Science.gov

Sample records for acute trypanosoma cruzi

  1. [Detection of Trypanosoma cruzi DNA in the placenta and fetuses of mice with Chagasic acute infection].

    PubMed

    Alarcón, Maritza; Pérez, Mary Carmen; Villarreal, Juana; Araujo, Sonia; Goncalves, Loredana; González, Anajulia; Moreno, Elio; Lugo-Yarbuh, Ana

    2009-09-01

    The objective of the present study was to detect the presence of Trypanosoma cruzi DNA in the placenta and fetal tissues of NMRI mice (Mus musculus) inoculated with 22 x 10(3) trypomastigotes metacyclic of the M/HOM/BRA/53/Y strain by intraperitoneal route. Mice were pregnant in the acute phase of the infection. The course of patent parasitemia by T. cruzi was evaluated before mating and during pregnancy. At day twenty of gestation, animals were sacrificed and the fetuses and their placentas were removed to evaluate T. cruzi infection. Samples of fetal placenta, heart and skeletal muscle were fixed in 10%, formalin, included in paraffin and stained with hematoxilin and eosin (HE). The histopathological study of sections of fetal tissues revealed inflammatory infiltrates with mononuclear and polymorphonuclear cells and without parasitism in these tissues. The amplification of T. cruzi DNA by Polymerase Chain Reaction (PCR) showed a positive reaction in 18% of placental tissue of pregnant infected mice. The samples of heart and skeletal muscle of the fetuses of mothers infected with T. cruzi did not show the presence T. cruzi DNA. The placenta and skeletal muscle of the fetuses analyzed by Peroxidase anti Peroxidase inmunostaining showed T. cruzi antigens in those tissues. Negative results by PCR in fetal tissues might be related with the virulence and tropism associated with the biological and genetic characteristic Of the T. cruzi strain used in the experimental infection of female mice. PMID:19961056

  2. Oral Exposure to Phytomonas serpens Attenuates Thrombocytopenia and Leukopenia during Acute Infection with Trypanosoma cruzi

    PubMed Central

    da Silva, Rosiane V.; Malvezi, Aparecida D.; Augusto, Leonardo da Silva; Kian, Danielle; Tatakihara, Vera Lúcia H.; Yamauchi, Lucy M.; Yamada-Ogatta, Sueli F.; Rizzo, Luiz V.; Schenkman, Sergio; Pinge-Filho, Phileno

    2013-01-01

    Mice infected with Trypanosoma cruzi, the agent of Chagas disease, rapidly develop anemia and thrombocytopenia. These effects are partially promoted by the parasite trans-sialidase (TS), which is shed in the blood and depletes sialic acid from the platelets, inducing accelerated platelet clearance and causing thrombocytopenia during the acute phase of disease. Here, we demonstrate that oral immunization of C57BL/6 mice with Phytomonas serpens, a phytoflagellate parasite that shares common antigens with T. cruzi but has no TS activity, reduces parasite burden and prevents thrombocytopenia and leukopenia. Immunization also reduces platelet loss after intraperitoneal injection of TS. In addition, passive transfer of immune sera raised in mice against P. serpens prevented platelet clearance. Thus, oral exposure to P. serpens attenuates the progression of thrombocytopenia induced by TS from T. cruzi. These findings are not only important for the understanding of the pathogenesis of T. cruzi infection but also for developing novel approaches of intervention in Chagas disease. PMID:23844182

  3. Oral exposure to Phytomonas serpens attenuates thrombocytopenia and leukopenia during acute infection with Trypanosoma cruzi.

    PubMed

    da Silva, Rosiane V; Malvezi, Aparecida D; Augusto, Leonardo da Silva; Kian, Danielle; Tatakihara, Vera Lúcia H; Yamauchi, Lucy M; Yamada-Ogatta, Sueli F; Rizzo, Luiz V; Schenkman, Sergio; Pinge-Filho, Phileno

    2013-01-01

    Mice infected with Trypanosoma cruzi, the agent of Chagas disease, rapidly develop anemia and thrombocytopenia. These effects are partially promoted by the parasite trans-sialidase (TS), which is shed in the blood and depletes sialic acid from the platelets, inducing accelerated platelet clearance and causing thrombocytopenia during the acute phase of disease. Here, we demonstrate that oral immunization of C57BL/6 mice with Phytomonas serpens, a phytoflagellate parasite that shares common antigens with T. cruzi but has no TS activity, reduces parasite burden and prevents thrombocytopenia and leukopenia. Immunization also reduces platelet loss after intraperitoneal injection of TS. In addition, passive transfer of immune sera raised in mice against P. serpens prevented platelet clearance. Thus, oral exposure to P. serpens attenuates the progression of thrombocytopenia induced by TS from T. cruzi. These findings are not only important for the understanding of the pathogenesis of T. cruzi infection but also for developing novel approaches of intervention in Chagas disease. PMID:23844182

  4. Mechanisms of vascular dysfunction in acute phase of Trypanosoma cruzi infection in mice.

    PubMed

    Silva, Josiane F; Capettini, Luciano S A; da Silva, José F P; Sales-Junior, Policarpo; Cruz, Jader Santos; Cortes, Steyner F; Lemos, Virginia S

    2016-07-01

    Vascular disorders have a direct link to mortality in the acute phase of Trypanosoma cruzi infection. However, the underlying mechanisms of vascular dysfunction in this phase are largely unknown. We hypothesize that T. cruzi invades endothelial cells causing dysfunction in contractility and relaxation of the mouse aorta. Immunodetection of T. cruzi antigen TcRBP28 was observed in endothelial cells. There was a decreased endothelial nitric oxide synthase (eNOS)-derived NO-dependent vascular relaxation, and increased vascular contractility accompanied by augmented superoxide anions production. Endothelial removal, inhibition of cyclooxygenase 2 (COX-2), blockade of thromboxane A2 (TXA2) TP receptors, and scavenger of superoxide normalized the contractile response. COX-2, thromboxane synthase, inducible nitric oxide synthase (iNOS), p65 NFκB subunit and p22(phox) of NAD(P)H oxidase (NOX) subunit expressions were increased in vessels of chagasic animals. Serum TNF-α was augmented. Basal NO production, and nitrotyrosine residue expression were increased. It is concluded that T. cruzi invades mice aorta endothelial cells and increases TXA2/TP receptor/NOX-derived superoxide formation. Alongside, T. cruzi promotes systemic TNF-α increase, which stimulates iNOS expression in vessels and nitrosative stress. In light of the heart failure that develops in the chronic phase of the disease, to understand the mechanism involved in the increased contractility of the aorta is crucial. PMID:26988253

  5. Enhanced resistance to acute infection with Trypanosoma cruzi in mice treated with an interferon inducer.

    PubMed Central

    James, S L; Kipnis, T L; Sher, A; Hoff, R

    1982-01-01

    For an exploration of the effects of interferon-inducible resistance mechanisms in acute American trypanosomiasis, the synthetic interferon inducer tilerone hydrochloride was administered to mice of the C57BL/6J strain, which is highly resistant to Trypanosoma cruzi, 18 to 24 h before infection with a potentially lethal dose of bloodstream trypomastigotes. Although all of the control mice died within 30 days of the acute infection, approximately 50% of the tilerone-treated animals were able to survive indefinitely (P less than 0.05). The tilerone-treated mice demonstrated significant levels of serum interferon and splenic natural killer cells at the time of infection. Macrophages isolated from the peritoneal cavities of tilerone-treated C57BL/6J mice appeared to kill significant numbers of trypanosomes during 2 to 3 days of in vitro culture, indicating that activated macrophages may contribute to the enhanced resistance to T. cruzi infection in these mice. Beige mice treated with tilerone did not survive T. cruzi infection as well as tilerone-treated heterozygotes did, suggesting a role for natural killer cells in interferon-induced resistance. These results suggest that interferon or effector mechanisms enhanced by interferon induction can play a significant role in influencing resistance to T. cruzi infection. PMID:6173326

  6. Trypanosoma cruzi Entrance through Systemic or Mucosal Infection Sites Differentially Modulates Regional Immune Response Following Acute Infection in Mice

    PubMed Central

    de Meis, Juliana; Barreto de Albuquerque, Juliana; Silva dos Santos, Danielle; Farias-de-Oliveira, Désio Aurélio; Berbert, Luiz Ricardo; Cotta-de-Almeida, Vinícius; Savino, Wilson

    2013-01-01

    Acute Chagas disease is characterized by a systemic infection that leads to the strong activation of the adaptive immune response. Outbreaks of oral contamination by the infective protozoan Trypanosoma cruzi are frequent in Brazil and other Latin American countries, and an increased severity of clinical manifestations and mortality is observed in infected patients. These findings have elicited questions about the specific responses triggered after T. cruzi entry via mucosal sites, possibly modulating local immune mechanisms, and further impacting regional and systemic immunity. Here, we provide evidence for the existence of differential lymphoid organ responses in experimental models of acute T. cruzi infection. PMID:23898334

  7. Macrophage Migration Inhibitory Factor Contributes to Host Defense against Acute Trypanosoma cruzi Infection

    PubMed Central

    Reyes, José L.; Terrazas, Luis I.; Espinoza, Bertha; Cruz-Robles, David; Soto, Virgilia; Rivera-Montoya, Irma; Gómez-García, Lorena; Snider, Heidi; Satoskar, Abhay R.; Rodríguez-Sosa, Miriam

    2006-01-01

    Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine that is involved in the host defense against several pathogens. Here we used MIF−/− mice to determine the role of endogenous MIF in the regulation of the host immune response against Trypanosoma cruzi infection. MIF−/− mice displayed high levels of blood and tissue parasitemia, developed severe heart and skeletal muscle immunopathology, and succumbed to T. cruzi infection faster than MIF+/+ mice. The enhanced susceptibility of MIF−/− mice to T. cruzi was associated with reduced levels of proinflammatory cytokines, such as tumor necrosis factor alpha, interleukin-12 (IL-12), IL-18, gamma interferon (IFN-γ), and IL-1β, in their sera and reduced production of IL-12, IFN-γ, and IL-4 by spleen cells during the early phase of infection. At all time points, antigen-stimulated splenocytes from MIF+/+ and MIF−/− mice produced comparable levels of IL-10. MIF−/− mice also produced significantly less Th1-associated antigen-specific immunoglobulin G2a (IgG2a) throughout the infection, but both groups produced comparable levels of Th2-associated IgG1. Lastly, inflamed hearts from T. cruzi-infected MIF−/− mice expressed increased transcripts for IFN-γ, but fewer for IL-12 p35, IL-12 p40, IL-23, and inducible nitric oxide synthase, compared to MIF+/+ mice. Taken together, our findings show that MIF plays a role in controlling acute T. cruzi infection. PMID:16714544

  8. Influence of Parasite Load on Renal Function in Mice Acutely Infected with Trypanosoma cruzi

    PubMed Central

    Parreira, Ricardo Cambraia; Miguel, Renata Botelho; de Paula Rogerio, Alexandre; Oliveira, Carlo Jose Freire; Chica, Javier Emilio Lazo

    2013-01-01

    Background Chagas disease is a neglected tropical disease caused by Trypanosoma cruzi. Despite the vast number of studies evaluating the pathophysiological mechanisms of the disease, the influence of parasite burden on kidney lesions remains unclear. Thus, the main goal of this work was to evaluate the effect of T. cruzi infection on renal function and determine whether there was a correlation between parasite load and renal injury using an acute experimental model of the disease. Methodology/Principal Findings Low, medium and high parasite loads were generated by infecting C57BL/6 mice with 300 (low), 3,000 (medium) or 30,000 (high) numbers of “Y” strain trypomastigotes. We found that mice infected with T. cruzi trypomastigotes show increased renal injury. The infection resulted in reduced urinary excretion and creatinine clearance. We also observed a marked elevation in the ratio of urine volume to kidney and body weight, blood urea nitrogen, chloride ion, nitric oxide, pro- and anti-inflammatory cytokines and the number of leukocytes in the blood and/or renal tissues of infected mice. Additionally, we observed the presence of the parasite in the cortical/medullary and peri-renal region, an increase of inflammatory infiltrate and of vascular permeability of the kidney. Overall, most renal changes occurred mainly in animals infected with high parasitic loads. Conclusions/Significance These data demonstrate that T. cruzi impairs kidney function, and this impairment is more evident in mice infected with high parasitic loads. Moreover, these data suggest that, in addition to the extensively studied cardiovascular effects, renal injury should be regarded as an important indicator for better understanding the pan-infectivity of the parasite and consequently for understanding the disease in experimental models. PMID:23951243

  9. Adoptive transfer of resistance to acute Trypanosoma cruzi infection with T-lymphocyte-enriched spleen cells.

    PubMed Central

    Reed, S G

    1980-01-01

    Inbred C57BL/10 mice immunized with live culture forms of Trypanosoma cruzi were resistant to acute infection after challenge with bloodstream forms. Splenic leukocytes or serum from immunized mice were transferred to syngeneic recipients 2 days before of 2 days after challenge. Protection was not observed in recipients of serum, although the serum contained high levels of agglutinating antibody. Unfractionated splenic leukocytes from immunized donors conferred partial protection, and preparations enriched for T lymphocytes were significantly more effective than preparations enriched for B lymphocytes. Recipients of T-lymphocyte-enriched spleen cells had significantly higher survival times and significantly lower parasitemias than did recipients of B-lymphocyte-enriched spleen cells. PMID:6772557

  10. Intensification of acute Trypanosoma cruzi myocarditis in BALB/c mice pretreated with low doses of cyclophosphamide or gamma irradiation.

    PubMed Central

    Silva, J. S.; Rossi, M. A.

    1990-01-01

    This study was carried out to examine the development of acute myocarditis in Trypanosoma cruzi-infected BALB/c mice after they were treated with low doses of cylophosphamide or gamma irradiation. It has been claimed that, in mice, such treatments temporarily interfere with the host-immune suppressor network, but cause no immunodepression. A severe extensive and diffuse acute myocarditis developed in the treated mice infected with T. cruzi, whereas a slight to moderate focal or occasionally diffuse acute myocarditis developed in control mice infected with T. cruzi. It is very likely that the transient abolition of T-suppressor activity facilitates the anti-myocardium immune response in the acute phase of experimental Chagas' disease in mice. Images Fig. 3 PMID:2138024

  11. Acute heart inflammation: ultrastructural and functional aspects of macrophages elicited by Trypanosoma cruzi infection

    PubMed Central

    Melo, Rossana C N

    2009-01-01

    Abstract The heart is the main target organ of the parasite Trypanosoma cruzi, the causal agent of Chagas' disease, a significant public health issue and still a major cause of morbidity and mortality in Latin America. During the acute disease, tissue damage in the heart is related to the intense myocardium parasitism. To control parasite multiplication, cells of the monocytic lineage are highly mobilized. In response to inflammatory and immune stimulation, an intense migration and extravasation of monocytes occurs from the bloodstream into heart. Monocyte differentiation leads to the formation of tissue phagocytosing macrophages, which are strongly activated and direct host defence. Newly elicited monocyte-derived macrophages both undergo profound physiological changes and display morphological heterogeneity that greatly differs from originally non-inflammatory macrophages, and underlie their functional activities as potent inflammatory cells. Thus, activated macrophages play a critical role in the outcome of parasite infection. This review covers functional and ultrastructural aspects of heart inflammatory macrophages triggered by the acute Chagas' disease, including recent discoveries on morphologically distinct, inflammation-related organelles, termed lipid bodies, which are actively formed in vivo within macrophages in response to T. cruzi infection. These findings are defining a broader role for lipid bodies as key markers of macrophage activation during innate immune responses to infectious diseases and attractive targets for novel anti-inflammatory therapies. Modulation of macrophage activation may be central in providing therapeutic benefits for Chagas' disease control. PMID:18624767

  12. Distantiae Transmission of Trypanosoma cruzi: A New Epidemiological Feature of Acute Chagas Disease in Brazil

    PubMed Central

    Xavier, Samanta Cristina das Chagas; Roque, André Luiz Rodrigues; Bilac, Daniele; de Araújo, Vitor Antônio Louzada; Neto, Sócrates Fraga da Costa; Lorosa, Elias Seixas; da Silva, Luiz Felipe Coutinho Ferreira; Jansen, Ana Maria

    2014-01-01

    Background The new epidemiological scenario of orally transmitted Chagas disease that has emerged in Brazil, and mainly in the Amazon region, needs to be addressed with a new and systematic focus. Belém, the capital of Pará state, reports the highest number of acute Chagas disease (ACD) cases associated with the consumption of açaí juice. Methodology/Principal Findings The wild and domestic enzootic transmission cycles of Trypanosoma cruzi were evaluated in the two locations (Jurunas and Val-de Cães) that report the majority of the autochthonous cases of ACD in Belém city. Moreover, we evaluated the enzootic cycle on the three islands that provide most of the açaí fruit that is consumed in these localities. We employed parasitological and serological tests throughout to evaluate infectivity competence and exposure to T. cruzi. In Val-de-Cães, no wild mammal presented positive parasitological tests, and 56% seroprevalence was observed, with low serological titers. Three of 14 triatomines were found to be infected (TcI). This unexpected epidemiological picture does not explain the high number of autochthonous ACD cases. In Jurunas, the cases of ACD could not be autochthonous because of the absence of any enzootic cycle of T. cruzi. In contrast, in the 3 island areas from which the açaí fruit originates, 66.7% of wild mammals and two dogs displayed positive hemocultures, and 15.6% of triatomines were found to be infected by T. cruzi. Genotyping by mini-exon gene and PCR-RFLP (1f8/Akw21I) targeting revealed that the mammals and triatomines from the islands harbored TcI and Trypanosoma rangeli in single and mixed infections. Conclusion/Significance These findings show that cases of Chagas disease in the urban area of Belém may be derived from infected triatomines coming together with the açaí fruits from distant islands. We term this new epidemiological feature of Chagas disease as “Distantiae transmission”. PMID:24854494

  13. Global Metabolomic Profiling of Acute Myocarditis Caused by Trypanosoma cruzi Infection

    PubMed Central

    Gironès, Núria; Carbajosa, Sofía; Guerrero, Néstor A.; Poveda, Cristina; Chillón-Marinas, Carlos; Fresno, Manuel

    2014-01-01

    Chagas disease is caused by Trypanosoma cruzi infection, being cardiomyopathy the more frequent manifestation. New chemotherapeutic drugs are needed but there are no good biomarkers for monitoring treatment efficacy. There is growing evidence linking immune response and metabolism in inflammatory processes and specifically in Chagas disease. Thus, some metabolites are able to enhance and/or inhibit the immune response. Metabolite levels found in the host during an ongoing infection could provide valuable information on the pathogenesis and/or identify deregulated metabolic pathway that can be potential candidates for treatment and being potential specific biomarkers of the disease. To gain more insight into those aspects in Chagas disease, we performed an unprecedented metabolomic analysis in heart and plasma of mice infected with T. cruzi. Many metabolic pathways were profoundly affected by T. cruzi infection, such as glucose uptake, sorbitol pathway, fatty acid and phospholipid synthesis that were increased in heart tissue but decreased in plasma. Tricarboxylic acid cycle was decreased in heart tissue and plasma whereas reactive oxygen species production and uric acid formation were also deeply increased in infected hearts suggesting a stressful condition in the heart. While specific metabolites allantoin, kynurenine and p-cresol sulfate, resulting from nucleotide, tryptophan and phenylalanine/tyrosine metabolism, respectively, were increased in heart tissue and also in plasma. These results provide new valuable information on the pathogenesis of acute Chagas disease, unravel several new metabolic pathways susceptible of clinical management and identify metabolites useful as potential specific biomarkers for monitoring treatment and clinical severity in patients. PMID:25412247

  14. Global metabolomic profiling of acute myocarditis caused by Trypanosoma cruzi infection.

    PubMed

    Gironès, Núria; Carbajosa, Sofía; Guerrero, Néstor A; Poveda, Cristina; Chillón-Marinas, Carlos; Fresno, Manuel

    2014-11-01

    Chagas disease is caused by Trypanosoma cruzi infection, being cardiomyopathy the more frequent manifestation. New chemotherapeutic drugs are needed but there are no good biomarkers for monitoring treatment efficacy. There is growing evidence linking immune response and metabolism in inflammatory processes and specifically in Chagas disease. Thus, some metabolites are able to enhance and/or inhibit the immune response. Metabolite levels found in the host during an ongoing infection could provide valuable information on the pathogenesis and/or identify deregulated metabolic pathway that can be potential candidates for treatment and being potential specific biomarkers of the disease. To gain more insight into those aspects in Chagas disease, we performed an unprecedented metabolomic analysis in heart and plasma of mice infected with T. cruzi. Many metabolic pathways were profoundly affected by T. cruzi infection, such as glucose uptake, sorbitol pathway, fatty acid and phospholipid synthesis that were increased in heart tissue but decreased in plasma. Tricarboxylic acid cycle was decreased in heart tissue and plasma whereas reactive oxygen species production and uric acid formation were also deeply increased in infected hearts suggesting a stressful condition in the heart. While specific metabolites allantoin, kynurenine and p-cresol sulfate, resulting from nucleotide, tryptophan and phenylalanine/tyrosine metabolism, respectively, were increased in heart tissue and also in plasma. These results provide new valuable information on the pathogenesis of acute Chagas disease, unravel several new metabolic pathways susceptible of clinical management and identify metabolites useful as potential specific biomarkers for monitoring treatment and clinical severity in patients. PMID:25412247

  15. Nucleologenesis in Trypanosoma cruzi.

    PubMed

    Nepomuceno-Mejía, Tomás; Lara-Martínez, Reyna; Hernández, Roberto; Segura-Valdez, María de Lourdes; Jiménez-García, Luis F

    2016-06-01

    Nucleolar assembly is a cellular event that requires the synthesis and processing of ribosomal RNA, in addition to the participation of pre-nucleolar bodies (PNBs) at the end of mitosis. In mammals and plants, nucleolar biogenesis has been described in detail, but in unicellular eukaryotes it is a poorly understood process. In this study, we used light and electron microscopy cytochemical techniques to investigate the distribution of nucleolar components in the pathway of nucleolus rebuilding during closed cell division in epimastigotes of Trypanosoma cruzi, the etiologic agent of American trypanosomiasis. Silver impregnation specific for nucleolar organizer regions and an ethylenediaminetetraacetic acid regressive procedure to preferentially stain ribonucleoprotein revealed the conservation and dispersion of nucleolar material throughout the nucleoplasm during cell division. Furthermore, at the end of mitosis, the argyrophilic proteins were concentrated in the nucleolar organizer region. Unexpectedly, accumulation of nucleolar material in the form of PNBs was not visualized. We suggest that formation of the nucleolus in epimastigotes of T. cruzi occurs by a process that does not require the concentration of nucleolar material within intermediate nuclear bodies such as mammalian and plant PNBs. PMID:27126372

  16. Evasion of the Immune Response by Trypanosoma cruzi during Acute Infection.

    PubMed

    Cardoso, Mariana S; Reis-Cunha, João Luís; Bartholomeu, Daniella C

    2015-01-01

    Trypanosoma cruzi is the etiologic agent of Chagas disease, a neglected tropical disease that affects millions of people mainly in Latin America. To establish a life-long infection, T. cruzi must subvert the vertebrate host's immune system, using strategies that can be traced to the parasite's life cycle. Once inside the vertebrate host, metacyclic trypomastigotes rapidly invade a wide variety of nucleated host cells in a membrane-bound compartment known as the parasitophorous vacuole, which fuses to lysosomes, originating the phagolysosome. In this compartment, the parasite relies on a complex network of antioxidant enzymes to shield itself from lysosomal oxygen and nitrogen reactive species. Lysosomal acidification of the parasitophorous vacuole is an important factor that allows trypomastigote escape from the extremely oxidative environment of the phagolysosome to the cytoplasm, where it differentiates into amastigote forms. In the cytosol of infected macrophages, oxidative stress instead of being detrimental to the parasite, favors amastigote burden, which then differentiates into bloodstream trypomastigotes. Trypomastigotes released in the bloodstream upon the rupture of the host cell membrane express surface molecules, such as calreticulin and GP160 proteins, which disrupt initial and key components of the complement pathway, while others such as glycosylphosphatidylinositol-mucins stimulate immunoregulatory receptors, delaying the progression of a protective immune response. After an immunologically silent entry at the early phase of infection, T. cruzi elicits polyclonal B cell activation, hypergammaglobulinemia, and unspecific anti-T. cruzi antibodies, which are inefficient in controlling the infection. Additionally, the coexpression of several related, but not identical, epitopes derived from trypomastigote surface proteins delays the generation of T. cruzi-specific neutralizing antibodies. Later in the infection, the establishment of an anti-T. cruzi CD8

  17. Evasion of the Immune Response by Trypanosoma cruzi during Acute Infection

    PubMed Central

    Cardoso, Mariana S.; Reis-Cunha, João Luís; Bartholomeu, Daniella C.

    2016-01-01

    Trypanosoma cruzi is the etiologic agent of Chagas disease, a neglected tropical disease that affects millions of people mainly in Latin America. To establish a life-long infection, T. cruzi must subvert the vertebrate host’s immune system, using strategies that can be traced to the parasite’s life cycle. Once inside the vertebrate host, metacyclic trypomastigotes rapidly invade a wide variety of nucleated host cells in a membrane-bound compartment known as the parasitophorous vacuole, which fuses to lysosomes, originating the phagolysosome. In this compartment, the parasite relies on a complex network of antioxidant enzymes to shield itself from lysosomal oxygen and nitrogen reactive species. Lysosomal acidification of the parasitophorous vacuole is an important factor that allows trypomastigote escape from the extremely oxidative environment of the phagolysosome to the cytoplasm, where it differentiates into amastigote forms. In the cytosol of infected macrophages, oxidative stress instead of being detrimental to the parasite, favors amastigote burden, which then differentiates into bloodstream trypomastigotes. Trypomastigotes released in the bloodstream upon the rupture of the host cell membrane express surface molecules, such as calreticulin and GP160 proteins, which disrupt initial and key components of the complement pathway, while others such as glycosylphosphatidylinositol-mucins stimulate immunoregulatory receptors, delaying the progression of a protective immune response. After an immunologically silent entry at the early phase of infection, T. cruzi elicits polyclonal B cell activation, hypergammaglobulinemia, and unspecific anti-T. cruzi antibodies, which are inefficient in controlling the infection. Additionally, the coexpression of several related, but not identical, epitopes derived from trypomastigote surface proteins delays the generation of T. cruzi-specific neutralizing antibodies. Later in the infection, the establishment of an anti-T. cruzi

  18. Role of CCL3/MIP-1α and CCL5/RANTES during acute Trypanosoma cruzi infection in rats

    PubMed Central

    Roffê, Ester; Oliveira, Fabiano; Souza, Adriano L.S.; Pinho, Vanessa; Souza, Danielle G.; Souza, Patrícia R.S.; Russo, Remo C.; Santiago, Helton C.; Romanha, Álvaro J.; Tanowitz, Herbert B.; Valenzuela, Jesus G.; Teixeira, Mauro M.

    2011-01-01

    Chagas’ disease is caused by Trypanosoma cruzi infection and is characterized by chronic fibrogenic inflammation and heart dysfunction. Chemokines are produced during infection and drive tissue inflammation. In rats, acute infection is characterized by intense myocarditis and regression of inflammation after control of parasitism. We investigated the role of CCL3 and CCL5 during infection by using DNA vaccination encoding for each chemokine separately or simultaneously. MetRANTES treatment was used to evaluate the role of CCR1 and CCR5, the receptors for CCL3 and CCL5. Vaccination with CCL3 or CCL5 increased heart parasitism and decreased local IFN-γ production, but did not influence intensity of inflammation. Simultaneous treatment with both plasmids or treatment with MetRANTES enhanced cardiac inflammation, fibrosis and parasitism. In conclusion, chemokines CCL3 and CCL5 are relevant, but not essential, for control of T. cruzi infection in rats. On the other hand, combined blockade of these chemokines or their receptors enhanced tissue inflammation and fibrosis, clearly contrasting with available data in murine models of T. cruzi infection. These data reinforce the important role of chemokines during T. cruzi infection but suggest that caution must be taken when expanding the therapeutic modulation of the chemokine system in mice to the human infection. PMID:20452453

  19. Limited Ability of Posaconazole To Cure both Acute and Chronic Trypanosoma cruzi Infections Revealed by Highly Sensitive In Vivo Imaging

    PubMed Central

    Francisco, Amanda Fortes; Lewis, Michael D.; Jayawardhana, Shiromani; Taylor, Martin C.; Chatelain, Eric

    2015-01-01

    The antifungal drug posaconazole has shown significant activity against Trypanosoma cruzi in vitro and in experimental murine models. Despite this, in a recent clinical trial it displayed limited curative potential. Drug testing is problematic in experimental Chagas disease because of difficulties in demonstrating sterile cure, particularly during the chronic stage of infection when parasite burden is extremely low and tissue distribution is ill defined. To better assess posaconazole efficacy against acute and chronic Chagas disease, we have exploited a highly sensitive bioluminescence imaging system which generates data with greater accuracy than other methods, including PCR-based approaches. Mice inoculated with bioluminescent T. cruzi were assessed by in vivo and ex vivo imaging, with cyclophosphamide-induced immunosuppression used to enhance the detection of relapse. Posaconazole was found to be significantly inferior to benznidazole as a treatment for both acute and chronic T. cruzi infections. Whereas 20 days treatment with benznidazole was 100% successful in achieving sterile cure, posaconazole failed in almost all cases. Treatment of chronic infections with posaconazole did however significantly reduce infection-induced splenomegaly, even in the absence of parasitological cure. The imaging-based screening system also revealed that adipose tissue is a major site of recrudescence in mice treated with posaconazole in the acute, but not the chronic stage of infection. This in vivo screening model for Chagas disease is predictive, reproducible and adaptable to diverse treatment schedules. It should provide greater assurance that drugs are not advanced prematurely into clinical trial. PMID:26014936

  20. Use of Noninvasive Parameters to Evaluate Swiss Webster Mice During Trypanosoma cruzi Experimental Acute Infection.

    PubMed

    Campos, Jerônimo D S; Hoppe, Luanda Y; Duque, Thabata L A; de Castro, Solange Lisboa; Oliveira, Gabriel M

    2016-04-01

    Until now, there has been neither an agreed-upon experimental model nor descriptors of the clinical symptoms that occur over the course of acute murine infection. The aim of this work is to use noninvasive methods to evaluate clinical signs in Swiss Webster mice that were experimentally infected with the Y strain of Trypanosoma cruzi during acute phase (Inf group). Infected mice showed evident clinical changes beginning in the second week of infection (wpi) when compared to the noninfected group (NI): (1) animals in hunched postures, closed eyes, lowered ears, peeling skin, increased piloerection, prostration, and social isolation; (2) significant decrease in body weight (Inf: 26.2 ± 2.6 g vs. NI: 34.2 ± 2.5 g) and in chow (1.5 ± 0.3 vs. 6.3 ± 0.5 mg) and water (2.4 ± 0.5 vs. 5.8 ± 0.7 ml) intake; (3) significant decrease of spontaneous activity as locomotor parameters: distance (0.64 ± 0.06 vs. 1.8 ± 0.13 m), velocity (1.9 ± 0.3 vs. 6.7 ± 1.5 cm/sec), and exploratory behavior by frequency (1.0 ± 0.5 vs. 5.7 ± 1.0 events) and duration (1.4 ± 0.3 vs. 5.1 ± 0.5 sec in central arena region); (4) significant increase in the PR (41.7 ± 8.7 vs. 27.6 ± 1.9 msec) and QT intervals (39.7 ± 2.0 vs. 27.5 ± 4.0 msec), and a decreased cardiac frequency (505 ± 52.8 vs. 774 ± 17.8 msec), showing a marked sinus bradycardia and an atrioventricular block. At 3 and 4 wpi, the surviving animals showed a tendency of recovery in body weight, food intake, locomotor activity, and exploratory interest. Through the use of noninvasive parameters, we were able to monitor the severity of the infection in individuals prior to death. Our perspective is the application of noninvasive methods to describe clinical signs over the course of acute infection complementing the preclinical evaluation of new agents, alone or in combination with benznidazole. PMID:26741817

  1. Circulating Trypanosoma cruzi populations differ from those found in the tissues of the same host during acute experimental infection.

    PubMed

    Lo Presti, M Silvina; Esteves, Blanca H; Moya, Diego; Bazán, P Carolina; Strauss, Mariana; Báez, Alejandra L; Pizzi, Rogelio; Quispe Ricalde, M Antonieta; Valladares, Basilio; Rivarola, H Walter; Paglini-Oliva, Patricia A

    2014-05-01

    We evaluated the presence and distribution of two Trypanosoma cruzi natural isolates in blood, heart, skeletal muscle, liver, and spleen tissues in the acute phase of the experimental infection (35 days postinfection) in order to determine if the populations present in blood were different to those found in the tissues of the same host. Thirty mice were infected with 50 forms of each isolate or with a combination of them. Presence and molecular characterization of the parasites in the host tissues were determined by specific PCR. Cardiac and skeletal muscle alterations were analyzed by histological studies. T. cruzi variability in the host tissues was analyzed through RFLP studies. Both isolates used consisted of a mixture of two T. cruzi lineages. Specific PCRs were positive for most of the samples from the 3 groups analyzed. Cardiac and skeletal muscle sections from the groups infected with one isolate presented mild to moderate inflammatory infiltrates; the group infected with both isolates showed severe inflammatory infiltrates and the presence of amastigote nests in both tissues. Different parasite populations were found in circulation and in the tissues from the same host. These results are important for patients with high probability of mixed infections in endemic areas and contribute to the knowledge of parasite/host interactions. PMID:24560963

  2. Trypanosoma cruzi IV Causing Outbreaks of Acute Chagas Disease and Infections by Different Haplotypes in the Western Brazilian Amazonia

    PubMed Central

    Monteiro, Wuelton Marcelo; Magalhães, Laylah Kelre Costa; de Sá, Amanda Regina Nichi; Gomes, Mônica Lúcia; Toledo, Max Jean de Ornelas; Borges, Lara; Pires, Isa; de Oliveira Guerra, Jorge Augusto; Silveira, Henrique; Barbosa, Maria das Graças Vale

    2012-01-01

    Background Chagas disease is an emergent tropical disease in the Brazilian Amazon Region, with an increasing number of cases in recent decades. In this region, the sylvatic cycle of Trypanosoma cruzi transmission, which constitutes a reservoir of parasites that might be associated with specific molecular, epidemiological and clinical traits, has been little explored. The objective of this work is to genetically characterize stocks of T. cruzi from human cases, triatomines and reservoir mammals in the State of Amazonas, in the Western Brazilian Amazon. Methodology/Principal Findings We analyzed 96 T. cruzi samples from four municipalities in distant locations of the State of Amazonas. Molecular characterization of isolated parasites from cultures in LIT medium or directly from vectors or whole human blood was performed by PCR of the non-transcribed spacer of the mini-exon and of the 24 S alfa ribosomal RNA gene, RFLP and sequencing of the mitochondrial cytochrome c oxidase subunit II (COII) gene, and by sequencing of the glucose-phosphate isomerase gene. The T. cruzi parasites from two outbreaks of acute disease were all typed as TcIV. One of the outbreaks was triggered by several haplotypes of the same DTU. TcIV also occurred in isolated cases and in Rhodnius robustus. Incongruence between mitochondrial and nuclear phylogenies is likely to be indicative of historical genetic exchange events resulting in mitochondrial introgression between TcIII and TcIV DTUs from Western Brazilian Amazon. TcI predominated among triatomines and was the unique DTU infecting marsupials. Conclusion/Significance DTU TcIV, rarely associated with human Chagas disease in other areas of the Amazon basin, is the major strain responsible for the human infections in the Western Brazilian Amazon, occurring in outbreaks as single or mixed infections by different haplotypes. PMID:22848457

  3. Clathrin expression in Trypanosoma cruzi

    PubMed Central

    2014-01-01

    Background Clathrin-mediated vesicular trafficking, the mechanism by which proteins and lipids are transported between membrane-bound organelles, accounts for a large proportion of import from the plasma membrane (endocytosis) and transport from the trans-Golgi network towards the endosomal system. Clathrin-mediated events are still poorly understood in the protozoan Trypanosoma cruzi, the causative agent of Chagas disease in Latin America. In this study, clathrin heavy (TcCHC) and light (TcCLC) chain gene expression and protein localization were investigated in different developmental forms of T. cruzi (epimastigotes, trypomastigotes and amastigotes), using both polyclonal and monoclonal antibodies raised against T. cruzi recombinant proteins. Results Analysis by confocal microscopy revealed an accumulation of TcCHC and TcCLC at the cell anterior, where the flagellar pocket and Golgi complex are located. TcCLC partially colocalized with the Golgi marker TcRAB7-GFP and with ingested albumin, but did not colocalize with transferrin, a protein mostly ingested via uncoated vesicles at the cytostome/cytopharynx complex. Conclusion Clathrin heavy and light chains are expressed in T. cruzi. Both proteins typically localize anterior to the kinetoplast, at the flagellar pocket and Golgi complex region. Our data also indicate that in T. cruzi epimastigotes clathrin-mediated endocytosis of albumin occurs at the flagellar pocket, while clathrin-independent endocytosis of transferrin occurs at the cytostome/cytopharynx complex. PMID:24947310

  4. Endothelial Transmigration by Trypanosoma cruzi

    PubMed Central

    Coates, Bria M.; Sullivan, David P.; Makanji, Ming Y.; Du, Nga Y.; Olson, Cheryl L.; Muller, William A.; Engman, David M.; Epting, Conrad L.

    2013-01-01

    Chagas heart disease, the leading cause of heart failure in Latin America, results from infection with the parasite Trypanosoma cruzi. Although T. cruzi disseminates intravascularly, how the parasite contends with the endothelial barrier to escape the bloodstream and infect tissues has not been described. Understanding the interaction between T. cruzi and the vascular endothelium, likely a key step in parasite dissemination, could inform future therapies to interrupt disease pathogenesis. We adapted systems useful in the study of leukocyte transmigration to investigate both the occurrence of parasite transmigration and its determinants in vitro. Here we provide the first evidence that T. cruzi can rapidly migrate across endothelial cells by a mechanism that is distinct from productive infection and does not disrupt monolayer integrity or alter permeability. Our results show that this process is facilitated by a known modulator of cellular infection and vascular permeability, bradykinin, and can be augmented by the chemokine CCL2. These represent novel findings in our understanding of parasite dissemination, and may help identify new therapeutic strategies to limit the dissemination of the parasite. PMID:24312535

  5. Intermediary metabolism of Trypanosoma cruzi.

    PubMed

    Urbina, J A

    1994-03-01

    In this article, Julio Urbino discusses the characteristics o f the intermediary metabolism of Trypanosoma cruzi (the causative agent of Chagas disease), which are responsible for the unusual capacity of this parasite to use carbohydrates or amino acids as carbon and energy sources without drastic changes in its catabolic enzyme levels(1-3). Many, but not all, o f the metabolic capabilities of this organism are shared with Leishmania and the procyclic form o f the African trypanosomes, and the reviewer presents a metabolic model which is also consistent with the information available on these other parasites(2,4). PMID:15275492

  6. Curcumin Enhances the Anti-Trypanosoma cruzi Activity of Benznidazole-Based Chemotherapy in Acute Experimental Chagas Disease.

    PubMed

    Novaes, Rômulo Dias; Sartini, Marcus Vinicius Pessoa; Rodrigues, João Paulo Ferreira; Gonçalves, Reggiani Vilela; Santos, Eliziária Cardoso; Souza, Raquel Lopes Martins; Caldas, Ivo Santana

    2016-06-01

    Although curcumin can increase the effectiveness of drugs against malaria, combination therapies using the molecule have never been investigated in Chagas disease (ChD). Therefore, we evaluated the efficacy of curcumin as a complementary strategy to benznidazole (Bz)-based chemotherapy in mice acutely infected with Trypanosoma cruzi Eighty-four 12-week-old Swiss mice were equally randomized into seven groups: uninfected (NI), T. cruzi infected and untreated (INF), infected and treated with 100 mg/kg of body weight Bz (B100), 50 mg/kg Bz (B50), 100 mg/kg curcumin (C100), 100 mg/kg Bz plus 100 mg/kg curcumin (B100 plus C100), and 50 mg/kg Bz plus 100 mg/kg curcumin (B50 plus C100). After microscopic identification of blood trypomastigotes (4 days after inoculation), both drugs were administered by gavage once a day for 20 days. Curcumin showed limited antiparasitic, anti-inflammatory, and antioxidant effects when administered alone. When curcumin and Bz were combined, there was a drastic reduction in parasitemia, parasite load, mortality, anti-T. cruzi IgG reactivity, circulating levels of cytokines (gamma interferon [IFN-γ], interleukin 4 [IL-4], and MIP1-α), myocardial inflammation, and morphological and oxidative cardiac injury; these results exceeded the isolated effects of Bz. The combination of Bz and curcumin was also effective at mitigating liver toxicity triggered by Bz, increasing the parasitological cure rate, and preventing infection recrudescence in noncured animals, even when the animals were treated with 50% of the recommended therapeutic dose of Bz. By limiting the toxic effects of Bz and enhancing its antiparasitic efficiency, the combination of the drug with curcumin may be a relevant therapeutic strategy that is possibly better tolerated in ChD treatment than Bz-based monotherapy. PMID:27001816

  7. Human and sylvatic Trypanosoma cruzi infection in California.

    PubMed Central

    Navin, T R; Roberto, R R; Juranek, D D; Limpakarnjanarat, K; Mortenson, E W; Clover, J R; Yescott, R E; Taclindo, C; Steurer, F; Allain, D

    1985-01-01

    In August 1982, a 56-year-old woman from Lake Don Pedro, California, developed acute Chagas' disease (American trypanosomiasis). She had not traveled to areas outside the United States with endemic Chagas' disease, she had never received blood transfusions, and she did not use intravenous drugs. Trypanosoma cruzi cultured from the patient's blood had isoenzyme patterns and growth characteristics similar to T. cruzi belonging to zymodeme Z1. Triatoma protracta (a vector of Trypanosoma cruzi) infected with T. cruzi were found near the patient's home, a trypanosome resembling T. cruzi was cultured from the blood of two of 19 ground squirrels (Spermophilus beecheyi), and six of 10 dogs had antibody to T. cruzi. A serosurvey of three groups of California residents revealed antibody to T. cruzi by complement fixation in six of 237 (2.5 per cent) individuals living near the patient and in 12 of 1,706 (0.7 per cent) individuals living in a community 20 miles northeast of the patient's home, but in only one of 637 (0.2 per cent) blood donors from the San Francisco Bay area. This is the first case of indigenously acquired Chagas' disease reported from California and the first case recognized in the United States since 1955. This investigation suggests that transmission of sylvatic Trypanosoma cruzi infection to humans occurs in California but that Chagas' disease in humans is rare. PMID:3919598

  8. Effect of elevated environmental temperature on the antibody response of mice to Trypanosoma cruzi during the acute phase of infection.

    PubMed Central

    Dimock, K A; Davis, C D; Kuhn, R E

    1991-01-01

    When held at 36 degrees C, Trypanosoma cruzi-infected C3H mice survive an otherwise lethal infection with significantly decreased parasitemia levels and enhanced immune responsiveness. Treatment of T. cruzi-infected mice with the immunosuppressive agent cyclophosphamide indicated that the positive effects of increased environmental temperature were primarily due to enhancement of immunity. A parasite-specific, enzyme-linked immunosorbent assay and immunoblot analysis were used to examine the effect of elevated environmental temperature on the production of anti-T. cruzi antibodies. Both the reactivity and diversity of anti-T. cruzi antibodies were found to be lower in infected mice held at 36 degrees C than in infected mice held at room temperature. However, reactivity and diversity could be enhanced by vaccination with culture forms of the parasite. Images PMID:1937796

  9. Autochthonous Transmission of Trypanosoma cruzi, Louisiana

    PubMed Central

    Perniciaro, Leon; Yabsley, Michael J.; Roellig, Dawn M.; Balsamo, Gary; Diaz, James; Wesson, Dawn

    2007-01-01

    Autochthonous transmission of the Chagas disease parasite, Trypanosoma cruzi, was detected in a patient in rural New Orleans, Louisiana. The patient had positive test results from 2 serologic tests and hemoculture. Fifty-six percent of 18 Triatoma sanguisuga collected from the house of the patient were positive for T. cruzi by PCR. PMID:17553277

  10. Cyclooxygenase-2 and Prostaglandin E2 Signaling through Prostaglandin Receptor EP-2 Favor the Development of Myocarditis during Acute Trypanosoma cruzi Infection

    PubMed Central

    Guerrero, Néstor A.; Camacho, Mercedes; Vila, Luis; Íñiguez, Miguel A.; Chillón-Marinas, Carlos; Cuervo, Henar; Poveda, Cristina; Fresno, Manuel; Gironès, Núria

    2015-01-01

    Inflammation plays an important role in the pathophysiology of Chagas disease, caused by Trypanosoma cruzi. Prostanoids are regulators of homeostasis and inflammation and are produced mainly by myeloid cells, being cyclooxygenases, COX-1 and COX-2, the key enzymes in their biosynthesis from arachidonic acid (AA). Here, we have investigated the expression of enzymes involved in AA metabolism during T. cruzi infection. Our results show an increase in the expression of several of these enzymes in acute T. cruzi infected heart. Interestingly, COX-2 was expressed by CD68+ myeloid heart-infiltrating cells. In addition, infiltrating myeloid CD11b+Ly6G- cells purified from infected heart tissue express COX-2 and produce prostaglandin E2 (PGE2) ex vivo. T. cruzi infections in COX-2 or PGE2-dependent prostaglandin receptor EP-2 deficient mice indicate that both, COX-2 and EP-2 signaling contribute significantly to the heart leukocyte infiltration and to the release of chemokines and inflammatory cytokines in the heart of T. cruzi infected mice. In conclusion, COX-2 plays a detrimental role in acute Chagas disease myocarditis and points to COX-2 as a potential target for immune intervention. PMID:26305786

  11. The CC Chemokine Receptor 5 Is Important in Control of Parasite Replication and Acute Cardiac Inflammation following Infection with Trypanosoma cruzi

    PubMed Central

    Hardison, Jenny L.; Wrightsman, Ruth A.; Carpenter, Philip M.; Kuziel, William A.; Lane, Thomas E.; Manning, Jerry E.

    2006-01-01

    Infection of susceptible mice with the Colombiana strain of Trypanosoma cruzi results in an orchestrated expression of chemokines and chemokine receptors within the heart that coincides with parasite burden and cellular infiltration. CC chemokine receptor 5 (CCR5) is prominently expressed during both acute and chronic disease, suggesting a role in regulating leukocyte trafficking and accumulation within the heart following T. cruzi infection. To better understand the functional role of CCR5 and its ligands with regard to both host defense and/or disease, CCR5−/− mice were infected with T. cruzi, and the disease severity was evaluated. Infected CCR5−/− mice develop significantly higher levels of parasitemia (P ≤ 0.05) and cardiac parasitism (P ≤ 0.01) during acute infection that correlated with reduced survival. Further, we show that CCR5 is essential for directing the migration of macrophages and T cells to the heart early in acute infection with T. cruzi. In addition, data are provided demonstrating that CCR5 does not play an essential role in maintaining inflammation in the heart during chronic infection. Collectively, these studies clearly demonstrate that CCR5 contributes to the control of parasite replication and the development of a protective immune response during acute infection but does not ultimately participate in maintaining a chronic inflammatory response within the heart. PMID:16368966

  12. Promising Efficacy of Benznidazole Nanoparticles in Acute Trypanosoma cruzi Murine Model: In-Vitro and In-Vivo Studies.

    PubMed

    Scalise, María L; Arrúa, Eva C; Rial, Marcela S; Esteva, Mónica I; Salomon, Claudio J; Fichera, Laura E

    2016-08-01

    The aim of this study was to evaluate the effectiveness of benznidazole nanoparticles (BNZ-nps) on trypomastigote forms and on intracellular infection in mammalian cells and primary cardiac myocyte cells. Its effectiveness was also evaluated on acute Trypanosoma cruzi Nicaragua mice infection. Trypomastigotes from culture were treated with different concentrations of BNZ-nps to determine the drug concentration that lyses 50% of trypomastigotes (LC50). Infected mammalian cells were incubated with different concentrations of BNZ-nps to determine the percentage of amastigote inhibition. C3H/HeN mice with lethal acute infection were treated with 10, 25, and 50 mg/kg/day of BNZ-nps for 30 and 15 days to control the survival rate of animals. BNZ-nps having a mean particle size of 63.3 nm, a size distribution of 3.35, and a zeta potential of -18.30 were successfully prepared using poloxamer 188 as a stabilizer. BNZ-nps 25 and 50 μg/mL showed no significant differences in the percentage of inhibition of infected mammalian cells. Infected mice treated with BNZ-nps (50, 25, and 10 mg/kg/day) for 30 days and with BNZ-nps (50 and 25 mg/kg/day) for 15 days presented a 100% survival, whereas the animals treated with 10 mg/kg/day for 15 days of BNZ-nps showed a 70% survival rate. The results obtained demonstrate, for the first time, that benznidazole nanoparticles are a useful and attractive approach to treat Chagas disease in infected mice. PMID:27246447

  13. The Anti-Trypanosoma cruzi activity of posaconazole in a murine model of acute Chagas' disease is less dependent on gamma interferon than that of benznidazole.

    PubMed

    Ferraz, Marcela L; Gazzinelli, Ricardo T; Alves, Rosana O; Urbina, Julio A; Romanha, Alvaro J

    2007-04-01

    We have investigated the influences of gamma interferon (IFN-gamma) and interleukin-12 (IL-12) on the efficacy of posaconazole (POS) treatment of acute experimental infections with Trypanosoma cruzi; the standard drug, benznidazole (BZ), was used as a positive control. Wild-type (WT) mice infected with T. cruzi and treated with POS or BZ had no parasitemia, 100% survival, and cure rates of 86 to 89%. IFN-gamma-knockout (KO) mice infected with T. cruzi and treated with BZ controlled the infection during treatment but relapsed after the drug pressure ceased and had 0% survival, while those receiving POS better controlled the infection after the end of treatment and had 70% survival (P<0.0001 compared to the results for both untreated and BZ-treated animals). IL-12-KO mice infected and treated with POS or BZ had intermediate results, displaying enhanced parasitemia, decreased survival (77 to 83%), and reduced cure rates (35 to 39%) compared with those of the WT animals. Our results demonstrate that either IFN-gamma or IL-12 deficiency reduces the efficacy of POS or BZ in this experimental model but also indicate that the anti-T. cruzi activity of POS is much less dependent on the activity of IFN-gamma than that of BZ is. PMID:17220408

  14. An Fc gamma RII-, Fc gamma RIII-specific monoclonal antibody (2.4G2) decreases acute Trypanosoma cruzi infection in mice.

    PubMed Central

    Araujo-Jorge, T; Rivera, M T; el Bouhdidi, A; Daëron, M; Carlier, Y

    1993-01-01

    In order to study the role of Fc gamma Rs in Trypanosoma cruzi infection in mice, the 2.4G2 monoclonal antibody (MAb), specific to the extracellular domains of Fc gamma RII and Fc gamma RIII, was injected intraperitoneally into mice. Flow cytometry studies of uninfected mice showed that 2.4G2 MAb bound to peritoneal and lymph node cells, respectively, on days 2 and 6 after injection. Repeating 2.4G2 injections every 3 to 4 days decreased the availability of Fc gamma Rs on peritoneal, lymph node, and spleen cells. Injections of 2.4G2 MAb into T. cruzi-infected mice, at days -1, 3, 7, 11, 16, 20, and 24 relative to infection, reduced mortality in comparison with that in infected animals injected with an unrelated MAb (50 versus 93.3% mortality; P < 0.01). Parasitemia in 2.4G2-treated mice was significantly (three times) lower than in control animals on days 21 and 24 postinfection (P < 0.05), before parasite-specific antibodies were detectable at significant levels. Immunoglobulin and T. cruzi-specific antibody levels were similar in all groups of mice. These results indicate that repeated injections of 2.4G2 MAb administered to acutely infected mice reduce the in vivo infection level, suggesting that Fc gamma Rs play a role in the early host invasion by T. cruzi parasites. Images PMID:8406898

  15. Early diagnosis of congenital Trypanosoma cruzi infection, using shed acute phase antigen, in Ushuaia, Tierra del Fuego, Argentina.

    PubMed

    Mallimaci, María Cristina; Sosa-Estani, Sergio; Russomando, Graciela; Sanchez, Zunilda; Sijvarger, Carina; Alvarez, Isabel Marcela; Barrionuevo, Lola; Lopez, Carlos; Segura, Elsa Leonor

    2010-01-01

    Chagas' disease, or American trypanosomiasis, is caused by the protozoan parasite Trypanasoma cruzi. It is estimated that 15,000 new cases of congenital T. cruzi transmission occur in the Americas each year. The aim of this study was to estimate the rate of congenital T. cruzi infection in infants born to infected women living in Ushuaia, Argentina, as well to assess a serologic test using Shed Acute Phase Antigen (SAPA) for a timely diagnosis of congenital infection. The rate of congenital infection among children in the study was 4.4% (3/68). Our results show that for infants younger than 30 days of age, matched blood samples from mother and infant were capable of identifying congenital transmission of infection using an enzyme-linked immunosorbent assay with SAPA. For infants older than 3 months, congenital infection could be ruled out using the same procedure. PMID:20064996

  16. Early Diagnosis of Congenital Trypanosoma cruzi Infection, Using Shed Acute Phase Antigen, in Ushuaia, Tierra del Fuego, Argentina

    PubMed Central

    Mallimaci, María Cristina; Sosa-Estani, Sergio; Russomando, Graciela; Sanchez, Zunilda; Sijvarger, Carina; Alvarez, Isabel Marcela; Barrionuevo, Lola; Lopez, Carlos; Segura, Elsa Leonor

    2010-01-01

    Chagas' disease, or American trypanosomiasis, is caused by the protozoan parasite Trypanasoma cruzi. It is estimated that 15,000 new cases of congenital T. cruzi transmission occur in the Americas each year. The aim of this study was to estimate the rate of congenital T. cruzi infection in infants born to infected women living in Ushuaia, Argentina, as well to assess a serologic test using Shed Acute Phase Antigen (SAPA) for a timely diagnosis of congenital infection. The rate of congenital infection among children in the study was 4.4% (3/68). Our results show that for infants younger than 30 days of age, matched blood samples from mother and infant were capable of identifying congenital transmission of infection using an enzyme-linked immunosorbent assay with SAPA. For infants older than 3 months, congenital infection could be ruled out using the same procedure. PMID:20064996

  17. Diagnosis of congenital Trypanosoma cruzi infection: A serologic test using Shed Acute Phase Antigen (SAPA) in mother-child binomial samples.

    PubMed

    Volta, Bibiana J; Russomando, Graciela; Bustos, Patricia L; Scollo, Karenina; De Rissio, Ana M; Sánchez, Zunilda; Cardoni, Rita L; Bua, Jacqueline

    2015-07-01

    Chagas congenital infection is an important health problem in endemic and non-endemic areas in which Trypanosoma cruzi-infected women can transmit the parasite to their offspring. In this study, we evaluated the antibody levels against the T. cruzi Shed Acute Phase Antigen (SAPA) in 91 binomial samples of seropositive pregnant women and their infected and non-infected children by ELISA. In 70 children without congenital T. cruzi transmission, the titers of anti-SAPA antibodies were lower than those of their seropositive mothers. In contrast, 90.5% of 21 congenitally infected children, at around 1 month of age, showed higher anti-SAPA antibody levels than their mothers. Subtracting the SAPA-ELISA mother OD value to the SAPA-ELISA child OD allowed efficient detection of most T. cruzi congenitally infected children immediately after birth, when total anti-parasite antibodies transferred during pregnancy are still present in all children born to seropositive women. A positive correlation was observed between parasitemia levels in mothers and infants evaluated by quantitative DNA amplification and anti-SAPA antibody titers by ELISA. As SAPA serology has proved to be very efficient to detect T. cruzi infection in mother-child binomial samples, it could be of extreme help for early diagnosis of newborns, in maternities and hospitals where DNA amplification is not available. This prompt diagnosis may prevent drop out of the long-term follow-up for future diagnosis and may ensure early trypanocidal treatment, which has proved to be efficient to cure infants with congenital Chagas disease. PMID:25847262

  18. Protein geranylgeranyltransferase-I of Trypanosoma cruzi

    PubMed Central

    Yokoyama, Kohei; Gillespie, John R.; Van Voorhis, Wesley C.; Buckner, Frederick S.; Gelb, Michael H.

    2008-01-01

    Protein geranylgeranyltransferase type I (PGGT-I) and protein farnesyltransferase (PFT) occur in many eukaryotic cells. Both consist of two subunits, the common αsubunit and a distinct β subunit. In the gene database of protozoa Trypanosoma cruzi, the causative agent of Chagas' disease, a putative protein that consists of 401 amino acids with ∼20% amino acid sequence identity to the PGGT-I β of other species was identified, cloned, and characterized. Multiple sequence alignments show that the T. cruzi ortholog contains all three of the zinc-binding residues and several residues uniquely conserved in the β subunit of PGGT-I. Co-expression of this protein and the α subunit of T. cruzi PFT in Sf9 insect cells yielded a dimeric protein that forms a tight complex selectively with [3H]geranylgeranyl pyrophosphate, indicating a key characteristic of a functional PGGT-I. Recombinant T. cruzi PGGT-I ortholog showed geranylgeranyltransferase activity with distinct specificity toward the C-terminal CaaX motif of protein substrates compared to that of the mammalian PGGT-I and T. cruzi PFT. Most of the CaaX-containing proteins with X=Leu are good substrates of T. cruzi PGGT-I, and those with X=Met are substrates for both T. cruzi PFT and PGGT-I, whereas unlike mammalian PGGT-I, those with X=Phe are poor substrates for T. cruzi PGGT-I. Several candidates for T. cruzi PGGT-I or PFT substrates containing the C-terminal CaaX motif are found in the T. cruzi gene database. Among five C-terminal peptides of those tested, a peptide of a Ras-like protein ending with CVLL was selectively geranylgeranylated by T. cruzi PGGT-I. Other peptides with CTQQ (Tcj2 DNAJ protein), CAVM (TcPRL-1 protein tyrosine phosphatase), CHFM (a small GTPase like protein), and CQLF (TcRho1 GTPase) were specific substrates for T. cruzi PFT but not for PGGT-I. The mRNA and protein of the T. cruzi PGGT-I β ortholog were detected in three life-cycle stages of T. cruzi. Cytosol fractions from

  19. Differential Expression of microRNAs in Thymic Epithelial Cells from Trypanosoma cruzi Acutely Infected Mice: Putative Role in Thymic Atrophy

    PubMed Central

    Linhares-Lacerda, Leandra; Palu, Cintia Cristina; Ribeiro-Alves, Marcelo; Paredes, Bruno Diaz; Morrot, Alexandre; Garcia-Silva, Maria Rosa; Cayota, Alfonso; Savino, Wilson

    2015-01-01

    A common feature seen in acute infections is a severe atrophy of the thymus. This occurs in the murine model of acute Chagas disease. Moreover, in thymuses from Trypanosoma cruzi acutely infected mice, thymocytes exhibit an increase in the density of fibronectin and laminin integrin-type receptors, with an increase in migratory response ex vivo. Thymic epithelial cells (TEC) play a major role in the intrathymic T cell differentiation. To date, the consequences of molecular changes promoted by parasite infection upon thymus have not been elucidated. Considering the importance of microRNA for gene expression regulation, 85 microRNAs (mRNAs) were analyzed in TEC from T. cruzi acutely infected mice. The infection significantly modulated 29 miRNAs and modulation of 9 was also dependent whether TEC sorted out from the thymus exhibited cortical or medullary phenotype. In silico analysis revealed that these miRNAs may control target mRNAs known to be responsible for chemotaxis, cell adhesion, and cell death. Considering that we sorted TEC in the initial phase of thymocyte loss, it is conceivable that changes in TEC miRNA expression profile are functionally related to thymic atrophy, providing new clues to better understanding the mechanisms of the thymic involution seen in experimental Chagas disease. PMID:26347748

  20. Trypanosoma cruzi congenital transmission in wild bats.

    PubMed

    Añez, Néstor; Crisante, Gladys; Soriano, Pascual J

    2009-01-01

    Trypanosoma cruzi congenital transmission in wild bats (Molossus molossus), associated with infected Rhodnius prolixus in a natural habitat from a rural locality in western Venezuela, is reported. T. cruzi blood circulating trypomastigotes in a pregnant bat were detected by parasitological methods. Polymerase chain reaction (PCR) assays carried out in samples from the heart and the fetus of the same infected female, revealed the presence of T. cruzi-specific DNA in both of the tissues, demonstrating transmission of the infection from the mother to the offspring. Eighty percent of the captured bats and 100% of the examined fetuses from pregnant specimens were shown to be infected by T. cruzi, indicating that M. molossus is a very susceptible species for this parasite, and that T. cruzi congenital transmission is a common phenomenon in nature. To our knowledge, this seems to be the first report on congenital T. cruzi transmission in wild bats in Venezuela. The circulation of T. cruzi lineage I in the study area was demonstrated by typing the isolates from bats and triatomine bugs captured in the same habitat. The potential epidemiological implication of these findings in areas where Chagas disease is endemic is discussed. PMID:18823929

  1. Biological characterization of Trypanosoma cruzi strains.

    PubMed

    Martínez-Díaz, R A; Escario, J A; Nogal-Ruiz, J J; Gómez-Barrio, A

    2001-01-01

    Biological parameters of five Trypanosoma cruzi strains from different sources were determined in order to know the laboratory behaviour of natural populations. The parameters evaluated were growth kinetics of epimastigotes, differentiation into metacyclic forms, infectivity in mammalian cells grown in vitro and parasite susceptibility to nifurtimox, benznidazole and gentian violet. Differences in transformation to metacyclic, in the percentage of infected cells as well as in the number of amastigotes per cell were observed among the strains. Regarding to pharmacological assays, Y strain was the most sensitive to the three assayed compounds. These data demonstrate the heterogeneity of natural populations of T. cruzi, the only responsible of infection in humans. PMID:11285475

  2. Susceptibility of radiation chimeras to Trypanosoma cruzi

    SciTech Connect

    Trischmann, T.M.

    1982-05-01

    Reciprocal bone marrow transfers were performed with C3H/HeJ mice, which are susceptible to infection with the Brazil strain of Trypanosoma cruzi, and resistant F1 (C3H/HeJ X C57BL/6J) mice. Mice reconstituted after lethal irradiation with syngeneic bone marrow displayed the resistance phenotype of the strain used, but neither C3H mice reconstituted with F1 bone marrow cells nor F1 mice reconstituted with C3H bone marrow cells survived challenge. Resistance to T. cruzi appears to be dependent upon factors associated both with host background and with bone marrow-derived cells.

  3. Trypanosoma cruzi infection in B-cell-deficient rats.

    PubMed Central

    Rodriguez, A M; Santoro, F; Afchain, D; Bazin, H; Capron, A

    1981-01-01

    The effect of neonatally initiated injections of anti-mu rabbit antiserum on immunity of rats against Trypanosoma cruzi infection was investigated in vivo. Anti-mu treatment resulted in a loss of immunoglobulin M (IgM) and IgG2a synthesis and, subsequently, of antibody production. These rats so treated were shown to be significantly more susceptible to the acute phase of the infection than the control rats treated with normal rabbit serum, as measured by increased parasitemia and mortality. These results indicate the essential role of antibodies, probably in association with complement or effector cells or both, in immunity to acute Chagas' disease. PMID:6783543

  4. Unveiling the Trypanosoma cruzi Nuclear Proteome

    PubMed Central

    dos Santos Júnior, Agenor de Castro Moreira; Kalume, Dário Eluan; Camargo, Ricardo; Gómez-Mendoza, Diana Paola; Correa, José Raimundo; Charneau, Sébastien; de Sousa, Marcelo Valle; de Lima, Beatriz Dolabela; Ricart, Carlos André Ornelas

    2015-01-01

    Replication of Trypanosoma cruzi, the etiological agent of Chagas disease, displays peculiar features, such as absence of chromosome condensation and closed mitosis. Although previous proteome and subproteome analyses of T. cruzi have been carried out, the nuclear subproteome of this protozoan has not been described. Here, we report, for the first time to the best of our knowledge, the isolation and proteome analysis of T. cruzi nuclear fraction. For that, T. cruzi epimastigote cells were lysed and subjected to cell fractionation using two steps of sucrose density gradient centrifugation. The purity of the nuclear fraction was confirmed by phase contrast and fluorescence microscopy. Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) allowed the identification of 864 proteins. Among those, 272 proteins were annotated as putative uncharacterized, and 275 had not been previously reported on global T. cruzi proteome analysis. Additionally, to support our enrichment method, bioinformatics analysis in DAVID was carried out. It grouped the nuclear proteins in 65 gene clusters, wherein the clusters with the highest enrichment scores harbor members with chromatin organization and DNA binding functions. PMID:26383644

  5. Unveiling the Trypanosoma cruzi Nuclear Proteome.

    PubMed

    dos Santos Júnior, Agenor de Castro Moreira; Kalume, Dário Eluan; Camargo, Ricardo; Gómez-Mendoza, Diana Paola; Correa, José Raimundo; Charneau, Sébastien; de Sousa, Marcelo Valle; de Lima, Beatriz Dolabela; Ricart, Carlos André Ornelas

    2015-01-01

    Replication of Trypanosoma cruzi, the etiological agent of Chagas disease, displays peculiar features, such as absence of chromosome condensation and closed mitosis. Although previous proteome and subproteome analyses of T. cruzi have been carried out, the nuclear subproteome of this protozoan has not been described. Here, we report, for the first time to the best of our knowledge, the isolation and proteome analysis of T. cruzi nuclear fraction. For that, T. cruzi epimastigote cells were lysed and subjected to cell fractionation using two steps of sucrose density gradient centrifugation. The purity of the nuclear fraction was confirmed by phase contrast and fluorescence microscopy. Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) allowed the identification of 864 proteins. Among those, 272 proteins were annotated as putative uncharacterized, and 275 had not been previously reported on global T. cruzi proteome analysis. Additionally, to support our enrichment method, bioinformatics analysis in DAVID was carried out. It grouped the nuclear proteins in 65 gene clusters, wherein the clusters with the highest enrichment scores harbor members with chromatin organization and DNA binding functions. PMID:26383644

  6. Type I interferons increase host susceptibility to Trypanosoma cruzi infection.

    PubMed

    Chessler, Anne-Danielle C; Caradonna, Kacey L; Da'dara, Akram; Burleigh, Barbara A

    2011-05-01

    Trypanosoma cruzi, the protozoan parasite that causes human Chagas' disease, induces a type I interferon (IFN) (IFN-α/β) response during acute experimental infection in mice and in isolated primary cell types. To examine the potential impact of the type I IFN response in shaping outcomes in experimental T. cruzi infection, groups of wild-type (WT) and type I IFN receptor-deficient (IFNAR(-/-)) 129sv/ev mice were infected with two different T. cruzi strains under lethal and sublethal conditions and several parameters were measured during the acute stage of infection. The results demonstrate that type I IFNs are not required for early host protection against T. cruzi. In contrast, under conditions of lethal T. cruzi challenge, WT mice succumbed to infection whereas IFNAR(-/-) mice were ultimately able to control parasite growth and survive. T. cruzi clearance in and survival of IFNAR(-/-) mice were accompanied by higher levels of IFN-γ production by isolated splenocytes in response to parasite antigen. The suppression of IFN-γ in splenocytes from WT mice was independent of IL-10 levels. While the impact of type I IFNs on the production of IFN-γ and other cytokines/chemokines remains to be fully determined in the context of T. cruzi infection, our data suggest that, under conditions of high parasite burden, type I IFNs negatively impact IFN-γ production, initiating a detrimental cycle that contributes to the ultimate failure to control infection. These findings are consistent with a growing theme in the microbial pathogenesis field in which type I IFNs can be detrimental to the host in a variety of nonviral pathogen infection models. PMID:21402764

  7. Curcumin treatment provides protection against Trypanosoma cruzi infection

    PubMed Central

    Zhao, Dazhi; Weiss, Louis M.; Tanowitz, Herbert B.

    2013-01-01

    Trypanosoma cruzi, the etiologic agent of Chagas disease, causes an acute myocarditis and chronic cardiomyopathy. The current therapeutic agents for this disease are not always effective and often have severe side effects. Curcumin, a plant polyphenol, has demonstrated a wide range of potential therapeutic effects. In this study, we examined the effect of curcumin on T. cruzi infection in vitro and in vivo. Curcumin pretreatment of fibroblasts inhibited parasite invasion. Treatment reduced the expression of the low density lipoprotein receptor, which is involved in T. cruzi host cell invasion. Curcumin treatment of T. cruzi-infected CD1 mice reduced parasitemia and decreased the parasitism of infected heart tissue. This was associated with a significant reduction in macrophage infiltration and inflammation in both the heart and liver; moreover, curcumin-treated infected mice displayed a 100% survival rate in contrast to the 60% survival rate commonly observed in untreated infected mice. These data are consistent with curcumin modulating infection-induced changes in signaling pathways involved in inflammation, oxidative stress, and apoptosis. These data suggest that curcumin and its derivatives could be a suitable drug for the amelioration of chagasic heart disease. PMID:22215192

  8. The N-myristoylome of Trypanosoma cruzi.

    PubMed

    Roberts, Adam J; Fairlamb, Alan H

    2016-01-01

    Protein N-myristoylation is catalysed by N-myristoyltransferase (NMT), an essential and druggable target in Trypanosoma cruzi, the causative agent of Chagas' disease. Here we have employed whole cell labelling with azidomyristic acid and click chemistry to identify N-myristoylated proteins in different life cycle stages of the parasite. Only minor differences in fluorescent-labelling were observed between the dividing forms (the insect epimastigote and mammalian amastigote stages) and the non-dividing trypomastigote stage. Using a combination of label-free and stable isotope labelling of cells in culture (SILAC) based proteomic strategies in the presence and absence of the NMT inhibitor DDD85646, we identified 56 proteins enriched in at least two out of the three experimental approaches. Of these, 6 were likely to be false positives, with the remaining 50 commencing with amino acids MG at the N-terminus in one or more of the T. cruzi genomes. Most of these are proteins of unknown function (32), with the remainder (18) implicated in a diverse range of critical cellular and metabolic functions such as intracellular transport, cell signalling and protein turnover. In summary, we have established that 0.43-0.46% of the proteome is N-myristoylated in T. cruzi approaching that of other eukaryotic organisms (0.5-1.7%). PMID:27492267

  9. The N-myristoylome of Trypanosoma cruzi

    PubMed Central

    Roberts, Adam J.; Fairlamb, Alan H.

    2016-01-01

    Protein N-myristoylation is catalysed by N-myristoyltransferase (NMT), an essential and druggable target in Trypanosoma cruzi, the causative agent of Chagas’ disease. Here we have employed whole cell labelling with azidomyristic acid and click chemistry to identify N-myristoylated proteins in different life cycle stages of the parasite. Only minor differences in fluorescent-labelling were observed between the dividing forms (the insect epimastigote and mammalian amastigote stages) and the non-dividing trypomastigote stage. Using a combination of label-free and stable isotope labelling of cells in culture (SILAC) based proteomic strategies in the presence and absence of the NMT inhibitor DDD85646, we identified 56 proteins enriched in at least two out of the three experimental approaches. Of these, 6 were likely to be false positives, with the remaining 50 commencing with amino acids MG at the N-terminus in one or more of the T. cruzi genomes. Most of these are proteins of unknown function (32), with the remainder (18) implicated in a diverse range of critical cellular and metabolic functions such as intracellular transport, cell signalling and protein turnover. In summary, we have established that 0.43–0.46% of the proteome is N-myristoylated in T. cruzi approaching that of other eukaryotic organisms (0.5–1.7%). PMID:27492267

  10. How Trypanosoma cruzi feasts upon its mammalian host.

    PubMed

    Carter, Nicola S; Ullman, Buddy

    2013-01-16

    Trypanosoma cruzi has a complex relationship with its mammalian host in which parasite and host metabolic networks are intertwined. A genome-wide functional screen of T. cruzi infection in HeLa cells (Caradonna et al., 2013) divulges host metabolic functions and signaling pathways that impact intracellular parasite replication and reveals potential targets for therapeutic exploitation. PMID:23332151

  11. Shelter Dogs as Sentinels for Trypanosoma cruzi Transmission across Texas

    PubMed Central

    Tenney, Trevor D.; Curtis-Robles, Rachel; Snowden, Karen F.

    2014-01-01

    Chagas disease, an infection with the parasite Trypanosoma cruzi, is increasingly diagnosed among humans in the southern United States. We assessed exposure of shelter dogs in Texas to T. cruzi; seroprevalence across diverse ecoregions was 8.8%. Canine serosurveillance is a useful tool for public health risk assessment. PMID:25062281

  12. Shelter dogs as sentinels for Trypanosoma cruzi transmission across Texas.

    PubMed

    Tenney, Trevor D; Curtis-Robles, Rachel; Snowden, Karen F; Hamer, Sarah A

    2014-08-01

    Chagas disease, an infection with the parasite Trypanosoma cruzi, is increasingly diagnosed among humans in the southern United States. We assessed exposure of shelter dogs in Texas to T. cruzi; seroprevalence across diverse ecoregions was 8.8%. Canine serosurveillance is a useful tool for public health risk assessment. PMID:25062281

  13. Detection of Trypanosoma cruzi by Polymerase Chain Reaction.

    PubMed

    Márquez, María Elizabeth; Concepción, Juan Luis; González-Marcano, Eglys; Mondolfi, Alberto Paniz

    2016-01-01

    American Trypanosomiasis (Chagas disease) is an infectious disease caused by the hemoflagellate parasite Trypanosoma cruzi which is transmitted by reduviid bugs. T. cruzi infection occurs in a broad spectrum of reservoir animals throughout North, Central, and South America and usually evolves into an asymptomatic chronic clinical stage of the disease in which diagnosis is often challenging. This chapter describes the application of polymerase chain reaction (PCR) for the detection of Trypanosoma cruzi DNA including protocols for sample preparation, DNA extraction, and target amplification methods. PMID:26843052

  14. Phosphatidylinositol kinase activities in Trypanosoma cruzi epimastigotes.

    PubMed

    Gimenez, Alba Marina; Gesumaría, María Celeste; Schoijet, Alejandra C; Alonso, Guillermo D; Flawiá, Mirtha M; Racagni, Graciela E; Machado, Estela E

    2015-01-01

    Phosphatidylinositol (PtdIns) metabolism through phosphatidylinositol kinase (PIKs) activities plays a central role in different signaling pathways. In Trypanosoma cruzi, causative agent of Chagas disease, PIKs have been proposed as target for drug design in order to combat this pathogen. In this work, we studied the classes of PI4K, PIPK and PI3K that could participate in signaling pathways in T. cruzi epimastigote forms. For this reason, we analyzed their enzymatic parameters and detailed responses to avowed kinase inhibitors (adenosine, sodium deoxycholate, wortmannin and LY294002) and activators (Ca(2+), phosphatidic acid, spermine and heparin). Our results suggest the presence and activity of a class III PI4K, a class I PIPK, a class III PI3K previously described (TcVps34) and a class I PI3K. Class I PI3K enzyme, here named TcPI3K, was cloned and expressed in a bacterial system, and their product was tested for kinase activity. The possible participation of TcPI3K in central cellular events of the parasite is also discussed. PMID:26493613

  15. Immunopathological Aspects of Experimental Trypanosoma cruzi Reinfections

    PubMed Central

    Reis Machado, Juliana; Silva, Marcos Vinícius; Borges, Diego Costa; da Silva, Crislaine Aparecida; Ramirez, Luis Eduardo; dos Reis, Marlene Antônia; Castellano, Lúcio Roberto; Rodrigues, Virmondes; Rodrigues, Denise Bertulucci Rocha

    2014-01-01

    Chagas disease is caused by Trypanosoma cruzi infection. Besides the host-related factors, such as immune response and genetic background, the parasite, strain, and occurrences of reinfection episodes, may influence disease outcome. Our results demonstrate that both the primary infection and the reinfection with the Colombiana strain are connected with lower survival rate of the mice. After reinfection, parasitaemia is approximately ten times lower than in primary infected animals. Only Colombiana, Colombiana/Colombiana, and Y/Colombiana groups presented amastigote nests in cardiac tissue. Moreover, the mice infected and/or reinfected with the Colombiana strain had more T. cruzi nests, more intense inflammatory infiltrate, and higher in situ expression of TNF-α and IFN-γ than Y strain. Antigen-stimulated spleen cells from infected and/or reinfected animals produced higher levels of TNF-α, IFN-γ, and IL-10. Our results reinforce the idea that Chagas disease outcome is influenced by the strain of the infective parasite, being differentially modulated during reinfection episodes. It highlights the need of control strategies involving parasite strain characterization in endemic areas for Chagas disease. PMID:25050370

  16. Contemporary cryptic sexuality in Trypanosoma cruzi.

    PubMed

    Ramírez, Juan David; Guhl, Felipe; Messenger, Louisa A; Lewis, Michael D; Montilla, Marleny; Cucunuba, Zulma; Miles, Michael A; Llewellyn, Martin S

    2012-09-01

    Clonal propagation is considered to be the predominant mode of reproduction among many parasitic protozoa. However, this assumption may overlook unorthodox, infrequent or cryptic sexuality. Trypanosoma cruzi, which causes Chagas disease, is known to undergo non-Mendelian genetic exchange in the laboratory. In the field, evidence of extant genetic exchange is limited. In this study, we undertook intensive sampling of T. cruzi Discrete Typing Unit I in endemic eastern Colombia. Using Fluorescence-activated cell sorting, we generated 269 biological clones from 67 strains. Each clone was genotyped across 24 microsatellite loci. Subsequently, 100 representative clones were typed using 10 mitochondrial sequence targets (3.76 Kbp total). Clonal diversity among humans, reservoir hosts and vectors suggested complex patterns of superinfection and/or coinfection in oral and vector-borne Chagas disease cases. Clonal diversity between mother and foetus in a congenital case demonstrates that domestic TcI genotypes are infective in utero. Importantly, gross incongruence between nuclear and mitochondrial markers is strong evidence for widespread genetic exchange throughout the data set. Furthermore, a confirmed mosaic maxicircle sequence suggests intermolecular recombination between individuals as a further mechanism of genetic reassortment. Finally, robust dating based on mitochondrial DNA indicates that the emergence of a widespread domestic TcI clade that we now name TcI(DOM) (formerly TcIa/VEN(Dom)) occurred 23 000 ± 12 000 years ago and was followed by population expansion, broadly corresponding with the earliest human migration into the Americas. PMID:22774844

  17. Subcellular proteomics of Trypanosoma cruzi reservosomes

    PubMed Central

    Sant’Anna, Celso; Nakayasu, Ernesto S.; Pereira, Miria G.; Lourenço, Daniela; de Souza, Wanderley; Almeida, Igor C.; Cunha-e-Silva, Narcisa L.

    2009-01-01

    Reservosomes are the endpoint of the endocytic pathway in Trypanosoma cruzi epimastigotes. These organelles have the particular ability to concentrate proteins and lipids obtained from medium together with the main proteolytic enzymes originated from the secretory pathway, being at the same time a storage organelle and the main site of protein degradation. Subcellular proteomics have been extensively used for profiling organelles in different cell types. Here, we combine cell fractionation and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis to identify reservosome-resident proteins. Starting from a purified reservosome fraction, we established a protocol to isolate reservosome membranes. Transmission electron microscopy was applied to confirm the purity of the fractions. To achieve a better coverage of identified proteins we analyzed the fractions separately and combined the results. LC-MS/MS analysis identified in total 709 T. cruzi-specific proteins; of these, 456 had predicted function and 253 were classified as hypothetical proteins. We could confirm the presence of most of the proteins validated by previous work and identify new proteins from different classes such as enzymes, proton pumps, transport proteins and others. The definition of the reservosome protein profile is a good tool to assess their molecular signature, identify molecular markers, and understand their relationship with different organelles. PMID:19288526

  18. The Uptake of GABA in Trypanosoma cruzi.

    PubMed

    Galvez Rojas, Robert L; Ahn, Il-Young; Suárez Mantilla, Brian; Sant'Anna, Celso; Pral, Elizabeth Mieko Furusho; Silber, Ariel Mariano

    2015-01-01

    Gamma aminobutyric acid (GABA) is widely known as a neurotransmitter and signal transduction molecule found in vertebrates, plants, and some protozoan organisms. However, the presence of GABA and its role in trypanosomatids is unknown. Here, we report the presence of intracellular GABA and the biochemical characterization of its uptake in Trypanosoma cruzi, the etiological agent of Chagas' disease. Kinetic parameters indicated that GABA is taken up by a single transport system in pathogenic and nonpathogenic forms. Temperature dependence assays showed a profile similar to glutamate transport, but the effect of extracellular cations Na(+) , K(+) , and H(+) on GABA uptake differed, suggesting a different uptake mechanism. In contrast to reports for other amino acid transporters in T. cruzi, GABA uptake was Na(+) dependent and increased with pH, with a maximum activity at pH 8.5. The sensitivity to oligomycin showed that GABA uptake is dependent on ATP synthesis. These data point to a secondary active Na(+) /GABA symporter energized by Na(+) -exporting ATPase. Finally, we show that GABA occurs in the parasite's cytoplasm under normal culture conditions, indicating that it is regularly taken up from the culture medium or synthesized through an still undescribed metabolic pathway. PMID:25851259

  19. Desaturation of fatty acids in Trypanosoma cruzi

    SciTech Connect

    de Lema, M.G.; Aeberhard, E.E.

    1986-11-01

    Uptake and metabolism of saturated (16:0, 18:0) and unsaturated (18:1(n-9), 18:2(n-6), 18:3(n-3)) fatty acids by cultured epimastigotes of Trypanosoma cruzi were studied. Between 17.5 and 33.5% of the total radioactivity of (1-/sup 14/C)labeled fatty acids initially added to the culture medium was incorporated into the lipids of T. cruzi and mostly choline and ethanolamine phospholipids. As demonstrated by argentation thin layer chromatography, gas liquid chromatography and ozonolysis of the fatty acids synthesized, exogenous palmitic acid was elongated to stearic acid, and the latter was desaturated to oleic acid and 18:2 fatty acid. The 18:2 fatty acid was tentatively identified as linoleic acid with the first bond in the delta 9 position and the second bond toward the terminal methyl end. Exogenous stearic acid was also desaturated to oleic and 18:2 fatty acid, while oleic acid was only converted into 18:2. All of the saturated and unsaturated fatty acids investigated were also converted to a small extent (2-4%) into polyunsaturated fatty acids. No radioactive aldehyde methyl ester fragments of less than nine carbon atoms were detected after ozonolysis of any of the fatty acids studied. These results demonstrate the existence of delta 9 and either delta 12 or delta 15 desaturases, or both, in T. cruzi and suggest that delta 6 desaturase or other desaturases of the animal type are likely absent in cultured forms of this organism.

  20. [Digestive tract dilation in mice infected with Trypanosoma cruzi].

    PubMed

    Guillén-Pernía, B; Lugo-Yarbuh, A; Moreno, E

    2001-09-01

    This paper will analyze alterations in the digestive tract (DT) of mice with chronic Chagas' disease infection produced by Trypanosoma cruzi from different sources. X-rays of the DT of 18 mice infected with T. cruzi and 6 control mice were compared after the ingestion of a barium sulfate solution over a period of 6 hours. 120 days post-infection (pi) the X-rays of the DT of the 5 mice of group 1A infected with trypanosomes DMI isolated from the opossum Didelphis marsupialis, and 4 mice in group 2A infected with the isolate EP taken from a patient with acute Chagas' disease, showed swelling of the stomach and the colon (C). 180 days pi, the X-rays of the DT of the 5 mice of group 1B infected with isolated DMI and the 4 mice in group 2B infected with isolate EP, showed an even greater swelling of the C. Histological examination of the DT of all infected mice showed extensive changes of the intestinal muscle layer, such as the diminution of the muscular and mucous layers and the loss of colonic folds and myoenteric plexus. These results suggest that T. cruzi populations caused severe alterations in the digestive system of the mice used in the experiment, and that the same alterations could occur in the digestive organs of humans, especially those living in areas where Chagas' disease is endemic, but where these abnormalities have not yet been reported. PMID:11552508

  1. Altered Cardiomyocyte Function and Trypanosoma cruzi Persistence in Chagas Disease.

    PubMed

    Cruz, Jader Santos; Santos-Miranda, Artur; Sales-Junior, Policarpo Ademar; Monti-Rocha, Renata; Campos, Paula Peixoto; Machado, Fabiana Simão; Roman-Campos, Danilo

    2016-05-01

    Chagas disease, caused by the triatominae Trypanosoma cruzi, is one of the leading causes of heart malfunctioning in Latin America. The cardiac phenotype is observed in 20-30% of infected people 10-40 years after their primary infection. The cardiac complications during Chagas disease range from cardiac arrhythmias to heart failure, with important involvement of the right ventricle. Interestingly, no studies have evaluated the electrical properties of right ventricle myocytes during Chagas disease and correlated them to parasite persistence. Taking advantage of a murine model of Chagas disease, we studied the histological and electrical properties of right ventricle in acute (30 days postinfection [dpi]) and chronic phases (90 dpi) of infected mice with the Colombian strain of T. cruzi and their correlation to parasite persistence. We observed an increase in collagen deposition and inflammatory infiltrate at both 30 and 90 dpi. Furthermore, using reverse transcriptase polymerase chain reaction, we detected parasites at 90 dpi in right and left ventricles. In addition, we observed action potential prolongation and reduced transient outward K(+) current and L-type Ca(2+) current at 30 and 90 dpi. Taking together, our results demonstrate that T. cruzi infection leads to important modifications in electrical properties associated with inflammatory infiltrate and parasite persistence in mice right ventricle, suggesting a causal role between inflammation, parasite persistence, and altered cardiomyocyte function in Chagas disease. Thus, arrhythmias observed in Chagas disease may be partially related to altered electrical function in right ventricle. PMID:26976879

  2. An in vitro iron superoxide dismutase inhibitor decreases the parasitemia levels of Trypanosoma cruzi in BALB/c mouse model during acute phase

    PubMed Central

    Olmo, Francisco; Urbanová, Kristína; Rosales, Maria Jose; Martín-Escolano, Ruben; Sánchez-Moreno, Manuel; Marín, Clotilde

    2015-01-01

    In order to identify new compounds to treat Chagas disease during the acute phase with higher activity and lower toxicity than the reference drug benznidazole (Bz), two hydroxyphthalazine derivative compounds were prepared and their trypanocidal effects against Trypanosoma cruzi were evaluated by light microscopy through the determination of IC50 values. Cytotoxicity was determined by flow cytometry assays against Vero cells. In vivo assays were performed in BALB/c mice, in which the parasitemia levels were quantified by fresh blood examination; the assignment of a cure was determined by reactivation of blood parasitemia levels after immunosuppression. The mechanism of action was elucidated at metabolic and ultra-structural levels, by 1H NMR and TEM studies. Finally, as these compounds are potentially capable of causing oxidative damage in the parasites, the study was completed, by assessing their activity as potential iron superoxide dismutase (Fe-SOD) inhibitors. High-selectivity indices observed in vitro were the basis of promoting one of the tested compounds to in vivo assays. The tests on the murine model for the acute phase of Chagas disease showed better parasitemia inhibition values than those found for Bz. Compound 2 induced a remarkable decrease in the reactivation of parasitemia after immunosuppression. Compound 2 turned out to be a great inhibitor of Fe-SOD. The high antiparasitic activity and low toxicity together with the modest costs for the starting materials render this compound an appropriate molecule for the development of an affordable anti-Chagas agent. PMID:26236582

  3. Trypanosoma cruzi screening in Texas blood donors, 2008-2012.

    PubMed

    Garcia, M N; Woc-Colburn, L; Rossmann, S N; Townsend, R L; Stramer, S L; Bravo, M; Kamel, H; Beddard, R; Townsend, M; Oldham, R; Bottazzi, M E; Hotez, P J; Murray, K O

    2016-04-01

    Chagas disease is an important emerging disease in Texas that results in cardiomyopathy in about 30% of those infected with the parasite Trypanosoma cruzi. Between the years 2008 and 2012, about 1/6500 blood donors were T. cruzi antibody-confirmed positive. We found older persons and minority populations, particularly Hispanic, at highest risk for screening positive for T. cruzi antibodies during routine blood donation. Zip code analysis determined that T. cruzi is associated with poverty. Chagas disease has a significant disease burden and is a cause of substantial economic losses in Texas. PMID:25170765

  4. Trypanosoma cruzi invasion is associated with trogocytosis

    PubMed Central

    Mukherjee, Shankar; Mukhopadhyay, Aparna; Andriani, Grasiella; Machado, Fabiana Simño; Ashton, Anthony W.; Huang, Huan; Weiss, Louis M; Tanowitz, Herbert B

    2014-01-01

    Trogocytosis was originally thought to be restricted to the interaction of cells of the immune system and interactions of these cells with cancer cells. Such membrane exchanges are probably a general process in cell biology, and membrane exchange has been demonstrated to occur between non-immune cells within an organism. Herein, we report that membrane and protein exchange, consistent with trogocytosis, between Trypanosoma cruzi (both the Brazil and Tulahuen strains) and the mammalian cells it infects. Transfer of labeled membrane patches was monitored by labeling of either parasites or host cells, i.e. human foreskin fibroblasts and rat myoblasts. Trypomastigotes and amastigotes transferred specific surface glycoproteins to the host cells along with membranes. Exchange of membranes between the parasite and host cells occurred during successful invasion. Extracellular amastigotes did not transfer membrane patches and heat killed trypomastigotes were did not transfer either membranes or proteins to the host cells. Membrane exchange was also found to occur between interacting epimastigotes in cell-free culture and may be important in parasite-parasite interactions as well. Further studies should provide new insights into pathogenesis and provide targets for therapeutic intervention. PMID:25448052

  5. Genomic variation of Trypanosoma cruzi: involvement of multicopy genes.

    PubMed Central

    Wagner, W; So, M

    1990-01-01

    By using improved pulsed field gel conditions, the karyotypes of several strains of the protozoan parasite Trypanosoma cruzi were analyzed and compared with those of Leishmania major and two other members of the genus Trypanosoma. There was no difference in chromosome migration patterns between different life cycle stages of the T. cruzi strains analyzed. However, the sizes and numbers of chromosomal bands varied considerably among T. cruzi strains. This karyotype variation among T. cruzi strains was analyzed further at the chromosomal level by using multicopy genes as probes in Southern hybridizations. The chromosomal location of the genes encoding alpha- and beta-tubulin, ubiquitin, rRNA, spliced leader RNA, and an 85-kilodalton protein remained stable during developmental conversion of the parasite. The sizes and numbers of chromosomes containing these sequences varied among the different strains analyzed, implying multiple rearrangements of these genes during evolution of the parasites. During continuous in vitro cultivation of T. cruzi Y, the chromosomal location of the spliced leader gene shifted spontaneously. The spliced leader gene encodes a 35-nucleotide RNA that is spliced in trans from a 105-nucleotide donor RNA onto all mRNAs in T. cruzi. The spliced leader sequences changed in their physical location in both the cloned and uncloned Y strains. Associated with the complex changes was an increase in the infectivity of the rearranged variant for tissue culture cells. Our results indicate that the spliced leader gene clusters in T. cruzi undergo high-frequency genomic rearrangements. Images PMID:2169461

  6. Human Trypanosoma cruzi Infection and Seropositivity in Dogs, Mexico

    PubMed Central

    Estrada-Franco, Jose G.; Bhatia, Vandanajay; Diaz-Albiter, Hector; Ochoa-Garcia, Laucel; Barbabosa, Alberto; Vazquez-Chagoyan, Juan C.; Martinez-Perez, Miguel A.; Guzman-Bracho, Carmen

    2006-01-01

    We used 5 diagnostic tests in a cross-sectional investigation of the prevalence of Trypanosoma cruzi in Tejupilco municipality, State of Mexico, Mexico. Our findings showed a substantial prevalence of immunoglobulin G (IgG) and IgM antibodies to T. cruzi in human (n = 293, IgG 2.05%, IgM 5.5%, both 7.1%) and dog (n = 114, IgG 15.8%, IgM 11.4%, both 21%) populations. We also found antibodies to T. cruzi (n = 80, IgG 10%, IgM 15%, both 17.5%) in dogs from Toluca, an area previously considered free of T. cruzi. Our data demonstrate the need for active epidemiologic surveillance programs in these regions. A direct correlation (r2 = 0.955) of seropositivity between humans and dogs suggests that seroanalysis in dogs may help identify the human prevalence of T. cruzi infection in these areas. PMID:16704811

  7. Molecular Typing of Trypanosoma cruzi Isolates, United States

    PubMed Central

    Brown, Emily L.; Barnabé, Christian; Tibayrenc, Michel; Steurer, Frank J.; Yabsley, Michael J.

    2008-01-01

    Studies have characterized Trypanosoma cruzi from parasite-endemic regions. With new human cases, increasing numbers of veterinary cases, and influx of potentially infected immigrants, understanding the ecology of this organism in the United States is imperative. We used a classic typing scheme to determine the lineage of 107 isolates from various hosts. PMID:18598637

  8. Surface electrical charge of bloodstream trypomastigotes of Trypanosoma cruzi strains.

    PubMed

    de Sousa, M A

    1983-01-01

    Bloodstream trypomastigotes of some Trypanosoma cruzi strains were processed through DEAE-cellulose columns under standardized conditions. The results obtained suggest mainly that these strains present different surface charges, that there are subpopulations of bloodstream trypomastigotes as regards electrical charges and that the broad forms are less negative than the slender ones. PMID:6443631

  9. Interaction of Trypanosoma cruzi adenylate cyclase with liver regulatory factors.

    PubMed Central

    Eisenschlos, C; Flawiá, M M; Torruella, M; Torres, H N

    1986-01-01

    Trypanosoma cruzi adenylate cyclase catalytic subunits may interact with regulatory factors from rat liver membranes, reconstituting heterologous systems which are catalytically active in assay mixtures containing MgATP. The systems show stimulatory responses to glucagon and guanosine 5'-[beta gamma-imido]triphosphate (p[NH]ppG) or fluoride. Reconstitution was obtained by three different methods: fusion of rat liver membranes (pretreated with N-ethylmaleimide) to T. cruzi membranes; interaction of detergent extracts of rat liver membranes with T. cruzi membranes; or interaction of purified preparations of T. cruzi adenylate cyclase and of liver membrane factors in phospholipid vesicles. The liver factors responsible for the guanine nucleotide effect were characterized as the NS protein. Data also indicate that reconstitution requires the presence of a membrane substrate. PMID:2947568

  10. The evolution of Trypanosoma cruzi: the 'bat seeding' hypothesis.

    PubMed

    Hamilton, Patrick B; Teixeira, Marta M G; Stevens, Jamie R

    2012-04-01

    Recent discussions on the evolution of Trypanosoma cruzi have been dominated by the southern super-continent hypothesis, whereby T. cruzi and related parasites evolved in isolation in the mammals of South America, Antarctica and Australia. Here, we consider recent molecular evidence suggesting that T. cruzi evolved from within a broader clade of bat trypanosomes, and that bat trypanosomes have successfully made the switch into other mammalian hosts in both the New and Old Worlds. Accordingly, we propose an alternative hypothesis--the bat seeding hypothesis--whereby lineages of bat trypanosomes have switched into terrestrial mammals, thereby seeding the terrestrial lineages within the clade. One key implication of this finding is that T. cruzi may have evolved considerably more recently than previously envisaged. PMID:22365905

  11. Host metabolism regulates intracellular growth of Trypanosoma cruzi.

    PubMed

    Caradonna, Kacey L; Engel, Juan C; Jacobi, David; Lee, Chih-Hao; Burleigh, Barbara A

    2013-01-16

    Metabolic coupling of intracellular pathogens with host cells is essential for successful colonization of the host. Establishment of intracellular infection by the protozoan Trypanosoma cruzi leads to the development of human Chagas' disease, yet the functional contributions of the host cell toward the infection process remain poorly characterized. Here, a genome-scale functional screen identified interconnected metabolic networks centered around host energy production, nucleotide metabolism, pteridine biosynthesis, and fatty acid oxidation as key processes that fuel intracellular T. cruzi growth. Additionally, the host kinase Akt, which plays essential roles in various cellular processes, was critical for parasite replication. Targeted perturbations in these host metabolic pathways or Akt-dependent signaling pathways modulated the parasite's replicative capacity, highlighting the adaptability of this intracellular pathogen to changing conditions in the host. These findings identify key cellular process regulating intracellular T. cruzi growth and illuminate the potential to leverage host pathways to limit T. cruzi infection. PMID:23332160

  12. Host metabolism regulates intracellular growth of Trypanosoma cruzi

    PubMed Central

    Caradonna, Kacey L.; Engel, Juan C.; Jacobi, David; Lee, Chih-Hao; Burleigh, Barbara A.

    2012-01-01

    SUMMARY Metabolic coupling of intracellular pathogens with host cells is essential for successful colonization of the host. Establishment of intracellular infection by the protozoan Trypanosoma cruzi leads to the development of human Chagas disease, yet the functional contributions of the host cell toward the infection process remain poorly characterized. Here, a genome-scale functional screen identified interconnected metabolic networks centered around host energy production, nucleotide metabolism, pteridine biosynthesis, and fatty acid oxidation as key processes that fuel intracellular T. cruzi growth. Additionally, the host kinase Akt, which plays essential roles in various cellular processes, was critical for parasite replication. Targeted perturbations in these host metabolic pathways or Akt-dependent signaling pathways modulated the parasite’s replicative capacity, highlighting the adaptability of this intracellular pathogen to changing conditions in the host. These findings identify key cellular process regulating intracellular T. cruzi growth and illuminate the potential to leverage host pathways to limit T. cruzi infection. PMID:23332160

  13. Bed bugs (Cimex lectularius) as vectors of Trypanosoma cruzi.

    PubMed

    Salazar, Renzo; Castillo-Neyra, Ricardo; Tustin, Aaron W; Borrini-Mayorí, Katty; Náquira, César; Levy, Michael Z

    2015-02-01

    Populations of the common bed bug, Cimex lectularius, have recently undergone explosive growth. Bed bugs share many important traits with triatomine insects, but it remains unclear whether these similarities include the ability to transmit Trypanosoma cruzi, the etiologic agent of Chagas disease. Here, we show efficient and bidirectional transmission of T. cruzi between hosts and bed bugs in a laboratory environment. Most bed bugs that fed on experimentally infected mice acquired the parasite. A majority of previously uninfected mice became infected after a period of cohabitation with exposed bed bugs. T. cruzi was also transmitted to mice after the feces of infected bed bugs were applied directly to broken host skin. Quantitative bed bug defecation measures were similar to those of important triatomine vectors. Our findings suggest that the common bed bug may be a competent vector of T. cruzi and could pose a risk for vector-borne transmission of Chagas disease. PMID:25404068

  14. Interactions between Trypanosoma cruzi Secreted Proteins and Host Cell Signaling Pathways

    PubMed Central

    Watanabe Costa, Renata; da Silveira, Jose F.; Bahia, Diana

    2016-01-01

    Chagas disease is one of the prevalent neglected tropical diseases, affecting at least 6–7 million individuals in Latin America. It is caused by the protozoan parasite Trypanosoma cruzi, which is transmitted to vertebrate hosts by blood-sucking insects. After infection, the parasite invades and multiplies in the myocardium, leading to acute myocarditis that kills around 5% of untreated individuals. T. cruzi secretes proteins that manipulate multiple host cell signaling pathways to promote host cell invasion. The primary secreted lysosomal peptidase in T. cruzi is cruzipain, which has been shown to modulate the host immune response. Cruzipain hinders macrophage activation during the early stages of infection by interrupting the NF-kB P65 mediated signaling pathway. This allows the parasite to survive and replicate, and may contribute to the spread of infection in acute Chagas disease. Another secreted protein P21, which is expressed in all of the developmental stages of T. cruzi, has been shown to modulate host phagocytosis signaling pathways. The parasite also secretes soluble factors that exert effects on host extracellular matrix, such as proteolytic degradation of collagens. Finally, secreted phospholipase A from T. cruzi contributes to lipid modifications on host cells and concomitantly activates the PKC signaling pathway. Here, we present a brief review of the interaction between secreted proteins from T. cruzi and the host cells, emphasizing the manipulation of host signaling pathways during invasion. PMID:27065960

  15. Protective immunity against Trypanosoma cruzi provided by oral immunization with Phytomonas serpens: role of nitric oxide.

    PubMed

    Pinge-Filho, P; Peron, J P S; de Moura, T R; Menolli, R A; Graça, V K; Estevão, D; Tadokoro, C E; Jankevicius, J V; Rizzo, L V

    2005-01-31

    We have previously demonstrated that Phytomonas serpens, a tomato parasite, shares antigens with Trypanosoma cruzi, the protozoa that causes Chagas' disease. These antigens are recognized by human sera and induce protective immunity in Balb/c mice. In the present study, inducible nitric oxide synthase (iNOS) knockout (KO) mice and C57BL/6 mice treated with the nitric oxide inhibitor, aminoguanidine (AG, 50 mg kg(-1)) infected with T. cruzi, were used to demonstrate the role of nitric oxide (NO) to host protection against T. cruzi infection achieved by oral immunization with live P. serpens. A reduction in parasitaemia and an increase in survival were observed in C57BL/6 infected mice and previously immunized with P. serpens, when compared to non-immunized mice. iNOS (KO) mice immunized and C57BL/6 immunized and treated with AG presented parasitaemia and mortality rates comparable to those of infected and non-immunized mice. By itself, immunization with P. serpens did not induce inflammation in the myocardium, but C57BL/6 mice so immunized showed fewer amastigotes nests in the heart following an acute T. cruzi infection than those in non-immunized mice. These results suggest that protective immunity against T. cruzi infection induced by immunization with P. serpens is dependent upon enhanced NO production during the acute phase of T. cruzi infection. PMID:15585334

  16. Interferon-Gamma Promotes Infection of Astrocytes by Trypanosoma cruzi

    PubMed Central

    Silva, Rafael Rodrigues; Mariante, Rafael M.; Silva, Andrea Alice; dos Santos, Ana Luiza Barbosa; Roffê, Ester; Santiago, Helton; Gazzinelli, Ricardo Tostes; Lannes-Vieira, Joseli

    2015-01-01

    The inflammatory cytokine interferon-gamma (IFNγ) is crucial for immunity against intracellular pathogens such as the protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease (CD). IFNγ is a pleiotropic cytokine which regulates activation of immune and non-immune cells; however, the effect of IFNγ in the central nervous system (CNS) and astrocytes during CD is unknown. Here we show that parasite persists in the CNS of C3H/He mice chronically infected with the Colombian T. cruzi strain despite the increased expression of IFNγ mRNA. Furthermore, most of the T. cruzi-bearing cells were astrocytes located near IFNγ+ cells. Surprisingly, in vitro experiments revealed that pretreatment with IFNγ promoted the infection of astrocytes by T. cruzi increasing uptake and proliferation of intracellular forms, despite inducing increased production of nitric oxide (NO). Importantly, the effect of IFNγ on T. cruzi uptake and growth is completely blocked by the anti-tumor necrosis factor (TNF) antibody Infliximab and partially blocked by the inhibitor of nitric oxide synthesis L-NAME. These data support that IFNγ fuels astrocyte infection by T. cruzi and critically implicate IFNγ-stimulated T. cruzi-infected astrocytes as sources of TNF and NO, which may contribute to parasite persistence and CNS pathology in CD. PMID:25695249

  17. Trypanosoma cruzi and Chagas' Disease in the United States

    PubMed Central

    Bern, Caryn; Kjos, Sonia; Yabsley, Michael J.; Montgomery, Susan P.

    2011-01-01

    Summary: Chagas' disease is caused by the protozoan parasite Trypanosoma cruzi and causes potentially life-threatening disease of the heart and gastrointestinal tract. The southern half of the United States contains enzootic cycles of T. cruzi, involving 11 recognized triatomine vector species. The greatest vector diversity and density occur in the western United States, where woodrats are the most common reservoir; other rodents, raccoons, skunks, and coyotes are also infected with T. cruzi. In the eastern United States, the prevalence of T. cruzi is highest in raccoons, opossums, armadillos, and skunks. A total of 7 autochthonous vector-borne human infections have been reported in Texas, California, Tennessee, and Louisiana; many others are thought to go unrecognized. Nevertheless, most T. cruzi-infected individuals in the United States are immigrants from areas of endemicity in Latin America. Seven transfusion-associated and 6 organ donor-derived T. cruzi infections have been documented in the United States and Canada. As improved control of vector- and blood-borne T. cruzi transmission decreases the burden in countries where the disease is historically endemic and imported Chagas' disease is increasingly recognized outside Latin America, the United States can play an important role in addressing the altered epidemiology of Chagas' disease in the 21st century. PMID:21976603

  18. Interferon-gamma promotes infection of astrocytes by Trypanosoma cruzi.

    PubMed

    Silva, Rafael Rodrigues; Mariante, Rafael M; Silva, Andrea Alice; dos Santos, Ana Luiza Barbosa; Roffê, Ester; Santiago, Helton; Gazzinelli, Ricardo Tostes; Lannes-Vieira, Joseli

    2015-01-01

    The inflammatory cytokine interferon-gamma (IFNγ) is crucial for immunity against intracellular pathogens such as the protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease (CD). IFNγ is a pleiotropic cytokine which regulates activation of immune and non-immune cells; however, the effect of IFNγ in the central nervous system (CNS) and astrocytes during CD is unknown. Here we show that parasite persists in the CNS of C3H/He mice chronically infected with the Colombian T. cruzi strain despite the increased expression of IFNγ mRNA. Furthermore, most of the T. cruzi-bearing cells were astrocytes located near IFNγ+ cells. Surprisingly, in vitro experiments revealed that pretreatment with IFNγ promoted the infection of astrocytes by T. cruzi increasing uptake and proliferation of intracellular forms, despite inducing increased production of nitric oxide (NO). Importantly, the effect of IFNγ on T. cruzi uptake and growth is completely blocked by the anti-tumor necrosis factor (TNF) antibody Infliximab and partially blocked by the inhibitor of nitric oxide synthesis L-NAME. These data support that IFNγ fuels astrocyte infection by T. cruzi and critically implicate IFNγ-stimulated T. cruzi-infected astrocytes as sources of TNF and NO, which may contribute to parasite persistence and CNS pathology in CD. PMID:25695249

  19. TNF-α is expressed at sites of parasite and tissue destruction in the spleen of mice acutely infected with Trypanosoma cruzi

    PubMed Central

    LIMA, ELIANITA SUZART; ANDRADE, ZILTON A; ANDRADE, SONIA G

    2001-01-01

    Mice infected with a macrophagotropic strain of Trypanosoma cruzi develop progressive splenomegaly due to reactive hyperplasia with increased number of lymphocytes and macrophages, culminating in parasite disintegration and necrosis of parasitized cells. Necrotic changes have been attributed to the liberation of toxic cytokines, including TNF-α, from parasitized macrophages. In the present study, the presence of TNF‐α was investigated in situ. In addition the participation of destroyed parasites in inducing the liberation of TNF-α was examined in two highly susceptible mice strains (C3H and Swiss) and a more resistant strain (DBA). Swiss (90) C3H/He (83) and DBA (30) mice were infected with the Peruvian strain of T. cruzi. Nineteen infected Swiss mice, and 22 infected C3H/He were treated with Benznidazole (one or two doses, 100 mg/kg bw/day), on the 8th and 9th days after infection. Necrotic splenic lesions occurred in both susceptible and resistant strains of mice. Although differing in degree, lesions were more intense in C3H and Swiss than in DBA mice. Comparing untreated and treated susceptible mice, necrotic lesions were significantly less intense in the latter. By specific monoclonal antibody immunolabelling, TNF-α was demonstrated in the cytoplasm of macrophages and within necrotic areas, from Swiss, C3H/He and DBA mouse spleens. In conclusion, TNF-α, probably synthesized by macrophages, was strongly expressed at the sites of parasite and cell destruction, thus appearing to play a pivotal role in splenic necrotic changes associated with severe experimental T. cruzi infection. PMID:11846839

  20. Activities of Psilostachyin A and Cynaropicrin against Trypanosoma cruzi In Vitro and In Vivo

    PubMed Central

    da Silva, Cristiane França; Batista, Denise da Gama Jaen; De Araújo, Julianna Siciliano; Batista, Marcos Meuser; Lionel, Jessica; de Souza, Elen Mello; Hammer, Erica Ripoll; da Silva, Patricia Bernardino; De Mieri, Maria; Adams, Michael; Zimmermann, Stefanie; Hamburger, Matthias; Brun, Reto; Schühly, Wolfgang

    2013-01-01

    In vitro and in vivo activities against Trypanosoma cruzi were evaluated for two sesquiterpene lactones: psilostachyin A and cynaropicrin. Cynaropicrin had previously been shown to potently inhibit African trypanosomes in vivo, and psilostachyin A had been reported to show in vivo effects against T. cruzi, albeit in another test design. In vitro data showed that cynaropicrin was more effective than psilostachyin A. Ultrastructural alterations induced by cynaropicrin included shedding events, detachment of large portions of the plasma membrane, and vesicular bodies and large vacuoles containing membranous structures, suggestive of parasite autophagy. Acute toxicity studies showed that one of two mice died at a cynaropicrin dose of 400 mg/kg of body weight given intraperitoneally (i.p.). Although no major plasma biochemical alterations could be detected, histopathology demonstrated that the liver was the most affected organ in cynaropicrin-treated animals. Although cynaropicrin was as effective as benznidazole against trypomastigotes in vitro, the treatment (once or twice a day) of T. cruzi-infected mice (up to 50 mg/kg/day cynaropicrin) did not suppress parasitemia or protect against mortality induced by the Y and Colombiana strains. Psilostachyin A (0.5 to 50 mg/kg/day given once a day) was not effective in the acute model of T. cruzi infection (Y strain), reaching 100% animal mortality. Our data demonstrate that although it is very promising against African trypanosomes, cynaropicrin does not show efficacy compared to benznidazole in acute mouse models of T. cruzi infection. PMID:23939901

  1. Trypanosoma cruzi: single cell live imaging inside infected tissues.

    PubMed

    Ferreira, Bianca Lima; Orikaza, Cristina Mary; Cordero, Esteban Mauricio; Mortara, Renato Arruda

    2016-06-01

    Although imaging the live Trypanosoma cruzi parasite is a routine technique in most laboratories, identification of the parasite in infected tissues and organs has been hindered by their intrinsic opaque nature. We describe a simple method for in vivo observation of live single-cell Trypanosoma cruzi parasites inside mammalian host tissues. BALB/c or C57BL/6 mice infected with DsRed-CL or GFP-G trypomastigotes had their organs removed and sectioned with surgical blades. Ex vivo organ sections were observed under confocal microscopy. For the first time, this procedure enabled imaging of individual amastigotes, intermediate forms and motile trypomastigotes within infected tissues of mammalian hosts. PMID:26639617

  2. Differential expression of Trypanosoma cruzi I associated with clinical forms of Chagas disease: overexpression of oxidative stress proteins in acute patient isolate.

    PubMed

    Díaz, M L; Solari, A; González, C I

    2011-08-24

    Chagas disease has a variable clinical course with different manifestations and heterogenous geographical distribution. Some studies suggest that this clinical variability could be influenced by the genetic variability of T. cruzi. Here we present the differential protein expression among trypomastigotes and amastigotes of T. cruzi group I isolates from patients with acute and chronic form of Chagas disease from Santander, Colombia. A total of 29 proteins were identified by MALDI-TOF and LC-MS/MS; twenty in trypomastigote and nine in amastigote stage. The 29 proteins identified were grouped in 7 functional categories: 1) metabolism 31%, 2) assembly of cytoskeleton 13.7%, 3) protein destination 13.7%, 4) defenses antioxidants 20.6%, 5) protein synthesis and cellular cycle 13.7%, 6) catabolism 6.8%, and 7) adhesion 3.4%. Tryparedoxin peroxidase, lipoamide dehydrogenase, tyrosine amino transferase and HSP70 were overexpressed in the acute Chagas isolate. Tryparedoxin peroxidase overexpression in the acute isolate was confirmed by Western blot analysis. Most of these proteins are associated with resistance to oxidative stress facilitating their survival within host cells. Therefore, these proteins may represent virulence factors associated with the development of the acute form of the disease and could be used as biomarkers of the clinical course of disease and as drug targets. PMID:21642025

  3. Infection of Kissing Bugs with Trypanosoma cruzi, Tucson, Arizona, USA

    PubMed Central

    Lawrence, Gena; Guerenstein, Pablo G.; Gregory, Teresa; Dotson, Ellen; Hildebrand, John G.

    2010-01-01

    Triatomine insects (Hemiptera: Reduviidae), commonly known as kissing bugs, are a potential health problem in the southwestern United States as possible vectors of Trypanosoma cruzi, the causative agent of Chagas disease. Although this disease has been traditionally restricted to Latin America, a small number of vector-transmitted autochthonous US cases have been reported. Because triatomine bugs and infected mammalian reservoirs are plentiful in southern Arizona, we collected triatomines inside or around human houses in Tucson and analyzed the insects using molecular techniques to determine whether they were infected with T. cruzi. We found that 41.5% of collected bugs (n = 164) were infected with T. cruzi, and that 63% of the collection sites (n = 22) yielded >1 infected specimens. Although many factors may contribute to the lack of reported cases in Arizona, these results indicate that the risk for infection in this region may be higher than previously thought. PMID:20202413

  4. Differentiation of Trypanosoma cruzi Chagas, 1909 and Trypanosoma vespertilionis Battaglia, 1904 by various lectins.

    PubMed

    Schottelius, J; Koch, O; Uhlenbruck, G

    1983-06-01

    Four-days-old culture forms of Trypanosoma cruzi (strain Téhuantépéc, Guatemala) and Trypanosoma vespertilionis (strain P-14, P-9) were tested by 19 carbohydrate-specific agglutinins. The T. cruzi strains are interspecifically distinguishable with the lectins from Euonymus europaeus, Tridacna crocea, Tridacna maxima and the human blood-group testserum anti-B from the T. vespertilionis strains. While the T. vespertilionis strains did react with anti-B and E. europaeus, the T. cruzi strains did not agglutinate. The T. cruzi strains were agglutinated by the lectins from T. crocea and T: maxima while the bat-trypanosomes showed no reactions. Using these lectins it was not possible to distinguish the bat-flagellates intraspecifically. With the lectins from Triticum vulgaris and Arachis hypogaea the T. cruzi strains could be distinguished. While the Ténuantépéc strain did agglutinate with A. hypogaea, T. cruzi strain Guatemala did react only with the lectin from T. vulgaris. The bat-trypanosomes were agglutinated only by A. hypogaea but not by T. vulgaris. The reactions of these trypanosome-species with A. papillata and T. vulgaris demonstrate that both trypanosome species have N-acetylneuraminic acid on their cell surfaces. PMID:6349060

  5. Purification and characterization of an 80-kilodalton Trypanosoma cruzi urinary antigen.

    PubMed Central

    Corral, R S; Orn, A; Freilij, H L; Bergman, T; Grinstein, S

    1989-01-01

    A Trypanosoma cruzi antigen eliminated in the urine of experimentally infected dogs was detected by enzyme-linked immunosorbent assay between 9 and 28 days after infection. The parasite urinary antigen (UAg) was purified by affinity chromatography with polyclonal antibodies to T. cruzi. The eluate of the antibody column was subjected to high-performance liquid chromatography and showed a single peak of A280. This antigen was the only parasite component found in the urine of infected dogs during the course of acute T. cruzi infection. Antigen characterization was performed by two-dimensional gel electrophoresis, lectin affinity chromatography, proteolytic digestion, and Western blotting (immunoblotting). The isolated UAg exhibited a relative molecular size of 80 kilodaltons (kDa), an isoelectric point of 6.2 to 6.8, binding to concanavalin A, and sensitivity to trypsin. The parasite antigen was electroeluted from polyacrylamide gels and subjected to acid hydrolysis and amino acid analysis by reverse-phase high-performance liquid chromatography. The 80-kDa glycoprotein was recognized by serum antibodies from a wide variety of T. cruzi-infected hosts. The UAg proved to be a highly antigenic component present in different strains of T. cruzi. This 80-kDa polypeptide resembles one of the parasite antigens previously found in the urine of patients with acute Chagas' disease. Images PMID:2643616

  6. Genetic immunization converts the trypanosoma cruzi B-Cell mitogen proline racemase to an effective immunogen.

    PubMed

    Bryan, Marianne A; Norris, Karen A

    2010-02-01

    Trypanosoma cruzi is the etiologic agent of Chagas' disease. Acute T. cruzi infection results in polyclonal B-cell activation and delayed specific humoral immunity. T. cruzi proline racemase (TcPRAC), a T. cruzi B-cell mitogen, may contribute to this dysfunctional humoral response. Stimulation of murine splenocytes with recombinant protein (rTcPRAC) induced B-cell proliferation, antibody secretion, interleukin-10 (IL-10) production, and upregulation of CD69 and CD86 on B cells. Marginal zone (MZ) B cells are more responsive to T-cell-independent (TI) rTcPRAC stimulation than are follicular mature (FM) B cells in terms of proliferation, antibody secretion, and IL-10 production. During experimental T. cruzi infection, TcPRAC-specific IgG remained undetectable when responses to other T. cruzi antigens developed. Conversely, intradermal genetic immunization via gene gun (GG) delivered TcPRAC as an immunogen, generating high-titer TcPRAC-specific IgG without B-cell dysfunction. TcPRAC GG immunization led to antigen-specific splenic memory B-cell and bone marrow plasma cell formation. TcPRAC-specific IgG bound mitogenic rTcPRAC, decreasing subsequent B-cell activation. GG immunization with rTcPRAC DNA was nonmitogenic and did not affect the generation of specific IgG to another T. cruzi antigen, complement regulatory protein (CRP). These data demonstrate the utility of genetic immunization for the conversion of a protein mitogen to an effective antigen. Furthermore, coimmunization of TcPRAC with another T. cruzi antigen indicates the usefulness of this approach for multivalent vaccine development. PMID:19917711

  7. Transcriptional and phenotypical heterogeneity of Trypanosoma cruzi cell populations.

    PubMed

    Seco-Hidalgo, Víctor; De Pablos, Luis Miguel; Osuna, Antonio

    2015-12-01

    Trypanosoma cruzi has a complex life cycle comprising pools of cell populations which circulate among humans, vectors, sylvatic reservoirs and domestic animals. Recent experimental evidence has demonstrated the importance of clonal variations for parasite population dynamics, survival and evolution. By limiting dilution assays, we have isolated seven isogenic clonal cell lines derived from the Pan4 strain of T. cruzi. Applying different molecular techniques, we have been able to provide a comprehensive characterization of the expression heterogeneity in the mucin-associated surface protein (MASP) gene family, where all the clonal isogenic populations were transcriptionally different. Hierarchical cluster analysis and sequence comparison among different MASP cDNA libraries showed that, despite the great variability in MASP expression, some members of the transcriptome (including MASP pseudogenes) are conserved, not only in the life-cycle stages but also among different strains of T. cruzi. Finally, other important aspects for the parasite, such as growth, spontaneous metacyclogenesis or excretion of different catabolites, were also compared among the clones, demonstrating that T. cruzi populations of cells are also phenotypically heterogeneous. Although the evolutionary strategy that sustains the MASP expression polymorphism remains unknown, we suggest that MASP clonal variability and phenotypic heterogeneities found in this study might provide an advantage, allowing a rapid response to environmental pressure or changes during the life cycle of T. cruzi. PMID:26674416

  8. Mechanisms of host cell invasion by Trypanosoma cruzi.

    PubMed

    Caradonna, Kacey L; Burleigh, Barbara A

    2011-01-01

    One of the more accepted concepts in our understanding of the biology of early Trypanosoma cruzi-host cell interactions is that the mammalian-infective trypomastigote forms of the parasite must transit the host cell lysosomal compartment in order to establish a productive intracellular infection. The acidic environment of the lysosome provides the appropriate conditions for parasite-mediated disruption of the parasitophorous vacuole and release of T. cruzi into the host cell cytosol, where replication of intracellular amastigotes occurs. Recent findings indicate a level of redundancy in the lysosome-targeting process where T. cruzi trypomastigotes exploit different cellular pathways to access host cell lysosomes in non-professional phagocytic cells. In addition, the reversible nature of the host cell penetration process was recently demonstrated when conditions for fusion of the nascent parasite vacuole with the host endosomal-lysosomal system were not met. Thus, the concept of parasite retention as a critical component of the T. cruzi invasion process was introduced. Although it is clear that host cell recognition, attachment and signalling are required to initiate invasion, integration of this knowledge with our understanding of the different routes of parasite entry is largely lacking. In this chapter, we focus on current knowledge of the cellular pathways exploited by T. cruzi trypomastigotes to invade non-professional phagocytic cells and to gain access to the host cell lysosome compartment. PMID:21884886

  9. Transcriptional and phenotypical heterogeneity of Trypanosoma cruzi cell populations

    PubMed Central

    Seco-Hidalgo, Víctor; De Pablos, Luis Miguel; Osuna, Antonio

    2015-01-01

    Trypanosoma cruzi has a complex life cycle comprising pools of cell populations which circulate among humans, vectors, sylvatic reservoirs and domestic animals. Recent experimental evidence has demonstrated the importance of clonal variations for parasite population dynamics, survival and evolution. By limiting dilution assays, we have isolated seven isogenic clonal cell lines derived from the Pan4 strain of T. cruzi. Applying different molecular techniques, we have been able to provide a comprehensive characterization of the expression heterogeneity in the mucin-associated surface protein (MASP) gene family, where all the clonal isogenic populations were transcriptionally different. Hierarchical cluster analysis and sequence comparison among different MASP cDNA libraries showed that, despite the great variability in MASP expression, some members of the transcriptome (including MASP pseudogenes) are conserved, not only in the life-cycle stages but also among different strains of T. cruzi. Finally, other important aspects for the parasite, such as growth, spontaneous metacyclogenesis or excretion of different catabolites, were also compared among the clones, demonstrating that T. cruzi populations of cells are also phenotypically heterogeneous. Although the evolutionary strategy that sustains the MASP expression polymorphism remains unknown, we suggest that MASP clonal variability and phenotypic heterogeneities found in this study might provide an advantage, allowing a rapid response to environmental pressure or changes during the life cycle of T. cruzi. PMID:26674416

  10. Identification of the nicotinamide mononucleotide adenylyltransferase of Trypanosoma cruzi

    PubMed Central

    Niño, Carlos H; Forero-Baena, Nicolás; Contreras, Luis E; Sánchez-Lancheros, Diana; Figarella, Katherine; Ramírez, María H

    2015-01-01

    The intracellular parasite Trypanosoma cruzi is the aetiological agent of Chagas disease, a public health concern with an increasing incidence rate. This increase is due, among other reasons, to the parasite's drug resistance mechanisms, which require nicotinamide adenine dinucleotide (NAD+). Furthermore, this molecule is involved in metabolic and intracellular signalling processes necessary for the survival of T. cruzi throughout its life cycle. NAD+ biosynthesis is performed by de novo and salvage pathways, which converge on the step that is catalysed by the enzyme nicotinamide mononucleotide adenylyltransferase (NMNAT) (enzyme commission number: 2.7.7.1). The identification of the NMNAT of T. cruzi is important for the development of future therapeutic strategies to treat Chagas disease. In this study, a hypothetical open reading frame (ORF) for NMNAT was identified in the genome of T. cruzi. The corresponding putative protein was analysed by simulating structural models. The ORF was amplified from genomic DNA by polymerase chain reaction and was further used for the construction of a corresponding recombinant expression vector. The expressed recombinant protein was partially purified and its activity was evaluated using enzymatic assays. These results comprise the first identification of an NMNAT in T. cruzi using bioinformatics and experimental tools and hence represent the first step to understanding NAD+ metabolism in these parasites. PMID:26560979

  11. Type I Interferons Increase Host Susceptibility to Trypanosoma cruzi Infection▿†

    PubMed Central

    Chessler, Anne-Danielle C.; Caradonna, Kacey L.; Da'dara, Akram; Burleigh, Barbara A.

    2011-01-01

    Trypanosoma cruzi, the protozoan parasite that causes human Chagas' disease, induces a type I interferon (IFN) (IFN-α/β) response during acute experimental infection in mice and in isolated primary cell types. To examine the potential impact of the type I IFN response in shaping outcomes in experimental T. cruzi infection, groups of wild-type (WT) and type I IFN receptor-deficient (IFNAR−/−) 129sv/ev mice were infected with two different T. cruzi strains under lethal and sublethal conditions and several parameters were measured during the acute stage of infection. The results demonstrate that type I IFNs are not required for early host protection against T. cruzi. In contrast, under conditions of lethal T. cruzi challenge, WT mice succumbed to infection whereas IFNAR−/− mice were ultimately able to control parasite growth and survive. T. cruzi clearance in and survival of IFNAR−/− mice were accompanied by higher levels of IFN-γ production by isolated splenocytes in response to parasite antigen. The suppression of IFN-γ in splenocytes from WT mice was independent of IL-10 levels. While the impact of type I IFNs on the production of IFN-γ and other cytokines/chemokines remains to be fully determined in the context of T. cruzi infection, our data suggest that, under conditions of high parasite burden, type I IFNs negatively impact IFN-γ production, initiating a detrimental cycle that contributes to the ultimate failure to control infection. These findings are consistent with a growing theme in the microbial pathogenesis field in which type I IFNs can be detrimental to the host in a variety of nonviral pathogen infection models. PMID:21402764

  12. Trypanosoma cruzi: circulating polysaccharide factors excreted in vitro and in vivo.

    PubMed

    Martín, U O; Afchain, D; Loyens, M; Maidana, C; Caprón, A

    1989-01-01

    An antigen factor (EF), thermostable and soluble in trichloroacetic acid was detected in the supernatant fluid of epimastigote cultures of Trypanosoma cruzi and in the sera of patients with acute Chagas disease. An hyperimmune antiserum to this antigenic factor was obtained in rabbits. The EF was revealed on the fibroblast surface membranes of rats infected with trypomastigotes, using the indirect immunofluorescence technique. The presence of EF in the sera of patients with acute Chagas disease as well as in the supernatant of epimastigotes culture at logarithmic phase, leads to its association with a process of parasite proliferation. Being EF a component of the parasite, its origin both in vitro and in vivo could be the result of an excretion-secretion of parasite or simply a result of the parasite's death. It can be postulated that the same as in other protozoic infection, EF could be used by T. cruzi in the process of cell penetration. PMID:2517138

  13. Trypanosoma cruzi (Kinetoplastida, Trypanosomatidae) genotypes in neotropical bats in Brazil.

    PubMed

    Lisboa, Cristiane Varella; Pinho, Ana Paula; Herrera, Heitor Miraglia; Gerhardt, Marconny; Cupolillo, Elisa; Jansen, Ana Maria

    2008-10-01

    Few studies have been conducted to investigate the role played by the order Chiroptera in the sylvatic transmission cycle of Trypanosoma cruzi or their putative association with the main genotypes of the parasite. Here, the purpose was to enlarge the knowledge of this issue, in this sense, 93 specimens of bats included in 4 families, respectively Molossidae, Noctilionidae, Phyllostomidae and Vespertilionidae collected in distinct regions of Brazil were submitted to fresh blood smears and hemocultures. No patent parasitemia was observed but positive hemocultures by T. cruzi were observed in 14% (13/93) of examined samples. The majority of the parasite isolates were obtained from Phyllostomus hastatus (80%) captured in one same buriti hollow palm tree in the Cerrado region. Multilocus enzyme electrophoresis (MLEE) analyses showed that the genetic distance among these isolates was 0.35, almost the same observed when all the isolates (excluding the reference strains) were analyzed (0.40). No correlation of zymodeme with bat genera, species or geographic region of its origin could be observed, moreover, correlation of zymodeme and genotype of the parasite was not strict. Ten out of 14 T. cruzi isolates obtained from bats corresponded to the TCII genotype. Chiropterans with TCI, TCII/TCIII mixed infection as well as Trypanosoma rangeli in single or mixed infections were observed. These results show that bats may harbor and are probably important maintainers of the main genotypes (TCI, TCII, TCIII/Z3) of T. cruzi. These results support the absence of an association of TCII with any mammal order and show that bats, mainly P. hastatus, may act as amplifier hosts of TCII subpopulations of T. cruzi. PMID:18650015

  14. Impact of Benznidazole on Infection Course in Mice Experimentally Infected with Trypanosoma cruzi I, II, and IV

    PubMed Central

    Gruendling, Ana Paula; Massago, Miyoko; Teston, Ana Paula M.; Monteiro, Wuelton M.; Kaneshima, Edilson N.; Araújo, Silvana M.; Gomes, Mônica L.; Barbosa, Maria das Graças V.; Toledo, Max Jean O.

    2015-01-01

    American trypanosomiasis is an emerging zoonosis in the Brazilian Amazon. Studies on benznidazole (BZ) chemotherapy with Trypanosoma cruzi from this region have great relevance, given the different discrete typing units (DTUs) that infect humans in the Amazon and other regions of Brazil. We performed a parasitological, histopathological, and molecular analysis of mice inoculated with strains of T. cruzi I, II, and IV that were BZ-treated during the acute phase of infection. Groups of Swiss mice were inoculated; 13 received oral BZ, whereas the other 13 comprised the untreated controls. Unlike parasitemia, the infectivity and mortality did not vary among the DTUs. Trypanosoma cruzi DNA was detected in all tissues analyzed and the proportion of organs parasitized varied with the parasite DTU. The BZ treatment reduced the most parasitological parameters, tissue parasitism and the inflammatory processes at all infection stages and for all DTUs. However, the number of significant reductions varied according to the DTU and infection phase. PMID:25940197

  15. Occurrence of Trypanosoma cruzi in Maryland

    USGS Publications Warehouse

    Herman, C.M.; Bruce, J.I., Jr.

    1962-01-01

    During 1954-1960, 2005 mammals of 18 species collected at the Patuxent Wildlife Research Center, Maryland, were examined for trypanosomes. T. cruzi was found in 10 raccoons between October 31 and November 30. Infection occurred in 2 percent of all raccoons sampled, and in 11.3 percent of the 80 raccoons sampled in November. Examination was by direct smears, stained smears and cultures of heart blood. Although, in previous studies, at least two experimentally infected raccoons exhibited extended parasitemia (14 and 8 weeks), no such continuing parasitemia was observed in the natural infections. No trypanosomes were found in any of the other mammals examined.

  16. Cruzipain Promotes Trypanosoma cruzi Adhesion to Rhodnius prolixus Midgut

    PubMed Central

    Uehara, Lívia Almeida; Moreira, Otacílio C.; Oliveira, Ana Carolina; Azambuja, Patrícia; Lima, Ana Paula Cabral Araujo; Britto, Constança; dos Santos, André Luis Souza; Branquinha, Marta Helena; d'Avila-Levy, Claudia Masini

    2012-01-01

    Background Trypanosoma cruzi is the etiological agent of Chagas' disease. Cysteine peptidases are relevant to several aspects of the T. cruzi life cycle and are implicated in parasite-mammalian host relationships. However, little is known about the factors that contribute to the parasite-insect host interaction. Methodology/Principal Findings Here, we have investigated whether cruzipain could be involved in the interaction of T. cruzi with the invertebrate host. We analyzed the effect of treatment of T. cruzi epimastigotes with anti-cruzipain antibodies or with a panel of cysteine peptidase inhibitors (cystatin, antipain, E-64, leupeptin, iodocetamide or CA-074-OMe) on parasite adhesion to Rhodnius prolixus posterior midgut ex vivo. All treatments, with the exception of CA074-OMe, significantly decreased parasite adhesion to R. prolixus midgut. Cystatin presented a dose-dependent reduction on the adhesion. Comparison of the adhesion rate among several T. cruzi isolates revealed that the G isolate, which naturally possesses low levels of active cruzipain, adhered to a lesser extent in comparison to Dm28c, Y and CL Brener isolates. Transgenic epimastigotes overexpressing an endogenous cruzipain inhibitor (pCHAG), chagasin, and that have reduced levels of active cruzipain adhered to the insect gut 73% less than the wild-type parasites. The adhesion of pCHAG parasites was partially restored by the addition of exogenous cruzipain. In vivo colonization experiments revealed low levels of pCHAG parasites in comparison to wild-type. Parasites isolated after passage in the insect presented a drastic enhancement in the expression of surface cruzipain. Conclusions/Significance These data highlight, for the first time, that cruzipain contributes to the interaction of T. cruzi with the insect host. PMID:23272264

  17. Aspirin treatment exacerbates oral infections by Trypanosoma cruzi.

    PubMed

    Cossentini, Luana Aparecida; Da Silva, Rosiane Valeriano; Yamada-Ogatta, Sueli Fumie; Yamauchi, Lucy Megumi; De Almeida Araújo, Eduardo José; Pinge-Filho, Phileno

    2016-05-01

    Oral transmission of the protozoan parasite Trypanosoma cruzi, the etiological agent of Chagas disease, has been documented in Latin American countries. The reported cases of infection were due to the ingestion of contaminated fresh fruit, juices, or sugar cane juice. There have been few studies on the physiopathology of the disease in oral transmission cases. Gastritis is a common ailment that can be caused by poor dietary habits, intake of alcohol or other gastric irritants, bacterial infection, or by the widespread use of non-steroidal anti-inflammatory drugs (NSAIDs). This study investigated in a mouse model whether gastric mucosal injury, induced by aspirin, would affect the course of disease in animals infected with T. cruzi by the oral route. The CL14 and G strains of T. cruzi, both of low infectivity, were used. To this end, groups of BALB/c mice were treated during 5 days with aspirin (100 mg kg(-1)) before oral infection with T. cruzi metacyclic forms (4 × 10(5) or 5 × 10(7) parasites/mouse). Histological analysis and determination of nitric oxide and TNF-α were performed in gastric samples obtained 5 days after infection. Parasitemia was monitored from the thirteenth day after infection. The results indicate that aspirin treatment of mice injured their gastric mucosa and facilitated invasion by both CL14 and G strains of T. cruzi. Strain CL14 caused more severe infection compared to the G strain, as larger numbers of amastigote nests were found in the stomach and parasitemia levels were higher. Our study is novel in that it shows that gastric mucosal damage caused by aspirin, a commonly used NSAID, facilitates T. cruzi infection by the oral route. PMID:26826555

  18. Machine Learning Models and Pathway Genome Data Base for Trypanosoma cruzi Drug Discovery

    PubMed Central

    McCall, Laura-Isobel; Sarker, Malabika; Yadav, Maneesh; Ponder, Elizabeth L.; Kallel, E. Adam; Kellar, Danielle; Chen, Steven; Arkin, Michelle; Bunin, Barry A.; McKerrow, James H.; Talcott, Carolyn

    2015-01-01

    Background Chagas disease is a neglected tropical disease (NTD) caused by the eukaryotic parasite Trypanosoma cruzi. The current clinical and preclinical pipeline for T. cruzi is extremely sparse and lacks drug target diversity. Methodology/Principal Findings In the present study we developed a computational approach that utilized data from several public whole-cell, phenotypic high throughput screens that have been completed for T. cruzi by the Broad Institute, including a single screen of over 300,000 molecules in the search for chemical probes as part of the NIH Molecular Libraries program. We have also compiled and curated relevant biological and chemical compound screening data including (i) compounds and biological activity data from the literature, (ii) high throughput screening datasets, and (iii) predicted metabolites of T. cruzi metabolic pathways. This information was used to help us identify compounds and their potential targets. We have constructed a Pathway Genome Data Base for T. cruzi. In addition, we have developed Bayesian machine learning models that were used to virtually screen libraries of compounds. Ninety-seven compounds were selected for in vitro testing, and 11 of these were found to have EC50 < 10μM. We progressed five compounds to an in vivo mouse efficacy model of Chagas disease and validated that the machine learning model could identify in vitro active compounds not in the training set, as well as known positive controls. The antimalarial pyronaridine possessed 85.2% efficacy in the acute Chagas mouse model. We have also proposed potential targets (for future verification) for this compound based on structural similarity to known compounds with targets in T. cruzi. Conclusions/ Significance We have demonstrated how combining chemoinformatics and bioinformatics for T. cruzi drug discovery can bring interesting in vivo active molecules to light that may have been overlooked. The approach we have taken is broadly applicable to other

  19. In Vitro and In Vivo Biological Effects of Novel Arylimidamide Derivatives against Trypanosoma cruzi

    PubMed Central

    Timm, Bruno Lisboa; da Silva, Patrícia Bernadino; Batista, Marcos Meuser; da Silva, Francisca Hildemagna Guedes; da Silva, Cristiane França; Tidwell, Richard R.; Patrick, Donald A.; Jones, Susan Kilgore; Bakunov, Stanislav A.; Bakunova, Svetlana M.

    2014-01-01

    Chagas disease (CD), a neglected tropical disease caused by Trypanosoma cruzi, remains a serious public health problem in several Latin American countries. The available chemotherapies for CD have limited efficacy and exhibit undesirable side effects. Aromatic diamidines and arylimidamides (AIAs) have shown broad-spectrum activity against intracellular parasites, including T. cruzi. Therefore, our aim was to evaluate the biological activity of eight novel AIAs (16DAP002, 16SAB079, 18SAB075, 23SMB022, 23SMB026, 23SMB054, 26SMB070, and 27SMB009) against experimental models of T. cruzi infection in vitro and in vivo. Our data show that none of the compounds induced a loss of cellular viability up to 32 μM. Two AIAs, 18SAB075 and 16DAP002, exhibited good in vitro activity against different parasite strains (Y and Tulahuen) and against the two relevant forms of the parasite for mammalian hosts. Due to the excellent selective indexes of 18SAB075, this AIA was moved to in vivo tests for acute toxicity and parasite efficacy; nontoxic doses (no-observed-adverse-effect level [NOAEL], 50 mg/kg) were employed in the tests for parasite efficacy. In experimental models of acute T. cruzi infection, 18SAB075 reduced parasitemia levels only up to 50% and led to 40% protection against mortality (at 5 mg/kg of body weight), being less effective than the reference drug, benznidazole. PMID:24752263

  20. Oral transmission of Chagas disease: importance of Trypanosoma cruzi biodeme in the intragastric experimental infection.

    PubMed

    Camandaroba, Edson Luiz P; Pinheiro Lima, Clarissa M; Andrade, Sonia G

    2002-01-01

    Oral transmission of Trypanosoma cruzi has been suspected when epidemic episodes of acute infection were observed in areas devoid of domiciled insect vectors. Considering that the distribution of T. cruzi biodemes differs in sylvatic and domestic cycles, results of studies on biodemes can be of interest regarding oral transmission. The infectivity of T. cruzi strains of different biodemes was tested in mice subjected to infection by the digestive route (gavage). Swiss mice were infected either with the Peruvian strain (Biodeme Type I, Z2b) or the Colombian strain (Biodeme Type III, Z1, or T. cruzi I); for control, intraperitoneal inoculation was performed in a group of mice. The Colombian strain revealed a similar high infectivity and pathogenicity when either route of infection was used. However, the Peruvian strain showed contrasting levels of infectivity and pathogenicity, being high by intraperitoneal inoculation and low when the gastric route was used. The higher infectivity of the Colombian strain (Biodeme Type III) by gastric inoculation is in keeping with its role in the epidemic episodes of acute Chagas disease registered in the literature, since strains belonging to Biodeme III are most often found in sylvatic hosts. PMID:12048547

  1. Dealing with environmental challenges: mechanisms of adaptation in Trypanosoma cruzi

    PubMed Central

    Jimenez, Veronica

    2014-01-01

    Protozoan parasites have a significant impact upon global health, infecting millions of people around the world. With limited therapeutic options and no vaccines available, research efforts are focused upon unraveling cellular mechanisms essential for parasite survival. During its life cycle, Trypanosoma cruzi, the causal agent of Chagas disease, is exposed to multiple external conditions and different hosts. Environmental cues are linked to the differentiation process allowing the parasite to complete its life cycle. Successful transmission depends on the ability of the cells to trigger adaptive responses and cope with stressors while regulating proliferation and transition to different life stages. This review focuses upon different aspects of the stress response in T. cruzi, proposing new hypotheses regarding cross-talk and cross-tolerance with respect to environmental changes and discussing open questions and future directions. PMID:24508488

  2. Proteomic Analysis of Trypanosoma cruzi Epimastigotes Subjected to Heat Shock

    PubMed Central

    Pérez-Morales, Deyanira; Lanz-Mendoza, Humberto; Hurtado, Gerardo; Martínez-Espinosa, Rodrigo; Espinoza, Bertha

    2012-01-01

    Trypanosoma cruzi is exposed to sudden temperature changes during its life cycle. Adaptation to these variations is crucial for parasite survival, reproduction, and transmission. Some of these conditions may change the pattern of genetic expression of proteins involved in homeostasis in the course of stress treatment. In the present study, the proteome of T. cruzi epimastigotes subjected to heat shock and epimastigotes grow normally was compared by two-dimensional gel electrophoresis followed by mass spectrometry for protein identification. Twenty-four spots differing in abundance were identified. Of the twenty-four changed spots, nineteen showed a greater intensity and five a lower intensity relative to the control. Several functional categories of the identified proteins were determined: metabolism, cell defense, hypothetical proteins, protein fate, protein synthesis, cellular transport, and cell cycle. Proteins involved in the interaction with the cellular environment were also identified, and the implications of these changes are discussed. PMID:22287837

  3. Trypanosoma cruzi in Persons without Serologic Evidence of Disease, Argentina

    PubMed Central

    Basquiera, Ana L.; Sembaj, Adela; Aguerri, Ana M.; Reyes, María E.; Omelianuk, Mirtha; Fernández, Ruth A.; Enders, Julio; Palma, Atilio; Barral, José Moreno; Madoery, Roberto J.

    2003-01-01

    Current diagnosis of chronic Chagas disease relies on serologic detection of specific immunoglobulin G against Trypanosoma cruzi. However, the presence of parasites detected by polymerase chain reaction (PCR) in patients without positive conventional serologic testing has been observed. We determined the prevalence and clinical characteristics of persons with seronegative results for T. cruzi DNA detected by PCR in a population at high risk for chronic American trypanosomiasis. We studied a total of 194 persons from two different populations: 110 patients were recruited from an urban cardiology clinic, and 84 persons were nonselected citizens from a highly disease-endemic area. Eighty (41%) of persons had negative serologic findings; 12 (15%) had a positive PCR. Three patients with negative serologic findings and positive PCR results had clinical signs and symptoms that suggested Chagas cardiomyopathy. This finding challenges the current recommendations for Chagas disease diagnosis, therapy, and blood transfusion policies. PMID:14720396

  4. Electron Microscopy Analysis of the Nucleolus of Trypanosoma cruzi

    NASA Astrophysics Data System (ADS)

    López-Velázquez, Gabriel; Hernández, Roberto; López-Villaseñor, Imelda; Reyes-Vivas, Horacio; Segura-Valdez, María De L.; Jiménez-García, Luis F.

    2005-08-01

    The nucleolus is the main site for synthesis and processing of ribosomal RNA in eukaryotes. In mammals, plants, and yeast the nucleolus has been extensively characterized by electron microscopy, but in the majority of the unicellular eukaryotes no such studies have been performed. Here we used ultrastructural cytochemical and immunocytochemical techniques as well as three-dimensional reconstruction to analyze the nucleolus of Trypanosoma cruzi, which is an early divergent eukaryote of medical importance. In T. cruzi epimastigotes the nucleolus is a spherical intranuclear ribonucleoprotein organelle localized in a relatively central position within the nucleus. Dense fibrillar and granular components but not fibrillar centers were observed. In addition, nuclear bodies resembling Cajal bodies were observed associated to the nucleolus in the surrounding nucleoplasm. Our results provide additional morphological data to better understand the synthesis and processing of the ribosomal RNA in kinetoplastids.

  5. Preferential brain homing following intranasal administration of Trypanosoma cruzi.

    PubMed

    Caradonna, Kacey; Pereiraperrin, Mercio

    2009-04-01

    The Chagas' disease parasite Trypanosoma cruzi commonly infects humans through skin abrasions or mucosa from reduviid bug excreta. Yet most studies on animal models start with subcutaneous or intraperitoneal injections, a distant approximation of the skin abrasion route. We show here that atraumatic placement of T. cruzi in the mouse nasal cavity produced low parasitemia, high survival rates, and preferential brain invasion compared to the case with subcutaneously injected parasites. Brain invasion was particularly prominent in the basal ganglia, peaked at a time when parasitemia was no longer detectable, and elicited a relatively large number of inflammatory foci. Yet, based on motor behavioral parameters and staining with Fluoro-Jade C, a dye that specifically recognizes apoptotic and necrotic neurons, brain invasion did not cause neurodegenerative events, in contrast to the neurodegeneration in the enteric nervous system. The results indicate that placement of T. cruzi on the mucosa in the mouse nasal cavity establishes a systemic infection with a robust yet harmless infection of the brain, seemingly analogous to disease progression in humans. The model may facilitate studies designed to understand mechanisms underlying T. cruzi infection of the central nervous system. PMID:19168740

  6. Early Trypanosoma cruzi Infection Reprograms Human Epithelial Cells

    PubMed Central

    Chiribao, María Laura; Libisch, Gabriela; Parodi-Talice, Adriana; Robello, Carlos

    2014-01-01

    Trypanosoma cruzi, the causative agent of Chagas disease, has the peculiarity, when compared with other intracellular parasites, that it is able to invade almost any type of cell. This property makes Chagas a complex parasitic disease in terms of prophylaxis and therapeutics. The identification of key host cellular factors that play a role in the T. cruzi invasion is important for the understanding of disease pathogenesis. In Chagas disease, most of the focus is on the response of macrophages and cardiomyocytes, since they are responsible for host defenses and cardiac lesions, respectively. In the present work, we studied the early response to infection of T. cruzi in human epithelial cells, which constitute the first barrier for establishment of infection. These studies identified up to 1700 significantly altered genes regulated by the immediate infection. The global analysis indicates that cells are literally reprogrammed by T. cruzi, which affects cellular stress responses (neutrophil chemotaxis, DNA damage response), a great number of transcription factors (including the majority of NFκB family members), and host metabolism (cholesterol, fatty acids, and phospholipids). These results raise the possibility that early host cell reprogramming is exploited by the parasite to establish the initial infection and posterior systemic dissemination. PMID:24812617

  7. Leishmania major and Trypanosoma cruzi present distinct DNA damage responses.

    PubMed

    Garcia, Juliana B F; Rocha, João P Vieira da; Costa-Silva, Héllida M; Alves, Ceres L; Machado, Carlos R; Cruz, Angela K

    2016-05-01

    Leishmania major and Trypanosoma cruzi are medically relevant parasites and interesting model organisms, as they present unique biological processes. Despite increasing data regarding the mechanisms of gene expression regulation, there is little information on how the DNA damage response (DDR) occurs in trypanosomatids. We found that L. major presented a higher radiosensitivity than T. cruzi. L. major showed G1 arrest and displayed high mortality in response to ionizing radiation as a result of the inefficient repair of double-strand breaks (DSBs). Conversely, T. cruzi exhibited arrest in the S/G2 cell cycle phase, was able to efficiently repair DSBs and did not display high rates of cell death after exposure to gamma irradiation. L. major showed higher resistance to alkylating DNA damage, and only L. major was able to promote DNA repair and growth recovery in the presence of MMS. ASF1c overexpression did not interfere with the efficiency of DNA repair in either of the parasites but did accentuate the DNA damage checkpoint response, thereby delaying cell fate after damage. The observed differences in the DNA damage responses of T. cruzi and L. major may originate from the distinct preferred routes of genetic plasticity of the two parasites, i.e., DNA recombination versus amplification. PMID:27188657

  8. Purification and Partial characterization of Trypanosoma cruzi triosephosphate isomerase.

    PubMed

    Bourguignon, S C; Meirelles, M N; Pacheco, R S; De Simone, S G

    1998-01-01

    The enzyme triosephosphate isomerase (TPI, EC 5.3.1.1) was purified from extracts of epimastigote forms of Trypanosoma cruzi. The purification steps included: hydrophobic interaction chromatography on phenyl-Sepharose, CM-Sepharose, and high performance liquid gel filtration chromatography. The CM-Sepharose material contained two bands (27 and 25 kDa) with similar isoelectric points (pI 9.3-9.5) which could be separated by gel filtration in high performance liquid chromatography. Polyclonal antibodies raised against the porcine TPI detected one single polypeptide on western blot with a molecular weight (27 kDa) identical to that purified from T. cruzi. These antibodies also recognized only one band of identical molecular weight in western blots of several other trypanosomatids (Blastocrithidia culicis, Crithidia desouzai, Phytomonas serpens, Herpertomonas samuelpessoai). The presence of only one enzymatic form of TPI in T. cruzi epimastigotes was confirmed by agarose gel activity assay and its localization was established by immunocytochemical analysis. The T. cruzi purified TPI (as well as other trypanosomatid' TPIs) is a dimeric protein, composed of two identical subunits with an approximate mw of 27,000 and it is resolved on two dimensional gel electrophoresis with a pI of 9.3. Sequence analysis of the N-terminal portion of the 27 kDa protein revealed a high homology to Leishmania mexicana and T. brucei proteins. PMID:9698898

  9. Environment, interactions between Trypanosoma cruzi and its host, and health.

    PubMed

    Teixeira, Antonio R L; Gomes, Clever; Lozzi, Silene P; Hecht, Mariana M; Rosa, Ana de Cássia; Monteiro, Pedro S; Bussacos, Ana Carolina; Nitz, Nadjar; McManus, Concepta

    2009-01-01

    An epidemiological chain involving Trypanosoma cruzi is discussed at the environmental level, and in terms of fine molecular interactions in invertebrate and vertebrate hosts dwelling in different ecosystems. This protozoan has a complex, genetically controlled plasticity, which confers adaptation to approximately 40 blood-sucking triatomine species and to over 1,000 mammalian species, fulfilling diverse metabolic requirements in its complex life-cycle. The Tr. cruzi infections are deeply embedded in countless ecotypes, where they are difficult to defeat using the control methods that are currently available. Many more field and laboratory studies are required to obtain data and information that may be used for the control and prevention of Tr. cruzi infections and their various disease manifestations. Emphasis should be placed on those sensitive interactions at cellular and environmental levels that could become selected targets for disease prevention. In the short term, new technologies for social mobilization should be used by people and organizations working for justice and equality through health information and promotion. A mass media directed program could deliver education, information and communication to protect the inhabitants at risk of contracting Tr. cruzi infections. PMID:19287864

  10. CD8+ T Cells in Trypanosoma cruzi Infection

    PubMed Central

    Tarleton, Rick L.

    2015-01-01

    Trypanosoma cruzi infection and Chagas disease remains among the most neglected of the neglected tropical diseases. Despite this, studies of the immune response to T. cruzi have provided new insights in immunology and guidance for approaches for prevention and treatment of the disease. T. cruzi represents one of the very best systems in which to study CD8+ T cell biology; Mice, dogs, and primates (and many other mammals) are all natural hosts for this parasite, the robust T cell responses generated in these hosts can be readily monitored using the full range of cutting edge techniques, and the parasite can be easily modified to express (or not) a variety of tags, reporters, immune enhances and endogenous or model antigens. The infection in most hosts is characterized by vigorous and largely effective immune responses, including CD8+ T cells capable of controlling T. cruzi at the level of the infected host cells. However this immune control is only partially effective and most hosts maintain a low level infection for life. This review addresses the interplay of highly effective CD8+ T cell responses with elaborate pathogen immune evasion mechanisms, including the generation and simultaneous expression of highly variant CD8+ T cell targets and a host cell invasion mechanisms that largely eludes innate immune detection. PMID:25921214

  11. Trypanosoma cruzi Experimental Infection Impacts on the Thymic Regulatory T Cell Compartment.

    PubMed

    González, Florencia Belén; Calmon-Hamaty, Flavia; Nô Seara Cordeiro, Synara; Fernández Bussy, Rodrigo; Spinelli, Silvana Virginia; D'Attilio, Luciano; Bottasso, Oscar; Savino, Wilson; Cotta-de-Almeida, Vinícius; Villar, Silvina Raquel; Pérez, Ana Rosa

    2016-01-01

    The dynamics of regulatory T cells in the course of Trypanosoma cruzi infection is still debated. We previously demonstrated that acute murine T. cruzi infection results in an impaired peripheral CD4+Foxp3+ T cell differentiation due to the acquisition of an abnormal Th1-like phenotype and altered functional features, negatively impacting on the course of infection. Moreover, T. cruzi infection induces an intense thymic atrophy. As known, the thymus is the primary lymphoid organ in which thymic-derived regulatory T cells, known as tTregs, differentiate. Considering the lack of available data about the effect of T. cruzi infection upon tTregs, we examined tTreg dynamics during the course of disease. We confirmed that T. cruzi infection induces a marked loss of tTreg cell number associated to cell precursor exhaustion, partially avoided by glucocorticoid ablation- and IL-2 survival factor depletion. At the same time, tTregs accumulate within the CD4 single-positive compartment, exhibiting an increased Ki-67/Annexin V ratio compared to controls. Moreover, tTregs enhance after the infection the expression of signature markers (CD25, CD62L and GITR) and they also display alterations in the expression of migration-associated molecules (α chains of VLAs and chemokine receptors) such as functional fibronectin-driven migratory disturbance. Taken together, we provide data demonstrating profound alterations in tTreg compartment during acute murine T. cruzi infection, denoting that their homeostasis is significantly affected. The evident loss of tTreg cell number may compromise the composition of tTreg peripheral pool, and such sustained alteration over time may be partially related to the immune dysregulation observed in the chronic phase of the disease. PMID:26745276

  12. [Placental lesions in human Trypanosoma cruzi infection].

    PubMed

    Fernandez-Aguilar, Sergio; Lambot, Maria-Alexandra; Torrico, Faustino; Alonso-Vega, Cristina; Córdoba, Marysol; Suarez, Eduardo; Noël, Jean-Christophe; Carlier, Yves

    2005-01-01

    This histopathological study analyzes placentas of babies congenitally infected with T. cruzi (M+B+), or babies not infected but born from infected- (M+B-), or non infected-mothers (M-B-). Placentas M+B+ showed lesions of chorionitis, chorioamnionitis and cord edema with lymphocyte infiltration, whereas such lesions were infiltrated only with polymorphonuclear cells in M+B- and M-B- placentas. Parasites were found in M+B+ placentas, in fibroblasts and macrophages of chorion, membranes, chorionic plate, mainly in the area of membrane insertion, as well as in cells of Wharton jelly and myocytes of umbilical cord vessels. These results suggest that the materno-fetal transmission of parasites occurs mainly through the marginal sinus, spreading into the chorionic plate infecting fibroblasts and macrophages so far as to found a fetal vessel, inducing a fetal infection by hematogenous route. PMID:16482822

  13. Mannose-Binding Lectin Regulates Host Resistance and Pathology during Experimental Infection with Trypanosoma cruzi

    PubMed Central

    Rothfuchs, Antonio Gigliotti; Roffê, Ester; Gibson, Amanda; Cheever, Allen W.; Ezekowitz, R. Alan B.; Takahashi, Kazue; Steindel, Mario; Sher, Alan; Báfica, André

    2012-01-01

    Mannose-binding lectin (MBL) is a humoral pattern-recognition molecule important for host defense. Although recent genetic studies suggest an involvement of MBL/MASP2-associated pathways in Chagas’ disease, it is currently unknown whether MBL plays a role in host resistance to the intracellular protozoan Trypanosoma cruzi, the causative agent of Chagas’ disease. In this study we employed MBL−/− mice to assess the role of MBL in resistance to experimental infection with T. cruzi. T. cruzi infection enhanced tissue expression of MBL both at the mRNA and protein level. Similarly, symptomatic acute Chagas’ disease patients displayed increased serum concentrations of MBL compared to patients with indeterminate, asymptomatic forms of the disease. Furthermore, increased parasite loads in the blood and/or tissue were observed in MBL−/− mice compared to WT controls. This was associated with reduced systemic levels of IL-12/23p40 in MBL−/− mice. Importantly, MBL−/− mice infected with a cardiotropic strain of T. cruzi displayed increased myocarditis and cardiac fibrosis compared to WT controls. The latter was accompanied by elevated hydroxyproline content and mRNA levels of collagen-1 and -6 in the heart. These observations point to a previously unappreciated role for MBL in regulating host resistance and cardiac inflammation during infection with a major human pathogen. PMID:23139754

  14. Mannose-binding lectin regulates host resistance and pathology during experimental infection with Trypanosoma cruzi.

    PubMed

    Rothfuchs, Antonio Gigliotti; Roffê, Ester; Gibson, Amanda; Cheever, Allen W; Ezekowitz, R Alan B; Takahashi, Kazue; Steindel, Mario; Sher, Alan; Báfica, André

    2012-01-01

    Mannose-binding lectin (MBL) is a humoral pattern-recognition molecule important for host defense. Although recent genetic studies suggest an involvement of MBL/MASP2-associated pathways in Chagas' disease, it is currently unknown whether MBL plays a role in host resistance to the intracellular protozoan Trypanosoma cruzi, the causative agent of Chagas' disease. In this study we employed MBL(-/-) mice to assess the role of MBL in resistance to experimental infection with T. cruzi. T. cruzi infection enhanced tissue expression of MBL both at the mRNA and protein level. Similarly, symptomatic acute Chagas' disease patients displayed increased serum concentrations of MBL compared to patients with indeterminate, asymptomatic forms of the disease. Furthermore, increased parasite loads in the blood and/or tissue were observed in MBL(-/-) mice compared to WT controls. This was associated with reduced systemic levels of IL-12/23p40 in MBL(-/-) mice. Importantly, MBL(-/-) mice infected with a cardiotropic strain of T. cruzi displayed increased myocarditis and cardiac fibrosis compared to WT controls. The latter was accompanied by elevated hydroxyproline content and mRNA levels of collagen-1 and -6 in the heart. These observations point to a previously unappreciated role for MBL in regulating host resistance and cardiac inflammation during infection with a major human pathogen. PMID:23139754

  15. Strain-specific protective immunity following vaccination against experimental Trypanosoma cruzi infection.

    PubMed

    Haolla, Filipe A; Claser, Carla; de Alencar, Bruna C G; Tzelepis, Fanny; de Vasconcelos, José Ronnie; de Oliveira, Gabriel; Silvério, Jaline C; Machado, Alexandre V; Lannes-Vieira, Joseli; Bruna-Romero, Oscar; Gazzinelli, Ricardo T; dos Santos, Ricardo Ribeiro; Soares, Milena B P; Rodrigues, Mauricio M

    2009-09-18

    Immunisation with Amastigote Surface Protein 2 (asp-2) and trans-sialidase (ts) genes induces protective immunity in highly susceptible A/Sn mice, against infection with parasites of the Y strain of Trypanosoma cruzi. Based on immunological and biological strain variations in T. cruzi parasites, our goal was to validate our vaccination results using different parasite strains. Due to the importance of the CD8(+) T cells in protective immunity, we initially determined which strains expressed the immunodominant H-2K(k)-restricted epitope TEWETGQI. We tested eight strains, four of which elicited immune responses to this epitope (Y, G, Colombian and Colombia). We selected the Colombian and Colombia strains for our studies. A/Sn mice were immunised with different regimens using both T. cruzi genes (asp-2 and ts) simultaneously and subsequently challenged with blood trypomastigotes. Immune responses before the challenge were confirmed by the presence of specific antibodies and peptide-specific T cells. Genetic vaccination did not confer protective immunity against acute infection with a lethal dose of the Colombian strain. In contrast, we observed a drastic reduction in parasitemia and a significant increase in survival, following challenge with an otherwise lethal dose of the Colombia strain. In many surviving animals with late-stage chronic infection, we observed alterations in the heart's electrical conductivity, compared to naive mice. In summary, we concluded that immunity against T. cruzi antigens, similar to viruses and bacteria, may be strain-specific and have a negative impact on vaccine development. PMID:19635607

  16. Serologic survey of antibodies to Trypanosoma cruzi in coyotes and red foxes from Pennsylvania and Tennessee.

    PubMed

    Rosypal, Alexa C; Smith, Trynecia; Alexander, Andrew; Weaver, Melanie; Stewart, Richard; Houston, Allan; Gerhold, Richard; Van Why, Kyle; Dubey, Jitender P

    2014-12-01

    Trypanosoma cruzi is a zoonotic parasite of humans and other mammalian hosts with distribution throughout the Americas. Domestic and wild canine species are reservoirs for human T. cruzi infections. The present study examined the prevalence of antibodies to T. cruzi in wild canids from the United States. Sera from 13 red foxes (Vulpes vulpes) and 263 coyotes (Canis latrans), originating in Pennsylvania and Tennessee, were assayed for antibodies to T. cruzi with immunochromatographic tests. Antibodies to T. cruzi were found in 2 of 276 (0.72%) of all wild canids tested. Both T. cruzi-positive wild canids were coyotes and represented 2 of 21 (9.52%) wild canids assayed from Tennessee. Antibodies to T. cruzi were not detected in red fox. Anti-T. cruzi antibodies were not found in any wild canids from Pennsylvania. These results suggest that coyotes are exposed to T. cruzi in Tennessee but not in Pennsylvania. PMID:25632700

  17. Galectin-1 Prevents Infection and Damage Induced by Trypanosoma cruzi on Cardiac Cells

    PubMed Central

    Benatar, Alejandro F.; García, Gabriela A.; Bua, Jacqeline; Cerliani, Juan P.; Postan, Miriam; Tasso, Laura M.; Scaglione, Jorge; Stupirski, Juan C.; Toscano, Marta A.

    2015-01-01

    Background Chronic Chagas cardiomyopathy caused by Trypanosoma cruzi is the result of a pathologic process starting during the acute phase of parasite infection. Among different factors, the specific recognition of glycan structures by glycan-binding proteins from the parasite or from the mammalian host cells may play a critical role in the evolution of the infection. Methodology and Principal Findings Here we investigated the contribution of galectin–1 (Gal–1), an endogenous glycan-binding protein abundantly expressed in human and mouse heart, to the pathophysiology of T. cruzi infection, particularly in the context of cardiac pathology. We found that exposure of HL–1 cardiac cells to Gal–1 reduced the percentage of infection by two different T. cruzi strains, Tulahuén (TcVI) and Brazil (TcI). In addition, Gal–1 prevented exposure of phosphatidylserine and early events in the apoptotic program by parasite infection on HL–1 cells. These effects were not mediated by direct interaction with the parasite surface, suggesting that Gal–1 may act through binding to host cells. Moreover, we also observed that T. cruzi infection altered the glycophenotype of cardiac cells, reducing binding of exogenous Gal–1 to the cell surface. Consistent with these data, Gal–1 deficient (Lgals1-/-) mice showed increased parasitemia, reduced signs of inflammation in heart and skeletal muscle tissues, and lower survival rates as compared to wild-type (WT) mice in response to intraperitoneal infection with T. cruzi Tulahuén strain. Conclusion/Significance Our results indicate that Gal–1 modulates T. cruzi infection of cardiac cells, highlighting the relevance of galectins and their ligands as regulators of host-parasite interactions. PMID:26451839

  18. Nitric oxide-releasing polymeric nanoparticles against Trypanosoma cruzi

    NASA Astrophysics Data System (ADS)

    Seabra, A. B.; Kitice, N. A.; Pelegrino, M. T.; Lancheros, C. A. C.; Yamauchi, L. M.; Pinge-Filho, P.; Yamada-Ogatta, S. F.

    2015-05-01

    Chagas disease, also known as American trypanosomiasis, is a potentially life-threatening illness caused by the protozoan parasite, Trypanosoma cruzi (T. cruzi), and the disease remains a major health problem in many Latin American countries. Several papers report that the killing of the parasite is dependent on the production of nitric oxide (NO). The endogenous free radical NO is an important cellular signalling molecule that plays a key role in the defense against pathogens, including T. cruzi. As T. cruzi is able to compromise host macrophages decreasing endogenous NO production, the administration of exogenous NO donors represents an interesting strategy to combat Chagas disease. Thus, the aims of this study were to prepare and evaluate the antimicrobial activity of NO-releasing polymeric nanoparticles against T. cruzi. Biocompatible polymeric nanoparticles composed of chitosan/sodium tripolyphosphate(TPP) were prepared and used to encapsulate mercaptosuccinic acid (MSA), which is a thiol-containing molecule. Nitrosation of free thiols (SH) groups of MSA were performed by the addition of equimolar amount of sodium nitrite (NaNO2), leading to the formation of S-nitroso-MSA-containing nanoparticles. These polymeric nanoparticles act as spontaneous NO donors, with free NO release. The results show the formation of nanoparticles with average hydrodynamic diameter ranging from 270 to 500 nm, average of polydispersity index of 0.35, and encapsulation efficiency in the range of 99%. The NO release kinetics from the S-nitroso-MSA-containing nanoparticles showed sustained and controlled NO release over several hours. The microbicidal activity of S-nitroso-MSA-containing nanoparticles was evaluated by incubating NO-releasing nanoparticles (200 - 600 μg/mL) with replicative and non-infective epimastigote, and non-replicative and infective trypomastigote forms of T. cruzi. In addition, a significant decrease in the percentage of macrophage-infected (with amastigotes) and

  19. Landscape ecology of Trypanosoma cruzi in the southern Yucatan Peninsula.

    PubMed

    López-Cancino, Sury Antonio; Tun-Ku, Ezequiel; De la Cruz-Felix, Himmler Keynes; Ibarra-Cerdeña, Carlos Napoleón; Izeta-Alberdi, Amaia; Pech-May, Angélica; Mazariegos-Hidalgo, Carlos Jesús; Valdez-Tah, Alba; Ramsey, Janine M

    2015-11-01

    Landscape interactions of Trypanosoma cruzi (Tc) with Triatoma dimidiata (Td) depend on the presence and relative abundance of mammal hosts. This study analyzed a landscape adjacent to the Calakmul Biosphere Reserve, composed of conserved areas, crop and farming areas, and the human community of Zoh Laguna with reported Chagas disease cases. Sylvatic mammals of the Chiroptera, Rodentia, and Marsupialia orders were captured, and livestock and pets were sampled along with T. dimidiata in all habitats. Infection by T. cruzi was analyzed using mtDNA markers, while lineage and DTU was analyzed using the mini-exon. 303 sylvatic specimens were collected, corresponding to 19 species during the rainy season and 114 specimens of 18 species during dry season. Five bats Artibeus jamaicensis, Artibeus lituratus, Sturnira lilium, Sturnira ludovici, Dermanura phaeotis (Dp) and one rodent Heteromys gaumeri were collected in the three habitats. All but Dp, and including Carollia brevicauda and Myotis keaysi, were infected with predominately TcI in the sylvatic habitat and TcII in the ecotone. Sigmodon hispidus was the rodent with the highest prevalence of infection by T. cruzi I and II in ecotone and domestic habitats. Didelphis viginiana was infected only with TcI in both domestic and sylvatic habitats; the only two genotyped human cases were TcII. Two main clades of T. cruzi, lineages I (DTU Ia) and II (DTU VI), were found to be sympatric (all habitats and seasons) in the Zoh-Laguna landscape, suggesting that no species-specific interactions occur between the parasite and any mammal host, in any habitat. We have also found mixed infections of the two principal T. cruzi clades in individuals across modified habitats, particularly in livestock and pets, and in both haplogroups of T. dimidiata. Results are contradictory to the dilution hypothesis, although we did find that most resilient species had an important role as T. cruzi hosts. Our study detected some complex trends in

  20. The potential of canine sentinels for reemerging Trypanosoma cruzi transmission

    PubMed Central

    Neyra, Ricardo Castillo; Chu, Lily Chou; Quispe-Machaca, Victor; Ancca-Juarez, Jenny; Malaga Chavez, Fernando S.; Mazuelos, Milagros Bastos; Naquira, Cesar; Bern, Caryn; Gilman, Robert H.; Levy, Michael Z.

    2015-01-01

    Background Chagas disease, a vector-borne disease transmitted by triatomine bugs and caused by the parasite Trypanosoma cruzi, affects millions of people in the Americas. In Arequipa, Peru, indoor residual insecticide spraying campaigns are routinely conducted to eliminate Triatoma infestans, the only vector in this area. Following insecticide spraying, there is risk of vector return and reinitiation of parasite transmission. Dogs are important reservoirs of T. cruzi and may play a role in reinitiating transmission in previously sprayed areas. Dogs may also serve as indicators of reemerging transmission. Methods We conducted a cross-sectional serological screening to detect T. cruzi antibodies in dogs, in conjunction with an entomological vector collection survey at the household level, in a disease endemic area that had been treated with insecticide 13 years prior. Spatial clustering of infected animals and vectors was assessed using Ripley’s K statistic, and the odds of being seropositive for dogs proximate to infected colonies was estimated with multivariate logistic regression. Results There were 106 triatomine-infested houses (41.1%), and 45 houses infested with T. cruzi-infected triatomine insects (17.4%). Canine seroprevalence in the area was 12.3% (n=154); all seropositive dogs were 9 months old or older. We observed clustering of vectors carrying the parasite, but no clustering of seropositive dogs. The age- and sex-adjusted odds ratio between seropositivity to T. cruzi and proximity to an infected triatomine (≤50m) was 5.67 (95% CI: 1.12 – 28.74; p=0.036). Conclusions Targeted control of reemerging transmission can be achieved by improved understanding of T. cruzi in canine populations. Our results suggest that dogs may be useful sentinels to detect re-initiation of transmission following insecticide treatment. Integration of canine T. cruzi blood sampling into existing interventions for zoonotic disease control (e.g. rabies vaccination programs

  1. Blood viscosity changes in experimentally Trypanosoma cruzi-infected rats.

    PubMed

    Berra, H H; Piaggio, E; Revelli, S S; Luquita, A

    2005-01-01

    Microcirculatory alterations would explain focal lesions found in Chagas' cardiomyopathy. Trypanosoma cruzi (T. cruzi) infection induces host blood properties modifications and defensive responses capable of producing blood hyperviscosity, an ischemic risk factor able to affect microvascular blood flow. We studied whole blood viscosity (eta(b)) and plasmatic and cellular factors influencing it in rats, 7 and 14 days after experimental infection with T. cruzi. Increased plasma viscosity (eta(p)) was found in infected versus control rats and it was correlated with high blood parasite levels at 7 days and enhanced gamma-globulin fraction concentration at 14 days. The hematocrit, mean corpuscular volume (MCV) and eta(b) were higher in 14 days infected rats vs. 7 days and control animals. Also, electron microscopy observation showed morphological changes in red blood cells (RBC) at 7 and 14 days post-infection, with increased proportion of echinocyte and stomatocyte shapes transformation. In our rat model of Chagas' disease, BPL, increased plasmatic protein concentration, enhanced MCV and RBC shapes transformation would determine blood hyperviscosity, cause of microvascular blood flow abnormalities. PMID:15851836

  2. Oxidative stress fuels Trypanosoma cruzi infection in mice

    PubMed Central

    Paiva, Claudia N.; Feijó, Daniel F.; Dutra, Fabianno F.; Carneiro, Vitor C.; Freitas, Guilherme B.; Alves, Letícia S.; Mesquita, Jacilene; Fortes, Guilherme B.; Figueiredo, Rodrigo T.; Souza, Heitor S.P.; Fantappié, Marcelo R.; Lannes-Vieira, Joseli; Bozza, Marcelo T.

    2012-01-01

    Oxidative damage contributes to microbe elimination during macrophage respiratory burst. Nuclear factor, erythroid-derived 2, like 2 (NRF2) orchestrates antioxidant defenses, including the expression of heme-oxygenase–1 (HO-1). Unexpectedly, the activation of NRF2 and HO-1 reduces infection by a number of pathogens, although the mechanism responsible for this effect is largely unknown. We studied Trypanosoma cruzi infection in mice in which NRF2/HO-1 was induced with cobalt protoporphyrin (CoPP). CoPP reduced parasitemia and tissue parasitism, while an inhibitor of HO-1 activity increased T. cruzi parasitemia in blood. CoPP-induced effects did not depend on the adaptive immunity, nor were parasites directly targeted. We also found that CoPP reduced macrophage parasitism, which depended on NRF2 expression but not on classical mechanisms such as apoptosis of infected cells, induction of type I IFN, or NO. We found that exogenous expression of NRF2 or HO-1 also reduced macrophage parasitism. Several antioxidants, including NRF2 activators, reduced macrophage parasite burden, while pro-oxidants promoted it. Reducing the intracellular labile iron pool decreased parasitism, and antioxidants increased the expression of ferritin and ferroportin in infected macrophages. Ferrous sulfate reversed the CoPP-induced decrease in macrophage parasite burden and, given in vivo, reversed their protective effects. Our results indicate that oxidative stress contributes to parasite persistence in host tissues and open a new avenue for the development of anti–T. cruzi drugs. PMID:22728935

  3. Conservation and divergence within the clathrin interactome of Trypanosoma cruzi.

    PubMed

    Kalb, Ligia Cristina; Frederico, Yohana Camila A; Boehm, Cordula; Moreira, Claudia Maria do Nascimento; Soares, Maurilio José; Field, Mark C

    2016-01-01

    Trypanosomatids are parasitic protozoa with a significant burden on human health. African and American trypanosomes are causative agents of Nagana and Chagas disease respectively, and speciated about 300 million years ago. These parasites have highly distinct life cycles, pathologies, transmission strategies and surface proteomes, being dominated by the variant surface glycoprotein (African) or mucins (American) respectively. In African trypanosomes clathrin-mediated trafficking is responsible for endocytosis and post-Golgi transport, with several mechanistic aspects distinct from higher organisms. Using clathrin light chain (TcCLC) and EpsinR (TcEpsinR) as affinity handles, we identified candidate clathrin-associated proteins (CAPs) in Trypanosoma cruzi; the cohort includes orthologs of many proteins known to mediate vesicle trafficking, but significantly not the AP-2 adaptor complex. Several trypanosome-specific proteins common with African trypanosomes, were also identified. Fluorescence microscopy revealed localisations for TcEpsinR, TcCLC and TcCHC at the posterior region of trypomastigote cells, coincident with the flagellar pocket and Golgi apparatus. These data provide the first systematic analysis of clathrin-mediated trafficking in T. cruzi, allowing comparison between protein cohorts and other trypanosomes and also suggest that clathrin trafficking in at least some life stages of T. cruzi may be AP-2-independent. PMID:27502971

  4. Gene Discovery through Expressed Sequence Tag Sequencing in Trypanosoma cruzi

    PubMed Central

    Verdun, Ramiro E.; Di Paolo, Nelson; Urmenyi, Turan P.; Rondinelli, Edson; Frasch, Alberto C. C.; Sanchez, Daniel O.

    1998-01-01

    Analysis of expressed sequence tags (ESTs) constitutes a useful approach for gene identification that, in the case of human pathogens, might result in the identification of new targets for chemotherapy and vaccine development. As part of the Trypanosoma cruzi genome project, we have partially sequenced the 5′ ends of 1,949 clones to generate ESTs. The clones were randomly selected from a normalized CL Brener epimastigote cDNA library. A total of 14.6% of the clones were homologous to previously identified T. cruzi genes, while 18.4% had significant matches to genes from other organisms in the database. A total of 67% of the ESTs had no matches in the database, and thus, some of them might be T. cruzi-specific genes. Functional groups of those sequences with matches in the database were constructed according to their putative biological functions. The two largest categories were protein synthesis (23.3%) and cell surface molecules (10.8%). The information reported in this paper should be useful for researchers in the field to analyze genes and proteins of their own interest. PMID:9784549

  5. Conservation and divergence within the clathrin interactome of Trypanosoma cruzi

    PubMed Central

    Kalb, Ligia Cristina; Frederico, Yohana Camila A.; Boehm, Cordula; Moreira, Claudia Maria do Nascimento; Soares, Maurilio José; Field, Mark C.

    2016-01-01

    Trypanosomatids are parasitic protozoa with a significant burden on human health. African and American trypanosomes are causative agents of Nagana and Chagas disease respectively, and speciated about 300 million years ago. These parasites have highly distinct life cycles, pathologies, transmission strategies and surface proteomes, being dominated by the variant surface glycoprotein (African) or mucins (American) respectively. In African trypanosomes clathrin-mediated trafficking is responsible for endocytosis and post-Golgi transport, with several mechanistic aspects distinct from higher organisms. Using clathrin light chain (TcCLC) and EpsinR (TcEpsinR) as affinity handles, we identified candidate clathrin-associated proteins (CAPs) in Trypanosoma cruzi; the cohort includes orthologs of many proteins known to mediate vesicle trafficking, but significantly not the AP-2 adaptor complex. Several trypanosome-specific proteins common with African trypanosomes, were also identified. Fluorescence microscopy revealed localisations for TcEpsinR, TcCLC and TcCHC at the posterior region of trypomastigote cells, coincident with the flagellar pocket and Golgi apparatus. These data provide the first systematic analysis of clathrin-mediated trafficking in T. cruzi, allowing comparison between protein cohorts and other trypanosomes and also suggest that clathrin trafficking in at least some life stages of T. cruzi may be AP-2-independent. PMID:27502971

  6. Trypanosoma cruzi Infection in Neotropical Wild Carnivores (Mammalia: Carnivora): At the Top of the T. cruzi Transmission Chain

    PubMed Central

    Rocha, Fabiana Lopes; Roque, André Luiz Rodrigues; de Lima, Juliane Saab; Cheida, Carolina Carvalho; Lemos, Frederico Gemesio; de Azevedo, Fernanda Cavalcanti; Arrais, Ricardo Corassa; Bilac, Daniele; Herrera, Heitor Miraglia; Mourão, Guilherme; Jansen, Ana Maria

    2013-01-01

    Little is known on the role played by Neotropical wild carnivores in the Trypanosoma cruzi transmission cycles. We investigated T. cruzi infection in wild carnivores from three sites in Brazil through parasitological and serological tests. The seven carnivore species examined were infected by T. cruzi, but high parasitemias detectable by hemoculture were found only in two Procyonidae species. Genotyping by Mini-exon gene, PCR-RFLP (1f8/Akw21I) and kDNA genomic targets revealed that the raccoon (Procyon cancrivorus) harbored TcI and the coatis (Nasua nasua) harbored TcI, TcII, TcIII-IV and Trypanosoma rangeli, in single and mixed infections, besides four T. cruzi isolates that displayed odd band patterns in the Mini-exon assay. These findings corroborate the coati can be a bioaccumulator of T. cruzi Discrete Typing Units (DTU) and may act as a transmission hub, a connection point joining sylvatic transmission cycles within terrestrial and arboreal mammals and vectors. Also, the odd band patterns observed in coatis’ isolates reinforce that T. cruzi diversity might be much higher than currently acknowledged. Additionally, we assembled our data with T. cruzi infection on Neotropical carnivores’ literature records to provide a comprehensive analysis of the infection patterns among distinct carnivore species, especially considering their ecological traits and phylogeny. Altogether, fifteen Neotropical carnivore species were found naturally infected by T. cruzi. Species diet was associated with T. cruzi infection rates, supporting the hypothesis that predator-prey links are important mechanisms for T. cruzi maintenance and dispersion in the wild. Distinct T. cruzi infection patterns across carnivore species and study sites were notable. Musteloidea species consistently exhibit high parasitemias in different studies which indicate their high infectivity potential. Mesocarnivores that feed on both invertebrates and mammals, including the coati, a host that can be

  7. Effect of scorpion toxin on the enterochromaffin-like cells in normal and Trypanosoma cruzi-infected rats: a morphological study.

    PubMed

    Toppa, N H; Leite, V H; Barbosa, A J; Chiari, E; Gonzaga, H M; Freire-Maia, L; Cunha-Melo, J R

    1989-01-01

    Intravenous injection of scorpion toxin (Tityus serrulatus) in normal and Trypanosoma cruzi infected rats did not cause ultrastructural morphologic changes on enterochromaffin-like (ECL) cells of the stomach, although it induced a significant increase of the gastric secretion. Our data seem to indicate that gastric ECL cells structure is not affected by stimulation with scorpion toxin or by acute infection with T. cruzi in the rat. PMID:2510237

  8. The Potential Economic Value of a Trypanosoma cruzi (Chagas Disease) Vaccine in Latin America

    PubMed Central

    Lee, Bruce Y.; Bacon, Kristina M.; Connor, Diana L.; Willig, Alyssa M.; Bailey, Rachel R.

    2010-01-01

    Background Chagas disease, caused by the parasite Trypanosoma cruzi (T. cruzi), is the leading etiology of non-ischemic heart disease worldwide, with Latin America bearing the majority of the burden. This substantial burden and the limitations of current interventions have motivated efforts to develop a vaccine against T. cruzi. Methodology/Principal Findings We constructed a decision analytic Markov computer simulation model to assess the potential economic value of a T. cruzi vaccine in Latin America from the societal perspective. Each simulation run calculated the incremental cost-effectiveness ratio (ICER), or the cost per disability-adjusted life year (DALY) avoided, of vaccination. Sensitivity analyses evaluated the impact of varying key model parameters such as vaccine cost (range: $0.50–$200), vaccine efficacy (range: 25%–75%), the cost of acute-phase drug treatment (range: $10–$150 to account for variations in acute-phase treatment regimens), and risk of infection (range: 1%–20%). Additional analyses determined the incremental cost of vaccinating an individual and the cost per averted congestive heart failure case. Vaccination was considered highly cost-effective when the ICER was ≤1 times the GDP/capita, still cost-effective when the ICER was between 1 and 3 times the GDP/capita, and not cost-effective when the ICER was >3 times the GDP/capita. Our results showed vaccination to be very cost-effective and often economically dominant (i.e., saving costs as well providing health benefits) for a wide range of scenarios, e.g., even when risk of infection was as low as 1% and vaccine efficacy was as low as 25%. Vaccinating an individual could likely provide net cost savings that rise substantially as risk of infection or vaccine efficacy increase. Conclusions/Significance Results indicate that a T. cruzi vaccine could provide substantial economic benefit, depending on the cost of the vaccine, and support continued efforts to develop a human vaccine

  9. Optimized Multilocus Sequence Typing (MLST) Scheme for Trypanosoma cruzi

    PubMed Central

    Diosque, Patricio; Tomasini, Nicolás; Lauthier, Juan José; Messenger, Louisa Alexandra; Monje Rumi, María Mercedes; Ragone, Paula Gabriela; Alberti-D'Amato, Anahí Maitén; Pérez Brandán, Cecilia; Barnabé, Christian; Tibayrenc, Michel; Lewis, Michael David; Llewellyn, Martin Stephen; Miles, Michael Alexander; Yeo, Matthew

    2014-01-01

    Trypanosoma cruzi, the aetiological agent of Chagas disease possess extensive genetic diversity. This has led to the development of a plethora of molecular typing methods for the identification of both the known major genetic lineages and for more fine scale characterization of different multilocus genotypes within these major lineages. Whole genome sequencing applied to large sample sizes is not currently viable and multilocus enzyme electrophoresis, the previous gold standard for T. cruzi typing, is laborious and time consuming. In the present work, we present an optimized Multilocus Sequence Typing (MLST) scheme, based on the combined analysis of two recently proposed MLST approaches. Here, thirteen concatenated gene fragments were applied to a panel of T. cruzi reference strains encompassing all known genetic lineages. Concatenation of 13 fragments allowed assignment of all strains to the predicted Discrete Typing Units (DTUs), or near-clades, with the exception of one strain that was an outlier for TcV, due to apparent loss of heterozygosity in one fragment. Monophyly for all DTUs, along with robust bootstrap support, was restored when this fragment was subsequently excluded from the analysis. All possible combinations of loci were assessed against predefined criteria with the objective of selecting the most appropriate combination of between two and twelve fragments, for an optimized MLST scheme. The optimum combination consisted of 7 loci and discriminated between all reference strains in the panel, with the majority supported by robust bootstrap values. Additionally, a reduced panel of just 4 gene fragments displayed high bootstrap values for DTU assignment and discriminated 21 out of 25 genotypes. We propose that the seven-fragment MLST scheme could be used as a gold standard for T. cruzi typing, against which other typing approaches, particularly single locus approaches or systematic PCR assays based on amplicon size, could be compared. PMID:25167160

  10. Functional Characterization of 8-Oxoguanine DNA Glycosylase of Trypanosoma cruzi

    PubMed Central

    Mendes, Isabela Cecília; de Moura, Michelle Barbi; Campos, Priscila Carneiro; Macedo, Andrea Mara; Franco, Glória Regina; Pena, Sérgio Danilo Junho; Teixeira, Santuza Maria Ribeiro; Van Houten, Bennett; Machado, Carlos Renato

    2012-01-01

    The oxidative lesion 8-oxoguanine (8-oxoG) is removed during base excision repair by the 8-oxoguanine DNA glycosylase 1 (Ogg1). This lesion can erroneously pair with adenine, and the excision of this damaged base by Ogg1 enables the insertion of a guanine and prevents DNA mutation. In this report, we identified and characterized Ogg1 from the protozoan parasite Trypanosoma cruzi (TcOgg1), the causative agent of Chagas disease. Like most living organisms, T. cruzi is susceptible to oxidative stress, hence DNA repair is essential for its survival and improvement of infection. We verified that the TcOGG1 gene encodes an 8-oxoG DNA glycosylase by complementing an Ogg1-defective Saccharomyces cerevisiae strain. Heterologous expression of TcOGG1 reestablished the mutation frequency of the yeast mutant ogg1−/− (CD138) to wild type levels. We also demonstrate that the overexpression of TcOGG1 increases T. cruzi sensitivity to hydrogen peroxide (H2O2). Analysis of DNA lesions using quantitative PCR suggests that the increased susceptibility to H2O2 of TcOGG1-overexpressor could be a consequence of uncoupled BER in abasic sites and/or strand breaks generated after TcOgg1 removes 8-oxoG, which are not rapidly repaired by the subsequent BER enzymes. This hypothesis is supported by the observation that TcOGG1-overexpressors have reduced levels of 8-oxoG both in the nucleus and in the parasite mitochondrion. The localization of TcOgg1 was examined in parasite transfected with a TcOgg1-GFP fusion, which confirmed that this enzyme is in both organelles. Taken together, our data indicate that T. cruzi has a functional Ogg1 ortholog that participates in nuclear and mitochondrial BER. PMID:22876325

  11. Trypanosoma cruzi-Trypanosoma rangeli co-infection ameliorates negative effects of single trypanosome infections in experimentally infected Rhodnius prolixus.

    PubMed

    Peterson, Jennifer K; Graham, Andrea L; Elliott, Ryan J; Dobson, Andrew P; Triana Chávez, Omar

    2016-08-01

    Trypanosoma cruzi, causative agent of Chagas disease, co-infects its triatomine vector with its sister species Trypanosoma rangeli, which shares 60% of its antigens with T. cruzi. Additionally, T. rangeli has been observed to be pathogenic in some of its vector species. Although T. cruzi-T. rangeli co-infections are common, their effect on the vector has rarely been investigated. Therefore, we measured the fitness (survival and reproduction) of triatomine species Rhodnius prolixus infected with just T. cruzi, just T. rangeli, or both T. cruzi and T. rangeli. We found that survival (as estimated by survival probability and hazard ratios) was significantly different between treatments, with the T. cruzi treatment group having lower survival than the co-infected treatment. Reproduction and total fitness estimates in the T. cruzi and T. rangeli treatments were significantly lower than in the co-infected and control groups. The T. cruzi and T. rangeli treatment group fitness estimates were not significantly different from each other. Additionally, co-infected insects appeared to tolerate higher doses of parasites than insects with single-species infections. Our results suggest that T. cruzi-T. rangeli co-infection could ameliorate negative effects of single infections of either parasite on R. prolixus and potentially help it to tolerate higher parasite doses. PMID:27174360

  12. Recent, Independent and Anthropogenic Origins of Trypanosoma cruzi Hybrids

    PubMed Central

    Lewis, Michael D.; Llewellyn, Martin S.; Yeo, Matthew; Acosta, Nidia; Gaunt, Michael W.; Miles, Michael A.

    2011-01-01

    The single celled eukaryote Trypanosoma cruzi, a parasite transmitted by numerous species of triatomine bug in the Americas, causes Chagas disease in humans. T. cruzi generally reproduces asexually and appears to have a clonal population structure. However, two of the six major circulating genetic lineages, TcV and TcVI, are TcII-TcIII inter-lineage hybrids that are frequently isolated from humans in regions where chronic Chagas disease is particularly severe. Nevertheless, a prevalent view is that hybridisation events in T. cruzi were evolutionarily ancient and that active recombination is of little epidemiological importance. We analysed genotypes of hybrid and non-hybrid T. cruzi strains for markers representing three distinct evolutionary rates: nuclear GPI sequences (n = 88), mitochondrial COII-ND1 sequences (n = 107) and 28 polymorphic microsatellite loci (n = 35). Using Maximum Likelihood and Bayesian phylogenetic approaches we dated key evolutionary events in the T. cruzi clade including the emergence of hybrid lineages TcV and TcVI, which we estimated to have occurred within the last 60,000 years. We also found evidence for recent genetic exchange between TcIII and TcIV and between TcI and TcIV. These findings show that evolution of novel recombinants remains a potential epidemiological risk. The clearly distinguishable microsatellite genotypes of TcV and TcVI were highly heterozygous and displayed minimal intra-lineage diversity indicative of even earlier origins than sequence-based estimates. Natural hybrid genotypes resembled typical meiotic F1 progeny, however, evidence for mitochondrial introgression, absence of haploid forms and previous experimental crosses indicate that sexual reproduction in T. cruzi may involve alternatives to canonical meiosis. Overall, the data support two independent hybridisation events between TcII and TcIII and a recent, rapid spread of the hybrid progeny in domestic transmission cycles concomitant with, or as a

  13. Trypanosoma cruzi strain TcI is associated with chronic Chagas disease in the Brazilian Amazon

    PubMed Central

    2014-01-01

    Background Chagas disease in the Amazon region is considered an emerging anthropozoonosis with a predominance of the discrete typing units (DTUs) TcI and TcIV. These DTUs are responsible for cases of acute disease associated with oral transmission. Chronic disease cases have been detected through serological surveys. However, the mode of transmission could not be determined, or any association of chronic disease with a specific T. cruzi DTU’s. The aim of this study was to characterize Trypanosoma cruzi in patients with chronic Chagas disease in the State of Amazonas, Brazil. Methods Blood culture and xenodiagnosis were performed in 36 patients with positive serology for Chagas disease who participated in a serological survey performed in urban and rural areas of Manaus, Amazonas. DNA samples were extracted from the feces of triatomines used for xenodiagnosis, and the nontranscribed spacer of the mini-exon gene and the mitochondrial gene cytochrome oxidase subunit II (COII) were amplified by PCR and sequenced. Results Blood culture and xenodiagnosis were negative in 100% of samples; however, molecular techniques revealed that in 13 out of 36 (36%) fecal samples from xenodiagnosis, T. cruzi was characterized as the DTU TcI, and different haplotypes were identified within the same DTU. Conclusion The DTU TcI, which is mainly associated with acute cases of Chagas disease in the Amazon region, is also responsible for chronic infection in patients from a region in the State of Amazonas. PMID:24916362

  14. Evaluation of the in vivo therapeutic properties of (-)-cubebin and (-)-hinokinin against Trypanosoma cruzi.

    PubMed

    Esperandim, Viviane Rodrigues; da Silva Ferreira, Daniele; Rezende, Karen Cristina Souza; Cunha, Wilson Roberto; Saraiva, Juliana; Bastos, Jairo Kenupp; e Silva, Márcio Luis Andrade; de Albuquerque, Sérgio

    2013-04-01

    Even though the Chagas' disease, caused by the protozoan Trypanosoma cruzi, was described 100years ago by Carlos Chagas, it still represents a major public health concern and is found in 18 developing countries in South and Central America. In Brazil, Benznidazole (Rochagan) is the only drug with trypanocidal activity available in the market, despite its several side effects and limited efficacy in the chronic phase of the infection. In view of the need for new substances displaying biological activity against T. cruzi, there has been growing interest in research toward the attainment of compounds capable of acting on the parasite while being devoid of serious side effects. In this context, this study aims to evaluate the in vivo therapeutic activity of dibenzylbutyrolactone lignans (-)-cubebin and (-)-hinokinin during the acute phase of infection by T. cruzi. As a study criterion, animals with acute parasitemia were investigated by tissue morphometric analysis. There was significant parasitemia reduction in the groups of animals treated with (-)-cubebin or (-)-hinokin oral administration, compared to the negative control. Values close to those of the uninfected control were found in the groups treated with (-)-cubebin and (-)-hinokinin via kariometry, showing that there was positive cellular response compared to the infected control. PMID:23274812

  15. Sequence variation in the IL4 gene and resistance to Trypanosoma cruzi infection in Bolivians

    PubMed Central

    Alvarado Arnez, Lucia Elena; Venegas, Evaristo N.; Ober, Carole; Thompson, Emma E.

    2013-01-01

    Summary Variation in the IL4 gene has been associated with parastic infections, but has not been studied in Bolivians infected with Trypanosoma cruzi. Our results suggest that variation at IL4 influences susceptibility to T. cruzi infection in Bolivians. PMID:21211660

  16. Relationship between biological behaviour and randomly amplified polymorphic DNA profiles of Trypanosoma cruzi strains.

    PubMed

    Martínez-Díaz, R A; Escario, J A; Nogal-Ruiz, J J; Gómez-Barrio, A

    2001-02-01

    Once known some biological characteristics of six Trypanosoma cruzi strains, randomly amplified polymorphic DNA (RAPD) analysis was made. Cluster analysis by UPGMA (unweighted pair group method analysis) was then applied both to biological parameters and RAPD profiles. Inspection of the UPGMA phenograms indicates identical clusters, so supporting that usefulness of biological parameters to characterization of T. cruzi strains still remains. PMID:11285506

  17. Interferon-γ-Induced Nitric Oxide Causes Intrinsic Intestinal Denervation in Trypanosoma cruzi-Infected Mice

    PubMed Central

    Arantes, Rosa M.E.; Marche, Homero H.F.; Bahia, Maria T.; Cunha, Fernando Q.; Rossi, Marcos A.; Silva, João S.

    2004-01-01

    In this study, the role of nitric oxide (NO) in neuronal destruction during acute-phase Trypanosoma cruzi infection was evaluated in male C57BL/6 (WT, wild-type) mice and knockout mice [inducible nitric oxide synthase (iNOS)−/− and interferon (IFN)−/−]. Selected animals were infected by intraperitoneal injection of 100 trypomastigote forms of the Y strain of T. cruzi. Others were injected intraperitoneally with an equal volume of saline solution and served as controls. Our findings support those of previous studies regarding myenteric denervation in acute-phase T. cruzi infection. In addition, we clearly demonstrate that, despite the fact that parasite nests and similar inflammatory infiltrate in the intestinal wall were more pronounced in infected iNOS−/− mice than in infected WT mice, the former presented no reduction in myenteric plexus neuron numbers. Neuronal nerve profile expression, as revealed by the general nerve marker PGP 9.5, was preserved in all knockout animals. Infected IFN−/− mice suffered no significant neuronal loss and there was no inflammatory infiltrate in the intestinal wall. On days 5 and 10 after infection, iNOS activity was greater in infected WT mice than in controls, whereas iNOS activity in infected knockout mice remained unchanged. These findings clearly demonstrate that neuronal damage does not occur in NO-impaired infected knockout mice, regardless of whether inflammatory infiltrate is present (iNOS−/−) or absent (IFN−/−). In conclusion, our observations strongly indicate that myenteric denervation in acute-phase T. cruzi infection is because of IFN-γ-elicited NO production resulting from iNOS activation in the inflammatory foci along the intestinal wall. PMID:15039223

  18. Differential Gene Expression in Benznidazole-Resistant Trypanosoma cruzi Parasites

    PubMed Central

    Villarreal, Diana; Nirdé, Philippe; Hide, Mallorie; Barnabé, Christian; Tibayrenc, Michel

    2005-01-01

    We analyzed the differential gene expression among representative Trypanosoma cruzi stocks in relation to benznidazole exposures using a random differentially expressed sequences (RADES) technique. Studies were carried out with drug pressure both at the natural susceptibility level of the wild-type parasite (50% inhibitory concentration for the wild type) and at different resistance levels. The pattern of differential gene expression performed with resistant stocks was compared to the population structure of this parasite, established by random amplified polymorphic DNA analysis and multilocus enzyme electrophoresis. A RADES band polymorphism was observed, and over- or underexpression was linked to the resistance level of the stock. The analysis of RADES bands suggested that different products may be involved in benznidazole resistance mechanisms. No significant association was found between phylogenetic clustering and benznidazole susceptibility. Benznidazole resistance may involve several mechanisms, depending on the level of drug exposure. PMID:15980339

  19. Beta-interferon inhibits cell infection by Trypanosoma cruzi

    NASA Technical Reports Server (NTRS)

    Kierszenbaum, F.; Sonnenfeld, G.

    1984-01-01

    Beta interferon has been shown to inhibit the capacity of bloodstream forms of the flagellate Trypanosoma cruzi, the causative agent of Chagas' disease, to associate with and infect mouse peritoneal macrophages and rat heart myoblasts. The inhibitory effect was abrogated in the presence of specific antibodies to the interferon. Pretreatment of the parasites with interferon reduced their infectivity for untreated host cells, whereas pretreament of either type of host cell did not affect the interaction. The effect of interferon on the trypanosomes was reversible; the extent of the inhibitory effect was significantly reduced afer 20 min, and was undetectable after 60 min when macrophages were used as host cells. For the myoblasts, 60 min elapsed before the inhibitory effect began to subside and 120 min elapsed before it became insignificant or undetectable.

  20. Vaccination of dogs with Trypanosoma rangeli induces antibodies against Trypanosoma cruzi in a rural area of Córdoba, Argentina

    PubMed Central

    Basso, Beatriz; Marini, Vanina; Gauna, Diego; Frias, Maria

    2016-01-01

    Dogs play a major role in the domestic cycle of Trypanosoma cruzi, acting as reservoirs. In a previous work we have developed a model of vaccination of dogs in captivity with nonpathogenic Trypanosoma rangeli epimastigotes, resulting in the production of protective antibodies against T. cruzi, with dramatic decrease of parasitaemia upon challenge with 100,000 virulent forms of this parasite. The aim of this work was to evaluate the immunogenicity of this vaccine in dogs living in a rural area. Domestic dogs, free from T. cruziinfection, received three immunisations with fixed T. rangeliepimastigotes. Dogs were not challenged with T. cruzi, but they were left in their environment. This immunisation induced antibodies againstT. cruzi for more than three years in dogs in their natural habitat, while control dogs remained serologically negative. PMID:27074257

  1. Trypanosoma cruzi Infection in Genetically Selected Mouse Lines: Genetic Linkage with Quantitative Trait Locus Controlling Antibody Response

    PubMed Central

    Vorraro, Francisca; Cabrera, Wafa H. K.; Ribeiro, Orlando G.; Jensen, José Ricardo; De Franco, Marcelo; Ibañez, Olga M.; Starobinas, Nancy

    2014-01-01

    Trypanosoma cruzi infection was studied in mouse lines selected for maximal (AIRmax) or minimal (AIRmin) acute inflammatory reaction and for high (HIII) or low (LIII) antibody (Ab) responses to complex antigens. Resistance was associated with gender (females) and strain—the high responder lines AIRmax and HIII were resistant. The higher resistance of HIII as compared to LIII mice extended to higher infective doses and was correlated with enhanced production of IFN-γ and nitric oxide production by peritoneal and lymph node cells, in HIII males and females. We also analyzed the involvement of previously mapped Ab and T. cruzi response QTL with the survival of Selection III mice to T. cruzi infections in a segregating backcross [F1(HIII×LIII) ×LIII] population. An Ab production QTL marker mapping to mouse chromosome 1 (34.8 cM) significantly cosegregated with survival after acute T. cruzi infections, indicating that this region also harbors genes whose alleles modulate resistance to acute T. cruzi infection. PMID:25197170

  2. The effect of placental subfractions on Trypanosoma cruzi.

    PubMed

    Frank, F; Sartori, M J; Asteggiano, C; Lin, S; de Fabro, S P; Fretes, R E

    2000-10-01

    Five subfractions were collected from six term placentas by mincing and differential centrifugation: homogenate, nuclear, mitochondrial, lysosomal, and supernatant. The effect of each subfraction on Trypanosoma cruzi was assessed by trypan blue exclusion, relative infectivity of mice, and penetration of susceptible cultured VERO cells. Ultrastructural changes in trypomastigotes were identified after high cell mortality was shown by dye exclusion following treatment with lysosomal and supernatant fractions. Trypomastigotes treated with other subfractions or preheated subfractions, those recovered from infected VERO cells, and controls remained unaffected. This was confirmed by the ability of treated trypomastigotes to infect mice or to penetrate susceptible cultured VERO cells. There were a 48% decrease in parasitemia and fewer myocardial lesions in Balb/c mice following treatment with the lysosomal subfraction compared to homogenate and controls. VERO cells were invaded about half as often after lysosomal treatment compared to controls (P < 0. 05); an 11% decrease in cell invasion following homogenate treatment was not significant. Placental lysosomal enzyme activity was unaffected by trypomastigotes. Human placentas contain one or more heat-labile substances in lysosomal and supernatant subfractions which inhibit or injure trypomastigotes of T. cruzi in cell-free systems. PMID:11001862

  3. Trypanosoma cruzi: adaptation to its vectors and its hosts

    PubMed Central

    Noireau, François; Diosque, Patricio; Jansen, Ana Maria

    2009-01-01

    American trypanosomiasis is a parasitic zoonosis that occurs throughout Latin America. The etiological agent, Trypanosoma cruzi, is able to infect almost all tissues of its mammalian hosts and spreads in the environment in multifarious transmission cycles that may or not be connected. This biological plasticity, which is probably the result of the considerable heterogeneity of the taxon, exemplifies a successful adaptation of a parasite resulting in distinct outcomes of infection and a complex epidemiological pattern. In the 1990s, most endemic countries strengthened national control programs to interrupt the transmission of this parasite to humans. However, many obstacles remain to the effective control of the disease. Current knowledge of the different components involved in elaborate system that is American trypanosomiasis (the protozoan parasite T. cruzi, vectors Triatominae and the many reservoirs of infection), as well as the interactions existing within the system, is still incomplete. The Triatominae probably evolve from predatory reduvids in response to the availability of vertebrate food source. However, the basic mechanisms of adaptation of some of them to artificial ecotopes remain poorly understood. Nevertheless, these adaptations seem to be associated with a behavioral plasticity, a reduction in the genetic repertoire and increasing developmental instability. PMID:19250627

  4. Trypanosoma cruzi Calreticulin Topographical Variations in Parasites Infecting Murine Macrophages

    PubMed Central

    González, Andrea; Valck, Carolina; Sánchez, Gittith; Härtel, Steffen; Mansilla, Jorge; Ramírez, Galia; Fernández, María Soledad; Arias, José Luis; Galanti, Norbel; Ferreira, Arturo

    2015-01-01

    Trypanosoma cruzi calreticulin (TcCRT), a 47-kDa chaperone, translocates from the endoplasmic reticulum to the area of flagellum emergence. There, it binds to complement components C1 and mannan-binding lectin (MBL), thus acting as a main virulence factor, and inhibits the classical and lectin pathways. The localization and functions of TcCRT, once the parasite is inside the host cell, are unknown. In parasites infecting murine macrophages, polyclonal anti-TcCRT antibodies detected TcCRT mainly in the parasite nucleus and kinetoplast. However, with a monoclonal antibody (E2G7), the resolution and specificity of the label markedly improved, and TcCRT was detected mainly in the parasite kinetoplast. Gold particles, bound to the respective antibodies, were used as probes in electron microscopy. This organelle may represent a stopover and accumulation site for TcCRT, previous its translocation to the area of flagellum emergence. Finally, early during T. cruzi infection and by unknown mechanisms, an important decrease in the number of MHC-I positive host cells was observed. PMID:25758653

  5. Characterization of inositolphospholipids in Trypanosoma cruzi trypomastigote forms.

    PubMed

    Uhrig, M L; Couto, A S; Colli, W; de Lederkremer, R M

    1996-05-20

    In vivo labeling experiments with [3H]palmitic acid, [3H]inositol, and [3H]glucose allowed the identification of two main classes of inositolphospholipids (IPLs) from the trypomastigote stage of Trypanosoma cruzi. Purification of these compounds was achieved by ion-exchange chromatography, high performance liquid chromatography and thin layer chromatography. Specific phosphatidyl-inositol phospholipase C digestion, dephosphorylation and acid methanolysis showed a ceramide structure for the lower migrating IPL1. Palmitoyldihydrosphingosine and palmitoylsphingosine were detected by reverse-phase thin-layer chromatography. On the other hand, IPL2 showed to be a mixture of diacylglycero- and alkylacylglycero-phospholipids in a 1:1 ratio. After PI-PLC digestion, the lipids were separated by preparative TLC and individually analysed. The diacylglycerol contained mainly C18:0 fatty acid together with a low amount of C16:0. Hexadecylglycerol esterified with the C18:0 fatty acid was the only alkylacylglycerol detected. The C18:2 and C18:1 fatty acids, preponderant in the PI molecules of epimastigote forms, were not detected in trypomastigote forms. This is the first report on inositol phospholipids, putative precursors of lipid anchors in the infective stage of T. cruzi. PMID:8679689

  6. Phospholipid and glycolipid composition of acidocalcisomes of Trypanosoma cruzi

    PubMed Central

    Salto, María Laura; Kuhlenschmidt, Theresa; Kuhlenschmidt, Mark; de Lederkremer, Rosa M.; Docampo, Roberto

    2008-01-01

    Highly purified acidocalcisomes from Trypanosoma cruzi epimastigotes were obtained by differential centrifugation and iodixanol gradient ultracentrifugation. Lipid analysis of acidocalcisomes revealed the presence of low amounts of 3β-hydroxysterols and predominance of phospholipids. Alkylacyl phosphatidylinositol (16:0/18:2), diacyl phosphatidylinositol (18:0/18:2), diacyl phosphatidylcholine (16:0/18:2; 16:1/18:2; 16:2/18:2, 18:1/18:2, and 18:2/18:2), and diacyl phosphatidylethanolamine (16:0/18:2 and 16:1/18:2) were the only phospholipids characterized by electrospray ionization-mass spectrometry (ESI-MS). Incubation of epimastigotes with [3H]-mannose and isolation of acidocalcisomes allowed the detection of a glycoinositolphospholipid (GIPL) in these organelles. The sugar content of the acidocalcisomal GIPL was similar to that of the GIPL present in a microsomal fraction but the amount of galactofuranose and inositol with respect to the other monosaccharides was lower, suggesting a different chemical structure. Taken together, these results indicate that acidocalcisomes of T. cruzi have a distinct lipid and carbohydrate composition. PMID:18207579

  7. Trypanosoma cruzi Calreticulin Topographical Variations in Parasites Infecting Murine Macrophages.

    PubMed

    González, Andrea; Valck, Carolina; Sánchez, Gittith; Härtel, Steffen; Mansilla, Jorge; Ramírez, Galia; Fernández, María Soledad; Arias, José Luis; Galanti, Norbel; Ferreira, Arturo

    2015-05-01

    Trypanosoma cruzi calreticulin (TcCRT), a 47-kDa chaperone, translocates from the endoplasmic reticulum to the area of flagellum emergence. There, it binds to complement components C1 and mannan-binding lectin (MBL), thus acting as a main virulence factor, and inhibits the classical and lectin pathways. The localization and functions of TcCRT, once the parasite is inside the host cell, are unknown. In parasites infecting murine macrophages, polyclonal anti-TcCRT antibodies detected TcCRT mainly in the parasite nucleus and kinetoplast. However, with a monoclonal antibody (E2G7), the resolution and specificity of the label markedly improved, and TcCRT was detected mainly in the parasite kinetoplast. Gold particles, bound to the respective antibodies, were used as probes in electron microscopy. This organelle may represent a stopover and accumulation site for TcCRT, previous its translocation to the area of flagellum emergence. Finally, early during T. cruzi infection and by unknown mechanisms, an important decrease in the number of MHC-I positive host cells was observed. PMID:25758653

  8. Retrospective distribution of Trypanosoma cruzi I genotypes in Colombia

    PubMed Central

    León, Cielo M; Hernández, Carolina; Montilla, Marleny; Ramírez, Juan David

    2015-01-01

    Trypanosoma cruzi is the aetiological agent of Chagas disease, which affects approximately eight million people in the Americas. This parasite exhibits genetic variability, with at least six discrete typing units broadly distributed in the American continent. T. cruzi I (TcI) shows remarkable genetic diversity; a genotype linked to human infections and a domestic cycle of transmission have recently been identified, hence, this strain was named TcIDom. The aim of this work was to describe the spatiotemporal distribution of TcI subpopulations across humans, insect vectors and mammalian reservoirs in Colombia by means of molecular typing targeting the spliced leader intergenic region of mini-exon gene. We analysed 101 TcI isolates and observed a distribution of sylvatic TcI in 70% and TcIDom in 30%. In humans, the ratio was sylvatic TcI in 60% and TcIDom in 40%. In mammal reservoirs, the distribution corresponded to sylvatic TcI in 96% and TcIDom in 4%. Among insect vectors, sylvatic TcI was observed in 48% and TcIDom in 52%. In conclusion, the circulation of TcIDom is emerging in Colombia and this genotype is still adapting to the domestic cycle of transmission. The epidemiological and clinical implications of these findings are discussed herein. PMID:25946157

  9. Trypanosoma cruzi Circulating in the Southern Region of the State of Mexico (Zumpahuacan) Are Pathogenic: A Dog Model

    PubMed Central

    Barbabosa-Pliego, Alberto; Díaz-Albiter, Hector M.; Ochoa-García, Laucel; Aparicio-Burgos, Esteban; López-Heydeck, Sandra M.; Velásquez-Ordoñez, Valente; Fajardo-Muñoz, Raul C.; Díaz-González, Sandra; De Oca-Jimenez, Roberto Montes; Barbosa-Mireles, Marco; Guzmán-Bracho, Carmen; Estrada-Franco, Jose G.; Garg, Nisha Jain; Vázquez-Chagoyán, Juan C.

    2009-01-01

    Here we describe clinical and pathologic evidence of Chagas disease caused in dogs by circulating Trypanosoma cruzi from a newly recognized endemic area in Mexico. We show that the Zumpahuacan isolate, although less virulent than the Sylvio-X10 reference strain that caused acute myocarditis and death, was pathogenic in dogs. Dogs infected with the Zumpahuacan isolate exhibited electrocardiographic alterations, left- and right-ventricle dilation, and hydropericardium. Histologically, diffused perimysial and endomysial lymphoplasmacytic cell infiltration, cardiomyocyte necrosis, and amastigote nests were noted in Zumpahuacan-infected dogs. These findings suggest that the risk of T. cruzi infection and Chagas disease is present in the State of Mexico, and further research is needed to identify the T. cruzi bio-types circulating in southern State of Mexico. PMID:19706902

  10. Experimental chemotherapy of Trypanosoma cruzi infection: persistence of parasite antigens and positive serology in parasitologically cured mice.

    PubMed Central

    Andrade, S. G.; Freitas, L. A.; Peyrol, S.; Pimentel, A. R.; Sadigursky, M.

    1991-01-01

    Mice infected with Trypanosoma cruzi, but parasitologically cured after specific chemotherapy, continued to exhibit positive indirect immunofluorescence serological tests 3-6 months after the therapy. Treatment of trypanosome antigens with monospecific antisera produced in rabbits, and examination by immunoelectron-microscopy following peroxidase labelling disclosed the presence of membrane deposits in cell processes in the spleens of the mice. Similar deposits were observed in the external membranes of T. cruzi amastigotes in the spleens of acutely infected mice, but not in normal control mice. No reaction occurred in tissues not previously treated with the monospecific anti-T. cruzi serum. Positive cells in treated and cured mice, as well as in the not cured or untreated control mice, were located in germinal centres of the splenic white pulp and presented long and branching cytoplasmic processes, which are indicative of dendritic cells of the lymphoid follicles of the spleen. Images Fig. 1 Fig. 2 Fig. 3 PMID:1907221

  11. Proteomic Analysis of Trypanosoma cruzi Response to Ionizing Radiation Stress

    PubMed Central

    Vieira, Helaine Graziele Santos; Grynberg, Priscila; Bitar, Mainá; Pires, Simone da Fonseca; Hilário, Heron Oliveira; Macedo, Andrea Mara; Machado, Carlos Renato; de Andrade, Hélida Monteiro; Franco, Glória Regina

    2014-01-01

    Trypanosoma cruzi, the causative agent of Chagas disease, is extremely resistant to ionizing radiation, enduring up to 1.5 kGy of gamma rays. Ionizing radiation can damage the DNA molecule both directly, resulting in double-strand breaks, and indirectly, as a consequence of reactive oxygen species production. After a dose of 500 Gy of gamma rays, the parasite genome is fragmented, but the chromosomal bands are restored within 48 hours. Under such conditions, cell growth arrests for up to 120 hours and the parasites resume normal growth after this period. To better understand the parasite response to ionizing radiation, we analyzed the proteome of irradiated (4, 24, and 96 hours after irradiation) and non-irradiated T. cruzi using two-dimensional differential gel electrophoresis followed by mass spectrometry for protein identification. A total of 543 spots were found to be differentially expressed, from which 215 were identified. These identified protein spots represent different isoforms of only 53 proteins. We observed a tendency for overexpression of proteins with molecular weights below predicted, indicating that these may be processed, yielding shorter polypeptides. The presence of shorter protein isoforms after irradiation suggests the occurrence of post-translational modifications and/or processing in response to gamma radiation stress. Our results also indicate that active translation is essential for the recovery of parasites from ionizing radiation damage. This study therefore reveals the peculiar response of T. cruzi to ionizing radiation, raising questions about how this organism can change its protein expression to survive such a harmful stress. PMID:24842666

  12. Trypanosoma cruzi contains two galactokinases; molecular and biochemical characterization.

    PubMed

    Lobo-Rojas, Ángel E; González-Marcano, Eglys B; Valera-Vera, Edward A; Acosta, Héctor R; Quiñones, Wilfredo A; Burchmore, Richard J S; Concepción, Juan L; Cáceres, Ana J

    2016-10-01

    Two different putative galactokinase genes, found in the genome database of Trypanosoma cruzi were cloned and sequenced. Expression of the genes in Escherichia coli resulted for TcGALK-1 in the synthesis of a soluble and active enzyme, and in the case of TcGALK-2 gene a less soluble protein, with predicted molecular masses of 51.9kDa and 51.3kDa, respectively. The Km values determined for the recombinant proteins were for galactose 0.108mM (TcGALK-1) and 0.091mM (TcGALK-2) and for ATP 0.36mM (TcGALK-1) and 0.1mM (TcGALK-2). Substrate inhibition by ATP (Ki 0.414mM) was only observed for TcGALK-2. Gel-filtration chromatography showed that natural TcGALKs and recombinant TcGALK-1 are monomeric. In agreement with the possession of a type-1 peroxisome-targeting signal by both TcGALKs, they were found to be present inside glycosomes using two different methods of subcellular fractionation in conjunction with mass spectrometry. Both genes are expressed in epimastigote and trypomastigote stages since the respective proteins were immunodetected by western blotting. The T. cruzi galactokinases present their highest (52-47%) sequence identity with their counterpart from Leishmania spp., followed by prokaryotic galactokinases such as those from E. coli and Lactococcus lactis (26-23%). In a phylogenetic analysis, the trypanosomatid galactokinases form a separate cluster, showing an affiliation with bacteria. Epimastigotes of T. cruzi can grow in glucose-depleted LIT-medium supplemented with 20mM of galactose, suggesting that this hexose, upon phosphorylation by a TcGALK, could be used in the synthesis of UDP-galactose and also as a possible carbon and energy source. PMID:27312997

  13. Cellular signaling during the macrophage invasion by Trypanosoma cruzi.

    PubMed

    Vieira, Mauricio; Dutra, Juliana M F; Carvalho, Tecia M U; Cunha-e-Silva, Narcisa L; Souto-Padrón, Thaïs; Souza, Wanderley

    2002-12-01

    We have reported that protein tyrosine kinases play an important role in the invasion of Trypanosoma cruzi into primary resident macrophages. In the present study we carry out immunofluorescence assays, using monoclonal anti-phosphotyrosine antibodies, to reveal an accumulation of tyrosine-phosphorylated residues at the site of parasite association with the macrophage surface, colocalizing with host cell F-actin-rich domains. SDS-PAGE analysis of macrophage cell line IC-21 tyrosine phosphoproteins, labeled with [(35)S] L-methionine, revealed several peptides with increased levels of phosphorylation upon interaction with the parasite. Among them, were detected bands of 140, 120, 112, 94, 73, 67, and 56 kDa that match the molecular weights of proteins described as being tyrosine phosphorylated during events that lead to actin assembly in mononuclear phagocytes. The pretreatment of IC-21 macrophages with the tyrosine kinase inhibitor tyrphostin 23 inhibited trypomastigote uptake showing that tyrosine phosphorylation is important for the parasite penetration in this particular cell line. Immunofluorescence microscopy, using antibodies against p85, the regulatory subunit of phosphatidylinositol 3-kinase (PI 3-kinase), placed this enzyme also in the same sites, in accordance to what is reported for phagocytosis. We suggest that once the components of T. cruzi trypomastigotes surface are recognized by macrophage receptors, they trigger the activation of a tyrosine phosphorylation cascade, PI 3-kinase recruitment, and assembly of actin filaments at the site of initial cell-to-cell contact, resembling the events described during phagocytosis. These achievements support the model for a phagocytic-like actin-dependent invasion mechanism for T. cruzi trypomastigotes into macrophages. PMID:12483314

  14. Polyamine depletion inhibits the autophagic response modulating Trypanosoma cruzi infectivity

    PubMed Central

    Vanrell, María C.; Cueto, Juan A.; Barclay, Jeremías J.; Carrillo, Carolina; Colombo, María I.; Gottlieb, Roberta A.; Romano, Patricia S.

    2013-01-01

    Autophagy is a cell process that in normal conditions serves to recycle cytoplasmic components and aged or damaged organelles. The autophagic pathway has been implicated in many physiological and pathological situations, even during the course of infection by intracellular pathogens. Many compounds are currently used to positively or negatively modulate the autophagic response. Recently it was demonstrated that the polyamine spermidine is a physiological inducer of autophagy in eukaryotic cells. We have previously shown that the etiological agent of Chagas disease, the protozoan parasite Trypanosoma cruzi, interacts with autophagic compartments during host cell invasion and that preactivation of autophagy significantly increases host cell colonization by this parasite. In the present report we have analyzed the effect of polyamine depletion on the autophagic response of the host cell and on T. cruzi infectivity. Our data showed that depleting intracellular polyamines by inhibiting the biosynthetic enzyme ornithine decarboxylase with difluoromethylornithine (DFMO) suppressed the induction of autophagy in response to starvation or rapamycin treatment in two cell lines. This effect was associated with a decrease in the levels of LC3 and ATG5, two proteins required for autophagosome formation. As a consequence of inhibiting host cell autophagy, DFMO impaired T. cruzi colonization, indicating that polyamines and autophagy facilitate parasite infection. Thus, our results point to DFMO as a novel autophagy inhibitor. While other autophagy inhibitors such as wortmannin and 3-methyladenine are nonspecific and potentially toxic, DFMO is an FDA-approved drug that may have value in limiting autophagy and the spread of the infection in Chagas disease and possibly other pathological settings. PMID:23697944

  15. A human astrocytoma cell line is highly susceptible to infection with Trypanosoma cruzi

    PubMed Central

    Vargas-Zambrano, Juan Camilo; Lasso, Paola; Cuellar, Adriana; Puerta, Concepción Judith; González, John Mario

    2013-01-01

    Astrocytes play a vital role in neuronal protection, homeostasis, vascular interchange and the local immune response. Some viruses and parasites can cross the blood-brain barrier and infect glia. Trypanosoma cruzi, the aetiological agent of Chagas disease, can seriously compromise the central nervous system, mainly in immune-suppressed individuals, but also during the acute phase of the infection. In this report, the infective capacity of T. cruzi in a human astrocyte tumour-derived cell line was studied. Astrocytes exposed to trypomastigotes (1:10 ratio) produced intracellular amastigotes and new trypomastigotes emerged by day 4 post-infection (p.i.). At day 6 p.i., 93% of the cells were infected. Using flow cytometry, changes were observed in both the expression of major histocompatibility complex class I and II molecules and the chemokine secretion pattern of astrocytes exposed to the parasite. Blocking the low-density lipoprotein receptor on astrocytes did not reduce parasite intracellular infection. Thus, T. cruzi can infect astrocytes and modulate the immune response during central nervous system infection. PMID:23579802

  16. Domestic Pig (Sus scrofa) as an Animal Model for Experimental Trypanosoma cruzi Infection.

    PubMed

    Yauri, Verónica; Castro-Sesquen, Yagahira E; Verastegui, Manuela; Angulo, Noelia; Recuenco, Fernando; Cabello, Ines; Malaga, Edith; Bern, Caryn; Gavidia, Cesar M; Gilman, Robert H

    2016-05-01

    Pigs were infected with a Bolivian strain of Trypanosoma cruzi (genotype I) and evaluated up to 150 days postinoculation (dpi) to determine the use of pigs as an animal model of Chagas disease. Parasitemia was observed in the infected pigs during the acute phase (15-40 dpi). Anti-T. cruzi immunoglobulin M was detected during 15-75 dpi; high levels of anti-T. cruzi immunoglobulin G were detected in all infected pigs from 75 to 150 dpi. Parasitic DNA was observed by western blot (58%, 28/48) and polymerase chain reaction (27%, 13/48) in urine samples, and in the brain (75%, 3/4), spleen (50%, 2/4), and duodenum (25%, 1/4), but no parasitic DNA was found in the heart, colon, and kidney. Parasites were not observed microscopically in tissues samples, but mild inflammation, vasculitis, and congestion was observed in heart, brain, kidney, and spleen. This pig model was useful for the standardization of the urine test because of the higher volume that can be obtained as compared with other small animal models. However, further experiments are required to observe pathological changes characteristic of Chagas disease in humans. PMID:26928841

  17. Apoptotic CD8 T-lymphocytes disable macrophage-mediated immunity to Trypanosoma cruzi infection

    PubMed Central

    Cabral-Piccin, M P; Guillermo, L V C; Vellozo, N S; Filardy, A A; Pereira-Marques, S T; Rigoni, T S; Pereira-Manfro, W F; DosReis, G A; Lopes, M F

    2016-01-01

    Chagas disease is caused by infection with the protozoan Trypanosoma cruzi. CD8 T-lymphocytes help to control infection, but apoptosis of CD8 T cells disrupts immunity and efferocytosis can enhance parasite infection within macrophages. Here, we investigate how apoptosis of activated CD8 T cells affects M1 and M2 macrophage phenotypes. First, we found that CD8 T-lymphocytes and inflammatory monocytes/macrophages infiltrate peritoneum during acute T. cruzi infection. We show that treatment with anti-Fas ligand (FasL) prevents lymphocyte apoptosis, upregulates type-1 responses to parasite antigens, and reduces infection in macrophages cocultured with activated CD8 T cells. Anti-FasL skews mixed M1/M2 macrophage profiles into polarized M1 phenotype, both in vitro and following injection in infected mice. Moreover, inhibition of T-cell apoptosis induces a broad reprogramming of cytokine responses and improves macrophage-mediated immunity to T. cruzi. The results indicate that disposal of apoptotic CD8 T cells increases M2-macrophage differentiation and contributes to parasite persistence. PMID:27195678

  18. Apoptotic CD8 T-lymphocytes disable macrophage-mediated immunity to Trypanosoma cruzi infection.

    PubMed

    Cabral-Piccin, M P; Guillermo, L V C; Vellozo, N S; Filardy, A A; Pereira-Marques, S T; Rigoni, T S; Pereira-Manfro, W F; DosReis, G A; Lopes, M F

    2016-01-01

    Chagas disease is caused by infection with the protozoan Trypanosoma cruzi. CD8 T-lymphocytes help to control infection, but apoptosis of CD8 T cells disrupts immunity and efferocytosis can enhance parasite infection within macrophages. Here, we investigate how apoptosis of activated CD8 T cells affects M1 and M2 macrophage phenotypes. First, we found that CD8 T-lymphocytes and inflammatory monocytes/macrophages infiltrate peritoneum during acute T. cruzi infection. We show that treatment with anti-Fas ligand (FasL) prevents lymphocyte apoptosis, upregulates type-1 responses to parasite antigens, and reduces infection in macrophages cocultured with activated CD8 T cells. Anti-FasL skews mixed M1/M2 macrophage profiles into polarized M1 phenotype, both in vitro and following injection in infected mice. Moreover, inhibition of T-cell apoptosis induces a broad reprogramming of cytokine responses and improves macrophage-mediated immunity to T. cruzi. The results indicate that disposal of apoptotic CD8 T cells increases M2-macrophage differentiation and contributes to parasite persistence. PMID:27195678

  19. Aptamer Based, Non-PCR, Non-Serological Detection of Chagas Disease Biomarkers in Trypanosoma cruzi Infected Mice

    PubMed Central

    Nagarkatti, Rana; de Araujo, Fernanda Fortes; Gupta, Charu; Debrabant, Alain

    2014-01-01

    Chagas disease affects about 5 million people across the world. The etiological agent, the intracellular parasite Trypanosoma cruzi (T. cruzi), can be diagnosed using microscopy, serology or PCR based assays. However, each of these methods has their limitations regarding sensitivity and specificity, and thus to complement these existing diagnostic methods, alternate assays need to be developed. It is well documented that several parasite proteins called T. cruzi Excreted Secreted Antigens (TESA), are released into the blood of an infected host. These circulating parasite antigens could thus be used as highly specific biomarkers of T. cruzi infection. In this study, we have demonstrated that, using a SELEx based approach, parasite specific ligands called aptamers, can be used to detect TESA in the plasma of T. cruzi infected mice. An Enzyme Linked Aptamer (ELA) assay, similar to ELISA, was developed using biotinylated aptamers to demonstrate that these RNA ligands could interact with parasite targets. Aptamer L44 (Apt-L44) showed significant and specific binding to TESA as well as T. cruzi trypomastigote extract and not to host proteins or proteins of Leishmania donovani, a related trypanosomatid parasite. Our result also demonstrated that the target of Apt-L44 is conserved in three different strains of T. cruzi. In mice infected with T. cruzi, Apt-L44 demonstrated a significantly higher level of binding compared to non-infected mice suggesting that it could detect a biomarker of T. cruzi infection. Additionally, Apt-L44 could detect these circulating biomarkers in both the acute phase, from 7 to 28 days post infection, and in the chronic phase, from 55 to 230 days post infection. Our results show that Apt-L44 could thus be used in a qualitative ELA assay to detect biomarkers of Chagas disease. PMID:24454974

  20. Oral Exposure to Trypanosoma cruzi Elicits a Systemic CD8+ T Cell Response and Protection against Heterotopic Challenge ▿

    PubMed Central

    Collins, Matthew H.; Craft, Julie M.; Bustamante, Juan M.; Tarleton, Rick L.

    2011-01-01

    Trypanosoma cruzi infects millions of people in Latin America and often leads to the development of Chagas disease. T. cruzi infection can be acquired at or near the bite site of the triatomine vector, but per os infection is also a well-documented mode of transmission, as evidenced by recent microepidemics of acute Chagas disease attributed to the consumption of parasite-contaminated foods and liquids. It would also be convenient to deliver vaccines for T. cruzi by the oral route, particularly live parasite vaccines intended for the immunization of reservoir hosts. For these reasons, we were interested in better understanding immunity to T. cruzi following oral infection or oral vaccination, knowing that the route of infection and site of antigen encounter can have substantial effects on the ensuing immune response. Here, we show that the route of infection does not alter the ability of T. cruzi to establish infection in muscle tissue nor does it impair the generation of a robust CD8+ T cell response. Importantly, oral vaccination with attenuated parasites provides protection against wild-type (WT) T. cruzi challenge. These results strongly support the development of whole-organism-based vaccines targeting reservoir species as a means to alleviate the burden of Chagas disease in affected regions. PMID:21628516

  1. Myenteric plexus is differentially affected by infection with distinct Trypanosoma cruzi strains in Beagle dogs

    PubMed Central

    Nogueira-Paiva, Nívia Carolina; Fonseca, Kátia da Silva; Vieira, Paula Melo de Abreu; Diniz, Lívia Figueiredo; Caldas, Ivo Santana; de Moura, Sandra Aparecida Lima; Veloso, Vanja Maria; Guedes, Paulo Marcos da Matta; Tafuri, Washington Luiz; Bahia, Maria Terezinha; Carneiro, Cláudia Martins

    2013-01-01

    Chagasic megaoesophagus and megacolon are characterised by motor abnormalities related to enteric nervous system lesions and their development seems to be related to geographic distribution of distinct Trypanosoma cruzi subpopulations. Beagle dogs were infected with Y or Berenice-78 (Be-78) T. cruzi strains and necropsied during the acute or chronic phase of experimental disease for post mortem histopathological evaluation of the oesophagus and colon. Both strains infected the oesophagus and colon and caused an inflammatory response during the acute phase. In the chronic phase, inflammatory process was observed exclusively in the Be-78 infected animals, possibly due to a parasitism persistent only in this group. Myenteric denervation occurred during the acute phase of infection for both strains, but persisted chronically only in Be-78 infected animals. Glial cell involvement occurred earlier in animals infected with the Y strain, while animals infected with the Be-78 strain showed reduced glial fibrillary acidic protein immunoreactive area of enteric glial cells in the chronic phase. These results suggest that although both strains cause lesions in the digestive tract, the Y strain is associated with early control of the lesion, while the Be-78 strain results in progressive gut lesions in this model. PMID:24271001

  2. The diversity and expansion of the trans-sialidase gene family is a common feature in Trypanosoma cruzi clade members.

    PubMed

    Chiurillo, Miguel Angel; Cortez, Danielle R; Lima, Fábio M; Cortez, Caroline; Ramírez, José Luis; Martins, Andre G; Serrano, Myrna G; Teixeira, Marta M G; da Silveira, José Franco

    2016-01-01

    Trans-sialidase (TS) is a polymorphic protein superfamily described in members of the protozoan genus Trypanosoma. Of the eight TS groups recently described, TS group I proteins (some of which have catalytic activity) are present in the distantly related Trypanosoma brucei and Trypanosoma cruzi phylogenetic clades, whereas other TS groups have only been described in some species belonging to the T. cruzi clade. In the present study we analyzed the repertoire, distribution and phylogenetic relationships of TS genes among species of the T. cruzi clade based on sequence similarity, multiple sequence alignment and tree-reconstruction approaches using TS sequences obtained with the aid of PCR-based strategies or retrieved from genome databases. We included the following representative isolates of the T. cruzi clade from South America: T. cruzi, T. cruzi Tcbat, Trypanosoma cruzi marinkellei, Trypanosoma dionisii, Trypanosoma rangeli and Trypanosoma conorhini. The cloned sequences encoded conserved TS protein motifs Asp-box and VTVxNVxLYNR but lacked the FRIP motif (conserved in TS group I). The T. conorhini sequences were the most divergent. The hybridization patterns of TS probes with chromosomal bands confirmed the abundance of these sequences in species in the T. cruzi clade. Divergence and relationship analysis placed most of the TS sequences in the groups defined in T. cruzi. Further examination of members of TS group II, which includes T. cruzi surface glycoproteins implicated in host cell attachment and invasion, showed that sequences of T. cruzi Tcbat grouped with those of T. cruzi genotype TcI. Our analysis indicates that different members of the T. cruzi clade, with different vertebrate hosts, vectors and pathogenicity, share the extensive expansion and sequence diversification of the TS gene family. Altogether, our results are congruent with the evolutionary history of the T. cruzi clade and represent a contribution to the understanding of the molecular

  3. Genetic Vaccination against Experimental Infection with Myotropic Parasite Strains of Trypanosoma cruzi

    PubMed Central

    Araújo, Adriano Fernando; de Oliveira, Gabriel; Vasconcelos, Juliana Fraga; Ersching, Jonatan; Dominguez, Mariana Ribeiro; Vasconcelos, José Ronnie; Machado, Alexandre Vieira; Gazzinelli, Ricardo Tostes; Bruna-Romero, Oscar; Soares, Milena Botelho; Rodrigues, Mauricio Martins

    2014-01-01

    In earlier studies, we reported that a heterologous prime-boost regimen using recombinant plasmid DNA followed by replication-defective adenovirus vector, both containing Trypanosoma cruzi genes encoding trans-sialidase (TS) and amastigote surface protein (ASP) 2, provided protective immunity against experimental infection with a reticulotropic strain of this human protozoan parasite. Herein, we tested the outcome of genetic vaccination of F1 (CB10XBALB/c) mice challenged with myotropic parasite strains (Brazil and Colombian). Initially, we determined that the coadministration during priming of a DNA plasmid containing the murine IL-12 gene improved the immune response and was essential for protective immunity elicited by the heterologous prime-boost regimen in susceptible male mice against acute lethal infections with these parasites. The prophylactic or therapeutic vaccination of resistant female mice led to a drastic reduction in the number of inflammatory infiltrates in cardiac and skeletal muscles during the chronic phase of infection with either strain. Analysis of the electrocardiographic parameters showed that prophylactic vaccination reduced the frequencies of sinus arrhythmia and atrioventricular block. Our results confirmed that prophylactic vaccination using the TS and ASP-2 genes benefits the host against acute and chronic pathologies caused by T. cruzi and should be further evaluated for the development of a veterinary or human vaccine against Chagas disease. PMID:25061263

  4. Identification of contractile vacuole proteins in Trypanosoma cruzi.

    PubMed

    Ulrich, Paul N; Jimenez, Veronica; Park, Miyoung; Martins, Vicente P; Atwood, James; Moles, Kristen; Collins, Dalis; Rohloff, Peter; Tarleton, Rick; Moreno, Silvia N J; Orlando, Ron; Docampo, Roberto

    2011-01-01

    Contractile vacuole complexes are critical components of cell volume regulation and have been shown to have other functional roles in several free-living protists. However, very little is known about the functions of the contractile vacuole complex of the parasite Trypanosoma cruzi, the etiologic agent of Chagas disease, other than a role in osmoregulation. Identification of the protein composition of these organelles is important for understanding their physiological roles. We applied a combined proteomic and bioinfomatic approach to identify proteins localized to the contractile vacuole. Proteomic analysis of a T. cruzi fraction enriched for contractile vacuoles and analyzed by one-dimensional gel electrophoresis and LC-MS/MS resulted in the addition of 109 newly detected proteins to the group of expressed proteins of epimastigotes. We also identified different peptides that map to at least 39 members of the dispersed gene family 1 (DGF-1) providing evidence that many members of this family are simultaneously expressed in epimastigotes. Of the proteins present in the fraction we selected several homologues with known localizations in contractile vacuoles of other organisms and others that we expected to be present in these vacuoles on the basis of their potential roles. We determined the localization of each by expression as GFP-fusion proteins or with specific antibodies. Six of these putative proteins (Rab11, Rab32, AP180, ATPase subunit B, VAMP1, and phosphate transporter) predominantly localized to the vacuole bladder. TcSNARE2.1, TcSNARE2.2, and calmodulin localized to the spongiome. Calmodulin was also cytosolic. Our results demonstrate the utility of combining subcellular fractionation, proteomic analysis, and bioinformatic approaches for localization of organellar proteins that are difficult to detect with whole cell methodologies. The CV localization of the proteins investigated revealed potential novel roles of these organelles in phosphate metabolism

  5. Sialic Acid Glycobiology Unveils Trypanosoma cruzi Trypomastigote Membrane Physiology

    PubMed Central

    Lantos, Andrés B.; Carlevaro, Giannina; Araoz, Beatriz; Ruiz Diaz, Pablo; Camara, María de los Milagros; Buscaglia, Carlos A.; Bossi, Mariano; Yu, Hai; Chen, Xi; Bertozzi, Carolyn R.; Mucci, Juan; Campetella, Oscar

    2016-01-01

    Trypanosoma cruzi, the flagellate protozoan agent of Chagas disease or American trypanosomiasis, is unable to synthesize sialic acids de novo. Mucins and trans-sialidase (TS) are substrate and enzyme, respectively, of the glycobiological system that scavenges sialic acid from the host in a crucial interplay for T. cruzi life cycle. The acquisition of the sialyl residue allows the parasite to avoid lysis by serum factors and to interact with the host cell. A major drawback to studying the sialylation kinetics and turnover of the trypomastigote glycoconjugates is the difficulty to identify and follow the recently acquired sialyl residues. To tackle this issue, we followed an unnatural sugar approach as bioorthogonal chemical reporters, where the use of azidosialyl residues allowed identifying the acquired sugar. Advanced microscopy techniques, together with biochemical methods, were used to study the trypomastigote membrane from its glycobiological perspective. Main sialyl acceptors were identified as mucins by biochemical procedures and protein markers. Together with determining their shedding and turnover rates, we also report that several membrane proteins, including TS and its substrates, both glycosylphosphatidylinositol-anchored proteins, are separately distributed on parasite surface and contained in different and highly stable membrane microdomains. Notably, labeling for α(1,3)Galactosyl residues only partially colocalize with sialylated mucins, indicating that two species of glycosylated mucins do exist, which are segregated at the parasite surface. Moreover, sialylated mucins were included in lipid-raft-domains, whereas TS molecules are not. The location of the surface-anchored TS resulted too far off as to be capable to sialylate mucins, a role played by the shed TS instead. Phosphatidylinositol-phospholipase-C activity is actually not present in trypomastigotes. Therefore, shedding of TS occurs via microvesicles instead of as a fully soluble form. PMID

  6. Sialic Acid Glycobiology Unveils Trypanosoma cruzi Trypomastigote Membrane Physiology.

    PubMed

    Lantos, Andrés B; Carlevaro, Giannina; Araoz, Beatriz; Ruiz Diaz, Pablo; Camara, María de Los Milagros; Buscaglia, Carlos A; Bossi, Mariano; Yu, Hai; Chen, Xi; Bertozzi, Carolyn R; Mucci, Juan; Campetella, Oscar

    2016-04-01

    Trypanosoma cruzi, the flagellate protozoan agent of Chagas disease or American trypanosomiasis, is unable to synthesize sialic acids de novo. Mucins and trans-sialidase (TS) are substrate and enzyme, respectively, of the glycobiological system that scavenges sialic acid from the host in a crucial interplay for T. cruzi life cycle. The acquisition of the sialyl residue allows the parasite to avoid lysis by serum factors and to interact with the host cell. A major drawback to studying the sialylation kinetics and turnover of the trypomastigote glycoconjugates is the difficulty to identify and follow the recently acquired sialyl residues. To tackle this issue, we followed an unnatural sugar approach as bioorthogonal chemical reporters, where the use of azidosialyl residues allowed identifying the acquired sugar. Advanced microscopy techniques, together with biochemical methods, were used to study the trypomastigote membrane from its glycobiological perspective. Main sialyl acceptors were identified as mucins by biochemical procedures and protein markers. Together with determining their shedding and turnover rates, we also report that several membrane proteins, including TS and its substrates, both glycosylphosphatidylinositol-anchored proteins, are separately distributed on parasite surface and contained in different and highly stable membrane microdomains. Notably, labeling for α(1,3)Galactosyl residues only partially colocalize with sialylated mucins, indicating that two species of glycosylated mucins do exist, which are segregated at the parasite surface. Moreover, sialylated mucins were included in lipid-raft-domains, whereas TS molecules are not. The location of the surface-anchored TS resulted too far off as to be capable to sialylate mucins, a role played by the shed TS instead. Phosphatidylinositol-phospholipase-C activity is actually not present in trypomastigotes. Therefore, shedding of TS occurs via microvesicles instead of as a fully soluble form. PMID

  7. Bioenergetic profiling of Trypanosoma cruzi life stages using Seahorse extracellular flux technology.

    PubMed

    Shah-Simpson, Sheena; Pereira, Camila F A; Dumoulin, Peter C; Caradonna, Kacey L; Burleigh, Barbara A

    2016-08-01

    Energy metabolism is an attractive target for the development of new therapeutics against protozoan pathogens, including Trypanosoma cruzi, the causative agent of human Chagas disease. Despite emerging evidence that mitochondrial electron transport is essential for the growth of intracellular T. cruzi amastigotes in mammalian cells, fundamental knowledge of mitochondrial energy metabolism in this parasite life stage remains incomplete. The Clark-type electrode, which measures the rate of oxygen consumption, has served as the traditional tool to study mitochondrial energetics and has contributed to our understanding of it in T. cruzi. Here, we evaluate the Seahorse XF(e)24 extracellular flux platform as an alternative method to assess mitochondrial bioenergetics in isolated T. cruzi parasites. We report optimized assay conditions used to perform mitochondrial stress tests with replicative life cycle stages of T. cruzi using the XF(e)24 instrument, and discuss the advantages and potential limitations of this methodology, as applied to T. cruzi and other trypanosomatids. PMID:27392747

  8. Antiangiogenic and Antitumor Effects of Trypanosoma cruzi Calreticulin

    PubMed Central

    López, Nandy C.; Valck, Carolina; Ramírez, Galia; Rodríguez, Margarita; Ribeiro, Carolina; Orellana, Juana; Maldonado, Ismael; Albini, Adriana; Anacona, Daniel; Lemus, David; Aguilar, Lorena; Schwaeble, Wilhelm; Ferreira, Arturo

    2010-01-01

    Background In Latin America, 18 million people are infected with Trypanosoma cruzi, the agent of Chagas' disease, with the greatest economic burden. Vertebrate calreticulins (CRT) are multifunctional, intra- and extracellular proteins. In the endoplasmic reticulum (ER) they bind calcium and act as chaperones. Since human CRT (HuCRT) is antiangiogenic and suppresses tumor growth, the presence of these functions in the parasite orthologue may have consequences in the host/parasite interaction. Previously, we have cloned and expressed T. cruzi calreticulin (TcCRT) and shown that TcCRT, translocated from the ER to the area of trypomastigote flagellum emergence, promotes infectivity, inactivates the complement system and inhibits angiogenesis in the chorioallantoid chicken egg membrane. Most likely, derived from these properties, TcCRT displays in vivo inhibitory effects against an experimental mammary tumor. Methodology and Principal Findings TcCRT (or its N-terminal vasostatin-like domain, N-TcCRT) a) Abrogates capillary growth in the ex vivo rat aortic ring assay, b) Inhibits capillary morphogenesis in a human umbilical vein endothelial cell (HUVEC) assay, c) Inhibits migration and proliferation of HUVECs and the human endothelial cell line Eahy926. In these assays TcCRT was more effective, in molar terms, than HuCRT: d) In confocal microscopy, live HUVECs and EAhy926 cells, are recognized by FITC-TcCRT, followed by its internalization and accumulation around the host cell nuclei, a phenomenon that is abrogated by Fucoidin, a specific scavenger receptor ligand and, e) Inhibits in vivo the growth of the murine mammary TA3 MTXR tumor cell line. Conclusions/Significance We describe herein antiangiogenic and antitumor properties of a parasite chaperone molecule, specifically TcCRT. Perhaps, by virtue of its capacity to inhibit angiogenesis (and the complement system), TcCRT is anti-inflammatory, thus impairing the antiparasite immune response. The TcCRT antiangiogenic

  9. [Control of the transmission of Trypanosoma cruzi in Argentina 1999].

    PubMed

    Segura, E L; Sosa Estani, S; Esquivel, M L; Gómez, A; Salomon, O D

    1999-01-01

    Approximately 2 million people in Argentina are infected with Trypanosoma cruzi, the etiologic agent of Chagas disease, thereby constituting the major tropical disease in the country. As in other six Southern Cone countries, Triatoma infestans is the only or major vector of T. cruzi among human and domestic animals. In Argentina, a vertically structured National Chagas Control Program was established in 1962. Such a program pursued the elimination of domestic and peri-domestic populations of T. infestans through insecticidal spraying, and the serological control of blood donors to prevent transfusion-related infections. This program strongly reduced the nation-wide serological prevalence of T. cruzi in the population. For example, in 18 or 20 year-old men drafted into military service, the seroprevalence decreased from 10.1% in 1964 for those who had been born in 1944 to 1.9% in 1993 for those born in 1975. However, the vertical strategy failed to reach and sustain the surveillance phase in widespread rural areas with disperse populations due to its intrinsic limitations and the reduced priority level assigned to rural health programs. An alternative, horizontally-structured control strategy of T. infestans was developed and assayed in the Province of Santiago del Estero between 1985-1989, and 1991-1992. The projects demonstrated that insecticidal spraying carried out with community participation combined effectiveness and commitment in such a way as to produce a strong impact on house reinfestation and the extension of the area under entomological surveillance. This experience has been transferred in a chain of responsibilities to the personnel of the National Chagas Control Program, using participating workshops, procedural guidelines, and practical training. This personnel transferred the strategy using similar methods to the field health care agents and volunteers chosen by their own communities (community leaders). After the workshops, the leaders received all

  10. Trypanosoma cruzi-induced host immune system dysfunction: a rationale for parasite immunosuppressive factor(s) encoding gene targeting

    PubMed Central

    2001-01-01

    An intense suppression of T cell proliferation to mitogens and to antigens is observed in a large number of parasitic infections. The impairment of T cell proliferation also occurred during the acute phase of Chagas' disease, caused by the intracellular protozoan parasite Trypanosoma cruzi. A wealth of evidence has accumulated that illustrates the ability of T. cruzi released molecules to influence directly a variety of diverse immunological functions. In this paper, we review the data concerning the immunoregulatory effects of T. cruzi Tc24 (a B cell activator antigen) and Tc52 (an immunosuppressive protein) released molecules on the host immune system. The gene targeting approach developed to further explore the biological function(s) of Tc52 molecule, revealed interesting unexpected functional properties. Indeed, in addition to its immunusuppressive activity a direct or indirect involvement of Tc52 gene product alone or in combination with other cellular components in T. cruzi differentiation control mechanisms have been evidenced. Moreover, targeted Tc52 replacement allowed the obtention of parasite mutants exhibiting low virulence in vitro and in vivo. Thus, the generation of a complete deficiency state of virulence factors by gene targeting should provide a means to assess the importance of these factors in the pathophysiological processes and disease progression. It is hoped that such approaches might allow rational design of tools to control T. cruzi infections. PMID:12488621

  11. Host microtubule plus-end binding protein CLASP1 influences sequential steps in the Trypanosoma cruzi infection process

    PubMed Central

    Zhao, Xiaoyan; Kumar, Praveen; Shah-Simpson, Sheena; Caradonna, Kacey L.; Galjart, Niels; Teygong, Crystal; Blader, Ira; Wittmann, Torsten; Burleigh, Barbara A.

    2012-01-01

    Mammalian cell invasion by the protozoan parasite Trypanosoma cruzi involves host cell microtubule dynamics. Microtubules support kinesin-dependent anterograde trafficking of host lysosomes to the cell periphery where targeted lysosome exocytosis elicits remodeling of the plasma membrane and parasite invasion. Here, a novel role for microtubule plus-end tracking proteins (+TIPs) in the coordination of T. cruzi trypomastigote internalization and post-entry events is reported. Acute silencing of CLASP1, a +TIP that participates in microtubule stabilization at the cell periphery, impairs trypomastigote internalization without diminishing the capacity for calcium-regulated lysosome exocytosis. Subsequent fusion of the T. cruzi vacuole with host lysosomes and its juxtanuclear positioning are also delayed in CLASP1-depleted cells. These post-entry phenotypes correlate with a generalized impairment of minus-end directed transport of lysosomes in CLASP1 knockdown cells and mimic the effects of dynactin disruption. Consistent with GSK3β acting as a negative regulator of CLASP function, inhibition of GSK3β activity enhances T. cruzi entry in a CLASP1-dependent manner and expression of constitutively active GSK3β dampens infection. This study provides novel molecular insights into the T. cruzi infection process, emphasizing functional links between parasite-elicited signaling, host microtubule plus-end tracking proteins and dynein-based retrograde transport. Highlighted in this work is a previously unrecognized role for CLASPs in dynamic lysosome positioning, an important aspect of the nutrient sensing response in mammalian cells. PMID:23107073

  12. Host microtubule plus-end binding protein CLASP1 influences sequential steps in the Trypanosoma cruzi infection process.

    PubMed

    Zhao, Xiaoyan; Kumar, Praveen; Shah-Simpson, Sheena; Caradonna, Kacey L; Galjart, Niels; Teygong, Crystal; Blader, Ira; Wittmann, Torsten; Burleigh, Barbara A

    2013-04-01

    Mammalian cell invasion by the protozoan parasite Trypanosoma cruzi involves host cell microtubule dynamics. Microtubules support kinesin-dependent anterograde trafficking of host lysosomes to the cell periphery where targeted lysosome exocytosis elicits remodelling of the plasma membrane and parasite invasion. Here, a novel role for microtubule plus-end tracking proteins (+TIPs) in the co-ordination of T. cruzi trypomastigote internalization and post-entry events is reported. Acute silencing of CLASP1, a +TIP that participates in microtubule stabilization at the cell periphery, impairs trypomastigote internalization without diminishing the capacity for calcium-regulated lysosome exocytosis. Subsequent fusion of the T. cruzi vacuole with host lysosomes and its juxtanuclear positioning are also delayed in CLASP1-depleted cells. These post-entry phenotypes correlate with a generalized impairment of minus-end directed transport of lysosomes in CLASP1 knock-down cells and mimic the effects of dynactin disruption. Consistent with GSK3β acting as a negative regulator of CLASP function, inhibition of GSK3β activity enhances T. cruzi entry in a CLASP1-dependent manner and expression of constitutively active GSK3β dampens infection. This study provides novel molecular insights into the T. cruzi infection process, emphasizing functional links between parasite-elicited signalling, host microtubule plus-end tracking proteins and dynein-based retrograde transport. Highlighted in this work is a previously unrecognized role for CLASPs in dynamic lysosome positioning, an important aspect of the nutrient sensing response in mammalian cells. PMID:23107073

  13. Trypanosoma cruzi: sequence analysis of the variable region of kinetoplast minicircles.

    PubMed

    Telleria, Jenny; Lafay, Bénédicte; Virreira, Myrna; Barnabé, Christian; Tibayrenc, Michel; Svoboda, Michal

    2006-12-01

    The comparisons of 170 sequences of kinetoplast DNA minicircle hypervariable region obtained from 19 stocks of Trypanosoma cruzi and 2 stocks of Trypanosoma cruzi marenkellei showed that only 56% exhibited a significant homology one with other sequences. These sequences could be grouped into homology classes showing no significant sequence similarity with any other homology group. The 44% remaining sequences thus corresponded to unique sequences in our data set. In the DTU I ("Discrete Typing Units") 51% of the sequences were unique. In contrast, in the DTU IId, 87.5% of sequences were distributed into three classes. The results obtained for T. cruzi marinkellei, showed that all sequences were unique, without any similarity between them and T. cruzi sequences. Analysis of palindromes in all sequence sets show high frequency of the EcoRI site. Analysis of repetitive sequences suggested a common ancestral origin of the kDNA. The editing mechanism that occurs in kinetoplastidae is discussed. PMID:16730709

  14. Cyclic AMP-dependent protein kinase activity in Trypanosoma cruzi.

    PubMed Central

    Ulloa, R M; Mesri, E; Esteva, M; Torres, H N; Téllez-Iñón, M T

    1988-01-01

    A cyclic AMP-dependent protein kinase activity from epimastigote forms of Trypanosoma cruzi was characterized. Cytosolic extracts were chromatographed on DEAE-cellulose columns, giving two peaks of kinase activity, which were eluted at 0.15 M- and 0.32 M-NaCl respectively. The second activity peak was stimulated by nanomolar concentrations of cyclic AMP. In addition, a cyclic AMP-binding protein co-eluted with the second kinase activity peak. Cyclic AMP-dependent protein kinase activity was further purified by gel filtration, affinity chromatography on histone-agarose and cyclic AMP-agarose, as well as by chromatography on CM-Sephadex. The enzyme ('holoenzyme') could be partially dissociated into two different components: 'catalytic' and 'regulatory'. The 'regulatory' component had specific binding for cyclic AMP, and it inhibited phosphotransferase activity of the homologous 'catalytic component' or of the 'catalytic subunit' from bovine heart. Cyclic AMP reversed these inhibitions. A 'holoenzyme preparation' was phosphorylated in the absence of exogenous phosphate acceptor and analysed by polyacrylamide-gel electrophoresis. A 56 kDa band was phosphorylated. The same preparation was analysed by Western blotting, by using polyclonal antibodies to the regulatory subunits of protein kinases type I or II. Both antibodies reacted with the 56 kDa band. Images Fig. 7. Fig. 8. PMID:2848508

  15. Trypanosoma cruzi: histopathology of endocrine system in immunocompromised mice.

    PubMed Central

    Calabrese, K. S.; Lagrange, P. H.; da Costa, S. C.

    1994-01-01

    Naturally immunocompromised athymic mice, neonatal mice and adult outbred OFI mice treated with the immunosuppressive agents cyclophosphamide (CY), dexamethasone (DM) and indomethacin (IM) were infected with trypomastigotes of Trypanosoma cruzi Y and CL strains. 10(4) parasites were used, except in the case of IM treatment, where mice received 10(3) trypomastigotes in one group and 10(5) in another. The course of parasitaemia, tissue distribution of amastigotes and time of mortality were compared with an infected thymus intact control group. Neonate and indomethacin treated mice presented the same pattern of parasitaemia. Death occurred as early as 9-10 days after infection. A single dose of CY 200 mg/kg given 5 days after infection enhanced the parasitaemia and increased the number of parasites in the tissues. All groups were similar in terms of colonization of the endocrine system by parasites and the adrenals showed the highest density of amastigotes nests. The thyroid gland (analysed only in neonates) showed intense amastigote accumulation. Colonization of the ovary was observed with amastigotes in both the theca interna and in the stroma. The testes (also examined only in the neonate) showed that the interstitial cells, the tunica albuginea of the seminiferous tubules and the loose connective tissue were infected. Athymic nude mice showed the most intense parasite colonization of the islets of Langerhans. Images Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:7734334

  16. Trypanosoma cruzi. Surface antigens of blood and culture forms

    SciTech Connect

    Nogueira, N.; Chaplan, S.; Tydings, J.D.; Unkeless, J.; Cohn, Z.

    1981-03-01

    The surface polypeptides of both cultured and blood forms of Trypanosoma cruzi were iodinated by the glucose oxidase-lactoperoxidase technique. Blood-form trypomastigotes (BFT) isolated form infected mice displayed a major 90,000-Mr component. In contrast, both epimastigotes and trypomastigotes obtained form acellular cultures expressed a smaller 75,000-Mr peptide. Both major surface components were presumably glycoproteins in terms of their binding to concanavalin A-Sepharose 4B. Within a 3-h period, both blood and culture forms synthesized their respective surface glycoproteins (90,000 Mr and 75,000 Mr, respectively in vitro. (/sub 35/S)methionine-labeled surface peptides were immunoprecipitated with immune sera of both human and murine origin. A panel of sera form patients with chronic Chagas' disease and hyperimmunized mice recognized similar surface peptides. These immunogens were the same components as the major iodinated species. The major BFT surface peptide was readily removed by trypsin treatment of the parasites, although the procedure did not affect the 75,000-Mr peptide from the culture forms. Two-dimensional polyacrylamide gel electrophoresis revealed that the 90,000-Mr peptide found on BFT was an acidic protein of isoelectric point (pI) 5.0, whereas, the 75,000-Mr peptide form culture-form trypomastigotes has a pI of 7.2. The 90,000-Mr component is thought to be responsible for the anti-phagocytic properties of the BFT (1).

  17. Transcriptomic alterations in Trypanosoma cruzi-infected cardiac myocytes

    PubMed Central

    Goldenberg, Regina Coeli dos Santos; Iacobas, Dumitru A.; Iacobas, Sanda; Rocha, Leonardo Lima; de Azevedo Fortes, Fabio da Silva; Vairo, Leandro; Nagajyothi, Fnu; de Carvalho, Antonio Carlos Campos; Tanowitz, Herbert B.; Spray, David C.

    2010-01-01

    Trypanosoma cruzi infection is a major cause of cardiomyopathy. Previous gene profiling studies of infected mouse hearts have revealed prominent changes in gene expression within many functional pathways. This variety of transcriptomic changes in infected mice raises the question of whether gene expression alterations in whole hearts are due to changes in infected cardiac myocytes or other cells or even to systemic effects of the infection on the heart. We employed microarrays to examine infected cardiac myocyte cultures 48 h post-infection. Statistical comparison of gene expression levels of 7624 well annotated unigenes in four independent cultures of infected and uninfected myocytes detected substantial (≥1.5 absolute fold changes) in 420 (5.5%) of the sampled genes. Major categories of affected genes included those involved in immune response, extracellular matrix and cell adhesion. These findings on infected cardiac myocytes in culture reveal that alterations in cardiac gene expression described in Chagas disease are the consequence of both direct infection of the myocytes themselves as well as resulting from the presence of other cell types in the myocardium and systemic effects of infection. PMID:19729072

  18. Specific antibodies induce apoptosis in Trypanosoma cruzi epimastigotes.

    PubMed

    Fernández-Presas, Ana María; Tato, Patricia; Becker, Ingeborg; Solano, Sandra; Copitin, Natalia; Kopitin, Natalia; Berzunza, Miriam; Willms, Kaethe; Hernández, Joselin; Molinari, José Luis

    2010-05-01

    The susceptibility of Trypanosoma cruzi epimastigotes to lysis by normal or immune sera in a complement-dependent reaction has been reported. Mouse immune sera depleted complement-induced damage in epimastigotes characterized by morphological changes and death. The purpose of this work was to study the mechanism of death in epimastigotes exposed to decomplemented mouse immune serum. Epimastigotes were maintained in RPMI medium. Immune sera were prepared in mice by immunization with whole crude epimastigote extracts. Viable epimastigotes were incubated with decomplemented normal or immune sera at 37 degrees C. By electron microscopy, agglutinated parasites showed characteristic patterns of membrane fusion between two or more parasites; this fusion also produced interdigitation of the subpellicular microtubules. Apoptosis was determined by flow cytometry using terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and annexin V assays. Nuclear features were examined by 4'-,6-diamidino-2'-phenylindole diHCI cytochemistry that demonstrated apoptotic nuclear condensation. Caspase activity was also measured. TUNEL results showed that parasites incubated with decomplemented immune sera took up 26% of specific fluorescence as compared to 1.3% in parasites incubated with decomplemented normal sera. The Annexin-V-Fluos staining kit revealed that epimastigotes incubated with decomplemented immune sera exposed phosphatidylserine on the external leaflet of the plasma membrane. The incubation of parasites with immune sera showed caspase 3 activity. We conclude that specific antibodies are able to induce agglutination and apoptosis in epimastigotes, although the pathway is not elucidated. PMID:20237802

  19. Crystal Structure of Triosephosphate Isomerase from Trypanosoma cruzi in Hexane

    NASA Astrophysics Data System (ADS)

    Gao, Xiu-Gong; Maldonado, Ernesto; Perez-Montfort, Ruy; Garza-Ramos, Georgina; Tuena de Gomez-Puyou, Marietta; Gomez-Puyou, Armando; Rodriguez-Romero, Adela

    1999-08-01

    To gain insight into the mechanisms of enzyme catalysis in organic solvents, the x-ray structure of some monomeric enzymes in organic solvents was determined. However, it remained to be explored whether the structure of oligomeric proteins is also amenable to such analysis. The field acquired new perspectives when it was proposed that the x-ray structure of enzymes in nonaqueous media could reveal binding sites for organic solvents that in principle could represent the starting point for drug design. Here, a crystal of the dimeric enzyme triosephosphate isomerase from the pathogenic parasite Trypanosoma cruzi was soaked and diffracted in hexane and its structure solved at 2- angstrom resolution. Its overall structure and the dimer interface were not altered by hexane. However, there were differences in the orientation of the side chains of several amino acids, including that of the catalytic Glu-168 in one of the monomers. No hexane molecules were detected in the active site or in the dimer interface. However, three hexane molecules were identified on the surface of the protein at sites, which in the native crystal did not have water molecules. The number of water molecules in the hexane structure was higher than in the native crystal. Two hexanes localized at <4 angstrom from residues that form the dimer interface; they were in close proximity to a site that has been considered a potential target for drug design.

  20. Comparative genomic analysis of human infective Trypanosoma cruzi lineages with the bat-restricted subspecies T. cruzi marinkellei

    PubMed Central

    2012-01-01

    Background Trypanosoma cruzi marinkellei is a bat-associated parasite of the subgenus Schizotrypanum and it is regarded as a T. cruzi subspecies. Here we report a draft genome sequence of T. c. marinkellei and comparison with T. c. cruzi. Our aims were to identify unique sequences and genomic features, which may relate to their distinct niches. Results The T. c. marinkellei genome was found to be ~11% smaller than that of the human-derived parasite T. c. cruzi Sylvio X10. The genome size difference was attributed to copy number variation of coding and non-coding sequences. The sequence divergence in coding regions was ~7.5% between T. c. marinkellei and T. c. cruzi Sylvio X10. A unique acetyltransferase gene was identified in T. c. marinkellei, representing an example of a horizontal gene transfer from eukaryote to eukaryote. Six of eight examined gene families were expanded in T. c. cruzi Sylvio X10. The DGF gene family was expanded in T. c. marinkellei. T. c. cruzi Sylvio X10 contained ~1.5 fold more sequences related to VIPER and L1Tc elements. Experimental infections of mammalian cell lines indicated that T. c. marinkellei has the capacity to invade non-bat cells and undergo intracellular replication. Conclusions Several unique sequences were identified in the comparison, including a potential subspecies-specific gene acquisition in T. c. marinkellei. The identified differences reflect the distinct evolutionary trajectories of these parasites and represent targets for functional investigation. PMID:23035642

  1. In Vitro and In Vivo Studies of the Biological Activity of Novel Arylimidamides against Trypanosoma cruzi

    PubMed Central

    De Araújo, J. S.; Da Silva, C. F.; Batista, D. G. J.; Da Silva, P. B.; Meuser, M. B.; Aiub, C. A. F.; da Silva, M. F. V.; Araújo-Lima, C. F.; Banerjee, M.; Farahat, A. A.; Stephens, C. E.; Kumar, A.; Boykin, D. W.

    2014-01-01

    Fifteen novel arylimidamides (AIAs) (6 bis-amidino and 9 mono-amidino analogues) were assayed against Trypanosoma cruzi in vitro and in vivo. All the bis-AIAs were more effective than the mono-AIAs, and two analogues, DB1967 and DB1989, were further evaluated in vivo. Although both of them reduced parasitemia, protection against mortality was not achieved. Our results show that the number of amidino-terminal units affects the efficacy of arylimidamides against T. cruzi. PMID:24590476

  2. In vitro and in vivo studies of the biological activity of novel arylimidamides against Trypanosoma cruzi.

    PubMed

    De Araújo, J S; Da Silva, C F; Batista, D G J; Da Silva, P B; Meuser, M B; Aiub, C A F; da Silva, M F V; Araújo-Lima, C F; Banerjee, M; Farahat, A A; Stephens, C E; Kumar, A; Boykin, D W; Soeiro, M N C

    2014-07-01

    Fifteen novel arylimidamides (AIAs) (6 bis-amidino and 9 mono-amidino analogues) were assayed against Trypanosoma cruzi in vitro and in vivo. All the bis-AIAs were more effective than the mono-AIAs, and two analogues, DB1967 and DB1989, were further evaluated in vivo. Although both of them reduced parasitemia, protection against mortality was not achieved. Our results show that the number of amidino-terminal units affects the efficacy of arylimidamides against T. cruzi. PMID:24590476

  3. Trypanosoma cruzi Differentiates and Multiplies within Chimeric Parasitophorous Vacuoles in Macrophages Coinfected with Leishmania amazonensis.

    PubMed

    Pessoa, Carina Carraro; Ferreira, Éden Ramalho; Bayer-Santos, Ethel; Rabinovitch, Michel; Mortara, Renato Arruda; Real, Fernando

    2016-05-01

    The trypanosomatids Leishmania amazonensis and Trypanosoma cruzi are excellent models for the study of the cell biology of intracellular protozoan infections. After their uptake by mammalian cells, the parasitic protozoan flagellates L. amazonensis and T. cruzi lodge within acidified parasitophorous vacuoles (PVs). However, whereas L. amazonensis develops in spacious, phagolysosome-like PVs that may enclose numerous parasites, T. cruzi is transiently hosted within smaller vacuoles from which it soon escapes to the host cell cytosol. To investigate if parasite-specific vacuoles are required for the survival and differentiation of T. cruzi, we constructed chimeric vacuoles by infection of L. amazonensis amastigote-infected macrophages with T. cruzi epimastigotes (EPIs) or metacyclic trypomastigotes (MTs). These chimeric vacuoles, easily observed by microscopy, allowed the entry and fate of T. cruzi in L. amazonensis PVs to be dynamically recorded by multidimensional imaging of coinfected cells. We found that although T. cruzi EPIs remained motile and conserved their morphology in chimeric vacuoles, T. cruzi MTs differentiated into amastigote-like forms capable of multiplying. These results demonstrate that the large adaptive vacuoles of L. amazonensis are permissive to T. cruzi survival and differentiation and that noninfective EPIs are spared from destruction within the chimeric PVs. We conclude that T. cruzi differentiation can take place in Leishmania-containing vacuoles, suggesting this occurs prior to their escape into the host cell cytosol. PMID:26975994

  4. Brazilian Green Propolis: Effects In Vitro and In Vivo on Trypanosoma cruzi

    PubMed Central

    Salomão, Kelly; de Souza, Eniuce M.; Henriques-Pons, Andrea; Barbosa, Helene S.; de Castro, Solange L.

    2011-01-01

    The composition of a Brazilian green propolis ethanolic extract (Et-Bra) and its effect on Trypanosoma cruzi trypomastigotes and other pathogenic microorganisms have already been reported. Here, we further investigated Et-Bra targets in T. cruzi and its effect on experimental infection of mice. The IC50/4 days for inhibition of amastigote proliferation was 8.5 ± 1.8 μg mL−1, with no damage to the host cells. In epimastigotes Et-Bra induced alterations in reservosomes, Golgi complex and mitochondrion. These effects were confirmed by flow cytometry analysis. In trypomastigotes, Et-Bra led to the loss of plasma membrane integrity. The in vitro studies indicate that Et-Bra interferes in the functionality of the plasma membrane in trypomastigotes and of reservosomes and mitochondrion in epimastigotes. Acutely infected mice were treated orally with Et-Bra and the parasitemia, mortality and GPT, GOT, CK and urea levels were monitored. The extract (25–300 mg kg−1 body weight/day for 10 days) reduced the parasitemia, although not at significant levels; increased the survival of the animals and did not induce any hepatic, muscular lesion or renal toxicity. Since Et-Bra was not toxic to the animals, it could be assayed in combination with other drugs. Et-Bra could be a potential metacyclogenesis blocker, considering its effect on reservosomes, which are an important energy source during parasite differentiation. PMID:19213854

  5. Coadministration of cruzipain and GM-CSF DNAs, a new immunotherapeutic vaccine against Trypanosoma cruzi infection.

    PubMed

    Cerny, Natacha; Sánchez Alberti, Andrés; Bivona, Augusto E; De Marzi, Mauricio C; Frank, Fernanda M; Cazorla, Silvia I; Malchiodi, Emilio L

    2016-02-01

    Therapeutic vaccine research and development are especially important in Chagas disease considering the characteristics of the chronic infection and the number of people in the Americas living with a parasite infection for decades. We have previously reported the efficacy of attenuated Salmonella enterica (S) carrying plasmid encoding cruzipain (SCz) to protect against Trypanosoma cruzi infection. In the present work we investigated whether Cz DNA vaccine immunotherapy could be effective in controlling an ongoing T. cruzi infection in mice. We here report the intramuscular administration of naked Cz DNA or the oral administration of Salmonella as Cz DNA delivery system as therapeutic vaccines in mice during acute or chronic infection. The coadministration of a plasmid encoding GM-CSF improved vaccine performance, indicating that the stimulation of innate immune cells is needed in the event of an ongoing infection. These therapeutic vaccines were able to address the response to a protective and sustained Th1 biased profile not only against Cz but also against a variety of parasite antigens. The combined therapeutic vaccine during the chronic phase of infection prevents tissue pathology as shown by a reduced level of enzyme activity characteristic of tissue damage and a tissue status compatible with normal tissue. The obtained results suggest that immunotherapy with Cz and GM-CSF DNAs, either alone or in combination with other drug treatments, may represent a promising alternative for Chagas disease therapy. PMID:26312947

  6. Structural design, synthesis and pharmacological evaluation of 4-thiazolidinones against Trypanosoma cruzi.

    PubMed

    de Oliveira Filho, Gevanio Bezerra; de Oliveira Cardoso, Marcos Veríssimo; Espíndola, José Wanderlan Pontes; Ferreira, Luiz Felipe Gomes Rebello; de Simone, Carlos Alberto; Ferreira, Rafaela Salgado; Coelho, Pollyanne Lacerda; Meira, Cássio Santana; Magalhaes Moreira, Diogo Rodrigo; Soares, Milena Botelho Pereira; Lima Leite, Ana Cristina

    2015-12-01

    Chagas disease is an infection caused by protozoan Trypanosoma cruzi, which affects approximately 8-10million people worldwide. Benznidazole is the only drug approved for treatment during the acute and asymptomatic chronic phases of Chagas disease; however, it has poor efficacy during the symptomatic chronic phase. Therefore, the development of new pharmaceuticals is needed. Here, we employed the bioisosterism to modify a potent antiparasitic and cruzain-inhibitor aryl thiosemicarbazone (4) into 4-thiazolidinones (7-21). Compounds (7-21) were prepared by using a straightforward synthesis and enabled good to excellent yields. As a chemical elucidation tool, X-ray diffraction of compound (10) revealed the geometry and conformation of this class compounds. The screening against cruzain showed that 4-thiazolidinones were less active than thiosemicarbazone (4). However, the antiparasitic activity in Y strain trypomastigotes and host cell cytotoxicity in J774 macrophages revealed that compounds (10 and 18-21) are stronger and more selective antiparasitic agents than thiosemicarbazone (4). Specifically, compounds (18-20), which carry a phenyl at position N3 of heterocyclic ring, were the most active ones, suggesting that this is a structural determinant for activity. In infected macrophages, compounds (18-20) reduced intracellular amastigotes, whereas Benznidazole did not. In T. cruzi-infected mice treated orally with 100mg/kg of compound (20), a decreased of parasitemia was observed. In conclusion, we demonstrated that the conversation of thiosemicarbazones into 4-thiazolidinones retains pharmacological property while enhances selectivity. PMID:26549870

  7. Trypanosoma rangeli and Trypanosoma cruzi: molecular characterization of genes encoding putative calcium-binding proteins, highly conserved in trypanosomatids.

    PubMed

    Porcel, B M; Bontempi, E J; Henriksson, J; Rydåker, M; Aslund, L; Segura, E L; Pettersson, U; Ruiz, A M

    1996-12-01

    Genes encoding a 29-kDa flagellar calcium-binding protein (F29) in Trypanosoma cruzi, strongly homologous to EF-hand calcium-binding protein-encoding genes previously reported in this parasite, were isolated by immunoscreening. F29 is encoded by a number of very similar genes, highly conserved among different T. cruzi isolates. The genes are located on a pair of homologous chromosomes, arranged in one or two clusters of tandem repeats. PCR amplification of Trypanosoma rangeli genomic DNA, using primers derived from the T. cruzi F29 sequence made it possible to isolate the homologous gene in T. rangeli, encoding a 23-kDa protein called TrCaBP. Gene sequence comparisons showed homology to EF-hand calcium-binding proteins from T. cruzi (82.8%), Trypanosoma brucei brucei (60.2%), and Entamoeba histolytica (28.4%). Northern blot analysis revealed that the TrCaBP gene is expressed in T. rangeli as a polyadenylated transcript. The TrCaBP-encoding genes are present in at least 20 copies per cell, organized in tandem arrays, on large T. rangeli chromosomes in some isolates and on two smaller ones in others. This gene, however, seems to be absent from Leishmania. PMID:8948328

  8. Human Leucocyte Antigen-G (HLA-G) and Its Murine Functional Homolog Qa2 in the Trypanosoma cruzi Infection

    PubMed Central

    Dias, Fabrício C.; Mendes-Junior, Celso T.; Silva, Maria C.; Tristão, Fabrine S. M.; Dellalibera-Joviliano, Renata; Soares, Edson G.; Menezes, Jean G.; Schmidt, André; Dantas, Roberto O.; Marin-Neto, José A.; Silva, João S.; Donadi, Eduardo A.

    2015-01-01

    Genetic susceptibility factors, parasite strain, and an adequate modulation of the immune system seem to be crucial for disease progression after Trypanosoma cruzi infection. HLA-G and its murine functional homolog Qa2 have well-recognized immunomodulatory properties. We evaluated the HLA-G 3′ untranslated region (3′UTR) polymorphic sites (associated with mRNA stability and target for microRNA binding) and HLA-G tissue expression (heart, colon, and esophagus) in patients presenting Chagas disease, stratified according to the major clinical variants. Further, we investigated the transcriptional levels of Qa2 and other pro- and anti-inflammatory genes in affected mouse tissues during T. cruzi experimental acute and early chronic infection induced by the CL strain. Chagas disease patients exhibited differential HLA-G 3′UTR susceptibility allele/genotype/haplotype patterns, according to the major clinical variant (digestive/cardiac/mixed/indeterminate). HLA-G constitutive expression on cardiac muscle and colonic cells was decreased in Chagasic tissues; however, no difference was observed for Chagasic and non-Chagasic esophagus tissues. The transcriptional levels of Qa2 and other anti and proinflammatory (CTLA-4, PDCD1, IL-10, INF-γ, and NOS-2) genes were induced only during the acute T. cruzi infection in BALB/c and C57BL/6 mice. We present several lines of evidence indicating the role of immunomodulatory genes and molecules in human and experimental T. cruzi infection. PMID:25688175

  9. Drug discovery for Chagas disease should consider Trypanosoma cruzi strain diversity

    PubMed Central

    Zingales, Bianca; Miles, Michael A; Moraes, Carolina B; Luquetti, Alejandro; Guhl, Felipe; Schijman, Alejandro G; Ribeiro, Isabela

    2014-01-01

    This opinion piece presents an approach to standardisation of an important aspect of Chagas disease drug discovery and development: selecting Trypanosoma cruzi strains for in vitro screening. We discuss the rationale for strain selection representing T. cruzi diversity and provide recommendations on the preferred parasite stage for drug discovery, T. cruzi discrete typing units to include in the panel of strains and the number of strains/clones for primary screens and lead compounds. We also consider experimental approaches for in vitro drug assays. The Figure illustrates the current Chagas disease drug-discovery and development landscape. PMID:25317712

  10. First report of human Trypanosoma cruzi infection attributed to TcBat genotype.

    PubMed

    Ramírez, J D; Hernández, C; Montilla, M; Zambrano, P; Flórez, A C; Parra, E; Cucunubá, Z M

    2014-11-01

    Chagas disease is an endemic disease of the American continent caused by Trypanosoma cruzi and divided into six discrete typing units (TcI - TcVI). Nearly 10 million people harbour the infection representing a serious issue in public health. Epidemiological surveillance allowed us to detect a bat-related T. cruzi genotype (henceforth named TcBat) in a 5-year-old female living in a forest area in northwestern Colombia. Molecular tools determined a mixed infection of T. cruzi I and TcBat genotypes. This represents the first report of TcBat infection in humans; the epidemiological consequences of this finding are discussed herein. PMID:25285940

  11. Experimental transmission of the parasitic flagellates Trypanosoma cruzi and Trypanosoma rangeli between triatomine bugs or mice and captive neotropical bats.

    PubMed

    Thomas, Maurice E; Rasweiler Iv, John J; D'Alessandro, Antonio

    2007-08-01

    Trypanosoma cruzi and Trypanosoma rangeli-like trypanosomes have been found in a variety of neotropical bat species. In this study, bats (Artibeus lituratus, Carollia perspicillata, Desmodus rotundus, Glossophaga soricina, Molossus molossus, Phyllostomus hastatus) were maintained under controlled conditions, and experiments were conducted to determine how they might become infected naturally with trypanosomes. All bats were first screened for existing infections by hemoculture and the examination of blood smears, and only apparently uninfected animals were then used in the experiments. Proof was obtained that the triatomine bug Rhodnius prolixus would readily feed upon some of the bats, and two species became infected after being bitten by bugs infected with T. rangeli. Some bats also became infected by ingesting R. prolixus carrying T. cruzi, or following subcutaneous or intragastic inoculation with fecal suspensions of R. prolixus containing T. cruzi. P. hastatus became infected after ingesting mice carrying T. cruzi. All of the bats studied inhabit roosts that may be occupied by triatomine bugs and, with the exception of D. rotundus, all also feed to at least some extent upon insects. These findings provide further evidence of how bats may play significant roles in the epidemiology of T. cruzi and T. rangeli in the New World tropics. PMID:17710299

  12. Effects of Infection by Trypanosoma cruzi and Trypanosoma rangeli on the Reproductive Performance of the Vector Rhodnius prolixus

    PubMed Central

    Fellet, Maria Raquel; Lorenzo, Marcelo Gustavo; Elliot, Simon Luke; Carrasco, David; Guarneri, Alessandra Aparecida

    2014-01-01

    The insect Rhodnius prolixus is responsible for the transmission of Trypanosoma cruzi, which is the etiological agent of Chagas disease in areas of Central and South America. Besides this, it can be infected by other trypanosomes such as Trypanosoma rangeli. The effects of these parasites on vectors are poorly understood and are often controversial so here we focussed on possible negative effects of these parasites on the reproductive performance of R. prolixus, specifically comparing infected and uninfected couples. While T. cruzi infection did not delay pre-oviposition time of infected couples at either temperature tested (25 and 30°C) it did, at 25°C, increase the e-value in the second reproductive cycle, as well as hatching rates. Meanwhile, at 30°C, T. cruzi infection decreased the e-value of insects during the first cycle and also the fertility of older insects. When couples were instead infected with T. rangeli, pre-oviposition time was delayed, while reductions in the e-value and hatching rate were observed in the second and third cycles. We conclude that both T. cruzi and T. rangeli can impair reproductive performance of R. prolixus, although for T. cruzi, this is dependent on rearing temperature and insect age. We discuss these reproductive costs in terms of potential consequences on triatomine behavior and survival. PMID:25136800

  13. Novel drug design for Chagas disease via targeting Trypanosoma cruzi tubulin: Homology modeling and binding pocket prediction on Trypanosoma cruzi tubulin polymerization inhibition by naphthoquinone derivatives.

    PubMed

    Ogindo, Charles O; Khraiwesh, Mozna H; George, Matthew; Brandy, Yakini; Brandy, Nailah; Gugssa, Ayele; Ashraf, Mohammad; Abbas, Muneer; Southerland, William M; Lee, Clarence M; Bakare, Oladapo; Fang, Yayin

    2016-08-15

    Chagas disease, also called American trypanosomiasis, is a parasitic disease caused by Trypanosoma cruzi (T. cruzi). Recent findings have underscored the abundance of the causative organism, (T. cruzi), especially in the southern tier states of the US and the risk burden for the rural farming communities there. Due to a lack of safe and effective drugs, there is an urgent need for novel therapeutic options for treating Chagas disease. We report here our first scientific effort to pursue a novel drug design for treating Chagas disease via the targeting of T. cruzi tubulin. First, the anti T. cruzi tubulin activities of five naphthoquinone derivatives were determined and correlated to their anti-trypanosomal activities. The correlation between the ligand activities against the T. cruzi organism and their tubulin inhibitory activities was very strong with a Pearson's r value of 0.88 (P value <0.05), indicating that this class of compounds could inhibit the activity of the trypanosome organism via T. cruzi tubulin polymerization inhibition. Subsequent molecular modeling studies were carried out to understand the mechanisms of the anti-tubulin activities, wherein, the homology model of T. cruzi tubulin dimer was generated and the putative binding site of naphthoquinone derivatives was predicted. The correlation coefficient for ligand anti-tubulin activities and their binding energies at the putative pocket was found to be r=0.79, a high correlation efficiency that was not replicated in contiguous candidate pockets. The homology model of T. cruzi tubulin and the identification of its putative binding site lay a solid ground for further structure based drug design, including molecular docking and pharmacophore analysis. This study presents a new opportunity for designing potent and selective drugs for Chagas disease. PMID:27345756

  14. Bioluminescent imaging of Trypanosoma cruzi infection in Rhodnius prolixus

    PubMed Central

    2012-01-01

    Background Usually the analysis of the various developmental stages of Trypanosoma cruzi in the experimentally infected vertebrate and invertebrate hosts is based on the morphological observations of tissue fragments from animals and insects. The development of techniques that allow the imaging of animals infected with parasites expressing luciferase open up possibilities to follow the fate of bioluminescent parasites in infected vectors. Methods D-luciferin (60 μg) was injected into the hemocoel of the whole insect before bioluminescence acquisition. In dissected insects, the whole gut was incubated with D-luciferin in PBS (300 μg/ml) for ex vivo bioluminescence acquisition in the IVIS® Imaging System, Xenogen. Results Herein, we describe the results obtained with the luciferase gene integrated into the genome of the Dm28c clone of T. cruzi, and the use of these parasites to follow, in real time, the infection of the insect vector Rhodnius prolixus, by a non- invasive method. The insects were evaluated by in vivo bioluminescent imaging on the feeding day, and on the 7 th, 14 th, 21 st and 28 th days after feeding. To corroborate the bioluminescent imaging made in vivo, and investigate the digestive tract region, the insects were dissected. The bioluminescence emitted was proportional to the number of protozoans in regions of the gut. The same digestive tracts were also macerated to count the parasites in distinct morphological stages with an optical microscope, and for bioluminescence acquisition in a microplate using the IVIS® Imaging System. A positive correlation of parasite numbers and bioluminescence in the microplate was obtained. Conclusions This is the first report of bioluminescent imaging in Rhodnius prolixus infected with trypomastigotes of the Dm28c-luc stable strain, expressing firefly luciferase. In spite of the distribution limitations of the substrate (D-luciferin) in the insect body, longitudinal evaluation of infected insects by

  15. Detection and classification of Trypanosoma cruzi by DNA hybridization with nonradioactive probes.

    PubMed

    Solari, A; Venegas, J; Gonzalez, E; Vasquez, C

    1991-01-01

    Total or kinetoplast DNA (kDNA) from 72 isolates and clones of Trypanosoma cruzi as well as from nine related trypanosomatids were analyzed by dot hybridization using nonradioactive kDNA or cloned minicircle fragments as probes. Biotinylated-kDNA probes generated by nick-translation proved reliable for distinguishing Zymodeme 1 and Zymodeme 2bol of T. cruzi parasites. In contrast, digoxigenin-labeled kDNA obtained by random-priming did not distinguish among T. cruzi isolates but did distinguish among New World leishmanias. Cloned minicircle fragments labeled with digoxigenin gave the same results as digoxigenin-labeled kDNA, except for a 10-fold decrease in sensitivity. Digoxigenin-labeled DNA probes proved useful in unambiguously detecting T. cruzi from different geographic regions of America. However, T. rangeli and T. cruzi marinkellei were not distinguished by these probes. PMID:1667933

  16. Coinfection with Different Trypanosoma cruzi Strains Interferes with the Host Immune Response to Infection

    PubMed Central

    Rodrigues, Claudiney Melquíades; Valadares, Helder Magno Silva; Francisco, Amanda Fortes; Arantes, Jerusa Marilda; Campos, Camila França; Teixeira-Carvalho, Andréa; Martins-Filho, Olindo Assis; Araujo, Márcio Sobreira Silva; Arantes, Rosa Maria Esteves; Chiari, Egler; Franco, Glória Regina; Machado, Carlos Renato; Pena, Sérgio Danilo Junho; Faria, Ana Maria Caetano; Macedo, Andréa Mara

    2010-01-01

    A century after the discovery of Trypanosoma cruzi in a child living in Lassance, Minas Gerais, Brazil in 1909, many uncertainties remain with respect to factors determining the pathogenesis of Chagas disease (CD). Herein, we simultaneously investigate the contribution of both host and parasite factors during acute phase of infection in BALB/c mice infected with the JG and/or CL Brener T. cruzi strains. JG single infected mice presented reduced parasitemia and heart parasitism, no mortality, levels of pro-inflammatory mediators (TNF-α, CCL2, IL-6 and IFN-γ) similar to those found among naïve animals and no clinical manifestations of disease. On the other hand, CL Brener single infected mice presented higher parasitemia and heart parasitism, as well as an increased systemic release of pro-inflammatory mediators and higher mortality probably due to a toxic shock-like systemic inflammatory response. Interestingly, coinfection with JG and CL Brener strains resulted in intermediate parasitemia, heart parasitism and mortality. This was accompanied by an increase in the systemic release of IL-10 with a parallel increase in the number of MAC-3+ and CD4+ T spleen cells expressing IL-10. Therefore, the endogenous production of IL-10 elicited by coinfection seems to be crucial to counterregulate the potentially lethal effects triggered by systemic release of pro-inflammatory mediators induced by CL Brener single infection. In conclusion, our results suggest that the composition of the infecting parasite population plays a role in the host response to T. cruzi in determining the severity of the disease in experimentally infected BALB/c mice. The combination of JG and CL Brener was able to trigger both protective inflammatory immunity and regulatory immune mechanisms that attenuate damage caused by inflammation and disease severity in BALB/c mice. PMID:20967289

  17. Nitric oxide is involved in control of Trypanosoma cruzi-induced parasitemia and directly kills the parasite in vitro.

    PubMed Central

    Vespa, G N; Cunha, F Q; Silva, J S

    1994-01-01

    This study was carried out to determine the role of reactive nitrogen intermediates in Trypanosoma cruzi infection. In vitro, splenocytes obtained during the acute phase of infection produced elevated amounts of nitric oxide (NO) that were correlated with the resistance or susceptibility of the animals. In vivo, the levels of NO2- plus NO3- in plasma during the later phase of infection were higher in C57BL/6 mice than in BALBL/c mice. The treatment of infected C57BL/6 mice with inhibitors of NO synthase increased parasitemia and mortality. Finally, we found that the NO donor drug S-nitroso-acetyl-penicillamine is able to kill trypomastigotes in vitro in the absence of any other cells, suggesting a direct NO-mediated killing of T. cruzi. PMID:7523307

  18. A cardiac myosin-specific autoimmune response is induced by immunization with Trypanosoma cruzi proteins.

    PubMed

    Leon, Juan S; Daniels, Melvin D; Toriello, Krista M; Wang, Kegiang; Engman, David M

    2004-06-01

    Trypanosoma cruzi is the protozoan parasite that causes Chagas' heart disease, a potentially fatal cardiomyopathy prevalent in Central and South America. Infection with T. cruzi induces cardiac myosin autoimmunity in susceptible humans and mice, and this autoimmunity has been suggested to contribute to cardiac inflammation. To address how T. cruzi induces cardiac myosin autoimmunity, we investigated whether immunity to T. cruzi antigens could induce cardiac myosin-specific autoimmunity in the absence of live parasites. We immunized A/J mice with a T. cruzi Brazil-derived protein extract emulsified in complete Freund's adjuvant and found that these mice developed cardiac myosin-specific delayed-type hypersensitivity (DTH) and autoantibodies in the absence of detectable cardiac damage. The induction of autoimmunity was specific since immunization with extracts of the related protozoan parasite Leishmania amazonensis did not induce myosin autoimmunity. The immunogenetic makeup of the host was important for this response, since C57BL/6 mice did not develop cardiac myosin DTH upon immunization with T. cruzi extract. Perhaps more interesting, mice immunized with cardiac myosin developed T. cruzi-specific DTH and antibodies. This DTH was also antigen specific, since immunization with skeletal myosin and myoglobin did not induce T. cruzi-specific immunity. These results suggest that immunization with cardiac myosin or T. cruzi antigen can induce specific, bidirectionally cross-reactive immune responses in the absence of detectable cardiac damage. PMID:15155647

  19. High resolution of Trypanosoma cruzi amastigote antigen in serodiagnosis of different clinical forms of Chagas' disease.

    PubMed Central

    Matsumoto, T K; Hoshino-Shimizu, S; Nakamura, P M; Andrade, H F; Umezawa, E S

    1993-01-01

    The serodiagnosis of Chagas' disease, a highly prevalent disorder in South American countries, is usually made by the detection of antibodies to Trypanosoma cruzi epimastigote antigen. In this study, we assess the diagnostic performance of the immunofluorescence test with T. cruzi (Y strain) amastigote antigen from an LLC-MK2-infected cell supernatant in comparison with a test with the conventional epimastigote antigen. A total of 238 serum samples from patients in the acute and chronic phases of the disease, with the chronic indeterminate, cardiac, and digestive forms, and from nonchagasic individuals were tested for the presence of immunoglobulin G (IgG), IgM, and IgA antibodies. The reactivity of the amastigote antigen in terms of geometric mean titers was 2 to 4 times higher than that of the epimastigote antigen. Clear-cut results were obtained with the amastigote antigen, with no overlapping of true and false positives. IgG antibodies to amastigotes were found in all patients with Chagas' disease, whereas all sera from nonchagasic patients were negative, except for those from patients with visceral leishmaniasis, in which 63% cross-reactivity was observed. IgM antibodies to amastigotes were detected in 100% of sera from patients with acute Chagas' disease and in 7.5% of sera from patients with chronic Chagas' disease, whereas IgA antibodies were found in 60% of sera from patients in the acute phase and in 33% of sera from patients in the chronic phase. Despite the cross-reactivity observed with sera from visceral leishmaniasis patients, the IgG immunofluorescence test with the amastigote antigen had the highest sensitivity, specificity, and efficiency. No relationship was observed between the class-specific antibodies or their titers and the clinical forms of patients in the chronic phase. Amastigotes from the cell culture supernatant proved to be useful as an alternative antigen to epimastigotes because of their high resolution in the serodiagnosis of Chagas

  20. Importation of Hybrid Human-Associated Trypanosoma cruzi Strains of Southern South American Origin, Colombia.

    PubMed

    Messenger, Louisa A; Ramirez, Juan David; Llewellyn, Martin S; Guhl, Felipe; Miles, Michael A

    2016-08-01

    We report the characterization of Trypanosoma cruzi of southern South American origin among humans, domestic vectors, and peridomestic hosts in Colombia using high-resolution nuclear and mitochondrial genotyping. Expanding our understanding of the geographic range of lineage TcVI, which is associated with severe Chagas disease, will help clarify risk of human infection for improved disease control. PMID:27434772

  1. Importation of Hybrid Human-Associated Trypanosoma cruzi Strains of Southern South American Origin, Colombia

    PubMed Central

    Ramirez, Juan David; Llewellyn, Martin S.; Guhl, Felipe; Miles, Michael A.

    2016-01-01

    We report the characterization of Trypanosoma cruzi of southern South American origin among humans, domestic vectors, and peridomestic hosts in Colombia using high-resolution nuclear and mitochondrial genotyping. Expanding our understanding of the geographic range of lineage TcVI, which is associated with severe Chagas disease, will help clarify risk of human infection for improved disease control. PMID:27434772

  2. Trypanosoma cruzi Causes Paralyzing Systemic Necrotizing Vasculitis Driven by Pathogen-Specific Type I Immunity in Mice.

    PubMed

    Roffê, Ester; Marino, Ana Paula M P; Weaver, Joseph; Wan, Wuzhou; de Araújo, Fernanda F; Hoffman, Victoria; Santiago, Helton C; Murphy, Philip M

    2016-04-01

    Infectious agents are often considered potential triggers of chronic inflammatory disease, including autoimmunity; however, direct evidence is usually lacking. Here we show that following control of acute infection of mice with the myotropic Colombiana strain of Trypanosoma cruzi, parasites persisted in tissue at low levels associated with development of systemic necrotizing vasculitis. Lesions occurred in many but not all organs and tissues, with skeletal muscle arteries being the most severely affected, and were associated with myositis, atrophy, paresis/paralysis, and death. Histopathology showed fibrinoid vascular necrosis, rare amastigote nests within skeletal muscle myocytes, and massive leukocyte infiltrates composed mainly of inflammatory monocytes, F4/80(+)macrophages, and T. cruzi tetramer-specific CD8(+) T lymphocytes capable of producing gamma interferon (IFN-γ) and tumor necrosis factor alpha (TNF-α) but not interleukin-17 (IL-17). T. cruzi-specific IgG was detected in sera from infected mice, but antibody deposits and neutrophilic inflammation were not features of the lesions. Thus,T. cruzi infection of mice may be a specific infectious trigger of paralyzing systemic necrotizing vasculitis most severely affecting skeletal muscle, driven by pathogen-specific type I immune responses. PMID:26857570

  3. The isolation and identification of Trypanosoma cruzi from raccoons in Maryland

    USGS Publications Warehouse

    Walton, B.C.; Bauman, P.M.; Diamond, L.S.; Herman, C.M.

    1958-01-01

    Five raccoons trapped at Patuxent Research Refuge, Laurel, Maryland, were found to have trypanosomes in the blood which were morphologically indistinguishable from Trypanosoma cruzi on stained smears. The organism grew well in culture. It developed and reproduced in Triatoma protracta, T. infestans, T. phyllosoma, and Rhodnius prolixus. Experimental infections were produced in raccoons, opossums, mice, rats, and monkeys by inoculation of blood, culture, and triatome forms. Typical leishmaniform bodies were found in tissue sections of cardiac muscle fibers from naturally and experimentally infected animals. Cross agglutinations carried out with Iiving cultural forms and rabbit antisera demonstrated a close antigenic relationship between the raccoon trypanosome and T. cruzi (Brazil strain). On the basis of (1) morphology, (2) presence of leishmaniform tissue stages, (3) development in triatomes, (4) infectivity to a variety of mammals, (5) culture characteristics, and (6) cross reactions in serological tests, this parasite is considered conspecific with Trypanosoma cruzi (Chagas, 1909), the causative agent of American human trypanosomiasis.

  4. Identification of six Trypanosoma cruzi lineages by sequence-characterised amplified region markers.

    PubMed

    Brisse, S; Dujardin, J C; Tibayrenc, M

    2000-11-01

    Six discrete phylogenetic lineages were recently identified in Trypanosoma cruzi, on the basis of multilocus enzyme electrophoresis and random amplified polymorphic DNA (RAPD) characterisation. The objective of the present study was to develop specific PCR-based markers for the identification of each of the six lineages. Eighty-seven T. cruzi stocks representative of all the lineages were characterised by RAPD with three primers, resulting in the identification of three fragments that were specifically amplified in the given sets of lineages. After cloning and sequencing these fragments, three pairs of sequence-characterised amplified region (SCAR) primers were designed. After PCR amplification using the SCAR primers, the initial polymorphism was retained either as the presence or absence of amplification, or as size variation between the PCR products. Although most PCR products, taken individually, were distributed across several lineages, the combination of the three SCAR markers resulted in characteristic patterns that were distinct in the six lineages. Furthermore, T. cruzi lineages were distinguished from Trypanosoma rangeli, T. cruzi marinkellei and T. cruzi-like organisms. The excellent correspondence of these new PCR markers with the phylogenetic lineages, allied with their sensitivity, makes them reliable tools for lineage identification and strain characterisation in T. cruzi. The approach described here could be generalised to any species of microorganism harbouring clear-cut phylogenetic subdivisions. PMID:11087920

  5. Thrombospondin-1 interacts with Trypanosoma cruzi surface calreticulin to enhance cellular infection.

    PubMed

    Johnson, Candice A; Kleshchenko, Yulia Y; Ikejiani, Adaeze O; Udoko, Aniekanabasi N; Cardenas, Tatiana C; Pratap, Siddharth; Duquette, Mark A; Lima, Maria F; Lawler, Jack; Villalta, Fernando; Nde, Pius N

    2012-01-01

    Trypanosoma cruzi causes Chagas disease, which is a neglected tropical disease that produces severe pathology and mortality. The mechanisms by which the parasite invades cells are not well elucidated. We recently reported that T. cruzi up-regulates the expression of thrombospondin-1 (TSP-1) to enhance the process of cellular invasion. Here we characterize a novel TSP-1 interaction with T. cruzi that enhances cellular infection. We show that labeled TSP-1 interacts specifically with the surface of T. cruzi trypomastigotes. We used TSP-1 to pull down interacting parasite surface proteins that were identified by mass spectrometry. We also show that full length TSP-1 and the N-terminal domain of TSP-1 (NTSP) interact with T. cruzi surface calreticulin (TcCRT) and other surface proteins. Pre-exposure of recombinant NTSP or TSP-1 to T. cruzi significantly enhances cellular infection of wild type mouse embryo fibroblasts (MEF) compared to the C-terminal domain of TSP-1, E3T3C1. In addition, blocking TcCRT with antibodies significantly inhibits the enhancement of cellular infection mediated by the TcCRT-TSP-1 interaction. Taken together, our findings indicate that TSP-1 interacts with TcCRT on the surface of T. cruzi through the NTSP domain and that this interaction enhances cellular infection. Thus surface TcCRT is a virulent factor that enhances the pathogenesis of T. cruzi infection through TSP-1, which is up-regulated by the parasite. PMID:22808206

  6. Thrombospondin-1 Interacts with Trypanosoma cruzi Surface Calreticulin to Enhance Cellular Infection

    PubMed Central

    Johnson, Candice A.; Kleshchenko, Yulia Y.; Ikejiani, Adaeze O.; Udoko, Aniekanabasi N.; Cardenas, Tatiana C.; Pratap, Siddharth; Duquette, Mark A.; Lima, Maria F.; Lawler, Jack; Villalta, Fernando; Nde, Pius N.

    2012-01-01

    Trypanosoma cruzi causes Chagas disease, which is a neglected tropical disease that produces severe pathology and mortality. The mechanisms by which the parasite invades cells are not well elucidated. We recently reported that T. cruzi up-regulates the expression of thrombospondin-1 (TSP-1) to enhance the process of cellular invasion. Here we characterize a novel TSP-1 interaction with T. cruzi that enhances cellular infection. We show that labeled TSP-1 interacts specifically with the surface of T. cruzi trypomastigotes. We used TSP-1 to pull down interacting parasite surface proteins that were identified by mass spectrometry. We also show that full length TSP-1 and the N-terminal domain of TSP-1 (NTSP) interact with T. cruzi surface calreticulin (TcCRT) and other surface proteins. Pre-exposure of recombinant NTSP or TSP-1 to T. cruzi significantly enhances cellular infection of wild type mouse embryo fibroblasts (MEF) compared to the C-terminal domain of TSP-1, E3T3C1. In addition, blocking TcCRT with antibodies significantly inhibits the enhancement of cellular infection mediated by the TcCRT-TSP-1 interaction. Taken together, our findings indicate that TSP-1 interacts with TcCRT on the surface of T. cruzi through the NTSP domain and that this interaction enhances cellular infection. Thus surface TcCRT is a virulent factor that enhances the pathogenesis of T. cruzi infection through TSP-1, which is up-regulated by the parasite. PMID:22808206

  7. Immunization of mice with a Trypanosoma cruzi-like strain isolated from a bat: predictive factors for involvement of eosinophiles in tissue damage.

    PubMed

    Nascentes, Gabriel Antonio Nogueira; Meira, Wendell Sérgio Ferreira; Lages-Silva, Eliane; Ramírez, Luis Eduardo

    2010-12-01

    The granules of eosinophiles are cytotoxic to Trypanosoma cruzi trypomastigote and amastigote forms and to several cell types of the host, revealing their role in either parasite elimination or the production of tissue lesions. In this study, we evaluated the biological characteristics of T. cruzi infection that are responsible for the increase in tissue eosinophile levels in mice previously immunized with a bat isolated T. cruzi-like strain that does not infect mice. Nonisogeneic mice were divided into 24 groups that received from zero to three inoculations of T. cruzi-like RM1 strain, with or without adjuvant, followed by challenge with T. cruzi VIC or JG strains. Uni- and multivariate comparisons were performed comparing the tissue eosinophile levels with the parasitemia peak, severity of myositis in skeletal muscle, phase of infection, and the immunization strategies induced by the T. cruzi-like strain (adjuvant, number of reinoculations, and parasites). Although the severity of inflammation was higher in the acute phase, the score of tissue eosinophiles was similar in the acute and chronic phases of infection. In addition, there was a positive correlation among eosinophile levels and parasitemia peak. In the chronic phase, a greater eosinophile count was accompanied by an augmentation of myositis. Regardless of the phase of infection, we observed a positive correlation between the intensity of eosinophile infiltration and the number of sensitizations with T. cruzi-like strain. The multivariate analysis showed that the peak of parasitemia, number of inoculations with the T. cruzi-like strain, and severity of myositis were associated with greater tissue eosinophilia, in comparison with adjuvant, T. cruzi strains used in the challenge or tissue parasitism. Therefore, tissue eosinophile levels proved to be an important parameter in the pathogenesis of experimental Chagas disease in the acute and chronic phases of infection and might be related to reinfections

  8. Transcriptome Remodeling in Trypanosoma cruzi and Human Cells during Intracellular Infection.

    PubMed

    Li, Yuan; Shah-Simpson, Sheena; Okrah, Kwame; Belew, A Trey; Choi, Jungmin; Caradonna, Kacey L; Padmanabhan, Prasad; Ndegwa, David M; Temanni, M Ramzi; Corrada Bravo, Héctor; El-Sayed, Najib M; Burleigh, Barbara A

    2016-04-01

    Intracellular colonization and persistent infection by the kinetoplastid protozoan parasite, Trypanosoma cruzi, underlie the pathogenesis of human Chagas disease. To obtain global insights into the T. cruzi infective process, transcriptome dynamics were simultaneously captured in the parasite and host cells in an infection time course of human fibroblasts. Extensive remodeling of the T. cruzi transcriptome was observed during the early establishment of intracellular infection, coincident with a major developmental transition in the parasite. Contrasting this early response, few additional changes in steady state mRNA levels were detected once mature T. cruzi amastigotes were formed. Our findings suggest that transcriptome remodeling is required to establish a modified template to guide developmental transitions in the parasite, whereas homeostatic functions are regulated independently of transcriptomic changes, similar to that reported in related trypanosomatids. Despite complex mechanisms for regulation of phenotypic expression in T. cruzi, transcriptomic signatures derived from distinct developmental stages mirror known or projected characteristics of T. cruzi biology. Focusing on energy metabolism, we were able to validate predictions forecast in the mRNA expression profiles. We demonstrate measurable differences in the bioenergetic properties of the different mammalian-infective stages of T. cruzi and present additional findings that underscore the importance of mitochondrial electron transport in T. cruzi amastigote growth and survival. Consequences of T. cruzi colonization for the host include dynamic expression of immune response genes and cell cycle regulators with upregulation of host cholesterol and lipid synthesis pathways, which may serve to fuel intracellular T. cruzi growth. Thus, in addition to the biological inferences gained from gene ontology and functional enrichment analysis of differentially expressed genes in parasite and host, our

  9. Interactions Between Trypanosoma cruzi the Chagas Disease Parasite and Naturally Infected Wild Mepraia Vectors of Chile.

    PubMed

    Campos-Soto, Ricardo; Ortiz, Sylvia; Cordova, Ivan; Bruneau, Nicole; Botto-Mahan, Carezza; Solari, Aldo

    2016-03-01

    Chagas disease, which ranks among the world's most neglected diseases, is a chronic, systemic, parasitic infection caused by the protozoan Trypanosoma cruzi. Mepraia species are the wild vectors of this parasite in Chile. Host-parasite interactions can occur at several levels, such as co-speciation and ecological host fitting, among others. Thus, we are exploring the interactions between T. cruzi circulating in naturally infected Mepraia species in all areas endemic of Chile. We evaluated T. cruzi infection rates of 27 different haplotypes of the wild Mepraia species and identified their parasite genotypes using minicircle PCR amplification and hybridization tests with genotype-specific DNA probes. Infection rates were lower in northern Chile where Mepraia gajardoi circulates (10-35%); in central Chile, Mepraia spinolai is most abundant, and infection rates varied in space and time (0-55%). T. cruzi discrete typing units (DTUs) TcI, TcII, TcV, and Tc VI were detected. Mixed infections with two or more DTUs are frequently found in highly infected insects. T. cruzi DTUs have distinct, but not exclusive, ecological and epidemiological associations with their hosts. T. cruzi infection rates of M. spinolai were higher than in M. gajardoi, but the presence of mixed infection with more than one T. cruzi DTU was the same. The same T. cruzi DTUs (TcI, TcII, TcV, and TcVI) were found circulating in both vector species, even though TcI was not equally distributed. These results suggest that T. cruzi DTUs are not associated with any of the two genetically related vector species nor with the geographic area. The T. cruzi vectors interactions are discussed in terms of old and recent events. By exploring T. cruzi DTUs present in Mepraia haplotypes and species from northern to central Chile, we open the analysis on these invertebrate host-parasite interactions. PMID:26771702

  10. Transcriptome Remodeling in Trypanosoma cruzi and Human Cells during Intracellular Infection

    PubMed Central

    Li, Yuan; Shah-Simpson, Sheena; Okrah, Kwame; Belew, A. Trey; Choi, Jungmin; Caradonna, Kacey L.; Padmanabhan, Prasad; Ndegwa, David M.; Temanni, M. Ramzi; Corrada Bravo, Héctor; El-Sayed, Najib M.; Burleigh, Barbara A.

    2016-01-01

    Intracellular colonization and persistent infection by the kinetoplastid protozoan parasite, Trypanosoma cruzi, underlie the pathogenesis of human Chagas disease. To obtain global insights into the T. cruzi infective process, transcriptome dynamics were simultaneously captured in the parasite and host cells in an infection time course of human fibroblasts. Extensive remodeling of the T. cruzi transcriptome was observed during the early establishment of intracellular infection, coincident with a major developmental transition in the parasite. Contrasting this early response, few additional changes in steady state mRNA levels were detected once mature T. cruzi amastigotes were formed. Our findings suggest that transcriptome remodeling is required to establish a modified template to guide developmental transitions in the parasite, whereas homeostatic functions are regulated independently of transcriptomic changes, similar to that reported in related trypanosomatids. Despite complex mechanisms for regulation of phenotypic expression in T. cruzi, transcriptomic signatures derived from distinct developmental stages mirror known or projected characteristics of T. cruzi biology. Focusing on energy metabolism, we were able to validate predictions forecast in the mRNA expression profiles. We demonstrate measurable differences in the bioenergetic properties of the different mammalian-infective stages of T. cruzi and present additional findings that underscore the importance of mitochondrial electron transport in T. cruzi amastigote growth and survival. Consequences of T. cruzi colonization for the host include dynamic expression of immune response genes and cell cycle regulators with upregulation of host cholesterol and lipid synthesis pathways, which may serve to fuel intracellular T. cruzi growth. Thus, in addition to the biological inferences gained from gene ontology and functional enrichment analysis of differentially expressed genes in parasite and host, our

  11. IL-10 Limits Parasite Burden and Protects against Fatal Myocarditis in a Mouse Model of Trypanosoma cruzi Infection

    PubMed Central

    Roffê, Ester; Rothfuchs, Antonio Gigliotti; Santiago, Helton C.; Marino, Ana Paula M. P.; Ribeiro-Gomes, Flavia L.; Eckhaus, Michael; Antonelli, Lis R. V.; Murphy, Philip M.

    2011-01-01

    Chagas’ Disease is a zoonosis prevalent in Latin America caused by the protozoan Trypanosoma cruzi. The immunopathogenesis of cardiomyopathy, the main clinical problem in Chagas’ Disease, has been extensively studied but is still poorly understood. Here we systematically compared clinical, microbiologic, pathologic, immunologic and molecular parameters in two mouse models with opposite susceptibility to acute myocarditis caused by the myotropic Colombiana strain of T. cruzi: C3H/HeSnJ (100% mortality, uncontrolled parasitism) and C57BL/6J (<10% mortality, controlled parasitism). T. cruzi induced differential polarization of immunoregulatory cytokine mRNA expression in the hearts of C57BL/6J versus C3H/HeSnJ mice, however most differences were small. The difference in IL-10 expression was exceptional (C57BL/6J 8.7-fold > C3H/HeSnJ). Consistent with this, hearts from infected C57BL/6J mice, but not C3H/HeSnJ mice, had a high frequency of total IL-10-producing CD8+ T cells and both CD4+ and CD8+ subsets of IFNγ+IL-10+ double-producing T cells. Furthermore, T. cruzi infection of IL-10−/− C57BL/6J mice phenocopied fatal infection in wild type C3H/HeSnJ mice with complete loss of parasite control. Adoptive transfer experiments indicated that T cells were a source of protective IL-10. Thus, in this system IL-10 production by T cells promotes T. cruzi control and protection from fatal acute myocarditis. PMID:22156594

  12. IL-10 limits parasite burden and protects against fatal myocarditis in a mouse model of Trypanosoma cruzi infection.

    PubMed

    Roffê, Ester; Rothfuchs, Antonio Gigliotti; Santiago, Helton C; Marino, Ana Paula M P; Ribeiro-Gomes, Flavia L; Eckhaus, Michael; Antonelli, Lis R V; Murphy, Philip M

    2012-01-15

    Chagas' disease is a zoonosis prevalent in Latin America that is caused by the protozoan Trypanosoma cruzi. The immunopathogenesis of cardiomyopathy, the main clinical problem in Chagas' disease, has been extensively studied but is still poorly understood. In this study, we systematically compared clinical, microbiologic, pathologic, immunologic, and molecular parameters in two mouse models with opposite susceptibility to acute myocarditis caused by the myotropic Colombiana strain of T. cruzi: C3H/HeSnJ (100% mortality, uncontrolled parasitism) and C57BL/6J (<10% mortality, controlled parasitism). T. cruzi induced differential polarization of immunoregulatory cytokine mRNA expression in the hearts of C57BL/6J versus C3H/HeSnJ mice; however, most differences were small. The difference in IL-10 expression was exceptional (C57BL/6J 8.7-fold greater than C3H/HeSnJ). Consistent with this, hearts from infected C57BL/6J mice, but not C3H/HeSnJ mice, had a high frequency of total IL-10-producing CD8(+) T cells and both CD4(+) and CD8(+) subsets of IFN-γ(+)IL-10(+) double-producing T cells. Furthermore, T. cruzi infection of IL-10(-/-) C57BL/6J mice phenocopied fatal infection in wild-type C3H/HeSnJ mice with complete loss of parasite control. Adoptive transfer experiments indicated that T cells were a source of protective IL-10. Thus, in this system, IL-10 production by T cells promotes T. cruzi control and protection from fatal acute myocarditis. PMID:22156594

  13. Testing the Efficacy of a Multi-Component DNA-Prime/DNA-Boost Vaccine against Trypanosoma cruzi Infection in Dogs

    PubMed Central

    Aparicio-Burgos, José E.; Ochoa-García, Laucel; Zepeda-Escobar, José Antonio; Gupta, Shivali; Dhiman, Monisha; Martínez, José Simón; de Oca-Jiménez, Roberto Montes; Arreola, Margarita Val; Barbabosa-Pliego, Alberto; Vázquez-Chagoyán, Juan C.; Garg, Nisha Jain

    2011-01-01

    Background Trypanosoma cruzi, the etiologic agent of Chagas Disease, is a major vector borne health problem in Latin America and an emerging infectious disease in the United States. Methods We tested the efficacy of a multi-component DNA-prime/DNA-boost vaccine (TcVac1) against experimental T. cruzi infection in a canine model. Dogs were immunized with antigen-encoding plasmids and cytokine adjuvants, and two weeks after the last immunization, challenged with T. cruzi trypomastigotes. We measured antibody responses by ELISA and haemagglutination assay, parasitemia and infectivity to triatomines by xenodiagnosis, and performed electrocardiography and histology to assess myocardial damage and tissue pathology. Results Vaccination with TcVac1 elicited parasite-and antigen-specific IgM and IgG (IgG2>IgG1) responses. Upon challenge infection, TcVac1-vaccinated dogs, as compared to non-vaccinated controls dogs, responded to T. cruzi with a rapid expansion of antibody response, moderately enhanced CD8+ T cell proliferation and IFN-γ production, and suppression of phagocytes’ activity evidenced by decreased myeloperoxidase and nitrite levels. Subsequently, vaccinated dogs controlled the acute parasitemia by day 37 pi (44 dpi in non-vaccinated dogs), and exhibited a moderate decline in infectivity to triatomines. TcVac1-immunized dogs did not control the myocardial parasite burden and electrocardiographic and histopatholgic cardiac alterations that are the hallmarks of acute Chagas disease. During the chronic stage, TcVac1-vaccinated dogs exhibited a moderate decline in cardiac alterations determined by EKG and anatomo-/histo-pathological analysis while chronically-infected/non-vaccinated dogs continued to exhibit severe EKG alterations. Conclusions Overall, these results demonstrated that TcVac1 provided a partial resistance to T. cruzi infection and Chagas disease, and provide an impetus to improve the vaccination strategy against Chagas disease. PMID:21625470

  14. Phylogenetic character mapping of proteomic diversity shows high correlation with subspecific phylogenetic diversity in Trypanosoma cruzi.

    PubMed

    Telleria, Jenny; Biron, David G; Brizard, Jean-Paul; Demettre, Edith; Séveno, Martial; Barnabé, Christian; Ayala, Francisco J; Tibayrenc, Michel

    2010-11-23

    We performed a phylogenetic character mapping on 26 stocks of Trypanosoma cruzi, the parasite responsible for Chagas disease, and 2 stocks of the sister taxon T. cruzi marinkellei to test for possible associations between T. cruzi-subspecific phylogenetic diversity and levels of protein expression, as examined by proteomic analysis and mass spectrometry. We observed a high level of correlation (P < 10(-4)) between genetic distance, as established by multilocus enzyme electrophoresis, and proteomic dissimilarities estimated by proteomic Euclidian distances. Several proteins were found to be specifically associated to T. cruzi phylogenetic subdivisions (discrete typing units). This study explores the previously uncharacterized links between infraspecific phylogenetic diversity and gene expression in a human pathogen. It opens the way to searching for new vaccine and drug targets and for identification of specific biomarkers at the subspecific level of pathogens. PMID:21059959

  15. The Role of Heme and Reactive Oxygen Species in Proliferation and Survival of Trypanosoma cruzi

    PubMed Central

    Paes, Marcia Cristina; Cosentino-Gomes, Daniela; de Souza, Cíntia Fernandes; Nogueira, Natália Pereira de Almeida; Meyer-Fernandes, José Roberto

    2011-01-01

    Trypanosoma cruzi, the protozoan responsible for Chagas disease, has a complex life cycle comprehending two distinct hosts and a series of morphological and functional transformations. Hemoglobin degradation inside the insect vector releases high amounts of heme, and this molecule is known to exert a number of physiological functions. Moreover, the absence of its complete biosynthetic pathway in T. cruzi indicates heme as an essential molecule for this trypanosomatid survival. Within the hosts, T. cruzi has to cope with sudden environmental changes especially in the redox status and heme is able to increase the basal production of reactive oxygen species (ROS) which can be also produced as byproducts of the parasite aerobic metabolism. In this regard, ROS sensing is likely to be an important mechanism for the adaptation and interaction of these organisms with their hosts. In this paper we discuss the main features of heme and ROS susceptibility in T. cruzi biology. PMID:22007287

  16. Regional Variation in the Correlation of Antibody and T-Cell Responses to Trypanosoma cruzi

    PubMed Central

    Martin, Diana L.; Marks, Morgan; Galdos-Cardenas, Gerson; Gilman, Robert H.; Goodhew, Brook; Ferrufino, Lisbeth; Halperin, Anthony; Sanchez, Gerardo; Verastegui, Manuela; Escalante, Patricia; Naquira, Cesar; Levy, Michael Z.; Bern, Caryn

    2014-01-01

    Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, is a major cause of morbidity and mortality in Central and South America. Geographic variations in the sensitivity of serologic diagnostic assays to T. cruzi may reflect differences in T. cruzi exposure. We measured parasite-specific T-cell responses among seropositive individuals in two populations from South America with widely varying antibody titers against T. cruzi. Antibody titers among seropositive individuals were significantly lower in Arequipa, Peru compared with Santa Cruz, Bolivia. Similarly, the proportion of seropositive individuals with positive T-cell responses was lower in Peru than Bolivia, resulting in overall lower frequencies of interferon-γ (IFNγ)-secreting cells from Peruvian samples. However, the magnitude of the IFNγ response was similar among the IFNγ responders in both locations. These data indicate that immunological discrepancies based on geographic region are reflected in T-cell responses as well as antibody responses. PMID:24710614

  17. Trypanosoma cruzi parasites fight for control of the JAK-STAT pathway by disarming their host

    PubMed Central

    Stahl, Philipp; Schwarz, Ralph T; Debierre-Grockiego, Françoise; Meyer, Thomas

    2014-01-01

    The zoonotic Chagas’ disease is caused by infections with the hemoflagellate Trypanosoma cruzi (T. cruzi) which is endemic in Latin America. Despite recent advances in our understanding of the pathogenesis of the disease, the underlying molecular processes involved in host-parasite interactions are only poorly understood. In particular, the mechanisms for parasite persistence in host cells remain largely unknown. Cytokine-driven transcription factors from the family of STAT (signal transducer and activator of transcription) proteins appear to play a central role in the fight against T. cruzi infection. However, amastigotes proliferating in the cytoplasm of infected host cells develop effective strategies to circumvent the attack executed by STAT proteins. This review highlights the interactions between T. cruzi parasites and human host cells in terms of cytokine signaling and, in particular, discusses the impact of STATs on the balance between parasite invasion and clearance. PMID:26413423

  18. Mechanism of Trypanosoma cruzi Placenta Invasion and Infection: The Use of Human Chorionic Villi Explants

    PubMed Central

    Fretes, Ricardo E.; Kemmerling, Ulrike

    2012-01-01

    Congenital Chagas disease, a neglected tropical disease, endemic in Latin America, is associated with premature labor and miscarriage. During vertical transmission the parasite Trypanosoma cruzi (T. cruzi) crosses the placental barrier. However, the exact mechanism of the placental infection remains unclear. We review the congenital transmission of T. cruzi, particularly the role of possible local placental factors that contribute to the vertical transmission of the parasite. Additionally, we analyze the different methods available for studying the congenital transmission of the parasite. In that context, the ex vivo infection with T. cruzi trypomastigotes of human placental chorionic villi constitutes an excellent tool for studying parasite infection strategies as well as possible local antiparasitic mechanisms. PMID:22701129

  19. Nucleotide sequences provide evidence of genetic exchange among distantly related lineages of Trypanosoma cruzi

    PubMed Central

    Machado, Carlos A.; Ayala, Francisco J.

    2001-01-01

    Simple phylogenetic tests were applied to a large data set of nucleotide sequences from two nuclear genes and a region of the mitochondrial genome of Trypanosoma cruzi, the agent of Chagas' disease. Incongruent gene genealogies manifest genetic exchange among distantly related lineages of T. cruzi. Two widely distributed isoenzyme types of T. cruzi are hybrids, their genetic composition being the likely result of genetic exchange between two distantly related lineages. The data show that the reference strain for the T. cruzi genome project (CL Brener) is a hybrid. Well-supported gene genealogies show that mitochondrial and nuclear gene sequences from T. cruzi cluster, respectively, in three or four distinct clades that do not fully correspond to the two previously defined major lineages of T. cruzi. There is clear genetic differentiation among the major groups of sequences, but genetic diversity within each major group is low. We estimate that the major extant lineages of T. cruzi have diverged during the Miocene or early Pliocene (3–16 million years ago). PMID:11416213

  20. Is the Antitumor Property of Trypanosoma cruzi Infection Mediated by Its Calreticulin?

    PubMed

    Ramírez-Toloza, Galia; Abello, Paula; Ferreira, Arturo

    2016-01-01

    Eight to 10 million people in 21 endemic countries are infected with Trypanosoma cruzi. However, only 30% of those infected develop symptoms of Chagas' disease, a chronic, neglected tropical disease worldwide. Similar to other pathogens, T. cruzi has evolved to resist the host immune response. Studies, performed 80 years ago in the Soviet Union, proposed that T. cruzi infects tumor cells with similar capacity to that displayed for target tissues such as cardiac, aortic, or digestive. An antagonistic relationship between T. cruzi infection and cancer development was also proposed, but the molecular mechanisms involved have remained largely unknown. Probably, a variety of T. cruzi molecules is involved. This review focuses on how T. cruzi calreticulin (TcCRT), exteriorized from the endoplasmic reticulum, targets the first classical complement component C1 and negatively regulates the classical complement activation cascade, promoting parasite infectivity. We propose that this C1-dependent TcCRT-mediated virulence is critical to explain, at least an important part, of the parasite capacity to inhibit tumor development. We will discuss how TcCRT, by directly interacting with venous and arterial endothelial cells, inhibits angiogenesis and tumor growth. Thus, these TcCRT functions not only illustrate T. cruzi interactions with the host immune defensive strategies, but also illustrate a possible co-evolutionary adaptation to privilege a prolonged interaction with its host. PMID:27462315

  1. Identifying four Trypanosoma cruzi I isolate haplotypes from different geographic regions in Colombia.

    PubMed

    Herrera, Claudia; Bargues, M Dolores; Fajardo, Anabella; Montilla, Marleny; Triana, Omar; Vallejo, Gustavo Adolfo; Guhl, Felipe

    2007-07-01

    Trypanosoma cruzi has been classified into the groups T. cruzi I and T. cruzi II. The latter is subdivided into five smaller lineages based on multilocus enzyme electrophoresis and random amplified polymorphic DNA, designated as IIa-IIe, which shows correspondence with rRNA/mini-exon lineages. Twelve previously characterised T. cruzi isolates from different hosts, including humans, Didelphis marsupialis, and triatomines were analysed to establish genetic variability in T. cruzi group T. cruzi I isolates from different geographical regions of Colombia. DNA samples were sequenced based on the mini-exon gene intergenic region. Sequences were analysed using Clustal W, Staden 1.5 and MEGA3 software, and using reported sequences from the GenBank as reference. The genetic distances were analysed using Kimura's two-parameter model. The isolates' joint alignment was of 350bp, and the calculated nucleotide divergence was of 17.5%. The differences consisted of 23 transitions (7.2%), 14 transversions (4.4%) and 19 insertion-deletions (5.9%). The Colombian T cruzi I isolates revealed sufficient genetic variability for us to propose the existence of four haplotypes identified through single nucleotide polymorphism (SNP) and insertion/deletion found in the mini-exon gene's non-transcribed spacer intergenic region. PMID:17287152

  2. Is the Antitumor Property of Trypanosoma cruzi Infection Mediated by Its Calreticulin?

    PubMed Central

    Ramírez-Toloza, Galia; Abello, Paula; Ferreira, Arturo

    2016-01-01

    Eight to 10 million people in 21 endemic countries are infected with Trypanosoma cruzi. However, only 30% of those infected develop symptoms of Chagas’ disease, a chronic, neglected tropical disease worldwide. Similar to other pathogens, T. cruzi has evolved to resist the host immune response. Studies, performed 80 years ago in the Soviet Union, proposed that T. cruzi infects tumor cells with similar capacity to that displayed for target tissues such as cardiac, aortic, or digestive. An antagonistic relationship between T. cruzi infection and cancer development was also proposed, but the molecular mechanisms involved have remained largely unknown. Probably, a variety of T. cruzi molecules is involved. This review focuses on how T. cruzi calreticulin (TcCRT), exteriorized from the endoplasmic reticulum, targets the first classical complement component C1 and negatively regulates the classical complement activation cascade, promoting parasite infectivity. We propose that this C1-dependent TcCRT-mediated virulence is critical to explain, at least an important part, of the parasite capacity to inhibit tumor development. We will discuss how TcCRT, by directly interacting with venous and arterial endothelial cells, inhibits angiogenesis and tumor growth. Thus, these TcCRT functions not only illustrate T. cruzi interactions with the host immune defensive strategies, but also illustrate a possible co-evolutionary adaptation to privilege a prolonged interaction with its host. PMID:27462315

  3. Differentiation of Trypanosoma cruzi, T. cruzi marinkellei, T. dionisii and T. vespertilionis by monoclonal antibodies.

    PubMed

    Petry, K; Baltz, T; Schottelius, J

    1986-03-01

    Anti-T. dionisii and anti-T. vespertilionis monoclonal antibodies secreted by 17 hybridoma clones were tested against various strains of T. dionisii, T. vespertilionis, T. cruzi and T. cruzi marinkellei. Strain and species specific antigens were detected for the homologous immunizing strains. The common antigenic determinants of the tested trypanosome species include a component of the flagellum and different cell structures. Seventeen T. cruzi strains could be classified into two groups when tested with anti-T. dionisii monoclonal antibodies. The cross reactions between T. dionisii and T. cruzi demonstrate a strong correlation between T. dionisii and T. cruzi group 2. On the other hand T. cruzi group 1 and T. cruzi marinkellei show very similar antigenic character. PMID:2424290

  4. Trans-sialidase inhibition assay detects Trypanosoma cruzi infection in different wild mammal species.

    PubMed

    Sartor, Paula A; Ceballos, Leonardo A; Orozco, Marcela M; Cardinal, Marta V; Gürtler, Ricardo E; Leguizamón, María S

    2013-08-01

    The detection of Trypanosoma cruzi infection in mammals is crucial for understanding the eco-epidemiological role of the different species involved in parasite transmission cycles. Xenodiagnosis (XD) and hemoculture (HC) are routinely used to detect T. cruzi in wild mammals. Serological methods are much more limited because they require the use of specific antibodies to immunoglobulins of each mammalian species susceptible to T. cruzi. In this study we detected T. cruzi infection by trans-sialidase (TS) inhibition assay (TIA). TIA is based on the antibody neutralization of a recombinant TS that avoids the use of anti-immunoglobulins. TS activity is not detected in the co-endemic protozoan parasites Leishmania spp and T. rangeli. In the current study, serum samples from 158 individuals of nine wild mammalian species, previously tested by XD, were evaluated by TIA. They were collected from two endemic areas in northern Argentina. The overall TIA versus XD co-reactivity was 98.7% (156/158). All 18 samples from XD-positive mammals were TIA-positive (co-positivity, 100%) and co-negativity was 98.5% (138/140). Two XD-negative samples from a marsupial (Didelphis albiventris) and an edentate (Dasypus novemcinctus) were detected by TIA. TIA could be used as a novel tool for serological detection of Trypanosoma cruzi in a wide variety of sylvatic reservoir hosts. PMID:23930975

  5. Antiparasitic evaluation of betulinic acid derivatives reveals effective and selective anti-Trypanosoma cruzi inhibitors.

    PubMed

    Meira, Cássio Santana; Barbosa-Filho, José Maria; Lanfredi-Rangel, Adriana; Guimarães, Elisalva Teixeira; Moreira, Diogo Rodrigo Magalhães; Soares, Milena Botelho Pereira

    2016-07-01

    Betulinic acid is a pentacyclic triterpenoid with several biological properties already described, including antiparasitic activity. Here, the anti-Trypanosoma cruzi activity of betulinic acid and its semi-synthetic amide derivatives (BA1-BA8) was investigated. The anti-Trypanosoma cruzi activity and selectivity were enhanced in semi-synthetic derivatives, specially on derivatives BA5, BA6 and BA8. To understand the mechanism of action underlying betulinic acid anti-T. cruzi activity, we investigated ultrastructural changes by electron microscopy. Ultrastructural studies showed that trypomastigotes incubated with BA5 had membrane blebling, flagella retraction, atypical cytoplasmic vacuoles and Golgi cisternae dilatation. Flow cytometry analysis showed that parasite death is mainly caused by necrosis. Treatment with derivatives BA5, BA6 or BA8 reduced the invasion process, as well as intracellular parasite development in host cells, with a potency and selectivity similar to that observed in benznidazole-treated cells. More importantly, the combination of BA5 and benznidazole revealed synergistic effects on trypomastigote and amastigote forms of T. cruzi. In conclusion, we demonstrated that BA5 compound is an effective and selective anti-T. cruzi agent. PMID:27080160

  6. Comparative study of the biological properties of Trypanosoma cruzi I genotypes in a murine experimental model.

    PubMed

    Cruz, Lissa; Vivas, Angie; Montilla, Marleny; Hernández, Carolina; Flórez, Carolina; Parra, Edgar; Ramírez, Juan David

    2015-01-01

    Chagas disease is an endemic zoonosis in Latin America and caused by the parasite Trypanosoma cruzi. This kinetoplastid displays remarkable genetic variability, allowing its classification into six Discrete Typing Units (DTUs) from TcI to TcVI. T. cruzi I presents the broadest geographical distribution in the continent and has been associated to severe forms of cardiomyopathies. Recently, a particular genotype associated to human infections has been reported and named as TcIDOM (previously named TcIa-b). This genotype shows to be clonal and adapted to the domestic cycle but so far no studies have determined the biological properties of domestic (TcIDOM) and sylvatic TcI strains (previously named TcIc-e). Hence, the aim of this study was to untangle the biological features of these genotypes in murine models. We infected ICR-CD1 mice with five TcI strains (two domestic, two sylvatic and one natural mixture) and determined the course of infection during 91 days (acute and chronic phase of the disease) in terms of parasitemia, tissue tropism, immune response (IgG titers) and tissue invasion by means of histopathology studies. Statistically significant differences were observed in terms of parasitemia curves and prepatent period between domestic (TcIDOM) and sylvatic strains. There were no differences in terms of IgG antibodies response across the mice infected with the five strains. Regarding the histopathology, our results indicate that domestic strains present higher parasitemias and low levels of histopathological damage. In contrast, sylvatic strains showed lower parasitemias and high levels of histopathological damage. These results highlight the sympatric and behavioral differences of domestic and sylvatic TcI strains; the clinical and epidemiological implications are herein discussed. PMID:25461848

  7. Biological behaviour in mice of Trypanosoma cruzi isolates from Amazonas and Paraná, Brazil.

    PubMed

    Dos Reis, Daniele; Monteiro, Wuelton Marcelo; Bossolani, Gleison Daion Piovezana; Teston, Ana Paula Margioto; Gomes, Monica Lucia; de Araújo, Silvana Marques; Barbosa, Maria das Graças Vale; de Ornelas Toledo, Max Jean

    2012-04-01

    The biological behaviour of 23 Trypanosoma cruzi isolates in Swiss mice was compared. Nineteen isolates were obtained from patients in the acute phase of Chagas disease (13), sylvatic reservoir hosts (Didelphis marsupialis) (3), and triatomine bugs (Rhodnius robustus) (3) from four regions of the State of Amazonas (AM). Four isolates were obtained from chronic chagasic patients in the State of Paraná (PR): three autochthones, and one allochthone from the State of Minas Gerais. Only one isolate was unable to infect the mice. The AM and PR isolates showed the largest number of significant differences from each other. The former had lower mean values in the pre-patent (5.4 days) and patent (4.6 days) periods (PP), with the parasitaemia (Pmax) reaching a peak of 9.9×10(4) blood trypomastigotes (BT)/mL of blood by the 7th day following inoculation. The AM isolates also had higher positivity to fresh-blood examination (FBE) (84.1%) compared to haemoculture (HC) (58.7%) and polymerase chain reaction (PCR) (33.3%), in addition to higher mortality (2.9%). The PR isolates had higher values for PP (18.5 days) and Pmax (99.9×10(4)BT/mL) as well as higher positivity to FBE (87.2%), HC (100%), and PCR (83.3%). The correlations between the biological behaviour of the T. cruzi isolates and the clinical and epidemiological characteristics of Chagas disease are discussed. PMID:22406038

  8. Trypanosoma livingstonei: a new species from African bats supports the bat seeding hypothesis for the Trypanosoma cruzi clade

    PubMed Central

    2013-01-01

    Background Bat trypanosomes have been implicated in the evolutionary history of the T. cruzi clade, which comprises species from a wide geographic and host range in South America, Africa and Europe, including bat-restricted species and the generalist agents of human American trypanosomosis T. cruzi and T. rangeli. Methods Trypanosomes from bats (Rhinolophus landeri and Hipposideros caffer) captured in Mozambique, southeast Africa, were isolated by hemoculture. Barcoding was carried out through the V7V8 region of Small Subunit (SSU) rRNA and Fluorescent Fragment Length barcoding (FFLB). Phylogenetic inferences were based on SSU rRNA, glyceraldehyde phosphate dehydrogenase (gGAPDH) and Spliced Leader (SL) genes. Morphological characterization included light, scanning and transmission electron microscopy. Results New trypanosomes from bats clustered together forming a clade basal to a larger assemblage called the T. cruzi clade. Barcoding, phylogenetic analyses and genetic distances based on SSU rRNA and gGAPDH supported these trypanosomes as a new species, which we named Trypanosoma livingstonei n. sp. The large and highly polymorphic SL gene repeats of this species showed a copy of the 5S ribosomal RNA into the intergenic region. Unique morphological (large and broad blood trypomastigotes compatible to species of the subgenus Megatrypanum and cultures showing highly pleomorphic epimastigotes and long and slender trypomastigotes) and ultrastructural (cytostome and reservosomes) features and growth behaviour (when co-cultivated with HeLa cells at 37°C differentiated into trypomastigotes resembling the blood forms and do not invaded the cells) complemented the description of this species. Conclusion Phylogenetic inferences supported the hypothesis that Trypanosoma livingstonei n. sp. diverged from a common ancestral bat trypanosome that evolved exclusively in Chiroptera or switched at independent opportunities to mammals of several orders forming the clade T. cruzi

  9. Serological survey of Leishmania infantum and Trypanosoma cruzi in dogs from urban areas of Brazil and Colombia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Leishmania infantum and Trypanosoma cruzi are zoonotic parasites that are endemic throughout many parts of Latin America. Infected dogs play an important role in transmission of both parasites to humans. A serological survey of Leishmania and Trypanosoma infection was conducted on 365 dogs from São ...

  10. Evidence for the existence of an Ns-type regulatory protein in Trypanosoma cruzi membranes.

    PubMed Central

    Eisenschlos, C D; Paladini, A A; Molina y Vedia, L; Torres, H N; Flawiá, M M

    1986-01-01

    The existence of a GTP-binding protein of the Ns type in Trypanosoma cruzi was explored. Epimastigote membranes were labelled by cholera toxin in the presence of [adenine-14C]NAD+. After SDS/polyacrylamide-gel electrophoresis of extracted membrane proteins, a single labelled polypeptide band of apparent Mr approx. 45,000 was detected. Epimastigote cells were treated with N-ethylmaleimide and electrofused to lymphoma S49 cells lacking the Ns protein. Evidence indicates that in such electrofusion-generated cell hybrids a heterologous adenylate cyclase system was reconstituted with the Ns protein provided by T. cruzi epimastigotes. Images Fig. 2. PMID:3099761

  11. AFAP-1L1-mediated actin filaments crosslinks hinder Trypanosoma cruzi cell invasion and intracellular multiplication.

    PubMed

    de Araújo, Karine Canuto Loureiro; Teixeira, Thaise Lara; Machado, Fabrício Castro; da Silva, Aline Alves; Quintal, Amanda Pifano Neto; da Silva, Claudio Vieira

    2016-10-01

    Host actin cytoskeleton polymerization has been shown to play an important role during Trypanosoma cruzi internalization into mammalian cell. The structure and dynamics of the actin cytoskeleton in cells are regulated by a vast number of actin-binding proteins. Here we aimed to verify the impact of AFAP-1L1, during invasion and multiplication of T. cruzi. Knocking-down AFAP-1L1 increased parasite cell invasion and intracellular multiplication. Thus, we have shown that the integrity of the machinery formed by AFAP-1L1 in actin cytoskeleton polymerization is important to hinder parasite infection. PMID:27349187

  12. Medicinal plants of Chile: evaluation of their anti-Trypanosoma cruzi activity.

    PubMed

    Muñoz, Orlando M; Maya, Juan D; Ferreira, Jorge; Christen, Philippe; San Martin, José; López-Muñoz, Rodrigo; Morello, Antonio; Kemmerling, Ulrike

    2013-01-01

    The extracts of several plants of Central Chile exhibited anti-Trypanosoma cruzi trypomastigotes activity. Most active extracts were those obtained from Podanthus ovatifolius, Berberis microphylla, Kageneckia oblonga, and Drimys winteri. The active extract of Drimys winteri (IC50 51.2 microg/mL) was purified and three drimane sesquiterpenes were obtained: polygodial, drimenol, and isodrimenin. Isodrimenin and drimenol were found to be active against the trypomastigote form of T. cruzi with IC50 values of 27.9 and 25.1 microM, respectively. PMID:23923616

  13. In vitro activity of Rutaceae species against the trypomastigote form of Trypanosoma cruzi.

    PubMed

    Mafezoli, J; Vieira, P C; Fernandes, J B; da Silva, M F; de Albuquerque, S

    2000-11-01

    The activity of crude plant extracts of nine species of Rutaceae against the trypomastigote form of Trypanosoma cruzi was evaluated at 4 mg/ml. Thirty-two crude extracts were tested and eight of them showed significant activity (>80%). The most active extract was obtained from the stems of Pilocarpus spicatus (97.3%). Fractionation of the active crude extracts provided 25 fractions which were tested against the trypomastigote form of T. cruzi at 2 mg/ml. Of these six showed significant activity (>80%). The most active fractions (100%) were obtained from the leaves of Almeidea coerulea (butanol fraction) and Conchocarpus inopinatus (dichloromethane fraction). PMID:11025175

  14. Serum Cytokines as Biomarkers of Early Trypanosoma cruzi infection by Congenital Exposure.

    PubMed

    Volta, Bibiana J; Bustos, Patricia L; Cardoni, Rita L; De Rissio, Ana M; Laucella, Susana A; Bua, Jacqueline

    2016-06-01

    Trypanosoma cruzi, the causing agent of Chagas disease, leads to an activation of the immune system in congenitally infected infants. In this study, we measured a set of cytokines/chemokines and the levels of parasitemia by quantitative PCR in the circulation of neonates born to T. cruzi-infected mothers to evaluate the predictive value of these mediators as biomarkers of congenital transmission. We conducted a retrospective cohort study of 35 infants with congenital T. cruzi infection, of which 15 and 10 infants had been diagnosed by detection of parasites by microscopy in the first and sixth month after delivery, respectively, and the remaining 10 had been diagnosed by the presence of T. cruzi-specific Abs at 10-12 mo old. Uninfected infants born to either T. cruzi-infected or uninfected mothers were also evaluated as controls. The plasma levels of IL-17A, MCP-1, and monokine induced by IFN-γ were increased in infants congenitally infected with T. cruzi, even before they developed detectable parasitemia or seroconversion. Infants diagnosed between 6 and 12 mo old also showed increased levels of IL-6 and IL-17F at 1 mo of age. Conversely, infants who did not develop congenital T. cruzi infection had higher levels of IFN-γ than infected infants born to uninfected mothers. Monokine induced by IFN-γ, MCP-1, and IFN-γ production induced in T. cruzi-infected infants correlated with parasitemia, whereas the plasma levels of IL-17A, IL-17F, and IL-6 were less parasite load dependent. These findings support the existence of a distinct profile of cytokines and chemokines in the circulation of infants born to T. cruzi-infected mothers, which might predict congenital infection. PMID:27183607

  15. Is the infectiousness of dogs naturally infected with Trypanosoma cruzi associated with poly-parasitism?

    PubMed

    Enriquez, G F; Garbossa, G; Macchiaverna, N P; Argibay, H D; Bua, J; Gürtler, R E; Cardinal, M V

    2016-06-15

    Interactions among different species of parasites co-infecting the same host could be synergistic or antagonistic. These interactions may modify both the frequency of infected hosts and their infectiousness, and therefore impact on transmission dynamics. This study determined the infectiousness of Trypanosoma cruzi-seropositive dogs (using xenodiagnosis) and their parasite load (quantified by qPCR), and tested the association between both variables and the presence of concomitant endoparasites. A cross-sectional serosurvey conducted in eight rural villages from Pampa del Indio and neighboring municipalities (northeastern Argentina) detected 32 T. cruzi-seropositive dogs out of 217 individuals examined for infection. Both the infectiousness to the vector Triatoma infestans and parasite load of T. cruzi-seropositive dogs examined were heterogeneous. A statistically significant, nine-fold higher mean infectiousness was registered in T. cruzi-seropositive dogs co-infected with Ancylostoma caninum and a trematode than in T. cruzi-seropositive dogs without these infections. The median parasite load of T. cruzi was also significantly higher in dogs co-infected with these helminths. An opposite trend was observed in T. cruzi-seropositive dogs that were serologically positive to Toxoplasma gondii or Neospora caninum relative to dogs seronegative for these parasites. Using multiple logistic regression analysis with random effects, we found a positive and significant association between the infectiousness of T. cruzi-seropositive dogs and co-infections with A. caninum and a trematode. Our results suggest that co-infections may be a modifier of host infectiousness in dogs naturally infected with T. cruzi. PMID:27198799

  16. A new experimental model for assessing drug efficacy against Trypanosoma cruzi infection based on highly sensitive in vivo imaging.

    PubMed

    Lewis, Michael D; Francisco, Amanda Fortes; Taylor, Martin C; Kelly, John M

    2015-01-01

    The protozoan Trypanosoma cruzi is the causative agent of Chagas disease, one of the world's major neglected infections. Although development of improved antiparasitic drugs is considered a priority, there have been no significant treatment advances in the past 40 years. Factors that have limited progress include an incomplete understanding of pathogenesis, tissue tropism, and disease progression. In addition, in vivo models, which allow parasite burdens to be tracked throughout the chronic stage of infection, have been lacking. To address these issues, we have developed a highly sensitive in vivo imaging system based on bioluminescent T. cruzi, which express a red-shifted luciferase that emits light in the tissue-penetrating orange-red region of the spectrum. The exquisite sensitivity of this noninvasive murine model has been exploited to monitor parasite burden in real time throughout the chronic stage, has allowed the identification of the gastrointestinal tract as the major niche of long-term infection, and has demonstrated that chagasic heart disease can develop in the absence of locally persistent parasites. Here, we review the parameters of the imaging system and describe how this experimental model can be incorporated into drug development programs as a valuable tool for assessing efficacy against both acute and chronic T. cruzi infections. PMID:25296657

  17. Preparation, crystallization and preliminary crystallographic analysis of old yellow enzyme from Trypanosoma cruzi

    SciTech Connect

    Sugiyama, Shigeru; Tokuoka, Keiji; Uchiyama, Nahoko; Okamoto, Naoki; Okano, Yousuke; Matsumura, Hiroyoshi; Inaka, Koji; Urade, Yoshihiro; Inoue, Tsuyoshi

    2007-10-01

    Old yellow enzyme from Trypanosoma cruzi, has been crystallized using the hanging-drop vapour-diffusion method. Old yellow enzyme (OYE) is an NADPH oxidoreductase that contains a flavin mononucleotide as a prosthetic group. The OYE from Trypanosoma cruzi, which produces prostaglandin F{sub 2α}, a potent mediator of various physiological and pathological processes, from prostaglandin H2. The protein was recombinantly expressed and purified from Escherichia coli and was crystallized using the hanging-drop vapour-diffusion method. The crystal belongs to the monoclinic space group P2{sub 1}, with unit-cell parameters a = 56.3, b = 78.8, c = 78.8 Å, β = 93.4° and two molecules per asymmetric unit. The crystals were suitable for X-ray crystallographic studies and diffracted to 1.70 Å resolution. A Patterson search method is in progress using the structure of OYE from Pseudomonas putida as a starting model.

  18. The trans-sialidase, the major Trypanosoma cruzi virulence factor: Three decades of studies.

    PubMed

    Freire-de-Lima, L; Fonseca, L M; Oeltmann, T; Mendonça-Previato, L; Previato, J O

    2015-11-01

    Chagas' disease is a potentially life-threatening disease caused by the protozoan parasite Trypanosoma cruzi. Since the description of Chagas'disease in 1909 extensive research has identified important events in the disease in order to understand the biochemical mechanism that modulates T. cruzi-host cell interactions and the ability of the parasite to ensure its survival in the infected host. Exactly 30 years ago, we presented evidence for the first time of a trans-sialidase activity in T. cruzi (T. cruzi-TS). This enzyme transfers sialic acid from the host glycoconjugates to the terminal β-galactopyranosyl residues of mucin-like molecules on the parasite's cell surface. Thenceforth, many articles have provided convincing data showing that T. cruzi-TS is able to govern relevant mechanisms involved in the parasite's survival in the mammalian host, such as invasion, escape from the phagolysosomal vacuole, differentiation, down-modulation of host immune responses, among others. The aim of this review is to cover the history of the discovery of T. cruzi-TS, as well as some well-documented biological effects encompassed by this parasite's virulence factor, an enzyme with potential attributes to become a drug target against Chagas disease. PMID:26224786

  19. Developmental stages of Trypanosoma cruzi-like flagellates in Cavernicola pilosa.

    PubMed

    Marinkelle, C J

    1982-11-01

    The developmental stages of Trypanosoma cruzi ssp., found in the intestinal tract of Cavernicola pilosa, are described and measurements given for nine life stages. The frequencies of the various stages in foregut, midgut and hindgut of the triatomines are provided; parasites were rare in the foregut and metatrypomastigotes were seen only in the mid- and hindguts. All adult bugs examined harboured intestinal infections of T. cruzi-like flagellates, large clumps of amastigotes were frequently observed in the midgut. The faeces of C. pilosa, containing metacyclic trypomastigotes, did not produce patent parasitaemia when inoculated into mice. Inoculated mice were not protected against subsequent challenge infections with the highly virulent Tulahuen stock of T. c. cruzi. The blood of bats also failed to produce parasitaemia when inoculated into mice, nor were the mice protected against subsequent challenges with T. c. cruzi. Although the developmental stages described were very similar to those of T. c. cruzi it is presumed that they were stages of T. c. marinkellei because of their failure to infect mice and Rhodnius prolixus, and their failure to protect inoculated mice against challenge with T. c. cruzi. PMID:6820697

  20. Studying nanotoxic effects of CdTe quantum dots in Trypanosoma cruzi

    NASA Astrophysics Data System (ADS)

    Stahl, C. V.; Almeida, D. B.; de Thomaz, A. A.; Fontes, A.; Menna-Barreto, R. F. S.; Santos-Mallet, J. R.; Cesar, C. L.; Gomes, S. A. O.; Feder, D.

    2010-02-01

    Many studies have been done in order to verify the possible nanotoxicity of quantum dots in some cellular types. Protozoan pathogens as Trypanosoma cruzi, etiologic agent of Chagas1 disease is transmitted to humans either by blood-sucking triatomine vectors, blood transfusion, organs transplantation or congenital transmission. The study of the life cycle, biochemical, genetics, morphology and others aspects of the T. cruzi is very important to better understand the interactions with its hosts and the disease evolution on humans. Quantum dot, nanocrystals, highly luminescent has been used as tool for experiments in in vitro and in vivo T. cruzi life cycle development in real time. We are now investigating the quantum dots toxicity on T. cruzi parasite cells using analytical methods. In vitro experiments were been done in order to test the interference of this nanoparticle on parasite development, morphology and viability (live-death). Ours previous results demonstrated that 72 hours after parasite incubation with 200 μM of CdTe altered the development of T. cruzi and induced cell death by necrosis in a rate of 34%. QDs labeling did not effect: (i) on parasite integrity, at least until 7 days; (ii) parasite cell dividing and (iii) parasite motility at a concentration of 2 μM CdTe. This fact confirms the low level of cytotoxicity of these QDs on this parasite cell. In summary our results is showing T. cruzi QDs labeling could be used for in vivo cellular studies in Chagas disease.

  1. Digestion of human immunoglobulin G by the major cysteine proteinase (cruzipain) from Trypanosoma cruzi.

    PubMed

    Bontempi, E; Cazzulo, J J

    1990-08-01

    The major cysteine proteinase (cruzipain) from Trypanosoma cruzi was able to digest human IgG, as shown by polyacrylamide gel electrophoresis in the presence of SDS, and by gel filtration on a Superose 12 column, in a FPLC system. The Fab fragment of IgG was only slightly degraded, but Fc was extensively hydrolyzed to small peptides. The results suggest that cruzipain might be involved in the defense mechanisms of the parasite against the immune response of the host. PMID:2227369

  2. Farnesyl diphosphate synthase localizes to the cytoplasm of Trypanosoma cruzi and T. brucei.

    PubMed

    Ferella, Marcela; Li, Zhu-Hong; Andersson, Björn; Docampo, Roberto

    2008-06-01

    The farnesyl diphosphate synthase (FPPS) has previously been characterized in trypanosomes as an essential enzyme for their survival and as the target for bisphosphonates, drugs that are effective both in vitro and in vivo against these parasites. Enzymes from the isoprenoid pathway have been assigned to different compartments in eukaryotes, including trypanosomatids. We here report that FPPS localizes to the cytoplasm of both Trypanosoma cruzi and T. brucei, and is not present in other organelles such as the mitochondria and glycosomes. PMID:18406406

  3. Trypanosoma cruzi: Antiproliferative effect of indole phytoalexins on intracellular amastigotes in vitro

    PubMed Central

    Mezencev, Roman; Galizzi, Melina; Kutschy, Peter; Docampo, Roberto

    2009-01-01

    American trypanosomiasis (Chagas disease) continues to be a significant public health problem, and the therapeutic potential of current antichagasic agents (nifurtimox and benznidazole) is rather limited. Here we report on the antitrypanosomal effect of 1-methoxyspirobrassinol and other indole phytoalexins - secondary metabolites produced by Cruciferous plants. These compounds, that previously demonstrated antimicrobial and anticancer properties, displayed significant antiproliferative effects on intracellular amastigotes of Trypanosoma cruzi and may be prospective candidates for antichagasic drug design and development. PMID:19545522

  4. Food web connections and the transmission cycles of Trypanosoma cruzi and Trypanosoma evansi (Kinetoplastida, Trypanosomatidae) in the Pantanal Region, Brazil.

    PubMed

    Herrera, H M; Rocha, F L; Lisboa, C V; Rademaker, V; Mourão, G M; Jansen, A M

    2011-07-01

    We examined by parasitological tests (hemocultures and buffy coat) infection by Trypanosoma cruzi and T. evansi in blood samples from Leopardus pardalis, Cerdocyon thous and domestic dogs. Besides, 25 T. cruzi isolates previously derived from feral pigs and small wild mammals were here characterized by miniexon gene and demonstrated to be in the TcI genotype. Herein, we make an overall analysis of the transmission cycle of both trypanosome species in the light of the assemblage of data collected over the last seven years. The carnivore Nasua nasua was confirmed to play a major role in the transmission cycles of both T. cruzi and T. evansi since it was the species that had the higher prevalence and higher parasitemias by both flagellate species. In addition, our results show that both trypanosomatid species may be found throughout the Pantanal landscape, in all forest strata, as shown by the infection of carnivore, arboreal and terrestrial scansorial marsupial species in complex and seasonal transmission cycles. We propose that transmission of T. cruzi and T. evansi in the southern Pantanal region takes place via an intricate ecological trophic network involving generalist and specialist mammal species that are linked through a robust food-web connection. PMID:21600622

  5. Structural Insights into Inhibition of Sterol 14[alpha]-Demethylase in the Human Pathogen Trypanosoma cruzi

    SciTech Connect

    Lepesheva, Galina I.; Hargrove, Tatiana Y.; Anderson, Spencer; Kleshchenko, Yuliya; Furtak, Vyacheslav; Wawrzak, Zdzislaw; Villalta, Fernando; Waterman, Michael R.

    2010-09-02

    Trypanosoma cruzi causes Chagas disease (American trypanosomiasis), which threatens the lives of millions of people and remains incurable in its chronic stage. The antifungal drug posaconazole that blocks sterol biosynthesis in the parasite is the only compound entering clinical trials for the chronic form of this infection. Crystal structures of the drug target enzyme, Trypanosoma cruzi sterol 14{alpha}-demethylase (CYP51), complexed with posaconazole, another antifungal agent fluconazole and an experimental inhibitor, (R)-4{prime}-chloro-N-(1-(2,4-dichlorophenyl)-2-(1H-imid-azol-1-yl)ethyl)biphenyl-4-carboxamide (VNF), allow prediction of important chemical features that enhance the drug potencies. Combined with comparative analysis of inhibitor binding parameters, influence on the catalytic activity of the trypanosomal enzyme and its human counterpart, and their cellular effects at different stages of the Trypanosoma cruzi life cycle, the structural data provide a molecular background to CYP51 inhibition and azole resistance and enlighten the path for directed design of new, more potent and selective drugs to develop an efficient treatment for Chagas disease.

  6. Evidence and importance of genetic exchange among field populations of Trypanosoma cruzi

    PubMed Central

    Messenger, Louisa A.; Miles, Michael A.

    2015-01-01

    Many eukaryotic pathogenic microorganisms that were previously assumed to propagate clonally have retained cryptic sexual cycles. The principal reproductive mode of Trypanosoma cruzi, the aetiological agent of Chagas disease, remains a controversial topic. Despite the existence of two recent natural hybrid lineages, a pervasive view is that recombination has been restrained at an evolutionary scale and is of little epidemiological relevance to contemporary parasite populations. This article reviews the growing number of field studies which indicate that natural hybridization in T. cruzi may be frequent, non-obligatory and idiosyncratic; potentially involving independent exchange of kinetoplast and nuclear genetic material as well as canonical meiotic mechanisms. Together these observations now challenge the traditional paradigm of preponderate clonal evolution in T. cruzi and highlight the need for additional, intensive and appropriately sampled field surveys, complemented by high resolution, combined nuclear and mitochondrial population genetics analyses. PMID:26188331

  7. Circulation of Tc Ia discrete type unit Trypanosoma cruzi in Yucatan Mexico.

    PubMed

    Monteón, Victor; Triana-Chávez, Omar; Mejía-Jaramillo, Ana; Pennignton, Pamela; Ramos-Ligonio, Ángel; Acosta, Karla; Lopez, Ruth

    2016-06-01

    The etiologic agent Trypanosoma cruzi (Tc) has been grouped into six discrete type units (DTU I-VI); within DTU-I exists four subgroups defined Ia-Id. In Colombia, the genotype Ia is associated with human infection and domiciliated Rhodnius vector. In the Yucatan Peninsula of Mexico, the main vector involved in T. cruzi transmission is Triatoma dimidiata predominantly via sylvatic and peridomiciliated cycles. In this study, multiple sequence analysis of mini-exon intergenic regions of T. cruzi isolates obtained from T. dimidiata in the Yucatan Peninsula of Mexico revealed they belonged to Tc Ia DTU along with two additional Mexican strains located 1,570 km away from Yucatan. In conclusion Tc Ia circulates in the Yucatan peninsula in T. dimidiata vector and likewise in the northwest region of Mexico. PMID:27413339

  8. JVG9, a benzimidazole derivative, alters the surface and cytoskeleton of Trypanosoma cruzi bloodstream trypomastigotes

    PubMed Central

    Díaz-Chiguer, Dylan L; Hernández-Luis, Francisco; Nogueda-Torres, Benjamín; Castillo, Rafael; Reynoso-Ducoing, Olivia; Hernández-Campos, Alicia; Ambrosio, Javier R

    2014-01-01

    Trypanosoma cruzi has a particular cytoskeleton that consists of a subpellicular network of microtubules and actin microfilaments. Therefore, it is an excellent target for the development of new anti-parasitic drugs. Benzimidazole 2-carbamates, a class of well-known broad-spectrum anthelmintics, have been shown to inhibit the in vitro growth of many protozoa. Therefore, to find efficient anti-trypanosomal (trypanocidal) drugs, our group has designed and synthesised several benzimidazole derivatives. One, named JVG9 (5-chloro-1H-benzimidazole-2-thiol), has been found to be effective against T. cruzi bloodstream trypomastigotes under both in vitro and in vivo conditions. Here, we present the in vitro effects observed by laser scanning confocal and scanning electron microscopy on T. cruzi trypomastigotes. Changes in the surface and the distribution of the cytoskeletal proteins are consistent with the hypothesis that the trypanocidal activity of JVG9 involves the cytoskeleton as a target. PMID:25317703

  9. ORC1/CDC6 and MCM7 distinct associate with chromatin through Trypanosoma cruzi life cycle.

    PubMed

    Calderano, Simone; Godoy, Patricia; Soares, Daiane; Sant'Anna, Osvaldo Augusto; Schenkman, Sergio; Elias, M Carolina

    2014-02-01

    Trypanosoma cruzi alternates between replicative and non-replicative stages. We analyzed the expression of components of the pre-replication machinery TcORC1/CDC6 and TcMCM7 and their interaction with DNA in all T. cruzi stages. TcORC1/CDC6 remains in the nuclear space during all stages of the life cycle and interacts with DNA in the replicative stages; however, it does not bind to DNA in the non-replicative forms. Moreover, TcMCM7 is not present in the non-replicative stages. These data suggest that the lacking of DNA replication during the T. cruzi life cycle may be a consequence of the blocking of TcORC1/CDC6-DNA interaction and of the down regulation of the TcMCM7 expression. PMID:24681203

  10. Seroprevalence and risk factors for Trypanosoma cruzi infection in the Amazon region of Ecuador.

    PubMed

    Grijalva, Mario J; Escalante, Luis; Paredes, Rodrigo A; Costales, Jaime A; Padilla, Alberto; Rowland, Edwin C; Aguilar, H Marcelo; Racines, Jose

    2003-10-01

    Trypanosoma cruzi infection in the Ecuadorian Amazon region has recently been reported. A seroepidemiologic survey conducted in four provinces in this region indicates a seroprevalence rate of 2.4% among the 6,866 samples collected in 162 communities. Among children < OR = 10 years of age, 1.2% were seropositive. Risk factors for T. cruzi seropositivity were having been born and remaining in the Ecuadorian Amazon provinces, age, living in a house with a thatch roof and open or mixed wall construction, recognizing the vector insects, and reporting being bitten by a triatomine bug. These data suggest active transmission of Chagas' disease in the Ecuadorian Amazon region is associated with poor housing conditions, and highlight the need for further studies aimed at understanding the biology of the insect vectors, reservoir species, and the clinical impact of T. cruzi infection as the basis for future educational and control programs in this region. PMID:14640497