Sample records for acute murine model

  1. Antileukemic Efficacy of Continuous vs Discontinuous Dexamethasone in Murine Models of Acute Lymphoblastic Leukemia

    PubMed Central

    Ramsey, Laura B.; Janke, Laura J.; Payton, Monique A.; Cai, Xiangjun; Paugh, Steven W.; Karol, Seth E.; Kamdem, Landry Kamdem; Cheng, Cheng; Williams, Richard T.; Jeha, Sima; Pui, Ching-Hon; Evans, William E.; Relling, Mary V.

    2015-01-01

    Osteonecrosis is one of the most common, serious, toxicities resulting from the treatment of acute lymphoblastic leukemia. In recent years, pediatric acute lymphoblastic leukemia clinical trials have used discontinuous rather than continuous dosing of dexamethasone in an effort to reduce the incidence of osteonecrosis. However, it is not known whether discontinuous dosing would compromise antileukemic efficacy of glucocorticoids. Therefore, we tested the efficacy of discontinuous dexamethasone against continuous dexamethasone in murine models bearing human acute lymphoblastic leukemia xenografts (n = 8 patient samples) or murine BCR-ABL+ acute lymphoblastic leukemia. Plasma dexamethasone concentrations (7.9 to 212 nM) were similar to those achieved in children with acute lymphoblastic leukemia using conventional dosages. The median leukemia-free survival ranged from 16 to 59 days; dexamethasone prolonged survival from a median of 4 to 129 days in all seven dexamethasone-sensitive acute lymphoblastic leukemias. In the majority of cases (7 of 8 xenografts and the murine BCR-ABL model) we demonstrated equal efficacy of the two dexamethasone dosing regimens; whereas for one acute lymphoblastic leukemia sample, the discontinuous regimen yielded inferior antileukemic efficacy (log-rank p = 0.002). Our results support the clinical practice of using discontinuous rather than continuous dexamethasone dosing in patients with acute lymphoblastic leukemia. PMID:26252865

  2. A statistical analysis of murine incisional and excisional acute wound models.

    PubMed

    Ansell, David M; Campbell, Laura; Thomason, Helen A; Brass, Andrew; Hardman, Matthew J

    2014-01-01

    Mice represent the most commonly used species for preclinical in vivo research. While incisional and excisional acute murine wound models are both frequently employed, there is little agreement on which model is optimum. Moreover, current lack of standardization of wounding procedure, analysis time point(s), method of assessment, and the use of individual wounds vs. individual animals as replicates makes it difficult to compare across studies. Here we have profiled secondary intention healing of incisional and excisional wounds within the same animal, assessing multiple parameters to determine the optimal methodology for future studies. We report that histology provides the least variable assessment of healing. Furthermore, histology alone (not planimetry) is able to detect accelerated healing in a castrated mouse model. Perhaps most importantly, we find virtually no correlation between wounds within the same animal, suggesting that use of wound (not animal) biological replicates is perfectly acceptable. Overall, these findings should guide and refine future studies, increasing the likelihood of detecting novel phenotypes while reducing the numbers of animals required for experimentation. © 2014 by the Wound Healing Society.

  3. A statistical analysis of murine incisional and excisional acute wound models

    PubMed Central

    Ansell, David M; Campbell, Laura; Thomason, Helen A; Brass, Andrew; Hardman, Matthew J

    2014-01-01

    Mice represent the most commonly used species for preclinical in vivo research. While incisional and excisional acute murine wound models are both frequently employed, there is little agreement on which model is optimum. Moreover, current lack of standardization of wounding procedure, analysis time point(s), method of assessment, and the use of individual wounds vs. individual animals as replicates makes it difficult to compare across studies. Here we have profiled secondary intention healing of incisional and excisional wounds within the same animal, assessing multiple parameters to determine the optimal methodology for future studies. We report that histology provides the least variable assessment of healing. Furthermore, histology alone (not planimetry) is able to detect accelerated healing in a castrated mouse model. Perhaps most importantly, we find virtually no correlation between wounds within the same animal, suggesting that use of wound (not animal) biological replicates is perfectly acceptable. Overall, these findings should guide and refine future studies, increasing the likelihood of detecting novel phenotypes while reducing the numbers of animals required for experimentation. PMID:24635179

  4. Acute administration of n-3 rich triglyceride emulsions provides cardioprotection in murine models after ischemia-reperfusion.

    PubMed

    Zirpoli, Hylde; Abdillahi, Mariane; Quadri, Nosirudeen; Ananthakrishnan, Radha; Wang, Lingjie; Rosario, Rosa; Zhu, Zhengbin; Deckelbaum, Richard J; Ramasamy, Ravichandran

    2015-01-01

    Dietary n-3 fatty acids (FAs) may reduce cardiovascular disease risk. We questioned whether acute administration of n-3 rich triglyceride (TG) emulsions could preserve cardiac function and decrease injury after ischemia/reperfusion (I/R) insult. We used two different experimental models: in vivo, C57BL/6 mice were exposed to acute occlusion of the left anterior descending coronary artery (LAD), and ex-vivo, C57BL/6 murine hearts were perfused using Langendorff technique (LT). In the LAD model, mice treated with n-3 TG emulsion (1.5 g/kg body weight), immediately after ischemia and 1 h later during reperfusion, significantly reduced infarct size and maintained cardiac function (p<0.05). In the LT model, administration of n-3 TG emulsion (300 mg TG/100 ml) during reperfusion significantly improved functional recovery (p<0.05). In both models, lactate dehydrogenase (LDH) levels, as a marker of injury, were significantly reduced by n-3 TG emulsion. To investigate the mechanisms by which n-3 FAs protects hearts from I/R injury, we investigated changes in key pathways linked to cardioprotection. In the ex-vivo model, we showed that n-3 FAs increased phosphorylation of AKT and GSK3β proteins (p<0.05). Acute n-3 TG emulsion treatment also increased Bcl-2 protein level and reduced an autophagy marker, Beclin-1 (p<0.05). Additionally, cardioprotection by n-3 TG emulsion was linked to changes in PPARγ protein expression (p<0.05). Rosiglitazone and p-AKT inhibitor counteracted the positive effect of n-3 TG; GSK3β inhibitor plus n-3 TG significantly inhibited LDH release. We conclude that acute n-3 TG injection during reperfusion provides cardioprotection. This may prove to be a novel acute adjunctive reperfusion therapy after treating patients with myocardial infarction.

  5. Acute Administration of n-3 Rich Triglyceride Emulsions Provides Cardioprotection in Murine Models after Ischemia-Reperfusion

    PubMed Central

    Zirpoli, Hylde; Abdillahi, Mariane; Quadri, Nosirudeen; Ananthakrishnan, Radha; Wang, Lingjie; Rosario, Rosa; Zhu, Zhengbin; Deckelbaum, Richard J.; Ramasamy, Ravichandran

    2015-01-01

    Dietary n-3 fatty acids (FAs) may reduce cardiovascular disease risk. We questioned whether acute administration of n-3 rich triglyceride (TG) emulsions could preserve cardiac function and decrease injury after ischemia/reperfusion (I/R) insult. We used two different experimental models: in vivo, C57BL/6 mice were exposed to acute occlusion of the left anterior descending coronary artery (LAD), and ex-vivo, C57BL/6 murine hearts were perfused using Langendorff technique (LT). In the LAD model, mice treated with n-3 TG emulsion (1.5g/kg body weight), immediately after ischemia and 1h later during reperfusion, significantly reduced infarct size and maintained cardiac function (p<0.05). In the LT model, administration of n-3 TG emulsion (300mgTG/100ml) during reperfusion significantly improved functional recovery (p<0.05). In both models, lactate dehydrogenase (LDH) levels, as a marker of injury, were significantly reduced by n-3 TG emulsion. To investigate the mechanisms by which n-3 FAs protects hearts from I/R injury, we investigated changes in key pathways linked to cardioprotection. In the ex-vivo model, we showed that n-3 FAs increased phosphorylation of AKT and GSK3β proteins (p<0.05). Acute n-3 TG emulsion treatment also increased Bcl-2 protein level and reduced an autophagy marker, Beclin-1 (p<0.05). Additionally, cardioprotection by n-3 TG emulsion was linked to changes in PPARγ protein expression (p<0.05). Rosiglitazone and p-AKT inhibitor counteracted the positive effect of n-3 TG; GSK3β inhibitor plus n-3 TG significantly inhibited LDH release. We conclude that acute n-3 TG injection during reperfusion provides cardioprotection. This may prove to be a novel acute adjunctive reperfusion therapy after treating patients with myocardial infarction. PMID:25559887

  6. Murine model of long term obstructive jaundice

    PubMed Central

    Aoki, Hiroaki; Aoki, Masayo; Yang, Jing; Katsuta, Eriko; Mukhopadhyay, Partha; Ramanathan, Rajesh; Woelfel, Ingrid A.; Wang, Xuan; Spiegel, Sarah; Zhou, Huiping; Takabe, Kazuaki

    2016-01-01

    Background With the recent emergence of conjugated bile acids as signaling molecules in cancer, a murine model of obstructive jaundice by cholestasis with long-term survival is in need. Here, we investigated the characteristics of 3 murine models of obstructive jaundice. Methods C57BL/6J mice were used for total ligation of the common bile duct (tCL), partial common bile duct ligation (pCL), and ligation of left and median hepatic bile duct with gallbladder removal (LMHL) models. Survival was assessed by Kaplan-Meier method. Fibrotic change was determined by Masson-Trichrome staining and Collagen expression. Results 70% (7/10) of tCL mice died by Day 7, whereas majority 67% (10/15) of pCL mice survived with loss of jaundice. 19% (3/16) of LMHL mice died; however, jaundice continued beyond Day 14, with survival of more than a month. Compensatory enlargement of the right lobe was observed in both pCL and LMHL models. The pCL model demonstrated acute inflammation due to obstructive jaundice 3 days after ligation but jaundice rapidly decreased by Day 7. The LHML group developed portal hypertension as well as severe fibrosis by Day 14 in addition to prolonged jaundice. Conclusion The standard tCL model is too unstable with high mortality for long-term studies. pCL may be an appropriate model for acute inflammation with obstructive jaundice but long term survivors are no longer jaundiced. The LHML model was identified to be the most feasible model to study the effect of long-term obstructive jaundice. PMID:27916350

  7. Cell division inhibitors with efficacy equivalent to isoniazid in the acute murine Mycobacterium tuberculosis infection model

    PubMed Central

    Knudson, Susan E.; Awasthi, Divya; Kumar, Kunal; Carreau, Alexandra; Goullieux, Laurent; Lagrange, Sophie; Vermet, Hélène; Ojima, Iwao; Slayden, Richard A.

    2015-01-01

    Objectives The increasing number of clinical strains resistant to one or more of the front-line TB drugs complicates the management of this disease. To develop next-generation benzimidazole-based FtsZ inhibitors with improved efficacy, we employed iterative optimization strategies based on whole bacteria potency, bactericidal activity, plasma and metabolic stability and in vivo efficacy studies. Methods Candidate benzimidazoles were evaluated for potency against Mycobacterium tuberculosis H37Rv and select clinical strains, toxicity against Vero cells and compound stability in plasma and liver microsomes. The efficacy of lead compounds was assessed in the acute murine M. tuberculosis infection model via intraperitoneal and oral routes. Results MICs of SB-P17G-A33, SB-P17G-A38 and SB-P17G-A42 for M. tuberculosis H37Rv and select clinical strains were 0.18–0.39 mg/L. SB-P17G-A38 and SB-P17G-A42 delivered at 50 mg/kg twice daily intraperitoneally or orally demonstrated efficacy in reducing the bacterial load by 5.7–6.3 log10 cfu in the lungs and 3.9–5.0 log10 cfu in the spleen. SB-P17G-A33 delivered at 50 mg/kg twice daily intraperitoneally or orally also reduced the bacterial load by 1.7–2.1 log10 cfu in the lungs and 2.5–3.4 log10 cfu in the spleen. Conclusions Next-generation benzimidazoles with excellent potency and efficacy against M. tuberculosis have been developed. This is the first report on benzimidazole-based FtsZ inhibitors showing an equivalent level of efficacy to isoniazid in an acute murine M. tuberculosis infection model. PMID:26245639

  8. Receptor for advanced glycation end-products and World Trade Center particulate induced lung function loss: A case-cohort study and murine model of acute particulate exposure

    PubMed Central

    Haider, Syed H.; Crowley, George; Lee, Audrey; Ebrahim, Minah; Zhang, Liqun; Chen, Lung-Chi; Gordon, Terry; Liu, Mengling; Prezant, David J.; Schmidt, Ann Marie

    2017-01-01

    World Trade Center-particulate matter(WTC-PM) exposure and metabolic-risk are associated with WTC-Lung Injury(WTC-LI). The receptor for advanced glycation end-products (RAGE) is most highly expressed in the lung, mediates metabolic risk, and single-nucleotide polymorphisms at the AGER-locus predict forced expiratory volume(FEV). Our objectives were to test the hypotheses that RAGE is a biomarker of WTC-LI in the FDNY-cohort and that loss of RAGE in a murine model would protect against acute PM-induced lung disease. We know from previous work that early intense exposure at the time of the WTC collapse was most predictive of WTC-LI therefore we utilized a murine model of intense acute PM-exposure to determine if loss of RAGE is protective and to identify signaling/cytokine intermediates. This study builds on a continuing effort to identify serum biomarkers that predict the development of WTC-LI. A case-cohort design was used to analyze a focused cohort of male never-smokers with normal pre-9/11 lung function. Odds of developing WTC-LI increased by 1.2, 1.8 and 1.0 in firefighters with soluble RAGE (sRAGE)≥97pg/mL, CRP≥2.4mg/L, and MMP-9≤397ng/mL, respectively, assessed in a multivariate logistic regression model (ROCAUC of 0.72). Wild type(WT) and RAGE-deficient(Ager-/-) mice were exposed to PM or PBS-control by oropharyngeal aspiration. Lung function, airway hyperreactivity, bronchoalveolar lavage, histology, transcription factors and plasma/BAL cytokines were quantified. WT-PM mice had decreased FEV and compliance, and increased airway resistance and methacholine reactivity after 24-hours. Decreased IFN-γ and increased LPA were observed in WT-PM mice; similar findings have been reported for firefighters who eventually develop WTC-LI. In the murine model, lack of RAGE was protective from loss of lung function and airway hyperreactivity and was associated with modulation of MAP kinases. We conclude that in a multivariate adjusted model increased sRAGE is

  9. Murine model of long-term obstructive jaundice.

    PubMed

    Aoki, Hiroaki; Aoki, Masayo; Yang, Jing; Katsuta, Eriko; Mukhopadhyay, Partha; Ramanathan, Rajesh; Woelfel, Ingrid A; Wang, Xuan; Spiegel, Sarah; Zhou, Huiping; Takabe, Kazuaki

    2016-11-01

    With the recent emergence of conjugated bile acids as signaling molecules in cancer, a murine model of obstructive jaundice by cholestasis with long-term survival is in need. Here, we investigated the characteristics of three murine models of obstructive jaundice. C57BL/6J mice were used for total ligation of the common bile duct (tCL), partial common bile duct ligation (pCL), and ligation of left and median hepatic bile duct with gallbladder removal (LMHL) models. Survival was assessed by Kaplan-Meier method. Fibrotic change was determined by Masson-Trichrome staining and Collagen expression. Overall, 70% (7 of 10) of tCL mice died by day 7, whereas majority 67% (10 of 15) of pCL mice survived with loss of jaundice. A total of 19% (3 of 16) of LMHL mice died; however, jaundice continued beyond day 14, with survival of more than a month. Compensatory enlargement of the right lobe was observed in both pCL and LMHL models. The pCL model demonstrated acute inflammation due to obstructive jaundice 3 d after ligation but jaundice rapidly decreased by day 7. The LHML group developed portal hypertension and severe fibrosis by day 14 in addition to prolonged jaundice. The standard tCL model is too unstable with high mortality for long-term studies. pCL may be an appropriate model for acute inflammation with obstructive jaundice, but long-term survivors are no longer jaundiced. The LHML model was identified to be the most feasible model to study the effect of long-term obstructive jaundice. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. SP600125 promotes resolution of allergic airway inflammation via TLR9 in an OVA-induced murine acute asthma model.

    PubMed

    Wu, Hui-Mei; Fang, Lei; Shen, Qi-Ying; Liu, Rong-Yu

    2015-10-01

    c-Jun N-terminal kinase (JNK) relays extracellular stimuli through phosphorylation cascades that lead to various cell responses. In the present study, we aimed to investigate the effect of the JNK inhibitor SP600125 on the resolution of airway inflammation, and the underlying mechanism using a murine acute asthma model. Female C57BL/6 mice were sensitized with saline or ovalbumin (OVA) on day 0, and challenged with OVA on day 14-20. Meanwhile, some of the mice were treated with SP600125 (30 mg/kg) intraperitoneally 2 h before each challenge. The airway inflammation was evaluated by counting the numbers of various types of inflammatory cells in bronchoalveolar lavage fluid (BALF), histopathology, cytokines production and mucus secretion in individual mouse. In addition, we analyzed the protein levels of phosphorylated JNK and TLR9 in the lung tissues. SP600125 markedly reduced the invasion of inflammatory cells into the peribronchial regions, and decreased the numbers of eosinophils, monocytes, neutrophils and lymphocytes in BALF. SP600125 also reduced the level of plasma OVA-specific IgE, lowered the production of pro-inflammatory cytokines in BALF and alleviated mucus secretion. Meanwhile, SP600125 inhibited OVA-induced, increased expression of p-JNK and TLR9 in the lung tissues. Collectively, our data demonstrated that SP600125 promoted resolution of allergic airway inflammation via TLR9 in an OVA-induced murine acute asthma model. The JNK-TLR9 pathway may be a new therapeutic target in the treatment for the allergic asthma. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Cannabidiol, a non-psychotropic plant-derived cannabinoid, decreases inflammation in a murine model of acute lung injury: role for the adenosine A(2A) receptor.

    PubMed

    Ribeiro, Alison; Ferraz-de-Paula, Viviane; Pinheiro, Milena L; Vitoretti, Luana B; Mariano-Souza, Domenica P; Quinteiro-Filho, Wanderley M; Akamine, Adriana T; Almeida, Vinícius I; Quevedo, João; Dal-Pizzol, Felipe; Hallak, Jaime E; Zuardi, Antônio W; Crippa, José A; Palermo-Neto, João

    2012-03-05

    Acute lung injury is an inflammatory condition for which treatment is mainly supportive because effective therapies have not been developed. Cannabidiol, a non-psychotropic cannabinoid component of marijuana (Cannabis sativa), has potent immunosuppressive and anti-inflammatory properties. Therefore, we investigated the possible anti-inflammatory effect of cannabidiol in a murine model of acute lung injury. Analysis of total inflammatory cells and differential in bronchoalveolar lavage fluid was used to characterize leukocyte migration into the lungs; myeloperoxidase activity of lung tissue and albumin concentration in the bronchoalveolar lavage fluid were analyzed by colorimetric assays; cytokine/chemokine production in the bronchoalveolar lavage fluid was also analyzed by Cytometric Bead Arrays and Enzyme-Linked Immunosorbent Assay (ELISA). A single dose of cannabidiol (20mg/kg) administered prior to the induction of LPS (lipopolysaccharide)-induced acute lung injury decreases leukocyte (specifically neutrophil) migration into the lungs, albumin concentration in the bronchoalveolar lavage fluid, myeloperoxidase activity in the lung tissue, and production of pro-inflammatory cytokines (TNF and IL-6) and chemokines (MCP-1 and MIP-2) 1, 2, and 4days after the induction of LPS-induced acute lung injury. Additionally, adenosine A(2A) receptor is involved in the anti-inflammatory effects of cannabidiol on LPS-induced acute lung injury because ZM241385 (4-(2-[7-Amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol) (a highly selective antagonist of adenosine A(2A) receptor) abrogated all of the anti-inflammatory effects of cannabidiol previously described. Thus, we show that cannabidiol has anti-inflammatory effects in a murine model of acute lung injury and that this effect is most likely associated with an increase in the extracellular adenosine offer and signaling through adenosine A(2A) receptor. Copyright © 2012 Elsevier B.V. All rights

  12. Evaluation of a Murine Single-Blood-Injection SAH Model

    PubMed Central

    Sommer, Clemens; Steiger, Hans-Jakob; Schneider, Toni; Hänggi, Daniel

    2014-01-01

    The molecular pathways underlying the pathogenesis after subarachnoid haemorrhage (SAH) are poorly understood and continue to be a matter of debate. A valid murine SAH injection model is not yet available but would be the prerequisite for further transgenic studies assessing the mechanisms following SAH. Using the murine single injection model, we examined the effects of SAH on regional cerebral blood flow (rCBF) in the somatosensory (S1) and cerebellar cortex, neuro-behavioural and morphological integrity and changes in quantitative electrocorticographic and electrocardiographic parameters. Micro CT imaging verified successful blood delivery into the cisterna magna. An acute impairment of rCBF was observed immediately after injection in the SAH and after 6, 12 and 24 hours in the S1 and 6 and 12 hours after SAH in the cerebellum. Injection of blood into the foramen magnum reduced telemetric recorded total ECoG power by an average of 65%. Spectral analysis of ECoGs revealed significantly increased absolute delta power, i.e., slowing, cortical depolarisations and changes in ripples and fast ripple oscillations 12 hours and 24 hours after SAH. Therefore, murine single-blood-injection SAH model is suitable for pathophysiological and further molecular analysis following SAH. PMID:25545775

  13. Radiation protocols determine acute graft-versus-host disease incidence after allogeneic bone marrow transplantation in murine models.

    PubMed

    Schwarte, Sebastian; Bremer, Michael; Fruehauf, Joerg; Sorge, Yanina; Skubich, Susanne; Hoffmann, Matthias W

    2007-09-01

    Effects of radiation sources used for total body irradiation (TBI) on Graft-versus-Host Disease (GvHD) induction were examined. In a T cell receptor (TCR) transgenic mouse model, single fraction TBI was performed with different radiation devices ((60)Cobalt; (137)Cesium; 6 MV linear accelerator), dose rates (0.85; 1.5; 2.9; 5 Gy/min) and total doses before allogeneic bone marrow transplantation (BMT). Recipients were observed for 120 days. Different tissues were examined histologically. Acute GvHD was induced by a dose rate of 0.85 Gy/min ((60)Cobalt) and a total dose of 9 Gy and injection of 5 x 10(5) lymph node cells plus 5 x 10(6) bone marrow cells. Similar results were obtained using 6 MV linear accelerator- (linac-) photons with a dose rate of 1.5 Gy/min and 0.85 Gy/min, a total dose of 9.5 Gy and injection of same cell numbers. TBI with (137)Cesium (dose rate: 2.5 Gy/min) did not lead reproducibly to lethal acute GvHD. Experimental TBI in murine models may induce different immunological responses, depending on total energy, total single dose and dose rate. GvHD might also be induced by TBI with low dose rates.

  14. Glucocorticoid exposure alters the pathogenesis of Theiler’s murine encephalomyelitis virus during acute infection

    PubMed Central

    Young, Erin E.; Prentice, Thomas W.; Satterlee, Danielle; McCullough, Heath; Sieve, Amy N.; Johnson, Robin R.; Welsh, Thomas H.; Welsh, C. Jane R.; Meagher, Mary W.

    2008-01-01

    Previous research has shown that chronic restraint stress exacerbates Theiler’s virus infection, a murine model for CNS inflammation and multiple sclerosis. The current set of experiments was designed to evaluate the potential role of glucocorticoids in the deleterious effects of restraint stress on acute CNS inflammatory disease. Exposure to chronic restraint stress resulted in elevated levels of corticosterone as well as increased clinical scores and weight loss (Experiment 1). In addition, corticosterone administration alone exacerbated behavioral signs of TMEV-induced sickness (i.e. decreased body weight, increased symptoms of encephalitis, and increased mortality) and reduced inflammation in the CNS (Experiment 2). Infected subjects receiving exogenous corticosterone showed exacerbation of acute phase measures of sickness and severe mortality as well as decreased viral clearance from CNS (Experiment 3). These findings indicate that corticosterone exposure alone is sufficient to exacerbate acute CNS inflammatory disease. PMID:18538803

  15. Diet regulates liver autophagy differentially in murine acute Trypanosoma cruzi infection

    PubMed Central

    Lizardo, Kezia; Almonte, Vanessa; Law, Calvin; Aiyyappan, Janeesh Plakkal; Cui, Min-Hui; Nagajyothi, Jyothi F

    2017-01-01

    Chagas disease is a tropical parasitic disease caused by the protozoan Trypanosoma cruzi, which affects about 10 million people in its endemic regions of Latin America. After the initial acute stage of infection, 60–80% of infected individuals remain asymptomatic for several years to a lifetime; however, the rest develop the debilitating symptomatic stage, which affects the nervous system, digestive system and heart. The challenges of Chagas disease have become global due to immigration. Despite well documented dietary changes accompanying immigration, as well as a transition to a western style diet in the Chagas endemic regions, the role of host metabolism in the pathogenesis of Chagas disease remains underexplored. We have previously used a mouse model to show that host diet is a key factor regulating cardiomyopathy in Chagas disease. In this study we investigated the effect of a high fat diet on liver morphology and physiology, lipid metabolism, immune signaling, energy homeostasis, and stress responses in the murine model of acute T. cruzi infection. Our results indicate that in T. cruzi infected mice diet differentially regulates several liver processes, including autophagy, a stress response mechanism, with corresponding implications for human Chagas disease patients. PMID:27987056

  16. Trametes versicolor protein YZP activates regulatory B lymphocytes - gene identification through de novo assembly and function analysis in a murine acute colitis model.

    PubMed

    Kuan, Yen-Chou; Wu, Ying-Jou; Hung, Chih-Liang; Sheu, Fuu

    2013-01-01

    Trametes versicolor (Yun-Zhi) is a medicinal fungus used as a chemotherapy co-treatment to enhance anti-tumor immunity. Although the efficacies of T. versicolor extracts have been documented, the active ingredients and mechanisms underlying the actions of these extracts remain uncharacterized. We purified a new protein, YZP, from the fruiting bodies of T. versicolor and identified the gene encoding YZP using RNA-seq and de novo assembly technologies. YZP is a 12-kDa non-glycosylated protein comprising 139 amino acids, including an 18-amino acids signal peptide. YZP induced a greater than 60-fold increase in IL-10 secretion in mice B lymphocytes; moreover, YZP specifically triggered the differentiation of CD1d(+) B cells into IL-10-producing regulatory B cells (Bregs) and enhanced the expression of CD1d. YZP-induced B cells suppressed approximately 40% of the LPS-activated macrophage production of inflammatory cytokines in a mixed leukocyte reaction and significantly alleviated the disease activity and colonic inflammation in a DSS-induced acute colitis murine model. Furthermore, YZP activated Breg function via interaction with TLR2 and TLR4 and up-regulation of the TLR-mediated signaling pathway. We purified a novel Breg-stimulating protein, YZP, from T. versicolor and developed an advanced approach combining RNA-seq and de novo assembly technologies.to clone its gene. We demonstrated that YZP activated CD1d(+) Breg differentiation through TLR2/4-mediated signaling pathway, and the YZP-stimulated B cells exhibited anti-inflammatory efficacies in vitro and in murine acute colitis models.

  17. Establishing a murine model of the hematopoietic syndrome of the acute radiation syndrome.

    PubMed

    Plett, P Artur; Sampson, Carol H; Chua, Hui Lin; Joshi, Mandar; Booth, Catherine; Gough, Alec; Johnson, Cynthia S; Katz, Barry P; Farese, Ann M; Parker, Jeffrey; MacVittie, Thomas J; Orschell, Christie M

    2012-10-01

    The authors have developed a murine model of the Hematopoietic Syndrome of the Acute Radiation Syndrome (H-ARS) for efficacy testing of medical countermeasures (MCM) against radiation according to the FDA Animal Rule. Ten- to 12-wk-old male and female C57BL/6 mice were exposed to the LD50/30-LD70/30 dose of total body irradiation (TBI, (137)Cs, 0.62-0.67 Gy min(-1)) in the morning hours when mice were determined to be most radiosensitive, and they were assessed for 30-d survival and mean survival time (MST). Antibiotics were delivered in drinking water on days 4-30 post-TBI at a concentration based on the amount of water that lethally-irradiated mice were found to consume. The fluoroquinolones, ciprofloxacin and levofloxacin, as well as the tetracycline doxycycline, and aminoglycoside neomycin, all significantly increased MST of decedent mice, while ciprofloxacin (p = 0.061) and doxycycline + neomycin (p = 0.005) showed at least some efficacy to increase 30-d survival. Blood sampling (30 μL/mouse every fifth day) was found to negatively impact 30-d survival. Histopathology of tissues harvested from nonmoribund mice showed expected effects of lethal irradiation, while moribund mice were largely septicemic with a preponderance of enteric organisms. Kinetics of loss and recovery of peripheral blood cells in untreated mice and those treated with two MCM, granulocyte-colony stimulating factor and Amifostine further characterized and validated this model for use in screening studies and pivotal efficacy studies of candidate MCM for licensure to treat irradiated individuals suffering from H-ARS.

  18. Trametes versicolor Protein YZP Activates Regulatory B Lymphocytes – Gene Identification through De Novo Assembly and Function Analysis in a Murine Acute Colitis Model

    PubMed Central

    Kuan, Yen-Chou; Wu, Ying-Jou; Hung, Chih-Liang; Sheu, Fuu

    2013-01-01

    Background Trametes versicolor (Yun-Zhi) is a medicinal fungus used as a chemotherapy co-treatment to enhance anti-tumor immunity. Although the efficacies of T. versicolor extracts have been documented, the active ingredients and mechanisms underlying the actions of these extracts remain uncharacterized. Results We purified a new protein, YZP, from the fruiting bodies of T. versicolor and identified the gene encoding YZP using RNA-seq and de novo assembly technologies. YZP is a 12-kDa non-glycosylated protein comprising 139 amino acids, including an 18-amino acids signal peptide. YZP induced a greater than 60-fold increase in IL-10 secretion in mice B lymphocytes; moreover, YZP specifically triggered the differentiation of CD1d+ B cells into IL-10-producing regulatory B cells (Bregs) and enhanced the expression of CD1d. YZP-induced B cells suppressed approximately 40% of the LPS-activated macrophage production of inflammatory cytokines in a mixed leukocyte reaction and significantly alleviated the disease activity and colonic inflammation in a DSS-induced acute colitis murine model. Furthermore, YZP activated Breg function via interaction with TLR2 and TLR4 and up-regulation of the TLR-mediated signaling pathway. Conclusions We purified a novel Breg-stimulating protein, YZP, from T. versicolor and developed an advanced approach combining RNA-seq and de novo assembly technologies.to clone its gene. We demonstrated that YZP activated CD1d+ Breg differentiation through TLR2/4-mediated signaling pathway, and the YZP-stimulated B cells exhibited anti-inflammatory efficacies in vitro and in murine acute colitis models. PMID:24019869

  19. Low-dose hydralazine prevents fibrosis in a murine model of acute kidney injury-to-chronic kidney disease progression.

    PubMed

    Tampe, Björn; Steinle, Ulrike; Tampe, Désirée; Carstens, Julienne L; Korsten, Peter; Zeisberg, Elisabeth M; Müller, Gerhard A; Kalluri, Raghu; Zeisberg, Michael

    2017-01-01

    Acute kidney injury (AKI) and progressive chronic kidney disease (CKD) are intrinsically tied syndromes. In this regard, the acutely injured kidney often does not achieve its full regenerative capacity and AKI directly transitions into progressive CKD associated with tubulointerstitial fibrosis. Underlying mechanisms of such AKI-to-CKD progression are still incompletely understood and specific therapeutic interventions are still elusive. Because epigenetic modifications play a role in maintaining tissue fibrosis, we used a murine model of ischemia-reperfusion injury to determine whether aberrant promoter methylation of RASAL1 contributes causally to the switch between physiological regeneration and tubulointerstitial fibrogenesis, a hallmark of AKI-to-CKD progression. It is known that the antihypertensive drug hydralazine has demethylating activity, and that its optimum demethylating activity occurs at concentrations below blood pressure-lowering doses. Administration of low-dose hydralazine effectively induced expression of hydroxylase TET3, which catalyzed RASAL1 hydroxymethylation and subsequent RASAL1 promoter demethylation. Hydralazine-induced CpG promoter demethylation subsequently attenuated renal fibrosis and preserved excretory renal function independent of its blood pressure-lowering effects. In comparison, RASAL1 demethylation and inhibition of tubulointerstitial fibrosis was not detected upon administration of the angiotensin-converting enzyme inhibitor Ramipril in this model. Thus, RASAL1 promoter methylation and subsequent transcriptional RASAL1 suppression plays a causal role in AKI-to-CKD progression. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  20. Pharmacological inhibition of Src kinase protects against acute kidney injury in a murine model of renal ischemia/reperfusion

    PubMed Central

    Zhou, Xiaoxu; Liu, Lirong; Masucci, Monica V.; Tang, Jinhua; Li, Xuezhu; Liu, Na; Bayliss, George; Zhao, Ting C.; Zhuang, Shougang

    2017-01-01

    Activation of Src kinase has been implicated in the pathogenesis of acute brain, liver, and lung injury. However, the role of Src in acute kidney injury (AKI) remains unestablished. To address this, we evaluated the effects of Src inhibition on renal dysfunction and pathological changes in a murine model of AKI induced by ischemia/reperfusion (I/R). I/R injury to the kidney resulted in increased Src phosphorylation at tyrosine 416 (activation). Administration of PP1, a highly selective Src inhibitor, blocked Src phosphorylation, improved renal function and ameliorated renal pathological damage. PP1 treatment also suppressed renal expression of neutrophil gelatinase-associated lipocalin and reduced apoptosis in the injured kidney. Moreover, Src inhibition prevented downregulation of several adherens and tight junction proteins, including E-cadherin, ZO-1, and claudins-1/−4 in the kidney after I/R injury as well as in cultured renal proximal tubular cells following oxidative stress. Finally, PP1 inhibited I/R–induced renal expression of matrix metalloproteinase-2 and -9, phosphorylation of extracellular signal–regulated kinases1/2, signal transducer and activator of transcription-3, and nuclear factor-κB, and the infiltration of macrophages into the kidney. These data indicate that Src is a pivotal mediator of renal epithelial injury and that its inhibition may have a therapeutic potential to treat AKI. PMID:28415724

  1. Acute and chronic in vivo effects of exposure to nicotine and propylene glycol from an E-cigarette on mucociliary clearance in a murine model

    PubMed Central

    Laube, Beth L.; Afshar-Mohajer, Nima; Koehler, Kirsten; Chen, Gang; Lazarus, Philip; Collaco, Joseph M.; McGrath-Morrow, Sharon A.

    2017-01-01

    Objective To determine the effect of an acute (1 week) and chronic (3 weeks) exposure to E-cigarette (E-cig) emissions on mucociliary clearance (MCC) in murine lungs. Methods C57BL/6 male mice (age 10.5 ±2.4 weeks) were exposed for 20min/day to E-cigarette aerosol generated by a Joyetech 510-T® E-cig containing either 0% nicotine (N)/propylene glycol (PG) for 1 week (n = 6), or 3 weeks (n = 9), or 2.4% N/PG for one week (n = 6), or 3 weeks (n = 9), followed by measurement of MCC. Control mice (n = 15) were not exposed to PG alone, or N/PG. MCC was assessed by gamma camera following aspiration of 99mtechnetium aerosol and was expressed as the amount of radioactivity removed from both lungs over 6 hours (MCC6hrs). Venous blood was assayed for cotinine levels in control mice and in mice exposed for 3-weeks to PG alone and N/PG. Results MCC6hrs in control mice and in mice acutely exposed to PG alone and N/PG was similar, averaging (±1 standard deviation) 8.6±5.2%, 7.5±2.8% and 11.2±5.9%, respectively. In contrast, chronic exposure to PG alone stimulated MCC6hrs (17.2 ±8.0)% and this stimulation was significantly blunted following chronic exposure to N/PG (8.7 ±4.6)% (p < .05). Serum cotinine levels were <0.5ng/ml in control mice and in mice exposed to PG alone, whereas, N/PG exposed mice averaged 14.6 ± 12.0 ng/ml. Conclusions In this murine model, a chronic, daily, 20 min-exposure to N/PG, but not an acute exposure, slowed MCC, compared to exposure to PG alone and led to systemic absorption of nicotine. PMID:28651446

  2. Experimental models of hepatotoxicity related to acute liver failure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maes, Michaël; Vinken, Mathieu, E-mail: mvinken@vub.ac.be; Jaeschke, Hartmut

    Acute liver failure can be the consequence of various etiologies, with most cases arising from drug-induced hepatotoxicity in Western countries. Despite advances in this field, the management of acute liver failure continues to be one of the most challenging problems in clinical medicine. The availability of adequate experimental models is of crucial importance to provide a better understanding of this condition and to allow identification of novel drug targets, testing the efficacy of new therapeutic interventions and acting as models for assessing mechanisms of toxicity. Experimental models of hepatotoxicity related to acute liver failure rely on surgical procedures, chemical exposuremore » or viral infection. Each of these models has a number of strengths and weaknesses. This paper specifically reviews commonly used chemical in vivo and in vitro models of hepatotoxicity associated with acute liver failure. - Highlights: • The murine APAP model is very close to what is observed in patients. • The Gal/ET model is useful to study TNFα-mediated apoptotic signaling mechanisms. • Fas receptor activation is an effective model of apoptosis and secondary necrosis. • The ConA model is a relevant model of auto-immune hepatitis and viral hepatitis. • Multiple time point evaluation needed in experimental models of acute liver injury.« less

  3. A human monoclonal anti-TNF alpha antibody (adalimumab) reduces airway inflammation and ameliorates lung histology in a murine model of acute asthma.

    PubMed

    Catal, F; Mete, E; Tayman, C; Topal, E; Albayrak, A; Sert, H

    2015-01-01

    A few experimental studies related to asthma have unveiled the beneficial effects of TNF alpha blocking agents on the airway histology, cytokine levels in bronchoalveolar lavage and bronchial hyper-responsiveness. In the current study, we aimed to assess the effect of adalimumab on the inflammation and histology of asthma in a murine model. Twelve-week-old BALB/c (H-2d/d) female rats (n=18) were allocated into three groups, including (group I) control (phosphate-buffered saline was implemented), (group II) asthma induced with OVA (n=6), and (group III) asthma induced with OVA+treated with adalimumab (n=6). Rats were executed on the 28th day of the study. The lung samples were fixed in 10% neutral buffered formalin. Lung parenchyma, alveolus, peribronchial and perivascular inflammation were assessed. Lung pathological scoring was performed. Severity of lung damage was found to be reduced significantly in the asthma induced with OVA+treated with adalimumab group. When compared with the untreated group, adalimumab significantly reduced the inflammatory cells around the bronchi and bronchioles, and reduced inflammation of the alveolar wall and alveolar wall thickness as well (median score=1, p=0.52). Peribronchial smooth muscle hypertrophy and oedema were significantly reduced after adalimumab administration. Adalimumab (a human monoclonal anti-TNF alpha antibody) therapy significantly reduced the severity of lung damage by decreasing cellular infiltration and improvement on the lung histology in a murine model of acute asthma. Copyright © 2013 SEICAP. Published by Elsevier Espana. All rights reserved.

  4. In vivo T2* weighted MRI visualizes cardiac lesions in murine models of acute and chronic viral myocarditis

    PubMed Central

    Helluy, Xavier; Sauter, Martina; Ye, Yu-Xiang; Lykowsky, Gunthard; Kreutner, Jakob; Yilmaz, Ali; Jahns, Roland; Boivin, Valerie; Kandolf, Reinhard; Jakob, Peter M.; Hiller, Karl-Heinz; Klingel, Karin

    2017-01-01

    Objective Acute and chronic forms of myocarditis are mainly induced by virus infections. As a consequence of myocardial damage and inflammation dilated cardiomyopathy and chronic heart failure may develop. The gold standard for the diagnosis of myocarditis is endomyocardial biopsies which are required to determine the etiopathogenesis of cardiac inflammatory processes. However, new non-invasive MRI techniques hold great potential in visualizing cardiac non-ischemic inflammatory lesions at high spatial resolution, which could improve the investigation of the pathophysiology of viral myocarditis. Results Here we present the discovery of a novel endogenous T2* MRI contrast of myocardial lesions in murine models of acute and chronic CVB3 myocarditis. The evaluation of infected hearts ex vivo and in vivo by 3D T2w and T2*w MRI allowed direct localization of virus-induced myocardial lesions without any MRI tracer or contrast agent. T2*w weighted MRI is able to detect both small cardiac lesions of acute myocarditis and larger necrotic areas at later stages of chronic myocarditis, which was confirmed by spatial correlation of MRI hypointensity in myocardium with myocardial lesions histologically. Additional in vivo and ex vivo MRI analysis proved that the contrast mechanism was due to a strong paramagnetic tissue alteration in the vicinity of myocardial lesions, effectively pointing towards iron deposits as the primary contributor of contrast. The evaluation of the biological origin of the MR contrast by specific histological staining and transmission electron microscopy revealed that impaired iron metabolism primarily in mitochondria caused iron deposits within necrotic myocytes, which induces strong magnetic susceptibility in myocardial lesions and results in strong T2* contrast. Conclusion This T2*w MRI technique provides a fast and sensitive diagnostic tool to determine the patterns and the severity of acute and chronic enteroviral myocarditis and the precise

  5. Acute exercises induce disorders of the gastrointestinal integrity in a murine model.

    PubMed

    Gutekunst, Katrin; Krüger, Karsten; August, Christian; Diener, Martin; Mooren, Frank-Christoph

    2014-03-01

    Many endurance athletes complain about gastrointestinal (GI) symptoms. It is assumed that exercise-induced shift of perfusion with consecutive hypoperfusion of the enteral vascular system leads to an increased GI permeability and tissue damage. Therefore, the aim of the study was to investigate permeability, apoptosis, electrogenic ion transport (Isc), and tissue conductance (Gt) of the small intestine in a murine exercise model. After spirometry, male Swiss CD-1 mice were subjected to an intensive treadmill exercise (80% VO2max). Sedentary mice served as controls. The small intestine was removed at several time intervals post-exercise. Apoptotic cells were determined by the TUNEL method, while fluorescein isothiocyanate dextran permeation indicated intestinal permeability. The Gt and Isc measurements were carried out in a modified Ussing chamber. Apoptosis of epithelial cells increased continuously until 24 h post exercise (0.8 ± 0.42 versus 39.2 ± 26.0%; p < 0.05). Compared with the control group the permeability increased 2 h after exercise (0.47 ± 0.07 versus 0.67 ± 0.14 FU/min; p < 0.05). Isc measurements of the ileum were augmented after 24 h (3.33 ± 0.56 versus 5.77 ± 1.16 μEq/h/cm(2); p < 0.05). At this time the Gt increased as well (28.8 ± 3.37 versus 32.5 ± 2.59 mS/cm(2); p < 0.05). In the murine exercise model there is evidence that after intense endurance exercise repair processes occur in small intestinal epithelial cells, which affect permeability, Gt, and Isc. The formation of lamellipodia to close the "leaky" tight junctions caused by apoptosis might be an underlying mechanism.

  6. Effects of the Mitochondria-Targeted Antioxidant Mitoquinone in Murine Acute Pancreatitis

    PubMed Central

    Wen, Li; Szatmary, Peter; Mukherjee, Rajarshi; Armstrong, Jane; Chvanov, Michael; Tepikin, Alexei V.; Murphy, Michael P.; Sutton, Robert; Criddle, David N.

    2015-01-01

    Although oxidative stress has been strongly implicated in the development of acute pancreatitis (AP), antioxidant therapy in patients has so far been discouraging. The aim of this study was to assess potential protective effects of a mitochondria-targeted antioxidant, MitoQ, in experimental AP using in vitro and in vivo approaches. MitoQ blocked H2O2-induced intracellular ROS responses in murine pancreatic acinar cells, an action not shared by the control analogue dTPP. MitoQ did not reduce mitochondrial depolarisation induced by either cholecystokinin (CCK) or bile acid TLCS, and at 10 µM caused depolarisation per se. Both MitoQ and dTPP increased basal and CCK-induced cell death in a plate-reader assay. In a TLCS-induced AP model MitoQ treatment was not protective. In AP induced by caerulein hyperstimulation (CER-AP), MitoQ exerted mixed effects. Thus, partial amelioration of histopathology scores was observed, actions shared by dTPP, but without reduction of the biochemical markers pancreatic trypsin or serum amylase. Interestingly, lung myeloperoxidase and interleukin-6 were concurrently increased by MitoQ in CER-AP. MitoQ caused biphasic effects on ROS production in isolated polymorphonuclear leukocytes, inhibiting an acute increase but elevating later levels. Our results suggest that MitoQ would be inappropriate for AP therapy, consistent with prior antioxidant evaluations in this disease. PMID:25878403

  7. Effects of the mitochondria-targeted antioxidant mitoquinone in murine acute pancreatitis.

    PubMed

    Huang, Wei; Cash, Nicole; Wen, Li; Szatmary, Peter; Mukherjee, Rajarshi; Armstrong, Jane; Chvanov, Michael; Tepikin, Alexei V; Murphy, Michael P; Sutton, Robert; Criddle, David N

    2015-01-01

    Although oxidative stress has been strongly implicated in the development of acute pancreatitis (AP), antioxidant therapy in patients has so far been discouraging. The aim of this study was to assess potential protective effects of a mitochondria-targeted antioxidant, MitoQ, in experimental AP using in vitro and in vivo approaches. MitoQ blocked H2O2-induced intracellular ROS responses in murine pancreatic acinar cells, an action not shared by the control analogue dTPP. MitoQ did not reduce mitochondrial depolarisation induced by either cholecystokinin (CCK) or bile acid TLCS, and at 10 µM caused depolarisation per se. Both MitoQ and dTPP increased basal and CCK-induced cell death in a plate-reader assay. In a TLCS-induced AP model MitoQ treatment was not protective. In AP induced by caerulein hyperstimulation (CER-AP), MitoQ exerted mixed effects. Thus, partial amelioration of histopathology scores was observed, actions shared by dTPP, but without reduction of the biochemical markers pancreatic trypsin or serum amylase. Interestingly, lung myeloperoxidase and interleukin-6 were concurrently increased by MitoQ in CER-AP. MitoQ caused biphasic effects on ROS production in isolated polymorphonuclear leukocytes, inhibiting an acute increase but elevating later levels. Our results suggest that MitoQ would be inappropriate for AP therapy, consistent with prior antioxidant evaluations in this disease.

  8. Molecular characterisation of murine acute myeloid leukaemia induced by 56Fe ion and 137Cs gamma ray irradiation.

    PubMed

    Steffen, Leta S; Bacher, Jeffery W; Peng, Yuanlin; Le, Phuong N; Ding, Liang-Hao; Genik, Paula C; Ray, F Andrew; Bedford, Joel S; Fallgren, Christina M; Bailey, Susan M; Ullrich, Robert L; Weil, Michael M; Story, Michael D

    2013-01-01

    Exposure to sparsely ionising gamma- or X-ray irradiation is known to increase the risk of leukaemia in humans. However, heavy ion radiotherapy and extended space exploration will expose humans to densely ionising high linear energy transfer (LET) radiation for which there is currently no understanding of leukaemia risk. Murine models have implicated chromosomal deletion that includes the hematopoietic transcription factor gene, PU.1 (Sfpi1), and point mutation of the second PU.1 allele as the primary cause of low-LET radiation-induced murine acute myeloid leukaemia (rAML). Using array comparative genomic hybridisation, fluorescence in situ hybridisation and high resolution melt analysis, we have confirmed that biallelic PU.1 mutations are common in low-LET rAML, occurring in 88% of samples. Biallelic PU.1 mutations were also detected in the majority of high-LET rAML samples. Microsatellite instability was identified in 42% of all rAML samples, and 89% of samples carried increased microsatellite mutant frequencies at the single-cell level, indicative of ongoing instability. Instability was also observed cytogenetically as a 2-fold increase in chromatid-type aberrations. These data highlight the similarities in molecular characteristics of high-LET and low-LET rAML and confirm the presence of ongoing chromosomal and microsatellite instability in murine rAML.

  9. Acute and chronic in vivo effects of exposure to nicotine and propylene glycol from an E-cigarette on mucociliary clearance in a murine model.

    PubMed

    Laube, Beth L; Afshar-Mohajer, Nima; Koehler, Kirsten; Chen, Gang; Lazarus, Philip; Collaco, Joseph M; McGrath-Morrow, Sharon A

    2017-04-01

    To determine the effect of an acute (1 week) and chronic (3 weeks) exposure to E-cigarette (E-cig) emissions on mucociliary clearance (MCC) in murine lungs. C57BL/6 male mice (age 10.5 ± 2.4 weeks) were exposed for 20 min/day to E-cigarette aerosol generated by a Joyetech 510-T ® E-cig containing either 0% nicotine (N)/propylene glycol (PG) for 1 week (n = 6), or 3 weeks (n = 9), or 2.4% N/PG for one week (n = 6), or 3 weeks (n = 9), followed by measurement of MCC. Control mice (n = 15) were not exposed to PG alone, or N/PG. MCC was assessed by gamma camera following aspiration of 99m technetium aerosol and was expressed as the amount of radioactivity removed from both lungs over 6 hours (MCC6hrs). Venous blood was assayed for cotinine levels in control mice and in mice exposed for 3-weeks to PG alone and N/PG. MCC6hrs in control mice and in mice acutely exposed to PG alone and N/PG was similar, averaging (±1 standard deviation) 8.6 ± 5.2%, 7.5 ± 2.8% and 11.2 ± 5.9%, respectively. In contrast, chronic exposure to PG alone stimulated MCC6hrs (17.2 ± 8.0)% and this stimulation was significantly blunted following chronic exposure to N/PG (8.7 ± 4.6)% (p < .05). Serum cotinine levels were <0.5 ng/ml in control mice and in mice exposed to PG alone, whereas, N/PG exposed mice averaged 14.6 ± 12.0 ng/ml. In this murine model, a chronic, daily, 20 min-exposure to N/PG, but not an acute exposure, slowed MCC, compared to exposure to PG alone and led to systemic absorption of nicotine.

  10. NRASG12V oncogene facilitates self-renewal in a murine model of acute myelogenous leukemia

    PubMed Central

    LaRue, Rebecca S.; Nguyen, Hanh T.; Sachs, Karen; Noble, Klara E.; Mohd Hassan, Nurul Azyan; Diaz-Flores, Ernesto; Rathe, Susan K.; Sarver, Aaron L.; Bendall, Sean C.; Ha, Ngoc A.; Diers, Miechaleen D.; Nolan, Garry P.; Shannon, Kevin M.; Largaespada, David A.

    2014-01-01

    Mutant RAS oncoproteins activate signaling molecules that drive oncogenesis in multiple human tumors including acute myelogenous leukemia (AML). However, the specific functions of these pathways in AML are unclear, thwarting the rational application of targeted therapeutics. To elucidate the downstream functions of activated NRAS in AML, we used a murine model that harbors Mll-AF9 and a tetracycline-repressible, activated NRAS (NRASG12V). Using computational approaches to explore our gene-expression data sets, we found that NRASG12V enforced the leukemia self-renewal gene-expression signature and was required to maintain an MLL-AF9– and Myb-dependent leukemia self-renewal gene-expression program. NRASG12V was required for leukemia self-renewal independent of its effects on growth and survival. Analysis of the gene-expression patterns of leukemic subpopulations revealed that the NRASG12V-mediated leukemia self-renewal signature is preferentially expressed in the leukemia stem cell–enriched subpopulation. In a multiplexed analysis of RAS-dependent signaling, Mac-1Low cells, which harbor leukemia stem cells, were preferentially sensitive to NRASG12V withdrawal. NRASG12V maintained leukemia self-renewal through mTOR and MEK pathway activation, implicating these pathways as potential targets for cancer stem cell–specific therapies. Together, these experimental results define a RAS oncogene–driven function that is critical for leukemia maintenance and represents a novel mechanism of oncogene addiction. PMID:25316678

  11. Improved BM212 MmpL3 Inhibitor Analogue Shows Efficacy in Acute Murine Model of Tuberculosis Infection

    PubMed Central

    Alfonso, Salvatore; Cocozza, Martina; Porretta, Giulio Cesare; Ballell, Lluís; Rullas, Joaquin; Ortega, Fátima; De Logu, Alessandro; Agus, Emanuela; La Rosa, Valentina; Pasca, Maria Rosalia; De Rossi, Edda; Wae, Baojie; Franzblau, Scott G.; Manetti, Fabrizio; Botta, Maurizio; Biava, Mariangela

    2013-01-01

    1,5-Diphenyl pyrroles were previously identified as a class of compounds endowed with high in vitro efficacy against M. tuberculosis. To improve the physical chemical properties and drug-like parameters of this class of compounds, a medicinal chemistry effort was undertaken. By selecting the optimal substitution patterns for the phenyl rings at N1 and C5 and by replacing the thiomorpholine moiety with a morpholine one, a new series of compounds was produced. The replacement of the sulfur with oxygen gave compounds with lower lipophilicity and improved in vitro microsomal stability. Moreover, since the parent compound of this family has been shown to target MmpL3, mycobacterial mutants resistant to two compounds have been isolated and characterized by sequencing the mmpL3 gene; all the mutants showed point mutations in this gene. The best compound identified to date was progressed to dose-response studies in an acute murine TB infection model. The resulting ED99 of 49 mg/Kg is within the range of commonly employed tuberculosis drugs, demonstrating the potential of this chemical series. The in vitro and in vivo target validation evidence presented here adds further weight to MmpL3 as a druggable target of interest for anti-tubercular drug discovery. PMID:23437287

  12. Optimized depletion of chimeric antigen receptor T cells in murine xenograft models of human acute myeloid leukemia

    PubMed Central

    Kenderian, Saad S.; Shen, Feng; Ruella, Marco; Shestova, Olga; Kozlowski, Miroslaw; Li, Yong; Schrank-Hacker, April; Morrissette, Jennifer J. D.; Carroll, Martin; June, Carl H.; Grupp, Stephan A.; Gill, Saar

    2017-01-01

    We and others previously reported potent antileukemia efficacy of CD123-redirected chimeric antigen receptor (CAR) T cells in preclinical human acute myeloid leukemia (AML) models at the cost of severe hematologic toxicity. This observation raises concern for potential myeloablation in patients with AML treated with CD123-redirected CAR T cells and mandates novel approaches for toxicity mitigation. We hypothesized that CAR T-cell depletion with optimal timing after AML eradication would preserve leukemia remission and allow subsequent hematopoietic stem cell transplantation. To test this hypothesis, we compared 3 CAR T-cell termination strategies: (1) transiently active anti-CD123 messenger RNA–electroporated CART (RNA-CART123); (2) T-cell ablation with alemtuzumab after treatment with lentivirally transduced anti–CD123-4-1BB-CD3ζ T cells (CART123); and (3) T-cell ablation with rituximab after treatment with CD20-coexpressing CART123 (CART123-CD20). All approaches led to rapid leukemia elimination in murine xenograft models of human AML. Subsequent antibody-mediated depletion of CART123 or CART123-CD20 did not impair leukemia remission. Time-course studies demonstrated that durable leukemia remission required CAR T-cell persistence for 4 weeks prior to ablation. Upon CAR T-cell termination, we further demonstrated successful hematopoietic engraftment with a normal human donor to model allogeneic stem cell rescue. Results from these studies will facilitate development of T-cell depletion strategies to augment the feasibility of CAR T-cell therapy for patients with AML. PMID:28246194

  13. Anti-CD45 radioimmunotherapy using 211At with bone marrow transplantation prolongs survival in a disseminated murine leukemia model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orozco, Johnnie J.; Back, Tom; Kenoyer, Aimee L.

    2013-05-15

    Anti-CD45 Radioimmunotherapy using an Alpha-Emitting Radionuclide 211At Combined with Bone Marrow Transplantation Prolongs Survival in a Disseminated Murine Leukemia Model ABSTRACT Despite aggressive chemotherapy combined with hematopoietic cell transplant (HCT), many patients with acute myeloid leukemia (AML) relapse. Radioimmunotherapy (RIT) using antibodies (Ab) labeled primarily with beta-emitting radionuclides has been explored to reduce relapse.

  14. Commonly dysregulated genes in murine APL cells

    PubMed Central

    Yuan, Wenlin; Payton, Jacqueline E.; Holt, Matthew S.; Link, Daniel C.; Watson, Mark A.; DiPersio, John F.; Ley, Timothy J.

    2007-01-01

    To identify genes that are commonly dysregulated in a murine model of acute promyelocytic leukemia (APL), we first defined gene expression patterns during normal murine myeloid development; serial gene expression profiling studies were performed with primary murine hematopoietic progenitors that were induced to undergo myeloid maturation in vitro with G-CSF. Many genes were reproducibly expressed in restricted developmental “windows,” suggesting a structured hierarchy of expression that is relevant for the induction of developmental fates and/or differentiated cell functions. We compared the normal myeloid developmental transcriptome with that of APL cells derived from mice expressing PML-RARα under control of the murine cathepsin G locus. While many promyelocyte-specific genes were highly expressed in all APL samples, 116 genes were reproducibly dysregulated in many independent APL samples, including Fos, Jun, Egr1, Tnf, and Vcam1. However, this set of commonly dysregulated genes was expressed normally in preleukemic, early myeloid cells from the same mouse model, suggesting that dysregulation occurs as a “downstream” event during disease progression. These studies suggest that the genetic events that lead to APL progression may converge on common pathways that are important for leukemia pathogenesis. PMID:17008535

  15. Delayed Effects of Acute Radiation Exposure in a Murine Model of the H-ARS: Multiple-Organ Injury Consequent to <10 Gy Total Body Irradiation.

    PubMed

    Unthank, Joseph L; Miller, Steven J; Quickery, Ariel K; Ferguson, Ethan L; Wang, Meijing; Sampson, Carol H; Chua, Hui Lin; DiStasi, Matthew R; Feng, Hailin; Fisher, Alexa; Katz, Barry P; Plett, P Artur; Sandusky, George E; Sellamuthu, Rajendran; Vemula, Sasidhar; Cohen, Eric P; MacVittie, Thomas J; Orschell, Christie M

    2015-11-01

    The threat of radiation exposure from warfare or radiation accidents raises the need for appropriate animal models to study the acute and chronic effects of high dose rate radiation exposure. The goal of this study was to assess the late development of fibrosis in multiple organs (kidney, heart, and lung) in survivors of the C57BL/6 mouse model of the hematopoietic-acute radiation syndrome (H-ARS). Separate groups of mice for histological and functional studies were exposed to a single uniform total body dose between 8.53 and 8.72 Gy of gamma radiation from a Cs radiation source and studied 1-21 mo later. Blood urea nitrogen levels were elevated significantly in the irradiated mice at 9 and 21 mo (from ∼22 to 34 ± 3.8 and 69 ± 6.0 mg dL, p < 0.01 vs. non-irradiated controls) and correlated with glomerosclerosis (29 ± 1.8% vs. 64 ± 9.7% of total glomeruli, p < 0.01 vs. non-irradiated controls). Glomerular tubularization and hypertrophy and tubular atrophy were also observed at 21 mo post-total body irradiation (TBI). An increase in interstitial, perivascular, pericardial and peribronchial fibrosis/collagen deposition was observed from ∼9-21 mo post-TBI in kidney, heart, and lung of irradiated mice relative to age-matched controls. Echocardiography suggested decreased ventricular volumes with a compensatory increase in the left ventricular ejection fraction. The results indicate that significant delayed effects of acute radiation exposure occur in kidney, heart, and lung in survivors of the murine H-ARS TBI model, which mirrors pathology detected in larger species and humans at higher radiation doses focused on specific organs.

  16. MRI-based assessment of liver perfusion and hepatocyte injury in the murine model of acute hepatitis.

    PubMed

    Byk, Katarzyna; Jasinski, Krzysztof; Bartel, Zaneta; Jasztal, Agnieszka; Sitek, Barbara; Tomanek, Boguslaw; Chlopicki, Stefan; Skorka, Tomasz

    2016-12-01

    To assess alterations in perfusion and liver function in the concanavalin A (ConA)-induced mouse model of acute liver failure (ALF) using two magnetic resonance imaging (MRI)-based methods: dynamic contrast-enhanced MRI (DCE-MRI) with Gd-EOB-DTPA contrast agent and arterial spin labelling (ASL). BALB/c mice were studied using a 9.4 T MRI system. The IntraGateFLASH TM and FAIR-EPI pulse sequences were used for optimum mouse abdomen imaging. The average perfusion values for the liver of the control and ConA group were equal to 245 ± 20 and 200 ± 32 ml/min/100 g (p = 0.008, respectively). DCE-MRI showed that the time to the peak of the image enhancement was 6.14 ± 1.07 min and 9.72 ± 1.69 min in the control and ConA group (p < 0.001, respectively), while the rate of the contrast wash-out in the control and ConA group was 0.037 ± 0.008 and 0.021 ± 0.008 min -1 (p = 0.004, respectively). These results were consistent with hepatocyte injury in the ConA-treated mice as confirmed by histopathological staining. Both the ASL and DCE-MRI techniques represent a reliable methodology to assess alterations in liver perfusion and hepatocyte integrity in murine hepatitis.

  17. Dual-seq transcriptomics reveals the battle for iron during Pseudomonas aeruginosa acute murine pneumonia

    PubMed Central

    Damron, F. Heath; Oglesby-Sherrouse, Amanda G.; Wilks, Angela; Barbier, Mariette

    2016-01-01

    Determining bacterial gene expression during infection is fundamental to understand pathogenesis. In this study, we used dual RNA-seq to simultaneously measure P. aeruginosa and the murine host’s gene expression and response to respiratory infection. Bacterial genes encoding products involved in metabolism and virulence were differentially expressed during infection and the type III and VI secretion systems were highly expressed in vivo. Strikingly, heme acquisition, ferric-enterobactin transport, and pyoverdine biosynthesis genes were found to be significantly up-regulated during infection. In the mouse, we profiled the acute immune response to P. aeruginosa and identified the pro-inflammatory cytokines involved in acute response to the bacterium in the lung. Additionally, we also identified numerous host iron sequestration systems upregulated during infection. Overall, this work sheds light on how P. aeruginosa triggers a pro-inflammatory response and competes for iron with the host during infection, as iron is one of the central elements for which both pathogen and host fight during acute pneumonia. PMID:27982111

  18. Acute Inhibition of MEK Suppresses Congenital Melanocytic Nevus Syndrome in a Murine Model Driven by Activated NRAS and Wnt Signaling.

    PubMed

    Pawlikowski, Jeffrey S; Brock, Claire; Chen, Sheau-Chiann; Al-Olabi, Lara; Nixon, Colin; McGregor, Fiona; Paine, Simon; Chanudet, Estelle; Lambie, Wendy; Holmes, William M; Mullin, James M; Richmond, Ann; Wu, Hong; Blyth, Karen; King, Ayala; Kinsler, Veronica A; Adams, Peter D

    2015-08-01

    Congenital melanocytic nevus (CMN) syndrome is the association of pigmented melanocytic nevi with extra-cutaneous features, classically melanotic cells within the central nervous system, most frequently caused by a mutation of NRAS codon 61. This condition is currently untreatable and carries a significant risk of melanoma within the skin, brain, or leptomeninges. We have previously proposed a key role for Wnt signaling in the formation of melanocytic nevi, suggesting that activated Wnt signaling may be synergistic with activated NRAS in the pathogenesis of CMN syndrome. Some familial pre-disposition suggests a germ-line contribution to CMN syndrome, as does variability of neurological phenotypes in individuals with similar cutaneous phenotypes. Accordingly, we performed exome sequencing of germ-line DNA from patients with CMN to reveal rare or undescribed Wnt-signaling alterations. A murine model harboring activated NRAS(Q61K) and Wnt signaling in melanocytes exhibited striking features of CMN syndrome, in particular neurological involvement. In the first model of treatment for this condition, these congenital, and previously assumed permanent, features were profoundly suppressed by acute post-natal treatment with a MEK inhibitor. These data suggest that activated NRAS and aberrant Wnt signaling conspire to drive CMN syndrome. Post-natal MEK inhibition is a potential candidate therapy for patients with this debilitating condition.

  19. Cathepsin C Aggravates Neuroinflammation Involved in Disturbances of Behaviour and Neurochemistry in Acute and Chronic Stress-Induced Murine Model of Depression.

    PubMed

    Zhang, Yanli; Fan, Kai; Liu, Yanna; Liu, Gang; Yang, Xiaohan; Ma, Jianmei

    2018-01-01

    Major depression has been interpreted as an inflammatory disease characterized by cell-mediated immune activation, which is generally triggered by various stresses. Microglia has been thought to be the cellular link between inflammation and depression-like behavioural alterations. The expression of cathepsin C (Cat C), a lysosomal proteinase, is predominantly induced in microglia in neuroinflammation. However, little is known about the role of Cat C in pathophysiology of depression. In the present study, Cat C transgenic mice and wild type mice were subjected to an intraperitoneal injection of LPS (0.5 mg/kg) and 6-week unpredictable chronic mild stress (UCMS) exposure to establish acute and chronic stress-induced depression model. We examined and compared the behavioural and proinflammatory cytokine alterations in serum and depression-targeted brain areas of Cat C differentially expressed mice in stress, as well as indoleamine 2,3-dioxygenase (IDO) and 5-hydroxytryptamine (5HT) levels in brain. The results showed that Cat C overexpression (Cat C OE) promoted peripheral and central inflammatory response with significantly increased TNFα, IL-1β and IL-6 in serum, hippocampus and prefrontal cortex, and resultant upregulation of IDO and downregulation of 5HT expression in brain, and thereby aggravated depression-like behaviours accessed by open field test, forced swim test and tail suspension test. In contrast, Cat C knockdown (Cat C KD) partially prevented inflammation, which may help alleviate the symptoms of depression in mice. To the best of our knowledge, we are the first to demonstrate that Cat C aggravates neuroinflammation involved in disturbances of behaviour and neurochemistry in acute and chronic stress-induced murine model of depression.

  20. Intravenous Immunoglobulin Prevents Murine Antibody-Mediated Acute Lung Injury at the Level of Neutrophil Reactive Oxygen Species (ROS) Production

    PubMed Central

    Semple, John W.; Kim, Michael; Hou, Jing; McVey, Mark; Lee, Young Jin; Tabuchi, Arata; Kuebler, Wolfgang M.; Chai, Zhong-Wei; Lazarus, Alan H.

    2012-01-01

    Transfusion-related acute lung injury (TRALI) is a leading cause of transfusion-associated mortality that can occur with any type of transfusion and is thought to be primarily due to donor antibodies activating pulmonary neutrophils in recipients. Recently, a large prospective case controlled clinical study of cardiac surgery patients demonstrated that despite implementation of male donors, a high incidence of TRALI still occurred and suggested a need for additional interventions in susceptible patient populations. To examine if intravenous immunoglobulin (IVIg) may be effective, a murine model of antibody-mediated acute lung injury that approximates human TRALI was examined. When BALB/c mice were injected with the anti-major histocompatibility complex class I antibody 34-1-2s, mild shock (reduced rectal temperature) and respiratory distress (dyspnea) were observed and pre-treatment of the mice with 2 g/kg IVIg completely prevented these symptoms. To determine IVIg's usefulness to affect severe lung damage, SCID mice, previously shown to be hypersensitive to 34-1-2s were used. SCID mice treated with 34-1-2s underwent severe shock, lung damage (increased wet/dry ratios) and 40% mortality within 2 hours. Treatment with 2 g/kg IVIg 18 hours before 34-1-2s administration completely protected the mice from all adverse events. Treatment with IVIg after symptoms began also reduced lung damage and mortality. While the prophylactic IVIg administration did not affect 34-1-2s-induced pulmonary neutrophil accumulation, bone marrow-derived neutrophils from the IVIg-treated mice displayed no spontaneous ROS production nor could they be stimulated in vitro with fMLP or 34-1-2s. These results suggest that IVIg prevents murine antibody-mediated acute lung injury at the level of neutrophil ROS production and thus, alleviating tissue damage. PMID:22363629

  1. A murine model of acute myeloid leukemia with Evi1 overexpression and autocrine stimulation by an intracellular form of GM-CSF in DA-3 cells.

    PubMed

    Cardona, Maria E; Simonson, Oscar E; Oprea, Iulian I; Moreno, Pedro M D; Silva-Lara, Maria F; Mohamed, Abdalla J; Christensson, Birger; Gahrton, Gösta; Dilber, M Sirac; Smith, C I Edvard; Arteaga, H Jose

    2016-01-01

    The poor treatment response of acute myeloid leukemia (AML) overexpressing high-risk oncogenes such as EVI1, demands specific animal models for new treatment evaluations. Evi1 is a common site of activating integrations in murine leukemia virus (MLV)-induced AML and in retroviral and lentiviral gene-modified HCS. Still, a model of overt AML induced by Evi1 has not been generated. Cell lines from MLV-induced AML are growth factor-dependent and non-transplantable. Hence, for the leukemia maintenance in the infected animals, a growth factor source such as chronic immune response has been suggested. We have investigated whether these leukemias are transplantable if provided with growth factors. We show that the Evi1(+)DA-3 cells modified to express an intracellular form of GM-CSF, acquired growth factor independence and transplantability and caused an overt leukemia in syngeneic hosts, without increasing serum GM-CSF levels. We propose this as a general approach for modeling different forms of high-risk human AML using similar cell lines.

  2. FABP4 inhibitors suppress inflammation and oxidative stress in murine and cell models of acute lung injury.

    PubMed

    Gong, Yuanqi; Yu, Zhihong; Gao, Yi; Deng, Linlin; Wang, Meng; Chen, Yu; Li, Jingying; Cheng, Bin

    2018-02-19

    Acute lung injury (ALI) is a severe disease with high morbidity and mortality, and is characterized by devastating inflammation of the lung and increased production of reactive oxygen species (ROS). Recent studies have indicated that fatty acid binding protein (FABP4) is important in the regulation of inflammation. However, the role of FABP4 in sepsis-related ALI, and the specific mechanism of action have not been examined. In vitro, the exposure of human alveolar epithelial A549 cells to lipopolysaccharide (LPS) and recombinant FABP4 (hrFABP4) resulted in the production of pro-inflammatory cytokines, inflammatory cytokines, and ROS, while these changes were ameliorated by pretreatment with the FABP4 inhibitor BMS309403 and FABP4 siRNA. Sequentially, treatment of A549 cells with N-acetylcysteine (NAC) significantly attenuated LPS and hrFABP4-induced the generation of ROS and the release of inflammatory cytokines. In vivo, a cecal ligation and puncture (CLP)-induced ALI murine model was successfully established. Then, the mice were treated with FABP4 inhibitor BMS309403. The results showed treatment with BMS309403 improved the survival rate of CLP-induced ALI mice, and prevented lung inflammation, histopathological changes, and increase of FABP4 induced by CLP. These data indicate that FABP4 plays an important role in lung inflammation of sepsis-induced ALI. Blockade of FABP4 signaling exhibits a protective effect in a CLP-induced ALI mouse model, and in A549 cell LPS specifically induces enhanced expression of FABP4, which then causes inflammatory cytokine production by elevating the ROS level. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Current Translational Research and Murine Models For Duchenne Muscular Dystrophy

    PubMed Central

    Rodrigues, Merryl; Echigoya, Yusuke; Fukada, So-ichiro; Yokota, Toshifumi

    2016-01-01

    Duchenne muscular dystrophy (DMD) is an X-linked genetic disorder characterized by progressive muscle degeneration. Mutations in the DMD gene result in the absence of dystrophin, a protein required for muscle strength and stability. Currently, there is no cure for DMD. Since murine models are relatively easy to genetically manipulate, cost effective, and easily reproducible due to their short generation time, they have helped to elucidate the pathobiology of dystrophin deficiency and to assess therapies for treating DMD. Recently, several murine models have been developed by our group and others to be more representative of the human DMD mutation types and phenotypes. For instance, mdx mice on a DBA/2 genetic background, developed by Fukada et al., have lower regenerative capacity and exhibit very severe phenotype. Cmah-deficient mdx mice display an accelerated disease onset and severe cardiac phenotype due to differences in glycosylation between humans and mice. Other novel murine models include mdx52, which harbors a deletion mutation in exon 52, a hot spot region in humans, and dystrophin/utrophin double-deficient (dko), which displays a severe dystrophic phenotype due the absence of utrophin, a dystrophin homolog. This paper reviews the pathological manifestations and recent therapeutic developments in murine models of DMD such as standard mdx (C57BL/10), mdx on C57BL/6 background (C57BL/6-mdx), mdx52, dystrophin/utrophin double-deficient (dko), mdxβgeo, Dmd-null, humanized DMD (hDMD), mdx on DBA/2 background (DBA/2-mdx), Cmah-mdx, and mdx/mTRKO murine models. PMID:27854202

  4. Murine models of H. pylori-induced gastritis and gastric adenocarcinoma.

    PubMed

    Krueger, Sabine; Roessner, Albert; Kuester, Doerthe

    2011-10-15

    Laboratory mice have become one of the best animal species for mechanistic studies in gastrointestinal research. Their abundant genetic information, the way of causing carcinogenesis easily by transgenic and gene knockout techniques, limited effort in time and costs, and their practicability provide advantages over other animal models. Meanwhile, several murine practical models have been established for the investigation of the initiation, expansion, and progression of gastritis and gastric carcinoma, for assessing the effects of bacterial, genetic and environmental factors, and for evaluating therapeutic and preventive strategies in gastric diseases. This article gives a review of murine models of gastritis and gastric cancer, placing emphasis on the models associated with Helicobacter pylori infection and techniques used in our laboratory. We discuss matters of murine gastric anatomy, as well as techniques of infection, tissue preparation, and histology. Copyright © 2011 Elsevier GmbH. All rights reserved.

  5. Clinical and Epidemiological Characteristics of Scrub Typhus and Murine Typhus among Hospitalized Patients with Acute Undifferentiated Fever in Northern Vietnam

    PubMed Central

    Hamaguchi, Sugihiro; Cuong, Ngo Chi; Tra, Doan Thu; Doan, Yen Hai; Shimizu, Kenta; Tuan, Nguyen Quang; Yoshida, Lay-Myint; Mai, Le Quynh; Duc-Anh, Dang; Ando, Shuji; Arikawa, Jiro; Parry, Christopher M.; Ariyoshi, Koya; Thuy, Pham Thanh

    2015-01-01

    A descriptive study on rickettsiosis was conducted at the largest referral hospital in Hanoi, Vietnam, to identify epidemiological and clinical characteristics of specific rickettsiosis. Between March 2001 and February 2003, we enrolled 579 patients with acute undifferentiated fever (AUF), excluding patients with malaria, dengue fever, and typhoid fever, and serologically tested for Orientia tsutsugamushi and Rickettsia typhi. Of the patients, 237 (40.9%) and 193 (33.3%) had scrub and murine typhus, respectively, and 149 (25.7%) had neither of them (non–scrub and murine typhus [non-ST/MT]). The proportion of murine typhus was highest among patients living in Hanoi whereas that of scrub typhus was highest in national or regional border areas. The presence of an eschar, dyspnea, hypotension, and lymphadenopathy was significantly associated with a diagnosis of scrub typhus (OR = 46.56, 10.90, 9.01, and 7.92, respectively). Patients with murine typhus were less likely to have these findings but more likely to have myalgia, rash, and relative bradycardia (OR = 1.60, 1.56, and 1.45, respectively). Scrub typhus and murine typhus were shown to be common causes of AUF in northern Vietnam although the occurrence of spotted fever group rickettsiae was not determined. Clinical and epidemiological information may help local clinicians make clinical diagnosis of specific rickettsioses in a resource-limited setting. PMID:25778504

  6. A functional murine model of hindlimb demand ischemia.

    PubMed

    Peck, Michael A; Crawford, Robert S; Abularrage, Christopher J; Patel, Virendra I; Conrad, Mark F; Yoo, Jin Hyung; Watkins, Michael T; Albadawi, Hassan

    2010-05-01

    To date, murine models of treadmill exercise have been used to study general exercise physiology and angiogenesis in ischemic hindlimbs. The purpose of these experiments was to develop a murine model of demand ischemia in an ischemic limb to mimic claudication in humans. The primary goal was to determine whether treadmill exercise reflected a hemodynamic picture which might be consistent with the hyperemic response observed in humans. Aged hypercholesterolemic ApoE null mice (ApoE(-/-), n = 13) were subjected to femoral artery ligation (FAL) and allowed to recover from the acute ischemic response. Peripheral perfusion of the hindlimbs at rest was determined by serial evaluation using laser Doppler imaging (LDI) on days 0, 7, and 14 following FAL. During the experiments, mice were also assessed on an established five-point clinical ischemic score, which assessed the degree of digital amputation, necrosis, and cyanosis compared to the nonischemic contralateral limb. After stabilization of the LDI ratio (ischemic limb flux/contralateral nonischemic limb flux) and clinical ischemic score, mice underwent 2 days of treadmill training (10 min at 10 m/min, incline of 10 degrees ) followed by 60 min of daily treadmill exercise (13 m/min, incline of 10 degrees ) through day 25. An evaluation of preexercise and postexercise perfusion using LDI was performed on two separate occasions following the onset of daily exercise. During the immediate 15 min postexercise evaluation, LDI scanning was obtained in quadruplicate, to allow identification of peak flux ratios. Statistical analysis included unpaired t-tests and analysis of variance. After FAL, the LDI flux ratio reached a nadir between days 1 and 2, then stabilized by day 14 and remained stable through day 25. The clinical ischemic score stabilized at day 7 and remained stable throughout the rest of the experiment. Based on stabilization of both the clinical ischemic score and LDI ratio, exercise training began on day 15. The

  7. Murine models of breast cancer bone metastasis

    PubMed Central

    Wright, Laura E; Ottewell, Penelope D; Rucci, Nadia; Peyruchaud, Olivier; Pagnotti, Gabriel M; Chiechi, Antonella; Buijs, Jeroen T; Sterling, Julie A

    2016-01-01

    Bone metastases cause significant morbidity and mortality in late-stage breast cancer patients and are currently considered incurable. Investigators rely on translational models to better understand the pathogenesis of skeletal complications of malignancy in order to identify therapeutic targets that may ultimately prevent and treat solid tumor metastasis to bone. Many experimental models of breast cancer bone metastases are in use today, each with its own caveats. In this methods review, we characterize the bone phenotype of commonly utilized human- and murine-derived breast cell lines that elicit osteoblastic and/or osteolytic destruction of bone in mice and report methods for optimizing tumor-take in murine models of bone metastasis. We then provide protocols for four of the most common xenograft and syngeneic inoculation routes for modeling breast cancer metastasis to the skeleton in mice, including the intra-cardiac, intra-arterial, orthotopic and intra-tibial methods of tumor cell injection. Recommendations for in vivo and ex vivo assessment of tumor progression and bone destruction are provided, followed by discussion of the strengths and limitations of the available tools and translational models that aid investigators in the study of breast cancer metastasis to bone. PMID:27867497

  8. * Murine Model of Progressive Orthopedic Wear Particle-Induced Chronic Inflammation and Osteolysis.

    PubMed

    Pajarinen, Jukka; Nabeshima, Akira; Lin, Tzu-Hua; Sato, Taishi; Gibon, Emmanuel; Jämsen, Eemeli; Lu, Laura; Nathan, Karthik; Yao, Zhenyu; Goodman, Stuart B

    2017-12-01

    Periprosthetic osteolysis and subsequent aseptic loosening of total joint replacements are driven by byproducts of wear released from the implant. Wear particles cause macrophage-mediated inflammation that culminates with periprosthetic bone loss. Most current animal models of particle-induced osteolysis are based on the acute inflammatory reaction induced by wear debris, which is distinct from the slowly progressive clinical scenario. To address this limitation, we previously developed a murine model of periprosthetic osteolysis that is based on slow continuous delivery of wear particles into the murine distal femur over a period of 4 weeks. The particle delivery was accomplished by using subcutaneously implanted osmotic pumps and tubing, and a hollow titanium rod press-fit into the distal femur. In this study, we report a modification of our prior model in which particle delivery is extended to 8 weeks to better mimic the progressive development of periprosthetic osteolysis and allow the assessment of interventions in a setting where the chronic particle-induced osteolysis is already present at the initiation of the treatment. Compared to 4-week samples, extending the particle delivery to 8 weeks significantly exacerbated the local bone loss observed with μCT and the amount of both peri-implant F4/80 + macrophages and tartrate-resistant acid phosphatase-positive osteoclasts detected with immunohistochemical and histochemical staining. Furthermore, systemic recruitment of reporter macrophages to peri-implant tissues observed with bioluminescence imaging continued even at the later stages of particle-induced inflammation. This modified model system could provide new insights into the mechanisms of chronic inflammatory bone loss and be particularly useful in assessing the efficacy of treatments in a setting that resembles the clinical scenario of developing periprosthetic osteolysis more closely than currently existing model systems.

  9. Reactivation of Latent Tuberculosis: Variations on the Cornell Murine Model

    PubMed Central

    Scanga, Charles A.; Mohan, V. P.; Joseph, Heather; Yu, Keming; Chan, John; Flynn, JoAnne L.

    1999-01-01

    Mycobacterium tuberculosis causes active tuberculosis in only a small percentage of infected persons. In most cases, the infection is clinically latent, although immunosuppression can cause reactivation of a latent M. tuberculosis infection. Surprisingly little is known about the biology of the bacterium or the host during latency, and experimental studies on latent tuberculosis suffer from a lack of appropriate animal models. The Cornell model is a historical murine model of latent tuberculosis, in which mice infected with M. tuberculosis are treated with antibiotics (isoniazid and pyrazinamide), resulting in no detectable bacilli by organ culture. Reactivation of infection during this culture-negative state occurred spontaneously and following immunosuppression. In the present study, three variants of the Cornell model were evaluated for their utility in studies of latent and reactivated tuberculosis. The antibiotic regimen, inoculating dose, and antibiotic-free rest period prior to immunosuppression were varied. A variety of immunosuppressive agents, based on immunologic factors known to be important to control of acute infection, were used in attempts to reactivate the infection. Although reactivation of latent infection was observed in all three variants, these models were associated with characteristics that limit their experimental utility, including spontaneous reactivation, difficulties in inducing reactivation, and the generation of altered bacilli. The results from these studies demonstrate that the outcome of Cornell model-based studies depends critically upon the parameters used to establish the model. PMID:10456896

  10. Lacosamide improves outcome in a murine model of traumatic brain injury.

    PubMed

    Wang, Bo; Dawson, Hana; Wang, Haichen; Kernagis, Dawn; Kolls, Brad J; Yao, Lucy; Laskowitz, Daniel T

    2013-08-01

    lacosamide improves functional performance, and reduces histological evidence of acute neuronal injury and neuroinflammation in a murine model of closed head injury. Lacosamide effects appear to be mediated via a reduction or delay in the acute inflammatory response to injury. Prior clinical and animal studies have found antiepileptic treatment following injury to be detrimental, though these studies are biased by the common use of older medications such as phenytoin. Our current results as well as prior work on levetiracetam suggest the newer AED's may be beneficial in the setting of acute brain injury.

  11. [Virulence of Sporothrix globosa in murine models].

    PubMed

    Cruz Choappa, Rodrigo; Pérez Gaete, Salomón; Rodríguez Badilla, Valentina; Vieille Oyarzo, Peggy; Opazo Sanchez, Héctor

    The sporothricosis disease is an infection caused by species included in Sporothrix schenkii complex. Verify the virulence of a strain of S. globosa using two different concentrations of inoculum by intraperitoneally and subcutaneously, into a mouse model. Nonrandomized pilot study, in murine inoculated with a strain of S. globosa (CBS 14.076M) by intraperitoneally and subcutaneously with inoculum concentrations of 0.5 and 4 McFarland. For this purpose 18 rodents CF-1 (ISP, Santiago, Chile) were used. The studied strain did not induce illness or injury on animals, they all survived and neither the tissue culture nor the histopathological analysis showed fungal growth or suggestive infection by organ abnormalities. The S. globosa strain did not present any virulence enough to cause disease at 0.5 and 4.0 McFarland concentration inoculum when inoculated in both intraperitoneally and subcutaneously, in murine models. Copyright © 2016 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  12. Interleukin 37 limits monosodium urate crystal-induced innate immune responses in human and murine models of gout.

    PubMed

    Liu, Lei; Xue, Yu; Zhu, Yingfeng; Xuan, Dandan; Yang, Xue; Liang, Minrui; Wang, Juan; Zhu, Xiaoxia; Zhang, Jiong; Zou, Hejian

    2016-11-18

    Interleukin (IL)-37 has emerged as a fundamental inhibitor of innate immunity. Acute gout is a self-limiting inflammatory response to monosodium urate (MSU) crystals. In the current study, we assessed the preventive and therapeutic effect of recombinant human IL-37 (rhIL-37) in human and murine gout models. We investigated the expression of IL-37 in patients with active and inactive gouty arthritis and assessed the effect of rhIL-37 in human and murine gout models: a human monocyte cell line (THP-1) and human synovial cells (containing macrophage-like and fibroblast-like synoviocytes) exposed to MSU crystals, a peritoneal murine model of gout and a murine gouty arthritis model. After inhibition of Mer receptor tyrosine kinase (Mertk), levels of IL-1β, IL-8 and chemokine (C-C motif) ligand 2 (CCL-2) were detected by ELISA and expression of mammalian homologs of the drosophila Mad gene 3 (Smad), suppressor of cytokine signaling 3 (SOCS3), NACHT-LRR-PYD-containing protein 3 (NLRP3), and IL-8R of THP-1 were assessed by qPCR and western blot to explore the molecular mechanisms. Our studies strongly indicated that rhIL-37 played a potent immunosuppressive role in the pathogenesis of experimental gout models both in vitro and in vivo, by downregulating proinflammatory cytokines and chemokines, markedly reducing neutrophil and monocyte recruitment, and mitigating pathological joint inflammation. In our studies, rhIL-37 suppressed MSU-induced innate immune responses by enhancing expression of Smad3 and IL-1R8 to trigger multiple intracellular switches to block inflammation, including inhibition of NLRP3 and activation of SOCS3. Mertk signaling participated in rhIL-37 inhibitory pathways in gout models. By inhibition of Mertk, the anti-inflammatory effect of rhIL-37 was partly abrogated, and IL-1R8, Smad3 and S​OCS3 expression were suppressed, whereas NLRP3 expression was reactivated. Our studies reveal that IL-37 limits runaway inflammation initiated by MSU crystal

  13. Chronic, not acute, skin-specific inflammation promotes thrombosis in psoriasis murine models.

    PubMed

    Golden, Jackelyn B; Wang, Yunmei; Fritz, Yi; Diaconu, Doina; Zhang, Xiufen; Debanne, Sara M; Simon, Daniel I; McCormick, Thomas S; Ward, Nicole L

    2015-12-16

    Psoriasis patients exhibit an increased risk of atherothrombotic events, including myocardial infarction and stroke. Clinical evidence suggests that psoriasis patients with early onset and more severe disease have the highest risk for these co-morbidities, perhaps due to the extent of body surface involvement, subsequent levels of systemic inflammation, or chronicity of disease. We sought to determine whether acute or chronic skin-specific inflammation was sufficient to promote thrombosis. We used two experimental mouse models of skin-specific inflammation generated in either an acute (topical Aldara application onto wild-type C57Bl/6 mice for 5 days) or chronic (a genetically engineered K5-IL-17C mouse model of psoriasiform skin inflammation) manner. Arterial thrombosis was induced using carotid artery photochemical injury (Rose Bengal-green light laser) and carotid artery diameters were measured post-clot formation. We also examined measures of clot formation including prothrombin (PT) and activated partial thromboplastin time (aPTT). Skin inflammation was examined histologically and we profiled plasma-derived lipids. The number of skin-draining lymph-node (SDLN) and splenic derived CD11b(+)Ly6C(high) pro-inflammatory monocytes and CD11b(+)Ly6G(+) neutrophils was quantified using multi-color flow cytometry. Mice treated with topical Aldara for 5 days had similar carotid artery thrombotic occlusion times to mice treated with vehicle cream (32.2 ± 3.0 vs. 31.4 ± 2.5 min, p = 0.97); in contrast, K5-IL-17C mice had accelerated occlusion times compared to littermate controls (15.7 ± 2.1 vs. 26.5 ± 3.5 min, p < 0.01) while carotid artery diameters were similar between all mice. Acanthosis, a surrogate measure of inflammation, was increased in both Aldara-treated and K5-IL-17C mice compared to their respective controls. Monocytosis, defined as elevated SDLN and/or splenic CD11b(+)Ly6C(high) cells, was significantly increased in both Aldara-treated (SDLN: 3.8-fold, p

  14. Acute encephalitis, a poliomyelitis-like syndrome and neurological sequelae in a hamster model for flavivirus infections.

    PubMed

    Leyssen, Pieter; Croes, Romaric; Rau, Philipp; Heiland, Sabine; Verbeken, Erik; Sciot, Raphael; Paeshuyse, Jan; Charlier, Nathalie; De Clercq, Erik; Meyding-Lamadé, Uta; Neyts, Johan

    2003-07-01

    Infection of hamsters with the murine flavivirus Modoc results in (meningo)encephalitis, which is, during the acute phase, frequently associated with flaccid paralysis, as also observed in patients with West Nile virus encephalitis. Twenty percent of the hamsters that recover from the acute encephalitis develop life-long neurological sequelae, reminiscent of those observed, for example, in survivors of Japanese encephalitis. Magnetic resonance imaging and histology revealed severe lesions predominantly located in the olfactory-limbic system, both in hamsters with acute encephalitis as in survivors. Prominent pathology was also detected in the spinal cord of hamsters with paralysis. Modoc virus infections in hamsters provide a unique model for the study of encephalitis, a poliomyelitis-like syndrome and neurological sequelae following flavivirus infection.

  15. Long-term hematopoietic stem cell damage in a murine model of the hematopoietic syndrome of the acute radiation syndrome.

    PubMed

    Chua, Hui Lin; Plett, P Artur; Sampson, Carol H; Joshi, Mandar; Tabbey, Rebeka; Katz, Barry P; MacVittie, Thomas J; Orschell, Christie M

    2012-10-01

    Residual bone marrow damage (RBMD) persists for years following exposure to radiation and is believed to be due to decreased self-renewal potential of radiation-damaged hematopoietic stem cells (HSC). Current literature has examined primarily sublethal doses of radiation and time points within a few months of exposure. In this study, the authors examined RBMD in mice surviving lethal doses of total body ionizing irradiation (TBI) in a murine model of the Hematopoietic Syndrome of the Acute Radiation Syndrome (H-ARS). Survivors were analyzed at various time points up to 19 mo post-TBI for hematopoietic function. The competitive bone marrow (BM) repopulating potential of 150 purified c-Kit+ Sca-1+ lineage- CD150+ cells (KSLCD150+) remained severely deficient throughout the study compared to KSLCD150+ cells from non-TBI age-matched controls. The minimal engraftment from these TBI HSCs is predominantly myeloid, with minimal production of lymphocytes both in vitro and in vivo. All classes of blood cells as well as BM cellularity were significantly decreased in TBI mice, especially at later time points as mice aged. Primitive BM hematopoietic cells (KSLCD150+) displayed significantly increased cell cycling in TBI mice at all time points, which may be a physiological attempt to maintain HSC numbers in the post-irradiation state. Taken together, these data suggest that the increased cycling among primitive hematopoietic cells in survivors of lethal radiation may contribute to long-term HSC exhaustion and subsequent RBMD, exacerbated by the added insult of aging at later time points.

  16. Impact of Host Age and Parity on Susceptibility to Severe Urinary Tract Infection in a Murine Model

    PubMed Central

    Kline, Kimberly A.; Schwartz, Drew J.; Gilbert, Nicole M.; Lewis, Amanda L.

    2014-01-01

    The epidemiology and bacteriology of urinary tract infection (UTI) varies across the human lifespan, but the reasons for these differences are poorly understood. Using established monomicrobial and polymicrobial murine UTI models caused by uropathogenic Escherichia coli (UPEC) and/or Group B Streptococcus (GBS), we demonstrate age and parity as inter-related factors contributing to UTI susceptibility. Young nulliparous animals exhibited 10–100-fold higher bacterial titers compared to older animals. In contrast, multiparity was associated with more severe acute cystitis in older animals compared to age-matched nulliparous controls, particularly in the context of polymicrobial infection where UPEC titers were ∼1000-fold higher in the multiparous compared to the nulliparous host. Multiparity was also associated with significantly increased risk of chronic high titer UPEC cystitis and ascending pyelonephritis. Further evidence is provided that the increased UPEC load in multiparous animals required TLR4-signaling. Together, these data strongly suggest that the experience of childbearing fundamentally and permanently changes the urinary tract and its response to pathogens in a manner that increases susceptibility to severe UTI. Moreover, this murine model provides a system for dissecting these and other lifespan-associated risk factors contributing to severe UTI in at-risk groups. PMID:24835885

  17. Impact of host age and parity on susceptibility to severe urinary tract infection in a murine model.

    PubMed

    Kline, Kimberly A; Schwartz, Drew J; Gilbert, Nicole M; Lewis, Amanda L

    2014-01-01

    The epidemiology and bacteriology of urinary tract infection (UTI) varies across the human lifespan, but the reasons for these differences are poorly understood. Using established monomicrobial and polymicrobial murine UTI models caused by uropathogenic Escherichia coli (UPEC) and/or Group B Streptococcus (GBS), we demonstrate age and parity as inter-related factors contributing to UTI susceptibility. Young nulliparous animals exhibited 10-100-fold higher bacterial titers compared to older animals. In contrast, multiparity was associated with more severe acute cystitis in older animals compared to age-matched nulliparous controls, particularly in the context of polymicrobial infection where UPEC titers were ∼1000-fold higher in the multiparous compared to the nulliparous host. Multiparity was also associated with significantly increased risk of chronic high titer UPEC cystitis and ascending pyelonephritis. Further evidence is provided that the increased UPEC load in multiparous animals required TLR4-signaling. Together, these data strongly suggest that the experience of childbearing fundamentally and permanently changes the urinary tract and its response to pathogens in a manner that increases susceptibility to severe UTI. Moreover, this murine model provides a system for dissecting these and other lifespan-associated risk factors contributing to severe UTI in at-risk groups.

  18. Heme oxygenase-1 ameliorates dextran sulfate sodium-induced acute murine colitis by regulating Th17/Treg cell balance.

    PubMed

    Zhang, Liya; Zhang, Yanjie; Zhong, Wenwei; Di, Caixia; Lin, Xiaoliang; Xia, Zhenwei

    2014-09-26

    Inflammatory bowel disease (IBD), including ulcerative colitis and Crohn's disease, is a group of autoimmune diseases characterized by nonspecific inflammation in the gastrointestinal tract. Recent investigations suggest that activation of Th17 cells and/or deficiency of regulatory T cells (Treg) is involved in the pathogenesis of IBD. Heme oxygenase (HO)-1 is a protein with a wide range of anti-inflammatory and immune regulatory function, which exerts significantly protective roles in various T cell-mediated diseases. In this study, we aim to explore the immunological regulation of HO-1 in the dextran sulfate sodium-induced model of experimental murine colitis. BALB/c mice were administered 4% dextran sulfate sodium orally; some mice were intraperitoneally pretreated with HO-1 inducer hemin or HO-1 inhibitor stannum protoporphyrin IX. The results show that hemin enhances the colonic expression of HO-1 and significantly ameliorates the symptoms of colitis with improved histological changes, accompanied by a decreased proportion of Th17 cells and increased number of Tregs in mesenteric lymph node and spleen. Moreover, induction of HO-1 down-regulates retinoic acid-related orphan receptor γt expression and IL-17A levels, while promoting Treg-related forkhead box p3 (Foxp3) expression and IL-10 levels in colon. Further study in vitro revealed that up-regulated HO-1 switched the naive T cells to Tregs when cultured under a Th17-inducing environment, which involved in IL-6R blockade. Therefore, HO-1 may exhibit anti-inflammatory activity in the murine model of acute experimental colitis via regulating the balance between Th17 and Treg cells, thus providing a possible novel therapeutic target in IBD. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Irradiation Design for an Experimental Murine Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ballesteros-Zebadua, P.; Moreno-Jimenez, S.; Suarez-Campos, J. E.

    2010-12-07

    In radiotherapy and stereotactic radiosurgery, small animal experimental models are frequently used, since there are still a lot of unsolved questions about the biological and biochemical effects of ionizing radiation. This work presents a method for small-animal brain radiotherapy compatible with a dedicated 6MV Linac. This rodent model is focused on the research of the inflammatory effects produced by ionizing radiation in the brain. In this work comparisons between Pencil Beam and Monte Carlo techniques, were used in order to evaluate accuracy of the calculated dose using a commercial planning system. Challenges in this murine model are discussed.

  20. Synergy of sequential administration of a deglycosylated ricin A chain-containing combined anti-CD19 and anti-CD22 immunotoxin (Combotox) and cytarabine in a murine model of advanced acute lymphoblastic leukemia

    PubMed Central

    Barta, Stefan K.; Zou, Yiyu; Schindler, John; Shenoy, Niraj; Bhagat, Tushar D.; Steidl, Ulrich; Verma, Amit

    2013-01-01

    The outcome for patients with refractory or relapsed acute lymphoblastic leukemia (ALL) treated with conventional therapy is poor. Immunoconjugates present a novel approach and have recently been shown to have efficacy in this setting. Combotox is a mixture of two ricin-conjugated monoclonal antibodies (RFB4 and HD37) directed against CD19 and CD22, respectively, and has shown activity in pediatric and adult ALL. We created a murine xenograft model of advanced ALL using the NALM/6 cell line to explore whether the combination of Combotox with the cytotoxic agent cytarabine (Ara-C) results in better outcomes. In our model the combination of both low- and high-dose Combotox and Ara-C resulted in significantly longer median survival. Sequential administration of Ara-C and Combotox, however, was shown to be superior to concurrent administration. These findings have led to a phase I clinical trial exploring this combination in adults with relapsed or refractory B-lineage ALL (ClinicalTrials.gov identifier NCT01408160). PMID:22448921

  1. Klebsiella pneumoniae type 3 fimbria-mediated immunity to infection in the murine model of respiratory disease.

    PubMed

    Lavender, Heather; Jagnow, Jennifer J; Clegg, Steven

    2005-06-01

    Type 3 fimbriae are expressed by most strains of Klebsiella pneumoniae and facilitate adherence to the basement membrane of human respiratory tissues. The ability of these appendages to stimulate a protective immune response in vivo has not been investigated. A murine model of acute pneumonia was used to determine whether the production of type 3 fimbria-specific antibodies correlated with protection against infection by K. pneumoniae. Purified fimbriae from several strains were used to immunize mice prior to challenge with a virulent strain. The immunized mice produced high titers of specific antibody and this was associated with protection against challenge with a low dose of bacteria that was lethal in unimmunized animals. However, challenge with a high number of bacteria resulted in no protection against infection.

  2. Diagnostic imaging advances in murine models of colitis.

    PubMed

    Brückner, Markus; Lenz, Philipp; Mücke, Marcus M; Gohar, Faekah; Willeke, Peter; Domagk, Dirk; Bettenworth, Dominik

    2016-01-21

    Inflammatory bowel diseases (IBD) such as Crohn's disease and ulcerative colitis are chronic-remittent inflammatory disorders of the gastrointestinal tract still evoking challenging clinical diagnostic and therapeutic situations. Murine models of experimental colitis are a vital component of research into human IBD concerning questions of its complex pathogenesis or the evaluation of potential new drugs. To monitor the course of colitis, to the present day, classical parameters like histological tissue alterations or analysis of mucosal cytokine/chemokine expression often require euthanasia of animals. Recent advances mean revolutionary non-invasive imaging techniques for in vivo murine colitis diagnostics are increasingly available. These novel and emerging imaging techniques not only allow direct visualization of intestinal inflammation, but also enable molecular imaging and targeting of specific alterations of the inflamed murine mucosa. For the first time, in vivo imaging techniques allow for longitudinal examinations and evaluation of intra-individual therapeutic response. This review discusses the latest developments in the different fields of ultrasound, molecularly targeted contrast agent ultrasound, fluorescence endoscopy, confocal laser endomicroscopy as well as tomographic imaging with magnetic resonance imaging, computed tomography and fluorescence-mediated tomography, discussing their individual limitations and potential future diagnostic applications in the management of human patients with IBD.

  3. A novel murine model for evaluating bovine papillomavirus prophylactics/therapeutics for equine sarcoid-like tumours

    PubMed Central

    Bogaert, Lies; Woodham, Andrew W.; Da Silva, Diane M.; Martens, Ann; Meyer, Evelyne

    2015-01-01

    Equine sarcoids are highly recurrent bovine papillomavirus (BPV)-induced fibroblastic neoplasms that are the most common skin tumours in horses. In order to facilitate the study of potential equine sarcoid prophylactics or therapeutics, which can be a slow and costly process in equines, a murine model for BPV-1 protein-expressing equine sarcoid-like tumours was developed in mice through stable transfection of BPV-1 E5 and E6 in a murine fibroblast tumour cell line (K-BALB). Like equine sarcoids, these murine tumour cells (BPV-KB) were of fibroblast origin, were tumorigenic and expressed BPV-1 proteins. As an initial investigation of the preclinical potential of this tumour model for equine sarcoids prophylactics, mice were immunized with BPV-1 E5E6 Venezuelan equine encephalitis virus replicon particles, prior to BPV-KB challenge, which resulted in an increased tumour-free period compared with controls, indicating that the BPV-KB murine model may be a valuable preclinical alternative to equine clinical trials. PMID:26044793

  4. A novel murine model for evaluating bovine papillomavirus prophylactics/therapeutics for equine sarcoid-like tumours.

    PubMed

    Bogaert, Lies; Woodham, Andrew W; Da Silva, Diane M; Martens, Ann; Meyer, Evelyne; Kast, W Martin

    2015-09-01

    Equine sarcoids are highly recurrent bovine papillomavirus (BPV)-induced fibroblastic neoplasms that are the most common skin tumours in horses. In order to facilitate the study of potential equine sarcoid prophylactics or therapeutics, which can be a slow and costly process in equines, a murine model for BPV-1 protein-expressing equine sarcoid-like tumours was developed in mice through stable transfection of BPV-1 E5 and E6 in a murine fibroblast tumour cell line (K-BALB). Like equine sarcoids, these murine tumour cells (BPV-KB) were of fibroblast origin, were tumorigenic and expressed BPV-1 proteins. As an initial investigation of the preclinical potential of this tumour model for equine sarcoids prophylactics, mice were immunized with BPV-1 E5E6 Venezuelan equine encephalitis virus replicon particles, prior to BPV-KB challenge, which resulted in an increased tumour-free period compared with controls, indicating that the BPV-KB murine model may be a valuable preclinical alternative to equine clinical trials.

  5. Modeling of Chronic Myeloid Leukemia: An Overview of In Vivo Murine and Human Xenograft Models

    PubMed Central

    Vellenga, Edo

    2016-01-01

    Over the past years, a wide variety of in vivo mouse models have been generated in order to unravel the molecular pathology of Chronic Myeloid Leukemia (CML) and to develop and improve therapeutic approaches. These models range from (conditional) transgenic models, knock-in models, and murine bone marrow retroviral transduction models followed by transplantation. With the advancement of immunodeficient xenograft models, it has become possible to use human stem/progenitor cells for in vivo studies as well as cells directly derived from CML patients. These models not only mimic CML but also have been instrumental in uncovering various fundamental mechanisms of CML disease progression and tyrosine kinase inhibitor (TKI) resistance. With the availability of iPSC technology, it has become feasible to derive, maintain, and expand CML subclones that are at least genetically identical to those in patients. The following review provides an overview of all murine as well as human xenograft models for CML established till date. PMID:27642303

  6. Shikonin exerts anti-inflammatory effects in a murine model of lipopolysaccharide-induced acute lung injury by inhibiting the nuclear factor-kappaB signaling pathway.

    PubMed

    Liang, Dejie; Sun, Yong; Shen, Yongbin; Li, Fengyang; Song, Xiaojing; Zhou, Ershun; Zhao, Fuyi; Liu, Zhicheng; Fu, Yunhe; Guo, Mengyao; Zhang, Naisheng; Yang, Zhengtao; Cao, Yongguo

    2013-08-01

    Shikonin, an analog of naphthoquinone pigments isolated from the root of Lithospermum erythrorhyzon, was recently reported to exert beneficial anti-inflammatory effects both in vivo and in vitro. The present study aimed to investigate the potential therapeutic effect of shikonin in a murine model of lipopolysaccharide (LPS)-induced acute lung injury (ALI). Dexamethasone was used as a positive control to evaluate the anti-inflammatory effect of shikonin in the study. Pretreatment with shikonin (intraperitoneal injection) significantly inhibited LPS-induced increases in the macrophage and neutrophil infiltration of lung tissues and markedly attenuated myeloperoxidase activity. Furthermore, shikonin significantly reduced the concentrations of TNF-α, IL-6 and IL-1β in bronchoalveolar lavage fluid induced by LPS. Compared with the LPS group, lung histopathologic changes were less pronounced in the shikonin-pretreated mice. Additionally, Western blotting results showed that shikonin efficiently decreased nuclear factor-kappaB (NF-κB) activation by inhibiting the degradation and phosphorylation of IκBα. These results suggest that shikonin exerts anti-inflammatory properties in LPS-mediated ALI, possibly through inhibition of the NF-κB signaling pathway, which mediates the expression of pro-inflammatory cytokines. Shikonin may be a potential agent for the prophylaxis of ALI. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Protective effects of astaxanthin from Paracoccus carotinifaciens on murine gastric ulcer models.

    PubMed

    Murata, Kenta; Oyagi, Atsushi; Takahira, Dai; Tsuruma, Kazuhiro; Shimazawa, Masamitsu; Ishibashi, Takashi; Hara, Hideaki

    2012-08-01

    The purpose of this study was to investigate the effect of astaxanthin extracted from Paracoccus carotinifaciens on gastric mucosal damage in murine gastric ulcer models. Mice were pretreated with astaxanthin for 1 h before ulcer induction. Gastric ulcers were induced in mice by oral administration of hydrochloride (HCl)/ethanol or acidified aspirin. The effect of astaxanthin on lipid peroxidation in murine stomach homogenates was also evaluated by measuring the level of thiobarbituric acid reactive substance (TBARS). The free radical scavenging activities of astaxanthin were also measured by electron spin resonance (ESR) measurements. Astaxanthin significantly decreased the extent of HCl/ethanol- and acidified aspirin-induced gastric ulcers. Astaxanthin also decreased the level of TBARS. The ESR measurement showed that astaxanthin had radical scavenging activities against the 1,1-diphenyl-2-picrylhydrazyl radical and the superoxide anion radical. These results suggest that astaxanthin has antioxidant properties and exerts a protective effect against ulcer formation in murine models. Copyright © 2011 John Wiley & Sons, Ltd.

  8. Local Origin of Mesenchymal Cells in a Murine Orthotopic Lung Transplantation Model of Bronchiolitis Obliterans

    PubMed Central

    Mimura, Takeshi; Walker, Natalie; Aoki, Yoshiro; Manning, Casey M.; Murdock, Benjamin J.; Myers, Jeffery L.; Lagstein, Amir; Osterholzer, John J.; Lama, Vibha N.

    2016-01-01

    Bronchiolitis obliterans is the leading cause of chronic graft failure and long-term mortality in lung transplant recipients. Here, we used a novel murine model to characterize allograft fibrogenesis within a whole-lung microenvironment. Unilateral left lung transplantation was performed in mice across varying degrees of major histocompatibility complex mismatch combinations. B6D2F1/J (a cross between C57BL/6J and DBA/2J) (Haplotype H2b/d) lungs transplanted into DBA/2J (H2d) recipients were identified to show histopathology for bronchiolitis obliterans in all allogeneic grafts. Time course analysis showed an evolution from immune cell infiltration of the bronchioles and vessels at day 14, consistent with acute rejection and lymphocytic bronchitis, to subepithelial and intraluminal fibrotic lesions of bronchiolitis obliterans by day 28. Allografts at day 28 showed a significantly higher hydroxyproline content than the isografts (33.21 ± 1.89 versus 22.36 ± 2.33 μg/mL). At day 40 the hydroxyproline content had increased further (48.91 ± 7.09 μg/mL). Flow cytometric analysis was used to investigate the origin of mesenchymal cells in fibrotic allografts. Collagen I–positive cells (89.43% ± 6.53%) in day 28 allografts were H2Db positive, showing their donor origin. This novel murine model shows consistent and reproducible allograft fibrogenesis in the context of single-lung transplantation and represents a major step forward in investigating mechanisms of chronic graft failure. PMID:25848843

  9. [Evaluation of Fusarium spp. pathogenicity in plant and murine models].

    PubMed

    Forero-Reyes, Consuelo M; Alvarado-Fernández, Angela M; Ceballos-Rojas, Ana M; González-Carmona, Lady C; Linares-Linares, Melva Y; Castañeda-Salazar, Rubiela; Pulido-Villamarín, Adriana; Góngora-Medina, Manuel E; Cortés-Vecino, Jesús A; Rodríguez-Bocanegra, María X

    The genus Fusarium is widely recognized for its phytopathogenic capacity. However, it has been reported as an opportunistic pathogen in immunocompetent and immunocompromised patients. Thus, it can be considered a microorganism of interest in pathogenicity studies on different hosts. Therefore, this work evaluated the pathogenicity of Fusarium spp. isolates from different origins in plants and animals (murine hosts). Twelve isolates of Fusarium spp. from plants, animal superficial mycoses, and human superficial and systemic mycoses were inoculated in tomato, passion fruit and carnation plants, and in immunocompetent and immunosuppressed BALB/c mice. Pathogenicity tests in plants did not show all the symptoms associated with vascular wilt in the three plant models; however, colonization and necrosis of the vascular bundles, regardless of the species and origin of the isolates, showed the infective potential of Fusarium spp. in different plant species. Moreover, the pathogenicity tests in the murine model revealed behavioral changes. It was noteworthy that only five isolates (different origin and species) caused mortality. Additionally, it was observed that all isolates infected and colonized different organs, regardless of the species and origin of the isolates or host immune status. In contrast, the superficial inoculation test showed no evidence of epidermal injury or colonization. The observed results in plant and murine models suggest the pathogenic potential of Fusarium spp. isolates in different types of hosts. However, further studies on pathogenicity are needed to confirm the multihost capacity of this genus. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  10. Sex differences in the MB49 syngeneic, murine model of bladder cancer.

    PubMed

    White-Gilbertson, Shai; Davis, Megan; Voelkel-Johnson, Christina; Kasman, Laura M

    The MB49 syngeneic, murine model of bladder cancer has been widely used for more than 35 years. In humans, bladder cancer is one third as prevalent in women as in men, with a trend toward lower prevalence in parous compared to nulliparous women. Our objective was to determine if the MB49 bladder cancer model reproduces the sex differences observed in humans, and to determine its sensitivity to testosterone and the pregnancy hormone, human chorionic gonadotropin (hCG). Male and female C57BL/6 mice were implanted with MB49 murine bladder cancer cells, and observed for tumor growth. MB49 dose responses to hCG and dihydrotestosterone were determined in vitro . MB49 tumor growth was significantly greater in male mice than female mice. Pregnancy did not affect MB49 tumor growth in female mice. MB49 cells did not proliferate in response to hCG in vitro and the functional receptor for gonadotropins was absent. Dihydrotestosterone strongly stimulated growth of MB49 cells in vitro . The MB49 murine model of bladder cancer reproduced some aspects of the sex differences observed in humans. Our results suggest that testosterone may stimulate MB49 cell proliferation, which may explain the more rapid MB49 tumor growth observed in male mice.

  11. Amelioration of tissue fibrosis by toll-like receptor 4 knockout in murine models of systemic sclerosis.

    PubMed

    Takahashi, Takehiro; Asano, Yoshihide; Ichimura, Yohei; Toyama, Tetsuo; Taniguchi, Takashi; Noda, Shinji; Akamata, Kaname; Tada, Yayoi; Sugaya, Makoto; Kadono, Takafumi; Sato, Shinichi

    2015-01-01

    Bleomycin-induced fibrosis and the tight skin (TSK/+) mouse are well-established experimental murine models of human systemic sclerosis (SSc). Growing evidence has demonstrated the pivotal role of Toll-like receptors (TLRs) in several autoimmune inflammatory diseases, including SSc. This study was undertaken to determine the role of TLR-4 in the fibrotic processes in these murine models. We generated a murine model of bleomycin-induced SSc using TLR-4(-/-) mice and TLR-4(-/-) ;TSK/+ mice. The mechanisms by which TLR-4 contributes to pathologic tissue fibrosis were investigated in these 2 models by histologic examination, hydroxyproline assay, enzyme-linked immunosorbent assay, real-time polymerase chain reaction, and flow cytometry. Dermal and lung fibrosis was attenuated in bleomycin-treated TLR-4(-/-) mice compared with their wild-type counterparts. Inflammatory cell infiltration, expression of various inflammatory cytokines, and pathologic angiogenesis induced by bleomycin treatment were suppressed with TLR-4 deletion. Furthermore, the increased expression of interleukin-6 (IL-6) in fibroblasts, endothelial cells, and immune cells in response to bleomycin in vivo and to lipopolysaccharide in vitro was notably abrogated in the absence of TLR-4. Moreover, TLR-4 deletion was associated with alleviated B cell activation and skew toward a Th2/Th17 response against bleomycin treatment. Importantly, in TSK/+ mice, another SSc murine model, TLR-4 abrogation attenuated hypodermal fibrosis. These results indicate the pivotal contribution of TLR-4 to the pathologic tissue fibrosis of SSc murine models. Our results indicate the critical role of TLR-4 signaling in the development of tissue fibrosis, suggesting that biomolecular TLR-4 targeting might be a potential therapeutic approach to SSc. Copyright © 2015 by the American College of Rheumatology.

  12. Orthotopic lung cancer murine model by nonoperative transbronchial approach.

    PubMed

    Nakajima, Takahiro; Anayama, Takashi; Matsuda, Yasushi; Hwang, David M; McVeigh, Patrick Z; Wilson, Brian C; Zheng, Gang; Keshavjee, Shaf; Yasufuku, Kazuhiro

    2014-05-01

    The aim of this work was to establish a novel orthotopic human non-small cell lung cancer (NSCLC) murine xenograft model by a nonsurgical, transbronchial approach. Male athymic nude mice and human NSCLC cell lines, including A549, H460, and H520 were used. Under direct visualization of the vocal cords, a 23-gauge blunt-tip slightly curved metal catheter was introduced into the trachea to the bronchus, and 2.5×10(5) tumor cells mixed with Matrigel (BD Biosciences, Mississauga, Ontario, Canada) were administered into the lung. Mice were monitored using weekly microcomputed tomography scans for tumor formation. When the tumor size reached more than 4 mm in diameter, the animals were euthanized, and the tumor tissue was evaluated histopathologically. Of 37 mice studied, 34 were confirmed to have tumor formation: 29 developed solitary tumors and 5 had multifocal lesions. There was no evidence of extrapleural dissemination or effusion. Transbronchial delivery of tumor cells enabled the establishment of a novel orthotopic human NSCLC murine xenograft model. This clinically relevant preclinical model bearing a solitary nodule is of value for a variety of in vivo research studies. Copyright © 2014 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  13. Characterization of a Novel Murine Model to Study Zika Virus.

    PubMed

    Rossi, Shannan L; Tesh, Robert B; Azar, Sasha R; Muruato, Antonio E; Hanley, Kathryn A; Auguste, Albert J; Langsjoen, Rose M; Paessler, Slobodan; Vasilakis, Nikos; Weaver, Scott C

    2016-06-01

    The mosquito-borne Zika virus (ZIKV) is responsible for an explosive ongoing outbreak of febrile illness across the Americas. ZIKV was previously thought to cause only a mild, flu-like illness, but during the current outbreak, an association with Guillain-Barré syndrome and microcephaly in neonates has been detected. A previous study showed that ZIKV requires murine adaptation to generate reproducible murine disease. In our study, a low-passage Cambodian isolate caused disease and mortality in mice lacking the interferon (IFN) alpha receptor (A129 mice) in an age-dependent manner, but not in similarly aged immunocompetent mice. In A129 mice, viremia peaked at ∼10(7) plaque-forming units/mL by day 2 postinfection (PI) and reached high titers in the spleen by day 1. ZIKV was detected in the brain on day 3 PI and caused signs of neurologic disease, including tremors, by day 6. Robust replication was also noted in the testis. In this model, all mice infected at the youngest age (3 weeks) succumbed to illness by day 7 PI. Older mice (11 weeks) showed signs of illness, viremia, and weight loss but recovered starting on day 8. In addition, AG129 mice, which lack both type I and II IFN responses, supported similar infection kinetics to A129 mice, but with exaggerated disease signs. This characterization of an Asian lineage ZIKV strain in a murine model, and one of the few studies reporting a model of Zika disease and demonstrating age-dependent morbidity and mortality, could provide a platform for testing the efficacy of antivirals and vaccines. © The American Society of Tropical Medicine and Hygiene.

  14. Preventive effect of ultraviolet radiation on murine chronic sclerodermatous graft-versus-host disease.

    PubMed

    Mermet, Isabelle; Kleinclauss, François; Marandin, Aliette; Guérrini, Jean Sébastien; Angonin, Régis; Tiberghien, Pierre; Saas, Philippe; Aubin, François

    2007-12-27

    Although previous studies have demonstrated the efficient modulatory effects of ultraviolet radiation B (UVB) on cutaneous graft-versus-host disease (GVHD), most animal research on GVHD has been performed in murine models of acute GVHD. Here, we studied the preventive effect of UVB radiation on the occurrence of chronic sclerodermatous (Scl) GVHD in a murine model. Scl GVHD was induced by transplanting lethally irradiated BALB/c mice with B10.D2 bone marrow and spleen cells. Recipient mice were exposed to UVB before or after bone marrow and spleen cell infusion. Histological and clinical evaluation of GVHD was performed, in association with the characterization of epidermal Langerhans cells. UVB irradiation of recipients after, and more remarkably before, transplantation induced a decrease of Scl GVHD severity associated with epidermal Langerhans cells depletion. We conclude that UVB irradiation of recipient before or after transplantation has a preventive effect on cutaneous Scl GVHD and may represent an effective strategy for prevention of Scl GVHD.

  15. A fluorescence model of the murine lung for optical detection of pathogenic bacteria

    NASA Astrophysics Data System (ADS)

    Durkee, Madeleine S.; Cirillo, Jeffrey D.; Maitland, Kristen C.

    2017-07-01

    We present a computer model of intravital excitation and external fluorescence detection in the murine lungs validated with a three-dimensional lung tissue phantom. The model is applied to optical detection of pulmonary tuberculosis infection.

  16. Development of a murine model of blunt hepatic trauma.

    PubMed

    Nemzek-Hamlin, Jean A; Hwang, Haejin; Hampel, Joseph A; Yu, Bi; Raghavendran, Krishnan

    2013-10-01

    Despite the prevalence of blunt hepatic trauma in humans, there are few rodent models of blunt trauma that can be used to study the associated inflammatory responses. We present a mouse model of blunt hepatic trauma that was created by using a cortical contusion device. Male mice were anesthetized with ketamine-xylazine-buprenorphine and placed in left lateral recumbency. A position of 2 mm ventral to the posterior axillary line and 5 mm caudal to the costal margin on the right side was targeted for impact. An impact velocity of 6 m/s and a piston depth of 12 mm produced a consistent pattern of hepatic injury with low mortality. All mice that recovered from anesthesia survived without complication for the length of the study. Mice were euthanized at various time points (n = 5 per group) until 7 d after injury for gross examination and collection of blood and peritoneal lavage fluids. Some mice were reanesthetized for serial monitoring of hepatic lesions via MRI. At 2 h after trauma, mice consistently displayed laceration, hematoma, and discoloration of the right lateral and caudate liver lobes, with intraabdominal hemorrhage but no other gross injuries. Blood and peritoneal lavage fluid were collected from all mice for cytokine analysis. At 2 h after trauma, there were significant increases in plasma IL10 as well as peritoneal lavage fluid IL6 and CXCL1/KC; however, these levels decreased within 24 h. At 7 d after trauma, the mice had regained body weight, and the hepatic lesions, which initially had increased in size during the first 48 h, had returned to their original size. In summary, this technique produced a reliable, low mortality, murine model that recreates features of blunt abdominal liver injury in human subjects with similar acute inflammatory response.

  17. [Establishment of the retrovirus-mediated murine model with MLL-AF9 leukemia].

    PubMed

    Xu, Si-Miao; Yang, Yang; Zhou, Mi; Zhao, Xue-Jiao; Qin, Yu; Zhang, Pei-Ling; Yuan, Rui-Feng; Zhou, Jian-Feng; Fang, Yong

    2013-10-01

    This study was purposed to establish a retrovirus-mediated murine model with MLL-AF9 leukemia, so as to provide a basis for further investigation of the pathogenesis and therapeutic strategy of MLL associated leukemia. Murine (CD45.2) primary hematopoietic precursor positively selected for expression of the progenitor marker c-Kit by means of MACS were transduced with a retrovirus carrying MLL-AF9 fusion gene. After cultured in vitro, the transduced cells were injected intravenously through the tail vein into the lethally irradiated mice (CD45.1). PCR, flow cytometry and morphological observation were employed to evaluate the murine leukemia model system. The results showed that MLL-AF9 fusion gene was expressed in the infected cells, and the cells had a dramatically enhanced potential to generate myeloid colonies with primitive and immature morphology. Flow cytometric analysis revealed that the immortalized cells highly expressed myeloid lineage surface markers Gr-1 and Mac-1. Moreover, the expression levels of Hoxa9 and Meis1 mRNA were significantly higher in the MLL-AF9 cells than that in control. The mice transplanted with MLL-AF9 cells displayed typical signs of leukemia within 6-12 weeks. Extensive infiltration leukemic cells was observed in the Wright-Giemsa stained peripheral blood smear and bone marrow, and also in the histology of liver and spleen. Flow cytometric analysis of the bone marrow and spleen cells demonstrated that the CD45.2 populations expressed highly myeloid markers Gr-1 and Mac-1. The leukemic mice died within 12 weeks. It is concluded that the retrovirus-mediated murine model with MLL-AF9 leukemia is successfully established, which can be applied in the subsequent researches.

  18. Evaluating the Role of Subacromial Impingement in Rotator Cuff tendinopathy: Development and Analysis of a Novel Murine Model.

    PubMed

    Cong, Guang-Ting; Lebaschi, Amir H; Camp, Christopher L; Carballo, Camila B; Nakagawa, Yusuke; Wada, Susumu; Deng, Xiang-Hua; Rodeo, Scott A

    2018-04-23

    Subacromial impingement of the rotator cuff is understood as a contributing factor in the development of rotator cuff tendinopathy. However, changes that occur in the impinged tendon are poorly understood and warrant further study. To enable further study of rotator cuff tendinopathy, we performed a controlled laboratory study to determine feasibility and baseline characteristics of a new murine model for subacromial impingement. This model involves surgically inserting a microvascular clip into the subacromial space in adult C57Bl/6 mice. Along with a sham surgery arm, 90 study animals were distributed among time point groups for sacrifice up to 6 weeks. All animals underwent bilateral surgery (total N = 180). Biomechanical, histologic, and molecular analyses were performed to identify and quantify the progression of changes in the supraspinatus tendon. Decreases in failure force and stiffness were found in impinged tendon specimens compared to sham and no-surgery controls at all study time points. Semi-quantitative scoring of histologic specimens demonstrated significant, persistent tendinopathic changes over 6 weeks. Quantitative real-time polymerase chain reaction analysis of impinged tendon specimens demonstrated persistently increased expression of genes related to matrix remodeling, inflammation, and tendon development. Overall, this novel murine subacromial impingement model creates changes consistent with acute tendonitis, which may mimic the early stages of rotator cuff tendinopathy. This article is protected by copyright. All rights reserved Clinical Significance: A robust, simple, and reproducible animal model of rotator cuff tendinopathy is a valuable research tool to allow further studies of cellular and molecular mechanisms and evaluation of therapeutic interventions in rotator cuff tendinopathy. This article is protected by copyright. All rights reserved.

  19. Sex differences in the MB49 syngeneic, murine model of bladder cancer

    PubMed Central

    White-Gilbertson, Shai; Davis, Megan; Voelkel-Johnson, Christina; Kasman, Laura M.

    2016-01-01

    OBJECTIVE The MB49 syngeneic, murine model of bladder cancer has been widely used for more than 35 years. In humans, bladder cancer is one third as prevalent in women as in men, with a trend toward lower prevalence in parous compared to nulliparous women. Our objective was to determine if the MB49 bladder cancer model reproduces the sex differences observed in humans, and to determine its sensitivity to testosterone and the pregnancy hormone, human chorionic gonadotropin (hCG). METHODS Male and female C57BL/6 mice were implanted with MB49 murine bladder cancer cells, and observed for tumor growth. MB49 dose responses to hCG and dihydrotestosterone were determined in vitro. RESULTS MB49 tumor growth was significantly greater in male mice than female mice. Pregnancy did not affect MB49 tumor growth in female mice. MB49 cells did not proliferate in response to hCG in vitro and the functional receptor for gonadotropins was absent. Dihydrotestosterone strongly stimulated growth of MB49 cells in vitro. CONCLUSIONS The MB49 murine model of bladder cancer reproduced some aspects of the sex differences observed in humans. Our results suggest that testosterone may stimulate MB49 cell proliferation, which may explain the more rapid MB49 tumor growth observed in male mice. PMID:26998503

  20. Lessons learned: Optimization of a murine small bowel resection model

    PubMed Central

    Taylor, Janice A.; Martin, Colin A.; Nair, Rajalakshmi; Guo, Jun; Erwin, Christopher R.; Warner, Brad W.

    2008-01-01

    Background/Purpose Central to the use of murine models of disease is the ability to derive reproducible data. The purpose of this study was to determine factors contributing to variability in our murine model of small bowel resection (SBR). Methods Male C57Bl/6 mice were randomized to sham or 50% SBR. The effect of housing type (pathogen-free versus standard housing), nutrition (reconstituted powder versus tube feeding formulation), and correlates of intestinal morphology with gene expression changes were investigated Multiple linear regression modeling or one-way ANOVA was used for data analysis. Results Pathogen-free mice had significantly shorter ileal villi at baseline and demonstrated greater villus growth after SBR compared to mice housed in standard rooms. Food type did not affect adaptation. Gene expression changes were more consistent and significant in isolated crypt cells that demonstrated adaptive growth when compared with crypts that did not deepen after SBR. Conclusion Maintenance of mice in pathogen-free conditions and restricting gene expression analysis to individual animals exhibiting morphologic adaptation enhances sensitivity and specificity of data derived from this model. These refinements will minimize experimental variability and lead to improved understanding of the complex process of intestinal adaptation. PMID:18558176

  1. The development of a murine model for Forcipomyia taiwana (biting midge) allergy.

    PubMed

    Lee, Mey-Fann; Yang, Kai-Jei; Wang, Nancy M; Chiu, Yung-Tsung; Chen, Pei-Chih; Chen, Yi-Hsing

    2014-01-01

    Forcipomyia taiwana (biting midge) allergy is the most prevalent biting insect allergy in Taiwan. An animal model corresponding to the human immuno-pathologic features of midge allergy is needed for investigating the mechanisms and therapies. This study successfully developed a murine model of Forcipomyia taiwana allergy. BALB/c mice were sensitized intra-peritoneally with midge extract on days 0, 7, 14, 21 then intra-dermally on days 28, 31 and 35. Serum midge-specific IgE, IgG1, and IgG2a were measured every 14 days by indirect ELISA. The mice were challenged intradermally with midge extract at day 40 and then sacrificed. Proliferation and cytokine production of splenocytes after stimulation with midge extract were determined by MTT assay and ELISA, respectively. The cytokine mRNA expression in response to midge stimulation was analyzed by RT-PCR. Serum IgE, total IgG, and IgG1 antibody levels against midge extract were significantly higher in the midge-sensitized mice than in the control mice. After the two-step sensitization, all mice in the midge-sensitized group displayed immediate itch and plasma extravasation reactions in response to challenge with midge extract. Skin histology from midge-sensitized mice showed marked eosinophil and lymphocyte infiltrations similar to that observed in humans. Stimulation of murine splenocytes with midge extract elicited significant proliferation, IL-4, IL-10, IL-13 and IFN-γ protein production, and up-regulation of mRNA in a dose-dependent manner in the midge-sensitized group, but not in the control group. A murine model of midge bite allergy has been successfully developed using a two-step sensitization protocol. The sensitized mice have very similar clinical and immunologic reactions to challenge with midge proteins as the reactions of human to midge bites. This murine model may be a useful platform for future research and the development of treatment strategies for insect bite allergy.

  2. Efficacy and immunological actions of FAHF-2 in a murine model of multiple food allergies.

    PubMed

    Srivastava, Kamal D; Bardina, Ludmilla; Sampson, Hugh A; Li, Xiu-Min

    2012-05-01

    Food Allergy Herbal Formula-2 (FAHF-2) prevents anaphylaxis in a murine model of peanut allergy. Multiple food allergies (MFA) are common and associated with a higher risk of anaphylaxis. No well-characterized murine model of sensitization to multiple food allergens exists, and no satisfactory therapy for MFA is currently available. To determine the effect of FAHF-2 in a murine model of MFA. C3H/HeJ mice were orally sensitized to peanut, codfish, and egg concurrently. Oral FAHF-2 treatment commenced 1 day after completing sensitization and continued daily for 7 weeks. Mice were subsequently orally challenged with each allergen. Antibodies in sera from mice simultaneously sensitized with peanut, codfish, and egg recognized major allergens of all 3 foods, demonstrating sensitization to multiple unrelated food allergens (MFA mice). Sham-treated MFA mice exhibited anaphylactic symptoms accompanied by elevation of plasma histamine and hypothermia. In contrast, FAHF-2-treated MFA mice showed no anaphylactic symptoms, normal body temperature, and histamine levels after challenge with each allergen. Protection was accompanied by reduction in allergen-specific immunoglobulin E levels. Allergen-stimulated Th2 cytokine interleukin-4 and interleukin-13 production levels decreased, whereas the Th1 cytokine interferon-γ levels were elevated in cultured splenocytes and mesenteric lymph node cells in FAHF-2-treated mice. We established the first murine model of MFA. FAHF-2 prevents peanut, egg, and fish-induced anaphylactic reactions in this model, suggesting that FAHF-2 may have potential for treating human MFA. Copyright © 2012 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  3. A Murine Model of Robotic Training to Evaluate Skeletal Muscle Recovery after Injury.

    PubMed

    Lai, Stefano; Panarese, Alessandro; Lawrence, Ross; Boninger, Michael L; Micera, Silvestro; Ambrosio, Fabrisia

    2017-04-01

    In vivo studies have suggested that motor exercise can improve muscle regeneration after injury. Nevertheless, preclinical investigations still lack reliable tools to monitor motor performance over time and to deliver optimal training protocols to maximize force recovery. Here, we evaluated the utility of a murine robotic platform (i) to detect early impairment and longitudinal recovery after acute skeletal muscle injury and (ii) to administer varying intensity training protocols to enhance forelimb motor performance. A custom-designed robotic platform was used to train mice to perform a forelimb retraction task. After an acute injury to bilateral biceps brachii muscles, animals performed a daily training protocol in the platform at high (HL) or low (LL) loading levels over the course of 3 wk. Control animals were not trained (NT). Motor performance was assessed by quantifying force, time, submovement count, and number of movement attempts to accomplish the task. Myofiber number and cross-sectional area at the injury site were quantified histologically. Two days after injury, significant differences in the time, submovement count, number of movement attempts, and exerted force were observed in all mice, as compared with baseline values. Interestingly, the recovery time of muscle force production differed significantly between intervention groups, with HL group showing a significantly accelerated recovery. Three weeks after injury, all groups showed motor performance comparable with baseline values. Accordingly, there were no differences in the number of myofibers or average cross-sectional area among groups after 3 wk. Our findings demonstrate the utility of our custom-designed robotic device for the quantitative assessment of skeletal muscle function in preclinical murine studies. Moreover, we demonstrate that this device may be used to apply varying levels of resistance longitudinally as a means manipulate physiological muscle responses.

  4. TRIMELLITIC ANHYDRIDE-INDUCED EOSINOPHILIA IN A MURINE MODEL OF OCCUPATIONAL ASTHMA

    EPA Science Inventory

    TRIMELLITIC ANHYDRIDE-INDUCED EOSINOPHILIA IN A MURINE MODEL OF OCCUPATIONAL ASTHMA. J F Regal, ME Mohrman, E Boykin and D Sailstad. Dept. of Pharmacology, University of Minnesota, Duluth, MN, USA and NHEERL, ORD, US EPA, RTP, NC, USA.
    Trimellitic anhydride (TMA) is a small m...

  5. Diagnosing hypoxia in murine models of rheumatoid arthritis from reflectance multispectral images

    NASA Astrophysics Data System (ADS)

    Glinton, Sophie; Naylor, Amy J.; Claridge, Ela

    2017-07-01

    Spectra computed from multispectral images of murine models of Rheumatoid Arthritis show a characteristic decrease in reflectance within the 600-800nm region which is indicative of the reduction in blood oxygenation and is consistent with hypoxia.

  6. [Establishment of systemic lupus erythematosus-like murine model with Sm mimotope].

    PubMed

    Xie, Hong-Fu; Feng, Hao; Zeng, Hai-Yan; Li, Ji; Shi, Wei; Yi, Mei; Wu, Bin

    2007-04-01

    To establish systemic lupus erythematosus (SLE) -like murine model by immunizing BALB/C mice with Sm mimotope. Sm mimotope was identified by screening a 12-mer random peptide library with monoclonal anti-Smith antibody. Sm mimotope was initially defined with sandwich ELISA, DNA sequencing, and deduced amino acid sequence; and BALB/C mice were subcutaneously injected with mixture phages clones. Sera Sm antibody, anti-double stranded DNA (dsDNA) antibody, and antinuclear antibody (ANA) of mice were detected using direct immunofluorescence; kidney histological changes were examined by HE staining. Five randomly selected peptides were sequenced and the amino acid sequences IR, SQ, and PP were detected in a higher frequency. High-titer IgG autoantibodies of dsDNA, Sm, and ANA in the sera of experiment group were detected by ELISA 28 days after having been immunized by Sm mimotope. Proteinuria was detected 33 days later; immune complex and nephritis were observed in kidney specimens. SLE-like murine model can be successfully induced by Sm phage mimotope.

  7. Cancer immunotherapeutic effects of novel CpG ODN in murine tumor model.

    PubMed

    Cho, Hyeon Cheol; Kim, Bo Hwan; Kim, Kyunghoon; Park, Ju Youn; Chang, Jae-Ho; Kim, Soo-Ki

    2008-10-01

    While CpG oligodeoxynucleotides (ODN) are excellent candidates for cancer immunotherapeutics, the numbers of usable CpG ODNs are limited in current clinical settings. To resolve this, we investigated whether novel CpG ODN (KSK-CpG) would be an effective immunotherapeutic in a murine tumor model by affecting in vivo and in vitro parameters, such as survival span, the number of tumor nodules, natural killer (NK) cell and cytotoxic T lymphocyte (CTL) activity and interleukin (IL)-6 or IL-12 cytokine release in splenocytes. We found that KSK-CpG was effective in the murine cancer model by way of prolonging survival span, reducing the number of tumor nodules, augmenting NK cell and CTL cytotoxicity, as well as evoking IL-6 and IL-12 cytokine release in splenocytes. Collectively, these data demonstrate that KSK-CpG is active against the highly malignant B16BL6 and EL4 tumor mouse model via innate immune augmentation.

  8. An anisotropic, hyperelastic model for skin: experimental measurements, finite element modelling and identification of parameters for human and murine skin.

    PubMed

    Groves, Rachel B; Coulman, Sion A; Birchall, James C; Evans, Sam L

    2013-02-01

    The mechanical characteristics of skin are extremely complex and have not been satisfactorily simulated by conventional engineering models. The ability to predict human skin behaviour and to evaluate changes in the mechanical properties of the tissue would inform engineering design and would prove valuable in a diversity of disciplines, for example the pharmaceutical and cosmetic industries, which currently rely upon experiments performed in animal models. The aim of this study was to develop a predictive anisotropic, hyperelastic constitutive model of human skin and to validate this model using laboratory data. As a corollary, the mechanical characteristics of human and murine skin have been compared. A novel experimental design, using tensile tests on circular skin specimens, and an optimisation procedure were adopted for laboratory experiments to identify the material parameters of the tissue. Uniaxial tensile tests were performed along three load axes on excised murine and human skin samples, using a single set of material parameters for each skin sample. A finite element model was developed using the transversely isotropic, hyperelastic constitutive model of Weiss et al. (1996) and was embedded within a Veronda-Westmann isotropic material matrix, using three fibre families to create anisotropic behaviour. The model was able to represent the nonlinear, anisotropic behaviour of the skin well. Additionally, examination of the optimal material coefficients and the experimental data permitted quantification of the mechanical differences between human and murine skin. Differences between the skin types, most notably the extension of the skin at low load, have highlighted some of the limitations of murine skin as a biomechanical model of the human tissue. The development of accurate, predictive computational models of human tissue, such as skin, to reduce, refine or replace animal models and to inform developments in the medical, engineering and cosmetic fields, is a

  9. Murine Electrophysiological Models of Cardiac Arrhythmogenesis

    PubMed Central

    2016-01-01

    Cardiac arrhythmias can follow disruption of the normal cellular electrophysiological processes underlying excitable activity and their tissue propagation as coherent wavefronts from the primary sinoatrial node pacemaker, through the atria, conducting structures and ventricular myocardium. These physiological events are driven by interacting, voltage-dependent, processes of activation, inactivation, and recovery in the ion channels present in cardiomyocyte membranes. Generation and conduction of these events are further modulated by intracellular Ca2+ homeostasis, and metabolic and structural change. This review describes experimental studies on murine models for known clinical arrhythmic conditions in which these mechanisms were modified by genetic, physiological, or pharmacological manipulation. These exemplars yielded molecular, physiological, and structural phenotypes often directly translatable to their corresponding clinical conditions, which could be investigated at the molecular, cellular, tissue, organ, and whole animal levels. Arrhythmogenesis could be explored during normal pacing activity, regular stimulation, following imposed extra-stimuli, or during progressively incremented steady pacing frequencies. Arrhythmic substrate was identified with temporal and spatial functional heterogeneities predisposing to reentrant excitation phenomena. These could arise from abnormalities in cardiac pacing function, tissue electrical connectivity, and cellular excitation and recovery. Triggering events during or following recovery from action potential excitation could thereby lead to sustained arrhythmia. These surface membrane processes were modified by alterations in cellular Ca2+ homeostasis and energetics, as well as cellular and tissue structural change. Study of murine systems thus offers major insights into both our understanding of normal cardiac activity and its propagation, and their relationship to mechanisms generating clinical arrhythmias. PMID:27974512

  10. Deficits in serum amyloid A contribute to increased neonatal mortality during murine listeriosis.

    PubMed

    Hawkins, J Seth; Wu, Qingqing; Wang, Yanxia; Lu, Christopher Y

    2013-12-01

    To understand the increased susceptibility of preterm neonates to infection. A murine listeriosis model using immunohistochemistry, microarray technology, and real-time polymerase chain reaction (PCR). We report that recombinant serum amyloid A (SAA) administered prophylactically 18 h before intraperitoneal (i.p.) inoculation with Listeria monocytogenes conferred a dramatic survival benefit compared with administration of only vehicle in neonatal mice. Neonates that received the recombinant SAA protein had significantly fewer Listeria colony counts on plating of infected liver and showed significantly more activated macrophages, but SAA did not affect postnatal growth. Real-time PCR was used to confirm the microarray findings that gene expression levels for the SAA proteins 1 (Saa1) and 2 (Saa2), in addition to that for orosomucoid-2 (Orm2), were strikingly elevated in the adult compared with those in the neonate. Real-time PCR analysis showed that of the acute phase cytokines, tumor necrosis factor (TNF) gene expression increased exponentially with time in the infected adult, whereas neonates did not show similar increases. The increased susceptibility of neonatal mice to listeriosis is in part mediated by a deficiency in the acute phase response, specifically expression of SAA, and that prophylactic SAA protein before neonatal murine listeriosis results in more macrophage activation, lower Listeria counts, and greater survival.

  11. Histone Deacetylase Inhibitors Are Protective in Acute but Not in Chronic Models of Ototoxicity.

    PubMed

    Yang, Chao-Hui; Liu, Zhiqi; Dong, Deanna; Schacht, Jochen; Arya, Dev; Sha, Su-Hua

    2017-01-01

    Previous studies have reported that modification of histones alters aminoglycoside-induced hair cell death and hearing loss. In this study, we investigated three FDA-approved histone deacetylase (HDAC) inhibitors (vorinostat/SAHA, belinostat, and panobinostat) as protectants against aminoglycoside-induced ototoxicity in murine cochlear explants and in vivo in both guinea pigs and CBA/J mice. Individually, all three HDAC inhibitors reduced gentamicin (GM)-induced hair cell loss in a dose-dependent fashion in explants. In vivo , however, treatment with SAHA attenuated neither GM-induced hearing loss and hair cell loss in guinea pigs nor kanamycin (KM)-induced hearing loss and hair cell loss in mice under chronic models of ototoxicity. These findings suggest that treatment with the HDAC inhibitor SAHA attenuates aminoglycoside-induced ototoxicity in an acute model, but not in chronic models, cautioning that one cannot rely solely on in vitro experiments to test the efficacy of otoprotectant compounds.

  12. Retinal Ultrastructure of Murine Models of Dry Age-related Macular Degeneration (AMD)

    PubMed Central

    Ramkumar, Hema L.; Zhang, Jun; Chan, Chi-Chao

    2010-01-01

    Age-related macular degeneration (AMD) is the most prevalent form of irreversible blindness worldwide in the elderly population. The pathology of dry AMD consists of degeneration of photoreceptors and the RPE, lipofuscin (A2E) accumulation, and drusen formation. Mice have been widely used for generating models that simulate human AMD features for investigating the pathogenesis, treatment and prevention of the disease. Although the mouse has no macula, focal atrophy of photorecptors and RPE, lipofuscin accumulation, and increased A2E can develop in aged mouse eyes. However, drusen are rarely seen in mice because of their simpler Bruch’s membrane and different process of lipofuscin extrusion compared with humans. Thus, analyzing basal deposits at the ultrastructural level and understanding the ultrastructural pathologic differences between various mouse AMD models are critical to comprehending the significance of research findings and response to possible therapeutic options for dry AMD. Based on the multifactorial pathogenesis of AMD, murine dry AMD models can be classified into three groups. First, genetically engineered mice that target genes related to juvenile macular dystrophies are the most common models, and they include abcr−/− (Stargardt disease), transgenic ELOVL4 (Stargardt-3 dominant inheritary disease), Efemp1R345W/R345W (Doyne honeycomb retinal dystrophy), and Timp3S156C/S156C (Sorsby fundus dystrophy) mice. Other murine models target genes relevant to AMD, including inflammatory genes such as Cfh−/−, Ccl2−/−, Ccr2−/−, Cx3cr1−/−, and Ccl2−/−/cx3cr1−/−, oxidative stress associated genes such as Sod1−/− and Sod2 knockdown, metabolic pathway genes such as neprilysin −/− (amyloid β), transgenic mcd/mcd (cathepsin D), Cp−/−/Heph−/Y (ferroxidase ceruloplasmin/hepaestin, iron metabolism), and transgenic ApoE4 on high fat and high cholesterol diet (lipid metabolism). Second, mice have also been immunologically

  13. Sub-clonal analysis of the murine C1498 acute myeloid leukaemia cell line reveals genomic and immunogenic diversity.

    PubMed

    Driss, Virginie; Leprêtre, Frédéric; Briche, Isabelle; Mopin, Alexia; Villenet, Céline; Figeac, Martin; Quesnel, Bruno; Brinster, Carine

    2017-12-01

    In acute myeloid leukaemia (AML)-affected patients, the presence of heterogeneous sub-clones at diagnosis has been shown to be responsible for minimal residual disease and relapses. The role played by the immune system in this leukaemic sub-clonal hierarchy and maintenance remains unknown. As leukaemic sub-clone immunogenicity could not be evaluated in human AML xenograft models, we assessed the sub-clonal diversity of the murine C1498 AML cell line and the immunogenicity of its sub-clones in immune-competent syngeneic mice. The murine C1498 cell line was cultured in vitro and sub-clonal cells were generated after limiting dilution. The genomic profiles of 6 different sub-clones were analysed by comparative genomic hybridization arrays (CGH). The sub-clones were then injected into immune-deficient and - competent syngeneic mice. The immunogenicities of the sub-clones was evaluated through 1) assessment of mouse survival, 2) determination of leukaemic cell infiltration into organs by flow cytometry and the expression of a fluorescent reporter gene, 3) assessment of the CTL response ex vivo and 4) detection of residual leukaemic cells in the organs via amplification of the genomic reporter gene by real-time PCR (qPCR). Genomic analyses revealed heterogeneity among the parental cell line and its derived sub-clones. When injected individually into immune-deficient mice, all sub-clones induced cases of AML with different kinetics. However, when administered into immune-competent animals, some sub-clones triggered AML in which no mice survived, whereas others elicited reduced lethality rates. The AML-surviving mice presented efficient anti-leukaemia CTL activity ex vivo and eliminated the leukaemic cells in vivo. We showed that C1498 cell sub-clones presented genomic heterogeneity and differential immunogenicity resulting either in immune escape or elimination. Such findings could have potent implications for new immunotherapeutic strategies in patients with AML

  14. A bidirectional association between the gut microbiota and CNS disease in a biphasic murine model of multiple sclerosis.

    PubMed

    Colpitts, Sara L; Kasper, Eli J; Keever, Abigail; Liljenberg, Caleb; Kirby, Trevor; Magori, Krisztian; Kasper, Lloyd H; Ochoa-Repáraz, Javier

    2017-11-02

    The gut microbiome plays an important role in the development of inflammatory disease as shown using experimental models of central nervous system (CNS) demyelination. Gut microbes influence the response of regulatory immune cell populations in the gut-associated lymphoid tissue (GALT), which drive protection in acute and chronic experimental autoimmune encephalomyelitis (EAE). Recent observations suggest that communication between the host and the gut microbiome is bidirectional. We hypothesized that the gut microbiota differs between the acute inflammatory and chronic progressive stages of a murine model of secondary-progressive multiple sclerosis (SP-MS). This non-obese diabetic (NOD) model of EAE develops a biphasic pattern of disease that more closely resembles the human condition when transitioning from relapsing-remitting (RR)-MS to SP-MS. We compared the gut microbiome of NOD mice with either mild or severe disease to that of non-immunized control mice. We found that the mice which developed a severe secondary form of EAE harbored a dysbiotic gut microbiome when compared with the healthy control mice. Furthermore, we evaluated whether treatment with a cocktail of broad-spectrum antibiotics would modify the outcome of the progressive stage of EAE in the NOD model. Our results indicated reduced mortality and clinical disease severity in mice treated with antibiotics compared with untreated mice. Our findings support the hypothesis that there are reciprocal effects between experimental CNS inflammatory demyelination and modification of the microbiome providing a foundation for the establishment of early therapeutic interventions targeting the gut microbiome that could potentially limit disease progression.

  15. The Ethanolic Stem-Bark Extract of Antrocaryon micraster Inhibits Carrageenan-Induced Pleurisy and Pedal Oedema in Murine Models of Inflammation

    PubMed Central

    Essel, Leslie B.; Duduyemi, Babatunde M.

    2017-01-01

    We investigated the antioxidant and anti-inflammatory effects of a 70% v/v ethanol extract of the stem bark of Antrocaryon micraster on murine models of carrageenan-induced pleurisy and paw oedema. Rat pleural fluid was analysed for volume, protein content, and leucocytes, while lung histology was assessed for damage. Lung tissue homogenates were assayed for glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA), and myeloperoxidase (MPO). Phytochemical analysis was carried out on the stem bark. Acute toxicity studies were conducted in rats. In the pleurisy model the extract (30–300 mg/kg) significantly reduced the volume and amount of proteins and leucocytes in the exudate and also protected against lung injury. Tissue level of GSH and SOD and CAT expression were increased while MDA level and MPO activity were reduced. The peak and total oedema responses were significantly suppressed when given both preemptively and curatively in the mice paw oedema test. Saponins, alkaloids, triterpenoids, and tannins were present in the stem bark. A. micraster extract exhibited no apparent acute toxicity. We conclude that the ethanolic stem-bark extract of A. micraster has antioxidant action and exhibits significant anti-inflammatory activity through suppression of pleurisy and paw oedema induced with carrageenan. PMID:28798953

  16. Immune activation and suppression by group B streptococcus in a murine model of urinary tract infection.

    PubMed

    Kline, Kimberly A; Schwartz, Drew J; Lewis, Warren G; Hultgren, Scott J; Lewis, Amanda L

    2011-09-01

    Group B streptococcus (GBS) is a common commensal of the gastrointestinal and vaginal mucosa and a leading cause of serious infections in newborns, the elderly, and immunocompromised populations. GBS also causes infections of the urinary tract. However, little is known about host responses to GBS urinary tract infection (UTI) or GBS virulence factors that participate in UTI. Here we describe a novel murine model of GBS UTI that may explain some features of GBS urinary tract association in the human host. We observed high titers and heightened histological signs of inflammation and leukocyte recruitment in the GBS-infected kidney. However, extensive inflammation and leukocyte recruitment were not observed in the bladder, suggesting that GBS may suppress bladder inflammation during cystitis. Acute GBS infection induced the localized expression of proinflammatory cytokines interleukin-1α (IL-1α), macrophage inflammatory protein-1α (MIP-1α), MIP-1β, and IL-9, as well as IL-10, more commonly considered an anti-inflammatory cytokine. Using isogenic GBS strains with different capsule structures, we show that capsular sialic acid residues contribute to GBS urinary tract pathogenesis, while high levels of sialic acid O-acetylation attenuate GBS pathogenesis in the setting of UTI, particularly in direct competition experiments. In vitro studies demonstrated that GBS sialic acids participate in the suppression of murine polymorphonuclear leukocyte (PMN) bactericidal activities, in addition to reducing levels of IL-1α, tumor necrosis factor alpha, IL-1β, MIP-1α, and KC produced by PMNs. These studies define several basic molecular and cellular events characterizing GBS UTI in an animal model, showing that GBS participates simultaneously in the activation and suppression of host immune responses in the urinary tract.

  17. Murine models of osteosarcoma: A piece of the translational puzzle.

    PubMed

    Walia, Mannu K; Castillo-Tandazo, Wilson; Mutsaers, Anthony J; Martin, Thomas John; Walkley, Carl R

    2018-06-01

    Osteosarcoma (OS) is the most common cancer of bone in children and young adults. Despite extensive research efforts, there has been no significant improvement in patient outcome for many years. An improved understanding of the biology of this cancer and how genes frequently mutated contribute to OS may help improve outcomes for patients. While our knowledge of the mutational burden of OS is approaching saturation, our understanding of how these mutations contribute to OS initiation and maintenance is less clear. Murine models of OS have now been demonstrated to be highly valid recapitulations of human OS. These models were originally based on the frequent disruption of p53 and Rb in familial OS syndromes, which are also common mutations in sporadic OS. They have been applied to significantly improve our understanding about the functions of recurrently mutated genes in disease. The murine models can be used as a platform for preclinical testing and identifying new therapeutic targets, in addition to testing the role of additional mutations in vivo. Most recently these models have begun to be used for discovery based approaches and screens, which hold significant promise in furthering our understanding of the genetic and therapeutic sensitivities of OS. In this review, we discuss the mouse models of OS that have been reported in the last 3-5 years and newly identified pathways from these studies. Finally, we discuss the preclinical utilization of the mouse models of OS for identifying and validating actionable targets to improve patient outcome. © 2017 Wiley Periodicals, Inc.

  18. Cadmium is acutely toxic for murine hepatocytes: effects on intracellular free Ca(2+) homeostasis.

    PubMed

    Wang, S S; Chen, L; Xia, S K

    2007-01-01

    We studied cadmium toxicity in murine hepatocytes in vitro. Cadmium effects on intracellular free Ca(2+) concentration ([Ca(2+)](i)) were assayed, using a laser scanning confocal microscope with a fluorescent probe, Fluo-3/AM. The results showed that administration of cadmium chloride (CdCl(2), 5, 10, 25 microM) resulted in a dose-dependent decrease of hepatocyte viability and an elevated aspartate aminotransferase (AST) activity in the culture medium (p<0.05 for 25 microM CdCl(2) vs. control). Significant increases of lactate dehydrogenase (LDH) activities in 10 and 25 microM CdC1(2)-exposed groups were observed (p<0.05 and p<0.01, respectively). A greatly decreased albumin content and a more malondialdehyde (MDA) formation also occurred after CdC1(2) treatment. The Ca(2+) concentrations in the culture medium of CdCl(2)-exposed hepatocytes were significantly decreased, while [Ca(2+)](i) appeared to be significantly elevated (p<0.05 or p<0.01 vs. control). We found that in Ca(2+)-containing hydroxyethyl piperazine ethanesulfonic acid-buffered salt solution (HBSS) only, CdCl(2) elicited [Ca(2+)](i) increases, which comprised an initially slow ascent and a strong elevated phase. However, in Ca(2+)-containing HBSS with addition of 2-aminoethoxydiphenyl borane (2-APB), CdCl(2) caused a mild [Ca(2+)](i) elevation in the absence of an initial rise phase. Removal of extracellular Ca(2+) showed that CdCl(2) induced an initially slow [Ca(2+)](i) rise alone without being followed by a markedly elevated phase, but in a Ca(2+)-free HBSS with addition of 2-APB, CdCl(2) failed to elicit the [Ca(2+)](i) elevation. These results suggest that abnormal Ca(2+) homeostasis due to cadmium may be an important mechanism of the development of the toxic effect in murine hepatocytes. [Ca(2+)](i) elevation in acutely cadmium-exposed hepatocytes is closely related to the extracellular Ca(2+) entry and an excessive release of Ca(2+) from intracellular stores.

  19. Anti-Inflammatory Effects of Licorice and Roasted Licorice Extracts on TPA-Induced Acute Inflammation and Collagen-Induced Arthritis in Mice

    PubMed Central

    Kim, Ki Rim; Jeong, Chan-Kwon; Park, Kwang-Kyun; Choi, Jong-Hoon; Park, Jung Han Yoon; Lim, Soon Sung; Chung, Won-Yoon

    2010-01-01

    The anti-inflammatory activity of licorice (LE) and roated licorice (rLE) extracts determined in the murine phorbol ester-induced acute inflammation model and collagen-induced arthritis (CIA) model of human rheumatoid arthritis. rLE possessed greater activity than LE in inhibiting phorbol ester-induced ear edema. Oral administration of LE or rLE reduced clinical arthritis score, paw swelling, and histopathological changes in a murine CIA. LE and rLE decreased the levels of proinflammatory cytokines in serum and matrix metalloproteinase-3 expression in the joints. Cell proliferation and cytokine secretion in response to type II collagen or lipopolysaccharide stimulation were suppressed in spleen cells from LE or rLE-treated CIA mice. Furthermore, LE and rLE treatment prevented oxidative damages in liver and kidney tissues of CIA mice. Taken together, LE and rLE have benefits in protecting against both acute inflammation and chronic inflammatory conditions including rheumatoid arthritis. rLE may inhibit the acute inflammation more potently than LE. PMID:20300198

  20. Diet-induced obesity accelerates acute lymphoblastic leukemia progression in two murine models.

    PubMed

    Yun, Jason P; Behan, James W; Heisterkamp, Nora; Butturini, Anna; Klemm, Lars; Ji, Lingyun; Groffen, John; Müschen, Markus; Mittelman, Steven D

    2010-10-01

    Obesity is associated with an increased incidence of many cancers, including leukemia, although it is unknown whether leukemia incidence is increased directly by obesity or rather by associated genetic, lifestyle, health, or socioeconomic factors. We developed animal models of obesity and leukemia to test whether obesity could directly accelerate acute lymphoblastic leukemia (ALL) using BCR/ABL transgenic and AKR/J mice weaned onto a high-fat diet. Mice were observed until development of progressive ALL. Although obese and control BCR/ABL mice had similar median survival, older obese mice had accelerated ALL onset, implying a time-dependent effect of obesity on ALL. Obese AKR mice developed ALL significantly earlier than controls. The effect of obesity was not explained by WBC count, thymus/spleen weight, or ALL phenotype. However, obese AKR mice had higher leptin, insulin, and interleukin-6 levels than controls, and these obesity-related hormones all have potential roles in leukemia pathogenesis. In conclusion, obesity directly accelerates presentation of ALL, likely by increasing the risk of an early event in leukemogenesis. This is the first study to show that obesity can directly accelerate the progression of ALL. Thus, the observed associations between obesity and leukemia incidence are likely to be directly related to biological effects of obesity. ©2010 AACR.

  1. Modulation of the microbiota-gut-brain axis by probiotics in a murine model of inflammatory bowel disease.

    PubMed

    Emge, Jacob R; Huynh, Kevin; Miller, Elaine N; Kaur, Manvir; Reardon, Colin; Barrett, Kim E; Gareau, Mélanie G

    2016-06-01

    Anxiety, depression, and altered memory are associated with intestinal diseases, including inflammatory bowel disease (IBD). Understanding the link between these behavioral changes and IBD is important clinically since concomitant mood disorders often increase a patient's risk of requiring surgery and developing secondary functional gastrointestinal diseases. Anxiety-like behavior (light/dark box test) and recognition memory (novel object recognition task) were determined at the peak and during resolution of inflammation in the dextran sodium sulfate (DSS) mouse model of acute colitis. DSS (5 days) was administered via drinking water followed by 3 or 9 days of normal drinking water to assess behavior during active or resolving inflammation, respectively. Disease (weight, colon length, and histology) was assessed and the composition of the gut microbiota was characterized by using qPCR on fecal pellet DNA. In a subset of mice, pretreatment with probiotics was started 1 wk prior to commencing DSS. During active inflammation (8 days), mice demonstrated impaired recognition memory and exhibited anxiety-like behavior vs. These behavioral defects were normalized by 14 days post-DSS. Shifts in the composition of the gut microbiota were evident during active inflammation, notably as decreases in lactobacilli and segmented filamentous bacteria, which were also reversed once the disease had resolved. Administration of probiotics could prevent the behavioral defects seen in acute DSS. Taken together, our findings indicate that changes in mood and behavior are present during acute inflammation in murine IBD and associated with dysbiosis and that these outcomes can be prevented by the administration of probiotics. Copyright © 2016 the American Physiological Society.

  2. Micro-computed tomography in murine models of cerebral cavernous malformations as a paradigm for brain disease.

    PubMed

    Girard, Romuald; Zeineddine, Hussein A; Orsbon, Courtney; Tan, Huan; Moore, Thomas; Hobson, Nick; Shenkar, Robert; Lightle, Rhonda; Shi, Changbin; Fam, Maged D; Cao, Ying; Shen, Le; Neander, April I; Rorrer, Autumn; Gallione, Carol; Tang, Alan T; Kahn, Mark L; Marchuk, Douglas A; Luo, Zhe-Xi; Awad, Issam A

    2016-09-15

    Cerebral cavernous malformations (CCMs) are hemorrhagic brain lesions, where murine models allow major mechanistic discoveries, ushering genetic manipulations and preclinical assessment of therapies. Histology for lesion counting and morphometry is essential yet tedious and time consuming. We herein describe the application and validations of X-ray micro-computed tomography (micro-CT), a non-destructive technique allowing three-dimensional CCM lesion count and volumetric measurements, in transgenic murine brains. We hereby describe a new contrast soaking technique not previously applied to murine models of CCM disease. Volumetric segmentation and image processing paradigm allowed for histologic correlations and quantitative validations not previously reported with the micro-CT technique in brain vascular disease. Twenty-two hyper-dense areas on micro-CT images, identified as CCM lesions, were matched by histology. The inter-rater reliability analysis showed strong consistency in the CCM lesion identification and staging (K=0.89, p<0.0001) between the two techniques. Micro-CT revealed a 29% greater CCM lesion detection efficiency, and 80% improved time efficiency. Serial integrated lesional area by histology showed a strong positive correlation with micro-CT estimated volume (r(2)=0.84, p<0.0001). Micro-CT allows high throughput assessment of lesion count and volume in pre-clinical murine models of CCM. This approach complements histology with improved accuracy and efficiency, and can be applied for lesion burden assessment in other brain diseases. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. The accessory gene regulator (agr) controls Staphylococcus aureus virulence in a murine intracranial abscesses model.

    PubMed

    Gong, Jian; Li, Dongzhi; Yan, Jun; Liu, Yu; Li, Di; Dong, Jie; Gao, Yaping; Sun, Tao; Yang, Guang

    2014-01-01

    Intracranial abscesses are associated with high mortality. Staphylococcus aureus is one of the main pathogens that cause intracranial infection. Until now, there is no report to identify the key effectors of S. aureus during the intracranial infection. The murine intracranial abscesses model induced by S. aureus was constructed. The vital sign and survival rate of mice were observed to evaluate the infection. Histological examination was used to diagnose the pathological alterations of mouse tissues. The sensitivity of S. aureus to whole blood was evaluated by whole-blood killing assay. In murine intracranial abscesses model, it was shown that the mortality caused by the accessory gene regulator (agr) locus deficient strain was significant decreased compared with its parent strain. Moreover, we found that RNAIII, the effector of agr system, was essential for the intracranial infection caused by S. aureus. In the further investigation, it was shown that restoration the expression of α-toxin in agr deficient strain could partially recover the mortality in the murine intracranial abscesses model. Our data suggested that the agr system of S. aureus is an important virulence determinant in the induction and mortality of intracranial abscesses in mice. Copyright © 2014 Elsevier Editora Ltda. All rights reserved.

  4. Space radiation-associated lung injury in a murine model.

    PubMed

    Christofidou-Solomidou, Melpo; Pietrofesa, Ralph A; Arguiri, Evguenia; Schweitzer, Kelly S; Berdyshev, Evgeny V; McCarthy, Maureen; Corbitt, Astrid; Alwood, Joshua S; Yu, Yongjia; Globus, Ruth K; Solomides, Charalambos C; Ullrich, Robert L; Petrache, Irina

    2015-03-01

    Despite considerable progress in identifying health risks to crewmembers related to exposure to galactic/cosmic rays and solar particle events (SPE) during space travel, its long-term effects on the pulmonary system are unknown. We used a murine risk projection model to investigate the impact of exposure to space-relevant radiation (SR) on the lung. C3H mice were exposed to (137)Cs gamma rays, protons (acute, low-dose exposure mimicking the 1972 SPE), 600 MeV/u (56)Fe ions, or 350 MeV/u (28)Si ions at the NASA Space Radiation Laboratory at Brookhaven National Laboratory. Animals were irradiated at the age of 2.5 mo and evaluated 23.5 mo postirradiation, at 26 mo of age. Compared with age-matched nonirradiated mice, SR exposures led to significant air space enlargement and dose-dependent decreased systemic oxygenation levels. These were associated with late mild lung inflammation and prominent cellular injury, with significant oxidative stress and apoptosis (caspase-3 activation) in the lung parenchyma. SR, especially high-energy (56)Fe or (28)Si ions markedly decreased sphingosine-1-phosphate levels and Akt- and p38 MAPK phosphorylation, depleted anti-senescence sirtuin-1 and increased biochemical markers of autophagy. Exposure to SR caused dose-dependent, pronounced late lung pathological sequelae consistent with alveolar simplification and cellular signaling of increased injury and decreased repair. The associated systemic hypoxemia suggested that this previously uncharacterized space radiation-associated lung injury was functionally significant, indicating that further studies are needed to define the risk and to develop appropriate lung-protective countermeasures for manned deep space missions. Copyright © 2015 the American Physiological Society.

  5. A model system for testing gene vectors using murine tumor cells on the chorioallantoic membrane of the chick embryo.

    PubMed

    Dani, Sergio U; Espindola, Rachel

    2002-06-30

    We developed a model system for testing gene vectors, based on the growth of murine tumors on the chorioallantoic membrane (CAM) of embryonic chickens. The ability of selected murine cells to grow on the CAM was rated according to the following criteria: i) formation of tumor masses; ii) metastasis formation; iii) reproducibility; iv) yield, indicated as the number of embryos surviving to assessment time with visible tumors on the CAM; v) maintainability of the cell, both in the original host and the embryonic chick, or 'shuttle maintainability'; vi) detection by the naked eye, and vii) cost/benefit relation. The murine melanoma cell lineage, B16F10, which efficiently forms distinct, pigmented tumor masses and metastases on the CAM, performed better in this model than the murine B61 cell line. In vitro transduction of B16F10 cells with a recombinant adenovirus carrying a construct of the E. coli LacZ gene followed by inoculation onto the CAM resulted in beta-galactosidase expression in the tumor mass growing on the CAM. This model is potentially applicable to preclinical evaluation of gene vectors, especially for gene therapy of cancer.

  6. Electrocautery effect on intestinal vascularisation in a murine model.

    PubMed

    Tremblay, Jean-François; Sideris, Lucas; Leblond, François A; Trépanier, Jean-Sébastien; Badrudin, David; Drolet, Pierre; Mitchell, Andrew; Dubé, Pierre

    2016-09-01

    The use of electrocautery devices is associated with complications such as perforation or fistulisation when used near intestinal structures. This is likely due to its effect on vascularisation of the bowel wall. To test this hypothesis we established a murine model to quantify the effect of electrocautery injury on the intestinal microvascularisation. Sprague-Dawley rats were subjected to five electrocautery injuries on the small bowel in coagulation mode (30 W intensity) and in cut mode (40 W, 80 W and 200 W intensities) for durations of 1, 2 and 5 s. 5 mg/kg of fluorescein was injected intravenously, the injured bowel segments harvested and the rat sacrificed. The segments were analysed to measure the fluorescence of injured bowel compared to adjacent unharmed tissue. A significant decrease in bowel wall microvascularisation occurred with increasing intensity (coag 30 W/cut 40 W versus cut 200 W 1 s: p < 0.05) and duration of electrocautery injury (cut 40 W 1/2 s versus 5 s: p < 0.05). There was a 40% perforation rate when decreased bowel wall microvascularisation was 25% or more. Despite similar electrocautery injury, a significantly greater microvascularisation decrease was observed in jejunum compared to ileum (p < 0.05). We successfully established a murine model to quantify the decrease of bowel wall microvascularisation associated with electrocautery use. Unsurprisingly, the decrease in microvascularisation is greater with higher intensity and duration of electrocautery and is associated with more perforations in the experimental model. The jejunum seems more vulnerable to electrocautery injury than the ileum. These observations support caution when using electrocautery devices near intestinal structures.

  7. Murine Models of Sepsis and Trauma: Can We Bridge the Gap?

    PubMed

    Stortz, Julie A; Raymond, Steven L; Mira, Juan C; Moldawer, Lyle L; Mohr, Alicia M; Efron, Philip A

    2017-07-01

    Sepsis and trauma are both leading causes of death in the United States and represent major public health challenges. Murine models have largely been used in sepsis and trauma research to better understand the pathophysiological changes that occur after an insult and to develop potential life-saving therapeutic agents. Mice are favorable subjects for this type of research given the variety of readily available strains including inbred, outbred, and transgenic strains. In addition, they are relatively easy to maintain and have a high fecundity. However, pharmacological therapies demonstrating promise in preclinical mouse models of sepsis and trauma often fail to demonstrate similar efficacy in human clinical trials, prompting considerable criticism surrounding the capacity of murine models to recapitulate complex human diseases like sepsis and traumatic injury. Fundamental differences between the two species include, but are not limited to, the divergence of the transcriptomic response, the mismatch of temporal response patterns, differences in both innate and adaptive immunity, and heterogeneity within the human population in comparison to the homogeneity of highly inbred mouse strains. Given the ongoing controversy, this narrative review aims to not only highlight the historical importance of the mouse as an animal research model but also highlight the current benefits and limitations of the model as it pertains to sepsis and trauma. Lastly, this review will propose future directions that may promote further use of the model. Published by Oxford University Press on behalf of the Institute for Laboratory Animal Research 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  8. Current advances of murine models for food allergy.

    PubMed

    Liu, Tiange; Navarro, Severine; Lopata, Andreas L

    2016-02-01

    Food allergy affects an increasing population in Western world but also developing countries. Researchers have been taking great efforts in identifying and characterising food allergens using molecular tools. However, there are still many mechanistic hypotheses that need to be tested using an appropriate in vivo experimental platform. To date, a number of mouse models for food allergy have been established and provided valuable insights into food allergenicity, development of therapies and allergic inflammation mechanisms. Nevertheless, a large diversity of protocols have been developed for the establishment of relevant mouse models. As a result, comparisons of outcomes between different models are very difficult to be conducted. The phenotypes of mouse models are greatly influenced by genetic background, gender, route of allergen exposure, the nature and concentration of food allergens, as well as the usage of adjuvants. This review focuses on IgE-mediated food allergy, compares the differential approaches in developing appropriate murine models for food allergy and details specific findings for three major food allergens, peanut, milk and shellfish. Copyright © 2016. Published by Elsevier Ltd.

  9. Decay-accelerating factor 1 deficiency exacerbates Trypanosoma cruzi-induced murine chronic myositis.

    PubMed

    Solana, María E; Ferrer, María F; Novoa, María Mercedes; Song, Wen-Chao; Gómez, Ricardo M

    2012-10-01

    Murine infection with Trypanosoma cruzi (Tc) has been used to study the role of T-cells in the pathogenesis of human inflammatory idiopathic myositis. Absence of decay-accelerating factor 1 (Daf1) has been shown to enhance murine T-cell responses and autoimmunity. To determine whether Daf1 deficiency can exacerbate Tc-induced myositis, C57BL/6 DAF(+/+) and DAF(-/-) mice were inoculated with 5 × 10(4) trypomastigotes, and their morbidity, parasitemia, parasite burden, histopathology, and T-cell expansion were studied in the acute and chronic stages. DAF(-/-) mice had lower parasitemia and parasite burden but higher morbidity, muscle histopathology, and increased number of CD44(+) (activated/memory phenotype) splenic CD4(+) and CD8(+) T-cells. An enhanced CD8(+) T-cell immune-specific response may explain the lower parasitemia and parasite burden levels and the increase in histopathological lesions. We propose that Tc-inoculated DAF(-/-) mice are a useful model to study T-cell mediated immunity in skeletal muscle tissues. Copyright © 2012 Wiley Periodicals, Inc.

  10. Modulation of fibronectin-mediated Bacillus Calmette-Guérin attachment to murine bladder mucosa by drugs influencing the coagulation pathways.

    PubMed

    Hudson, M A; Brown, E J; Ritchey, J K; Ratliff, T L

    1991-07-15

    Adjuvant intravesical Bacillus Calmette-Guérin (BCG) has proved to be an effective treatment for superficial bladder cancer. Intraluminal attachment of BCG organisms via binding to the extracellular matrix protein, fibronectin (FN), appears to be required for expression of the antitumor efficacy of BCG against a murine bladder tumor. Initial studies demonstrated that radiolabeled FN localized to the acutely injured urothelium but not to intact urothelium. These studies also demonstrated that exogenous administration of FN enhanced BCG attachment to the injured but not to the intact urothelium. Because FN has been shown to be an integral part of clot formation at sites of urothelial injury, drugs known to affect fibrin clot formation were tested for their effects on BCG attachment and antitumor efficacy in a murine bladder tumor model. A stabilizer of fibrin clot formation was shown to enhance both BCG attachment and antitumor efficacy in the same model. An increased number of BCG organisms were also retained in the lymph nodes and spleens of mice receiving fibrin clot stabilizers, suggesting indirectly that immunological mechanisms are involved in the antitumor efficacy of BCG. The data presented herein provide further support for the hypothesis that BCG attachment to the injured bladder is mediated by FN. Furthermore, modulation of BCG-FN attachment is demonstrated to be possible with drugs influencing the coagulation pathway. This attachment is shown to be required for the antitumor efficacy in a murine bladder tumor model, and thus modulation of BCG-FN attachment appears to have significant influence on the antitumor efficacy of BCG in the murine bladder tumor model.

  11. The murine polyomavirus microRNA locus is required to promote viruria during the acute phase of infection.

    PubMed

    Burke, James M; Bass, Clovis R; Kincaid, Rodney P; Ulug, Emin T; Sullivan, Christopher S

    2018-06-06

    Polyomaviruses (PyVs) can cause serious disease in immunosuppressed hosts. Several pathogenic PyVs encode microRNAs (miRNAs), small RNAs that regulate gene expression via RNA silencing. Despite recent advances in understanding the activities of PyV miRNAs, the biological functions of PyV miRNAs during in vivo infections are mostly unknown. Studies presented here use murine polyomavirus (MuPyV) as a model to assess the roles of the PyV miRNAs in a natural host. This analysis reveals that a MuPyV mutant that is unable to express miRNAs has enhanced viral DNA loads in select tissues at late times after infection. This is consistent with the PyV miRNAs functioning to reduce viral replication during the persistent phase of infection in a natural host. Additionally, the MuPyV miRNA locus promotes viruria during the acute phase of infection as evidenced by a defect in shedding during infection with the miRNA mutant virus. The viruria defect of the miRNA mutant virus could be rescued by infecting Rag2-/- mice. These findings implicate the miRNA locus as functioning in both the persistent and acute phases of infection and suggest a role for MuPyV miRNA in evading the adaptive immune response. IMPORTANCE MicroRNAs are expressed by diverse viruses, but for only a few is there any understanding of their in vivo function. PyVs can cause serious disease in immunocompromised hosts. Therefore, increased knowledge of how these viruses interact with the immune response is of clinical relevance. Here we show a novel activity for a viral miRNA locus in promoting virus shedding. This work indicates that in addition to any role for the PyV miRNA locus in long-term persistence, that it also has biological activity during the acute phase. As this mutant phenotype is alleviated by infection of mice lacking an adaptive immune response, our work also connects the in vivo activity of the PyV miRNA locus to the immune response. Given that PyV-associated disease is associated with alterations

  12. Acute radiation risk models

    NASA Astrophysics Data System (ADS)

    Smirnova, Olga

    Biologically motivated mathematical models, which describe the dynamics of the major hematopoietic lineages (the thrombocytopoietic, lymphocytopoietic, granulocytopoietic, and erythropoietic systems) in acutely/chronically irradiated humans are developed. These models are implemented as systems of nonlinear differential equations, which variables and constant parameters have clear biological meaning. It is shown that the developed models are capable of reproducing clinical data on the dynamics of these systems in humans exposed to acute radiation in the result of incidents and accidents, as well as in humans exposed to low-level chronic radiation. Moreover, the averaged value of the "lethal" dose rates of chronic irradiation evaluated within models of these four major hematopoietic lineages coincides with the real minimal dose rate of lethal chronic irradiation. The demonstrated ability of the models of the human thrombocytopoietic, lymphocytopoietic, granulocytopoietic, and erythropoietic systems to predict the dynamical response of these systems to acute/chronic irradiation in wide ranges of doses and dose rates implies that these mathematical models form an universal tool for the investigation and prediction of the dynamics of the major human hematopoietic lineages for a vast pattern of irradiation scenarios. In particular, these models could be applied for the radiation risk assessment for health of astronauts exposed to space radiation during long-term space missions, such as voyages to Mars or Lunar colonies, as well as for health of people exposed to acute/chronic irradiation due to environmental radiological events.

  13. Murine epithelial cells: isolation and culture.

    PubMed

    Davidson, Donald J; Gray, Michael A; Kilanowski, Fiona M; Tarran, Robert; Randell, Scott H; Sheppard, David N; Argent, Barry E; Dorin, Julia R

    2004-08-01

    We describe an air-liquid interface primary culture method for murine tracheal epithelial cells on semi-permeable membranes, forming polarized epithelia with a high transepithelial resistance, differentiation to ciliated and secretory cells, and physiologically appropriate expression of key genes and ion channels. We also describe the isolation of primary murine nasal epithelial cells for patch-clamp analysis, generating polarised cells with physiologically appropriate distribution and ion channel expression. These methods enable more physiologically relevant analysis of murine airway epithelial cells in vitro and ex vivo, better utilisation of transgenic mouse models of human pulmonary diseases, and have been approved by the European Working Group on CFTR expression.

  14. Lessons from the Murine Models of West Nile Virus Infection.

    PubMed

    McGruder, Brenna; Saxena, Vandana; Wang, Tian

    2016-01-01

    West Nile virus (WNV), a mosquito-borne, single positive-stranded RNA virus, has been the leading cause of arboviral encephalitis in the U.S. and other parts of the world over the past decade. Up to 50 % of WNV convalescent patients were reported to have long-term neurological sequelae or chronic kidney diseases. However, there are neither antiviral drugs nor vaccines available for humans. The underlying mechanism of the long-term sequelae is not clearly understood either. Animal models have been an effective tool to investigate viral pathogenesis and host immunity in humans. Here, we will review several commonly used murine models of WNV infection.

  15. Expression and function of S100A8/A9 (calprotectin) in human typhoid fever and the murine Salmonella model.

    PubMed

    De Jong, Hanna K; Achouiti, Ahmed; Koh, Gavin C K W; Parry, Christopher M; Baker, Stephen; Faiz, Mohammed Abul; van Dissel, Jaap T; Vollaard, Albert M; van Leeuwen, Ester M M; Roelofs, Joris J T H; de Vos, Alex F; Roth, Johannes; van der Poll, Tom; Vogl, Thomas; Wiersinga, Willem Joost

    2015-04-01

    Typhoid fever, caused by the Gram-negative bacterium Salmonella enterica serovar Typhi, is a major cause of community-acquired bacteremia and death worldwide. S100A8 (MRP8) and S100A9 (MRP14) form bioactive antimicrobial heterodimers (calprotectin) that can activate Toll-like receptor 4, promoting lethal, endotoxin-induced shock and multi-organ failure. We aimed to characterize the expression and function of S100A8/A9 in patients with typhoid fever and in a murine invasive Salmonella model. S100A8/A9 protein levels were determined in acute phase plasma or feces from 28 Bangladeshi patients, and convalescent phase plasma from 60 Indonesian patients with blood culture or PCR-confirmed typhoid fever, and compared to 98 healthy control subjects. To functionally characterize the role of S100A8/A9, we challenged wildtype (WT) and S100A9-/- mice with S. Typhimurium and determined bacterial loads and inflammation 2- and 5- days post infection. We further assessed the antimicrobial function of recombinant S100A8/A9 on S. Typhimurium and S. Typhi replication in vitro. Typhoid fever patients demonstrated a marked increase of S100A8/A9 in acute phase plasma and feces and this increases correlated with duration of fever prior to admission. S100A8/A9 directly inhibited the growth of S. Typhimurium and S. Typhi in vitro in a dose and time dependent fashion. WT mice inoculated with S. Typhimurium showed increased levels of S100A8/A9 in both the liver and the systemic compartment but S100A9-/- mice were indistinguishable from WT mice with respect to bacterial growth, survival, and inflammatory responses, as determined by cytokine release, histopathology and organ injury. S100A8/A9 is markedly elevated in human typhoid, correlates with duration of fever prior to admission and directly inhibits the growth of S. Typhimurium and S. Typhi in vitro. Despite elevated levels in the murine invasive Salmonella model, S100A8/A9 does not contribute to an effective host response against S

  16. Expression and Function of S100A8/A9 (Calprotectin) in Human Typhoid Fever and the Murine Salmonella Model

    PubMed Central

    De Jong, Hanna K.; Achouiti, Ahmed; Koh, Gavin C. K. W.; Parry, Christopher M.; Baker, Stephen; Faiz, Mohammed Abul; van Dissel, Jaap T.; Vollaard, Albert M.; van Leeuwen, Ester M. M.; Roelofs, Joris J. T. H.; de Vos, Alex F.; Roth, Johannes; van der Poll, Tom; Vogl, Thomas; Wiersinga, Willem Joost

    2015-01-01

    Background Typhoid fever, caused by the Gram-negative bacterium Salmonella enterica serovar Typhi, is a major cause of community-acquired bacteremia and death worldwide. S100A8 (MRP8) and S100A9 (MRP14) form bioactive antimicrobial heterodimers (calprotectin) that can activate Toll-like receptor 4, promoting lethal, endotoxin-induced shock and multi-organ failure. We aimed to characterize the expression and function of S100A8/A9 in patients with typhoid fever and in a murine invasive Salmonella model. Methods and principal findings S100A8/A9 protein levels were determined in acute phase plasma or feces from 28 Bangladeshi patients, and convalescent phase plasma from 60 Indonesian patients with blood culture or PCR-confirmed typhoid fever, and compared to 98 healthy control subjects. To functionally characterize the role of S100A8/A9, we challenged wildtype (WT) and S100A9-/- mice with S. Typhimurium and determined bacterial loads and inflammation 2- and 5- days post infection. We further assessed the antimicrobial function of recombinant S100A8/A9 on S. Typhimurium and S. Typhi replication in vitro. Typhoid fever patients demonstrated a marked increase of S100A8/A9 in acute phase plasma and feces and this increases correlated with duration of fever prior to admission. S100A8/A9 directly inhibited the growth of S. Typhimurium and S. Typhi in vitro in a dose and time dependent fashion. WT mice inoculated with S. Typhimurium showed increased levels of S100A8/A9 in both the liver and the systemic compartment but S100A9-/- mice were indistinguishable from WT mice with respect to bacterial growth, survival, and inflammatory responses, as determined by cytokine release, histopathology and organ injury. Conclusion S100A8/A9 is markedly elevated in human typhoid, correlates with duration of fever prior to admission and directly inhibits the growth of S. Typhimurium and S. Typhi in vitro. Despite elevated levels in the murine invasive Salmonella model, S100A8/A9 does not

  17. Usefulness of the murine model to study the immune response against Histoplasma capsulatum infection.

    PubMed

    Sahaza, Jorge H; Pérez-Torres, Armando; Zenteno, Edgar; Taylor, Maria Lucia

    2014-05-01

    The present paper is an overview of the primary events that are associated with the histoplasmosis immune response in the murine model. Valuable data that have been recorded in the scientific literature have contributed to an improved understanding of the clinical course of this systemic mycosis, which is caused by the dimorphic fungus Histoplasma capsulatum. Data must be analyzed carefully, given that misinterpretation could be generated because most of the available information is based on experimental host-parasite interactions that used inappropriate proceedings, i.e., the non-natural route of infection with the parasitic and virulent fungal yeast-phase, which is not the usual infective phase of the etiological agent of this mycosis. Thus, due to their versatility, complexity, and similarities with humans, several murine models have played a fundamental role in exploring the host-parasite interaction during H. capsulatum infection. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Almorexant promotes sleep and exacerbates cataplexy in a murine model of narcolepsy.

    PubMed

    Black, Sarah Wurts; Morairty, Stephen R; Fisher, Simon P; Chen, Tsui-Ming; Warrier, Deepti R; Kilduff, Thomas S

    2013-03-01

    Humans with narcolepsy and orexin/ataxin-3 transgenic (TG) mice exhibit extensive, but incomplete, degeneration of hypo-cretin (Hcrt) neurons. Partial Hcrt cell loss also occurs in Parkinson disease and other neurologic conditions. Whether Hcrt antagonists such as almorexant (ALM) can exert an effect on the Hcrt that remains after Hcrt neurodegeneration has not yet been determined. The current study was designed to evaluate the hypnotic and cataplexy-inducing efficacy of a Hcrt antagonist in an animal model with low Hcrt tone and compare the ALM efficacy profile in the disease model to that produced in wild-type (WT) control animals. Counterbalanced crossover study. Home cage. Nine TG mice and 10 WT mice. ALM (30, 100, 300 mg/kg), vehicle and positive control injections, dark/active phase onset. During the 12-h dark period after dosing, ALM exacerbated cataplexy in TG mice and increased nonrapid eye movement sleep with heightened sleep/wake fragmentation in both genotypes. ALM showed greater hypnotic potency in WT mice than in TG mice. The 100 mg/kg dose conferred maximal promotion of cataplexy in TG mice and maximal promotion of REM sleep in WT mice. In TG mice, ALM (30 mg/ kg) paradoxically induced a transient increase in active wakefulness. Core body temperature (Tb) decreased after acute Hcrt receptor blockade, but the reduction in Tb that normally accompanies the wake-to-sleep transition was blunted in TG mice. These complex dose- and genotype-dependent interactions underscore the importance of effector mechanisms downstream from Hcrt receptors that regulate arousal state. Cataplexy promotion by ALM warrants cautious use of Hcrt antagonists in patient populations with Hcrt neurodegeneration, but may also facilitate the discovery of anticataplectic medications. Black SW; Morairty SR; Fisher SP; Chen TM; Warrier DR; Kilduff TS. Almorexant promotes sleep and exacerbates cataplexy in a murine model of narcolepsy. SLEEP 2013;36(3):325-336.

  19. OVA-induced airway hyperresponsiveness alters murine heart rate variability and body temperature.

    PubMed

    Domnik, N J; Seaborn, G; Vincent, S G; Akl, S G; Redfearn, D P; Fisher, J T

    2012-01-01

    Altered autonomic (ANS) tone in chronic respiratory disease is implicated as a factor in cardiovascular co-morbidities, yet no studies address its impact on cardiovascular function in the presence of murine allergic airway (AW) hyperresponsiveness (AHR). Since antigen (Ag)-induced AHR is used to model allergic asthma (in which ANS alterations have been reported), we performed a pilot study to assess measurement feasibility of, as well as the impact of allergic sensitization to ovalbumin (OVA) on, heart rate variability (HRV) in a murine model. Heart rate (HR), body temperature (T(B)), and time- and frequency-domain HRV analyses, a reflection of ANS control, were obtained in chronically instrumented mice (telemetry) before, during and for 22 h after OVA or saline aerosolization in sensitized (OVA) or Alum adjuvant control exposed animals. OVA mice diverged significantly from Alum mice with respect to change in HR during aerosol challenge (P < 0.001, Two-Way ANOVA; HR max change Ctrl = +80 ± 10 bpm vs. OVA = +1 ± 23 bpm, mean ± SEM), and displayed elevated HR during the subsequent dark cycle (P = 0.006). Sensitization decreased the T(B) during aerosol challenge (P < 0.001). Sensitized mice had decreased HRV prior to challenge (SDNN: P = 0.038; Low frequency (LF) power: P = 0.021; Low/high Frequency (HF) power: P = 0.042), and increased HRV during Ag challenge (RMSSD: P = 0.047; pNN6: P = 0.039). Sensitized mice displayed decreased HRV subsequent to OVA challenge, primarily in the dark cycle (RMSSD: P = 0.018; pNN6: P ≤ 0.001; LF: P ≤ 0.001; HF: P = 0.040; LF/HF: P ≤ 0.001). We conclude that implanted telemetry technology is an effective method to assess the ANS impact of allergic sensitization. Preliminary results show mild sensitization is associated with reduced HRV and a suppression of the acute T(B)-response to OVA challenge. This approach to assess altered ANS control in the acute OVA model may also be beneficial in chronic AHR models.

  20. A lethal murine infection model for dengue virus 3 in AG129 mice deficient in type I and II interferon receptors leads to systemic disease.

    PubMed

    Sarathy, Vanessa V; White, Mellodee; Li, Li; Gorder, Summer R; Pyles, Richard B; Campbell, Gerald A; Milligan, Gregg N; Bourne, Nigel; Barrett, Alan D T

    2015-01-15

    The mosquito-borne disease dengue (DEN) is caused by four serologically and genetically related viruses, termed DENV-1 to DENV-4. Infection with one DENV usually leads to acute illness and results in lifelong homotypic immunity, but individuals remain susceptible to infection by the other three DENVs. The lack of a small-animal model that mimics systemic DEN disease without neurovirulence has been an obstacle, but DENV-2 models that resemble human disease have been recently developed in AG129 mice (deficient in interferon alpha/beta and interferon gamma receptor signaling). However, comparable DENV-1, -3, and -4 models have not been developed. We utilized a non-mouse-adapted DENV-3 Thai human isolate to develop a lethal infection model in AG129 mice. Intraperitoneal inoculation of six to eight-week-old animals with strain C0360/94 led to rapid, fatal disease. Lethal C0360/94 infection resulted in physical signs of illness, high viral loads in the spleen, liver, and large intestine, histological changes in the liver and spleen tissues, and increased serum cytokine levels. Importantly, the animals developed vascular leakage, thrombocytopenia, and leukopenia. Overall, we have developed a lethal DENV-3 murine infection model, with no evidence of neurotropic disease based on a non-mouse-adapted human isolate, which can be used to investigate DEN pathogenesis and to evaluate candidate vaccines and antivirals. This suggests that murine models utilizing non-mouse-adapted isolates can be obtained for all four DENVs. Dengue (DEN) is a mosquito-borne disease caused by four DENV serotypes (DENV-1, -2, -3, and -4) that have no treatments or vaccines. Primary infection with one DENV usually leads to acute illness followed by lifelong homotypic immunity, but susceptibility to infection by the other three DENVs remains. Therefore, a vaccine needs to protect from all four DENVs simultaneously. To date a suitable animal model to mimic systemic human illness exists only for DENV-2 in

  1. Human mesenchymal stem cells suppress chronic airway inflammation in the murine ovalbumin asthma model

    PubMed Central

    Koloze, Mary; Lennon, Donald P.; Zuchowski, Brandon; Yang, Sung Eun; Caplan, Arnold I.

    2010-01-01

    Allogeneic human mesenchymal stem cells (hMSCs) introduced intravenously can have profound anti-inflammatory activity resulting in suppression of graft vs. host disease as well as regenerative events in the case of stroke, infarct, spinal cord injury, meniscus regeneration, tendinitis, acute renal failure, and heart disease in human and animal models of these diseases. hMSCs produce bioactive factors that provide molecular cuing for: 1) immunosuppression of T cells; 2) antiscarring; 3) angiogenesis; 4) antiapoptosis; and 5) regeneration (i.e., mitotic for host-derived progenitor cells). Studies have shown that hMSCs have profound effects on the immune system and are well-tolerated and therapeutically active in immunocompetent rodent models of multiple sclerosis and stroke. Furthermore, intravenous administration of MSCs results in pulmonary localization. Asthma is a major debilitating pulmonary disease that impacts in excess of 150 million people in the world with uncontrolled asthma potentially leading to death. In addition, the socioeconomic impact of asthma-associated illnesses at the pediatric and adult level are in the millions of dollars in healthcare costs and lost days of work. hMSCs may provide a viable multiaction therapeutic for this inflammatory lung disease by secreting bioactive factors or directing cellular activity. Our studies show the effectiveness and specificity of the hMSCs on decreasing chronic airway inflammation associated with the murine ovalbumin model of asthma. In addition, the results from these studies verify the in vivo immunoeffectiveness of hMSCs in rodents and support the potential therapeutic use of hMSCs for the treatment of airway inflammation associated with chronic asthma. PMID:20817776

  2. Gender and dose dependent ovalbumin induced hypersensitivity responses in murine model of food allergy

    USDA-ARS?s Scientific Manuscript database

    While federal regulations mandate the labeling of major food allergens, allowable food allergen thresholds have yet to be determined. Therefore the aim of this project was to identify the lowest egg allergen ovalbumin (OVA) dose causing hypersensitization using a validated murine model. Mice were or...

  3. Gender and dose dependent ovalbumin induced hypersensitivity responses in murine model of food allergy

    USDA-ARS?s Scientific Manuscript database

    While federal regulations mandate the labeling of major food allergens, allowable food allergen thresholds have yet to be determined. Therefore the aim of this project was to identify the lowest egg allergen ovalbumin (OVA) dose causing hypersensitization using a validated murine model. Mice were o...

  4. Oxaliplatin but Not Irinotecan Impairs Posthepatectomy Liver Regeneration in a Murine Model

    PubMed Central

    Soriano, Perry A.; Liu, Nian; Castillo, Erick; Foster, Brock; Artinyan, Avo; Kim, Joseph; Huang, Wendong; Wagman, Lawrence D.

    2011-01-01

    Introduction. We examined the murine hepatectomy model of liver regeneration (LR) in the setting of neoadjuvant chemotherapy. Methods. C57BL/6 mice were randomized to receive neoadjuvant intraperitoneal (IP) injections of a control, oxaliplatin (15 mg/kg), or irinotecan (100 mg/Kg or 250 mg/Kg) solution. Hepatectomy (70%) was performed 14 days after the final IP treatment. Animals were sacrificed at postoperative day (D) 0, 1, 2, 3, and 7. Liver remnants and serum were collected for analysis. T-tests for independent samples were used for statistical comparisons. Results. For oxaliplatin, percent LR did not differ at D1 or D2 but was significantly less at D3 (89.0% versus 70.0%, P = 0.048) with no difference on D7 (P = 0.21). Irinotecan-treated mice at both dose levels (100 mg/Kg and 250 mg/Kg) showed no significant differences in LR. BrdU incorporation was significantly decreased in oxaliplatin-treated animals (D1,2,3). Conclusions. Neoadjuvant oxaliplatin but not irinotecan impairs early LR in a posthepatectomy murine model which correlates with decreased DNA synthesis. PMID:22164336

  5. Kidney dendritic cells in acute and chronic renal disease.

    PubMed

    Hochheiser, Katharina; Tittel, André; Kurts, Christian

    2011-06-01

    Dendritic cells are not only the master regulators of adaptive immunity, but also participate profoundly in innate immune responses. Much has been learned about their basic immunological functions and their roles in various diseases. Comparatively little is still known about their role in renal disease, despite their obvious potential to affect immune responses in the kidney, and immune responses that are directed against renal components. Kidney dendritic cells form an abundant network in the renal tubulointerstitium and constantly survey the environment for signs of injury or infection, in order to alert the immune system to the need to initiate defensive action. Recent studies have identified a role for dendritic cells in several murine models of acute renal injury and chronic nephritis. Here we summarize the current knowledge on the role of kidney dendritic cells that has been obtained from the study of murine models of renal disease. © 2010 The Authors. Journal compilation © 2010 Blackwell Publishing Ltd.

  6. Effect of Erythromycin on Chronic Respiratory Infection Caused by Pseudomonas aeruginosa with Biofilm Formation in an Experimental Murine Model

    PubMed Central

    Nagata, Towako; Mukae, Hiroshi; Kadota, Junichi; Hayashi, Tomayoshi; Fujii, Takeshi; Kuroki, Misuzu; Shirai, Ryo; Yanagihara, Katsunori; Tomono, Kazunori; Koji, Takehiko; Kohno, Shigeru

    2004-01-01

    Diffuse panbronchiolitis (DPB) is a chronic lower respiratory tract infection commonly associated with persistent late-stage Pseudomonas aeruginosa infection. However, low-dose long-term therapy with certain macrolides is effective in most patients with DPB. The present study was designed to examine the effects of long-term erythromycin (ERY) therapy by using our established murine model of chronic respiratory P. aeruginosa infection. ERY or saline was administered from day 80 after intubation with a P. aeruginosa-precoated tube for the subsequent 10, 20, 40, and 80 days. Bacteriologic and histologic analyses of the murine lungs and electron microscopy of the intubated tube were performed. In the murine model, treatment with ERY for 80 days significantly reduced the number of viable P. aeruginosa organisms in the lungs (P < 0.05). The biofilm formed in situ by P. aeruginosa on the inner wall of the inoculation tube placed into the murine bronchus became significantly thinner after 80 days of ERY treatment. We conclude that the clinical efficacy of macrolides in DPB may be due at least in part to the reduction in P. aeruginosa biofilm formation. PMID:15155229

  7. Oroxylin A Inhibits Allergic Airway Inflammation in Ovalbumin (OVA)-Induced Asthma Murine Model.

    PubMed

    Zhou, De-Gang; Diao, Bao-Zhong; Zhou, Wen; Feng, Jia-Long

    2016-04-01

    Oroxylin A, a natural flavonoid isolated from the medicinal herb Scutellaria baicalensis Georgi, has been reported to have anti-inflammatory property. In this study, we aimed to investigate the protective effects and mechanism of oroxylin A on allergic inflammation in OVA-induced asthma murine model. BABL/c mice were sensitized and airway-challenged with OVA to induce asthma. Oroxylin A (15, 30, and 60 mg/kg) was administered by oral gavage 1 h before the OVA treatment on day 21 to 23. The results showed that oroxylin A attenuated OVA-induced lung histopathologic changes, airway hyperresponsiveness, and the number of inflammatory cells. Oroxylin A also inhibited the levels of IL-4, IL-5, IL-13, and OVA-specific IgE in BALF. Furthermore, oroxylin A significantly inhibited OVA-induced NF-κB activation. In conclusion, these results suggested that oroxylin A inhibited airway inflammation in OVA-induced asthma murine model by inhibiting NF-κB activation. These results suggested that oroxylin A was a potential therapeutic drug for treating allergic asthma.

  8. Anti-Inflammatory Effects of Rebamipide Eyedrop Administration on Ocular Lesions in a Murine Model of Primary Sjögren's Syndrome

    PubMed Central

    Arakaki, Rieko; Eguchi, Hiroshi; Yamada, Akiko; Kudo, Yasusei; Iwasa, Akihiko; Enkhmaa, Tserennadmid; Hotta, Fumika; Mitamura-Aizawa, Sayaka; Mitamura, Yoshinori; Hayashi, Yoshio; Ishimaru, Naozumi

    2014-01-01

    Background Topical therapy is effective for dry eye, and its prolonged effects should help in maintaining the quality of life of patients with dry eye. We previously reported that the oral administration of rebamipide (Reb), a mucosal protective agent, had a potent therapeutic effect on autoimmune lesions in a murine model of Sjögren's syndrome (SS). However, the effects of topical treatment with Reb eyedrops on the ocular lesions in the murine model of SS are unknown. Methods and Finding Reb eyedrops were administered to the murine model of SS aged 4–8 weeks four times daily. Inflammatory lesions of the extraorbital and intraorbital lacrimal glands and Harderian gland tissues were histologically evaluated. The direct effects of Reb on the lacrimal glands were analyzed using cultured lacrimal gland cells. Tear secretions of Reb-treated mice were significantly increased compared with those of untreated mice. In addition to the therapeutic effect of Reb treatment on keratoconjunctivitis, severe inflammatory lesions of intraorbital lacrimal gland tissues in this model of SS were resolved. The mRNA expression levels of IL-10 and mucin 5Ac in conjunctival tissues from Reb-treated mice was significantly increased compared with those of control mice. Moreover, lactoferrin production from lacrimal gland cells was restored by Reb treatment. Conclusion Topical Reb administration had an anti-inflammatory effect on the ocular autoimmune lesions in the murine model of SS and a protective effect on the ocular surfaces. PMID:24866156

  9. Characteristics of scrub typhus, murine typhus, and Q fever among elderly patients: Prolonged prothrombin time as a predictor for severity.

    PubMed

    Chang, Ko; Lee, Nan-Yao; Ko, Wen-Chien; Lin, Wei-Ru; Chen, Yen-Hsu; Tsai, Jih-Jin; Chen, Tun-Chieh; Lin, Chun-Yu; Chang, Ya-Ting; Lu, Po-Liang

    2017-06-22

    The clinical manifestations of scrub typhus, murine typhus and acute Q fever in the elderly are not clear. We conducted a retrospective study to identify the characteristics of the elderly aged ≥65 years with a comparison group aged 18-64 years among patients with scrub typhus, murine typhus, or acute Q fever who were serologically confirmed at three hospitals in Taiwan during 2002-2011. Among 441 cases, including 187 cases of scrub typhus, 166 acute Q fever, and 88 murine typhus, 68 (15.4%) cases were elderly patients. The elderly had a higher severe complication rate (10.3% vs. 3.5%, p = 0.022), but did not have a significantly higher mortality rate (1.47% vs. 0.54%, p = 0.396). Compared with those without severe complications, we found the elderly (p = 0.022), dyspnea (p = 0.006), less relative bradycardia (p = 0.004), less febrile illness (p = 0.004), prolonged prothrombin time (PT) (p = 0.002), higher levels of initial C-reactive protein (p = 0.039), blood leukocyte counts (p = 0.01), and lower platelet counts (p = 0.012) are significantly associated with severe complications. Only prolonged prothrombin time was associated with severe complications in multivariate analysis (p = 0.018, CI 95% 0.01-0.66). Among clinical symptoms and laboratory data, multivariate analysis revealed chills was less frequently occurred in the elderly (p = 0.012, 95% confidence interval [CI]: 1.33-9.99). The elderly cases with scrub typhus, murine typhus, or acute Q fever would be more likely to have severe complications, for which prothrombin time prolongation is an important predictor for severe complications. Copyright © 2017. Published by Elsevier B.V.

  10. Fetal wound healing using a genetically modified murine model: the contribution of P-selectin

    USDA-ARS?s Scientific Manuscript database

    During early gestation, fetal wounds heal with paucity of inflammation and absent scar formation. P-selectin is an adhesion molecule that is important for leukocyte recruitment to injury sites. We used a murine fetal wound healing model to study the specific contribution of P-selectin to scarless wo...

  11. Feasibility and scalability of spring parameters in distraction enterogenesis in a murine model.

    PubMed

    Huynh, Nhan; Dubrovsky, Genia; Rouch, Joshua D; Scott, Andrew; Stelzner, Matthias; Shekherdimian, Shant; Dunn, James C Y

    2017-07-01

    Distraction enterogenesis has been investigated as a novel treatment for short bowel syndrome (SBS). With variable intestinal sizes, it is critical to determine safe, translatable spring characteristics in differently sized animal models before clinical use. Nitinol springs have been shown to lengthen intestines in rats and pigs. Here, we show spring-mediated intestinal lengthening is scalable and feasible in a murine model. A 10-mm nitinol spring was compressed to 3 mm and placed in a 5-mm intestinal segment isolated from continuity in mice. A noncompressed spring placed in a similar fashion served as a control. Spring parameters were proportionally extrapolated from previous spring parameters to accommodate the smaller size of murine intestines. After 2-3 wk, the intestinal segments were examined for size and histology. Experimental group with spring constants, k = 0.2-1.4 N/m, showed intestinal lengthening from 5.0 ± 0.6 mm to 9.5 ± 0.8 mm (P < 0.0001), whereas control segments lengthened from 5.3 ± 0.5 mm to 6.4 ± 1.0 mm (P < 0.02). Diameter increased similarly in both groups. Isolated segment perforation was noted when k ≥ 0.8 N/m. Histologically, lengthened segments had increased muscularis thickness and crypt depth in comparison to normal intestine. Nitinol springs with k ≤ 0.4 N/m can safely yield nearly 2-fold distraction enterogenesis in length and diameter in a scalable mouse model. Not only does this study derive the safe ranges and translatable spring characteristics in a scalable murine model for patients with short bowel syndrome, it also demonstrates the feasibility of spring-mediated intestinal lengthening in a mouse, which can be used to study underlying mechanisms in the future. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Inhibition of soluble epoxide hydrolase contributes to the anti-inflammatory effect of antimicrobial triclocarban in a murine model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Junyan; Qiu Hong; Morisseau, Christophe

    The increasing use of the antimicrobial triclocarban (TCC) in personal care products (PCPs) has resulted in concern regarding environmental pollution. TCC is a potent inhibitor of soluble epoxide hydrolase (sEH). Inhibitors of sEH (sEHIs) are anti-inflammatory, anti-hypertensive and cardio-protective in multiple animal models. However, the in vivo effects anticipated from a sEHI have not been reported for TCC. Here we demonstrated the anti-inflammatory effects in vivo of TCC in a murine model. TCC was employed in a lipopolysaccharide (LPS)-challenged murine model. Systolic blood pressure, plasma levels of several inflammatory cytokines and chemokine, and metabolomic profile of plasma oxylipins were determined.more » TCC significantly reversed LPS-induced morbid hypotension in a time-dependent manner. TCC significantly repressed the increased release of inflammatory cytokines and chemokine caused by LPS. Furthermore, TCC significantly shifted the oxylipin profile in vivo in a time-dependent manner towards resolution of inflammation as expected from a sEHI. These results demonstrated that at the doses used TCC is anti-inflammatory in the murine model. This study suggests that TCC may provide some benefits in humans in addition to its antimicrobial activities due to its potent inhibition of sEH. It may be a promising starting point for developing new low volume high value applications of TCC. However these biological effects also caution against the general over use of TCC in PCPs. - Graphical abstract: Display Omitted Research Highlights: > Anti-microbial triclocarban (TCC) is anti-inflammatory in a murine model. > TCC significantly shifted the oxylipin profile in vivo as expected from a sEHI. > TCC significantly reversed LPS-induced morbid hypotension in a time-dependent manner. > TCC significantly repressed LPS-induced increased release of inflammatory cytokines.« less

  13. Ginseng ameliorates chronic histopathologic changes in a murine model of asthma.

    PubMed

    Babayigit, Arzu; Olmez, Duygu; Karaman, Ozkan; Bagriyanik, H Alper; Yilmaz, Osman; Kivcak, Bijen; Erbil, Guven; Uzuner, Nevin

    2008-01-01

    Currently, asthma therapies are effective in reducing inflammation but airway remodeling is poorly responsive to these agents. New therapeutic options that have fewer side effects and reverse chronic changes in the lungs are essential. This study aimed to determine the efficacy of oral administration of ginseng on lung histopathology in a murine model of chronic asthma. BALB/c mice were divided into four groups: control, placebo, ginseng, and dexamethasone. All mice except those in the control group were sensitized and challenged with ovalbumin. Then, mice in the ginseng group were given 2 gr/kg per day of ginseng and mice in the dexamethasone group received 1 mg/kg per day of dexamethasone via orogastic gavage once daily for 1 week. Lung histopathology was evaluated by using light and electron microscopy in all groups. All of the chronic changes of airways in the ginseng group were significantly ameliorated when compared with the placebo group. When compared with the dexamethasone group, the ginseng group had significantly lower numbers of mast cell count. Thicknesses of basement membrane, epithelium, and subepithelial smooth muscle were not statistically different between the ginseng and dexamethasone groups. Goblet cell numbers were much more reduced in the dexamethasone group. Ginseng is effective in resolving the established chronic histopathological changes of the lungs in the murine model of asthma.

  14. Whole exome sequencing of an asbestos-induced wild-type murine model of malignant mesothelioma.

    PubMed

    Sneddon, Sophie; Patch, Ann-Marie; Dick, Ian M; Kazakoff, Stephen; Pearson, John V; Waddell, Nicola; Allcock, Richard J N; Holt, Robert A; Robinson, Bruce W S; Creaney, Jenette

    2017-06-02

    Malignant mesothelioma (MM) is an aggressive cancer of the pleural and peritoneal cavities caused by exposure to asbestos. Asbestos-induced mesotheliomas in wild-type mice have been used extensively as a preclinical model because they are phenotypically identical to their human counterpart. However, it is not known if the genetic lesions in these mice tumours are similar to in the human disease, a prerequisite for any new preclinical studies that target genetic abnormalities. We performed whole exome sequencing of fifteen asbestos-induced murine MM tumour cell lines from BALB/c, CBA and C57BL/6 mouse strains and compared the somatic mutations and copy number variations with those recurrently reported in human MM. We then catalogued and characterised the mutational landscape of the wild-type murine MM tumours. Quantitative RT-PCR was used to interrogate the expression of key MM genes of interest in the mRNA. Consistent with human MM tumours, we identified homozygous loss of the tumour suppressor Cdkn2a in 14/15 tumours. One tumour retained the first exon of both of the p16INK4a and p19ARF isoforms though this tumour also contained genetic amplification of Myc resulting in increased expression of the c-Myc proto-oncogene in the mRNA. There were no chromosomal losses in either the Bap1 or Nf2 regions. One tumour harbored homozygous loss of Trp53 in the DNA. Mutation rates were similar in tumours generated in the CBA and C57BL/6 strains when compared to human MM. Interestingly, all BALB/c tumour lines displayed high mutational loads, consistent with the known mutator phenotype of the host strain. The Wnt, MAPK and Jak-STAT signaling pathways were found to be the most commonly affected biological pathways. Mutations and copy number deletions also occurred in the Hedgehog and Hippo pathways. These data suggest that in the wild-type murine model asbestos causes mesotheliomas in a similar way to in human MM. This further supports the notion that the murine model of MM

  15. Adapting Human Videofluoroscopic Swallow Study Methods to Detect and Characterize Dysphagia in Murine Disease Models

    PubMed Central

    Lever, Teresa E.; Braun, Sabrina M.; Brooks, Ryan T.; Harris, Rebecca A.; Littrell, Loren L.; Neff, Ryan M.; Hinkel, Cameron J.; Allen, Mitchell J.; Ulsas, Mollie A.

    2015-01-01

    This study adapted human videofluoroscopic swallowing study (VFSS) methods for use with murine disease models for the purpose of facilitating translational dysphagia research. Successful outcomes are dependent upon three critical components: test chambers that permit self-feeding while standing unrestrained in a confined space, recipes that mask the aversive taste/odor of commercially-available oral contrast agents, and a step-by-step test protocol that permits quantification of swallow physiology. Elimination of one or more of these components will have a detrimental impact on the study results. Moreover, the energy level capability of the fluoroscopy system will determine which swallow parameters can be investigated. Most research centers have high energy fluoroscopes designed for use with people and larger animals, which results in exceptionally poor image quality when testing mice and other small rodents. Despite this limitation, we have identified seven VFSS parameters that are consistently quantifiable in mice when using a high energy fluoroscope in combination with the new murine VFSS protocol. We recently obtained a low energy fluoroscopy system with exceptionally high imaging resolution and magnification capabilities that was designed for use with mice and other small rodents. Preliminary work using this new system, in combination with the new murine VFSS protocol, has identified 13 swallow parameters that are consistently quantifiable in mice, which is nearly double the number obtained using conventional (i.e., high energy) fluoroscopes. Identification of additional swallow parameters is expected as we optimize the capabilities of this new system. Results thus far demonstrate the utility of using a low energy fluoroscopy system to detect and quantify subtle changes in swallow physiology that may otherwise be overlooked when using high energy fluoroscopes to investigate murine disease models. PMID:25866882

  16. Survival and characteristics of murine leukaemic and normal stem cells after hyperthermia: a murine model for human bone marrow purging.

    PubMed

    Gidáli, J; Szamosvölgyi, S; Fehér, I; Kovács, P

    1990-01-01

    The effect of hyperthermia in vitro on the survival and leukaemogenic effectiveness of WEHI 3-B cells and on the survival and transplantation efficiency of bone marrow cells was compared in a murine model system. Normal murine clonogenic haemopoietic cells (day 9 CFU-S and CFU-GM) proved to be significantly less sensitive to 42.5 degrees C hyperthermia (Do values: 54.3 and 41.1 min, respectively) than leukaemic clonogenic cells (CFU-L) derived from suspension culture or from bone marrow of leukaemic mice (Do: 17.8 min). Exposure for 120 min to 42.5 degrees C reduced the surviving fraction of CFU-L to 0.002 and that of CFU-S to 0.2. If comparable graft sizes were transplanted from normal or heat exposed bone marrow, 60-day survival of supralethally irradiated mice was similar. Surviving WEHI 3-B cells were capable of inducing leukaemia in vivo. The two log difference in the surviving fraction of CFU-L and CFU-S after 120 min exposure to 42.5 degrees C suggests that hyperthermia ex vivo may be a suitable purging method for autologous bone marrow transplantation.

  17. Anti-inflammatory effect of a Nuphar lutea partially purified leaf extract in murine models of septic shock.

    PubMed

    Ozer, J; Levi, T; Golan-Goldhirsh, A; Gopas, J

    2015-02-23

    Various plant organs of Nuphar lutea (L.) SM. (Nymphaeaceae) are used in traditional medicine for the treatment of arthritis, fever, aches, pains and inflammation. The main purpose of this study was to determine the anti-inflammatory effect of Nuphar lutea leaf extract (NUP) in two septic shock models: (1) Survival of mice challenged with a lethal dose of LPS, determination of pro-inflammatory and anti-inflammatory cytokines in serum, as well as in peritoneal macrophages in cell culture. (2) The effect of NUP in a murine model of fecal-induced peritonitis. NUP pre-treatment partially protected mice in two models of acute septic shock. We concluded that NUP is anti-inflammatory by inhibiting the NF-κB pathway, modulating cytokine production and ERK phosphorylation. A significant average survival rate (60%) of LPS lethally-challenged mice was achieved by pre-treatment with NUP. In addition, NUP pre-treatment reduced nuclear NF-κB translocation in peritoneal macrophages. The production of pro-inflammatory cytokines, TNF-α, IL-6 and IL-12, in the sera of LPS-treated mice or in the supernatants of peritoneal macrophages stimulated with LPS for 2-6 h was also decreased by NUP. Pre-treatment with NUP caused a significant increase in the anti-inflammatory cytokine IL-10. The NUP pre-treatment reduced and delayed mortality in mice with fecal-induced peritonitis. Our studies also revealed that NUP pre-treatment induced a dose-dependent phosphorylation of ERK in peritoneal macrophages. Since most of the reports about the anti-inflammatory effect of Nuphar lutea refer to rhizome and root powder and extracts, it is important to clarify the effectiveness of leaf extract as a source for such activity. NUP pre-treatment partially protected mice in two models of acute septic shock. We concluded that NUP is anti-inflammatory by inhibiting the NF-κB pathway, modulating cytokine production and ERK phosphorylation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Ochronosis in a murine model of alkaptonuria is synonymous to that in the human condition

    PubMed Central

    Taylor, A.M.; Preston, A.J.; Paulk, N.K.; Sutherland, H.; Keenan, C.M.; Wilson, P.J.M.; Wlodarski, B.; Grompe, M.; Ranganath, L.R.; Gallagher, J.A.; Jarvis, J.C.

    2012-01-01

    Objective Alkaptonuria (AKU) is a rare genetic disease which results in severe early onset osteoarthropathy. It has recently been shown that the subchondral interface is of key significance in disease pathogenesis. Human surgical tissues are often beyond this initial stage and there is no published murine model of pathogenesis, to study the natural history of the disease. The murine genotype exists but it has been reported not to demonstrate ochronotic osteoarthropathy consistent with the human disease. Recent anecdotal evidence of macroscopic renal ochronosis in a mouse model of tyrosinaemia led us to perform histological analysis of tissues of these mice that are known to be affected in human AKU. Design The homogentisate 1,2-dioxygenase Hgd+/−Fah−/− mouse can model either hereditary tyrosinaemia type I (HT1) or AKU depending on selection conditions. Mice having undergone Hgd reversion were sacrificed at various time points, and their tissues taken for histological analysis. Sections were stained with haematoxylin eosin (H&E) and Schmorl’s reagent. Results Early time point observations at 8 months showed no sign of macroscopic ochronosis of tissues. Macroscopic examination at 13 months revealed ochronosis of the kidneys. Microscopic analysis of the kidneys revealed large pigmented nodules displaying distinct ochre colouration. Close microscopic examination of the distal femur and proximal fibula at the subchondral junctions revealed the presence of numerous pigmented chondrocytes. Conclusions Here we present the first data showing ochronosis of tissues in a murine model of AKU. These preliminary histological observations provide a stimulus for further studies into the natural history of the disease to provide a greater understanding of this class of arthropathy. PMID:22542924

  19. The second case of a young man with L-arginine-induced acute pancreatitis.

    PubMed

    Binet, Quentin; Dufour, Inès; Agneessens, Emmanuel; Debongnie, Jean-Claude; Aouattah, Tarik; Covas, Angélique; Coche, Jean-Charles; De Koninck, Xavier

    2018-04-21

    Dietary supplementation of arginine has been used by numerous world-class athletes and professional bodybuilders over the past 30 years. L-Arginine indeed enhances muscular power and general performance via maintaining ATP level. However, L-arginine is also known to induce acute pancreatitis in murine models. We report the case of young man presenting with upper abdominal pain and increased serum lipase levels. Contrast-enhanced computed tomography confirms a mild acute pancreatitis. Common etiologies have been ruled out and toxicological anamnestic screening reveals the intake of protein powder. This is, to the best of our knowledge, the second case in human of arginine-induced acute pancreatitis. This case report suggests that every patient presenting with acute pancreatitis without obvious etiology should be evaluated for the intake of toxics other than alcohol, including L-arginine.

  20. The SRL peptide of Rhesus Rotavirus VP4 protein governs cholangiocyte infection and the murine model of biliary atresia

    PubMed Central

    Mohanty, Sujit K.; Donnelly, Bryan; Lobeck, Inna; Walther, Ashley; Dupree, Phylicia; Coots, Abigail; Meller, Jaroslaw; McNeal, Monica; Sestak, Karol; Tiao, Greg

    2016-01-01

    Biliary atresia (BA) is a neonatal obstructive cholangiopathy which progresses to end stage liver disease, often requiring transplantation. The murine model of BA, employing rhesus rotavirus (RRV), parallels human disease and has been used to elucidate mechanistic aspects of a virus induced biliary cholangiopathy. We previously reported that RRV VP4 gene plays an integral role in activating the immune system and induction of BA. Utilizing rotavirus binding and blocking assays, this study elucidated how RRV VP4 protein governs cholangiocyte susceptibility to infection both in vitro and in vivo in the murine model of BA. We identified the amino acid sequence on VP4 and its cholangiocyte binding protein, finding that the sequence is specific to those rotavirus strains which cause an obstructive cholangiopathy. Pretreatment of murine and human cholangiocytes with this VP4 derived peptide (TRTRVSRLY), significantly reduced RRV’s ability to bind and infect the cells. However, the peptide did not block cholangiocyte binding of TUCH and Ro1845, strains which do not induce murine BA. The SRL sequence within TRTRVSRLY is required for cholangiocyte binding and viral replication. The cholangiocyte membrane protein bound by SRL was found to be Hsc70. Inhibition of Hsc70 by siRNAs reduced RRV’s ability to infect cholangiocytes. This virus-cholangiocyte interaction is also seen in vivo in the murine model of BA, where inoculation of mice with TRTRVSRLY peptide significantly reduced symptoms and mortality in RRV-injected mice. Conclusion The tri-peptide SRL on RRV VP4 binds to the cholangiocyte membrane protein Hsc70 defining a novel binding site governing VP4 attachment. Investigations are underway to determine the cellular response following this interaction to understand how it contributes to the pathogenesis of BA. PMID:27859498

  1. Tenascin-C Prevents Articular Cartilage Degeneration in Murine Osteoarthritis Models.

    PubMed

    Matsui, Yuriyo; Hasegawa, Masahiro; Iino, Takahiro; Imanaka-Yoshida, Kyoko; Yoshida, Toshimichi; Sudo, Akihiro

    2018-01-01

    Objective The objective of this study was to determine whether intra-articular injections of tenascin-C (TNC) could prevent cartilage damage in murine models of osteoarthritis (OA). Design Fluorescently labeled TNC was injected into knee joints and its distribution was examined at 1 day, 4 days, 1 week, 2 weeks, and 4 weeks postinjection. To investigate the effects of TNC on cartilage degeneration after surgery to knee joints, articular spaces were filled with 100 μg/mL (group I), 10 μg/mL (group II) of TNC solution, or control (group III). TNC solution of 10 μg/mL was additionally injected twice after 3 weeks (group IV) or weekly after 1 week, 2 weeks, and 3 weeks (group V). Joint tissues were histologically assessed using the Mankin score and the modified Chambers system at 2 to 8 weeks after surgery. Results Exogenous TNC was maintained in the cartilage and synovium for 1 week after administration. Histological scores in groups I and II were better than scores in group III at 4 and 6 weeks, but progressive cartilage damage was seen in all groups 8 weeks postoperatively. Sequential TNC injections (groups IV and V) showed significantly better Mankin score than single injection (group II) at 8 weeks. Conclusion TNC administered exogenously remained in the cartilage of knee joints for 1 week, and could decelerate articular cartilage degeneration in murine models of OA. We also showed that sequential administration of TNC was more effective than a single injection. TNC could be an important molecule for prevention of articular cartilage damage.

  2. Biodefense-driven murine model of pneumonic melioidosis.

    PubMed

    Jeddeloh, J A; Fritz, D L; Waag, D M; Hartings, J M; Andrews, G P

    2003-01-01

    A whole-body mouse model of pneumonic melioidosis was established for future evaluation of biodefense vaccine candidates. The aerosol 50% lethal doses of Burkholderia pseudomallei strain 1026b for BALB/c and C57BL/6 mice and the times to death, dissemination in organs, and tissue loads after exposure of the mice to low- and high-dose aerosols are reported. In addition, rpsL mutant backgrounds were attenuated in this acute model of disease.

  3. Early Molecular Events in Murine Gastric Epithelial Cells Mediated by Helicobacter pylori CagA.

    PubMed

    Banerjee, Aditi; Basu, Malini; Blanchard, Thomas G; Chintalacharuvu, Subba R; Guang, Wei; Lillehoj, Erik P; Czinn, Steven J

    2016-10-01

    Murine models of Helicobacter pylori infection are used to study host-pathogen interactions, but lack of severe gastritis in this model has limited its usefulness in studying pathogenesis. We compared the murine gastric epithelial cell line GSM06 to the human gastric epithelial AGS cell line to determine whether similar events occur when cultured with H. pylori. The lysates of cells infected with H. pylori isolates or an isogenic cagA-deficient mutant were assessed for translocation and phosphorylation of CagA and for activation of stress pathway kinases by immunoblot. Phosphorylated CagA was detected in both cell lines within 60 minutes. Phospho-ERK 1/2 was present within several minutes and distinctly present in GSM06 cells at 60 minutes. Similar results were obtained for phospho-JNK, although the 54 kDa phosphoprotein signal was dominant in AGS, whereas the lower molecular weight band was dominant in GSM06 cells. These results demonstrate that early events in H. pylori pathogenesis occur within mouse epithelial cells similar to human cells and therefore support the use of the mouse model for the study of acute CagA-associated host cell responses. These results also indicate that reduced disease in H. pylori-infected mice may be due to lack of the Cag PAI, or by differences in the mouse response downstream of the initial activation events. © 2016 John Wiley & Sons Ltd.

  4. Complementary roles of platelets and coagulation in thrombus formation on plaques acutely ruptured by targeted ultrasound treatment: a novel intravital model.

    PubMed

    Kuijpers, M J E; Gilio, K; Reitsma, S; Nergiz-Unal, R; Prinzen, L; Heeneman, S; Lutgens, E; van Zandvoort, M A M J; Nieswandt, B; Egbrink, M G A Oude; Heemskerk, J W M

    2009-01-01

    Atherothrombosis is a major cause of cardiovascular events. However, animal models to study this process are scarce. We describe the first murine model of acute thrombus formation upon plaque rupture to study atherothrombosis by intravital fluorescence microscopy. Localized rupture of an atherosclerotic plaque in a carotid artery from Apoe(-/-) mice was induced in vivo using ultrasound. Rupture of the plaque and formation of localized thrombi were verified by two-photon laser scanning microscopy (TPLSM) in isolated arteries, and by immunohistochemistry. The thrombotic reaction was quantified by intravital fluorescence microscopy. Inspection of the ultrasound-treated plaques by histochemistry and TPLSM demonstrated local damage, collagen exposure, luminal thrombus formation as well as intra-plaque intrusion of erythrocytes and fibrin. Ultrasound treatment of healthy carotid arteries resulted in endothelial damage and limited platelet adhesion. Real-time intravital fluorescence microscopy demonstrated rapid platelet deposition on plaques and formation of a single thrombus that remained subocclusive. The thrombotic process was antagonized by thrombin inhibition, or by blocking of collagen or adenosine diphosphate receptor pathways. Multiple thrombi were formed in 70% of mice lacking CD40L. Targeted rupture of murine plaques results in collagen exposure and non-occlusive thrombus formation. The thrombotic process relies on platelet activation as well as on thrombin generation and coagulation, and is sensitive to established and novel antithrombotic medication. This model provides new possibilities to study atherothrombosis in vivo.

  5. Ex vivo micro-CT imaging of murine brain models using non-ionic iodinated contrast

    NASA Astrophysics Data System (ADS)

    Salas Bautista, N.; Martínez-Dávalos, A.; Rodríguez-Villafuerte, M.; Murrieta-Rodríguez, T.; Manjarrez-Marmolejo, J.; Franco-Pérez, J.; Calvillo-Velasco, M. E.

    2014-11-01

    Preclinical investigation of brain tumors is frequently carried out by means of intracranial implantation of brain tumor xenografts or allografts, with subsequent analysis of tumor growth using conventional histopathology. However, very little has been reported on the use contrast-enhanced techniques in micro-CT imaging for the study of malignant brain tumors in small animal models. The aim of this study has been to test a protocol for ex vivo imaging of murine brain models of glioblastoma multiforme (GBM) after treatment with non-ionic iodinated solution, using an in-house developed laboratory micro-CT. We have found that the best compromise between acquisition time and image quality is obtained using a 50 kVp, 0.5 mAs, 1° angular step on a 360 degree orbit acquisition protocol, with 70 μm reconstructed voxel size using the Feldkamp algorithm. With this parameters up to 4 murine brains can be scanned in tandem in less than 15 minutes. Image segmentation and analysis of three sample brains allowed identifying tumor volumes as small as 0.4 mm3.

  6. Anatomy and Histology of the Human and Murine Prostate.

    PubMed

    Ittmann, Michael

    2018-05-01

    The human and murine prostate glands have similar functional roles in the generation of seminal fluid to assist in reproduction. There are significant differences in the anatomy and histology of murine and human prostate and knowledge of the normal anatomy and histology of the murine prostate is essential to interpreting changes in genetically engineered mouse models. In this review, the normal anatomy and histology of both human and mouse prostate will be described. Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.

  7. Examination of West Nile Virus Neuroinvasion and Neuropathogenesis in the Central Nervous System of a Murine Model.

    PubMed

    Sultana, Hameeda

    2016-01-01

    West Nile virus (WNV) is a neurotropic virus that causes inflammation and neuronal loss in the Central Nervous System leading to encephalitis and death. In this chapter, detailed methods to detect WNV in the murine brain tissue by quantitative real-time polymerase chain reaction and viral plaque assays are described. Determination of WNV neuropathogenesis by Hematoxylin and Eosin staining and immunohistochemical procedures are provided. In addition, TUNEL assays to determine neuronal loss during WNV neuropathogenesis are discussed in detail. Collectively, the methods mentioned in this chapter provide an overview to understand neuroinvasion and neuropathogenesis in a murine model of WNV infection.

  8. Isolation and (111)In-Oxine Labeling of Murine NK Cells for Assessment of Cell Trafficking in Orthotopic Lung Tumor Model.

    PubMed

    Malviya, Gaurav; Nayak, Tapan; Gerdes, Christian; Dierckx, Rudi A J O; Signore, Alberto; de Vries, Erik F J

    2016-04-04

    A noninvasive in vivo imaging method for NK cell trafficking is essential to gain further understanding of the pathogenesis of NK cell mediated immune response to the novel cancer treatment strategies, and to discover the homing sites and physiological distribution of NK cells. Although human NK cells can be labeled for in vivo imaging, little is known about the murine NK cell labeling and its application in animal models. This study describes the isolation and ex vivo radiolabeling of murine NK cells for the evaluation of cell trafficking in an orthotopic model of human lung cancer in mice. Scid-Tg(FCGR3A)Blt transgenic SCID mice were used to isolate NK cells from mouse splenocytes using the CD49b (DX5) MicroBeads positive selection method. The purity and viability of the isolated NK cells were confirmed by FACS analysis. Different labeling buffers and incubation times were evaluated to optimize (111)In-oxine labeling conditions. Functionality of the radiolabeled NK cell was assessed by (51)Cr-release assay. We evaluated physiological distribution of (111)In-oxine labeled murine NK cells in normal SCID mice and biodistribution in irradiated and nonirradiated SCID mice with orthotopic A549 human lung tumor lesions. Imaging findings were confirmed by histology. Results showed that incubation with 0.011 MBq of (111)In-oxine per million murine NK cells in PBS (pH 7.4) for 20 min is the best condition that provides optimum labeling efficiency without affecting cell viability and functionality. Physiological distribution in normal SCID mice demonstrated NK cells homing mainly in the spleen, while (111)In released from NK cells was excreted via kidneys into urine. Biodistribution studies demonstrated a higher lung uptake in orthotopic lung tumor-bearing mice than control mice. In irradiated mice, lung tumor uptake of radiolabeled murine NK cells decreased between 24 h and 72 h postinjection (p.i.), which was accompanied by tumor regression, while in nonirradiated mice

  9. Sirt1 restrains lung inflammasome activation in a murine model of sepsis.

    PubMed

    Gao, Rong; Ma, Zhongsen; Hu, Yuxin; Chen, Jiao; Shetty, Sreerama; Fu, Jian

    2015-04-15

    Excessive inflammation is a major cause of organ damage during sepsis. The elderly are highly susceptible to sepsis-induced organ injury. Sirt1 expression is reduced during aging. In the present study, we investigated the role of Sirt1, a histone deacetylase, in controlling inflammatory responses in a murine sepsis model induced by cecal ligation and puncture (CLP). We examined lung inflammatory signaling in inducible Sirt1 knockout (Sirt1(-/-)) mice and wild-type littermates (Sirt1(+/+)) after CLP. Our results demonstrated that Sirt1 deficiency led to severe lung inflammatory injury. To further investigate molecular mechanisms of Sirt1 regulation of lung inflammatory responses in sepsis, we conducted a series of experiments to assess lung inflammasome activation after CLP. We detected increased lung inflammatory signaling including NF-κB, signal transducer and activator of transcription 3, and ERK1/2 activation in Sirt1(-/-) mice after CLP. Furthermore, inflammasome activity was increased in Sirt1(-/-) mice after CLP, as demonstrated by increased IL-1β and caspase-7 cleavage and activation. Aggravated inflammasome activation in Sirt1(-/-) mice was associated with the increased production of lung proinflammatory mediators, including ICAM-1 and high-mobility group box 1, and further disruption of tight junctions and adherens junctions, as demonstrated by dramatic reduction of lung claudin-1 and vascular endothelial-cadherin expression, which was associated with the upregulation of matrix metallopeptidase 9 expression. In summary, our results suggest that Sirt1 suppresses acute lung inflammation during sepsis by controlling inflammasome activation pathway. Copyright © 2015 the American Physiological Society.

  10. Rheb1 promotes tumor progression through mTORC1 in MLL-AF9-initiated murine acute myeloid leukemia.

    PubMed

    Gao, Yanan; Gao, Juan; Li, Minghao; Zheng, Yawei; Wang, Yajie; Zhang, Hongyan; Wang, Weili; Chu, Yajing; Wang, Xiaomin; Xu, Mingjiang; Cheng, Tao; Ju, Zhenyu; Yuan, Weiping

    2016-04-12

    The constitutive hyper-activation of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathways has frequently been associated with acute myeloid leukemia (AML). While many inhibitors targeting these pathways have been developed, the anti-leukemic effect was not as robust as expected. As part of the molecular link between PI3K/Akt and mTOR kinase, the role of Rheb1 in AML remains unexplored. Our study aims to explore the role of Rheb1 in AML and estimate whether Rheb1 could be a potential target of AML treatment. The expressions of Rheb1 and other indicated genes were analyzed using real-time PCR. AML mouse model was established by retrovirus transduction. Leukemia cell properties and related signaling pathways were dissected by in vitro and in vivo studies. The transcriptional changes were analyzed via gene chip analysis. Molecular reagents including mTOR inhibitor and mTOR activator were used to evaluate the function of related signaling pathway in the mouse model. We observed that Rheb1 is overexpressed in AML patients and the change of Rheb1 level in AML patients is associated with their median survival. Using a Rheb1-deficient MLL-AF9 murine AML model, we revealed that Rheb1 deletion prolonged the survival of AML mice by weakening LSC function. In addition, Rheb1 deletion arrested cell cycle progression and enhanced apoptosis of AML cells. Furthermore, while Rheb1 deletion reduced mTORC1 activity in AML cells, additional rapamycin treatment further decreased mTORC1 activity and increased the apoptosis of Rheb1 (Δ/Δ) AML cells. The mTOR activator 3BDO partially rescued mTORC1 signaling and inhibited apoptosis in Rheb1 (Δ/Δ) AML cells. Our data suggest that Rheb1 promotes AML progression through mTORC1 signaling pathway and combinational drug treatments targeting Rheb1 and mTOR might have a better therapeutic effect on leukemia.

  11. Angelica acutiloba Kitagawa Extract Attenuates DSS-Induced Murine Colitis

    PubMed Central

    Jang, Jong-Chan; Lee, Kang Min

    2016-01-01

    We examined the protective effects of Angelica acutiloba Kitagawa (AAK) extract on a murine model of acute experimental colitis. Colitis was induced by 4% dextran sulfate sodium (DSS) in the drinking water of male C57BL/6 mice, for 7 consecutive days. Oral administration of AAK extract (500 mg/kg/day) significantly alleviated DSS-induced symptoms such as anorexia, weight loss, events of diarrhea or bloody stools, and colon shortening. Histological damage was also ameliorated, as evidenced by the architectural preservation and suppression of inflammatory cell infiltration in colonic samples. Treatment improved the colonic mRNA expression of different inflammatory markers: cytokines, inducible enzymes, matrix metalloproteinases, and tight junction-related proteins. In the isolated serum, IgE levels were downregulated. Collectively, these findings indicate the therapeutic potentials of AAK as an effective complementary or alternative modality for the treatment of ulcerative colitis. PMID:27293323

  12. Anxiety Associated Increased CpG Methylation in the Promoter of Asb1: A Translational Approach Evidenced by Epidemiological and Clinical Studies and a Murine Model.

    PubMed

    Emeny, Rebecca T; Baumert, Jens; Zannas, Anthony S; Kunze, Sonja; Wahl, Simone; Iurato, Stella; Arloth, Janine; Erhardt, Angelika; Balsevich, Georgia; Schmidt, Mathias V; Weber, Peter; Kretschmer, Anja; Pfeiffer, Liliane; Kruse, Johannes; Strauch, Konstantin; Roden, Michael; Herder, Christian; Koenig, Wolfgang; Gieger, Christian; Waldenberger, Melanie; Peters, Annette; Binder, Elisabeth B; Ladwig, Karl-Heinz

    2018-01-01

    Epigenetic regulation in anxiety is suggested, but evidence from large studies is needed. We conducted an epigenome-wide association study (EWAS) on anxiety in a population-based cohort and validated our finding in a clinical cohort as well as a murine model. In the KORA cohort, participants (n=1522, age 32-72 years) were administered the Generalized Anxiety Disorder (GAD-7) instrument, whole blood DNA methylation was measured (Illumina 450K BeadChip), and circulating levels of hs-CRP and IL-18 were assessed in the association between anxiety and methylation. DNA methylation was measured using the same instrument in a study of patients with anxiety disorders recruited at the Max Planck Institute of Psychiatry (MPIP, 131 non-medicated cases and 169 controls). To expand our mechanistic understanding, these findings were reverse translated in a mouse model of acute social defeat stress. In the KORA study, participants were classified according to mild, moderate, or severe levels of anxiety (29.4%/6.0%/1.5%, respectively). Severe anxiety was associated with 48.5% increased methylation at a single CpG site (cg12701571) located in the promoter of the gene encoding Asb1 (β-coefficient=0.56 standard error (SE)=0.10, p (Bonferroni)=0.005), a protein hypothetically involved in regulation of cytokine signaling. An interaction between IL-18 and severe anxiety with methylation of this CpG cite showed a tendency towards significance in the total population (p=0.083) and a significant interaction among women (p=0.014). Methylation of the same CpG was positively associated with Panic and Agoraphobia scale (PAS) scores (β=0.005, SE=0.002, p=0.021, n=131) among cases in the MPIP study. In a murine model of acute social defeat stress, Asb1 gene expression was significantly upregulated in a tissue-specific manner (p=0.006), which correlated with upregulation of the neuroimmunomodulating cytokine interleukin 1 beta. Our findings suggest epigenetic regulation of the stress

  13. Anxiety Associated Increased CpG Methylation in the Promoter of Asb1: A Translational Approach Evidenced by Epidemiological and Clinical Studies and a Murine Model

    PubMed Central

    Emeny, Rebecca T; Baumert, Jens; Zannas, Anthony S; Kunze, Sonja; Wahl, Simone; Iurato, Stella; Arloth, Janine; Erhardt, Angelika; Balsevich, Georgia; Schmidt, Mathias V; Weber, Peter; Kretschmer, Anja; Pfeiffer, Liliane; Kruse, Johannes; Strauch, Konstantin; Roden, Michael; Herder, Christian; Koenig, Wolfgang; Gieger, Christian; Waldenberger, Melanie; Peters, Annette; Binder, Elisabeth B; Ladwig, Karl-Heinz

    2018-01-01

    Epigenetic regulation in anxiety is suggested, but evidence from large studies is needed. We conducted an epigenome-wide association study (EWAS) on anxiety in a population-based cohort and validated our finding in a clinical cohort as well as a murine model. In the KORA cohort, participants (n=1522, age 32–72 years) were administered the Generalized Anxiety Disorder (GAD-7) instrument, whole blood DNA methylation was measured (Illumina 450K BeadChip), and circulating levels of hs-CRP and IL-18 were assessed in the association between anxiety and methylation. DNA methylation was measured using the same instrument in a study of patients with anxiety disorders recruited at the Max Planck Institute of Psychiatry (MPIP, 131 non-medicated cases and 169 controls). To expand our mechanistic understanding, these findings were reverse translated in a mouse model of acute social defeat stress. In the KORA study, participants were classified according to mild, moderate, or severe levels of anxiety (29.4%/6.0%/1.5%, respectively). Severe anxiety was associated with 48.5% increased methylation at a single CpG site (cg12701571) located in the promoter of the gene encoding Asb1 (β-coefficient=0.56 standard error (SE)=0.10, p (Bonferroni)=0.005), a protein hypothetically involved in regulation of cytokine signaling. An interaction between IL-18 and severe anxiety with methylation of this CpG cite showed a tendency towards significance in the total population (p=0.083) and a significant interaction among women (p=0.014). Methylation of the same CpG was positively associated with Panic and Agoraphobia scale (PAS) scores (β=0.005, SE=0.002, p=0.021, n=131) among cases in the MPIP study. In a murine model of acute social defeat stress, Asb1 gene expression was significantly upregulated in a tissue-specific manner (p=0.006), which correlated with upregulation of the neuroimmunomodulating cytokine interleukin 1 beta. Our findings suggest epigenetic regulation of the stress

  14. Plecanatide and dolcanatide, novel guanylate cyclase-C agonists, ameliorate gastrointestinal inflammation in experimental models of murine colitis.

    PubMed

    Shailubhai, Kunwar; Palejwala, Vaseem; Arjunan, Krishna Priya; Saykhedkar, Sayali; Nefsky, Bradley; Foss, John A; Comiskey, Stephen; Jacob, Gary S; Plevy, Scott E

    2015-11-06

    To evaluate the effect of orally administered plecanatide or dolcanatide, analogs of uroguanylin, on amelioration of colitis in murine models. The cyclic guanosine monophosphate (cGMP) stimulatory potency of plecanatide and dolcanatide was measured using a human colon carcinoma T84 cell-based assay. For animal studies all test agents were formulated in phosphate buffered saline. Sulfasalazine or 5-amino salicylic acid (5-ASA) served as positive controls. Effect of oral treatment with test agents on amelioration of acute colitis induced either by dextran sulfate sodium (DSS) in drinking water or by rectal instillation of trinitrobenzene sulfonic (TNBS) acid, was examined in BALB/c and/or BDF1 mice. Additionally, the effect of orally administered plecanatide on the spontaneous colitis in T-cell receptor alpha knockout (TCRα(-/-)) mice was also examined. Amelioration of colitis was assessed by monitoring severity of colitis, disease activity index and by histopathology. Frozen colon tissues were used to measure myeloperoxidase activity. Plecanatide and dolcanatide are structurally related analogs of uroguanylin, which is an endogenous ligand of guanylate cyclase-C (GC-C). As expected from the agonists of GC-C, both plecanatide and dolcanatide exhibited potent cGMP-stimulatory activity in T84 cells. Once-daily treatment by oral gavage with either of these analogs (0.05-0.5 mg/kg) ameliorated colitis in both DSS and TNBS-induced models of acute colitis, as assessed by body weight, reduction in colitis severity (P < 0.05) and disease activity index (P < 0.05). Amelioration of colitis by either of the drug candidates was comparable to that achieved by orally administered sulfasalazine or 5-ASA. Plecanatide also effectively ameliorated colitis in TCRα(-/-) mice, a model of spontaneous colitis. As dolcanatide exhibited higher resistance to proteolysis in simulated gastric and intestinal juices, it was selected for further studies. This is the first-ever study reporting

  15. Plecanatide and dolcanatide, novel guanylate cyclase-C agonists, ameliorate gastrointestinal inflammation in experimental models of murine colitis

    PubMed Central

    Shailubhai, Kunwar; Palejwala, Vaseem; Arjunan, Krishna Priya; Saykhedkar, Sayali; Nefsky, Bradley; Foss, John A; Comiskey, Stephen; Jacob, Gary S; Plevy, Scott E

    2015-01-01

    AIM: To evaluate the effect of orally administered plecanatide or dolcanatide, analogs of uroguanylin, on amelioration of colitis in murine models. METHODS: The cyclic guanosine monophosphate (cGMP) stimulatory potency of plecanatide and dolcanatide was measured using a human colon carcinoma T84 cell-based assay. For animal studies all test agents were formulated in phosphate buffered saline. Sulfasalazine or 5-amino salicylic acid (5-ASA) served as positive controls. Effect of oral treatment with test agents on amelioration of acute colitis induced either by dextran sulfate sodium (DSS) in drinking water or by rectal instillation of trinitrobenzene sulfonic (TNBS) acid, was examined in BALB/c and/or BDF1 mice. Additionally, the effect of orally administered plecanatide on the spontaneous colitis in T-cell receptor alpha knockout (TCRα-/-) mice was also examined. Amelioration of colitis was assessed by monitoring severity of colitis, disease activity index and by histopathology. Frozen colon tissues were used to measure myeloperoxidase activity. RESULTS: Plecanatide and dolcanatide are structurally related analogs of uroguanylin, which is an endogenous ligand of guanylate cyclase-C (GC-C). As expected from the agonists of GC-C, both plecanatide and dolcanatide exhibited potent cGMP-stimulatory activity in T84 cells. Once-daily treatment by oral gavage with either of these analogs (0.05-0.5 mg/kg) ameliorated colitis in both DSS and TNBS-induced models of acute colitis, as assessed by body weight, reduction in colitis severity (P < 0.05) and disease activity index (P < 0.05). Amelioration of colitis by either of the drug candidates was comparable to that achieved by orally administered sulfasalazine or 5-ASA. Plecanatide also effectively ameliorated colitis in TCRα-/- mice, a model of spontaneous colitis. As dolcanatide exhibited higher resistance to proteolysis in simulated gastric and intestinal juices, it was selected for further studies. CONCLUSION: This is

  16. Hepatic Metabolomics Investigation in Acute and Chronic Murine Toxoplasmosis.

    PubMed

    Chen, Xiao-Qing; Elsheikha, Hany M; Hu, Rui-Si; Hu, Gui-Xue; Guo, Shu-Ling; Zhou, Chun-Xue; Zhu, Xing-Quan

    2018-01-01

    Toxoplasma gondii poses a great threat to human health, with no approved vaccine available for the treatment of T. gondii infection. T. gondii infections are not limited to the brain, and may also affect other organs especially the liver. Identification of host liver molecules or pathways involved in T. gondii replication process may lead to the discovery of novel anti- T. gondii targets. Here, we analyzed the metabolic profile of the liver of mice on 11 and 30 days postinfection (dpi) with type II T. gondii Pru strain. Global metabolomics using liquid chromatography-tandem mass spectrometry (LC-MS/MS) identified 389 significant metabolites from acutely infected mice; and 368 from chronically infected mice, when compared with control mice. Multivariate statistical analysis revealed distinct metabolic signatures from acutely infected, chronically infected and control mice. Infection influenced several metabolic processes, in particular those for lipids and amino acids. Metabolic pathways, such as steroid hormone biosynthesis, primary bile acid biosynthesis, bile secretion, and biosynthesis of unsaturated fatty acids were perturbed during the whole infection process, particularly during the acute stage of infection. The present results provide insight into hepatic metabolic changes that occur in BALB/c mice during acute and chronic T. gondii infection.

  17. Pleiotropic effects of interleukin-6 in a "two-hit" murine model of acute respiratory distress syndrome.

    PubMed

    Goldman, Julia L; Sammani, Saad; Kempf, Carrie; Saadat, Laleh; Letsiou, Eleftheria; Wang, Ting; Moreno-Vinasco, Liliana; Rizzo, Alicia N; Fortman, Jeffrey D; Garcia, Joe G N

    2014-06-01

    Patients with acute respiratory distress syndrome (ARDS) exhibit elevated levels of interleukin-6 (IL-6), which correlate with increased morbidity and mortality. The exact role of IL-6 in ARDS has proven difficult to study because it exhibits either pro- or anti-inflammatory actions in mouse models of lung injury, depending on the model utilized. In order to improve understanding of the role of this complex cytokine in ARDS, we evaluated IL-6 using the clinically relevant combination of lipopolysaccharide (LPS) and ventilator-induced lung injury (VILI) in IL-6(-/-) mice. Bronchoalveolar lavage fluid (BAL), whole-lung tissue, and histology were evaluated for inflammatory markers of injury. Transendothelial electrical resistance was used to evaluate the action of IL-6 on endothelial cells in vitro. In wild-type mice, the combination model showed a significant increase in lung injury compared to either LPS or VILI alone. IL-6(-/-) mice exhibited a statistically significant decrease in BAL cellular inflammation as well as lower histologic scores for lung injury, changes observed only in the combination model. A paradoxical increase in BAL total protein was observed in IL-6(-/-) mice exposed to LPS, suggesting that IL-6 provides protection from vascular leakage. However, in vitro data showed that IL-6, when combined with its soluble receptor, actually caused a significant increase in endothelial cell permeability, suggesting that the protection seen in vivo was likely due to complex interactions of IL-6 and other inflammatory mediators rather than to direct effects of IL-6. These studies suggest that a dual-injury model exhibits utility in evaluating the pleiotropic effects of IL-6 in ARDS on inflammatory cells and lung endothelium.

  18. A murine model of targeted infusion for intracranial tumors.

    PubMed

    Kim, Minhyung; Barone, Tara A; Fedtsova, Natalia; Gleiberman, Anatoli; Wilfong, Chandler D; Alosi, Julie A; Plunkett, Robert J; Gudkov, Andrei; Skitzki, Joseph J

    2016-01-01

    Historically, intra-arterial (IA) drug administration for malignant brain tumors including glioblastoma multiforme (GBM) was performed as an attempt to improve drug delivery. With the advent of percutaneous neuorovascular techniques and modern microcatheters, intracranial drug delivery is readily feasible; however, the question remains whether IA administration is safe and more effective compared to other delivery modalities such as intravenous (IV) or oral administrations. Preclinical large animal models allow for comparisons between treatment routes and to test novel agents, but can be expensive and difficult to generate large numbers and rapid results. Accordingly, we developed a murine model of IA drug delivery for GBM that is reproducible with clear readouts of tumor response and neurotoxicities. Herein, we describe a novel mouse model of IA drug delivery accessing the internal carotid artery to treat ipsilateral implanted GBM tumors that is consistent and reproducible with minimal experience. The intent of establishing this unique platform is to efficiently interrogate targeted anti-tumor agents that may be designed to take advantage of a directed, regional therapy approach for brain tumors.

  19. Hamster and Murine Models of Severe Destructive Lyme Arthritis

    PubMed Central

    Munson, Erik; Nardelli, Dean T.; Du Chateau, Brian K.; Callister, Steven M.; Schell, Ronald F.

    2012-01-01

    Arthritis is a frequent complication of infection in humans with Borrelia burgdorferi. Weeks to months following the onset of Lyme borreliosis, a histopathological reaction characteristic of synovitis including bone, joint, muscle, or tendon pain may occur. A subpopulation of patients may progress to a chronic, debilitating arthritis months to years after infection which has been classified as severe destructive Lyme arthritis. This arthritis involves focal bone erosion and destruction of articular cartilage. Hamsters and mice are animal models that have been utilized to study articular manifestations of Lyme borreliosis. Infection of immunocompetent LSH hamsters or C3H mice results in a transient synovitis. However, severe destructive Lyme arthritis can be induced by infecting irradiated hamsters or mice and immunocompetent Borrelia-vaccinated hamsters, mice, and interferon-gamma- (IFN-γ-) deficient mice with viable B. burgdorferi. The hamster model of severe destructive Lyme arthritis facilitates easy assessment of Lyme borreliosis vaccine preparations for deleterious effects while murine models of severe destructive Lyme arthritis allow for investigation of mechanisms of immunopathology. PMID:22461836

  20. β-Arrestin2 mediates progression of murine primary myelofibrosis.

    PubMed

    Rein, Lindsay Am; Wisler, James W; Kim, Jihee; Theriot, Barbara; Huang, LiYin; Price, Trevor; Yang, Haeyoon; Chen, Minyong; Chen, Wei; Sipkins, Dorothy; Fedoriw, Yuri; Walker, Julia Kl; Premont, Richard T; Lefkowitz, Robert J

    2017-12-21

    Primary myelofibrosis is a myeloproliferative neoplasm associated with significant morbidity and mortality, for which effective therapies are lacking. β-Arrestins are multifunctional adaptor proteins involved in developmental signaling pathways. One isoform, β-arrestin2 (βarr2), has been implicated in initiation and progression of chronic myeloid leukemia, another myeloproliferative neoplasm closely related to primary myelofibrosis. Accordingly, we investigated the relationship between βarr2 and primary myelofibrosis. In a murine model of MPLW515L-mutant primary myelofibrosis, mice transplanted with donor βarr2-knockout (βarr2-/-) hematopoietic stem cells infected with MPL-mutant retrovirus did not develop myelofibrosis, whereas controls uniformly succumbed to disease. Although transplanted βarr2-/- cells homed properly to marrow, they did not repopulate long-term due to increased apoptosis and decreased self-renewal of βarr2-/- cells. In order to assess the effect of acute loss of βarr2 in established primary myelofibrosis in vivo, we utilized a tamoxifen-induced Cre-conditional βarr2-knockout mouse. Mice that received Cre (+) donor cells and developed myelofibrosis had significantly improved survival compared with controls. These data indicate that lack of antiapoptotic βarr2 mediates marrow failure of murine hematopoietic stem cells overexpressing MPLW515L. They also indicate that βarr2 is necessary for progression of primary myelofibrosis, suggesting that it may serve as a novel therapeutic target in this disease.

  1. β-Arrestin2 mediates progression of murine primary myelofibrosis

    PubMed Central

    Rein, Lindsay A.M.; Wisler, James W.; Kim, Jihee; Theriot, Barbara; Huang, LiYin; Price, Trevor; Yang, Haeyoon; Chen, Wei; Sipkins, Dorothy; Fedoriw, Yuri; Walker, Julia K.L.; Premont, Richard T.; Lefkowitz, Robert J.

    2017-01-01

    Primary myelofibrosis is a myeloproliferative neoplasm associated with significant morbidity and mortality, for which effective therapies are lacking. β-Arrestins are multifunctional adaptor proteins involved in developmental signaling pathways. One isoform, β-arrestin2 (βarr2), has been implicated in initiation and progression of chronic myeloid leukemia, another myeloproliferative neoplasm closely related to primary myelofibrosis. Accordingly, we investigated the relationship between βarr2 and primary myelofibrosis. In a murine model of MPLW515L-mutant primary myelofibrosis, mice transplanted with donor βarr2-knockout (βarr2–/–) hematopoietic stem cells infected with MPL-mutant retrovirus did not develop myelofibrosis, whereas controls uniformly succumbed to disease. Although transplanted βarr2–/– cells homed properly to marrow, they did not repopulate long-term due to increased apoptosis and decreased self-renewal of βarr2–/– cells. In order to assess the effect of acute loss of βarr2 in established primary myelofibrosis in vivo, we utilized a tamoxifen-induced Cre-conditional βarr2-knockout mouse. Mice that received Cre (+) donor cells and developed myelofibrosis had significantly improved survival compared with controls. These data indicate that lack of antiapoptotic βarr2 mediates marrow failure of murine hematopoietic stem cells overexpressing MPLW515L. They also indicate that βarr2 is necessary for progression of primary myelofibrosis, suggesting that it may serve as a novel therapeutic target in this disease. PMID:29263312

  2. Hepatocyte Transplantation Improves Phenotype and Extends Survival in a Murine Model of Intermediate Maple Syrup Urine Disease

    PubMed Central

    Skvorak, Kristen J; Paul, Harbhajan S; Dorko, Kenneth; Marongiu, Fabio; Ellis, Ewa; Chace, Donald; Ferguson, Carolyn; Gibson, K Michael; Homanics, Gregg E; Strom, Stephen C

    2009-01-01

    Maple syrup urine disease (MSUD; OMIM 248600) is an inborn error of metabolism of the branched chain α-ketoacid dehydrogenase (BCKDH) complex that is treated primarily by dietary manipulation of branched-chain amino acids (BCAA). Dietary restriction is lifelong and compliance is difficult. Liver transplantation significantly improves outcomes; however, alternative therapies are needed. To test novel therapies such as hepatocyte transplantation (HTx), we previously created a murine model of intermediate MSUD (iMSUD), which closely mimics human iMSUD. LacZ-positive murine donor hepatocytes were harvested and directly injected (105 cells/50 µl) into liver of iMSUD mice (two injections at 1–10 days of age). Donor hepatocytes engrafted into iMSUD recipient liver, increased liver BCKDH activity, improved blood total BCAA/alanine ratio, increased body weight at weaning, and extended the lifespan of HTx-treated iMSUD mice compared to phosphate-buffered saline (PBS)–treated and untreated iMSUD mice. Based on these data demonstrating partial metabolic correction of iMSUD in a murine model, coupled to the fact that multiple transplants are possible to enhance these results, we suggest that HTx represents a promising therapeutic intervention for MSUD that warrants further investigation. PMID:19436271

  3. Advances in the development of enterohemorrhagic Escherichia coli vaccines using murine models of infection

    PubMed Central

    Garcia-Angulo, Victor A.; Kalita, Anjana; Torres, Alfredo G.

    2013-01-01

    Enterohemorrhagic Escherichia coli (EHEC) strains are food borne pathogens with importance in public health. EHEC colonizes the large intestine and causes diarrhea, hemorrhagic colitis and in some cases, life-threatening hemolytic-uremic syndrome (HUS) due to the production of Shiga toxins (Stx). The lack of effective clinical treatment, sequelae after infection and mortality rate in humans supports the urgent need of prophylactic approaches, such as development of vaccines. Shedding from cattle, the main EHEC reservoir and considered the principal food contamination source, has prompted the development of licensed vaccines that reduce EHEC colonization in ruminants. Although murine models do not fully recapitulate human infection, they are commonly used to evaluate EHEC vaccines and the immune/protective responses elicited in the host. Mice susceptibility differs depending of the EHEC inoculums; therefore, displaying different mortality rates and Stx-mediated renal damage. Therefore, several experimental protocols have being pursued in this model to develop EHEC-specific vaccines. Recent candidate vaccines evaluated include those composed of virulence factors alone or as fused-subunits, DNA-based, attenuated bacteria and bacterial ghosts. In this review, we summarize progress in the design and testing of EHEC vaccines and the use of different strategies for the evaluation of novel EHEC vaccines in the murine model. PMID:23707170

  4. Curcumin Attenuates Acute Graft-versus-Host Disease Severity via In Vivo Regulations on Th1, Th17 and Regulatory T Cells

    PubMed Central

    Lee, Sung-Hee; Yang, Eun-Ji; Min, Jun-Ki; Cho, Seok-Goo; Yang, Chul-Woo; Park, Sung-Hwan; Kim, Ho-Youn; Cho, Mi-La

    2013-01-01

    Background In this study we examined the in vivo and in vitro effects and mechanisms of action of curcumin on the development of acute graft-versus-host disease (GVHD) using a murine model. Methodology/Principal Findings Mixed lymphocyte reactions were used to determine the in vitro effects of curcumin. Treatment with curcumin attenuated alloreactive T cell proliferation and inhibited the production of interferon (IFN)-γ and interleukin (IL)-17. In a murine acute GVHD model, transplantation of curcumin-treated allogeneic splenocytes into irradiated recipient mice significantly reduced the clinical severity scores of acute GVHD manifested in the liver, skin, colon and lung as compared with animals receiving vehicle-treated splenocytes. c-Fos and c-Jun expression levels in the skin and intestine, which are major target organs, were analyzed using immunohistochemical staining. Expression of both proteins was reduced in epithelial tissues of skin and intestine from curcumin-treated GVHD animals. The IFN-γ-expressing CD4+ splenocytes and IFN-γ-expressing lymph node cells were dramatically decreased in curcumin-treated mice. In contrast, CD4+Foxp3+ splenocytes were increased in the curcumin-treated acute GVHD animals. Flow cytometric analysis revealed that animals transplanted with curcumin-treated allogeneic splenocytes showed increased populations of CD4+ regulatory T cells (Tregs) as well as CD8+ Treg cells, compared to animals administered vehicle-treated splenocytes. Curcumin-treated acute GVHD animals could have a change in B cell subpopulations. Conclusion/Significance In the present study, we investigated the efficacy and mechanism of action of curcumin treatment against acute GVHD. The acute GVHD mice administered with curcumin-treated splenocytes showed significantly reduced severity of acute GVHD. Curcumin exerted in vivo preventive effects on acute GVHD by reciprocal regulation of T helper 1 (Th1) and Treg (both CD4+ and CD8+ Treg) cell lineages as well as

  5. Toxicity assessment of zinc oxide nanoparticles using sub-acute and sub-chronic murine inhalation models.

    PubMed

    Adamcakova-Dodd, Andrea; Stebounova, Larissa V; Kim, Jong Sung; Vorrink, Sabine U; Ault, Andrew P; O'Shaughnessy, Patrick T; Grassian, Vicki H; Thorne, Peter S

    2014-04-01

    Although ZnO nanoparticles (NPs) are used in many commercial products and the potential for human exposure is increasing, few in vivo studies have addressed their possible toxic effects after inhalation. We sought to determine whether ZnO NPs induce pulmonary toxicity in mice following sub-acute or sub-chronic inhalation exposure to realistic exposure doses. Mice (C57Bl/6) were exposed to well-characterized ZnO NPs (3.5 mg/m3, 4 hr/day) for 2 (sub-acute) or 13 (sub-chronic) weeks and necropsied immediately (0 wk) or 3 weeks (3 wks) post exposure. Toxicity was assessed by enumeration of total and differential cells, determination of total protein, lactate dehydrogenase activity and inflammatory cytokines in bronchoalveolar lavage (BAL) fluid as well as measurements of pulmonary mechanics. Generation of reactive oxygen species was assessed in the lungs. Lungs were evaluated for histopathologic changes and Zn content. Zn concentration in blood, liver, kidney, spleen, heart, brain and BAL fluid was measured. An elevated concentration of Zn2+ was detected in BAL fluid immediately after exposures, but returned to baseline levels 3 wks post exposure. Dissolution studies showed that ZnO NPs readily dissolved in artificial lysosomal fluid (pH 4.5), but formed aggregates and precipitates in artificial interstitial fluid (pH 7.4). Sub-acute exposure to ZnO NPs caused an increase of macrophages in BAL fluid and a moderate increase in IL-12(p40) and MIP-1α, but no other inflammatory or toxic responses were observed. Following both sub-acute and sub-chronic exposures, pulmonary mechanics were no different than sham-exposed animals. Our ZnO NP inhalation studies showed minimal pulmonary inflammation, cytotoxicity or lung histopathologic changes. An elevated concentration of Zn in the lung and BAL fluid indicates dissolution of ZnO NPs in the respiratory system after inhalation. Exposure concentration, exposure mode and time post exposure played an important role in the toxicity

  6. Antibody blockade of IL-17 family cytokines in immunity to acute murine oral mucosal candidiasis

    PubMed Central

    Whibley, Natasha; Tritto, Elaine; Traggiai, Elisabetta; Kolbinger, Frank; Moulin, Pierre; Brees, Dominique; Coleman, Bianca M.; Mamo, Anna J.; Garg, Abhishek V.; Jaycox, Jillian R.; Siebenlist, Ulrich; Kammüller, Michael; Gaffen, Sarah L.

    2016-01-01

    Antibodies targeting IL-17A or its receptor, IL-17RA, are approved to treat psoriasis and are being evaluated for other autoimmune conditions. Conversely, IL-17 signaling is critical for immunity to opportunistic mucosal infections caused by the commensal fungus Candida albicans, as mice and humans lacking the IL-17R experience chronic mucosal candidiasis. IL-17A, IL-17F, and IL-17AF bind the IL-17RA-IL-17RC heterodimeric complex and deliver qualitatively similar signals through the adaptor Act1. Here, we used a mouse model of acute oropharyngeal candidiasis to assess the impact of blocking IL-17 family cytokines compared with specific IL-17 cytokine gene knockout mice. Anti-IL-17A antibodies, which neutralize IL-17A and IL-17AF, caused elevated oral fungal loads, whereas anti-IL-17AF and anti-IL-17F antibodies did not. Notably, there was a cooperative effect of blocking IL-17A, IL-17AF, and IL-17F together. Termination of anti-IL-17A treatment was associated with rapid C. albicans clearance. IL-17F-deficient mice were fully resistant to oropharyngeal candidiasis, consistent with antibody blockade. However, IL-17A-deficient mice had lower fungal burdens than anti-IL-17A-treated mice. Act1-deficient mice were much more susceptible to oropharyngeal candidiasis than anti-IL-17A antibody-treated mice, yet anti-IL-17A and anti-IL-17RA treatment caused equivalent susceptibilities. Based on microarray analyses of the oral mucosa during infection, only a limited number of genes were associated with oropharyngeal candidiasis susceptibility. In sum, we conclude that IL-17A is the main cytokine mediator of immunity in murine oropharyngeal candidiasis, but a cooperative relationship among IL-17A, IL-17AF, and IL-17F exists in vivo. Susceptibility displays the following hierarchy: IL-17RA- or Act1-deficiency > anti-IL-17A + anti-IL-17F antibodies > anti-IL-17A or anti-IL-17RA antibodies > IL-17A deficiency. PMID:26729813

  7. Shikonin inhibits maturation of bone marrow-derived dendritic cells and suppresses allergic airway inflammation in a murine model of asthma

    PubMed Central

    Lee, Chen-Chen; Wang, Chien-Neng; Lai, Yu-Ting; Kang, Jaw-Jou; Liao, Jiunn-Wang; Chiang, Bor-Luen; Chen, Hui-Chen; Cheng, Yu-Wen

    2010-01-01

    BACKGROUND AND PURPOSE Shikonin exhibits a wide range of anti-inflammatory actions. Here, we assessed its effects on maturation of murine bone marrow-derived dendritic cells (BM-DCs) and on allergic reactions in a murine model of asthma. EXPERIMENTAL APPROACH Cultured murine BM-DCs were used to investigate the effects of shikonin on expression of cell surface markers and their stimulation of T-cell proliferation and cytokine production. The therapeutic potential of shikonin was evaluated in a model of allergic airway disease. KEY RESULTS Shikonin dose-dependently inhibited expression of major histocompatibility complex class II, CD80, CD86, CCR7 and OX40L on BM-DCs, induced by a mixture of ovalbumin (OVA; 100 µg·mL−1) and thymic stromal lymphopoietin (TSLP; 20 ng·mL−1). Shikonin-treated BM-DCs were poor stimulators of CD4+ T lymphocyte and induced lower levels of interleukin (IL)-4, IL-5, IL-13 and tumour necrosis factor (TNF)-α release by responding T-cells. After intratracheal instillation of shikonin in OVA-immunized mice, OVA challenge induced lower IL-4, IL-5, IL-13, TNF-α and eotaxin release in bronchial alveolar lavage fluid, lower IL-4 and IL-5 production in lung cells and mediastinal lymph node cells and attenuated OVA-induced lung eosinophilia and airway hyperresponsiveness. CONCLUSION AND IMPLICATIONS Shikonin effectively suppressed OVA + TSLP-induced BM-DC maturation in vitro and inhibited allergic inflammation and airway hyperresponsiveness in a murine model of asthma, showing good potential as a treatment for allergic asthma. Also, our model provides a novel platform for screening drugs for allergic diseases. PMID:20735407

  8. Increased Cerebral Tff1 Expression in Two Murine Models of Neuroinflammation.

    PubMed

    Znalesniak, Eva B; Fu, Ting; Guttek, Karina; Händel, Ulrike; Reinhold, Dirk; Hoffmann, Werner

    2016-01-01

    The trefoil factor family (TFF) peptide TFF1 is a typical secretory product of the gastric mucosa and a very low level of expression occurs in nearly all regions of the murine brain. TFF1 possesses a lectin activity and binding to a plethora of transmembrane glycoproteins could explain the diverse biological effects of TFF1 (e.g., anti-apoptotic effect). It was the aim to test whether TFF expression is changed during neuroinflammation. Expression profiling was performed using semi-quantitative RT-PCR analyses in two murine models of neuroinflammation, i.e. Toxoplasma gondii-induced encephalitis and experimental autoimmune encephalomyelitis (EAE), the latter being the most common animal model of multiple sclerosis. Tff1 expression was also localized using RNA in situ hybridization histochemistry. We report for the first time on a significant transcriptional induction in cerebral Tff1 expression in both T. gondii-induced encephalitis and EAE. In contrast, Tff2 and Tff3 expression were not altered. Tff1 transcripts were predominantly localized in the internal granular layer of the cerebellum indicating neuronal expression. Furthermore, also glial cells are expected to express Tff1. Characterization of both experimental models by expression profiling (e.g., inflammasome sensors, inflammatory cytokines, microglial marker Iba1, ependymin related protein 1) revealed differences concerning the expression of the inflammasome sensor Nlrp1 and interleukin 17a. The up-regulated expression of Tff1 is probably the result of a complex inflammatory process as its expression is induced by tumor necrosis factor α as well as interleukins 1β and 17. However on the transcript level, Tff1KO mice did not show any significant signs of an altered immune response after infection with T. gondii in comparison with the wild type animals. © 2016 The Author(s) Published by S. Karger AG, Basel.

  9. A Conceptual Model for Episodes of Acute, Unscheduled Care.

    PubMed

    Pines, Jesse M; Lotrecchiano, Gaetano R; Zocchi, Mark S; Lazar, Danielle; Leedekerken, Jacob B; Margolis, Gregg S; Carr, Brendan G

    2016-10-01

    We engaged in a 1-year process to develop a conceptual model representing an episode of acute, unscheduled care. Acute, unscheduled care includes acute illnesses (eg, nausea and vomiting), injuries, or exacerbations of chronic conditions (eg, worsening dyspnea in congestive heart failure) and is delivered in emergency departments, urgent care centers, and physicians' offices, as well as through telemedicine. We began with a literature search to define an acute episode of care and to identify existing conceptual models used in health care. In accordance with this information, we then drafted a preliminary conceptual model and collected stakeholder feedback, using online focus groups and concept mapping. Two technical expert panels reviewed the draft model, examined the stakeholder feedback, and discussed ways the model could be improved. After integrating the experts' comments, we solicited public comment on the model and made final revisions. The final conceptual model includes social and individual determinants of health that influence the incidence of acute illness and injury, factors that affect care-seeking decisions, specific delivery settings where acute care is provided, and outcomes and costs associated with the acute care system. We end with recommendations for how researchers, policymakers, payers, patients, and providers can use the model to identify and prioritize ways to improve acute care delivery. Copyright © 2016 American College of Emergency Physicians. Published by Elsevier Inc. All rights reserved.

  10. Effects of copper nanoparticle exposure on host defense in a murine pulmonary infection model

    PubMed Central

    2011-01-01

    Background Human exposure to nanoparticles (NPs) and environmental bacteria can occur simultaneously. NPs induce inflammatory responses and oxidative stress but may also have immune-suppressive effects, impairing macrophage function and altering epithelial barrier functions. The purpose of this study was to assess the potential pulmonary effects of inhalation and instillation exposure to copper (Cu) NPs using a model of lung inflammation and host defense. Methods We used Klebsiella pneumoniae (K.p.) in a murine lung infection model to determine if pulmonary bacterial clearance is enhanced or impaired by Cu NP exposure. Two different exposure modes were tested: sub-acute inhalation (4 hr/day, 5 d/week for 2 weeks, 3.5 mg/m3) and intratracheal instillation (24 hr post-exposure, 3, 35, and 100 μg/mouse). Pulmonary responses were evaluated by lung histopathology plus measurement of differential cell counts, total protein, lactate dehydrogenase (LDH) activity, and inflammatory cytokines in bronchoalveolar lavage (BAL) fluid. Results Cu NP exposure induced inflammatory responses with increased recruitment of total cells and neutrophils to the lungs as well as increased total protein and LDH activity in BAL fluid. Both inhalation and instillation exposure to Cu NPs significantly decreased the pulmonary clearance of K.p.-exposed mice measured 24 hr after bacterial infection following Cu NP exposure versus sham-exposed mice also challenged with K.p (1.4 × 105 bacteria/mouse). Conclusions Cu NP exposure impaired host defense against bacterial lung infections and induced a dose-dependent decrease in bacterial clearance in which even our lowest dose demonstrated significantly lower clearance than observed in sham-exposed mice. Thus, exposure to Cu NPs may increase the risk of pulmonary infection. PMID:21943386

  11. Endogenous biosynthesis of thromboxane and prostacyclin in 2 distinct murine models of atherosclerosis.

    PubMed

    Praticò, D; Cyrus, T; Li, H; FitzGerald, G A

    2000-12-01

    Thromboxane A(2) is a potent vasoconstrictor and platelet agonist; prostacyclin is a potent platelet inhibitor and vasodilator. Altered biosynthesis of these eicosanoids is a feature of human hypercholesterolemia and atherosclerosis. This study examined whether in 2 murine models of atherosclerosis their levels are increased and correlated with the evolution of the disease. Urinary 2,3-dinor thromboxane B(2) and 2,3-dinor-6-keto prostaglandin F(1 alpha), metabolites of thromboxane and prostacyclin, respectively, were assayed in apoliprotein E (apoE)-deficient mice on chow and low-density lipoprotein receptor (LDLR)-deficient mice on chow and a Western-type diet. Atherosclerosis lesion area was measured by en face method. Both eicosanoids increased in apoE-deficient mice on chow and in LDLR-deficient mice on a high-fat diet, but not in LDLR-deficient mice on chow by the end of the study. Aspirin suppressed ex vivo platelet aggregation, serum thromboxane B(2), and 2,3-dinor thromboxane B(2), and significantly reduced the excretion of 2,3-dinor-6-keto prostaglandin F(1 alpha) in these animals. This study demonstrates that thromboxane as well as prostacyclin biosynthesis is increased in 2 murine models of atherogenesis and is secondary to increased in vivo platelet activation. Assessment of their generation in these models may afford the basis for future studies on the functional role of these eicosanoids in the evolution and progression of atherosclerosis. (Blood. 2000;96:3823-3826)

  12. Toxicity assessment of zinc oxide nanoparticles using sub-acute and sub-chronic murine inhalation models

    PubMed Central

    2014-01-01

    Background Although ZnO nanoparticles (NPs) are used in many commercial products and the potential for human exposure is increasing, few in vivo studies have addressed their possible toxic effects after inhalation. We sought to determine whether ZnO NPs induce pulmonary toxicity in mice following sub-acute or sub-chronic inhalation exposure to realistic exposure doses. Methods Mice (C57Bl/6) were exposed to well-characterized ZnO NPs (3.5 mg/m3, 4 hr/day) for 2 (sub-acute) or 13 (sub-chronic) weeks and necropsied immediately (0 wk) or 3 weeks (3 wks) post exposure. Toxicity was assessed by enumeration of total and differential cells, determination of total protein, lactate dehydrogenase activity and inflammatory cytokines in bronchoalveolar lavage (BAL) fluid as well as measurements of pulmonary mechanics. Generation of reactive oxygen species was assessed in the lungs. Lungs were evaluated for histopathologic changes and Zn content. Zn concentration in blood, liver, kidney, spleen, heart, brain and BAL fluid was measured. Results An elevated concentration of Zn2+ was detected in BAL fluid immediately after exposures, but returned to baseline levels 3 wks post exposure. Dissolution studies showed that ZnO NPs readily dissolved in artificial lysosomal fluid (pH 4.5), but formed aggregates and precipitates in artificial interstitial fluid (pH 7.4). Sub-acute exposure to ZnO NPs caused an increase of macrophages in BAL fluid and a moderate increase in IL-12(p40) and MIP-1α, but no other inflammatory or toxic responses were observed. Following both sub-acute and sub-chronic exposures, pulmonary mechanics were no different than sham-exposed animals. Conclusions Our ZnO NP inhalation studies showed minimal pulmonary inflammation, cytotoxicity or lung histopathologic changes. An elevated concentration of Zn in the lung and BAL fluid indicates dissolution of ZnO NPs in the respiratory system after inhalation. Exposure concentration, exposure mode and time post

  13. Comparison of the effect of dabigatran and dalteparin on thrombus stability in a murine model of venous thromboembolism.

    PubMed

    Shaya, S A; Saldanha, L J; Vaezzadeh, N; Zhou, J; Ni, R; Gross, P L

    2016-01-01

    ESSENTIALS: Does thrombus stability alter the presentation of venous thromboembolism and do anticoagulants alter this? In a murine model, we imaged a femoral vein thrombus and quantified emboli in the pulmonary arteries. Dabigatran decreases thrombus stability via factor XIII increasing embolization and pulmonary emboli. This cautions against the unapproved use of dabigatran for acute initial treatment of deep vein thrombosis. Venous thromboembolism (VTE) is a collective term for deep vein thrombosis (DVT) and pulmonary embolism (PE). Thrombus instability possibly contributes to progression of DVT to PE, and direct thrombin inhibitors (DTIs) may alter this. To develop a model to assess thrombus stability and its link to PE burden, and identify whether DTIs, in contrast to low-molecular-weight heparin (LMWH), alter this correlation. Twelve minutes after ferric chloride-induced thrombus formation in the femoral vein of female mice, saline, dalteparin (LMWH) or dabigatran (DTI) was administered. Thrombus size and embolic events breaking off from the thrombus were quantified before treatment and at 10-min intervals after treatment for 2 h using intravital videomicroscopy. Lungs were stained for the presence of PE. Thrombus size was similar over time and between treatment groups. Total and large embolic events and pulmonary emboli were highest after treatment with dabigatran. Variations in amounts of pulmonary embolic events were not attributed to variations in thrombus size. Large embolic events correlated with the number of emboli per lung slice independent of treatment. Embolization in factor XIII deficient (FXIII(-/-) ) saline-treated mice was greater than that in wild-type (WT) saline-treated mice, but was similar to WT dabigatran-treated mice. We have developed a mouse model of VTE that can quantify emboli and correlate this with PE burden. Consistent with clinical data, dabigatran, a DTI, acutely decreases thrombus stability and increases PE burden compared with

  14. A MURINE MODEL FOR LOW MOLECULAR WEIGHT CHEMICALS: DIFFERENTIATION OF RESPIRATORY SENSITIZERS (TMA) FROM CONTACT SENSITIZERS (DNFB)

    EPA Science Inventory

    Exposure to low molecular weight (LMW) chemicals contributes to both dermal and respiratory sensitization and is an important occupational health problem. Our goal was to establish an in vivo murine model for hazard identification of LMW chemicals that have the potential to indu...

  15. Lin28b is sufficient to drive liver cancer and necessary for its maintenance in murine models

    PubMed Central

    Nguyen, Liem H.; Robinton, Daisy A.; Seligson, Marc; Wu, Linwei; Li, Lin; Rakheja, Dinesh; Comerford, Sarah; Ramezani, Saleh; Sun, Xiankai; Parikh, Monisha; Yang, Erin; Powers, John T.; Shinoda, Gen; Shah, Samar; Hammer, Robert; Daley, George Q.; Zhu, Hao

    2014-01-01

    SUMMARY Lin28a/b are RNA-binding proteins that influence stem cell maintenance, metabolism, and oncogenesis. Poorly differentiated, aggressive cancers often overexpress Lin28, but its role in tumor initiation or maintenance has not been definitively addressed. We report that LIN28B overexpression is sufficient to initiate hepatoblastoma and hepatocellular carcinoma in murine models. We also detected Lin28b overexpression in MYC-driven hepatoblastomas, and liver-specific deletion of Lin28a/b reduced tumor burden, extended latency, and prolonged survival. Both intravenous siRNA against Lin28b and conditional Lin28b deletion reduced tumor burden and prolonged survival. Igf2bp proteins are upregulated and Igf2bp3 is required in the context of LIN28B overexpression to promote growth. Thus, multiple murine models demonstrate that Lin28b is both sufficient to initiate liver cancer and necessary for its maintenance. PMID:25117712

  16. Ube3a reinstatement identifies distinct developmental windows in a murine Angelman syndrome model

    PubMed Central

    Silva-Santos, Sara; van Woerden, Geeske M.; Bruinsma, Caroline F.; Mientjes, Edwin; Jolfaei, Mehrnoush Aghadavoud; Distel, Ben; Kushner, Steven A.; Elgersma, Ype

    2015-01-01

    Angelman syndrome (AS) is a severe neurodevelopmental disorder that results from loss of function of the maternal ubiquitin protein ligase E3A (UBE3A) allele. Due to neuron-specific imprinting, the paternal UBE3A copy is silenced. Previous studies in murine models have demonstrated that strategies to activate the paternal Ube3a allele are feasible; however, a recent study showed that pharmacological Ube3a gene reactivation in adulthood failed to rescue the majority of neurocognitive phenotypes in a murine AS model. Here, we performed a systematic study to investigate the possibility that neurocognitive rescue can be achieved by reinstating Ube3a during earlier neurodevelopmental windows. We developed an AS model that allows for temporally controlled Cre-dependent induction of the maternal Ube3a allele and determined that there are distinct neurodevelopmental windows during which Ube3a restoration can rescue AS-relevant phenotypes. Motor deficits were rescued by Ube3a reinstatement in adolescent mice, whereas anxiety, repetitive behavior, and epilepsy were only rescued when Ube3a was reinstated during early development. In contrast, hippocampal synaptic plasticity could be restored at any age. Together, these findings suggest that Ube3a reinstatement early in development may be necessary to prevent or rescue most AS-associated phenotypes and should be considered in future clinical trial design. PMID:25866966

  17. Expression of the protein serum amyloid A in response to Aspergillus fumigatus in murine models of allergic airway inflammation.

    PubMed

    Moran, Gabriel; Carcamo, Carolina; Concha, Margarita; Folch, Hugo

    2015-01-01

    Serum amyloid A (SAA) is an acute phase protein that is elevated in blood during inflammation. The role of this protein in allergic diseases of airways remains unclear. The objective of this study was to evaluate the SAA in blood, lung and bronchial cells in a murine model of bronchial hypersensitivity to Aspergillus fumigatus. To achieve this purpose, different groups of 5-month-old mice were housed in cages containing hay bedding that was contaminated with A. fumigatus and were kept in an isolation room for 16 days to allow for the induction of allergic airway inflammation. Subsequently, the mice were then exposed once again to Aspergillus spores at 0, 2, 8, 24 and 72 h, and they were bled to acquire serum and sacrificed to obtain bronchoalveolar lavage fluid (BALF) or lung tissues for analysis. SAA levels were measured in lung, serum and BALF by dot blot assay and RT-PCR (reverse transcription polymerase chain reaction). The results indicated that SAA protein levels increased in both serum and lung within 2-24h after mice were exposed to Aspergillus spores. Moreover, the SAA mRNA expression levels in the lungs and BALF cells demonstrated the same trend that was observed for the protein levels through the dot blot assay; in particular, SAA mRNA levels increased within the first hour after mice were exposed to A. fumigatus. In this allergic airway model, we conclude that A. fumigatus can induce an acute inflammatory response in the airways through the stimulation of the SAA protein, increasing its levels in serum, lung tissue and BALF samples during the early hours of exposure of mice that have been sensitised for this fungus. Copyright © 2012 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  18. Differential acute and chronic effects of burn trauma on murine skeletal muscle bioenergetics

    PubMed Central

    Porter, Craig; Herndon, David N.; Bhattarai, Nisha; Ogunbileje, John O.; Szczesny, Bartosz; Szabo, Csaba; Toliver-Kinsky, Tracy; Sidossis, Labros S.

    2015-01-01

    Altered skeletal muscle mitochondrial function contributes to the pathophysiological stress response to burns. However, the acute and chronic impact of burn trauma on skeletal muscle bioenergetics remains poorly understood. Here, we determined the temporal relationship between burn trauma and mitochondrial function in murine skeletal muscle local to and distal from burn wounds. Male BALB/c mice (8–10 weeks old) were burned by submersion of the dorsum in water (~95°C) to create a full thickness burn on ~30% of the body. Skeletal muscle was harvested from spinotrapezius underneath burn wounds (local) and the quadriceps (distal) of sham and burn treated mice at 3h, 24h, 4d and 10d post-injury. Mitochondrial respiration was determined in permeabilized myofiber bundles by high-resolution respirometry. Caspase 9 and caspase 3 protein concentration were determined by western blot. In muscle local to burn wounds, respiration coupled to ATP production was significantly diminished at 3h and 24h post-injury (P<0.001), as was mitochondrial coupling control (P<0.001). There was a 5- (P<0.05) and 8-fold (P<0.001) increase in respiration in response to cytochrome at 3h and 24h post burn, indicating damage to the outer mitochondrial membranes. Moreover, we also observed greater active caspase 9 and caspase 3 in muscle local to burn wounds, indicating the induction of apoptosis. Distal muscle mitochondrial function was unaltered by burn trauma until 10d post burn, where both respiratory capacity (P<0.05) and coupling control (P<0.05) was significantly lower than sham. These data highlight a differential response in muscle mitochondrial function to burn trauma, where the timing, degree and mode of dysfunction are dependent on whether the muscle is local or distal to the burn wound. PMID:26615714

  19. Testing the Role of p21 Activated Kinases in Schwannoma Formation Using a Novel Genetically Engineered Murine Model that Closely Phenocopies Human NF2 Disease

    DTIC Science & Technology

    2017-06-01

    Kinases in Schwannoma Formation Using a Novel Genetically Engineered Murine Model that Closely Phenocopies Human NF2 Disease The views, opinions and...Role of p21 Activated Kinases in Schwannoma Formation Using a Novel Genetically Engineered Murine Model that Closely Phenocopies Human NF2 Disease Form...NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. The major goal of this research project was to genetically and pharmacologically test the requirement of PAK

  20. Clindamycin in a murine model of toxoplasmic encephalitis.

    PubMed Central

    Hofflin, J M; Remington, J S

    1987-01-01

    We investigated the efficacy of clindamycin in a murine model of toxoplasmic encephalitis using direct intracerebral inoculation. Clindamycin reduced mortality from 40% in normal mice and 100% in cortisone-treated mice to 0% in both groups. Although we were unable to document appreciable levels of clindamycin in the brains of infected mice, the histological features of cerebral infection were markedly altered. The formation of large numbers of cysts and the intense inflammatory response seen in the brains of normal mice and the unchecked infection and tissue necrosis in the brains of cortisone-treated mice were absent in the brains of clindamycin-treated mice. Enumeration of cysts in the brains of mice 10 weeks after infection revealed a significantly lower number in the clindamycin-treated mice. Spread of infection to other organs was also decreased during clindamycin administration. These observations suggest that clindamycin may have a role in the therapy of toxoplasmic encephalitis. Images PMID:3606059

  1. Dendritic Immunotherapy Improvement for an Optimal Control Murine Model

    PubMed Central

    Chimal-Eguía, J. C.; Castillo-Montiel, E.

    2017-01-01

    Therapeutic protocols in immunotherapy are usually proposed following the intuition and experience of the therapist. In order to deduce such protocols mathematical modeling, optimal control and simulations are used instead of the therapist's experience. Clinical efficacy of dendritic cell (DC) vaccines to cancer treatment is still unclear, since dendritic cells face several obstacles in the host environment, such as immunosuppression and poor transference to the lymph nodes reducing the vaccine effect. In view of that, we have created a mathematical murine model to measure the effects of dendritic cell injections admitting such obstacles. In addition, the model considers a therapy given by bolus injections of small duration as opposed to a continual dose. Doses timing defines the therapeutic protocols, which in turn are improved to minimize the tumor mass by an optimal control algorithm. We intend to supplement therapist's experience and intuition in the protocol's implementation. Experimental results made on mice infected with melanoma with and without therapy agree with the model. It is shown that the dendritic cells' percentage that manages to reach the lymph nodes has a crucial impact on the therapy outcome. This suggests that efforts in finding better methods to deliver DC vaccines should be pursued. PMID:28912828

  2. A Neonatal Murine Model of Coxsackievirus A6 Infection for Evaluation of Antiviral and Vaccine Efficacy

    PubMed Central

    Zhang, Zhenjie; Dong, Zhaopeng; Wei, Qingjuan; Carr, Michael J.; Li, Juan; Ding, Shujun; Tong, Yigang

    2017-01-01

    ABSTRACT Hand, foot, and mouth disease (HFMD) is a global health concern. Family Picornaviridae members, particularly enterovirus A71 (EVA71) and coxsackievirus A16 (CVA16), are the primary etiological agents of HFMD; however, a third enterovirus A species, CVA6, has been recently associated with epidemic outbreaks. Study of the pathogenesis of CVA6 infection and development of antivirals and vaccines are hindered by a lack of appropriate animal models. We have developed and characterized a murine model of CVA6 infection that was employed to evaluate the antiviral activities of different drugs and the protective efficacies of CVA6-inactivated vaccines. Neonatal mice were susceptible to CVA6 infection via intramuscular inoculation, and the susceptibility of mice to CVA6 infection was age and dose dependent. Five-day-old mice infected with 105.5 50% tissue culture infective doses of the CVA6 WF057R strain consistently exhibited clinical signs, including reduced mobility, lower weight gain, and quadriplegia with significant pathology in the brain, hind limb skeletal muscles, and lungs of the infected mice in the moribund state. Immunohistochemical analysis and quantitative reverse transcription-PCR (qRT-PCR) analyses showed high viral loads (11 log10/mg) in skeletal muscle, and elevated levels of interleukin-6 (IL-6; >2,000 pg/ml) were associated with severe viral pneumonia and encephalitis. Ribavirin and gamma interferon administered prophylactically diminished CVA6-associated pathology in vivo, and treatment with IL-6 accelerated the death of neonatal mice. Both specific anti-CVA6 serum and maternal antibody play important roles in controlling CVA6 infection and viral replication. Collectively, these findings indicate that this neonatal murine model will be invaluable in future studies to develop CVA6-specific antivirals and vaccines. IMPORTANCE Although coxsackievirus A6 (CVA6) infections are commonly mild and self-limiting, a small proportion of children may have

  3. A Neonatal Murine Model of Coxsackievirus A6 Infection for Evaluation of Antiviral and Vaccine Efficacy.

    PubMed

    Zhang, Zhenjie; Dong, Zhaopeng; Wei, Qingjuan; Carr, Michael J; Li, Juan; Ding, Shujun; Tong, Yigang; Li, Dong; Shi, Weifeng

    2017-05-01

    Hand, foot, and mouth disease (HFMD) is a global health concern. Family Picornaviridae members, particularly enterovirus A71 (EVA71) and coxsackievirus A16 (CVA16), are the primary etiological agents of HFMD; however, a third enterovirus A species, CVA6, has been recently associated with epidemic outbreaks. Study of the pathogenesis of CVA6 infection and development of antivirals and vaccines are hindered by a lack of appropriate animal models. We have developed and characterized a murine model of CVA6 infection that was employed to evaluate the antiviral activities of different drugs and the protective efficacies of CVA6-inactivated vaccines. Neonatal mice were susceptible to CVA6 infection via intramuscular inoculation, and the susceptibility of mice to CVA6 infection was age and dose dependent. Five-day-old mice infected with 10 5.5 50% tissue culture infective doses of the CVA6 WF057R strain consistently exhibited clinical signs, including reduced mobility, lower weight gain, and quadriplegia with significant pathology in the brain, hind limb skeletal muscles, and lungs of the infected mice in the moribund state. Immunohistochemical analysis and quantitative reverse transcription-PCR (qRT-PCR) analyses showed high viral loads (11 log 10 /mg) in skeletal muscle, and elevated levels of interleukin-6 (IL-6; >2,000 pg/ml) were associated with severe viral pneumonia and encephalitis. Ribavirin and gamma interferon administered prophylactically diminished CVA6-associated pathology in vivo , and treatment with IL-6 accelerated the death of neonatal mice. Both specific anti-CVA6 serum and maternal antibody play important roles in controlling CVA6 infection and viral replication. Collectively, these findings indicate that this neonatal murine model will be invaluable in future studies to develop CVA6-specific antivirals and vaccines. IMPORTANCE Although coxsackievirus A6 (CVA6) infections are commonly mild and self-limiting, a small proportion of children may have

  4. Temporal profile of inflammatory response to fracture and hemorrhagic shock: Proposal of a novel long-term survival murine multiple trauma model.

    PubMed

    Kleber, Christian; Becker, Christopher A; Malysch, Tom; Reinhold, Jens M; Tsitsilonis, Serafeim; Duda, Georg N; Schmidt-Bleek, Katharina; Schaser, Klaus D

    2015-07-01

    Hemorrhagic shock (hS) interacts with the posttraumatic immune response and fracture healing in multiple trauma. Due to the lack of a long-term survival multiple trauma animal models, no standardized analysis of fracture healing referring the impact of multiple trauma on fracture healing was performed. We propose a new long-term survival (21 days) murine multiple trauma model combining hS (microsurgical cannulation of carotid artery, withdrawl of blood and continuously blood pressure measurement), femoral (osteotomy/external fixation) and tibial fracture (3-point bending technique/antegrade nail). The posttraumatic immune response was measured via IL-6, sIL-6R ELISA. The hS was investigated via macrohemodynamics, blood gas analysis, wet-dry lung ration and histologic analysis of the shock organs. We proposed a new murine long-term survival (21 days) multiple trauma model mimicking clinical relevant injury patterns and previously published human posttraumatic immune response. Based on blood gas analysis and histologic analysis of shock organs we characterized and standardized our murine multiple trauma model. Furthermore, we revealed hemorrhagic shock as a causative factor that triggers sIL-6R formation underscoring the fundamental pathophysiologic role of the transsignaling mechanism in multiple trauma. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  5. Miniature Microwave Applicator for Murine Bladder Hyperthermia Studies

    PubMed Central

    Salahi, Sara; Maccarini, Paolo F.; Rodrigues, Dario B.; Etienne, Wiguins; Landon, Chelsea D.; Inman, Brant A.; Dewhirst, Mark W.; Stauffer, Paul R.

    2012-01-01

    Purpose Novel combinations of heat with chemotherapeutic agents are often studied in murine tumor models. Currently, no device exists to selectively heat small tumors at depth in mice. In this project, we modelled, built and tested a miniature microwave heat applicator, the physical dimensions of which can be scaled to adjust the volume and depth of heating to focus on the tumor volume. Of particular interest is a device that can selectively heat murine bladder. Materials and Methods Using Avizo® segmentation software, we created a numerical mouse model based on micro-MRI scan data. The model was imported into HFSS™ simulation software and parametric studies were performed to optimize the dimensions of a water-loaded circular waveguide for selective power deposition inside a 0.15ml bladder. A working prototype was constructed operating at 2.45GHz. Heating performance was characterized by mapping fiber-optic temperature sensors along catheters inserted at depths of 0-1mm (subcutaneous), 2-3mm (vaginal), and 4-5mm (rectal) below the abdominal wall, with the mid-depth catheter adjacent to the bladder. Core temperature was monitored orally. Results Thermal measurements confirm the simulations which demonstrate that this applicator can provide local heating at depth in small animals. Measured temperatures in murine pelvis show well-localized bladder heating to 42-43°C while maintaining normothermic skin and core temperatures. Conclusions Simulation techniques facilitate the design optimization of microwave antennas for use in pre-clinical applications such as localized tumor heating in small animals. Laboratory measurements demonstrate the effectiveness of a new miniature water-coupled microwave applicator for localized heating of murine bladder. PMID:22690856

  6. Miniature microwave applicator for murine bladder hyperthermia studies.

    PubMed

    Salahi, Sara; Maccarini, Paolo F; Rodrigues, Dario B; Etienne, Wiguins; Landon, Chelsea D; Inman, Brant A; Dewhirst, Mark W; Stauffer, Paul R

    2012-01-01

    Novel combinations of heat with chemotherapeutic agents are often studied in murine tumour models. Currently, no device exists to selectively heat small tumours at depth in mice. In this project we modelled, built and tested a miniature microwave heat applicator, the physical dimensions of which can be scaled to adjust the volume and depth of heating to focus on the tumour volume. Of particular interest is a device that can selectively heat murine bladder. Using Avizo(®) segmentation software, we created a numerical mouse model based on micro-MRI scan data. The model was imported into HFSS™ (Ansys) simulation software and parametric studies were performed to optimise the dimensions of a water-loaded circular waveguide for selective power deposition inside a 0.15 mL bladder. A working prototype was constructed operating at 2.45 GHz. Heating performance was characterised by mapping fibre-optic temperature sensors along catheters inserted at depths of 0-1 mm (subcutaneous), 2-3 mm (vaginal), and 4-5 mm (rectal) below the abdominal wall, with the mid depth catheter adjacent to the bladder. Core temperature was monitored orally. Thermal measurements confirm the simulations which demonstrate that this applicator can provide local heating at depth in small animals. Measured temperatures in murine pelvis show well-localised bladder heating to 42-43°C while maintaining normothermic skin and core temperatures. Simulation techniques facilitate the design optimisation of microwave antennas for use in pre-clinical applications such as localised tumour heating in small animals. Laboratory measurements demonstrate the effectiveness of a new miniature water-coupled microwave applicator for localised heating of murine bladder.

  7. A panel of Trypanosoma brucei strains tagged with blue and red-shifted luciferases for bioluminescent imaging in murine infection models.

    PubMed

    Van Reet, Nick; Van de Vyver, Hélène; Pyana, Patient Pati; Van der Linden, Anne Marie; Büscher, Philippe

    2014-08-01

    Genetic engineering with luciferase reporter genes allows monitoring Trypanosoma brucei (T.b.) infections in mice by in vivo bioluminescence imaging (BLI). Until recently, luminescent T.b. models were based on Renilla luciferase (RLuc) activity. Our study aimed at evaluating red-shifted luciferases for in vivo BLI in a set of diverse T.b. strains of all three subspecies, including some recently isolated from human patients. We transfected T.b. brucei, T.b. rhodesiense and T.b. gambiense strains with either RLuc, click beetle red (CBR) or Photinus pyralis RE9 (PpyRE9) luciferase and characterised their in vitro luciferase activity, growth profile and drug sensitivity, and their potential for in vivo BLI. Compared to RLuc, the red-shifted luciferases, CBR and PpyRE9, allow tracking of T.b. brucei AnTaR 1 trypanosomes with higher details on tissue distribution, and PpyRE9 allows detection of the parasites with a sensitivity of at least one order of magnitude higher than CBR luciferase. With CBR-tagged T.b. gambiense LiTaR1, T.b. rhodesiense RUMPHI and T.b. gambiense 348 BT in an acute, subacute and chronic infection model respectively, we observed differences in parasite tropism for murine tissues during in vivo BLI. Ex vivo BLI on the brain confirmed central nervous system infection by all luminescent strains of T.b. brucei AnTaR 1, T.b. rhodesiense RUMPHI and T.b. gambiense 348 BT. We established a genetically and phenotypically diverse collection of bioluminescent T.b. brucei, T.b. gambiense and T.b. rhodesiense strains, including drug resistant strains. For in vivo BLI monitoring of murine infections, we recommend trypanosome strains transfected with red-shifted luciferase reporter genes, such as CBR and PpyRE9. Red-shifted luciferases can be detected with a higher sensitivity in vivo and at the same time they improve the spatial resolution of the parasites in the entire body due to the better kinetics of their substrate D-luciferin.

  8. A Panel of Trypanosoma brucei Strains Tagged with Blue and Red-Shifted Luciferases for Bioluminescent Imaging in Murine Infection Models

    PubMed Central

    Van Reet, Nick; Van de Vyver, Hélène; Pyana, Patient Pati; Van der Linden, Anne Marie; Büscher, Philippe

    2014-01-01

    Background Genetic engineering with luciferase reporter genes allows monitoring Trypanosoma brucei (T.b.) infections in mice by in vivo bioluminescence imaging (BLI). Until recently, luminescent T.b. models were based on Renilla luciferase (RLuc) activity. Our study aimed at evaluating red-shifted luciferases for in vivo BLI in a set of diverse T.b. strains of all three subspecies, including some recently isolated from human patients. Methodology/Principal findings We transfected T.b. brucei, T.b. rhodesiense and T.b. gambiense strains with either RLuc, click beetle red (CBR) or Photinus pyralis RE9 (PpyRE9) luciferase and characterised their in vitro luciferase activity, growth profile and drug sensitivity, and their potential for in vivo BLI. Compared to RLuc, the red-shifted luciferases, CBR and PpyRE9, allow tracking of T.b. brucei AnTaR 1 trypanosomes with higher details on tissue distribution, and PpyRE9 allows detection of the parasites with a sensitivity of at least one order of magnitude higher than CBR luciferase. With CBR-tagged T.b. gambiense LiTaR1, T.b. rhodesiense RUMPHI and T.b. gambiense 348 BT in an acute, subacute and chronic infection model respectively, we observed differences in parasite tropism for murine tissues during in vivo BLI. Ex vivo BLI on the brain confirmed central nervous system infection by all luminescent strains of T.b. brucei AnTaR 1, T.b. rhodesiense RUMPHI and T.b. gambiense 348 BT. Conclusions/Significance We established a genetically and phenotypically diverse collection of bioluminescent T.b. brucei, T.b. gambiense and T.b. rhodesiense strains, including drug resistant strains. For in vivo BLI monitoring of murine infections, we recommend trypanosome strains transfected with red-shifted luciferase reporter genes, such as CBR and PpyRE9. Red-shifted luciferases can be detected with a higher sensitivity in vivo and at the same time they improve the spatial resolution of the parasites in the entire body due to the better

  9. Correlation of Klebsiella pneumoniae Comparative Genetic Analyses with Virulence Profiles in a Murine Respiratory Disease Model

    PubMed Central

    Tam, Hok-Hei; Yan, Pearlly; Pfeffer, Tia L.; Bundschuh, Ralf; Warawa, Jonathan M.

    2014-01-01

    Klebsiella pneumoniae is a bacterial pathogen of worldwide importance and a significant contributor to multiple disease presentations associated with both nosocomial and community acquired disease. ATCC 43816 is a well-studied K. pneumoniae strain which is capable of causing an acute respiratory disease in surrogate animal models. In this study, we performed sequencing of the ATCC 43816 genome to support future efforts characterizing genetic elements required for disease. Furthermore, we performed comparative genetic analyses to the previously sequenced genomes from NTUH-K2044 and MGH 78578 to gain an understanding of the conservation of known virulence determinants amongst the three strains. We found that ATCC 43816 and NTUH-K2044 both possess the known virulence determinant for yersiniabactin, as well as a Type 4 secretion system (T4SS), CRISPR system, and an acetonin catabolism locus, all absent from MGH 78578. While both NTUH-K2044 and MGH 78578 are clinical isolates, little is known about the disease potential of these strains in cell culture and animal models. Thus, we also performed functional analyses in the murine macrophage cell lines RAW264.7 and J774A.1 and found that MGH 78578 (K52 serotype) was internalized at higher levels than ATCC 43816 (K2) and NTUH-K2044 (K1), consistent with previous characterization of the antiphagocytic properties of K1 and K2 serotype capsules. We also examined the three K. pneumoniae strains in a novel BALB/c respiratory disease model and found that ATCC 43816 and NTUH-K2044 are highly virulent (LD50<100 CFU) while MGH 78578 is relatively avirulent. PMID:25203254

  10. In vitro and in vivo effects of CpG-Oligodeoxynucleotides (CpG-ODN) on murine transitional cell carcinoma and on the native murine urinary bladder wall.

    PubMed

    Olbert, Peter Jochen; Schrader, Andres Jan; Simon, Corinna; Dalpke, Alexander; Barth, Peter; Hofmann, Rainer; Hegele, Axel

    2009-06-01

    Intravesical BCG instillation is established and efficient in the prophylaxis of recurrent transitional cell carcinoma. A Th-1 biased immune response is postulated. Recent work has proven the efficacy of synthetic CpG-Oligodeoxynucleotides (ODN) as inducers and adjuvants for a strong Th1-response and there is evidence for a direct and/or adjuvant anti-neoplastic effect. The purpose of this study was to examine the local effects of CpG-ODN on the murine bladder wall after intravesical instillation and the effects on cytokine expression in an orthotopic murine bladder cancer model. Histopathology, immunohistochemistry and fluorescence microscopy were performed after different instillation schedules of stimulatory, non-stimulatory biotinylized and FITC-labelled CpG-ODN into the murine bladder. MB-49 murine bladder cancer cells were tested for TLR-9 expression to exclude a potential direct responsiveness to CpG-ODN. Furthermore induction of apoptosis was tested by annexin V staining and FACS analysis of CpG-ODN stimulated tumor cells. In an orthotopic C57/Bl6 murine bladder cancer model, the expressions of IL-12, IFNgamma, IL-10 and TGF-beta were evaluated after repeated CpG-ODN treatment. Single and repeated instillation of CpG-ODN induced subepithelial and urothelial lymphocytic infiltrations with consecutive apoptoses. PBS and non-stimulative ODN induced no visible reaction. Bladder submucosa stained positive for biotin. Controls showed no endogenic biotin staining. FITC-labelled ODN adhered to the bladder mucosa and penetration of the mucosal barrier was not detected. MB-49 TCC cells did not express TLR-9 and CpG-ODN did not induce apoptosis in these cells. Repeated intravesical instillations of CpG-ODN in orthotopic murine tumor bearing urinary bladders resulted in significant up-regulation of both Th-1 and Th-2 cytokines. CpG-ODNs have promising anti-neoplastic potential. They exert a pronounced immunological response both in the native murine urinary bladder and

  11. Murine models of atrophy, cachexia, and sarcopenia in skeletal muscle

    PubMed Central

    Romanick, Mark; Brown-Borg, Holly M.

    2013-01-01

    With the extension of life span over the past several decades, the age-related loss of muscle mass and strength that characterizes sarcopenia is becoming more evident and thus, has a more significant impact on society. To determine ways to intervene and delay, or even arrest the physical frailty and dependence that accompany sarcopenia, it is necessary to identify those biochemical pathways that define this process. Animal models that mimic one or more of the physiological pathways involved with this phenomenon are very beneficial in providing an understanding of the cellular processes at work in sarcopenia. The ability to influence pathways through genetic manipulation gives insight into cellular responses and their impact on the physical expression of sarcopenia. This review evaluates several murine models that have the potential to elucidate biochemical processes integral to sarcopenia. Identifying animal models that reflect sarcopenia or its component pathways will enable researchers to better understand those pathways that contribute to age-related skeletal muscle mass loss, and in turn, develop interventions that will prevent, retard, arrest, or reverse this phenomenon. PMID:23523469

  12. Role of CXCR4-mediated bone marrow colonization in CNS infiltration by T cell acute lymphoblastic leukemia.

    PubMed

    Jost, Tanja Rezzonico; Borga, Chiara; Radaelli, Enrico; Romagnani, Andrea; Perruzza, Lisa; Omodho, Lorna; Cazzaniga, Giovanni; Biondi, Andrea; Indraccolo, Stefano; Thelen, Marcus; Te Kronnie, Geertruy; Grassi, Fabio

    2016-06-01

    Infiltration of the central nervous system is a severe trait of T cell acute lymphoblastic leukemia. Inhibition of CXC chemokine receptor 4 significantly ameliorates T cell acute lymphoblastic leukemia in murine models of the disease; however, signaling by CXC chemokine receptor 4 is important in limiting the divagation of peripheral blood mononuclear cells out of the perivascular space into the central nervous system parenchyma. Therefore, Inhibition of CXC chemokine receptor 4 potentially may untangle T cell acute lymphoblastic leukemia cells from retention outside the brain. Here, we show that leukemic lymphoblasts massively infiltrate cranial bone marrow, with diffusion to the meninges without invasion of the brain parenchyma, in mice that underwent xenotransplantation with human T cell acute lymphoblastic leukemia cells or that developed leukemia from transformed hematopoietic progenitors. We tested the hypothesis that T cell acute lymphoblastic leukemia neuropathology results from meningeal infiltration through CXC chemokine receptor 4-mediated bone marrow colonization. Inhibition of leukemia engraftment in the bone marrow by pharmacologic CXC chemokine receptor 4 antagonism significantly ameliorated neuropathologic aspects of the disease. Genetic deletion of CXCR4 in murine hematopoietic progenitors abrogated leukemogenesis induced by constitutively active Notch1, whereas lack of CCR6 and CCR7, which have been shown to be involved in T cell and leukemia extravasation into the central nervous system, respectively, did not influence T cell acute lymphoblastic leukemia development. We hypothesize that lymphoblastic meningeal infiltration as a result of bone marrow colonization is responsible for the degenerative alterations of the neuroparenchyma as well as the alteration of cerebrospinal fluid drainage in T cell acute lymphoblastic leukemia xenografts. Therefore, CXC chemokine receptor 4 may constitute a pharmacologic target for T cell acute lymphoblastic

  13. In Vivo Pharmacodynamic Target Assessment of Eravacycline against Escherichia coli in a Murine Thigh Infection Model.

    PubMed

    Zhao, Miao; Lepak, Alexander J; Marchillo, Karen; VanHecker, Jamie; Andes, David R

    2017-07-01

    Eravacycline is a novel fluorocycline antibiotic with potent activity against a broad range of pathogens, including strains with tetracycline and other drug resistance phenotypes. The goal of the studies was to determine which pharmacokinetic/pharmacodynamic (PK/PD) parameter and magnitude best correlated with efficacy in the murine thigh infection model. Six Escherichia coli isolates were utilized for the studies. MICs were determined using CLSI methods and ranged from 0.125 to 0.25 mg/liter. A neutropenic murine thigh infection model was utilized for all treatment studies. Single-dose plasma pharmacokinetics were determined in mice after administration of 2.5, 5, 10, 20, 40, and 80 mg/kg of body weight. Pharmacokinetic studies exhibited maximum plasma concentration ( C max ) values of 0.34 to 2.58 mg/liter, area under the concentration-time curve (AUC) from time zero to infinity (AUC 0-∞ ) values of 2.44 to 57.6 mg · h/liter, and elimination half-lives of 3.9 to 17.6 h. Dose fractionation studies were performed using total drug doses of 6.25 mg/kg to 100 mg/kg fractionated into 6-, 8-, 12-, or 24-h regimens. Nonlinear regression analysis demonstrated that the 24-h free drug AUC/MIC ( f AUC/MIC) was the PK/PD parameter that best correlated with efficacy ( R 2 = 0.80). In subsequent studies, we used the neutropenic murine thigh infection model to determine if the magnitude of the AUC/MIC needed for the efficacy of eravacycline varied among pathogens. Mice were treated with 2-fold increasing doses (range, 3.125 to 50 mg/kg) of eravacycline every 12 h. The mean f AUC/MIC magnitudes associated with the net stasis and the 1-log-kill endpoints were 27.97 ± 8.29 and 32.60 ± 10.85, respectively. Copyright © 2017 American Society for Microbiology.

  14. Immunotoxicity and allergic potential induced by topical application of dimethyl carbonate (DMC) in a murine model

    PubMed Central

    Anderson, Stacey E.; Franko, Jennifer; Anderson, Katie L.; Munson, Albert E.; Lukomska, Ewa; Meade, B. Jean

    2015-01-01

    Dimethyl carbonate (DMC) is an industrial chemical, used as a paint and adhesive solvent, with the potential for significant increases in production. Using select immune function assays, the purpose of these studies was to evaluate the immunotoxicity of DMC following dermal exposure using a murine model. Following a 28-day exposure, DMC produced a significant decrease in thymus weight at concentrations of 75% and greater. No effects on body weight, hematological parameters (erythrocytes, leukocytes, and their differentials), or immune cell phenotyping (B-cells, T-cells, and T-cell sub-sets) were identified. The IgM antibody response to sheep red blood cell (SRBC) was significantly reduced in the spleen but not the serum. DMC was not identified to be an irritant and evaluation of the sensitization potential, conducted using the local lymph node assay (LLNA) at concentrations ranging from 50–100%, did not identify increases in lymphocyte proliferation. These results demonstrate that dermal exposure to DMC induces immune suppression in a murine model and raise concern about potential human exposure and the need for occupational exposure regulations. PMID:22953780

  15. Peptidylarginine deiminase inhibition reduces vascular damage and modulates innate immune responses in murine models of atherosclerosis.

    PubMed

    Knight, Jason S; Luo, Wei; O'Dell, Alexander A; Yalavarthi, Srilakshmi; Zhao, Wenpu; Subramanian, Venkataraman; Guo, Chiao; Grenn, Robert C; Thompson, Paul R; Eitzman, Daniel T; Kaplan, Mariana J

    2014-03-14

    Neutrophil extracellular trap (NET) formation promotes vascular damage, thrombosis, and activation of interferon-α-producing plasmacytoid dendritic cells in diseased arteries. Peptidylarginine deiminase inhibition is a strategy that can decrease in vivo NET formation. To test whether peptidylarginine deiminase inhibition, a novel approach to targeting arterial disease, can reduce vascular damage and inhibit innate immune responses in murine models of atherosclerosis. Apolipoprotein-E (Apoe)(-/-) mice demonstrated enhanced NET formation, developed autoantibodies to NETs, and expressed high levels of interferon-α in diseased arteries. Apoe(-/-) mice were treated for 11 weeks with daily injections of Cl-amidine, a peptidylarginine deiminase inhibitor. Peptidylarginine deiminase inhibition blocked NET formation, reduced atherosclerotic lesion area, and delayed time to carotid artery thrombosis in a photochemical injury model. Decreases in atherosclerosis burden were accompanied by reduced recruitment of netting neutrophils and macrophages to arteries, as well as by reduced arterial interferon-α expression. Pharmacological interventions that block NET formation can reduce atherosclerosis burden and arterial thrombosis in murine systems. These results support a role for aberrant NET formation in the pathogenesis of atherosclerosis through modulation of innate immune responses.

  16. The Effects of Simulated Weightlessness on Susceptibility to Viral and Bacterial Infections Using a Murine Model

    NASA Technical Reports Server (NTRS)

    Gould, C. L.

    1985-01-01

    Certain immunological responses may be compromised as a result of changes in environmental conditions, such as the physiological adaptation to and from the weightlessness which occurs during space flight and recovery. A murine antiorthostatic model was developed to simulate weightlessness. Using this model, the proposed study will determine if differences in susceptibility to viral and bacterial infections exist among mice suspended in an antiorthostatic orientation to simulate weightlessness, mice suspended in an orthostatic orientation to provide a stressful situation without the condition of weightlessness simulation, and non-suspended control mice. Inbred mouse strains which are resistant to the diabetogenic effects of the D variant of encephalomyocarditis virus (EMC-D) and the lethal effects of Salmonella typhimurium will be evaluated. Glucose tolerance tests will be performed on all EMC-D-infected and non-infected control groups. The incidence of EMC-D-induced diabetes and the percentage survival of S. typhimurium-infected animals will be determined in each group. An additional study will determine the effects of simulated weightlessness on murine responses to exogenous interferon.

  17. Comparison of vectorial ion transport in primary murine airway and human sinonasal air-liquid interface cultures, models for studies of cystic fibrosis, and other airway diseases.

    PubMed

    Zhang, Shaoyan; Fortenberry, James A; Cohen, Noam A; Sorscher, Eric J; Woodworth, Bradford A

    2009-01-01

    The purpose of this study was to compare vectorial ion transport within murine trachea, murine nasal septa, and human sinonasal cultured epithelium. Our hypothesis is that murine septal epithelium, rather than trachea, will more closely mimic the electrophysiology properties of human sinonasal epithelium. Epithelium from murine trachea, murine septa, and human sinonasal tissue were cultured at an air-liquid interface to confluence and full differentiation. A limited number of homozygous dF508 epithelia were also cultured. Monolayers were mounted in modified Ussing chambers to investigate pharmacologic manipulation of ion transport. The change in forskolin-stimulated current (delta-I(SC), expressed as micro-A/cm(2)) in murine septal (n = 19; 16.84 +/- 2.09) and human sinonasal (n = 18; 12.15 +/- 1.93) cultures was significantly increased over murine tracheal cultures (n = 15; 6.75 +/- 1.35; p = 0.035 and 0.0005, respectively). Forskolin-stimulated I(SC) was inhibited by the specific cystic fibrosis transmembrane regulator (CFTR) inhibitor INH-172 (5 microM). No forskolin-stimulated I(SC) was shown in cultures of dF508 homozygous murine septal epithelium (n = 3). Murine septal I(SC) was largely inhibited by amiloride (12.03 +/- 0.66), whereas human sinonasal cultures had a very limited response (0.70 +/- 0.47; p < 0.0001). The contribution of CFTR to stimulated chloride current as measured by INH-172 was highly significantly different between all groups (murine septa, 19.51 +/- 1.28; human sinonasal, 11.12 +/- 1.58; murine trachea, 4.85 +/- 0.49; p < 0.0001). Human sinonasal and murine septal epithelial cultures represent a useful model for studying CFTR activity and may provide significant advantages over lower airway tissues for investigating upper and lower respiratory pathophysiology.

  18. Dynamic Tumor Growth Patterns in a Novel Murine Model of Colorectal Cancer

    PubMed Central

    Olson, Terrah J. Paul; Hadac, Jamie N.; Sievers, Chelsie K.; Leystra, Alyssa A.; Deming, Dustin A.; Zahm, Christopher D.; Albrecht, Dawn M.; Nomura, Alice; Nettekoven, Laura A.; Plesh, Lauren K.; Clipson, Linda; Sullivan, Ruth; Newton, Michael A.; Schelman, William R.; Halberg, Richard B.

    2014-01-01

    Colorectal cancer (CRC) often arises from adenomatous colonic polyps. Polyps can grow and progress to cancer, but may also remain static in size, regress, or resolve. Predicting which progress and which remain benign is difficult. We developed a novel long-lived murine model of CRC with tumors that can be followed by colonoscopy. Our aim was to assess whether these tumors have similar growth patterns and histologic fates to human colorectal polyps to identify features to aid in risk-stratification of colonic tumors. Long-lived ApcMin/+ mice were treated with dextran sodium sulfate to promote colonic tumorigenesis. Tumor growth patterns were characterized by serial colonoscopy with biopsies obtained for immunohistochemistry and gene expression profiling. Tumors grew, remained static, regressed, or resolved over time with different relative frequencies. Newly developed tumors demonstrated higher rates of growth and resolution than more established tumors that tended to remain static in size. Colonic tumors were hyperplastic lesions (3%), adenomas (73%), intramucosal carcinomas (20%), or adenocarcinomas (3%). Interestingly, the level of β-catenin was higher in adenomas that became intratumoral carcinomas as compared to those that failed to progress. In addition, differentially expressed genes between adenomas and intramucosal carcinomas were identified. This novel murine model of intestinal tumorigenesis develops colonic tumors that can be monitored by serial colonoscopy, mirror growth patterns seen in human colorectal polyps, and progress to CRC. Further characterization of cellular and molecular features are needed to determine which features can be used to risk-stratify polyps for progression to CRC and potentially guide prevention strategies. PMID:24196829

  19. Local effect of zoledronic acid on new bone formation in posterolateral spinal fusion with demineralized bone matrix in a murine model.

    PubMed

    Zwolak, Pawel; Farei-Campagna, Jan; Jentzsch, Thorsten; von Rechenberg, Brigitte; Werner, Clément M

    2018-01-01

    Posterolateral spinal fusion is a common orthopaedic surgery performed to treat degenerative and traumatic deformities of the spinal column. In posteriolateral spinal fusion, different osteoinductive demineralized bone matrix products have been previously investigated. We evaluated the effect of locally applied zoledronic acid in combination with commercially available demineralized bone matrix putty on new bone formation in posterolateral spinal fusion in a murine in vivo model. A posterolateral sacral spine fusion in murine model was used to evaluate the new bone formation. We used the sacral spine fusion model to model the clinical situation in which a bone graft or demineralized bone matrix is applied after dorsal instrumentation of the spine. In our study, group 1 received decortications only (n = 10), group 2 received decortication, and absorbable collagen sponge carrier, group 3 received decortication and absorbable collagen sponge carrier with zoledronic acid in dose 10 µg, group 4 received demineralized bone matrix putty (DBM putty) plus decortication (n = 10), and group 5 received DBM putty, decortication and locally applied zoledronic acid in dose 10 µg. Imaging was performed using MicroCT for new bone formation assessment. Also, murine spines were harvested for histopathological analysis 10 weeks after surgery. The surgery performed through midline posterior approach was reproducible. In group with decortication alone there was no new bone formation. Application of demineralized bone matrix putty alone produced new bone formation which bridged the S1-S4 laminae. Local application of zoledronic acid to demineralized bone matrix putty resulted in significant increase of new bone formation as compared to demineralized bone matrix putty group alone. A single local application of zoledronic acid with DBM putty during posterolateral fusion in sacral murine spine model increased significantly new bone formation in situ in our model. Therefore, our

  20. Preliminary characterization of a murine model for 1-bromopropane neurotoxicity: Role of cytochrome P450.

    PubMed

    Zong, Cai; Garner, C Edwin; Huang, Chinyen; Zhang, Xiao; Zhang, Lingyi; Chang, Jie; Toyokuni, Shinya; Ito, Hidenori; Kato, Masashi; Sakurai, Toshihiro; Ichihara, Sahoko; Ichihara, Gaku

    2016-09-06

    Neurotoxicity of 1-bromopropane (1-BP) has been reported in both human cases and animal studies. To date, neurotoxicity of 1-BP has been induced in rats but not in mice due to the lethal hepatotoxicity of 1-BP. Oxidization by cytochromes P450 and conjugation with glutathione (GSH) are two critical metabolism pathways of 1-BP and play important roles in toxicity of 1-BP. The aim of the present study was to establish a murine model of 1-BP neurotoxicity, by reducing the hepatotoxicity of 1-BP with 1-aminobenzotriazole (1-ABT); a commonly used nonspecific P450s inhibitor. The results showed that subcutaneous or intraperitoneal injection of 1-ABT at 50mg/kg body weight BID (100mg/kg BW/day) for 3days, inhibited about 92-96% of hepatic microsomal CYP2E1 activity, but only inhibited about 62-64% of CYP2E1 activity in brain microsomes. Mice treated with 1-ABT survived even after exposure to 1200ppm 1-BP for 4 weeks and histopathological studies showed that treatment with 1-ABT protected mice from 1-BP-induced hepatic necrosis, hepatocyte degeneration, and hemorrhage. After 4-week exposure to 1-BP, the brain weight of 1-ABT(+)/1200ppm 1-BP group was decreased significantly. In 1-ABT-treated groups, expression of hippocampal Ran protein and cerebral cortical GRP78 was dose-dependently increased by exposure to 1-BP. We conclude that the control of hepatic P450 activity allows the observation of effects of 1-BP on the murine brain at a higher concentration by reduction of hepatotoxicity. The study suggests that further experiments with liver-specific control of P450 activity using gene technology might provide better murine models for 1-bromopropane-induced neurotoxicity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Will PEDF Therapy Reverse Chronic Demyelination and Prevent Axon Loss in a Murine Model of Progressive Multiple Sclerosis

    DTIC Science & Technology

    2015-12-01

    Multiple Sclerosis ? PRINCIPAL INVESTIGATOR: David Pleasure MD CONTRACTING ORGANIZATION: University of California Davis, CA 95618 REPORT DATE...Murine Model of Progressive Multiple Sclerosis ? 5b. GRANT NUMBER W81XWH-12-1-0566 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) David Pleasure MD 5d...enhance central nervous system (CNS) remyelination and preserve CNS axons in mouse models of multiple sclerosis models. After determining the dosage of

  2. An in vitro model of murine middle ear epithelium.

    PubMed

    Mulay, Apoorva; Akram, Khondoker M; Williams, Debbie; Armes, Hannah; Russell, Catherine; Hood, Derek; Armstrong, Stuart; Stewart, James P; Brown, Steve D M; Bingle, Lynne; Bingle, Colin D

    2016-11-01

    Otitis media (OM), or middle ear inflammation, is the most common paediatric disease and leads to significant morbidity. Although understanding of underlying disease mechanisms is hampered by complex pathophysiology it is clear that epithelial abnormalities underpin the disease. There is currently a lack of a well-characterised in vitro model of the middle ear (ME) epithelium that replicates the complex cellular composition of the middle ear. Here, we report the development of a novel in vitro model of mouse middle ear epithelial cells (mMECs) at an air-liquid interface (ALI) that recapitulates the characteristics of the native murine ME epithelium. We demonstrate that mMECs undergo differentiation into the varied cell populations seen within the native middle ear. Proteomic analysis confirmed that the cultures secrete a multitude of innate defence proteins from their apical surface. We showed that the mMECs supported the growth of the otopathogen, nontypeable Haemophilus influenzae (NTHi), suggesting that the model can be successfully utilised to study host-pathogen interactions in the middle ear. Overall, our mMEC culture system can help to better understand the cell biology of the middle ear and improve our understanding of the pathophysiology of OM. The model also has the potential to serve as a platform for validation of treatments designed to reverse aspects of epithelial remodelling that underpin OM development. © 2016. Published by The Company of Biologists Ltd.

  3. Immunoproteomic profiling of Saccharomyces cerevisiae systemic infection in a murine model.

    PubMed

    Hernández-Haro, Carolina; Llopis, Silvia; Molina, María; Monteoliva, Lucía; Gil, Concha

    2015-01-01

    Saccharomyces cerevisiae is considered a safe microorganism widely used as a dietary supplement. However, in the latest decades several cases of S. cerevisiae infections have been reported. Recent studies in a murine model of systemic infection have also revealed the virulence of some S. cerevisiae dietary strains. Here we use an immunoproteomic approach based on protein separation by 2D-PAGE followed by Western-blotting to compare the serological response against a virulent dietary and a non-virulent laboratory strains leading to the identification of highly different patterns of antigenic proteins. Thirty-six proteins that elicit a serological response in mice have been identified. Most of them are involved in stress responses and metabolic pathways. Their selectivity as putative biomarkers for S. cerevisiae infections was assessed by testing sera from S. cerevisiae-infected mice against Candida albicans and C. glabrata proteins. Some chaperones and metabolic proteins showed cross-reactivity. We also compare the S. cerevisiae immunodetected proteins with previously described C. albicans antigens. The results point to the stress-related proteins Ahp1, Yhb1 and Oye2, as well as the glutamine synthetase Gln1 and the oxysosterol binding protein Kes1 as putative candidates for being evaluated as biomarkers for diagnostic assays of S. cerevisiae infections. S. cerevisiae can cause opportunistic infections, and therefore, a precise diagnosis of fungal infections is necessary. This immunoproteomic analysis of sera from a model murine infection with a virulent dietary S. cerevisiae strain has been shown to be a source of candidate proteins for being evaluated as biomarkers to develop assays for diagnosis of S. cerevisiae infections. To our knowledge, this is the first study devoted to the identification of S. cerevisiae immunogenic proteins and the results allowed the proposal of five antigens to be further investigated. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Antibody blockade of IL-17 family cytokines in immunity to acute murine oral mucosal candidiasis.

    PubMed

    Whibley, Natasha; Tritto, Elaine; Traggiai, Elisabetta; Kolbinger, Frank; Moulin, Pierre; Brees, Dominique; Coleman, Bianca M; Mamo, Anna J; Garg, Abhishek V; Jaycox, Jillian R; Siebenlist, Ulrich; Kammüller, Michael; Gaffen, Sarah L

    2016-06-01

    Antibodies targeting IL-17A or its receptor, IL-17RA, are approved to treat psoriasis and are being evaluated for other autoimmune conditions. Conversely, IL-17 signaling is critical for immunity to opportunistic mucosal infections caused by the commensal fungus Candida albicans, as mice and humans lacking the IL-17R experience chronic mucosal candidiasis. IL-17A, IL-17F, and IL-17AF bind the IL-17RA-IL-17RC heterodimeric complex and deliver qualitatively similar signals through the adaptor Act1. Here, we used a mouse model of acute oropharyngeal candidiasis to assess the impact of blocking IL-17 family cytokines compared with specific IL-17 cytokine gene knockout mice. Anti-IL-17A antibodies, which neutralize IL-17A and IL-17AF, caused elevated oral fungal loads, whereas anti-IL-17AF and anti-IL-17F antibodies did not. Notably, there was a cooperative effect of blocking IL-17A, IL-17AF, and IL-17F together. Termination of anti-IL-17A treatment was associated with rapid C. albicans clearance. IL-17F-deficient mice were fully resistant to oropharyngeal candidiasis, consistent with antibody blockade. However, IL-17A-deficient mice had lower fungal burdens than anti-IL-17A-treated mice. Act1-deficient mice were much more susceptible to oropharyngeal candidiasis than anti-IL-17A antibody-treated mice, yet anti-IL-17A and anti-IL-17RA treatment caused equivalent susceptibilities. Based on microarray analyses of the oral mucosa during infection, only a limited number of genes were associated with oropharyngeal candidiasis susceptibility. In sum, we conclude that IL-17A is the main cytokine mediator of immunity in murine oropharyngeal candidiasis, but a cooperative relationship among IL-17A, IL-17AF, and IL-17F exists in vivo. Susceptibility displays the following hierarchy: IL-17RA- or Act1-deficiency > anti-IL-17A + anti-IL-17F antibodies > anti-IL-17A or anti-IL-17RA antibodies > IL-17A deficiency. © Society for Leukocyte Biology.

  5. Characterization of CD31 expression on murine and human neonatal T lymphocytes during development and activation

    PubMed Central

    Fike, Adam J.; Nguyen, Linda T.; Kumova, Ogan K.; Carey, Alison J.

    2017-01-01

    Background CD31, expressed by the majority of the neonatal T cell pool, is involved in modulation of T-cell Receptor signalling by increasing the threshold for T cell activation. Therefore, CD31 could modulate neonatal tolerance and adaptive immune responses. Methods Lymphocytes were harvested from murine neonates at different ages, human late preterm and term cord blood, and adult peripheral blood. Human samples were activated over a five-day period to simulate acute inflammation. Mice were infected with influenza; lungs and spleens were harvested at days 6 and 9 post-infection and analyzed by flow cytometry. Results CD31 expressing neonatal murine CD4+ and CD8a+ T cells increase over the first week of life. Upon in vitro stimulation, human infants’ CD4+ and CD8a+ T cells shed CD31 faster in comparison to adults. In the context of acute infection, mice infected at 3-days old have an increased number of naive and activated CD31+ T lymphocytes at the site of infection at day 6 and 9 post-infection, as compared to 7-days old; however, the opposite is true in the periphery. Conclusion Differences in trafficking of CD31+ Cytotoxic T Lymphocytes (CTLs) during acute influenza infection could modulate tolerance and contribute to a dampened adaptive immune response in neonates. PMID:28355204

  6. Suppression of Murine Retrovirus Polypeptide Termination: Effect of Amber Suppressor tRNA on the Cell-Free Translation of Rauscher Murine Leukemia Virus, Moloney Murine Leukemia Virus, and Moloney Murine Sarcoma Virus 124 RNA

    PubMed Central

    Murphy, Edwin C.; Wills, Norma; Arlinghaus, Ralph B.

    1980-01-01

    The effect of suppressor tRNA's on the cell-free translation of several leukemia and sarcoma virus RNAs was examined. Yeast amber suppressor tRNA (amber tRNA) enhanced the synthesis of the Rauscher murine leukemia virus and clone 1 Moloney murine leukemia virus Pr200gag-pol polypeptides by 10- to 45-fold, but at the same time depressed the synthesis of Rauscher murine leukemia virus Pr65gag and Moloney murine leukemia virus Pr63gag. Under suppressor-minus conditions, Moloney murine leukemia virus Pr70gag was present as a closely spaced doublet. Amber tRNA stimulated the synthesis of the “upper” Moloney murine leukemia virus Pr70gag polypeptide. Yeast ochre suppressor tRNA appeared to be ineffective. Quantitative analyses of the kinetics of viral precursor polypeptide accumulation in the presence of amber tRNA showed that during linear protein synthesis, the increase in accumulated Moloney murine leukemia virus Pr200gag-pol coincided closely with the molar loss of Pr63gag. Enhancement of Pr200gag-pol and Pr70gag by amber tRNA persisted in the presence of pactamycin, a drug which blocks the initiation of protein synthesis, thus arguing for the addition of amino acids to the C terminus of Pr63gag as the mechanism behind the amber tRNA effect. Moloney murine sarcoma virus 124 30S RNA was translated into four major polypeptides, Pr63gag, P42, P38, and P23. In the presence of amber tRNA, a new polypeptide, Pr67gag, appeared, whereas Pr63gag synthesis was decreased. Quantitative estimates indicated that for every 1 mol of Pr67gag which appeared, 1 mol of Pr63gag was lost. Images PMID:7373716

  7. cDNA Cloning, Expression Pattern, and Chromosomal Localization of Mlf1, Murine Homologue of a Gene Involved in Myelodysplasia and Acute Myeloid Leukemia

    PubMed Central

    Hitzler, Johann K.; Witte, David P.; Jenkins, Nancy A.; Copeland, Neal G.; Gilbert, Debra J.; Naeve, Clayton W.; Look, A. Thomas; Morris, Stephan W.

    1999-01-01

    The NPM-MLF1 fusion protein is expressed in blasts from patients with myelodysplasia/acute myeloid leukemia (MDS/AML) containing the t(3;5) chromosomal rearrangement. Nucleophosmin (NPM), a previously characterized nucleolar phosphoprotein, contributes to two other fusion proteins found in lympho-hematopoietic malignancies, anaplastic large cell lymphoma (NPM-ALK) and acute promyelocytic leukemia (NPM-RARα). By contrast, the function of the carboxy-terminal fusion partner, myelodysplasia/myeloid leukemia factor 1 (MLF1), is unknown. To aid in understanding normal MLF1 function, we isolated the murine cDNA, determined the chromosomal localization of Mlf1, and defined its tissue expression by in situ hybridization. Mlf1 was highly similar to its human homologue (86% and 84% identical nucleotide and amino acid sequence, respectively) and mapped to the central region of chromosome 3, within a segment lacking known mouse mutations. Mlf1 tissue distribution was restricted during both development and postnatal life, with high levels present only in skeletal, cardiac, and selected smooth muscle, gonadal tissues, and rare epithelial tissues including the nasal mucosa and the ependyma/choroid plexus in the brain. Mlf1 transcripts were undetectable in the lympho-hematopoietic organs of both the embryonic and adult mouse, suggesting that NPM-MLF1 contributes to the genesis of MDS/AML in part by enforcing the ectopic overexpression of MLF1 within hematopoietic tissues. PMID:10393836

  8. cDNA cloning, expression pattern, and chromosomal localization of Mlf1, murine homologue of a gene involved in myelodysplasia and acute myeloid leukemia.

    PubMed

    Hitzler, J K; Witte, D P; Jenkins, N A; Copeland, N G; Gilbert, D J; Naeve, C W; Look, A T; Morris, S W

    1999-07-01

    The NPM-MLF1 fusion protein is expressed in blasts from patients with myelodysplasia/acute myeloid leukemia (MDS/AML) containing the t(3;5) chromosomal rearrangement. Nucleophosmin (NPM), a previously characterized nucleolar phosphoprotein, contributes to two other fusion proteins found in lympho-hematopoietic malignancies, anaplastic large cell lymphoma (NPM-ALK) and acute promyelocytic leukemia (NPM-RARalpha). By contrast, the function of the carboxy-terminal fusion partner, myelodysplasia/myeloid leukemia factor 1 (MLF1), is unknown. To aid in understanding normal MLF1 function, we isolated the murine cDNA, determined the chromosomal localization of Mlf1, and defined its tissue expression by in situ hybridization. Mlf1 was highly similar to its human homologue (86% and 84% identical nucleotide and amino acid sequence, respectively) and mapped to the central region of chromosome 3, within a segment lacking known mouse mutations. Mlf1 tissue distribution was restricted during both development and postnatal life, with high levels present only in skeletal, cardiac, and selected smooth muscle, gonadal tissues, and rare epithelial tissues including the nasal mucosa and the ependyma/choroid plexus in the brain. Mlf1 transcripts were undetectable in the lympho-hematopoietic organs of both the embryonic and adult mouse, suggesting that NPM-MLF1 contributes to the genesis of MDS/AML in part by enforcing the ectopic overexpression of MLF1 within hematopoietic tissues.

  9. Enteric serotonin and oxytocin: endogenous regulation of severity in a murine model of necrotizing enterocolitis.

    PubMed

    Gross Margolis, Kara; Vittorio, Jennifer; Talavera, Maria; Gluck, Karen; Li, Zhishan; Iuga, Alina; Stevanovic, Korey; Saurman, Virginia; Israelyan, Narek; Welch, Martha G; Gershon, Michael D

    2017-11-01

    Necrotizing enterocolitis (NEC), a gastrointestinal inflammatory disease of unknown etiology that may also affect the liver, causes a great deal of morbidity and mortality in premature infants. We tested the hypothesis that signaling molecules, which are endogenous to the bowel, regulate the severity of intestinal and hepatic damage in an established murine NEC model. Specifically, we postulated that mucosal serotonin (5-HT), which is proinflammatory, would exacerbate experimental NEC and that oxytocin (OT), which is present in enteric neurons and is anti-inflammatory, would oppose it. Genetic deletion of the 5-HT transporter (SERT), which increases and prolongs effects of 5-HT, was found to increase the severity of systemic manifestations, intestinal inflammation, and associated hepatotoxicity of experimental NEC. In contrast, genetic deletion of tryptophan hydroxylase 1 (TPH1), which is responsible for 5-HT biosynthesis in enterochromaffin (EC) cells of the intestinal mucosa, and TPH inhibition with LP-920540 both decrease the severity of experimental NEC in the small intestine and liver. These observations suggest that 5-HT from EC cells helps to drive the inflammatory damage to the gut and liver that occurs in the murine NEC model. Administration of OT decreased, while the OT receptor antagonist atosiban exacerbated, the intestinal inflammation of experimental NEC. Data from the current investigation are consistent with the tested hypotheses-that the enteric signaling molecules, 5-HT (positively) and OT (negatively) regulate severity of inflammation in a mouse model of NEC. Moreover, we suggest that mucosally restricted inhibition of 5-HT biosynthesis and/or administration of OT may be useful in the treatment of NEC. NEW & NOTEWORTHY Serotonin (5-HT) and oxytocin reciprocally regulate the severity of intestinal inflammation and hepatotoxicity in a murine model of necrotizing enterocolitis (NEC). Selective depletion of mucosal 5-HT through genetic deletion or

  10. Production and characterization of murine models of classic and intermediate maple syrup urine disease

    PubMed Central

    Homanics, Gregg E; Skvorak, Kristen; Ferguson, Carolyn; Watkins, Simon; Paul, Harbhajan S

    2006-01-01

    Background Maple Syrup Urine Disease (MSUD) is an inborn error of metabolism caused by a deficiency of branched-chain keto acid dehydrogenase. MSUD has several clinical phenotypes depending on the degree of enzyme deficiency. Current treatments are not satisfactory and require new approaches to combat this disease. A major hurdle in developing new treatments has been the lack of a suitable animal model. Methods To create a murine model of classic MSUD, we used gene targeting and embryonic stem cell technologies to create a mouse line that lacked a functional E2 subunit gene of branched-chain keto acid dehydrogenase. To create a murine model of intermediate MSUD, we used transgenic technology to express a human E2 cDNA on the knockout background. Mice of both models were characterized at the molecular, biochemical, and whole animal levels. Results By disrupting the E2 subunit gene of branched-chain keto acid dehydrogenase, we created a gene knockout mouse model of classic MSUD. The homozygous knockout mice lacked branched-chain keto acid dehydrogenase activity, E2 immunoreactivity, and had a 3-fold increase in circulating branched-chain amino acids. These metabolic derangements resulted in neonatal lethality. Transgenic expression of a human E2 cDNA in the liver of the E2 knockout animals produced a model of intermediate MSUD. Branched-chain keto acid dehydrogenase activity was 5–6% of normal and was sufficient to allow survival, but was insufficient to normalize circulating branched-chain amino acids levels, which were intermediate between wildtype and the classic MSUD mouse model. Conclusion These mice represent important animal models that closely approximate the phenotype of humans with the classic and intermediate forms of MSUD. These animals provide useful models to further characterize the pathogenesis of MSUD, as well as models to test novel therapeutic strategies, such as gene and cellular therapies, to treat this devastating metabolic disease. PMID

  11. A Model for Evaluating Topical Antimicrobial Efficacy against Methicillin-Resistant Staphylococcus aureus Biofilms in Superficial Murine Wounds

    PubMed Central

    Renick, Paul J.; Tetens, Shannon P.; Carson, Dennis L.

    2012-01-01

    A wound biofilm model was created by adapting a superficial infection model. Partial-thickness murine wounds were inoculated with methicillin-resistant Staphylococcus aureus (MRSA). Dense biofilm communities developed at the wound surface after 24 h as demonstrated by microscopy and quantitative microbiology. Common topical antimicrobial agents had reduced efficacy when treatment was initiated 24 h after inoculation compared to 4 h after inoculation. This model provides a rapid in vivo test for new agents to treat wound biofilm infections. PMID:22644024

  12. Magnetic resonance imaging and spectroscopy of the murine cardiovascular system.

    PubMed

    Akki, Ashwin; Gupta, Ashish; Weiss, Robert G

    2013-03-01

    Magnetic resonance imaging (MRI) has emerged as a powerful and reliable tool to noninvasively study the cardiovascular system in clinical practice. Because transgenic mouse models have assumed a critical role in cardiovascular research, technological advances in MRI have been extended to mice over the last decade. These have provided critical insights into cardiac and vascular morphology, function, and physiology/pathophysiology in many murine models of heart disease. Furthermore, magnetic resonance spectroscopy (MRS) has allowed the nondestructive study of myocardial metabolism in both isolated hearts and in intact mice. This article reviews the current techniques and important pathophysiological insights from the application of MRI/MRS technology to murine models of cardiovascular disease.

  13. Evidence of B cell immune responses to acute lymphoblastic leukemia in murine allogeneic hematopoietic stem cell transplantation recipients treated with donor lymphocyte infusion and/or vaccination.

    PubMed

    Mullen, Craig A; Campbell, Andrew; Tkachenko, Olena; Jansson, Johan; Hsu, Yu-Chiao

    2011-02-01

    These experiments explored mechanisms of control of acute lymphoblastic leukemia (ALL) following allogeneic hematopoietic stem cell transplantation using a murine model of MHC-matched, minor histocompatibility antigen-mismatched transplantation. The central hypothesis examined was that addition of active vaccination against leukemia cells would substantially increase the effectiveness of allogeneic donor lymphocyte infusion (DLI) against ALL present in the host after transplantation. Although vaccination did increase the magnitude of type I T cell responses against leukemia cells associated with DLI, it did not lead to substantial improvement in long-term survival. Analysis of immunologic mechanisms of leukemia progression demonstrated that the failure of vaccination was not because of antigen loss in leukemia cells. However, analysis of survival provided surprising findings that, in addition to very modest type I T cell responses, a B cell response that produced antibodies that bind leukemia cells was found in long-term survivors. The risk of death from leukemia was significantly lower in recipients that had higher levels of such antibodies. These studies raise the hypothesis that stimulation of B cell responses after transplantation may provide a novel way to enhance allogeneic graft-versus-leukemia effects associated with transplantation. Copyright © 2011 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  14. Cell-delivered magnetic nanoparticles caused hyperthermia-mediated increased survival in a murine pancreatic cancer model.

    PubMed

    Basel, Matthew T; Balivada, Sivasai; Wang, Hongwang; Shrestha, Tej B; Seo, Gwi Moon; Pyle, Marla; Abayaweera, Gayani; Dani, Raj; Koper, Olga B; Tamura, Masaaki; Chikan, Viktor; Bossmann, Stefan H; Troyer, Deryl L

    2012-01-01

    Using magnetic nanoparticles to absorb alternating magnetic field energy as a method of generating localized hyperthermia has been shown to be a potential cancer treatment. This report demonstrates a system that uses tumor homing cells to actively carry iron/iron oxide nanoparticles into tumor tissue for alternating magnetic field treatment. Paramagnetic iron/ iron oxide nanoparticles were synthesized and loaded into RAW264.7 cells (mouse monocyte/ macrophage-like cells), which have been shown to be tumor homing cells. A murine model of disseminated peritoneal pancreatic cancer was then generated by intraperitoneal injection of Pan02 cells. After tumor development, monocyte/macrophage-like cells loaded with iron/ iron oxide nanoparticles were injected intraperitoneally and allowed to migrate into the tumor. Three days after injection, mice were exposed to an alternating magnetic field for 20 minutes to cause the cell-delivered nanoparticles to generate heat. This treatment regimen was repeated three times. A survival study demonstrated that this system can significantly increase survival in a murine pancreatic cancer model, with an average post-tumor insertion life expectancy increase of 31%. This system has the potential to become a useful method for specifically and actively delivering nanoparticles for local hyperthermia treatment of cancer.

  15. Cell-delivered magnetic nanoparticles caused hyperthermia-mediated increased survival in a murine pancreatic cancer model

    PubMed Central

    Basel, Matthew T; Balivada, Sivasai; Wang, Hongwang; Shrestha, Tej B; Seo, Gwi Moon; Pyle, Marla; Abayaweera, Gayani; Dani, Raj; Koper, Olga B; Tamura, Masaaki; Chikan, Viktor; Bossmann, Stefan H; Troyer, Deryl L

    2012-01-01

    Using magnetic nanoparticles to absorb alternating magnetic field energy as a method of generating localized hyperthermia has been shown to be a potential cancer treatment. This report demonstrates a system that uses tumor homing cells to actively carry iron/iron oxide nanoparticles into tumor tissue for alternating magnetic field treatment. Paramagnetic iron/ iron oxide nanoparticles were synthesized and loaded into RAW264.7 cells (mouse monocyte/ macrophage-like cells), which have been shown to be tumor homing cells. A murine model of disseminated peritoneal pancreatic cancer was then generated by intraperitoneal injection of Pan02 cells. After tumor development, monocyte/macrophage-like cells loaded with iron/ iron oxide nanoparticles were injected intraperitoneally and allowed to migrate into the tumor. Three days after injection, mice were exposed to an alternating magnetic field for 20 minutes to cause the cell-delivered nanoparticles to generate heat. This treatment regimen was repeated three times. A survival study demonstrated that this system can significantly increase survival in a murine pancreatic cancer model, with an average post-tumor insertion life expectancy increase of 31%. This system has the potential to become a useful method for specifically and actively delivering nanoparticles for local hyperthermia treatment of cancer. PMID:22287840

  16. Pharmacokinetics and Pharmacodynamics of Tildipirosin Against Pasteurella multocida in a Murine Lung Infection Model

    PubMed Central

    Zeng, Dongping; Sun, Meizhen; Lin, Zhoumeng; Li, Miao; Gehring, Ronette; Zeng, Zhenling

    2018-01-01

    Tildipirosin, a 16-membered-ring macrolide antimicrobial, has recently been approved for the treatment of swine respiratory disease and bovine respiratory disease. This macrolide is extensively distributed to the site of respiratory infection followed by slow elimination. Clinical efficacy has been demonstrated in cattle and swine clinical field trials. However, the pharmacokinetic/pharmacodynamic (PK/PD) index that best correlates with the efficacy of tildipirosin remains undefined. The objective of this study was to develop a PK/PD model following subcutaneous injection of tildipirosin against Pasteurella multocida in a murine lung infection model. The PK studies of unbound (f) tildipirosin in plasma were determined following subcutaneous injection of single doses of 1, 2, 4, 6, and 8 mg/kg of body weight in neutropenic lung-infected mice. The PD studies were conducted over 24 h based on twenty intermittent dosing regimens, of which total daily dose ranged from 1 to 32 mg/kg and dosage intervals included 6, 8, 12, and 24 h. The minimum inhibitory concentration (MIC) of tildipirosin against P. multocida was determined in serum. The inhibitory effect Imax model was employed for PK/PD modeling. The area under the unbound concentration-time profile over 24 h to MIC (fAUC0-24 h/MIC) was the PK/PD index that best described the antibacterial activity in the murine infection model. The fAUC0-24 h/MIC targets required to achieve the bacteriostatic action, a 1-log10 kill and 2-log10 kill of bacterial counts were 19.93, 31.89, and 53.27 h, respectively. These results can facilitate efforts to define more rational designs of dosage regimens of tildipirosin using classical PK/PD concepts for the treatment of respiratory diseases in pigs and cattle. PMID:29867911

  17. Peptidylarginine Deiminase Inhibition Reduces Vascular Damage and Modulates Innate Immune Responses in Murine Models of Atherosclerosis

    PubMed Central

    Knight, Jason S.; Luo, Wei; O’Dell, Alexander A.; Yalavarthi, Srilakshmi; Zhao, Wenpu; Subramanian, Venkataraman; Guo, Chiao; Grenn, Robert C.; Thompson, Paul R.; Eitzman, Daniel T.; Kaplan, Mariana J.

    2014-01-01

    Rationale Neutrophil extracellular trap (NET) formation promotes vascular damage, thrombosis, and activation of interferon-α-producing plasmacytoid dendritic cells in diseased arteries. Peptidylarginine deiminase inhibition is a strategy that can decrease in vivo NET formation. Objective To test whether peptidylarginine deiminase inhibition, a novel approach to targeting arterial disease, can reduce vascular damage and inhibit innate immune responses in murine models of atherosclerosis. Methods and Results Apolipoprotein-E (Apoe)−/− mice demonstrated enhanced NET formation, developed autoantibodies to NETs, and expressed high levels of interferon-α in diseased arteries. Apoe−/− mice were treated for 11 weeks with daily injections of Cl-amidine, a peptidylarginine deiminase inhibitor. Peptidylarginine deiminase inhibition blocked NET formation, reduced atherosclerotic lesion area, and delayed time to carotid artery thrombosis in a photochemical injury model. Decreases in atherosclerosis burden were accompanied by reduced recruitment of netting neutrophils and macrophages to arteries, as well as by reduced arterial interferon-α expression. Conclusions Pharmacological interventions that block NET formation can reduce atherosclerosis burden and arterial thrombosis in murine systems. These results support a role for aberrant NET formation in the pathogenesis of atherosclerosis through modulation of innate immune responses. PMID:24425713

  18. A murine model of autosomal dominant neurohypophyseal diabetes insipidus reveals progressive loss of vasopressin-producing neurons

    PubMed Central

    Russell, Theron A.; Ito, Masafumi; Ito, Mika; Yu, Richard N.; Martinson, Fred A.; Weiss, Jeffrey; Jameson, J. Larry

    2003-01-01

    Familial neurohypophyseal diabetes insipidus (FNDI) is an autosomal dominant disorder caused by mutations in the arginine vasopressin (AVP) precursor. The pathogenesis of FNDI is proposed to involve mutant protein–induced loss of AVP-producing neurons. We established murine knock-in models of two different naturally occurring human mutations that cause FNDI. A mutation in the AVP signal sequence [A(–1)T] is associated with a relatively mild phenotype or delayed presentation in humans. This mutation caused no apparent phenotype in mice. In contrast, heterozygous mice expressing a mutation that truncates the AVP precursor (C67X) exhibited polyuria and polydipsia by 2 months of age and these features of DI progressively worsened with age. Studies of the paraventricular and supraoptic nuclei revealed induction of the chaperone protein BiP and progressive loss of AVP-producing neurons relative to oxytocin-producing neurons. In addition, Avp gene products were not detected in the neuronal projections, suggesting retention of WT and mutant AVP precursors within the cell bodies. In summary, this murine model of FNDI recapitulates many features of the human disorder and demonstrates that expression of the mutant AVP precursor leads to progressive neuronal cell loss. PMID:14660745

  19. Essential roles for Cdx in murine primitive hematopoiesis.

    PubMed

    Brooke-Bisschop, Travis; Savory, Joanne G A; Foley, Tanya; Ringuette, Randy; Lohnes, David

    2017-02-15

    The Cdx transcription factors play essential roles in primitive hematopoiesis in the zebrafish where they exert their effects, in part, through regulation of hox genes. Defects in hematopoiesis have also been reported in Cdx mutant murine embryonic stem cell models, however, to date no mouse model reflecting the zebrafish Cdx mutant hematopoietic phenotype has been described. This is likely due, in part, to functional redundancy among Cdx members and the early lethality of Cdx2 null mutants. To circumvent these limitations, we used Cre-mediated conditional deletion to assess the impact of concomitant loss of Cdx1 and Cdx2 on murine primitive hematopoiesis. We found that Cdx1/Cdx2 double mutants exhibited defects in primitive hematopoiesis and yolk sac vasculature concomitant with reduced expression of several genes encoding hematopoietic transcription factors including Scl/Tal1. Chromatin immunoprecipitation analysis revealed that Scl was occupied by Cdx2 in vivo, and Cdx mutant hematopoietic yolk sac differentiation defects could be rescued by expression of exogenous Scl. These findings demonstrate critical roles for Cdx members in murine primitive hematopoiesis upstream of Scl. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Combination Treatment With Meropenem Plus Levofloxacin Is Synergistic Against Pseudomonas aeruginosa Infection in a Murine Model of Pneumonia

    PubMed Central

    Louie, Arnold; Liu, Weiguo; VanGuilder, Michael; Neely, Michael N.; Schumitzky, Alan; Jelliffe, Roger; Fikes, Steven; Kurhanewicz, Stephanie; Robbins, Nichole; Brown, David; Baluya, Dodge; Drusano, George L.

    2015-01-01

    Background. Meropenem plus levofloxacin treatment was shown to be a promising combination in our in vitro hollow fiber infection model. We strove to validate this finding in a murine Pseudomonas pneumonia model. Methods. A dose-ranging study with meropenem and levofloxacin alone and in combination against Pseudomonas aeruginosa was performed in a granulocytopenic murine pneumonia model. Meropenem and levofloxacin were administered to partially humanize their pharmacokinetic profiles in mouse serum. Total and resistant bacterial populations were estimated after 24 hours of therapy. Pharmacokinetic profiling of both drugs was performed in plasma and epithelial lining fluid, using a population model. Results. Meropenem and levofloxacin penetrations into epithelial lining fluid were 39.3% and 64.3%, respectively. Both monotherapies demonstrated good exposure responses. An innovative combination-therapy analytic approach demonstrated that the combination was statistically significantly synergistic (α = 2.475), as was shown in the hollow fiber infection model. Bacterial resistant to levofloxacin and meropenem was seen in the control arm. Levofloxacin monotherapy selected for resistance to itself. No resistant subpopulations were observed in any combination therapy arm. Conclusions. The combination of meropenem plus levofloxacin was synergistic, producing good bacterial kill and resistance suppression. Given the track record of safety of each agent, this combination may be worthy of clinical trial. PMID:25362196

  1. Establishment of a Novel Murine Model of Ischemic Cardiomyopathy with Multiple Diffuse Coronary Lesions

    PubMed Central

    Nakaoka, Hajime; Nakagawa-Toyama, Yumiko; Nishida, Makoto; Okada, Takeshi; Kawase, Ryota; Yamashita, Taiji; Yuasa-Kawase, Miyako; Nakatani, Kazuhiro; Masuda, Daisaku; Ohama, Tohru; Sonobe, Takashi; Shirai, Mikiyasu; Komuro, Issei; Yamashita, Shizuya

    2013-01-01

    Objectives Atherosclerotic lesions of the coronary arteries are the pathological basis for myocardial infarction and ischemic cardiomyopathy. Progression of heart failure after myocardial infarction is associated with cardiac remodeling, which has been studied by means of coronary ligation in mice. However, this ligation model requires excellent techniques. Recently, a new murine model, HypoE mouse was reported to exhibit atherogenic Paigen diet-induced coronary atherosclerosis and myocardial infarction; however, the HypoE mice died too early to make possible investigation of cardiac remodeling. Therefore, we aimed to modify the HypoE mouse model to establish a novel model for ischemic cardiomyopathy caused by atherosclerotic lesions, which the ligation model does not exhibit. Methods and Results In our study, the sustained Paigen diet for the HypoE mice was shortened to 7 or 10 days, allowing the mice to survive longer. The 7-day Paigen diet intervention starting when the mice were 8 weeks old was adequate to permit the mice to survive myocardial infarction. Our murine model, called the “modified HypoE mouse”, was maintained until 8 weeks, with a median survival period of 36 days, after the dietary intervention (male, n = 222). Echocardiography demonstrated that the fractional shortening 2 weeks after the Paigen diet (n = 14) significantly decreased compared with that just before the Paigen diet (n = 6) (31.4±11.9% vs. 54.4±2.6%, respectively, P<0.01). Coronary angiography revealed multiple diffuse lesions. Cardiac remodeling and fibrosis were identified by serial analyses of cardiac morphological features and mRNA expression levels in tissue factors such as MMP-2, MMP-9, TIMP-1, collagen-1, and TGF-β. Conclusion Modified HypoE mice are a suitable model for ischemic cardiomyopathy with multiple diffuse lesions and may be considered as a novel and convenient model for investigations of cardiac remodeling on a highly atherogenic background. PMID

  2. A novel murine model of esophageal nonerosive reflux disease: from inflammation to impairment in mucosal integrity.

    PubMed

    Silva, Renan O; Oliveira, Francisco Fábio B; Bingana, Rudy D; Arruda, Mailton O; Woodland, Philip; Lee, Chung; Souza, Miguel A N; Soares, Pedro M G; Santos, Armênio A; Sifrim, Daniel; Souza, Marcellus H L P

    2017-06-01

    Nonerosive reflux disease (NERD) is a highly prevalent phenotype of the gastroesophageal reflux disease. In this study, we developed a novel murine model of NERD in mice with microscopic inflammation and impairment in the epithelial esophageal barrier. Female Swiss mice were subjected to the following surgical procedure: the transitional region between the forestomach and the glandular portion of the stomach was ligated, and a nontoxic ring was placed around the duodenum near the pylorus. The control group underwent sham surgery. The animals were euthanized at 1, 3, 7, and 14 days after surgery. Survival and body weight were monitored daily. Esophageal wet weight, macroscopic lesion, histopathological alterations, myeloperoxidase (MPO) activity, cytokine levels, transepithelial electrical resistance (TEER), and mucosal permeability were evaluated. The survival rate was 78% at 14 days, with mild loss in body weight. Surgery did not induce erosive esophagitis but instead induced microscopic inflammation and increased esophageal wet weight, IL-6, keratinocyte-derived cytokine (KC) levels, and MPO activity with maximal peak between 3 and 7 days and resolution at 14 days postsurgery. Epithelial esophageal barrier was evaluated in operated mice at 7 and 14 days postsurgery; a decrease in TEER and increase in the esophageal epithelial permeability were observed compared with the sham-operated group. In addition, the inhibition of acid secretion with omeprazole significantly prevented the esophageal inflammation and impairment of barrier function at 7 days postsurgery. Thus we established a novel experimental model of NERD in mice, which can contribute to understanding the pathophysiological events associated with NERD. NEW & NOTEWORTHY In this study, we standardized an experimental model of nonerosive reflux disease (NERD) in mice. This model involves an acute inflammatory response followed by impaired esophageal mucosal integrity, even in the absence of inflammation

  3. Effects of Analgesic Use on Inflammation and Hematology in a Murine Model of Venous Thrombosis

    PubMed Central

    Hish, Gerald A; Diaz, Jose A; Hawley, Angela E; Myers, Daniel D; Lester, Patrick A

    2014-01-01

    Venous thrombosis (VT) is a significant cause of morbidity and mortality in humans. Surgical animal models are crucial in studies investigating the pathogenesis of this disease and evaluating VT therapies. Because inflammation is critical to both the development and resolution of VT, analgesic medications have the potential to adversely affect multiple parameters of interest in VT research. The objective of this study was to determine how several common analgesics affect key variables in a murine ligation model of deep vein thrombosis. Male C57BL/6 mice were randomly assigned to receive either local (bupivacaine) or systemic parenteral analgesia (buprenorphine, tramadol, or carprofen) or 0.9% NaCl (control). All mice underwent laparotomy and ligation of the inferior vena cava, and treatment was continued until euthanasia at 6 or 48 h after surgery. Analysis of harvested tissues and blood included: hematology, thrombus weight, serum and vein-wall cytokines (IL1β, IL6, IL10, TNFα), soluble P-selectin, and vein-wall leukocyte infiltration. Compared with 0.9% NaCl, all of the analgesics affected multiple parameters important to VT research. Carprofen and tramadol affected the most parameters and should not be used in murine models of VT. Although they affected fewer parameters, a single dose of bupivacaine increased thrombus weight at 6 h, and buprenorphine was associated with reduced vein wall macrophages at 48 h. Although we cannot recommend the use of any of the evaluated analgesic dosages in this mouse model of VT, buprenorphine merits additional investigation to ensure the highest level of laboratory animal care and welfare. PMID:25255071

  4. Antigen-Specific Gut Inflammation and Systemic Immune Responses Induced by Prolonging Wheat Gluten Sensitization in BALB/c Murine Model.

    PubMed

    Vijaykrishnaraj, M; Mohan Kumar, B V; Muthukumar, S P; Kurrey, Nawneet K; Prabhasankar, P

    2017-10-06

    Gluten-related diseases such as wheat allergy, celiac disease, and gluten intolerance are widespread around the globe to genetically predisposed individuals. The present study aims to develop a wheat-gluten induced BALB/c murine model for addressing wheat-gluten related disorders by sensitizing the wheat gluten through the route of intraperitoneal and oral challenge in prolonged days. During the sensitization, the sera were collected for specific antigliadin antibodies response and proinflammatory markers quantification. Ex vivo primary cells and organs were collected for subsequent analysis of inflammatory profile. Prolonging sensitization of gluten can moderate the antigen-specific inflammatory markers such as IL-1β, IL-4, IL-15, IL-6, IFN-γ and TNF-α levels in mice sera. However, ex vivo primary cells of splenocytes (SPLs) and intestinal epithelial lymphocytes (IELs) significantly increased the IL-6, IL-15, IL-1β, and IL-4 levels in G+ (gliadin and gluten) treated cells. Histopathology staining of jejunum sections indicates enterocyte degeneration in the apical part of villi and damage of tight junctions in G+ (gliadin and gluten) sensitized murine model. Immunohistochemistry of embedded jejunum sections showed significant expression of positive cells of IL-15, tTG and IL-4 in G+ sensitized murine model. In contrast, all markers of gluten-related disorders are expressed exclusively such as tTG, ZO-1, IL-15, IL-6, IL-4, and intestinal inflammation was mediated by iNOS, COX-2, TLR-4 and NF- k Bp50 signaling mechanism in G+ sensitized mice.

  5. Immunosuppressive Effect of B7-H4 Pathway in a Murine Systemic Lupus Erythematosus Model.

    PubMed

    Xiao, Ze Xiu; Zheng, Xu; Hu, Li; Wang, Julie; Olsen, Nancy; Zheng, Song Guo

    2017-01-01

    B7-H4, one of the co-stimulatory molecules of the B7 family, has been shown to play an important role in negatively regulating the adaptive immune response by inhibiting the proliferation, activation, and cytokine production of T cells. In this study, we investigate the role of B7-H4 in development of systemic lupus erythematosus (SLE). We investigated a murine model of SLE using transfer of bone marrow-derived dendritic cells (BMDCs) that were incubated with activated syngeneic lymphocyte-derived DNA. The recipient mouse produced anti-ds-DNA antibodies as well as displayed splenomegaly and lymphadenopathy as shown by significantly increased weights, and the kidneys showed lupus-like pathological changes include urine protein and glomerulonephritis with hyperplasia in glomeruli and increased mesangial cells and vasculitis with perivascular cell infiltration, glomerular deposition of IgG and complement C3. We showed that B7-H4 deficiency in BMDCs could cause greater production of anti-ds-DNA antibodies in transferred mice, and the lymph tissue swelling and the kidney lesions were also exacerbated with B7-H4 deficiency. Treatment with a B7-H4 antagonist antibody also aggravated the lupus model. Conversely, B7-H4 Ig alleviated the lupus manifestations. Therefore, we conclude that B7-H4 is a negative check point for the development of SLE in this murine model. These results suggest that this approach may have a clinical potential in treating human SLE.

  6. Immunosuppressive Effect of B7-H4 Pathway in a Murine Systemic Lupus Erythematosus Model

    PubMed Central

    Xiao, Ze Xiu; Zheng, Xu; Hu, Li; Wang, Julie; Olsen, Nancy; Zheng, Song Guo

    2017-01-01

    B7-H4, one of the co-stimulatory molecules of the B7 family, has been shown to play an important role in negatively regulating the adaptive immune response by inhibiting the proliferation, activation, and cytokine production of T cells. In this study, we investigate the role of B7-H4 in development of systemic lupus erythematosus (SLE). We investigated a murine model of SLE using transfer of bone marrow-derived dendritic cells (BMDCs) that were incubated with activated syngeneic lymphocyte-derived DNA. The recipient mouse produced anti-ds-DNA antibodies as well as displayed splenomegaly and lymphadenopathy as shown by significantly increased weights, and the kidneys showed lupus-like pathological changes include urine protein and glomerulonephritis with hyperplasia in glomeruli and increased mesangial cells and vasculitis with perivascular cell infiltration, glomerular deposition of IgG and complement C3. We showed that B7-H4 deficiency in BMDCs could cause greater production of anti-ds-DNA antibodies in transferred mice, and the lymph tissue swelling and the kidney lesions were also exacerbated with B7-H4 deficiency. Treatment with a B7-H4 antagonist antibody also aggravated the lupus model. Conversely, B7-H4 Ig alleviated the lupus manifestations. Therefore, we conclude that B7-H4 is a negative check point for the development of SLE in this murine model. These results suggest that this approach may have a clinical potential in treating human SLE. PMID:29321778

  7. Magnetic resonance imaging and spectroscopy of the murine cardiovascular system

    PubMed Central

    Akki, Ashwin; Gupta, Ashish

    2013-01-01

    Magnetic resonance imaging (MRI) has emerged as a powerful and reliable tool to noninvasively study the cardiovascular system in clinical practice. Because transgenic mouse models have assumed a critical role in cardiovascular research, technological advances in MRI have been extended to mice over the last decade. These have provided critical insights into cardiac and vascular morphology, function, and physiology/pathophysiology in many murine models of heart disease. Furthermore, magnetic resonance spectroscopy (MRS) has allowed the nondestructive study of myocardial metabolism in both isolated hearts and in intact mice. This article reviews the current techniques and important pathophysiological insights from the application of MRI/MRS technology to murine models of cardiovascular disease. PMID:23292717

  8. AshwaMAX and Withaferin A inhibits gliomas in cellular and murine orthotopic models

    PubMed Central

    Pohling, Christoph; Natarajan, Arutselvan; Witney, Timothy H.; Kaur, Jasdeep; Xu, Lingyun; Gowrishankar, Gayatri; D’Souza, Aloma L; Murty, Surya; Schick, Sophie; Chen, Liyin; Wu, Nicholas; Khaw, Phoo; Mischel, Paul; Abbasi, Taher; Usmani, Shahabuddin; Mallick, Parag

    2017-01-01

    Glioblastoma multiforme (GBM) is an aggressive, malignant cancer Johnson and O’Neill (J Neurooncol 107: 359–364, 2012). An extract from the winter cherry plant (Withania somnifera), AshwaMAX, is concentrated (4.3 %) for Withaferin A; a steroidal lactone that inhibits cancer cells Vanden Berghe et al. (Cancer Epidemiol Biomark Prev 23: 1985–1996, 2014). We hypothesized that AshwaMAX could treat GBM and that bioluminescence imaging (BLI) could track oral therapy in orthotopic murine models of glioblastoma. Human parietal-cortical glioblastoma cells (GBM2, GBM39) were isolated from primary tumors while U87-MG was obtained commercially. GBM2 was transduced with lentiviral vectors that express Green Fluorescent Protein (GFP)/firefly luciferase fusion proteins. Mutational, expression and proliferative status of GBMs were studied. Intracranial xenografts of glioblastomas were grown in the right frontal regions of female, nude mice (n = 3–5 per experiment). Tumor growth was followed through BLI. Neurosphere cultures (U87-MG, GBM2 and GBM39) were inhibited by AshwaMAX at IC50 of 1.4, 0.19 and 0.22 μM equivalent respectively and by Withaferin A with IC50 of 0.31, 0.28 and 0.25 μM respectively. Oral gavage, every other day, of AshwaMAX (40 mg/kg per day) significantly reduced bioluminescence signal (n = 3 mice, p < 0.02, four parameter non-linear regression analysis) in preclinical models. After 30 days of treatment, bioluminescent signal increased suggesting onset of resistance. BLI signal for control, vehicle-treated mice increased and then plateaued. Bioluminescent imaging revealed diffuse growth of GBM2 xenografts. With AshwaMAX, GBM neurospheres collapsed at nanomolar concentrations. Oral treatment studies on murine models confirmed that AshwaMAX is effective against orthotopic GBM. AshwaMAX is thus a promising candidate for future clinical translation in patients with GBM. PMID:26650066

  9. AshwaMAX and Withaferin A inhibits gliomas in cellular and murine orthotopic models.

    PubMed

    Chang, Edwin; Pohling, Christoph; Natarajan, Arutselvan; Witney, Timothy H; Kaur, Jasdeep; Xu, Lingyun; Gowrishankar, Gayatri; D'Souza, Aloma L; Murty, Surya; Schick, Sophie; Chen, Liyin; Wu, Nicholas; Khaw, Phoo; Mischel, Paul; Abbasi, Taher; Usmani, Shahabuddin; Mallick, Parag; Gambhir, Sanjiv S

    2016-01-01

    Glioblastoma multiforme (GBM) is an aggressive, malignant cancer Johnson and O'Neill (J Neurooncol 107: 359-364, 2012). An extract from the winter cherry plant (Withania somnifera ), AshwaMAX, is concentrated (4.3 %) for Withaferin A; a steroidal lactone that inhibits cancer cells Vanden Berghe et al. (Cancer Epidemiol Biomark Prev 23: 1985-1996, 2014). We hypothesized that AshwaMAX could treat GBM and that bioluminescence imaging (BLI) could track oral therapy in orthotopic murine models of glioblastoma. Human parietal-cortical glioblastoma cells (GBM2, GBM39) were isolated from primary tumors while U87-MG was obtained commercially. GBM2 was transduced with lentiviral vectors that express Green Fluorescent Protein (GFP)/firefly luciferase fusion proteins. Mutational, expression and proliferative status of GBMs were studied. Intracranial xenografts of glioblastomas were grown in the right frontal regions of female, nude mice (n = 3-5 per experiment). Tumor growth was followed through BLI. Neurosphere cultures (U87-MG, GBM2 and GBM39) were inhibited by AshwaMAX at IC50 of 1.4, 0.19 and 0.22 µM equivalent respectively and by Withaferin A with IC50 of 0.31, 0.28 and 0.25 µM respectively. Oral gavage, every other day, of AshwaMAX (40 mg/kg per day) significantly reduced bioluminescence signal (n = 3 mice, p < 0.02, four parameter non-linear regression analysis) in preclinical models. After 30 days of treatment, bioluminescent signal increased suggesting onset of resistance. BLI signal for control, vehicle-treated mice increased and then plateaued. Bioluminescent imaging revealed diffuse growth of GBM2 xenografts. With AshwaMAX, GBM neurospheres collapsed at nanomolar concentrations. Oral treatment studies on murine models confirmed that AshwaMAX is effective against orthotopic GBM. AshwaMAX is thus a promising candidate for future clinical translation in patients with GBM.

  10. Inflammation drives dysbiosis and bacterial invasion in murine models of ileal Crohn's disease.

    PubMed

    Craven, Melanie; Egan, Charlotte E; Dowd, Scot E; McDonough, Sean P; Dogan, Belgin; Denkers, Eric Y; Bowman, Dwight; Scherl, Ellen J; Simpson, Kenneth W

    2012-01-01

    Understanding the interplay between genetic susceptibility, the microbiome, the environment and the immune system in Crohn's Disease (CD) is essential for developing optimal therapeutic strategies. We sought to examine the dynamics of the relationship between inflammation, the ileal microbiome, and host genetics in murine models of ileitis. We induced ileal inflammation of graded severity in C57BL6 mice by gavage with Toxoplasma gondii, Giardia muris, low dose indomethacin (LDI; 0.1 mg/mouse), or high dose indomethacin (HDI; 1 mg/mouse). The composition and spatial distribution of the mucosal microbiome was evaluated by 16S rDNA pyrosequencing and fluorescence in situ hybridization. Mucosal E. coli were enumerated by quantitative PCR, and characterized by phylogroup, genotype and pathotype. Moderate to severe ileitis induced by T. gondii (day 8) and HDI caused a consistent shift from >95% gram + Firmicutes to >95% gram - Proteobacteria. This was accompanied by reduced microbial diversity and mucosal invasion by adherent and invasive E. coli, mirroring the dysbiosis of ileal CD. In contrast, dysbiosis and bacterial invasion did not develop in mice with mild ileitis induced by Giardia muris. Superimposition of genetic susceptibility and T. Gondii infection revealed greatest dysbiosis and bacterial invasion in the CD-susceptible genotype, NOD2(-/-), and reduced dysbiosis in ileitis-resistant CCR2(-/-) mice. Abrogating inflammation with the CD therapeutic anti-TNF-α-mAb tempered dysbiosis and bacterial invasion. Acute ileitis induces dysbiosis and proliferation of mucosally invasive E. coli, irrespective of trigger and genotype. The identification of CCR2 as a target for therapeutic intervention, and discovery that host genotype and therapeutic blockade of inflammation impact the threshold and extent of ileal dysbiosis are of high relevance to developing effective therapies for CD.

  11. Comparison of Adipose-Derived and Bone Marrow Mesenchymal Stromal Cells in a Murine Model of Crohn's Disease.

    PubMed

    Xie, Minghao; Qin, Huabo; Luo, Qianxin; He, Xiaosheng; He, Xiaowen; Lan, Ping; Lian, Lei

    2017-01-01

    Mesenchymal stromal cells (MSCs) have been used in the treatment of Crohn's disease (CD) because of the immunomodulatory ability. The aim of this study was to investigate the therapeutic effect of adipose-derived MSCs (AD-MSCs) and to compare the therapeutic effect of AD-MSCs with that of bone marrow MSCs (BM-MSCs) in a murine model of CD. Murine colitis model of CD was created by trinitrobenzene sulfonic acid (TNBS). Twelve hours after treatment with TNBS, the mouse model was injected with MSCs intraperitoneally. Real-time polymerase chain reaction and immunohistochemistry staining were used to measure the expression levels of inflammatory cytokines in colonic tissues to investigate the therapeutic effect of AD-MSCs. The ten-day survival was recorded after infusion of MSCs. Intraperitoneal injection of MSCs alleviated the clinical and histopathologic severity of intestinal inflammation, and improved the survival of the TNBS-induced mouse model of CD. AD-MSCs could effectively increase the expression of interleukin-10 and reduce the secretion of pro-inflammatory cytokines including tumor necrosis factor-α, interleukin-12, and vascular endothelial growth factor. The mucosal injury was repaired by AD-MSCs. These effects were comparable between AD-MSCs and BM-MSCs. The therapeutic effect appears similar between AD-MSCs and BM-MSCs in treating CD. AD-MSCs may be a potential alternative of cell-based therapy for CD.

  12. A true orthotopic gastric cancer murine model using electrocoagulation.

    PubMed

    Bhullar, Jasneet Singh; Makarawo, Tafadzwa; Subhas, Gokulakkrishna; Alomari, Ahmed; Silberberg, Boris; Tilak, Jacqueline; Decker, Milessa; Mittal, Vijay K

    2013-07-01

    Orthotopic mouse models of human gastric cancer represent an important in vivo tool for testing chemotherapeutic agents and for studying intraluminal factors. Currently, orthotopic mouse models of gastric cancer require an operative procedure involving either injection or implantation of tumor cells in stomach layers. The resultant tumor does not grow from the stomach's mucosal surface, so it does not mimic the human disease process. A low-dose gastric mucosal coagulation was done transorally in the body of stomach using a specially designed polyethylene catheter in 16 female severe combined immunodeficient mice. This was followed by the instillation of SNU-16 human gastric cancer tumor cells (1 × 10(6) cells). Five mice each were euthanized at 1 and 2 months, and 6 mice were euthanized at 3 months. Three control mice underwent electrocoagulation alone and 3 mice underwent cell line instillation alone. Tumors were detected in 11 of 16 experimental mice, but not in the control mice. Tumors were noted in mice at 1 month. Over time, there was an increase in tumor growth and metastasis to lymph nodes and surrounding organs. Histopathologic evaluation showed that the tumors grew from the gastric mucosa. Our model is easy to create and overcomes the limitations of the existing models, as the tumor arises from the stomach's mucosal layer and mimics the human disease in terms of morphology and biologic behavior. This is the first report of a true orthotopic gastric cancer murine model. This model opens new doors for additional studies that were not possible earlier. Copyright © 2013 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  13. Convection enhanced delivery of carmustine to the murine brainstem: a feasibility study.

    PubMed

    Sewing, A Charlotte P; Caretti, Viola; Lagerweij, Tonny; Schellen, Pepijn; Jansen, Marc H A; van Vuurden, Dannis G; Idema, Sander; Molthoff, Carla F M; Vandertop, W Peter; Kaspers, Gertjan J L; Noske, David P; Hulleman, Esther

    2014-12-30

    Systemic delivery of therapeutic agents remains ineffective against diffuse intrinsic pontine glioma (DIPG), possibly due to an intact blood-brain-barrier (BBB) and to dose-limiting toxicity of systemic chemotherapeutic agents. Convection-enhanced delivery (CED) into the brainstem may provide an effective local delivery alternative for DIPG patients. The aim of this study is to develop a method to perform CED into the murine brainstem and to test this method using the chemotherapeutic agent carmustine (BiCNU). To this end, a newly designed murine CED catheter was tested in vitro and in vivo. After determination of safety and distribution, mice bearing VUMC-DIPG-3 and E98FM-DIPG brainstem tumors were treated with carmustine dissolved in DW 5% or carmustine dissolved in 10% ethanol. Our results show that CED into the murine brainstem is feasible and well tolerated by mice with and without brainstem tumors. CED of carmustine dissolved in 5% DW increased median survival of mice with VUMC-DIPG-3 and E98FM-DIPG tumors with 35% and 25% respectively. Dissolving carmustine in 10% ethanol further improved survival to 45% in mice with E98FM-DIPG tumors. Since genetically engineered and primary DIPG models are currently only available in mice, murine CED studies have clear advantages over CED studies in other animals. CED in the murine brainstem can be performed safely, is well tolerated and can be used to study efficacy of chemotherapeutic agents orthotopically. These results set the foundation for more CED studies in murine DIPG models. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. TRPV1 Blocking Alleviates Airway Inflammation and Remodeling in a Chronic Asthma Murine Model.

    PubMed

    Choi, Joon Young; Lee, Hwa Young; Hur, Jung; Kim, Kyung Hoon; Kang, Ji Young; Rhee, Chin Kook; Lee, Sook Young

    2018-05-01

    Asthma is a chronic inflammatory airway disease characterized by airway hyperresponsiveness (AHR), inflammation, and remodeling. There is emerging interest in the involvement of the transient receptor potential vanilloid 1 (TRPV1) channel in the pathophysiology of asthma. This study examined whether TRPV1 antagonism alleviates asthma features in a murine model of chronic asthma. BALB/c mice were sensitized to and challenged by ovalbumin to develop chronic asthma. Capsazepine (TRPV1 antagonist) or TRPV1 small interfering RNA (siRNA) was administered in the treatment group to evaluate the effect of TPV1 antagonism on AHR, airway inflammation, and remodeling. The mice displayed increased AHR, airway inflammation, and remodeling. Treatment with capsazepine or TRPV1 siRNA reduced AHR to methacholine and airway inflammation. Type 2 T helper (Th2) cytokines (interleukin [IL]-4, IL-5, and IL-13) were reduced and epithelial cell-derived cytokines (thymic stromal lymphopoietin [TSLP], IL-33, and IL-25), which regulate Th2 cytokine-associated inflammation, were also reduced. Airway remodeling characterized by goblet cell hyperplasia, increased α-smooth muscle action, and collagen deposition was also alleviated by both treatments. Treatment directed at TRPV1 significantly alleviated AHR, airway inflammation, and remodeling in a chronic asthma murine model. The TRPV1 receptor can be a potential drug target for chronic bronchial asthma. Copyright © 2018 The Korean Academy of Asthma, Allergy and Clinical Immunology · The Korean Academy of Pediatric Allergy and Respiratory Disease.

  15. Mesenchymal stem cells ameliorate the histopathological changes in a murine model of chronic asthma.

    PubMed

    Firinci, Fatih; Karaman, Meral; Baran, Yusuf; Bagriyanik, Alper; Ayyildiz, Zeynep Arikan; Kiray, Muge; Kozanoglu, Ilknur; Yilmaz, Osman; Uzuner, Nevin; Karaman, Ozkan

    2011-08-01

    Asthma therapies are effective in reducing inflammation but airway remodeling is poorly responsive to these agents. New therapeutic options that have fewer side effects and reverse chronic changes in the lungs are essential. Mesenchymal stem cells (MSCs) are promising for the development of novel therapies in regenerative medicine. This study aimed to examine the efficacy of MSCs on lung histopathology in a murine model of chronic asthma. BALB/c mice were divided into four groups: Group 1 (control group, n=6), Group 2 (ovalbumin induced asthma only, n=10), Group 3 (ovalbumin induced asthma + MSCs, n=10), and Group 4 (MSCs only, n=10). Histological findings (basement membrane, epithelium, subepithelial smooth muscle thickness, numbers of goblet and mast cells) of the airways and MSC migration were evaluated by light, electron, and confocal microscopes. In Group 3, all early histopathological changes except epithelial thickness and all of the chronic changes were significantly ameliorated when compared with Group 2. Evaluation with confocal microscopy showed that no noteworthy amount of MSCs were present in the lung tissues of Group 4 while significant amount of MSCs was detected in Group 3. Serum NO levels in Group 3, were significantly lower than Group 2. The results of this study revealed that MSCs migrated to lung tissue and ameliorated bronchial asthma in murine model. Further studies are needed to evaluate the efficacy of MSCs for the treatment of asthma. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Immunomodulatory Effects of Deokgu Thermomineral Water Balneotherapy on Oxazolone-Induced Atopic Dermatitis Murine Model

    PubMed Central

    Lee, Young Bok; Kim, Su Jin; Park, Sae Mi; Lee, Kyung Ho; Han, Hyung Jin; Yu, Dong Soo; Woo, So Youn; Yun, Seong Taek; Hamm, Se-Yeong; Kim, Hong Jig

    2016-01-01

    Background Although the therapeutic mechanism of balneotherapy for atopic dermatitis has not been clarified, many atopic patients who visit thermomineral springs have shown clinical improvements. Objective This study was aimed to evaluate the immunomodulatory effect of thermomineral water balneotherapy on the atopic dermatitis murine model. Methods The oxazolone-induced atopic dermatitis murine model was used to evaluate the therapeutic effect of balneotherapy with Deokgu thermomineral water compared with distilled water. Histologic evaluation and confocal microscopic imaging were performed to analyze the lesional expression of cluster-of-differentiation (CD)4 and forkhead box p3 (Foxp3). Lesional mRNA expression of interleukin (IL) 33, thymic stromal lymphopoietin (TSLP), and Foxp3 was evaluated by real-time reverse transcription polymerase chain reaction. Results Compared with the distilled water bath group, confocal microscopic evaluation of CD4 and Foxp3 merged images showed increased expression of regulatory T cells in the thermomineral balneotherapy group. The lesional mRNA level of IL-33 showed a reduced trend in the thermomineral balneotherapy group, whereas the level of mRNA of Foxp3 was increased. TSLP showed a decreased trend in both distilled water and thermomineral water bath groups. There was a trend of reduced expression in lesional IL-33 mRNA but increased cell count of CD4+ Foxp3+ regulatory T cells in thermomineral balneotherapy compared with distilled water bath. Conclusion Therefore, thermomineral balneotherapy can be an effective and safe adjuvant therapeutic option for atopic dermatitis. PMID:27081266

  17. Immunomodulatory Effects of Deokgu Thermomineral Water Balneotherapy on Oxazolone-Induced Atopic Dermatitis Murine Model.

    PubMed

    Lee, Young Bok; Kim, Su Jin; Park, Sae Mi; Lee, Kyung Ho; Han, Hyung Jin; Yu, Dong Soo; Woo, So Youn; Yun, Seong Taek; Hamm, Se-Yeong; Kim, Hong Jig; Kim, Jin-Wou

    2016-04-01

    Although the therapeutic mechanism of balneotherapy for atopic dermatitis has not been clarified, many atopic patients who visit thermomineral springs have shown clinical improvements. This study was aimed to evaluate the immunomodulatory effect of thermomineral water balneotherapy on the atopic dermatitis murine model. The oxazolone-induced atopic dermatitis murine model was used to evaluate the therapeutic effect of balneotherapy with Deokgu thermomineral water compared with distilled water. Histologic evaluation and confocal microscopic imaging were performed to analyze the lesional expression of cluster-of-differentiation (CD)4 and forkhead box p3 (Foxp3). Lesional mRNA expression of interleukin (IL) 33, thymic stromal lymphopoietin (TSLP), and Foxp3 was evaluated by real-time reverse transcription polymerase chain reaction. Compared with the distilled water bath group, confocal microscopic evaluation of CD4 and Foxp3 merged images showed increased expression of regulatory T cells in the thermomineral balneotherapy group. The lesional mRNA level of IL-33 showed a reduced trend in the thermomineral balneotherapy group, whereas the level of mRNA of Foxp3 was increased. TSLP showed a decreased trend in both distilled water and thermomineral water bath groups. There was a trend of reduced expression in lesional IL-33 mRNA but increased cell count of CD4(+) Foxp3(+) regulatory T cells in thermomineral balneotherapy compared with distilled water bath. Therefore, thermomineral balneotherapy can be an effective and safe adjuvant therapeutic option for atopic dermatitis.

  18. Impact of Staphylococcus aureus regulatory mutations that modulate biofilm formation in the USA300 strain LAC on virulence in a murine bacteremia model

    PubMed Central

    Rom, Joseph S.; Atwood, Danielle N.; Beenken, Karen E.; Meeker, Daniel G.; Loughran, Allister J.; Spencer, Horace J.; Lantz, Tamara L.; Smeltzer, Mark S.

    2017-01-01

    ABSTRACT Staphylococcus aureus causes acute and chronic forms of infection, the latter often associated with formation of a biofilm. It has previously been demonstrated that mutation of atl, codY, rot, sarA, and sigB limits biofilm formation in the USA300 strain LAC while mutation of agr, fur, and mgrA has the opposite effect. Here we used a murine sepsis model to assess the impact of these same loci in acute infection. Mutation of agr, atl, and fur had no impact on virulence, while mutation of mgrA and rot increased virulence. In contrast, mutation of codY, sarA, and sigB significantly attenuated virulence. Mutation of sigB resulted in reduced accumulation of AgrA and SarA, while mutation of sarA resulted in reduced accumulation of AgrA, but this cannot account for the reduced virulence of sarA or sigB mutants because the isogenic agr mutant was not attenuated. Indeed, as assessed by accumulation of alpha toxin and protein A, all of the mutants we examined exhibited unique phenotypes by comparison to an agr mutant and to each other. Attenuation of the sarA, sigB and codY mutants was correlated with increased production of extracellular proteases and global changes in extracellular protein profiles. These results suggest that the inability to repress the production of extracellular proteases plays a key role in attenuating the virulence of S. aureus in acute as well as chronic, biofilm-associated infections, thus opening up the possibility that strategies aimed at the de-repression of protease production could be used to broad therapeutic advantage. They also suggest that the impact of codY, sarA, and sigB on protease production occurs via an agr-independent mechanism. PMID:28910576

  19. Catalase-peroxidase activity has no influence on virulence in a murine model of tuberculosis.

    PubMed

    Cardona, Pere Joan; Gordillo, Sergi; Amat, Isabel; Díaz, Jorge; Lonca, Joan; Vilaplana, Cristina; Pallarés, Angeles; Llatjós, Roger; Ariza, Aurelio; Ausina, Vicenç

    2003-01-01

    The capacity to generate a chronic and persistent infection in the experimental murine model of tuberculosis induced aerogenically by a low-dose inoculum was determined in eight isoniazid-resistant clinical strains of Mycobacterium tuberculosis showing different catalase-peroxidase (C-P) activities. Determination of bacillary concentration in lung and spleen and the percentage of pulmonary parenchyma occupied by granulomas were monitored. Data showed no relation between the lack of C-P activity and the ability to develop a persistent infection, highlighting the potential of C-P negative strains to spread through the community.

  20. Detection and characterization of murine colitis and carcinogenesis by molecularly targeted contrast-enhanced ultrasound

    PubMed Central

    Brückner, Markus; Heidemann, Jan; Nowacki, Tobias M; Cordes, Friederike; Stypmann, Jörg; Lenz, Philipp; Gohar, Faekah; Lügering, Andreas; Bettenworth, Dominik

    2017-01-01

    AIM To study mucosal addressin cellular adhesion molecule-1 (MAdCAM-1) and vascular endothelial growth factor (VEGF)-targeted contrast enhanced ultrasound (CEUS) for the assessment of murine colitis and carcinogenesis. METHODS C57BL/6 mice were challenged with 3% dextran sodium-sulfate (DSS) for three, six or nine days to study the development of acute colitis. Ultrasound was performed with and without the addition of unspecific contrast agents. MAdCAM-1-targeted contrast agent was used to detect and quantify MAdCAM-1 expression. Inflammatory driven colorectal azoxymethane (AOM)/DSS-induced carcinogenesis was examined on day 42 and 84 using VEGF-targeted contrast agent. Highly specific tissue echogenicity was quantified using specialized software. Sonographic findings were correlated to tissue staining, western blot analysis and immunohistochemistry to quantify the degree of inflammation and stage of carcinogenesis. RESULTS Native ultrasound detected increased general bowel wall thickening that correlated with more progressed and more severe DSS-colitis (healthy mice: 0.3 mm ± 0.03 vs six days DSS: 0.5 mm ± 0.2 vs nine days DSS: 0.6 mm ± 0.2, P < 0.05). Moreover, these sonographic findings correlated well with clinical parameters such as weight loss (r2 = 0.74) and histological damage (r2 = 0.86) (P < 0.01). In acute DSS-induced murine colitis, CEUS targeted against MAdCAM-1 detected and differentiated stages of mild, moderate and severe colitis via calculation of mean pixel contrast intensity in decibel (9.6 dB ± 1.6 vs 12.9 dB ± 1.4 vs 18 dB ± 3.33, P < 0.05). Employing the AOM/DSS-induced carcinogenesis model, tumor development was monitored by CEUS targeted against VEGF and detected a significantly increased echogenicity in tumors as compared to adjacent healthy mucosa (healthy mucosa, 1.6 dB ± 1.4 vs 42 d, 18.2 dB ± 3.3 vs 84 d, 18.6 dB ± 4.9, P < 0.01). Tissue echogenicity strongly correlated with histological analysis and immunohistochemistry

  1. Detection and characterization of murine colitis and carcinogenesis by molecularly targeted contrast-enhanced ultrasound.

    PubMed

    Brückner, Markus; Heidemann, Jan; Nowacki, Tobias M; Cordes, Friederike; Stypmann, Jörg; Lenz, Philipp; Gohar, Faekah; Lügering, Andreas; Bettenworth, Dominik

    2017-04-28

    To study mucosal addressin cellular adhesion molecule-1 (MAdCAM-1) and vascular endothelial growth factor (VEGF)-targeted contrast enhanced ultrasound (CEUS) for the assessment of murine colitis and carcinogenesis. C57BL/6 mice were challenged with 3% dextran sodium-sulfate (DSS) for three, six or nine days to study the development of acute colitis. Ultrasound was performed with and without the addition of unspecific contrast agents. MAdCAM-1-targeted contrast agent was used to detect and quantify MAdCAM-1 expression. Inflammatory driven colorectal azoxymethane (AOM)/DSS-induced carcinogenesis was examined on day 42 and 84 using VEGF-targeted contrast agent. Highly specific tissue echogenicity was quantified using specialized software. Sonographic findings were correlated to tissue staining, western blot analysis and immunohistochemistry to quantify the degree of inflammation and stage of carcinogenesis. Native ultrasound detected increased general bowel wall thickening that correlated with more progressed and more severe DSS-colitis (healthy mice: 0.3 mm ± 0.03 vs six days DSS: 0.5 mm ± 0.2 vs nine days DSS: 0.6 mm ± 0.2, P < 0.05). Moreover, these sonographic findings correlated well with clinical parameters such as weight loss ( r 2 = 0.74) and histological damage ( r 2 = 0.86) ( P < 0.01). In acute DSS-induced murine colitis, CEUS targeted against MAdCAM-1 detected and differentiated stages of mild, moderate and severe colitis via calculation of mean pixel contrast intensity in decibel (9.6 dB ± 1.6 vs 12.9 dB ± 1.4 vs 18 dB ± 3.33, P < 0.05). Employing the AOM/DSS-induced carcinogenesis model, tumor development was monitored by CEUS targeted against VEGF and detected a significantly increased echogenicity in tumors as compared to adjacent healthy mucosa (healthy mucosa, 1.6 dB ± 1.4 vs 42 d, 18.2 dB ± 3.3 vs 84 d, 18.6 dB ± 4.9, P < 0.01). Tissue echogenicity strongly correlated with histological analysis and immunohistochemistry findings (VEGF

  2. Zebrafish Models for Human Acute Organophosphorus Poisoning.

    PubMed

    Faria, Melissa; Garcia-Reyero, Natàlia; Padrós, Francesc; Babin, Patrick J; Sebastián, David; Cachot, Jérôme; Prats, Eva; Arick Ii, Mark; Rial, Eduardo; Knoll-Gellida, Anja; Mathieu, Guilaine; Le Bihanic, Florane; Escalon, B Lynn; Zorzano, Antonio; Soares, Amadeu M V M; Raldúa, Demetrio

    2015-10-22

    Terrorist use of organophosphorus-based nerve agents and toxic industrial chemicals against civilian populations constitutes a real threat, as demonstrated by the terrorist attacks in Japan in the 1990 s or, even more recently, in the Syrian civil war. Thus, development of more effective countermeasures against acute organophosphorus poisoning is urgently needed. Here, we have generated and validated zebrafish models for mild, moderate and severe acute organophosphorus poisoning by exposing zebrafish larvae to different concentrations of the prototypic organophosphorus compound chlorpyrifos-oxon. Our results show that zebrafish models mimic most of the pathophysiological mechanisms behind this toxidrome in humans, including acetylcholinesterase inhibition, N-methyl-D-aspartate receptor activation, and calcium dysregulation as well as inflammatory and immune responses. The suitability of the zebrafish larvae to in vivo high-throughput screenings of small molecule libraries makes these models a valuable tool for identifying new drugs for multifunctional drug therapy against acute organophosphorus poisoning.

  3. Biomarkers of Disease and Treatment in Murine and Cynomolgus Models of Chronic Asthma

    PubMed Central

    Louten, Jennifer; Mattson, Jeanine D.; Malinao, Maria-Christina; Li, Ying; Emson, Claire; Vega, Felix; Wardle, Robert L.; Van Scott, Michael R.; Fick, Robert B.; McClanahan, Terrill K.; de Waal Malefyt, Rene; Beaumont, Maribel

    2012-01-01

    Background Biomarkers facilitate early detection of disease and measurement of therapeutic efficacy, both at clinical and experimental levels. Recent advances in analytics and disease models allow comprehensive screening for biomarkers in complex diseases, such as asthma, that was previously not feasible. Objective Using murine and nonhuman primate (NHP) models of asthma, identify biomarkers associated with early and chronic stages of asthma and responses to steroid treatment. Methods The total protein content from thymic stromal lymphopoietin transgenic (TSLP Tg) mouse BAL fluid was ascertained by shotgun proteomics analysis. A subset of these potential markers was further analyzed in BAL fluid, BAL cell mRNA, and lung tissue mRNA during the stages of asthma and following corticosteroid treatment. Validation was conducted in murine and NHP models of allergic asthma. Results Over 40 proteins were increased in the BAL fluid of TSLP Tg mice that were also detected by qRT-PCR in lung tissue and BAL cells, as well as in OVA-sensitive mice and house dust mite-sensitive NHP. Previously undescribed as asthma biomarkers, KLK1, Reg3γ, ITLN2, and LTF were modulated in asthmatic mice, and Clca3, Chi3l4 (YM2), and Ear11 were the first lung biomarkers to increase during disease and the last biomarkers to decline in response to therapy. In contrast, GP-39, LCN2, sICAM-1, YM1, Epx, Mmp12, and Klk1 were good indicators of early therapeutic intervention. In NHP, AMCase, sICAM-1, CLCA1, and GP-39 were reduced upon treatment with corticosteroids. Conclusions and clinical relevance These results significantly advance our understanding of the biomarkers present in various tissue compartments in animal models of asthma, including those induced early during asthma and modulated with therapeutic intervention, and show that BAL cells (or their surrogate, induced sputum cells) are a viable choice for biomarker examination. PMID:22837640

  4. Immunotherapy of Alzheimer's disease (AD): from murine models to anti-amyloid beta (Abeta) human monoclonal antibodies.

    PubMed

    Geylis, Valeria; Steinitz, Michael

    2006-01-01

    The deposition of amyloid beta (Abeta) protein is a key pathological feature in Alzheimer's disease (AD). In murine models of AD, both active and passive immunization against Abeta induce a marked reduction in amyloid brain burden and an improvement in cognitive functions. Preliminary results of a prematurely terminated clinical trial where AD patients were actively vaccinated with aggregated Abeta bear resemblance to those documented in murine models. Passive immunization of AD patients with anti-Abeta antibodies, in particular human antibodies, is a strategy that provides a more cautious management and control of any undesired side effects. Sera of all healthy adults contain anti-Abeta IgG autoimmune antibodies. Hence antigen-committed human B-cells are easily immortalized by Epstein-Barr virus (EBV) into anti-Abeta secreting cell lines. Two anti-Abeta human monoclonal antibodies which we recently prepared bind to the N-terminus of Abeta peptide and were shown to stain amyloid plaques in non-fixed brain sections from an AD patient. It is anticipated that specifically selected anti-Abeta human monoclonal antibodies could reduce and inhibit deposits of amyloid in brain while avoiding the cognitive decline that characterizes AD. In the future, this type of antibody may prove to be a promising immune therapy for the disease.

  5. Lenalidomide Synergistically Enhances the Effect of Dendritic Cell Vaccination in a Model of Murine Multiple Myeloma.

    PubMed

    Nguyen-Pham, Thanh-Nhan; Jung, Sung-Hoon; Vo, Manh-Cuong; Thanh-Tran, Huong-Thi; Lee, Youn-Kyung; Lee, Hyun-Ju; Choi, Nu-Ri; Hoang, My-Dung; Kim, Hyeoung-Joon; Lee, Je-Jung

    2015-10-01

    We investigated the efficacy of lenalidomide (LEN) in combination with dendritic cell (DC) vaccination in the MOPC-315 murine myeloma model. After tumor growth, LEN was injected intraperitoneally for 4 consecutive days in combination with DC vaccination. The combination of LEN and vaccination efficiently inhibited tumor growth compared with the single agents alone. A cytotoxic assay revealed that the anticancer effects of DC vaccination plus LEN involved not only generation of antigen-specific cytotoxic T lymphocytes but also NK cells. Vaccinated mice had reduced numbers of suppressor cells, including both myeloid-derived suppressor cells and regulatory T cells, in the spleen. The proportions of CD4+ and CD8+ T cells increased in the spleen, and a Th1 cytokine (interferon-γ) rather than a Th2 cytokine (interleukin-10) was synthesized in response to tumor antigens. LEN enhanced the innate immune response by modulating NK cell numbers and function. In addition, LEN reduced the production levels of angiogenesis-inducing factors in tumor-bearing mice. Together, these results suggest that a combination of LEN and DC vaccination may synergistically enhance anticancer immunity in the murine myeloma model, by inhibiting immunosuppressor cells and stimulating effector cells, as well as effectively polarizing the Th1/Th2 balance in favor of a Th1-specific immune response.

  6. Overcoming food allergy through acquired tolerance conferred by transfer of Tregs in a murine model.

    PubMed

    Yamashita, H; Takahashi, K; Tanaka, H; Nagai, H; Inagaki, N

    2012-02-01

    The number of food allergy patients is increasing. Some children outgrow their food allergies through tolerance, whereas others remain susceptible throughout their lives. We aimed to contribute to food allergy therapeutics by understanding induction of oral tolerance in a murine food allergy model. We modified an existing murine food allergy model by using ovalbumin (OVA) to induce oral tolerance, either by pretreating mice with OVA or by transferring mesenteric lymph node (MLN) cells or T cells derived from mice treated with OVA. Pretreatment with OVA prevented food allergy, with complete suppression of OVA-specific immunoglobulin (Ig)E and IgA antibody production and interleukin (IL)-4, IL-10, and IL-9 mRNA expression. The proportion of regulatory T cells (Tregs) in MLN cells and expression of transforming growth factor-β mRNA increased. In the transfer model, anaphylaxis secondary to OVA intake was suppressed by transfer of whole MLN cells and Tregs from OVA-treated mice. However, OVA-specific IgE and IgA expressions were partially attenuated by transfer of antigen-specific and nonspecific Tregs, but not by whole MLN cells from OVA-treated mice. In the Treg transfer model, IL-4 and IL-10 mRNA expression decreased, but IL-9 mRNA expression increased. We concluded that oral tolerance for food antigens is induced in two ways: (i) by initial exposure to antigen, or inherent tolerance, and (ii) by transfer of Tregs, or acquired tolerance. Because food allergies occur when inherent tolerance is absent, understanding of acquired tolerance is important for the development of therapies for food allergy. © 2011 John Wiley & Sons A/S.

  7. Genetic deletion of the bacterial sensor NOD2 improves murine Crohn’s disease-like ileitis independent of functional dysbiosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corridoni, D.; Rodriguez-Palacios, A.; Di Stefano, G.

    Although genetic polymorphisms in NOD2 (nucleotide-binding oligomerization domain-containing 2) have been associated with the pathogenesis of Crohn’s disease (CD), little is known regarding the role of wild-type (WT) NOD2 in the gut. To date, most murine studies addressing the role of WT Nod2 have been conducted using healthy (ileitis/colitis-free) mouse strains. Here, we evaluated the effects of Nod2 deletion in a murine model of spontaneous ileitis, i.e., the SAMP1Yit/Fc (SAMP) strain, which closely resembles CD. Remarkably, Nod2 deletion improved both chronic cobblestone ileitis (by 50% assessed, as the % of abnormal mucosa at 24 wks of age), as well asmore » acute dextran sodium sulfate (DSS) colitis. Mechanistically, Th2 cytokine production and Th2-transcription factor activation (i.e., STAT6 phosphorylation) were reduced. Microbiologically, the effects of Nod2 deletion appeared independent of fecal microbiota composition and function, assessed by 16S rRNA and metatranscriptomics. Our findings indicate that pharmacological blockade of NOD2 signaling in humans could improve health in Th2-driven chronic intestinal inflammation.« less

  8. Methamphetamine-alcohol interactions in murine models of sequential and simultaneous oral drug-taking.

    PubMed

    Fultz, Elissa K; Martin, Douglas L; Hudson, Courtney N; Kippin, Tod E; Szumlinski, Karen K

    2017-08-01

    A high degree of co-morbidity exists between methamphetamine (MA) addiction and alcohol use disorders and both sequential and simultaneous MA-alcohol mixing increases risk for co-abuse. As little preclinical work has focused on the biobehavioral interactions between MA and alcohol within the context of drug-taking behavior, we employed simple murine models of voluntary oral drug consumption to examine how prior histories of either MA- or alcohol-taking influence the intake of the other drug. In one study, mice with a 10-day history of binge alcohol-drinking [5,10, 20 and 40% (v/v); 2h/day] were trained to self-administer oral MA in an operant-conditioning paradigm (10-40mg/L). In a second study, mice with a 10-day history of limited-access oral MA-drinking (5, 10, 20 and 40mg/L; 2h/day) were presented with alcohol (5-40% v/v; 2h/day) and then a choice between solutions of 20% alcohol, 10mg/L MA or their mix. Under operant-conditioning procedures, alcohol-drinking mice exhibited less MA reinforcement overall, than water controls. However, when drug availability was not behaviorally-contingent, alcohol-drinking mice consumed more MA and exhibited greater preference for the 10mg/L MA solution than drug-naïve and combination drug-experienced mice. Conversely, prior MA-drinking history increased alcohol intake across a range of alcohol concentrations. These exploratory studies indicate the feasibility of employing procedurally simple murine models of sequential and simultaneous oral MA-alcohol mixing of relevance to advancing our biobehavioral understanding of MA-alcohol co-abuse. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Human CD22 Inhibits Murine B Cell Receptor Activation in a Human CD22 Transgenic Mouse Model.

    PubMed

    Bednar, Kyle J; Shanina, Elena; Ballet, Romain; Connors, Edward P; Duan, Shiteng; Juan, Joana; Arlian, Britni M; Kulis, Michael D; Butcher, Eugene C; Fung-Leung, Wai-Ping; Rao, Tadimeti S; Paulson, James C; Macauley, Matthew S

    2017-11-01

    CD22, a sialic acid-binding Ig-type lectin (Siglec) family member, is an inhibitory coreceptor of the BCR with established roles in health and disease. The restricted expression pattern of CD22 on B cells and most B cell lymphomas has made CD22 a therapeutic target for B cell-mediated diseases. Models to better understand how in vivo targeting of CD22 translates to human disease are needed. In this article, we report the development of a transgenic mouse expressing human CD22 (hCD22) in B cells and assess its ability to functionally substitute for murine CD22 (mCD22) for regulation of BCR signaling, Ab responses, homing, and tolerance. Expression of hCD22 on transgenic murine B cells is comparable to expression on human primary B cells, and it colocalizes with mCD22 on the cell surface. Murine B cells expressing only hCD22 have identical calcium (Ca 2+ ) flux responses to anti-IgM as mCD22-expressing wild-type B cells. Furthermore, hCD22 transgenic mice on an mCD22 -/- background have restored levels of marginal zone B cells and Ab responses compared with deficiencies observed in CD22 -/- mice. Consistent with these observations, hCD22 transgenic mice develop normal humoral responses in a peanut allergy oral sensitization model. Homing of B cells to Peyer's patches was partially rescued by expression of hCD22 compared with CD22 -/- B cells, although not to wild-type levels. Notably, Siglec-engaging antigenic liposomes formulated with an hCD22 ligand were shown to prevent B cell activation, increase cell death, and induce tolerance in vivo. This hCD22 transgenic mouse will be a valuable model for investigating the function of hCD22 and preclinical studies targeting hCD22. Copyright © 2017 by The American Association of Immunologists, Inc.

  10. Activin in acute pancreatitis: Potential risk-stratifying marker and novel therapeutic target.

    PubMed

    Staudacher, Jonas J; Yazici, Cemal; Carroll, Timothy; Bauer, Jessica; Pang, Jingbo; Krett, Nancy; Xia, Yinglin; Wilson, Annette; Papachristou, Georgios; Dirmeier, Andrea; Kunst, Claudia; Whitcomb, David C; Fantuzzi, Giamila; Jung, Barbara

    2017-10-06

    Acute Pancreatitis is a substantial health care challenge with increasing incidence. Patients who develop severe disease have considerable mortality. Currently, no reliable predictive marker to identify patients at risk for severe disease exists. Treatment is limited to rehydration and supporting care suggesting an urgent need to develop novel approaches to improve standard care. Activin is a critical modulator of inflammatory responses, but has not been assessed in pancreatitis. Here, we demonstrate that serum activin is elevated and strongly correlates with disease severity in two established murine models of acute pancreatitis induced by either cerulein or IL-12 + IL-18. Furthermore, in mice, inhibition of activin conveys survival benefits in pancreatitis. In addition, serum activin levels were measured from a retrospective clinical cohort of pancreatitis patients and high activin levels in patients at admission are predictive of worse outcomes, indicated by longer overall hospital and intensive care unit stays. Taken together, activin is a novel candidate as a clinical marker to identify those acute pancreatitis patients with severe disease who would benefit from aggressive treatment and activin may be a therapeutic target in severe acute pancreatitis.

  11. Stretching Reduces Skin Thickness and Improves Subcutaneous Tissue Mobility in a Murine Model of Systemic Sclerosis.

    PubMed

    Xiong, Ying; Berrueta, Lisbeth; Urso, Katia; Olenich, Sara; Muskaj, Igla; Badger, Gary J; Aliprantis, Antonios; Lafyatis, Robert; Langevin, Helene M

    2017-01-01

    Although physical therapy can help preserve mobility in patients with systemic sclerosis (SSc), stretching has not been used systematically as a treatment to prevent or reverse the disease process. We previously showed in rodent models that stretching promotes the resolution of connective tissue inflammation and reduces new collagen formation after injury. Here, we tested the hypothesis that stretching would impact scleroderma development using a mouse sclerodermatous graft-versus-host disease (sclGvHD) model. The model consists in the adoptive transfer (allogeneic) of splenocytes from B10.D2 mice (graft) into Rag2 -/- BALB/c hosts (sclGvHD), resulting in skin inflammation followed by fibrosis over 4 weeks. SclGvHD mice and controls were randomized to stretching in vivo for 10 min daily versus no stretching. Weekly ultrasound measurements of skin thickness and subcutaneous tissue mobility in the back (relative tissue displacement during passive trunk motion) successfully captured the different phases of the sclGvHD model. Stretching reduced skin thickness and increased subcutaneous tissue mobility compared to no stretching at week 3. Stretching also reduced the expression of CCL2 and ADAM8 in the skin at week 4, which are two genes known to be upregulated in both murine sclGvHD and the inflammatory subset of human SSc. However, there was no evidence that stretching attenuated inflammation at week 2. Daily stretching for 10 min can improve skin thickness and mobility in the absence of any other treatment in the sclGvHD murine model. These pre-clinical results suggest that a systematic investigation of stretching as a therapeutic modality is warranted in patients with SSc.

  12. Quantifying mechanical properties in a murine fracture healing system using inverse modeling: preliminary work

    NASA Astrophysics Data System (ADS)

    Miga, Michael I.; Weis, Jared A.; Granero-Molto, Froilan; Spagnoli, Anna

    2010-03-01

    Understanding bone remodeling and mechanical property characteristics is important for assessing treatments to accelerate healing or in developing diagnostics to evaluate successful return to function. The murine system whereby mid-diaphaseal tibia fractures are imparted on the subject and fracture healing is assessed at different time points and under different therapeutic conditions is a particularly useful model to study. In this work, a novel inverse geometric nonlinear elasticity modeling framework is proposed that can reconstruct multiple mechanical properties from uniaxial testing data. To test this framework, the Lame' constants were reconstructed within the context of a murine cohort (n=6) where there were no differences in treatment post tibia fracture except that half of the mice were allowed to heal 4 days longer (10 day, and 14 day healing time point, respectively). The properties reconstructed were a shear modulus of G=511.2 +/- 295.6 kPa, and 833.3+/- 352.3 kPa for the 10 day, and 14 day time points respectively. The second Lame' constant reconstructed at λ=1002.9 +/-42.9 kPa, and 14893.7 +/- 863.3 kPa for the 10 day, and 14 day time points respectively. An unpaired Student t-test was used to test for statistically significant differences among the groups. While the shear modulus did not meet our criteria for significance, the second Lame' constant did at a value p<0.0001. Traditional metrics that are commonly used within the bone fracture healing research community were not found to be statistically significant.

  13. Hyperglycemia impedes lung bacterial clearance in a murine model of cystic fibrosis-related diabetes

    PubMed Central

    Hunt, William R.; Zughaier, Susu M.; Guentert, Dana E.; Shenep, Melissa A.; Koval, Michael; McCarty, Nael A.

    2013-01-01

    Cystic fibrosis-related diabetes (CFRD) is the most common comorbidity associated with cystic fibrosis (CF), impacting more than half of patients over age 30. CFRD is clinically significant, portending accelerated decline in lung function, more frequent pulmonary exacerbations, and increased mortality. Despite the profound morbidity associated with CFRD, little is known about the underlying CFRD-related pulmonary pathology. Our aim was to develop a murine model of CFRD to explore the hypothesis that elevated glucose in CFRD is associated with reduced lung bacterial clearance. A diabetic phenotype was induced in gut-corrected CF transmembrane conductance regulator (CFTR) knockout mice (CFKO) and their CFTR-expressing wild-type littermates (WT) utilizing streptozotocin. Mice were subsequently challenged with an intratracheal inoculation of Pseudomonas aeruginosa (PAO1) (75 μl of 1–5 × 106 cfu/ml) for 18 h. Bronchoalveolar lavage fluid was collected for glucose concentration and cell counts. A portion of the lung was homogenized and cultured as a measure of the remaining viable PAO1 inoculum. Diabetic mice had increased airway glucose compared with nondiabetic mice. The ability to clear bacteria from the lung was significantly reduced in diabetic WT mice and control CFKO mice. Critically, bacterial clearance by diabetic CFKO mice was significantly more diminished compared with nondiabetic CFKO mice, despite an even more robust recruitment of neutrophils to the airways. This finding that CFRD mice boast an exaggerated, but less effective, inflammatory cell response to intratracheal PAO1 challenge presents a novel and useful murine model to help identify therapeutic strategies that promote bacterial clearance in CFRD. PMID:24097557

  14. Disaster metrics: quantification of acute medical disasters in trauma-related multiple casualty events through modeling of the Acute Medical Severity Index.

    PubMed

    Bayram, Jamil D; Zuabi, Shawki

    2012-04-01

    The interaction between the acute medical consequences of a Multiple Casualty Event (MCE) and the total medical capacity of the community affected determines if the event amounts to an acute medical disaster. There is a need for a comprehensive quantitative model in MCE that would account for both prehospital and hospital-based acute medical systems, leading to the quantification of acute medical disasters. Such a proposed model needs to be flexible enough in its application to accommodate a priori estimation as part of the decision-making process and a posteriori evaluation for total quality management purposes. The concept proposed by de Boer et al in 1989, along with the disaster metrics quantitative models proposed by Bayram et al on hospital surge capacity and prehospital medical response, were used as theoretical frameworks for a new comprehensive model, taking into account both prehospital and hospital systems, in order to quantify acute medical disasters. A quantitative model called the Acute Medical Severity Index (AMSI) was developed. AMSI is the proportion of the Acute Medical Burden (AMB) resulting from the event, compared to the Total Medical Capacity (TMC) of the community affected; AMSI = AMB/TMC. In this model, AMB is defined as the sum of critical (T1) and moderate (T2) casualties caused by the event, while TMC is a function of the Total Hospital Capacity (THC) and the medical rescue factor (R) accounting for the hospital-based and prehospital medical systems, respectively. Qualitatively, the authors define acute medical disaster as "a state after any type of Multiple Casualty Event where the Acute Medical Burden (AMB) exceeds the Total Medical Capacity (TMC) of the community affected." Quantitatively, an acute medical disaster has an AMSI value of more than one (AMB / TMC > 1). An acute medical incident has an AMSI value of less than one, without the need for medical surge. An acute medical emergency has an AMSI value of less than one with

  15. Experimental Hyalohyphomycosis by Purpureocillium lilacinum: Outcome of the Infection in C57BL/6 Murine Models.

    PubMed

    de Sequeira, Danielly C M; Menezes, Rodrigo C; Oliveira, Manoel M E; Antas, Paulo R Z; De Luca, Paula M; de Oliveira-Ferreira, Joseli; Borba, Cintia de Moraes

    2017-01-01

    Purpureocillium lilacinum is a filamentous, hyaline fungus considered an emerging pathogen in humans. The aim of our study was to evaluate the outcome of hyalohyphomycosis in C57BL/6 murine models inoculated with two clinical P. lilacinum isolates (S1 and S2). Each isolate was inoculated in mice randomly distributed in immunocompetent (CPT) and immunosuppressed (SPS) groups. Mice were evaluated at day 7, 21, and 45 after inoculation for histopathological analysis, recovery of fungal cells, and immunological studies. Histological analysis showed scarce conidia-like structures in lung tissue from CPT mice and a lot of fungal cells in SPS mice inoculated with S2 compared to mice inoculated with S1. The maximum recovery of fungal cells was seen in CPT mice inoculated with both isolates at day 7, but with mean significantly higher in those inoculated with S2 isolate. Phenotypical characterization of T cells showed TCD8 + lymphocytes predominance over TCD4 + in immunosuppressed mice infected and control groups. We also observed higher percentages of the central and effector memory/effector phenotype in CPT mice infected with S2 strain, especially in TCD8 + in the initial period of infection. Regulatory T cells showed higher percentages in immunosuppressed, predominantly after the acute phase. Our results showed that the P. lilacinum is a fungus capable to cause damages in competent and immunosuppressed experimental hosts. Furthermore, S2 isolate seems to cause more damage to the experimental host and it was possible to identify different cellular subsets involved in the mice immune response.

  16. Experimental Hyalohyphomycosis by Purpureocillium lilacinum: Outcome of the Infection in C57BL/6 Murine Models

    PubMed Central

    de Sequeira, Danielly C. M.; Menezes, Rodrigo C.; Oliveira, Manoel M. E.; Antas, Paulo R. Z.; De Luca, Paula M.; de Oliveira-Ferreira, Joseli; Borba, Cintia de Moraes

    2017-01-01

    Purpureocillium lilacinum is a filamentous, hyaline fungus considered an emerging pathogen in humans. The aim of our study was to evaluate the outcome of hyalohyphomycosis in C57BL/6 murine models inoculated with two clinical P. lilacinum isolates (S1 and S2). Each isolate was inoculated in mice randomly distributed in immunocompetent (CPT) and immunosuppressed (SPS) groups. Mice were evaluated at day 7, 21, and 45 after inoculation for histopathological analysis, recovery of fungal cells, and immunological studies. Histological analysis showed scarce conidia-like structures in lung tissue from CPT mice and a lot of fungal cells in SPS mice inoculated with S2 compared to mice inoculated with S1. The maximum recovery of fungal cells was seen in CPT mice inoculated with both isolates at day 7, but with mean significantly higher in those inoculated with S2 isolate. Phenotypical characterization of T cells showed TCD8+ lymphocytes predominance over TCD4+ in immunosuppressed mice infected and control groups. We also observed higher percentages of the central and effector memory/effector phenotype in CPT mice infected with S2 strain, especially in TCD8+ in the initial period of infection. Regulatory T cells showed higher percentages in immunosuppressed, predominantly after the acute phase. Our results showed that the P. lilacinum is a fungus capable to cause damages in competent and immunosuppressed experimental hosts. Furthermore, S2 isolate seems to cause more damage to the experimental host and it was possible to identify different cellular subsets involved in the mice immune response. PMID:28878763

  17. Resistin deficiency in mice has no effect on pulmonary responses induced by acute ozone exposure

    PubMed Central

    Razvi, Shehla S.; Richards, Jeremy B.; Malik, Farhan; Cromar, Kevin R.; Price, Roger E.; Bell, Cynthia S.; Weng, Tingting; Atkins, Constance L.; Spencer, Chantal Y.; Cockerill, Katherine J.; Alexander, Amy L.; Blackburn, Michael R.; Alcorn, Joseph L.; Haque, Ikram U.

    2015-01-01

    Acute exposure to ozone (O3), an air pollutant, causes pulmonary inflammation, airway epithelial desquamation, and airway hyperresponsiveness (AHR). Pro-inflammatory cytokines—including IL-6 and ligands of chemokine (C-X-C motif) receptor 2 [keratinocyte chemoattractant (KC) and macrophage inflammatory protein (MIP)-2], TNF receptor 1 and 2 (TNF), and type I IL-1 receptor (IL-1α and IL-1β)—promote these sequelae. Human resistin, a pleiotropic hormone and cytokine, induces expression of IL-1α, IL-1β, IL-6, IL-8 (the human ortholog of murine KC and MIP-2), and TNF. Functional differences exist between human and murine resistin; yet given the aforementioned observations, we hypothesized that murine resistin promotes O3-induced lung pathology by inducing expression of the same inflammatory cytokines as human resistin. Consequently, we examined indexes of O3-induced lung pathology in wild-type and resistin-deficient mice following acute exposure to either filtered room air or O3. In wild-type mice, O3 increased bronchoalveolar lavage fluid (BALF) resistin. Furthermore, O3 increased lung tissue or BALF IL-1α, IL-6, KC, TNF, macrophages, neutrophils, and epithelial cells in wild-type and resistin-deficient mice. With the exception of KC, which was significantly greater in resistin-deficient compared with wild-type mice, no genotype-related differences in the other indexes existed following O3 exposure. O3 caused AHR to acetyl-β-methylcholine chloride (methacholine) in wild-type and resistin-deficient mice. However, genotype-related differences in airway responsiveness to methacholine were nonexistent subsequent to O3 exposure. Taken together, these data demonstrate that murine resistin is increased in the lungs of wild-type mice following acute O3 exposure but does not promote O3-induced lung pathology. PMID:26386120

  18. Giardia Alters Commensal Microbial Diversity throughout the Murine Gut

    PubMed Central

    Barash, N. R.; Maloney, J. G.

    2017-01-01

    ABSTRACT Giardia lamblia is the most frequently identified protozoan cause of intestinal infection. Over 200 million people are estimated to have acute or chronic giardiasis, with infection rates approaching 90% in areas where Giardia is endemic. Despite its significance in global health, the mechanisms of pathogenesis associated with giardiasis remain unclear, as the parasite neither produces a known toxin nor induces a robust inflammatory response. Giardia colonization and proliferation in the small intestine of the host may, however, disrupt the ecological homeostasis of gastrointestinal commensal microbes and contribute to diarrheal disease associated with giardiasis. To evaluate the impact of Giardia infection on the host microbiota, we used culture-independent methods to quantify shifts in the diversity of commensal microbes throughout the gastrointestinal tract in mice infected with Giardia. We discovered that Giardia's colonization of the small intestine causes a systemic dysbiosis of aerobic and anaerobic commensal bacteria. Specifically, Giardia colonization is typified by both expansions in aerobic Proteobacteria and decreases in anaerobic Firmicutes and Melainabacteria in the murine foregut and hindgut. Based on these shifts, we created a quantitative index of murine Giardia-induced microbial dysbiosis. This index increased at all gut regions during the duration of infection, including both the proximal small intestine and the colon. Giardiasis could be an ecological disease, and the observed dysbiosis may be mediated directly via the parasite's unique anaerobic fermentative metabolism or indirectly via parasite induction of gut inflammation. This systemic alteration of murine gut commensal diversity may be the cause or the consequence of inflammatory and metabolic changes throughout the gut. Shifts in the commensal microbiota may explain observed variations in giardiasis between hosts with respect to host pathology, degree of parasite colonization

  19. CD8+ T Cells Contribute to the Development of Coronary Arteritis in the Lactobacillus casei Cell Wall Extract-Induced Murine Model of Kawasaki Disease.

    PubMed

    Noval Rivas, Magali; Lee, Youngho; Wakita, Daiko; Chiba, Norika; Dagvadorj, Jargalsaikhan; Shimada, Kenichi; Chen, Shuang; Fishbein, Michael C; Lehman, Thomas J A; Crother, Timothy R; Arditi, Moshe

    2017-02-01

    Kawasaki disease (KD) is the leading cause of acquired heart disease among children in developed countries. Coronary lesions in KD in humans are characterized by an increased presence of infiltrating CD3+ T cells; however, the specific contributions of the different T cell subpopulations in coronary arteritis development remain unknown. Therefore, we sought to investigate the function of CD4+ and CD8+ T cells, Treg cells, and natural killer (NK) T cells in the pathogenesis of KD. We addressed the function of T cell subsets in KD development by using a well-established murine model of Lactobacillus casei cell wall extract (LCWE)-induced KD vasculitis. We determined which T cell subsets were required for development of KD vasculitis by using several knockout murine strains and depleting monoclonal antibodies. LCWE-injected mice developed coronary lesions characterized by the presence of inflammatory cell infiltrates. Frequently, this chronic inflammation resulted in complete occlusion of the coronary arteries due to luminal myofibroblast proliferation (LMP) as well as the development of coronary arteritis and aortitis. We found that CD8+ T cells, but not CD4+ T cells, NK T cells, or Treg cells, were required for development of KD vasculitis. The LCWE-induced murine model of KD vasculitis mimics many histologic features of the disease in humans, such as the presence of CD8+ T cells and LMP in coronary artery lesions as well as epicardial coronary arteritis. Moreover, CD8+ T cells functionally contribute to the development of KD vasculitis in this murine model. Therapeutic strategies targeting infiltrating CD8+ T cells might be useful in the management of KD in humans. © 2016, American College of Rheumatology.

  20. Inflammation Drives Dysbiosis and Bacterial Invasion in Murine Models of Ileal Crohn’s Disease

    PubMed Central

    Craven, Melanie; Egan, Charlotte E.; Dowd, Scot E.; McDonough, Sean P.; Dogan, Belgin; Denkers, Eric Y.; Bowman, Dwight; Scherl, Ellen J.; Simpson, Kenneth W.

    2012-01-01

    Background and Aims Understanding the interplay between genetic susceptibility, the microbiome, the environment and the immune system in Crohn’s Disease (CD) is essential for developing optimal therapeutic strategies. We sought to examine the dynamics of the relationship between inflammation, the ileal microbiome, and host genetics in murine models of ileitis. Methods We induced ileal inflammation of graded severity in C57BL6 mice by gavage with Toxoplasma gondii, Giardia muris, low dose indomethacin (LDI;0.1 mg/mouse), or high dose indomethacin (HDI;1 mg/mouse). The composition and spatial distribution of the mucosal microbiome was evaluated by 16S rDNA pyrosequencing and fluorescence in situ hybridization. Mucosal E. coli were enumerated by quantitative PCR, and characterized by phylogroup, genotype and pathotype. Results Moderate to severe ileitis induced by T. gondii (day 8) and HDI caused a consistent shift from >95% Gram + Firmicutes to >95% Gram - Proteobacteria. This was accompanied by reduced microbial diversity and mucosal invasion by adherent and invasive E. coli, mirroring the dysbiosis of ileal CD. In contrast, dysbiosis and bacterial invasion did not develop in mice with mild ileitis induced by Giardia muris. Superimposition of genetic susceptibility and T. Gondii infection revealed greatest dysbiosis and bacterial invasion in the CD-susceptible genotype, NOD2−/−, and reduced dysbiosis in ileitis-resistant CCR2−/− mice. Abrogating inflammation with the CD therapeutic anti-TNF-α-mAb tempered dysbiosis and bacterial invasion. Conclusions Acute ileitis induces dysbiosis and proliferation of mucosally invasive E. coli, irrespective of trigger and genotype. The identification of CCR2 as a target for therapeutic intervention, and discovery that host genotype and therapeutic blockade of inflammation impact the threshold and extent of ileal dysbiosis are of high relevance to developing effective therapies for CD. PMID:22848538

  1. A Beneficial Effect of Low-Dose Aspirin in a Murine Model of Active Tuberculosis

    PubMed Central

    Kroesen, Vera Marie; Rodríguez-Martínez, Paula; García, Eric; Rosales, Yaiza; Díaz, Jorge; Martín-Céspedes, Montse; Tapia, Gustavo; Sarrias, Maria Rosa; Cardona, Pere-Joan; Vilaplana, Cristina

    2018-01-01

    An excessive, non-productive host-immune response is detrimental in active, chronic tuberculosis (TB) disease as it typically leads to tissue damage. Given their anti-inflammatory effect, non-steroidal anti-inflammatory drugs can potentially attenuate excessive inflammation in active TB disease. As such, we investigated the prophylactic and therapeutic effect of low-dose aspirin (LDA) (3 mg/kg/day), either alone or in combination with common anti-TB treatment or BCG vaccination, on disease outcome in an experimental murine model of active TB. Survival rate, bacillary load (BL) in lungs, and lung pathology were measured. The possible mechanism of action of LDA on the host’s immune response was also evaluated by measuring levels of CD5L/AIM, selected cytokines/chemokines and other inflammatory markers in serum and lung tissue. LDA increased survival, had anti-inflammatory effects, reduced lung pathology, and decreased bacillary load in late-stage TB disease. Moreover, in combination with common anti-TB treatment, LDA enhanced survival and reduced lung pathology. Results from the immunological studies suggest the anti-inflammatory action of LDA at both a local and a systemic level. Our results showed a systemic decrease in neutrophilic recruitment, decreased levels of acute-phase reaction cytokines (IL-6, IL-1β, and TNF-α) at late stage and a delay in the decrease in T cell response (in terms of IFN-γ, IL-2, and IL-10 serum levels) that occurs during the course of Mycobacterium tuberculosis infection. An anti-inflammatory milieu was detected in the lung, with less neutrophil recruitment and lower levels of tissue factor. In conclusion, LDA may be beneficial as an adjunct to standard anti-TB treatment in the later stage of active TB by reducing excess, non-productive inflammation, while enhancing Th1-cell responses for elimination of the bacilli. PMID:29740435

  2. Impaired cognitive ability and anxiety-like behavior following acute seizures in the Theiler’s virus model of temporal lobe epilepsy

    PubMed Central

    Umpierre, Anthony D.; Remigio, Gregory J.; Dahle, Elizabeth J.; Bradford, Kate; Alex, Anitha B.; Smith, Misty D.; West, Peter J.; White, H. Steve; Wilcox, Karen S.

    2015-01-01

    Viral infection of the CNS can result in encephalitis and acute seizures, increasing the risk for later-life epilepsy. We have previously characterized a novel animal model of temporal lobe epilepsy that recapitulates key sequela in the development of epilepsy following viral infection. C57BL/6J mice inoculated with the Daniel’s strain of Theiler’s Murine Encephalomyelitis Virus (TMEV; 3×105 PFU, i.c.) display acute limbic seizures that secondarily generalize. A majority of acutely seized animals develop spontaneous seizures weeks to months later. As part of our investigation, we sought to assess behavioral comorbidity following TMEV inoculation. Anxiety, depression, cognitive impairment, and certain psychoses are diagnosed in persons with epilepsy at rates far more frequent than in the general population. We used a battery of behavioral tests to assess anxiety, depression, cognitive impairment, and general health in acutely seized animals inoculated with TMEV and compared behavioral outcomes against age-matched controls receiving a sham injection. We determined TMEV-seized animals are less likely to move through the exposed center of an open field and are less likely to enter into the lighted half of a light/dark box; both behaviors may be indicative of anxiety-like behavior. TMEV-seized animals also display early and persistent reductions in novel object exploration during novel object place tasks and do not improve in their ability to find a hidden escape platform in Morris water maze testing, indicative of impairment in episodic and spatial memory, respectively. Cresyl violet staining at 35 and 250 days after injection reveals bilateral reductions in hippocampal area, with extensive sclerosis of CA1 evident bilaterally along the rostral-caudal axis. Early and persistent behavioral changes in the TMEV model provide surrogate markers for assessing disease progression as well as endpoints in screening for the efficacy of novel compounds to manage both seizure

  3. The Influence of Flightless I on Toll-Like-Receptor-Mediated Inflammation in a Murine Model of Diabetic Wound Healing

    PubMed Central

    Ruzehaji, Nadira; Mills, Stuart J.; Melville, Elizabeth; Arkell, Ruth; Fitridge, Robert; Cowin, Allison J.

    2013-01-01

    Impaired wound healing and ulceration represent a serious complication of both type 1 and type 2 diabetes. Cytoskeletal protein Flightless I (Flii) is an important inhibitor of wound repair, and reduced Flii gene expression in fibroblasts increased migration, proliferation, and adhesion. As such it has the ability to influence all phases of wound healing including inflammation, remodelling and angiogenesis. Flii has the potential to modulate inflammation through its interaction with MyD88 which it an adaptor protein for TLR4. To assess the effect of Flii on the inflammatory response of diabetic wounds, we used a murine model of streptozocin-induced diabetes and Flii genetic mice. Increased levels of Flii were detected in Flii transgenic murine wounds resulting in impaired healing which was exacerbated when diabetes was induced. When Flii levels were reduced in diabetic wounds of Flii-deficient mice, healing was improved and decreased levels of TLR4 were observed. In contrast, increasing the level of Flii in diabetic mouse wounds led to increased TLR4 and NF-κB production. Treatment of murine diabetic wounds with neutralising antibodies to Flii led to an improvement in healing with decreased expression of TLR4. Decreasing the level of Flii in diabetic wounds may therefore reduce the inflammatory response and improve healing. PMID:23555084

  4. Airway Delivery of Soluble Factors from Plastic-Adherent Bone Marrow Cells Prevents Murine Asthma

    PubMed Central

    Ionescu, Lavinia I.; Alphonse, Rajesh S.; Arizmendi, Narcy; Morgan, Beverly; Abel, Melanie; Eaton, Farah; Duszyk, Marek; Vliagoftis, Harissios; Aprahamian, Tamar R.; Walsh, Kenneth

    2012-01-01

    Asthma affects an estimated 300 million people worldwide and accounts for 1 of 250 deaths and 15 million disability-adjusted life years lost annually. Plastic-adherent bone marrow–derived cell (BMC) administration holds therapeutic promise in regenerative medicine. However, given the low cell engraftment in target organs, including the lung, cell replacement cannot solely account for the reported therapeutic benefits. This suggests that BMCs may act by secreting soluble factors. BMCs also possess antiinflammatory and immunomodulatory properties and may therefore be beneficial for asthma. Our objective was to investigate the therapeutic potential of BMC-secreted factors in murine asthma. In a model of acute and chronic asthma, intranasal instillation of BMC conditioned medium (CdM) prevented airway hyperresponsiveness (AHR) and inflammation. In the chronic asthma model, CdM prevented airway smooth muscle thickening and peribronchial inflammation while restoring blunted salbutamol-induced bronchodilation. CdM reduced lung levels of the TH2 inflammatory cytokines IL-4 and IL-13 and increased levels of IL-10. CdM up-regulated an IL-10–induced and IL-10–secreting subset of T regulatory lymphocytes and promoted IL-10 expression by lung macrophages. Adiponectin (APN), an antiinflammatory adipokine found in CdM, prevented AHR, airway smooth muscle thickening, and peribronchial inflammation, whereas the effect of CdM in which APN was neutralized or from APN knock-out mice was attenuated compared with wild-type CdM. Our study provides evidence that BMC-derived soluble factors prevent murine asthma and suggests APN as one of the protective factors. Further identification of BMC-derived factors may hold promise for novel approaches in the treatment of asthma. PMID:21903873

  5. Airway delivery of soluble factors from plastic-adherent bone marrow cells prevents murine asthma.

    PubMed

    Ionescu, Lavinia I; Alphonse, Rajesh S; Arizmendi, Narcy; Morgan, Beverly; Abel, Melanie; Eaton, Farah; Duszyk, Marek; Vliagoftis, Harissios; Aprahamian, Tamar R; Walsh, Kenneth; Thébaud, Bernard

    2012-02-01

    Asthma affects an estimated 300 million people worldwide and accounts for 1 of 250 deaths and 15 million disability-adjusted life years lost annually. Plastic-adherent bone marrow-derived cell (BMC) administration holds therapeutic promise in regenerative medicine. However, given the low cell engraftment in target organs, including the lung, cell replacement cannot solely account for the reported therapeutic benefits. This suggests that BMCs may act by secreting soluble factors. BMCs also possess antiinflammatory and immunomodulatory properties and may therefore be beneficial for asthma. Our objective was to investigate the therapeutic potential of BMC-secreted factors in murine asthma. In a model of acute and chronic asthma, intranasal instillation of BMC conditioned medium (CdM) prevented airway hyperresponsiveness (AHR) and inflammation. In the chronic asthma model, CdM prevented airway smooth muscle thickening and peribronchial inflammation while restoring blunted salbutamol-induced bronchodilation. CdM reduced lung levels of the T(H)2 inflammatory cytokines IL-4 and IL-13 and increased levels of IL-10. CdM up-regulated an IL-10-induced and IL-10-secreting subset of T regulatory lymphocytes and promoted IL-10 expression by lung macrophages. Adiponectin (APN), an antiinflammatory adipokine found in CdM, prevented AHR, airway smooth muscle thickening, and peribronchial inflammation, whereas the effect of CdM in which APN was neutralized or from APN knock-out mice was attenuated compared with wild-type CdM. Our study provides evidence that BMC-derived soluble factors prevent murine asthma and suggests APN as one of the protective factors. Further identification of BMC-derived factors may hold promise for novel approaches in the treatment of asthma.

  6. Toll-like receptor-2 exacerbates murine acute viral hepatitis.

    PubMed

    Bleau, Christian; Burnette, Mélanie; Filliol, Aveline; Piquet-Pellorce, Claire; Samson, Michel; Lamontagne, Lucie

    2016-10-01

    Viral replication in the liver is generally detected by cellular endosomal Toll-like receptors (TLRs) and cytosolic helicase sensors that trigger antiviral inflammatory responses. Recent evidence suggests that surface TLR2 may also contribute to viral detection through recognition of viral coat proteins but its role in the outcome of acute viral infection remains elusive. In this study, we examined in vivo the role of TLR2 in acute infections induced by the highly hepatotrophic mouse hepatitis virus (MHV) type 3 and weakly hepatotrophic MHV-A59 serotype. To address this, C57BL/6 (wild-type; WT) and TLR2 knockout (KO) groups of mice were intraperitoneally infected with MHV3 or MHV-A59. MHV3 infection provoked a fulminant hepatitis in WT mice, characterized by early mortality and high alanine and aspartate transaminase levels, histopathological lesions and viral replication whereas infection of TLR2 KO mice was markedly less severe. MHV-A59 provoked a comparable mild and subclinical hepatitis in WT and TLR2 KO mice. MHV3-induced fulminant hepatitis in WT mice correlated with higher hepatic expression of interferon-β, interleukin-6, tumour necrosis factor-α, CXCL1, CCL2, CXCL10 and alarmin (interleukin-33) than in MHV-A59-infected WT mice and in MHV3-infected TLR2 KO mice. Intrahepatic recruited neutrophils, natural killer cells, natural killer T cells or macrophages rapidly decreased in MHV3-infected WT mice whereas they were sustained in MHV-A59-infected WT mice and MHV3-infected TLR2 KO. MHV3 in vitro infection of macrophagic cells induced rapid and higher viral replication and/or interleukin-6 induction in comparison to MHV-A59, and depended on viral activation of TLR2 and p38 mitogen-activated protein kinase. Taken together, these results support a new aggravating inflammatory role for TLR2 in MHV3-induced acute fulminant hepatitis. © 2016 John Wiley & Sons Ltd.

  7. Citrus hallabong [(Citrus unshiu × C. sinensis) × C. reticulata)] exerts potent anti-inflammatory properties in murine splenocytes and TPA-induced murine ear oedema model.

    PubMed

    Herath, Kalahe Hewage Iresha Nadeeka Madushani; Bing, So Jin; Cho, Jinhee; Kim, Areum; Kim, Gi-Ok; Lee, Jong-Chul; Jee, Youngheun

    2016-12-01

    Hallabong [(Citrus unshiu × C. sinensis) X C. reticulata)] (Rutaceae) is a hybrid citrus cultivated in temperate regions of South Korea. Its fruit is well-known for pharmacological properties. This study examined the anti-inflammatory effect of 80% ethanol extract of Hallabong (HE) on concanavalin A (Con A)-stimulated splenocytes and mouse oedema model induced by 12-O-tetradecanoylphorbal acetate (TPA). Murine splenocytes treated with HE were stimulated with Con A (10 μg/mL, for 24 h) were evaluated for T-cell population and production of inflammatory cytokines IL-2, IL-4 and IFN-γ. Anti-inflammatory effect of topically applied HE (100 μg/20 μL) on TPA (4 μg/20 μL/ear)-induced ear oedema was investigated in mouse model. HE-treated Con A-stimulated murine splenocytes showed a marked decrease in CD44/CD62L + memory T-cell population, an important marker for anti-inflammatory activity, and a significant inhibition in the production of IL-2 and IFN-γ. HE treatment had reduced the mouse skin oedema (47%) and myeloperoxidase (MPO) activity significantly (40%) in TPA-challenged tissues. More importantly, immunohistochemical localization revealed the suppressed (p < 0.05) expression of inducible nitric oxide (iNOS), cyclooxygenase-2 (COX2). HE decreased the infiltration of CD3 + T cells and F4/80 + macrophages to the site of inflammation and a topical application of HE significantly suppressed the expression of TNF-α (20.2%). A topical application of HE can exert a potential anti-inflammatory effect and HE can be explored further as a putative alternative therapeutic agent for inflammatory oedema.

  8. Novel application and serial evaluation of tissue-engineered portal vein grafts in a murine model.

    PubMed

    Maxfield, Mark W; Stacy, Mitchel R; Kurobe, Hirotsugu; Tara, Shuhei; Yi, Tai; Cleary, Muriel A; Zhuang, Zhen W; Rodriguez-Davalos, Manuel I; Emre, Sukru H; Iwakiri, Yasuko; Shinoka, Toshiharu; Breuer, Christopher K

    2017-12-01

    Surgical management of pediatric extrahepatic portal vein obstruction requires meso-Rex bypass using autologous or synthetic grafts. Tissue-engineered vascular grafts (TEVGs) provide an alternative, but no validated animal models using portal TEVGs exist. Herein, we preclinically assess TEVGs as portal vein bypass grafts. TEVGs were implanted as portal vein interposition conduits in SCID-beige mice, monitored by ultrasound and micro-computed tomography, and histologically assessed postmortem at 12 months. TEVGs remained patent for 12 months. Histologic analysis demonstrated formation of neovessels that resembled native portal veins, with similar content of smooth muscle cells, collagen type III and elastin. TEVGs are feasible portal vein conduits in a murine model. Further preclinical evaluation of TEVGs may facilitate pediatric clinical translation.

  9. A Novel Murine Model for Localized Radiation Necrosis and its Characterization Using Advanced Magnetic Resonance Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jost, Sarah C.; Hope, Andrew; Kiehl, Erich

    Purpose: To develop a murine model of radiation necrosis using fractionated, subtotal cranial irradiation; and to investigate the imaging signature of radiation-induced tissue damage using advanced magnetic resonance imaging techniques. Methods and Materials: Twenty-four mice each received 60 Gy of hemispheric (left) irradiation in 10 equal fractions. Magnetic resonance images at 4.7 T were subsequently collected using T1-, T2-, and diffusion sequences at selected time points after irradiation. After imaging, animals were killed and their brains fixed for correlative histologic analysis. Results: Contrast-enhanced T1- and T2-weighted magnetic resonance images at months 2, 3, and 4 showed changes consistent with progressivemore » radiation necrosis. Quantitatively, mean diffusivity was significantly higher (mean = 0.86, 1.13, and 1.24 {mu}m{sup 2}/ms at 2, 3, and 4 months, respectively) in radiated brain, compared with contralateral untreated brain tissue (mean = 0.78, 0.82, and 0.83 {mu}m{sup 2}/ms) (p < 0.0001). Histology reflected changes typically seen in radiation necrosis. Conclusions: This murine model of radiation necrosis will facilitate investigation of imaging biomarkers that distinguish between radiation necrosis and tumor recurrence. In addition, this preclinical study supports clinical data suggesting that diffusion-weighted imaging may be helpful in answering this diagnostic question in clinical settings.« less

  10. Sterilizing activity of R207910 (TMC207)-containing regimens in the murine model of tuberculosis.

    PubMed

    Ibrahim, Murad; Truffot-Pernot, Chantal; Andries, Koen; Jarlier, Vincent; Veziris, Nicolas

    2009-09-15

    The diarylquinoline R207910 (TMC207) has potent bactericidal activity in a murine model of tuberculosis (TB), but its sterilizing activity has not been determined. To evaluate the sterilizing activity of R207910-containing combinations in the murine model of TB. Swiss mice were intravenously inoculated with 6 log(10) of Mycobacterium tuberculosis strain H37Rv, treated with R207910-containing regimens, and followed for 3 months to determine relapse rates (modified Cornell model). Quantitative lung and spleen colony-forming unit counts and bacteriological relapse rates 3 months after the end of therapy were compared for the following regimens: 2, 3, or 4 months of R207910 (J) and pyrazinamide (Z) combined with rifampin (R) or isoniazid (H) or both and 3 or 4 months of a moxifloxacin (M)-containing regimen and 6 months of the standard WHO regimen RHZ. All J-treated mice were culture negative after 4 months of therapy. The relapse rate in the group treated with 4 months of JHRZ was similar to that of mice treated for 6 months with the RHZ regimen (6 vs. 17%; P = 0.54) and lower than that of RMZ (6 vs. 42%; P = 0,03), a moxifloxacin-containing regimen that was the most active in mice on once-daily basis. Four months of treatment with some J-containing regimens was as effective as the 6-month standard regimen and more effective than 4 months of treatment with M-containing regimens. Supplementation of standard regimen (RHZ) with J or substitution of J for H may shorten the treatment duration needed to cure TB in patients.

  11. Optical monitoring of glucose demand and vascular delivery in a preclinical murine model

    NASA Astrophysics Data System (ADS)

    Frees, Amy; Rajaram, Narasimhan; McCachren, Sam; Vaz, Alex; Dewhirst, Mark; Ramanujam, Nimmi

    2014-03-01

    Targeted therapies such as PI3K inhibition can affect tumor vasculature, and hence delivery of imaging agents like FDG, while independently modifying intrinsic glucose demand. Therefore, it is important to identify whether perceived changes in glucose uptake are caused by vascular or true metabolic changes. This study sought to develop an optical strategy for quantifying tissue glucose uptake free of cross-talk from tracer delivery effects. Glucose uptake kinetics were measured using a fluorescent D-glucose derivative 2-(N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)Amino)-2-deoxy-Dglucose (2-NBDG), and 2-(N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)Amino)-2-deoxy-L-glucose (2-NBDLG) was used as a control to report on non-specific uptake. Vascular oxygenation (SO2) was calculated from wavelength-dependent hemoglobin absorption. We have previously shown that the rate of 2-NBDG delivery in vivo profoundly affects perceived demand. In this study, we investigated the potential of the ratio of 2-NBDG uptake to the rate of delivery (2-NBDG60/RD) to report on 2-NBDG demand in vivo free from confounding delivery effects. In normal murine tissue, we show that 2-NBDG60/RD can distinguish specific uptake from non-specific cell membrane binding, whereas fluorescence intensity alone cannot. The ratio 2-NBDG60/RD also correlates with blood glucose more strongly than 2-NBDG60 does in normal murine tissue. Additionally, 2-NBDG60/RD can distinguish normal murine tissue from a murine metastatic tumor across a range of SO2 values. The results presented here indicate that the ratio of 2-NBDG uptake to the rate of 2-NBDG delivery (2- NBDG60/RD) is superior to 2-NBDG intensity alone for quantifying changes in glucose demand.

  12. Ablation of the Regulatory IE1 Protein of Murine Cytomegalovirus Alters In Vivo Pro-inflammatory TNF-alpha Production during Acute Infection

    PubMed Central

    Wilhelmi, Vanessa; Lisnic, Vanda Juranic; Hsieh, Wei Yuan; Blanc, Mathieu; Livingston, Andrew; Busche, Andreas; Tekotte, Hille; Messerle, Martin; Auer, Manfred; Fraser, Iain; Jonjic, Stipan; Angulo, Ana; Reddehase, Matthias J.; Ghazal, Peter

    2012-01-01

    Little is known about the role of viral genes in modulating host cytokine responses. Here we report a new functional role of the viral encoded IE1 protein of the murine cytomegalovirus in sculpting the inflammatory response in an acute infection. In time course experiments of infected primary macrophages (MΦs) measuring cytokine production levels, genetic ablation of the immediate-early 1 (ie1) gene results in a significant increase in TNFα production. Intracellular staining for cytokine production and viral early gene expression shows that TNFα production is highly associated with the productively infected MΦ population of cells. The ie1- dependent phenotype of enhanced MΦ TNFα production occurs at both protein and RNA levels. Noticeably, we show in a series of in vivo infection experiments that in multiple organs the presence of ie1 potently inhibits the pro-inflammatory cytokine response. From these experiments, levels of TNFα, and to a lesser extent IFNβ, but not the anti-inflammatory cytokine IL10, are moderated in the presence of ie1. The ie1- mediated inhibition of TNFα production has a similar quantitative phenotype profile in infection of susceptible (BALB/c) and resistant (C57BL/6) mouse strains as well as in a severe immuno-ablative model of infection. In vitro experiments with infected macrophages reveal that deletion of ie1 results in increased sensitivity of viral replication to TNFα inhibition. However, in vivo infection studies show that genetic ablation of TNFα or TNFRp55 receptor is not sufficient to rescue the restricted replication phenotype of the ie1 mutant virus. These results provide, for the first time, evidence for a role of IE1 as a regulator of the pro-inflammatory response and demonstrate a specific pathogen gene capable of moderating the host production of TNFα in vivo. PMID:22952450

  13. NLRP3 inflammasome as a target of berberine in experimental murine liver injury: interference with P2X7 signalling.

    PubMed

    Vivoli, Elisa; Cappon, Andrea; Milani, Stefano; Piombanti, Benedetta; Provenzano, Angela; Novo, Erica; Masi, Alessio; Navari, Nadia; Narducci, Roberto; Mannaioni, Guido; Moneti, Gloriano; Oliveira, Claudia P; Parola, Maurizio; Marra, Fabio

    2016-10-01

    Berberine (BRB) is commonly used in herbal medicine, but its mechanisms of action are poorly understood. In the present study, we tested BRB in steatohepatitis induced by a methionine- and choline-deficient (MCD) diet, in acute acetaminophen intoxication and in cultured murine macrophages. BRB markedly improved parameters of liver injury and necroinflammation induced by the MCD diet, although increased mortality was observed by mechanisms independent of bacterial infections or plasma levels of BRB. The MCD diet induced up-regulation of all components of the NLRP3 (NACHT, LRR and PYD domain-containing protein 3) inflammasome, and increased hepatic levels of mature IL-1β (interleukin 1β). All of these parameters were significantly reduced in mice treated with BRB. In mice administered an acetaminophen overdose, a model dependent on inflammasome activation, BRB reduced mortality and ALT (alanine aminotransferase) elevation, and limited the expression of inflammasome components. In vitro, LPS (lipopolysaccharide)-induced activation of NLRP3 inflammasome in RAW264.7 murine macrophages was markedly decreased by pre-incubation with BRB. BRB significantly limited the activation of the purinergic receptor P2X7, involved in the late phases of inflammasome activation. Upon P2X7 knockdown, the ability of BRB to block LPS-induced secretion of IL-1β was lost. These data indicate that administration of BRB ameliorates inflammation and injury in two unrelated murine models of liver damage. We demonstrate for the first time that BRB interferes with activation of the NLRP3 inflammasome pathway in vivo and in vitro, through a mechanism based on interference with activation of P2X7, a purinergic receptor involved in inflammasome activation. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  14. Control of acute, chronic, and constitutive hyperammonemia by wild-type and genetically engineered Lactobacillus plantarum in rodents.

    PubMed

    Nicaise, Charles; Prozzi, Deborah; Viaene, Eric; Moreno, Christophe; Gustot, Thierry; Quertinmont, Eric; Demetter, Pieter; Suain, Valérie; Goffin, Philippe; Devière, Jacques; Hols, Pascal

    2008-10-01

    Hyperammonemia is a common complication of acute and chronic liver diseases. Often accompanied with side effects, therapeutic interventions such as antibiotics or lactulose are generally targeted to decrease the intestinal production and absorption of ammonia. In this study, we aimed to modulate hyperammonemia in three rodent models by administration of wild-type Lactobacillus plantarum, a genetically engineered ammonia hyperconsuming strain, and a strain deficient for the ammonia transporter. Wild-type and metabolically engineered L. plantarum strains were administered in ornithine transcarbamoylase-deficient Sparse-fur mice, a model of constitutive hyperammonemia, in a carbon tetrachloride rat model of chronic liver insufficiency and in a thioacetamide-induced acute liver failure mice model. Constitutive hyperammonemia in Sparse-fur mice and hyperammonemia in a rat model of chronic hepatic insufficiency were efficiently decreased by Lactobacillus administration. In a murine thioacetamide-induced model of acute liver failure, administration of probiotics significantly increased survival and decreased blood and fecal ammonia. The ammonia hyperconsuming strain exhibited a beneficial effect at a lower dose than its wild-type counterpart. Improved survival in the acute liver failure mice model was associated with lower blood ammonia levels but also with a decrease of astrocyte swelling in the brain cortex. Modulation of ammonia was abolished after administration of the strain deficient in the ammonium transporter. Intestinal pH was clearly lowered for all strains and no changes in gut flora were observed. Hyperammonemia in constitutive model or after acute or chronic induced liver failure can be controlled by the administration of L. plantarum with a significant effect on survival. The mechanism involved in this ammonia decrease implicates direct ammonia consumption in the gut.

  15. Aging models of acute seizures and epilepsy.

    PubMed

    Kelly, Kevin M

    2010-01-01

    Aged animals have been used by researchers to better understand the differences between the young and the aged brain and how these differences may provide insight into the mechanisms of acute seizures and epilepsy in the elderly. To date, there have been relatively few studies dedicated to the modeling of acute seizures and epilepsy in aged, healthy animals. Inherent challenges to this area of research include the costs associated with the purchase and maintenance of older animals and, at times, the unexpected and potentially confounding comorbidities associated with aging. However, recent studies using a variety of in vivo and in vitro models of acute seizures and epilepsy in mice and rats have built upon early investigations in the field, all of which has provided an expanded vision of seizure generation and epileptogenesis in the aged brain. Results of these studies could potentially translate to new and tailored interventional approaches that limit or prevent the development of epilepsy in the elderly.

  16. Murine genetically engineered and human xenograft models of chronic lymphocytic leukemia.

    PubMed

    Chen, Shih-Shih; Chiorazzi, Nicholas

    2014-07-01

    Chronic lymphocytic leukemia (CLL) is a genetically complex disease, with multiple factors having an impact on onset, progression, and response to therapy. Genetic differences/abnormalities have been found in hematopoietic stem cells from patients, as well as in B lymphocytes of individuals with monoclonal B-cell lymphocytosis who may develop the disease. Furthermore, after the onset of CLL, additional genetic alterations occur over time, often causing disease worsening and altering patient outcomes. Therefore, being able to genetically engineer mouse models that mimic CLL or at least certain aspects of the disease will help us understand disease mechanisms and improve treatments. This notwithstanding, because neither the genetic aberrations responsible for leukemogenesis and progression nor the promoting factors that support these are likely identical in character or influences for all patients, genetically engineered mouse models will only completely mimic CLL when all of these factors are precisely defined. In addition, multiple genetically engineered models may be required because of the heterogeneity in susceptibility genes among patients that can have an effect on genetic and environmental characteristics influencing disease development and outcome. For these reasons, we review the major murine genetically engineered and human xenograft models in use at the present time, aiming to report the advantages and disadvantages of each. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Reproducibility of a novel model of murine asthma-like pulmonary inflammation

    PubMed Central

    MCKINLEY, L; KIM, J; BOLGOS, G L; SIDDIQUI, J; REMICK, D G

    2004-01-01

    Sensitization to cockroach allergens (CRA) has been implicated as a major cause of asthma, especially among inner-city populations. Endotoxin from Gram-negative bacteria has also been investigated for its role in attenuating or exacerbating the asthmatic response. We have created a novel model utilizing house dust extract (HDE) containing high levels of both CRA and endotoxin to induce pulmonary inflammation (PI) and airway hyperresponsiveness (AHR). A potential drawback of this model is that the HDE is in limited supply and preparation of new HDE will not contain the exact components of the HDE used to define our model system. The present study involved testing HDEs collected from various homes for their ability to cause PI and AHR. Dust collected from five homes was extracted in phosphate buffered saline overnight. The levels of CRA and endotoxin in the supernatants varied from 7·1 to 49·5 mg/ml of CRA and 1·7–6 µg/ml of endotoxin in the HDEs. Following immunization and two pulmonary exposures to HDE all five HDEs induced AHR, PI and plasma IgE levels substantially higher than normal mice. This study shows that HDE containing high levels of cockroach allergens and endotoxin collected from different sources can induce an asthma-like response in our murine model. PMID:15086384

  18. The analgesic effect of orexin-A in a murine model of chemotherapy-induced neuropathic pain.

    PubMed

    Toyama, Satoshi; Shimoyama, Naohito; Shimoyama, Megumi

    2017-02-01

    Orexins are neuropeptides that are localized to neurons in the lateral and dorsal hypothalamus but its receptors are distributed to many different regions of the central nervous system. Orexins are implicated in a variety of physiological functions including sleep regulation, energy homeostats, and stress reactions. Furthermore, orexins administered exogenously have been shown to have analgesic effects in animal models. A type of intractable pain in patients is pain due to chemotherapy-induced peripheral neuropathy (CIPN). Several chemotherapeutic agents used for the treatment of malignant diseases induce dose-limiting neuropathic pain that compromises patients' quality of life. Here, we examined the analgesic effect of orexin-A in a murine model of CIPN, and compared it with the effect of duloxetine, the only drug recommended for the treatment of CIPN pain in patients. CIPN was induced in male BALB/c mice by repeated intraperitoneal injection of oxaliplatin, a platinum chemotherapeutic agent used for the treatment of advanced colorectal cancer. Neuropathic mechanical allodynia was assessed by the von Frey test, and the effect on acute thermal pain was assessed by the tail flick test. Intracerebroventricularly administered orexin-A dose-dependently attenuated oxaliplatin-induced mechanical allodynia and increased tail flick latencies. Oxaliplatin-induced mechanical allodynia was completely reversed by orexin-A at a low dose that did not increase tail flick latency. Duloxetine only partially reversed mechanical allodynia and had no effect on tail flick latency. The analgesic effect of orexin-A on oxaliplatin-induced mechanical allodynia was completely antagonized by prior intraperitoneal injection of SB-408124 (orexin type-1 receptor antagonist), but not by prior intraperitoneal injection of TCS-OX2-29 (orexin type-2 receptor antagonist). Our findings suggest that orexin-A is more potent than duloxetine in relieving pain CIPN pain and its analgesic effect is

  19. Genetic and functional studies of the intervertebral disc: a novel murine intervertebral disc model.

    PubMed

    Pelle, Dominic W; Peacock, Jacqueline D; Schmidt, Courtney L; Kampfschulte, Kevin; Scholten, Donald J; Russo, Scott S; Easton, Kenneth J; Steensma, Matthew R

    2014-01-01

    Intervertebral disc (IVD) homeostasis is mediated through a combination of micro-environmental and biomechanical factors, all of which are subject to genetic influences. The aim of this study is to develop and characterize a genetically tractable, ex vivo organ culture model that can be used to further elucidate mechanisms of intervertebral disc disease. Specifically, we demonstrate that IVD disc explants (1) maintain their native phenotype in prolonged culture, (2) are responsive to exogenous stimuli, and (3) that relevant homeostatic regulatory mechanisms can be modulated through ex-vivo genetic recombination. We present a novel technique for isolation of murine IVD explants with demonstration of explant viability (CMFDA/propidium iodide staining), disc anatomy (H&E), maintenance of extracellular matrix (ECM) (Alcian Blue staining), and native expression profile (qRT-PCR) as well as ex vivo genetic recombination (mT/mG reporter mice; AdCre) following 14 days of culture in DMEM media containing 10% fetal bovine serum, 1% L-glutamine, and 1% penicillin/streptomycin. IVD explants maintained their micro-anatomic integrity, ECM proteoglycan content, viability, and gene expression profile consistent with a homeostatic drive in culture. Treatment of genetically engineered explants with cre-expressing adenovirus efficaciously induced ex vivo genetic recombination in a variety of genetically engineered mouse models. Exogenous administration of IL-1ß and TGF-ß3 resulted in predicted catabolic and anabolic responses, respectively. Genetic recombination of TGFBR1fl/fl explants resulted in constitutively active TGF-ß signaling that matched that of exogenously administered TGF-ß3. Our results illustrate the utility of the murine intervertebral disc explant to investigate mechanisms of intervertebral disc degeneration.

  20. Genetic and Functional Studies of the Intervertebral Disc: A Novel Murine Intervertebral Disc Model

    PubMed Central

    Pelle, Dominic W.; Peacock, Jacqueline D.; Schmidt, Courtney L.; Kampfschulte, Kevin; Scholten, Donald J.; Russo, Scott S.; Easton, Kenneth J.; Steensma, Matthew R.

    2014-01-01

    Intervertebral disc (IVD) homeostasis is mediated through a combination of micro-environmental and biomechanical factors, all of which are subject to genetic influences. The aim of this study is to develop and characterize a genetically tractable, ex vivo organ culture model that can be used to further elucidate mechanisms of intervertebral disc disease. Specifically, we demonstrate that IVD disc explants (1) maintain their native phenotype in prolonged culture, (2) are responsive to exogenous stimuli, and (3) that relevant homeostatic regulatory mechanisms can be modulated through ex-vivo genetic recombination. We present a novel technique for isolation of murine IVD explants with demonstration of explant viability (CMFDA/propidium iodide staining), disc anatomy (H&E), maintenance of extracellular matrix (ECM) (Alcian Blue staining), and native expression profile (qRT-PCR) as well as ex vivo genetic recombination (mT/mG reporter mice; AdCre) following 14 days of culture in DMEM media containing 10% fetal bovine serum, 1% L-glutamine, and 1% penicillin/streptomycin. IVD explants maintained their micro-anatomic integrity, ECM proteoglycan content, viability, and gene expression profile consistent with a homeostatic drive in culture. Treatment of genetically engineered explants with cre-expressing adenovirus efficaciously induced ex vivo genetic recombination in a variety of genetically engineered mouse models. Exogenous administration of IL-1ß and TGF-ß3 resulted in predicted catabolic and anabolic responses, respectively. Genetic recombination of TGFBR1fl/fl explants resulted in constitutively active TGF-ß signaling that matched that of exogenously administered TGF-ß3. Our results illustrate the utility of the murine intervertebral disc explant to investigate mechanisms of intervertebral disc degeneration. PMID:25474689

  1. Biomechanical Properties of Murine Meniscus Surface via AFM-based Nanoindentation

    PubMed Central

    Li, Qing; Doyran, Basak; Gamer, Laura W.; Lu, X. Lucas; Qin, Ling; Ortiz, Christine; Grodzinsky, Alan J.; Rosen, Vicki; Han, Lin

    2015-01-01

    This study aimed to quantify the biomechanical properties of murine meniscus surface. Atomic force microscopy (AFM)-based nanoindentation was performed on the central region, proximal side of menisci from 6- to 24-week old male C57BL/6 mice using microspherical tips (Rtip ≈ 5 μm) in PBS. A unique, linear correlation between indentation depth, D, and response force, F, was found on menisci from all age groups. This non-Hertzian behavior is likely due to the dominance of tensile resistance by the collagen fibril bundles on meniscus surface that are mostly aligned along the circumferential direction observed on 12-week old menisci. The indentation resistance was calculated as both the effective stiffness, Sind = dF/dD, and the effective modulus, Eind, via the isotropic Hertz model. Values of Sind and Eind were found to depend on indentation rate, suggesting the existence of poro-viscoelasticity. These values do not significantly vary with anatomical sites, lateral versus medial compartments, or mouse age. In addition, Eind of meniscus surface (e.g., 6.1 ± 0.8 MPa for 12 weeks of age, mean ± SEM, n = 13) was found to be significantly higher than those of meniscus surfaces in other species, and of murine articular cartilage surface (1.4 ± 0.1 MPa, n = 6). In summary, these results provided the first direct mechanical knowledge of murine knee meniscus tissues. We expect this understanding to serve as a mechanics-based benchmark for further probing the developmental biology and osteoarthritis symptoms of meniscus in various murine models. PMID:25817332

  2. North American coral snake antivenin for the neutralization of non-native elapid venoms in a murine model.

    PubMed

    Richardson, William H; Tanen, David A; Tong, Tri C; Betten, David P; Carstairs, Shaun D; Williams, Saralyn R; Cantrell, Frank L; Clark, Richard F

    2006-02-01

    North American coral snake antivenin (CSAV; Wyeth Antivenin [Micrurus fulvius], equine origin) is approved for the treatment of coral snake envenomations in the United States. The coral snake is the only elapid that is native to North America, but envenomations from non-native elapids are occurring more commonly in this country. This study was designed to evaluate the efficacy of CSAV in the neutralization of two exotic elapid envenomations: Naja naja (Indian cobra) and Dendroaspis polylepsis (black mamba). A randomized, blinded, placebo-controlled murine model of intraperitoneal venom injection was employed. Venom potency was determined in preliminary dosing studies. Study animals then were divided into five groups: 1) N. naja venom + CSAV, 2) N. naja venom + 0.9% normal saline (NS), 3) D. polylepsis venom + CSAV, 4) D. polylepsis venom + NS, and 5) CSAV + NS. The venom dose was chosen to be twice the estimated LD50. The amount of CSAV injected was ten times the amount necessary for neutralization of a 2 x LD50 dose of M. f. fulvius venom in a murine model. Statistical analysis included Fisher's exact and log-rank testing to compare survival rates and times. Preliminary studies estimated the venom LD50 to be 2.58 mg/kg and 0.45 mg/kg, respectively, for the N. naja and D. polylepsis. A significant difference was shown in comparison of survival times between CSAV-venom groups and normal saline-venom groups despite all animals in both treatment and control arms dying. Animals receiving CSAV and N. naja venom survived (mean +/- SD) 24.4 +/- 3.0 minutes, versus 17.8 +/- 1.3 minutes in the control group (p < 0.001), whereas those receiving CSAV and D. polylepsis venom survived 203.8 +/- 37.0 minutes versus 130.0 +/- 42.6 minutes in the control group (p < 0.001). All animals in the CSAV + NS group survived to the conclusion of the study. When premixed with venom, CSAV increased survival time in a murine model of intraperitoneal N. naja and D. polylepsis venom injection

  3. The innate immune response to uropathogenic Escherichia coli involves IL-17A in a murine model of urinary tract infection.

    PubMed

    Sivick, Kelsey E; Schaller, Matthew A; Smith, Sara N; Mobley, Harry L T

    2010-02-15

    Uropathogenic Escherichia coli is the causative agent for >80% of uncomplicated urinary tract infections (UTIs). Uropathogenic E. coli strains express a number of virulence and fitness factors that allow successful colonization of the mammalian bladder. To combat this, the host has distinct mechanisms to prevent adherence to the bladder wall and to detect and kill uropathogenic E. coli in the event of colonization. In this study, we investigated the role of IL-17A, an innate-adaptive immunomodulatory cytokine, during UTI using a murine model. Splenocytes isolated from mice infected by the transurethral route robustly expressed IL-17A in response to in vitro stimulation with uropathogenic E. coli Ags. Transcript expression of IL-17A in the bladders of infected mice correlated with a role in the innate immune response to UTI, and gammadelta cells seem to be a key source of IL-17A production. Although IL-17A seems to be dispensable for the generation of a protective response to uropathogenic E. coli, its importance in innate immunity is demonstrated by a defect in acute clearance of uropathogenic E. coli in IL-17A(-/-) mice. This clearance defect is likely a result of deficient cytokine and chemokine transcripts and impaired macrophage and neutrophil influx during infection. These results show that IL-17A is a key mediator for the innate immune response to UTIs.

  4. Losartan attenuates the coronary perivasculitis through its local and systemic anti-inflammatory properties in a murine model of Kawasaki disease.

    PubMed

    Suganuma, Eisuke; Niimura, Fumio; Matsuda, Shinichi; Ukawa, Toshiko; Nakamura, Hideaki; Sekine, Kaori; Kato, Masahiko; Aiba, Yuji; Koga, Yasuhiro; Hayashi, Kuniyoshi; Takahashi, Osamu; Mochizuki, Hiroyuki

    2017-04-01

    Kawasaki disease is a common systemic vasculitis that leads to coronary artery lesions. Besides its antihypertensive effects, losartan can modulate inflammation in cardiovascular disease. We examined whether losartan can attenuate coronary inflammation in a murine model of Kawasaki disease. Five-wk-old C57/BL6J male mice were intraperitoneally injected with Lactobacillus casei cell wall extract to induce coronary inflammation and divided into four groups: placebo, intravenous immunoglobulin (IVIG), losartan, and IVIG+losartan. After 2 wk, mice were harvested. The coronary perivasculitis was significantly attenuated by losartan but not by IVIG alone, and further dramatic attenuation by IVIG+losartan was observed. The frequency of Lactobacillus casei cell wall extract-induced myocarditis (80%) was markedly lowered by losartan (22%) and IVIG+losartan (0%). Furthermore, interleukin (IL)-6 mRNA was markedly attenuated by IVIG+losartan. Serum levels of IL-6, TNF-α, MCP-1, and IL-10 after Lactobacillus casei cell wall extract injection were slightly decreased by IVIG or losartan. Moreover, IL-1β, IL-10, and MCP-1 levels were significantly decreased by IVIG+losartan. The addition of losartan to IVIG strongly attenuated the severity of coronary perivasculitis and the incidence of myocarditis, along with suppressing systemic/local cytokines as well as the activated macrophage infiltration. Therefore, losartan may be a potentially useful additive drug for the acute phase of Kawasaki disease to minimize coronary artery lesions.

  5. The mutational landscape of MYCN, Lin28b and ALK F1174L driven murine neuroblastoma mimics human disease.

    PubMed

    De Wilde, Bram; Beckers, Anneleen; Lindner, Sven; Kristina, Althoff; De Preter, Katleen; Depuydt, Pauline; Mestdagh, Pieter; Sante, Tom; Lefever, Steve; Hertwig, Falk; Peng, Zhiyu; Shi, Le-Ming; Lee, Sangkyun; Vandermarliere, Elien; Martens, Lennart; Menten, Björn; Schramm, Alexander; Fischer, Matthias; Schulte, Johannes; Vandesompele, Jo; Speleman, Frank

    2018-02-02

    Genetically engineered mouse models have proven to be essential tools for unraveling fundamental aspects of cancer biology and for testing novel therapeutic strategies. To optimally serve these goals, it is essential that the mouse model faithfully recapitulates the human disease. Recently, novel mouse models for neuroblastoma have been developed. Here, we report on the further genomic characterization through exome sequencing and DNA copy number analysis of four of the currently available murine neuroblastoma model systems ( ALK, Th- MYCN, Dbh- MYCN and Lin28b ). The murine tumors revealed a low number of genomic alterations - in keeping with human neuroblastoma - and a positive correlation of the number of genetic lesions with the time to onset of tumor formation was observed. Gene copy number alterations are the hallmark of both murine and human disease and frequently affect syntenic genomic regions. Despite low mutational load, the genes mutated in murine disease were found to be enriched for genes mutated in human disease. Taken together, our study further supports the validity of the tested mouse models for mechanistic and preclinical studies of human neuroblastoma.

  6. Activation of farnesoid X receptor attenuates hepatic injury in a murine model of alcoholic liver disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Weibin; Institutes of Biomedical Science, Fudan University, Shanghai 200032; Zhu, Bo

    2014-01-03

    Highlights: •FXR activity was impaired by chronic ethanol ingestion in a murine model of ALD. •Activation of FXR attenuated alcohol-induced liver injury and steatosis. •Activation of FXR attenuated cholestasis and oxidative stress in mouse liver. -- Abstract: Alcoholic liver disease (ALD) is a common cause of advanced liver disease, and considered as a major risk factor of morbidity and mortality worldwide. Hepatic cholestasis is a pathophysiological feature observed in all stages of ALD. The farnesoid X receptor (FXR) is a member of the nuclear hormone receptor superfamily, and plays an essential role in the regulation of bile acid, lipid andmore » glucose homeostasis. However, the role of FXR in the pathogenesis and progression of ALD remains largely unknown. Mice were fed Lieber-DeCarli ethanol diet or an isocaloric control diet. We used a specific agonist of FXR WAY-362450 to study the effect of pharmacological activation of FXR in alcoholic liver disease. In this study, we demonstrated that FXR activity was impaired by chronic ethanol ingestion in a murine model of ALD. Activation of FXR by specific agonist WAY-362450 protected mice from the development of ALD. We also found that WAY-362450 treatment rescued FXR activity, suppressed ethanol-induced Cyp2e1 up-regulation and attenuated oxidative stress in liver. Our results highlight a key role of FXR in the modulation of ALD development, and propose specific FXR agonists for the treatment of ALD patients.« less

  7. The acute gastrointestinal subsyndrome of the acute radiation syndrome: a rhesus macaque model.

    PubMed

    MacVittie, Thomas J; Farese, Ann M; Bennett, Alexander; Gelfond, Daniel; Shea-Donohue, Terez; Tudor, Gregory; Booth, Catherine; McFarland, Emylee; Jackson, William

    2012-10-01

    The development of medical countermeasures against the acute gastrointestinal subsyndrome of the acute radiation syndrome in humans requires well characterized and validated animal models. These models must adhere to the criteria of the U.S. Food and Drug Administration's Animal Rule and consider the natural history and clinical context of the human radiation response and treatment in the nuclear terrorist scenario. The models must define the radiation dose- and time-dependent relationships for mortality and major signs of morbidity, including concurrent damage in other organs, such as the bone marrow, that may contribute to the overall mortality and morbidity. There are no such models of the gastrointestinal syndrome in response to total-body irradiation in the nonhuman primate. Herein, these parameters are defined for the rhesus macaque exposed to potentially lethal doses of radiation and administered medical management. Rhesus macaques (n = 69) were exposed bilaterally to 6 MV linear accelerator-derived photon total body irradiation to midline tissue (thorax) doses ranging from 10.0 to 14.0 Gy at 0.80 Gy min(-1). Following irradiation, all animals were administered supportive care consisting of fluids, anti-emetics, anti-diarrheal medication, antibiotics, blood transfusions, analgesics, and nutrition. The primary endpoint was survival at 15 d post-irradiation. Secondary endpoints included indices of dehydration, diarrhea, weight loss, hematological parameters, cellular histology of the small and large intestine, and mean survival time of decedents. Mortality within the 15-d in vivo study defined the acute gastrointestinal syndrome and provided an LD30/15 of 10.76 Gy, LD50/15 of 11.33 Gy, and an LD70/15 of 11.90 Gy. Intestinal crypt and villus loss were dose- and time-dependent with an apparent nadir 7 d post-irradiation and recovery noted thereafter. Severe myelosuppression and thrombocytopenia were noted in all animals, requiring the administration of

  8. A paclitaxel-loaded recombinant polypeptide nanoparticle outperforms Abraxane in multiple murine cancer models

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Jayanta; Bellucci, Joseph J.; Weitzhandler, Isaac; McDaniel, Jonathan R.; Spasojevic, Ivan; Li, Xinghai; Lin, Chao-Chieh; Chi, Jen-Tsan Ashley; Chilkoti, Ashutosh

    2015-08-01

    Packaging clinically relevant hydrophobic drugs into a self-assembled nanoparticle can improve their aqueous solubility, plasma half-life, tumour-specific uptake and therapeutic potential. To this end, here we conjugated paclitaxel (PTX) to recombinant chimeric polypeptides (CPs) that spontaneously self-assemble into ~60 nm near-monodisperse nanoparticles that increased the systemic exposure of PTX by sevenfold compared with free drug and twofold compared with the Food and Drug Administration-approved taxane nanoformulation (Abraxane). The tumour uptake of the CP-PTX nanoparticle was fivefold greater than free drug and twofold greater than Abraxane. In a murine cancer model of human triple-negative breast cancer and prostate cancer, CP-PTX induced near-complete tumour regression after a single dose in both tumour models, whereas at the same dose, no mice treated with Abraxane survived for >80 days (breast) and 60 days (prostate), respectively. These results show that a molecularly engineered nanoparticle with precisely engineered design features outperforms Abraxane, the current gold standard for PTX delivery.

  9. Murine Typhus

    PubMed Central

    Dzul-Rosado, Karla R; Zavala Velázquez, Jorge Ernesto; Zavala-Castro, Jorge

    2012-01-01

    Rickettsia typhi: is an intracellular bacteria who causes murine typhus. His importance is reflected in the high frequency founding specific antibodies against Rickettsia typhi in several worldwide seroepidemiological studies, the seroprevalence ranging between 3-36%. Natural reservoirs of R. typhi are rats (some species belonging the Rattus Genus) and fleas (Xenopsylla cheopis) are his vector. This infection is associated with overcrowding, pollution and poor hygiene. Typically presents fever, headache, rash on trunk and extremities, in some cases may occur organ-specific complications, affecting liver, kidney, lung or brain. Initially the disease is very similar to other diseases, is very common to confuse the murine typhus with Dengue fever, therefore, ignorance of the disease is a factor related to complications or non-specific treatments for the resolution of this infection. This paper presents the most relevant information to consider about the rickettsiosis caused by Rickettsia typhi. PMID:24893060

  10. Consensus Modeling of Oral Rat Acute Toxicity

    EPA Science Inventory

    An acute toxicity dataset (oral rat LD50) with about 7400 compounds was compiled from the ChemIDplus database. This dataset was divided into a modeling set and a prediction set. The compounds in the prediction set were selected so that they were present in the modeling set used...

  11. Carbohydrate-Binding Non-Peptidic Pradimicins for the Treatment of Acute Sleeping Sickness in Murine Models.

    PubMed

    Castillo-Acosta, Víctor M; Ruiz-Pérez, Luis M; Etxebarria, Juan; Reichardt, Niels C; Navarro, Miguel; Igarashi, Yasuhiro; Liekens, Sandra; Balzarini, Jan; González-Pacanowska, Dolores

    2016-09-01

    Current treatments available for African sleeping sickness or human African trypanosomiasis (HAT) are limited, with poor efficacy and unacceptable safety profiles. Here, we report a new approach to address treatment of this disease based on the use of compounds that bind to parasite surface glycans leading to rapid killing of trypanosomes. Pradimicin and its derivatives are non-peptidic carbohydrate-binding agents that adhere to the carbohydrate moiety of the parasite surface glycoproteins inducing parasite lysis in vitro. Notably, pradimicin S has good pharmaceutical properties and enables cure of an acute form of the disease in mice. By inducing resistance in vitro we have established that the composition of the sugars attached to the variant surface glycoproteins are critical to the mode of action of pradimicins and play an important role in infectivity. The compounds identified represent a novel approach to develop drugs to treat HAT.

  12. Carbohydrate-Binding Non-Peptidic Pradimicins for the Treatment of Acute Sleeping Sickness in Murine Models

    PubMed Central

    Castillo-Acosta, Víctor M.; Ruiz-Pérez, Luis M.; Reichardt, Niels C.; Igarashi, Yasuhiro; Liekens, Sandra; Balzarini, Jan

    2016-01-01

    Current treatments available for African sleeping sickness or human African trypanosomiasis (HAT) are limited, with poor efficacy and unacceptable safety profiles. Here, we report a new approach to address treatment of this disease based on the use of compounds that bind to parasite surface glycans leading to rapid killing of trypanosomes. Pradimicin and its derivatives are non-peptidic carbohydrate-binding agents that adhere to the carbohydrate moiety of the parasite surface glycoproteins inducing parasite lysis in vitro. Notably, pradimicin S has good pharmaceutical properties and enables cure of an acute form of the disease in mice. By inducing resistance in vitro we have established that the composition of the sugars attached to the variant surface glycoproteins are critical to the mode of action of pradimicins and play an important role in infectivity. The compounds identified represent a novel approach to develop drugs to treat HAT. PMID:27662652

  13. Gut dysbiosis and neuroimmune responses to brain infection with Theiler’s murine encephalomyelitis virus

    PubMed Central

    Carrillo-Salinas, F. J.; Mestre, L.; Mecha, M.; Feliú, A.; del Campo, R.; Villarrubia, N.; Espejo, C.; Montalbán, X.; Álvarez-Cermeño, J. C.; Villar, L. M.; Guaza, C.

    2017-01-01

    Recent studies have begun to point out the contribution of microbiota to multiple sclerosis (MS) pathogenesis. Theiler’s murine encephalomyelitis virus induced demyelinating disease (TMEV-IDD) is a model of progressive MS. Here, we first analyze the effect of intracerebral infection with TMEV on commensal microbiota and secondly, whether the early microbiota depletion influences the immune responses to TMEV on the acute phase (14 dpi) and its impact on the chronic phase (85 dpi). The intracranial inoculation of TMEV was associated with a moderate dysbiosis. The oral administration of antibiotics (ABX) of broad spectrum modified neuroimmune responses to TMEV dampening brain CD4+ and CD8+ T infiltration during the acute phase. The expression of cytokines, chemokines and VP2 capsid protein was enhanced and accompanied by clusters of activated microglia disseminated throughout the brain. Furthermore, ABX treated mice displayed lower levels of CD4+ and CD8+T cells in cervical and mesenteric lymph nodes. Increased mortality to TMEV was observed after ABX cessation at day 28pi. On the chronic phase, mice that survived after ABX withdrawal and recovered microbiota diversity showed subtle changes in brain cell infiltrates, microglia and gene expression of cytokines. Accordingly, the surviving mice of the group ABX-TMEV displayed similar disease severity than TMEV mice. PMID:28290524

  14. THE 5-LIPOXYGENASE PATHWAY IS REQUIRED FOR ACUTE LUNG INJURY FOLLOWING HEMORRHAGIC SHOCK

    PubMed Central

    Eun, John C.; Moore, Ernest E.; Mauchley, David C.; Johnson, Chris A.; Meng, Xianzhong; Banerjee, Anirban; Wohlauer, Max V.; Zarini, Simona; Gijón, Miguel A.; Murphy, Robert C.

    2012-01-01

    The cellular and biochemical mechanisms leading to acute lung injury and subsequent multiple organ failure are only partially understood. In order to study the potential role of eicosanoids, particularly leukotrienes, as possible mediators of acute lung injury, we used a murine experimental model of acute lung injury induced by hemorrhagic shock after blood removal via cardiac puncture. Neutrophil sequestration as shown by immunofluorescence, and protein leakage into the alveolar space, were measured as markers of injury. We used liquid chromatography coupled to tandem mass spectrometry to unequivocally identify several eicosanoids in the bronchoalveolar lavage fluid of experimental animals. MK886, a specific inhibitor of the 5-lipoxygenase pathway, as well as transgenic mice deficient in 5-lipoxygenase, were used to determine the role of this enzymatic pathway in this model. Leukotriene B4 and leukotriene C4 were consistently elevated in shock-treated mice compared to sham-treated mice. MK886 attenuated neutrophil infiltration and protein extravasation induced by hemorrhagic shock. 5-lipoxygenase-deficient mice showed reduced neutrophil infiltration and protein extravasation after shock treatment, indicating greatly reduced lung injury. These results support the hypothesis that 5-lipoxygenase, most likely through the generation of leukotrienes, plays an important role in the pathogenesis of acute lung injury induced by hemorrhagic shock in mice. This pathway could represent a new target for pharmacological intervention to reduce lung damage following severe primary injury. PMID:22392149

  15. A chronic scheme of cranial window preparation to study pial vascular reactivity in murine cerebral malaria

    PubMed Central

    Ong, Peng Kai; Meays, Diana; Frangos, John A.; Carvalho, Leonardo J.M.

    2013-01-01

    Objective The acute implantation of a cranial window for studying cerebroarteriolar reactivity in living animals involves a highly surgically-invasive craniotomy procedure at the time of experimentation, which limits its application in severely ill animals such as in the experimental murine model of cerebral malaria (ECM). To overcome this problem, a chronic window implantation scheme was designed and implemented. Methods A partial craniotomy is first performed by creating a skull bone flap in the healthy mice, which are then left to recover for 1–2 weeks, followed by infection to induce ECM. Uninfected animals are utilized as control. When cranial superfusion is needed, the bone flap is retracted and window implantation completed by assembling a perfusion chamber for compound delivery to the exposed brain surface. The presurgical step is intended to minimize surgical trauma on the day of experimentation. Results Chronic preparations in uninfected mice exhibited remarkably improved stability over acute ones by significantly reducing periarteriolar tissue damage and enhancing cerebroarteriolar dilator responses. The chronic scheme was successfully implemented in ECM mice which unveiled novel preliminary insights on impaired cerebroarteriolar reactivity and eNOS dysfunction. Conclusion The chronic scheme presents an innovative approach for advancing our mechanistic understanding on cerebrovascular dysfunction in ECM. PMID:23279271

  16. The nonpsychoactive cannabis constituent cannabidiol is an oral anti-arthritic therapeutic in murine collagen-induced arthritis

    PubMed Central

    Malfait, A. M.; Gallily, R.; Sumariwalla, P. F.; Malik, A. S.; Andreakos, E.; Mechoulam, R.; Feldmann, M.

    2000-01-01

    The therapeutic potential of cannabidiol (CBD), the major nonpsychoactive component of cannabis, was explored in murine collagen-induced arthritis (CIA). CIA was elicited by immunizing DBA/1 mice with type II collagen (CII) in complete Freund's adjuvant. The CII used was either bovine or murine, resulting in classical acute CIA or in chronic relapsing CIA, respectively. CBD was administered after onset of clinical symptoms, and in both models of arthritis the treatment effectively blocked progression of arthritis. CBD was equally effective when administered i.p. or orally. The dose dependency showed a bell-shaped curve, with an optimal effect at 5 mg/kg per day i.p. or 25 mg/kg per day orally. Clinical improvement was associated with protection of the joints against severe damage. Ex vivo, draining lymph node cells from CBD-treated mice showed a diminished CII-specific proliferation and IFN-γ production, as well as a decreased release of tumor necrosis factor by knee synovial cells. In vitro effects of CBD included a dose-dependent suppression of lymphocyte proliferation, both mitogen-stimulated and antigen-specific, and the blockade of the Zymosan-triggered reactive oxygen burst by peritoneal granulocytes. It also was found that CBD administration was capable of blocking the lipopolysaccharide-induced rise in serum tumor necrosis factor in C57/BL mice. Taken together, these data show that CBD, through its combined immunosuppressive and anti-inflammatory actions, has a potent anti-arthritic effect in CIA. PMID:10920191

  17. Nanoparticle-mediated delivery of pioglitazone enhances therapeutic neovascularization in a murine model of hindlimb ischemia.

    PubMed

    Nagahama, Ryoji; Matoba, Tetsuya; Nakano, Kaku; Kim-Mitsuyama, Shokei; Sunagawa, Kenji; Egashira, Kensuke

    2012-10-01

    Critical limb ischemia is a severe form of peripheral artery disease (PAD) for which neither surgical revascularization nor endovascular therapy nor current medicinal therapy has sufficient therapeutic effects. Peroxisome proliferator activated receptor-γ agonists present angiogenic activity in vitro; however, systemic administration of peroxisome proliferator-activated receptor-γ agonists is hampered by its side effects, including heart failure. Here, we demonstrate that the nanoparticle (NP)-mediated delivery of the peroxisome proliferator activated receptor-γ agonist pioglitazone enhances its therapeutic efficacy on ischemia-induced neovascularization in a murine model. In a nondiabetic murine model of hindlimb ischemia, a single intramuscular injection of pioglitazone-incorporated NP (1 µg/kg) into ischemic muscles significantly improved the blood flow recovery in the ischemic limbs, significantly increasing the number of CD31-positive capillaries and α-smooth muscle actin-positive arterioles. The therapeutic effects of pioglitazone-incorporated NP were diminished by the peroxisome proliferator activated receptor-γ antagonist GW9662 and were not observed in endothelial NO synthase-deficient mice. Pioglitazone-incorporated NP induced endothelial NO synthase phosphorylation, as demonstrated by Western blot analysis, as well as expression of multiple angiogenic growth factors in vivo, including vascular endothelial growth factor-A, vascular endothelial growth factor-B, and fibroblast growth factor-1, as demonstrated by real-time polymerase chain reaction. Intramuscular injection of pioglitazone (1 µg/kg) was ineffective, and oral administration necessitated a >500 μg/kg per day dose to produce therapeutic effects equivalent to those of pioglitazone-incorporated NP. NP-mediated drug delivery is a novel modality that may enhance the effectiveness of therapeutic neovascularization, surpassing the effectiveness of current treatments for peripheral artery

  18. mCLCA3 Modulates IL-17 and CXCL-1 Induction and Leukocyte Recruitment in Murine Staphylococcus aureus Pneumonia

    PubMed Central

    Dietert, Kristina; Reppe, Katrin; Mundhenk, Lars; Witzenrath, Martin; Gruber, Achim D.

    2014-01-01

    The human hCLCA1 and its murine ortholog mCLCA3 (calcium-activated chloride channel regulators) are exclusively expressed in mucus cells and linked to inflammatory airway diseases with increased mucus production, such as asthma, cystic fibrosis and chronic obstructive pulmonary disease. Both proteins have a known impact on the mucus cell metaplasia trait in these diseases. However, growing evidence points towards an additional role in innate immune responses. In the current study, we analyzed Staphylococcus aureus pneumonia, an established model to study pulmonary innate immunity, in mCLCA3-deficient and wild-type mice, focusing on the cellular and cytokine-driven innate inflammatory response. We compared clinical signs, bacterial clearance, leukocyte immigration and cytokine responses in the bronchoalveolar compartment, as well as pulmonary vascular permeability, histopathology, mucus cell number and mRNA expression levels of selected genes (mClca1 to 7, Muc5ac, Muc5b, Muc2, Cxcl-1, Cxcl-2, Il-17). Deficiency of mCLCA3 resulted in decreased neutrophilic infiltration into the bronchoalveolar space during bacterial infection. Only the cytokines IL-17 and the murine CXCL-8 homolog CXCL-1 were decreased on mRNA and protein levels during bacterial infection in mCLCA3-deficient mice compared to wild-type controls. However, no differences in clinical outcome, histopathology or mucus cell metaplasia were observed. We did not find evidence for regulation of any other CLCA homolog that would putatively compensate for the lack of mCLCA3. In conclusion, mCLCA3 appears to modulate leukocyte response via IL-17 and murine CXCL-8 homologs in acute Staphylococcus aureus pneumonia which is well in line with the proposed function of hCLCA1 as a signaling molecule acting on alveolar macrophages. PMID:25033194

  19. PD-1 Inhibition Minimally Affects Cisplatin-Induced Toxicities in a Murine Model.

    PubMed

    Spielbauer, Katie; Cunningham, Lisa; Schmitt, Nicole

    2018-03-01

    Immune checkpoint inhibition used in combination with standard cisplatin-based chemotherapy regimens is currently under evaluation in clinical trials for head and neck squamous cell carcinoma (HNSCC). The impact of anti-PD-1 therapy on cisplatin-induced ototoxicity and nephrotoxicity has not been established. Here we use a murine model of cisplatin-induced hearing loss to investigate the impact of anti-PD-1 immunotherapy on auditory brainstem responses (ABRs), distortion product otoacoustic emissions (DPOAEs), serum creatinine, and hair cell and renal histology. We demonstrate only mild worsening of DPOAEs at 14.4 and 16 kHz as well as a mild increase in serum creatinine. Renal and hair cell histology as well as ABR measures were unchanged by PD-1 inhibition. Thus, our data suggest that the use of PD-1 inhibition in conjunction with cisplatin results in toxicities that are similar to those of cisplatin alone.

  20. Functionally distinct roles for different miR-155 expression levels through contrasting effects on gene expression, in acute myeloid leukaemia.

    PubMed

    Narayan, N; Morenos, L; Phipson, B; Willis, S N; Brumatti, G; Eggers, S; Lalaoui, N; Brown, L M; Kosasih, H J; Bartolo, R C; Zhou, L; Catchpoole, D; Saffery, R; Oshlack, A; Goodall, G J; Ekert, P G

    2017-04-01

    Enforced expression of microRNA-155 (miR-155) in myeloid cells has been shown to have both oncogenic or tumour-suppressor functions in acute myeloid leukaemia (AML). We sought to resolve these contrasting effects of miR-155 overexpression using murine models of AML and human paediatric AML data sets. We show that the highest miR-155 expression levels inhibited proliferation in murine AML models. Over time, enforced miR-155 expression in AML in vitro and in vivo, however, favours selection of intermediate miR-155 expression levels that results in increased tumour burden in mice, without accelerating the onset of disease. Strikingly, we show that intermediate and high miR-155 expression also regulate very different subsets of miR-155 targets and have contrasting downstream effects on the transcriptional environments of AML cells, including genes involved in haematopoiesis and leukaemia. Furthermore, we show that elevated miR-155 expression detected in paediatric AML correlates with intermediate and not high miR-155 expression identified in our experimental models. These findings collectively describe a novel dose-dependent role for miR-155 in the regulation of AML, which may have important therapeutic implications.

  1. Pre-Clinical Study of Panobinostat in Xenograft and Genetically Engineered Murine Diffuse Intrinsic Pontine Glioma Models.

    PubMed

    Hennika, Tammy; Hu, Guo; Olaciregui, Nagore G; Barton, Kelly L; Ehteda, Anahid; Chitranjan, Arjanna; Chang, Cecilia; Gifford, Andrew J; Tsoli, Maria; Ziegler, David S; Carcaboso, Angel M; Becher, Oren J

    2017-01-01

    Diffuse intrinsic pontine glioma (DIPG), or high-grade brainstem glioma (BSG), is one of the major causes of brain tumor-related deaths in children. Its prognosis has remained poor despite numerous efforts to improve survival. Panobinostat, a histone deacetylase inhibitor, is a targeted agent that has recently shown pre-clinical efficacy and entered a phase I clinical trial for the treatment of children with recurrent or progressive DIPG. A collaborative pre-clinical study was conducted using both a genetic BSG mouse model driven by PDGF-B signaling, p53 loss, and ectopic H3.3-K27M or H3.3-WT expression and an H3.3-K27M orthotopic DIPG xenograft model to confirm and extend previously published findings regarding the efficacy of panobinostat in vitro and in vivo. In vitro, panobinostat potently inhibited cell proliferation, viability, and clonogenicity and induced apoptosis of human and murine DIPG cells. In vivo analyses of tissue after short-term systemic administration of panobinostat to genetically engineered tumor-bearing mice indicated that the drug reached brainstem tumor tissue to a greater extent than normal brain tissue, reduced proliferation of tumor cells and increased levels of H3 acetylation, demonstrating target inhibition. Extended consecutive daily treatment of both genetic and orthotopic xenograft models with 10 or 20 mg/kg panobinostat consistently led to significant toxicity. Reduced, well-tolerated doses of panobinostat, however, did not prolong overall survival compared to vehicle-treated mice. Our collaborative pre-clinical study confirms that panobinostat is an effective targeted agent against DIPG human and murine tumor cells in vitro and in short-term in vivo efficacy studies in mice but does not significantly impact survival of mice bearing H3.3-K27M-mutant tumors. We suggest this may be due to toxicity associated with systemic administration of panobinostat that necessitated dose de-escalation.

  2. An optimized swine dysentery murine model to characterize shedding and clinical disease associated with "Brachyspira hampsonii" infection.

    PubMed

    Ek, Courtney E; Nosach, Roman; Fernando, Champika; Huang, Yanyun; Perez, Jason Byron D S; Costa, Matheus O; Ekanayake, Samantha; Hill, Janet E; Harding, John C S

    2017-08-22

    The development of a mouse model as an in vivo pathogenicity screening tool for Brachyspira spp. has advanced the study of these economically important pathogens in recent years. However, none of the murine models published to date have been used to characterize the clinical signs of disease in mice, instead focusing on pathology following oral inoculation with various Brachyspira spp. The experiments described herein explore modifications of published models to characterize faecal consistency, faecal shedding and pathology in mice challenged with "Brachyspira hampsonii" clade II (Bhamp). In Experiment 1, 24 CF-1 mice were randomly allocated to one of three inoculation groups: sham (Ctrl), Bhamp, or B. hyodysenteriae (Bhyo; positive control). Half of each group was fed normal mouse chow (RMH) while the other received a low-zinc diet (TD85420). In Experiment 2, eight CF-1 mice and nine C3H/HeN mice were divided into Ctrl or Bhamp inoculation groups, and all fed TD85420. In Experiment 1, mice fed TD85420 demonstrated more severe mucoid faeces (P = 0.001; Kruskal Wallis) and faecal shedding for a significantly greater number of days (P = 0.005; Kruskal Wallis). Mean faecal scores of Bhamp inoculated mice trended higher than Ctrl (P = 0.06; Wilcoxon rank-sum) as did those of Bhyo mice (P = 0.0; Wilcoxon rank-sum). In Experiment 2, mean faecal scores of inoculated CF-1 mice were significantly greater than in C3H mice (P = 0.049; Kruskal Wallis) but no group differences in faecal shedding were observed. In both experiments, mice clustered based on the severity of colonic and caecal histopathology but high lesion scores were not always concurrent with high fecal scores. In our laboratory, CF-1 mice and the lower-zinc TD85420 diet provide a superior murine challenge model of "Brachyspira hampsonii" clade II.

  3. Comparative study of the biological properties of Trypanosoma cruzi I genotypes in a murine experimental model.

    PubMed

    Cruz, Lissa; Vivas, Angie; Montilla, Marleny; Hernández, Carolina; Flórez, Carolina; Parra, Edgar; Ramírez, Juan David

    2015-01-01

    Chagas disease is an endemic zoonosis in Latin America and caused by the parasite Trypanosoma cruzi. This kinetoplastid displays remarkable genetic variability, allowing its classification into six Discrete Typing Units (DTUs) from TcI to TcVI. T. cruzi I presents the broadest geographical distribution in the continent and has been associated to severe forms of cardiomyopathies. Recently, a particular genotype associated to human infections has been reported and named as TcIDOM (previously named TcIa-b). This genotype shows to be clonal and adapted to the domestic cycle but so far no studies have determined the biological properties of domestic (TcIDOM) and sylvatic TcI strains (previously named TcIc-e). Hence, the aim of this study was to untangle the biological features of these genotypes in murine models. We infected ICR-CD1 mice with five TcI strains (two domestic, two sylvatic and one natural mixture) and determined the course of infection during 91 days (acute and chronic phase of the disease) in terms of parasitemia, tissue tropism, immune response (IgG titers) and tissue invasion by means of histopathology studies. Statistically significant differences were observed in terms of parasitemia curves and prepatent period between domestic (TcIDOM) and sylvatic strains. There were no differences in terms of IgG antibodies response across the mice infected with the five strains. Regarding the histopathology, our results indicate that domestic strains present higher parasitemias and low levels of histopathological damage. In contrast, sylvatic strains showed lower parasitemias and high levels of histopathological damage. These results highlight the sympatric and behavioral differences of domestic and sylvatic TcI strains; the clinical and epidemiological implications are herein discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Recommendations for improved use of the murine TNBS-induced colitis model in evaluating anti-inflammatory properties of lactic acid bacteria: technical and microbiological aspects.

    PubMed

    Foligné, Benoit; Nutten, Sophie; Steidler, Lothar; Dennin, Véronique; Goudercourt, Denise; Mercenier, Annick; Pot, Bruno

    2006-02-01

    Probiotic bacteria have been shown to exert promising beneficial effects in different types of intestinal disorders, including chronic inflammation. In this context, animal models of inflammatory bowel disease are useful in studying the possible prophylactic role of candidate probiotic strains. This study aimed at evaluating the critical technological and microbiological parameters as well as the robustness of the murine trinitrobenzene sulfonic acid (TNBS)-induced model of colitis, after intragastric administration of lactic acid bacteria (LAB) preparations. A standardized methodology was applied to assess the protective effect achieved by various bacterial concentrations and culture conditions of the reference strain Lactobacillus plantarum NCIMB 8826. Not only was protection found to vary in function in different levels of colitis, but also repeated experiments showed a clear bacterial dose-dependent attenuation of colitis. The physiological stage of bacteria was shown to impact as well, with substantial, mild, or reduced improvement of inflammatory scores for exponentially growing, stationary-phase, or killed bacteria, respectively. A recombinant strain, secreting murine interleukin-10 (IL-10) and previously reported to successfully treat colitis in two different models of murine colitis (dextran sulfate sodium [DSS] and IL-10-deficient mice), was used to validate the final experimental conditions. In conclusion, we identified and optimized some of the key parameters that need to be controlled in order to ensure reliable comparison of results generated over a long period of time or independent experiments. The recommendations for an improved model presented here will prove to be helpful for reproducible, independent comparison of the anti-inflammatory potential of wild-type or recombinant candidate probiotic strains, whether administered as pure cultures or as blends.

  5. Mechanisms of decreased intestinal epithelial proliferation and increased apoptosis in murine acute lung injury.

    PubMed

    Husain, Kareem D; Stromberg, Paul E; Woolsey, Cheryl A; Turnbull, Isaiah R; Dunne, W Michael; Javadi, Pardis; Buchman, Timothy G; Karl, Irene E; Hotchkiss, Richard S; Coopersmith, Craig M

    2005-10-01

    The aim of this study was to determine the effects of acute lung injury on the gut epithelium and examine mechanisms underlying changes in crypt proliferation and apoptosis. The relationship between severity and timing of lung injury to intestinal pathology was also examined. Randomized, controlled study. University research laboratory. Genetically inbred mice. Following induction of acute lung injury, gut epithelial proliferation and apoptosis were assessed in a) C3H/HeN wild-type and C3H/HeJ mice, which lack functional Toll-like receptor 4 (n = 17); b) C57Bl/6 mice that received monoclonal anti-tumor necrosis factor-alpha or control antibody (n = 22); and c) C57Bl/6 wild-type and transgenic mice that overexpress Bcl-2 in their gut epithelium (n = 21). Intestinal epithelial proliferation and death were also examined in animals with differing degrees of lung inflammation (n = 24) as well as in a time course analysis following a fixed injury (n = 18). Acute lung injury caused decreased proliferation and increased apoptosis in crypt epithelial cells in all animals studied. C3H/HeJ mice had higher levels of proliferation than C3H/HeN animals without additional changes in apoptosis. Anti-tumor necrosis factor-alpha antibody had no effect on gut epithelial proliferation or death. Overexpression of Bcl-2 did not change proliferation despite decreasing gut apoptosis. Proliferation and apoptosis were not correlated to severity of lung injury, as gut alterations were lost in mice with more severe acute lung injury. Changes in both gut epithelial proliferation and death were apparent within 12 hrs, but proliferation was decreased 36 hrs following acute lung injury while apoptosis returned to normal. Acute lung injury causes disparate effects on crypt proliferation and apoptosis, which occur, at least in part, through differing mechanisms involving Toll-like receptor 4 and Bcl-2. Severity of lung injury does not correlate with perturbations in proliferation or death in the

  6. T regulatory cells and dendritic cells protect against transfusion-related acute lung injury via IL-10

    PubMed Central

    Kapur, Rick; Kim, Michael; Aslam, Rukhsana; McVey, Mark J.; Tabuchi, Arata; Luo, Alice; Liu, Jonathan; Li, Yuan; Shanmugabhavananthan, Shanjeevan; Speck, Edwin R.; Zufferey, Anne; Yousef, George; Zhang, Haibo; Rondina, Matthew T.; Weyrich, Andrew S.; Porcelijn, Leendert; Kuebler, Wolfgang M.; Slutsky, Arthur S.

    2017-01-01

    Transfusion-related acute lung injury (TRALI) is the leading cause of transfusion-related fatalities and is characterized by acute respiratory distress following blood transfusion. Donor antibodies are frequently involved; however, the pathogenesis and protective mechanisms in the recipient are poorly understood, and specific therapies are lacking. Using newly developed murine TRALI models based on injection of anti–major histocompatibility complex class I antibodies, we found CD4+CD25+FoxP3+ T regulatory cells (Tregs) and CD11c+ dendritic cells (DCs) to be critical effectors that protect against TRALI. Treg or DC depletion in vivo resulted in aggravated antibody-mediated acute lung injury within 90 minutes with 60% mortality upon DC depletion. In addition, resistance to antibody-mediated TRALI was associated with increased interleukin-10 (IL-10) levels, and IL-10 levels were found to be decreased in mice suffering from TRALI. Importantly, IL-10 injection completely prevented and rescued the development of TRALI in mice and may prove to be a promising new therapeutic approach for alleviating lung injury in this serious complication of transfusion. PMID:28202460

  7. Mucosal tolerance disruption favors disease progression in an extraorbital lacrimal gland excision model of murine dry eye.

    PubMed

    Guzmán, Mauricio; Keitelman, Irene; Sabbione, Florencia; Trevani, Analía S; Giordano, Mirta N; Galletti, Jeremías G

    2016-10-01

    Dry eye is a highly prevalent immune disorder characterized by a dysfunctional tear film and a Th1/Th17 T cell response at the ocular surface. The specificity of these pathogenic effector T cells remains to be determined, but auto-reactivity is considered likely. However, we have previously shown that ocular mucosal tolerance to an exogenous antigen is disrupted in a scopolamine-induced murine dry eye model and that it is actually responsible for disease progression. Here we report comparable findings in an entirely different murine model of dry eye that involves resection of the extraorbital lacrimal glands but no systemic muscarinic receptor blockade. Upon ocular instillation of ovalbumin, a delayed breakdown in mucosal tolerance to this antigen was observed in excised but not in sham-operated mice, which was mediated by interferon γ- and interleukin 17-producing antigen-specific T cells. Consistently, antigen-specific regulatory T cells were detectable in sham-operated but not in excised mice. As for other models of ocular surface disorders, epithelial activation of the NF-κB pathway by desiccating stress was determinant in the mucosal immune outcome. Underscoring the role of mucosal tolerance disruption in dry eye pathogenesis, its prevention by a topical NF-κB inhibitor led to reduced corneal damage in excised mice. Altogether these results show that surgically originated desiccating stress also initiates an abnormal Th1/Th17 T cell response to harmless exogenous antigens that reach the ocular surface. This event might actually contribute to corneal damage and challenges the conception of dry eye as a strictly autoimmune disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Isolation and Differentiation of Murine Macrophages.

    PubMed

    Rios, Francisco J; Touyz, Rhian M; Montezano, Augusto C

    2017-01-01

    Macrophages play a major role in inflammation, wound healing, and tissue repair. Infiltrated monocytes differentiate into different macrophage subtypes with protective or pathogenic activities in vascular lesions. In the heart and vascular tissues, pathological activation promotes cardiovascular inflammation and remodeling and there is increasing evidence that macrophages play important mechanisms in this environment. Primary murine macrophages can be obtained from: bone marrow by different treatments (granulocyte-macrophage colony-stimulating factor-GM-CSF, macrophage colony-stimulating factor-M-CSF or supernatant of murine fibroblast L929), peritoneal cavity (resident or thioglycolate elicit macrophages), from the lung (alveolar macrophages) or from adipose tissue. In this chapter we describe some protocols to obtain primary murine macrophages and how to identify a pure macrophage population or activation phenotypes using different markers.

  9. Murine Models of Heart Failure with Preserved Ejection Fraction: a “Fishing Expedition”

    PubMed Central

    Valero-Muñoz, Maria; Backman, Warren; Sam, Flora

    2017-01-01

    Summary Heart failure with preserved ejection fraction (HFpEF) is characterized by signs and symptoms of HF in the presence of a normal left ventricular (LV) ejection fraction (EF). Despite accounting for up to 50% of all clinical presentations of HF, the mechanisms implicated in HFpEF are poorly understood, thus precluding effective therapy. The pathophysiological heterogeneity in the HFpEF phenotype also contributes to this disease and likely to the absence of evidence-based therapies. Limited access to human samples and imperfect animal models that completely recapitulate the human HFpEF phenotype have impeded our understanding of the mechanistic underpinnings that exist in this disease. Aging and comorbidities such as atrial fibrillation, hypertension, diabetes and obesity, pulmonary hypertension and renal dysfunction are highly associated with HFpEF. Yet, the relationship and contribution between them remains ill-defined. This review discusses some of the distinctive clinical features of HFpEF in association with these comorbidities and highlights the advantages and disadvantage of commonly used murine models, used to study the HFpEF phenotype. PMID:29333506

  10. Marked improvement of thrombocytopenia in a murine model of idiopathic thrombocytopenic purpura by pegylated recombinant human megakaryocyte growth and development factor.

    PubMed

    Shibuya, Kazunori; Kuwaki, Tomoaki; Tahara, Emiko; Yuki, Chizuru; Akahori, Hiromichi; Kato, Takashi; Miyazaki, Hiroshi

    2002-10-01

    We examined the stimulatory effect of pegylated recombinant human megakaryocyte growth and development factor (PEG-rHuMGDF) on platelet production in male (NZW x BXSB) F(l) (W/B F(1)) mice, a murine model of idiopathic thrombocytopenic purpura. A cohort of 19- to 25-week-old, severely thrombocytopenic male W/B F(1) mice were given PEG-rHuMGDF at different dosing schedules. Before and at various times after therapy, platelet counts, reticulated platelets, platelet lifespan, and levels of platelet-associated immunoglobulin G were measured. Analysis of megakaryocytic cells was performed. Treatment of male W/B F(1) mice with PEG-rHuMGDF (30 microg/kg/day) three times per week for several weeks resulted in sustained thrombocytosis, accompanied by increased megakaryocytopoiesis in both the bone marrow and spleen. The degree of the platelet response to PEG-rHuMGDF varied between individual mice, likely reflecting the heterogeneity of the disease. Production of new platelets in response to PEG-rHuMGDF was manifested by an increase in reticulated platelets. Levels of platelet-associated immunoglobulin G decreased inversely during periods of thrombocytosis. PEG-rHuMGDF therapy also improved thrombocytopenia in male W/B F(1) mice refractory to splenectomy. Platelet lifespan was not affected by PEG-rHuMGDF. Male W/B F(1) mice treated with pegylated murine MGDF, a homologue of PEG-rHuMGDF, had persistent thrombocytosis for at least 7 months, suggesting that antiplatelet antibody production was not enhanced. PEG-rHuMGDF therapy potently stimulated platelet production, effectively ameliorating thrombocytopenia in a murine model of idiopathic thrombocytopenic purpura.

  11. Suppressive effects of ginsan on the development of allergic reaction in murine asthmatic model.

    PubMed

    Lim, You-Jin; Na, Hee-Sam; Yun, Yeon-Sook; Choi, Inseon S; Oh, Jong-Suk; Rhee, Joon-Haeng; Cho, Bok-Hee; Lee, Hyun-Chul

    2009-01-01

    Asthma is a major health problem worldwide, and the morbidity and mortality caused by asthma are on the rise. Corticosteroid therapies for asthma treatment frequently induce many side effects. Therefore, the development of new medicines that have both high efficacy and fewer side effects has been a scientific challenge. Here we tested the effect of ginsan, a polysaccharide derived from Panax ginseng, against allergic reaction in an ovalbumin (OVA)-induced murine asthmatic model in comparison with dexamethasone, and investigated its underlying mechanism. To induce murine asthma, mice were sensitized and challenged with OVA. Ginsan or dexamethasone was administered by injection 3 times a week. Airway hyperresponsiveness, airway inflammation and lung pathology were assessed in order to evaluate the effect of ginsan against asthma. Ginsan treatment reduced airway hyperresponsiveness, remodeling and eosinophilia. These effects of ginsan were equivalent to those of dexamethasone. Ginsan treatment decreased the IL-5 level in the supernatant of cultured splenocytes, while IFN-gamma and serum IgE were not altered. To elucidate the mechanism of ginsan, expression of inflammation-related genes were screened. Interestingly, ginsan treatment upregulated cyclooxygenase (COX)-1 and COX-2 mRNA, and expression of their proteins in the lung were also increased. PGE(2) in the bronchoalveolar lavage fluid was also increased by the ginsan treatment. Lastly, ginsan inhibited the allergic reaction aggravated by COX inhibitor (indomethacin). Ginsan has anti-asthmatic effects, which seem to be partially mediated by enhancing the synthesis of COX gene products. Copyright 2009 S. Karger AG, Basel.

  12. Recurrent milk aspiration produces changes in airway mechanics, lung eosinophilia, and goblet cell hyperplasia in a murine model.

    PubMed

    Janahi, I A; Elidemir, O; Shardonofsky, F R; Abu-Hassan, M N; Fan, L L; Larsen, G L; Blackburn, M R; Colasurdo, G N

    2000-12-01

    Recurrent aspiration of milk into the respiratory tract has been implicated in the pathogenesis of a variety of inflammatory lung disorders including asthma. However, the lack of animal models of aspiration-induced lung injury has limited our knowledge of the pathophysiological characteristics of this disorder. This study was designed to evaluate the effects of recurrent milk aspiration on airway mechanics and lung cells in a murine model. Under light anesthesia, BALB/c mice received daily intranasal instillations of whole cow's milk (n = 7) or sterile physiologic saline (n = 9) for 10 d. Respiratory system resistance (Rrs) and dynamic elastance (Edyn,rs) were measured in anesthetized, tracheotomized, paralyzed and mechanically ventilated mice 24 h after the last aspiration of milk. Rrs and Edyn,rs were derived from transrespiratory and plethysmographic pressure signals. In addition, airway responses to increasing concentrations of i.v. methacholine (Mch) were determined. Airway responses were measured in terms of PD(100) (dose of Mch causing 100% increase from baseline Rrs) and Rrs,max (% increase from baseline at the maximal plateau response) and expressed as % control (mean +/- SE). We found recurrent milk aspiration did not affect Edyn and baseline Rrs values. However, airway responses to Mch were increased after milk aspiration when compared with control mice. These changes in airway mechanics were associated with an increased percentage of lymphocytes and eosinophils in the bronchoalveolar lavage, mucus production, and lung inflammation. Our findings suggest that recurrent milk aspiration leads to alterations in airway function, lung eosinophilia, and goblet cell hyperplasia in a murine model.

  13. Evaluating the effects of maternal alcohol consumption on murine fetal brain vasculature using optical coherence tomography.

    PubMed

    Raghunathan, Raksha; Wu, Chen; Singh, Manmohan; Liu, Chih-Hao; Miranda, Rajesh C; Larin, Kirill V

    2018-05-01

    Prenatal alcohol exposure (PAE) can result in a range of anomalies including brain and behavioral dysfunctions, collectively termed fetal alcohol spectrum disorder. PAE during the 1st and 2nd trimester is common, and research in animal models has documented significant neural developmental deficits associated with PAE during this period. However, little is known about the immediate effects of PAE on fetal brain vasculature. In this study, we used in utero speckle variance optical coherence tomography, a high spatial- and temporal-resolution imaging modality, to evaluate dynamic changes in microvasculature of the 2nd trimester equivalent murine fetal brain, minutes after binge-like maternal alcohol exposure. Acute binge-like PAE resulted in a rapid (<1 hour) and significant decrease (P < .001) in vessel diameter as compared to the sham group. The data show that a single binge-like maternal alcohol exposure resulted in swift vasoconstriction in fetal brain vessels during the critical period of neurogenesis. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Mitochondrial ASncmtRNA-1 and ASncmtRNA-2 as potent targets to inhibit tumor growth and metastasis in the RenCa murine renal adenocarcinoma model

    PubMed Central

    Borgna, Vincenzo; Villegas, Jaime; Burzio, Verónica A.; Belmar, Sebastián; Araya, Mariela; Jeldes, Emanuel; Lobos-González, Lorena; Silva, Verónica; Villota, Claudio; Oliveira-Cruz, Luciana; Lopez, Constanza; Socias, Teresa; Castillo, Octavio; Burzio, Luis O.

    2017-01-01

    Knockdown of antisense noncoding mitochondrial RNAs (ASncmtRNAs) induces apoptosis in several human and mouse tumor cell lines, but not normal cells, suggesting this approach for a selective therapy against different types of cancer. Here we show that in vitro knockdown of murine ASncmtRNAs induces apoptotic death of mouse renal adenocarcinoma RenCa cells, but not normal murine kidney epithelial cells. In a syngeneic subcutaneous RenCa model, treatment delayed and even reversed tumor growth. Since the subcutaneous model does not reflect the natural microenviroment of renal cancer, we used an orthotopic model of RenCa cells inoculated under the renal capsule. These studies showed inhibition of tumor growth and metastasis. Direct metastasis assessment by tail vein injection of RenCa cells also showed a drastic reduction in lung metastatic nodules. In vivo treatment reduces survivin, N-cadherin and P-cadherin levels, providing a molecular basis for metastasis inhibition. In consequence, the treatment significantly enhanced mouse survival in these models. Our results suggest that the ASncmtRNAs could be potent and selective targets for therapy against human renal cell carcinoma. PMID:28620146

  15. Mitochondrial ASncmtRNA-1 and ASncmtRNA-2 as potent targets to inhibit tumor growth and metastasis in the RenCa murine renal adenocarcinoma model.

    PubMed

    Borgna, Vincenzo; Villegas, Jaime; Burzio, Verónica A; Belmar, Sebastián; Araya, Mariela; Jeldes, Emanuel; Lobos-González, Lorena; Silva, Verónica; Villota, Claudio; Oliveira-Cruz, Luciana; Lopez, Constanza; Socias, Teresa; Castillo, Octavio; Burzio, Luis O

    2017-07-04

    Knockdown of antisense noncoding mitochondrial RNAs (ASncmtRNAs) induces apoptosis in several human and mouse tumor cell lines, but not normal cells, suggesting this approach for a selective therapy against different types of cancer. Here we show that in vitro knockdown of murine ASncmtRNAs induces apoptotic death of mouse renal adenocarcinoma RenCa cells, but not normal murine kidney epithelial cells. In a syngeneic subcutaneous RenCa model, treatment delayed and even reversed tumor growth. Since the subcutaneous model does not reflect the natural microenviroment of renal cancer, we used an orthotopic model of RenCa cells inoculated under the renal capsule. These studies showed inhibition of tumor growth and metastasis. Direct metastasis assessment by tail vein injection of RenCa cells also showed a drastic reduction in lung metastatic nodules. In vivo treatment reduces survivin, N-cadherin and P-cadherin levels, providing a molecular basis for metastasis inhibition. In consequence, the treatment significantly enhanced mouse survival in these models. Our results suggest that the ASncmtRNAs could be potent and selective targets for therapy against human renal cell carcinoma.

  16. Intratumoral delivery of docetaxel enhances antitumor activity of Ad-p53 in murine head and neck cancer xenograft model.

    PubMed

    Yoo, George H; Subramanian, Geetha; Ezzat, Waleed H; Tulunay, Ozlem E; Tran, Vivian R; Lonardo, Fulvio; Ensley, John F; Kim, Harold; Won, Joshua; Stevens, Timothy; Zumstein, Louis A; Lin, Ho-Sheng

    2010-01-01

    The aim of this study is to determine the ability of intratumorally delivered docetaxel to enhance the antitumor activity of adenovirus-mediated delivery of p53 (Ad-p53) in murine head and neck cancer xenograft model. A xenograft head and neck squamous cell carcinoma mouse model was used. Mice were randomized into 4 groups of 6 mice receiving 6 weeks of biweekly intratumoral injection of (a) diluent, (b) Ad-p53 (1 x 10(10) viral particles per injection), (c) docetaxel (1 mg/kg per injection), and (d) combination of Ad-p53 (1 x 10(10) viral particles per injection) and docetaxel (1 mg/kg per injection). Tumor size, weight, toxicity, and overall and disease-free survival rates were determined. Intratumoral treatments with either docetaxel alone or Ad-p53 alone resulted in statistically significant antitumor activity and improved survival compared with control group. Furthermore, combined delivery of Ad-p53 and docetaxel resulted in a statistically significant reduction in tumor weight when compared to treatment with either Ad-p53 or docetaxel alone. Intratumoral delivery of docetaxel enhanced the antitumor effect of Ad-p53 in murine head and neck cancer xenograft model. The result of this preclinical in vivo study is promising and supports further clinical testing to evaluate efficacy of combined intratumoral docetaxel and Ad-p53 in treatment of head and neck cancer. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  17. Detection of early changes in renal function using 99mTc-MAG3 imaging in a murine model of ischemia-reperfusion injury

    PubMed Central

    Roberts, John; Chen, Bo; Curtis, Lisa M.; Agarwal, Anupam; Sanders, Paul W.; Zinn, Kurt R.

    2012-01-01

    Accurate determination of renal function in mice is a major impediment to the use of murine models in acute kidney injury. The purpose of this study was to determine whether early changes in renal function could be detected using dynamic gamma camera imaging in a mouse model of ischemia-reperfusion (I/R) injury. C57BL/6 mice (n = 5/group) underwent a right nephrectomy, followed by either 30 min of I/R injury or sham surgery of the remaining kidney. Dynamic renal studies (21 min, 10 s/frame) were conducted before surgery (baseline) and at 5, 24, and 48 h by injection of 99mTc-mercaptoacetyltriglycine (MAG3; ~1.0 mCi/mouse) via the tail vein. The percentage of injected dose (%ID) in the kidney was calculated for each 10-s interval after MAG3 injection, using standard region of interest analyses. A defect in renal function in I/R-treated mice was detected as early as 5 h after surgery compared with sham-treated mice, identified by the increased %ID (at peak) in the I/R-treated kidneys at 100 s (P < 0.01) that remained significantly higher than sham-treated mice for the duration of the scan until 600 s (P < 0.05). At 48 h, the renal scan demonstrated functional renal recovery of the I/R mice and was comparable to sham-treated mice. Our study shows that using dynamic imaging, renal dysfunction can be detected and quantified reliably as early as 5 h after I/R insult, allowing for evaluation of early treatment interventions. PMID:17634403

  18. Quantitative assessment of gait and neurochemical correlation in a classical murine model of Parkinson's disease.

    PubMed

    Wang, Xiao Hong; Lu, Gang; Hu, Xiang; Tsang, Kam Sze; Kwong, Wing Hang; Wu, Feng Xia; Meng, Hai Wei; Jiang, Shu; Liu, Shu Wei; Ng, Ho Keung; Poon, Wai Sang

    2012-11-14

    Gait deficits are important clinical symptoms of Parkinson's disease (PD). However, existing behavioral tests for the detection of motor impairments in rodents with systemic dopamine depletion only measure akinesia and dyskinesia, and data focusing on gait are scarce. We evaluated gait changes in the methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced C57BL/6 murine model of PD by using a computer-assisted CatWalk system. Correlations of gait parameters with tyrosine hydroxylase (TH) protein levels in the substantia nigra (SN) were also investigated. The gait readouts, including the walking duration, variation of walking speed, step cycle, duty cycle, stance, initial dual stance, terminal dual stance, three- and four-point supports, and the base of support between hind limbs was noted to increase significantly one week after MPTP injection. In contrast, values of the stride length, cadence, swing speed, and diagonal dual support decreased substantially following MPTP treatment (p < 0.05). All of these changes lasted for three weeks after the last MPTP administration. Except for the stance in the fore limbs and the swing speed in the hind limbs, the gait variability in the PD mice showed a closer correlation with the protein levels of TH in the SN than the walking distances in the conventional open field test. Coordination parameters of the regularity index and step pattern were not affected in mice treated with MPTP. Data of the study suggest that the computer-assisted CatWalk system can provide reliable and objective criteria to stratify gait changes arising from MPTP-induced bilateral lesions in C57/BL6 mice. The extent of gait changes was noted to correlate with the expression of the biomarker for dopaminergic neurons. This novel analytical method may hold promise in the study of disease progression and new drug screening in a murine PD model.

  19. Human-murine transthyretin heterotetramers are kinetically stable and non-amyloidogenic. A lesson in the generation of transgenic models of diseases involving oligomeric proteins.

    PubMed

    Reixach, Natàlia; Foss, Ted R; Santelli, Eugenio; Pascual, Jaime; Kelly, Jeffery W; Buxbaum, Joel N

    2008-01-25

    The transthyretin amyloidoses appear to be caused by rate-limiting tetramer dissociation and partial monomer unfolding of the human serum protein transthyretin, resulting in aggregation and extracellular deposition of amorphous aggregates and amyloid fibrils. Mice transgenic for few copies of amyloid-prone human transthyretin variants, including the aggressive L55P mutant, failed to develop deposits. Silencing the murine transthyretin gene in the presence of the L55P human gene resulted in enhanced tissue deposition. To test the hypothesis that the murine protein interacted with human transthyretin, preventing the dissociation and partial unfolding required for amyloidogenesis, we produced recombinant murine transthyretin and human/murine transthyretin heterotetramers and compared their structures and biophysical properties to recombinant human transthyretin. We found no significant differences between the crystal structures of murine and human homotetramers. Murine transthyretin is not amyloidogenic because the native homotetramer is kinetically stable under physiologic conditions and cannot dissociate into partially unfolded monomers, the misfolding and aggregation precursor. Heterotetramers composed of murine and human subunits are also kinetically stable. These observations explain the lack of transthyretin deposition in transgenics carrying a low copy number of human transthyretin genes. The incorporation of mouse subunits into tetramers otherwise composed of human amyloid-prone transthyretin subunits imposes kinetic stability, preventing dissociation and subsequent amyloidogenesis.

  20. Hypocretin Receptor Expression in Canine and Murine Narcolepsy Models and in Hypocretin-Ligand Deficient Human Narcolepsy

    PubMed Central

    Mishima, Kazuo; Fujiki, Nobuhiro; Yoshida, Yasushi; Sakurai, Takeshi; Honda, Makoto; Mignot, Emmanuel; Nishino, Seiji

    2008-01-01

    Study Objective: To determine whether hypocretin receptor gene (hcrtR1 and hcrtR2) expression is affected after long-term hypocretin ligand loss in humans and animal models of narcolepsy. Design: Animal and human study. We measured hcrtR1 and hcrtR2 expression in the frontal cortex and pons using the RT-PCR method in murine models (8-week-old and 27-week-old orexin/ataxin-3 transgenic (TG) hypocretin cell ablated mice and wild-type mice from the same litter, 10 mice for each group), in canine models (8 genetically narcoleptic Dobermans with null mutations in the hcrtR2, 9 control Dobermans, 3 sporadic ligand-deficient narcoleptics, and 4 small breed controls), and in humans (5 narcolepsy-cataplexy patients with hypocretin deficiency (average age 77.0 years) and 5 control subjects (72.6 years). Measurement and Results: 27-week-old (but not 8-week-old) TG mice showed significant decreases in hcrtR1 expression, suggesting the influence of the long-term ligand loss on the receptor expression. Both sporadic narcoleptic dogs and human narcolepsy-cataplexy subjects showed a significant decrease in hcrtR1 expression, while declines in hcrtR2 expression were not significant in these cases. HcrtR2-mutated narcoleptic Dobermans (with normal ligand production) showed no alteration in hcrtR1 expression. Conclusions: Moderate declines in hcrtR expressions, possibly due to long-term postnatal loss of ligand production, were observed in hypocretin-ligand deficient narcoleptic subjects. These declines are not likely to be progressive and complete. The relative preservation of hcrtR2 expression also suggests that hypocretin based therapies are likely to be a viable therapeutic options in human narcolepsy-cataplexy. Citation: Mishima K; Fujiki N; Yoshida Y; Sakurai T; Honda M; Mignot E; Nishino S. Hypocretin receptor expression in canine and murine narcolepsy models and in hypocretin-ligand deficient human narcolepsy. SLEEP 2008;31(8):1119-1126. PMID:18714784

  1. Inhibition of nuclear factor-κB signal by pyrrolidine dithiocarbamate alleviates lipopolysaccharide-induced acute lung injury

    PubMed Central

    Yang, Hongfu; Sun, Rongqing; Ma, Ning; Liu, Qilong; Sun, Xiaoge; Zi, Panpan; Wang, Junsheng; Chao, Ke; Yu, Lei

    2017-01-01

    This study mainly studied the effect of inhibition of nuclear factor-κB (NF-κB) signal by pyrrolidine dithiocarbamate (PDTC) on lipopolysaccharide (LPS)-induced inflammatory response, oxidative stress, and mitochondrial dysfunction in a murine acute lung injury model. The results showed that LPS exposure activated NF-κB and its upstream proteins and caused lung inflammation, oxidative stress, and mitochondrial dysfunction in mice. While inhibition of NF-κB by PDTC adminstration alleviated LPS-induced generation of lymphocytes, IL-1β, and TNF-α. Malondialdehyde, a common oxidative product, was markedly reduced after PDTC treatment in LPS-challenged mice. Furthermore, PDTC alleviated LPS-induced mitochondrial dysfunction via improving ATP synthesis and uncoupling protein 2 expression. In conclusion, inhibition of NF-κB by PDTC alleviated LPS-induced acute lung injury via maintaining inflammatory status, oxidative balance, and mitochondrial function in mice. PMID:28521300

  2. A simple quantitative model of macromolecular crowding effects on protein folding: Application to the murine prion protein(121-231)

    NASA Astrophysics Data System (ADS)

    Bergasa-Caceres, Fernando; Rabitz, Herschel A.

    2013-06-01

    A model of protein folding kinetics is applied to study the effects of macromolecular crowding on protein folding rate and stability. Macromolecular crowding is found to promote a decrease of the entropic cost of folding of proteins that produces an increase of both the stability and the folding rate. The acceleration of the folding rate due to macromolecular crowding is shown to be a topology-dependent effect. The model is applied to the folding dynamics of the murine prion protein (121-231). The differential effect of macromolecular crowding as a function of protein topology suffices to make non-native configurations relatively more accessible.

  3. Detection of Talaromyces marneffei from Fresh Tissue of an Inhalational Murine Pulmonary Model Using Nested PCR

    PubMed Central

    Liu, Yinghui; Huang, Xiaowen; Yi, Xiuwen; He, Ya; Mylonakis, Eleftherios; Xi, Liyan

    2016-01-01

    Penicilliosis marneffei, often consecutive to the aspiration of Talaromyces marneffei (Penicillium marneffei), continues to be one of the significant causes of morbidity and mortality in immunocompromised patients in endemic regions such as Southeast Asia. Improving the accuracy of diagnosing this disease would aid in reducing the mortality of associated infections. In this study, we developed a stable and reproducible murine pulmonary model that mimics human penicilliosis marneffei using a nebulizer to deliver Talaromyces marneffei (SUMS0152) conidia to the lungs of BALB/c nude mice housed in exposure chamber. Using this model, we further revealed that nested PCR was sensitive and specific for detecting Talaromyces marneffei in bronchoalveolar lavage fluid and fresh tissues. This inhalation model may provide a more representative analysis tool for studying the development of penicilliosis marneffei, in addition to revealing that nested PCR has a predictive value in reflecting pulmonary infection. PMID:26886887

  4. IDENTIFICATION AND DESCRIPTION OF A NOVEL MURINE MODEL FOR POLYTRAUMA AND SHOCK

    PubMed Central

    Gentile, Lori F; Nacionales, Dina C; Cuenca, Alex G; Armbruster, Michael; Ungaro, Ricardo F; Abouhamze, Amer S; Lopez, Cecelia; Baker, Henry V; Moore, Frederick A; Ang, Darwin N; Efron, Philip A

    2013-01-01

    Objective To develop a novel polytrauma model that better recapitulates the immunological response of the severely injured patient by combining long-bone fracture, muscle tissue damage and cecectomy with hemorrhagic shock, resulting in an equivalent Injury Severity Score of greater than 15. We compared this new polytrauma/shock model to historically-used murine trauma-hemorrhage models. Design Pre-clinical controlled in vivo laboratory study. Setting Laboratory of Inflammation Biology and Surgical Science. Subjects 6–10 wk old C57BL/6 (B6) mice Interventions Mice underwent 90 minutes of shock (MAP 30 mmHg) and resuscitation via femoral artery cannulation followed by either laparotomy (TH), laparotomy with femur fracture (H+FFx), or laparotomy with cecetomy and femur fracture with muscle tissue damage (PT). Mice were euthanized at two hours, one day and three days post injury. Measurements and Main Results The spleen, bone marrow, blood, and serum were collected from mice for analysis at the above time points. None of the models were lethal. Mice undergoing PT exhibited a more robust inflammatory response with significant elevations in cytokine/chemokine concentrations when compared to traditional models. PT was the only model to induce neutrophilia (Ly6G+CD11b+ cells) on days 1 and 3 (p<0.05). PT, as compared to TH and H+FFx, induced a loss of circulating CD4+ T cell with simultaneous increased cell activation (CD69+ and CD25+), similar to human trauma. There was a prolonged loss of MHCII expression on monocytes in the PT model (p<0.05). Results were confirmed by genome-wide expression analysis which revealed a greater magnitude and duration of blood leukocyte gene expression changes in the PT model than the TH and sham models. Conclusions This novel polytrauma model better replicates the human leukocyte, cytokine, and overall inflammatory response following injury and hemorrhagic shock. PMID:23399937

  5. Casticin, an active compound isolated from Vitex Fructus, ameliorates the cigarette smoke-induced acute lung inflammatory response in a murine model.

    PubMed

    Lee, Hyeonhoon; Jung, Kyung-Hwa; Lee, Hangyul; Park, Soojin; Choi, Woosung; Bae, Hyunsu

    2015-10-01

    The aim of this study was to determine of the effect of casticin, as an anti-inflammatory agent, on an acute lung inflammation in vivo model established through exposure to cigarette smoke (CS). Casticin is a phytochemical from Vitex species such as Vitex rotundifolia and Vitex agnus-castus that was recently shown to exert an anti-inflammatory effect in vivo. To demonstrate the effects of casticin, C57BL/6 mice were whole-body exposed to mainstream CS or fresh air for two weeks and treated with 1, 2, and 10mg/kg casticin via an i.p. injection. Immune cell infiltrations and cytokine productions were assessed from bronchoalveolar lavage Fluid (BALF), and lung histological analysis was performed. Treatment with casticin was observed to significantly inhibit the numbers of total cells, neutrophils, macrophages, and lymphocytes and reduce the levels of proinflammatory cytokines and chemokines in the BALF. In addition, casticin significantly decreased the infiltration of peribronchial and perivascular inflammatory cells and the epithelium thickness. The results of this study indicate that casticin has significant effects on the lung inflammation induced by CS in a mouse model. According to these outcomes, casticin may have therapeutic potential in inflammatory lung diseases, such as chronic obstructive pulmonary disease (COPD). Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Bromelain limits airway inflammation in an ovalbumin-induced murine model of established asthma.

    PubMed

    Secor, Eric R; Shah, Sonali J; Guernsey, Linda A; Schramm, Craig M; Thrall, Roger S

    2012-01-01

    Allergic asthma continues to increase despite new pharmacological advances for both acute treatment and chronic-disease management. Asthma is a multifactorial disease process with genetic, allergic, infectious, environmental, and dietary origins. Researchers are investigating the benefits of lifestyle changes and alternative asthma treatments, including the ability of bromelain to inhibit inflammation. Bromelain is a commonly used, proteolytically active pineapple extract. The present study intended to determine the ability of bromelain to reduce the inflammation of preexisting asthma via an ovalbumin (OVA)-induced murine model of allergic airway disease (AAD). The research team designed a study examining the effects of bromelain in a control group of mice that received phosphate buffered saline (PBS) only and in an intervention group that received bromelain in PBS. Setting The study took place in the Department of Immunology at the University of Connecticut's School of Medicine, Farmington. Intervention The research team sensitized female C57BL/6J mice with intraperitoneal OVA/alum and then challenged them with OVA aerosolization for 10 consecutive days. On day 4, the team began administering daily doses of PBS to the control group (n = 10) and bromelain (6mg/kg) in PBS to the bromelain (intervention) group (n = 10). The primary measures included bronchoalveolar lavage (BAL) cellular differential, cellular phenotype via flow cytometry, and lung histology. Additional outcomes included testing for serum cytokines and immunoglobulin. Bromelain treatment of AAD mice (bromelain group) resulted in significant anti-inflammatory activity as indicated by reduced BAL total leukocytes (P < .05), eosinophils (P < .05), and cellular infiltrates via lung pathology (P < .005), as compared to the control group. In addition, bromelain significantly reduced BAL CD4+ and CD8+ T cells without affecting cell numbers in the spleen or hilar lymph node. The study found decreased

  7. An evidence-based approach to case management model selection for an acute care facility: is there really a preferred model?

    PubMed

    Terra, Sandra M

    2007-01-01

    This research seeks to determine whether there is adequate evidence-based justification for selection of one acute care case management model over another. Acute Inpatient Hospital. This article presents a systematic review of published case management literature, resulting in classification specific to terms of level of evidence. This review examines the best available evidence in an effort to select an acute care case management model. Although no single case management model can be identified as preferred, it is clear that adequate evidence-based literature exists to acknowledge key factors driving the acute care model and to form a foundation for the efficacy of hospital case management practice. Although no single case management model can be identified as preferred, this systematic review demonstrates that adequate evidence-based literature exists to acknowledge key factors driving the acute care model and forming a foundation for the efficacy of hospital case management practice. Distinctive aspects of case management frameworks can be used to guide the development of an acute care case management model. The study illustrates: * The effectiveness of case management when there is direct patient contact by the case manager regardless of disease condition: not only does the quality of care increase but also length of stay (LOS) decreases, care is defragmented, and both patient and physician satisfaction can increase. * The preferred case management models result in measurable outcomes that can directly relate to, and demonstrate alignment with, organizational strategy. * Acute care management programs reduce cost and LOS, and improve outcomes. * An integrated case management program that includes social workers, as well as nursing, is the most effective acute care management model. * The successful case management model will recognize physicians, as well as patients, as valued customers with whom partnership can positively affect financial outcomes in terms of

  8. The efficacy of oral and subcutaneous antigen-specific immunotherapy in murine cow's milk- and peanut allergy models.

    PubMed

    Vonk, Marlotte M; Wagenaar, Laura; Pieters, Raymond H H; Knippels, Leon M J; Willemsen, Linette E M; Smit, Joost J; van Esch, Betty C A M; Garssen, Johan

    2017-01-01

    Antigen-specific immunotherapy (AIT) is a promising therapeutic approach for both cow's milk allergy (CMA) and peanut allergy (PNA), but needs optimization in terms of efficacy and safety. Compare oral immunotherapy (OIT) and subcutaneous immunotherapy (SCIT) in murine models for CMA and PNA and determine the dose of allergen needed to effectively modify parameters of allergy. Female C3H/HeOuJ mice were sensitized intragastrically (i.g.) to whey or peanut extract with cholera toxin. Mice were treated orally (5 times/week) or subcutaneously (3 times/week) for three consecutive weeks. Hereafter, the acute allergic skin response, anaphylactic shock symptoms and body temperature were measured upon intradermal (i.d.) and intraperitoneal (i.p.) challenge, and mast cell degranulation was measured upon i.g. challenge. Allergen-specific IgE, IgG1 and IgG2a were measured in serum at different time points. Single cell suspensions derived from lymph organs were stimulated with allergen to induce cytokine production and T cell phenotypes were assessed using flow cytometry. Both OIT and SCIT decreased clinically related signs upon challenge in the CMA and PNA model. Interestingly, a rise in allergen-specific IgE was observed during immunotherapy, hereafter, treated mice were protected against the increase in IgE caused by allergen challenge. Allergen-specific IgG1 and IgG2a increased due to both types of AIT. In the CMA model, SCIT and OIT reduced the percentage of activated Th2 cells and increased the percentage of activated Th1 cells in the spleen. OIT increased the percentage of regulatory T cells (Tregs) and activated Th2 cells in the MLN. Th2 cytokines IL-5, IL-13 and IL-10 were reduced after OIT, but not after SCIT. In the PNA model, no differences were observed in percentages of T cell subsets. SCIT induced Th2 cytokines IL-5 and IL-10, whereas OIT had no effect. We have shown clinical protection against allergic manifestations after OIT and SCIT in a CMA and PNA model

  9. CpG oligodeoxynucleotides augment the murine immune response to the Yersinia pestis F1-V vaccine in bubonic and pneumonic models of plague.

    PubMed

    Amemiya, Kei; Meyers, Jennifer L; Rogers, Taralyn E; Fast, Randy L; Bassett, Anthony D; Worsham, Patricia L; Powell, Bradford S; Norris, Sarah L; Krieg, Arthur M; Adamovicz, Jeffrey J

    2009-04-06

    The current U.S. Department of Defense candidate plague vaccine is a fusion between two Yersinia pestis proteins: the F1 capsular protein, and the low calcium response (Lcr) V-protein. We hypothesized that an immunomodulator, such as CpG oligodeoxynucleotide (ODN)s, could augment the immune response to the plague F1-V vaccine in a mouse model for plague. CpG ODNs significantly augmented the antibody response and efficacy of a single dose of the plague vaccine in murine bubonic and pneumonic models of plague. In the latter study, we also found an overall significant augmentation the immune response to the individual subunits of the plague vaccine by CpG ODN 2006. In a long-term, prime-boost study, CpG ODN induced a significant early augmentation of the IgG response to the vaccine. The presence of CpG ODN induced a significant increase in the IgG2a subclass response to the vaccine up to 5 months after the boost. Our studies showed that CpG ODNs significantly augmented the IgG antibody response to the plague vaccine, which increased the probability of survival in murine models of plague (P<0.0001).

  10. Three-dimensional alginate spheroid culture system of murine osteosarcoma.

    PubMed

    Akeda, Koji; Nishimura, Akinobu; Satonaka, Haruhiko; Shintani, Ken; Kusuzaki, Katsuyuki; Matsumine, Akihiko; Kasai, Yuichi; Masuda, Koichi; Uchida, Atsumasa

    2009-11-01

    Osteosarcoma (OS) is the most common primary malignant tumor of the bone and often forms pulmonary metastases, which are the most important prognostic factor. For further elucidation of the mechanism underlying the progression and metastasis of human OS, a culture system mimicking the microenvironment of the tumor in vivo is needed. We report a novel three-dimensional (3D) alginate spheroid culture system of murine osteosarcoma. Two different metastatic clones, the parental Dunn and its derivative line LM8, which has a higher metastatic potential to the lungs, were encapsulated in alginate beads to develop the 3D culture system. The beads containing murine OS cells were also transplanted into mice to determine their metastatic potential in vivo. In this culture system, murine OS cells encapsulated in alginate beads were able to grow in a 3D structure with cells detaching from the alginate environment. The number of detaching cells was higher in the LM8 cell line than the Dunn cell line. In the in vivo alginate bead transplantation model, the rate of pulmonary metastasis was higher with LM8 cells compared with that of Dunn cells. The cell characteristics and kinetics in this culture system closely reflect the original malignant potential of the cells in vivo.

  11. A Mathematical Model of the Human Small Intestine Following Acute Radiation and Burn Exposures

    DTIC Science & Technology

    2016-08-01

    Acronyms and Symbols ARA Applied Research Associates, Inc. ARS Acute radiation syndrome d Days DE Differential Evolution DTRA Defense Threat...04-08-2016 Technical Report A Mathematical Model of the Human Small Intestine Following Acute Radiation and Burn Exposures HDTRA1...epithelial cells to acute radiation alone. The model has been modified for improved radiation response, and an addition to the model allows for thermal injury

  12. Immunomodulatory Effects of Balneotherapy with Hae-Un-Dae Thermal Water on Imiquimod-Induced Psoriasis-Like Murine Model

    PubMed Central

    Lee, Young Bok; Lee, Jun Young; Lee, Hye Jin; Yun, Seong Taek; Lee, Jong Tae; Kim, Hong Jig; Yu, Dong Soo

    2014-01-01

    Background Balneotherapy, although not a well-established dermatological treatment, is thought to have therapeutic properties for psoriasis and is used as an alternative treatment modality throughout the world. Objective To evaluate the mechanism underlying the therapeutic immunologic effects of thermomineral water. Methods A murine model of imiquimod-induced psoriasis-like skin inflammation was used for evaluating the therapeutic effects of balneotherapy with Hae-Un-Dae hot spring mineral water. The clinical improvements were evaluated by a dermatologist. Lesional cytokines, including interleukin (IL)-17A, IL-23, and IL-22, were quantitatively measured by real-time reverse transcriptase polymerase chain reaction. Serum levels of interferon-γ, IL-4, IL-5, and IL-17A were measured by enzyme-linked immunosorbent assay. T cell proportions in the spleen were evaluated by flow cytometry, and histopathological evaluation of the skin was also performed. Results The mineral water balneotherapy group showed faster improvement in skin erythema and scales than the distilled water bathing group. A substantial reduction was observed in the lesional mRNA levels of IL-17A and IL-23 in the mineral water group. Serum levels of IL-4 and IL-5 were significantly decreased in the mineral water group but not in the distilled water group. Normalized T cell proportions were observed after bathing. Conclusion Balneotherapy showed immunomodulatory effects in a psoriasis-like murine model. Balneotherapy suppressed lesional IL-23 and IL-17A, which are important cytokines in the pathogenesis of psoriasis. These results suggest that balneotherapy can be used as an effective and safe treatment for psoriasis. PMID:24882978

  13. Immunomodulatory effects of balneotherapy with hae-un-dae thermal water on imiquimod-induced psoriasis-like murine model.

    PubMed

    Lee, Young Bok; Lee, Jun Young; Lee, Hye Jin; Yun, Seong Taek; Lee, Jong Tae; Kim, Hong Jig; Yu, Dong Soo; Woo, So Youn; Kim, Jin-Wou

    2014-04-01

    Balneotherapy, although not a well-established dermatological treatment, is thought to have therapeutic properties for psoriasis and is used as an alternative treatment modality throughout the world. To evaluate the mechanism underlying the therapeutic immunologic effects of thermomineral water. A murine model of imiquimod-induced psoriasis-like skin inflammation was used for evaluating the therapeutic effects of balneotherapy with Hae-Un-Dae hot spring mineral water. The clinical improvements were evaluated by a dermatologist. Lesional cytokines, including interleukin (IL)-17A, IL-23, and IL-22, were quantitatively measured by real-time reverse transcriptase polymerase chain reaction. Serum levels of interferon-γ, IL-4, IL-5, and IL-17A were measured by enzyme-linked immunosorbent assay. T cell proportions in the spleen were evaluated by flow cytometry, and histopathological evaluation of the skin was also performed. The mineral water balneotherapy group showed faster improvement in skin erythema and scales than the distilled water bathing group. A substantial reduction was observed in the lesional mRNA levels of IL-17A and IL-23 in the mineral water group. Serum levels of IL-4 and IL-5 were significantly decreased in the mineral water group but not in the distilled water group. Normalized T cell proportions were observed after bathing. Balneotherapy showed immunomodulatory effects in a psoriasis-like murine model. Balneotherapy suppressed lesional IL-23 and IL-17A, which are important cytokines in the pathogenesis of psoriasis. These results suggest that balneotherapy can be used as an effective and safe treatment for psoriasis.

  14. Acute and Chronic Exercise in Animal Models.

    PubMed

    Thu, Vu Thi; Kim, Hyoung Kyu; Han, Jin

    2017-01-01

    Numerous animal cardiac exercise models using animal subjects have been established to uncover the cardiovascular physiological mechanism of exercise or to determine the effects of exercise on cardiovascular health and disease. In most cases, animal-based cardiovascular exercise modalities include treadmill running, swimming, and voluntary wheel running with a series of intensities, times, and durations. Those used animals include small rodents (e.g., mice and rats) and large animals (e.g., rabbits, dogs, goats, sheep, pigs, and horses). Depending on the research goal, each experimental protocol should also describe whether its respective exercise treatment can produce the anticipated acute or chronic cardiovascular adaptive response. In this chapter, we will briefly describe the most common kinds of animal models of acute and chronic cardiovascular exercises that are currently being conducted and are likely to be chosen in the near future. Strengths and weakness of animal-based cardiac exercise modalities are also discussed.

  15. Murine Typhus, Reunion, France, 2011–2013

    PubMed Central

    Camuset, Guillaume; Socolovschi, Cristina; Moiton, Marie-Pierre; Kuli, Barbara; Foucher, Aurélie; Poubeau, Patrice; Borgherini, Gianandrea; Wartel, Guillaume; Audin, Héla; Raoult, Didier; Filleul, Laurent; Parola, Philippe; Pagès, Fréderic

    2015-01-01

    Murine typhus case was initially identified in Reunion, France, in 2012 in a tourist. Our investigation confirmed 8 autochthonous cases that occurred during January 2011–January 2013 in Reunion. Murine typhus should be considered in local patients and in travelers returning from Reunion who have fevers of unknown origin. PMID:25625653

  16. Systematic Characterization of the Murine Mitochondrial Proteome Using Functionally Validated Cardiac Mitochondria

    PubMed Central

    Zhang, Jun; Li, Xiaohai; Mueller, Michael; Wang, Yueju; Zong, Chenggong; Deng, Ning; Vondriska, Thomas M.; Liem, David A.; Yang, Jeong-In; Korge, Paavo; Honda, Henry; Weiss, James N.; Apweiler, Rolf; Ping, Peipei

    2009-01-01

    Mitochondria play essential roles in cardiac pathophysiology and the murine model has been extensively used to investigate cardiovascular diseases. In the present study, we characterized murine cardiac mitochondria using an LC/MS/MS approach. We extracted and purified cardiac mitochondria; validated their functionality to ensure the final preparation contains necessary components to sustain their normal function; and subjected these validated organelles to LC/MS/MS-based protein identification. A total of 940 distinct proteins were identified from murine cardiac mitochondria, among which, 480 proteins were not previously identified by major proteomic profiling studies. The 940 proteins consist of functional clusters known to support oxidative phosphorylation, metabolism and biogenesis. In addition, there are several other clusters--including proteolysis, protein folding, and reduction/oxidation signaling-which ostensibly represent previously under-appreciated tasks of cardiac mitochondria. Moreover, many identified proteins were found to occupy other subcellular locations, including cytoplasm, ER, and golgi, in addition to their presence in the mitochondria. These results provide a comprehensive picture of the murine cardiac mitochondrial proteome and underscore tissue- and species-specification. Moreover, the use of functionally intact mitochondria insures that the proteomic observations in this organelle are relevant to its normal biology and facilitates decoding the interplay between mitochondria and other organelles. PMID:18348319

  17. Mechanism of mitochondrial permeability transition pore induction and damage in the pancreas: inhibition prevents acute pancreatitis by protecting production of ATP

    PubMed Central

    Mukherjee, Rajarshi; Mareninova, Olga A; Odinokova, Irina V; Huang, Wei; Murphy, John; Chvanov, Michael; Javed, Muhammad A; Wen, Li; Booth, David M; Cane, Matthew C; Awais, Muhammad; Gavillet, Bruno; Pruss, Rebecca M; Schaller, Sophie; Molkentin, Jeffery D; Tepikin, Alexei V; Petersen, Ole H; Pandol, Stephen J; Gukovsky, Ilya; Criddle, David N; Gukovskaya, Anna S

    2016-01-01

    Objective Acute pancreatitis is caused by toxins that induce acinar cell calcium overload, zymogen activation, cytokine release and cell death, yet is without specific drug therapy. Mitochondrial dysfunction has been implicated but the mechanism not established. Design We investigated the mechanism of induction and consequences of the mitochondrial permeability transition pore (MPTP) in the pancreas using cell biological methods including confocal microscopy, patch clamp technology and multiple clinically representative disease models. Effects of genetic and pharmacological inhibition of the MPTP were examined in isolated murine and human pancreatic acinar cells, and in hyperstimulation, bile acid, alcoholic and choline-deficient, ethionine-supplemented acute pancreatitis. Results MPTP opening was mediated by toxin-induced inositol trisphosphate and ryanodine receptor calcium channel release, and resulted in diminished ATP production, leading to impaired calcium clearance, defective autophagy, zymogen activation, cytokine production, phosphoglycerate mutase 5 activation and necrosis, which was prevented by intracellular ATP supplementation. When MPTP opening was inhibited genetically or pharmacologically, all biochemical, immunological and histopathological responses of acute pancreatitis in all four models were reduced or abolished. Conclusions This work demonstrates the mechanism and consequences of MPTP opening to be fundamental to multiple forms of acute pancreatitis and validates the MPTP as a drug target for this disease. PMID:26071131

  18. Significance of major international seaports in the distribution of murine typhus in Taiwan.

    PubMed

    Kuo, Chi-Chien; Wardrop, Nicola; Chang, Chung-Te; Wang, Hsi-Chieh; Atkinson, Peter M

    2017-03-01

    International seaports are hotspots for disease invasion and pathogens can persist in seaports even after ports are abandoned. Transmitted by fleas infected by Rickettsia typhi, murine typhus, a largely neglected and easily misdiagnosed disease, is known to occur primarily in large seaports. However, the significance of seaports in the occurrence of murine typhus has never been validated quantitatively. We studied the spatial distribution of murine typhus, a notifiable disease, in Taiwan. We investigated whether risk of infection was correlated with distance to international seaports and a collection of environmental and socioeconomic factors, using a Bayesian negative binomial conditionally autoregressive model, followed with geographically weighted regression. Seaports that are currently in use and those that operated in the 19th century for trade with China, but were later abandoned due to siltation were analyzed. A total of 476 human cases of murine typhus were reported during 2000-2014 in the main island of Taiwan, with spatial clustering in districts in southwest and central-west Taiwan. A higher incidence rate (case/population) was associated with a smaller distance to currently in-use international seaports and lower rainfall and temperature, but was uncorrelated with distance to abandoned ports. Geographically weighted regression revealed a geographic heterogeneity in the importance of distance to in-use seaports near the four international seaports of Taiwan. Our study suggests that murine typhus is associated with international seaports, especially for those with large trading volume. Thus, one of the costs of global trade in Taiwan might be elevated risks of murine typhus. Globalization has accelerated the spread of infectious diseases, but the burden of disease varies geographically, with regions surrounding major international seaports warranting particular surveillance.

  19. Validation of a Novel Murine Wound Model of Acinetobacter baumannii Infection

    PubMed Central

    Thompson, Mitchell G.; Black, Chad C.; Pavlicek, Rebecca L.; Honnold, Cary L.; Wise, Matthew C.; Alamneh, Yonas A.; Moon, Jay K.; Kessler, Jennifer L.; Si, Yuanzheng; Williams, Robert; Yildirim, Suleyman; Kirkup, Benjamin C.; Green, Romanza K.; Hall, Eric R.; Palys, Thomas J.

    2014-01-01

    Patients recovering from traumatic injuries or surgery often require weeks to months of hospitalization, increasing the risk for wound and surgical site infections caused by ESKAPE pathogens, which include A. baumannii (the ESKAPE pathogens are Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species). As new therapies are being developed to counter A. baumannii infections, animal models are also needed to evaluate potential treatments. Here, we present an excisional, murine wound model in which a diminutive inoculum of a clinically relevant, multidrug-resistant A. baumannii isolate can proliferate, form biofilms, and be effectively treated with antibiotics. The model requires a temporary, cyclophosphamide-induced neutropenia to establish an infection that can persist. A 6-mm-diameter, full-thickness wound was created in the skin overlying the thoracic spine, and after the wound bed was inoculated, it was covered with a dressing for 7 days. Uninoculated control wounds healed within 13 days, whereas infected, placebo-treated wounds remained unclosed beyond 21 days. Treated and untreated wounds were assessed with multiple quantitative and qualitative techniques that included gross pathology, weight loss and recovery, wound closure, bacterial burden, 16S rRNA community profiling, histopathology, peptide nucleic acid-fluorescence in situ hybridization, and scanning electron microscopy assessment of biofilms. The range of differences that we are able to identify with these measures in antibiotic- versus placebo-treated animals provides a clear window within which novel antimicrobial therapies can be assessed. The model can be used to evaluate antimicrobials for their ability to reduce specific pathogen loads in wounded tissues and clear biofilms. Ultimately, the mouse model approach allows for highly powered studies and serves as an initial multifaceted in vivo assessment prior to

  20. Investigations into the Immunotoxicity and Allergic Potential Induced by Topical Application of N-Butylbenzenesulfonamide (NBBS) in a Murine Model

    PubMed Central

    Marrocco, Antonella; Meade, B. Jean; Long, Carrie M.; Lukomska, Ewa; Marshall, Nikki B.; Anderson, Stacey E.

    2015-01-01

    N-Butylbenzene sulfonamide (NBBS) is a commonly used plasticizer found in numerous products. Due to its extensive use, lack of adequate toxicological data, and suspicion of toxicity based on the presence of structural alerts, it was nominated to the National Toxicology Program for comprehensive toxicological testing. The purpose of this study was to evaluate the potential for hypersensitivity and immune suppression following dermal exposure to NBBS using a murine model. NBBS tested negative in a combined irritancy/local lymph node assay (LLNA), classifying it as nonirritating and nonsensitizing. To estimate the immunosuppressive potential of NBBS, assays that assessed immunotoxicity were performed, including the immumnoglobulin (Ig) M response to T-cell-dependent antigen sheep red blood cells (SRBC), using the plaque-forming cell (PFC) assay and immune cell phenotyping. After a 28-d treatment with NBBS, mice exposed to the lowest concentration (25% NBBS) showed a significant increase in IgM-producing B cells in the spleen. No marked changes were identified in immune cell markers in the lymph node. In contrast to body weight, a significant elevation in kidney and liver weight was observed following dermal exposure to all concentrations of NBBS. These results demonstrate that dermal exposure to NBBS, other than liver and kidney toxicity, did not apparently induce immunotoxicity in a murine model. PMID:26291892

  1. Bone marrow stem cells assuage radiation-induced damage in a murine model of distraction osteogenesis: A histomorphometric evaluation.

    PubMed

    Zheutlin, Alexander R; Deshpande, Sagar S; Nelson, Noah S; Kang, Stephen Y; Gallagher, Kathleen K; Polyatskaya, Yekaterina; Rodriguez, Jose J; Donneys, Alexis; Ranganathan, Kavitha; Buchman, Steven R

    2016-05-01

    The purpose of this study is to determine if intraoperatively placed bone marrow stem cells (BMSCs) will permit successful osteocyte and mature bone regeneration in an isogenic murine model of distraction osteogenesis (DO) following radiation therapy (XRT). Lewis rats were split into three groups, DO only (Control), XRT followed by DO (xDO) and XRT followed by DO with intraoperatively placed BMSCs (xDO-BMSC). Coronal sections from the distraction site were obtained, stained and analyzed via statistical analysis with analysis of variance (ANOVA) and subsequent Tukey or Games-Howell post-hoc tests. Comparison of the xDO-BMSC and xDO groups demonstrated significantly improved osteocyte count (87.15 ± 10.19 vs. 67.88 ± 15.38, P = 0.00), and empty lacunae number (2.18 ± 0.79 vs 12.34 ± 6.61, P = 0.00). Quantitative analysis revealed a significant decrease in immature osteoid volume relative to total volume (P = 0.00) and improved the ratio of mature woven bone to immature osteoid (P = 0.02) in the xDO-BMSC compared with the xDO group. No significant differences were found between the Control and xDO-BMSC groups. In an isogenic murine model of DO, BMSC therapy assuaged XRT-induced cellular depletion, resulting in a significant improvement in histological and histomorphometric outcomes. Copyright © 2016 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  2. Characterization of thyroid cancer cell lines in murine orthotopic and intracardiac metastasis models.

    PubMed

    Morrison, Jennifer A; Pike, Laura A; Lund, Greg; Zhou, Qiong; Kessler, Brittelle E; Bauerle, Kevin T; Sams, Sharon B; Haugen, Bryan R; Schweppe, Rebecca E

    2015-06-01

    Thyroid cancer incidence has been increasing over time, and it is estimated that ∼1950 advanced thyroid cancer patients will die of their disease in 2015. To combat this disease, an enhanced understanding of thyroid cancer development and progression as well as the development of efficacious, targeted therapies are needed. In vitro and in vivo studies utilizing thyroid cancer cell lines and animal models are critically important to these research efforts. In this report, we detail our studies with a panel of authenticated human anaplastic and papillary thyroid cancer (ATC and PTC) cell lines engineered to express firefly luciferase in two in vivo murine cancer models-an orthotopic thyroid cancer model as well as an intracardiac injection metastasis model. In these models, primary tumor growth in the orthotopic model and the establishment and growth of metastases in the intracardiac injection model are followed in vivo using an IVIS imaging system. In the orthotopic model, the ATC cell lines 8505C and T238 and the PTC cell lines K1/GLAG-66 and BCPAP had take rates >90 % with final tumor volumes ranging 84-214 mm(3) over 4-5 weeks. In the intracardiac model, metastasis establishment was successful in the ATC cell lines HTh74, HTh7, 8505C, THJ-16T, and Cal62 with take rates ≥70 %. Only one of the PTC cell lines tested (BCPAP) was successful in the intracardiac model with a take rate of 30 %. These data will be beneficial to inform the choice of cell line and model system for the design of future thyroid cancer studies.

  3. 3,4-Methylenedioxymethamphetamine (MDMA) alters acute gammaherpesvirus burden and limits Interleukin 27 responses in a mouse model of viral infection

    PubMed Central

    Nelson, Daniel A.; Singh, Sam J.; Young, Amy B.; Tolbert, Melanie D.; Bost, Kenneth L.

    2011-01-01

    Aims To test whether 3,4-methylenedioxymethamphetamine (MDMA, “Ecstasy”) abuse might increase the susceptibility, or alter the immune response, to murine gammaherpesvirus 68 (HV-68) and/or bacterial lipopolysaccharide. Methods Groups of experimental and control mice were subjected to three day binges of MDMA, and the effect of this drug abuse on acute and latent HV-68 viral burden were assessed. In vitro and in vivo studies were also performed to assess the MDMA effect on IL-27 expression in virally infected or LPS-exposed macrophages and dendritic cells, and latently infected animals, exposed to this drug of abuse. Results Acute viral burden was significantly increased in MDMA-treated mice when compared to controls. However the latent viral burden, and physiological and behavioral responses were not altered in infected mice despite repeated bingeing with MDMA. MDMA could limit the IL-27 response of HV-68 infected or LPS-exposed macrophages and dendritic cells in vitro and in vivo, demonstrating the ability of this drug to alter normal cytokine responses in the context of a viral infection and/or a TLR4 agonist. Conclusion MDMA bingeing could alter the host’s immune response resulting in greater acute viral replication and reductions in the production of the cytokine, IL-27 during immune responses. PMID:21269783

  4. The role of adrenergic activation on murine luteal cell viability and progesterone production.

    PubMed

    Wang, Jing; Tang, Min; Jiang, Huaide; Wu, Bing; Cai, Wei; Hu, Chuan; Bao, Riqiang; Dong, Qiming; Xiao, Li; Li, Gang; Zhang, Chunping

    2016-09-15

    Sympathetic innervations exist in mammalian CL. The action of catecholaminergic system on luteal cells has been the focus of a variety of studies. Norepinephrine (NE) increased progesterone secretion of cattle luteal cells by activating β-adrenoceptors. In this study, murine luteal cells were treated with NE and isoprenaline (ISO). We found that NE increased the viability of murine luteal cells and ISO decreased the viability of luteal cells. Both NE and ISO promoted the progesterone production. Nonselective β-adrenergic antagonist, propranolol reversed the effect of ISO on cell viability but did not reverse the effect of NE on cell viability. Propranolol blocked the influence of NE and ISO on progesterone production. These results reveal that the increase of luteal cell viability induced by NE is not dependent on β-adrenergic activation. α-Adrenergic activation possibly contributes to it. Both NE and ISO increased progesterone production through activating β-adrenergic receptor. Further study showed that CyclinD2 is involved in the increase of luteal cell induced by NE. 3β-Hydroxysteroid dehydrogenase, LHR, steroidogenic acute regulatory protein (StAR), and PGF2α contribute to the progesterone production induced by NE and ISO. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Expression of human cationic trypsinogen (PRSS1) in murine acinar cells promotes pancreatitis and apoptotic cell death

    PubMed Central

    Athwal, T; Huang, W; Mukherjee, R; Latawiec, D; Chvanov, M; Clarke, R; Smith, K; Campbell, F; Merriman, C; Criddle, D; Sutton, R; Neoptolemos, J; Vlatković, N

    2014-01-01

    Hereditary pancreatitis (HP) is an autosomal dominant disease that displays the features of both acute and chronic pancreatitis. Mutations in human cationic trypsinogen (PRSS1) are associated with HP and have provided some insight into the pathogenesis of pancreatitis, but mechanisms responsible for the initiation of pancreatitis have not been elucidated and the role of apoptosis and necrosis has been much debated. However, it has been generally accepted that trypsinogen, prematurely activated within the pancreatic acinar cell, has a major role in the initiation process. Functional studies of HP have been limited by the absence of an experimental system that authentically mimics disease development. We therefore developed a novel transgenic murine model system using wild-type (WT) human PRSS1 or two HP-associated mutants (R122H and N29I) to determine whether expression of human cationic trypsinogen in murine acinar cells promotes pancreatitis. The rat elastase promoter was used to target transgene expression to pancreatic acinar cells in three transgenic strains that were generated: Tg(Ela-PRSS1)NV, Tg(Ela-PRSS1*R122H)NV and Tg(Ela-PRSS1*N29I)NV. Mice were analysed histologically, immunohistochemically and biochemically. We found that transgene expression is restricted to pancreatic acinar cells and transgenic PRSS1 proteins are targeted to the pancreatic secretory pathway. Animals from all transgenic strains developed pancreatitis characterised by acinar cell vacuolisation, inflammatory infiltrates and fibrosis. Transgenic animals also developed more severe pancreatitis upon treatment with low-dose cerulein than controls, displaying significantly higher scores for oedema, inflammation and overall histopathology. Expression of PRSS1, WT or mutant, in acinar cells increased apoptosis in pancreatic tissues and isolated acinar cells. Moreover, studies of isolated acinar cells demonstrated that transgene expression promotes apoptosis rather than necrosis. We therefore

  6. Can microbiota transplantation abrogate murine colonization resistance against Campylobacter jejuni?

    PubMed

    Heimesaat, M M; Plickert, R; Fischer, A; Göbel, U B; Bereswill, S

    2013-03-01

    Enterocolitis caused by Campylobacter jejuni represents an important socioeconomic burden worldwide. The host-specific intestinal microbiota is essential for maintaining colonization resistance (CR) against C. jejuni in conventional mice. Notably, CR is abrogated by shifts of the intestinal microbiota towards overgrowth with commensal E. coli during acute ileitis. Thus, we investigated whether oral transplantation (TX) of ileal microbiota derived from C. jejuni susceptible mice with acute ileitis overcomes CR of healthy conventional animals. Four days following ileitis microbiota TX or ileitis induction and right before C. jejuni infection, mice displayed comparable loads of main intestinal bacterial groups as shown by culture. Eight days following ileitis induction, but not ileal microbiota TX, however, C. jejuni could readily colonize the gastrointestinal tract of conventional mice and also translocate to extra-intestinal tissue sites such as mesenteric lymph nodes, spleen, liver, and blood within 4 days following oral infection. Of note, C. jejuni did not further deteriorate histopathology following ileitis induction. Lack of C. jejuni colonization in TX mice was accompanied by a decrease of commensal E. coli loads in the feces 4 days following C. jejuni infection. In summary, oral ileal microbiota TX from susceptible donors is not sufficient to abrogate murine CR against C. jejuni.

  7. Murine model for congenital CMV infection and hearing impairment

    PubMed Central

    2011-01-01

    Background Congenital cytomegalovirus (CMV) infection is the leading cause of sensorineural hearing loss (SNHL), and SNHL is the most frequent sequela of congenital CMV infection. But the pathogenic mechanism remains unknown, and there is no ideal CMV intrauterine infection animal model to study the mechanisms by which SNHL develops. Methods We established the congenital murine cytomegalovirus (MCMV) infection model by directly injecting the virus into the placenta on day 12.5 of gestation. Then, we observed the development and the MCMV congenital infection rate of the fetuses on the day they were born. Furthermore, we detected the auditory functions, the conditions of the MCMV infection, and the histological change of the inner ears of 28-day-old and 70-day-old offspring. Results Both the fetal loss rate and the teratism rate of offspring whose placentas were inoculated with MCMV increased, and their body length, head circumference, and weight decreased. The hearing level of offspring both decreased at both 28- and 70-days post birth; the 70-day-old mice developed lower hearing levels than did the 28-day old mice. No significant inflammatory changes in the cochleae of the mice were observed. MCMV DNA signals were mainly detected in the spiral ganglion neurons and the endolymph area, but not in the perilymph area. The number of neurons decreased, and their ultrastructures changed. Moreover, with age, the number of neurons dramatically decreased, and the ultrastructural lesions of neurons became much more severe. Conclusions The results suggest that the direct injection of MCMV into the placenta may efficiently cause fetal infection and disturb the intrauterine development of the fetus, and placental inoculation itself has no obvious adverse effects on offspring. The reduction in the number of spiral ganglion neurons and the ultrastructural lesions of the neurons may be the major cause of congenital CMV infection-induced progressive SNHL. PMID:21320351

  8. Murine model for congenital CMV infection and hearing impairment.

    PubMed

    Juanjuan, Chen; Yan, Feng; Li, Chen; Haizhi, Liu; Ling, Wang; Xinrong, Wang; Juan, Xiao; Tao, Liu; Zongzhi, Yin; Suhua, Chen

    2011-02-15

    Congenital cytomegalovirus (CMV) infection is the leading cause of sensorineural hearing loss (SNHL), and SNHL is the most frequent sequela of congenital CMV infection. But the pathogenic mechanism remains unknown, and there is no ideal CMV intrauterine infection animal model to study the mechanisms by which SNHL develops. We established the congenital murine cytomegalovirus (MCMV) infection model by directly injecting the virus into the placenta on day 12.5 of gestation. Then, we observed the development and the MCMV congenital infection rate of the fetuses on the day they were born. Furthermore, we detected the auditory functions, the conditions of the MCMV infection, and the histological change of the inner ears of 28-day-old and 70-day-old offspring. Both the fetal loss rate and the teratism rate of offspring whose placentas were inoculated with MCMV increased, and their body length, head circumference, and weight decreased. The hearing level of offspring both decreased at both 28- and 70-days post birth; the 70-day-old mice developed lower hearing levels than did the 28-day old mice. No significant inflammatory changes in the cochleae of the mice were observed. MCMV DNA signals were mainly detected in the spiral ganglion neurons and the endolymph area, but not in the perilymph area. The number of neurons decreased, and their ultrastructures changed. Moreover, with age, the number of neurons dramatically decreased, and the ultrastructural lesions of neurons became much more severe. The results suggest that the direct injection of MCMV into the placenta may efficiently cause fetal infection and disturb the intrauterine development of the fetus, and placental inoculation itself has no obvious adverse effects on offspring. The reduction in the number of spiral ganglion neurons and the ultrastructural lesions of the neurons may be the major cause of congenital CMV infection-induced progressive SNHL.

  9. A Murine Hypertrophic Cardiomyopathy Model: The DBA/2J Strain.

    PubMed

    Zhao, Wenyuan; Zhao, Tieqiang; Chen, Yuanjian; Zhao, Fengbo; Gu, Qingqing; Williams, Robert W; Bhattacharya, Syamal K; Lu, Lu; Sun, Yao

    2015-01-01

    Familial hypertrophic cardiomyopathy (HCM) is attributed to mutations in genes that encode for the sarcomere proteins, especially Mybpc3 and Myh7. Genotype-phenotype correlation studies show significant variability in HCM phenotypes among affected individuals with identical causal mutations. Morphological changes and clinical expression of HCM are the result of interactions with modifier genes. With the exceptions of angiotensin converting enzyme, these modifiers have not been identified. Although mouse models have been used to investigate the genetics of many complex diseases, natural murine models for HCM are still lacking. In this study we show that the DBA/2J (D2) strain of mouse has sequence variants in Mybpc3 and Myh7, relative to widely used C57BL/6J (B6) reference strain and the key features of human HCM. Four-month-old of male D2 mice exhibit hallmarks of HCM including increased heart weight and cardiomyocyte size relative to B6 mice, as well as elevated markers for cardiac hypertrophy including β-myosin heavy chain (MHC), atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and skeletal muscle alpha actin (α1-actin). Furthermore, cardiac interstitial fibrosis, another feature of HCM, is also evident in the D2 strain, and is accompanied by up-regulation of type I collagen and α-smooth muscle actin (SMA)-markers of fibrosis. Of great interest, blood pressure and cardiac function are within the normal range in the D2 strain, demonstrating that cardiac hypertrophy and fibrosis are not secondary to hypertension, myocardial infarction, or heart failure. Because D2 and B6 strains have been used to generate a large family of recombinant inbred strains, the BXD cohort, the D2 model can be effectively exploited for in-depth genetic analysis of HCM susceptibility and modifier screens.

  10. Innate and adaptive immune response to chronic pulmonary infection of hyphae of Aspergillus fumigatus in a new murine model.

    PubMed

    Wang, Fengyuan; Zhang, Caiyun; Jiang, Yuan; Kou, Caixia; Kong, Qingtao; Long, Nanbiao; Lu, Ling; Sang, Hong

    2017-10-01

    The pathogenesis of chronic pulmonary aspergillosis (CPA) has seldom been studied due partly to a lack of animal models. Since hypha is the main morphology colonizing the airway in CPA, it's critical to study the immune reaction to chronic pulmonary infection of hyphae of Aspergillus fumigatus, which also has seldom been studied in vivo before. We established a novel murine model of chronic pulmonary infection of hyphae by challenging immunocompetent mice with tightly-structured hyphae balls intratracheally, and described the ensuing immunoreaction to hyphae and conidia, and the pathogenesis of CPA. Our experiment proved that the hyphae balls could induce a chronic pulmonary infection for 28 days with a considerable recrudescence at day 28 post-infection. Lungs infected with hyphae balls were remarkable for the many neutrophils and macrophages that flooded into airway lumens, with peribronchiolar infiltration of leukocytes. There was a transient increase of Th2 cells and Th17 cells at day 7 post-infection in the lung tissue. In contrast, lungs infected with conidia showed no peribronchiolar infiltration of leukocytes, but an influx of a great number of macrophages, and a much less number of neutrophils in the lumen. Besides, conidia activated the co-response of Th1, Th2 and Th17 cells with an increase of Treg cells in the lung tissue (quite different from most previous studies). We established a new murine model of chronic infection of hyphae to mimic the formation of CPA, and provide a new marker for different immune responses to hyphae and conidia.

  11. Effects of Erdosteine on Experimental Acute Pancreatitis Model.

    PubMed

    Karapolat, Banu; Karapolat, Sami; Gurleyik, Emin; Yasar, Mehmet

    2017-10-01

    To create acute pancreatitis condition experimentally in rats using cerulein, and to reveal histopathological effects in pancreatic tissue with erdosteine. An experimental study. Department of General Surgery, Duzce University, Turkey, from June to October 2014. Thirty male Wistar albino rats were divided into three groups. No procedures were applied to Group 1. The rats in Group 2 and Group 3 were injected cerulein, to establish an experimental pancreatitis model and the blood amylase and lipase values were examined. The rats in Group 3 were given 10 mg/kg erdosteine. This treatment was continued for another 2 days and the rats were sacrificed. The pancreatic tissues were examined histopathologically for edema, inflammation, acinar necrosis, fat necrosis, and vacuolization. The lipase and amylase values and the histopathological examination of pancreatic tissues evidenced that the experimental acute pancreatitis model was established and edema, inflammation, acinar necrosis, fat necrosis, and vacuolization were observed in the pancreatic tissues. The statistical results suggest that erdosteine can decrease the edema, inflammation, acinar necrosis, fat necrosis and vacuolization scores in the tissues. The severity of acute pancreatitis, induced by cerulein in rats, is reduced with the use of erdosteine.

  12. The Effects of Injury Magnitude on the Kinetics of the Acute Phase Response

    PubMed Central

    Bauzá, Graciela; Miller, Glenn; Kaseje, Neema; Wigner, Nathan A.; Wang, Zhongyan; Gerstenfeld, Louis C.; Burke, Peter A.

    2013-01-01

    Background The acute-phase response (APR) is critical to the body's ability to successfully respond to injury. A murine model of closed unilateral femur fractures and bilateral femur fracture were used to study the effect of injury magnitude on this response. Methods Standardized unilateral femur fracture and bilateral femur fracture in mice were performed. The femur fracture sites, livers, and serum were harvested over time after injury. Changes in mRNA expression of cytokines, hepatic acute-phase proteins, and serum cytokines overtime were measured. Results There was a rapid and short-lived hepatic APR to fracture injuries. The overall pattern in both models was similar. Both acute-phase proteins' mRNA (fibrinogen-γ and serum amyloid A-3) showed increased mRNA expression over baseline within the first 48 hours and their levels positively correlated with the extent of injury. However, increased severity of injury resulted in a delayed induction of the APR. A similar effect on the gene expression of cytokines (interleukin [IL]-1β, IL-6, and tumor necrosis factor-α) at the fracture site was seen. Serum IL-6 levels increased with increased injury and showed no delay between injury models. Conclusions Greater severity of injury resulted in a delayed induction of the liver's APR and a diminished expression of cytokines at the fracture site. Serum IL-6 levels were calibrated to the extent of the injury, and changes may represent mechanisms by which the local organ responses to injury are regulated by the injury magnitude. PMID:20693926

  13. PLGA nano/micro particles encapsulated with pertussis toxoid (PTd) enhances Th1/Th17 immune response in a murine model.

    PubMed

    Li, Pan; Asokanathan, Catpagavalli; Liu, Fang; Khaing, Kyi Kyi; Kmiec, Dorota; Wei, Xiaoqing; Song, Bing; Xing, Dorothy; Kong, Deling

    2016-11-20

    Poly(lactic-co-glycolic acid) (PLGA) based nano/micro particles were investigated as a potential vaccine platform for pertussis antigen. Presentation of pertussis toxoid as nano/micro particles (NP/MP) gave similar antigen-specific IgG responses in mice compared to soluble antigen. Notably, in cell line based assays, it was found that PLGA based nano/micro particles enhanced the phagocytosis of fluorescent antigen-nano/micro particles by J774.2 murine monocyte/macrophage cells compared to soluble antigen. More importantly, when mice were immunised with the antigen-nano/micro particles they significantly increased antigen-specific Th1 cytokines INF-γ and IL-17 secretion in splenocytes after in vitro re-stimulation with heat killed Bordetalla pertussis, indicating the induction of a Th1/Th17 response. Also, presentation of pertussis antigen in a NP/MP formulation is able to provide protection against respiratory infection in a murine model. Thus, the NP/MP formulation may provide an alternative to conventional acellular vaccines to achieve a more balanced Th1/Th2 immune response. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. A Translational Murine Model of Sub-Lethal Intoxication with Shiga Toxin 2 Reveals Novel Ultrastructural Findings in the Brain Striatum

    PubMed Central

    Tironi-Farinati, Carla; Geoghegan, Patricia A.; Cangelosi, Adriana; Pinto, Alipio; Loidl, C. Fabian; Goldstein, Jorge

    2013-01-01

    Infection by Shiga toxin-producing Escherichia coli causes hemorrhagic colitis, hemolytic uremic syndrome (HUS), acute renal failure, and also central nervous system complications in around 30% of the children affected. Besides, neurological deficits are one of the most unrepairable and untreatable outcomes of HUS. Study of the striatum is relevant because basal ganglia are one of the brain areas most commonly affected in patients that have suffered from HUS and since the deleterious effects of a sub-lethal dose of Shiga toxin have never been studied in the striatum, the purpose of this study was to attempt to simulate an infection by Shiga toxin-producing E. coli in a murine model. To this end, intravenous administration of a sub-lethal dose of Shiga toxin 2 (0.5 ηg per mouse) was used and the correlation between neurological manifestations and ultrastructural changes in striatal brain cells was studied in detail. Neurological manifestations included significant motor behavior abnormalities in spontaneous motor activity, gait, pelvic elevation and hind limb activity eight days after administration of the toxin. Transmission electron microscopy revealed that the toxin caused early perivascular edema two days after administration, as well as significant damage in astrocytes four days after administration and significant damage in neurons and oligodendrocytes eight days after administration. Interrupted synapses and mast cell extravasation were also found eight days after administration of the toxin. We thus conclude that the chronological order of events observed in the striatum could explain the neurological disorders found eight days after administration of the toxin. PMID:23383285

  15. Gallium Nitrate Is Efficacious in Murine Models of Tuberculosis and Inhibits Key Bacterial Fe-Dependent Enzymes

    PubMed Central

    Olakanmi, Oyebode; Kesavalu, Banurekha; Pasula, Rajamouli; Abdalla, Maher Y.; Schlesinger, Larry S.

    2013-01-01

    Acquiring iron (Fe) is critical to the metabolism and growth of Mycobacterium tuberculosis. Disruption of Fe metabolism is a potential approach for novel antituberculous therapy. Gallium (Ga) has many similarities to Fe. Biological systems are often unable to distinguish Ga3+ from Fe3+. Unlike Fe3+, Ga3+ cannot be physiologically reduced to Ga2+. Thus, substituting Ga for Fe in the active site of enzymes may render them nonfunctional. We previously showed that Ga inhibits growth of M. tuberculosis in broth and within cultured human macrophages. We now report that Ga(NO3)3 shows efficacy in murine tuberculosis models. BALB/c SCID mice were infected intratracheally with M. tuberculosis, following which they received daily intraperitoneal saline, Ga(NO3)3, or NaNO3. All mice receiving saline or NaNO3 died. All Ga(NO3)3-treated mice survived. M. tuberculosis CFU in the lungs, liver, and spleen of the NaNO3-treated or saline-treated mice were significantly higher than those in Ga-treated mice. When BALB/c mice were substituted for BALB/c SCID mice as a chronic (nonlethal) infection model, Ga(NO3)3 treatment significantly decreased lung CFU. To assess the mechanism(s) whereby Ga inhibits bacterial growth, the effect of Ga on M. tuberculosis ribonucleotide reductase (RR) (a key enzyme in DNA replication) and aconitase activities was assessed. Ga decreased M. tuberculosis RR activity by 50 to 60%, but no additional decrease in RR activity was seen at Ga concentrations that completely inhibited mycobacterial growth. Ga decreased aconitase activity by 90%. Ga(NO3)3 shows efficacy in murine M. tuberculosis infection and leads to a decrease in activity of Fe-dependent enzymes. Additional work is warranted to further define Ga's mechanism of action and to optimize delivery forms for possible therapeutic uses in humans. PMID:24060870

  16. Quantitative assessment of gait and neurochemical correlation in a classical murine model of Parkinson’s disease

    PubMed Central

    2012-01-01

    Background Gait deficits are important clinical symptoms of Parkinson’s disease (PD). However, existing behavioral tests for the detection of motor impairments in rodents with systemic dopamine depletion only measure akinesia and dyskinesia, and data focusing on gait are scarce. We evaluated gait changes in the methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced C57BL/6 murine model of PD by using a computer-assisted CatWalk system. Correlations of gait parameters with tyrosine hydroxylase (TH) protein levels in the substantia nigra (SN) were also investigated. Results The gait readouts, including the walking duration, variation of walking speed, step cycle, duty cycle, stance, initial dual stance, terminal dual stance, three- and four-point supports, and the base of support between hind limbs was noted to increase significantly one week after MPTP injection. In contrast, values of the stride length, cadence, swing speed, and diagonal dual support decreased substantially following MPTP treatment (p < 0.05). All of these changes lasted for three weeks after the last MPTP administration. Except for the stance in the fore limbs and the swing speed in the hind limbs, the gait variability in the PD mice showed a closer correlation with the protein levels of TH in the SN than the walking distances in the conventional open field test. Coordination parameters of the regularity index and step pattern were not affected in mice treated with MPTP. Conclusion Data of the study suggest that the computer-assisted CatWalk system can provide reliable and objective criteria to stratify gait changes arising from MPTP-induced bilateral lesions in C57/BL6 mice. The extent of gait changes was noted to correlate with the expression of the biomarker for dopaminergic neurons. This novel analytical method may hold promise in the study of disease progression and new drug screening in a murine PD model. PMID:23151254

  17. Significance of major international seaports in the distribution of murine typhus in Taiwan

    PubMed Central

    Wardrop, Nicola; Chang, Chung-Te; Wang, Hsi-Chieh; Atkinson, Peter M.

    2017-01-01

    Background International seaports are hotspots for disease invasion and pathogens can persist in seaports even after ports are abandoned. Transmitted by fleas infected by Rickettsia typhi, murine typhus, a largely neglected and easily misdiagnosed disease, is known to occur primarily in large seaports. However, the significance of seaports in the occurrence of murine typhus has never been validated quantitatively. Methodology/Principal findings We studied the spatial distribution of murine typhus, a notifiable disease, in Taiwan. We investigated whether risk of infection was correlated with distance to international seaports and a collection of environmental and socioeconomic factors, using a Bayesian negative binomial conditionally autoregressive model, followed with geographically weighted regression. Seaports that are currently in use and those that operated in the 19th century for trade with China, but were later abandoned due to siltation were analyzed. A total of 476 human cases of murine typhus were reported during 2000–2014 in the main island of Taiwan, with spatial clustering in districts in southwest and central-west Taiwan. A higher incidence rate (case/population) was associated with a smaller distance to currently in-use international seaports and lower rainfall and temperature, but was uncorrelated with distance to abandoned ports. Geographically weighted regression revealed a geographic heterogeneity in the importance of distance to in-use seaports near the four international seaports of Taiwan. Conclusions/Significance Our study suggests that murine typhus is associated with international seaports, especially for those with large trading volume. Thus, one of the costs of global trade in Taiwan might be elevated risks of murine typhus. Globalization has accelerated the spread of infectious diseases, but the burden of disease varies geographically, with regions surrounding major international seaports warranting particular surveillance. PMID

  18. Practical Murine Hematopathology: A Comparative Review and Implications for Research

    PubMed Central

    O'Connell, Karyn E; Mikkola, Amy M; Stepanek, Aaron M; Vernet, Andyna; Hall, Christopher D; Sun, Chia C; Yildirim, Eda; Staropoli, John F; Lee, Jeannie T; Brown, Diane E

    2015-01-01

    Hematologic parameters are important markers of disease in human and veterinary medicine. Biomedical research has benefited from mouse models that recapitulate such disease, thus expanding knowledge of pathogenetic mechanisms and investigative therapies that translate across species. Mice in health have many notable hematologic differences from humans and other veterinary species, including smaller erythrocytes, higher percentage of circulating reticulocytes or polychromasia, lower peripheral blood neutrophil and higher peripheral blood and bone marrow lymphocyte percentages, variable leukocyte morphologies, physiologic splenic hematopoiesis and iron storage, and more numerous and shorter-lived erythrocytes and platelets. For accurate and complete hematologic analyses of disease and response to investigative therapeutic interventions, these differences and the unique features of murine hematopathology must be understood. Here we review murine hematology and hematopathology for practical application to translational investigation. PMID:25926395

  19. Postprandial triglyceride-rich lipoproteins promote lipid accumulation and apolipoprotein B-48 receptor transcriptional activity in human circulating and murine bone marrow neutrophils in a fatty acid-dependent manner.

    PubMed

    Ortega-Gómez, Almudena; Varela, Lourdes M; López, Sergio; Montserrat de la Paz, Sergio; Sánchez, Rosario; Muriana, Francisco J G; Bermúdez, Beatriz; Abia, Rocío

    2017-09-01

    Postprandial triglyceride-rich lipoproteins (TRLs) promote atherosclerosis. Recent research points the bone marrow (BM) as a primary site in atherosclerosis. We elucidated how the acute administration of monounsaturated fatty acids (MUFAs) MUFAs, omega-3 polyunsaturated fatty acids (PUFAs) PUFAs and saturated fatty acids (SFAs) affects human circulating and murine BM neutrophil lipid accumulation and functionality. Postprandial hypertriglyceridemia was induced in healthy subjects and Apoe -/- mice by the acute administration of dietary fats enriched in MUFAs, PUFAs, or SFAs. Postprandial hypertriglyceridemia increased apolipoprotein-B48 receptor (ApoB48R) transcriptional activity that was linearly correlated with intracellular triglycerides (TGs) TGs accumulation in human circulating and murine BM neutrophils. MUFA and omega-3 PUFAs attenuated ApoB48R gene expression and intracellular TG accumulation compared to SFAs. TRLs induced apoB48R-dependent TG accumulation in human neutrophils ex vivo. Murine BM neutrophils showed a decrease in surface L-selectin and an increase in TNF-α and IL-1β mRNA expressions only after SFAs administration. TRLs enriched in SFAs induced BM neutrophil degranulation ex vivo suggesting cell priming/activation. Postprandial TRLs disrupts the normal biology and function of circulating and BM neutrophils. MUFA- and omega-3 PUFA-rich dietary fats such as virgin olive oil or fish oil has the potential to prevent excessive neutrophil lipid accumulation and activation by targeting the fatty acid composition of TRLs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Acute myeloid leukaemia: a paradigm for the clonal evolution of cancer?

    PubMed Central

    Grove, Carolyn S.; Vassiliou, George S.

    2014-01-01

    Acute myeloid leukaemia (AML) is an uncontrolled clonal proliferation of abnormal myeloid progenitor cells in the bone marrow and blood. Advances in cancer genomics have revealed the spectrum of somatic mutations that give rise to human AML and drawn our attention to its molecular evolution and clonal architecture. It is now evident that most AML genomes harbour small numbers of mutations, which are acquired in a stepwise manner. This characteristic, combined with our ability to identify mutations in individual leukaemic cells and our detailed understanding of normal human and murine haematopoiesis, makes AML an excellent model for understanding the principles of cancer evolution. Furthermore, a better understanding of how AML evolves can help us devise strategies to improve the therapy and prognosis of AML patients. Here, we draw from recent advances in genomics, clinical studies and experimental models to describe the current knowledge of the clonal evolution of AML and its implications for the biology and treatment of leukaemias and other cancers. PMID:25056697

  1. Atomic structure of the murine norovirus protruding domain and sCD300lf receptor complex.

    PubMed

    Kilic, Turgay; Koromyslova, Anna; Malak, Virginie; Hansman, Grant S

    2018-03-21

    Human noroviruses are the leading cause of acute gastroenteritis in human. Noroviruses also infect animals such as cow, mice, cat, and dog. How noroviruses bind and enter host cells is still incompletely understood. Recently, the type I transmembrane protein CD300lf was recently identified as the murine norovirus receptor, yet it is unclear how the virus capsid and receptor interact at the molecular level. In this study, we determined the X-ray crystal structure of the soluble CD300lf (sCD300lf) and murine norovirus capsid-protruding domain complex at 2.05 Å resolution. We found that the sCD300lf binding site is located on the topside of the protruding domain and involves a network of hydrophilic and hydrophobic interactions. The sCD300lf locked nicely into a complementary cavity on the protruding domain that is additionally coordinated with a positive surface charge on the sCD300lf and a negative surface charge on the protruding domain. Five of six protruding domain residues interacting with sCD300lf were maintained between different murine norovirus strains, suggesting that the sCD300lf was capable of binding to a highly conserved pocket. Moreover, a sequence alignment with other CD300 paralogs showed that the sCD300lf interacting residues were partially conserved in CD300ld, but variable in other CD300 family members, consistent with previously reported infection selectivity. Overall, these data provide insights into how a norovirus engages a protein receptor and will be important for a better understanding of selective recognition and norovirus attachment and entry mechanisms. IMPORTANCE Noroviruses exhibit exquisite host-range specificity due to species-specific interactions between the norovirus capsid protein and host molecules. Given this strict host-range restriction it has been unclear how the viruses are maintained within a species between relatively sporadic epidemics. While much data demonstrates that noroviruses can interact with carbohydrates

  2. Prefoldin 5 Is Required for Normal Sensory and Neuronal Development in a Murine Model*

    PubMed Central

    Lee, YongSuk; Smith, Richard S.; Jordan, Wanda; King, Benjamin L.; Won, Jungyeon; Valpuesta, Jose M.; Naggert, Jurgen K.; Nishina, Patsy M.

    2011-01-01

    Molecular chaperones and co-chaperones are crucial for cellular development and maintenance as they assist in protein folding and stabilization of unfolded or misfolded proteins. Prefoldin (PFDN), a ubiquitously expressed heterohexameric co-chaperone, is necessary for proper folding of nascent proteins, in particular, tubulin and actin. Here we show that a genetic disruption in the murine Pfdn5 gene, a subunit of prefoldin, causes a syndrome characterized by photoreceptor degeneration, central nervous system abnormalities, and male infertility. Our data indicate that a missense mutation in Pfdn5, may cause these phenotypes through a reduction in formation of microtubules and microfilaments, which are necessary for the development of cilia and cytoskeletal structures, respectively. The diversity of phenotypes demonstrated by models carrying mutations in different PFDN subunits suggests that each PFDN subunit must confer a distinct substrate specificity to the prefoldin holocomplex. PMID:20956523

  3. Prefoldin 5 is required for normal sensory and neuronal development in a murine model.

    PubMed

    Lee, YongSuk; Smith, Richard S; Jordan, Wanda; King, Benjamin L; Won, Jungyeon; Valpuesta, Jose M; Naggert, Jurgen K; Nishina, Patsy M

    2011-01-07

    Molecular chaperones and co-chaperones are crucial for cellular development and maintenance as they assist in protein folding and stabilization of unfolded or misfolded proteins. Prefoldin (PFDN), a ubiquitously expressed heterohexameric co-chaperone, is necessary for proper folding of nascent proteins, in particular, tubulin and actin. Here we show that a genetic disruption in the murine Pfdn5 gene, a subunit of prefoldin, causes a syndrome characterized by photoreceptor degeneration, central nervous system abnormalities, and male infertility. Our data indicate that a missense mutation in Pfdn5, may cause these phenotypes through a reduction in formation of microtubules and microfilaments, which are necessary for the development of cilia and cytoskeletal structures, respectively. The diversity of phenotypes demonstrated by models carrying mutations in different PFDN subunits suggests that each PFDN subunit must confer a distinct substrate specificity to the prefoldin holocomplex.

  4. A Novel Murine Candidiasis Model with Severe Colonization in the Stomach Induced by N-acetylglucosamine-treatment and Its Scoring System Based on Local Characteristic Stomach Symptoms.

    PubMed

    Ishijima, Sanae A; Abe, Shigeru

    2015-01-01

    We developed a novel murine candidiasis model of the gastrointestinal tract using N-acetylglucosamine ( GlcNAc ) as a tool to aggravate symptoms. Forty-eight hours after intragastrically inoculating Candida albicans cells to immunosuppressed and GlcNAc-treated mice, vigorously accumulating patchy whitish plaques were observed on their inner stomach surface. Candida cells colonizing the plaques consisted of both yeast and mycelia, and were directly stained with Calcofluor White M2R. Aggravation of the candidiasis symptoms was dependent on GlcNAc concentration in drinking water, wherein administration of 50 mM GlcNAc not only severely worsened stomach symptoms, but also significantly increased Candida cell number in the stomach and small intestine. The aggravation effect of GlcNAc was enhanced by addition of sedative chemical chlorpromazine chloride after inoculation. In order to semi-quantitatively assess colonization by Candida in the stomach, we devised a new symptom scoring system that represents the extent of the patchy whitish plaques on the mucosal epithelium of the stomach. Histochemical analysis of Candida-infected tissues revealed not only a large amount of thick Candida mycelia invading mucosal epithelial stomach tissues but also infiltrating inflammatory cells. These results suggest that this murine gastrointestinal candidiasis model could serve as a useful tool for evaluating the protective activity of antifungal agents, probiotics, or functional foods against gastrointestinal candidiasis. Furthermore, from another point of view, this novel murine model could also be used to analyze the pathological mechanisms behind the translocation of C. albicans across intestinal barriers, which results in systemic Candida dissemination and infection.

  5. Knockdown of the placental growth factor gene inhibits laser induced choroidal neovascularization in a murine model.

    PubMed

    Nourinia, Ramin; Soheili, Zahra-Soheila; Ahmadieh, Hamid; Akrami, Hassan; Rezaei Kanavi, Mozhgan; Samiei, Shahram

    2013-01-01

    To evaluate the effect of placental growth factor (PlGF) gene knockdown in a murine model of laser-induced choroidal neovascularization. Choroidal neovascularization was induced in the left eyes of 11 mice by infrared laser. Small interfering RNA (siRNA, 20 picomoles/10 μl) corresponding to PlGF mRNA was administered intravitreally by Hamilton syringe in all subjects. One month later, fluorescein angiography and histolologic examination were performed. No leakage was apparent in the 11 eyes treated with siRNA cognate to PlGF. The results of histological evaluation were consistent with angiographic findings showing absence of choroidal neovascularization. Knockdown of the PlGF gene can inhibit the growth of laser-induced choroidal neovascularization in mice.

  6. Acute Fluoxetine Treatment Induces Slow Rolling of Leukocytes on Endothelium in Mice

    PubMed Central

    Herr, Nadine; Mauler, Maximilian; Witsch, Thilo; Stallmann, Daniela; Schmitt, Stefanie; Mezger, Julius; Bode, Christoph; Duerschmied, Daniel

    2014-01-01

    Objective Activated platelets release serotonin at sites of inflammation where it acts as inflammatory mediator and enhances recruitment of neutrophils. Chronic treatment with selective serotonin reuptake inhibitors (SSRI) depletes the serotonin storage pool in platelets, leading to reduced leukocyte recruitment in murine experiments. Here, we examined the direct and acute effects of SSRI on leukocyte recruitment in murine peritonitis. Methods C57Bl/6 and Tph1−/− (Tryptophan hydroxylase1) mice underwent acute treatment with the SSRI fluoxetine or vehicle. Serotonin concentrations were measured by ELISA. Leukocyte rolling and adhesion on endothelium was analyzed by intravital microscopy in mesentery venules with and without lipopolysaccharide challenge. Leukocyte extravasation in sterile peritonitis was measured by flow cytometry of abdominal lavage fluid. Results Plasma serotonin levels were elevated 2 hours after fluoxetine treatment (0.70±0.1 µg/ml versus 0.27±0.1, p = 0.03, n = 14), while serum serotonin did not change. Without further stimulation, acute fluoxetine treatment increased the number of rolling leukocytes (63±8 versus 165±17/0.04 mm2min−1) and decreased their velocity (61±6 versus 28±1 µm/s, both p<0.0001, n = 10). In Tph1−/− mice leukocyte rolling was not significantly influenced by acute fluoxetine treatment. Stimulation with lipopolysaccharide decreased rolling velocity and induced leukocyte adhesion, which was enhanced after fluoxetine pretreatment (27±3 versus 36±2/0.04 mm2, p = 0.008, n = 10). Leukocyte extravasation in sterile peritonitis, however, was not affected by acute fluoxetine treatment. Conclusions Acute fluoxetine treatment increased plasma serotonin concentrations and promoted leukocyte-endothelial interactions in-vivo, suggesting that serotonin is a promoter of acute inflammation. E-selectin was upregulated on endothelial cells in the presence of serotonin, possibly explaining the observed

  7. Behavioral Phenotyping of Murine Disease Models with the Integrated Behavioral Station (INBEST).

    PubMed

    Sakic, Boris; Cooper, Marcella P A; Taylor, Sarah E; Stojanovic, Milica; Zagorac, Bosa; Kapadia, Minesh

    2015-04-23

    Due to rapid advances in genetic engineering, small rodents have become the preferred subjects in many disciplines of biomedical research. In studies of chronic CNS disorders, there is an increasing demand for murine models with high validity at the behavioral level. However, multiple pathogenic mechanisms and complex functional deficits often impose challenges to reliably measure and interpret behavior of chronically sick mice. Therefore, the assessment of peripheral pathology and a behavioral profile at several time points using a battery of tests are required. Video-tracking, behavioral spectroscopy, and remote acquisition of physiological measures are emerging technologies that allow for comprehensive, accurate, and unbiased behavioral analysis in a home-base-like setting. This report describes a refined phenotyping protocol, which includes a custom-made monitoring apparatus (Integrated Behavioral Station, INBEST) that focuses on prolonged measurements of basic functional outputs, such as spontaneous activity, food/water intake and motivated behavior in a relatively stress-free environment. Technical and conceptual improvements in INBEST design may further promote reproducibility and standardization of behavioral studies.

  8. Intravital imaging of a pulmonary endothelial surface layer in a murine sepsis model.

    PubMed

    Park, Inwon; Choe, Kibaek; Seo, Howon; Hwang, Yoonha; Song, Eunjoo; Ahn, Jinhyo; Hwan Jo, You; Kim, Pilhan

    2018-05-01

    Direct intravital imaging of an endothelial surface layer (ESL) in pulmonary microcirculation could be a valuable approach to investigate the role of a vascular endothelial barrier in various pathological conditions. Despite its importance as a marker of endothelial cell damage and impairment of the vascular system, in vivo visualization of ESL has remained a challenging technical issue. In this work, we implemented a pulmonary microcirculation imaging system integrated to a custom-design video-rate laser scanning confocal microscopy platform. Using the system, a real-time cellular-level microscopic imaging of the lung was successfully performed, which facilitated a clear identification of individual flowing erythrocytes in pulmonary capillaries. Subcellular level pulmonary ESL was identified in vivo by fluorescence angiography using a dextran conjugated fluorophore to label blood plasma and the red blood cell (RBC) exclusion imaging analysis. Degradation of ESL width was directly evaluated in a murine sepsis model in vivo , suggesting an impairment of pulmonary vascular endothelium and endothelial barrier dysfunction.

  9. Intravital imaging of a pulmonary endothelial surface layer in a murine sepsis model

    PubMed Central

    Park, Inwon; Choe, Kibaek; Seo, Howon; Hwang, Yoonha; Song, Eunjoo; Ahn, Jinhyo; Hwan Jo, You; Kim, Pilhan

    2018-01-01

    Direct intravital imaging of an endothelial surface layer (ESL) in pulmonary microcirculation could be a valuable approach to investigate the role of a vascular endothelial barrier in various pathological conditions. Despite its importance as a marker of endothelial cell damage and impairment of the vascular system, in vivo visualization of ESL has remained a challenging technical issue. In this work, we implemented a pulmonary microcirculation imaging system integrated to a custom-design video-rate laser scanning confocal microscopy platform. Using the system, a real-time cellular-level microscopic imaging of the lung was successfully performed, which facilitated a clear identification of individual flowing erythrocytes in pulmonary capillaries. Subcellular level pulmonary ESL was identified in vivo by fluorescence angiography using a dextran conjugated fluorophore to label blood plasma and the red blood cell (RBC) exclusion imaging analysis. Degradation of ESL width was directly evaluated in a murine sepsis model in vivo, suggesting an impairment of pulmonary vascular endothelium and endothelial barrier dysfunction. PMID:29760995

  10. Comparison of optical projection tomography and optical coherence tomography for assessment of murine embryonic development

    NASA Astrophysics Data System (ADS)

    Singh, Manmohan; Nair, Achuth; Vadakkan, Tegy; Piazza, Victor; Udan, Ryan; Frazier, Michael V.; Janecek, Trevor; Dickinson, Mary E.; Larin, Kirill V.

    2015-03-01

    The murine model is a common model for studying developmental diseases. In this study, we compare the performance of the relatively new method of Optical Projection Tomography (OPT) to the well-established technique of Optical Coherence Tomography (OCT) to assess murine embryonic development at three stages, 9.5, 11.5, and 13.5 days post conception. While both methods can provide spatial resolution at the micrometer scale, OPT can provide superior imaging depth compared to OCT. However, OPT requires samples to be fixed, placed in an immobilization media such as agar, and cleared before imaging. Because OCT does not require fixing, it can be used to image embryos in vivo and in utero. In this study, we compare the efficacy of OPT and OCT for imaging murine embryonic development. The data demonstrate the superior capability of OPT for imaging fine structures with high resolution in optically-cleared embryos while only OCT can provide structural and functional imaging of live embryos ex vivo and in utero with micrometer scale resolution.

  11. Latency versus persistence or intermittent recurrences: evidence for a latent state of murine cytomegalovirus in the lungs.

    PubMed

    Kurz, S; Steffens, H P; Mayer, A; Harris, J R; Reddehase, M J

    1997-04-01

    The state of cytomegalovirus (CMV) after the resolution of acute infection is an unsolved problem in CMV research. While the term "latency" is in general use to indicate the maintenance of the viral genome, a formal exclusion of low-level persistent productive infection depends on the sensitivity of the assay for detecting infectious virus. We have improved the method for detecting infectivity by combining centrifugal infection of permissive indicator cells in culture, expansion to an infectious focus, and sensitive detection of immediate-early RNA in the infected cells by reverse transcriptase PCR. A limiting-dilution approach defined the sensitivity of this assay. Infectivity was thereby found to require as few as 2 to 9 virion DNA molecules of murine CMV, whereas the standard measure of infectivity, the PFU, is the equivalent of ca. 500 viral genomes. Since murine CMV forms multicapsid virions in most infected tissues, the genome-to-infectivity ratio is necessarily >1. This assay thus sets a new standard for investigating CMV latency. In mice in which acute infection was resolved, the viral DNA load in the lungs, a known organ site of CMV latency and recurrence, was found to be 1 genome per 40 lung cells, or a total of ca. 1 million genomes. Despite this high load of CMV DNA, infectious virus was not detected with the improved assay, but recurrence was inducible. These data provide evidence against a low-level persistent productive infection and also imply that intermittent spontaneous recurrence is not a frequent event in latently infected lungs.

  12. Nitric Oxide-Mediated Tumoricidal Activity of Murine Microglial Cells12

    PubMed Central

    Brantley, Emily C; Guo, Lixia; Zhang, Chenyu; Lin, Qingtang; Yokoi, Kenji; Langley, Robert R; Kruzel, Ewa; Maya, Marva; Kim, Seung Wook; Kim, Sun-Jin; Fan, Dominic; Fidler, Isaiah J

    2010-01-01

    Experimental metastases in the brain of mice are infiltrated by microglia, and parabiosis experiments of green fluorescent protein (GFP+) and GFP- mice revealed that these microglia are derived from circulating monocytes (GFP+, F4/80+, and CD68+). These findings raised the question as to whether microglia (specialized macrophages) possess tumoricidal activity. C8-B4 murine microglia cells were incubated in vitro in medium (control) or in medium containing both lipopolysaccharide and interferon-γ. Control microglia were not tumoricidal against a number of murine and human tumor cells, whereas lipopolysaccharide/interferon-γ-activated microglia lysed murine and human tumor cells by release of nitric oxide. Parallel experiments with murine peritoneal macrophages produced identical results. Neither activated microglia nor activated macrophages lysed nontumorigenic murine or human cells. Collectively, these data demonstrate that brain metastasis-associated microglia are derived from circulating mononuclear cells and exhibit selective and specific tumoricidal activity. PMID:21151477

  13. Activation of inflammasome signaling mediates pathology of acute P. aeruginosa pneumonia

    PubMed Central

    Cohen, Taylor S.; Prince, Alice S.

    2013-01-01

    The respiratory tract is exceptionally well defended against infection from inhaled bacteria, with multiple proinflammatory signaling cascades recruiting phagocytes to clear airway pathogens. However, organisms that efficiently activate damaging innate immune responses, such as those mediated by the inflammasome and caspase-1, may cause pulmonary damage and interfere with bacterial clearance. The extracellular, opportunistic pathogen Pseudomonas aeruginosa expresses not only pathogen-associated molecular patterns that activate NF-κB signaling in epithelial and immune cells, but also flagella that activate the NLRC4 inflammasome. We demonstrate that induction of inflammasome signaling, ascribed primarily to the alveolar macrophage, impaired P. aeruginosa clearance and was associated with increased apoptosis/pyroptosis and mortality in a murine model of acute pneumonia. Strategies that limited inflammasome activation, including infection by fliC mutants, depletion of macrophages, deletion of NLRC4, reduction of IL-1β and IL-18 production, inhibition of caspase-1, and inhibition of downstream signaling in IL-1R– or IL-18R–null mice, all resulted in enhanced bacterial clearance and diminished pathology. These results demonstrate that the inflammasome provides a potential target to limit the pathological consequences of acute P. aeruginosa pulmonary infection. PMID:23478406

  14. Comparison of postoperative corneal changes between dry eye and non-dry eye in a murine cataract surgery model.

    PubMed

    Kwon, Jin Woo; Chung, Yeon Woong; Choi, Jin A; La, Tae Yoon; Jee, Dong Hyun; Cho, Yang Kyung

    2016-01-01

    To compare the effects of the surgical insult of cataract surgery on corneal inflammatory infiltration, neovascularization (NV) and lymphangiogenesis (LY) between the dry eye and non-dry eye in murine cataract surgery models. We established two groups of animals, one with normal eyes (non-dry eye) and the second with induced dry eyes. In both groups, we used surgical insults to mimic human cataract surgery, which consisted of lens extraction, corneal incision and suture. After harvesting of corneas on the 9(th) postoperative day and immunohistochemical staining, we compared NV, LY and CD11b+ cell infiltration in the corneas. Dry eye group had significantly more inflammatory infiltration (21.75%±7.17% vs 3.65%±1.49%; P=0.049). The dry eye group showed significantly more NV (48.21%±4.02% vs 26.24%±6.01%; P=0.016) and greater levels of LY (9.27%±0.48% vs 4.84%±1.15%; P=0.007). In corneas on which no surgery was performed, there was no induction of NV in both the dry and non-dry group, but dry eye group demonstrated more CD11b+ cells infiltration than the non-dry eye group (0.360%±0.160% vs 0.023%±0.006%; P=0.068). Dry eye group showed more NV than non-dry eye group in both topical PBS application and subconjunctival PBS injection (P=0.020 and 0.000, respectively). In a murine cataract surgery model, preexisting dry eye can induce more postoperative NV, LY, and inflammation in corneal tissue.

  15. Transcriptomic Analysis of Lung Tissue from Cigarette Smoke-Induced Emphysema Murine Models and Human Chronic Obstructive Pulmonary Disease Show Shared and Distinct Pathways.

    PubMed

    Yun, Jeong H; Morrow, Jarrett; Owen, Caroline A; Qiu, Weiliang; Glass, Kimberly; Lao, Taotao; Jiang, Zhiqiang; Perrella, Mark A; Silverman, Edwin K; Zhou, Xiaobo; Hersh, Craig P

    2017-07-01

    Although cigarette smoke (CS) is the primary risk factor for chronic obstructive pulmonary disease (COPD), the underlying molecular mechanisms for the significant variability in developing COPD in response to CS are incompletely understood. We performed lung gene expression profiling of two different wild-type murine strains (C57BL/6 and NZW/LacJ) and two genetic models with mutations in COPD genome-wide association study genes (HHIP and FAM13A) after 6 months of chronic CS exposure and compared the results to human COPD lung tissues. We identified gene expression patterns that correlate with severity of emphysema in murine and human lungs. Xenobiotic metabolism and nuclear erythroid 2-related factor 2-mediated oxidative stress response were commonly regulated molecular response patterns in C57BL/6, Hhip +/- , and Fam13a -/- murine strains exposed chronically to CS. The CS-resistant Fam13a -/- mouse and NZW/LacJ strain revealed gene expression response pattern differences. The Fam13a -/- strain diverged in gene expression compared with C57BL/6 control only after CS exposure. However, the NZW/LacJ strain had a unique baseline expression pattern, enriched for nuclear erythroid 2-related factor 2-mediated oxidative stress response and xenobiotic metabolism, and converged to a gene expression pattern similar to the more susceptible wild-type C57BL/6 after CS exposure. These results suggest that distinct molecular pathways may account for resistance to emphysema. Surprisingly, there were few genes commonly modulated in mice and humans. Our study suggests that gene expression responses to CS may be largely species and model dependent, yet shared pathways could provide biologically significant insights underlying individual susceptibility to CS.

  16. Blockade of epithelial membrane protein 2 (EMP2) abrogates infection of Chlamydia muridarum murine genital infection model

    PubMed Central

    Shimazaki, Kaori; Chan, Ann M.; Moniz, Raymond J.; Wadehra, Madhuri; Nagy, Agnes; Coulam, C. Paige; Mareninov, Sergey; Lepin, Eric M.; Wu, Anna M.; Kelly, Kathleen A.; Braun, Jonathan; Gordon, Lynn K.

    2012-01-01

    New methods are needed to eradicate or prevent Chlamydia trachomatis infections. Blockade of epithelial membrane protein 2 (EMP2) by genetic silencing or neutralizing polyclonal antibody reduced chlamydial infectivity in vitro. This study tests the prediction that recombinant anti-EMP2 diabody could reduce early chlamydial infection of the genital tract in vivo. In a murine infection model, pretreatment with anti-EMP2 diabody, as compared to control diabody, significantly reduced bacterial load, tissue production of inflammatory cytokines, recruitment of polymorphonuclear leukocytes, and local tissue inflammation. These findings support EMP2 as a potential preventative and therapeutic target for genital chlamydial infection. PMID:19159428

  17. Production of antibodies against glycolipids from the Mycobacterium tuberculosis cell wall in aerosol murine models of tuberculosis.

    PubMed

    Cardona, P J; Julián, E; Vallès, X; Gordillo, S; Muñoz, M; Luquin, M; Ausina, V

    2002-06-01

    Evolution of antibodies against glycolipids from the Mycobacterium tuberculosis cell wall has been studied for the first time in experimental murine models of tuberculosis induced by aerosol, in which infection, reinfection, reactivation, prophylaxis and treatment with antibiotics have been assayed. Results show a significant humoral response against these antigens, where diacyltrehaloses (DAT) and sulpholipid I (SL-I) elicited higher antibody levels than protein antigens like antigen 85 protein complex (Ag85), culture filtrate proteins (CFP) and purified protein derivative (PPD). Only immunoglobulin M (IgM) antibodies have been detected against DAT and SL-I. Their evolution has a positive correlation with bacillary concentration in tissues.

  18. Correction of murine mucopolysaccharidosis VII by a human. beta. -glucuronidase transgene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kyle, J.W.; Vogler, C.; Hoffmann, J.W.

    1990-05-01

    The authors recently described a murine model for mucopolysaccharidosis VII in mice that have an inherited deficiency of {beta}-glucuronidase. Affected mice, of genotype gus{sup mps}/gus{sup mps}, present clinical manifestations similar to those of humans with mucopolysaccharidosis VII (Sly syndrome) and are shown here to have secondary elevations of other lysosomal enzymes. The mucopolysaccharidosis VII phenotype in both species includes dwarfism, skeletal deformities, and premature death. Lysosome storage is visualized within enlarged vesicles and correlates biochemically with accumulation of undegraded and partially degraded glycosaminoglycans. In this report they describe the consequences of introducing the human {beta}-glucuronidase gene, GUSB, into gus{sup mps}/gus{supmore » mps} mice that produce virtually no murine {beta}-glucuronidase. Transgenic mice homozygous for the mucopolysaccharidosis VII mutation expressed high levels of human {beta}-glucuronidase activity in all tissues examined and were phenotypically normal. Biochemically, both the intralysosomal storage of glycosaminoglycans and the secondary elevation of other acid hydrolases were corrected. These findings demonstrate that the GUSB transgene is expressed in gus{sup mps}/gus{sup mps} mice and that human {beta}-glucuronidase corrects the murine mucopolysaccharidosis storage disease.« less

  19. Acanthus ilicifolius plant extract prevents DNA alterations in a transplantable Ehrlich ascites carcinoma-bearing murine model.

    PubMed

    Chakraborty, Tridib; Bhuniya, Dipak; Chatterjee, Mary; Rahaman, Mosiur; Singha, Dipak; Chatterjee, Baidya Nath; Datta, Subrata; Rana, Ajay; Samanta, Kartick; Srivastawa, Sunil; Maitra, Sankar K; Chatterjee, Malay

    2007-12-28

    To investigate the chemopreventive efficacy of the Indian medicinal plant Acanthus ilicifolius L Acanthaceae in a transplantable Ehrlich ascites carcinoma (EAC)-bearing murine model. Male Swiss albino mice were divided into four groups: Group A was the untreated normal control; Group B was the EAC control mice group that received serial, intraperitoneal (ip) inoculations of rapidly proliferating 2 x 10(5) viable EAC cells in 0.2 mL of sterile phosphate buffered saline; Group C was the plant extract-treated group that received the aqueous leaf extract (ALE) of the plant at a dose of 2.5 mg/kg body weight by single ip injections, once daily for 10, 20 and 30 consecutive days following tumour inoculation (ALE control); and Group D was the EAC + ALE-treatment group. The chemopreventive potential of the ALE was evaluated in a murine model by studying various biological parameters and genotoxic markers, such as tumour cell count, mean survival of the animals, haematological indices, hepatocellular histology, immunohistochemical expression of liver metallothionein (MT) protein, sister-chromatid exchanges (SCEs), and DNA alterations. Treatment of the EAC-bearing mice with the ALE significantly (P < 0.001) reduced viable tumour cell count by 68.34% (228.7 x 10(6) +/- 0.53) when compared to EAC control mice (72.4 x 10(6) +/- 0.49), and restored body and organ weights almost to the normal values. ALE administration also increased (P < 0.001) mean survival of the hosts from 35 +/- 3.46 d in EAC control mice to 83 +/- 2.69 d in EAC + ALE-treated mice. Haematological indices also showed marked improvement with administration of ALE in EAC-bearing animals. There was a significant increase in RBC count (P < 0.001), hemoglobin percent (P < 0.001), and haematocrit value (P < 0.001) from 4.3 +/- 0.12, 6.4 +/- 0.93, and 17.63 +/- 0.72 respectively in EAC control mice to 7.1 +/- 0.13, 12.1 +/- 0.77, and 30.23 +/- 0.57 respectively in EAC + ALE-treated group, along with concurrent

  20. Enterocin CRL35 inhibits Listeria monocytogenes in a murine model.

    PubMed

    Salvucci, Emiliano; Saavedra, Lucila; Hebert, Elvira Maria; Haro, Cecilia; Sesma, Fernando

    2012-01-01

    Listeria monocytogenes is a foodborne pathogen causative of opportunistic infections. Listeriosis is associated with severe infections in pregnant women causing abortion or neonatal listeriosis. An alternative to antibiotics are safe novel bacteriocins peptides such as enterocin CRL35 with strong antilisterial activity produced by Enterococcus mundtii CRL35. In the present paper, our goal is to study the effectiveness of this peptide and the producer strain in a murine model of pregnancy-associated listeriosis. A single dose of 5×10(9) colony-forming unit of L. monocytogenes FBUNT (Faculty of Biochemistry-University of Tucumán) resulted in translocation of pathogen to liver and spleen of BALB/c pregnant mice. The maximum level of Listeria was observed on day 3 postinfection. Interestingly, the intragastric administration of enterocin CRL35 significantly reduced the translocation of the pathogen to vital organs. On the other hand, the preadministration of E. mundtii CRL35 slightly inhibited this translocation. Listeria infection caused a significant increase in polymorphonuclear leukocytes at day 3 postinfection compared to the noninfected group. This value was reduced after the administration of enterocin CRL35. No significant changes were observed in either white blood cells or lymphocytes counts. Based on the data presented in the present work enterocin CRL35 would be a promising alternative for the prevention of Listeria infections.

  1. Skeletal muscle fibrosis in the mdx/utrn+/- mouse validates its suitability as a murine model of Duchenne muscular dystrophy.

    PubMed

    Gutpell, Kelly M; Hrinivich, William T; Hoffman, Lisa M

    2015-01-01

    Various therapeutic approaches have been studied for the treatment of Duchenne muscular dystrophy (DMD), but none of these approaches have led to significant long-term effects in patients. One reason for this observed inefficacy may be the use of inappropriate animal models for the testing of therapeutic agents. The mdx mouse is the most widely used murine model of DMD, yet it does not model the fibrotic progression observed in patients. Other murine models of DMD are available that lack one or both alleles of utrophin, a functional analog of dystrophin. The aim of this study was to compare fibrosis and myofiber damage in the mdx, mdx/utrn+/- and double knockout (dko) mouse models. We used Masson's trichrome stain and percentage of centrally-nucleated myofibers as indicators of fibrosis and myofiber regeneration, respectively, to assess disease progression in diaphragm and gastrocnemius muscles harvested from young and aged wild-type, mdx, mdx/utrn+/- and dko mice. Our results indicated that eight week-old gastrocnemius muscles of both mdx/utrn+/- and dko hind limb developed fibrosis whereas age-matched mdx gastrocnemius muscle did not (p = 0.002). The amount of collagen found in the mdx/utrn+/- diaphragm was significantly higher than that found in the corresponding diaphragm muscles of wild-type animals, but not of mdx animals (p = 0.0003). Aged mdx/utrn+/- mice developed fibrosis in both diaphragm and gastrocnemius muscles compared to wild-type controls (p = 0.003). Mdx diaphragm was fibrotic in aged mice as well (p = 0.0235), whereas the gastrocnemius muscle in these animals was not fibrotic. We did not measure a significant difference in collagen staining between wild-type and mdx gastrocnemius muscles. The results of this study support previous reports that the moderately-affected mdx/utrn+/- mouse is a better model of DMD, and we show here that this difference is apparent by 2 months of age.

  2. Models of acute and chronic pancreatitis.

    PubMed

    Lerch, Markus M; Gorelick, Fred S

    2013-06-01

    Animal models of acute and chronic pancreatitis have been created to examine mechanisms of pathogenesis, test therapeutic interventions, and study the influence of inflammation on the development of pancreatic cancer. In vitro models can be used to study early stage, short-term processes that involve acinar cell responses. Rodent models reproducibly develop mild or severe disease. One of the most commonly used pancreatitis models is created by administration of supraphysiologic concentrations of caerulein, an ortholog of cholecystokinin. Induction of chronic pancreatitis with factors thought to have a role in human disease, such as combinations of lipopolysaccharide and chronic ethanol feeding, might be relevant to human disease. Models of autoimmune chronic pancreatitis have also been developed. Most models, particularly of chronic pancreatitis, require further characterization to determine which features of human disease they include. Copyright © 2013 AGA Institute. Published by Elsevier Inc. All rights reserved.

  3. Nanoliposomal artemisinin for the treatment of murine visceral leishmaniasis.

    PubMed

    Want, Muzamil Y; Islammudin, Mohammad; Chouhan, Garima; Ozbak, Hani A; Hemeg, Hassan A; Chattopadhyay, Asoke P; Afrin, Farhat

    2017-01-01

    Visceral leishmaniasis (VL) is a fatal, vector-borne disease caused by the intracellular protozoa of the genus Leishmania . Most of the therapeutics for VL are toxic, expensive, or ineffective. Sesquiterpenes are a new class of drugs with proven antimicrobial and antiviral activities. Artemisinin is a sesquiterpene lactone with potent antileishmanial activity, but with limited access to infected cells, being a highly lipophilic molecule. Association of artemisinin with liposome is a desirable strategy to circumvent the problem of poor accessibility, thereby improving its efficacy, as demonstrated in a murine model of experimental VL. Nanoliposomal artemisinin (NLA) was prepared by thin-film hydration method and optimized using Box-Behnken design with a mean particle diameter of 83±16 nm, polydispersity index of 0.2±0.03, zeta potential of -27.4±5.7 mV, and drug loading of 33.2%±2.1%. Morphological study of these nanoliposomes by microscopy showed a smooth and spherical surface. The mechanism of release of artemisinin from the liposomes followed the Higuchi model in vitro. NLA was free from concomitant signs of toxicity, both ex vivo in murine macrophages and in vivo in healthy BALB/c mice. NLA significantly denigrated the intracellular infection of Leishmania donovani amastigotes and the number of infected macrophages ex vivo with an IC 50 of 6.0±1.4 µg/mL and 5.1±0.9 µg/mL, respectively. Following treatment in a murine model of VL, NLA demonstrated superior efficacy compared to artemisinin with a percentage inhibition of 82.4%±3.8% in the liver and 77.6%±5.5% in spleen at the highest dose of 20 mg/kg body weight with modulation of cell-mediated immunity towards protective Th1 type. This study is the first report on the use of a liposomal drug delivery system for artemisinin as a promising alternative intervention against VL.

  4. Nanoliposomal artemisinin for the treatment of murine visceral leishmaniasis

    PubMed Central

    Want, Muzamil Y; Islammudin, Mohammad; Chouhan, Garima; Ozbak, Hani A; Hemeg, Hassan A; Chattopadhyay, Asoke P; Afrin, Farhat

    2017-01-01

    Visceral leishmaniasis (VL) is a fatal, vector-borne disease caused by the intracellular protozoa of the genus Leishmania. Most of the therapeutics for VL are toxic, expensive, or ineffective. Sesquiterpenes are a new class of drugs with proven antimicrobial and antiviral activities. Artemisinin is a sesquiterpene lactone with potent antileishmanial activity, but with limited access to infected cells, being a highly lipophilic molecule. Association of artemisinin with liposome is a desirable strategy to circumvent the problem of poor accessibility, thereby improving its efficacy, as demonstrated in a murine model of experimental VL. Nanoliposomal artemisinin (NLA) was prepared by thin-film hydration method and optimized using Box–Behnken design with a mean particle diameter of 83±16 nm, polydispersity index of 0.2±0.03, zeta potential of −27.4±5.7 mV, and drug loading of 33.2%±2.1%. Morphological study of these nanoliposomes by microscopy showed a smooth and spherical surface. The mechanism of release of artemisinin from the liposomes followed the Higuchi model in vitro. NLA was free from concomitant signs of toxicity, both ex vivo in murine macrophages and in vivo in healthy BALB/c mice. NLA significantly denigrated the intracellular infection of Leishmania donovani amastigotes and the number of infected macrophages ex vivo with an IC50 of 6.0±1.4 µg/mL and 5.1±0.9 µg/mL, respectively. Following treatment in a murine model of VL, NLA demonstrated superior efficacy compared to artemisinin with a percentage inhibition of 82.4%±3.8% in the liver and 77.6%±5.5% in spleen at the highest dose of 20 mg/kg body weight with modulation of cell-mediated immunity towards protective Th1 type. This study is the first report on the use of a liposomal drug delivery system for artemisinin as a promising alternative intervention against VL. PMID:28356736

  5. Adaptive Immunity Restricts Replication of Novel Murine Astroviruses

    PubMed Central

    Yokoyama, Christine C.; Loh, Joy; Zhao, Guoyan; Stappenbeck, Thaddeus S.; Wang, David; Huang, Henry V.

    2012-01-01

    The mechanisms of astrovirus pathogenesis are largely unknown, in part due to a lack of a small-animal model of disease. Using shotgun sequencing and a custom analysis pipeline, we identified two novel astroviruses capable of infecting research mice, murine astrovirus (MuAstV) STL1 and STL2. Subsequent analysis revealed the presence of at least two additional viruses (MuAstV STL3 and STL4), suggestive of a diverse population of murine astroviruses in research mice. Complete genomic characterization and subsequent phylogenetic analysis showed that MuAstV STL1 to STL4 are members of the mamastrovirus genus and are likely members of a new mamastrovirus genogroup. Using Rag1−/− mice deficient in B and T cells, we demonstrate that adaptive immunity is required to control MuAstV infection. Furthermore, using Stat1−/− mice deficient in innate signaling, we demonstrate a role for the innate immune response in the control of MuAstV replication. Our results demonstrate that MuAstV STL permits the study of the mechanisms of astrovirus infection and host-pathogen interactions in a genetically manipulable small-animal model. Finally, we detected MuAstV in commercially available mice, suggesting that these viruses may be present in academic and commercial research mouse facilities, with possible implications for interpretation of data generated in current mouse models of disease. PMID:22951832

  6. Flexibility damps macromolecular crowding effects on protein folding dynamics: Application to the murine prion protein (121-231)

    NASA Astrophysics Data System (ADS)

    Bergasa-Caceres, Fernando; Rabitz, Herschel A.

    2014-01-01

    A model of protein folding kinetics is applied to study the combined effects of protein flexibility and macromolecular crowding on protein folding rate and stability. It is found that the increase in stability and folding rate promoted by macromolecular crowding is damped for proteins with highly flexible native structures. The model is applied to the folding dynamics of the murine prion protein (121-231). It is found that the high flexibility of the native isoform of the murine prion protein (121-231) reduces the effects of macromolecular crowding on its folding dynamics. The relevance of these findings for the pathogenic mechanism are discussed.

  7. Extracellular ATP mediates the late phase of neutrophil recruitment to the lung in murine models of acute lung injury.

    PubMed

    Shah, Dilip; Romero, Freddy; Stafstrom, William; Duong, Michelle; Summer, Ross

    2014-01-01

    Acute lung injury (ALI) is a severe inflammatory condition whose pathogenesis is irrevocably linked to neutrophil emigration to the lung. Activation and recruitment of neutrophils to the lung is mostly attributable to local production of the chemokines. However, much of our understanding of neutrophil recruitment to the lung is based on studies focusing on early time points after initiation of injury. In this study, we sought to evaluate the extended temporal relationship between neutrophil chemotactic factor expression and influx of neutrophils into the lung after intratracheal administration of either LPS or bleomycin. In both models, results demonstrated two phases of neutrophil chemotactic factor expression; first, an early phase characterized by high levels of CXCL1/keratinocyte-derived chemokine, CXCL2/monocyte-inhibitory protein-2, and CXCL5/LPS-induced chemokine expression, and second, a late phase distinguished by increases in extracellular ATP. Furthermore, we show that strategies aimed at either enhancing ATP catabolism (ip ecto-5'-nucleotidase administration) or inhibiting glycolytic ATP production (ip 2-deoxy-d-glucose treatment) reduce extracellular ATP accumulation, limit vascular leakage, and effectively block the late, but not the early, stages of neutrophil recruitment to the lung after LPS instillation. In conclusion, this study illustrates that neutrophil recruitment to the lung is mediated by the time-dependent expression of chemotactic factors and suggests that novel strategies, which reduce extracellular ATP accumulation, may attenuate late neutrophil recruitment and limit lung injury during ALI.

  8. Extracellular ATP mediates the late phase of neutrophil recruitment to the lung in murine models of acute lung injury

    PubMed Central

    Shah, Dilip; Romero, Freddy; Stafstrom, William; Duong, Michelle

    2013-01-01

    Acute lung injury (ALI) is a severe inflammatory condition whose pathogenesis is irrevocably linked to neutrophil emigration to the lung. Activation and recruitment of neutrophils to the lung is mostly attributable to local production of the chemokines. However, much of our understanding of neutrophil recruitment to the lung is based on studies focusing on early time points after initiation of injury. In this study, we sought to evaluate the extended temporal relationship between neutrophil chemotactic factor expression and influx of neutrophils into the lung after intratracheal administration of either LPS or bleomycin. In both models, results demonstrated two phases of neutrophil chemotactic factor expression; first, an early phase characterized by high levels of CXCL1/keratinocyte-derived chemokine, CXCL2/monocyte-inhibitory protein-2, and CXCL5/LPS-induced chemokine expression, and second, a late phase distinguished by increases in extracellular ATP. Furthermore, we show that strategies aimed at either enhancing ATP catabolism (ip ecto-5′-nucleotidase administration) or inhibiting glycolytic ATP production (ip 2-deoxy-d-glucose treatment) reduce extracellular ATP accumulation, limit vascular leakage, and effectively block the late, but not the early, stages of neutrophil recruitment to the lung after LPS instillation. In conclusion, this study illustrates that neutrophil recruitment to the lung is mediated by the time-dependent expression of chemotactic factors and suggests that novel strategies, which reduce extracellular ATP accumulation, may attenuate late neutrophil recruitment and limit lung injury during ALI. PMID:24285266

  9. Sodium Thiosulfate Prevents Chondrocyte Mineralization and Reduces the Severity of Murine Osteoarthritis

    PubMed Central

    Nasi, Sonia; Ea, Hang-Korng; Lioté, Frédéric; So, Alexander; Busso, Nathalie

    2016-01-01

    Objectives Calcium-containing crystals participate in the pathogenesis of OA. Sodium thiosulfate (STS) has been shown to be an effective treatment in calcification disorders such as calciphylaxis and vascular calcification. This study investigated the effects and mechanisms of action of STS in a murine model of OA and in chondrocyte calcification. Methods Hydroxyapatite (HA) crystals-stimulated murine chondrocytes and macrophages were treated with STS. Mineralization and cellular production of IL-6, MCP-1 and reactive oxygen species (ROS) were assayed. STS's effects on genes involved in calcification, inflammation and cartilage matrix degradation were studied by RT-PCR. STS was administered in the menisectomy model of murine OA, and the effect on periarticular calcific deposits and cartilage degeneration was investigated by micro-CT-scan and histology. Results In vitro, STS prevented in a dose-dependent manner calcium crystal deposition in chondrocytes and inhibited Annexin V gene expression. In addition, there was a reduction in crystal-induced IL-6 and MCP-1 production. STS also had an antioxidant effect, diminished HA-induced ROS generation and abrogated HA-induced catabolic responses in chondrocytes. In vivo, administration of STS reduced the histological severity of OA, by limiting the size of new periarticular calcific deposits and reducing the severity of cartilage damage. Conclusions STS reduces the severity of periarticular calcification and cartilage damage in an animal model of OA via its effects on chondrocyte mineralization and its attenuation of crystal-induced inflammation as well as catabolic enzymes and ROS generation. Our study suggests that STS may be a disease-modifying drug in crystal-associated OA. PMID:27391970

  10. Sodium Thiosulfate Prevents Chondrocyte Mineralization and Reduces the Severity of Murine Osteoarthritis.

    PubMed

    Nasi, Sonia; Ea, Hang-Korng; Lioté, Frédéric; So, Alexander; Busso, Nathalie

    2016-01-01

    Calcium-containing crystals participate in the pathogenesis of OA. Sodium thiosulfate (STS) has been shown to be an effective treatment in calcification disorders such as calciphylaxis and vascular calcification. This study investigated the effects and mechanisms of action of STS in a murine model of OA and in chondrocyte calcification. Hydroxyapatite (HA) crystals-stimulated murine chondrocytes and macrophages were treated with STS. Mineralization and cellular production of IL-6, MCP-1 and reactive oxygen species (ROS) were assayed. STS's effects on genes involved in calcification, inflammation and cartilage matrix degradation were studied by RT-PCR. STS was administered in the menisectomy model of murine OA, and the effect on periarticular calcific deposits and cartilage degeneration was investigated by micro-CT-scan and histology. In vitro, STS prevented in a dose-dependent manner calcium crystal deposition in chondrocytes and inhibited Annexin V gene expression. In addition, there was a reduction in crystal-induced IL-6 and MCP-1 production. STS also had an antioxidant effect, diminished HA-induced ROS generation and abrogated HA-induced catabolic responses in chondrocytes. In vivo, administration of STS reduced the histological severity of OA, by limiting the size of new periarticular calcific deposits and reducing the severity of cartilage damage. STS reduces the severity of periarticular calcification and cartilage damage in an animal model of OA via its effects on chondrocyte mineralization and its attenuation of crystal-induced inflammation as well as catabolic enzymes and ROS generation. Our study suggests that STS may be a disease-modifying drug in crystal-associated OA.

  11. Murine knockin model for progranulin-deficient frontotemporal dementia with nonsense-mediated mRNA decay

    PubMed Central

    Nguyen, Thi A.; Zhang, Jiasheng; Devireddy, Swathi; Zhou, Ping; Karydas, Anna M.; Xu, Xialian; Miller, Bruce L.; Rigo, Frank; Ferguson, Shawn M.; Walther, Tobias C.; Farese, Robert V.

    2018-01-01

    Frontotemporal dementia (FTD) is the most common neurodegenerative disorder in individuals under age 60 and has no treatment or cure. Because many cases of FTD result from GRN nonsense mutations, an animal model for this type of mutation is highly desirable for understanding pathogenesis and testing therapies. Here, we generated and characterized GrnR493X knockin mice, which model the most common human GRN mutation, a premature stop codon at arginine 493 (R493X). Homozygous GrnR493X mice have markedly reduced Grn mRNA levels, lack detectable progranulin protein, and phenocopy Grn knockout mice, with CNS microgliosis, cytoplasmic TDP-43 accumulation, reduced synaptic density, lipofuscinosis, hyperinflammatory macrophages, excessive grooming behavior, and reduced survival. Inhibition of nonsense-mediated mRNA decay (NMD) by genetic, pharmacological, or antisense oligonucleotide-based approaches showed that NMD contributes to the reduced mRNA levels in GrnR493X mice and cell lines and in fibroblasts from patients containing the GRNR493X mutation. Moreover, the expressed truncated R493X mutant protein was functional in several assays in progranulin-deficient cells. Together, these findings establish a murine model for in vivo testing of NMD inhibition or other therapies as potential approaches for treating progranulin deficiency caused by the R493X mutation. PMID:29511098

  12. Quantifying lung morphology with respiratory-gated micro-CT in a murine model of emphysema

    NASA Astrophysics Data System (ADS)

    Ford, N. L.; Martin, E. L.; Lewis, J. F.; Veldhuizen, R. A. W.; Holdsworth, D. W.; Drangova, M.

    2009-04-01

    Non-invasive micro-CT imaging techniques have been developed to investigate lung structure in free-breathing rodents. In this study, we investigate the utility of retrospectively respiratory-gated micro-CT imaging in an emphysema model to determine if anatomical changes could be observed in the image-derived quantitative analysis at two respiratory phases. The emphysema model chosen was a well-characterized, genetically altered model (TIMP-3 knockout mice) that exhibits a homogeneous phenotype. Micro-CT scans of the free-breathing, anaesthetized mice were obtained in 50 s and retrospectively respiratory sorted and reconstructed, providing 3D images representing peak inspiration and end expiration with 0.15 mm isotropic voxel spacing. Anatomical measurements included the volume and CT density of the lungs and the volume of the major airways, along with the diameters of the trachea, left bronchus and right bronchus. From these measurements, functional parameters such as functional residual capacity and tidal volume were calculated. Significant differences between the wild-type and TIMP-3 knockout groups were observed for measurements of CT density over the entire lung, indicating increased air content in the lungs of TIMP-3 knockout mice. These results demonstrate retrospective respiratory-gated micro-CT, providing images at multiple respiratory phases that can be analyzed quantitatively to investigate anatomical changes in murine models of emphysema.

  13. Murine Vaginal Colonization Model for Investigating Asymptomatic Mucosal Carriage of Streptococcus pyogenes

    PubMed Central

    Watson, Michael E.; Nielsen, Hailyn V.; Hultgren, Scott J.

    2013-01-01

    While many virulence factors promoting Streptococcus pyogenes invasive disease have been described, specific streptococcal factors and host properties influencing asymptomatic mucosal carriage remain uncertain. To address the need for a refined model of prolonged S. pyogenes asymptomatic mucosal colonization, we have adapted a preestrogenized murine vaginal colonization model for S. pyogenes. In this model, derivatives of strains HSC5, SF370, JRS4, NZ131, and MEW123 established a reproducible, asymptomatic colonization of the vaginal mucosa over a period of typically 3 to 4 weeks' duration at a relatively high colonization efficiency. Prior treatment with estradiol prolonged streptococcal colonization and was associated with reduced inflammation in the colonized vaginal epithelium as well as a decreased leukocyte presence in vaginal fluid compared to the levels of inflammation and leukocyte presence in non-estradiol-treated control mice. The utility of our model for investigating S. pyogenes factors contributing to mucosal carriage was verified, as a mutant with a mutation in the transcriptional regulator catabolite control protein A (CcpA) demonstrated significant impairment in vaginal colonization. An assessment of in vivo transcriptional activity in the CcpA− strain for several known CcpA-regulated genes identified significantly elevated transcription of lactate oxidase (lctO) correlating with excessive generation of hydrogen peroxide to self-lethal levels. Deletion of lctO did not impair colonization, but deletion of lctO in a CcpA− strain prolonged carriage, exceeding even that of the wild-type strain. Thus, while LctO is not essential for vaginal colonization, its dysregulation is deleterious, highlighting the critical role of CcpA in promoting mucosal colonization. The vaginal colonization model should prove effective for future analyses of S. pyogenes mucosal colonization. PMID:23460515

  14. Establishment and characterization of a novel murine model of pancreatic cancer cachexia.

    PubMed

    Michaelis, Katherine A; Zhu, Xinxia; Burfeind, Kevin G; Krasnow, Stephanie M; Levasseur, Peter R; Morgan, Terry K; Marks, Daniel L

    2017-10-01

    Cachexia is a complex metabolic and behavioural syndrome lacking effective therapies. Pancreatic ductal adenocarcinoma (PDAC) is one of the most important conditions associated with cachexia, with >80% of PDAC patients suffering from the condition. To establish the cardinal features of a murine model of PDAC-associated cachexia, we characterized the effects of implanting a pancreatic tumour cell line from a syngeneic C57BL/6 KRAS G12D P53 R172H Pdx-Cre +/+ (KPC) mouse. Male and female C57BL/6 mice were inoculated subcutaneously, intraperitoneally, or orthotopically with KPC tumour cells. We performed rigorous phenotypic, metabolic, and behavioural analysis of animals over the course of tumour development. All routes of administration produced rapidly growing tumours histologically consistent with moderate to poorly differentiated PDAC. The phenotype of this model was dependent on route of administration, with orthotopic and intraperitoneal implantation inducing more severe cachexia than subcutaneous implantation. KPC tumour growth decreased food intake, decreased adiposity and lean body mass, and decreased locomotor activity. Muscle catabolism was observed in both skeletal and cardiac muscles, but the dominant catabolic pathway differed between these tissues. The wasting syndrome in this model was accompanied by hypothalamic inflammation, progressively decreasing brown and white adipose tissue uncoupling protein 1 (Ucp1) expression, and increased peripheral inflammation. Haematological and endocrine abnormalities included neutrophil-dominant leukocytosis and anaemia, and decreased serum testosterone. Syngeneic KPC allografts are a robust model for studying cachexia, which recapitulate key features of the PDAC disease process and induce a wide array of cachexia manifestations. This model is therefore ideally suited for future studies exploring the physiological systems involved in cachexia and for preclinical studies of novel therapies. © 2017 The Authors. Journal

  15. Establishment and characterization of a novel murine model of pancreatic cancer cachexia

    PubMed Central

    Michaelis, Katherine A.; Zhu, Xinxia; Burfeind, Kevin G.; Krasnow, Stephanie M.; Levasseur, Peter R.; Morgan, Terry K.

    2017-01-01

    Abstract Background Cachexia is a complex metabolic and behavioural syndrome lacking effective therapies. Pancreatic ductal adenocarcinoma (PDAC) is one of the most important conditions associated with cachexia, with >80% of PDAC patients suffering from the condition. To establish the cardinal features of a murine model of PDAC‐associated cachexia, we characterized the effects of implanting a pancreatic tumour cell line from a syngeneic C57BL/6 KRASG12D P53R172H Pdx‐Cre+/+ (KPC) mouse. Methods Male and female C57BL/6 mice were inoculated subcutaneously, intraperitoneally, or orthotopically with KPC tumour cells. We performed rigorous phenotypic, metabolic, and behavioural analysis of animals over the course of tumour development. Results All routes of administration produced rapidly growing tumours histologically consistent with moderate to poorly differentiated PDAC. The phenotype of this model was dependent on route of administration, with orthotopic and intraperitoneal implantation inducing more severe cachexia than subcutaneous implantation. KPC tumour growth decreased food intake, decreased adiposity and lean body mass, and decreased locomotor activity. Muscle catabolism was observed in both skeletal and cardiac muscles, but the dominant catabolic pathway differed between these tissues. The wasting syndrome in this model was accompanied by hypothalamic inflammation, progressively decreasing brown and white adipose tissue uncoupling protein 1 (Ucp1) expression, and increased peripheral inflammation. Haematological and endocrine abnormalities included neutrophil‐dominant leukocytosis and anaemia, and decreased serum testosterone. Conclusions Syngeneic KPC allografts are a robust model for studying cachexia, which recapitulate key features of the PDAC disease process and induce a wide array of cachexia manifestations. This model is therefore ideally suited for future studies exploring the physiological systems involved in cachexia and for preclinical

  16. Unique Gene Expression and MR T2 Relaxometry Patterns Define Chronic Murine Dextran Sodium Sulphate Colitis as a Model for Connective Tissue Changes in Human Crohn’s Disease

    PubMed Central

    Breynaert, Christine; Dresselaers, Tom; Perrier, Clémentine; Arijs, Ingrid; Cremer, Jonathan; Van Lommel, Leentje; Van Steen, Kristel; Ferrante, Marc; Schuit, Frans; Vermeire, Séverine; Rutgeerts, Paul; Himmelreich, Uwe; Ceuppens, Jan L.; Geboes, Karel; Van Assche, Gert

    2013-01-01

    Introduction Chronically relapsing inflammation, tissue remodeling and fibrosis are hallmarks of inflammatory bowel diseases. The aim of this study was to investigate changes in connective tissue in a chronic murine model resulting from repeated cycles of dextran sodium sulphate (DSS) ingestion, to mimic the relapsing nature of the human disease. Materials and Methods C57BL/6 mice were exposed to DSS in drinking water for 1 week, followed by a recovery phase of 2 weeks. This cycle of exposure was repeated for up to 3 times (9 weeks in total). Colonic inflammation, fibrosis, extracellular matrix proteins and colonic gene expression were studied. In vivo MRI T 2 relaxometry was studied as a potential non-invasive imaging tool to evaluate bowel wall inflammation and fibrosis. Results Repeated cycles of DSS resulted in a relapsing and remitting disease course, which induced a chronic segmental, transmural colitis after 2 and 3 cycles of DSS with clear induction of fibrosis and remodeling of the muscular layer. Tenascin expression mirrored its expression in Crohn’s colitis. Microarray data identified a gene expression profile different in chronic colitis from that in acute colitis. Additional recovery was associated with upregulation of unique genes, in particular keratins, pointing to activation of molecular pathways for healing and repair. In vivo MRI T2 relaxometry of the colon showed a clear shift towards higher T2 values in the acute stage and a gradual regression of T2 values with increasing cycles of DSS. Conclusions Repeated cycles of DSS exposure induce fibrosis and connective tissue changes with typical features, as occurring in Crohn’s disease. Colonic gene expression analysis revealed unique expression profiles in chronic colitis compared to acute colitis and after additional recovery, pointing to potential new targets to intervene with the induction of fibrosis. In vivo T2 relaxometry is a promising non-invasive assessment of inflammation and fibrosis

  17. Knockdown of the Placental Growth Factor Gene Inhibits Laser Induced Choroidal Neovascularization in a Murine Model

    PubMed Central

    Nourinia, Ramin; Soheili, Zahra-Soheila; Ahmadieh, Hamid; Akrami, Hassan; Rezaei Kanavi, Mozhgan; Samiei, Shahram

    2013-01-01

    Purpose To evaluate the effect of placental growth factor (PlGF) gene knockdown in a murine model of laser-induced choroidal neovascularization. Methods Choroidal neovascularization was induced in the left eyes of 11 mice by infrared laser. Small interfering RNA (siRNA, 20 picomoles/10 μl) corresponding to PlGF mRNA was administered intravitreally by Hamilton syringe in all subjects. One month later, fluorescein angiography and histolologic examination were performed. Results No leakage was apparent in the 11 eyes treated with siRNA cognate to PlGF. The results of histological evaluation were consistent with angiographic findings showing absence of choroidal neovascularization. Conclusion Knockdown of the PlGF gene can inhibit the growth of laser-induced choroidal neovascularization in mice. PMID:23825706

  18. mEBT: multiple-matching Evidence-based Translator of Murine Genomic Responses for Human Immunity Studies.

    PubMed

    Tae, Donghyun; Seok, Junhee

    2018-05-29

    In this paper, we introduce multiple-matching Evidence-based Translator (mEBT) to discover genomic responses from murine expression data for human immune studies, which are significant in the given condition of mice and likely have similar responses in the corresponding condition of human. mEBT is evaluated over multiple data sets and shows improved inter-species agreement. mEBT is expected to be useful for research groups who use murine models to study human immunity. http://cdal.korea.ac.kr/mebt/. jseok14@korea.ac.kr. Supplementary data are available at Bioinformatics online.

  19. Mortality Probability Model III and Simplified Acute Physiology Score II

    PubMed Central

    Vasilevskis, Eduard E.; Kuzniewicz, Michael W.; Cason, Brian A.; Lane, Rondall K.; Dean, Mitzi L.; Clay, Ted; Rennie, Deborah J.; Vittinghoff, Eric; Dudley, R. Adams

    2009-01-01

    Background: To develop and compare ICU length-of-stay (LOS) risk-adjustment models using three commonly used mortality or LOS prediction models. Methods: Between 2001 and 2004, we performed a retrospective, observational study of 11,295 ICU patients from 35 hospitals in the California Intensive Care Outcomes Project. We compared the accuracy of the following three LOS models: a recalibrated acute physiology and chronic health evaluation (APACHE) IV-LOS model; and models developed using risk factors in the mortality probability model III at zero hours (MPM0) and the simplified acute physiology score (SAPS) II mortality prediction model. We evaluated models by calculating the following: (1) grouped coefficients of determination; (2) differences between observed and predicted LOS across subgroups; and (3) intraclass correlations of observed/expected LOS ratios between models. Results: The grouped coefficients of determination were APACHE IV with coefficients recalibrated to the LOS values of the study cohort (APACHE IVrecal) [R2 = 0.422], mortality probability model III at zero hours (MPM0 III) [R2 = 0.279], and simplified acute physiology score (SAPS II) [R2 = 0.008]. For each decile of predicted ICU LOS, the mean predicted LOS vs the observed LOS was significantly different (p ≤ 0.05) for three, two, and six deciles using APACHE IVrecal, MPM0 III, and SAPS II, respectively. Plots of the predicted vs the observed LOS ratios of the hospitals revealed a threefold variation in LOS among hospitals with high model correlations. Conclusions: APACHE IV and MPM0 III were more accurate than SAPS II for the prediction of ICU LOS. APACHE IV is the most accurate and best calibrated model. Although it is less accurate, MPM0 III may be a reasonable option if the data collection burden or the treatment effect bias is a consideration. PMID:19363210

  20. Insights from Molecular Dynamics Simulations: Structural Basis for the V567D Mutation-Induced Instability of Zebrafish Alpha-Dystroglycan and Comparison with the Murine Model

    PubMed Central

    Pirolli, Davide; Sciandra, Francesca; Bozzi, Manuela; Giardina, Bruno; Brancaccio, Andrea; De Rosa, Maria Cristina

    2014-01-01

    A missense amino acid mutation of valine to aspartic acid in 567 position of alpha-dystroglycan (DG), identified in dag1-mutated zebrafish, results in a reduced transcription and a complete absence of the protein. Lacking experimental structural data for zebrafish DG domains, the detailed mechanism for the observed mutation-induced destabilization of the DG complex and membrane damage, remained unclear. With the aim to contribute to a better clarification of the structure-function relationships featuring the DG complex, three-dimensional structural models of wild-type and mutant (V567D) C-terminal domain of alpha-DG from zebrafish were constructed by a template-based modelling approach. We then ran extensive molecular dynamics (MD) simulations to reveal the structural and dynamic properties of the C-terminal domain and to evaluate the effect of the single mutation on alpha-DG stability. A comparative study has been also carried out on our previously generated model of murine alpha-DG C-terminal domain including the I591D mutation, which is topologically equivalent to the V567D mutation found in zebrafish. Trajectories from MD simulations were analyzed in detail, revealing extensive structural disorder involving multiple beta-strands in the mutated variant of the zebrafish protein whereas local effects have been detected in the murine protein. A biochemical analysis of the murine alpha-DG mutant I591D confirmed a pronounced instability of the protein. Taken together, the computational and biochemical analysis suggest that the V567D/I591D mutation, belonging to the G beta-strand, plays a key role in inducing a destabilization of the alpha-DG C-terminal Ig-like domain that could possibly affect and propagate to the entire DG complex. The structural features herein identified may be of crucial help to understand the molecular basis of primary dystroglycanopathies. PMID:25078606

  1. Insights from molecular dynamics simulations: structural basis for the V567D mutation-induced instability of zebrafish alpha-dystroglycan and comparison with the murine model.

    PubMed

    Pirolli, Davide; Sciandra, Francesca; Bozzi, Manuela; Giardina, Bruno; Brancaccio, Andrea; De Rosa, Maria Cristina

    2014-01-01

    A missense amino acid mutation of valine to aspartic acid in 567 position of alpha-dystroglycan (DG), identified in dag1-mutated zebrafish, results in a reduced transcription and a complete absence of the protein. Lacking experimental structural data for zebrafish DG domains, the detailed mechanism for the observed mutation-induced destabilization of the DG complex and membrane damage, remained unclear. With the aim to contribute to a better clarification of the structure-function relationships featuring the DG complex, three-dimensional structural models of wild-type and mutant (V567D) C-terminal domain of alpha-DG from zebrafish were constructed by a template-based modelling approach. We then ran extensive molecular dynamics (MD) simulations to reveal the structural and dynamic properties of the C-terminal domain and to evaluate the effect of the single mutation on alpha-DG stability. A comparative study has been also carried out on our previously generated model of murine alpha-DG C-terminal domain including the I591D mutation, which is topologically equivalent to the V567D mutation found in zebrafish. Trajectories from MD simulations were analyzed in detail, revealing extensive structural disorder involving multiple beta-strands in the mutated variant of the zebrafish protein whereas local effects have been detected in the murine protein. A biochemical analysis of the murine alpha-DG mutant I591D confirmed a pronounced instability of the protein. Taken together, the computational and biochemical analysis suggest that the V567D/I591D mutation, belonging to the G beta-strand, plays a key role in inducing a destabilization of the alpha-DG C-terminal Ig-like domain that could possibly affect and propagate to the entire DG complex. The structural features herein identified may be of crucial help to understand the molecular basis of primary dystroglycanopathies.

  2. MYCN Transgenic Zebrafish Model with the Characterization of Acute Myeloid Leukemia and Altered Hematopoiesis

    PubMed Central

    Shen, Li-Jing; Chen, Fang-Yuan; Zhang, Yong; Cao, Lan-Fang; Kuang, Ying; Zhong, Min; Wang, Ting; Zhong, Hua

    2013-01-01

    Background Amplification of MYCN (N-Myc) oncogene has been reported as a frequent event and a poor prognostic marker in human acute myeloid leukemia (AML). The molecular mechanisms and transcriptional networks by which MYCN exerts its influence in AML are largely unknown. Methodology/Principal Findings We introduced murine MYCN gene into embryonic zebrafish through a heat-shock promoter and established the stable germline Tg(MYCN:HSE:EGFP) zebrafish. N-Myc downstream regulated gene 1 (NDRG1), negatively controlled by MYCN in human and functionally involved in neutrophil maturation, was significantly under-expressed in this model. Using peripheral blood smear detection, histological section and flow cytometric analysis of single cell suspension from kidney and spleen, we found that MYCN overexpression promoted cell proliferation, enhanced the repopulating activity of myeloid cells and the accumulation of immature hematopoietic blast cells. MYCN enhanced primitive hematopoiesis by upregulating scl and lmo2 expression and promoted myelopoiesis by inhibiting gata1 expression and inducing pu.1, mpo expression. Microarray analysis identified that cell cycle, glycolysis/gluconeogenesis, MAPK/Ras, and p53-mediated apoptosis pathways were upregulated. In addition, mismatch repair, transforming and growth factor β (TGFβ) were downregulated in MYCN-overexpressing blood cells (p<0.01). All of these signaling pathways are critical in the proliferation and malignant transformation of blood cells. Conclusion/Significance The above results induced by overexpression of MYCN closely resemble the main aspects of human AML, suggesting that MYCN plays a role in the etiology of AML. MYCN reprograms hematopoietic cell fate by regulating NDRG1 and several lineage-specific hematopoietic transcription factors. Therefore, this MYCN transgenic zebrafish model facilitates dissection of MYCN-mediated signaling in vivo, and enables high-throughput scale screens to identify the potential

  3. Anti-IL-20 monoclonal antibody inhibited inflammation and protected against cartilage destruction in murine models of osteoarthritis

    PubMed Central

    Hsu, Yu-Hsiang; Yang, Ya-Yu; Huwang, Man-Hsiang; Weng, Yun-Han; Jou, I-Ming; Wu, Po-Tin; Lin, Tain-Yu; Wu, Li-Wha; Chang, Ming-Shi

    2017-01-01

    Osteoarthritis (OA) is a degenerative joint disease characterized by progressive destruction of articular cartilage. Interleukin (IL)-20 is a proinflammatory cytokine involved in the pathogenesis of rheumatoid arthritis. We investigated the role of IL-20 in OA and evaluated whether anti-IL-20 antibody (7E) treatment attenuates disease severity in murine models of surgery-induced OA. Immunohistochemical staining was used to detect IL-20 and its receptors expression in synovial tissue and cartilage from OA patients, and in OA synovial fibroblasts (OASFs) and chondrocytes (OACCs) from rodents with surgery-induced OA. RTQ-PCR and western blotting were used to determine IL-20-regulated OA-associated gene expression in OASFs and OACCs. OA rats and OA mice were treated with 7E. Arthritis severity was determined based on the degree of cartilage damage and the arthritis severity score. We found that IL-20 and its receptors were expressed in OASFs and OACCs. IL-20 induced TNF-α, IL-1β, MMP-1, and MMP-13 expression by activating ERK-1/2 and JNK signals in OASFs. IL-20 not only upregulated MCP-1, IL-6, MMP-1, and MMP-13 expression, but also downregulated aggrecan, type 2 collagen, TGF-β, and BMP-2 expression in OACCs. Arthritis severity was significantly lower in 7E-treated OA rats, and 7E- or MSC-treated OA mice. Therefore, we concluded that IL-20 was involved in the progression and development of OA through inducing proinflammatory cytokines and OA-associated gene expression in OASFs and OACCs. 7E reduced the severity of arthritis in murine models of surgery-induced OA. Our findings provide evidence that IL-20 is a novel target and that 7E is a potential therapeutic agent for OA. PMID:28426699

  4. No significant impact of Foxf1 siRNA treatment in acute and chronic CCl4 liver injury.

    PubMed

    Abshagen, Kerstin; Rotberg, Tobias; Genz, Berit; Vollmar, Brigitte

    2017-08-01

    Chronic liver injury of any etiology is the main trigger of fibrogenic responses and thought to be mediated by hepatic stellate cells. Herein, activating transcription factors like forkhead box f1 are described to stimulate pro-fibrogenic genes in hepatic stellate cells. By using a liver-specific siRNA delivery system (DBTC), we evaluated whether forkhead box f1 siRNA treatment exhibit beneficial effects in murine models of acute and chronic CCl 4 -induced liver injury. Systemic administration of DBTC-forkhead box f1 siRNA in mice was only sufficient to silence forkhead box f1 in acute CCl 4 model, but was not able to attenuate liver injury as measured by liver enzymes and necrotic liver cell area. Therapeutic treatment of mice with DBTC-forkhead box f1 siRNA upon chronic CCl 4 exposition failed to inhibit forkhead box f1 expression and hence lacked to diminish hepatic stellate cells activation or fibrosis development. As a conclusion, DBTC-forkhead box f1 siRNA reduced forkhead box f1 expression in a model of acute but not chronic toxic liver injury and showed no positive effects in either of these mice models. Impact statement As liver fibrosis is a worldwide health problem, antifibrotic therapeutic strategies are urgently needed. Therefore, further developments of new technologies including validation in different experimental models of liver disease are essential. Since activation of hepatic stellate cells is a key event upon liver injury, the activating transcription factor forkhead box f1 (Foxf1) represents a potential target gene. Previously, we evaluated Foxf1 silencing by a liver-specific siRNA delivery system (DBTC), exerting beneficial effects in cholestasis. The present study was designed to confirm the therapeutic potential of Foxf1 siRNA in models of acute and chronic CCl 4 -induced liver injury. DBTC-Foxf1 siRNA was only sufficient to silence Foxf1 in acute CCl 4 model and did not ameliorate liver injury or fibrogenesis. This underlines the

  5. A Single-Amino-Acid Change in Murine Norovirus NS1/2 Is Sufficient for Colonic Tropism and Persistence

    PubMed Central

    Nice, Timothy J.; Strong, David W.; McCune, Broc T.; Pohl, Calvin S.

    2013-01-01

    Human norovirus (HuNoV) is the major cause of acute nonbacterial gastroenteritis worldwide but has no clear animal reservoir. HuNoV can persist after the resolution of symptoms, and this persistence may be essential for viral maintenance within the population. Many strains of the related murine norovirus (MNV) also persist, providing a tractable animal model for studying norovirus (NoV) persistence. We have used recombinant cDNA clones of representative persistent (CR6) and nonpersistent (CW3) strains to identify a domain within the nonstructural gene NS1/2 that is necessary and sufficient for persistence. Furthermore, we found that a single change of aspartic acid to glutamic acid in CW3 NS1/2 was sufficient for persistence. This same conservative change also caused increased growth of CW3 in the proximal colon, which we found to be a major tissue reservoir of MNV persistence, suggesting that NS1/2 determines viral tropism that is necessary for persistence. These findings represent the first identified function for NoV NS1/2 during infection and establish a novel model system for the study of enteric viral persistence. PMID:23077309

  6. Transcutaneous photodynamic therapy delays the onset of paralysis in a murine multiple sclerosis model

    NASA Astrophysics Data System (ADS)

    Hunt, David W. C.; Leong, Simon; Levy, Julia G.; Chan, Agnes H.

    1995-03-01

    Photodynamic therapy (PDT) using benzoporphyrin derivative (BPD, Verteporfin) and whole body irradiation, can affect the course of adoptively transferred experimental allergic (autoimmune) encephalomyelitis (EAE) in PL mice. Murine EAE is a T cell-mediated autoimmune disease which serves as a model for human multiple sclerosis. Using a novel disease induction protocol, we found that mice characteristically developed EAE within 3 weeks of receipt of myelin basic protein (MBP)-sensitized, in vitro-cultured spleen or lymph node cells. However, if animals were treated with PDT (1 mg BPD/kg bodyweight and exposed to whole body 15 Joules cm2 of LED light) 24 hours after receiving these cells, disease onset time was significantly delayed. PDT-treated mice developed disease symptoms 45 +/- 3 days following cell administration whereas untreated controls were affected within 23 +/- 2 days. In contrast, application of PDT 48 or 120 hours following injection of the pathogenic cells had no significant effect upon the development of EAE. Experiments are in progress to account for the protective effect of PDT in this animal model. These studies should provide evidence on the feasibility of PDT as a treatment for human autoimmune disease.

  7. Renoprotective Effects of AVE0991, a Nonpeptide Mas Receptor Agonist, in Experimental Acute Renal Injury

    PubMed Central

    Barroso, Lívia Corrêa; Silveira, Kátia Daniela; Lima, Cristiano Xavier; Borges, Valdinéria; Bader, Michael; Rachid, Milene; Santos, Robson Augusto Souza; Souza, Danielle Gloria; Simões e Silva, Ana Cristina; Teixeira, Mauro Martins

    2012-01-01

    Renal ischemia and reperfusion (I/R) is the major cause of acute kidney injury in hospitalized patients. Mechanisms underlying reperfusion-associated injury include recruitment and activation of leukocytes and release of inflammatory mediators. In this study, we investigated the renal effects of acute administration of AVE0991, an agonist of Mas, the angiotensin-(1–7) receptor, the angiotensin-(1–7) receptor, in a murine model of renal I/R. Male C57BL/6 wild-type or Mas−/− mice were subjected to 30 min of bilateral ischemia and 24 h of reperfusion. Administration of AVE0991 promoted renoprotective effects, as seen by improvement of function, decreased tissue injury, prevention of local and remote leucocyte infiltration, and release of the chemokine, CXCL1. I/R injury was similar in WT and Mas−/− mice, suggesting that endogenous activation of this receptor does not control renal damage under baseline conditions. In conclusion, pharmacological interventions using Mas receptor agonists may represent a therapeutic opportunity for the treatment of renal I/R injury. PMID:22319645

  8. Comparison of postoperative corneal changes between dry eye and non-dry eye in a murine cataract surgery model

    PubMed Central

    Kwon, Jin Woo; Chung, Yeon Woong; Choi, Jin A; La, Tae Yoon; Jee, Dong Hyun; Cho, Yang Kyung

    2016-01-01

    AIM To compare the effects of the surgical insult of cataract surgery on corneal inflammatory infiltration, neovascularization (NV) and lymphangiogenesis (LY) between the dry eye and non-dry eye in murine cataract surgery models. METHODS We established two groups of animals, one with normal eyes (non-dry eye) and the second with induced dry eyes. In both groups, we used surgical insults to mimic human cataract surgery, which consisted of lens extraction, corneal incision and suture. After harvesting of corneas on the 9th postoperative day and immunohistochemical staining, we compared NV, LY and CD11b+ cell infiltration in the corneas. RESULTS Dry eye group had significantly more inflammatory infiltration (21.75%±7.17% vs 3.65%±1.49%; P=0.049). The dry eye group showed significantly more NV (48.21%±4.02% vs 26.24%±6.01%; P=0.016) and greater levels of LY (9.27%±0.48% vs 4.84%±1.15%; P=0.007). In corneas on which no surgery was performed, there was no induction of NV in both the dry and non-dry group, but dry eye group demonstrated more CD11b+ cells infiltration than the non-dry eye group (0.360%±0.160% vs 0.023%±0.006%; P=0.068). Dry eye group showed more NV than non-dry eye group in both topical PBS application and subconjunctival PBS injection (P=0.020 and 0.000, respectively). CONCLUSION In a murine cataract surgery model, preexisting dry eye can induce more postoperative NV, LY, and inflammation in corneal tissue. PMID:26949638

  9. Recruitment of Gr-1+ monocytes is essential for control of acute toxoplasmosis

    PubMed Central

    Robben, Paul M.; LaRegina, Marie; Kuziel, William A.; Sibley, L. David

    2005-01-01

    Circulating murine monocytes comprise two largely exclusive subpopulations that are responsible for seeding normal tissues (Gr-1−/CCR2−/CX3CR1high) or responding to sites of inflammation (Gr-1+/CCR2+/CX3CR1lo). Gr-1+ monocytes are recruited to the site of infection during the early stages of immune response to the intracellular pathogen Toxoplasma gondii. A murine model of toxoplasmosis was thus used to examine the importance of Gr-1+ monocytes in the control of disseminated parasitic infection in vivo. The recruitment of Gr-1+ monocytes was intimately associated with the ability to suppress early parasite replication at the site of inoculation. Infection of CCR2−/− and MCP-1−/− mice with typically nonlethal, low doses of T. gondii resulted in the abrogated recruitment of Gr-1+ monocytes. The failure to recruit Gr-1+ monocytes resulted in greatly enhanced mortality despite the induction of normal Th1 cell responses leading to high levels of IL-12, TNF-α, and IFN-γ. The profound susceptibility of CCR2−/− mice establishes Gr-1+ monocytes as necessary effector cells in the resistance to acute toxoplasmosis and suggests that the CCR2-dependent recruitment of Gr-1+ monocytes may be an important general mechanism for resistance to intracellular pathogens. PMID:15928200

  10. Murine recombinant angiotensin-converting enzyme 2 attenuates kidney injury in experimental Alport syndrome.

    PubMed

    Bae, Eun Hui; Fang, Fei; Williams, Vanessa R; Konvalinka, Ana; Zhou, Xiaohua; Patel, Vaibhav B; Song, Xuewen; John, Rohan; Oudit, Gavin Y; Pei, York; Scholey, James W

    2017-06-01

    Angiotensin-converting enzyme 2 (ACE2) is a monocarboxypeptidase in the renin-angiotensin system that catalyzes the breakdown of angiotensin II to angiotensin 1-7. We have reported that ACE2 expression in the kidney is reduced in experimental Alport syndrome but the impact of this finding on disease progression has not been studied. Accordingly, we evaluated effects of murine recombinant ACE2 treatment in Col4a3 knockout mice, a model of Alport syndrome characterized by proteinuria and progressive renal injury. Murine recombinant ACE2 (0.5 mg/kg/day) was administered from four to seven weeks of age via osmotic mini-pump. Pathological changes were attenuated by murine recombinant ACE2 treatment which ameliorated kidney fibrosis as shown by decreased expression of COL1α1 mRNA, less accumulation of extracellular matrix proteins, and inhibition of transforming growth factor-β signaling. Further, increases in proinflammatory cytokine expression, macrophage infiltration, inflammatory signaling pathway activation, and heme oxygenase-1 levels in Col4a3 knockout mice were also reduced by murine recombinant ACE2 treatment. Lastly, murine recombinant ACE2 influenced the turnover of renal ACE2, as it suppressed the expression of tumor necrosis factor-α converting enzyme, a negative regulator of ACE2. Thus, treatment with exogenous ACE2 alters angiotensin peptide metabolism in the kidneys of Col4a3 knockout mice and attenuates the progression of Alport syndrome nephropathy. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  11. Resolvin E1 (RX-10001) reduces corneal epithelial barrier disruption and protects against goblet cell loss in a murine model of dry eye.

    PubMed

    de Paiva, Cintia S; Schwartz, C Eric; Gjörstrup, Per; Pflugfelder, Stephen C

    2012-11-01

    Resolvin E1 (RvE1; RX-10001) belongs to a new class of endogenous immunoregulating mediators, originally identified as a metabolite of the omega-3 polyunsaturated fatty acid, eicosapentaenoic acid. Based on its proven efficacy in models of chronic inflammation, this study investigated the efficacy of resolvin E1 in a murine model of dry eye. C57/B6 mice, aged 6 to 8 weeks, were treated with systemic scopolamine and exposed to air draft and low humidity for 16 hours/day for 5 days and allocated to the following groups: unexposed controls, disease controls, treatment with vehicle or RvE1 delivered topically as its methyl ester prodrug, RX-10005, to enhance corneal surface penetration. Treatment was initiated at the time of desiccating stress induction. Treatment efficacy was assessed by corneal permeability using Oregon Green Dextran and by conjunctival goblet cell density using periodic acid-Schiff reagent. RvE1 reduced the increase in corneal staining by 80% compared with untreated disease controls. Goblet cell density was reduced by 20% in disease controls but fully maintained in the group receiving RvE1. RvE1, delivered as its methyl ester prodrug, improved the outcome measures of corneal staining and goblet cell density in this murine model of dry eye, indicating the potential utility of endogenous resolvins and resolvin analogues in the treatment of dry eye.

  12. Contrast Enhanced Maximum Intensity Projection Ultrasound Imaging for Assessing Angiogenesis in Murine Glioma and Breast Tumor Models: A Comparative Study

    PubMed Central

    Forsberg, Flemming; Ro, Raymond J.; Fox, Traci B; Liu, Ji-Bin; Chiou, See-Ying; Potoczek, Magdalena; Goldberg, Barry B

    2010-01-01

    The purpose of this study was to prospectively compare noninvasive, quantitative measures of vascularity obtained from 4 contrast enhanced ultrasound (US) techniques to 4 invasive immunohistochemical markers of tumor angiogenesis in a large group of murine xenografts. Glioma (C6) or breast cancer (NMU) cells were implanted in 144 rats. The contrast agent Optison (GE Healthcare, Princeton, NJ) was injected in a tail vein (dose: 0.4ml/kg). Power Doppler imaging (PDI), pulse-subtraction harmonic imaging (PSHI), flash-echo imaging (FEI), and Microflow imaging (MFI; a technique creating maximum intensity projection images over time) was performed with an Aplio scanner (Toshiba America Medical Systems, Tustin, CA) and a 7.5 MHz linear array. Fractional tumor neovascularity was calculated from digital clips of contrast US, while the relative area stained was calculated from specimens. Results were compared using a factorial, repeated measures ANOVA, linear regression and z-tests. The tortuous morphology of tumor neovessels was visualized better with MFI than with the other US modes. Cell line, implantation method and contrast US imaging technique were significant parameters in the ANOVA model (p<0.05). The strongest correlation determined by linear regression in the C6 model was between PSHI and percent area stained with CD31 (r=0.37, p<0.0001). In the NMU model the strongest correlation was between FEI and COX-2 (r=0.46, p<0.0001). There were no statistically significant differences between correlations obtained with the various US methods (p>0.05). In conclusion, the largest study of contrast US of murine xenografts to date has been conducted and quantitative contrast enhanced US measures of tumor neovascularity in glioma and breast cancer xenograft models appear to provide a noninvasive marker for angiogenesis; although the best method for monitoring angiogenesis was not conclusively established. PMID:21144542

  13. Human CD22 cannot fully substitute murine CD22 functions in vivo, as shown in a new knockin mouse model.

    PubMed

    Wöhner, Miriam; Born, Stefanie; Nitschke, Lars

    2012-11-01

    CD22, an inhibitory co-receptor of the B-cell receptor, shows a B-cell-specific expression pattern and is expressed on most B-cell lymphomas. The anti-CD22 antibody Epratuzumab is in clinical trials for B-cell non-Hodgkin lymphoma and systemic lupus erythematosus, but shows a mostly unknown mode of action. We generated a new mouse model that expresses human CD22 instead of murine CD22 (Huki CD22 mice), in which human CD22 can be targeted. Expression of human CD22 on the B cells of Huki CD22 mice does not generally interfere with B-cell development. However, Huki CD22 mice show a reduction of the population of mature recirculating B cells in the bone marrow and reduced transitional and marginal zone B cells in the spleen, phenotypes resembling that of CD22-deficient mice. Similarly, enhanced BCR-induced Ca(2+) signalling is observed in Huki CD22 mice, which also mount normal immune responses toward different classes of antigens. Huki CD22 B cells show a normal anti-hCD22 antibody-mediated endocytosis. In conclusion, human CD22 cannot fully substitute for murine CD22 functions, possibly due to the changed intracellular tail of the protein or due to lower expression levels. Huki CD22 mice are a valuable new model for both antibody- and immunotoxin-mediated targeting of human CD22. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Therapeutic Effects of Korean Red Ginseng Extract in a Murine Model of Atopic Dermatitis: Anti-pruritic and Anti-inflammatory Mechanism

    PubMed Central

    2017-01-01

    Korean red ginseng (KRG) and ginsenosides exhibit diverse biological effects, including anti-inflammatory and anti-allergic. We aimed to investigate the therapeutic effect of KRG in a murine model of atopic dermatitis (AD) is mediated whether by diminishing the pruritus or by suppressing the inflammation. Thirty NC/Nga mice were randomly divided to 5 groups. AD-like skin lesions were induced by percutaneous challenge with 2,4,6-trinitro-1-chrolobenzene (TNCB) on the ears and backs of NC/Nga mice. KRG extract, evening primrose oil, cyclosporine, and phosphate-buffered saline were administered orally by a gastric tube. Each study group was also divided into scratching-permitted and scratching-restricted subgroups to evaluate the impact of scratching behavior on AD. The effects of KRG and the other agents were assessed by measuring the clinical severity score, ear thickness, extent of transepidermal water loss (TEWL), number of scratching movements, total systemic immunoglobulin E (IgE) and interleukin (IL)-31 levels, histologic changes of cutaneous lesions, and mRNA expression levels of tumor necrosis factor (TNF)-α, interferon (IFN)-γ, thymic stromal lymphopoietin (TSLP), and IL-31. KRG exerts therapeutic effects against AD by inhibiting the T helper 2 (Th2) mediated inflammation as well as by diminishing the itching sensation. Moreover, restricting scratching behavior suppresses the vicious cycle of itching and scratching, thus reducing clinical and systemic inflammation in our murine model of AD. PMID:28244297

  15. Vitamin D deficiency contributes directly to the acute respiratory distress syndrome (ARDS).

    PubMed

    Dancer, Rachel C A; Parekh, Dhruv; Lax, Sian; D'Souza, Vijay; Zheng, Shengxing; Bassford, Chris R; Park, Daniel; Bartis, D G; Mahida, Rahul; Turner, Alice M; Sapey, Elizabeth; Wei, Wenbin; Naidu, Babu; Stewart, Paul M; Fraser, William D; Christopher, Kenneth B; Cooper, Mark S; Gao, Fang; Sansom, David M; Martineau, Adrian R; Perkins, Gavin D; Thickett, David R

    2015-07-01

    Vitamin D deficiency has been implicated as a pathogenic factor in sepsis and intensive therapy unit mortality but has not been assessed as a risk factor for acute respiratory distress syndrome (ARDS). Causality of these associations has never been demonstrated. To determine if ARDS is associated with vitamin D deficiency in a clinical setting and to determine if vitamin D deficiency in experimental models of ARDS influences its severity. Human, murine and in vitro primary alveolar epithelial cell work were included in this study. Vitamin D deficiency (plasma 25(OH)D levels <50 nmol/L) was ubiquitous in patients with ARDS and present in the vast majority of patients at risk of developing ARDS following oesophagectomy. In a murine model of intratracheal lipopolysaccharide challenge, dietary-induced vitamin D deficiency resulted in exaggerated alveolar inflammation, epithelial damage and hypoxia. In vitro, vitamin D has trophic effects on primary human alveolar epithelial cells affecting >600 genes. In a clinical setting, pharmacological repletion of vitamin D prior to oesophagectomy reduced the observed changes of in vivo measurements of alveolar capillary damage seen in deficient patients. Vitamin D deficiency is common in people who develop ARDS. This deficiency of vitamin D appears to contribute to the development of the condition, and approaches to correct vitamin D deficiency in patients at risk of ARDS should be developed. UKCRN ID 11994. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  16. Inhibition of HDAC6 protects against rhabdomyolysis-induced acute kidney injury

    PubMed Central

    Shi, Yingfeng; Xu, Liuqing; Tang, Jinhua; Fang, Lu; Ma, Shuchen; Ma, Xiaoyan; Nie, Jing; Pi, Xiaoling; Qiu, Andong; Zhuang, Shougang

    2017-01-01

    Histone deacetylase 6 (HDAC6) inhibition has been reported to protect against ischemic stroke and prolong survival after sepsis in animal models. However, it remains unknown whether HDAC6 inhibition offers a renoprotective effect after acute kidney injury (AKI). In this study, we examined the effect of tubastatin A (TA), a highly selective inhibitor of HDAC6, on AKI in a murine model of glycerol (GL) injection-induced rhabdomyolysis. Following GL injection, the mice developed severe acute tubular injury as indicated by renal dysfunction; expression of neutrophil gelatinase-associated lipocalin (NGAL), an injury marker of renal tubules; and an increase of TdT-mediated dUTP nick-end labeling (TUNEL)-positive tubular cells. These changes were companied by increased HDAC6 expression in the cytoplasm of renal tubular cells. Administration of TA significantly reduced serum creatinine and blood urea nitrogen levels as well as attenuated renal tubular damage in injured kidneys. HDAC6 inhibition also resulted in decreased expression of NGAL, reduced apoptotic cell, and inactivated caspase-3 in the kidney after acute injury. Moreover, injury to the kidney increased phosphorylation of nuclear factor (NF)-κB and expression of multiple cytokines/chemokines including tumor necrotic factor-α and interleukin-6 and monocyte chemoattractant protein-1, as well as macrophage infiltration. Treatment with TA attenuated all those responses. Finally, HDAC6 inhibition reduced the level of oxidative stress by suppressing malondialdehyde (MDA) and preserving expression of superoxide dismutase (SOD) in the injured kidney. Collectively, these data indicate that HDAC6 contributes to the pathogenesis of rhabdomyolysis-induced AKI and suggest that HDAC6 inhibitors have therapeutic potential for AKI treatment. PMID:28052874

  17. Inhibition of HDAC6 protects against rhabdomyolysis-induced acute kidney injury.

    PubMed

    Shi, Yingfeng; Xu, Liuqing; Tang, Jinhua; Fang, Lu; Ma, Shuchen; Ma, Xiaoyan; Nie, Jing; Pi, Xiaoling; Qiu, Andong; Zhuang, Shougang; Liu, Na

    2017-03-01

    Histone deacetylase 6 (HDAC6) inhibition has been reported to protect against ischemic stroke and prolong survival after sepsis in animal models. However, it remains unknown whether HDAC6 inhibition offers a renoprotective effect after acute kidney injury (AKI). In this study, we examined the effect of tubastatin A (TA), a highly selective inhibitor of HDAC6, on AKI in a murine model of glycerol (GL) injection-induced rhabdomyolysis. Following GL injection, the mice developed severe acute tubular injury as indicated by renal dysfunction; expression of neutrophil gelatinase-associated lipocalin (NGAL), an injury marker of renal tubules; and an increase of TdT-mediated dUTP nick-end labeling (TUNEL)-positive tubular cells. These changes were companied by increased HDAC6 expression in the cytoplasm of renal tubular cells. Administration of TA significantly reduced serum creatinine and blood urea nitrogen levels as well as attenuated renal tubular damage in injured kidneys. HDAC6 inhibition also resulted in decreased expression of NGAL, reduced apoptotic cell, and inactivated caspase-3 in the kidney after acute injury. Moreover, injury to the kidney increased phosphorylation of nuclear factor (NF)-κB and expression of multiple cytokines/chemokines including tumor necrotic factor-α and interleukin-6 and monocyte chemoattractant protein-1, as well as macrophage infiltration. Treatment with TA attenuated all those responses. Finally, HDAC6 inhibition reduced the level of oxidative stress by suppressing malondialdehyde (MDA) and preserving expression of superoxide dismutase (SOD) in the injured kidney. Collectively, these data indicate that HDAC6 contributes to the pathogenesis of rhabdomyolysis-induced AKI and suggest that HDAC6 inhibitors have therapeutic potential for AKI treatment. Copyright © 2017 the American Physiological Society.

  18. Mycobacterium smegmatis proteoliposome induce protection in a murine progressive pulmonary tuberculosis model.

    PubMed

    Tirado, Yanely; Puig, Alina; Alvarez, Nadine; Borrero, Reinier; Aguilar, Alicia; Camacho, Frank; Reyes, Fatima; Fernandez, Sonsire; Perez, Jose Luis; Acevedo, Reynaldo; Mata Espinoza, Dulce; Payan, Jorge Alberto Barrios; Garcia, Maria de Los A; Kadir, Ramlah; Sarmiento, María E; Hernandez-Pando, Rogelio; Norazmi, Mohd-Nor; Acosta, Armando

    2016-12-01

    Tuberculosis (TB) remains an important cause of mortality and morbidity. The TB vaccine, BCG, is not fully protective against the adult form of the disease and is unable to prevent its transmission although it is still useful against severe childhood TB. Hence, the search for new vaccines is of great interest. In a previous study, we have shown that proteoliposomes obtained from Mycobacterium smegmatis (PLMs) induced cross reactive humoral and cellular response against Mycobacterium tuberculosis (Mtb) antigens. With the objective to evaluate the protective capability of PLMs, a murine model of progressive pulmonary TB was used. Animals immunized with PLMs with and without alum (PLMs/PLMsAL respectively) showed protection compared to non-immunized animals. Mice immunized with PLMsAL induced similar protection as that of BCG. Animals immunized with BCG, PLMs and PLMsAL showed a significant decrease in tissue damage (percentage of pneumonic area/lung) compared to non-immunized animals, with a more prominent effect in BCG vaccinated mice. The protective effect of the administration of PLMs in mice supports its future evaluation as experimental vaccine candidate against Mtb. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. The role of cytokines in a Porphyromonas gingivalis-induced murine abscess model.

    PubMed

    Alayan, J; Gemmell, E; Ford, P; Hamlet, S; Bird, P S; Ivanovski, S; Farah, C S

    2007-10-01

    Porphyromonas gingivalis is an important periodontopathic bacterium that is strongly associated with periodontal disease and is part of human dental plaque. Periodontal disease results from the interaction of the host with bacterial products, and T-cell-derived cytokines remain critical in the immunoregulation of periodontal disease. The aim of this study was to examine the role of T helper type 1 [interleukin-12p40 (IL-12p40), interferon-gamma, tumour necrosis factor (TNF)] and type 2 (IL-4, IL-10) cytokines in the immune response to a subcutaneous challenge with P. gingivalis using a well-established murine abscess model, in genetically modified cytokine-specific knockout mice. IL-12p40(-/-) mice exhibited more advanced tissue destruction and a reduced inflammatory cell infiltrate after subcutaneous P. gingivalis challenge. Deficiency of IL-4 or IL-10 did not result in increased susceptibility to P. gingivalis-mediated tissue destruction. Furthermore, TNF deficiency appeared to reduce local tissue destruction. Interestingly, serum-specific antibodies suggested a strong T helper type 2 response. The results of our study indicate an important role for IL-12 in a primary P. gingivalis subcutaneous challenge.

  20. Hyperlipidemia affects multiscale structure and strength of murine femur.

    PubMed

    Ascenzi, Maria-Grazia; Lutz, Andre; Du, Xia; Klimecky, Laureen; Kawas, Neal; Hourany, Talia; Jahng, Joelle; Chin, Jesse; Tintut, Yin; Nackenhors, Udo; Keyak, Joyce

    2014-07-18

    To improve bone strength prediction beyond limitations of assessment founded solely on the bone mineral component, we investigated the effect of hyperlipidemia, present in more than 40% of osteoporotic patients, on multiscale structure of murine bone. Our overarching purpose is to estimate bone strength accurately, to facilitate mitigating fracture morbidity and mortality in patients. Because (i) orientation of collagen type I affects, independently of degree of mineralization, cortical bone׳s micro-structural strength; and, (ii) hyperlipidemia affects collagen orientation and μCT volumetric tissue mineral density (vTMD) in murine cortical bone, we have constructed the first multiscale finite element (mFE), mouse-specific femoral model to study the effect of collagen orientation and vTMD on strength in Ldlr(-/-), a mouse model of hyperlipidemia, and its control wild type, on either high fat diet or normal diet. Each µCT scan-based mFE model included either element-specific elastic orthotropic properties calculated from collagen orientation and vTMD (collagen-density model) by experimentally validated formulation, or usual element-specific elastic isotropic material properties dependent on vTMD-only (density-only model). We found that collagen orientation, assessed by circularly polarized light and confocal microscopies, and vTMD, differed among groups and that microindentation results strongly correlate with elastic modulus of collagen-density models (r(2)=0.85, p=10(-5)). Collagen-density models yielded (1) larger strains, and therefore lower strength, in simulations of 3-point bending and physiological loading; and (2) higher correlation between mFE-predicted strength and 3-point bending experimental strength, than density-only models. This novel method supports ongoing translational research to achieve the as yet elusive goal of accurate bone strength prediction. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Is the Acute NMDA Receptor Hypofunction a Valid Model of Schizophrenia?

    PubMed Central

    Adell, Albert; Jiménez-Sánchez, Laura; López-Gil, Xavier; Romón, Tamara

    2012-01-01

    Several genetic, neurodevelopmental, and pharmacological animal models of schizophrenia have been established. This short review examines the validity of one of the most used pharmacological model of the illness, ie, the acute administration of N-methyl-D-aspartate (NMDA) receptor antagonists in rodents. In some cases, data on chronic or prenatal NMDA receptor antagonist exposure have been introduced for comparison. The face validity of acute NMDA receptor blockade is granted inasmuch as hyperlocomotion and stereotypies induced by phencyclidine, ketamine, and MK-801 are regarded as a surrogate for the positive symptoms of schizophrenia. In addition, the loss of parvalbumin-containing cells (which is one of the most compelling finding in postmortem schizophrenia brain) following NMDA receptor blockade adds construct validity to this model. However, the lack of changes in glutamic acid decarboxylase (GAD67) is at variance with human studies. It is possible that changes in GAD67 are more reflective of the neurodevelopmental condition of schizophrenia. Finally, the model also has predictive validity, in that its behavioral and transmitter activation in rodents are responsive to antipsychotic treatment. Overall, although not devoid of drawbacks, the acute administration of NMDA receptor antagonists can be considered as a good model of schizophrenia bearing a satisfactory degree of validity. PMID:21965469

  2. The anti-angiogenic effect of dexamethasone in a murine hepatocellular carcinoma model by augmentation of gluconeogenesis pathway in malignant cells.

    PubMed

    Shang, Fei; Liu, Mingming; Li, Bingwei; Zhang, Xiaoyan; Sheng, Youming; Liu, Shuying; Han, Jianqun; Li, Hongwei; Xiu, Ruijuan

    2016-05-01

    Angiogenesis is a long-term complex process involving various protein factors in hepatocellular carcinoma (HCC). Dexamethasone (Dex), considered as a synthetic glucocorticoid drug in clinical therapy, has been reported to have the therapeutic efficacy against liver cancer by intervention of abnormal glycolysis. In this study, we investigated the anti-angiogenic effect of Dex in murine liver cancer and attempted to demonstrate the potential mechanism. The malignant cells H22 were treated with Dex. Western blotting was used to explore the expression of PEPCK and G6Pase which were the two key enzymes that regulated gluconeogenesis. The supernatants from cultured H22 treated by Dex were collected and co-cultured with HUVECs. In vitro, migration assay, transwell assay and tube formation assay were performed to assess for migration, proliferation and tube formation abilities of HUVECs, respectively. In situ murine hepatoma model with green fluorescent protein markers (HepG2-GFP) was constructed to determine angiogenesis after treatment by Dex. PEPCK and G6Pase were almost deficient in H22 compared with normal liver cells NCTC-1469 (P < 0.01). After treated by Dex, the gluconeogenesis could be restored significantly (P < 0.01) in H22 cells. The supernatant of H22 treated by Dex inhibited the migration, tube formation and endothelial permeability in HUVECs (P < 0.05). In mouse tissue, PEPCK and G6Pase were highly expressed in Dex group than control groups (P < 0.01). 11β-HSDs abnormally expressed in tumor also could be restored by Dex. Meanwhile, the density and total length of microvessels in Dex-treated group were less than those in HCC groups (P < 0.05). This study explored the therapeutic efficacy of Dex in murine HCC. Dex might inhibit tumor growth and angiogenesis by augmenting the gluconeogenesis pathway.

  3. Experimental Trypanosoma rangeli infection in a murine model.

    PubMed

    Horna, A E; Saldaña, A; Orn, A; Sousa, O E

    1997-03-01

    Trypanosoma rangeli experimental murine infections were performed in order to study parasitemias and anti-parasite antibody levels. Three groups of mice were used: a) mice infected with metatrypomastigotes derived from infected bugs; b) mice which received four reinoculations of metatrypomastigotes and c) mice immunosuppressed with cyclophosphamide. The results showed that bloodstream parasites can be found from the first day post inoculation reaching a peak at day 5 or 7 and then start to decline. Parasites disappeared completely from the circulation after 20-25 days. However in the immunosuppressed group, parasites were found in blood up to 45 days post infection. The humoral immune response was monitored using an ELISA test and low levels of specific IgG and IgM immunoglobulins were found. However the IgG titers were lower than the IgM. One could conclude that IgM was the predominant immunoglobulin isotype induced in a T. rangeli experimental infection because the highest titers were observed in the reinoculated group. IgM antibodies also showed the most prominent crossreactivities with T. cruzi antigens.

  4. Anti-Pseudomonas aeruginosa IgY antibodies augment bacterial clearance in a murine pneumonia model.

    PubMed

    Thomsen, K; Christophersen, L; Bjarnsholt, T; Jensen, P Ø; Moser, C; Høiby, N

    2016-03-01

    Oral prophylactic therapy by gargling with pathogen-specific egg yolk immunoglobulins (IgY) may reduce the initial airway colonization with Pseudomonas aeruginosa in cystic fibrosis (CF) patients. IgY antibodies impart passive immunization and we investigated the effects of anti-P. aeruginosa IgY antibodies on bacterial eradication in a murine pneumonia model. P. aeruginosa pneumonia was established in Balb/c mice and the effects of prophylactic IgY administration on lung bacteriology, clinical parameters and subsequent inflammation were compared to controls. Prophylactic administration of IgY antibodies targeting P. aeruginosa significantly reduced the bacterial burden by 2-log 24h post-infection compared to controls and was accompanied by significantly reduced clinical symptom scores and successive inflammatory cytokine profile indicative of diminished lung inflammation. Passive immunization by anti-P. aeruginosa IgY therapy facilitates promptly bacterial clearance and moderates inflammation in P. aeruginosa lung infection and may serve as an adjunct to antibiotics in reducing early colonization. Copyright © 2015. Published by Elsevier B.V.

  5. Effect of Premedications in a Murine Model of Asparaginase Hypersensitivity

    PubMed Central

    Fernandez, Christian A.; Smith, Colton; Karol, Seth E.; Ramsey, Laura B.; Liu, Chengcheng; Pui, Ching-Hon; Jeha, Sima; Evans, William E.; Finkelman, Fred D.

    2015-01-01

    A murine model was developed that recapitulates key features of clinical hypersensitivity to Escherichia coli asparaginase. Sensitized mice developed high levels of anti-asparaginase IgG antibodies and had immediate hypersensitivity reactions to asparaginase upon challenge. Sensitized mice had complete inhibition of plasma asparaginase activity (P = 4.2 × 10−13) and elevated levels of mouse mast cell protease 1 (P = 6.1 × 10−3) compared with nonsensitized mice. We investigated the influence of pretreatment with triprolidine, cimetidine, the platelet activating factor (PAF) receptor antagonist CV-6209 [2-(2-acetyl-6-methoxy-3,9-dioxo-4,8-dioxa-2,10-diazaoctacos-1-yl)-1-ethyl-pyridinium chloride], or dexamethasone on the severity of asparaginase-induced allergies. Combining triprolidine and CV-6209 was best for mitigating asparaginase-induced hypersensitivity compared with nonpretreated, sensitized mice (P = 1.2 × 10−5). However, pretreatment with oral dexamethasone was the only agent capable of mitigating the severity of the hypersensitivity (P = 0.03) and partially restoring asparaginase activity (P = 8.3 × 10−4). To rescue asparaginase activity in sensitized mice without requiring dexamethasone, a 5-fold greater dose of asparaginase was needed to restore enzyme activity to a similar concentration as in nonsensitized mice. Our results suggest a role of histamine and PAF in asparaginase-induced allergies and indicate that mast cell–derived proteases released during asparaginase allergy may be a useful marker of clinical hypersensitivity. PMID:25573198

  6. Ureaplasma parvum causes hyperammonemia in a pharmacologically immunocompromised murine model.

    PubMed

    Wang, X; Greenwood-Quaintance, K E; Karau, M J; Block, D R; Mandrekar, J N; Cunningham, S A; Mallea, J M; Patel, R

    2017-03-01

    A relationship between hyperammonemia and Ureaplasma infection has been shown in lung transplant recipients. We have demonstrated that Ureaplasma urealyticum causes hyperammonemia in a novel immunocompromised murine model. Herein, we determined whether Ureaplasma parvum can do the same. Male C3H mice were given mycophenolate mofetil, tacrolimus, and prednisone for 7 days, and then challenged with U. parvum intratracheally (IT) and/or intraperitoneally (IP), while continuing immunosuppression over 6 days. Plasma ammonia concentrations were determined and compared using Wilcoxon rank-sum tests. Plasma ammonia concentrations of immunosuppressed mice challenged IT/IP with spent broth (median, 188 μmol/L; range, 102-340 μmol/L) were similar to those of normal (median, 226 μmol/L; range, 154-284 μmol/L, p > 0.05), uninfected immunosuppressed (median, 231 μmol/L; range, 122-340 μmol/L, p > 0.05), and U. parvum IT/IP challenged immunocompetent (median, 226 μmol/L; range, 130-330 μmol/L, p > 0.05) mice. Immunosuppressed mice challenged with U. parvum IT/IP (median 343 μmol/L; range 136-1,000 μmol/L) or IP (median 307 μmol/L; range 132-692 μmol/L) had higher plasma ammonia concentrations than those challenged IT/IP with spent broth (p < 0.001). U. parvum can cause hyperammonemia in pharmacologically immunocompromised mice.

  7. External validation of a six simple variable model of stroke outcome and verification in hyper-acute stroke.

    PubMed

    Reid, J M; Gubitz, G J; Dai, D; Reidy, Y; Christian, C; Counsell, C; Dennis, M; Phillips, S J

    2007-12-01

    We aimed to validate a previously described six simple variable (SSV) model that was developed from acute and sub-acute stroke patients in our population that included hyper-acute stroke patients. A Stroke Outcome Study enrolled patients from 2001 to 2002. Functional status was assessed at 6 months using the modified Rankin Scale (mRS). SSV model performance was tested in our cohort. 538 acute ischaemic (87%) and haemorrhagic stroke patients were enrolled, 51% of whom presented to hospital within 6 h of symptom recognition. At 6 months post-stroke, 42% of patients had a good outcome (mRS < or = 2). Stroke patients presenting within 6 h of symptom recognition were significantly older with higher stroke severity. In our Stroke Outcome Study dataset, the SSV model had an area under the curve of 0.792 for 6 month outcomes and performed well for hyper-acute or post-acute stroke, age < or > or = 75 years, haemorrhagic or ischaemic stroke, men or women, moderate and severe stroke, but poorly for mild stroke. This study confirms the external validity of the SSV model in our hospital stroke population. This model can therefore be utilised for stratification in acute and hyper-acute stroke trials.

  8. Rapamycin Partially Mimics the Anticancer Effects of Calorie Restriction in a Murine Model of Pancreatic Cancer

    PubMed Central

    Lashinger, Laura M.; Malone, Lauren M.; Brown, Graham W.; Daniels, Elizabeth A.; Goldberg, Jason A.; Otto, Glen; Fischer, Susan M.; Hursting, Stephen D.

    2011-01-01

    Etiologic factors for pancreatic cancer, the fourth deadliest malignant neoplasm in the United States, include obesity and abnormal glucose metabolism. Calorie restriction (CR) and rapamycin each affect energy metabolism and cell survival pathways via inhibition of mammalian target of rapamycin (mTOR) signaling. Using a Panc02 murine pancreatic cancer cell transplant model in 45 male C57BL/6 mice, we tested the hypothesis that rapamycin mimics the effects of CR on pancreatic tumor growth. A chronic regimen of CR, relative to an ad libitum-fed control diet, produced global metabolic effects such as reduced body weight (20.6±1.6g vs. 29.3±2.3g; p<0.0001), improved glucose responsiveness, and decreased circulating levels of insulin-like growth factor (IGF)-1 (126±8ng/mL vs. 199±11ng/mL; p=0.0006) and leptin (1.14±0.2 ng/mL vs. 5.05±1.2 ng/mL; p=0.01). In contrast, rapamycin treatment (2.5mg/kg i.p. every other day, initiated in mice following 20 weeks of ad libitum control diet consumption), relative to control diet, produced no significant change in body weight, IGF-1 or leptin levels, but decreased glucose responsiveness. Pancreatic tumor volume was significantly reduced in the CR group (221±107mm3; p<0.001) and, to a lesser extent, the rapamycin group (374±206mm3; p=0.04) relative to controls (550±147mm3), and this differential inhibition correlated with expression of the proliferation marker Ki-67. Both CR and rapamycin decreased phosphorylation of mTOR, p70/S6K and S6 ribosomal protein, but only CR decreased phosphorylation of Akt, GSK-3β, ERK/MAPK, and STAT-3TYR705. These findings suggest rapamycin partially mimics the anticancer effects of calorie restriction on tumor growth in a murine model of pancreatic cancer. PMID:21593197

  9. Pharmacodynamics of a New Streptogramin, XRP 2868, in Murine Thigh and Lung Infection Models

    PubMed Central

    Andes, D.; Craig, W. A.

    2006-01-01

    XRP 2868 is a new streptogramin antibiotic with broad-spectrum activity against gram-positive cocci. We used the neutropenic murine thigh and lung infection models to characterize the time course of antimicrobial activity of XRP 2868 and determine which pharmacokinetic/pharmacodynamic (PK/PD) parameter and magnitude best correlated with efficacy. Serum levels following four two- to fourfold-escalating single-dose levels of XRP 2868 were measured by liquid chromatography mass spectrometry assay. In vivo postantibiotic effects (PAEs) were determined after doses of 2.5, 10, and 40 mg/kg. Mice had 106.8 to 108.4 CFU/thigh of strains of Streptococcus pneumoniae ATCC 10813 or Staphylococcus aureus ATCC 29213 at the start of therapy when treated for 24 h with 2.5 to 640 mg/kg/day of XRP 2868 fractionated for 3-, 6-, 12-, and 24-h dosing regimens. Nonlinear regression analysis was used to determine which PK/PD parameter best correlated with CFU/thigh at 24 h. Pharmacokinetic studies exhibited peak dose values of 0.03 to 0.07, area under the concentration-time curve (AUC) dose values of 0.02 to 0.07, and half-lives of 0.35 to 1.27 h. XRP 2868 produced in vivo PAEs of 0.5 to 3.4 h with S. pneumoniae strain ATCC 10813 and −1.5 to 10.7 h with S. aureus strain ATCC 29213. The 24-h AUC/MIC was the PK/PD parameter that best correlated with efficacy. In subsequent studies, we used the neutropenic murine thigh infection model to determine if the magnitude of the AUC/MIC needed for the efficacy of XRP 2868 varied among pathogens (including resistant strains). Mice had 106.1 to 107.8 CFU/thigh of four isolates of S. aureus (three methicillin-susceptible and one methicillin-resistant strain) and nine isolates of S. pneumoniae (one penicillin-susceptible, four penicillin-intermediate, and four penicillin-resistant strains) when treated for 24 h with 0.16 to 640 mg/kg of XRP 2868 every 6 h. A sigmoid dose-response model was used to estimate the doses (mg/kg/24 h) required to achieve a

  10. Pharmacodynamics of a new streptogramin, XRP 2868, in murine thigh and lung infection models.

    PubMed

    Andes, D; Craig, W A

    2006-01-01

    XRP 2868 is a new streptogramin antibiotic with broad-spectrum activity against gram-positive cocci. We used the neutropenic murine thigh and lung infection models to characterize the time course of antimicrobial activity of XRP 2868 and determine which pharmacokinetic/pharmacodynamic (PK/PD) parameter and magnitude best correlated with efficacy. Serum levels following four two- to fourfold-escalating single-dose levels of XRP 2868 were measured by liquid chromatography mass spectrometry assay. In vivo postantibiotic effects (PAEs) were determined after doses of 2.5, 10, and 40 mg/kg. Mice had 10(6.8) to 10(8.4) CFU/thigh of strains of Streptococcus pneumoniae ATCC 10813 or Staphylococcus aureus ATCC 29213 at the start of therapy when treated for 24 h with 2.5 to 640 mg/kg/day of XRP 2868 fractionated for 3-, 6-, 12-, and 24-h dosing regimens. Nonlinear regression analysis was used to determine which PK/PD parameter best correlated with CFU/thigh at 24 h. Pharmacokinetic studies exhibited peak dose values of 0.03 to 0.07, area under the concentration-time curve (AUC) dose values of 0.02 to 0.07, and half-lives of 0.35 to 1.27 h. XRP 2868 produced in vivo PAEs of 0.5 to 3.4 h with S. pneumoniae strain ATCC 10813 and -1.5 to 10.7 h with S. aureus strain ATCC 29213. The 24-h AUC/MIC was the PK/PD parameter that best correlated with efficacy. In subsequent studies, we used the neutropenic murine thigh infection model to determine if the magnitude of the AUC/MIC needed for the efficacy of XRP 2868 varied among pathogens (including resistant strains). Mice had 10(6.1) to 10(7.8) CFU/thigh of four isolates of S. aureus (three methicillin-susceptible and one methicillin-resistant strain) and nine isolates of S. pneumoniae (one penicillin-susceptible, four penicillin-intermediate, and four penicillin-resistant strains) when treated for 24 h with 0.16 to 640 mg/kg of XRP 2868 every 6 h. A sigmoid dose-response model was used to estimate the doses (mg/kg/24 h) required to

  11. Comparison of virulence factors and expression of specific genes between uropathogenic Escherichia coli and avian pathogenic E. coli in a murine urinary tract infection model and a chicken challenge model.

    PubMed

    Zhao, Lixiang; Gao, Song; Huan, Haixia; Xu, Xiaojing; Zhu, Xiaoping; Yang, Weixia; Gao, Qingqing; Liu, Xiufan

    2009-05-01

    Avian pathogenic Escherichia coli (APEC) and uropathogenic E. coli (UPEC) establish infections in extraintestinal habitats of different hosts. As the diversity, epidemiological sources and evolutionary origins of extraintestinal pathogenic E. coli (ExPEC) are so far only partially defined, in the present study,100 APEC isolates and 202 UPEC isolates were compared by their content of virulence genes and phylogenetic groups. The two groups showed substantial overlap in terms of their serogroups, phylogenetic groups and virulence genotypes, including their possession of certain genes associated with large transmissible plasmids of APEC. In a chicken challenge model, both UPEC U17 and APEC E058 had similar LD(50), demonstrating that UPEC U17 had the potential to cause significant disease in poultry. To gain further information about the similarities between UPEC and APEC, the in vivo expression of 152 specific genes of UPEC U17 and APEC E058 in both a murine urinary tract infection (UTI) model and a chicken challenge model was compared with that of these strains grown statically to exponential phase in rich medium. It was found that in the same model (murine UTI or chicken challenge), various genes of UPEC U17 and APEC E058 showed a similar tendency of expression. Several iron-related genes were upregulated in the UTI model and/or chicken challenge model, indicating that iron acquisition is important for E. coli to survive in blood or the urinary tract. Based on these results, the potential for APEC to act as human UPEC or as a reservoir of virulence genes for UPEC should be considered. Further, this study compared the transcriptional profile of virulence genes among APEC and UPEC in vivo.

  12. Close relations between podocyte injuries and membranous proliferative glomerulonephritis in autoimmune murine models.

    PubMed

    Kimura, Junpei; Ichii, Osamu; Otsuka, Saori; Sasaki, Hayato; Hashimoto, Yoshiharu; Kon, Yasuhiro

    2013-01-01

    Membranous proliferative glomerulonephritis (MPGN) is a major primary cause of chronic kidney disease (CKD). Podocyte injury is crucial in the pathogenesis of glomerular disease with proteinuria, leading to CKD. To assess podocyte injuries in MPGN, the pathological features of spontaneous murine models were analyzed. The autoimmune-prone mice strains BXSB/MpJ-Yaa and B6.MRL-(D1Mit202-D1Mit403) were used as the MPGN models, and BXSB/MpJ-Yaa(+) and C57BL/6 were used as the respective controls. In addition to clinical parameters and glomerular histopathology, the protein and mRNA levels of podocyte functional markers were evaluated as indices for podocyte injuries. The relation between MPGN pathology and podocyte injuries was analyzed by statistical correlation. Both models developed MPGN with albuminuria and elevated serum anti-double-strand DNA (dsDNA) antibody levels. BXSB/MpJ-Yaa and B6.MRL showed severe proliferative lesions with T and B cell infiltrations and membranous lesions with T cell infiltrations, respectively. Foot process effacement and microvillus-like structure formation were observed ultrastructurally in the podocytes of both MPGN models. Furthermore, both MPGN models showed a decrease in immune-positive areas of nephrin, podocin and synaptopodin in the glomerulus, and in the mRNA expression of Nphs1, Nphs2, Synpo, Actn4, Cd2ap, and Podxl in the isolated glomerulus. Significant negative correlations were detected between serum anti-dsDNA antibody levels and glomerular Nphs1 expression, and between urinary albumin-to-creatinine ratio and glomerular expression of Nphs1, Synpo, Actn4, Cd2ap, or Podxl. MPGN models clearly developed podocyte injuries characterized by the decreased expression of podocyte functional markers with altered morphology. These data emphasized the importance of regulation of podocyte injuries in MPGN. Copyright © 2013 S. Karger AG, Basel.

  13. Proteomic profiling of a mouse model of acute intestinal Apc deletion leads to identification of potential novel biomarkers of human colorectal cancer (CRC).

    PubMed

    Hammoudi, Abeer; Song, Fei; Reed, Karen R; Jenkins, Rosalind E; Meniel, Valerie S; Watson, Alastair J M; Pritchard, D Mark; Clarke, Alan R; Jenkins, John R

    2013-10-25

    Colorectal cancer (CRC) is the fourth most common cause of cancer-related death worldwide. Accurate non-invasive screening for CRC would greatly enhance a population's health. Adenomatous polyposis coli (Apc) gene mutations commonly occur in human colorectal adenomas and carcinomas, leading to Wnt signalling pathway activation. Acute conditional transgenic deletion of Apc in murine intestinal epithelium (AhCre(+)Apc(fl)(/)(fl)) causes phenotypic changes similar to those found during colorectal tumourigenesis. This study comprised a proteomic analysis of murine small intestinal epithelial cells following acute Apc deletion to identify proteins that show altered expression during human colorectal carcinogenesis, thus identifying proteins that may prove clinically useful as blood/serum biomarkers of colorectal neoplasia. Eighty-one proteins showed significantly increased expression following iTRAQ analysis, and validation of nine of these by Ingenuity Pathaway Analysis showed they could be detected in blood or serum. Expression was assessed in AhCre(+)Apc(fl)(/)(fl) small intestinal epithelium by immunohistochemistry, western blot and quantitative real-time PCR; increased nucelolin concentrations were also detected in the serum of AhCre(+)Apc(fl)(/)(fl) and Apc(Min)(/)(+) mice by ELISA. Six proteins; heat shock 60kDa protein 1, Nucleolin, Prohibitin, Cytokeratin 18, Ribosomal protein L6 and DEAD (Asp-Glu-Ala-Asp) box polypeptide 5,were selected for further investigation. Increased expression of 4 of these was confirmed in human CRC by qPCR. In conclusion, several novel candidate biomarkers have been identified from analysis of transgenic mice in which the Apc gene was deleted in the intestinal epithelium that also showed increased expression in human CRC. Some of these warrant further investigation as potential serum-based biomarkers of human CRC. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Identification of factors for physicians to facilitate early differential diagnosis of scrub typhus, murine typhus, and Q fever from dengue fever in Taiwan.

    PubMed

    Chang, Ko; Lee, Nan-Yao; Ko, Wen-Chien; Tsai, Jih-Jin; Lin, Wei-Ru; Chen, Tun-Chieh; Lu, Po-Liang; Chen, Yen-Hsu

    2017-02-01

    Dengue fever, rickettsial diseases, and Q fever are acute febrile illnesses with similar manifestations in tropical areas. Early differential diagnosis of scrub typhus, murine typhus, and Q fever from dengue fever may be made by understanding the distinguishing clinical characteristics and the significance of demographic and weather factors. We conducted a retrospective study to identify clinical, demographic, and meteorological characteristics of 454 dengue fever, 178 scrub typhus, 143 Q fever, and 81 murine typhus cases in three Taiwan hospitals. Case numbers of murine typhus and Q fever correlated significantly with temperature and rainfall; the scrub typhus case number was only significantly related with temperature. Neither temperature nor rainfall correlated with the case number of dengue fever. The rarity of dengue fever cases from January to June in Taiwan may be a helpful clue for diagnosis in the area. A male predominance was observed, as the male-to-female rate was 2.1 for murine typhus and 7.4 for Q fever. Multivariate analysis revealed the following six important factors for differentiating the rickettsial diseases and Q fever group from the dengue fever group: fever ≥8 days, alanine aminotransferase > aspartate aminotransferase, platelets >63,000/mL, C-reactive protein >31.9 mg/L, absence of bone pain, and absence of a bleeding syndrome. Understanding the rarity of dengue in the first half of a year in Taiwan and the six differentiating factors may help facilitate the early differential diagnosis of rickettsial diseases and Q fever from dengue fever, permitting early antibiotic treatment. Copyright © 2015. Published by Elsevier B.V.

  15. Immunologic features of a carcinogen-induced murine bladder cancer: in vivo and in vitro studies.

    PubMed

    Javadpour, N; Hyatt, C L; Soares, T

    1979-01-01

    Certain in vivo and in vitro immunologic features of carcinogen-induced murine bladder cancer have been studied. The consistency of tumor induction, its natural history, and immunogenicity both in vivo and in vitro render this syngeneic murine bladder tumor a suitable model for immunologic studies. Pre-immunization of strain C3H/Hen mice with mid-gestational fetal cells did not protect the animals from tumor challenge. Sera of mice immunized with mid-gestational fetal cells were not cytotoxic to cultured tumor cells in a microcytotoxicity assay indicative of dissimilarity between the tumor associated antigen and the syngeneic mid-gestational fetal antigen.

  16. Murine knockin model for progranulin-deficient frontotemporal dementia with nonsense-mediated mRNA decay.

    PubMed

    Nguyen, Andrew D; Nguyen, Thi A; Zhang, Jiasheng; Devireddy, Swathi; Zhou, Ping; Karydas, Anna M; Xu, Xialian; Miller, Bruce L; Rigo, Frank; Ferguson, Shawn M; Huang, Eric J; Walther, Tobias C; Farese, Robert V

    2018-03-20

    Frontotemporal dementia (FTD) is the most common neurodegenerative disorder in individuals under age 60 and has no treatment or cure. Because many cases of FTD result from GRN nonsense mutations, an animal model for this type of mutation is highly desirable for understanding pathogenesis and testing therapies. Here, we generated and characterized Grn R493X knockin mice, which model the most common human GRN mutation, a premature stop codon at arginine 493 (R493X). Homozygous Grn R493X mice have markedly reduced Grn mRNA levels, lack detectable progranulin protein, and phenocopy Grn knockout mice, with CNS microgliosis, cytoplasmic TDP-43 accumulation, reduced synaptic density, lipofuscinosis, hyperinflammatory macrophages, excessive grooming behavior, and reduced survival. Inhibition of nonsense-mediated mRNA decay (NMD) by genetic, pharmacological, or antisense oligonucleotide-based approaches showed that NMD contributes to the reduced mRNA levels in Grn R493X mice and cell lines and in fibroblasts from patients containing the GRN R493X mutation. Moreover, the expressed truncated R493X mutant protein was functional in several assays in progranulin-deficient cells. Together, these findings establish a murine model for in vivo testing of NMD inhibition or other therapies as potential approaches for treating progranulin deficiency caused by the R493X mutation. Copyright © 2018 the Author(s). Published by PNAS.

  17. Invasion of the Placenta during Murine Listeriosis

    PubMed Central

    Le Monnier, Alban; Join-Lambert, Olivier F.; Jaubert, Francis; Berche, Patrick; Kayal, Samer

    2006-01-01

    Feto-placental infections due to Listeria monocytogenes represent a major threat during pregnancy, and the underlying mechanisms of placental invasion remain poorly understood. Here we used a murine model of listeriosis (pregnant mice, infected at day 14 of gestation) to investigate how this pathogen invades and grows within the placenta to ultimately infect the fetus. When L. monocytogenes is injected intravenously, the invasion of the placenta occurs early after the initial bacteremia, allowing the placental growth of the bacteria, which is an absolute requirement for vertical transmission to the fetus. Kinetically, bacteria first target the cells lining the central arterial canal of the placenta, which stain positively with cytokeratin, demonstrating their fetal trophoblast origin. Bacteria then disseminate rapidly to the other trophoblastic structures, like syncytiotrophoblast cells lining the villous core in the labyrinthine zone of placenta. Additionally, we found that an inflammatory reaction predominantly constituted of polymorphonuclear cells occurs in the villous placenta and participates in the control of infection. Altogether, our results suggest that the infection of murine placenta is dependent, at the early phase, on circulating bacteria and their interaction with endovascular trophoblastic cells. Subsequently, the bacteria spread to the other trophoblastic cells before crossing the placental barrier. PMID:16369023

  18. Acute murine colitis reduces colonic 5-aminosalicylic acid metabolism by regulation of N-acetyltransferase-2

    PubMed Central

    Ramírez-Alcántara, Verónica

    2014-01-01

    Pharmacotherapy based on 5-aminosalicylic acid (5-ASA) is a preferred treatment for ulcerative colitis, but variable patient response to this therapy is observed. Inflammation can affect therapeutic outcomes by regulating the expression and activity of drug-metabolizing enzymes; its effect on 5-ASA metabolism by the colonic arylamine N-acetyltransferase (NAT) enzyme isoforms is not firmly established. We examined if inflammation affects the capacity for colonic 5-ASA metabolism and NAT enzyme expression. 5-ASA metabolism by colonic mucosal homogenates was directly measured with a novel fluorimetric rate assay. 5-ASA metabolism reported by the assay was dependent on Ac-CoA, inhibited by alternative NAT substrates (isoniazid, p-aminobenzoylglutamate), and saturable with Km (5-ASA) = 5.8 μM. A mouse model of acute dextran sulfate sodium (DSS) colitis caused pronounced inflammation in central and distal colon, and modest inflammation of proximal colon, defined by myeloperoxidase activity and histology. DSS colitis reduced capacity for 5-ASA metabolism in central and distal colon segments by 52 and 51%, respectively. Use of selective substrates of NAT isoforms to inhibit 5-ASA metabolism suggested that mNAT2 mediated 5-ASA metabolism in normal and colitis conditions. Western blot and real-time RT-PCR identified that proximal and distal mucosa had a decreased mNAT2 protein-to-mRNA ratio after DSS. In conclusion, an acute colonic inflammation impairs the expression and function of mNAT2 enzyme, thereby diminishing the capacity for 5-ASA metabolism by colonic mucosa. PMID:24742986

  19. A Murine Model for Escherichia coli Urinary Tract Infection.

    PubMed

    Hannan, Thomas J; Hunstad, David A

    2016-01-01

    Urinary tract infections (UTI) are among the most common bacterial infections of humans. The mouse provides an excellent and tractable model system for cystitis and pyelonephritis caused by Escherichia coli and other uropathogens. Using a well-established model of experimental cystitis in which the bladders of female mice are infected via transurethral catheterization, the molecular details of the pathogenesis of bacterial cystitis have been substantially illuminated in the last decade. Uropathogenic E. coli attach to bladder epithelium (both in human and mouse) via adhesive type 1 pili, establish a replicative niche within epithelial cell cytoplasm, and form intracellular bacterial communities that are protected from antibiotic effects and immune clearance. The use of different inbred and mutant mouse strains offers the opportunity to study outcomes of infection, including resolution, formation of quiescent intracellular bacterial reservoirs, chronic bacterial cystitis, and recurrent infections. Urine, bladder, and kidney tissues can be analyzed by bacterial culture, histology, immunohistochemistry, immunofluorescent and confocal microscopy, electron microscopy, and flow cytometry, while a broad array of soluble markers (e.g., cytokines) can also be profiled in serum, urine, and tissue homogenates by ELISA, Western blotting, multiplex bead array, and other approaches. This model promises to afford continued opportunity for discovery of pathogenic mechanisms and evaluation of therapeutic and preventive strategies for acute, chronic, and recurrent UTI.

  20. Novel Application of Micro-Computerized Tomography for Morphologic Characterization of the Murine Penis.

    PubMed

    O'Neill, Marisol; Huang, Gene O; Lamb, Dolores J

    2017-12-01

    The murine penis model has enriched our understanding of anomalous penile development. The morphologic characterization of the murine penis using conventional serial sectioning methods is labor intensive and prone to errors. To develop a novel application of micro-computerized tomography (micro-CT) with iodine staining for rapid, non-destructive morphologic study of murine penis structure. Penises were dissected from 10 adult wild-type mice and imaged using micro-CT with iodine staining. Images were acquired at 5-μm spatial resolution on a Bruker SkyScan 1272 micro-CT system. After images were acquired, the specimens were washed of any remaining iodine and embedded in paraffin for conventional histologic examination. Histologic and micro-CT measurements for all specimens were made by 2 independent observers. Measurements of penile structures were made on virtual micro-CT sections and histologic slides. The Lin concordance correlation coefficient demonstrated almost perfect strength of agreement for interobserver variability for histologic section (0.9995, 95% CI = 0.9990-0.9997) and micro-CT section (0.9982, 95% CI = 0.9963-0.9991) measurements. Bland-Altman analysis for agreement between the 2 modalities of measurement demonstrated mean differences of -0.029, 0.022, and -0.068 mm for male urogenital mating protuberance, baculum, and penile glans length, respectively. There did not appear to be a bias for overestimation or underestimation of measured lengths and limits of agreement were narrow. The enhanced ability offered by micro-CT to phenotype the murine penis has the potential to improve translational studies examining the molecular pathways contributing to anomalous penile development. The present study describes the first reported use of micro-CT with iodine staining for imaging the murine penis. Producing repeated histologic sections of identical orientation was limited by inherent imperfections in mounting and tissue sectioning, but this was

  1. KPT-330 inhibitor of CRM1 (XPO1)-mediated nuclear export has selective anti-leukaemic activity in preclinical models of T-cell acute lymphoblastic leukaemia and acute myeloid leukaemia.

    PubMed

    Etchin, Julia; Sanda, Takaomi; Mansour, Marc R; Kentsis, Alex; Montero, Joan; Le, Bonnie T; Christie, Amanda L; McCauley, Dilara; Rodig, Scott J; Kauffman, Michael; Shacham, Sharon; Stone, Richard; Letai, Anthony; Kung, Andrew L; Thomas Look, A

    2013-04-01

    This study explored the anti-leukaemic efficacy of novel irreversible inhibitors of the major nuclear export receptor, chromosome region maintenance 1 (CRM1, also termed XPO1). We found that these novel CRM1 antagonists, termed SINE (Selective Inhibitors of Nuclear Export), induced rapid apoptosis at low nanomolar concentrations in a panel of 14 human T-cell acute lymphoblastic leukaemia (T-ALL) cell lines representing different molecular subtypes of the disease. To assess in vivo anti-leukaemia cell activity, we engrafted immunodeficient mice intravenously with the human T-ALL MOLT-4 cells, which harbour activating mutations of NOTCH1 and NRAS as well as loss of function of the CDKN2A, PTEN and TP53 tumour suppressors and express a high level of oncogenic transcription factor TAL1. Importantly, we examined the in vivo anti-leukaemic efficacy of the clinical SINE compound KPT-330 against T-ALL and acute myeloid leukaemia (AML) cells. These studies demonstrated striking in vivo activity of KPT-330 against T-ALL and AML cells, with little toxicity to normal murine haematopoietic cells. Taken together, our results show that SINE CRM1 antagonists represent promising 'first-in-class' drugs with a novel mechanism of action and wide therapeutic index, and imply that drugs of this class show promise for the targeted therapy of T-ALL and AML. © 2013 Blackwell Publishing Ltd.

  2. High seroprevalence of Mycoplasma pneumoniae IgM in acute Q fever by enzyme-linked immunosorbent assay (ELISA).

    PubMed

    Lai, Chung-Hsu; Chang, Lin-Li; Lin, Jiun-Nong; Chen, Wei-Fang; Kuo, Li-Li; Lin, Hsi-Hsun; Chen, Yen-Hsu

    2013-01-01

    Q fever is serologically cross-reactive with other intracellular microorganisms. However, studies of the serological status of Mycoplasma pneumoniae and Chlamydophila pneumoniae during Q fever are rare. We conducted a retrospective serological study of M. pneumoniae and C. pneumoniae by enzyme-linked immunosorbent assay (ELISA), a method widely used in clinical practice, in 102 cases of acute Q fever, 39 cases of scrub typhus, and 14 cases of murine typhus. The seropositive (57.8%, 7.7%, and 0%, p<0.001) and seroconversion rates (50.6%, 8.8%, and 0%, p<0.001) of M. pneumoniae IgM, but not M. pneumoniae IgG and C. pneumoniae IgG/IgM, in acute Q fever were significantly higher than in scrub typhus and murine typhus. Another ELISA kit also revealed a high seropositivity (49.5%) and seroconversion rate (33.3%) of M. pneumoniae IgM in acute Q fever. The temporal and age distributions of patients with positive M. pneumoniae IgM were not typical of M. pneumoniae pneumonia. Comparing acute Q fever patients who were positive for M. pneumoniae IgM (59 cases) with those who were negative (43 cases), the demographic characteristics and underlying diseases were not different. In addition, the clinical manifestations associated with atypical pneumonia, including headache (71.2% vs. 81.4%, p=0.255), sore throat (8.5% vs. 16.3%, p=0.351), cough (35.6% vs. 23.3%, p=0.199), and chest x-ray suggesting pneumonia (19.3% vs. 9.5%, p=0.258), were unchanged between the two groups. Clinicians should be aware of the high seroprevalence of M. pneumoniae IgM in acute Q fever, particularly with ELISA kits, which can lead to misdiagnosis, overestimations of the prevalence of M. pneumoniae pneumonia, and underestimations of the true prevalence of Q fever pneumonia.

  3. High Seroprevalence of Mycoplasma pneumoniae IgM in Acute Q Fever by Enzyme-Linked Immunosorbent Assay (ELISA)

    PubMed Central

    Lai, Chung-Hsu; Chang, Lin-Li; Lin, Jiun-Nong; Chen, Wei-Fang; Kuo, Li-Li; Lin, Hsi-Hsun; Chen, Yen-Hsu

    2013-01-01

    Q fever is serologically cross-reactive with other intracellular microorganisms. However, studies of the serological status of Mycoplasma pneumoniae and Chlamydophila pneumoniae during Q fever are rare. We conducted a retrospective serological study of M. pneumoniae and C. pneumoniae by enzyme-linked immunosorbent assay (ELISA), a method widely used in clinical practice, in 102 cases of acute Q fever, 39 cases of scrub typhus, and 14 cases of murine typhus. The seropositive (57.8%, 7.7%, and 0%, p<0.001) and seroconversion rates (50.6%, 8.8%, and 0%, p<0.001) of M. pneumoniae IgM, but not M. pneumoniae IgG and C. pneumoniae IgG/IgM, in acute Q fever were significantly higher than in scrub typhus and murine typhus. Another ELISA kit also revealed a high seropositivity (49.5%) and seroconversion rate (33.3%) of M. pneumoniae IgM in acute Q fever. The temporal and age distributions of patients with positive M. pneumoniae IgM were not typical of M. pneumoniae pneumonia. Comparing acute Q fever patients who were positive for M. pneumoniae IgM (59 cases) with those who were negative (43 cases), the demographic characteristics and underlying diseases were not different. In addition, the clinical manifestations associated with atypical pneumonia, including headache (71.2% vs. 81.4%, p=0.255), sore throat (8.5% vs. 16.3%, p=0.351), cough (35.6% vs. 23.3%, p=0.199), and chest x-ray suggesting pneumonia (19.3% vs. 9.5%, p=0.258), were unchanged between the two groups. Clinicians should be aware of the high seroprevalence of M. pneumoniae IgM in acute Q fever, particularly with ELISA kits, which can lead to misdiagnosis, overestimations of the prevalence of M. pneumoniae pneumonia, and underestimations of the true prevalence of Q fever pneumonia. PMID:24147043

  4. New activity-based funding model for Australian private sector overnight rehabilitation cases: the rehabilitation Australian National Sub-Acute and Non-Acute Patient (AN-SNAP) model.

    PubMed

    Hanning, Brian; Predl, Nicolle

    2015-09-01

    Traditional overnight rehabilitation payment models in the private sector are not based on a rigorous classification system and vary greatly between contracts with no consideration of patient complexity. The payment rates are not based on relative cost and the length-of-stay (LOS) point at which a reduced rate applies (step downs) varies markedly. The rehabilitation Australian National Sub-Acute and Non-Acute Patient (AN-SNAP) model (RAM), which has been in place for over 2 years in some private hospitals, bases payment on a rigorous classification system, relative cost and industry LOS. RAM is in the process of being rolled out more widely. This paper compares and contrasts RAM with traditional overnight rehabilitation payment models. It considers the advantages of RAM for hospitals and Australian Health Service Alliance. It also considers payment model changes in the context of maintaining industry consistency with Electronic Claims Lodgement and Information Processing System Environment (ECLIPSE) and health reform generally.

  5. 4D optical coherence tomography of aortic valve dynamics in a murine mouse model ex vivo

    NASA Astrophysics Data System (ADS)

    Schnabel, Christian; Jannasch, Anett; Faak, Saskia; Waldow, Thomas; Koch, Edmund

    2015-07-01

    The heart and its mechanical components, especially the heart valves and leaflets, are under enormous strain during lifetime. Like all highly stressed materials, also these biological components undergo fatigue and signs of wear, which impinge upon cardiac output and in the end on health and living comfort of affected patients. Thereby pathophysiological changes of the aortic valve leading to calcific aortic valve stenosis (AVS) as most frequent heart valve disease in humans are of particular interest. The knowledge about changes of the dynamic behavior during the course of this disease and the possibility of early stage diagnosis could lead to the development of new treatment strategies and drug-based options of prevention or therapy. ApoE-/- mice as established model of AVS versus wildtype mice were introduced in an ex vivo artificially stimulated heart model. 4D optical coherence tomography (OCT) in combination with high-speed video microscopy were applied to characterize dynamic behavior of the murine aortic valve and to characterize dynamic properties during artificial stimulation. OCT and high-speed video microscopy with high spatial and temporal resolution represent promising tools for the investigation of dynamic behavior and their changes in calcific aortic stenosis disease models in mice.

  6. Effects of the flavanone combination hesperetin-naringenin, and orange and grapefruit juices, on airway inflammation and remodeling in a murine asthma model.

    PubMed

    Seyedrezazadeh, Ensiyeh; Kolahian, Saeed; Shahbazfar, Amir-Ali; Ansarin, Khalil; Pour Moghaddam, Masoud; Sakhinia, Masoud; Sakhinia, Ebrahim; Vafa, Mohammadreza

    2015-04-01

    We investigated whether flavanones, hesperetin-naringenin, orange, and grapefruit juices reduce airway inflammation and remodeling in murine chronic asthma model. To establish chronic asthma, mice received house dust mite (HDM) for 3 days in 2 weeks, followed by twice per week for 4 weeks. Concurrently, during the last 4 weeks, mice received hesperetin plus naringenin (HN), orange plus grapefruit juice (OGJ), orange juice (OJ), or grapefruit juice (GJ); whereas the asthmatic control (AC) group and non-asthmatic control (NC) group consumed water ad libitum. In histopathological examination, no goblet cells metaplasia was observed in the HN, OJ, and GJ groups; also, intra-alveolar macrophages decreased compared with those of the AC group. Hesperetin plus naringenin significantly decreased subepithelial fibrosis, smooth muscle hypertrophy in airways, and lung atelectasis compared with the AC group. Also, there was a reduction of subepithelial fibrosis in airways in OJ and GJ groups compared with AC group, but it was not noticed in OGJ group. In bronchoalveolar lavage fluid, macrophages numbers decreased in OJ and OGJ groups, whereas eosinophil numbers were increased in OJ group compared with NC group. Our finding revealed that hesperetin plus naringenin ameliorate airway structural remodeling more than orange juice and grapefruit juice in murine model of HDM-induced asthma. Copyright © 2015 John Wiley & Sons, Ltd.

  7. Efficacy of posaconazole in murine experimental sporotrichosis.

    PubMed

    Fernández-Silva, Fabiola; Capilla, Javier; Mayayo, Emilio; Guarro, Josep

    2012-05-01

    We developed a murine model of systemic sporotrichosis by using three strains of each of the two commonest species causing sporotrichosis, i.e., Sporothrix schenckii sensu stricto and Sporothrix brasiliensis, in order to evaluate the efficacy of posaconazole (PSC). The drug was administered at a dose of 2.5 or 5 mg/kg of body weight twice a day by gavage, and one group was treated with amphotericin B (AMB) as a control treatment. Posaconazole, especially at 5 mg/kg, showed good efficacy against all the strains tested, regardless of their MICs, as measured by prolonged survival, tissue burden reduction, and histopathology.

  8. Acute Complex Care Model: An organizational approach for the medical care of hospitalized acute complex patients.

    PubMed

    Pietrantonio, Filomena; Orlandini, Francesco; Moriconi, Luca; La Regina, Micaela

    2015-12-01

    Chronic diseases are the major cause of death (59%) and disability worldwide, representing 46% of global disease burden. According to the Future Hospital Commission of the Royal College of Physicians, Medical Division (MD) will be responsible for all hospital medical services, from emergency to specialist wards. The Hospital Acute Care Hub will bring together the clinical areas of the MD that focus on the management of acute medical patients. The Chronic Care Model (CCM) places the patient at the center of the care system enhancing the community's social and health support, pathways and structures to keep chronic, frail, poly-pathological people at home or out of the hospital. The management of such patients in the hospital still needs to be solved. Hereby, we propose an innovative model for the management of the hospital's acute complex patients, which is the hospital counterpart of the CCM. The target population are acutely ill complex and poly-pathological patients (AICPPs), admitted to hospital and requiring high technology resources. The mission is to improve the management of medical admissions through pre-defined intra-hospital tracks and a global, multidisciplinary, patient-centered approach. The ACCM leader is an internal medicine specialist (IMS) who summarizes health problems, establishes priorities, and restores health balance in AICPPs. The epidemiological transition leading to a progressive increase in "chronically unstable" and complex patients needing frequent hospital treatment, inevitably enhances the role of hospital IMS in the coordination and delivery of care. ACCM represents a practical response to this epochal change of roles. Copyright © 2015 European Federation of Internal Medicine. Published by Elsevier B.V. All rights reserved.

  9. Antileukemic effect of zerumbone-loaded nanostructured lipid carrier in WEHI-3B cell-induced murine leukemia model

    PubMed Central

    Rahman, Heshu Sulaiman; Rasedee, Abdullah; How, Chee Wun; Zeenathul, Nazariah Allaudin; Chartrand, Max Stanley; Yeap, Swee Keong; Abdul, Ahmad Bustamam; Tan, Sheau Wei; Othman, Hemn Hassan; Ajdari, Zahra; Namvar, Farideh; Arulselvan, Palanisamy; Fakurazi, Sharida; Mehrbod, Parvaneh; Daneshvar, Nasibeh; Begum, Hasina

    2015-01-01

    Cancer nanotherapy is progressing rapidly with the introduction of many innovative drug delivery systems to replace conventional therapy. Although the antitumor activity of zerumbone (ZER) has been reported, there has been no information available on the effect of ZER-loaded nanostructured lipid carrier (NLC) (ZER-NLC) on murine leukemia cells. In this study, the in vitro and in vivo effects of ZER-NLC on murine leukemia induced with WEHI-3B cells were investigated. The results from 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide, Hoechst 33342, Annexin V, cell cycle, and caspase activity assays showed that the growth of leukemia cells in vitro was inhibited by ZER-NLC. In addition, outcomes of histopathology, transmission electron microscopy, and Tdt-mediated dUTP nick-end labeling analyses revealed that the number of leukemia cells in the spleen of BALB/c leukemia mice significantly decreased after 4 weeks of oral treatment with various doses of ZER-NLC. Western blotting and reverse-transcription quantitative polymerase chain reaction assays confirmed the antileukemia effects of ZER-NLC. In conclusion, ZER-NLC was shown to induce a mitochondrial-dependent apoptotic pathway in murine leukemia. Loading of ZER in NLC did not compromise the anticancer effect of the compound, suggesting ZER-NLC as a promising and effective delivery system for treatment of cancers. PMID:25767386

  10. Antileukemic effect of zerumbone-loaded nanostructured lipid carrier in WEHI-3B cell-induced murine leukemia model.

    PubMed

    Rahman, Heshu Sulaiman; Rasedee, Abdullah; How, Chee Wun; Zeenathul, Nazariah Allaudin; Chartrand, Max Stanley; Yeap, Swee Keong; Abdul, Ahmad Bustamam; Tan, Sheau Wei; Othman, Hemn Hassan; Ajdari, Zahra; Namvar, Farideh; Arulselvan, Palanisamy; Fakurazi, Sharida; Mehrbod, Parvaneh; Daneshvar, Nasibeh; Begum, Hasina

    2015-01-01

    Cancer nanotherapy is progressing rapidly with the introduction of many innovative drug delivery systems to replace conventional therapy. Although the antitumor activity of zerumbone (ZER) has been reported, there has been no information available on the effect of ZER-loaded nanostructured lipid carrier (NLC) (ZER-NLC) on murine leukemia cells. In this study, the in vitro and in vivo effects of ZER-NLC on murine leukemia induced with WEHI-3B cells were investigated. The results from 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide, Hoechst 33342, Annexin V, cell cycle, and caspase activity assays showed that the growth of leukemia cells in vitro was inhibited by ZER-NLC. In addition, outcomes of histopathology, transmission electron microscopy, and Tdt-mediated dUTP nick-end labeling analyses revealed that the number of leukemia cells in the spleen of BALB/c leukemia mice significantly decreased after 4 weeks of oral treatment with various doses of ZER-NLC. Western blotting and reverse-transcription quantitative polymerase chain reaction assays confirmed the antileukemia effects of ZER-NLC. In conclusion, ZER-NLC was shown to induce a mitochondrial-dependent apoptotic pathway in murine leukemia. Loading of ZER in NLC did not compromise the anticancer effect of the compound, suggesting ZER-NLC as a promising and effective delivery system for treatment of cancers.

  11. Neurobehavioural evaluation of resveratrol in murine models of anxiety and schizophrenia.

    PubMed

    Magaji, Mohammed Garba; Iniaghe, Loretta Oghenekome; Abolarin, Mutiat; Abdullahi, Opeyemi Isa; Magaji, Rabiu Abdusalam

    2017-04-01

    Resveratrol, a caloric restriction mimetic, is a naturally occurring polyphenolic compound with antioxidant and anti-inflammatory properties. Oxidative stress has been implicated in the etiology of a number of neuropsychiatric disorders including generalized anxiety and schizophrenia. This study investigated the anxiolytic and antipsychotic potentials of resveratrol in murine models of anxiety and schizophrenia. Mice were pretreated with resveratrol (200 and 400 mg/kg) in 1% carboxymethyl cellulose for 14 days and subjected to behavioural tests on the 15th day. Anxiolytic activity of resveratrol was determined using the hole board and staircase tests while its anti-psychotic property was evaluated via apormorphine induced stereotypy and swim-induced grooming tests. Although resveratrol did not significantly reduce the mean number of head dips at doses used in the hole board test, it significantly (p < 0.01) decreased the mean episodes of rearing without significantly altering the total number of upward steps climbed in the staircase test. Resveratrol significantly (p < 0.05) reduced the mean climbing scores in the first ten minutes of the apormorphine induced stereotypic climbing and significantly decreased (p < 0.01) episodes and total duration of swim induced grooming in mice. Administration of resveratrol at doses used in this study produced anxiolysis and anti-psychotic effects in mice.

  12. Increased IL-27/IL-27R expression in association with the immunopathology of murine ocular toxoplasmosis.

    PubMed

    Tong, Xinxin; Chen, Shengjie; Zheng, Huanqin; Huang, Shiguang; Lu, Fangli

    2018-05-19

    Interleukin 27 (IL-27) is a member of the IL-6/IL-12 family, and IL-27 receptor (IL-27R) consists of WSX-1 (the IL-27Rα subunit) and the signal-transducing subunit gp130. Human and mouse mast cells (MCs) express the IL-27R. To explore the expressions of IL-27/IL-27R subunits (WSX-1 and gp130) during acute ocular toxoplasmosis (OT), we established mouse model by intraocular injection of 500 Toxoplasma gondii RH strain tachyzoites. Histopathological changes were analyzed, MCs were counted by toluidine blue staining, and tryptase + /IL-27 + MCs were examined by immunofluorescence double-staining in the eyes and cervical lymph nodes (CLNs) of T. gondii-infected mice. The mRNA expressions of IL-27p28, WSX-1, gp130, and tachyzoite specific surface antigen 1 (SAG1) in the eyes and CLNs of T. gondii-infected mice, and the expressions of WSX-1 and gp130 in the murine mastocytoma cell line P815 infected with T. gondii tachyzoites in vitro were examined by using quantitative real-time reverse transcription-polymerase chain reaction. Our results showed that, after T. gondii infection, severe histopathological changes, increased numbers of total MCs and degranulated MCs, elevated expressions of IL-27p28, WSX-1, and gp130 were found in the eyes and CLNs, and significant correlations between the levels of IL-27 and SAG1 existed in the eyes and CLNs of T. gondii-infected mice. In addition, increased levels of WSX-1 and gp130 were examined in T. gondii-infected P815 cells. Our data suggested that IL-27/IL-27R expression induced by T. gondii infection may regulate MC-mediated immune response during acute OT in mouse model.

  13. Acute lung injury and persistent small airway disease in a rabbit model of chlorine inhalation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musah, Sadiatu; Schlueter, Connie F.; Humphrey, Da

    Chlorine is a pulmonary toxicant to which humans can be exposed through accidents or intentional releases. Acute effects of chlorine inhalation in humans and animal models have been well characterized, but less is known about persistent effects of acute, high-level chlorine exposures. In particular, animal models that reproduce the long-term effects suggested to occur in humans are lacking. Here, we report the development of a rabbit model in which both acute and persistent effects of chlorine inhalation can be assessed. Male New Zealand White rabbits were exposed to chlorine while the lungs were mechanically ventilated. After chlorine exposure, the rabbitsmore » were extubated and were allowed to survive for up to 24 h after exposure to 800 ppm chlorine for 4 min to study acute effects or up to 7 days after exposure to 400 ppm for 8 min to study longer term effects. Acute effects observed 6 or 24 h after inhalation of 800 ppm chlorine for 4 min included hypoxemia, pulmonary edema, airway epithelial injury, inflammation, altered baseline lung mechanics, and airway hyperreactivity to inhaled methacholine. Seven days after recovery from inhalation of 400 ppm chlorine for 8 min, rabbits exhibited mild hypoxemia, increased area of pressure–volume loops, and airway hyperreactivity. Lung histology 7 days after chlorine exposure revealed abnormalities in the small airways, including inflammation and sporadic bronchiolitis obliterans lesions. Immunostaining showed a paucity of club and ciliated cells in the epithelium at these sites. These results suggest that small airway disease may be an important component of persistent respiratory abnormalities that occur following acute chlorine exposure. This non-rodent chlorine exposure model should prove useful for studying persistent effects of acute chlorine exposure and for assessing efficacy of countermeasures for chlorine-induced lung injury. - Highlights: • A novel rabbit model of chlorine-induced lung disease was

  14. Housing temperature-induced stress drives therapeutic resistance in murine tumour models through β2-adrenergic receptor activation

    PubMed Central

    Eng, Jason W.-L.; Reed, Chelsey B.; Kokolus, Kathleen M.; Pitoniak, Rosemarie; Utley, Adam; Bucsek, Mark J.; Ma, Wen Wee; Repasky, Elizabeth A.; Hylander, Bonnie L.

    2015-01-01

    Cancer research relies heavily on murine models for evaluating the anti-tumour efficacy of therapies. Here we show that the sensitivity of several pancreatic tumour models to cytotoxic therapies is significantly increased when mice are housed at a thermoneutral ambient temperature of 30 °C compared with the standard temperature of 22 °C. Further, we find that baseline levels of norepinephrine as well as the levels of several anti-apoptotic molecules are elevated in tumours from mice housed at 22 °C. The sensitivity of tumours to cytotoxic therapies is also enhanced by administering a β-adrenergic receptor antagonist to mice housed at 22 °C. These data demonstrate that standard housing causes a degree of cold stress sufficient to impact the signalling pathways related to tumour-cell survival and affect the outcome of pre-clinical experiments. Furthermore, these data highlight the significant role of host physiological factors in regulating the sensitivity of tumours to therapy. PMID:25756236

  15. Housing temperature-induced stress drives therapeutic resistance in murine tumour models through β2-adrenergic receptor activation

    NASA Astrophysics Data System (ADS)

    Eng, Jason W.-L.; Reed, Chelsey B.; Kokolus, Kathleen M.; Pitoniak, Rosemarie; Utley, Adam; Bucsek, Mark J.; Ma, Wen Wee; Repasky, Elizabeth A.; Hylander, Bonnie L.

    2015-03-01

    Cancer research relies heavily on murine models for evaluating the anti-tumour efficacy of therapies. Here we show that the sensitivity of several pancreatic tumour models to cytotoxic therapies is significantly increased when mice are housed at a thermoneutral ambient temperature of 30 °C compared with the standard temperature of 22 °C. Further, we find that baseline levels of norepinephrine as well as the levels of several anti-apoptotic molecules are elevated in tumours from mice housed at 22 °C. The sensitivity of tumours to cytotoxic therapies is also enhanced by administering a β-adrenergic receptor antagonist to mice housed at 22 °C. These data demonstrate that standard housing causes a degree of cold stress sufficient to impact the signalling pathways related to tumour-cell survival and affect the outcome of pre-clinical experiments. Furthermore, these data highlight the significant role of host physiological factors in regulating the sensitivity of tumours to therapy.

  16. TGF-β Blockade Reduces Mortality and Metabolic Changes in a Validated Murine Model of Pancreatic Cancer Cachexia.

    PubMed

    Greco, Stephanie H; Tomkötter, Lena; Vahle, Anne-Kristin; Rokosh, Rae; Avanzi, Antonina; Mahmood, Syed Kashif; Deutsch, Michael; Alothman, Sara; Alqunaibit, Dalia; Ochi, Atsuo; Zambirinis, Constantinos; Mohaimin, Tasnima; Rendon, Mauricio; Levie, Elliot; Pansari, Mridul; Torres-Hernandez, Alejandro; Daley, Donnele; Barilla, Rocky; Pachter, H Leon; Tippens, Daniel; Malik, Hassan; Boutajangout, Allal; Wisniewski, Thomas; Miller, George

    2015-01-01

    Cancer cachexia is a debilitating condition characterized by a combination of anorexia, muscle wasting, weight loss, and malnutrition. This condition affects an overwhelming majority of patients with pancreatic cancer and is a primary cause of cancer-related death. However, few, if any, effective therapies exist for both treatment and prevention of this syndrome. In order to develop novel therapeutic strategies for pancreatic cancer cachexia, appropriate animal models are necessary. In this study, we developed and validated a syngeneic, metastatic, murine model of pancreatic cancer cachexia. Using our model, we investigated the ability of transforming growth factor beta (TGF-β) blockade to mitigate the metabolic changes associated with cachexia. We found that TGF-β inhibition using the anti-TGF-β antibody 1D11.16.8 significantly improved overall mortality, weight loss, fat mass, lean body mass, bone mineral density, and skeletal muscle proteolysis in mice harboring advanced pancreatic cancer. Other immunotherapeutic strategies we employed were not effective. Collectively, we validated a simplified but useful model of pancreatic cancer cachexia to investigate immunologic treatment strategies. In addition, we showed that TGF-β inhibition can decrease the metabolic changes associated with cancer cachexia and improve overall survival.

  17. TGF-β Blockade Reduces Mortality and Metabolic Changes in a Validated Murine Model of Pancreatic Cancer Cachexia

    PubMed Central

    Rokosh, Rae; Avanzi, Antonina; Mahmood, Syed Kashif; Deutsch, Michael; Alothman, Sara; Alqunaibit, Dalia; Ochi, Atsuo; Zambirinis, Constantinos; Mohaimin, Tasnima; Rendon, Mauricio; Levie, Elliot; Pansari, Mridul; Torres-Hernandez, Alejandro; Daley, Donnele; Barilla, Rocky; Pachter, H. Leon; Tippens, Daniel; Malik, Hassan; Boutajangout, Allal; Wisniewski, Thomas; Miller, George

    2015-01-01

    Cancer cachexia is a debilitating condition characterized by a combination of anorexia, muscle wasting, weight loss, and malnutrition. This condition affects an overwhelming majority of patients with pancreatic cancer and is a primary cause of cancer-related death. However, few, if any, effective therapies exist for both treatment and prevention of this syndrome. In order to develop novel therapeutic strategies for pancreatic cancer cachexia, appropriate animal models are necessary. In this study, we developed and validated a syngeneic, metastatic, murine model of pancreatic cancer cachexia. Using our model, we investigated the ability of transforming growth factor beta (TGF-β) blockade to mitigate the metabolic changes associated with cachexia. We found that TGF-β inhibition using the anti-TGF-β antibody 1D11.16.8 significantly improved overall mortality, weight loss, fat mass, lean body mass, bone mineral density, and skeletal muscle proteolysis in mice harboring advanced pancreatic cancer. Other immunotherapeutic strategies we employed were not effective. Collectively, we validated a simplified but useful model of pancreatic cancer cachexia to investigate immunologic treatment strategies. In addition, we showed that TGF-β inhibition can decrease the metabolic changes associated with cancer cachexia and improve overall survival. PMID:26172047

  18. Response to programmed cell death-1 blockade in a murine melanoma syngeneic model requires costimulation, CD4, and CD8 T cells

    PubMed Central

    Moreno, Blanca Homet; Zaretsky, Jesse M.; Garcia-Diaz, Angel; Tsoi, Jennifer; Parisi, Giulia; Robert, Lidia; Meeth, Katrina; Ndoye, Abibatou; Bosenberg, Marcus; Weeraratna, Ashani T.; Graeber, Thomas G.; Comin-Anduix, Begoña; Hu-Lieskovan, Siwen; Ribas, Antoni

    2016-01-01

    The programmed cell death protein 1 (PD-1) limits effector T-cell functions in peripheral tissues and its inhibition leads to clinical benefit in different cancers. To better understand how PD-1 blockade therapy modulates the tumor-host interactions, we evaluated three syngeneic murine tumor models, the BRAFV600E-driven YUMM1.1 and YUMM2.1 melanomas, and the carcinogen-induced murine colon adenocarcinoma MC38. The YUMM cell lines were established from mice with melanocyte-specific BRAFV600E mutation and PTEN loss (BRAFV600E/PTEN-/-). Anti–PD-1 or anti–PD-L1 therapy engendered strong antitumor activity against MC38 and YUMM2.1, but not YUMM1.1. PD-L1 expression did not differ between the three models at baseline or upon interferon stimulation. Whereas mutational load was high in MC38, it was lower in both YUMM models. In YUMM2.1, the antitumor activity of PD-1 blockade had a critical requirement for both CD4 and CD8 T cells, as well as CD28 and CD80/86 costimulation, with an increase in CD11c+CD11b+MHC-IIhigh dendritic cells and tumor associated macrophages in the tumors after PD-1 blockade. Compared to YUMM1.1, YUMM2.1 exhibited a more inflammatory profile by RNA sequencing analysis, with an increase in expression from chemokine-trafficking genes that are related to immune cell recruitment and T-cell priming. In conclusion, response to PD-1 blockade therapy in tumor models requires CD4 and CD8 T cells and costimulation that is mediated by dendritic cells and macrophages. PMID:27589875

  19. Hippocampal protection in mice with an attenuated inflammatory monocyte response to acute CNS picornavirus infection

    PubMed Central

    Howe, Charles L.; LaFrance-Corey, Reghann G.; Sundsbak, Rhianna S.; Sauer, Brian M.; LaFrance, Stephanie J.; Buenz, Eric J.; Schmalstieg, William F.

    2012-01-01

    Neuronal injury during acute viral infection of the brain is associated with the development of persistent cognitive deficits and seizures in humans. In C57BL/6 mice acutely infected with the Theiler's murine encephalomyelitis virus, hippocampal CA1 neurons are injured by a rapid innate immune response, resulting in profound memory deficits. In contrast, infected SJL and B6xSJL F1 hybrid mice exhibit essentially complete hippocampal and memory preservation. Analysis of brain-infiltrating leukocytes revealed that SJL mice mount a sharply attenuated inflammatory monocyte response as compared to B6 mice. Bone marrow transplantation experiments isolated the attenuation to the SJL immune system. Adoptive transfer of B6 inflammatory monocytes into acutely infected B6xSJL hosts converted these mice to a hippocampal damage phenotype and induced a cognitive deficit marked by failure to recognize a novel object. These findings show that inflammatory monocytes are the critical cellular mediator of hippocampal injury during acute picornavirus infection of the brain. PMID:22848791

  20. Murine neural crest stem cells and embryonic stem cell-derived neuron precursors survive and differentiate after transplantation in a model of dorsal root avulsion.

    PubMed

    Konig, Niclas; Trolle, Carl; Kapuralin, Katarina; Adameyko, Igor; Mitrecic, Dinko; Aldskogius, Hakan; Shortland, Peter J; Kozlova, Elena N

    2017-01-01

    Spinal root avulsion results in paralysis and sensory loss, and is commonly associated with chronic pain. In addition to the failure of avulsed dorsal root axons to regenerate into the spinal cord, avulsion injury leads to extensive neuroinflammation and degeneration of second-order neurons in the dorsal horn. The ultimate objective in the treatment of this condition is to counteract degeneration of spinal cord neurons and to achieve functionally useful regeneration/reconnection of sensory neurons with spinal cord neurons. Here we compare survival and migration of murine boundary cap neural crest stem cells (bNCSCs) and embryonic stem cells (ESCs)-derived, predifferentiated neuron precursors after their implantation acutely at the junction between avulsed dorsal roots L3-L6 and the spinal cord. Both types of cells survived transplantation, but showed distinctly different modes of migration. Thus, bNCSCs migrated into the spinal cord, expressed glial markers and formed elongated tubes in the peripheral nervous system (PNS) compartment of the avulsed dorsal root transitional zone (DRTZ) area. In contrast, the ESC transplants remained at the site of implantation and differentiated to motor neurons and interneurons. These data show that both stem cell types successfully survived implantation to the acutely injured spinal cord and maintained their differentiation and migration potential. These data suggest that, depending on the source of neural stem cells, they can play different beneficial roles for recovery after dorsal root avulsion. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.

  1. CCR2 antagonism leads to marked reduction in proteinuria and glomerular injury in murine models of focal segmental glomerulosclerosis (FSGS)

    PubMed Central

    Miao, Zhenhua; Ertl, Linda S.; Newland, Dale; Zhao, Bin; Wang, Yu; Zang, Xiaoping; Campbell, James J.; Liu, Xiaoli; Dang, Ton; Miao, Shichang; Krasinski, Antoni; Punna, Sreenivas; Zeng, Yibin; McMahon, Jeffrey; Zhang, Penglie; Charo, Israel F.; Schall, Thomas J.

    2018-01-01

    Focal segmental glomerulosclerosis (FSGS) comprises a group of uncommon disorders that present with marked proteinuria, nephrotic syndrome, progressive renal failure and characteristic glomerular lesions on histopathology. The current standard of care for patients with FSGS include immunosuppressive drugs such as glucocorticoids followed by calcineurin inhibitors, if needed for intolerance or inadequate response to glucocorticoids. Renin-angiotensin-aldosterone (RAAS) blockers are also used to control proteinuria, an important signature of FSGS. Existing treatments, however, achieved only limited success. Despite best care, treatment failure is common and FSGS is causal in a significant proportion of end stage renal disease. Thus, an unmet need exists for novel disease modifying treatments for FSGS. We employed two widely-used murine models of FSGS to test the hypothesis that systemic inhibition of chemokine receptor CCR2 would have therapeutic benefit. Here we report that administration CCX872, a potent and selective small molecule antagonist of CCR2, achieved rapid and sustained attenuation of renal damage as determined by urine albumin excretion and improved histopathological outcome. Therapeutic benefit was present when CCX872 was used as a single therapy, and moreover, the combination of CCX872 and RAAS blockade was statistically more effective than RAAS blockade alone. In addition, the combination of CCR2 and RAAS blockade was equally as effective as endothelin receptor inhibition. We conclude that specific inhibition of CCR2 is effective in the Adriamycin-induced and 5/6 nephrectomy murine models of FSGS, and thus holds promise as a mechanistically distinct therapeutic addition to the treatment of human FSGS. PMID:29561839

  2. Analysis of cardiomyocyte movement in the developing murine heart

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hashimoto, Hisayuki; Yuasa, Shinsuke, E-mail: yuasa@a8.keio.jp; Tabata, Hidenori

    The precise assemblage of several types of cardiac precursors controls heart organogenesis. The cardiac precursors show dynamic movement during early development and then form the complicated heart structure. However, cardiomyocyte movements inside the newly organized mammalian heart remain unclear. We previously established the method of ex vivo time-lapse imaging of the murine heart to study cardiomyocyte behavior by using the Fucci (fluorescent ubiquitination-based cell cycle indicator) system, which can effectively label individual G1, S/G2/M, and G1/S-transition phase nuclei in living cardiomyocytes as red, green, and yellow, respectively. Global analysis of gene expression in Fucci green positive ventricular cardiomyocytes confirmed that cellmore » cycle regulatory genes expressed in G1/S, S, G2/M, and M phase transitions were upregulated. Interestingly, pathway analysis revealed that many genes related to the cell cycle were significantly upregulated in the Fucci green positive ventricular cardiomyocytes, while only a small number of genes related to cell motility were upregulated. Time-lapse imaging showed that murine proliferating cardiomyocytes did not exhibit dynamic movement inside the heart, but stayed on site after entering the cell cycle. - Highlights: • We directly visualized cardiomyocyte movement inside the developing murine heart. • Cell cycle related genes were upregulated in the proliferating cardiomyocytes. • Time-lapse imaging revealed that proliferating murine cardiomyocytes stayed in place. • Murine ventricular cardiomyocytes proliferate on site during development.« less

  3. Epigallocatechin gallate (EGCG), influences a murine WEHI-3 leukemia model in vivo through enhancing phagocytosis of macrophages and populations of T- and B-cells.

    PubMed

    Huang, An-Cheng; Cheng, Hsiu-Yueh; Lin, Tsu-Shun; Chen, Wen-Hsein; Lin, Ju-Hwa; Lin, Jen-Jyh; Lu, Chi-Cheng; Chiang, Jo-Hua; Hsu, Shu-Chun; Wu, Ping-Ping; Huang, Yi-Ping; Chung, Jing-Gung

    2013-01-01

    Epigallocatechin gallate (EGCG) is the major polyphenol in green tea, and has been reported to have anticancer effects on many types of cancer cells. However, there is no report to show its effects on the immune response in a murine leukemia mouse model. Thus, in the present study, we investigated the effects of EGCG on the immune responses of murine WEHI-3 leukemia cells in vivo. WEHI-3 cells were intraperitoneally injected into normal BALB/c mice to establish leukemic BALB/c mice, which were then oral-treated with or without EGCG at 5, 20 and 40 mg/kg for two weeks. The results indicated that EGCG did not change the weight of the animals, nor the liver or spleen when compared to vehicle (olive oil) -treated groups. Furthermore, EGCG increased the percentage of cluster of differentiation 3 (CD3) (T-cell), cluster of differentiation 19 (CD19) (B-cell) and Macrophage-3 antigen (Mac-3) (macrophage) but reduced the percentage of CD11b (monocyte) cell surface markers in EGCG-treated groups as compared with the untreated leukemia group. EGCG promoted the phagocytosis of macrophages from 5 mg/kg treatment and promoted natural killer cell activity at 40 mg/kg, increased T-cell proliferation at 40 mg/kg but promoted B-cell proliferation at all three doses. Based on these observations, it appears that EGCG might exhibit an immune response in the murine WEHI-3 cell line-induced leukemia in vivo.

  4. Pseudofracture: an acute peripheral tissue trauma model.

    PubMed

    Darwiche, Sophie S; Kobbe, Philipp; Pfeifer, Roman; Kohut, Lauryn; Pape, Hans-Christoph; Billiar, Timothy

    2011-04-18

    Following trauma there is an early hyper-reactive inflammatory response that can lead to multiple organ dysfunction and high mortality in trauma patients; this response is often accompanied by a delayed immunosuppression that adds the clinical complications of infection and can also increase mortality. Many studies have begun to assess these changes in the reactivity of the immune system following trauma. Immunologic studies are greatly supported through the wide variety of transgenic and knockout mice available for in vivo modeling; these strains aid in detailed investigations to assess the molecular pathways involved in the immunologic responses. The challenge in experimental murine trauma modeling is long term investigation, as fracture fixation techniques in mice, can be complex and not easily reproducible. This pseudofracture model, an easily reproduced trauma model, overcomes these difficulties by immunologically mimicking an extremity fracture environment, while allowing freedom of movement in the animals and long term survival without the continual, prolonged use of anaesthesia. The intent is to recreate the features of long bone fracture; injured muscle and soft tissue are exposed to damaged bone and bone marrow without breaking the native bone. The pseudofracture model consists of two parts: a bilateral muscle crush injury to the hindlimbs, followed by injection of a bone solution into these injured muscles. The bone solution is prepared by harvesting the long bones from both hindlimbs of an age- and weight-matched syngeneic donor. These bones are then crushed and resuspended in phosphate buffered saline to create the bone solution. Bilateral femur fracture is a commonly used and well-established model of extremity trauma, and was the comparative model during the development of the pseudofracture model. Among the variety of available fracture models, we chose to use a closed method of fracture with soft tissue injury as our comparison to the

  5. A murine model of infection with Rickettsia prowazekii: implications for pathogenesis of epidemic typhus.

    PubMed

    Bechah, Yassina; Capo, Christian; Grau, Georges E; Raoult, Didier; Mege, Jean-Louis

    2007-06-01

    Epidemic typhus remains a major disease threat, furthermore, its etiologic agent, Rickettsia prowazekii, is classified as a bioterrorism agent. We describe here a murine model of epidemic typhus that reproduced some features of the human disease. When BALB/c mice were inoculated intravenously with R. prowazekii (Breinl strain), they survived but did not clear R. prowazekii infection. Immunohistological analysis of tissues and quantitative PCR showed that R. prowazekii was present in blood, liver, lungs and brain 1 day after infection and persisted for at least 9 days. Importantly, infected mice developed interstitial pneumonia, with consolidation of the alveoli, hemorrhages in lungs, multifocal granulomas in liver, and hemorrhages in brain, as seen in humans. Circulating antibodies directed against R. prowazekii were detected at day 4 post-infection and steadily increased for up to 21 days, demonstrating that R. prowazekii lesions were independent of humoral immune response. R. prowazekii-induced lesions were associated with inflammatory response, as demonstrated by elevated levels of inflammatory cytokines including interferon-gamma, tumor necrosis factor and the CC chemokine RANTES in the lesions. We concluded that the BALB/c mouse strain provides a useful model for studying the pathogenic mechanisms of epidemic typhus and its control by the immune system.

  6. An inducible model of abacterial prostatitis induces antigen specific inflammatory and proliferative changes in the murine prostate

    PubMed Central

    Haverkamp, Jessica M.; Charbonneau, Bridget; Meyerholz, David K.; Cohen, Michael B.; Snyder, Paul W.; Svensson, Robert U.; Henry, Michael D.; Wang, Hsing- Hui

    2011-01-01

    Background Prostatitis is a poorly understood disease and increasing evidence suggests inflammation is involved in other prostatic diseases, including prostate cancer. Methods The ability of pre-activated CD8 T cells to induce prostatitis was examined by adoptive transfer into POET-3 mice or POET-3/Luc/Pten−/+ mice. Characterization of the inflammatory response was determined by examining leukocyte infiltration by histological analysis, flow cytometry and by evaluating cytokine and chemokine levels in prostate tissue. The impact of inflammation on the prostate was evaluated by monitoring epithelial cell proliferation over time. Results Initiation of inflammation by ovalbumin specific CD8+ T cells (OT-I cells) resulted in development of acute prostatitis in the anterior, dorsolateral and anterior prostate of POET-3 and POET-3/Luc/Pten−/+ mice. Acute prostatitis was characterized by recruitment of adoptively transferred OT-I cells and importantly, autologous CD4+ and CD8+ T cells, myeloid-derived suppressor cells (MDSC) and regulatory T cells (Treg). In concert with leukocyte infiltration elevated levels of pro-inflammatory cytokines and chemokines were observed. Inflammation also resulted in marked epithelial cell proliferation that was sustained up to 80 days post adoptive-transfer of OT-I cells. Conclusions The POET-3 model represents a novel mouse model to study both acute and chronic prostate inflammation in an antigen-specific system. Further, the POET-3 mouse model can be crossed with other genetic models of disease such as the C57/Luc/Pten−/− model of prostate cancer, allowing the impact of prostatitis on other prostatic diseases to be evaluated. PMID:21656824

  7. Exposure to the environmental endocrine disruptor TCDD and human reproductive dysfunction: Translating lessons from murine models.

    PubMed

    Bruner-Tran, Kaylon L; Gnecco, Juan; Ding, Tianbing; Glore, Dana R; Pensabene, Virginia; Osteen, Kevin G

    2017-03-01

    Humans and other animals are exposed to a wide array of man-made toxicants, many of which act as endocrine disruptors that exhibit differential effects across the lifespan. In humans, while the impact of adult exposure is known for some compounds, the potential consequences of developmental exposure to endocrine disrupting chemicals (EDCs) is more difficult to ascertain. Animal studies have revealed that exposure to EDCs prior to puberty can lead to adult reproductive disease and dysfunction. Specifically, in adult female mice with an early life exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), we demonstrated a transgenerational occurrence of several reproductive diseases that have been linked to endometriosis in women. Herein, we review the evidence for TCDD-associated development of adult reproductive disease as well as known epigenetic alterations associated with TCDD and/or endometriosis. We will also introduce new "Organ-on-Chip" models which, combined with our established murine model, are expected to further enhance our ability to examine alterations in gene-environment interactions that lead to heritable disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Exposure to the Environmental Endocrine Disruptor TCDD and Human Reproductive Dysfunction: Translating Lessons from Murine Models

    PubMed Central

    Bruner-Tran, Kaylon L.; Gnecco, Juan; Ding, Tianbing; Glore, Dana R.; Pensabene, Virginia; Osteen, Kevin G.

    2016-01-01

    Humans and other animals are exposed to a wide array of man-made toxicants, many of which act as endocrine disruptors that exhibit differential effects across the lifespan. In humans, while the impact of adult exposure is known for some compounds, the potential consequences of developmental exposure to endocrine disrupting chemicals (EDCs) is more difficult to ascertain. Animal studies have revealed that exposure to EDCs prior to puberty can lead to adult reproductive disease and dysfunction. Specifically, in adult female mice with an early life exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), we demonstrated a transgenerational occurrence of several reproductive diseases that have been linked to endometriosis in women. Herein, we review the evidence for TCDD-associated development of adult reproductive disease as well as known epigenetic alterations associated with TCDD and/or endometriosis. We will also introduce new “Organ-on-Chip” models which, combined with our established murine model, are expected to further enhance our ability to examine alterations in gene-environment interactions that lead to heritable disease. PMID:27423904

  9. The Anti-(+)-Methamphetamine Monoclonal Antibody mAb7F9 Attenuates Acute (+)-Methamphetamine Effects on Intracranial Self-Stimulation in Rats

    PubMed Central

    Harris, Andrew C.; LeSage, Mark G.; Shelley, David; Perry, Jennifer L.; Pentel, Paul R.; Owens, S. Michael

    2015-01-01

    Passive immunization with monoclonal antibodies (mAbs) against (+)-methamphetamine (METH) is being evaluated for the treatment of METH addiction. A human/mouse chimeric form of the murine anti-METH mAb7F9 has entered clinical trials. This study examined the effects of murine mAb7F9 on certain addiction-related behavioral effects of METH in rats as measured using intracranial self-stimulation (ICSS). Initial studies indicated that acute METH (0.1-0.56 mg/kg, s.c.) lowered the minimal (threshold) stimulation intensity that maintained ICSS. METH (0.3 mg/kg, s.c.) also blocked elevations in ICSS thresholds (anhedonia-like behavior) during spontaneous withdrawal from a chronic METH infusion (10 mg/kg/day x 7 days). In studies examining effects of i.v. pretreatment with mAb7F9 (at 30, 100, or 200 mg/kg), 200 mg/kg blocked the ability of an initial injection of METH (0.3 mg/kg, s.c.) to reduce baseline ICSS thresholds, but was less capable of attenuating the effect of subsequent daily injections of METH. MAb7F9 (200 mg/kg) also produced a small but significant reduction in the ability of METH (0.3 mg/kg, s.c.) to reverse METH withdrawal-induced elevations in ICSS thresholds. These studies demonstrate that mAb7F9 can partially attenuate some addiction-related effects of acute METH in an ICSS model, and provide some support for the therapeutic potential of mAb7F9 for the treatment of METH addiction. PMID:25742165

  10. Inhibitory effect of kefiran on ovalbumin-induced lung inflammation in a murine model of asthma.

    PubMed

    Kwon, Ok-Kyoung; Ahn, Kyung-Seop; Lee, Mee-Young; Kim, So-Young; Park, Bo-Young; Kim, Mi-Kyoung; Lee, In-Young; Oh, Sei-Ryang; Lee, Hyeong-Kyu

    2008-12-01

    Kefiran is a major component of kefir which is a microbial symbiont mixture that produces jelly-like grains. This study aimed to evaluate the therapeutic availability of kefiran on the ovalbumin-induced asthma mouse model in which airway inflammation and airway hyper-responsiveness were found in the lung. BALB/c mice sensitized and challenged to ovalbumin were treated intra-gastrically with kefiran 1 hour before the ovalbumin challenge. Kefiran significantly suppressed ovalbumin-induced airway hyper-responsiveness (AHR) to inhaled methacholine. Administration of kefiran significantly inhibited the release of both eosinophils and other inflammatory cells into bronchoalveolar lavage (BAL) fluid and lung tissue which was measured by Diff-Quik. Interleukin-4 (IL-4) and interleukin-5 (IL-5) were also reduced to normal levels after administration of kefiran in BAL fluid. Histological studies demonstrate that kefiran substantially inhibited ovalbumin-induced eosinophilia in lung tissue by H&E staining and goblet cell hyperplasia in the airway by PAS staining. Taken above data, kefiran may be useful for the treatment of inflammation of lung tissue and airway hyper-responsiveness in a murine model and may have therapeutic potential for the treatment of allergic bronchial asthma.

  11. Murine and math models for the level of stable mixed chimerism to cure beta-thalassemia by nonmyeloablative bone marrow transplantation.

    PubMed

    Roberts, Carla; Kean, Leslie; Archer, David; Balkan, Can; Hsu, Lewis L

    2005-01-01

    Stable mixed chimeric stem cell transplantation in hemoglobinopathies exploits shorter erythroid survival in hemolytic anemias, providing normal donor red blood cells with a competitive survival advantage. This study examined the level of stable mixed chimerism necessary for complete hematological cure of the thalassemic phenotype, using a nonmyeloablative busulfan chemotherapeutic preparation. Thalassemic mice transplanted from congenic wild-type donors developed partial mixed chimerism. Hematologic cure required >80% donor red blood cells and only >13% donor white blood cells. Murine and human transplant results were compared with a math model for survival advantage of donor peripheral blood cells produced by steady-state chimeric marrow.

  12. Placental elastography in a murine intrauterine growth restriction model.

    PubMed

    Quibel, T; Deloison, B; Chammings, F; Chalouhi, G E; Siauve, N; Alison, M; Bessières, B; Gennisson, J L; Clément, O; Salomon, L J

    2015-11-01

    To compare placental elasticity in normal versus intrauterine growth restriction (IUGR) murine pregnancies using shear wave elastography (SWE). Intrauterine growth restriction was created by ligation of the left uterine artery of Sprague-Dawley rats on E17. Ultrasonography (US) and elastography were performed 2 days later on exteriorized horns after laparotomy. Biparietal diameter (BPD) and abdominal diameter (AD) were measured and compared in each horn. Placental elasticity of each placenta was compared in the right and left horns, respectively, using the Young's modulus, which increases with increasing stiffness of the tissue. Two hundred seventeen feto-placental units from 18 rats were included. Fetuses in the left ligated horn had smaller biometric measurements than those in the right horn (6.7 vs 7.2 mm, p < 0.001, and 9.2 vs 11.2 mm, p < 0.001 for BPD and AD, respectively). Mean fetal weight was lower in the pups from the left than the right horn (1.65 vs 2.11 g; p < 0.001). Mean (SD) Young's modulus was higher for placentas from the left than the right horn (11.7 ± 1.5 kPa vs 8.01 ± 3.8 kPa, respectively; p < 0.001), indicating increased stiffness in placentas from the left than the right horn. There was an inverse relationship between fetal weight and placental elasticity (r = 0.42; p < 0.001). Shear wave elastography may be used to provide quantitative elasticity measurements of the placenta. In our model, placentas from IUGR fetuses demonstrated greater stiffness, which correlated with the degree of fetal growth restriction. © 2015 John Wiley & Sons, Ltd.

  13. Comparison of the Mortality Probability Admission Model III, National Quality Forum, and Acute Physiology and Chronic Health Evaluation IV hospital mortality models: implications for national benchmarking*.

    PubMed

    Kramer, Andrew A; Higgins, Thomas L; Zimmerman, Jack E

    2014-03-01

    To examine the accuracy of the original Mortality Probability Admission Model III, ICU Outcomes Model/National Quality Forum modification of Mortality Probability Admission Model III, and Acute Physiology and Chronic Health Evaluation IVa models for comparing observed and risk-adjusted hospital mortality predictions. Retrospective paired analyses of day 1 hospital mortality predictions using three prognostic models. Fifty-five ICUs at 38 U.S. hospitals from January 2008 to December 2012. Among 174,001 intensive care admissions, 109,926 met model inclusion criteria and 55,304 had data for mortality prediction using all three models. None. We compared patient exclusions and the discrimination, calibration, and accuracy for each model. Acute Physiology and Chronic Health Evaluation IVa excluded 10.7% of all patients, ICU Outcomes Model/National Quality Forum 20.1%, and Mortality Probability Admission Model III 24.1%. Discrimination of Acute Physiology and Chronic Health Evaluation IVa was superior with area under receiver operating curve (0.88) compared with Mortality Probability Admission Model III (0.81) and ICU Outcomes Model/National Quality Forum (0.80). Acute Physiology and Chronic Health Evaluation IVa was better calibrated (lowest Hosmer-Lemeshow statistic). The accuracy of Acute Physiology and Chronic Health Evaluation IVa was superior (adjusted Brier score = 31.0%) to that for Mortality Probability Admission Model III (16.1%) and ICU Outcomes Model/National Quality Forum (17.8%). Compared with observed mortality, Acute Physiology and Chronic Health Evaluation IVa overpredicted mortality by 1.5% and Mortality Probability Admission Model III by 3.1%; ICU Outcomes Model/National Quality Forum underpredicted mortality by 1.2%. Calibration curves showed that Acute Physiology and Chronic Health Evaluation performed well over the entire risk range, unlike the Mortality Probability Admission Model and ICU Outcomes Model/National Quality Forum models. Acute

  14. Dermatophyte-host relationship of a murine model of experimental invasive dermatophytosis.

    PubMed

    Venturini, James; Alvares, Anuska Marcelino; Camargo, Marcela Rodrigues de; Marchetti, Camila Martins; Fraga-Silva, Thais Fernanda de Campos; Luchini, Ana Carolina; Arruda, Maria Sueli Parreira de

    2012-11-01

    Recognizing the invasive potential of the dermatophytes and understanding the mechanisms involved in this process will help with disease diagnosis and with developing an appropriate treatment plan. In this report, we present the histopathological, microbiological and immunological features of a model of invasive dermatophytosis that is induced by subcutaneous infection of Trichophyton mentagrophytes in healthy adult Swiss mice. Using this model, we observed that the fungus rapidly spreads to the popliteal lymph nodes, spleen, liver and kidneys. Similar to the human disease, the lymph nodes were the most severely affected sites. The fungal infection evoked acute inflammation followed by a granulomatous reaction in the mice, which is similar to what is observed in patients. The mice were able to mount a Th1-polarized immune response and displayed IL-10-mediated immune regulation. We believe that the model described here will provide valuable information regarding the dermatophyte-host relationship and will yield new perspective for a better understanding of the immunological and pathological aspects of invasive dermatophytosis. Copyright © 2012 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  15. Mucosal immunization with recombinant adenoviral vectors expressing murine gammaherpesvirus-68 genes M2 and M3 can reduce latent viral load.

    PubMed

    Hoegh-Petersen, Mette; Thomsen, Allan R; Christensen, Jan P; Holst, Peter J

    2009-11-12

    Gammaherpesviruses establish life-long latent infections in their hosts. If the host becomes immunosuppressed, these viruses may reactivate and cause severe disease, and even in immunocompetent individuals the gammaherpesviruses are presumed to have an oncogenic potential. Murine gammaherpesvirus-68 (MHV-68) is a member of the Gammaherpesvirinae subfamily and represents a useful murine model for this category of infections, in which new vaccination strategies may initially be evaluated. Two attenuated variants of MHV-68 have successfully been used as vaccines, but the oncogenic potential of the gammaherpesvirinae speaks against using a similar approach in humans. DNA immunization with plasmids encoding the MHV-68 genes M2 or M3 caused a reduction in either acute or early latent viral load, respectively, but neither immunization had an effect at times later than 14 days post-infection. Adenovirus-based vaccines are substantially more immunogenic than DNA vaccines and can be applied to induce mucosal immunity. Here we show that a significant reduction of the late viral load in the spleens, at 60 days post-infection, was achieved when immunizing mice both intranasally and subcutaneously with adenoviral vectors encoding both M2 and M3. Additionally we show that M3 immunization prevented the usual development of virus-induced splenomegaly at 2-3 weeks post-infection. This is the first time that immunization with a non-replicating vaccine has lead to a significantly reduced viral load at time points beyond 14 days post-infection, and thus demonstrates that a non-replicating vaccine may successfully be employed to reduce the viral burden during chronic gammaherpesvirus infection.

  16. Selective uptake of multi-walled carbon nanotubes by tumor macrophages in a murine glioma model.

    PubMed

    VanHandel, Michelle; Alizadeh, Darya; Zhang, Leying; Kateb, Babak; Bronikowski, Michael; Manohara, Harish; Badie, Behnam

    2009-03-31

    Carbon nantotubes (CNTs) are emerging as a new family of nanovectors for drug and gene delivery into biological systems. To evaluate potential application of this technology for brain tumor therapy, we studied uptake and toxicity of multi-walled CNTs (MWCNTs) in the GL261 murine intracranial glioma model. Within 24 h of a single intratumoral injection of labeled MWCNTs (5 microg), nearly 10-20% of total cells demonstrated CNT internalization. Most CNT uptake, however, occurred by tumor-associated macrophages (MP), which accounted for most (75%) MWCNT-positive cells. Within 24 h of injection, nearly 30% of tumor MP became MWCNT-positive. Despite a transient increase in inflammatory cell infiltration into both normal and tumor-bearing brains following MWCNT injection, no significant toxicity was noted in mice, and minor changes in tumor cytokine expression were observed. This study suggests that MWCNTs could potentially be used as a novel and non-toxic vehicle for targeting MP in brain tumors.

  17. Excretory-secretory antigens: a suitable candidate for immunization against ocular toxoplasmosis in a murine model.

    PubMed

    Norouzpour Deilami, Kiumars; Daryani, Ahmad; Ahmadpour, Ehsan; Sharif, Mehdi; Dadimoghaddam, Yousef; Sarvi, Shahabeddin; Alizadeh, Ahad

    2014-12-01

    Toxoplasmosis, responsible for ocular impairment, is caused by Toxoplasma gondii. We investigated the effect of Toxoplasma excretory-secretory antigens (ESA) on parasite load and distribution in the eye tissue of a murine model. Case and control groups were immunized with ESA and PBS, respectively. Two weeks after the second immunization, the mice were challenged intraperitoneally with virulent RH strain of Toxoplasma; eye tissue samples of both groups were collected daily (days 1, 2, 3, and the last day before death). Parasite load was determined using real-time quantitative PCR targeted at the B1 gene. Compared to the control group, infected mice that received ESA vaccine presented a considerable decrease in parasite load in the eye tissue, demonstrating the effect of ESA on parasite load and distribution. Diminution of parasite load in mouse eye tissue indicated that ESA might help control disease-related complications and could be a valuable immunization candidate against ocular toxoplasmosis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. QSAR Modeling of Rat Acute Toxicity by Oral Exposure

    PubMed Central

    Zhu, Hao; Martin, Todd M.; Ye, Lin; Sedykh, Alexander; Young, Douglas M.; Tropsha, Alexander

    2009-01-01

    Few Quantitative Structure-Activity Relationship (QSAR) studies have successfully modeled large, diverse rodent toxicity endpoints. In this study, a comprehensive dataset of 7,385 compounds with their most conservative lethal dose (LD50) values has been compiled. A combinatorial QSAR approach has been employed to develop robust and predictive models of acute toxicity in rats caused by oral exposure to chemicals. To enable fair comparison between the predictive power of models generated in this study versus a commercial toxicity predictor, TOPKAT (Toxicity Prediction by Komputer Assisted Technology), a modeling subset of the entire dataset was selected that included all 3,472 compounds used in the TOPKAT’s training set. The remaining 3,913 compounds, which were not present in the TOPKAT training set, were used as the external validation set. QSAR models of five different types were developed for the modeling set. The prediction accuracy for the external validation set was estimated by determination coefficient R2 of linear regression between actual and predicted LD50 values. The use of the applicability domain threshold implemented in most models generally improved the external prediction accuracy but expectedly led to the decrease in chemical space coverage; depending on the applicability domain threshold, R2 ranged from 0.24 to 0.70. Ultimately, several consensus models were developed by averaging the predicted LD50 for every compound using all 5 models. The consensus models afforded higher prediction accuracy for the external validation dataset with the higher coverage as compared to individual constituent models. The validated consensus LD50 models developed in this study can be used as reliable computational predictors of in vivo acute toxicity. PMID:19845371

  19. Loss of p19Arf in a Rag1−/− B-cell precursor population initiates acute B-lymphoblastic leukemia

    PubMed Central

    Hauer, Julia; Mullighan, Charles; Morillon, Estelle; Wang, Gary; Bruneau, Julie; Brousse, Nicole; Lelorc'h, Marc; Romana, Serge; Boudil, Amine; Tiedau, Daniela; Kracker, Sven; Bushmann, Frederic D.; Borkhardt, Arndt; Fischer, Alain; Hacein-Bey-Abina, Salima

    2011-01-01

    In human B-acute lymphoblastic leukemia (B-ALL), RAG1-induced genomic alterations are important for disease progression. However, given that biallelic loss of the RAG1 locus is observed in a subset of cases, RAG1's role in the development of B-ALL remains unclear. We chose a p19Arf−/−Rag1−/− mouse model to confirm the previously published results concerning the contribution of CDKN2A (p19ARF /INK4a) and RAG1 copy number alterations in precursor B cells to the initiation and/or progression to B-acute lymphoblastic leukemia (B-ALL). In this murine model, we identified a new, Rag1-independent leukemia-initiating mechanism originating from a Sca1+CD19+ precursor cell population and showed that Notch1 expression accelerates the cells' self-renewal capacity in vitro. In human RAG1-deficient BM, a similar CD34+CD19+ population expressed p19ARF. These findings suggest that combined loss of p19Arf and Rag1 results in B-cell precursor leukemia in mice and may contribute to the progression of precursor B-ALL in humans. PMID:21622646

  20. A Cell Kinetic Model of Granulocytopoiesis Under Radiation Exposure: Extension from Murines to Canines and Humans

    NASA Technical Reports Server (NTRS)

    Hu, Shaowen; Cucinotta, Francis A.

    2009-01-01

    Space radiation poses significant challenges to space travel, and it is essential to understand the possible adverse effects from space radiation exposure to the radiosensitive organ systems that are important for immediate survival of human, e.g., the hematopoietic system. In this presentation a biomathematical model of granulocytopoiesis is described and used to analyze the blood granulocyte changes seen in the blood of mammalians under continuous and acute radiation exposure. This is one of a set of hematopoietic models that have been successfully utilized to simulate and interpret the experimental data of acute and chronic radiation on rodents. We discuss the underlying implicit regulation mechanism and the biological relevance of the kinetic parameters estimation method. Extension of the model to predictions in dogs and humans systems indicates that the modeling results are consistent with the cumulative experimental and empirical data from various sources. This implies the potential to integrate the models into one united system for monitoring the hematopoietic response of various species under irradiation. Based on the evidence of threshold responses of dogs to extended periods of low daily dose exposures, we discuss the potential health risks of the space traveler under chronic stress of low-dose irradiation and the possibly encountered Solar Particle Events.

  1. Necroptosis is a key pathogenic event in human and experimental murine models of non-alcoholic steatohepatitis.

    PubMed

    Afonso, Marta B; Rodrigues, Pedro M; Carvalho, Tânia; Caridade, Marta; Borralho, Paula; Cortez-Pinto, Helena; Castro, Rui E; Rodrigues, Cecília M P

    2015-10-01

    Hepatocyte cell death, inflammation and oxidative stress constitute key pathogenic mechanisms underlying non-alcoholic fatty liver disease (NAFLD). We aimed to investigate the role of necroptosis in human and experimental NAFLD and its association with tumour necrosis factor α (TNF-α) and oxidative stress. Serum markers of necrosis, liver receptor-interacting protein 3 (RIP3) and phosphorylated mixed lineage kinase domain-like (MLKL) were evaluated in control individuals and patients with NAFLD. C57BL/6 wild-type (WT) or RIP3-deficient (RIP3(-/-)) mice were fed a high-fat choline-deficient (HFCD) or methionine and choline-deficient (MCD) diet, with subsequent histological and biochemical analysis of hepatic damage. In primary murine hepatocytes, necroptosis and oxidative stress were also assessed after necrostatin-1 (Nec-1) treatment or RIP3 silencing. We show that circulating markers of necrosis and TNF-α, as well as liver RIP3 and MLKL phosphorylation were increased in NAFLD. Likewise, RIP3 and MLKL protein levels and TNF-α expression were increased in the liver of HFCD and MCD diet-fed mice. Moreover, RIP3 and MLKL sequestration in the insoluble protein fraction of NASH (non-alcoholic steatohepatitis) mice liver lysates represented an early event during stetatohepatitis progression. Functional studies in primary murine hepatocytes established the association between TNF-α-induced RIP3 expression, activation of necroptosis and oxidative stress. Strikingly, RIP3 deficiency attenuated MCD diet-induced liver injury, steatosis, inflammation, fibrosis and oxidative stress. In conclusion, necroptosis is increased in the liver of NAFLD patients and in experimental models of NASH. Further, TNF-α triggers RIP3-dependent oxidative stress during hepatocyte necroptosis. As such, targeting necroptosis appears to arrest or at least impair NAFLD progression. © 2015 Authors; published by Portland Press Limited.

  2. Anti-cancer activity of Annexin V in murine melanoma model by suppressing tumor angiogenesis.

    PubMed

    Zhang, Xuerui; Huo, Lina; Jin, Haibo; Han, Yuheng; Wang, Jie; Zhang, Yanjun; Lai, Xinghuan; Le, Ziwei; Zhang, Jing; Hua, Zichun

    2017-06-27

    Annexin V, a protein with high affinity to phosphatidylserine (PS) in a calcium dependent manner, has been widely used to probe apoptosis. Annexin V in inhibiting engulfment of apoptotic cells by macrophages had been reported to increase the immunogenicity of tumor cells undergoing apoptosis. However, far less is known about its multiple properties, especially in cancer therapies. Here we found that Annexin V had a good anti-tumor activity in murine melanomaxenograft model. Treatment with Annexin V showed significant reduction in tumor size and remarkable tumor necrosis areas. The serum level of VEGF was downregualted by Annexin V both in normal mice and mice bearing tumor, suggesting that its new role on impeding tumor angiogenesis. In Silico analysis using Oncomine database, we also found the negative correlation of AnnexinV and VEGF both in skin and melanoma. The decreased Annexin V expression shows linearity relation with the elevated VEGF expression. These data provided a possibility that Annexin V can be used as a novel angiogenesis inhibitor in tumor therapy.

  3. Aortic iron overload with oxidative stress and inflammation in human and murine abdominal aortic aneurysm.

    PubMed

    Sawada, Hisashi; Hao, Hiroyuki; Naito, Yoshiro; Oboshi, Makiko; Hirotani, Shinichi; Mitsuno, Masataka; Miyamoto, Yuji; Hirota, Seiichi; Masuyama, Tohru

    2015-06-01

    Although iron is an essential element for maintaining physiological function, excess iron leads to tissue damage caused by oxidative stress and inflammation. Oxidative stress and inflammation play critical roles for the development of abdominal aortic aneurysm (AAA). However, it has not been investigated whether iron plays a role in AAA formation through oxidative stress and inflammation. We, therefore, examined whether iron is involved in the pathophysiology of AAA formation using human AAA walls and murine AAA models. Human aortic walls were collected from 53 patients who underwent cardiovascular surgery (non-AAA=34; AAA=19). Murine AAA was induced by infusion of angiotensin II to apolipoprotein E knockout mice. Iron was accumulated in human and murine AAA walls compared with non-AAA walls. Immunohistochemistry showed that both 8-hydroxy-2'-deoxyguanosine and CD68-positive areas were increased in AAA walls compared with non-AAA walls. The extent of iron accumulated area positively correlated with that of 8-hydroxy-2'-deoxyguanosine expression area and macrophage infiltration area in human and murine AAA walls. We next investigated the effects of dietary iron restriction on AAA formation in mice. Iron restriction reduced the incidence of AAA formation with attenuation of oxidative stress and inflammation. Aortic expression of transferrin receptor 1, intracellular iron transport protein, was increased in human and murine AAA walls, and transferrin receptor 1-positive area was similar to areas where iron accumulated and F4/80 were positive. Iron is involved in the pathophysiology of AAA formation with oxidative stress and inflammation. Dietary iron restriction could be a new therapeutic strategy for AAA progression. © 2015 American Heart Association, Inc.

  4. Neuroantigen-specific, tolerogenic vaccines: GM-CSF is a fusion partner that facilitates tolerance rather than immunity to dominant self-epitopes of myelin in murine models of experimental autoimmune encephalomyelitis (EAE)

    PubMed Central

    2011-01-01

    Background Vaccination strategies that elicit antigen-specific tolerance are needed as therapies for autoimmune disease. This study focused on whether cytokine-neuroantigen (NAg) fusion proteins could inhibit disease in chronic murine models of experimental autoimmune encephalomyelitis (EAE) and thus serve as potential therapeutic modalities for multiple sclerosis. Results A fusion protein comprised of murine GM-CSF as the N-terminal domain and the encephalitogenic MOG35-55 peptide as the C-terminal domain was tested as a tolerogenic, therapeutic vaccine (TTV) in the C57BL/6 model of EAE. Administration of GMCSF-MOG before active induction of EAE, or alternatively, at the onset of EAE blocked the development and progression of EAE. Covalent linkage of the GM-CSF and MOG35-55 domains was required for tolerogenic activity. Likewise, a TTV comprised of GM-CSF and PLP139-151 was a tolerogen in the SJL model of EAE. Conclusion These data indicated that fusion proteins containing GM-CSF coupled to myelin auto-antigens elicit tolerance rather than immunity. PMID:22208499

  5. Efficacy of Oral E1210, a New Broad-Spectrum Antifungal with a Novel Mechanism of Action, in Murine Models of Candidiasis, Aspergillosis, and Fusariosis▿

    PubMed Central

    Hata, Katsura; Horii, Takaaki; Miyazaki, Mamiko; Watanabe, Nao-aki; Okubo, Miyuki; Sonoda, Jiro; Nakamoto, Kazutaka; Tanaka, Keigo; Shirotori, Syuji; Murai, Norio; Inoue, Satoshi; Matsukura, Masayuki; Abe, Shinya; Yoshimatsu, Kentaro; Asada, Makoto

    2011-01-01

    E1210 is a first-in-class, broad-spectrum antifungal with a novel mechanism of action—inhibition of fungal glycosylphosphatidylinositol biosynthesis. In this study, the efficacies of E1210 and reference antifungals were evaluated in murine models of oropharyngeal and disseminated candidiasis, pulmonary aspergillosis, and disseminated fusariosis. Oral E1210 demonstrated dose-dependent efficacy in infections caused by Candida species, Aspergillus spp., and Fusarium solani. In the treatment of oropharyngeal candidiasis, E1210 and fluconazole each caused a significantly greater reduction in the number of oral CFU than the control treatment (P < 0.05). In the disseminated candidiasis model, mice treated with E1210, fluconazole, caspofungin, or liposomal amphotericin B showed significantly higher survival rates than the control mice (P < 0.05). E1210 was also highly effective in treating disseminated candidiasis caused by azole-resistant Candida albicans or Candida tropicalis. A 24-h delay in treatment onset minimally affected the efficacy outcome of E1210 in the treatment of disseminated candidiasis. In the Aspergillus flavus pulmonary aspergillosis model, mice treated with E1210, voriconazole, or caspofungin showed significantly higher survival rates than the control mice (P < 0.05). E1210 was also effective in the treatment of Aspergillus fumigatus pulmonary aspergillosis. In contrast to many antifungals, E1210 was also effective against disseminated fusariosis caused by F. solani. In conclusion, E1210 demonstrated consistent efficacy in murine models of oropharyngeal and disseminated candidiasis, pulmonary aspergillosis, and disseminated fusariosis. These data suggest that further studies to determine E1210's potential for the treatment of disseminated fungal infections are indicated. PMID:21788462

  6. Efficacy of oral E1210, a new broad-spectrum antifungal with a novel mechanism of action, in murine models of candidiasis, aspergillosis, and fusariosis.

    PubMed

    Hata, Katsura; Horii, Takaaki; Miyazaki, Mamiko; Watanabe, Nao-Aki; Okubo, Miyuki; Sonoda, Jiro; Nakamoto, Kazutaka; Tanaka, Keigo; Shirotori, Syuji; Murai, Norio; Inoue, Satoshi; Matsukura, Masayuki; Abe, Shinya; Yoshimatsu, Kentaro; Asada, Makoto

    2011-10-01

    E1210 is a first-in-class, broad-spectrum antifungal with a novel mechanism of action-inhibition of fungal glycosylphosphatidylinositol biosynthesis. In this study, the efficacies of E1210 and reference antifungals were evaluated in murine models of oropharyngeal and disseminated candidiasis, pulmonary aspergillosis, and disseminated fusariosis. Oral E1210 demonstrated dose-dependent efficacy in infections caused by Candida species, Aspergillus spp., and Fusarium solani. In the treatment of oropharyngeal candidiasis, E1210 and fluconazole each caused a significantly greater reduction in the number of oral CFU than the control treatment (P < 0.05). In the disseminated candidiasis model, mice treated with E1210, fluconazole, caspofungin, or liposomal amphotericin B showed significantly higher survival rates than the control mice (P < 0.05). E1210 was also highly effective in treating disseminated candidiasis caused by azole-resistant Candida albicans or Candida tropicalis. A 24-h delay in treatment onset minimally affected the efficacy outcome of E1210 in the treatment of disseminated candidiasis. In the Aspergillus flavus pulmonary aspergillosis model, mice treated with E1210, voriconazole, or caspofungin showed significantly higher survival rates than the control mice (P < 0.05). E1210 was also effective in the treatment of Aspergillus fumigatus pulmonary aspergillosis. In contrast to many antifungals, E1210 was also effective against disseminated fusariosis caused by F. solani. In conclusion, E1210 demonstrated consistent efficacy in murine models of oropharyngeal and disseminated candidiasis, pulmonary aspergillosis, and disseminated fusariosis. These data suggest that further studies to determine E1210's potential for the treatment of disseminated fungal infections are indicated.

  7. Efficacy of Posaconazole in Murine Experimental Sporotrichosis

    PubMed Central

    Fernández-Silva, Fabiola; Capilla, Javier; Mayayo, Emilio

    2012-01-01

    We developed a murine model of systemic sporotrichosis by using three strains of each of the two commonest species causing sporotrichosis, i.e., Sporothrix schenckii sensu stricto and Sporothrix brasiliensis, in order to evaluate the efficacy of posaconazole (PSC). The drug was administered at a dose of 2.5 or 5 mg/kg of body weight twice a day by gavage, and one group was treated with amphotericin B (AMB) as a control treatment. Posaconazole, especially at 5 mg/kg, showed good efficacy against all the strains tested, regardless of their MICs, as measured by prolonged survival, tissue burden reduction, and histopathology. PMID:22330929

  8. A Murine Model of Candida glabrata Vaginitis Shows No Evidence of an Inflammatory Immunopathogenic Response.

    PubMed

    Nash, Evelyn E; Peters, Brian M; Lilly, Elizabeth A; Noverr, Mairi C; Fidel, Paul L

    2016-01-01

    Candida glabrata is the second most common organism isolated from women with vulvovaginal candidiasis (VVC), particularly in women with uncontrolled diabetes mellitus. However, mechanisms involved in the pathogenesis of C. glabrata-associated VVC are unknown and have not been studied at any depth in animal models. The objective of this study was to evaluate host responses to infection following efforts to optimize a murine model of C. glabrata VVC. For this, various designs were evaluated for consistent experimental vaginal colonization (i.e., type 1 and type 2 diabetic mice, exogenous estrogen, varying inocula, and co-infection with C. albicans). Upon model optimization, vaginal fungal burden and polymorphonuclear neutrophil (PMN) recruitment were assessed longitudinally over 21 days post-inoculation, together with vaginal concentrations of IL-1β, S100A8 alarmin, lactate dehydrogenase (LDH), and in vivo biofilm formation. Consistent and sustained vaginal colonization with C. glabrata was achieved in estrogenized streptozotocin-induced type 1 diabetic mice. Vaginal PMN infiltration was consistently low, with IL-1β, S100A8, and LDH concentrations similar to uninoculated mice. Biofilm formation was not detected in vivo, and co-infection with C. albicans did not induce synergistic immunopathogenic effects. This data suggests that experimental vaginal colonization of C. glabrata is not associated with an inflammatory immunopathogenic response or biofilm formation.

  9. A Murine Model of Candida glabrata Vaginitis Shows No Evidence of an Inflammatory Immunopathogenic Response

    PubMed Central

    Nash, Evelyn E.; Peters, Brian M.; Lilly, Elizabeth A.; Noverr, Mairi C.; Fidel, Paul L.

    2016-01-01

    Candida glabrata is the second most common organism isolated from women with vulvovaginal candidiasis (VVC), particularly in women with uncontrolled diabetes mellitus. However, mechanisms involved in the pathogenesis of C. glabrata-associated VVC are unknown and have not been studied at any depth in animal models. The objective of this study was to evaluate host responses to infection following efforts to optimize a murine model of C. glabrata VVC. For this, various designs were evaluated for consistent experimental vaginal colonization (i.e., type 1 and type 2 diabetic mice, exogenous estrogen, varying inocula, and co-infection with C. albicans). Upon model optimization, vaginal fungal burden and polymorphonuclear neutrophil (PMN) recruitment were assessed longitudinally over 21 days post-inoculation, together with vaginal concentrations of IL-1β, S100A8 alarmin, lactate dehydrogenase (LDH), and in vivo biofilm formation. Consistent and sustained vaginal colonization with C. glabrata was achieved in estrogenized streptozotocin-induced type 1 diabetic mice. Vaginal PMN infiltration was consistently low, with IL-1β, S100A8, and LDH concentrations similar to uninoculated mice. Biofilm formation was not detected in vivo, and co-infection with C. albicans did not induce synergistic immunopathogenic effects. This data suggests that experimental vaginal colonization of C. glabrata is not associated with an inflammatory immunopathogenic response or biofilm formation. PMID:26807975

  10. A novel immune competent murine hypertrophic scar contracture model: A tool to elucidate disease mechanism and develop new therapies

    PubMed Central

    Ibrahim, Mohamed Magdy; Bond, Jennifer; Bergeron, Andrew; Miller, Kyle J; Ehanire, Tosan; Quiles, Carlos; Lorden, Elizabeth R; Medina, Manuel A; Fisher, Mark; Klitzman, Bruce; Selim, M Angelica; Leong, Kam W; Levinson, Howard

    2014-01-01

    Hypertrophic scar (HSc) contraction following burn injury causes contractures. Contractures are painful and disfiguring. Current therapies are marginally effective. To study pathogenesis and develop new therapies, a murine model is needed. We have created a validated immune-competent murine HSc model. A third-degree burn was created on dorsum of C57BL/6 mice. Three days postburn, tissue was excised and grafted with ear skin. Graft contraction was analyzed and tissue harvested on different time points. Outcomes were compared with human condition to validate the model. To confirm graft survival, green fluorescent protein (GFP) mice were used, and histologic analysis was performed to differentiate between ear and back skin. Role of panniculus carnosus in contraction was analyzed. Cellularity was assessed with 4′,6-diamidino-2-phenylindole. Collagen maturation was assessed with Picro-sirius red. Mast cells were stained with Toluidine blue. Macrophages were detected with F4/80 immune. Vascularity was assessed with CD31 immune. RNA for contractile proteins was detected by quantitative real-time polymerase chain reaction (qRT-PCR). Elastic moduli of skin and scar tissue were analyzed using a microstrain analyzer. Grafts contracted to ∼45% of their original size by day 14 and maintained their size. Grafting of GFP mouse skin onto wild-type mice, and analysis of dermal thickness and hair follicle density, confirmed graft survival. Interestingly, hair follicles disappeared after grafting and regenerated in ear skin configuration by day 30. Radiological analysis revealed that panniculus carnosus doesn't contribute to contraction. Microscopic analyses showed that grafts show increase in cellularity. Granulation tissue formed after day 3. Collagen analysis revealed increases in collagen maturation over time. CD31 stain revealed increased vascularity. Macrophages and mast cells were increased. qRT-PCR showed up-regulation of transforming growth factor beta, alpha smooth

  11. The in vitro and in vivo efficacy of fluconazole in combination with farnesol against Candida albicans isolates using a murine vulvovaginitis model.

    PubMed

    Bozó, Aliz; Domán, Marianna; Majoros, László; Kardos, Gábor; Varga, István; Kovács, Renátó

    2016-11-01

    Farnesol is a quorum-sensing molecule that inhibits biofilm formation in Candida albicans. Previous in vitro data suggest that, in combination with certain antifungals, farnesol may have an adjuvant anti-biofilm agent. However, the in vivo efficacy of farnesol is very questionable. Therefore, the in vitro and in vivo activity of fluconazole combined with farnesol was evaluated against C. albicans biofilms using fractional inhibitory concentration index (FICI) determination, time-kill experiments and a murine vulvovaginitis model. The median biofilm MICs of fluconazole-sensitive C. albicans isolates ranged between 4 -> 512 mg/L and 150-300 μM for fluconazole and farnesol, respectively. These values were 512 -> 512 mg/L and > 300 μM for fluconazole-resistant clinical isolates. Farnesol decreased the median MICs of fluconazole by 2-64-fold for biofilms. Based on FICI, synergistic interaction was observed only in the case of the sessile SC5314 reference strain (FICIs: 0.16-0.27). In time-kill studies, only the 512 mg/L fluconazole and 512 mg/L fluconazole + 75 μM farnesol reduced biofilm mass significantly at each time point in the case of all isolates. The combination reduced the metabolic activity of biofilms for all isolates in a concentration- and time-dependent manner. Our findings revealed that farnesol alone was not protective in a murine vulvovaginitis model. Farnesol was not beneficial in combination with fluconazole for fluconazole-susceptible isolates, but partially increased fluconazole activity against one fluconazole-resistant isolate, but not the other one.

  12. The Development of a Machine Learning Inpatient Acute Kidney Injury Prediction Model.

    PubMed

    Koyner, Jay L; Carey, Kyle A; Edelson, Dana P; Churpek, Matthew M

    2018-07-01

    To develop an acute kidney injury risk prediction model using electronic health record data for longitudinal use in hospitalized patients. Observational cohort study. Tertiary, urban, academic medical center from November 2008 to January 2016. All adult inpatients without pre-existing renal failure at admission, defined as first serum creatinine greater than or equal to 3.0 mg/dL, International Classification of Diseases, 9th Edition, code for chronic kidney disease stage 4 or higher or having received renal replacement therapy within 48 hours of first serum creatinine measurement. None. Demographics, vital signs, diagnostics, and interventions were used in a Gradient Boosting Machine algorithm to predict serum creatinine-based Kidney Disease Improving Global Outcomes stage 2 acute kidney injury, with 60% of the data used for derivation and 40% for validation. Area under the receiver operator characteristic curve (AUC) was calculated in the validation cohort, and subgroup analyses were conducted across admission serum creatinine, acute kidney injury severity, and hospital location. Among the 121,158 included patients, 17,482 (14.4%) developed any Kidney Disease Improving Global Outcomes acute kidney injury, with 4,251 (3.5%) developing stage 2. The AUC (95% CI) was 0.90 (0.90-0.90) for predicting stage 2 acute kidney injury within 24 hours and 0.87 (0.87-0.87) within 48 hours. The AUC was 0.96 (0.96-0.96) for receipt of renal replacement therapy (n = 821) in the next 48 hours. Accuracy was similar across hospital settings (ICU, wards, and emergency department) and admitting serum creatinine groupings. At a probability threshold of greater than or equal to 0.022, the algorithm had a sensitivity of 84% and a specificity of 85% for stage 2 acute kidney injury and predicted the development of stage 2 a median of 41 hours (interquartile range, 12-141 hr) prior to the development of stage 2 acute kidney injury. Readily available electronic health record data can be

  13. A modelling tool for capacity planning in acute and community stroke services.

    PubMed

    Monks, Thomas; Worthington, David; Allen, Michael; Pitt, Martin; Stein, Ken; James, Martin A

    2016-09-29

    Mathematical capacity planning methods that can take account of variations in patient complexity, admission rates and delayed discharges have long been available, but their implementation in complex pathways such as stroke care remains limited. Instead simple average based estimates are commonplace. These methods often substantially underestimate capacity requirements. We analyse the capacity requirements for acute and community stroke services in a pathway with over 630 admissions per year. We sought to identify current capacity bottlenecks affecting patient flow, future capacity requirements in the presence of increased admissions, the impact of co-location and pooling of the acute and rehabilitation units and the impact of patient subgroups on capacity requirements. We contrast these results to the often used method of planning by average occupancy, often with arbitrary uplifts to cater for variability. We developed a discrete-event simulation model using aggregate parameter values derived from routine administrative data on over 2000 anonymised admission and discharge timestamps. The model mimicked the flow of stroke, high risk TIA and complex neurological patients from admission to an acute ward through to community rehab and early supported discharge, and predicted the probability of admission delays. An increase from 10 to 14 acute beds reduces the number of patients experiencing a delay to the acute stroke unit from 1 in every 7 to 1 in 50. Co-location of the acute and rehabilitation units and pooling eight beds out of a total bed stock of 26 reduce the number of delayed acute admissions to 1 in every 29 and the number of delayed rehabilitation admissions to 1 in every 20. Planning by average occupancy would resulted in delays for one in every five patients in the acute stroke unit. Planning by average occupancy fails to provide appropriate reserve capacity to manage the variations seen in stroke pathways to desired service levels. An appropriate uplift

  14. Acute Surgical Unit: a new model of care.

    PubMed

    Cox, Michael R; Cook, Lyn; Dobson, Jennifer; Lambrakis, Paul; Ganesh, Shanthan; Cregan, Patrick

    2010-06-01

    The traditional on-call system for the management of acute general surgical admissions is inefficient and outdated. A new model, Acute Surgical Unit (ASU), was developed at Nepean Hospital in 2006. The ASU is a consultant-driven, independent unit that manages all acute general surgical admissions. The team has the same make up 7 days a week and functions the same every day, including weekends and public holidays. The consultant does a 24-h period of on-call, from 7 pm to 7 pm. They are on remote call from 7 pm to 7 am and are in the hospital from 7 am to 7 pm with their sole responsibility being to the ASU. The ASU has a day team with two registrars, two residents and a nurse practitioner. All patients are admitted and stay in the ASU until discharge or transfer to other units. Handover of the patients at the end of each day is facilitated by a comprehensive ASU database. The implementation of the ASU at Nepean Hospital has improved the timing of assessment by the surgical unit. There has been significant improvement in the timing of operative management, with an increased number and proportion of cases being done during daylight hours, with an associated reduction in the proportion of cases performed afterhours. There is greater trainee supervision with regard to patient assessment, management and operative procedures. There has been an improvement in the consultants' work conditions. The ASU provides an excellent training opportunity for surgical trainees, residents and interns in the assessment and management of acute surgical conditions.

  15. Regional oligodendrocytopathy and astrocytopathy precede myelin loss and blood-brain barrier disruption in a murine model of osmotic demyelination syndrome.

    PubMed

    Bouchat, Joanna; Couturier, Bruno; Marneffe, Catherine; Gankam-Kengne, Fabrice; Balau, Benoît; De Swert, Kathleen; Brion, Jean-Pierre; Poncelet, Luc; Gilloteaux, Jacques; Nicaise, Charles

    2018-03-01

    The osmotic demyelination syndrome (ODS) is a non-primary inflammatory disorder of the central nervous system myelin that is often associated with a precipitous rise of serum sodium concentration. To investigate the physiopathology of ODS in vivo, we generated a novel murine model based on the abrupt correction of chronic hyponatremia. Accordingly, ODS mice developed impairments in brainstem auditory evoked potentials and in grip strength. At 24 hr post-correction, oligodendrocyte markers (APC and Cx47) were downregulated, prior to any detectable demyelination. Oligodendrocytopathy was temporally and spatially correlated with the loss of astrocyte markers (ALDH1L1 and Cx43), and both with the brain areas that will develop demyelination. Oligodendrocytopathy and astrocytopathy were confirmed at the ultrastructural level and culminated with necroptotic cell death, as demonstrated by pMLKL immunoreactivity. At 48 hr post-correction, ODS brains contained pathognomonic demyelinating lesions in the pons, mesencephalon, thalamus and cortical regions. These damages were accompanied by blood-brain barrier (BBB) leakages. Expression levels of IL-1β, FasL, TNFRSF6 and LIF factors were significantly upregulated in the ODS lesions. Quiescent microglial cells type A acquired an activated type B morphology within 24 hr post-correction, and reached type D at 48 hr. In conclusion, this murine model of ODS reproduces the CNS demyelination observed in human pathology and indicates ambiguous causes that is regional vulnerability of oligodendrocytes and astrocytes, while it discards BBB disruption as a primary cause of demyelination. This study also raises new queries about the glial heterogeneity in susceptible brain regions as well as about the early microglial activation associated with ODS. © 2017 Wiley Periodicals, Inc.

  16. Targeted destruction of murine macrophage cells with bioconjugated gold nanorods

    NASA Astrophysics Data System (ADS)

    Pissuwan, Dakrong; Valenzuela, Stella M.; Killingsworth, Murray C.; Xu, Xiaoda; Cortie, Michael B.

    2007-12-01

    Gold nanorods manifest a readily tunable longitudinal plasmon resonance with light and consequently have potential for use in photothermal therapeutics. Recent work by others has shown how gold nanoshells and rods can be used to target cancer cells, which can then be destroyed using relatively high power laser radiation (˜1×105 to 1×1010 W/m2). Here we extend this concept to demonstrate how gold nanorods can be modified to bind to target macrophage cells, and show that high intensity laser radiation is not necessary, with even 5×102 W/m2 being sufficient, provided that a total fluence of ˜30 J/cm2 is delivered. We used the murine cell line RAW 264.7 and the monoclonal antibody CD11b, raised against murine macrophages, as our model system and a 5 mW solid state diode laser as our energy source. Exposure of the cells labeled with gold nanorods to a laser fluence of 30 J/cm2 resulted in 81% cell death compared to only 0.9% in the control, non-labeled cells.

  17. Components of nurse innovation: a model from acute care hospitals.

    PubMed

    Neidlinger, S H; Drews, N; Hukari, D; Bartleson, B J; Abbott, F K; Harper, R; Lyon, J

    1992-12-01

    Components that promote nurse innovation in acute care hospitals are explicated in the Acute Care Nursing Innovation Model. Grounded in nursing care delivery systems and excellent management-organizations perspectives, nurse executives and 30 nurse "intrapreneurs" from 10 innovative hospitals spanning the United States shared their experiences and insights through semistructured, tape-recorded telephone interviews. Guided by interpretive interactionist strategies, the essential components, characteristics, and interrelationships are conceptualized and described so that others may be successful in their innovative endeavors. Successful innovation is dependent on the fit between and among the components; the better the fit, the more likely the innovation will succeed.

  18. Split Tolerance in a Murine Model of Heterotopic En Bloc Chest Wall Transplantation

    PubMed Central

    Oh, Byoungchol; Furtmüller, Georg J.; Malek, Veronika; Fryer, Madeline L.; Brayton, Cory; Walczak, Piotr; Janowski, Miroslaw

    2017-01-01

    Background: Congenital and acquired chest wall deformities represent a significant challenge to functional reconstruction and may impact feasibility of heart transplantation for patients with end-stage organ failure. In the recent past, the concept of replacing like-with-like tissue by using vascularized composite allografts (VCA) has been enthusiastically employed for reconstruction of complex tissue defects. Methods: In this study, we introduce a novel murine model for en bloc chest wall, heart, and thymus transplantation and thereby the use of complex tissue allografts for reconstruction of both chest wall defects and also end-stage organ failure. Additionally, this model allows us to study the features of combined vascularized bone marrow (VBM), thymus, and heart transplantation on allograft survival and function. Heterotopic chest wall, thymus, and heart transplants were performed in untreated syngeneic and allogeneic combinations and in allogeneic combinations treated with costimulation blockade (CTLA4-Ig and MR-1). Results: Indefinite (ie, 150 d, N = 3) graft survival was observed in syngeneic controls. In untreated recipients of allogeneic grafts, the skin component was rejected after 10 (±1) days, whereas rejection of the heart occurred after 13 (± 1) days (N = 3). Costimulation blockade treatment prolonged survival of the heart and chest wall component (130 d, N = 3) as well as the VBM niche as evidenced by donor-specific chimerism (average: 2.35 ± 1.44%), whereas interestingly, the skin component was rejected after 13 (±1) days. Conclusion: Thus, this novel microsurgical model of VCA combined with solid organ transplantation is technically feasible and results in split tolerance when treated with costimulatory blockade. PMID:29632774

  19. Stem cells for murine interstitial cells of cajal suppress cellular immunity and colitis via prostaglandin E2 secretion.

    PubMed

    Dave, Maneesh; Hayashi, Yujiro; Gajdos, Gabriella B; Smyrk, Thomas C; Svingen, Phyllis A; Kvasha, Sergiy M; Lorincz, Andrea; Dong, Haidong; Faubion, William A; Ordog, Tamas

    2015-05-01

    After allogeneic transplantation, murine stem cells (SCs) for interstitial cells of Cajal (ICCs), electrical pacemaker, and neuromodulator cells of the gut, were incorporated into gastric ICC networks, indicating in vivo immunosuppression. Immunosuppression is characteristic of bone marrow- and other non-gut-derived mesenchymal stem cells (MSCs), which are emerging as potential therapeutic agents against autoimmune diseases, including inflammatory bowel disease. Therefore, we investigated whether gut-derived ICC-SCs could also mitigate experimental colitis and studied the mechanisms of ICC-SC-mediated immunosuppression in relation to MSC-induced pathways. Isolated ICC-SCs were studied by transcriptome profiling, cytokine assays, flow cytometry, mixed lymphocyte reaction, and T-cell proliferation assay. Mice with acute and chronic colitis induced by dextran sulfate sodium and T-cell transfer, respectively, were administered ICC-SCs intraperitoneally and evaluated for disease activity by clinical and pathological assessment and for ICC-SC homing by live imaging. Unlike strain-matched dermal fibroblasts, intraperitoneally administered ICC-SCs preferentially homed to the colon and reduced the severity of both acute and chronic colitis assessed by clinical and blind pathological scoring. ICC-SCs profoundly suppressed T-cell proliferation in vitro. Similar to MSCs, ICC-SCs strongly expressed cyclooxygenase 1/2 and basally secreted prostaglandin E2. Indomethacin, a cyclooxygenase inhibitor, countered the ICC-SC-mediated suppression of T-cell proliferation. In contrast, we found no role for regulatory T-cell-, programmed death receptor-, and transforming growth factor-β-mediated mechanisms reported in MSCs; and transcriptome profiling did not support a relationship between ICC-SCs and MSCs. Murine ICC-SCs belong to a class different from MSCs and potently mitigate experimental colitis via prostaglandin E2-mediated immunosuppression. Copyright © 2015 AGA Institute

  20. Detection of murine cytomegalovirus DNA in circulating leukocytes harvested during acute infection of mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bale, J.F. Jr.; O'Neil, M.E.

    1989-06-01

    The authors used virus assay and in situ hybridization with a cloned fragment of the murine cytomegalovirus (MCMV) genome to study MCMV infection of circulating leukocytes harvested from 3-week-old BALB/c, C57BL/6, and C3H mice infected with MCMV intraperitoneally. Infectious virus or MCMV DNA was detected in leukocytes on days 1 through 21 of infection in BALB/c mice and on days 3 through 7 in C57BL/6 mice. On days 5 and 7, MCMV DNA or infectious virus was detected in the leukocytes of 17 (94%) of 18 BALB/c mice and 10 (59%) of 17 C57BL/6 mice. In both strains infection peakedmore » on days 5 and 7, when as many as 0.01 to 0.1% of the circulating leukocytes contained MCMV DNA. In C3H mice, however, infectious virus was rarely recovered from leukocyte fractions and MCMV DNA was detected in the circulating leukocytes of only one animal. Circulating leukocytes may have an important role in the dissemination of CMV infections in susceptible hosts.« less