical 5-HT levels followed a rapid and significant decrease when hippocampal levels are still maximal. During exercise, changes in extracellular 5-HIAA levels paralleled 5-HT changes, but showed no difference between the two brain areas during recovery. Thus, an intensive exercise induces a delayed increase in brain 5-HT release but recovery seems to display site-dependent patterns. PMID:11248443

  18. Preliminary evidence that exercise dependence is associated with blunted cardiac and cortisol reactions to acute psychological stress.

    PubMed

    Heaney, Jennifer L J; Ginty, Annie T; Carroll, Douglas; Phillips, Anna C

    2011-02-01

    Low or blunted cardiovascular and cortisol reactions to acute psychological stress have been shown to characterise those with a tobacco or alcohol dependency. The present study tested the hypothesis that exercise dependency would be similarly associated with blunted reactivity. Young female exercisers (N=219) were screened by questionnaire for exercise dependence. Ten women with probable exercise dependence and 10 non dependent controls were selected for laboratory stress testing. Cardiovascular activity and salivary cortisol were measured at rest and in response to a 10-min mental arithmetic stress task. The exercise dependent women showed blunted cardiac reactions to the stress task and blunted cortisol at 10, 20, and 30 minute post stress exposure. These effects could not be accounted for in terms of group differences in stress task performance, nor could the cardiac effects be attributed to group differences in cardio-respiratory fitness. It would seem that low stress reactivity is characteristic of a wide range of dependencies, and is not confined to substance dependence. Our results offer further support for the hypothesis that blunted stress reactivity may be a peripheral marker of a central motivational dysregulation. PMID:21145361

  19. Effects of acute exercise on the levels of iron, magnesium, and uric acid in liver and spleen tissues.

    PubMed

    Kaptanoğlu, B; Turgut, G; Genç, O; Enli, Y; Karabulut, I; Zencir, M; Turgut, S

    2003-02-01

    In this study, we investigated the effects of acute exercise on tissue levels of iron, magnesium, and uric acid of rats. Twenty adult Wistar albino rats were used for the study. They were divided into two groups: controls (n=10) and the study group (n=10). The study group was left into a small water pool and allowed to do swimming exercise for 30 min while controls rested. All of the animals were sacrificed, and their livers and spleens removed and homogenized immediately. The iron, magnesium, and uric acid levels of the homogenates were measured by an autoanalyzer (ILAB 900, Italy) with commercial kits from the same company. Results were evaluated by the Mann-Whitney U-test. According to our results, the liver iron levels increased significantly with exercise, whereas spleen iron levels decreased significantly (p<0.05) compared to controls. We found no significant differences in the levels of the other two parameters with exercise. These results show that the iron distribution in organs changes with exercise. PMID:12719612

  20. Randomized Controlled Trial of Mindfulness Meditation and Exercise for the Prevention of Acute Respiratory Infection: Possible Mechanisms of Action

    PubMed Central

    Obasi, Chidi N.; Brown, Roger; Muller, Daniel; Gassman, Michele

    2013-01-01

    Background. A randomized trial suggests that meditation and exercise may prevent acute respiratory infection (ARI). This paper explores potential mediating mechanisms. Methods. Community-recruited adults were randomly assigned to three nonblinded arms: 8-week mindfulness-based stress reduction (N = 51), moderate-intensity exercise (N = 51), or wait-list control (N = 52). Primary outcomes were ARI illness burden (validated Wisconsin Upper Respiratory Symptom Survey). Potential mediators included self-reported psychophysical health and exercise intensity (baseline, 9 weeks, and 3 months). A Baron and Kenny approach-based mediational analysis model, adjusted for group status, age, and gender, evaluated the relationship between the primary outcome and a potential mediator using zero-inflated modeling and Sobel testing. Results. Of 154 randomized, 149 completed the trial (51, 47, and 51 in meditation, exercise, and control groups) and were analyzed (82% female, 94% Caucasian, 59.3 ± SD 6.6 years old). Mediational analyses suggested that improved mindfulness (Mindful Attention Awareness Scale) at 3 months may mediate intervention effects on ARI severity and duration (P < 0.05); 1 point increase in the mindfulness score corresponded to a shortened ARI duration by 7.2–9.6 hours. Conclusions. Meditation and exercise may decrease the ARI illness burden through increased mindfulness. These preliminary findings need confirmation, if confirmed, they would have important policy and clinical implications. This trial registration was Clinicaltrials.gov: NCT01057771. PMID:24191174

  1. Lower limb conduit artery endothelial responses to acute upper limb exercise in spinal cord injured and able-bodied men

    PubMed Central

    Totosy de Zepetnek, Julia O; Au, Jason S; Ditor, David S; MacDonald, Maureen J

    2015-01-01

    Vascular improvements in the nonactive regions during exercise are likely primarily mediated by increased shear rate (SR). Individuals with spinal cord injury (SCI) experience sublesional vascular deconditioning and could potentially benefit from upper body exercise-induced increases in lower body SR. The present study utilized a single bout of incremental arm-crank exercise to generate exercise-induced SR changes in the superficial femoral artery in an effort to evaluate the acute postexercise impact on superficial femoral artery endothelial function via flow-mediated dilation (FMD), and determine regulatory factors in the nonactive legs of individuals with and without SCI. Eight individuals with SCI and eight age, sex, and waist-circumference-matched able-bodied (AB) controls participated. Nine minutes of incremental arm-crank exercise increased superficial femoral artery anterograde SR (P = 0.02 and P < 0.01), retrograde SR (P < 0.01 and P < 0.01), and oscillatory shear index (OSI) (P < 0.001 and P < 0.001) in both SCI and AB, respectively. However, these SR alterations resulted in acute postexercise increases in FMD in the AB group only (SCI 6.0 ± 1.2% to 6.3 ± 2.7%, P = 0.74; AB 7.5 ± 1.4% to 11.2 ± 1.4%, P = 0.03). While arm exercise has many cardiovascular benefits and results in changes in SR patterns in the nonactive legs, these changes are not sufficient to induce acute changes in FMD among individuals with SCI, and therefore are less likely to stimulate exercise training-associated improvements in nonactive limb endothelial function. Understanding the role of SR patterns on FMD brings us closer to designing effective strategies to combat impaired vascular function in both healthy and clinical populations. PMID:25847920

  2. Post-exercise cold water immersion attenuates acute anabolic signalling and long-term adaptations in muscle to strength training.

    PubMed

    Roberts, Llion A; Raastad, Truls; Markworth, James F; Figueiredo, Vandre C; Egner, Ingrid M; Shield, Anthony; Cameron-Smith, David; Coombes, Jeff S; Peake, Jonathan M

    2015-09-15

    We investigated functional, morphological and molecular adaptations to strength training exercise and cold water immersion (CWI) through two separate studies. In one study, 21 physically active men strength trained for 12 weeks (2 days per week), with either 10 min of CWI or active recovery (ACT) after each training session. Strength and muscle mass increased more in the ACT group than in the CWI group (P < 0.05). Isokinetic work (19%), type II muscle fibre cross-sectional area (17%) and the number of myonuclei per fibre (26%) increased in the ACT group (all P < 0.05), but not the CWI group. In another study, nine active men performed a bout of single-leg strength exercises on separate days, followed by CWI or ACT. Muscle biopsies were collected before and 2, 24 and 48 h after exercise. The number of satellite cells expressing neural cell adhesion molecule (NCAM) (10-30%) and paired box protein (Pax7) (20-50%) increased 24-48 h after exercise with ACT. The number of NCAM(+) satellite cells increased 48 h after exercise with CWI. NCAM(+) - and Pax7(+) -positive satellite cell numbers were greater after ACT than after CWI (P < 0.05). Phosphorylation of p70S6 kinase(Thr421/Ser424) increased after exercise in both conditions but was greater after ACT (P < 0.05). These data suggest that CWI attenuates the acute changes in satellite cell numbers and activity of kinases that regulate muscle hypertrophy, which may translate to smaller long-term training gains in muscle strength and hypertrophy. The use of CWI as a regular post-exercise recovery strategy should be reconsidered. PMID:26174323

  3. Erythropoietin Does Not Enhance Skeletal Muscle Protein Synthesis Following Exercise in Young and Older Adults

    PubMed Central

    Lamon, Séverine; Zacharewicz, Evelyn; Arentson-Lantz, Emily; Gatta, Paul A. Della; Ghobrial, Lobna; Gerlinger-Romero, Frederico; Garnham, Andrew; Paddon-Jones, Douglas; Russell, Aaron P.

    2016-01-01

    Purpose: Erythropoietin (EPO) is a renal cytokine that is primarily involved in hematopoiesis while also playing a role in non-hematopoietic tissues expressing the EPO-receptor (EPOR). The EPOR is present in human skeletal muscle. In mouse skeletal muscle, EPO stimulation can activate the AKT serine/threonine kinase 1 (AKT) signaling pathway, the main positive regulator of muscle protein synthesis. We hypothesized that a single intravenous EPO injection combined with acute resistance exercise would have a synergistic effect on skeletal muscle protein synthesis via activation of the AKT pathway. Methods: Ten young (24.2 ± 0.9 years) and 10 older (66.6 ± 1.1 years) healthy subjects received a primed, constant infusion of [ring-13C6] L-phenylalanine and a single injection of 10,000 IU epoetin-beta or placebo in a double-blind randomized, cross-over design. 2 h after the injection, the subjects completed an acute bout of leg extension resistance exercise to stimulate skeletal muscle protein synthesis. Results: Significant interaction effects in the phosphorylation levels of the members of the AKT signaling pathway indicated a differential activation of protein synthesis signaling in older subjects when compared to young subjects. However, EPO offered no synergistic effect on vastus lateralis mixed muscle protein synthesis rate in young or older subjects. Conclusions: Despite its ability to activate the AKT pathway in skeletal muscle, an acute EPO injection had no additive or synergistic effect on the exercise-induced activation of muscle protein synthesis or muscle protein synthesis signaling pathways. PMID:27458387

  4. Acute EPOC response in women to circuit training and treadmill exercise of matched oxygen consumption.

    PubMed

    Braun, W A; Hawthorne, W E; Markofski, M M

    2005-08-01

    The purpose of the study was to evaluate the effects of circuit training (CT) and treadmill exercise performed at matched rates of oxygen consumption and exercise duration on elevated post-exercise oxygen consumption (EPOC) in untrained women, while controlling for the menstrual cycle. Eight, untrained females (31.3 +/- 9.1 years; 2.04 +/- 0.26 l min(-1) estimated VO2max; BMI=24.6+/-3.9 kg/m2) volunteered to participate in the study. Testing was performed during the early follicular phase for each subject to minimize hormonal variability between tests. Subjects performed two exercise sessions approximately 28 days apart. Resting, supine energy expenditure was measured for 30 min preceding exercise and for 1 h after completion of exercise. Respiratory gas exchange data were collected continuously during rest and exercise periods via indirect calorimetry. CT consisted of three sets of eight common resistance exercises. Pre-exercise and exercise oxygen consumption was not different between testing days (P>0.05). Thus, exercise conditions were appropriately matched. Analysis of EPOC data revealed that CT resulted in a significantly higher (p<0.05) oxygen uptake during the first 30 min of recovery (0.27 +/- 0.01 l min(-1) vs 0.23+/-0.01 l min(-1)); though, at 60 min, treatment differences were not present. Mean VO2 remained significantly higher (0.231 +/- 0.01 l min(-1)) than pre-exercise measures (0.193 +/- 0.01 l min(-1)) throughout the 60-min EPOC period (p<0.05). Heart rate, RPE, V(E) and RER were all significantly greater during CT (p<0.05). When exercise VO2 and exercise duration were matched, CT was associated with a greater metabolic disturbance and cost during the early phases of EPOC. PMID:15942765

  5. Acute Calcium Ingestion Attenuates Exercise-induced Disruption of Calcium Homeostasis

    PubMed Central

    Barry, Daniel W; Hansen, Kent C; Van Pelt, Rachael E; Witten, Michael; Wolfe, Pamela; Kohrt, Wendy M

    2011-01-01

    Purpose Exercise is associated with a decrease in bone mineral density under certain conditions. One potential mechanism is increased bone resorption due to an exercise-induced increase in parathyroid hormone (PTH), possibly triggered by dermal calcium loss. The purpose of this investigation was to determine whether calcium supplementation either before or during exercise attenuates exercise-induced increases in PTH and C-terminal telopeptide of type I collagen (CTX; a marker of bone resorption). Methods Male endurance athletes (n=20) completed three 35-km cycling time trials under differing calcium supplementation conditions: 1) 1000 mg calcium 20 minutes before exercise and placebo during, 2) placebo before and 250 mg calcium every 15 minutes during exercise (1000 mg total), or 3) placebo before and during exercise. Calcium was delivered in a 1000 mg/L solution. Supplementation was double-blinded and trials were performed in random order. PTH, CTX, bone-specific alkaline phosphatase (BAP; a marker of bone formation), and ionized calcium (iCa) were measured before and immediately after exercise. Results CTX increased and iCa decreased similarly in response to exercise under all test conditions. When compared to placebo, calcium supplementation before exercise attenuated the increase in PTH (55.8 ± 15.0 vs. 74.0 ± 14.2; mean ± SE; p=0.04); there was a similar trend (58.0 ± 17.4; p=0.07) for calcium supplementation during exercise. There were no effects of calcium on changes in CTX, BAP, and iCa. Conclusions Calcium supplementation before exercise attenuated the disruption of PTH. Further research is needed to determine the effects of repeated increases in PTH and CTX on bone (i.e., exercise training), and whether calcium supplementation can diminish any exercise-induced demineralization. PMID:20798655

  6. Effects of acute and 2-week administration of oral salbutamol on exercise performance and muscle strength in athletes.

    PubMed

    Hostrup, M; Kalsen, A; Auchenberg, M; Bangsbo, J; Backer, V

    2016-01-01

    Our objective was to investigate effects of acute and 2-week administration of oral salbutamol on repeated sprint ability, exercise performance, and muscle strength in elite endurance athletes. Twenty male elite athletes [VO2max: 69.4 ± 1.8 (Mean ± SE) mL/min/kg], aged 25.9 ± 1.4 years, were included in a randomized, double-blinded and placebo-controlled parallel study. At baseline, after acute administration, and again after 2-week administration of the study drugs (8 mg salbutamol or placebo), subjects' maximal voluntary contraction (MVC) of m. quadriceps and isometric endurance of m. deltoideus were measured, followed by three repeated Wingate tests. Exercise performance at 110% of VO2max was determined on a bike ergometer. Acute administration of salbutamol increased peak power during first Wingate test by 4.1 ± 1.7% (P < 0.05). Two-week administration of salbutamol increased (P < 0.05) peak power during first and second Wingate test by 6.4 ± 2.0 and 4.2 ± 1.0%. Neither acute nor 2-week administration of salbutamol had any effect on MVC, exercise performance at 110% of VO2max or on isometric endurance. No differences were observed in the placebo group. In conclusion, salbutamol benefits athletes' sprint ability. Thus, the present study supports the restriction of oral salbutamol in competitive sports. PMID:25077918

  7. Influence of acute erythrocythemia on temperature regulation during exercise-heat stress

    SciTech Connect

    Sawka, M.N.; Gonzalez, R.R.; Dennis, R.C.; Young, A.J.; Muza, S.R.; Martin, J.W.; Francesconi, R.P.; Pandolf, K.B.; Valeri, C.R.

    1986-03-01

    We studied the effects of acute erythrocythemia on temperature regulation responses during exercise in the heat. In a double blind study, 6 subjects (Ss) received a 700-ml solution of autologous red blood cells at a 60% Hct, and 3 Ss (control) received a 700-ml saline solution. All Ss attempted a Heat Stress Test (HST) two weeks prior to and 48-h post-transfusion during summer months. After 30 min of rest in a 20/sup 0/C antechamber, the HST consisted of a 120-min exposure (two repeats of 15-min rest and 45-min treadmill walk) in a 35/sup 0/C, 45% rh environment while euhydrated. Maximal oxygen uptake (VO/sub 2/ max) and red cell volume (RCV, /sup 51/Cr) were measured approximately 24 h before each HST. For experimental Ss, an increase in RCV (11%, P < 0.01) and VO/sub 2/ max (11%, P < 0.05) was found following transfusion, whereas, differences were not observed in the control Ss. During the HSTs for experimental Ss, metabolic rate as well as steady state rectal and esophageal temperatures were similar, but heat storage tended (P = 0.13) to be lower post-transfusion. Steady state local arm (R + C) was reduced (P < 0.05) with no change in total body sweating rate or local arm evaporative heat loss post-transfusion. For control Ss, thermoregulatory responses were generally not altered post-transfusion. Erythrocythemia may improve steady state sensible heat exchange by allowing a greater volume of blood to be directed to the cutaneous vasculature.

  8. Effects of exercise in normoxia and acute hypoxia on respiratory muscle metabolites.

    PubMed

    Fregosi, R F; Dempsey, J A

    1986-04-01

    We determined changes in rat plantaris, diaphragm, and intercostal muscle metabolites following exercise of various intensities and durations, in normoxia and hypoxia (FIO2 = 0.12). Marked alveolar hyperventilation occurred during all exercise conditions, suggesting that respiratory muscle motor activity was high. [ATP] was maintained at rest levels in all muscles during all normoxic and hypoxic exercise bouts, but at the expense of creatine phosphate (CP) in plantaris muscle and diaphragm muscle following brief exercise at maximum O2 uptake (VO2max) in normoxia. In normoxic exercise plantaris [glycogen] fell as exercise exceeded 60% VO2max, and was reduced to less than 50% control during exhaustive endurance exercise (68% VO2max for 54 min and 84% for 38 min). Respiratory muscle [glycogen] was unchanged at VO2max as well as during either type of endurance exercise. Glucose 6-phosphate (G6P) rose consistently during heavy exercise in diaphragm but not in plantaris. With all types of exercise greater than 84% VO2max, lactate concentration ([LA]) in all three muscles rose to the same extent as arterial [LA], except at VO2max, where respiratory muscle [LA] rose to less than half that in arterial blood or plantaris. Exhaustive exercise in hypoxia caused marked hyperventilation and reduced arterial O2 content; glycogen fell in plantaris (20% of control) and in diaphragm (58%) and intercostals (44%). We conclude that respiratory muscle glycogen stores are spared during exhaustive exercise in the face of substantial glycogen utilization in plantaris, even under conditions of extreme hyperventilation and reduced O2 transport. This sparing effect is due primarily to G6P inhibition of glycogen phosphorylase in diaphragm muscle. The presence of elevated [LA] in the absence of glycogen utilization suggests that increased lactate uptake, rather than lactate production, occurred in the respiratory muscles during exhaustive exercise. PMID:3700306

  9. Systemic hypoxia enhances exercise-mediated bactericidal and subsequent apoptotic responses in human neutrophils.

    PubMed

    Wang, Jong-Shyan; Chiu, Ya-Ting

    2009-10-01

    Phagocytosis and oxidative burst are critical host defense mechanisms in which neutrophils clear invading pathogens. Clearing phagocytic neutrophils by triggering apoptosis is an essential process for controlling inflammation. This study elucidates how various exercise bouts with/without hypoxia affected neutrophil bactericidal activity and subsequent apoptosis in humans. Fifteen sedentary males performed six distinct experimental tests in an air-conditioned normobaric hypoxia chamber: two normoxic exercises [strenuous exercise (SE; up to maximal O2 consumption) and moderate exercise (ME; 50% maximal O2 consumption for 30 min) while exposed to 21% O2], two hypoxic exercises (ME for 30 min while exposed to 12% and 15% O2), and two hypoxic exposures (resting for 30 min while exposed to 12% and 15% O2). The results showed that 1) plasma complement-C3a desArg/C4a desArg/C5a concentrations were increased, 2) expressions of L-selectin/lymphocyte functin-associated antigen-1/Mac-1/C5aR on neutrophils were enhanced, 3) phagocytosis of neutrophils to Esherichia coli and release of neutrophil oxidant products by E. coli were elevated, and 4) E. coli-induced phosphotidylserine exposure or caspase-3 activation of neutrophils were promoted immediately and 2 h after both 12% O2 exposure at rest and with ME as well as normoxic SE. Although neither normoxic ME nor breathing 15% O2 at rest influenced these complement- and neutrophil-related immune responses, ME at both 12% and 15% O2 resulted in enhanced complement activation in the blood, expressions of opsonic/complement receptors on neutrophils, or the bactericidal activity and apoptosis of neutrophils. Moreover, the increased neutrophil oxidant production and apoptosis by normoxic SE and hypoxic ME were ameliorated by treating neutrophils with diphenylene iodonium (a NADPH oxidase inhibitor). Therefore, we conclude that ME at 12-15% O2 enhances bactericidal capacity and facilitates the subsequent apoptosis of neutrophils. PMID

  10. Moderate treadmill running exercise prior to tendon injury enhances wound healing in aging rats

    PubMed Central

    Zhang, Jianying; Yuan, Ting; Wang, James H-C.

    2016-01-01

    The effect of exercise on wound healing in aging tendon was tested using a rat moderate treadmill running (MTR) model. The rats were divided into an MTR group that ran on a treadmill for 4 weeks and a control group that remained in cages. After MTR, a window defect was created in the patellar tendons of all rats and wound healing was analyzed. We found that MTR accelerated wound healing by promoting quicker closure of wounds, improving the organization of collagen fibers, and decreasing senescent cells in the wounded tendons when compared to the cage control. MTR also lowered vascularization, increased the numbers of tendon stem/progenitor cells (TSCs) and TSC proliferation than the control. Besides, MTR significantly increased the expression of stem cell markers, OCT-4 and Nanog, and tenocyte genes, Collagen I, Collagen III and tenomodulin, and down-regulated PPAR-γ, Collagen II and Runx-2 (non-tenocyte genes). These findings indicated that moderate exercise enhances healing of injuries in aging tendons through TSC based mechanisms, through which exercise regulates beneficial effects in tendons. This study reveals that appropriate exercise may be used in clinics to enhance tendon healing in aging patients. PMID:26885754

  11. Effects of diet and/or exercise in enhancing spinal cord sensorimotor learning.

    PubMed

    Joseph, M Selvan; Ying, Zhe; Zhuang, Yumei; Zhong, Hui; Wu, Aiguo; Bhatia, Harsharan S; Cruz, Rusvelda; Tillakaratne, Niranjala J K; Roy, Roland R; Edgerton, V Reggie; Gomez-Pinilla, Fernando

    2012-01-01

    Given that the spinal cord is capable of learning sensorimotor tasks and that dietary interventions can influence learning involving supraspinal centers, we asked whether the presence of omega-3 fatty acid docosahexaenoic acid (DHA) and the curry spice curcumin (Cur) by themselves or in combination with voluntary exercise could affect spinal cord learning in adult spinal mice. Using an instrumental learning paradigm to assess spinal learning we observed that mice fed a diet containing DHA/Cur performed better in the spinal learning paradigm than mice fed a diet deficient in DHA/Cur. The enhanced performance was accompanied by increases in the mRNA levels of molecular markers of learning, i.e., BDNF, CREB, CaMKII, and syntaxin 3. Concurrent exposure to exercise was complementary to the dietary treatment effects on spinal learning. The diet containing DHA/Cur resulted in higher levels of DHA and lower levels of omega-6 fatty acid arachidonic acid (AA) in the spinal cord than the diet deficient in DHA/Cur. The level of spinal learning was inversely related to the ratio of AA:DHA. These results emphasize the capacity of select dietary factors and exercise to foster spinal cord learning. Given the non-invasiveness and safety of the modulation of diet and exercise, these interventions should be considered in light of their potential to enhance relearning of sensorimotor tasks during rehabilitative training paradigms after a spinal cord injury. PMID:22911773

  12. The Effect of Exercise Training on Diastolic and Systolic Function After Acute Myocardial Infarction: A Randomized Study.

    PubMed

    Fontes-Carvalho, Ricardo; Azevedo, Ana Isabel; Sampaio, Francisco; Teixeira, Madalena; Bettencourt, Nuno; Campos, Lilibeth; Gonçalves, Francisco Rocha; Ribeiro, Vasco Gama; Azevedo, Ana; Leite-Moreira, Adelino

    2015-09-01

    After acute myocardial infarction (AMI), diastolic dysfunction is frequent and an important determinant of adverse outcome. However, few interventions have proven to be effective in improving diastolic function. We aimed to determine the effect of exercise training on diastolic and systolic function after AMI.One month after AMI, 188 patients were prospectively randomized (1:1) to an 8-week supervised program of endurance and resistance exercise training (n = 86; 55.9 ± 10.8 years) versus standard of care (n = 89; 55.4 ± 10.3 years). All patients were submitted to detailed echocardiography and cardiopulmonary exercise test, at baseline and immediately after the study. Diastolic function was evaluated by the determination of tissue-Doppler derived early diastolic velocities (E' velocity at the septal and lateral sides of mitral annulus) and by the E/E' (ratio between the E wave velocity from mitral inflow and the E' velocity) as recommended in the consensus document for diastolic function assessment.At the end of the study, there was no significant change in E' septal velocity or E/E' septal ratio in the exercise group. We observed a small, although nonsignificant, improvement in E' lateral (mean change 0.1 ± 2.0 cm/s; P = 0.40) and E/E' lateral ratio (mean change of -0.3 ± 2.5; P = 0.24), while patients in the control group had a nonsignificant reduction in E' lateral (mean change -0.4 ± 1.9 cm/s; P = 0.09) and an increase in E/E' lateral ratio (mean change + 0.3 ± 3.3; P = 0.34). No relevant changes occurred in other diastolic parameters. The exercise-training program also did not improve systolic function (either tissue Doppler systolic velocities or ejection fraction).Exercise capacity improved only in the exercise-training group, with an increase of 1.6 mL/kg/min in pVO2 (P = 0.001) and of 1.9 mL/kg/min in VO2 at anaerobic threshold (P < 0.001).After AMI, an 8-week endurance plus

  13. The acute effect of maximal exercise on central and peripheral arterial stiffness indices and hemodynamics in children and adults.

    PubMed

    Melo, Xavier; Fernhall, Bo; Santos, Diana A; Pinto, Rita; Pimenta, Nuno M; Sardinha, Luís B; Santa-Clara, Helena

    2016-03-01

    This study compared the effects of a bout of maximal running exercise on arterial stiffness in children and adults. Right carotid blood pressure and artery stiffness indices measured by pulse wave velocity (PWV), compliance and distensibility coefficients, stiffness index α and β (echo-tracking), contralateral carotid blood pressure, and upper and lower limb and central/aortic PWV (applanation tonometry) were taken at rest and 10 min after a bout of maximal treadmill running in 34 children (7.38 ± 0.38 years) and 45 young adults (25.22 ± 0.91 years) having similar aerobic potential. Two-by-two repeated measures analysis of variance and analysis of covariance were used to detect differences with exercise between groups. Carotid pulse pressure (PP; η(2) = 0.394) increased more in adults after exercise (p < 0.05). Compliance (η(2) = 0.385) decreased in particular in adults and in those with high changes in distending pressure, similarly to stiffness index α and β. Carotid PWV increased more in adults and was related to local changes in PP but not mean arterial pressure (MAP). Stiffness in the lower limbs decreased (η(2) = 0.115) but apparently only in those with small MAP changes (η(2) = 0.111). No significant exercise or group interaction effects were found when variables were adjusted to height. An acute bout of maximal exercise can alter arterial stiffness and hemodynamics in the carotid artery and within the active muscle beds. Arterial stiffness and hemodynamic response to metabolic demands during exercise in children simply reflect their smaller body size and may not indicate a particular physiological difference compared with adults. PMID:26842667

  14. Impact of Short and Moderate Rest Intervals on the Acute Immunometabolic Response to Exhaustive Strength Exercise: Part I.

    PubMed

    Rossi, Fabrício E; Gerosa-Neto, Jose; Zanchi, Nelo E; Cholewa, Jason M; Lira, Fabio S

    2016-06-01

    Rossi, FE, Gerosa-Neto, J, Zanchi, NE, Cholewa, JM, and Lira, FS. Impact of short and moderate rest intervals on the acute immunometabolic response to exhaustive strength exercise. J Strength Cond Res 30(6): 1563-1569, 2016-The purpose of this study was to verify the influence of the short and moderate intervals of recovery in response to an acute bout of exhaustive strength exercise on performance, inflammatory, and metabolic responses in healthy adults. Eight healthy subjects (age = 24.6 ± 4.1 years) performed 2 randomized sequences: short = 70% of 1 repetition maximum (1RM) with 30 seconds of rest between sets; moderate = 70% of 1RM with 90 seconds of rest between sets. All sequences of exercises were performed over 4 sets until movement failure in the squat and bench press exercises, respectively. The total number of repetitions performed was recorded for each set of each exercise for all sequences. The percentages of fat mass and fat-free mass were estimated by dual-energy x-ray absorptiometry. Glucose, tumor necrosis factor-α, interleukin (IL)-6, IL-10, and nonester fatty acid were assessed, at baseline, immediately after exercise, after 15 and 30 minutes. When compared with the maximum number of repetitions and the total weight lifted, there was a statistically significant decrease after both intervals. The only statistically significant decreases over time occurred at the post-15 minutes assessment of the IL-6 and glucose when a moderate interval of recovery was performed. When comparing the alterations between the pools (the mean of the cluster of all periods in each variable), there was a statistically significant increase on the IL-6 and IL-10 when a moderate interval of recovery was performed again, however, not considering a statistical difference on the IL-10. Thus, we concluded that different interval of recovery in response to exhaustive strength exercise decreases performance but in only moderate intervals, it is associated with inflammatory and

  15. Contribution of nitric oxide to exercise-induced changes in healthy volunteers: effects of acute exercise and long-term physical training.

    PubMed

    Poveda, J J; Riestra, A; Salas, E; Cagigas, M L; López-Somoza, C; Amado, J A; Berrazueta, J R

    1997-11-01

    Endothelium plays a central role in the regulation of regional blood flow through the release of certain vasoactive substances. We conducted this study to test whether an increase in the production of nitric oxide (NO) metabolites, atrial natriuretic peptide (ANP) and plasma and intraplatelet cyclic guanosine 3':5' monophosphate (cGMP) is involved in the adaptation to chronic exercise in physically trained people and in the vasodilatation induced by acute physical exercise. We studied one group of 10 trained athletes and another group of 10 untrained people. We measured plasma levels of nitrites, nitrates and cGMP and intraplatelet levels of cGMP, as an indicator of intracellular guanylate cyclase activity, and ANP before and after a maximal treadmill test. Resting cardiac rate (CR) and systolic blood pressure (SBP) were lower in the athlete group than in the control group (73.8 +/- 3.6 vs. 92 +/- 5.9; P < 0.02 and 110 +/- 2.58 vs. 118 +/- 3.27; P < 0.02 respectively). SBP did not show differences between groups after the exercise test. Diastolic blood pressure (DBP) at rest was lower in the athlete group (71 +/- 1.79 vs. 80.5 +/- 3.53; P < 0.03) and the decrease after maximal exercise was more pronounced in this group (64 +/- 2.67 vs. 74.5 +/- 3.2; P < 0.02). Basal plasma nitrites were 4.9 +/- 0.8 in the athlete group and 1.9 +/- 0.3 in the control group (P < 0.05). After exercise, test differences between groups remained (P < 0.05). Nitrates were significantly higher in the group of athletes and did not show exercise-related changes. Plasma levels of cGMP and ANP increased in both groups after the treadmill test, with no differences between groups. Among the athletes, cGMP increased from 1.11 +/- 0.1 to 2.6 +/- 0.4 (P < 0.001), whereas in the untrained group plasma cGMP rose from 1.14 +/- 0.09 to 1.86 +/- 0.2 (P < 0.01). There was a significant correlation between the increases in plasma cGMP and the atrial natriuretic peptide in both groups (r = 0.91, P < 0

  16. cAMP levels in fast- and slow-twitch skeletal muscle after an acute bout of aerobic exercise

    NASA Technical Reports Server (NTRS)

    Sheldon, A.; Booth, F. W.; Kirby, C. R.

    1993-01-01

    The present study examined whether exercise duration was associated with elevated and/or sustained elevations of postexercise adenosine 3',5'-cyclic monophosphate (cAMP) by measuring cAMP levels in skeletal muscle for up to 4 h after acute exercise bouts of durations that are known to either produce (60 min) or not produce (10 min) mitochondrial proliferation after chronic training. Treadmill-acclimatized, but untrained, rats were run at 22 m/min for 0 (control), 10, or 60 min and were killed at various postexercise (0, 0.5, 1, 2, and 4 h) time points. Fast-twitch white and red (quadriceps) and slow-twitch (soleus) muscles were quickly excised, frozen in liquid nitrogen, and assayed for cAMP with a commercial kit. Unexpectedly, cAMP contents in all three muscles were similar to control (nonexercise) at most (21 of 30) time points after a single 10- or 60-min run. Values at 9 of 30 time points were significantly different from control (P < 0.05); i.e., 3 time points were significantly higher than control and 6 were significantly less than control. These data suggest that the cAMP concentration of untrained skeletal muscle after a single bout of endurance-type exercise is not, by itself, associated with exercise duration.

  17. Prognostic evaluation by clinical exercise test scores in patients treated with primary percutaneous coronary intervention or fibrinolysis for acute myocardial infarction (a Danish Trial in Acute Myocardial Infarction-2 Sub-Study).

    PubMed

    Valeur, Nana; Clemmensen, Peter; Grande, Peer; Saunamäki, Kari

    2007-10-01

    The prognostic accuracy of exercise testing after myocardial infarction is low, and different models have been proposed to enhance the predictive value for subsequent mortality. This study tested a simple score against 3 established scores. Patients with ST-elevation myocardial infarctions were randomized in the Danish Trial in Acute Myocardial Infarction-2 (DANAMI-2) to either primary percutaneous coronary intervention or fibrinolysis with predischarge exercise testing. Clinical and exercise test data were collected prospectively and were available for 1,115 patients. A simple score was derived, awarding 1 point for history or new signs of heart failure, 1 point for a left ventricular ejection fraction <40%, 1 point for age >65 years in men and age >70 years in women, and 1 point for exercise capacity <5 METs in men and exercise capacity <4 METs in women. This DANAMI score was compared with the Veterans Affairs Medical Center score, the Duke treadmill score, and the Gruppo Italiano per lo Studio Della Sopravvivenza nell'Infarto Miocardico-2 (GISSI-2) score in multivariate Cox models and receiver-operating characteristic plots. All scoring systems were predictive of adverse outcomes. The DANAMI score performed better, with greater chi-square values (142 vs 53 to 88 for the prediction of death). Areas under the receiver-operating characteristic curves were compared and were larger for the DANAMI score (C-statistic 0.79 vs 0.71 to 0.74 for the other tests regarding mortality). The DANAMI score stratified patients into a small high-risk group (8% of the population with 43% mortality in 6 years), an intermediate-risk group (13% with 16% mortality in 6 years), and a low-risk group (79% with 4% mortality in 6 years). In conclusion, a simple exercise test score composed of age, METs, heart failure, and a left ventricular ejection fraction <40% seems to outperform the Duke treadmill score, Veterans Affairs Medical Center score, and GISSI-2 score in risk stratifying

  18. Enhancing the Psychological Well-Being of Elderly Individuals through Tai Chi Exercise: A Latent Growth Curve Analysis.

    ERIC Educational Resources Information Center

    Li, Fuzhong; Duncan, Terry E.; Duncan, Susan C.; McAuley, Edward; Chaumeton, Nigel R.; Harmer, Peter

    2001-01-01

    Examined whether a Tai Chi exercise program enhanced the psychological well-being of 98 elderly individuals. Analyzed repeated measures data about participants using latent growth curve analysis. Results indicate the beneficial effects of participation in the Tai Chi program. Discusses implications related to the exercise-psychological health…

  19. Acute Effect of Morning and Afternoon Aerobic Exercise on Appetite of Overweight Women

    PubMed Central

    Alizadeh, Zahra; Mostafaee, Masoumeh; Mazaheri, Reza; Younespour, Shima

    2015-01-01

    Background: The best time of exercise along the day for weight management in overweight and obese patients is not determined. The time of exercise may influence its effect on appetite and food intake. Objectives: The aim of this study was to compare the effects of two different times of exercise during the day on appetite, energy intake, and the rating of perceived exertion (RPE) on overweight women. Patients and Methods: Fifty overweight female subjects were recruited in this interventional study. Two sessions of exercise were performed in the morning and afternoon with the target heart rate corresponding to the ventilatory threshold (VT). The appetite was evaluated with visual analogue scale, the energy intake was measured with 24 hours food record and the RPE was determined by visual Borg scale; these variables were compared between the two sessions. Results: The behavior of appetite in relation to hunger, satiety, fullness, prospective food consumption, tendency to salty, savoury, sweet and fatty foods, did not change significantly after both exercise sessions (P > 0.05). Except for the satiety, no significant difference was found among changes in the appetite scores between the two exercise sessions. The median change in the satiety score of the morning exercise was significantly higher than that of the afternoon exercise (5.5 (-8.5, 22.5) vs. -1 (-8, 4.5) respectively, P = 0.01). The median RPE value did not differ significantly between the morning and afternoon sessions (13 (12, 14) vs. 13 (12, 13) respectively, P = 0.46). There was no significant association between the time of exercise and the estimates of the carbohydrate (P = 0.41), fat (P = 0.23), protein (P = 0.13), and calorie intake (P = 0.18). Conclusions: One session of moderate intensity exercise disregarding the time of exercise did not affect appetite significantly. However, morning exercise may cause greater levels of satiety in comparison with afternoon exercise. Moderate intensity aerobic

  20. Omega-3 fatty acid supplementation enhances stroke volume and cardiac output during dynamic exercise.

    PubMed

    Walser, Buddy; Stebbins, Charles L

    2008-10-01

    Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) have beneficial effects on cardiovascular function. We tested the hypotheses that dietary supplementation with DHA (2 g/day) + EPA (3 g/day) enhances increases in stroke volume (SV) and cardiac output (CO) and decreases in systemic vascular resistance (SVR) during dynamic exercise. Healthy subjects received DHA + EPA (eight men, four women) or safflower oil (six men, three women) for 6 weeks. Both groups performed 20 min of bicycle exercise (10 min each at a low and moderate work intensity) before and after DHA + EPA or safflower oil treatment. Mean arterial pressure (MAP), heart rate (HR), SV, CO, and SVR were assessed before exercise and during both workloads. HR was unaffected by DHA + EPA and MAP was reduced, but only at rest (88 +/- 5 vs. 83 +/- 4 mm Hg). DHA + EPA augmented increases in SV (14.1 +/- 6.3 vs. 32.3 +/- 8.7 ml) and CO (8.5 +/- 1.0 vs. 10.3 +/- 1.2 L/min) and tended to attenuate decreases in SVR (-7.0 +/- 0.6 vs. -10.1 +/- 1.6 mm Hg L(-1) min(-1)) during the moderate workload. Safflower oil treatment had no effects on MAP, HR, SV, CO or SVR at rest or during exercise. DHA + EPA-induced increases in SV and CO imply that dietary supplementation with these fatty acids can increase oxygen delivery during exercise, which may have beneficial clinical implications for individuals with cardiovascular disease and reduced exercise tolerance. PMID:18563435

  1. Behavioral Weight Control Treatment Combined with Supervised Exercise or Peer Enhanced Adventure for Overweight Adolescents

    PubMed Central

    Jelalian, Elissa; Lloyd-Richardson, Elizabeth E.; Mehlenbeck, Robyn S.; Hart, Chantelle N.; Flynn-O’Brien, Katherine; Kaplan, Jamie; Neill, Meghan; Wing, Rena R.

    2010-01-01

    Objectives To evaluate the efficacy of behavioral weight control intervention combined with a peer-enhanced activity intervention versus structured aerobic exercise in decreasing BMI and z-BMI in overweight adolescents. Study design Participants were randomized to one of two group-based treatment conditions: 1) cognitive behavioral treatment combined with peer enhanced adventure therapy (CBT+PEAT) or 2) cognitive behavioral weight control treatment combined with supervised aerobic exercise (CBT+EXER). Participants included 118 overweight adolescents, ages 13 – 16 years, and a primary caregiver. Changes in body mass index (BMI), standardized BMI, percent over BMI, and waist circumference were examined. Results Analysis of variance based on intent to treat (ITT) indicated significant decreases in all weight change outcomes at end of treatment, with significant decreases maintained at 12-month follow-up. No differences between treatment conditions were observed. Secondary analyses indicated that adherence with attendance and completion of weekly diet records contributed significantly to reductions in BMI. Conclusions A cognitive behavioral weight control intervention combined with supervised aerobic exercise or peer-enhanced adventure therapy is equally effective in short-term reduction of BMI and z-BMI among overweight adolescents. Adherence, as measured by session attendance and self-monitoring, is a key dimension of weight change. PMID:20655544

  2. Effectiveness of additional supervised exercises compared with conventional treatment alone in patients with acute lateral ankle sprains: systematic review

    PubMed Central

    van Ochten, John; Luijsterburg, Pim A J; van Middelkoop, Marienke; Koes, Bart W; Bierma-Zeinstra, Sita M A

    2010-01-01

    Objective To summarise the effectiveness of adding supervised exercises to conventional treatment compared with conventional treatment alone in patients with acute lateral ankle sprains. Design Systematic review. Data sources Medline, Embase, Cochrane Central Register of Controlled Trials, Cinahl, and reference screening. Study selection Included studies were randomised controlled trials, quasi-randomised controlled trials, or clinical trials. Patients were adolescents or adults with an acute lateral ankle sprain. The treatment options were conventional treatment alone or conventional treatment combined with supervised exercises. Two reviewers independently assessed the risk of bias, and one reviewer extracted data. Because of clinical heterogeneity we analysed the data using a best evidence synthesis. Follow-up was classified as short term (up to two weeks), intermediate (two weeks to three months), and long term (more than three months). Results 11 studies were included. There was limited to moderate evidence to suggest that the addition of supervised exercises to conventional treatment leads to faster and better recovery and a faster return to sport at short term follow-up than conventional treatment alone. In specific populations (athletes, soldiers, and patients with severe injuries) this evidence was restricted to a faster return to work and sport only. There was no strong evidence of effectiveness for any of the outcome measures. Most of the included studies had a high risk of bias, with few having adequate statistical power to detect clinically relevant differences. Conclusion Additional supervised exercises compared with conventional treatment alone have some benefit for recovery and return to sport in patients with ankle sprain, though the evidence is limited or moderate and many studies are subject to bias. PMID:20978065

  3. Apolipoprotein E ε4 allele modulates the immediate impact of acute exercise on prefrontal function.

    PubMed

    De Marco, Matteo; Clough, Peter J; Dyer, Charlotte E; Vince, Rebecca V; Waby, Jennifer S; Midgley, Adrian W; Venneri, Annalena

    2015-01-01

    The difference between Apolipoprotein E ε4 carriers and non-carriers in response to single exercise sessions was tested. Stroop and Posner tasks were administered to young untrained women immediately after walking sessions or moderately heavy exercise. Exercise had a significantly more profound impact on the Stroop effect than on the Posner effect, suggesting selective involvement of prefrontal function. A significant genotype-by-exercise interaction indicated differences in response to exercise between ε4 carriers and non-carriers. Carriers showed facilitation triggered by exercise. The transient executive down-regulation was construed as due to exercise-dependent hypofrontality. The facilitation observed in carriers was interpreted as better management of prefrontal metabolic resources, and explained within the antagonistic pleiotropy hypothesis framework. The findings have implications for the interpretation of differences between ε4 carriers and non-carriers in the benefits triggered by long-term exercise that might depend, at least partially, on mechanisms of metabolic response to physical activity. PMID:25218559

  4. Acute regulation of IGF-I by alterations in post-exercise macronutrients

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This investigation sought to examine the contributions of exercise and nutrient replenishment on in vivo regulation of the insulin-like growth factor-I (IGF-I) axis components. Eight college-aged males completed three high-intensity interval training (HIIT) protocols followed by three post-exercise ...

  5. Short-Term Intensified Cycle Training Alters Acute and Chronic Responses of PGC1α and Cytochrome C Oxidase IV to Exercise in Human Skeletal Muscle

    PubMed Central

    Stepto, Nigel K.; Benziane, Boubacar; Wadley, Glenn D.; Chibalin, Alexander V.; Canny, Benedict J.; Eynon, Nir; McConell, Glenn K.

    2012-01-01

    Reduced activation of exercise responsive signalling pathways have been reported in response to acute exercise after training; however little is known about the adaptive responses of the mitochondria. Accordingly, we investigated changes in mitochondrial gene expression and protein abundance in response to the same acute exercise before and after 10-d of intensive cycle training. Nine untrained, healthy participants (mean±SD; VO2peak 44.1±17.6 ml/kg/min) performed a 60 min bout of cycling exercise at 164±18 W (72% of pre-training VO2peak). Muscle biopsies were obtained from the vastus lateralis muscle at rest, immediately and 3 h after exercise. The participants then underwent 10-d of cycle training which included four high-intensity interval training sessions (6×5 min; 90–100% VO2peak) and six prolonged moderate-intensity sessions (45–90 min; 75% VO2peak). Participants repeated the pre-training exercise trial at the same absolute work load (64% of pre-training VO2peak). Muscle PGC1-α mRNA expression was attenuated as it increased by 11- and 4- fold (P<0.001) after exercise pre- and post-training, respectively. PGC1-α protein expression increased 1.5 fold (P<0.05) in response to exercise pre-training with no further increases after the post-training exercise bout. RIP140 protein abundance was responsive to acute exercise only (P<0.01). COXIV mRNA (1.6 fold; P<0.01) and COXIV protein expression (1.5 fold; P<0.05) were increased by training but COXIV protein expression was decreased (20%; P<0.01) by acute exercise pre- and post-training. These findings demonstrate that short-term intensified training promotes increased mitochondrial gene expression and protein abundance. Furthermore, acute indicators of exercise-induced mitochondrial adaptation appear to be blunted in response to exercise at the same absolute intensity following short-term training. PMID:23285255

  6. Acute Response of PGC-1α and IGF-1 Isoforms to Maximal Eccentric Exercise in Skeletal Muscle of Postmenopausal Women.

    PubMed

    Dieli-Conwright, Christina M; Kiwata, Jacqueline L; Tuzon, Creighton T; Spektor, Tanya M; Sattler, Fred R; Rice, Judd C; Schroeder, Edward Todd

    2016-04-01

    Dieli-Conwright, CM, Kiwata, JL, Tuzon, C, Spektor, TM, Sattler, FR, Rice, JC, and Schroeder, ET. Acute response of PGC-1α and IGF-1 isoforms to maximal eccentric exercise in skeletal muscle of postmenopausal women. J Strength Cond Res 30(4): 1161-1170, 2016-PGC-1α4, a novel isoform of the transcriptional coactivator PGC-1α, was recently postulated to modulate the expression of anabolic and catabolic genes and therefore regulate skeletal muscle hypertrophy. Resting levels of PGC-1α4 messenger RNA (mRNA) expression were found to increase in healthy adults after resistance training. However, the acute effect of resistance exercise (RE) on PGC-1α4 expression in populations prone to progressive muscle loss, such as postmenopausal women, has not been evaluated. Here, we investigated alterations in mRNA expression of PGC-1α4 and PGC-1α1, a regulator of muscle oxidative changes, in postmenopausal women after high-intensity eccentric RE and analyzed these findings with respect to changes in insulin-like growth factor (IGF)-1 and catabolic gene expression. Nine postmenopausal women (age, 57.9 ± 3.2 years) performed 10 sets of 10 maximal eccentric repetitions of single-leg extension with 20-second rest periods between sets. Muscle biopsies were obtained from the vastus lateralis of the exercised leg before and 4 hours after the RE bout with mRNA expression determined by quantitative real-time polymerase chain reaction. No significant changes in the mRNA expression of either PGC-1α isoform were observed after acute eccentric RE (p > 0.05). IGF-1Ea mRNA expression significantly increased (p ≤ 0.05), whereas IGF-1Eb and mechano-growth factor (MGF) did not significantly change (p > 0.05). PGC-1α4 mRNA expression was associated with reduced mRNA expression of the catabolic gene myostatin (R = -0.88, p < 0.01), whereas MGF mRNA expression was associated with reduced mRNA expression of the catabolic gene FOXO3A (R = -0.81, p ≤ 0.05). These data demonstrate an

  7. Effects of prior acute exercise on circulating cytokine concentration responses to a high-fat meal.

    PubMed

    Brandauer, Josef; Landers-Ramos, Rian Q; Jenkins, Nathan T; Spangenburg, Espen E; Hagberg, James M; Prior, Steven J

    2013-08-01

    High-fat meal consumption alters the circulating cytokine profile and contributes to cardiometabolic diseases. A prior bout of exercise can ameliorate the triglyceride response to a high-fat meal, but the interactive effects of exercise and high-fat meals on cytokines that mediate cardiometabolic risk are not fully understood. We investigated the effects of prior exercise on the responses of circulating tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), IL-8, leptin, retinol-binding protein 4 (RBP4), vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), placental growth factor (PlGF), and soluble fms-like tyrosine kinase-1 (sFlt-1) to a high-fat meal. Ten healthy men were studied before and 4 h after ingestion of a high-fat meal either with or without ∼50 min of endurance exercise at 70% of VO2 max on the preceding day. In response to the high-fat meal, lower leptin and higher VEGF, bFGF, IL-6, and IL-8 concentrations were evident (P < 0.05 for all). There was no effect of the high-fat meal on PlGF, TNF-α, or RBP4 concentrations. We found lower leptin concentrations with prior exercise (P < 0.05) and interactive effects of prior exercise and the high-fat meal on sFlt-1 (P < 0.05). The high-fat meal increased IL-6 by 59% without prior exercise and 218% with prior exercise (P < 0.05). In conclusion, a prior bout of endurance exercise does not affect all high-fat meal-induced changes in circulating cytokines, but does affect fasting or postprandial concentrations of IL-6, leptin, and sFlt-1. These data may reflect a salutary effect of prior exercise on metabolic responses to a high-fat meal. PMID:24303126

  8. Effects of prior acute exercise on circulating cytokine concentration responses to a high-fat meal

    PubMed Central

    Brandauer, Josef; Landers-Ramos, Rian Q; Jenkins, Nathan T; Spangenburg, Espen E; Hagberg, James M; Prior, Steven J

    2013-01-01

    High-fat meal consumption alters the circulating cytokine profile and contributes to cardiometabolic diseases. A prior bout of exercise can ameliorate the triglyceride response to a high-fat meal, but the interactive effects of exercise and high-fat meals on cytokines that mediate cardiometabolic risk are not fully understood. We investigated the effects of prior exercise on the responses of circulating tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), IL-8, leptin, retinol-binding protein 4 (RBP4), vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), placental growth factor (PlGF), and soluble fms-like tyrosine kinase-1 (sFlt-1) to a high-fat meal. Ten healthy men were studied before and 4 h after ingestion of a high-fat meal either with or without ∼50 min of endurance exercise at 70% of VO2 max on the preceding day. In response to the high-fat meal, lower leptin and higher VEGF, bFGF, IL-6, and IL-8 concentrations were evident (P < 0.05 for all). There was no effect of the high-fat meal on PlGF, TNF-α, or RBP4 concentrations. We found lower leptin concentrations with prior exercise (P < 0.05) and interactive effects of prior exercise and the high-fat meal on sFlt-1 (P < 0.05). The high-fat meal increased IL-6 by 59% without prior exercise and 218% with prior exercise (P < 0.05). In conclusion, a prior bout of endurance exercise does not affect all high-fat meal–induced changes in circulating cytokines, but does affect fasting or postprandial concentrations of IL-6, leptin, and sFlt-1. These data may reflect a salutary effect of prior exercise on metabolic responses to a high-fat meal. PMID:24303126

  9. Illness cognition as a predictor of exercise habits and participation in cardiac prevention and rehabilitation programs after acute coronary syndrome

    PubMed Central

    2013-01-01

    Background Despite well-established medical recommendations, many cardiac patients do not exercise regularly either independently or through formal cardiac prevention and rehabilitation programs (CPRP). This non-adherence is even more pronounced among minority ethnic groups. Illness cognition (IC), i.e. the way people perceive the situation they encounter, has been recognized as a crucial determinant of health-promoting behavior. Few studies have applied a cognitive perspective to explain the disparity in exercising and CPRP attendance between cardiac patients from different ethnic backgrounds. Based on the Health Belief Model (HBM) and the Common Sense Model (CSM), the objective was to assess the association of IC with exercising and with participation in CPRP among Jewish/majority and Arab/minority patients hospitalized with acute coronary syndrome. Methods Patients (N = 420) were interviewed during hospitalization (January-2009 until August- 2010) about IC, with 6-month follow-up interviews about exercise habits and participation in CPRP. Determinants that predict active lifestyle and participation in CPRP were assessed using backward stepwise logistic regression. Results Perceived susceptibility to heart disease and sense and personal control were independently associated with exercising 6 months after the acute event (OR = 0.58, 95% CI: 0.42-0.80 and OR = 1.09, 95% CI: 1.02-1.17, per unit on a 5-point scale). Perceived benefits of regular exercise and a sense of personal control were independently associated with participation in CPRP (OR = 1.56, 95% CI: 1.12-2.16 and OR = 1.08, 95% CI: 1.01-1.15, per unit on a 5-point scale). None of the IC variables assessed could explain the large differences in health promoting behaviors between the majority and minority ethnic groups. Conclusions IC should be taken into account in future interventions to promote physical activity and participation in CPRP for both ethnic groups. Yet, because IC failed

  10. Efficacy of acute caffeine ingestion for short-term high-intensity exercise performance: a systematic review.

    PubMed

    Astorino, Todd A; Roberson, Daniel W

    2010-01-01

    Caffeine is the most widely used drug in the world, commonly ingested in coffee, tea, soda, and energy drinks. Its ability to enhance muscular work has been apparent since the early 1900s. Caffeine typically increases endurance performance; however, efficacy of caffeine ingestion for short-term high-intensity exercise is equivocal, which may be explained by discrepancies in exercise protocols, dosing, and subjects' training status and habitual caffeine intake found across studies. The primary aim of this review is to critically examine studies that have tested caffeine's ability to augment performance during exercise dependent on nonoxidative metabolism such as sprinting, team sports, and resistance training. A review of the literature revealed 29 studies that measured alterations in short-term performance after caffeine ingestion. Each study was critically analyzed using the Physiotherapy Evidence Database (PEDro) scale. The mean PEDro score was 7.76 +/- 0.87. Eleven of 17 studies revealed significant improvements in team sports exercise and power-based sports with caffeine ingestion, yet these effects were more common in elite athletes who do not regularly ingest caffeine. Six of 11 studies revealed significant benefits of caffeine for resistance training. Some studies show decreased performance with caffeine ingestion when repeated bouts are completed. The exact mechanism explaining the ergogenic effect of caffeine for short-term exercise is unknown. PMID:19924012

  11. Enhancement of aphrodisiac activity in male rats by ethanol extract of Kaempferia parviflora and exercise training.

    PubMed

    Chaturapanich, G; Chaiyakul, S; Verawatnapakul, V; Yimlamai, T; Pholpramool, C

    2012-05-01

    This study aimed to investigate the effects of Kaempferia parviflora extract (KD) and exercise training on reproductive function in male rats. Sexually mature males were assigned to four groups: control, KD70 (received 70 mg kg(-1) day(-1) for 4 weeks), Ex (exercise training for 4 weeks), Ex + KD70 (exercise training with KD 70 mg kg(-1) day(-1)). At the end of treatment regimes, sexual behaviours including mount latency (ML), mount frequency (MF), ejaculation latency (EL), post-ejaculation latency (PEL), number of mount within 30 min (MF(30)) and number of ejaculation (NEL) were assessed by a video camera, and fertility was tested by natural mating. Results showed that KD had no effect on the weights of reproductive organs, liver, kidneys and levator ani muscle. On the other hand, the weights of epididymis, seminal vesicles, prostate gland and levator ani muscle were significantly increased in the Ex and Ex+KD70 groups. ML and EL were shortened in all treatment groups, but PEL was decreased only in KP70 group. Only Ex and Ex + KD70 groups exhibited lower MF and higher NEL whilst MF(30) were not changed in all groups. None of the treatments altered male fertility. It is concluded that KD enhanced sexual motivation whereas exercise training promoted both sexual motivation and performance. PMID:21729142

  12. Acute effect of high-intensity aerobic exercise performed on treadmill and cycle ergometer on strength performance.

    PubMed

    Panissa, Valéria L G; Tricoli, Valmor A A; Julio, Ursula F; Ribeiro, Natalia; de Azevedo Neto, Raymundo M A; Carmo, Everton C; Franchini, Emerson

    2015-04-01

    Concurrent training (i.e., combination of endurance with strength training) may result in negative interference on strength performance. Moreover, there are indications that the magnitude of this interference is dependent on endurance exercise mode. Thus, this study aimed to verify the acute effects of previous running and cycling on strength endurance performance. After the determination of the maximum intensity reached (Imax) during treadmill running and cycle ergometer pedaling and half-squat maximum strength (1 repetition maximum [1RM]), 10 physically active men were submitted to 3 experimental conditions: control condition (S) comprised of 4 sets of maximum repetitions at 80% 1RM, intermittent running (RS), and cycling (CS) conditions (15 × 1 minute:1 minute in the Imax) followed by the strength exercise (S). Maximum number of repetitions (MNR), total session volume (TV), and vastus lateralis electromyographic signal (VLRMS) were analyzed. It was observed that MNR and TV performed in set 1 in the S condition was superior to that performed in set 1 in the RS (p < 0.001) and CS (p < 0.001) conditions; and set 2 in the S condition was superior to set 2 only in the CS for the MNR (p = 0.032) and TV (p = 0.012). For the VLRMS, there was a main effect for repetition, with higher values in the last repetition compared with the second one (p < 0.01). In conclusion, an aerobic exercise bout before strength exercise impairs the subsequent strength endurance performance. In addition, the magnitude of the interference effect was higher after the aerobic cycling exercise. PMID:25259468

  13. Circulating miR-21, miR-378, and miR-940 increase in response to an acute exhaustive exercise in chronic heart failure patients

    PubMed Central

    Das, Saumya; Wang, Lemin; Jiang, Jinfa; Li, Guanghe; Xu, Jiahong; Yao, Jianhua; Wang, Hongbao; Dai, Yue; Xiao, Junjie

    2016-01-01

    Congestive heart failure (CHF) is a major cause of hospitalizations, morbidity, and mortality in Western societies. In addition to optimal medical and device therapy, exercise training is an important adjunct treatment option for CHF patients. MicroRNAs (miRNAs, miRs) participate in a variety of physiological and pathological processes. Dynamic regulation of circulating miRNAs during exercise in healthy persons and athletes has recently been documented, however, the response of circulating miRNAs to exercise in CHF patients is undetermined. Twenty-eight CHF patients underwent a symptom-limited incremental cardiopulmonary exercise test on a bicycle ergometer using a standardized exercise protocol of revised Ramp10 programs at Shanghai Tongji Hospital. Blood samples were collected before and immediately after an acute exercise session. RNA was extracted from the serum and selected miRNAs were determined using quantitative polymerase chain reactions. Moreover, inflammatory and muscle damage markers were determined by enzyme linked immunosorbent assays. We found that serum miR-21, miR-378 and miR-940 levels were significantly up-regulated immediately following an acute exercise while the rest were not changed. In addition, no robust correlation was identified between changes of these miRNAs and exercise capacity, muscle damage or inflammation. In conclusion, serum miR-21, miR-378, and miR-940 increase in response to an acute exhaustive exercise in CHF patients. Further studies are needed to clarify the potential use of circulating miRNAs as biomarkers of exercise adaptation in CHF patients, and if they have any use as prognostic markers of cardiovascular outcomes. PMID:26799589

  14. Enhanced muscle glucose metabolism after exercise in the rat: the two phases.

    PubMed

    Garetto, L P; Richter, E A; Goodman, M N; Ruderman, N B

    1984-06-01

    Thirty minutes after a treadmill run, glucose utilization and glycogen synthesis in perfused rat skeletal muscle are enhanced due to an increase in insulin sensitivity (Richter et al., J. Clin. Invest. 69: 785-793, 1982). The exercise used in these studies was of moderate intensity, and muscle glycogen was substantially repleted at the time (30 min postexercise) that glucose metabolism was examined. When rats were run at twice the previous rate (36 m/min), muscle glycogen was still substantially diminished 30 min after the run. At this time the previously noted increase in insulin sensitivity was still observed in perfused muscle; however, glucose utilization was also increased in the absence of added insulin (1.5 vs. 4.2 mumol X g-1 X h-1). In contrast 2.5 h after the run, muscle glycogen had returned to near preexercise values, and only the insulin-induced increase in glucose utilization was evident. The data suggest that the restoration of muscle glycogen after exercise occurs in two phases. In phase I, muscle glycogen is depleted and insulin-stimulated glucose utilization and glucose utilization in the absence of added insulin may both be enhanced. In phase II glycogen levels have returned to near base-line values and only the increase in insulin sensitivity persists. It is proposed that phase I corresponds to the period of rapid glycogen repletion that immediately follows exercise and phase II to the period of supercompensation. PMID:6377909

  15. Enhanced muscular oxygen extraction in athletes exaggerates hypoxemia during exercise in hypoxia.

    PubMed

    Van Thienen, Ruud; Hespel, Peter

    2016-02-01

    High rate of muscular oxygen utilization facilitates the development of hypoxemia during exercise at altitude. Because endurance training stimulates oxygen extraction capacity, we investigated whether endurance athletes are at higher risk to developing hypoxemia and thereby acute mountain sickness symptoms during exercise at simulated high altitude. Elite athletes (ATL; n = 8) and fit controls (CON; n = 7) cycled for 20 min at 100 W (EX100W), as well as performed an incremental maximal oxygen consumption test (EXMAX) in normobaric hypoxia (0.107 inspired O2 fraction) or normoxia (0.209 inspired O2 fraction). Cardiorespiratory responses, arterial Po2 (PaO2), and oxygenation status in m. vastus lateralis [tissue oxygenation index (TOIM)] and frontal cortex (TOIC) by near-infrared spectroscopy, were measured. Muscle O2 uptake rate was estimated from change in oxyhemoglobin concentration during a 10-min arterial occlusion in m. gastrocnemius. Maximal oxygen consumption in normoxia was 70 ± 2 ml·min(-1·)kg(-1) in ATL vs. 43 ± 2 ml·min(-1·)kg(-1) in CON, and in hypoxia decreased more in ATL (-41%) than in CON (-25%, P < 0.05). Both in normoxia at PaO2 of ∼95 Torr, and in hypoxia at PaO2 of ∼35 Torr, muscle O2 uptake was twofold higher in ATL than in CON (0.12 vs. 0.06 ml·min(-1)·100 g(-1); P < 0.05). During EX100W in hypoxia, PaO2 dropped to lower (P < 0.05) values in ATL (27.6 ± 0.7 Torr) than in CON (33.5 ± 1.0 Torr). During EXMAX, but not during EX100W, TOIM was ∼15% lower in ATL than in CON (P < 0.05). TOIC was similar between the groups at any time. This study shows that maintenance of high muscular oxygen extraction rate at very low circulating PaO2 stimulates the development of hypoxemia during submaximal exercise in hypoxia in endurance-trained individuals. This effect may predispose to premature development of acute mountain sickness symptoms during exercise at altitude. PMID:26607244

  16. Exercise enhances wound healing and prevents cancer progression during aging by targeting macrophage polarity.

    PubMed

    Goh, Jorming; Ladiges, Warren C

    2014-07-01

    Physical activity, which can include regular and repetitive exercise training, has been shown to decrease the incidence of age-related diseases. Aging is characterized by aberrant immune responses, including impaired wound healing and increased cancer risk. The behavior and polarized phenotype of tissue macrophages are distinct between young and old organisms. The balance of M1 and M2 macrophages is altered in the aged tissue microenvironment, with a tilt towards an M2-dominant macrophage population, as well as its associated signaling pathways. These M2-type responses may result in unresolved inflammation and create an environment that impairs wound healing and is favorable for cancer growth. We discuss the concept that exercise training can improve the regulation of macrophage polarization and normalize the inflammatory process, and thereby exert anticancer effects and enhance wound healing in older humans. PMID:24932991

  17. Acute effects of moderate exercise on serum lipids, lipoproteins and apolipoproteins in sedentary young women.

    PubMed

    Imamura, H; Katagiri, S; Uchid, K; Miyamoto, N; Nakano, H; Shirota, T

    2000-12-01

    1. The aim of the present study was to examine the effects of moderate exercise on serum lipids, lipoproteins and apolipoproteins in seven sedentary young women under controlled conditions. 2. The subjects exercised on separate days for 30 or 60 min at an intensity of 60% of maximal oxygen uptake on a cycle ergometer. Total cholesterol, triglycerides, high-density lipoprotein-cholesterol (HDL-C), HDL2-C, HDL3-C, low-density lipoprotein-cholesterol, apolipoproteins A-I, A-II and B were measured in the serum at the end of the 60 min rest period before each exercise, immediately after the performance of each exercise and at 30 min and 1, 2 and 24 h after each exercise. 3. The results showed that there were no significant differences between the pre- and postexercise samples for any of the parameters tested. 4. The results of the present study suggest that a single bout of exercise designed to simulate a typical training workout has no noticeable effect on serum lipids, lipoproteins and apolipoproteins in normal sedentary young women who have normal lipid profiles, are in the follicular phase of their menstrual cycle and who consume a relatively low-fat diet. PMID:11117233

  18. Acute effects of exercise on mood and EEG activity in healthy young subjects: a systematic review.

    PubMed

    Lattari, Eduardo; Portugal, Eduardo; Moraes, Helena; Machado, Sérgio; Santos, Tony M; Deslandes, Andrea C

    2014-01-01

    Electroencephalography has been used to establish the relationship among cortical activity, exercise and mood, such as asymmetry, absolute and relative power. The purpose of this study was to systematically review the influence of cortical activity on mood state induced by exercise. The Preferred Reporting Items in Systematic reviews and Meta-Analyses was followed in this study. The studies were retrieved from MEDLINE/PubMed, ISI Web of Knowledge and SciELO. Search was conducted in all databases using the following terms: EEG asymmetry, sLORETA, exercise, with affect, mood and emotions. Based on the defined criteria, a total of 727 articles were found in the search conducted in the literature (666 in Pubmed, 54 in ISI Web of Science, 2 in SciELO and 5 in other data sources). Total of 11 studies were selected which properly met the criteria for this review. Nine out of 11 studies used the frontal asymmetry, four used absolute and relative power and one used sLORETA. With regard to changes in cortical activity and mood induced by exercise, six studies attributed this result to different intensities, one to duration, one to type of exercise and one to fitness level. In general, EEG measures showed contradictory evidence of its ability to predict or modulate psychological mood states through exercise intervention. PMID:24923350

  19. Cytokine Responses to Acute Intermittent Aerobic Exercise in Children With Prader-Willi Syndrome and Nonsyndromic Obesity.

    PubMed

    Duran, Andrea T; Gertz, Erik; Judelson, Daniel A; Haqq, Andrea M; Clark, Susan J; Tsang, Kavin W; Rubin, Daniela

    2015-11-01

    Prader-Willi Syndrome (PWS), the best characterized form of syndromic obesity, presents with abnormally high fat mass. In children, obesity presents with low-grade systemic inflammation. This study evaluated if PWS and/or nonsyndromic obesity affected cytokine responses to intermittent aerobic exercise in children. Eleven children with PWS (11 ± 2 y, 45.4 ± 9.5% body fat), 12 children with obesity (OB) (9 ± 1 y, 39.9 ± 6.8% body fat), and 12 lean (LN) children (9 ± 1 y, 17.5 ± 4.6% body fat) participated. Children completed 10 2-min cycling bouts of vigorous intensity, separated by 1-min rest. Blood samples were collected preexercise (PRE), immediately postexercise (IP), and 15, 30, and 60 min into recovery to analyze possible changes in cytokines. In all groups, IL-6 and IL-8 concentrations were greater during recovery compared with PRE. PWS and OB exhibited higher IL-6 area under the curve (AUC) than LN (p < .01 for both). PWS demonstrated higher IL-8 AUC than LN (p < .04). IL-10, TNF-α, and IFN-γ did not change with exercise (p > .05 for all). Results indicate that children with PWS respond with increased Il-6 and IL-8 concentrations to acute exercise similarly to controls. Excess adiposity and epigenetic modifications may explain the greater integrated IL-6 and IL-8 responses in PWS compared with controls. PMID:26181653

  20. Effect of acute induced metabolic alkalosis on the acid/base responses to sprint exercise of six racing greyhounds.

    PubMed

    Holloway, S A; Sundstrom, D; Senior, D F

    1996-11-01

    To investigate the effect of acute induced metabolic alkalosis on the haematological, biochemical and metabolic responses to sprint exercise, six greyhound dogs with previously placed carotid arterial catheters were raced four times over a distance of 400 metres. Each dog was raced twice after receiving oral sodium bicarbonate solution (NaHCO3) (400 mg kg-1) or lactated Ringer's solution (LRS). Before, and for intervals of up to one hour after, the exercise arterial blood samples were collected for the measurement of blood gases, packed cell volume, total protein, serum biochemistry and plasma lactate. The time to complete the 400 metre sprint ranged from 32.7 seconds to 36.9 seconds. There was no significant difference in racing times between the dogs treated with NaHCO3 and LRS, and there was no significant difference between the plasma lactate measurements after the treatments with NaHCO3 or LRS. Serum chloride concentrations were significantly lower after NaHCO3 than after LRS, and there was a trend towards a lower serum potassium concentration after NaHCO3 treatment. Plasma lactate concentrations showed a similar increase and time course of disappearance after both LRS and NaHCO3 treatments. There were significant changes in all the parameters measured after the exercise, but there were large variations between individual dogs and between races when the dogs were receiving the same treatment. PMID:8938856

  1. Energy intake over 2 days is unaffected by acute sprint interval exercise despite increased appetite and energy expenditure.

    PubMed

    Beaulieu, Kristine; Olver, T Dylan; Abbott, Kolten C; Lemon, Peter W R

    2015-01-01

    A cumulative effect of reduced energy intake, increased oxygen consumption, and/or increased lipid oxidation could explain the fat loss associated with sprint interval exercise training (SIT). This study assessed the effects of acute sprint interval exercise (SIE) on energy intake, subjective appetite, appetite-related peptides, oxygen consumption, and respiratory exchange ratio over 2 days. Eight men (25 ± 3 years, 79.6 ± 9.7 kg, body fat 13% ± 6%; mean ± SD) completed 2 experimental treatments: SIE and recovery (SIEx) and nonexercise control. Each 34-h treatment consisted of 2 consecutive 10-h test days. Between 0800-1800 h, participants remained in the laboratory for 8 breath-by-breath gas collections, 3 buffet-type meals, 14 appetite ratings, and 4 blood samples for appetite-related peptides. Treatment comparisons were made using 2-way repeated measures ANOVA or t tests. An immediate, albeit short-lived (<1 h), postexercise suppression of appetite and increase in peptide YY (PYY) were observed (P < 0.001). However, overall hunger and motivation to eat were greater during SIEx (P < 0.02) without affecting energy intake. Total 34-h oxygen consumption was greater during SIEx (P = 0.04), elicited by the 1491-kJ (22%) greater energy expenditure over the first 24 h (P = 0.01). Despite its effects on oxygen consumption, appetite, and PYY, acute SIE did not affect energy intake. Consequently, if these dietary responses to SIE are sustained with regular SIT, augmentations in oxygen consumption and/or a substrate shift toward increased fat use postexercise are most likely responsible for the observed body fat loss with this type of exercise training. PMID:25494974

  2. Inspiratory muscle training enhances pulmonary O(2) uptake kinetics and high-intensity exercise tolerance in humans.

    PubMed

    Bailey, Stephen J; Romer, Lee M; Kelly, James; Wilkerson, Daryl P; DiMenna, Fred J; Jones, Andrew M

    2010-08-01

    Fatigue of the respiratory muscles during intense exercise might compromise leg blood flow, thereby constraining oxygen uptake (Vo(2)) and limiting exercise tolerance. We tested the hypothesis that inspiratory muscle training (IMT) would reduce inspiratory muscle fatigue, speed Vo(2) kinetics and enhance exercise tolerance. Sixteen recreationally active subjects (mean + or - SD, age 22 + or - 4 yr) were randomly assigned to receive 4 wk of either pressure threshold IMT [30 breaths twice daily at approximately 50% of maximum inspiratory pressure (MIP)] or sham treatment (60 breaths once daily at approximately 15% of MIP). The subjects completed moderate-, severe- and maximal-intensity "step" exercise transitions on a cycle ergometer before (Pre) and after (Post) the 4-wk intervention period for determination of Vo(2) kinetics and exercise tolerance. There were no significant changes in the physiological variables of interest after Sham. After IMT, baseline MIP was significantly increased (Pre vs. Post: 155 + or - 22 vs. 181 + or - 21 cmH(2)O; P < 0.001), and the degree of inspiratory muscle fatigue was reduced after severe- and maximal-intensity exercise. During severe exercise, the Vo(2) slow component was reduced (Pre vs. Post: 0.60 + or - 0.20 vs. 0.53 + or - 0.24 l/min; P < 0.05) and exercise tolerance was enhanced (Pre vs. Post: 765 + or - 249 vs. 1,061 + or - 304 s; P < 0.01). Similarly, during maximal exercise, the Vo(2) slow component was reduced (Pre vs. Post: 0.28 + or - 0.14 vs. 0.18 + or - 0.07 l/min; P < 0.05) and exercise tolerance was enhanced (Pre vs. Post: 177 + or - 24 vs. 208 + or - 37 s; P < 0.01). Four weeks of IMT, which reduced inspiratory muscle fatigue, resulted in a reduced Vo(2) slow-component amplitude and an improved exercise tolerance during severe- and maximal-intensity exercise. The results indicate that the enhanced exercise tolerance observed after IMT might be related, at least in part, to improved Vo(2) dynamics, presumably as a

  3. Dietary nitrate supplementation reduces the O2 cost of low-intensity exercise and enhances tolerance to high-intensity exercise in humans.

    PubMed

    Bailey, Stephen J; Winyard, Paul; Vanhatalo, Anni; Blackwell, Jamie R; Dimenna, Fred J; Wilkerson, Daryl P; Tarr, Joanna; Benjamin, Nigel; Jones, Andrew M

    2009-10-01

    Pharmacological sodium nitrate supplementation has been reported to reduce the O2 cost of submaximal exercise in humans. In this study, we hypothesized that dietary supplementation with inorganic nitrate in the form of beetroot juice (BR) would reduce the O2 cost of submaximal exercise and enhance the tolerance to high-intensity exercise. In a double-blind, placebo (PL)-controlled, crossover study, eight men (aged 19-38 yr) consumed 500 ml/day of either BR (containing 11.2 +/- 0.6 mM of nitrate) or blackcurrant cordial (as a PL, with negligible nitrate content) for 6 consecutive days and completed a series of "step" moderate-intensity and severe-intensity exercise tests on the last 3 days. On days 4-6, plasma nitrite concentration was significantly greater following dietary nitrate supplementation compared with PL (BR: 273 +/- 44 vs. PL: 140 +/- 50 nM; P < 0.05), and systolic blood pressure was significantly reduced (BR: 124 +/- 2 vs. PL: 132 +/- 5 mmHg; P < 0.01). During moderate exercise, nitrate supplementation reduced muscle fractional O2 extraction (as estimated using near-infrared spectroscopy). The gain of the increase in pulmonary O2 uptake following the onset of moderate exercise was reduced by 19% in the BR condition (BR: 8.6 +/- 0.7 vs. PL: 10.8 +/- 1.6 ml.min(-1).W(-1); P < 0.05). During severe exercise, the O2 uptake slow component was reduced (BR: 0.57 +/- 0.20 vs. PL: 0.74 +/- 0.24 l/min; P < 0.05), and the time-to-exhaustion was extended (BR: 675 +/- 203 vs. PL: 583 +/- 145 s; P < 0.05). The reduced O2 cost of exercise following increased dietary nitrate intake has important implications for our understanding of the factors that regulate mitochondrial respiration and muscle contractile energetics in humans. PMID:19661447

  4. Affective Responses to Acute Resistance Exercise Performed at Self-Selected and Imposed Loads in Trained Women.

    PubMed

    Focht, Brian C; Garver, Matthew J; Cotter, Joshua A; Devor, Steven T; Lucas, Alexander R; Fairman, Ciaran M

    2015-11-01

    The purpose of this study was to examine the affective responses to acute resistance exercise (RE) performed at self-selected (SS) and imposed loads in recreationally trained women. Secondary purposes were to (a) examine differences in correlates of motivation for future participation in RE and (b) determine whether affective responses to RE were related to these select motivational correlates of RE participation. Twenty recreationally trained young women (mean age = 23 years) completed 3 RE sessions involving 3 sets of 10 repetitions using loads of 40% of 1 repetition maximum (1RM), 70% 1RM, and an SS load. Affective responses were assessed before, during, and after each RE session using the Feeling Scale. Self-efficacy and intention for using the imposed and SS loads for their regular RE participation during the next month were also assessed postexercise. Results revealed that although the SS and imposed load RE sessions yielded different trajectories of change in affect during exercise (p < 0.01), comparable improvements in affect emerged after RE. Additionally, the SS condition was associated with the highest ratings of self-efficacy and intention for future RE participation (p < 0.01), but affective responses to acute RE were unrelated to self-efficacy or intention. It is concluded that acute bouts of SS and imposed load RE resulted in comparable improvements in affect; recreationally trained women reported the highest self-efficacy and intention to use the load chosen in SS condition in their own resistance training; and affective responses were unrelated to motivational correlates of resistance training. PMID:26506060

  5. Spartathlon, a 246 kilometer foot race: effects of acute inflammation induced by prolonged exercise on circulating progenitor reparative cells.

    PubMed

    Goussetis, Evgenios; Spiropoulos, Antonia; Tsironi, Maria; Skenderi, Katerina; Margeli, Alexandra; Graphakos, Stelios; Baltopoulos, Panayiotis; Papassotiriou, Ioannis

    2009-01-01

    Endothelial progenitor cells (EPCs) and the recently described circulating fibrocytes (CFs) are strongly associated with tissue repair. We investigated the kinetics of both "repair" progenitor cells in healthy athletes who participated in the "Spartahlon" ultradistance foot race (246 km continuous running exercise), which provides a unique model of inducing dramatic systemic inflammatory changes. Peripheral blood mononuclear cells (PBMCs) were isolated from 10 volunteer athletes, who completed successfully the race, before, at the end, and at 48 h post-race. EPCs and CFs were detected as endothelial colony-forming units (CFU-ECs) and as the number of adherent with a spindle-shaped morphology Collagen I(+) cells detected after 6-day culture of PBMCs, respectively. The marked increase of plasma levels of CRP, IL-6, SAA, MCP-1, IL-8, sVCAM-1, sICAM-1, thrombomodulin (sTM) and NT-pro-BNP at the end of race established acute inflammation and tissue injury. EPCs increased by nearly eleven-fold in peripheral blood at the end of the race from 44.5+/-2.5/ml to 494.6+/-27.9/ml and remained increased 428.5+/-31.5/ml at 48 h post-race (p<0.0001). The number of the fibrocytes cultured from PBMCs obtained before, at the end, and 48 h post-race did not reveal any significant difference. These findings indicate that bone marrow responses to acute inflammatory damage, induced by exhausting exercise, with a rapid release of EPCs but not CFs into circulation. Given the ability of EPCs to promote angiogenesis and vascular regeneration, we may suggest that this kind of cell mobilization may serve as a physiologic repair mechanism in acute inflammatory tissue injury. PMID:19233694

  6. Blood Flow Restriction Enhances Post–Resistance Exercise Angiogenic Gene Expression

    PubMed Central

    LARKIN, KELLY A.; MACNEIL, R. GAVIN; DIRAIN, MARVIN; SANDESARA, BHANUPRESAD; MANINI, TODD M.; BUFORD, THOMAS W.

    2013-01-01

    Purpose The objective of this study is to evaluate the effects of blood flow restriction (BFR) on muscle oxygenation during low-intensity resistance exercise as well as postexercise expression of molecules related to physiological angiogenesis. Methods Using a randomized cross-over design, six apparently healthy young adults (22 ± 1 yr) performed 120 unilateral knee extensions at 40% of 1 repetition maximum with and without BFR (CNTRL). Near-infrared spectroscopy was used to measure oxygenation of the vastus lateralis during exercise. Serum and muscle expression of Post–Resistance vascular endothelial growth factor (VEGF) were determined preexercise, 4 h postexercise, and 24 h postexercise. Transcript (mRNA) expression of VEGF and other angiogenic genes was also determined. Results BFR increased muscle hemoglobin (Hb) concentrations during exercise (14.4 ± 1.6 vs. 0.9 ± 1.6, P = 0.002), driven largely by an increase in deoxygenated Hb (11.0 ± 2.5 vs. 0.5 ± 1.1, P = 0.030). BFR also increased (P < 0.05) transcript expression of VEGF, VEGF-R2, hypoxia-inducible factor 1 alpha, inducible nitric oxide synthase (NOS), and neuronal NOS. The most dramatic change in response to BFR was an increase in VEGF mRNA at 4 h postexercise (4.1 ± 0.6 vs. 0.6 ± 0.2-fold change, P = 0.028). Compared with control, transcript expression of endothelial NOS, serum VEGF, or muscle protein expression of VEGF was not altered in response to BFR (P > 0.05). Conclusion Acute BFR increases postexercise expression of mRNA related to skeletal muscle angiogenesis, plausibly in response to changes in muscle Hb concentrations. PMID:22677927

  7. Does acute exercise affect the performance of whole-body, psychomotor skills in an inverted-U fashion? A meta-analytic investigation.

    PubMed

    McMorris, Terry; Hale, Beverley J; Corbett, Jo; Robertson, Kevin; Hodgson, Christopher I

    2015-03-15

    The primary purpose of this study was to examine, using meta-analytical measures, whether research into the performance of whole-body, psychomotor tasks following moderate and heavy exercise demonstrates an inverted-U effect. A secondary purpose was to compare the effects of acute exercise on tasks requiring static maintenance of posture versus dynamic, ballistic skills. Moderate intensity exercise was determined as being between 40% and 79% maximum power output (ẆMAX) or equivalent, while ≥80% ẆMAX was considered to be heavy. There was a significant difference (Zdiff=4.29, p=0.001, R(2)=0.42) between the mean effect size for moderate intensity exercise (g=0.15) and that for heavy exercise size (g=-0.86). These data suggest a catastrophe effect during heavy exercise. Mean effect size for static tasks (g=-1.24) was significantly different (Zdiff=3.24, p=0.001, R(2)=0.90) to those for dynamic/ballistic tasks (g=-0.30). The result for the static versus dynamic tasks moderating variables point to perception being more of an issue than peripheral fatigue for maintenance of static posture. The difference between this result and those found in meta-analyses examining the effects of acute exercise on cognition shows that, when perception and action are combined, the complexity of the interaction induces different effects to when cognition is detached from motor performance. PMID:25582516

  8. Iron Status and the Acute Post-Exercise Hepcidin Response in Athletes

    PubMed Central

    Peeling, Peter; Sim, Marc; Badenhorst, Claire E.; Dawson, Brian; Govus, Andrew D.; Abbiss, Chris R.; Swinkels, Dorine W.; Trinder, Debbie

    2014-01-01

    This study explored the relationship between serum ferritin and hepcidin in athletes. Baseline serum ferritin levels of 54 athletes from the control trial of five investigations conducted in our laboratory were considered; athletes were grouped according to values <30 μg/L (SF<30), 30–50 μg/L (SF30–50), 50–100 μg/L (SF50–100), or >100 μg/L (SF>100). Data pooling resulted in each athlete completing one of five running sessions: (1) 8×3 min at 85% vVO2peak; (2) 5×4 min at 90% vVO2peak; (3) 90 min continuous at 75% vVO2peak; (4) 40 min continuous at 75% vVO2peak; (5) 40 min continuous at 65% vVO2peak. Athletes from each running session were represented amongst all four groups; hence, the mean exercise duration and intensity were not different (p>0.05). Venous blood samples were collected pre-, post- and 3 h post-exercise, and were analysed for serum ferritin, iron, interleukin-6 (IL-6) and hepcidin-25. Baseline and post-exercise serum ferritin levels were different between groups (p<0.05). There were no group differences for pre- or post-exercise serum iron or IL-6 (p>0.05). Post-exercise IL-6 was significantly elevated compared to baseline within each group (p<0.05). Pre- and 3 h post-exercise hepcidin-25 was sequentially greater as the groups baseline serum ferritin levels increased (p<0.05). However, post-exercise hepcidin levels were only significantly elevated in three groups (SF30–50, SF50–100, and SF>100; p<0.05). An athlete's iron stores may dictate the baseline hepcidin levels and the magnitude of post-exercise hepcidin response. Low iron stores suppressed post-exercise hepcidin, seemingly overriding any inflammatory-driven increases. PMID:24667393

  9. Acute Ethanol Withdrawal Impairs Contextual Learning and Enhances Cued Learning

    PubMed Central

    Tipps, Megan E.; Raybuck, Jonathan D.; Buck, Kari J.; Lattal, K. Matthew

    2014-01-01

    Background Alcohol affects many of the brain regions and neural processes that support learning and memory, and these effects are thought to underlie, at least in part, the development of addiction. Although much work has been done regarding the effects of alcohol intoxication on learning and memory, little is known about the effects of acute withdrawal from a single alcohol exposure. Methods We assess the effects of acute ethanol withdrawal (6 h post-injection with 4 g/kg ethanol) on two forms of fear conditioning (delay and trace fear conditioning) in C57BL/6J and DBA/2J mice. The influence of a number of experimental parameters (pre- and post-training withdrawal exposure; foreground/background processing; training strength; non-associative effects) is also investigated. Results Acute ethanol withdrawal during training had a bidirectional effect on fear conditioned responses, decreasing contextual responses and increasing cued responses. These effects were apparent for both trace and delay conditioning in DBA/2J mice and for trace conditioning in C57BL/6J mice; however, C57BL/6J mice were selectively resistant to the effects of acute withdrawal on delay cued responses. Conclusions Our results show that acute withdrawal from a single, initial ethanol exposure is sufficient to alter long-term learning in mice. In addition, the differences between the strains and conditioning paradigms used suggest that specific learning processes can be differentially affected by acute withdrawal in a manner that is distinct from the reported effects of both alcohol intoxication and withdrawal following chronic alcohol exposure. Thus, our results suggest a unique effect of acute alcohol withdrawal on learning and memory processes. PMID:25684050

  10. Effect of single dose administration of methylsulfonylmethane on oxidative stress following acute exhaustive exercise.

    PubMed

    Nakhostin-Roohi, Babak; Niknam, Zahra; Vaezi, Nasrin; Mohammadi, Sadollah; Bohlooli, Shahab

    2013-01-01

    Methylsulfonylmethane (MSM) is a sulfur-containing compound commonly found in diet and known to reduce oxidative stress. This trial was conducted to determine whether single dose supplementation with MSM attenuates post-exercise oxidative stress in healthy untrained young men. Sixteen untrained men volunteered for this study. Participants were randomized in a double-blind placebo-controlled fashion into 2 groups: Methylsulfonylmethane (MSM) (n = 8) and placebo (n = 8). The participants took supplementation or placebo before running on treadmill for 45 min at 75% VO2max. The MSM supplementation was prepared in water as 100 mg/ kg body weight. The placebo group received water. Serum Malondealdehyde (MDA), uric acid, bilirubin, protein carbonyl (PC) and plasma vitamin E levels were determined as the markers of oxidative stress. Plasma GSH (reduced Glutathione) and total antioxidant capacity (TAC) were measured as markers of plasma antioxidant system. MSM supplementation successfully lowered serum PC 2 and 24 h after exercise. Plasma TAC in MSM group was higher at 24 h after exercise. Serum level of uric acid and bilirubin were significantly low immediately after exercise in MSM supplemented group. There was no significant difference between groups in terms of plasma GSH level. These results complement earlier studies showing anti-oxidant effect of MSM and suggest that single dose oral supplementation with MSM lowers exercise induced oxidative stress in healthy untrained young men, but is not adequate to significantly affect plasma GSH level. PMID:24523764

  11. Effects of acute hypoxia on the oxygen uptake kinetics of older adults during cycling exercise.

    PubMed

    Zerbini, Livio; Brighenti, Alfredo; Pellegrini, Barbara; Bortolan, Lorenzo; Antonetti, Tommaso; Schena, Federico

    2012-08-01

    Pulmonary oxygen uptake, heart rate (HR), and deoxyhemoglobin (HHb) kinetics were studied in a group of older adults exercising in hypoxic conditions. Fourteen healthy older adults (aged 66 ± 6 years) performed 4 exercise sessions that consisted of (i) an incremental test to exhaustion on a cycloergometer while breathing normoxic room air (fractional inspired oxygen (FiO(2)) = 20.9% O(2)); (ii) an incremental test to exhaustion on a cycloergometer while breathing hypoxic room air (FiO(2) = 15% O(2)); (iii) 3 repeated square wave cycling exercises at moderate intensity while breathing normoxic room air; and (iv) 3 repeated square wave cycling exercises at moderate intensity while breathing hypoxic room air. During all exercise sessions, pulmonary gas exchange was measured breath-by-breath; HHb was determined on the vastus lateralis muscle by near-infrared spectroscopy; and HR was collected beat-by-beat. The pulomary oxygen uptake kinetics became slower in hypoxia (31 ± 9 s) than in normoxia (27 ± 7 s) because of an increased mismatching between O(2) delivery to O(2) utilization at the level of the muscle. The HR and HHb kinetics did not change between hypoxia and normoxia. PMID:22680339

  12. Physical Training Status Determines Oxidative Stress and Redox Changes in Response to an Acute Aerobic Exercise.

    PubMed

    Seifi-Skishahr, Farnaz; Damirchi, Arsalan; Farjaminezhad, Manoochehr; Babaei, Parvin

    2016-01-01

    Objective. To assess the influence of different physical training status on exercise-induced oxidative stress and changes in cellular redox state. Methods. Thirty male subjects participated in this study and were assigned as well-trained (WT), moderately trained (MT), and untrained (UT) groups. The levels of cortisol, creatine kinase, plasma reduced glutathione to oxidized glutathione (GSH/GSSG), cysteine/cystine (Cys/CySS), and GSH/GSSG ratio in red blood cells (RBCs) were measured immediately and 10 and 30 min after exercise. Results. Following the exercise, plasma GSH/GSSG (p = 0.001) and Cys/CySS (p = 0.005) were significantly reduced in all groups. Reduction in plasma GSH/GSSG ratio in all groups induced a transient shift in redox balance towards a more oxidizing environment without difference between groups (p = 0.860), while RBCs GSH/GSSG showed significant reduction (p = 0.003) and elevation (p = 0.007) in UT and MT groups, respectively. The highest level of RBCs GSH/GSSG ratio was recorded in MT group, and the lowest one was recorded in the WT group. Conclusion. Long term regular exercise training with moderate intensity shifts redox balance towards more reducing environment, versus intensive exercise training leads to more oxidizing environment and consequently development of related diseases. PMID:27064342

  13. Physical Training Status Determines Oxidative Stress and Redox Changes in Response to an Acute Aerobic Exercise

    PubMed Central

    Damirchi, Arsalan; Farjaminezhad, Manoochehr

    2016-01-01

    Objective. To assess the influence of different physical training status on exercise-induced oxidative stress and changes in cellular redox state. Methods. Thirty male subjects participated in this study and were assigned as well-trained (WT), moderately trained (MT), and untrained (UT) groups. The levels of cortisol, creatine kinase, plasma reduced glutathione to oxidized glutathione (GSH/GSSG), cysteine/cystine (Cys/CySS), and GSH/GSSG ratio in red blood cells (RBCs) were measured immediately and 10 and 30 min after exercise. Results. Following the exercise, plasma GSH/GSSG (p = 0.001) and Cys/CySS (p = 0.005) were significantly reduced in all groups. Reduction in plasma GSH/GSSG ratio in all groups induced a transient shift in redox balance towards a more oxidizing environment without difference between groups (p = 0.860), while RBCs GSH/GSSG showed significant reduction (p = 0.003) and elevation (p = 0.007) in UT and MT groups, respectively. The highest level of RBCs GSH/GSSG ratio was recorded in MT group, and the lowest one was recorded in the WT group. Conclusion. Long term regular exercise training with moderate intensity shifts redox balance towards more reducing environment, versus intensive exercise training leads to more oxidizing environment and consequently development of related diseases. PMID:27064342

  14. Exertional rhabdomyolysis in an acutely detrained athlete/exercise physiology professor.

    PubMed

    Pearcey, Gregory E P; Bradbury-Squires, David J; Power, Kevin E; Behm, David G; Button, Duane C

    2013-11-01

    The authors report a case of exercise-induced (exertional) rhabdomyolysis in a male athlete/exercise physiology professor who started a high-intensity resistance training program after a period of detraining. The subject performed 1 high-intensity resistance training session that consisted of 48 total sets of push-ups (24) and chin-ups (24) with no rest between the sets. Two days after the exercise session, the subject reported "Cola colored" urine. On arriving at the hospital, test results indicated elevated myoglobin and creatine kinase (CK) levels (59 159 U/L; normal is 20-200 U/L). Treatment included intravenous hydration with sodium bicarbonate to reduce myoglobin, blood work to monitor CK levels, and acupuncture from the shoulder to hand. Three weeks posttreatment, the subject started to exercise again. This case study illustrates that unaccustomed exercise in the form of high-intensity resistance training may be harmful (ie, severe delayed onset muscle soreness or even worse, as reported in this case, rhabdomyolysis) to detrained athletes. PMID:23727696

  15. Effects of Exergame and Music on Acute Exercise Responses to Graded Treadmill Running.

    PubMed

    Soltani, Pooya; Salesi, Mohsen

    2013-04-01

    Recreational athletes may listen to music or watch videos to prolong their exercise routines. In recent years, use of active videogames has increased. The effects of audiovisual encouragements have not been compared for their potential ergogenic effects on physiological variables during moderate- to high-intensity exercises. Here 60 sedentary healthy male students were divided into four groups-control (CON), audio feedback (A), videogame feedback (V), and a combination of A and V (AV)-based on previous measurement of maximum oxygen uptake using covariate adaptive randomization. Participants completed a bout of running (Balke treadmill test) until exhaustion based on the type of feedback. Exercise responses (time, heart rate, blood sugar level, and creatine kinase level) were compared in all groups before and after participation. Participants in group A ran significantly more than those in the CON group, and those in group AV ran significantly more than those in groups CON and V. In other physiological responses, the differences were not significant among groups. It is proposed that intentional functions from internal (physical feelings) to external perspective (music and video) may have been involved in increasing exercise time but were not strong enough to change levels of other physiological parameters. However, these findings have strong applications for improving fitness exercise programs while using a new generation of videogames. PMID:26192125

  16. Effects of acute exercise on lipid content and dietary lipid uptake in liver and skeletal muscle of lean and diabetic rats.

    PubMed

    Janssens, Sharon; Jonkers, Richard A M; Groen, Albert K; Nicolay, Klaas; van Loon, Luc J C; Prompers, Jeanine J

    2015-11-15

    Insulin resistance is associated with ectopic lipid accumulation. Physical activity improves insulin sensitivity, but the impact of exercise on lipid handling in insulin-resistant tissues remains to be elucidated. The present study characterizes the effects of acute exercise on lipid content and dietary lipid partitioning in liver and skeletal muscle of lean and diabetic rats by use of magnetic resonance spectroscopy (MRS). After baseline measurements, rats were randomized to exercise or no-exercise groups. A subset of animals was subjected to MRS directly after 1 h of treadmill running for measurement of total intrahepatocellular lipid (IHCL) and intramyocellular lipid (IMCL) content (n=7 lean and diabetic rats). The other animals were administered 13C-labeled lipids orally after treadmill visit (with or without exercise) followed by MRS measurements after 4 and 24 h to determine the 13C enrichment of IHCL and IMCL (n=8 per group). Total IHCL and IMCL content were fivefold higher in diabetic vs. lean rats (P<0.001). Exercise did not significantly affect IHCL content but reduced IMCL by 25±7 and 33±4% in lean and diabetic rats (P<0.05), respectively. Uptake of dietary lipids in liver and muscle was 2.3-fold greater in diabetic vs. lean rats (P<0.05). Prior exercise did not significantly modulate dietary lipid uptake into muscle, but in liver of both lean and diabetic rats, lipid uptake was 44% reduced after acute exercise (P<0.05). In conclusion, IMCL but not IHCL represents a viable substrate source during exercise in both lean and diabetic rats, and exercise differentially affects dietary lipid uptake in muscle and liver. PMID:26419590

  17. Efficacy of movement control exercises versus general exercises on recurrent sub-acute nonspecific low back pain in a sub-group of patients with movement control dysfunction. protocol of a randomized controlled trial

    PubMed Central

    2012-01-01

    Background Practice guidelines recommend various types of exercise for chronic back pain but there have been few head-to-head comparisons of these interventions. General exercise seems to be an effective option for management of chronic low back pain (LBP) but very little is known about the management of a sub-acute LBP within sub-groups. Recent research has developed clinical tests to identify a subgroup of patients with chronic non-specific LBP who have movement control dysfunction (MD). Method/Design We are conducting a randomized controlled trial (RCT) to compare the effects of general exercise and specific movement control exercise (SMCE) on disability and function in patients with MD within recurrent sub-acute LBP. The main outcome measure is the Roland Morris Disability Questionnaire. Discussion European clinical guideline for management of chronic LBP recommends that more research is required to develop tools to improve the classification and identification of specific clinical sub-groups of chronic LBP patients. Good quality RCTs are then needed to determine the effectiveness of specific interventions aimed at these specific target groups. This RCT aims to test the hypothesis whether patients within a sub-group of MD benefit more through a specific individually tailored movement control exercise program than through general exercises. PMID:22494776

  18. MAP training: combining meditation and aerobic exercise reduces depression and rumination while enhancing synchronized brain activity

    PubMed Central

    Alderman, B L; Olson, R L; Brush, C J; Shors, T J

    2016-01-01

    Mental and physical (MAP) training is a novel clinical intervention that combines mental training through meditation and physical training through aerobic exercise. The intervention was translated from neuroscientific studies indicating that MAP training increases neurogenesis in the adult brain. Each session consisted of 30 min of focused-attention (FA) meditation and 30 min of moderate-intensity aerobic exercise. Fifty-two participants completed the 8-week intervention, which consisted of two sessions per week. Following the intervention, individuals with major depressive disorder (MDD; n=22) reported significantly less depressive symptoms and ruminative thoughts. Typical healthy individuals (n=30) also reported less depressive symptoms at follow-up. Behavioral and event-related potential indices of cognitive control were collected at baseline and follow-up during a modified flanker task. Following MAP training, N2 and P3 component amplitudes increased relative to baseline, especially among individuals with MDD. These data indicate enhanced neural responses during the detection and resolution of conflicting stimuli. Although previous research has supported the individual beneficial effects of aerobic exercise and meditation for depression, these findings indicate that a combination of the two may be particularly effective in increasing cognitive control processes and decreasing ruminative thought patterns. PMID:26836414

  19. MAP training: combining meditation and aerobic exercise reduces depression and rumination while enhancing synchronized brain activity.

    PubMed

    Alderman, B L; Olson, R L; Brush, C J; Shors, T J

    2016-01-01

    Mental and physical (MAP) training is a novel clinical intervention that combines mental training through meditation and physical training through aerobic exercise. The intervention was translated from neuroscientific studies indicating that MAP training increases neurogenesis in the adult brain. Each session consisted of 30 min of focused-attention (FA) meditation and 30 min of moderate-intensity aerobic exercise. Fifty-two participants completed the 8-week intervention, which consisted of two sessions per week. Following the intervention, individuals with major depressive disorder (MDD; n=22) reported significantly less depressive symptoms and ruminative thoughts. Typical healthy individuals (n=30) also reported less depressive symptoms at follow-up. Behavioral and event-related potential indices of cognitive control were collected at baseline and follow-up during a modified flanker task. Following MAP training, N2 and P3 component amplitudes increased relative to baseline, especially among individuals with MDD. These data indicate enhanced neural responses during the detection and resolution of conflicting stimuli. Although previous research has supported the individual beneficial effects of aerobic exercise and meditation for depression, these findings indicate that a combination of the two may be particularly effective in increasing cognitive control processes and decreasing ruminative thought patterns. PMID:26836414

  20. Acute Endurance Exercise Induces Nuclear p53 Abundance in Human Skeletal Muscle

    PubMed Central

    Tachtsis, Bill; Smiles, William J.; Lane, Steven C.; Hawley, John A.; Camera, Donny M.

    2016-01-01

    Purpose: The tumor suppressor protein p53 may have regulatory roles in exercise response-adaptation processes such as mitochondrial biogenesis and autophagy, although its cellular location largely governs its biological role. We investigated the subcellular localization of p53 and selected signaling targets in human skeletal muscle following a single bout of endurance exercise. Methods: Sixteen, untrained individuals were pair-matched for aerobic capacity (VO2peak) and allocated to either an exercise (EX, n = 8) or control (CON, n = 8) group. After a resting muscle biopsy, EX performed 60 min continuous cycling at ~70% of VO2peak during which time CON subjects rested. A further biopsy was obtained from both groups 3 h post-exercise (EX) or 4 h after the first biopsy (CON). Results: Nuclear p53 increased after 3 h recovery with EX only (~48%, p < 0.05) but was unchanged in the mitochondrial or cytoplasmic fractions in either group. Autophagy protein 5 (Atg-5) decreased in the mitochondrial protein fraction 3 h post-EX (~69%, P < 0.05) but remained unchanged in CON. There was an increase in cytoplasmic levels of the mitophagy marker PINK1 following 3 h of rest in CON only (~23%, P < 0.05). There were no changes in mitochondrial, nuclear, or cytoplasmic levels of PGC-1α post-exercise in either group. Conclusions: The selective increase in nuclear p53 abundance following endurance exercise suggests a potential pro-autophagy response to remove damaged proteins and organelles prior to initiating mitochondrial biogenesis and remodeling responses in untrained individuals. PMID:27199762

  1. Lipoprotein particle distribution and skeletal muscle lipoprotein lipase activity after acute exercise

    PubMed Central

    2012-01-01

    Background Many of the metabolic effects of exercise are due to the most recent exercise session. With recent advances in nuclear magnetic resonance spectroscopy (NMRS), it is possible to gain insight about which lipoprotein particles are responsible for mediating exercise effects. Methods Using a randomized cross-over design, very low density lipoprotein (VLDL) responses were evaluated in eight men on the morning after i) an inactive control trial (CON), ii) exercising vigorously on the prior evening for 100 min followed by fasting overnight to maintain an energy and carbohydrate deficit (EX-DEF), and iii) after the same exercise session followed by carbohydrate intake to restore muscle glycogen and carbohydrate balance (EX-BAL). Results The intermediate, low and high density lipoprotein particle concentrations did not differ between trials. Fasting triglyceride (TG) determined biochemically, and mean VLDL size were lower in EX-DEF but not in EX-BAL compared to CON, primarily due to a reduction in VLDL-TG in the 70–120 nm (large) particle range. In contrast, VLDL-TG was lower in both EX-DEF and EX-BAL compared to CON in the 43–55 nm (medium) particle range. VLDL-TG in smaller particles (29–43 nm) was unaffected by exercise. Because the majority of VLDL particles were in this smallest size range and resistant to change, total VLDL particle concentration was not different between any of these conditions. Skeletal muscle lipoprotein lipase (LPL) activity was also not different across these 3 trials. However, in CON only, the inter-individual differences in LPL activity were inversely correlated with fasting TG, VLDL-TG, total, large and small VLDL particle concentration and VLDL size, indicating a regulatory role for LPL in the non-exercised state. Conclusions These findings reveal a high level of differential regulation between different sized triglyceride-rich lipoproteins following exercise and feeding, in the absence of changes in LPL activity. PMID

  2. Impact of Short and Moderate Rest Intervals on the Acute Immunometabolic Response to Exhaustive Strength Exercise: Part II.

    PubMed

    Gerosa-Neto, Jose; Rossi, Fabrício E; Campos, Eduardo Z; Antunes, Barbara M M; Cholewa, Jason M; Lira, Fabio S

    2016-06-01

    Gerosa-Neto, J, Rossi, FE, Campos, EZ, Antunes, BMM, Cholewa, JM, and Lira, FS. Impact of short and moderate rest intervals on the acute immunometabolic response to exhaustive strength exercise: Part II. J Strength Cond Res 30(6): 1570-1576, 2016-The purpose of this study was to investigate the influence of short and moderate recovery intervals during heavy strength exercise on performance, inflammatory, and metabolic responses in recreational weightlifters. Eight healthy subjects (age = 24.6 ± 4.1 years) performed 2 randomized sequences with different rest intervals: short = 90% of 1RM and 30 seconds rest allowed between sets; moderate = 90% of 1RM and 90 seconds rest allowed between sets. All sequences of exercises were performed over 4 sets until movement failure in the squat and bench press exercises, respectively. Glucose, TNF-α, IL-6, IL-10, IL-10/TNF-α ratio, and nonester fatty acid concentrations were assessed at the baseline, immediately postexercise, post-15 and post-30 minutes. We observed a statistically significant decrease after 30 seconds on maximum number of repetitions (p = 0.003) and total weight lifted (p = 0.006) after the bench press, and there was a marginal decrease in the squat (p = 0.055). The glucose concentrations showed a significant increase post-15 minutes in the 30-second condition (pre-exercise = 86.1 ± 9.1, immediately = 85.3 ± 8.2, post-15 = 97.0 ± 9.0, post-30 = 87.1 ± 5.3 mg/dl; p = 0.015); on the other hand, IL-10 increased post-30 minutes in the 90-second condition (pre-exercise = 18.2 ± 12.7, immediately = 16.4 ± 10.7, post-15 = 16.8 ± 12.2, post-30 = 35.0 ± 13.1 pg/ml; p < 0.001). In addition, the 90-second condition showed anti-inflammatory effects (as indicated by IL-10/TNF-α ratio: pre-exercise = 1.08 ± 1.32, immediately = 1.23 ± 1.20, post-15 = 1.15 ± 1.14, post-30 = 2.48 ± 2.07; p = 0.020) compared with the 30-second condition (pre-exercise = 1.30 ± 2.04, immediately = 0.99 ± 1.27, post-15 = 1.23 ± 1

  3. Resistance exercise enhances the molecular signaling of mitochondrial biogenesis induced by endurance exercise in human skeletal muscle.

    PubMed

    Wang, Li; Mascher, Henrik; Psilander, Niklas; Blomstrand, Eva; Sahlin, Kent

    2011-11-01

    Combining endurance and strength training (concurrent training) may change the adaptation compared with single mode training. However, the site of interaction and the mechanisms are unclear. We have investigated the hypothesis that molecular signaling of mitochondrial biogenesis after endurance exercise is impaired by resistance exercise. Ten healthy subjects performed either only endurance exercise (E; 1-h cycling at ∼65% of maximal oxygen uptake), or endurance exercise followed by resistance exercise (ER; 1-h cycling + 6 sets of leg press at 70-80% of 1 repetition maximum) in a randomized cross-over design. Muscle biopsies were obtained before and after exercise (1 and 3 h postcycling). The mRNA of genes related to mitochondrial biogenesis [(peroxisome proliferator-activated receptor-γ coactivator-1 (PGC-1)α, PGC-1-related coactivator (PRC)] related coactivator) and substrate regulation (pyruvate dehydrogenase kinase-4) increased after both E and ER, but the mRNA levels were about twofold higher after ER (P < 0.01). Phosphorylation of proteins involved in the signaling cascade of protein synthesis [mammalian target of rapamycin (mTOR), ribosomal S6 kinase 1, and eukaryotic elongation factor 2] was altered after ER but not after E. Moreover, ER induced a larger increase in mRNA of genes associated with positive mTOR signaling (cMyc and Rheb). Phosphorylation of AMP-activated protein kinase, acetyl-CoA carboxylase, and Akt increased similarly at 1 h postcycling (P < 0.01) after both types of exercise. Contrary to our hypothesis, the results demonstrate that ER, performed after E, amplifies the adaptive signaling response of mitochondrial biogenesis compared with single-mode endurance exercise. The mechanism may relate to a cross talk between signaling pathways mediated by mTOR. The results suggest that concurrent training may be beneficial for the adaptation of muscle oxidative capacity. PMID:21836044

  4. The Effect of Acute Exercise upon Adenosin Deaminase Oxidant and Antioxidant Activity

    ERIC Educational Resources Information Center

    Kafkas, M. Emin; Karabulut, Aysun Bay; Sahin, Armagan; Otlu, Onder; Savas, Seyfi; Aytac, Aylin

    2012-01-01

    The purpose of this study was to determine the changes of MDA, glutation (GSH), Adenozine deaminase (ADA) and superoxidase dismutaze (SOD) levels with exercise training in obese middle-aged women (body mass index, MMI [greater than or equal to] 30.0). Twelve obese middle-aged women participated in this study. The descriptive statistics of some of…

  5. Acute prior heavy strength exercise bouts improve the 20-km cycling time trial performance.

    PubMed

    Silva, Renato A S; Silva-Júnior, Fernando L; Pinheiro, Fabiano A; Souza, Patrícia F M; Boullosa, Daniel A; Pires, Flávio O

    2014-09-01

    This study verified if a prior 5 repetition maximum (5RM) strength exercise would improve the cycling performance during a 20-km cycling time trial (TT20km). After determination of the 5RM leg press exercise load, 11 trained cyclists performed a TT20km in a control condition and 10-minute after 4 sets of 5RM strength exercise bouts (potentiation condition). Oxygen uptake, blood lactate concentration, ratings of perceived exertion (RPE), and power output data were recorded during the TT20km. Cycling economy index was assessed before the TT20km, and pacing strategy was analyzed assuming a "J-shaped" power output distribution profile. Results were a 6.1% reduction (p ≤ 0.05) in the time to complete the TT20km, a greater cycling economy (p < 0.01), and power output in the first 10% of the TT20km (i.e., trend; p = 0.06) in the potentiation condition. However, no differences were observed in pacing strategy, physiological parameters, and RPE between the conditions. These results suggest that 5RM strength exercise bouts improve the performance in a subsequent TT20km. PMID:24584047

  6. The Facilitative Effect of Acute Rhythmic Exercise on Reading Comprehension of Junior High Students

    ERIC Educational Resources Information Center

    Mead, Tim P.; Roark, Susan; Larive, Lane J.; Percle, Kristen C.; Auenson, Rachel N.

    2013-01-01

    With tightening school budgets and continued emphasis on core subject standardized testing, physical education often takes a backseat to academic areas that school administrators deem more important. Much time is spent using improvement strategies in the classroom that do not involve exercise. Two hundred eighty-five sixth to eighth grade students…

  7. Acute Glycemic Effects of Exercise in Adolescents with Insulin-Dependent Diabetes Mellitus.

    ERIC Educational Resources Information Center

    Stratton, Ron; And Others

    1988-01-01

    A study of eight diabetic adolescents with moderately well-controlled diabetes concludes that recreational activities are as effective in lowering blood glucose levels as structured exercise. This might allow diabetic adolescents to participate in a wider variety of sports activities. Research, methodology, and results are discussed. (Author/JL)

  8. Acute exercise induces biphasic increase in respiratory mRNA in skeletal muscle

    SciTech Connect

    Ikeda, Shin-ichi; Kizaki, Takako; Haga, Shukoh; Ohno, Hideki; Takemasa, Tohru

    2008-04-04

    Peroxisome proliferator-activated receptor {gamma} coactivator-1{alpha} (PGC-1{alpha}) promotes the expression of oxidative enzymes in skeletal muscle. We hypothesized that activation of the p38 MAPK (mitogen-activated protein kinase) in response to exercise was associated with exercise-induced PGC-1{alpha} and respiratory enzymes expression and aimed to demonstrate this under the physiological level. We subjected mice to a single bout of treadmill running and found that the exercise induced a biphasic increase in the expression of respiratory enzymes mRNA. The second phase of the increase was accompanied by an increase in PGC-1{alpha} protein, but the other was not. Administration of SB203580 (SB), an inhibitor of p38 MAPK, suppressed the increase in PGC-1{alpha} expression and respiratory enzymes mRNA in both phases. These data suggest that p38 MAPK is associated with the exercise-induced expression of PGC-1{alpha} and biphasic increase in respiratory enzyme mRNAs in mouse skeletal muscle under physiological conditions.

  9. Cold water immersion enhances recovery of submaximal muscle function after resistance exercise.

    PubMed

    Roberts, Llion A; Nosaka, Kazunori; Coombes, Jeff S; Peake, Jonathan M

    2014-10-15

    We investigated the effect of cold water immersion (CWI) on the recovery of muscle function and physiological responses after high-intensity resistance exercise. Using a randomized, cross-over design, 10 physically active men performed high-intensity resistance exercise followed by one of two recovery interventions: 1) 10 min of CWI at 10°C or 2) 10 min of active recovery (low-intensity cycling). After the recovery interventions, maximal muscle function was assessed after 2 and 4 h by measuring jump height and isometric squat strength. Submaximal muscle function was assessed after 6 h by measuring the average load lifted during 6 sets of 10 squats at 80% of 1 repetition maximum. Intramuscular temperature (1 cm) was also recorded, and venous blood samples were analyzed for markers of metabolism, vasoconstriction, and muscle damage. CWI did not enhance recovery of maximal muscle function. However, during the final three sets of the submaximal muscle function test, participants lifted a greater load (P < 0.05, Cohen's effect size: 1.3, 38%) after CWI compared with active recovery. During CWI, muscle temperature decreased ∼7°C below postexercise values and remained below preexercise values for another 35 min. Venous blood O2 saturation decreased below preexercise values for 1.5 h after CWI. Serum endothelin-1 concentration did not change after CWI, whereas it decreased after active recovery. Plasma myoglobin concentration was lower, whereas plasma IL-6 concentration was higher after CWI compared with active recovery. These results suggest that CWI after resistance exercise allows athletes to complete more work during subsequent training sessions, which could enhance long-term training adaptations. PMID:25121612

  10. The effect of 10 days of heat acclimation on exercise performance in acute hypobaric hypoxia (4350 m).

    PubMed

    White, Ailish C; Salgado, Roy M; Astorino, Todd A; Loeppky, Jack A; Schneider, Suzanne M; McCormick, James J; McLain, Trisha A; Kravitz, Len; Mermier, Christine M

    2016-01-01

    To examine the effect ("cross-tolerance") of heat acclimation (HA) on exercise performance upon exposure to acute hypobaric hypoxia (4350 m). Eight male cyclists residing at 1600 m performed tests of maximal aerobic capacity (VO2max) at 1600 m and 4350 m, a 16 km time-trial at 4350 m, and a heat tolerance test at 1600 m before and after 10 d HA at 40°C, 20% RH. Resting blood samples were obtained pre-and post- HA to estimate changes in plasma volume (ΔPV). Successful HA was indicated by significantly lower exercise heart rate and rectal temperature on day 10 vs. day 1 of HA and during the heat tolerance tests. Heat acclimation caused a 1.9% ΔPV, however VO2max was not significantly different at 1600 m or 4350 m. Time-trial cycling performance improved 28 sec after HA (p = 0.07), suggesting a possible benefit for exercise performance at acute altitude and that cross-tolerance between these variables may exist in humans. These findings do not clearly support the use of HA to improve exercise capacity and performance upon acute hypobaric hypoxia, however they do indicate that HA is not detrimental to either exercise capacity or performance. PMID:27227084

  11. Intense Resistance Exercise Promotes the Acute and Transient Nuclear Translocation of Small Ubiquitin-Related Modifier (SUMO)-1 in Human Myofibres.

    PubMed

    Gehlert, Sebastian; Klinz, Franz Josef; Willkomm, Lena; Schiffer, Thorsten; Suhr, Frank; Bloch, Wilhelm

    2016-01-01

    Protein sumoylation is a posttranslational modification triggered by cellular stress. Because general information concerning the role of small ubiquitin-related modifier (SUMO) proteins in adult skeletal muscle is sparse, we investigated whether SUMO-1 proteins will be subjected to time-dependent changes in their subcellular localization in sarcoplasmic and nuclear compartments of human type I and II skeletal muscle fibers in response to acute stimulation by resistance exercise (RE). Skeletal muscle biopsies were taken at baseline (PRE), 15, 30, 60, 240 min and 24 h post RE from 6 male subjects subjected to a single bout of one-legged knee extensions. SUMO-1 localization was determined via immunohistochemistry and confocal laser microscopy. At baseline SUMO-1 was localized in perinuclear regions of myonuclei. Within 15 and up to 60 min post exercise, nuclear SUMO-1 localization was significantly increased (p < 0.01), declining towards baseline levels within 240 min post exercise. Sarcoplasmic SUMO-1 localization was increased at 15 min post exercise in type I and up to 30 min post RE in type II myofibres. The changing localization of SUMO-1 proteins acutely after intense muscle contractions points to a role for SUMO proteins in the acute regulation of the skeletal muscle proteome after exercise. PMID:27136539

  12. Differential Effects of Acute (Extenuating) and Chronic (Training) Exercise on Inflammation and Oxidative Stress Status in an Animal Model of Type 2 Diabetes Mellitus

    PubMed Central

    Teixeira de Lemos, Edite; Pinto, Rui; Oliveira, Jorge; Garrido, Patrícia; Sereno, José; Mascarenhas-Melo, Filipa; Páscoa-Pinheiro, João; Teixeira, Frederico; Reis, Flávio

    2011-01-01

    This study compares the effects of a single bout of exercise (acute extenuating) with those promoted by an exercise training program (chronic), focusing on low-grade chronic inflammation profile and on oxidative stress status, using the obese ZDF rats as a model of type 2 diabetes mellitus (T2DM). Animals were sacrificed after 12 weeks of a swimming training program and after a single bout of acute extenuating exercise. Glycaemic, insulinemic, and lipidic profile (triglycerides, total-cholesterol) were evaluated, as well as inflammatory (serum CRPhs, TNF-α, adiponectin) and oxidative (lipidic peroxidation and uric acid) status. When compared to obese diabetic sedentary rats, the animals submitted to acute exercise presented significantly lower values of glycaemia and insulinaemia, with inflammatory profile and oxidative stress significantly aggravated. The trained animals showed amelioration of glycaemic and lipidic dysmetabolism, accompanied by remarkable reduction of inflammatory and oxidative markers. In conclusion, the results presented herein suggessted that exercise pathogenesis-oriented interventions should not exacerbate underlying inflammatory stress associated with T2DM. PMID:22174491

  13. The effect of 10 days of heat acclimation on exercise performance in acute hypobaric hypoxia (4350 m)

    PubMed Central

    White, Ailish C.; Salgado, Roy M.; Astorino, Todd A.; Loeppky, Jack A.; Schneider, Suzanne M.; McCormick, James J.; McLain, Trisha A.; Kravitz, Len; Mermier, Christine M.

    2016-01-01

    ABSTRACT To examine the effect (“cross-tolerance”) of heat acclimation (HA) on exercise performance upon exposure to acute hypobaric hypoxia (4350 m). Eight male cyclists residing at 1600 m performed tests of maximal aerobic capacity (VO2max) at 1600 m and 4350 m, a 16 km time-trial at 4350 m, and a heat tolerance test at 1600 m before and after 10 d HA at 40°C, 20% RH. Resting blood samples were obtained pre-and post- HA to estimate changes in plasma volume (ΔPV). Successful HA was indicated by significantly lower exercise heart rate and rectal temperature on day 10 vs. day 1 of HA and during the heat tolerance tests. Heat acclimation caused a 1.9% ΔPV, however VO2max was not significantly different at 1600 m or 4350 m. Time-trial cycling performance improved 28 sec after HA (p = 0.07), suggesting a possible benefit for exercise performance at acute altitude and that cross-tolerance between these variables may exist in humans. These findings do not clearly support the use of HA to improve exercise capacity and performance upon acute hypobaric hypoxia, however they do indicate that HA is not detrimental to either exercise capacity or performance. PMID:27227084

  14. Intense Resistance Exercise Promotes the Acute and Transient Nuclear Translocation of Small Ubiquitin-Related Modifier (SUMO)-1 in Human Myofibres

    PubMed Central

    Gehlert, Sebastian; Klinz, Franz Josef; Willkomm, Lena; Schiffer, Thorsten; Suhr, Frank; Bloch, Wilhelm

    2016-01-01

    Protein sumoylation is a posttranslational modification triggered by cellular stress. Because general information concerning the role of small ubiquitin-related modifier (SUMO) proteins in adult skeletal muscle is sparse, we investigated whether SUMO-1 proteins will be subjected to time-dependent changes in their subcellular localization in sarcoplasmic and nuclear compartments of human type I and II skeletal muscle fibers in response to acute stimulation by resistance exercise (RE). Skeletal muscle biopsies were taken at baseline (PRE), 15, 30, 60, 240 min and 24 h post RE from 6 male subjects subjected to a single bout of one-legged knee extensions. SUMO-1 localization was determined via immunohistochemistry and confocal laser microscopy. At baseline SUMO-1 was localized in perinuclear regions of myonuclei. Within 15 and up to 60 min post exercise, nuclear SUMO-1 localization was significantly increased (p < 0.01), declining towards baseline levels within 240 min post exercise. Sarcoplasmic SUMO-1 localization was increased at 15 min post exercise in type I and up to 30 min post RE in type II myofibres. The changing localization of SUMO-1 proteins acutely after intense muscle contractions points to a role for SUMO proteins in the acute regulation of the skeletal muscle proteome after exercise. PMID:27136539

  15. Effect of acute high-intensity resistance exercise on optic nerve sheath diameter and ophthalmic artery blood flow pulsatility.

    PubMed

    Lefferts, W K; Hughes, W E; Heffernan, K S

    2015-12-01

    Exertional hypertension associated with acute high-intensity resistance exercise (RE) increases both intravascular and intracranial pressure (ICP), maintaining cerebrovascular transmural pressure. Carotid intravascular pressure pulsatility remains elevated after RE. Whether ICP also remains elevated after acute RE in an attempt to maintain the vessel wall transmural pressure is unknown. Optic nerve sheath diameter (ONSD), a valid proxy of ICP, was measured in 20 participants (6 female; 24 ± 4 yr, 24.2 ± 3.9 kg m(-)(2)) at rest (baseline), following a time-control condition, and following RE (5 sets, 5 repetition maximum bench press, 5 sets 10 repetition maximum biceps curls) using ultrasound. Additionally, intracranial hemodynamic pulsatility index (PI) was assessed in the ophthalmic artery (OA) by using Doppler. Aortic pulse wave velocity (PWV) was obtained from synthesized aortic pressure waveforms obtained via a brachial oscillometric cuff and carotid pulse pressure was measured by using applanation tonometry. Aortic PWV (5.2 ± 0.5-6.0 ± 0.7 m s(-1), P < 0.05) and carotid pulse pressure (45 ± 17-59 ± 19 mm Hg, P < 0.05) were significantly elevated post RE compared with baseline. There were no significant changes in ONSD (5.09 ± 0.7-5.09 ± 0.7 mm, P > 0.05) or OA flow PI (1.35 ± 0.2-1.38 ± 0.3, P > 0.05) following acute RE. In conclusion, during recovery from acute high-intensity RE, there are increases in aortic stiffness and extracranial pressure pulsatility in the absence of changes in ICP and flow pulsatility. These findings may have implications for alterations in cerebral transmural pressure and cerebral aneurysmal wall stress following RE. PMID:25739332

  16. Exercise-induced increase in IL-6 level enhances GLUT4 expression and insulin sensitivity in mouse skeletal muscle.

    PubMed

    Ikeda, Shin-Ichi; Tamura, Yoshifumi; Kakehi, Saori; Sanada, Hiromi; Kawamori, Ryuzo; Watada, Hirotaka

    2016-05-13

    A single bout of exercise is known to increase the insulin sensitivity of skeletal muscle; however, the underlying mechanism of this phenomenon is not fully understood. Because a single bout of exercise induces a transient increase in blood interleukin-6 (IL-6) level, we hypothesized that the enhancement of insulin sensitivity after a single bout of exercise in skeletal muscle is mediated at least in part through IL-6-dependent mechanisms. To test this hypothesis, C57BL6J mice were intravenously injected with normal IgG or an IL-6 neutralizing antibody before exercise. Twenty-four hours after a single bout of exercise, the plantaris muscle was harvested to measure insulin sensitivity and glucose transporter (GLUT)-4 expression levels by ex-vivo insulin-stimulated 2-deoxyglucose (2-DG) uptake and Western blotting, respectively. Compared with sedentary mice, mice that performed exercise showed enhanced IL-6 concentration, insulin-stimulated 2-DG uptake, and GLUT-4 expression in the plantaris muscle. The enhanced insulin sensitivity and GLUT4 expression were canceled by injection of the IL-6 neutralizing antibody before exercise. In addition, IL-6 injection increased GLUT4 expression, both in the plantaris muscle and the soleus muscle in C57BL6J mice. Furthermore, a short period of incubation with IL-6 increased GLUT4 expression in differentiated C2C12 myotubes. In summary, these results suggested that IL-6 increased GLUT4 expression in muscle and that this phenomenon may play a role in the post-exercise enhancement of insulin sensitivity in skeletal muscle. PMID:27040770

  17. ACUTE ELEVATION OF BLOOD CARBOXYHEMOGLOBIN TO 6% IMPAIRS EXERCISE PERFORMANCE AND AGGRAVATES SYMPTOMS IN PATIENTS WITH ISCHEMIC HEART DISEASE (JOURNAL VERSION)

    EPA Science Inventory

    Acute exposure to carbon monoxide has the potential to impair exercise capacity in patients with ischemic heart disease. We studied the effect of inhalation of this compound sufficient to gradually produce a level of 6% carboxyhemoglobin in 30 non-smoking patients with obstructiv...

  18. Effects of Acute 60 and 80% V[o.sub.2]max Bouts of Aerobic Exercise on State Anxiety of Women of Different Age Groups across Time

    ERIC Educational Resources Information Center

    Cox, Richard H.; Thomas, Tom R.; Hinton, Pam S.; Donahue, Owen M.

    2004-01-01

    The purpose of this investigation was to study the effects of an acute bout of aerobic exercise on state anxiety of women while controlling for iron status (hemoglobin and serum ferritin). Participants were 24 active women, ages 18-20 years (n=12) and 35-45 years (n=12). In addition to a nonexercise control condition, participants completed one…

  19. Acute exercise increases brain region-specific expression of MCT1, MCT2, MCT4, GLUT1, and COX IV proteins.

    PubMed

    Takimoto, Masaki; Hamada, Taku

    2014-05-01

    The brain is capable of oxidizing lactate and ketone bodies through monocarboxylate transporters (MCTs). We examined the protein expression of MCT1, MCT2, MCT4, glucose transporter 1 (GLUT1), and cytochrome-c oxidase subunit IV (COX IV) in the rat brain within 24 h after a single exercise session. Brain samples were obtained from sedentary controls and treadmill-exercised rats (20 m/min, 8% grade). Acute exercise resulted in an increase in lactate in the cortex, hippocampus, and hypothalamus, but not the brainstem, and an increase in β-hydroxybutyrate in the cortex alone. After a 2-h exercise session MCT1 increased in the cortex and hippocampus 5 h postexercise, and the effect lasted in the cortex for 24 h postexercise. MCT2 increased in the cortex and hypothalamus 5-24 h postexercise, whereas MCT2 increased in the hippocampus immediately after exercise, and remained elevated for 10 h postexercise. Regional upregulation of MCT2 after exercise was associated with increases in brain-derived neurotrophic factor and tyrosine-related kinase B proteins, but not insulin-like growth factor 1. MCT4 increased 5-10 h postexercise only in the hypothalamus, and was associated with increased hypoxia-inducible factor-1α expression. However, none of the MCT isoforms in the brainstem was affected by exercise. Whereas GLUT 1 in the cortex increased only at 18 h postexercise, COX IV in the hippocampus increased 10 h after exercise and remained elevated for 24 h postexercise. These results suggest that acute prolonged exercise induces the brain region-specific upregulation of MCT1, MCT2, MCT4, GLUT1, and COX IV proteins. PMID:24610532

  20. Histamine H2 receptor blockade augments blood pressure responses to acute submaximal exercise in males.

    PubMed

    Doh, Hyung-Woo; Stebbins, Charles L; Choi, Hyun-Min; Park, Joonsung; Nho, Hosung; Kim, Jong-Kyung

    2016-06-01

    Histamine is a potent vasodilator that has been found to increase during exercise. We tested the hypothesis that histamine would attenuate blood pressure (BP), cardiac output (CO), and vascular resistance responses to short-term, submaximal dynamic exercise during H2 receptor blockade. Fourteen healthy men (20-29 years of age) were studied. Systolic (SBP), diastolic (DBP), and mean arterial (MAP) BP and heart rate (HR) were assessed at rest and during the last minute of 10 min of submaximal cycling exercise (60% of peak oxygen consumption) in the absence and presence of histamine H2 receptor blockade (ranitidine, 300 mg). Stroke volume (SV) (impedance cardiography) and plasma norepinephrine (NE) were measured, and CO, rate × pressure product (RPP), and total peripheral resistance (TPR) were calculated. Plasma levels of histamine were also measured. H2 blockade had no effects on any variables at rest. During exercise, SBP (184 ± 3 mm Hg vs. 166 ± 2 mm Hg), MAP (121 ± 2 mm Hg vs. 112 ± 5 mm Hg), and RPP (25.9 ± 0.8 × 10(3) mm Hg·beats/min vs. 23.5 ± 0.8 × 10(3) mm Hg/beats·min) were greater during blocked conditions (P < 0.05), and an interaction was observed for TPR. SV, DBP, HR, and NE levels were unaffected by blockade. Plasma histamine increased from 1.83 ± 0.14 ng/mL at rest to 2.33 ± 0.23 ng/mL during exercise (P < 0.05) and was not affected by H2 blockade (1.56 ± 0.23 ng/mL vs. 1.70 ± 0.24 ng/mL). These findings suggest that, during submaximal exercise, histamine attenuates BP, vascular resistance, and the work of the heart via activation of H2 receptors and that these effects occurred primarily in the vasculature and not in the myocardium. PMID:27191340

  1. Acute Effects of Static Stretching, Dynamic Exercises, and High Volume Upper Extremity Plyometric Activity on Tennis Serve Performance

    PubMed Central

    Gelen, Ertugrul; Dede, Muhittin; Bingul, Bergun Meric; Bulgan, Cigdem; Aydin, Mensure

    2012-01-01

    The purpose of this study was to compare the acute effects of static stretching; dynamic exercises and high volume upper extremity plyometric activity on tennis serve performance. Twenty-six elite young tennis players (15.1 ± 4.2 years, 167.9 ± 5.8 cm and 61.6 ± 8.1 kg) performed 4 different warm-up (WU) routines in a random order on non-consecutive days. The WU methods consisted of traditional WU (jogging, rally and serve practice) (TRAD); traditional WU and static stretching (TRSS); traditional WU and dynamic exercise (TRDE); and traditional WU and high volume upper extremity plyometric activity (TRPLYP). Following each WU session, subjects were tested on a tennis serve ball speed test. TRAD, TRSS, TRDE and TRPLYO were compared by repeated measurement analyses of variance and post-hoc comparisons. In this study a 1 to 3 percent increase in tennis serve ball speed was recorded in TRDE and TRPLYO when compared to TRAD (p< 0.05). However, no significant change in ball speed performance between TRSS and TRAD. (p> 0.05). ICCs for ball speed showed strong reliability (0.82 to 0.93) for the ball speed measurements.The results of this study indicate that dynamic and high volume upper extremity plyometric WU activities are likely beneficial to serve speed of elite junior tennis players. Key points After the traditional warm up in tennis, static stretching has no effect on serve speed. Tennis players should perform dynamic exercises and/or high volume upper extremity plyometric activities to improve their athletic performance. PMID:24150068

  2. Skeletal muscle phosphatidylcholine and phosphatidylethanolamine are related to insulin sensitivity and respond to acute exercise in humans.

    PubMed

    Newsom, Sean A; Brozinick, Joseph T; Kiseljak-Vassiliades, Katja; Strauss, Allison N; Bacon, Samantha D; Kerege, Anna A; Bui, Hai Hoang; Sanders, Phil; Siddall, Parker; Wei, Tao; Thomas, Melissa; Kuo, Ming Shang; Nemkov, Travis; D'Alessandro, Angelo; Hansen, Kirk C; Perreault, Leigh; Bergman, Bryan C

    2016-06-01

    Several recent reports indicate that the balance of skeletal muscle phosphatidylcholine (PC) and phosphatidylethanolamine (PE) is a key determinant of muscle contractile function and metabolism. The purpose of this study was to determine relationships between skeletal muscle PC, PE and insulin sensitivity, and whether PC and PE are dynamically regulated in response to acute exercise in humans. Insulin sensitivity was measured via intravenous glucose tolerance in sedentary obese adults (OB; n = 14), individuals with type 2 diabetes (T2D; n = 15), and endurance-trained athletes (ATH; n = 15). Vastus lateralis muscle biopsies were obtained at rest, immediately after 90 min of cycle ergometry at 50% maximal oxygen consumption (V̇o2 max), and 2-h postexercise (recovery). Skeletal muscle PC and PE were measured via infusion-based mass spectrometry/mass spectrometry analysis. ATH had greater levels of muscle PC and PE compared with OB and T2D (P < 0.05), with total PC and PE positively relating to insulin sensitivity (both P < 0.05). Skeletal muscle PC:PE ratio was elevated in T2D compared with OB and ATH (P < 0.05), tended to be elevated in OB vs. ATH (P = 0.07), and was inversely related to insulin sensitivity among the entire cohort (r = -0.43, P = 0.01). Muscle PC and PE were altered by exercise, particularly after 2 h of recovery, in a highly group-specific manner. However, muscle PC:PE ratio remained unchanged in all groups. In summary, total muscle PC and PE are positively related to insulin sensitivity while PC:PE ratio is inversely related to insulin sensitivity in humans. A single session of exercise significantly alters skeletal muscle PC and PE levels, but not PC:PE ratio. PMID:27032901

  3. Acute physical exercise reverses S-nitrosation of the insulin receptor, insulin receptor substrate 1 and protein kinase B/Akt in diet-induced obese Wistar rats

    PubMed Central

    Pauli, José R; Ropelle, Eduardo R; Cintra, Dennys E; Carvalho-Filho, Marco A; Moraes, Juliana C; De Souza, Cláudio T; Velloso, Lício A; Carvalheira, José B C; Saad, Mario J A

    2008-01-01

    Early evidence demonstrates that exogenous nitric oxide (NO) and the NO produced by inducible nitric oxide synthase (iNOS) can induce insulin resistance. Here, we investigated whether this insulin resistance, mediated by S-nitrosation of proteins involved in early steps of the insulin signal transduction pathway, could be reversed by acute physical exercise. Rats on a high-fat diet were subjected to swimming for two 3 h-long bouts, separated by a 45 min rest period. Two or 16 h after the exercise protocol the rats were killed and proteins from the insulin signalling pathway were analysed by immunoprecipitation and immunoblotting. We demonstrated that a high-fat diet led to an increase in the iNOS protein level and S-nitrosation of insulin receptor β (IRβ), insulin receptor substrate 1 (IRS1) and Akt. Interestingly, an acute bout of exercise reduced iNOS expression and S-nitrosation of proteins involved in the early steps of insulin action, and improved insulin sensitivity in diet-induced obesity rats. Furthermore, administration of GSNO (NO donor) prevents this improvement in insulin action and the use of an inhibitor of iNOS (l-N6-(1-iminoethyl)lysine; l-NIL) simulates the effects of exercise on insulin action, insulin signalling and S-nitrosation of IRβ, IRS1 and Akt. In summary, a single bout of exercise reverses insulin sensitivity in diet-induced obese rats by improving the insulin signalling pathway, in parallel with a decrease in iNOS expression and in the S-nitrosation of IR/IRS1/Akt. The decrease in iNOS protein expression in the muscle of diet-induced obese rats after an acute bout of exercise was accompanied by an increase in AMP-activated protein kinase (AMPK) activity. These results provide new insights into the mechanism by which exercise restores insulin sensitivity. PMID:17974582

  4. Clinical Decision-Making Tool for Safe and Effective Prescription of Exercise in Acute Exacerbations of Chronic Obstructive Pulmonary Disease: Results From an Interdisciplinary Delphi Survey and Focus Groups

    PubMed Central

    Reid, W. Darlene; Chung, Frank; Kirkham, Ashley; Brooks, Dina; Goodridge, Donna; Marciniuk, Darcy D.; Hoens, Alison M.

    2015-01-01

    Background Exercise is recommended for people with an acute exacerbation of chronic obstructive pulmonary disease (AECOPD), yet there is little information to guide safe and effective mobilization and exercise for these patients. Objectives The purpose of this study was to develop a clinical decision-making tool to guide health care professionals in the assessment, prescription, monitoring, and progression of mobilization and therapeutic exercise for patients with AECOPD. Design and Methods A 3-round interdisciplinary Delphi panel identified and selected items based on a preselected consensus of 80%. These items were summarized in a paper-based tool titled Mobilization in Acute Exacerbations of Chronic Obstructive Pulmonary Disease (AECOPD-Mob). Focus groups and questionnaires were subsequently used to conduct a sensibility evaluation of the tool. Results Nine researchers, 13 clinicians, and 7 individuals with COPD identified and approved 110 parameters for safe and effective exercise in AECOPD. These parameters were grouped into 5 categories: (1) “What to Assess Prior to Mobilization,” (2) “When to Consider Not Mobilizing or to Discontinue Mobilization,” (3) “What to Monitor During Mobilization for Patient Safety,” (4) “How to Progress Mobilization to Enhance Effectiveness,” and (5) “What to Confirm Prior to Discharge.” The tool was evaluated in 4 focus groups of 18 health care professionals, 90% of whom reported the tool was easy to use, was concise, and would guide a health care professional who is new to the acute care setting and working with patients with AECOPD. Limitations The tool was developed based on published evidence and expert opinion, so the applicability of the items to patients in all settings cannot be guaranteed. The Delphi panel consisted of health care professionals from Canada, so items may not be generalizable to other jurisdictions. Conclusions The AECOPD-Mob provides practical and concise information on safe and

  5. Differential Impact of Acute High-Intensity Exercise on Circulating Endothelial Microparticles and Insulin Resistance between Overweight/Obese Males and Females

    PubMed Central

    Durrer, Cody; Robinson, Emily; Wan, Zhongxiao; Martinez, Nic; Hummel, Michelle L.; Jenkins, Nathan T.; Kilpatrick, Marcus W.; Little, Jonathan P.

    2015-01-01

    Background An acute bout of exercise can improve endothelial function and insulin sensitivity when measured on the day following exercise. Our aim was to compare acute high-intensity continuous exercise (HICE) to high-intensity interval exercise (HIIE) on circulating endothelial microparticles (EMPs) and insulin sensitivity in overweight/obese men and women. Methods Inactive males (BMI = 30 ± 3, 25 ± 6 yr, n = 6) and females (BMI = 28 ± 2, 21 ± 3 yr, n = 7) participated in three experimental trials in a randomized counterbalanced crossover design: 1) No exercise control (Control); 2) HICE (20 min cycling @ just above ventilatory threshold); 3) HIIE (10 X 1-min @ ∼90% peak aerobic power). Exercise conditions were matched for external work and diet was controlled post-exercise. Fasting blood samples were obtained ∼18 hr after each condition. CD62E+ and CD31+/CD42b- EMPs were assessed by flow cytometry and insulin resistance (IR) was estimated by homeostasis model assessment (HOMA-IR). Results There was a significant sex X exercise interaction for CD62E+ EMPs, CD31+/CD42b- EMPs, and HOMA-IR (all P<0.05). In males, both HICE and HIIE reduced EMPs compared to Control (P≤0.05). In females, HICE increased CD62E+ EMPs (P<0.05 vs. Control) whereas CD31+/CD42b- EMPs were unaltered by either exercise type. There was a significant increase in HOMA-IR in males but a decrease in females following HIIE compared to Control (P<0.05). Conclusions Overweight/obese males and females appear to respond differently to acute bouts of high-intensity exercise. A single session of HICE and HIIE reduced circulating EMPs measured on the morning following exercise in males but in females CD62E+ EMPs were increased following HICE. Next day HOMA-IR paradoxically increased in males but was reduced in females following HIIE. Future research is needed to investigate mechanisms responsible for potential differential responses between males and females. PMID:25710559

  6. The acute effects of flotation restricted environmental stimulation technique on recovery from maximal eccentric exercise.

    PubMed

    Morgan, Paul M; Salacinski, Amanda J; Stults-Kolehmainen, Matthew A

    2013-12-01

    Flotation restricted environmental stimulation technique (REST) involves compromising senses of sound, sight, and touch by creating a quiet dark environment. The individual lies supine in a tank of Epsom salt and water heated to roughly skin temperature (34-35° C). This study was performed to determine if a 1-hour flotation REST session would aid in the recovery process after maximal eccentric knee extensions and flexions. Twenty-four untrained male students (23.29 ± 2.1 years, 184.17 ± 6.85 cm, 85.16 ± 11.54 kg) participated in a randomized, repeated measures crossover study. The participants completed 2 exercise and recovery protocols: a 1-hour flotation REST session and a 1-hour seated control (passive recovery). After isometric muscle strength testing, participants were fatigued with eccentric isokinetic muscle contractions (50 repetitions at 60°·s) of the nondominant knee extensors and flexors. Blood lactate, blood glucose, heart rate, OMNI-rating of perceived exertion for resistance exercise (OMNI-RPE), perceived pain, muscle soreness, and isometric strength were collected before exercise, after treatment, and 24 and 48 hours later. A multivariate analysis of covariance found that treatment had a significant main effect on blood lactate, whereas subsequent univariate analyses of variance found statistical significance with the immediate posttreatment blood lactate measures. The results indicate that flotation REST appears to have a significant impact on blood lactate and perceived pain compared with a 1-hour passive recovery session in untrained healthy men. No difference was found between conditions for muscle strength, blood glucose, muscle soreness, heart rate, or OMNI-RPE. Flotation REST may be used for recreational and professional athletes to help reduce blood lactate levels after eccentric exercise. PMID:23478477

  7. Treadmill exercise alleviates prenatal noise stress-induced impairment of spatial learning ability through enhancing hippocampal neurogenesis in rat pups

    PubMed Central

    Kim, Tae-Woon; Shin, Mal-Soon; Park, Joon-Ki; Shin, Mi-Ai; Lee, Hee-Hyuk; Lee, Sam-Jun

    2013-01-01

    Stress alters brain cell properties and then disturbs cognitive processes, such as learning and memory. In this study, we investigated the effect of postnatal treadmill exercise on hippocampal neurogenesis and spatial learning ability of rat pups following prenatal noise stress. The impact of exercise intensity (mild-intensity exercise vs heavy-intensity exercise) was also compared. The pregnant rats in the stress-applied group were exposed to a 95 dB supersonic machine sound for 1 h once a day from the 15th day after mating until delivery. After birth, the rat pups in the exercise groups were made to run on a treadmill for 30 min once a day for 7 consecutive days, starting 4 weeks after birth. The spatial learning ability was tested using radial-arm maze task and hippocampal neurogenesis was determined by 5-bromo-2′-deoxyuridine (BrdU) immunohistochemistry. The rat pups born from the stress-applied maternal rats spent more time for the seeking of water and showed higher number of error in the radial-arm maze task compared to the control group. These rat pups showed suppressed neurogenesis in the hippocampus. In contrast, the rat pups performed postnatal treadmill exercise saved time for seeking of water and showed lower number of error compared to the stress-applied group. Postnatal treadmill exercise also enhanced neurogenesis in the hippocampus. The mild-intensity exercise showed more potent impact compared to the heavy-intensity exercise. The present results reveal that postnatal treadmill exercise lessens prenatal stress-induced deterioration of brain function in offspring. PMID:24282804

  8. Use of surface-enhanced Raman scattering as a prognostic indicator of acute kidney transplant rejection

    PubMed Central

    Chi, Jingmao; Zaw, Thet; Cardona, Iliana; Hosnain, Mujtaba; Garg, Neha; Lefkowitz, Heather R.; Tolias, Peter; Du, Henry

    2015-01-01

    We report an early, noninvasive and rapid prognostic method of predicting potential acute kidney dysfunction using surface-enhanced Raman scattering (SERS). Our analysis was performed on urine samples collected prospectively from 58 kidney transplant patients using a He-Ne laser (632.8 nm) as the excitation source. All abnormal kidney function episodes (three acute rejections and two acute kidney failures that were eventually diagnosed independently by clinical biopsy) consistently exhibited unique SERS spectral features in just one day following the transplant surgery. These results suggested that SERS analysis provides an early and more specific indication to kidney function than the clinically used biomarker, serum creatinine (sCr). PMID:25798301

  9. Caffeine ingestion enhances perceptual responses during intermittent exercise in female team-game players.

    PubMed

    Ali, Ajmol; O'Donnell, Jemma; Von Hurst, Pamela; Foskett, Andrew; Holland, Sherina; Starck, Carlene; Rutherfurd-Markwick, Kay

    2016-01-01

    We examined the influence of caffeine supplementation on cognitive performance and perceptual responses in female team-game players taking low-dose monophasic oral contraceptives of the same hormonal composition. Ten females (24 ± 4 years; 59.7 ± 3.5 kg body mass; 2-6 training sessions per week) took part in a randomised, double-blind, placebo-controlled crossover-design trial. A 90-min intermittent treadmill-running protocol was completed 60 min following ingestion of a capsule containing either 6 mg • kg(-1) anhydrous caffeine or artificial sweetener (placebo). Perceptual responses (ratings of perceived exertion (RPE), feeling scale (FS), felt arousal scale (FAS)), mood (profile of mood states (POMS)) and cognitive performance (Stroop test, choice reaction time (CRT)) were completed before, during and after the exercise protocol, as well as after ~12 h post exercise. Caffeine ingestion significantly enhanced the ratings of pleasure (P = 0.008) and arousal (P = 0.002) during the exercise protocol, as well as increased vigour (POMS; P = 0.007), while there was a tendency for reduced fatigue (POMS; P = 0.068). Caffeine ingestion showed a tendency to decrease RPE (P = 0.068) and improve reaction times in the Stroop (P = 0.072) and CRT (P = 0.087) tests. Caffeine supplementation showed a positive effect on perceptual parameters by increasing vigour and a tendency to decrease fatigue during intermittent running activity in female games players taking low-dose monophasic oral contraceptive steroids (OCS). PMID:26045170

  10. Mechanisms for greater insulin-stimulated glucose uptake in normal and insulin-resistant skeletal muscle after acute exercise.

    PubMed

    Cartee, Gregory D

    2015-12-15

    Enhanced skeletal muscle and whole body insulin sensitivity can persist for up to 24-48 h after one exercise session. This review focuses on potential mechanisms for greater postexercise and insulin-stimulated glucose uptake (ISGU) by muscle in individuals with normal or reduced insulin sensitivity. A model is proposed for the processes underlying this improvement; i.e., triggers initiate events that activate subsequent memory elements, which store information that is relayed to mediators, which translate memory into action by controlling an end effector that directly executes increased insulin-stimulated glucose transport. Several candidates are potential triggers or memory elements, but none have been conclusively verified. Regarding potential mediators in both normal and insulin-resistant individuals, elevated postexercise ISGU with a physiological insulin dose coincides with greater Akt substrate of 160 kDa (AS160) phosphorylation without improved proximal insulin signaling at steps from insulin receptor binding to Akt activity. Causality remains to be established between greater AS160 phosphorylation and improved ISGU. The end effector for normal individuals is increased GLUT4 translocation, but this remains untested for insulin-resistant individuals postexercise. Following exercise, insulin-resistant individuals can attain ISGU values similar to nonexercising healthy controls, but after a comparable exercise protocol performed by both groups, ISGU for the insulin-resistant group has been consistently reported to be below postexercise values for the healthy group. Further research is required to fully understand the mechanisms underlying the improved postexercise ISGU in individuals with normal or subnormal insulin sensitivity and to explain the disparity between these groups after similar exercise. PMID:26487009

  11. Acute exercise facilitates brain function and cognition in children who need it most: an ERP study of individual differences in inhibitory control capacity.

    PubMed

    Drollette, Eric S; Scudder, Mark R; Raine, Lauren B; Moore, R Davis; Saliba, Brian J; Pontifex, Matthew B; Hillman, Charles H

    2014-01-01

    The present study examined the effects of moderate-intensity aerobic exercise on aspects of cognitive control in two groups of children categorized by higher- and lower-task performance. Event-related brain potentials (ERPs) were collected in 40 preadolescent children during a modified flanker task following 20 min of treadmill walking and seated rest on separate occasions. Participants were bifurcated into two groups based on task performance following the resting session. Findings revealed that following exercise, higher-performers maintained accuracy and exhibited no change in P3 amplitude compared to seated rest. Lower-performers demonstrated a differential effect, such that accuracy measures improved, and P3 amplitude increased following exercise. Lastly, both groups displayed smaller N2 amplitude and shorter P3 latency following exercise, suggesting an overall facilitation in response conflict and the speed of stimulus classification. The current findings replicate prior research reporting the beneficial influence of acute aerobic exercise on cognitive performance in children. However, children with lower inhibitory control capacity may benefit the most from single bouts of exercise. These data are among the first to demonstrate the differential effect of physical activity on individuals who vary in inhibitory control, and further support the role of aerobic exercise for brain health during development. PMID:24309300

  12. Stretch-induced enhancement of mechanical power output in human multijoint exercise with countermovement.

    PubMed

    Takarada, Y; Hirano, Y; Ishige, Y; Ishii, N

    1997-11-01

    The relation between the eccentric force developed during a countermovement and the mechanical power output was studied in squatting exercises under nominally isotonic load (50% of 1-repetition maximum). The subjects (n = 5) performed squatting exercises with a countermovement at varied deceleration rates before lifting the load. The ground reaction force and video images were recorded to obtain the power output of the body. Net muscle moments acting at hip, knee, and ankle joints were calculated from video recordings by using inverse dynamics. When an intense deceleration was taken at the end of downward movement, large eccentric force was developed, and the mechanical power subsequently produced during the lifting movement was consistently larger than that produced without the countermovement. Both maximal and mean power outputs during concentric actions increased initially with the eccentric force, whereas they began to decline when the eccentric force exceeded approximately 1.4 times the sum of load and body weight. Video-image analysis showed that this characteristic relation was predominantly determined by the torque around the knee joint. Electromyographic analyses showed no consistent increase in time-averaged integrated electromyograph from vastus lateralis with the power output, suggesting that the enhancement of power output is primarily caused by the prestretch-induced improvement of an intrinsic force-generating capability of the agonist muscle. PMID:9375347

  13. [Rhabdomyolysis in a medical student induced by body-building exercise (rhabdomyolysis following acute muscular exertion)].

    PubMed

    Arányi, J; Radó, J

    1992-08-01

    A medical student sportsman had been admitted to the hospital because of weakness and painful swelling of the muscle as well as dark urine appearing after carrying out an excessive body-building performance. On the basis of indirect evidences pigmenturia "per exclusionem" was a manifestation of urinary myoglobin excretion. The development of an "acute exertional rhabdomyolysis" was confirmed by the increased serum enzyme levels and myoglobinuria. The outcome of the illness was fortunate, as acute renal failure could be avoided. On the basis of survey of the literature it can be stated, that this presumably frequently occurring, but rarely recognized disease may have importance from clinical, sporting medicine and pathophysiological point of view. PMID:1495807

  14. Effects of DHA-rich fish oil supplementation on the lipid profile, markers of muscle damage, and neutrophil function in wheelchair basketball athletes before and after acute exercise.

    PubMed

    Marques, Camila Garcia; Santos, Vinicius Coneglian; Levada-Pires, Adriana Cristina; Jacintho, Thiago Manzoni; Gorjão, Renata; Pithon-Curi, Tânia Cristina; Cury-Boaventura, Maria Fernanda

    2015-06-01

    We investigated the effects of docosahexaenoic acid (DHA)-rich fish oil (FO) supplementation on the lipid profile, levels of plasma inflammatory mediators, markers of muscle damage, and neutrophil function in wheelchair basketball players before and after acute exercise. We evaluated 8 male basketball wheelchair athletes before and after acute exercise both prior to (S0) and following (S1) FO supplementation. The subjects were supplemented with 3 g of FO daily for 30 days. The following components were measured: the plasma lipid profile (total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and triglycerides), plasma inflammatory mediators (C-reactive protein, interleukin (IL)-1β, IL-1ra, IL-4, IL-6, IL-8, and tumor necrosis factor-α), markers of muscle damage (creatine kinase and lactate dehydrogenase (LDH)), and neutrophil function (cytokine production, phagocytic capacity, loss of membrane integrity, mitochondrial membrane potential, neutral lipid accumulation, phosphatidylserine externalization, DNA fragmentation, and production of reactive oxygen species (ROS)). Acute exercise increased the plasma levels of total cholesterol, LDH, IL1ra, and IL-6, led to the loss of membrane integrity, ROS production, and a high mitochondrial membrane potential in neutrophils, and reduced the phagocytic capacity and IL-6 production by the neutrophils (S0). However, supplementation prevented the increases in the plasma levels of LDH and IL-6, the loss of membrane integrity, and the alterations in ROS production and mitochondrial membrane potential in the neutrophils that were induced by exercise (S1). In conclusion, DHA-rich FO supplementation reduces the markers of muscle damage, inflammatory disturbances, and neutrophil death induced by acute exercise in wheelchair athletes. PMID:25942100

  15. Swimming exercise ameliorates neurocognitive impairment induced by neonatal exposure to isoflurane and enhances hippocampal histone acetylation in mice.

    PubMed

    Zhong, T; Ren, F; Huang, C S; Zou, W Y; Yang, Y; Pan, Y D; Sun, B; Wang, E; Guo, Q L

    2016-03-01

    Isoflurane-induced neurocognitive impairment in the developing rodent brain is well documented, and regular physical exercise has been demonstrated to be a viable intervention for some types of neurocognitive impairment. This study was designed to investigate the potential protective effect of swimming exercise on both neurocognitive impairment caused by repeated neonatal exposure to isoflurane and the underlying molecular mechanism. Mice received 0.75% isoflurane exposures for 4h on postnatal days 7, 8, and 9. From the third month after anesthesia, the mice were subjected to regular swimming exercise for 4weeks, followed by a contextual fear condition (CFC) trial. We found that repeated neonatal exposure to isoflurane reduced freezing behavior during CFC testing and deregulated hippocampal histone H4K12 acetylation. Conversely, mice subjected to regular swimming exercise showed enhanced hippocampal H3K9, H4K5, and H4K12 acetylation levels, increased numbers of c-Fos-positive cells 1h after CFC training, and less isoflurane-induced memory impairment. We also observed increases in histone acetylation and of cAMP-response element-binding protein (CREB)-binding protein (CBP) during the swimming exercise program. The results suggest that neonatal isoflurane exposure-induced memory impairment was associated with dysregulation of H4K12 acetylation, which may lead to less hippocampal activation following learning tasks. Swimming exercise was associated with enhanced hippocampal histone acetylation and CBP expression. Exercise most likely ameliorated isoflurane-induced memory impairment by enhancing hippocampal histone acetylation and activating more neuron cells during memory formation. PMID:26748054

  16. The Effects of Acute Intense Physical Exercise on Postural Stability in Children With Cerebral Palsy.

    PubMed

    Leineweber, Matthew J; Wyss, Dominik; Dufour, Sophie-Krystale; Gane, Claire; Zabjek, Karl; Bouyer, Laurent J; Maltais, Désirée B; Voisin, Julien I; Andrysek, Jan

    2016-07-01

    This study evaluated the effects of intense physical exercise on postural stability of children with cerebral palsy (CP). Center of pressure (CoP) was measured in 9 typically developing (TD) children and 8 with CP before and after a maximal aerobic shuttle-run test (SRT) using a single force plate. Anteroposterior and mediolateral sway velocities, sway area, and sway regularity were calculated from the CoP data and compared between pre- and postexercise levels and between groups. Children with CP demonstrated significantly higher pre-SRT CoP velocities than TD children in the sagittal (18.6 ± 7.6 vs. 6.75 1.78 m/s) and frontal planes (15.4 ± 5.3 vs. 8.04 ± 1.51 m/s). Post-SRT, CoP velocities significantly increased for children with CP in the sagittal plane (27.0 ± 1.2 m/s), with near-significant increases in the frontal plane (25.0 ± 1.5m/s). Similarly, children with CP evidenced larger sway areas than the TD children both pre- and postexercise. The diminished postural stability in children with CP after short but intense physical exercise may have important implications including increased risk of falls and injury. PMID:27623610

  17. The effects of acute oral glutamine supplementation on exercise-induced gastrointestinal permeability and heat shock protein expression in peripheral blood mononuclear cells.

    PubMed

    Zuhl, Micah; Dokladny, Karol; Mermier, Christine; Schneider, Suzanne; Salgado, Roy; Moseley, Pope

    2015-01-01

    Chronic glutamine supplementation reduces exercise-induced intestinal permeability and inhibits the NF-κB pro-inflammatory pathway in human peripheral blood mononuclear cells. These effects were correlated with activation of HSP70. The purpose of this paper is to test if an acute dose of oral glutamine prior to exercise reduces intestinal permeability along with activation of the heat shock response leading to inhibition of pro-inflammatory markers. Physically active subjects (N = 7) completed baseline and exercise intestinal permeability tests, determined by the percent ratio of urinary lactulose (5 g) to rhamnose (2 g). Exercise included two 60-min treadmill runs at 70 % of VO2max at 30 °C after ingestion of glutamine (Gln) or placebo (Pla). Plasma levels of endotoxin and TNF-α, along with peripheral blood mononuclear cell (PBMC) protein expression of HSP70 and IκBα, were measured pre- and post-exercise and 2 and 4 h post-exercise. Permeability increased in the Pla trial compared to that at rest (0.06 ± 0.01 vs. 0.02 ± 0.018) and did not increase in the Gln trial. Plasma endotoxin was lower at the 4-h time point in the Gln vs. 4 h in the Pla (6.715 ± 0.046 pg/ml vs. 7.952 ± 1.11 pg/ml). TNF-α was lower 4 h post-exercise in the Gln vs. Pla (1.64 ± 0.09 pg/ml vs. 1.87 ± 0.12 pg/ml). PBMC expression of IkBα was higher 4 h post-exercise in the Gln vs. 4 h in the Pla (1.29 ± 0.43 vs. 0.8892 ± 0.040). HSP70 was higher pre-exercise and 2 h post-exercise in the Gln vs. Pla (1.35 ± 0.21 vs. 1.000 ± 0.000 and 1.65 ± 0.21 vs. 1.27 ± 0.40). Acute oral glutamine supplementation prevents an exercise-induced rise in intestinal permeability and suppresses NF-κB activation in peripheral blood mononuclear cells. PMID:25062931

  18. Inflammatory cytokine kinetics to single bouts of acute moderate and intense aerobic exercise in women with active and inactive systemic lupus erythematosus.

    PubMed

    Perandini, L A; Sales-de-Oliveira, D; Mello, Sbv; Camara, N O; Benatti, F B; Lima, F R; Borba, E; Bonfa, E; Roschel, H; Sá-Pinto, A L; Gualano, B

    2015-01-01

    The aim of this study was to evaluate changes in the cytokines INF-γ, IL-10, IL-6, TNF-α and soluble TNF receptors (sTNFR1 and sTNFR2) in response to single bouts of acute moderate and intense exercise in systemic lupus erythematosus women with active (SLE(ACTIVE)) and inactive (SLE(INACTIVE)) disease. Twelve SLE(INACTIVE) women (age: 35.3 ± 5.7 yrs; BMI: 25.6±3.4 kg/m2), eleven SLE(ACTIVE) women (age: 30.4 ± 4.5 yrs; BMI: 26.1±4.8 kg/m2), and 10 age- and BMI-matched healthy control women (HC) performed 30 minutes of acute moderate (~50% of VO(2)peak) and intense (~70% of VO(2)peak) exercise bout. Cytokines and soluble TNF receptors were assessed at baseline, immediately after, every 30 minutes up to three hours, and 24 hours after both acute exercise bouts. In response to acute moderate exercise, cytokines and soluble TNF receptors levels remained unchanged in all groups (P>0.05), except for a reduction in IL-6 levels in the SLE(ACTIVE) group at the 60th and 180th minutes of recovery (P<0.05), and a reduction in sTNFR1 levels in the HC group at the 90th, 120th, 150th, 180th minutes of recovery (P<0.05). The SLE(INACTIVE) group showed higher levels of TNF-α, sTNFR1, and sTNFR2 at all time points when compared with the HC group (P<0.05). Also, the SLE(ACTIVE) group showed higher levels of IL-6 at the 60th minute of recovery (P<0.05) when compared with the HC group. After intense exercise, sTNFR1 levels were reduced at the 150th (P=0.041) and 180th (P=0.034) minutes of recovery in the SLE(INACTIVE) group, whereas the other cytokines and sTNFR2 levels remained unchanged (P>0.05). In the HC group, IL-10, TNF-α, sTNFR1, and sTNFR2 levels did not change, whilst INF-γ levels decreased (P=0.05) and IL-6 levels increased immediately after the exercise (P=0.028), returning to baseline levels 24 hours later (P > 0.05). When compared with the HC group, the SLE(INACTIVE) group showed higher levels of TNF-α and sTNFR2 in all time points, and higher levels of sTNFR1 at

  19. Effects of acute and chronic interval sprint exercise performed on a manually propelled treadmill on upper limb vascular mechanics in healthy young men.

    PubMed

    Olver, T Dylan; Reid, Steph M; Smith, Alan R; Zamir, Mair; Lemon, Peter W R; Laughlin, M Harold; Shoemaker, J Kevin

    2016-07-01

    Interval sprint exercise performed on a manually propelled treadmill, where the hands grip the handle bars, engages lower and upper limb skeletal muscle, but little is known regarding the effects of this exercise modality on the upper limb vasculature. We tested the hypotheses that an acute bout of sprint exercise and 6 weeks of training induces brachial artery (BA) and forearm vascular remodeling, favoring a more compliant system. Before and following a single bout of exercise as well as 6 weeks of training three types of vascular properties/methodologies were examined in healthy men: (1) stiffness of the entire upper limb vascular system (pulse wave velocity (PWV); (2) local stiffness of the BA; and (3) properties of the entire forearm vascular bed (determined by a modified lumped parameter Windkessel model). Following sprint exercise, PWV declined (P < 0.01), indices of BA stiffness did not change (P ≥ 0.10), and forearm vascular bed compliance increased and inertance and viscoelasticity decreased (P ≤ 0.03). Following manually propelled treadmill training, PWV remained unchanged (P = 0.31), indices of BA stiffness increased (P ≤ 0.05) and forearm vascular bed viscoelasticity declined (P = 0.02), but resistance, compliance, and inertance remained unchanged (P ≥ 0.10) compared with pretraining values. Sprint exercise induced a more compliant forearm vascular bed, without altering indices of BA stiffness. These effects were transient, as following training the forearm vascular bed was not more compliant and indices of BA stiffness increased. On the basis of these data, we conclude that adaptations to acute and chronic sprint exercise on a manually propelled treadmill are not uniform along the arterial tree in upper limb. PMID:27405970

  20. Post-Exercise Heart Rate Recovery Independently Predicts Clinical Outcome in Patients with Acute Decompensated Heart Failure

    PubMed Central

    Youn, Jong-Chan; Lee, Hye Sun; Choi, Suk-Won; Han, Seong-Woo; Ryu, Kyu-Hyung; Shin, Eui-Cheol; Kang, Seok-Min

    2016-01-01

    Background Post-exercise heart rate recovery (HRR) is an index of parasympathetic function associated with clinical outcome in patients with chronic heart failure. However, its relationship with the pro-inflammatory response and prognostic value in consecutive patients with acute decompensated heart failure (ADHF) has not been investigated. Methods We measured HRR and pro-inflammatory markers in 107 prospectively and consecutively enrolled, recovered ADHF patients (71 male, 59 ± 15 years, mean ejection fraction 28.9 ± 14.2%) during the pre-discharge period. The primary endpoint included cardiovascular (CV) events defined as CV mortality, cardiac transplantation, or rehospitalization due to HF aggravation. Results The CV events occurred in 30 (28.0%) patients (5 cardiovascular deaths and 7 cardiac transplantations) during the follow-up period (median 214 days, 11–812 days). When the patients with ADHF were grouped by HRR according to the Contal and O’Quigley’s method, low HRR was shown to be associated with significantly higher levels of serum monokine-induced by gamma interferon (MIG) and poor clinical outcome. Multivariate Cox regression analysis revealed that low HRR was an independent predictor of CV events in both enter method and stepwise method. The addition of HRR to a model significantly increased predictability for CV events across the entire follow-up period. Conclusion Impaired post-exercise HRR is associated with a pro-inflammatory response and independently predicts clinical outcome in patients with ADHF. These findings may explain the relationship between autonomic dysfunction and clinical outcome in terms of the inflammatory response in these patients. PMID:27135610

  1. Exploring enhanced menu labels' influence on fast food selections and exercise-related attitudes, perceptions, and intentions.

    PubMed

    Lee, Morgan S; Thompson, Joel Kevin

    2016-10-01

    Labeling restaurant menus with calorie counts is a popular public health intervention, but research shows these labels have small, inconsistent effects on behavior. Supplementing calorie counts with physical activity equivalents may produce stronger results, but few studies of these enhanced labels have been conducted, and the labels' potential to influence exercise-related outcomes remains unexplored. This online study evaluated the impact of no information, calories-only, and calories plus equivalent miles of walking labels on fast food item selection and exercise-related attitudes, perceptions, and intentions. Participants (N = 643) were randomly assigned to a labeling condition and completed a menu ordering task followed by measures of exercise-related outcomes. The labels had little effect on ordering behavior, with no significant differences in total calories ordered and counterintuitive increases in calories ordered in the two informational conditions in some item categories. The labels also had little impact on the exercise-related outcomes, though participants in the two informational conditions perceived exercise as less enjoyable than did participants in the no information condition, and trends following the same pattern were found for other exercise-related outcomes. The present findings concur with literature demonstrating small, inconsistent effects of current menu labeling strategies and suggest that alternatives such as traffic light systems should be explored. PMID:27289007

  2. Effect of acute L-Alanyl-L-Glutamine and electrolyte ingestion on cognitive function and reaction time following endurance exercise.

    PubMed

    Pruna, Gabriel J; Hoffman, Jay R; McCormack, William P; Jajtner, Adam R; Townsend, Jeremy R; Bohner, Jonathan D; La Monica, Michael B; Wells, Adam J; Stout, Jeffrey R; Fragala, Maren S; Fukuda, David H

    2016-01-01

    The purpose of this study was to examine the effect of the L-Alanyl-L-Glutamine dipeptide (AG) on cognitive function and reaction time (RT) following endurance exercise. Twelve male endurance athletes (23.5 ± 3.7 y; 175.5 ± 5.4 cm; 70.7 ± 7.6 kg) performed four trials, each consisting of running on a treadmill at 70% of VO2max for 1h, then at 90% of VO2max until exhaustion. One trial consisted of no hydration (DHY), another required ingestion of only a sports electrolyte drink (ED) and two trials required ingestion of a low dose (LD; 300 mg·500 ml(-1)) and high dose (HD) of AG (1 g·500ml(-1)) added to the ED. Cognitive function and reaction tests were administered pre- and post-exercise. Magnitude based inferences were used to analyze ∆ cognitive function and ∆ reaction test data. Results indicated that DHY had a possible negative effect on number of hits in a 60-sec reaction test compared to LD and HD, while ED appeared to have a negative effect compared to HD. Analysis of lower body quickness indicated that LD and HD were likely improved in comparison to DHY. Performance on the serial subtraction test appeared to be possibly better in ED than DHY, while other comparisons between groups regarding cognitive function were unclear. In conclusion, rehydrating with AG during submaximal exercise may maintain or enhance subsequent RT in upper and lower body activities compared to DHY. These same effects were not apparent when participants consumed ED. PMID:25321847

  3. Does a Wii-based exercise program enhance balance control of independently functioning older adults? A systematic review

    PubMed Central

    Laufer, Yocheved; Dar, Gali; Kodesh, Einat

    2014-01-01

    Background Exercise programs that challenge an individual’s balance have been shown to reduce the risk of falls among older adults. Virtual reality computer-based technology that provides the user with opportunities to interact with virtual objects is used extensively for entertainment. There is a growing interest in the potential of virtual reality-based interventions for balance training in older adults. This work comprises a systematic review of the literature to determine the effects of intervention programs utilizing the Nintendo Wii console on balance control and functional performance in independently functioning older adults. Methods Studies were obtained by searching the following databases: PubMed, CINAHL, PEDro, EMBASE, SPORTdiscus, and Google Scholar, followed by a hand search of bibliographic references of the included studies. Included were randomized controlled trials written in English in which Nintendo Wii Fit was used to enhance standing balance performance in older adults and compared with an alternative exercise treatment, placebo, or no treatment. Results Seven relevant studies were retrieved. The four studies examining the effect of Wii-based exercise compared with no exercise reported positive effects on at least one outcome measure related to balance performance in older adults. Studies comparing Wii-based training with alternative exercise programs generally indicated that the balance improvements achieved by Wii-based training are comparable with those achieved by other exercise programs. Conclusion The review indicates that Wii-based exercise programs may serve as an alternative to more conventional forms of exercise aimed at improving balance control. However, due to the great variability between studies in terms of the intervention protocols and outcome measures, as well as methodological limitations, definitive recommendations as to optimal treatment protocols and the potential of such an intervention as a safe and effective home

  4. Innovative treatment approaches in schizophrenia enhancing neuroplasticity: aerobic exercise, erythropoetin and repetitive transcranial magnetic stimulation.

    PubMed

    Wobrock, T; Hasan, A; Falkai, P

    2012-06-01

    Schizophrenia is a brain disorder associated with subtle, but replicable cerebral volume loss mostly prevalent in frontal and temporal brain regions. Post-mortem studies of the hippocampus point to a reduction of the neuropil constituting mainly of synapses associated with changes of molecules mediating plastic responses of neurons during development and learning. Derived from animal studies interventions to enhance neuroplasticity by inducing adult neurogenesis, synaptogenesis, angiogenesis and long-term potentiation (LTP) were developed and the results translated into clinical studies in schizophrenia. Out of these interventions aerobic exercise has been shown to increase hippocampal volume, elevate N-acetyl-aspartate in the hippocampus as neuronal marker, and improve short-term memory in schizophrenia. The hematopoietic growth factor erythropoetin (EPO) is involved in brain development and associated with the production and differentiation of neuronal precursor cells. A first study demonstrated a positive effect of EPO application on cognition in schizophrenia patients. In randomised controlled studies with small sample size, the efficacy of repetitive transcranial magnetic stimulation (rTMS), a biological intervention focussing on the enhancement of LTP, has been shown for the improvement of positive and negative symptoms in schizophrenia,. The putative underlying neurobiological mechanisms of these interventions including the role of neurotrophic factors are outlined and implications for future research regarding neuroprotection strategies to improve schizophrenia are discussed. PMID:22283764

  5. No effect of acute beetroot juice ingestion on oxygen consumption, glucose kinetics, or skeletal muscle metabolism during submaximal exercise in males.

    PubMed

    Betteridge, Scott; Bescós, Raúl; Martorell, Miquel; Pons, Antoni; Garnham, Andrew P; Stathis, Christos C; McConell, Glenn K

    2016-02-15

    Beetroot juice, which is rich in nitrate (NO3 (-)), has been shown in some studies to decrease oxygen consumption (V̇o2) for a given exercise workload, i.e., increasing efficiency and exercise tolerance. Few studies have examined the effect of beetroot juice or nitrate supplementation on exercise metabolism. Eight healthy recreationally active males participated in three trials involving ingestion of either beetroot juice (Beet; ∼8 mmol NO3 (-)), Placebo (nitrate-depleted Beet), or Beet + mouthwash (Beet+MW), all of which were performed in a randomized single-blind crossover design. Two-and-a-half hours later, participants cycled for 60 min on an ergometer at 65% of V̇o2 peak. [6,6-(2)H]glucose was infused to determine glucose kinetics, blood samples obtained throughout exercise, and skeletal muscle biopsies that were obtained pre- and postexercise. Plasma nitrite [NO2 (-)] increased significantly (∼130%) with Beet, and this was attenuated in MW+Beet. Beet and Beet+MW had no significant effect on oxygen consumption, blood glucose, blood lactate, plasma nonesterified fatty acids, or plasma insulin during exercise. Beet and Beet+MW also had no significant effect on the increase in glucose disposal during exercise. In addition, Beet and Beet+MW had no significant effect on the decrease in muscle glycogen and phosphocreatine and the increase in muscle creatine, lactate, and phosphorylated acetyl CoA carboxylase during exercise. In conclusion, at the dose used, acute ingestion of beetroot juice had little effect on skeletal muscle metabolism during exercise. PMID:26635348

  6. Evidence that brain glucose availability influences exercise-enhanced extracellular 5-HT level in hippocampus: a microdialysis study in exercising rats.

    PubMed

    Béquet, F; Gomez-Merino, D; Berthelot, M; Guezennec, C Y

    2002-09-01

    The relationship between brain glucose and serotonin is still unclear and no direct evidence of an action of brain glucose on serotonergic metabolism in central fatigue phenomena has been shown yet. In order to determine whether or not brain glucose could influence the brain 5-hydroxytryptamine (5-HT) system, we have monitored in microdialysis the effects of a direct injection of glucose in rat brain hippocampus on serotonergic metabolism [i.e. 5-HT, 5-hydroxyindoleacetic acid (5-HIAA) and tryptophan (TRP)], during high intensive treadmill running. The injection was performed just before and after exercise. We have shown that glucose induced a decrease of brain 5-HT levels to a minimum of 73.0 +/- 3.5% of baseline after the first injection (P < 0.01) and to 68.5 +/- 5.5% of baseline after the second injection (P < 0.01) and consequently prevented the exercise-induced 5-HT enhanced levels. We have observed the same phenomenon concerning the 5-HIAA, but brain TRP levels were not decreased by the injections. In conclusion, this study demonstrates that brain glucose can act on serotonergic metabolism and thus can prevent exercise-induced increase of 5-HT levels. The results also suggest that extracellular brain glucose does not act on the synthesis way of 5-HT, but probably on the release/reuptake system. PMID:12193220

  7. Acute restraint stress enhances hippocampal endocannabinoid function via glucocorticoid receptor activation.

    PubMed

    Wang, Meina; Hill, Matthew N; Zhang, Longhua; Gorzalka, Boris B; Hillard, Cecilia J; Alger, Bradley E

    2012-01-01

    Exposure to behavioural stress normally triggers a complex, multilevel response of the hypothalamic-pituitary-adrenal (HPA) axis that helps maintain homeostatic balance. Although the endocannabinoid (eCB) system (ECS) is sensitive to chronic stress, few studies have directly addressed its response to acute stress. Here we show that acute restraint stress enhances eCB-dependent modulation of GABA release measured by whole-cell voltage clamp of inhibitory postsynaptic currents (IPSCs) in rat hippocampal CA1 pyramidal cells in vitro. Both Ca(2+)-dependent, eCB-mediated depolarization-induced suppression of inhibition (DSI), and muscarinic cholinergic receptor (mAChR)-mediated eCB mobilization are enhanced following acute stress exposure. DSI enhancement is dependent on the activation of glucocorticoid receptors (GRs) and is mimicked by both in vivo and in vitro corticosterone treatment. This effect does not appear to involve cyclooxygenase-2 (COX-2), an enzyme that can degrade eCBs; however, treatment of hippocampal slices with the L-type calcium (Ca(2+)) channel inhibitor, nifedipine, reverses while an agonist of these channels mimics the effect of in vivo stress. Finally, we find that acute stress produces a delayed (by 30 min) increase in the hippocampal content of 2-arachidonoylglycerol, the eCB responsible for DSI. These results support the hypothesis that the ECS is a biochemical effector of glucocorticoids in the brain, linking stress with changes in synaptic strength. PMID:21890595

  8. Enhancing critical thinking in clinical practice: implications for critical and acute care nurses.

    PubMed

    Shoulders, Bridget; Follett, Corrinne; Eason, Joyce

    2014-01-01

    The complexity of patients in the critical and acute care settings requires that nurses be skilled in early recognition and management of rapid changes in patient condition. The interpretation and response to these events can greatly impact patient outcomes. Nurses caring for these complex patients are expected to use astute critical thinking in their decision making. The purposes of this article were to explore the concept of critical thinking and provide practical strategies to enhance critical thinking in the critical and acute care environment. PMID:24895950

  9. The effect of exercise-induced arousal on cognitive task performance: a meta-regression analysis.

    PubMed

    Lambourne, Kate; Tomporowski, Phillip

    2010-06-23

    The effects of acute exercise on cognitive performance were examined using meta-analytic techniques. The overall mean effect size was dependent on the timing of cognitive assessment. During exercise, cognitive task performance was impaired by a mean effect of -0.14. However, impairments were only observed during the first 20min of exercise. Otherwise, exercise-induced arousal enhanced performance on tasks that involved rapid decisions and automatized behaviors. Following exercise, cognitive task performance improved by a mean effect of 0.20. Arousal continued to facilitate speeded mental processes and also enhanced memory storage and retrieval. Positive effects were observed following exercise regardless of whether the study protocol was designed to measure the effects of steady-state exercise, fatiguing exercise, or the inverted-U hypothesis. Finally, cognitive performance was affected differentially by exercise mode. Cycling was associated with enhanced performance during and after exercise, whereas treadmill running led to impaired performance during exercise and a small improvement in performance following exercise. These results are indicative of the complex relation between exercise and cognition. Cognitive performance may be enhanced or impaired depending on when it is measured, the type of cognitive task selected, and the type of exercise performed. PMID:20381468

  10. Effect of acute interval sprinting exercise on postprandial lipemia of sedentary young men

    PubMed Central

    Chu, Aaron; Boutcher, Yati N; Boutcher, Stephen H

    2016-01-01

    [Purpose] Postprandial lipemia (PPL) contributesto the development of atherosclerosis. In females, repeated 8-second bouts of interval sprinting exercise reduced PPL, however, the effect of 8-second bouts of interval sprinting on PPL of overweight males is undetermined. Thus, the effect of 8-secondsof interval sprinting for 20 min, the night before ingestion of a high-fat meal (HFM), on plasma triacylglycerol(TG) levelswas examined. [Methods] Ten overweight males acted as participants (BMI = 26±3.0kg/m2, age 22 ± 2.5 years). A crossover design was employed withinterval sprinting and a noexercise condition separated by 7days. Participants consumed a milkshake (high-fat meal;HFM = 4170 kJ/993 Kcal) the morning after an overnight fast, followed by 4 hourly blood samples. Participants performedone bout of interval sprinting (8seconds sprinting at 110-115rpm, 12seconds active recovery at ~60rpm for 20 minutes) the evening before the consumption of the HFM. [Results] Postprandial TG was 22.5% lower in the interval sprinting compared to the noexercise condition when comparing the change in total area under the curve (ΔAUCT): ISE(7.15±1.90mmolL-1h-1) versus noexercise (9.22±3.44mmolL-1h-1), p=.014. The correlation between fasting TG levels in the noexercise condition and total reduction in AUCT between the conditions was significant (r=.87, p=.001). [Conclusion] One 20-min bout of interval sprinting,the night before consumption of a HFM,significantly attenuated the PPL response of sedentary males. PMID:27298807

  11. Endurance Exercise as an “Endogenous” Neuro-enhancement Strategy to Facilitate Motor Learning

    PubMed Central

    Taubert, Marco; Villringer, Arno; Lehmann, Nico

    2015-01-01

    Endurance exercise improves cardiovascular and musculoskeletal function and may also increase the information processing capacities of the brain. Animal and human research from the past decade demonstrated widespread exercise effects on brain structure and function at the systems-, cellular-, and molecular level of brain organization. These neurobiological mechanisms may explain the well-established positive influence of exercise on performance in various behavioral domains but also its contribution to improved skill learning and neuroplasticity. With respect to the latter, only few empirical and theoretical studies are available to date. The aim of this review is (i) to summarize the existing neurobiological and behavioral evidence arguing for endurance exercise-induced improvements in motor learning and (ii) to develop hypotheses about the mechanistic link between exercise and improved learning. We identify major knowledge gaps that need to be addressed by future research projects to advance our understanding of how exercise should be organized to optimize motor learning. PMID:26834602

  12. Exercise-enhanced Neuroplasticity Targeting Motor and Cognitive Circuitry in Parkinson’s Disease

    PubMed Central

    Petzinger, G. M.; Fisher, B. E.; McEwen, S.; Beeler, J. A.; Walsh, J. P.; Jakowec, M. W.

    2013-01-01

    The purpose of this review is to highlight the potential role of exercise in promoting neuroplasticity and repair in Parkinson’s disease (PD). Exercise interventions in individuals with PD incorporate goal-based motor skill training in order to engage cognitive circuitry important in motor learning. Using this exercise approach, physical therapy facilitates learning through instruction and feedback (reinforcement), and encouragement to perform beyond self-perceived capability. Individuals with PD become more cognitively engaged with the practice and learning of movements and skills that were previously automatic and unconscious. Studies that have incorporated both goal-based training and aerobic exercise have supported the potential for improving both cognitive and automatic components of motor control. Utilizing animal models, basic research is beginning to reveal exercise-induced effects on neuroplasticity. Since neuroplasticity occurs at the level of circuits and synaptic connections, we examine the effects of exercise from this perspective. PMID:23769598

  13. Similar acute molecular responses to equivalent volumes of isometric, lengthening, or shortening mode resistance exercise.

    PubMed

    Garma, T; Kobayashi, C; Haddad, F; Adams, G R; Bodell, P W; Baldwin, K M

    2007-01-01

    The present study was undertaken to test the hypothesis that the contraction mode of action [static-isometric (Iso), shortening-concentric (Con), or lengthening-eccentric (Ecc)] used to stress the muscle provides a differential mechanical stimulus eliciting greater or lesser degrees of anabolic response at the initiation of a resistance training program. We performed an acute resistance training study in which different groups of rodents completed four training sessions in either the Iso, Con, or Ecc mode of contraction under conditions of activation and movement specifically designed to elicit equivalent volumes of force accumulation. The results of this experiment indicate that the three modes of contraction produced nearly identical cell signaling, indicative of an anabolic response involving factors such as increased levels of mRNA for IGF-I, procollagen III alpha1, decreased myostatin mRNA, and increased total RNA concentration. The resulting profiles collectively provide evidence that pure mode of muscle action, in and of itself, does not appear to be a primary variable in determining the efficacy of increased loading paradigms with regard to the initiation of selected muscle anabolic responses. PMID:17008438

  14. Eye Exercises Enhance Accuracy and Letter Recognition, but Not Reaction Time, in a Modified Rapid Serial Visual Presentation Task

    PubMed Central

    Di Noto, Paula; Uta, Sorin; DeSouza, Joseph F. X.

    2013-01-01

    Eye exercises have been prescribed to resolve a multitude of eye-related problems. However, studies on the efficacy of eye exercises are lacking, mainly due to the absence of simple assessment tools in the clinic. Because similar regions of the brain are responsible for eye movements and visual attention, we used a modified rapid serial visual presentation (RSVP) to assess any measurable effect of short-term eye exercise in improvements within these domains. In the present study, twenty subjects were equally divided into control and experimental groups, each of which performed a pre-training RSVP assessment where target letters, to which subjects were asked to respond to by pressing a spacebar, were serially and rapidly presented. Response time to target letters, accuracy of correctly responding to target letters, and correct identification of target letters in each of 12 sessions was measured. The experimental group then performed active eye exercises, while the control group performed a task that minimized eye movements for 18.5 minutes. A final post-training RSVP assessment was performed by both groups and response time, accuracy, and letter identification were compared between and within subject groups both pre- and post-training. Subjects who performed eye exercises were more accurate in responding to target letters separated by one distractor and in letter identification in the post-training RSVP assessment, while latency of responses were unchanged between and within groups. This suggests that eye exercises may prove useful in enhancing cognitive performance on tasks related to attention and memory over a very brief course of training, and RSVP may be a useful measure of this efficacy. Further research is needed on eye exercises to determine whether they are an effective treatment for patients with cognitive and eye-related disorders. PMID:23527146

  15. Increased extracellular dopamine and 5-hydroxytryptamine levels contribute to enhanced subthalamic nucleus neural activity during exhausting exercise.

    PubMed

    Hu, Y; Liu, X; Qiao, D

    2015-09-01

    The purpose of the study was to explore the mechanism underlying the enhanced subthalamic nucleus (STN) neural activity during exhausting exercise from the perspective of monoamine neurotransmitters and changes of their corresponding receptors. Rats were randomly divided into microdialysis and immunohistochemistry study groups. For microdialysis study, extracellular fluid of the STN was continuously collected with a microdialysis probe before, during and 90 min after one bout of exhausting exercise. Dopamine (DA) and 5-hydroxytryptamine (5-HT) levels were subsequently detected with high-performance liquid chromatography (HPLC). For immunohistochemistry study, the expression of DRD2 and HT2C receptors in the STN, before, immediately after and 90 min after exhaustion was detected through immunohistochemistry technique. Microdialysis study results showed that the extracellular DA and 5-HT neurotransmitters increased significantly throughout the procedure of exhausting exercise and the recovery period (P<0.05 or P<0.01). Immunohistochemistry study results showed that the expression levels of DRD2 and HT2C in the rat STN immediately after exhausting exercise and at the time point of 90 min after exhaustion were both higher than those of the rest condition, but the difference was not significant (P>0.05). Our results suggest that the increased extracellular DA and 5-HT in the STN might be one important factor leading to the enhanced STN neural activity and the development of fatigue during exhausting exercise. This study may essentially offer useful evidence for better understanding of the mechanism of the central type of exercise-induced fatigue. PMID:26424920

  16. [Performance enhancement by carbohydrate intake during sport: effects of carbohydrates during and after high-intensity exercise].

    PubMed

    Beelen, Milou; Cermak, Naomi M; van Loon, Luc J C

    2015-01-01

    Endogenous carbohydrate availability does not provide sufficient energy for prolonged moderate to high-intensity exercise. Carbohydrate ingestion during high-intensity exercise can therefore enhance performance.- For exercise lasting 1 to 2.5 hours, athletes are advised to ingest 30-60 g of carbohydrates per hour.- Well-trained endurance athletes competing for longer than 2.5 hours at high intensity can metabolise up to 90 g of carbohydrates per hour, provided that a mixture of glucose and fructose is ingested.- Athletes participating in intermittent or team sports are advised to follow the same strategies but the timing of carbohydrate intake depends on the type of sport.- If top performance is required again within 24 hours after strenuous exercise, the advice is to supplement endogenous carbohydrate supplies quickly within the first few hours post-exercise by ingesting large amounts of carbohydrate (1.2 g/kg/h) or a lower amount of carbohydrate (0.8 g/kg/h) with a small amount of protein (0.2-0.4 g/kg/h). PMID:25970669

  17. Effect of acute and chronic eccentric exercise on FOXO1 mRNA expression as fiber type transition factor in rat skeletal muscles.

    PubMed

    Azad, Milad; Khaledi, Neda; Hedayati, Mehdi

    2016-06-15

    Skeletal muscle is a highly elastic tissue which can respond to various functional demands by altering fiber-type composition. Exercise affects muscle fiber phenotype. One of the transcription factors that induce fiber-type transition is forkhead box O1 (FOXO1). Since eccentric contraction considered an essential part of exercise, so we are interested to see the effects of eccentric exercise (acute/chronic) on FOXO1 as an important factor of fiber-type transition in rat skeletal muscles. Twenty-four Sprague-Dawley rats (190-235g) were divided to 3 groups of 8 rats: 1) chronic eccentric exercise (CEE), 2) acute eccentric exercise (AEE), and 3) control (C). The exercise groups underwent downhill running protocol. CEE was running on treadmill in 3days of week for 9weeks, that slope and duration gradually managed from -4° to -16° and 15 to 90min, respectively. AEE group was running with 16m/min on -16° slope for 3 consecutive days that included 18 sets of 5min with rest interval of 2min in between. Soleus and super vastus lateralis (SVL) muscles mRNA were analyzed by real-time RT-PCR. SVL FOXO1 mRNA levels increased by 3.92-fold in the AEE and decreased 0.56-fold in the CEE group and were not significant in soleus muscle. In soleus muscle, myosin heavy chain (MHC) IIa, IIx, and IIb decreased in the AEE group and MHC IIa and IIx decreased in the CEE group. In SVL muscle, MHC I, IIa, and IIx increased in the AEE group and MHC IIa and IIX increased in the CEE group. In summary, both acute and chronic eccentric exercise could lead to change in FOXO1 mRNA only in fast SVL muscle of rat and so could induce fiber-type transition in both muscles regardless of changes in expression of FOXO1. So, oxidative stress can play important role in change of FOXO1. PMID:26915490

  18. Dynamic changes in dna methylation status in peripheral blood Mononuclear cells following an acute bout of exercise: Potential impact of exercise-induced elevations in interleukin-6 concentration.

    PubMed

    Robson-Ansley, P J; Saini, A; Toms, C; Ansley, L; Walshe, I H; Nimmo, M A; Curtin, J A

    2014-01-01

    The aim of the present study was to examine the relationship between interleukin (IL)-6 concentrations and DNA methylation in the peripheral blood mononuclear cells (PBMCs) of trained runners after a bout of prolonged, strenuous exercise. Eight healthy trained males completed a treadmill run at 60% vVO(2max) for 120 min followed by a 5-km time trial in a fasted condition. Whole blood samples were taken prior to, immediately before and 24 h following exercise. From these samples, PBMCs were isolated for analysis and plasma IL-6 concentrations were measured. The methylation status of DNA extracted from PBMCs was analysed using the Illumina 27k methylation beadchip platform. Global DNA methylation status was unaltered immediately and up to 24 hours following a bout of prolonged exercise in comparison to pre-exercise. Despite no change in global DNA methylation, plasma IL-6 concentrations were significantly related to the DNA methylation status of 11 genes. Our study demonstrates that the methylome is stable, while discovering a novel link between exercise-induced increases in circulating IL-6 and the DNA methylation status of 11 individual genes. Based on our preliminary findings, the mechanisms by which changes in plasma IL-6 concentrations and DNA methylation in response to exercise interact require further study. PMID:25316129

  19. Enhancement of preoxygenation for decompression sickness protection: effect of exercise duration

    NASA Technical Reports Server (NTRS)

    Webb, James T.; Pilmanis, Andrew A.; Fischer, Michele D.; Kannan, Nandini

    2002-01-01

    INTRODUCTION: Since strenuous exercise for 10 min during preoxygenation was shown to provide better protection from decompression sickness (DCS) incidence than resting preoxygenation, a logical question was: would a longer period of strenuous exercise improve protection even further? HYPOTHESIS: Increased strenuous exercise duration during preoxygenation increases DCS protection. METHODS: There were 60 subjects, 30 men and 30 women, who were exposed to 9,144 m (4.3 psia) for 4 h while performing mild, upper body exercise. Before the exposures, each subject performed three preoxygenation profiles on different days in balanced order: a 90-min resting preoxygenation control; a 240-min resting preoxygenation control; and a 90-min preoxygenation including exercise during the first 15 min. The subjects were monitored at altitude for venous gas emboli (VGE) with an echo-imaging system and observed for signs and symptoms of DCS. RESULTS: There were no significant differences in occurrence of DCS following any of the three preoxygenation procedures. Results were also comparable to an earlier report of 42% DCS with a 60-min preoxygenation including a 10-min exercise. There was no difference between VGE incidence in the comparison of protection offered by a 90-min preoxygenation with or without 13 min of strenuous exercise. The DCS incidence following a 240-min resting preoxygenation, 40%, was higher than observed during NASA studies and nearly identical with the earlier 42% DCS after a 60-min preoxygenation including exercise during the first 10 min. CONCLUSION: The protection offered by a 10 min exercise in a 60-min preoxygenation was not increased with extension of the preoxygenation exercise period to 15 min in a 90-min preoxygenation, indicating an upper time limit to the beneficial effects of strenuous exercise.

  20. Prevalence and clinical significance of painless ST segment depression during early postinfarction exercise testing

    SciTech Connect

    Gibson, R.S.; Beller, G.A.; Kaiser, D.L.

    1987-03-01

    In a recent study of 190 survivors of acute myocardial infarction, the authors sought to determine whether exercise-induced painless ST segments depression indicates residual myocardial ischemia, as defined by /sup 201/Tl scintigraphic criteria. 2 weeks after uncomplicated myocardial infarction, and whether quantitative /sup 201/Tl imaging enhances the prognostic value of such an exercise electrocardiographic response.

  1. Enhancing the detection and management of acute hepatitis C virus infection.

    PubMed

    Martinello, Marianne; Matthews, Gail V

    2015-10-01

    Acute HCV infection refers to the 6-month period following infection acquisition, although this definition is somewhat arbitrary. While spontaneous clearance occurs in approximately 25%, the majority will develop chronic HCV infection with the potential for development of cirrhosis, end stage liver disease and hepatocellular carcinoma. Detection of acute HCV infection has been hampered by its asymptomatic or non-specific presentation, lack of specific diagnostic tests and the inherent difficulties in identifying and following individuals at highest risk of transmitting and acquiring HCV infection, such as people who inject drugs (PWID). However, recognition of those with acute infection may have individual and population level benefits and could represent an ideal opportunity for intervention. Despite demonstration that HCV treatment is feasible and successful in PWID, treatment uptake remains low with multiple barriers to care at an individual and systems level. Given the burden of HCV-related disease among PWID, strategies to enhance HCV assessment, treatment and prevention in this group are urgently needed. As the therapeutic landscape of chronic HCV management is revolutionised by the advent of simple, highly effective directly-acting antiviral (DAA) therapy, similar opportunities may exist in acute infection. This review will discuss issues surrounding improving the detection and management of acute HCV infection, particularly in PWID. PMID:26254495

  2. Long-Term Exercise Is Needed to Enhance Synaptic Plasticity in the Hippocampus

    ERIC Educational Resources Information Center

    Patten, Anna R.; Sickmann, Helle; Hryciw, Brett N.; Kucharsky, Tessa; Parton, Roberta; Kernick, Aimee; Christie, Brian R.

    2013-01-01

    Exercise can have many benefits for the body, but it also benefits the brain by increasing neurogenesis, synaptic plasticity, and performance on learning and memory tasks. The period of exercise needed to realize the structural and functional benefits for the brain have not been well delineated, and previous studies have used periods of exercise…

  3. A putative low-carbohydrate ketogenic diet elicits mild nutritional ketosis but does not impair the acute or chronic hypertrophic responses to resistance exercise in rodents.

    PubMed

    Roberts, Michael D; Holland, A Maleah; Kephart, Wesley C; Mobley, C Brooks; Mumford, Petey W; Lowery, Ryan P; Fox, Carlton D; McCloskey, Anna E; Shake, Joshua J; Mesquita, Paulo; Patel, Romil K; Martin, Jeffrey S; Young, Kaelin C; Kavazis, Andreas N; Wilson, Jacob M

    2016-05-15

    We examined whether acute and/or chronic skeletal muscle anabolism is impaired with a low-carbohydrate diet formulated to elicit ketosis (LCKD) vs. a mixed macronutrient Western diet (WD). Male Sprague-Dawley rats (9-10 wk of age, 300-325 g) were provided isoenergetic amounts of a LCKD or a WD for 6 wk. In AIM 1, basal serum and gastrocnemius assessments were performed. In AIM 2, rats were resistance exercised for one bout and were euthanized 90-270 min following exercise for gastrocnemius analyses. In AIM 3, rats voluntarily exercised daily with resistance-loaded running wheels, and hind limb muscles were analyzed for hypertrophy markers at the end of the 6-wk protocol. In AIM 1, basal levels of gastrocnemius phosphorylated (p)-rps6, p-4EBP1, and p-AMPKα were similar between diets, although serum insulin (P < 0.01), serum glucose (P < 0.001), and several essential amino acid levels (P < 0.05) were lower in LCKD-fed rats. In AIM 2, LCKD- and WD-fed rats exhibited increased postexercise muscle protein synthesis levels (P < 0.0125), but no diet effect was observed (P = 0.59). In AIM 3, chronically exercise-trained LCKD- and WD-fed rats presented similar increases in relative hind limb muscle masses compared with their sedentary counterparts (12-24%, P < 0.05), but there was no between-diet effects. Importantly, the LCKD induced "mild" nutritional ketosis, as the LCKD-fed rats in AIM 2 exhibited ∼1.5-fold greater serum β-hydroxybutyrate levels relative to WD-fed rats (diet effect P = 0.003). This study demonstrates that the tested LCKD in rodents, while only eliciting mild nutritional ketosis, does not impair the acute or chronic skeletal muscle hypertrophic responses to resistance exercise. PMID:26718785

  4. Prediction of multivessel coronary artery disease and prognosis early after acute myocardial infarction by exercise electrocardiography and thallium-201 myocardial perfusion scanning

    SciTech Connect

    Abraham, R.D.; Freedman, S.B.; Dunn, R.F.; Newman, H.; Roubin, G.S.; Harris, P.J.; Kelly, D.T.

    1986-09-01

    Exercise electrocardiography and thallium scanning were performed a mean of 24 days after uncomplicated acute myocardial infarction in 103 patients, aged 36 to 60 years, who also underwent coronary angiography. The purpose of the study was to determine the ability of the noninvasive tests to predict multivessel coronary artery disease (CAD) and prognosis. Patients were followed up to document medical complications (incidence 12%: 3 deaths, 1 resuscitated cardiac arrest, 4 recurrent infarctions, 4 admissions with unstable angina) and combined events (medical events or bypass surgery, incidence 23%). The sensitivity, specificity and predictive accuracy for predicting multivessel CAD were 64%, 77% and 64% for a positive exercise electrocardiographic (ECG) response, 64%, 88% and 80% for a remote thallium defect, and 42%, 96% and 88% for a combination of the 2 tests. With 2 tests yielding negative findings the probability of multivessel CAD was 13%. No variable (positive exercise ECG response, remote thallium defect and presence of multivessel CAD) predicted medical events, although there were nonsignificant trends to more events in patients with any of those findings. The relative risk of combined events was 2.5 (p less than 0.05) for a positive exercise ECG response; 1.8 (NS) for a remote thallium defect; 2.6 (p less than 0.05) for multivessel CAD; and 3.1 (p less than 0.025) for both positive ECG response and remote defect. A combination of exercise electrocardiography and thallium scanning early after acute myocardial infarction helps to identify subsets of patients with high and low probabilities of multivessel CAD and combined medical or surgical events.

  5. Treadmill exercise improves spatial learning ability by enhancing brain-derived neurotrophic factor expression in the attention-deficit/hyperactivity disorder rats

    PubMed Central

    Jeong, Hye Im; Ji, Eun-Sang; Kim, Su-Hyun; Kim, Tae-Wook; Baek, Sang-Bin; Choi, Seung Wook

    2014-01-01

    Attention-deficit/hyperactivity disorder (ADHD) patients show learning difficulty and impulsiveness. Exercise is known to improve learning ability and memory function. In the present study, we investigated the duration-dependence of the effect of treadmill exercise on spatial learning ability in relation with brain-derived neurotrophic factor (BDNF) expression in ADHD rats. For this study, radial 8-arm maze test and western blot for BDNF and tyrosine kinase B (TrkB) were performed. Spontaneous hypertensive rats were used as the ADHD rats and Wistar-Kyoto rats were used as the control rats. The rats in the exercise groups were forced to run on a treadmill for 10 min, 30 min, and 60 min once a day for 28 consecutive days. ADHD rats displayed impairment of spatial learning ability, in contrast treadmill exercise ameliorated impairment of spatial learning ability. Treadmill exercise for 30 min per day showed most potent ameliorating effect on impairment of spatial learning ability. BDNF and TrkB expressions in the hippocampus were decreased in the ADHD rats, in contrast treadmill exercise enhanced BDNF and TrkB expressions. Treadmill exercise for 30 min and for 60 min per day showed enhancing effects on BDNF and TrkB expressions. Treadmill exercise alleviated deficits in the spatial learning ability through enhancing BDNF and TrkB expressions in the ADHD rats. Treadmill exercise for 30 min per day can be considered as the most effective therapeutic modality for the ADHD symptoms. PMID:25061595

  6. Prognostic utility of predischarge dipyridamole-thallium imaging compared to predischarge submaximal exercise electrocardiography and maximal exercise thallium imaging after uncomplicated acute myocardial infarction

    SciTech Connect

    Gimple, L.W.; Hutter, A.M. Jr.; Guiney, T.E.; Boucher, C.A. )

    1989-12-01

    The prognostic value of predischarge dipyridamole-thallium scanning after uncomplicated myocardial infarction was determined by comparison with submaximal exercise electrocardiography and 6-week maximal exercise thallium imaging and by correlation with clinical events. Two endpoints were defined: cardiac events and severe ischemic potential. Of the 40 patients studied, 8 had cardiac events within 6 months (1 died, 3 had myocardial infarction and 4 had unstable angina requiring hospitalization). The finding of any redistribution on dipyridamole-thallium scanning was common (77%) in these patients and had poor specificity (29%). Redistribution outside of the infarct zone, however, had equivalent sensitivity (63%) and better specificity (75%) for events (p less than 0.05). Both predischarge dipyridamole-thallium and submaximal exercise electrocardiography identified 5 of the 8 events (p = 0.04 and 0.07, respectively). The negative predictive accuracy for events for both dipyridamole-thallium and submaximal exercise electrocardiography was 88%. In addition to the 8 patients with events, 16 other patients had severe ischemic potential (6 had coronary bypass surgery, 1 had inoperable 3-vessel disease and 9 had markedly abnormal 6-week maximal exercise tests). Predischarge dipyridamole-thallium and submaximal exercise testing also identified 8 and 7 of these 16 patients with severe ischemic potential, respectively. Six of the 8 cardiac events occurred before 6-week follow-up. A maximal exercise thallium test at 6 weeks identified 1 of the 2 additional events within 6 months correctly. Thallium redistribution after dipyridamole in coronary territories outside the infarct zone is a sensitive and specific predictor of subsequent cardiac events and identifies patients with severe ischemic potential.

  7. Acute lipopolysaccharide exposure facilitates epileptiform activity via enhanced excitatory synaptic transmission and neuronal excitability in vitro

    PubMed Central

    Gao, Fei; Liu, Zhiqiang; Ren, Wei; Jiang, Wen

    2014-01-01

    Growing evidence indicates brain inflammation has been involved in the genesis of seizures. However, the direct effect of acute inflammation on neuronal circuits is not well known. Lipopolysaccharide (LPS) has been used extensively to stimulate brain inflammatory responses both in vivo and in vitro. Here, we observed the contribution of inflammation induced by 10 μg/mL LPS to the excitability of neuronal circ