Science.gov

Sample records for acute x-ray exposure

  1. Response of swine skin microvasculature to acute single exposures of x-rays: quantification of endothelial changes

    SciTech Connect

    Archambeau, J.O.; Ines, A.; Fajardo, L.F.

    1984-04-01

    An acute single X-ray exposure of 2300 R produces in swine skin a moist reaction (ulceration) that appears at 17 days, heals by 32 days, and may break down again between 42 and 70 days. Initial studies quantified the epidermal population density changes during this 70-day period. This study was designed to quantify the density changes occuring in the endothelial cell population of the dermal microvasculature. While the basal population decreases to a nadir of 10% control by 24 days, the endothelial population remains at control levels. Beyond 24 days, the endothelial cell density decreases abruptly to 50% as the epidermal cell density returns to control levels and overshoots by 20% at 32 days. Subsequently, both populations decrease to zero by 57 days. Endothelial cell loss parallels a similar decrease in vascular lumen density. These finding indicate that the initial moist reaction results from a radiation-induced loss of epidermal cells, while the second reaction results from the loss of dermal microvasculature.

  2. A paediatric X-ray exposure chart

    PubMed Central

    Knight, Stephen P

    2014-01-01

    The aim of this review was to develop a radiographic optimisation strategy to make use of digital radiography (DR) and needle phosphor computerised radiography (CR) detectors, in order to lower radiation dose and improve image quality for paediatrics. This review was based on evidence-based practice, of which a component was a review of the relevant literature. The resulting exposure chart was developed with two distinct groups of exposure optimisation strategies – body exposures (for head, trunk, humerus, femur) and distal extremity exposures (elbow to finger, knee to toe). Exposure variables manipulated included kilovoltage peak (kVp), target detector exposure and milli-ampere-seconds (mAs), automatic exposure control (AEC), additional beam filtration, and use of antiscatter grid. Mean dose area product (DAP) reductions of up to 83% for anterior–posterior (AP)/posterior–anterior (PA) abdomen projections were recorded postoptimisation due to manipulation of multiple-exposure variables. For body exposures, the target EI and detector exposure, and thus the required mAs were typically 20% less postoptimisation. Image quality for some distal extremity exposures was improved by lowering kVp and increasing mAs around constant entrance skin dose. It is recommended that purchasing digital X-ray equipment with high detective quantum efficiency detectors, and then optimising the exposure chart for use with these detectors is of high importance for sites performing paediatric imaging. Multiple-exposure variables may need to be manipulated to achieve optimal outcomes. PMID:26229655

  3. A paediatric X-ray exposure chart.

    PubMed

    Knight, Stephen P

    2014-09-01

    The aim of this review was to develop a radiographic optimisation strategy to make use of digital radiography (DR) and needle phosphor computerised radiography (CR) detectors, in order to lower radiation dose and improve image quality for paediatrics. This review was based on evidence-based practice, of which a component was a review of the relevant literature. The resulting exposure chart was developed with two distinct groups of exposure optimisation strategies - body exposures (for head, trunk, humerus, femur) and distal extremity exposures (elbow to finger, knee to toe). Exposure variables manipulated included kilovoltage peak (kVp), target detector exposure and milli-ampere-seconds (mAs), automatic exposure control (AEC), additional beam filtration, and use of antiscatter grid. Mean dose area product (DAP) reductions of up to 83% for anterior-posterior (AP)/posterior-anterior (PA) abdomen projections were recorded postoptimisation due to manipulation of multiple-exposure variables. For body exposures, the target EI and detector exposure, and thus the required mAs were typically 20% less postoptimisation. Image quality for some distal extremity exposures was improved by lowering kVp and increasing mAs around constant entrance skin dose. It is recommended that purchasing digital X-ray equipment with high detective quantum efficiency detectors, and then optimising the exposure chart for use with these detectors is of high importance for sites performing paediatric imaging. Multiple-exposure variables may need to be manipulated to achieve optimal outcomes. PMID:26229655

  4. A paediatric X-ray exposure chart

    SciTech Connect

    Knight, Stephen P

    2014-09-15

    The aim of this review was to develop a radiographic optimisation strategy to make use of digital radiography (DR) and needle phosphor computerised radiography (CR) detectors, in order to lower radiation dose and improve image quality for paediatrics. This review was based on evidence-based practice, of which a component was a review of the relevant literature. The resulting exposure chart was developed with two distinct groups of exposure optimisation strategies – body exposures (for head, trunk, humerus, femur) and distal extremity exposures (elbow to finger, knee to toe). Exposure variables manipulated included kilovoltage peak (kVp), target detector exposure and milli-ampere-seconds (mAs), automatic exposure control (AEC), additional beam filtration, and use of antiscatter grid. Mean dose area product (DAP) reductions of up to 83% for anterior–posterior (AP)/posterior–anterior (PA) abdomen projections were recorded postoptimisation due to manipulation of multiple-exposure variables. For body exposures, the target EI and detector exposure, and thus the required mAs were typically 20% less postoptimisation. Image quality for some distal extremity exposures was improved by lowering kVp and increasing mAs around constant entrance skin dose. It is recommended that purchasing digital X-ray equipment with high detective quantum efficiency detectors, and then optimising the exposure chart for use with these detectors is of high importance for sites performing paediatric imaging. Multiple-exposure variables may need to be manipulated to achieve optimal outcomes.

  5. Improved intensifying screen reduces X-ray exposure

    NASA Technical Reports Server (NTRS)

    Buchanan, R. A.

    1972-01-01

    X-ray intensifying screen may make possible radiographic procedures where detection speed and X-ray tube power have been the limiting factors. Device will reduce total population exposure to harmful radiation in the United States.

  6. [X-ray exposure dose control for x-ray CT system].

    PubMed

    Takagi, Hiroshi

    2002-01-01

    Shortening scan time of CT scanner system has been evolved and increase in number of CT examinations has also been remarkable. This has been resulted from global recognition of usefulness of the CT examination, contrary to this merit, however, it is important to recognize the risk of x-ray exposure dose. Japan Industry Association of Radiological Systems (JIRA) in which CT manufacturers join has issued the concrete countermeasure and guidance for reduction in x-ray exposure dose in response to the ICRP90 Recommendation. Current CT scanner systems provide the data related to x-ray exposure dose such as CTDI(w) for setting CT scan parameters. To reduce x-ray exposure dose against infant patient, the scan parameters specified to infant patient (CT infant protocol) can be provided. Exposure dose by x-ray CT can be measured by the measurement method corresponding to IEC-60601-2-44 and by using phantom. CTDI measurement is made by CTDI(100) that measures in a range of 100mm for all slice thicknesses, and absorbed radiation dose is converted to that of air. Dose profile is measured by using multiple thermoluminescence dosimeter (TDL) chips. CT exposure dose data including CTDI(100) and Dose profile are well-defined, and Dose Information Guide conforming to IEC-60601-2-44 is provided to user for the purpose of reducing x-ray exposure dose. Studies by low dose (2.5 approximately 3mA) simulation for the purpose of reducing x-ray exposure dose in screening CT examination of lung cancer and development of ROI scan to reduce x-ray exposure dose in puncture under CT fluoroscopy have also been conducted. PMID:12766284

  7. Improved control of medical x-ray film exposure

    NASA Technical Reports Server (NTRS)

    Berdahl, C. M.

    1978-01-01

    Exposure sensing system for light-intensified motion-picture X-ray system uses aperture or adjustable diaphragm to sample light from image region of interest. Approach, along with approximate optics, can optimize exposure sensitivity.

  8. Digital radiography can reduce scoliosis x-ray exposure

    SciTech Connect

    Kling, T.F. Jr.; Cohen, M.J.; Lindseth, R.E.; De Rosa, G.P. )

    1990-09-01

    Digital radiology is a new computerized system of acquiring x-rays in a digital (electronic) format. It possesses a greatly expanded dose response curve that allows a very broad range of x-ray dose to produce a diagnostic image. Potential advantages include significantly reduced radiation exposure without loss of image quality, acquisition of images of constant density irrespective of under or over exposure, and reduced repeat rates for unsatisfactory films. The authors prospectively studied 30 adolescents with scoliosis who had both conventional (full dose) and digital (full, one-half, or one-third dose) x-rays. They found digital made AP and lateral image with all anatomic areas clearly depicted at full and one-half dose. Digital laterals were better at full dose and equal to conventional at one-half dose. Cobb angles were easily measured on all one-third dose AP and on 8 of 10 one-third dose digital laterals. Digital clearly depicted the Risser sign at one-half and one-third dose and the repeat rate was nil in this study, indicating digital compensates well for exposure errors. The study indicates that digital does allow radiation dose to be reduced by at least one-half in scoliosis patients and that it does have improved image quality with good contrast over a wide range of x-ray exposure.

  9. X-ray calibration of Kodak Direct Exposure film

    SciTech Connect

    Brown, D.B.; Burkhalter, P.G.; Rockett, P.D.; Bird, C.R.; Hailey, C.J.; Sullivan, D.

    1985-08-15

    Kodak Direct Exposure film (DEF) has replaced Kodak No-Screen film for use in x-ray diffraction analysis and in autoradiography. DEF is a double-emulsion film which has been found to have improved radio-graphic characteristics over No-Screen. A set of H-D curves has been generated for DEF at five photon energies: 0.930, 1.49, 1.74, 4.51/4.93, and 6.93 keV. The KMSF x-ray calibration facility was utilized to study the absolute sensitivity of this film over its full dynamic range. Physical examination of the film was followed by theoretical modeling, which adequately reproduced the measured curves.

  10. 21 CFR 872.1820 - Dental x-ray exposure alignment device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Dental x-ray exposure alignment device. 872.1820... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1820 Dental x-ray exposure alignment device. (a) Identification. A dental x-ray exposure alignment device is a device intended to position...

  11. 21 CFR 872.1820 - Dental x-ray exposure alignment device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Dental x-ray exposure alignment device. 872.1820... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1820 Dental x-ray exposure alignment device. (a) Identification. A dental x-ray exposure alignment device is a device intended to position...

  12. 21 CFR 872.1820 - Dental x-ray exposure alignment device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Dental x-ray exposure alignment device. 872.1820... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1820 Dental x-ray exposure alignment device. (a) Identification. A dental x-ray exposure alignment device is a device intended to position...

  13. 21 CFR 872.1820 - Dental x-ray exposure alignment device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Dental x-ray exposure alignment device. 872.1820... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1820 Dental x-ray exposure alignment device. (a) Identification. A dental x-ray exposure alignment device is a device intended to position...

  14. 21 CFR 872.1820 - Dental x-ray exposure alignment device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Dental x-ray exposure alignment device. 872.1820... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1820 Dental x-ray exposure alignment device. (a) Identification. A dental x-ray exposure alignment device is a device intended to position...

  15. Radiation Exposure in X-Ray and CT Examinations

    MedlinePlus

    ... procedures. See the X-ray, Interventional Radiology and Nuclear Medicine Radiation Safety page for more information. top of page ... and Radiation Safety X-ray, Interventional Radiology and Nuclear Medicine Radiation Safety Videos related to Radiation Dose in X- ...

  16. Effect of repeated x-ray exposure on the resolution of amorphous selenium based x-ray imagers

    SciTech Connect

    Kabir, M. Z.; Chowdhury, L.; DeCrescenzo, G.; Tousignant, O.; Kasap, S. O.; Rowlands, J. A.

    2010-03-15

    Purpose: A numerical model and the experimental methods to study the x-ray exposure dependent change in the modulation transfer function (MTF) of amorphous selenium (a-Se) based active matrix flat panel imagers (AMFPIs) are described. The physical mechanisms responsible for the x-ray exposure dependent change in MTF are also investigated. Methods: A numerical model for describing the x-ray exposure dependent MTF of a-Se based AMFPIs has been developed. The x-ray sensitivity and MTF of an a-Se AMFPI have been measured as a function of exposure. The instantaneous electric field and free and trapped carrier distributions in the photoconductor layer are obtained by numerically solving the Poisson's equation, continuity equations, and trapping rate equations using the backward Euler finite difference method. From the trapped carrier distributions, a method for calculating the MTF due to incomplete charge collection is proposed. Results: The model developed in this work and the experimental data show a reasonably good agreement. The model is able to simultaneously predict the dependence of the sensitivity and MTF on accumulated exposure at different applied fields and bias polarities, with the same charge transport parameters that are typical of the particular a-Se photoconductive layer that is used in these AMFPIs. Under negative bias, the MTF actually improves with the accumulated x-ray exposure while the sensitivity decreases. The MTF enhancement with exposure decreases with increasing applied field. Conclusions: The most prevalent processes that control the MTF under negative bias are the recombination of drifting holes with previously trapped electrons (electrons remain in deep traps due to their long release times compared with the time scale of the experiments) and the deep trapping of drifting holes and electrons.

  17. Apparatus for setting exposure parameters of an X-ray generator

    SciTech Connect

    Kasa, Z.; Farkas, I.

    1989-03-07

    Apparatus is described for setting exposure parameters of an X-ray generator comprising: (a) an X-ray tube transformer, (b) a plurality of output terminals, on the X-ray tube transformer, (c) switching means connected to the output terminals, (d) a pair of high voltage lines selectively coupled to the output terminals by the switching means, (e) an X-ray tube, (f) exposure switching to the X-ray tube during a predetermined exposure period, (g) exposure means for determining a starting moment of an exposure period, (h) setting means for determining dosage of the exposure, (i) a filament transformer for heating a filament of the tube, (j) filament supply means for coupling a filament current selectable from a plurality of discrete current values to the filament transformer, and (k) a processor.

  18. Imaging local electric fields produced upon synchrotron X-ray exposure

    PubMed Central

    Dettmar, Christopher M.; Newman, Justin A.; Toth, Scott J.; Becker, Michael; Fischetti, Robert F.; Simpson, Garth J.

    2015-01-01

    Electron–hole separation following hard X-ray absorption during diffraction analysis of soft materials under cryogenic conditions produces substantial local electric fields visualizable by second harmonic generation (SHG) microscopy. Monte Carlo simulations of X-ray photoelectron trajectories suggest the formation of substantial local electric fields in the regions adjacent to those exposed to X-rays, indicating a possible electric-field–induced SHG (EFISH) mechanism for generating the observed signal. In studies of amorphous vitreous solvents, analysis of the SHG spatial profiles following X-ray microbeam exposure was consistent with an EFISH mechanism. Within protein crystals, exposure to 12-keV (1.033-Å) X-rays resulted in increased SHG in the region extending ∼3 μm beyond the borders of the X-ray beam. Moderate X-ray exposures typical of those used for crystal centering by raster scanning through an X-ray beam were sufficient to produce static electric fields easily detectable by SHG. The X-ray–induced SHG activity was observed with no measurable loss for longer than 2 wk while maintained under cryogenic conditions, but disappeared if annealed to room temperature for a few seconds. These results provide direct experimental observables capable of validating simulations of X-ray–induced damage within soft materials. In addition, X-ray–induced local fields may potentially impact diffraction resolution through localized piezoelectric distortions of the lattice. PMID:25552555

  19. Medical x-ray exposure doses as contaminants of atomic bomb doses.

    PubMed

    Yamamoto, O; Antoku, S; Russell, W J; Fujita, S; Sawada, S

    1988-03-01

    Since 1967 at the times of their biennial ABCC/RERF radiological examinations, all Adult Health Study (AHS) subjects have been interviewed to determine the exposures to medical x-rays they experienced in institutions other than RERF in order to estimate the numbers of examinations and corresponding doses which they received. These data have been stored on computer tapes together with the doses these subjects received during their radiological examinations in the ABCC/RERF Department of Radiology. Thus, their medical x-ray doses are available along with their atomic bomb doses (tentative 1965 doses revised, T65DR) for assessment of the role of ionizing radiation in the development of diseases. The medical x-ray doses incurred at RERF were assessed by means of phantom dosimetry. Those at other institutions were determined using phantom dosimetry data and results of surveys for trends in radiological examinations in Hiroshima and Nagasaki. By the end of 1982, the average medical x-ray doses to the active bone marrow were 12.04 mGy for A-bomb exposed groups and 8.92 mGy for control groups (not-in-cities); to the male gonads, 2.26 mGy and 1.89 mGy, respectively; and to the female gonads, 17.45 mGy and 12.58 mGy, respectively. Results for Hiroshima and Nagasaki were similar. The main impact of medical x-ray doses was in the lowest T65DR group. Medical x-ray active bone marrow doses ranged from 0.05-500% (mean, 35%) of A-bomb doses in the 10-99 mGy T65DR group. In the 100-999 mGy T65DR group, medical x-ray active bone marrow doses ranged from 0.005-50% (mean, 5%) of their T65DR. In the greater than 1,000-mGy T65DR group, medical x-ray exposures were proportionally less. Female active bone marrow and gonad doses were similar in magnitude to the male active bone marrow doses. Medical x-ray exposures produced smaller doses to the gonads of males than to those of the females. The use of medical x-rays is steadily increasing. Careful consideration of doses from medical sources

  20. A hard x-ray prototype production exposure station at NSLS

    SciTech Connect

    Johnson, E.D.; Milne, J.C.

    1997-07-01

    Exposures conducted at the NSLS R and D beamline (X-27B) for High Aspect Ratio Precision Manufacture have proven sufficiently successful that the authors are constructing a dedicated hard x-ray exposure beamline. The new beamline (X-14B) provides an exposure field {approximately} 120 mm wide, three times larger than that of X-27B. The scanner is based on the hydraulic system from the X-27B program. It is optimized for planar exposures and takes advantage of the full 525 mm stroke available. Exposures of multiple substrates and masks will be possible, with the fixturing supporting mounting of substrate holders from other groups (ALS, APS, CAMD, and UW). The function of this beamline is to establish a hard x-ray exposure station where manufacturing scale protocols can be developed and ultimately exploited for production runs.

  1. Exposure reduction through quality assurance for diagnostic x-ray procedures.

    PubMed

    Lipoti, Jill A

    2008-11-01

    Traditional state x-ray inspection programs concentrate on measurement of x-ray machine parameters such as kVp and mAs, timer accuracy, collimation, etc. In 1996, the New Jersey radiation control program began a paradigm shift from the traditional inspection to an outcome-based inspection that concentrated on two indicators of performance: image quality and entrance skin exposure (ESE). Through extensive outreach and involvement of stakeholders, a new approach was designed that placed an emphasis on quality assurance. Key to the positive outcome has been the credentialing of medical physicists. On 16 January 2001, the final regulation titled "Quality Assurance Programs for Medical Diagnostic X-ray Installations" was adopted. The new regulations require that each facility using diagnostic medical x-ray equipment (including radiographic, fluoroscopic, x-ray bone densitometric, and computed tomographic) establish and carry out a quality assurance program. The new regulation specifies the quality control tests, frequencies, and standards that are part of the quality assurance program. Five years of data have been gathered. Both ESE and image quality are checked and the inspectors conduct an audit of the facility's quality assurance program. ESE has been decreased by 34% for lumbar spine, 46% for chest, and 66% for foot x-ray procedures. Image quality has improved by 22%. Quality improvement initiatives were extended to the larger dental x-ray community. Through outreach and information sharing, stakeholders were instructed in the factors that affect patient radiation exposure and image quality and were encouraged to take actions to improve in these areas. PMID:18849692

  2. Exposure values around an x-ray scanning transaxial tomograph (EMI scanner).

    PubMed

    Gross, G; McCullough, E C

    1975-01-01

    Measurements of exposure accumulated in a one-month period in and around a scanning x-ray transaxial tomograph are reported. For the unit studied (the EMI neurological scanner) values measured indicate that the shielding required is "minimal." PMID:1186637

  3. Evaluation of Exposure From a Low Energy X-Ray Device Using Thermoluminescent Dosimeters

    NASA Technical Reports Server (NTRS)

    Edwards, David L.; Harris, William S., Jr.

    1997-01-01

    The exposure from an electron beam welding device was evaluated using thermoluminescent dosimeters (TLDs). The device generated low energy X-rays which the current dose equivalent conversion algorithm was not designed to evaluate making it necessary to obtain additional information relating to TLD operation at the photon energies encountered with the device. This was accomplished by performing irradiations at the National Institute of Standards and Technology (NIST) using low energy X-ray techniques. The resulting data was used to determine TLD badge response for low energy X-rays and to establish the relationship between TLD element response and the dose equivalent at specific depths in tissue for these photon energies. The new energy/dose equivalent calibration data was used to calculate the shallow and eye dose equivalent of badges exposed to the device.

  4. Radiation exposure in a modern, circularly scanned-beam laminographic X-ray inspection system.

    PubMed

    Fazzio, R S

    1998-01-01

    Circularly scanned-beam laminography is currently the predominant technique used for the nondestructive examination of printed circuit solder assemblies via cross-sectional X-ray imaging. Given industry trends towards double-sided assemblies and limited access components, cross-sectional X-ray inspection is furthermore becoming increasingly important. Use of X-rays for inspection of solder joints on loaded printed circuit boards nonetheless often leads to concern surrounding possible undesirable radiation effects on the circuitry mounted on the board. In this paper we develop a simple analytical model useful for predicting the radiation exposure rates in a scanned-beam laminography system. We demonstrate the validity of the model through a series of dosimetry experiments. PMID:22388470

  5. Evaluation of the medical exposure doses regarding dental examinations with different X-ray instruments

    NASA Astrophysics Data System (ADS)

    Liu, Yi-Chi; Chuang, Keh-Shih; Yu, Cheng-Ching; Chao, Jiunn-Hsing; Hsu, Fang-Yuh

    2015-11-01

    Modern dental X-ray examination that consists of traditional form, panorama, and cone-beamed 3D technologies is one of the most frequent diagnostic applications nowadays. This study used the Rando Phantom and thermoluminescence dosimeters (TLD) to measure the absorbed doses of radiosensitive organs recommended by International Commission on Radiological Protection (ICRP), and whole body effective doses which were delivered due to dental X-ray examination performed with different types of X-ray instrument. Besides, enamel samples which performed reading with Electronic Paramagnetic Resonance (EPR) procedure were also used to estimate the tooth doses. EPR is a dose reconstruction method of measuring free radicals induced by radiation exposure to the calcified tissue (mainly in the tooth enamel or bone) to evaluate the accepted high dose. The tooth doses estimated by TLD and EPR methods were compared. Relationships between the tooth doses and effective doses by dental X-ray examinations with different types of X-ray equipment were investigated in this work.

  6. Update of diagnostic medical and dental x-ray exposures in Romania.

    PubMed

    Sorop, Ioana; Mossang, Daniela; Iacob, Mihai Radu; Dadulescu, Elena; Iacob, Olga

    2008-12-01

    This national study, the third in the last 15 years, updates the magnitude of medical radiation exposure from conventional x-ray examinations, in order to optimise the radiological protection to the population in a cost-effective manner. Effective doses from diagnostic radiology were estimated for adult and paediatric patients undergoing the 20 most important types of x-ray examination. Data were collected from 179 x-ray departments, selected by their annual workload, throughout the country. Estimates were made using two dosimetric quantities: entrance surface dose, derived from the absorbed dose in air measured by simulation of radiographic examinations, and dose-area product, measured during fluoroscopic examinations performed on adult and paediatric patients. Conversion coefficients to effective dose of the UK National Radiological Protection Board (NRPB) have been used in all calculations. The effective dose per patient from all medical x-ray examinations was 0.74 mSv and the resulting annual collective effective dose was 6930 man Sv, with annual effective dose per caput of 0.33 mSv. The current size of population exposure from diagnostic radiology is lower than the previous one by 40%, but could be about 30% higher by taking into account the estimated contribution from computed tomography (CT) procedures. PMID:19029586

  7. Radiation exposure in X-ray-based imaging techniques used in osteoporosis

    PubMed Central

    Adams, Judith E.; Guglielmi, Giuseppe; Link, Thomas M.

    2010-01-01

    Recent advances in medical X-ray imaging have enabled the development of new techniques capable of assessing not only bone quantity but also structure. This article provides (a) a brief review of the current X-ray methods used for quantitative assessment of the skeleton, (b) data on the levels of radiation exposure associated with these methods and (c) information about radiation safety issues. Radiation doses associated with dual-energy X-ray absorptiometry are very low. However, as with any X-ray imaging technique, each particular examination must always be clinically justified. When an examination is justified, the emphasis must be on dose optimisation of imaging protocols. Dose optimisation is more important for paediatric examinations because children are more vulnerable to radiation than adults. Methods based on multi-detector CT (MDCT) are associated with higher radiation doses. New 3D volumetric hip and spine quantitative computed tomography (QCT) techniques and high-resolution MDCT for evaluation of bone structure deliver doses to patients from 1 to 3 mSv. Low-dose protocols are needed to reduce radiation exposure from these methods and minimise associated health risks. PMID:20559834

  8. Dual energy X-ray absorptiometry (DXA): can it detect acute scaphoid fractures?

    PubMed

    Stephen, A B; Pye, D; Lyons, A R; Oni, J A; Davis, T R C

    2005-02-01

    This prospective study investigated whether dual energy X-ray absorptiometry (DXA) could detect acute scaphoid fractures. We blindly compared 10 normal and 10 fractured scaphoid images produced with a new technique of DXA scan analysis. This measured and plotted the density of the scaphoid throughout its length, producing a linear graph of the scaphoids' density instead of a single area (g/cm2) measurement of bone density. These new plots only detected six of the 10 fractures and suggested that four of the normal controls were fractured. Thus, this technique of DXA scan analysis is neither sensitive nor specific for the detection of acute scaphoid fractures. PMID:15620498

  9. Method for minimizing the radiation exposure from scoliosis radiographs. [X ray

    SciTech Connect

    De Smet, A.A.; Fritz, S.L.; Asher, M.A.

    1981-01-01

    The radiation exposure resulting from standard scoliosis radiographs was determined for eighteen adolescent girls. The risk of inducing breast cancer was estimated from the skin-exposure doses. The average skin exposure to the breasts was 59.6 millirads (0.59 mGy) for the anteroposterior radiograph. Assuming a total of twenty-two anteroposterior radiographs during a course of treatment, the cumulative exposure would result in a 1.35% relative increase in the risk of development of breast cancer. By utilizing collimation of the x-ray beam and proper selection of grids, films, and screens, the radiation risk of scoliosis radiographs is minimized.

  10. Hygiene implications associated with x-ray exposures to dental patients

    SciTech Connect

    McKlveen, J.W.

    1980-12-01

    An elastic mask worn by patients, then a skeleton encased in plastic, was instrumented with LiF thermoluminescent dosimeters to quantify radiation exposures delivered from full-face diagnostic dental x-rays. Locations of interest included skin surface, eyes, upper and lower teeth and thyroid. Exposures in the 100 mR range were common and a maximum of over 6000 mR was measured in the teeth region during a full-face examination with a periapical unit. In general, exposures received from periapical equipment were several times those obtained from panoramic devices.

  11. SOSORT 2012 consensus paper: reducing x-ray exposure in pediatric patients with scoliosis

    PubMed Central

    2014-01-01

    This 2012 Consensus paper reviews the literature on side effects of x-ray exposure in the pediatric population as it relates to scoliosis evaluation and treatment. Alternative methods of spinal assessment and imaging are reviewed, and strategies for reducing the number of radiographs are developed. Using the Delphi technique, SOSORT members developed consensus statements that describe how often radiographs should be taken in each of the pediatric and adolescent sub-populations. PMID:24782912

  12. Determinants of exposure to chemical pollutants in wet X-ray film processing in Iran.

    PubMed

    Kakooei, Hossein; Ardakani, Mehdi B; Sadighi, Alireza

    2007-07-15

    The aim of the current study was to measure glutaraldehyde, acetic acid and sulfur dioxide and levels inside wet x-ray processing areas in a developing country and comparing data with those in developed countries. Forty-five radiographers from 10 educational hospitals affiliated to the Tehran University of Medical Sciences (TUMS) in Tehran, Iran participated in this descriptive-analytical study. Exposure to glutaraldehyde (a constituent of developer chemistry), acetic acid (a constituent of fixer chemistry) and sulfur dioxide (a byproduct of sulfites present in both developer and fixer solutions) was measured in all participants as well as area exposure. Average full-shift exposure to glutaraldehyde, acetic acid and sulfur dioxide were 0.0018, 2.65 and 1.64 mg m(-1), respectively. The results showed that the TUMS radiographers full-shift exposures are generally lower than the American Conference of Governmental Industrial Hygienists (ACGIH) recommended levels. The concentration of glutaraldehyde collected by area sampling (darkroom) was almost five times (0.0104 mg m(-3)) greater than taken by personal sampling. Exposure to the chemical pollutants in the currents study were generally higher than in developed countries. Identification of these key exposure determinants is useful in targeting exposure evaluation and controls to reduce developer and fixer chemicals exposures in the radiology departments. Employing of a digital imaging system that do not involve wet x-ray processing of photographic film would be a useful device for radiographers protection. PMID:19070154

  13. Beamline and exposure station for deep x-ray lithography at the Advanced Photon Source

    SciTech Connect

    Lai, B.; Mancini, D.C.; Yun, W.; Gluskin, E.

    1996-12-31

    APS is a third-generation synchrotron radiation source. With an x-ray energy of 19.5 keV and highly collimated beam (<0.1 mrad), APS is well suited for producing high-aspect-ratio microstructures in thick resist films (> 1 mm) using deep x-ray lithography (DXRL). The 2-BM beamline was constructed and will be used for DXRL at APS. Selection of appropriate x-ray energy range is done through a variable-angle mirror and various filters in the beamline. At the exposure station, the beam size will be 100(H) x 5(V) mm{sup 2}. Uniform exposure will be achieved by a high-speed (100 mm/sec) vertical scanner, which allows precise angular ({approximately}0.1 mrad) and positional (< 1 {mu}m) control of the sample, allowing full use of the highly collimated beam for lateral accuracy and control of sidewall slopes during exposure of thick resists, as well as generation of conicals and other profiles. For 1-mm-thick PMMA, a 100 x 25 mm{sup 2} area can be fully exposed in about 1/2 hr, while even 10-mm-thick PMMA will require only 2-3 hours.

  14. Efficient E-Beam Lithography Exposure Strategies for Diffractive X-ray Optics

    NASA Astrophysics Data System (ADS)

    Guzenko, V. A.; Romijn, J.; Vila-Comamala, J.; Gorelick, S.; David, C.

    2011-09-01

    Exposure of structures with rotational symmetry by means of electron beam lithography is not trivial, because the e-beam writers are usually designed to deal with the data defined in Cartesian coordinates. Fabrication of circular nanostructures like Fresnel zone plates (FZPs) for x-ray microscopy applications requires exposures with resolution well below 1 nm. Therefore, special attention has to be paid to the efficient exposure data preparation, which will guarantee required precision and allow keeping the exposure time low. In this article, we describe in detail an optimized strategy that was applied for exposure of FZPs by the Vistec EBPG5000Plus e-beam lithography tool. Direct programming of exposure files allowed us to use fully the capabilities of this e-beam writer to expose efficiently and reproducibly FZPs with desired characteristics in both positive and negative tone resists.

  15. Dual-exposure technique for extending the dynamic range of x-ray flat panel detectors

    NASA Astrophysics Data System (ADS)

    Sisniega, A.; Abella, M.; Desco, M.; Vaquero, J. J.

    2014-01-01

    This work presents an approach to extend the dynamic range of x-ray flat panel detectors by combining two acquisitions of the same sample taken with two different x-ray photon flux levels and the same beam spectral configuration. In order to combine both datasets, the response of detector pixels was modelled in terms of mean and variance using a linear model. The model was extended to take into account the effect of pixel saturation. We estimated a joint probability density function (j-pdf) of the pixel values by assuming that each dataset follows an independent Gaussian distribution. This j-pdf was used for estimating the final pixel value of the high-dynamic-range dataset using a maximum likelihood method. The suitability of the pixel model for the representation of the detector signal was assessed using experimental data from a small-animal cone-beam micro-CT scanner equipped with a flat panel detector. The potential extension in dynamic range offered by our method was investigated for generic flat panel detectors using analytical expressions and simulations. The performance of the proposed dual-exposure approach in realistic imaging environments was compared with that of a regular single-exposure technique using experimental data from two different phantoms. Image quality was assessed in terms of signal-to-noise ratio, contrast, and analysis of profiles drawn on the images. The dynamic range, measured as the ratio between the exposure for saturation and the exposure equivalent to instrumentation noise, was increased from 76.9 to 166.7 when using our method. Dual-exposure results showed higher contrast-to-noise ratio and contrast resolution than the single-exposure acquisitions for the same x-ray dose. In addition, image artifacts were reduced in the combined dataset. This technique to extend the dynamic range of the detector without increasing the dose is particularly suited to image samples that contain both low and high attenuation regions.

  16. A novel method of microneedle array fabrication using inclined deep x-ray exposure

    NASA Astrophysics Data System (ADS)

    Moon, Sang Jun; Jin, Chun Yan; Lee, Seung S.

    2006-04-01

    We report a novel fabrication method for the microneedle array with a 3-dimentional feature and its replication method; ''Hot-pressing'' process with bio-compatible material, PLLA (Poly L-LActide). Using inclined deep X-ray exposure technique, we fabricate a band type microneedle array with a single body on the same material basement. Since the single body feature does not make adhesion problem with the microneedle shank and basement during peel-off step of a mold, the PMMA (Poly-Methyl-MethAcrylate) microneedle array mold insert can be used for mold process which is used with the soft material mold, PDMS (Poly-Di- Methyl-Siloxane). The side inclined deep X-ray exposure also makes complex 3-dimentional features by the regions which are not exposed during twice successive exposure steps. In addition, the successive exposure does not need an additional mask alignment after the first side exposure. The fabricated band type microneedle array mold inserts are assembled for large area patch type out-of-plane microneedle array. The bio-compatible microneedle array can be fabricated to the laboratory scale mass production by the single body PMMA mold insert and ''Hot-pressing'' process.

  17. Cross calibration of new x-ray films against direct exposure film from 1 to 8 keV using the X-pinch x-ray source

    SciTech Connect

    Chandler, K.M.; Pikuz, S.A.; Shelkovenko, T.A.; Mitchell, M.D.; Hammer, D.A.; Knauer, J.P.

    2005-11-15

    A cross calibration of readily available x-ray sensitive films has been carried out against the calibrated direct exposure film (DEF) which is no longer being manufactured by Kodak. Four-wire X pinches made from various metal wires were used as x-ray sources for this purpose. Tests were carried out for the Kodak films Biomax MS, Biomax XAR, M100, Technical Pan, and T-Max over the energy range of 1-8 keV (12.4-1.5 A wavelength). The same hand-development procedures as described by Henke et al. [J. Opt. Soc. Am. B 3, 1540 (1986)] were followed for all films in every test. Sensitivity curves as a function of wavelength for these films relative DEF are presented. These relative calibrations show that Biomax MS is likely to be the best replacement film for DEF for most purposes over the energy range tested here.

  18. Cross calibration of new x-ray films against direct exposure film from 1 to 8 keV using the X-pinch x-ray source

    NASA Astrophysics Data System (ADS)

    Chandler, K. M.; Pikuz, S. A.; Shelkovenko, T. A.; Mitchell, M. D.; Hammer, D. A.; Knauer, J. P.

    2005-11-01

    A cross calibration of readily available x-ray sensitive films has been carried out against the calibrated direct exposure film (DEF) which is no longer being manufactured by Kodak. Four-wire X pinches made from various metal wires were used as x-ray sources for this purpose. Tests were carried out for the Kodak films Biomax MS, Biomax XAR, M100, Technical Pan, and T-Max over the energy range of 1-8keV (12.4-1.5Å wavelength). The same hand-development procedures as described by Henke et al. [J. Opt. Soc. Am. B 3, 1540 (1986)] were followed for all films in every test. Sensitivity curves as a function of wavelength for these films relative DEF are presented. These relative calibrations show that Biomax MS is likely to be the best replacement film for DEF for most purposes over the energy range tested here.

  19. Strict X-ray beam collimation for facial bones examination can increase lens exposure

    PubMed Central

    Powys, R; Robinson, J; Kench, P L; Ryan, J; Brennan, P C

    2012-01-01

    Objectives It is well accepted that collimation is a cost-effective dose-reducing tool for X-ray examinations. This phantom-based study investigated the impact of X-ray beam collimation on radiation dose to the lenses of the eyes and thyroid along with the effect on image quality in facial bone radiography. Methods A three-view series (occipitomental, occipitomental 30 and lateral) was investigated, and radiation doses to the lenses and thyroid were measured using an Unfors dosemeter. Images were assessed by six experienced observers using a visual grading analysis and a total of 5400 observations were made. Results Strict collimation significantly (p<0.0001) reduced the radiation dose to the lenses of the eyes and thyroid when using a fixed projection-specific exposure. With a variable exposure technique (fixed exit dose, to simulate the behaviour of an automatic exposure control), while strict collimation was again shown to reduce thyroid dose, higher lens doses were demonstrated when compared with larger fields of exposure. Image quality was found to significantly improve using strict collimation, with observer preference being demonstrated using visual grading characteristic curves. Conclusion The complexities of optimising radiographic techniques have been shown and the data presented emphasise the importance of examining dose-reducing strategies in a comprehensive way. PMID:22374279

  20. A practical exposure-equivalent metric for instrumentation noise in x-ray imaging systems

    PubMed Central

    Yadava, G K; Kuhls-Gilcrist, A T; Rudin, S; Patel, V K; Hoffmann, K R; Bednarek, D R

    2008-01-01

    The performance of high-sensitivity x-ray imagers may be limited by additive instrumentation noise rather than by quantum noise when operated at the low exposure rates used in fluoroscopic procedures. The equipment-invasive instrumentation noise measures (in terms of electrons) are generally difficult to make and are potentially not as helpful in clinical practice as would be a direct radiological representation of such noise that may be determined in the field. In this work, we define a clinically relevant representation for instrumentation noise in terms of noise-equivalent detector entrance exposure, termed the instrumentation noise-equivalent exposure (INEE), which can be determined through experimental measurements of noise-variance or signal-to-noise ratio (SNR). The INEE was measured for various detectors, thus demonstrating its usefulness in terms of providing information about the effective operating range of the various detectors. A simulation study is presented to demonstrate the robustness of this metric against post-processing, and its dependence on inherent detector blur. These studies suggest that the INEE may be a practical gauge to determine and compare the range of quantum-limited performance for clinical x-ray detectors of different design, with the implication that detector performance at exposures below the INEE will be instrumentation-noise limited rather than quantum-noise limited. PMID:18723932

  1. Deformations and stress in PMMA during hard x-ray exposure for deep lithography.

    SciTech Connect

    Moldovan, N.

    1999-08-17

    The availability of high-energy, high-flux, collimated synchrotrons radiation has extended the application of deep X-ray lithography (DXRL) to thickness values of the PMMA resist of several millimeters. Some of the most severe limitations come from plastic deformation, stress, and cracks induced in PMMA during exposure and development. We have observed and characterized these phenomena quantitatively. Profilometry measurements revealed that the PMMA is subjected either to local shrinkage or to expansion, while compression and expansion evolve over time. Due to material loss and crosslinking, the material undergoes a shrinkage, while the radiation-induced decomposition generates gases expanding the polymer matrix. The overall dynamics of the material microrelief and stress during and after the exposure depend on the balance between compaction and outgassing. These depend in turn on the exposure conditions (spectrum; dose, dose rate, seaming, temperature), post-exposure storage conditions, PMMA material properties and thickness, and also on the size and geometry of the exposed patterns.

  2. Development of broadband X-ray interference lithography large area exposure system

    NASA Astrophysics Data System (ADS)

    Xue, Chaofan; Wu, Yanqing; Zhu, Fangyuan; Yang, Shumin; Liu, Haigang; Zhao, Jun; Wang, Liansheng; Tai, Renzhong

    2016-04-01

    The single-exposure patterned area is about several 102 × 102 μm2 which is mainly decided by the mask area in multi-beam X-ray interference lithography (XIL). The exposure area is difficult to stitch to a larger one because the patterned area is surrounded by 0th diffraction exposure areas. To block the 0th diffraction beams precisely and effectively, a new large area exposure technology is developed in the Shanghai Synchrotron Radiation Facility by applying an order-sorting aperture with a new in situ monitoring scheme in the XIL system. The patterned area could be stitched readily up to several square centimeters and even bigger by this technology.

  3. Effect of medical x-ray exposure on subsequent reproductive outcomes in scoliosis patients

    SciTech Connect

    Visscher, W.A.

    1987-01-01

    A retrospective cohort study was done which was designed to assess the effects of medical x-ray exposure on cancer incidence among scoliosis patients. Although the primary purpose of the study was to assess cancer incidence, a secondary goal was to investigate whether diagnostic x-ray exposure is related to adverse reproductive events in the female subjects. A series of case-control analyses were done which were designed to assess these effects. Radiation exposure was measured both by total films received and by an estimate of the number of films received and by an estimate of the number of films which involved ovarian irradiation. Radiation appeared to increase a woman's risk of any adverse event in the overall analysis and her risk of a premature or low birth weight infant in the separate analyses. Radiation did not appear to be related to spontaneous abortion, complications of pregnancy or delivery or birth defects, although the results of the pregnancy complications analysis was suggestive.

  4. Comparing plasma and X-ray exposure and identifying vulnerable cell parts

    NASA Astrophysics Data System (ADS)

    Graham, Bill

    2012-10-01

    Here two issues in plasma medicine that are being addressed in a collaboration between the Centre of Plasma Physics and the School of Pharmacy at Queen's University Belfast and the Plasma Institute at York University UK will be discussed. Recent measurements of the interaction of plasmas created directly in DMEM cell medium and MDAMB-231, a human breast cancer cell line, showed evidence of reduced cell viability and of DNA damage. The same set of experiments were undertaken but with X-ray exposure. A correlation of the dependence on plasma exposure time and X-ray dose was observed which might point the way to dose definition in plasma medicine. We have also been working to identify the cell parts most vulnerable to plasma exposure. In this study a 10 kHz atmospheric pressure non-thermal plasma jet, operating in He/0.5%O2 and characterized to determine the behavior of many of the plasma species, was incident onto the surface of media containing either bacterial strains, in their planktonic and biofilm forms, or isolated bacterial plasmid DNA. The results of measurements to look for changes in plasmid structural conformation, rates of single and double strand breaks, the catalytic activity of certain bacterial enzymes, the peroxidation of lipid content of the bacterial cells, the leakage of ATP and Scanning Electron Microscope (SEM) images will be discussed.

  5. Research on reducing radiation exposure for clinical applications of X-ray attenuation

    NASA Astrophysics Data System (ADS)

    Jeon, Min-Cheol; Han, Man-Seok; So, Woon-Young; Lee, Hyeon-Guck; Kim, Yong-Kyun; Lee, Seung-Yeol

    2014-02-01

    This study was aimed at identifing areas with low radiation exposure where workers could be taken in the examination room in case that they had to hold the patients by estimating the attenuation of primary radiation and measuring the spatial distribution of scattered radiation. The laboratory equipment included on the X-ray generator, a phantom (human phantom), and a dosimeter. The experiment measured the performance of the examination system (dose reproducibility), the dose of primary radiation (X-rays), and the dose of scattered radiation (secondary radiation). Both the primary and the scattered radiation were attenuated by a factor of tube in vacuum experimental tests of the inverse square law. In this study, the attenuation was 2 ˜ 2.246 for primary radiation and 2 ˜ 2.105 for secondary radiation. Natural attenuation occurred as the X-rays passed through air, and an attenuation equation was established in this study. The equation for primary radiation (1st dose) was y = A1* exp(- x/t1)+ y0. The high-intensity contour of the direction for the cathode was wider than that of the direction for the anode, showing a wide range on the rear side of the cathode and on the rear side of the anode. We tried to find the positions where the workers' radiation exposure could be reduced. When the medical radiation workers have to hold the patient for an abdominal examination, they should be placed towards the tube anode and on the left side of the patient. For a lumbar-spine lateral examination, they should be placed towards the tube anode and behind the patient, and for a femur AP (anterior-posterior) examination, they should be placed towards the tube anode and on the right side of the patient.

  6. Exposure station with precision scanning stage for deep x-ray lithography

    NASA Astrophysics Data System (ADS)

    Mancini, Derrick C.; DeCarlo, Francesco; Lai, Barry

    1997-07-01

    An exposure station with a precision scanning stage has been designed and constructed for use at the Advanced Photon Source for deep x-ray lithography. The precision scanning stage consists of four motion stages—two translations and two rotations. There is a theta rotation in the horizontal plane at the base, which allows precise setting of the angle of inclination of the x-rays to the substate for inclined, trapezoidal, and conical exposures. The horizontal X travel is mounted on the theta rotation and provides accurate positioning in the horizontal direction to allow field stitching and general alignment. The vertical Z travel is mounted on the X travel and is used to scan the mask and substrate through the x-rays repeatedly during exposure. The phi rotation is mounted on the Z travel and can be used for generating pyramidal and conical structures. Total absolute worst case angular error due to the sum of the stage motions including theta axis wobble, X axis pitch, yaw, and roll, and Z axis pitch, yaw, and roll should be 100 microradians. The entire scanning stage is mounted on a precision optical table that can be aligned to within 5 microns in position and 5 microradians in angle with full 6-degrees of freedom. The motion stages are driven by stepping motors for positioning and DC servo motors for the vertical Z scan and include encoder feedback. The motors are controlled using the EPICS distributed control system. All of the other beamline components and the optical table are also controlled by EPICS, and this allows complete integration of the operation of the scanning stage with the optical table, filters, slits, mirrors, and shutters to provide the user with full control of the exposure from a program running on a computer workstation. A temperature-controlled fixture is mounted on the f rotation, and the mask and substrate to be exposed are held by this fixture. A small housing with a Kapton window mounts onto the fixture to enclose the mask and

  7. Residual skin damage in rats 1 year after exposure to x rays or accelerated heavy ions

    SciTech Connect

    Leith, J.T.; McDonald, M.; Howard, J.

    1982-01-01

    In conjunction with a study on the biological effects of accelerated heavy ions on rat spinal cord, we were able to assess the residual skin damage remaining 1 year postirradiation. In this study, rats were irradiated with 230-kVp fractionated doses of either X rays, carbon ions, or neon ions. Four radiation fractions were given at daily intervals. For the carbon and neon ion exposures, rats were irradiated in both the plateau and spread Bragg peak (4 cm) regions of ionization. Comparing doses that produced complete epilation with a slight suggestion of a residual radiation scar, it was found that the relative biological effectivesness (RBE) values 1 year postirradiation for the four fraction irradiations were: carbon ions (plateau ionization region), 1.06; carbon ions (spread Bragg peak ionization region), 1.88; neon ions (plateau region of ionization), 1.55; and neon ions (spread Bragg peak ionization region), 2.26. RBE values for production of paralysis after spinal cord irradiation (using the same X-ray total dose levels for comparison purposes) were in all cases higher than the RBE values obtained from assessment of residual skin injury.

  8. Radiation exposure during X-ray examinations in a large paediatric hospital in Serbia.

    PubMed

    Ciraj-Bjelac, Olivera; Gavrilovic, Marijana; Arandjic, Danijela; Vujovic, Milan; Bozovic, Predrag

    2015-07-01

    Objective of this work is to evaluate radiation exposure from X-ray examinations in a large paediatric hospital in Serbia, including radiographic, fluoroscopic and computed tomography (CT) examinations in four age groups: 0-1, 1-5, 5-10 and 10-15 y. Incident air kerma was assessed for the following radiographies: chest (AP, PA, LAT), spine (AP, LAT), pelvis (AP), urinary tract (AP, PA) and skull (AP, PA, LAT). Kerma-area product was measured for the fluoroscopy examinations: barium swallow, barium meal, barium enema and micturating cystography. Dose in CT was assessed in terms of volume CT dose index and dose-length product for examinations of the head, chest and abdomen. The collected data were compared with other similar studies, which indicated a need to expand such survey to other paediatric hospitals in Serbia. PMID:25821208

  9. Comparative study of spermatogonial survival after X-ray exposure, high LET (HZE) irradiation or spaceflight

    NASA Technical Reports Server (NTRS)

    Sapp, W. J.; Williams, C. S.; Williams, J. W.; Philpott, D. E.; Kato, K.; Miquel, J. M.; Serova, L.

    1992-01-01

    Spermatogonial cell loss has been observed in rats flown on Space Lab 3, Cosmos 1887, Cosmos 2044 and in mice following irradiation with X-ray or with HZE particle beams. Spermatogonial loss is determined by cell counting in maturation stage-6 seminferous tubules. With the exception of iron, laboratory irradiation experiments (with mice) revealed a similar pattern of spermatogonial loss proportional to the radiation dose at levels less than 0.1 Gy. Helium and argon irradiation resulted in a 5-percent loss of spermatogonia after only 0.01 Gy exposure. Significant spermatogonial loss (45 percent) occurred at this radiation level with iron particle beams. The loss of spermatogonia during each spaceflight was less than 10 percent when compared to control (nonflight) animals.

  10. Immediate screening of lead exposure in the workplace using portable X-ray fluorescence.

    PubMed

    Gorce, Jean-Philippe; Roff, Martin

    2016-01-01

    The use of a portable X-ray fluorescence spectrometer (PXRF) equipped with a miniaturised X-ray tube producing a small 8 mm diameter X-ray beam required the validation of two new sampling protocols for the immediate screening of occupational lead exposure. First, lead in dust and fumes, collected by Institute of Occupational Medicine (IOM) inhalable samplers on 25 mm diameter membrane filters, is quantified using PXRF. To account for irregular dust deposition, the filters are rotated manually by quarter turns. Multiple PXRF readings are collected from the central region and from two locations in the outer region. The inner region is distinguishable from the outer region, but the two outer region locations are indistinguishable. High correlations (R(2) > 0.99) are found between the PXRF results and historical results obtained using a reference method based on a laboratory wavelength-dispersive sequential XRF instrument (WDXRF) for lead loadings between 1-161 μg. The PXRF results from the outer regions of the filters show a bias of -13% with respect to the WDXRF. Once this bias is allowed for, 95% of all PXRF results lie within -28% and +38% of the WDXRF results. Neither instrument accounts for potential dust accumulation on the walls of the IOM sampler. Therefore, methods based on their use can only be considered semi-quantitative. Second, a protocol combining direct PXRF measurements on workplace surfaces with surface wipes is designed for immediate on-site quantification of removable surface lead residues. The quantification of such residues by this method is compared with subsequent off-site wet chemistry analysis of the surface wipes. The two methods show a good correlation (R(2) ∼ 0.88). The ratio of the amount of removable residues determined by PXRF and wipe sampling is close to one with range 0.26-3.94. It is demonstrated that PXRF can be used as an effective tool for the immediate screening of occupational lead exposure. Although this article focused on

  11. Immediate screening of lead exposure in the workplace using portable X-ray fluorescence

    PubMed Central

    Gorce, Jean-Philippe; Roff, Martin

    2016-01-01

    ABSTRACT The use of a portable X-ray fluorescence spectrometer (PXRF) equipped with a miniaturised X-ray tube producing a small 8 mm diameter X-ray beam required the validation of two new sampling protocols for the immediate screening of occupational lead exposure. First, lead in dust and fumes, collected by Institute of Occupational Medicine (IOM) inhalable samplers on 25 mm diameter membrane filters, is quantified using PXRF. To account for irregular dust deposition, the filters are rotated manually by quarter turns. Multiple PXRF readings are collected from the central region and from two locations in the outer region. The inner region is distinguishable from the outer region, but the two outer region locations are indistinguishable. High correlations (R2 > 0.99) are found between the PXRF results and historical results obtained using a reference method based on a laboratory wavelength-dispersive sequential XRF instrument (WDXRF) for lead loadings between 1–161 μg. The PXRF results from the outer regions of the filters show a bias of −13% with respect to the WDXRF. Once this bias is allowed for, 95% of all PXRF results lie within −28% and +38% of the WDXRF results. Neither instrument accounts for potential dust accumulation on the walls of the IOM sampler. Therefore, methods based on their use can only be considered semi-quantitative. Second, a protocol combining direct PXRF measurements on workplace surfaces with surface wipes is designed for immediate on-site quantification of removable surface lead residues. The quantification of such residues by this method is compared with subsequent off-site wet chemistry analysis of the surface wipes. The two methods show a good correlation (R2 ∼ 0.88). The ratio of the amount of removable residues determined by PXRF and wipe sampling is close to one with range 0.26–3.94. It is demonstrated that PXRF can be used as an effective tool for the immediate screening of occupational lead exposure. Although this

  12. Variations in film exposure, effective kVp, and HVL among thirty-five dental x-ray units

    SciTech Connect

    Preece, J.W.; Jensen, C.W.

    1983-12-01

    Speed group ''E'' dental films were exposed in thirty-five dental x-ray units and processed under rigidly controlled conditions. The exposure, in milliroentgens required to produce an overall film density between 0.85 and 1.05 density units at the 9 mm. step of an aluminum step-wedge, ranged from 94 to 186 mR. The wide range in normalized exposure required to produce a standard density of 1.0 was associated with half-value layer and effective operating kilovoltage in only a general way. The half-value layer of thirty-five dental x-ray units ranged from 1.9 to 2.9 mm. Al, and their effective operating kilovoltages ranged from 62 to 77 kVp when units were set at 70 kVp. The exposure required to produce a specific radiographic density depended largely on the individual characteristics of the x-ray unit used.

  13. Estimated operator exposure for hand holding portable X-ray units during imaging of the equine distal extremity.

    PubMed

    Tyson, Reid; Smiley, Douglas C; Pleasant, Robert S; Daniel, Gregory B

    2011-01-01

    Hand holding of portable X-ray units is common in large animal ambulatory veterinary practice. Portable X-ray equipment manuals, veterinary teaching institutions, and state regulations discourage, or prohibit, hand holding of portable X-ray units. Our goal was to quantify surface radiation leakage of a typical portable X-ray unit and to measure operator exposure at simulated hand and collar positions during imaging of the equine distal extremity. Each exposure for the study was performed at 80 kVp and 7.5 mAs and repeated 10 times. Measurement of tube radiation leakage was performed along each surface of the portable X-ray unit. To determine the operator exposure more accurately, an equine cadaver limb was used to generate scatter radiation for the following views: lateral carpus, lateral foot, palmaroproximal-palmarodistal, and dorsal 60° proximal-palmarodistal obliques of the navicular region. A Pancake Ion Chamber was placed at the handle and at simulated collar position to record estimated occupational exposure. To estimate the effect of lead shielding, exposure measurements were performed within the primary beam and behind a 0.5 mm lead equivalent apron and within an >0.5 mm lead equivalent glove. The average hand and collar dose was 0.471 and 0.327 mR/exposure, respectively. The lead apron and glove attenuated the primary beam 96.9 and 99.2%, respectively. This reduced average hand and collar exposures to 0.0038 and 0.0101 mR/exposure, respectively. Theoretical occupational limits are reached for the collar (whole body) before the hand (extremity). PMID:21388461

  14. Shorter Exposures to Harder X-Rays Trigger Early Apoptotic Events in Xenopus laevis Embryos

    PubMed Central

    Dong, JiaJia; Mury, Sean P.; Drahos, Karen E.; Moscovitch, Marko

    2010-01-01

    Background A long-standing conventional view of radiation-induced apoptosis is that increased exposure results in augmented apoptosis in a biological system, with a threshold below which radiation doses do not cause any significant increase in cell death. The consequences of this belief impact the extent to which malignant diseases and non-malignant conditions are therapeutically treated and how radiation is used in combination with other therapies. Our research challenges the current dogma of dose-dependent induction of apoptosis and establishes a new parallel paradigm to the photoelectric effect in biological systems. Methodology/Principal Findings We explored how the energy of individual X-ray photons and exposure time, both factors that determine the total dose, influence the occurrence of cell death in early Xenopus embryo. Three different experimental scenarios were analyzed and morphological and biochemical hallmarks of apoptosis were evaluated. Initially, we examined cell death events in embryos exposed to increasing incident energies when the exposure time was preset. Then, we evaluated the embryo's response when the exposure time was augmented while the energy value remained constant. Lastly, we studied the incidence of apoptosis in embryos exposed to an equal total dose of radiation that resulted from increasing the incoming energy while lowering the exposure time. Conclusions/Significance Overall, our data establish that the energy of the incident photon is a major contributor to the outcome of the biological system. In particular, for embryos exposed under identical conditions and delivered the same absorbed dose of radiation, the response is significantly increased when shorter bursts of more energetic photons are used. These results suggest that biological organisms display properties similar to the photoelectric effect in physical systems and provide new insights into how radiation-mediated apoptosis should be understood and utilized for therapeutic

  15. Hematological effects of unilateral and bilateral exposures of dogs to 300-kVp X rays

    SciTech Connect

    Baltschukat, K.; Nothdurft, W. )

    1990-07-01

    Accidental exposures to ionizing radiation from external sources usually result in an inhomogeneous dose distribution rather than a homogeneous total-body irradiation (TBI). To study the hematological effects of an inhomogeneous dose distribution, dogs were unilaterally exposed to a beam of 300 kVp X rays (HVL = 3.8 mm Cu) with their left side directed to the source. The entrance and exit surface doses were 3.8 Gy and 0.9 Gy, respectively. Dose measurements performed in bone marrow spaces of various bones revealed a maximum of 3.1 Gy in the head of the left humerus and a minimum of 0.9 Gy in the right iliac crest. Based on survival for granulocyte-macrophage progenitor cells (GM-CFC) determined in different bone marrow sites 24 h after the exposure, the dose-dependent reduction ranged from 0.44 to 16% of the control values. The regeneration of the GM-CFC compartments in the various bone marrow spaces showed patterns which were independent of each other up to Day 28. Values were normal again at Day 125 after exposure. For comparative purposes, three dogs were exposed bilaterally to achieve a homogeneous dose distribution. They received a TBI of 2.4 Gy, which according to previous calculations should have caused the same systemic damage to the GM-CFC compartment as the unilateral exposure. The peripheral blood cell changes, including the GM-CFC, and the colony stimulating activity in the serum showed a similar pattern for both exposures. These findings support the hypothesis that the overall survival fraction of progenitor cells in the bone marrow is the main determinant of the blood cell changes, independent of the anatomical distribution.

  16. Radiation exposure of medical staff from interventional x-ray procedures: a multicentre study.

    PubMed

    Häusler, Uwe; Czarwinski, Renate; Brix, Gunnar

    2009-08-01

    The purpose of this study was to analyse the radiation exposure of medical staff from interventional x-ray procedures. Partial-body dose measurements were performed with thermoluminescent dosimeters (TLD) in 39 physicians and nine assistants conducting 73 interventional procedures of nine different types in 14 hospitals in Germany. Fluoroscopy time and the dose-area product (DAP) were recorded too. The median (maximum) equivalent body dose per procedure was 16 (2,500) microSv for an unshielded person; the partial-body dose per procedure was 2.8 (240) microSv to the eye lens, 4.1 (730) microSv to the thyroid, 44 (1,800) microSv to one of the feet and 75 (13,000) microSv to one of the hands. A weak correlation between fluoroscopy time or DAP and the mean TLD dose was observed. Generally, the doses were within an acceptable range from a radiation hygiene point of view. However, relatively high exposures were measured to the hand in some cases and could cause a partial-body dose above the annual dose limit of 500 mSv. Thus, the use of finger dosimeters is strongly recommended. PMID:19350250

  17. A Serial-Exposure Type of High Intensity Flash X-ray Generator Having Variable Energies

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Isobe, Hiroshi; Yanagisawa, Toru; Hoshino, Fumihiko

    1986-12-01

    The construction of a serial (triple) exposure type of high intensity flash x-ray (FX) generator having variable energies for biomedical radiography is described. This generator consisted of the following components: two high voltage generators (positive and negative), a voltage divider unit, two types of high and low voltage pulsers with maximum output voltages ranging from 50 to 200kV, small-sized trigger devices, a trigger delay unit, a high power gas diode, one turbo molecular pump, and two evacuated remote FX tubes, each of a different type. In the case of using a single FX tube, the pulser were charged to the same or different energies from -100kV to +100kV by using a two voltage divider unit and were connected to the FX tube through a high power gas diode. On the other hand, when using multiple tubes, the pulsers were connected directly to the tubes without a diode. These FX's have many possible diagnostic applications as follows: (1) high intensity stroboscopic radiography; (2) double exposure subtraction and energy subtraction; (3) superposition of spectra; (4) radiation sources for the ultra high speed computed tomography and stereography; and (5) various kinds of imaging using pulsed electron beams and FX.

  18. Signal-to-noise and radiation exposure considerations in conventional and diffraction x-ray microscopy.

    PubMed

    Huang, Xiaojing; Miao, Huijie; Steinbrener, Jan; Nelson, Johanna; Shapiro, David; Stewart, Andrew; Turner, Joshua; Jacobsen, Chris

    2009-08-01

    Using a signal-to-noise ratio estimation based on correlations between multiple simulated images, we compare the dose efficiency of two soft x-ray imaging systems: incoherent brightfield imaging using zone plate optics in a transmission x-ray microscope (TXM), and x-ray diffraction microscopy (XDM) where an image is reconstructed from the far-field coherent diffraction pattern. In XDM one must computationally phase weak diffraction signals; in TXM one suffers signal losses due to the finite numerical aperture and efficiency of the optics. In simulations with objects representing isolated cells such as yeast, we find that XDM has the potential for delivering equivalent resolution images using fewer photons. This can be an important advantage for studying radiation-sensitive biological and soft matter specimens. PMID:19654762

  19. Signal-to-noise and radiation exposure considerations in conventional and diffraction x-ray microscopy

    PubMed Central

    Huang, Xiaojing; Miao, Huijie; Steinbrener, Jan; Nelson, Johanna; Shapiro, David; Stewart, Andrew; Turner, Joshua; Jacobsen, Chris

    2010-01-01

    Using a signal-to-noise ratio estimation based on correlations between multiple simulated images, we compare the dose efficiency of two soft x-ray imaging systems: incoherent brightfield imaging using zone plate optics in a transmission x-ray microscope (TXM), and x-ray diffraction microscopy (XDM) where an image is reconstructed from the far-field coherent diffraction pattern. In XDM one must computationally phase weak diffraction signals; in TXM one suffers signal losses due to the finite numerical aperture and efficiency of the optics. In simulations with objects representing isolated cells such as yeast, we find that XDM has the potential for delivering equivalent resolution images using fewer photons. This can be an important advantage for studying radiation-sensitive biological and soft matter specimens. PMID:19654762

  20. Signal-to-noise and radiation exposure considerations in conventional and diffraction x-ray microscopy

    DOE PAGESBeta

    Huang, Xiaojing; Miao, Huijie; Steinbrener, Jan; Nelson, Johanna; Shapiro, David; Stewart, Andrew; Turner, Joshua; Jacobsen, Chris

    2009-01-01

    Using a signal-to-noise ratio estimation based on correlations between multiple simulated images, we compare the dose efficiency of two soft x-ray imaging systems: incoherent brightfield imaging using zone plate optics in a transmission x-ray microscope (TXM), and x-ray diffraction microscopy (XDM) where an image is reconstructed from the far-field coherent diffraction pattern. In XDM one must computationally phase weak diffraction signals; in TXM one suffers signal losses due to the finite numerical aperture and efficiency of the optics. In simulations with objects representing isolated cells such as yeast, we find that XDM has the potential for delivering equivalent resolution imagesmore » using fewer photons. As a result, this can be an important advantage for studying radiation-sensitive biological and soft matter specimens.« less

  1. Signal-to-noise and radiation exposure considerations in conventional and diffraction x-ray microscopy

    SciTech Connect

    Huang, Xiaojing; Miao, Huijie; Steinbrener, Jan; Nelson, Johanna; Shapiro, David; Stewart, Andrew; Turner, Joshua; Jacobsen, Chris

    2009-01-01

    Using a signal-to-noise ratio estimation based on correlations between multiple simulated images, we compare the dose efficiency of two soft x-ray imaging systems: incoherent brightfield imaging using zone plate optics in a transmission x-ray microscope (TXM), and x-ray diffraction microscopy (XDM) where an image is reconstructed from the far-field coherent diffraction pattern. In XDM one must computationally phase weak diffraction signals; in TXM one suffers signal losses due to the finite numerical aperture and efficiency of the optics. In simulations with objects representing isolated cells such as yeast, we find that XDM has the potential for delivering equivalent resolution images using fewer photons. As a result, this can be an important advantage for studying radiation-sensitive biological and soft matter specimens.

  2. Exposure Dose Reconstruction from EPR Spectra of Tooth Enamel Exposed to the Combined Effect of X-rays and Gamma Radiation

    NASA Astrophysics Data System (ADS)

    Kirillov, V. A.; Kuchuro, J. I.

    2014-09-01

    We have used EPR dosimetry on tooth enamel to show that the combined effect of x-rays with effective energy 34 keV and gamma radiation with average energy 1250 keV leads to a significant increase in the reconstructed absorbed dose compared with the applied dose from a gamma source or from an x-ray source or from both sources of electromagnetic radiation. In simulation experiments, we develop an approach to estimating the contribution of diagnostic x-rays to the exposure dose formed in the tooth enamel by the combined effect of x-rays and gamma radiation.

  3. Microstructured polymer films by X-ray lithographic exposure and grafting

    NASA Astrophysics Data System (ADS)

    Gürsel, Selmiye A.; Padeste, Celestino; Solak, Harun H.; Scherer, Günther G.

    2005-07-01

    Recently we reported on a new technique to generate micro- and nanostructured polymer materials by the combination of selective irradiation of polymer substrates with X-rays and subsequent grafting of a second polymer. Here we focus on the spatially defined grafting throughout the thickness of poly(ethylene-alt-tetrafluoroethylene) (ETFE) and poly (tetrafluoroethylene-co-hexafluoropropylene) (FEP) films using X-ray irradiation through a metal mask, followed by grafting with styrene. Calculations of the transmission of X-rays through the polymer as a function of the wavelength have revealed that energy deposition within the substrate material, which should control the density of created radicals, can be selected in a wide range. Depending on the used wavelength the radicals are created either near the surface or in the bulk of the sample. First experiments demonstrated spatially defined grafting through a 100 μm thick ETFE film and 25 μm thick FEP film. The achieved graft level depends on the irradiation dose as well as on the grafting parameters such as concentration, temperature and time. The precision of structure definition within the film depends on the properties of the X-ray source, the metal mask and the grafting process. The presented process allows controlled grafting through fluoropolymer films with micrometer resolution and local modification of the properties of the films, such as ion conductivity, diffusion of specific molecules or optical properties.

  4. X-ray absorptiometry of the breast using mammographic exposure factors: application to units featuring automatic beam quality selection.

    PubMed

    Kotre, C J

    2010-06-01

    A number of studies have identified the relationship between the visual appearance of high breast density at mammography and an increased risk of breast cancer. Approaches to quantify the amount of glandular tissue within the breast from mammography have so far concentrated on image-based methods. Here, it is proposed that the X-ray parameters automatically selected by the mammography unit can be used to estimate the thickness of glandular tissue overlying the automatic exposure sensor area, provided that the unit can be appropriately calibrated. This is a non-trivial task for modern mammography units that feature automatic beam quality selection, as the number of tube potential and X-ray target/filter combinations used to cover the range of breast sizes and compositions can be large, leading to a potentially unworkable number of curve fits and interpolations. Using appropriate models for the attenuation of the glandular breast in conjunction with a constrained set of physical phantom measurements, it is demonstrated that calibration for X-ray absorptiometry can be achieved despite the large number of possible exposure factor combinations employed by modern mammography units. The main source of error on the estimated glandular tissue thickness using this method is shown to be uncertainty in the measured compressed breast thickness. An additional correction for this source of error is investigated and applied. Initial surveys of glandular thickness for a cohort of women undergoing breast screening are presented. PMID:20505033

  5. Selenium Preferentially Accumulates in the Eye Lens Following Embryonic Exposure: A Confocal X-ray Fluorescence Imaging Study

    SciTech Connect

    Choudhury, Sanjukta; Thomas, Jith; Sylvain, Nicole J.; Ponomarenko, Olena; Gordon, Robert A.; Heald, Steve M.; Janz, David M.; Krone, Patrick H.; Coulthard, Ian; George, Graham N.; Pickering, Ingrid J.

    2015-02-17

    Maternal transfer of elevated selenium (Se) to offspring is an important route of Se exposure for fish in the natural environment. However, there is a lack of information on the tissue specific spatial distribution and speciation of Se in the early developmental stages of fish, which provide important information about Se toxicokinetics. The effect of maternal transfer of Se was studied by feeding adult zebrafish a Se-elevated or a control diet followed by collection of larvae from both groups. Novel confocal synchrotron-based techniques were used to investigate Se within intact preserved larvae. Confocal X-ray fluorescence imaging was used to compare Se distributions within specific planes of an intact larva from each of the two groups. The elevated Se treatment showed substantially higher Se levels than the control; Se preferentially accumulated to highest levels in the eye lens, with lower levels in the retina, yolk and other tissues. Confocal X-ray absorption spectroscopy was used to determine that the speciation of Se within the eye lens of the intact larva was a selenomethionine-like species. Preferential accumulation of Se in the eye lens may suggest a direct cause-and-effect relationship between exposure to elevated Se and Se-induced ocular impairments reported previously. This study illustrates the effectiveness of confocal X-ray fluorescence methods for investigating trace element distribution and speciation in intact biological specimens

  6. A real-time regional adaptive exposure method for saving dose-area product in x-ray fluoroscopy

    PubMed Central

    Burion, Steve; Speidel, Michael A.; Funk, Tobias

    2013-01-01

    Purpose: Reduction of radiation dose in x-ray imaging has been recognized as a high priority in the medical community. Here the authors show that a regional adaptive exposure method can reduce dose-area product (DAP) in x-ray fluoroscopy. The authors' method is particularly geared toward providing dose savings for the pediatric population. Methods: The scanning beam digital x-ray system uses a large-area x-ray source with 8000 focal spots in combination with a small photon-counting detector. An imaging frame is obtained by acquiring and reconstructing up to 8000 detector images, each viewing only a small portion of the patient. Regional adaptive exposure was implemented by varying the exposure of the detector images depending on the local opacity of the object. A family of phantoms ranging in size from infant to obese adult was imaged in anteroposterior view with and without adaptive exposure. The DAP delivered to each phantom was measured in each case, and noise performance was compared by generating noise arrays to represent regional noise in the images. These noise arrays were generated by dividing the image into regions of about 6 mm2, calculating the relative noise in each region, and placing the relative noise value of each region in a one-dimensional array (noise array) sorted from highest to lowest. Dose-area product savings were calculated as the difference between the ratio of DAP with adaptive exposure to DAP without adaptive exposure. The authors modified this value by a correction factor that matches the noise arrays where relative noise is the highest to report a final dose-area product savings. Results: The average dose-area product saving across the phantom family was (42 ± 8)% with the highest dose-area product saving in the child-sized phantom (50%) and the lowest in the phantom mimicking an obese adult (23%). Conclusions: Phantom measurements indicate that a regional adaptive exposure method can produce large DAP savings without compromising the

  7. A real-time regional adaptive exposure method for saving dose-area product in x-ray fluoroscopy

    SciTech Connect

    Burion, Steve; Funk, Tobias; Speidel, Michael A.

    2013-05-15

    Purpose: Reduction of radiation dose in x-ray imaging has been recognized as a high priority in the medical community. Here the authors show that a regional adaptive exposure method can reduce dose-area product (DAP) in x-ray fluoroscopy. The authors' method is particularly geared toward providing dose savings for the pediatric population. Methods: The scanning beam digital x-ray system uses a large-area x-ray source with 8000 focal spots in combination with a small photon-counting detector. An imaging frame is obtained by acquiring and reconstructing up to 8000 detector images, each viewing only a small portion of the patient. Regional adaptive exposure was implemented by varying the exposure of the detector images depending on the local opacity of the object. A family of phantoms ranging in size from infant to obese adult was imaged in anteroposterior view with and without adaptive exposure. The DAP delivered to each phantom was measured in each case, and noise performance was compared by generating noise arrays to represent regional noise in the images. These noise arrays were generated by dividing the image into regions of about 6 mm{sup 2}, calculating the relative noise in each region, and placing the relative noise value of each region in a one-dimensional array (noise array) sorted from highest to lowest. Dose-area product savings were calculated as the difference between the ratio of DAP with adaptive exposure to DAP without adaptive exposure. The authors modified this value by a correction factor that matches the noise arrays where relative noise is the highest to report a final dose-area product savings. Results: The average dose-area product saving across the phantom family was (42 {+-} 8)% with the highest dose-area product saving in the child-sized phantom (50%) and the lowest in the phantom mimicking an obese adult (23%). Conclusions: Phantom measurements indicate that a regional adaptive exposure method can produce large DAP savings without

  8. Simultaneous exposure of mammalian cells to heavy ions and X-rays.

    PubMed

    Furusawa, Y; Aoki, M; Durante, M

    2002-01-01

    Crews of space missions are exposed to a mixed radiation field, including sparsely and densely ionizing radiation. To determine the biological effectiveness of mixed high-/low-LET radiation fields, mammalian cells were exposed in vitro simultaneously to X-rays and heavy ions, accelerated at the HIMAC accelerator. X-ray doses ranged from 1 to 11 Gy. At the same time, cells were exposed to either 40Ar (550 MeV/n, 86 keV/micrometers), 28Si (100 MeV/n, 150 keV/micrometers), or 56Fe (115 MeV/n, 442 keV/micrometers) ions. Survival was measured in hamster V79 fibroblasts. Structural aberrations in chromosome 2 were measured by chemical-induced premature chromosome condensation combined with fluorescence in situ hybridization in isolated human lymphocytes. For argon and silicon experiments, measured damage in the mixed radiation field was consistent with the value expected using an additive function for low- and high-LET separated data. A small deviation from a simple additive function is observed with very high-LET iron ions combined to X-rays. PMID:12530448

  9. Simultaneous exposure of mammalian cells to heavy ions and X-rays

    NASA Astrophysics Data System (ADS)

    Furusawa, Y.; Aoki, M.; Durante, M.

    Crews of space missions are exposed to a mixed radiation field, including sparsely and densely ionizing radiation. To determine the biological effectiveness of mixed high-/low-LET radiation fields, mammalian cells were exposed in vitro simultaneously to X-rays and heavy ions, accelerated at the HIMAC accelerator. X-ray doses ranged from 1 to 11 Gy. At the same time, cells were exposed to either 40Ar (550 MeV/n, 86 keV/μm), 28Si (100 MeV/n, 150 keV/μm), or 56Fe (115 MeV/n, 442 keV/μm) ions. Survival was measured in hamster V79 fibroblasts. Structural aberrations in chromosome 2 were measured by chemical-induced premature chromosome condensation combined with fluorescence in situ hybridization in isolated human lymphocytes. For argon and silicon experiments, measured damage in the mixed radiation field was consistent with the value expected using an additive function for low- and high-LET separated data. A small deviation from a simple additive function is observed with very high-LET iron ions combined to X-rays.

  10. The x-ray source application test cassette for radiation exposures at the OMEGA laser

    SciTech Connect

    Fournier, K. B.; Rekow, V.; Emig, J.; Fisher, J. H.; Newlander, C. D.; Horton, R.; Davis, J.

    2012-10-15

    We have designed a sample cassette that can be used to position up to six samples in the OMEGA laser chamber. The cassette accommodates round samples up to 38.1 mm (1.5{sup Double-Prime }) in diameter and square samples up to 27 mm on a side, any of which can be up to 12.7 mm thick. Smaller specimens are centered with spacers. The test cassette allows each sample to have a unique filter scheme, with multiple filter regions in front of each sample. This paper will present mechanical design considerations and operational aspects of the x-ray source application cassette.

  11. SU-E-I-52: Effect of Various X-Ray Beam Qualities On the Exposure Index

    SciTech Connect

    Yasumatsu, S; Iwase, K; Shimizu, Y; Tanaka, N; Morishita, J

    2015-06-15

    Purpose: The exposure index (EI) proposed by the International Electrotechnical Commission (IEC) 62494-1 is expected to be utilized as a standard dose index by every manufacturer. The IEC recommended the usage of RQA5 for the EI. However, X-ray beam qualities, particularly in clinical practices, vary depending on the examination objects and exposure conditions, including usage of anti-scatter grids. We investigated the effects of the X-ray beam qualities other than RQA5 on the EI. Methods: The Xray beam qualities of RQA3, 5, 7, and 9 in IEC 61267 Ed. 1.0 were adopted in a computed radiography system. A uniform exposure without objects was performed to measure the exposure indicators (S values) and air kerma (K). The relational equations between the S values and K were derived for the determination of the EI values. The EI values for RQA3, 7, and 9 were compared to those for RQA5 at the fixed S values of 100, 200, 400, and 600. Finally, the half-value layers (HVLs) using four grids (ratio 6:1, 8:1, 10:1, and 12:1) for the RQA5 X-ray were compared to those with RQA3–9. Results: The EI values for RQA3, 7, and 9 were up to 35.3%, 11.8%, and 38.7% higher, respectively, than that for RQA5 at the S value of 600. The HVLs without grids and with various grids for RQA5 were 6.85 mm Al. and in the range of 6.94–7.29 mm Al. (ΔHVL: up to 0.44 mm Al.), respectively. This variation in the HVLs with grids was smaller than that observed for RQA3–9 (ΔHVL: 2.0–7.5 mm Al.). Conclusion: Although the usage of grids may not greatly affect the EI, the X-ray beam quality for the determination of the EI cannot be ignored in the clinical evaluation of the dose index.

  12. The rate of X-ray-induced DNA double-strand break repair in the embryonic mouse brain is unaffected by exposure to 50 Hz magnetic fields

    PubMed Central

    Woodbine, Lisa; Haines, Jackie; Coster, Margaret; Barazzuol, Lara; Ainsbury, Elizabeth; Sienkiewicz, Zenon; Jeggo, Penny

    2015-01-01

    Abstract Purpose: Following in utero exposure to low dose radiation (10–200 mGy), we recently observed a linear induction of DNA double-strand breaks (DSB) and activation of apoptosis in the embryonic neuronal stem/progenitor cell compartment. No significant induction of DSB or apoptosis was observed following exposure to magnetic fields (MF). In the present study, we exploited this in vivo system to examine whether exposure to MF before and after exposure to 100 mGy X-rays impacts upon DSB repair rates. Materials and methods: 53BP1 foci were quantified following combined exposure to radiation and MF in the embryonic neuronal stem/progenitor cell compartment. Embryos were exposed in utero to 50 Hz MF at 300 μT for 3 h before and up to 9 h after exposure to 100 mGy X-rays. Controls included embryos exposed to MF or X-rays alone plus sham exposures. Results: Exposure to MF before and after 100 mGy X-rays did not impact upon the rate of DSB repair in the embryonic neuronal stem cell compartment compared to repair rates following radiation exposure alone. Conclusions: We conclude that in this sensitive system MF do not exert any significant level of DNA damage and do not impede the repair of X-ray induced damage. PMID:25786477

  13. Europium- and lithium-doped yttrium oxide nanocrystals that provide a linear emissive response with X-ray radiation exposure.

    PubMed

    Stanton, Ian N; Belley, Matthew D; Nguyen, Giao; Rodrigues, Anna; Li, Yifan; Kirsch, David G; Yoshizumi, Terry T; Therien, Michael J

    2014-05-21

    Eu- and Li-doped yttrium oxide nanocrystals [Y2-xO3; Eux, Liy], in which Eu and Li dopant ion concentrations were systematically varied, were developed and characterized (TEM, XRD, Raman spectroscopic, UV-excited lifetime, and ICP-AES data) in order to define the most emissive compositions under specific X-ray excitation conditions. These optimized [Y2-xO3; Eux, Liy] compositions display scintillation responses that: (i) correlate linearly with incident radiation exposure at X-ray energies spanning from 40-220 kVp, and (ii) manifest no evidence of scintillation intensity saturation at the highest evaluated radiation exposures [up to 4 Roentgen per second]. For the most emissive nanoscale scintillator composition, [Y1.9O3; Eu0.1, Li0.16], excitation energies of 40, 120, and 220 kVp were chosen to probe the dependence of the integrated emission intensity upon X-ray exposure-rate in energy regimes having different mass-attenuation coefficients and where either the photoelectric or the Compton effect governs the scintillation mechanism. These experiments demonstrate for the first time for that for comparable radiation exposures, when the scintillation mechanism is governed by the photoelectric effect and a comparably larger mass-attenuation coefficient (120 kVp excitation), greater integrated emission intensities are recorded relative to excitation energies where the Compton effect regulates scintillation (220 kVp) in nanoscale [Y2-xO3; Eux] crystals. Nanoscale [Y1.9O3; Eu0.1, Li0.16] (70 ± 20 nm) was further exploited as a detector material in a prototype fiber-optic radiation sensor. The scintillation intensity from the [Y1.9O3; Eu0.1, Li0.16]-modified, 400 μm sized optical fiber tip, recorded using a CCD-photodetector and integrated over the 605-617 nm wavelength domain, was correlated with radiation exposure using a Precision XRAD 225Cx small-animal image guided radiation therapy (IGRT) system. For both 80 and 225 kVp energies, this radiotransparent device

  14. DNA damage by soft X-ray exposure at oxygen K-edge

    NASA Astrophysics Data System (ADS)

    Sugaya, Y.; Narita, A.; Fujii, K.; Yokoya, A.

    2014-04-01

    In order to obtain detailed insights into the physicochemical mechanism of DNA damage induction in terms of photoabsorption modes, we have prepared thin DNA films of closed circular plasmid (pUC18) on a cover slip without any additives. Using this film, we have performed preliminary experiments by exposing to soft X-rays with energies around oxygen K-shell ionization threshold. The DNA damage yields of strand breaks and base lesions or AP sites were quantified by biochemical treatments. We confirmed that the DNA film can work as a specimen irradiation. The DNA damage yields induced by π* excitation of a K-shell electron of oxygen atoms in DNA were significantly larger those for oxygen K-ionization.

  15. Angularly resolved X-ray photoelectron spectroscopy investigation of PTFE after prolonged space exposure

    NASA Technical Reports Server (NTRS)

    Dalins, I.; Karimi, M.

    1992-01-01

    Monochromatized angularly resolved X-ray photoelectron spectroscopy (ARXPS) was used to study PTFE (Teflon) that had been exposed to an earth orbital environment for approximately six years. The primary interest of the research is on a very reactive component of this environment (atomic oxygen) which, because of the typical orbital velocities of a spacecraft, impinge on exposed surfaces with 5 eV energy. This presentation deals with the method of analysis, the findings as they pertain to a rather complex carbon, oxygen, and fluorine XPS peak analysis, and the character of the valence bands. An improved bias referencing method, based on ARXPS, is also demonstrated for evaluating specimen charging effects. It was found that the polymer molecule tends to resist the atomic oxygen attack by reorienting itself, so that the most electronegative CF3 groups are facing the incoming hyperthermal oxygen atoms. The implications of these findings to ground-based laboratory studies are discussed.

  16. Soft X-Ray Exposure Testing of FEP Teflon for the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    deGroh, Kim K.

    1998-01-01

    The FEP Teflon (DuPont) multilayer insulation (MLI) thermal-control blanket material on the Hubble Space Telescope is degrading in the space environment. During the first Hubble servicing mission in 1993, after 3.6 years in low Earth orbit, aluminized and silvered FEP Teflon MLI thermal-control blanket materials were retrieved. These materials have been jointly analyzed by the NASA Lewis Research Center and the NASA Goddard Space Flight Center for degradation induced in the space environment (ref. 1). Solar-facing blanket materials were found to be embrittled with through-the-thickness cracking in the 5-mil FEP. During the second Hubble servicing mission in 1997, astronauts noticed that several blankets had large areas with tears. The torn FEP was curled up in some areas, exposing the underlying materials to the space environment. This tearing problem, and the associated curling up of torn areas, could lead to over-heating of the telescope and to particulate contamination. A Hubble Space Telescope MLI Failure Review Board was assembled by Goddard to investigate and identify the degradation mechanism of the FEP, to identify and characterize replacement materials, and to estimate the extent of damage at the time of the third servicing mission in 1999. A small piece of FEP retrieved during the second servicing mission is being evaluated by this failure review board along with materials from the first servicing mission. Since the first servicing mission, and as part of the failure review board, Lewis has been exposing FEP to soft x-rays to help determine the damage mechanisms of FEP in the space environment. Soft x-rays, which can penetrate into the bulk of FEP, are generated during solar flares and appear to be contributing to the degradation of the Hubble MLI.

  17. Surface Evaluation by X-Ray Photoelectron Spectroscopy of High Performance Polyimide Foams After Exposure to Oxygen Plasma

    NASA Technical Reports Server (NTRS)

    Melendez, Orlando; Hampton, Michael D.; Williams, Martha K.; Brown, Sylvia F.; Nelson, Gordon L.; Weiser, Erik S.

    2002-01-01

    Aromatic polyimides have been attractive in the aerospace and electronics industries for applications such as cryogenic insulation, flame retardant panels and structural subcomponents. Newer to the arena of polyimides is the synthesis of polyimide foams and their applications. In the present work, three different, closely related, polyimide foams developed by NASA Langley Research Center (LaRC) are studied by X-ray Photoelectron Spectroscopy (XPS) after exposure to radio frequency generated Oxygen Plasma. Although polyimide films exposure to atomic oxygen and plasma have been studied previously and reported, the data relate to films and not foams. Foams have much more surface area and thus present new information to be explored. Understanding degradation mechanisms and properties versus structure, foam versus solid is of interest and fundamental to the application and protection of foams exposed to atomic oxygen in Low Earth Orbit (LEO).

  18. Chest x-ray

    MedlinePlus

    ... Images Aortic rupture, chest x-ray Lung cancer, frontal chest x-ray Adenocarcinoma - chest x-ray Coal ... cancer - chest x-ray Lung nodule, right middle lobe - chest x-ray Lung mass, right upper lung - ...

  19. Europium- and lithium-doped yttrium oxide nanocrystals that provide a linear emissive response with X-ray radiation exposure

    NASA Astrophysics Data System (ADS)

    Stanton, Ian N.; Belley, Matthew D.; Nguyen, Giao; Rodrigues, Anna; Li, Yifan; Kirsch, David G.; Yoshizumi, Terry T.; Therien, Michael J.

    2014-04-01

    Eu- and Li-doped yttrium oxide nanocrystals [Y2-xO3 Eux, Liy], in which Eu and Li dopant ion concentrations were systematically varied, were developed and characterized (TEM, XRD, Raman spectroscopic, UV-excited lifetime, and ICP-AES data) in order to define the most emissive compositions under specific X-ray excitation conditions. These optimized [Y2-xO3 Eux, Liy] compositions display scintillation responses that: (i) correlate linearly with incident radiation exposure at X-ray energies spanning from 40-220 kVp, and (ii) manifest no evidence of scintillation intensity saturation at the highest evaluated radiation exposures [up to 4 Roentgen per second]. For the most emissive nanoscale scintillator composition, [Y1.9O3; Eu0.1, Li0.16], excitation energies of 40, 120, and 220 kVp were chosen to probe the dependence of the integrated emission intensity upon X-ray exposure-rate in energy regimes having different mass-attenuation coefficients and where either the photoelectric or the Compton effect governs the scintillation mechanism. These experiments demonstrate for the first time for that for comparable radiation exposures, when the scintillation mechanism is governed by the photoelectric effect and a comparably larger mass-attenuation coefficient (120 kVp excitation), greater integrated emission intensities are recorded relative to excitation energies where the Compton effect regulates scintillation (220 kVp) in nanoscale [Y2-xO3 Eux] crystals. Nanoscale [Y1.9O3; Eu0.1, Li0.16] (70 +/- 20 nm) was further exploited as a detector material in a prototype fiber-optic radiation sensor. The scintillation intensity from the [Y1.9O3; Eu0.1, Li0.16]-modified, 400 μm sized optical fiber tip, recorded using a CCD-photodetector and integrated over the 605-617 nm wavelength domain, was correlated with radiation exposure using a Precision XRAD 225Cx small-animal image guided radiation therapy (IGRT) system. For both 80 and 225 kVp energies, this radiotransparent device recorded

  20. Maintaining radiation exposures as low as reasonably achievable (ALARA) for dental personnel operating portable hand-held x-ray equipment.

    PubMed

    McGiff, Thomas J; Danforth, Robert A; Herschaft, Edward E

    2012-08-01

    Clinical experience indicates that newly available portable hand-held x-ray units provide advantages compared to traditional fixed properly installed and operated x-ray units in dental radiography. However, concern that hand-held x-ray units produce higher operator doses than fixed x-ray units has caused regulatory agencies to mandate requirements for use of hand-held units that go beyond those recommended by the manufacturer and can discourage the use of this technology. To assess the need for additional requirements, a hand-held x-ray unit and a pair of manikins were used to measure the dose to a simulated operator under two conditions: exposures made according to the manufacturer's recommendations and exposures made according to manufacturer's recommendation except for the removal of the x-ray unit's protective backscatter shield. Dose to the simulated operator was determined using an array of personal dosimeters and a pair of pressurized ion chambers. The results indicate that the dose to an operator of this equipment will be less than 0.6 mSv y⁻¹ if the device is used according to the manufacturer's recommendations. This suggests that doses to properly trained operators of well-designed, hand-held dental x-ray units will be below 1.0 mSv y⁻¹ (2% of the annual occupational dose limit) even if additional no additional operational requirements are established by regulatory agencies. This level of annual dose is similar to those reported as typical dental personnel using fixed x-ray units and appears to satisfy the ALARA principal for this class of occupational exposures. PMID:22739973

  1. An all-optical Compton source for single-exposure x-ray imaging

    NASA Astrophysics Data System (ADS)

    Döpp, A.; Guillaume, E.; Thaury, C.; Gautier, J.; Andriyash, I.; Lifschitz, A.; Malka, V.; Rousse, A.; Phuoc, K. Ta

    2016-03-01

    All-optical Compton sources are innovative, compact devices to produce high energy femtosecond x-rays. Here we present results on a single-pulse scheme that uses a plasma mirror to reflect the drive beam of a laser plasma accelerator and to make it collide with the highly-relativistic electrons in its wake. The accelerator is operated in the self-injection regime, producing quasi-monoenergetic electron beams of around 150 MeV peak energy. Scattering with the intense femtosecond laser pulse leads to the emission of a collimated high energy photon beam. Using continuum-attenuation filters we measure significant signal content beyond 100 keV and with simulations we estimate a peak photon energy of around 500 keV. The source divergence is about 13 mrad and the pointing stability is 7 mrad. We demonstrate that the photon yield from the source is sufficiently high to illuminate a centimeter-size sample placed 90 centimeters behind the source, thus obtaining radiographs in a single shot.

  2. Cross calibration of AGFA-D7 x-ray film against direct exposure film from 2 to 8.5 keV using laser generated x-rays

    NASA Astrophysics Data System (ADS)

    Kyrala, George A.

    2006-05-01

    Direct exposure film (DEF) is being discontinued. DEF film has been the workhorse in inertial confinement fusion (ICF) research and is used to record x-ray images and spectra. A previous search for a replacement [K. M. Chandler et al., Rev. Sci. Instrum. 76, 113111 (2005)] did not consider AGFA film. We present comparisons using the results of measurements using AGFA-D7 film, XAR, TMG, and Biomax-MS films in the same spectrometer recording a gold spectrum in the 2-4keV range and the iron spectrum in the 5-8.5keV range. AGFA film was found to have some unique properties useful in x-ray spectroscopy and imaging, especially when signal strength is not a concern.

  3. Evaluation of a novel portable x-ray fluorescence screening tool for detection of arsenic exposure.

    PubMed

    McIver, David J; VanLeeuwen, John A; Knafla, Anthony L; Campbell, Jillian A; Alexander, Kevin M; Gherase, Mihai R; Guernsey, Judith R; Fleming, David E B

    2015-12-01

    A new portable x-ray fluorescence (XRF) screening tool was evaluated for its effectiveness in arsenic (As) quantification in human finger and toe nails ([Formula: see text]). Nail samples were measured for total As concentration by XRF and inductively coupled plasma-mass spectrometry (ICP-MS). Using concordance correlation coefficient (CCC), kappa, diagnostic sensitivity (Sn) and specificity (Sp), and linear regression analyses, the concentration of As measured by XRF was compared to ICP-MS. The CCC peaked for scaled values of fingernail samples, at 0.424 (95% CI: 0.065-0.784). The largest kappa value, 0.400 (95% CI:  -0.282-1.000), was found at a 1.3 μg g(-1) cut-off concentration, for fingernails only, and the largest kappa at a clinically relevant cut-off concentration of 1.0 μg g(-1) was 0.237 (95% CI:  -0.068-0.543), again in fingernails. Analyses generally showed excellent XRF Sn (up to 100%, 95% CI: 48-100%), but low Sp (up to 30% for the same analysis, 95% CI: 14-50%). Portable XRF shows some potential for use as a screening tool with fingernail samples. The difference between XRF and ICP-MS measurements decreased as sample mass increased to 30 mg. While this novel method of As detection in nails has shown relatively high agreement in some scenarios, this portable XRF is not currently considered suitable as a substitute for ICP-MS. PMID:26536141

  4. Pathology of breast cancer in women irradiated for acute postpartum mastitis. [X rays

    SciTech Connect

    Dvoretsky, P.M.; Woodard, E.; Bonfiglio, T.A.; Hempelmann, L.H.; Morse, I.P.

    1980-11-15

    The gross and microscopic pathology of breast cancers in women irradiated for acute postpartum mastitis was compared to the breast cancers found in the sisters of the irradiated women. In considering the lesions in the two populations, the size, location, histologic type, histologic grade, inflammatory response, lymphatic and blood vascular invasion, nipple involvement, axillary lymph node metastases, and menopausal status at the time of diagnosis were statistically indistinguishable. The only parameter that was different in the two populations was the desmoplastic response to the malignant lesion. The control population had more marked fibrosis within the cancers compared with the irradiated women.

  5. Analysis of Flow Cytometry DNA Damage Response Protein Activation Kinetics Following X-rays and High Energy Iron Nuclei Exposure

    SciTech Connect

    Universities Space Research Association; Chappell, Lori J.; Whalen, Mary K.; Gurai, Sheena; Ponomarev, Artem; Cucinotta, Francis A.; Pluth, Janice M.

    2010-12-15

    We developed a mathematical method to analyze flow cytometry data to describe the kinetics of {gamma}H2AX and pATF2 phosphorylations ensuing various qualities of low dose radiation in normal human fibroblast cells. Previously reported flow cytometry kinetic results for these DSB repair phospho-proteins revealed that distributions of intensity were highly skewed, severely limiting the detection of differences in the very low dose range. Distributional analysis reveals significant differences between control and low dose samples when distributions are compared using the Kolmogorov-Smirnov test. Radiation quality differences are found in the distribution shapes and when a nonlinear model is used to relate dose and time to the decay of the mean ratio of phosphoprotein intensities of irradiated samples to controls. We analyzed cell cycle phase and radiation quality dependent characteristic repair times and residual phospho-protein levels with these methods. Characteristic repair times for {gamma}H2AX were higher following Fe nuclei as compared to X-rays in G1 cells (4.5 {+-} 0.46 h vs 3.26 {+-} 0.76 h, respectively), and in S/G2 cells (5.51 {+-} 2.94 h vs 2.87 {+-} 0.45 h, respectively). The RBE in G1 cells for Fe nuclei relative to X-rays for {gamma}H2AX was 2.05 {+-} 0.61 and 5.02 {+-} 3.47, at 2 h and 24-h postirradiation, respectively. For pATF2, a saturation effect is observed with reduced expression at high doses, especially for Fe nuclei, with much slower characteristic repair times (>7 h) compared to X-rays. RBEs for pATF2 were 0.66 {+-} 0.13 and 1.66 {+-} 0.46 at 2 h and 24 h, respectively. Significant differences in {gamma}H2AX and pATF2 levels comparing irradiated samples to control were noted even at the lowest dose analyzed (0.05 Gy) using these methods of analysis. These results reveal that mathematical models can be applied to flow cytometry data to uncover important and subtle differences following exposure to various qualities of low dose radiation.

  6. Acute effects of delayed reperfusion following myocardial infarction: a 3D x-ray imaging analysis

    NASA Astrophysics Data System (ADS)

    Simari, Robert D.; Bell, M. R.; Pao, Y. C.; Gersh, B. J.; Ritman, Erik L.

    1996-04-01

    Clinical and experimental data suggest that delayed reperfusion of the infarct related artery may limit infarct expansion without increasing myocardial salvage. In order to assess the potential mechanisms involved, an acute closed chest canine model of myocardial infarction and delayed reperfusion was studied. Nineteen dogs underwent 3D computed tomography in the Dynamic Spatial Reconstructor (a fast, volume imaging, CT scanner) at baseline and three and four hours later to estimate left ventricular chamber volumes, global distensibility and regional myocardial stiffness. A control group was scanned without intervention. An occlusion group underwent four hours of coronary artery occlusion. A reperfusion group underwent three hours of coronary artery occlusion followed by one hour of reperfusion. Similar infarct sizes were seen in the occlusion and reperfusion groups. Globally reperfusion was associated with increased left ventricular end diastolic pressure and prolongation of global relaxation. Regionally reperfusion was associated with increased myocardial stiffness, intramyocardial blood volume and wall thickness within the infarct zone relative to the not reperfused myocardium.

  7. Developable images produced by x-rays using the nickel-hypophosphite system. 2: Exposure and development parameters for sodium hypophosphite

    NASA Technical Reports Server (NTRS)

    May, C. E.; Philipp, W. H.; Marsik, S. J.

    1972-01-01

    Crystalline sodium hypophosphite was X-irradiated and then treated with an ammoniacal nickel hypophosphite solution. Treatment resulted in the precipitation of nickel metal. The yield of nickel metal varied directly with particle size, sample weight, X-ray voltage, target current, exposure time, and development time. These findings show the process to be potentially useful in X-ray type photography. The half-life for the latent image species was found to be relatively short; but this is not critical in most X-ray photography applications. Furthermore, the work can be interpreted on the basis that a hydrogen atom is involved in the mechanism and indicates that the autocatalytic development step may be self-poisoning.

  8. Laboratory Simulation of Acute X-Ray Radiation Emitted by Stellar Explosions and Survival Conditions of Extremophilic Microorganisms

    NASA Astrophysics Data System (ADS)

    Paulino-Lima, I. G.; Galante, D.; Cockell, C.; Olsson-Francis, K.; Azua-Bustos, A.; Vicuna, R.; Pacheco, E. J.; Lage, C. A. S.; Mason, N. J.

    2010-04-01

    Irradiations of two bacterial species were performed using a white beam of synchrotron X-rays in an attempt to simulate the effects of energetic astrophysical events on these microorganisms. A fraction of cells could survive such events.

  9. Fabrication of thin film x-ray sensor using particle-in-binder method for automatic exposure control in digital radiography

    NASA Astrophysics Data System (ADS)

    Oh, K.; Kim, G.; Park, J.; Song, Y.; Heo, S.; Cho, S.; Kim, J.; Park, S.; Nam, S.

    2015-03-01

    An automatic exposure control (AEC) detector is a control device that ensures consistent x-ray image quality and limits patient exposure in digital radiography. Among several kinds of AEC detectors, solid-state sensors offer several advantages such as geometric efficiency due to small thickness, high sensitivity, fast reaction time, and excellent stability. Commercially, the use of single-crystal silicon sensors for AEC detector has grown over time, but is still severely limited by large-area production techniques and mechanically fragile properties. Therefore, our study focused on developing a method of fabricating solid-state sensors that do not suffer from these limitations. The particle-in-binder method was used to fabricate silicon dioxide-based photoconductor films. Because silicon dioxide has a low atomic number and a low work function, it is a suitable material for generating sufficient electron-hole pairs by incident x-rays as well as not negatively affect the image detector of the digital radiography. To verify the feasibility of the silicon dioxide film as an AEC detector, electrical properties such as x-ray transmission and x-ray linearity were measured and compared with those of a commercialized silicon film. Over 90% x-ray transmission was achieved using a 500 μ m silicon dioxide film, which is suitable for an AEC detector. Also, an error below 3% was obtained from both x-ray current and voltage linearity tests. The results of bending tests demonstrated the properties of the silicon dioxide film to be more mechanically strong and stable compared with the commercialized silicon film. These properties were a result of the use of binder materials, which resulted in the flexibility of the film.

  10. Estimates of Average Glandular Dose with Auto-modes of X-ray Exposures in Digital Breast Tomosynthesis

    PubMed Central

    Kamal, Izdihar; Chelliah, Kanaga K.; Mustafa, Nawal

    2015-01-01

    Objectives: The aim of this research was to examine the average glandular dose (AGD) of radiation among different breast compositions of glandular and adipose tissue with auto-modes of exposure factor selection in digital breast tomosynthesis. Methods: This experimental study was carried out in the National Cancer Society, Kuala Lumpur, Malaysia, between February 2012 and February 2013 using a tomosynthesis digital mammography X-ray machine. The entrance surface air kerma and the half-value layer were determined using a 100H thermoluminescent dosimeter on 50% glandular and 50% adipose tissue (50/50) and 20% glandular and 80% adipose tissue (20/80) commercially available breast phantoms (Computerized Imaging Reference Systems, Inc., Norfolk, Virginia, USA) with auto-time, auto-filter and auto-kilovolt modes. Results: The lowest AGD for the 20/80 phantom with auto-time was 2.28 milliGray (mGy) for two dimension (2D) and 2.48 mGy for three dimensional (3D) images. The lowest AGD for the 50/50 phantom with auto-time was 0.97 mGy for 2D and 1.0 mGy for 3D. Conclusion: The AGD values for both phantoms were lower against a high kilovolt peak and the use of auto-filter mode was more practical for quick acquisition while limiting the probability of operator error. PMID:26052465

  11. Abdomen X-Ray (Radiography)

    MedlinePlus

    ... have very controlled x-ray beams and dose control methods to minimize stray (scatter) radiation. This ensures that those parts of a patient's body not being imaged receive minimal radiation exposure. top ...

  12. X-Rays

    MedlinePlus

    X-rays are a type of radiation called electromagnetic waves. X-ray imaging creates pictures of the inside of ... different amounts of radiation. Calcium in bones absorbs x-rays the most, so bones look white. Fat ...

  13. Cosmic x ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1990-01-01

    The annual progress report on Cosmic X Ray Physics is presented. Topics studied include: the soft x ray background, proportional counter and filter calibrations, the new sounding rocket payload: X Ray Calorimeter, and theoretical studies.

  14. Cosmic x ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1991-01-01

    The annual progress report on Cosmic X Ray Physics for the period 1 Jan. to 31 Dec. 1990 is presented. Topics studied include: soft x ray background, new sounding rocket payload: x ray calorimeter, and theoretical studies.

  15. Joint x-ray

    MedlinePlus

    X-ray - joint; Arthrography; Arthrogram ... x-ray technologist will help you position the joint to be x-rayed on the table. Once in place, pictures are taken. The joint may be moved into other positions for more ...

  16. X-ray transmissive debris shield

    DOEpatents

    Spielman, Rick B.

    1996-01-01

    An X-ray debris shield for use in X-ray lithography that is comprised of an X-ray window having a layer of low density foam exhibits increased longevity without a substantial increase in exposure time. The low density foam layer serves to absorb the debris emitted from the X-ray source and attenuate the shock to the window so as to reduce the chance of breakage. Because the foam is low density, the X-rays are hardly attenuated by the foam and thus the exposure time is not substantially increased.

  17. X-ray transmissive debris shield

    DOEpatents

    Spielman, R.B.

    1996-05-21

    An X-ray debris shield for use in X-ray lithography that is comprised of an X-ray window having a layer of low density foam exhibits increased longevity without a substantial increase in exposure time. The low density foam layer serves to absorb the debris emitted from the X-ray source and attenuate the shock to the window so as to reduce the chance of breakage. Because the foam is low density, the X-rays are hardly attenuated by the foam and thus the exposure time is not substantially increased.

  18. Specific features of the luminescence and conductivity of zinc selenide on exposure to X-ray and optical excitation

    SciTech Connect

    Degoda, V. Ya. Sofienko, A. O.

    2010-05-15

    The set of experimental data on the X-ray-excited luminescence and X-ray induced conductivity of ZnSe are compared to the data on the photoluminescence and photoconductivity. It is experimentally established that the current-voltage characteristics and the kinetics of phosphorescence and current relaxation depend on the type of excitation. It is found that the external electric field influences the intensity and shape of bands in the luminescence spectra. It is shown that the character of excitation defines the kinetics of recombination, charge carrier trapping, and conductivity in wide-gap semiconductors.

  19. Assessment of Occupational Exposure to Manganese and Other Metals in Welding Fumes by Portable X-ray Fluorescence Spectrometer

    PubMed Central

    Laohaudomchok, Wisanti; Cavallari, Jennifer M.; Fang, Shona C.; Lin, Xihong; Herrick, Robert F.; Christiani, David C.; Weisskopf, Marc G.

    2011-01-01

    Elemental analysis of welding fume samples can be done using several laboratory-based techniques. However, portable measurement techniques could offer several advantages. In this study, we sought to determine whether the portable X-ray fluorescence spectrometer (XRF) is suitable for analysis of five metals (manganese, iron, zinc, copper, and chromium) on 37-mm polytetrafluoroethylene filters. Using this filter fitted on a cyclone in line with a personal pump, gravimetric samples were collected from a group of boilermakers exposed to welding fumes. We assessed the assumption of uniform deposition of these metals on the filters, and the relationships between measurement results of each metal obtained from traditional laboratory-based XRF and the portable XRF. For all five metals of interest, repeated measurements with the portable XRF at the same filter area showed good consistency (reliability ratios are equal or close to 1.0 for almost all metals). The portable XRF readings taken from three different areas of each filter were not significantly different (p-values = 0.77 to 0.98). This suggested that the metal rich PM2.5 deposits uniformly on the samples collected using this gravimetric method. For comparison of the two XRFs, the results from the portable XRF were well correlated and highly predictive of those from the laboratory XRF. The Spearman correlation coefficients were from 0.325 for chromium, to 0.995 for manganese and 0.998 for iron. The mean differences as a percent of the mean laboratory XRF readings were also small (<5%) for manganese, iron, and copper. The differences were greater for zinc and chromium, which were present at very low amounts in our samples and below the limits of detection of the portable XRF for many of the samples. These five metals were moderately to strongly correlated with the total fine particle fraction on filters (Spearman ρ = 0.41 for zinc to 0.97 for iron). Such strong correlations and comparable results suggested that the

  20. Chest x-ray

    MedlinePlus

    Chest radiography; Serial chest x-ray; X-ray - chest ... You stand in front of the x-ray machine. You will be told to hold your breath when the x-ray is taken. Two images are usually taken. You will ...

  1. A study on the dependence of exposure dose reduction and image evaluation on the distance from the dental periapical X-ray machine

    NASA Astrophysics Data System (ADS)

    Joo, Kyu-Ji; Shin, Jae-Woo; Dong, Kyung-Rae; Lim, Chang-Seon; Chung, Woon-Kwan; Kim, Young-Jae

    2013-11-01

    Reducing the exposure dose from a periapical X-ray machine is an important aim in dental radiography. Although the radiation exposure dose is generally low, any radiation exposure is harmful to the human body. Therefore, this study developed a method that reduces the exposure dose significantly compared to that encountered in a normal procedure, but still produces an image with a similar resolution. The correlation between the image resolution and the exposure dose of the proposed method was examined with increasing distance between the dosimeter and the X-ray tube. The results were compared with those obtained from the existing radiography method. When periapical radiography was performed once according to the recommendations of the International Commission on Radiological Protection (ICRP), the measured skin surface dose was low at 7 mGy or below. In contrast, the skin surface dose measured using the proposed method was only 1.57 mGy, showing a five-fold reduction. These results suggest that further decreases in dose might be achieved using the proposed method.

  2. Component analysis of a new Solid State X-ray Image Intensifier (SSXII) using photon transfer and Instrumentation Noise Equivalent Exposure (INEE) measurements

    PubMed Central

    Kuhls-Gilcrist, Andrew; Bednarek, Daniel R.; Rudin, Stephen

    2009-01-01

    The SSXII is a novel x-ray imager designed to improve upon the performance limitations of conventional dynamic radiographic/fluoroscopic imagers related to resolution, charge-trapping, frame-rate, and instrumentation-noise. The SSXII consists of a CsI:Tl phosphor coupled via a fiber-optic taper (FOT) to an electron-multiplying CCD (EMCCD). To facilitate investigational studies, initial designs enable interchangeability of such imaging components. Measurements of various component and configuration characteristics enable an optimization analysis with respect to overall detector performance. Photon transfer was used to characterize the EMCCD performance including ADC sensitivity, read-noise, full-well capacity and quantum efficiency. X-ray sensitivity was measured using RQA x-ray spectra. Imaging components were analyzed in terms of their MTF and transmission efficiency. The EMCCD was measured to have a very low effective read-noise of less than 1 electron rms at modest EMCCD gains, which is more than two orders-of-magnitude less than flat panel (FPD) and CMOS-based detectors. The variable signal amplification from 1 to 2000 times enables selectable sensitivities ranging from 8.5 (168) to over 15k (300k) electrons per incident x-ray photon with (without) a 4:1 FOT; these sensitivities could be readily increased with further component optimization. MTF and DQE measurements indicate the SSXII performance is comparable to current state-of-the-art detectors at low spatial frequencies and far exceeds them at higher spatial frequencies. The instrumentation noise equivalent exposure (INEE) was measured to be less than 0.3 μR out to 10 cycles/mm, which is substantially better than FPDs. Component analysis suggests that these improvements can be substantially increased with further detector optimization. PMID:19763251

  3. Component analysis of a new solid state x-ray image intensifier (SSXII) using photon transfer and instrumentation noise equivalent exposure (INEE) measurements

    NASA Astrophysics Data System (ADS)

    Kuhls-Gilcrist, Andrew; Bednarek, Daniel R.; Rudin, Stephen

    2009-02-01

    The SSXII is a novel x-ray imager designed to improve upon the performance limitations of conventional dynamic radiographic/fluoroscopic imagers related to resolution, charge-trapping, frame-rate, and instrumentation-noise. The SSXII consists of a CsI:Tl phosphor coupled via a fiber-optic taper (FOT) to an electron-multiplying CCD (EMCCD). To facilitate investigational studies, initial designs enable interchangeability of such imaging components. Measurements of various component and configuration characteristics enable an optimization analysis with respect to overall detector performance. Photon transfer was used to characterize the EMCCD performance including ADC sensitivity, read-noise, full-well capacity and quantum efficiency. X-ray sensitivity was measured using RQA x-ray spectra. Imaging components were analyzed in terms of their MTF and transmission efficiency. The EMCCD was measured to have a very low effective read-noise of less than 1 electron rms at modest EMCCD gains, which is more than two orders-ofmagnitude less than flat panel (FPD) and CMOS-based detectors. The variable signal amplification from 1 to 2000 times enables selectable sensitivities ranging from 8.5 (168) to over 15k (300k) electrons per incident x-ray photon with (without) a 4:1 FOT; these sensitivities could be readily increased with further component optimization. MTF and DQE measurements indicate the SSXII performance is comparable to current state-of-the-art detectors at low spatial frequencies and far exceeds them at higher spatial frequencies. The instrumentation noise equivalent exposure (INEE) was measured to be less than 0.3 μR out to 10 cycles/mm, which is substantially better than FPDs. Component analysis suggests that these improvements can be substantially increased with further detector optimization.

  4. Dental x-rays

    MedlinePlus

    X-ray - teeth; Radiograph - dental; Bitewings; Periapical film; Panoramic film ... dentist's office. There are many types of dental x-rays. Some are: Bitewing Periapical Palatal (also called occlusal) ...

  5. X-ray (image)

    MedlinePlus

    X-rays are a form of ionizing radiation that can penetrate the body to form an image on ... will be shades of gray depending on density. X-rays can provide information about obstructions, tumors, and other ...

  6. X-Ray Lasers

    ERIC Educational Resources Information Center

    Chapline, George; Wood, Lowell

    1975-01-01

    Outlines the prospects of generating coherent x rays using high-power lasers and indentifies problem areas in their development. Indicates possible applications for coherent x rays in the fields of chemistry, biology, and crystallography. (GS)

  7. X Ray Topography

    ERIC Educational Resources Information Center

    Balchin, A. A.

    1974-01-01

    Discusses some aspects in X-ray topography, including formation of dislocations, characteristics of stacking faults, x-ray contrast in defect inspection, Berg-Barrett technique, and Lang traversing crystal and Borrmann's methods. (CC)

  8. Extremity x-ray

    MedlinePlus

    ... degenerative) Bone tumor Broken bone (fracture) Dislocated bone Osteomyelitis (infection) Other conditions for which the test may ... Bone tumor Bone x-ray Broken bone Clubfoot Osteomyelitis X-ray Update Date 10/22/2014 Updated ...

  9. Acute exposure to rhodamine B.

    PubMed

    Dire, D J; Wilkinson, J A

    1987-01-01

    Rhodamine B is a red colored dye that is used in cosmetic products. We report a case of 17 patients who were exposed to aerosolized Rhodamine B inside a maintenance shop. The mean duration of exposure was 26 minutes (range 2-65). Sixteen of the patients (94%) complained of acute symptoms including: burning of the eyes (82%), excessive tearing (47%), nasal burning (41%), nasal itching (35%), chest pain/tightness (35%), rhinorhea (29%), cough (29%), dyspnea (29%), burning of the throat (24%), burning/pruritic skin (24%), chest burning (12%), headache (6%), and nausea (6%). All of the patients had resolution of their symptoms within 24 hours (less than 4 hours in 63%). Acute exposure to Rhodamine B resulted in transient mucous membrane and skin irritation without evidence of serious sequellae. PMID:3446824

  10. X-Ray Imaging

    MedlinePlus

    ... Brain Surgery Imaging Clinical Trials Basics Patient Information X-Ray Imaging Print This Page X-ray imaging is perhaps the most familiar type of imaging. Images produced by X-rays are due to the different absorption rates of ...

  11. X-Rays

    MedlinePlus

    X-rays are a type of radiation called electromagnetic waves. X-ray imaging creates pictures of the inside of your ... different amounts of radiation. Calcium in bones absorbs x-rays the most, so bones look white. Fat and ...

  12. Hand x-ray

    MedlinePlus

    X-ray - hand ... A hand x-ray is taken in a hospital radiology department or your health care provider's office by an ... technician. You will be asked to place your hand on the x-ray table, and keep it ...

  13. Sinus x-ray

    MedlinePlus

    Paranasal sinus radiography; X-ray - sinuses ... sinus x-ray is taken in a hospital radiology department. Or the x-ray may be taken ... Brown J, Rout J. ENT, neck, and dental radiology. In: Adam A, Dixon AK, Gillard JH Schaefer- ...

  14. Angular correlation functions of X-ray point-like sources in the full exposure XMM-LSS field

    NASA Astrophysics Data System (ADS)

    Elyiv, A.; Clerc, N.; Plionis, M.; Surdej, J.; Pierre, M.; Basilakos, S.; Chiappetti, L.; Gandhi, P.; Gosset, E.; Melnyk, O.; Pacaud, F.

    2012-01-01

    Aims: Our aim is to study the large-scale structure of different types of AGN using the medium-deep XMM-LSS survey. Methods: We measure the two-point angular correlation function of 5700 and 2500 X-ray point-like sources over the 11 sq. deg. XMM-LSS field in the soft (0.5-2 keV) and hard (2-10 keV) bands. For the conversion from the angular to the spatial correlation function we used the Limber integral equation and the luminosity-dependent density evolution model of the AGN X-ray luminosity function. Results: We have found significant angular correlations with the power-law parameters γ = 1.81 ± 0.02, θ0 = 1.3'' ± 0.2'' for the soft, and γ = 2.00 ± 0.04, θ0 = 7.3'' ± 1.0'' for the hard bands. The amplitude of the correlation function w(θ) is higher in the hard than in the soft band for fx ≲ 10-14 erg s-1 cm-2 and lower above this flux limit. We confirm that the clustering strength θ0 grows with the flux limit of the sample, a trend which is also present in the amplitude of the spatial correlation function, but only for the soft band. In the hard band, it remains almost constant with r0 ≃ 10h-1 Mpc, irrespective of the flux limit. Our analysis of AGN subsamples with different hardness ratios shows that the sources with a hard-spectrum are more clustered than soft-spectrum ones. This result may be a hint that the two main types of AGN populate different environments. Finally, we find that our clustering results correspond to an X-ray selected AGN bias factor of 2.5 for the soft band sources (at a median bar{z} ≃ 1.1) and 3.3 for the hard band sources (at a median bar{z} ≃ 1), which translates into a host dark matter halo mass of 1013h-1M⊙ and 1013.7h-1M⊙ for the soft and hard bands, respectively. This paper is dedicated to the memory of Olivier Garcet who has initiated the present work just before his sudden death.

  15. Elemental changes in hemolymph and urine of Rhodnius prolixus induced by in-vivo exposure to mercury: A study using synchrotron radiation total reflection X-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Mantuano, Andrea; Pickler, Arissa; Barroso, Regina C.; de Almeida, André P.; Braz, Delson; Cardoso, Simone C.; Gonzalez, Marcelo S.; Figueiredo, Marcela B.; Garcia, Eloi S.; Azambuja, Patricia

    2012-05-01

    In recent years, the effects of pollution on the health of humans and other vertebrates were extensively studied. However, the effects on some invertebrates are comparatively unknown. Recent studies have demonstrated that toxic metals interfere with the reproduction, development and immune defenses of some terrestrial and marine invertebrates. Some environmental conditions including pollution produce chronic and acute effects on different animal's organs and systems. In this work, we investigated changes in the concentrations of Cl, K, Ca, Fe and Zn in Rhodnius prolixus as insect model. The elements were quantified using urine and hemolymph samples collected on different days after feeding the insects with blood containing HgCl2. The synchrotron radiation total reflection X-ray fluorescence measurements were carried at the X-ray fluorescence beamline facility in Brazilian Synchrotron Light Laboratory. The observation reveals that the calcium level was higher in the hemolymph than in urine. On the other hand, the urine collected from insects treated with HgCl2 showed higher level of Cl than hemolymph samples. Ca, Fe and Zn concentrations decrease drastically in urine samples collected after 2 days of HgCl2 treatment. The regulation of triatomines excretion was discussed pointing out the importance of trace elements.

  16. Hard X-ray imaging from Explorer

    NASA Technical Reports Server (NTRS)

    Grindlay, J. E.; Murray, S. S.

    1981-01-01

    Coded aperture X-ray detectors were applied to obtain large increases in sensitivity as well as angular resolution. A hard X-ray coded aperture detector concept is described which enables very high sensitivity studies persistent hard X-ray sources and gamma ray bursts. Coded aperture imaging is employed so that approx. 2 min source locations can be derived within a 3 deg field of view. Gamma bursts were located initially to within approx. 2 deg and X-ray/hard X-ray spectra and timing, as well as precise locations, derived for possible burst afterglow emission. It is suggested that hard X-ray imaging should be conducted from an Explorer mission where long exposure times are possible.

  17. Panoramic Dental X-Ray

    MedlinePlus

    ... X-ray? What is Panoramic X-ray? Panoramic radiography , also called panoramic x-ray , is a two- ... Exams Dental Cone Beam CT X-ray, Interventional Radiology and Nuclear Medicine Radiation Safety About this Site ...

  18. Radiation exposure due to cosmic rays and solar X-ray photons at various atmospheric heights in aviation range over India

    NASA Astrophysics Data System (ADS)

    Palit, Sourav; Chakrabarti, Sandip Kumar; Bhattacharya, Arnab

    2016-07-01

    In this presentation we present our work on the continuous monitoring of radiation exposure in terms of effective dose rates, due to galactic cosmic rays (GCR) and solar X-rays at various altitudes within aviation range over India. As India belongs to equatorial region, there is negligible contribution from solar energetic particles (SEP). The calculation of cosmic ray counts as well as the solar X-ray photons are performed on the basis of the observation of various Dignity series balloon experiments on cosmic ray and solar high energy radiation studies, conducted by ICSP and Monte Carlo simulations performed with GEANT4 detector simulation software. The information on solar activity level from Geostationary Operational Environmental Satellite system (GOES) are employed in the calculations. A program, which is done entirely in MATLAB is employed to update regularly in a website, where we show images of dose rate (μSv) distribution over India at four different heights within the aviation range (updating at an interval of 30 minutes) and the approximate dose rates thats should be experienced by a pilot in an entire flight time between pairs of stations distributed all over India.

  19. X-ray binaries

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Satellite X-ray experiments and ground-based programs aimed at observation of X-ray binaries are discussed. Experiments aboard OAO-3, OSO-8, Ariel 5, Uhuru, and Skylab are included along with rocket and ground-based observations. Major topics covered are: Her X-1, Cyg X-3, Cen X-3, Cyg X-1, the transient source A0620-00, other possible X-ray binaries, and plans and prospects for future observational programs.

  20. Instrument and method for X-ray diffraction, fluorescence, and crystal texture analysis without sample preparation

    NASA Technical Reports Server (NTRS)

    Gendreau, Keith (Inventor); Martins, Jose Vanderlei (Inventor); Arzoumanian, Zaven (Inventor)

    2010-01-01

    An X-ray diffraction and X-ray fluorescence instrument for analyzing samples having no sample preparation includes a X-ray source configured to output a collimated X-ray beam comprising a continuum spectrum of X-rays to a predetermined coordinate and a photon-counting X-ray imaging spectrometer disposed to receive X-rays output from an unprepared sample disposed at the predetermined coordinate upon exposure of the unprepared sample to the collimated X-ray beam. The X-ray source and the photon-counting X-ray imaging spectrometer are arranged in a reflection geometry relative to the predetermined coordinate.

  1. X-ray beamsplitter

    DOEpatents

    Ceglio, Natale M.; Stearns, Daniel S.; Hawryluk, Andrew M.; Barbee, Jr., Troy W.

    1989-01-01

    An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5-50 pairs of alternate Mo/Si layers with a period of 20-250 A. The support membrane is 10-200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window.

  2. X-ray beamsplitter

    DOEpatents

    Ceglio, N.M.; Stearns, D.G.; Hawryluk, A.M.; Barbee, T.W. Jr.

    1987-08-07

    An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5--50 pairs of alternate Mo/Si layers with a period of 20--250 A. The support membrane is 10--200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window. 6 figs.

  3. X-ray - skeleton

    MedlinePlus

    A skeletal x-ray is an imaging test used to look at the bones. It is used to detect fractures , tumors, or ... in the health care provider's office by an x-ray technologist. You will lie on a table or ...

  4. Extremity x-ray

    MedlinePlus

    An extremity x-ray is an image of the hands, wrist, feet, ankle, leg, thigh, forearm humerus or upper arm, hip, shoulder ... term "extremity" often refers to a human limb. X-rays are a form of radiation that passes through ...

  5. X-ray Spectrometry.

    ERIC Educational Resources Information Center

    Markowicz, Andrzej A.; Van Grieken, Rene E.

    1984-01-01

    Provided is a selective literature survey of X-ray spectrometry from late 1981 to late 1983. Literature examined focuses on: excitation (photon and electron excitation and particle-induced X-ray emission; detection (wavelength-dispersive and energy-dispersive spectrometry); instrumentation and techniques; and on such quantitative analytical…

  6. Indus-2 X-ray lithography beamline for X-ray optics and material science applications

    SciTech Connect

    Dhamgaye, V. P. Lodha, G. S.

    2014-04-24

    X-ray lithography is an ideal technique by which high aspect ratio and high spatial resolution micro/nano structures are fabricated using X-rays from synchrotron radiation source. The technique has been used for fabricating optics (X-ray, visible and infrared), sensors and actuators, fluidics and photonics. A beamline for X-ray lithography is operational on Indus-2. The beamline offers wide lithographic window from 1-40keV photon energy and wide beam for producing microstructures in polymers upto size ∼100mm × 100mm. X-ray exposures are possible in air, vacuum and He gas environment. The air based exposures enables the X-ray irradiation of resist for lithography and also irradiation of biological and liquid samples.

  7. X-ray monochromator

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B. (Inventor)

    1992-01-01

    An x-ray monochromator is described, wherin a housing supports a plurality of mirrors forming a plurality of opposed mirror faces in parallel with each other and having thereon multilayer coatings, with each of said pairs of mirror faces being provided with identical coatings which are different from the coatings on the other pairs of mirror faces such that each pair of mirror faces has a peak x-ray reflection at a different wavelength regime. The housing is moveable to bring into a polychromatic x-ray beam that pair of mirror faces having the best x-ray reflection for the desired wavelength, with the mirrors being pivotable to move the mirror faces to that angle of incidence at which the peak reflectivity of the desired wavelength x-rays occurs.

  8. Chest X-Ray (Chest Radiography)

    MedlinePlus

    ... have very controlled x-ray beams and dose control methods to minimize stray (scatter) radiation. This ensures that those parts of a patient's body not being imaged receive minimal radiation exposure. top ...

  9. X-ray generator

    DOEpatents

    Dawson, John M.

    1976-01-01

    Apparatus and method for producing coherent secondary x-rays that are controlled as to direction by illuminating a mixture of high z and low z gases with an intense burst of primary x-rays. The primary x-rays are produced with a laser activated plasma, and these x-rays strip off the electrons of the high z atoms in the lasing medium, while the low z atoms retain their electrons. The neutral atoms transfer electrons to highly excited states of the highly striped high z ions giving an inverted population which produces the desired coherent x-rays. In one embodiment, a laser, light beam provides a laser spark that produces the intense burst of coherent x-rays that illuminates the mixture of high z and low z gases, whereby the high z atoms are stripped while the low z ones are not, giving the desired mixture of highly ionized and neutral atoms. To this end, the laser spark is produced by injecting a laser light beam, or a plurality of beams, into a first gas in a cylindrical container having an adjacent second gas layer co-axial therewith, the laser producing a plasma and the intense primary x-rays in the first gas, and the second gas containing the high and low atomic number elements for receiving the primary x-rays, whereupon the secondary x-rays are produced therein by stripping desired ions in a neutral gas and transfer of electrons to highly excited states of the stripped ions from the unionized atoms. Means for magnetically confining and stabilizing the plasma are disclosed for controlling the direction of the x-rays.

  10. Exposure and analysis of microparticles embedded in silica aerogel keystones using NF3-mediated electron beam-induced etching and energy-dispersive X-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Martin, Aiden A.; Lin, Ting; Toth, Milos; Westphal, Andrew J.; Vicenzi, Edward P.; Beeman, Jeffrey; Silver, Eric H.

    2016-07-01

    In 2006, NASA's Stardust spacecraft delivered to Earth dust particles collected from the coma of comet 81P/Wild 2, with the goal of furthering the understanding of solar system formation. Stardust cometary samples were collected in a low-density, nanoporous silica aerogel making their study technically challenging. This article demonstrates the identification, exposure, and elemental composition analysis of particles analogous to those collected by NASA's Stardust mission using in-situ SEM techniques. Backscattered electron imaging is shown by experimental observation and Monte Carlo simulation to be suitable for locating particles of a range of sizes relevant to Stardust (down to submicron diameters) embedded within silica aerogel. Selective removal of the silica aerogel encapsulating an embedded particle is performed by cryogenic NF3-mediated electron beam-induced etching. The porous, low-density nature of the aerogel results in an enhanced etch rate compared with solid material, making it an effective, nonmechanical method for the exposure of particles. After exposure, elemental composition of the particle was analyzed by energy-dispersive X-ray spectroscopy using a high spectral resolution microcalorimeter. Signals from fluorine contamination are shown to correspond to nonremoved silica aerogel and only in residual concentrations.

  11. Comparison between two FISH techniques in the in vitro study of cytogenetic markers for low-dose X-ray exposure in human primary fibroblasts

    PubMed Central

    Nieri, D.; Berardinelli, F.; Antoccia, A.; Tanzarella, C.; Sgura, Antonella

    2013-01-01

    This work is about the setup of an in vitro system to report low-dose of X-rays as measured as cytogenetic damage. Q- and multicolor FISH (m-FISH), for telomere length and chromosome instability analysis, respectively, were compared to evaluate their sensitivity in the low-dose range in human primary fibroblasts. No telomere length modulation was observed up to 1 Gy in cycling fibroblasts, though reported for high doses, by that frustrating the purpose of using it as a low-exposure marker. To date the m-FISH is the best setup for the assessment of the chromosome structural damage: it allows stable and instable aberrations to be detected all over the karyotype. Stable ones such as balanced translocations, are not eliminated due to cell-cycle as unstable ones, so they are considered transmissible markers for retrospective dosimetry. The induction of chromosome damage showed a clear dependence on dose delivered; unstable aberrations were demonstrated after doses of 0.1 Gy, and stable aberrations after doses higher than 0.5 Gy. Summarizing, q-FISH is unfit to report low exposures while m-FISH provides better results: unstable aberrations are sensible short-term reporters, while stable ones long report exposures but with a higher induction threshold. PMID:23908663

  12. Exposure and analysis of microparticles embedded in silica aerogel keystones using NF3-mediated electron beam-induced etching and energy-dispersive X-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Martin, Aiden A.; Lin, Ting; Toth, Milos; Westphal, Andrew J.; Vicenzi, Edward P.; Beeman, Jeffrey; Silver, Eric H.

    2016-04-01

    In 2006, NASA's Stardust spacecraft delivered to Earth dust particles collected from the coma of comet 81P/Wild 2, with the goal of furthering the understanding of solar system formation. Stardust cometary samples were collected in a low-density, nanoporous silica aerogel making their study technically challenging. This article demonstrates the identification, exposure, and elemental composition analysis of particles analogous to those collected by NASA's Stardust mission using in-situ SEM techniques. Backscattered electron imaging is shown by experimental observation and Monte Carlo simulation to be suitable for locating particles of a range of sizes relevant to Stardust (down to submicron diameters) embedded within silica aerogel. Selective removal of the silica aerogel encapsulating an embedded particle is performed by cryogenic NF3-mediated electron beam-induced etching. The porous, low-density nature of the aerogel results in an enhanced etch rate compared with solid material, making it an effective, nonmechanical method for the exposure of particles. After exposure, elemental composition of the particle was analyzed by energy-dispersive X-ray spectroscopy using a high spectral resolution microcalorimeter. Signals from fluorine contamination are shown to correspond to nonremoved silica aerogel and only in residual concentrations.

  13. X-ray crystallography

    NASA Technical Reports Server (NTRS)

    2001-01-01

    X-rays diffracted from a well-ordered protein crystal create sharp patterns of scattered light on film. A computer can use these patterns to generate a model of a protein molecule. To analyze the selected crystal, an X-ray crystallographer shines X-rays through the crystal. Unlike a single dental X-ray, which produces a shadow image of a tooth, these X-rays have to be taken many times from different angles to produce a pattern from the scattered light, a map of the intensity of the X-rays after they diffract through the crystal. The X-rays bounce off the electron clouds that form the outer structure of each atom. A flawed crystal will yield a blurry pattern; a well-ordered protein crystal yields a series of sharp diffraction patterns. From these patterns, researchers build an electron density map. With powerful computers and a lot of calculations, scientists can use the electron density patterns to determine the structure of the protein and make a computer-generated model of the structure. The models let researchers improve their understanding of how the protein functions. They also allow scientists to look for receptor sites and active areas that control a protein's function and role in the progress of diseases. From there, pharmaceutical researchers can design molecules that fit the active site, much like a key and lock, so that the protein is locked without affecting the rest of the body. This is called structure-based drug design.

  14. Photon-exposure-dependent photon-stimulated desorption for obtaining photolysis cross section of molecules adsorbed on surface by monochromatic soft x-ray photons.

    PubMed

    Chou, L-C; Jang, C-Y; Wu, Y-H; Tsai, W-C; Wang, S-K; Chen, J; Chang, S-C; Liu, C-C; Shai, Y; Wen, C-R

    2008-12-01

    Photon-exposure-dependent positive- and negative-ion photon-stimulated desorption (PSD) was proposed to study the photoreactions and obtain the photolysis cross sections of molecules adsorbed on a single-crystal surface by monochromatic soft x-ray photons with energy near the core level of adsorbate. The changes in the F(+) and F(-) PSD ion yields were measured from CF(3)Cl molecules adsorbed on Si(111)-7x7 at 30 K (CF(3)Cl dose=0.3x10(15) molecules/cm(2), approximately 0.75 monolayer) during irradiation of monochromatic soft x-ray photons near the F(1s) edge. The PSD ion yield data show the following characteristics: (a) The dissociation of adsorbed CF(3)Cl molecules is due to a combination of direct photodissociation via excitation of F(1s) core level and substrate-mediated dissociation [dissociative attachment and dipolar dissociation induced by the photoelectrons emitting from the silicon substrate]. (b) the F(+) ion desorption is associated with the bond breaking of the surface CF(3)Cl, CF(2)Cl, CFCl, and SiF species. (c) the F(-) yield is mainly due to DA and DD of the adsorbed CF(3)Cl molecules. (d) The surface SiF is formed by reaction of the surface Si atom with the neutral fluorine atom, F(+), or F(-) ion produced by scission of C-F bond of CF(3)Cl, CF(2)Cl, or CFCl species. A kinetic model was proposed for the explanation of the photolysis of this submonolayer CF(3)Cl-covered surface. Based on this model and the variation rates of the F(+)F(-) signals during fixed-energy monochromatic photon bombardment at 690.2 and 692.6 eV [near the F(1s) edge], the photolysis cross section was deduced as a function of energy. PMID:19063541

  15. Solar x ray astronomy rocket program

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The dynamics were studied of the solar corona through the imaging of large scale coronal structures with AS&E High Resolution Soft X ray Imaging Solar Sounding Rocket Payload. The proposal for this program outlined a plan of research based on the construction of a high sensitivity X ray telescope from the optical and electronic components of the previous flight of this payload (36.038CS). Specifically, the X ray sensitive CCD camera was to be placed in the prime focus of the grazing incidence X ray mirror. The improved quantum efficiency of the CCD detector (over the film which had previously been used) allows quantitative measurements of temperature and emission measure in regions of low x ray emission such as helmet streamers beyond 1.2 solar radii or coronal holes. Furthermore, the improved sensitivity of the CCD allows short exposures of bright objects to study unexplored temporal regimes of active region loop evolution.

  16. Lumbosacral spine x-ray

    MedlinePlus

    X-ray - lumbosacral spine; X-ray - lower spine ... The test is done in a hospital x-ray department or your health care provider's office by an x-ray technician. You will be asked to lie on the x-ray table ...

  17. Thoracic spine x-ray

    MedlinePlus

    Vertebral radiography; X-ray - spine; Thoracic x-ray; Spine x-ray; Thoracic spine films; Back films ... The test is done in a hospital radiology department or in the health care provider's office. You will lie on the x-ray table in different positions. If the x-ray ...

  18. X-ray laser

    DOEpatents

    Nilsen, Joseph

    1991-01-01

    An X-ray laser (10) that lases between the K edges of carbon and oxygen, i.e. between 44 and 23 Angstroms, is provided. The laser comprises a silicon (12) and dysprosium (14) foil combination (16) that is driven by two beams (18, 20) of intense line focused (22, 24) optical laser radiation. Ground state nickel-like dysprosium ions (34) are resonantly photo-pumped to their upper X-ray laser state by line emission from hydrogen-like silicon ions (32). The novel X-ray laser should prove especially useful for the microscopy of biological specimens.

  19. Detection of x ray sources in PROS

    NASA Technical Reports Server (NTRS)

    Deponte, J.; Primini, F. A.

    1992-01-01

    The problem of detecting discrete sources in x-ray images has much in common with the problem of automatic source detection at other wavelengths. In all cases, one searches for positive brightness enhancements exceeding a certain threshold, which appear consistent with what one expects for a point source, in the presence of a (possibly) spatially variable background. Multidimensional point spread functions (e.g., dependent on detector position and photon energy) are also common. At the same time, the problem in x-ray astronomy has some unique aspects. For example, for typical x-ray exposures in current or recent observatories, the number of available pixels far exceeds the number of actual x-ray events, so Poisson, rather than Gaussian statistics apply. Further, extended cosmic x-ray sources are common, and one often desires to detect point sources in the vicinity or even within bright, diffuse x-ray emission. Finally, support structures in x-ray detectors often cast sharp shadows in x-ray images making it necessary to detect sources in a region of rapidly varying exposure. We have developed a source detection package within the IRAF/PROS environment which attempts to deal with some of the problems of x-ray source detection. We have patterned our package after the successful Einstein Observatory x-ray source detection programs. However, we have attempted to improve the flexibility and accessibility of the functions and to provide a graphical front-end for the user. Our philosophy has been to use standard IRAF tasks whenever possible for image manipulation and to separate general functions from mission-specific ones. We will report on the current status of the package and discuss future developments, including simulation tasks, to allow the user to assess detection efficiency and source significance, tasks to determine source intensity, and alternative detection algorithms.

  20. Medical X-Rays

    MedlinePlus

    ... Diagnostic X-Ray Equipment Compliance Program Guidance Manual CP 7386.003 Field Compliance Testing of Diagnostic (Medical) ... and Exporting Electronic Products Compliance Program Guidance Manual CP 7386.003 Field Compliance Testing of Diagnostic (Medical) ...

  1. Dental x-rays

    MedlinePlus

    ... or impacted teeth The presence and extent of dental caries (cavities) Bone damage (such as from periodontitis ) Abscessed ... Dental x-rays can reveal dental cavities (tooth decay) before they ... take yearly bitewings for the early development of cavities.

  2. X-ray - skeleton

    MedlinePlus

    ... is used to look for: Fractures or broken bone Cancer that has spread to other areas of the ... 2014:chap 8. Read More Bone tumor Broken bone Cancer Metastasis Osteomyelitis X-ray Update Date 5/9/ ...

  3. X-Ray Diffraction.

    ERIC Educational Resources Information Center

    Smith, D. K.; Smith, K. L.

    1980-01-01

    Reviews applications in research and analytical characterization of compounds and materials in the field of X-ray diffraction, emphasizing new developments in applications and instrumentation in both single crystal and powder diffraction. Cites 414 references. (CS)

  4. Abdominal x-ray

    MedlinePlus

    An abdominal x-ray is an imaging test to look at organs and structures in the abdomen. Organs include the spleen, stomach, and intestines. When the test is done to look at the bladder and kidney structures, ...

  5. X-Ray Spectrometry.

    ERIC Educational Resources Information Center

    Macdonald, G. L.

    1980-01-01

    Reviews instrumental developments and technique improvements in X-ray spectrometry, grouped into major topic areas of excitation, dispersion and detection, instrumentation and techniques, and quantitative analyses. Cites 162 references. (CS)

  6. Bone x-ray

    MedlinePlus

    ... or broken bone Bone tumors Degenerative bone conditions Osteomyelitis (inflammation of the bone caused by an infection) ... Multiple myeloma Osgood-Schlatter disease Osteogenesis imperfecta Osteomalacia Osteomyelitis Paget disease of the bone Rickets X-ray ...

  7. Cosmic x ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1992-01-01

    This final report covers the period 1 January 1985 - 31 March 1992. It is divided into the following sections: the soft x-ray background; proportional counter and filter calibrations; sounding rocket flight preparations; new sounding rocket payload: x-ray calorimeter; and theoretical studies. Staff, publications, conference proceedings, invited talks, contributed talks, colloquia and seminars, public service lectures, and Ph. D. theses are listed.

  8. Thoracic spine x-ray

    MedlinePlus

    Vertebral radiography; X-ray - spine; Thoracic x-ray; Spine x-ray; Thoracic spine films; Back films ... Gillard JH, Schaefer-Prokop CM, eds. Grainger & Allison's Diagnostic Radiology: A Textbook of Medical Imaging . 6th ed. New ...

  9. Lethal and teratogenic effects after exposure to X-rays at various times of early murine gestation

    SciTech Connect

    Mueller, W.U.S.; Streffer, C.

    1990-12-01

    Various well-defined stages during completion of the second meiotic division and early organogenesis of mouse embryos were X-irradiated with doses of 1-4 Gy (100-400 rad). The major risk was prenatal mortality with radiation sensitivity changing markedly with dependence on the developmental stage irradiated; in the case of day 1 even within hours. The surviving fetuses did show a significantly enhanced frequency of malformations on day 19 of gestation (mostly gastroschisis and some exencephalies). This was true for all stages between days 1 and 8; only sensitivity again changed considerably. The radiation doses used in this study are markedly higher than doses that can be expected from radiation diagnostics, but exposure is in a range comparable to doses that can occur in radiation therapy (e.g., Morbus Hodgkin).

  10. Methylation changes in muscle and liver tissues of male and female mice exposed to acute and chronic low-dose X-ray-irradiation.

    PubMed

    Kovalchuk, Olga; Burke, Paula; Besplug, Jill; Slovack, Mark; Filkowski, Jody; Pogribny, Igor

    2004-04-14

    The biological and genetic effects of chronic low-dose radiation (LDR) exposure and its relationship to carcinogenesis have received a lot of attention in the recent years. For example, radiation-induced genome instability, which is thought to be a precursor of tumorogenesis, was shown to have a transgenerational nature. This indicates a possible involvement of epigenetic mechanisms in LDR-induced genome instability. Genomic DNA methylation is one of the most important epigenetic mechanisms. Existing data on radiation effects on DNA methylation patterns is limited, and no one has specifically studied the effects of the LDR. We report the first study of the effects of whole-body LDR exposure on global genome methylation in muscle and liver tissues of male and female mice. In parallel, we evaluated changes in promoter methylation and expression of the tumor suppressor gene p16(INKa) and DNA repair gene O(6)-methylguanine-DNA methyltransferase (MGMT). We observed different patterns of radiation-induced global genome DNA methylation in the liver and muscle of exposed males and females. We also found sex and tissue-specific differences in p16(INKa) promoter methylation upon LDR exposure. In male liver tissue, p16(INKa) promoter methylation was more pronounced than in female tissue. In contrast, no significant radiation-induced changes in p16(INKa) promoter methylation were noted in the muscle tissue of exposed males and females. Radiation also did not significantly affect methylation status of MGMT promoter. We also observed substantial sex differences in acute and chronic radiation-induced expression of p16(INKa) and MGMT genes. Another important outcome of our study was the fact that chronic low-dose radiation exposure proved to be a more potent inducer of epigenetic effects than the acute exposure. This supports previous findings that chronic exposure leads to greater genome destabilization than acute exposure. PMID:15063138

  11. Prenatal pesticide exposure and PON1 genotype associated with adolescent body fat distribution evaluated by dual X-ray absorptiometry (DXA).

    PubMed

    Tinggaard, J; Wohlfahrt-Veje, C; Husby, S; Christiansen, L; Skakkebaek, N E; Jensen, T K; Grandjean, P; Main, K M; Andersen, H R

    2016-07-01

    Many modern pesticides have endocrine disrupting abilities and early-life exposure may affect growth and disease risk later in life. Previously, we reported associations between prenatal pesticide exposure and higher childhood body fat content measured by anthropometry. The associations were affected by child PON1 Q192R genotype. We aimed to study whether prenatal pesticide exposure was still associated with body fat content and distribution in the children at puberty and the potential impact of both maternal and child PON1 Q192R genotype. In this prospective cohort study of 247 children born by occupationally exposed or unexposed women (greenhouse workers and controls) two follow-up examinations (age 10-15 and 11-16 years) including simple anthropometry, skinfold measurements, pubertal staging and blood sampling were performed. Total and regional fat% was determined by dual X-ray absorptiometry (DXA) at age 10-15. Prenatal pesticide exposure was associated with increased total, android, and gynoid fat percentage (DXA) at age 10-15 years after adjustment for sex, socioeconomic status, and puberty (all β = 0.5 standard deviation score (SDS) p < 0.05). Stratified by sex, the associations were significant in girls (total fat: β = 0.7 SDS, android-gynoid ratio: β = 0.1, both p < 0.05), but not in boys. Carrying the R-allele (child or mother, separately, or both) augmented the differences between exposed and unexposed children (total fat: β = 1.0 SDS, β = 0.8 SDS, p < 0.05, respectively, and β = 1.2 SDS, p < 0.01). No exposure-related differences were found if either the child or mother had the QQ wild-type. At age 11-16, exposed children tended to have a higher total fat% estimated by skinfolds than unexposed children (p = 0.06). No significant associations between prenatal exposure and body mass index or waist circumference were found. Prenatal pesticide exposure was associated with higher adolescent body fat content, including android

  12. U.S. EPA'S ACUTE REFERENCE EXPOSURE METHODOLOGY FOR ACUTE INHALATION EXPOSURES

    EPA Science Inventory

    The US EPA National Center for Environmental Assessment has developed a methodology to derive acute inhalation toxicity benchmarks, called acute reference exposures (AREs), for noncancer effects. The methodology provides guidance for the derivation of chemical-specific benchmark...

  13. X-ray nanotomography

    NASA Astrophysics Data System (ADS)

    Sasov, Alexander

    2004-10-01

    A compact laboratory x-ray "nano-CT" scanner has been created for 3D non-invasive imaging with 150-200 nanometers 3D spatial resolution, using advanced x-ray technologies and specific physical phenomena for signal detection. This spatial resolution in volume terms is 3 orders better than can be achieved in synchrotron tomography, 5 orders better then in existing laboratory micro-CT instruments and 10-12 orders better in comparison to clinical CT. The instrument employs an x-ray source with a 300-400nm x-ray spot size and uses small-angle scattering to attain a detail detectability of 150-200nm. An object manipulator allows positioning and rotation with an accuracy of 150nm. The x-ray detector is based on an intensified CCD with single-photon sensitivity. A typical acquisition cycle for 3D reconstruction of the full object volume takes from 10 to 60 minutes, with the collection of several hundred angular views. Subsequent volumetric reconstruction produces results as a set of cross sections with isotropic voxel size down to 140 x 140 x 140nm, or as a 3D-model, which can be virtually manipulated and measured. This unique spatial resolution in non-invasive investigations gives previously unattainable 3D images in several application areas, such as composite materials, paper and wood microstructure, biomedical applications and others.

  14. Photon-exposure-dependent photon-stimulated desorption for obtaining photolysis cross section of molecules adsorbed on surface by monochromatic soft x-ray photons

    SciTech Connect

    Chou, L.-C.; Jang, C.-Y.; Wu, Y.-H.; Tsai, W.-C.; Wang, S.-K.; Chen, J.; Chang, S.-C.; Liu, C.-C.; Shai, Y.; Wen, C.-R.

    2008-12-07

    Photon-exposure-dependent positive- and negative-ion photon-stimulated desorption (PSD) was proposed to study the photoreactions and obtain the photolysis cross sections of molecules adsorbed on a single-crystal surface by monochromatic soft x-ray photons with energy near the core level of adsorbate. The changes in the F{sup +} and F{sup -} PSD ion yields were measured from CF{sub 3}Cl molecules adsorbed on Si(111)-7x7 at 30 K (CF{sub 3}Cl dose=0.3x10{sup 15} molecules/cm{sup 2}, {approx}0.75 monolayer) during irradiation of monochromatic soft x-ray photons near the F(1s) edge. The PSD ion yield data show the following characteristics: (a) The dissociation of adsorbed CF{sub 3}Cl molecules is due to a combination of direct photodissociation via excitation of F(1s) core level and substrate-mediated dissociation [dissociative attachment and dipolar dissociation induced by the photoelectrons emitting from the silicon substrate]. (b) the F{sup +} ion desorption is associated with the bond breaking of the surface CF{sub 3}Cl, CF{sub 2}Cl, CFCl, and SiF species. (c) the F{sup -} yield is mainly due to DA and DD of the adsorbed CF{sub 3}Cl molecules. (d) The surface SiF is formed by reaction of the surface Si atom with the neutral fluorine atom, F{sup +}, or F{sup -} ion produced by scission of C-F bond of CF{sub 3}Cl, CF{sub 2}Cl, or CFCl species. A kinetic model was proposed for the explanation of the photolysis of this submonolayer CF{sub 3}Cl-covered surface. Based on this model and the variation rates of the F{sup +}/F{sup -} signals during fixed-energy monochromatic photon bombardment at 690.2 and 692.6 eV[near the F(1s) edge], the photolysis cross section was deduced as a function of energy.

  15. Lumbosacral spine x-ray

    MedlinePlus

    X-ray - lumbosacral spine; X-ray - lower spine ... be placed over the lower part of your spine. You will be asked to hold your breath ... x-ray. The most common reason for lumbosacral spine x-ray is to look for the cause ...

  16. Duodenal crypt health following exposure to Cr(VI): Micronucleus scoring, γ-H2AX immunostaining, and synchrotron X-ray fluorescence microscopy.

    PubMed

    Thompson, Chad M; Wolf, Jeffrey C; Elbekai, Reem H; Paranjpe, Madhav G; Seiter, Jennifer M; Chappell, Mark A; Tappero, Ryan V; Suh, Mina; Proctor, Deborah M; Bichteler, Anne; Haws, Laurie C; Harris, Mark A

    2015-08-01

    Lifetime exposure to high concentrations of hexavalent chromium [Cr(VI)] in drinking water results in intestinal damage and an increase in duodenal tumors in B6C3F1 mice. To assess whether these tumors could be the result of a direct mutagenic or genotoxic mode of action, we conducted a GLP-compliant 7-day drinking water study to assess crypt health along the entire length of the duodenum. Mice were exposed to water (vehicle control), 1.4, 21, or 180 ppm Cr(VI) via drinking water for 7 consecutive days. Crypt enterocytes in Swiss roll sections were scored as normal, mitotic, apoptotic, karyorrhectic, or as having micronuclei. A single oral gavage of 50mg/kg cyclophosphamide served as a positive control for micronucleus induction. Exposure to 21 and 180 ppm Cr(VI) significantly increased the number of crypt enterocytes. Micronuclei and γ-H2AX immunostaining were not elevated in the crypts of Cr(VI)-treated mice. In contrast, treatment with cyclophosphamide significantly increased numbers of crypt micronuclei and qualitatively increased γ-H2AX immunostaining. Synchrotron-based X-ray fluorescence (XRF) microscopy revealed the presence of strong Cr fluorescence in duodenal villi, but negligible Cr fluorescence in the crypt compartment. Together, these data indicate that Cr(VI) does not adversely effect the crypt compartment where intestinal stem cells reside, and provide additional evidence that the mode of action for Cr(VI)-induced intestinal cancer in B6C3F1 mice involves chronic villous wounding resulting in compensatory crypt enterocyte hyperplasia. PMID:26232259

  17. Variations in elemental compositions of rat hippocampal formation between acute and latent phases of pilocarpine-induced epilepsy: an X-ray fluorescence microscopy study.

    PubMed

    Chwiej, J; Dulinska, J; Janeczko, K; Appel, K; Setkowicz, Z

    2012-06-01

    There is growing experimental evidence that tracing the elements involved in brain hyperexcitability, excitotoxicity, and/or subsequent neurodegeneration could be a valuable source of data on the molecular mechanisms triggering or promoting further development of epilepsy. The most frequently used experimental model of the temporal lobe epilepsy observed in clinical practice is the one based on pilocarpine-induced seizures. In the frame of this study, the elemental anomalies occurring for the rat hippocampal tissue in acute and silent periods after injection of pilocarpine in rats were compared. X-ray fluorescence microscopy was applied for the topographic and quantitative elemental analysis. The differences in the levels of elements such as P, S, K, Ca, Fe, Cu, and Zn between the rats 3 days (SE72) and 6 h (SE6) after pilocarpine injection as well as naive controls were examined. Comparison of SE72 and control groups showed, for specific areas of the hippocampal formation, lower levels of P, K, Cu, and Zn, and an increase in Ca accumulation. These results as well as further analysis of the differences between the SE72 and SE6 groups confirmed that seizure-induced excitotoxicity as well as mossy fiber sprouting are the mechanisms involved in the neurodegenerative processes which may finally lead to spontaneous seizures in the chronic period of the pilocarpine model. Moreover, in the light of the results obtained, Cu seems to play a very important role in the pathogenesis of epilepsy in this animal model. For all areas analyzed, the levels of this element recorded in the latent period were not only lower than those for controls but were even lower than the levels found in the acute period. The decreased hippocampal accumulation of Cu in the phase of behavior and EEG stabilization, a possible inhibitory effect of this element on excitatory amino acid receptors, and enhanced seizure susceptibility in Menkes disease (an inherited Cu transport disorder leading to Cu

  18. Accidental acute exposure to doxorubicin.

    PubMed

    Curran, C F; Luce, J K

    1989-12-01

    Accidental ocular exposure to doxorubicin was followed by no reaction or rapidly resolving conjunctivitis in 13 of 15 cases (87%). In the two remaining cases, persistent photophobia and chronic inflammation were reported. Of 28 accidental exposures to sites other than the eyes, no reactions or rapidly resolving local reactions were reported in 24 cases (86%). Nurses are at particular risk for accidental exposure to doxorubicin and accounted for 20 of the 43 reported exposures (47%). PMID:2590899

  19. X-ray beam finder

    DOEpatents

    Gilbert, H.W.

    1983-06-16

    An X-ray beam finder for locating a focal spot of an X-ray tube includes a mass of X-ray opaque material having first and second axially-aligned, parallel-opposed faces connected by a plurality of substantially identical parallel holes perpendicular to the faces and a film holder for holding X-ray sensitive film tightly against one face while the other face is placed in contact with the window of an X-ray head.

  20. X-ray astronomical spectroscopy

    NASA Technical Reports Server (NTRS)

    Holt, Stephen S.

    1987-01-01

    The contributions of the Goddard group to the history of X-ray astronomy are numerous and varied. One role that the group has continued to play involves the pursuit of techniques for the measurement and interpretation of the X-ray spectra of cosmic sources. The latest development is the selection of the X-ray microcalorimeter for the Advanced X-ray Astrophysics Facility (AXAF) study payload. This technology is likely to revolutionize the study of cosmic X-ray spectra.

  1. X-ray

    MedlinePlus

    ... Most experts feel that the benefits of appropriate x-ray imaging greatly outweigh any risks. Young children and babies ... be pregnant. Alternative Names ... CM, eds. Grainger & Allison's Diagnostic Radiology: A Textbook of Medical Imaging . 6th ed. Philadelphia, PA: Elsevier Churchill Livingstone; 2014: ...

  2. X-Rays from Saturn and its Rings

    NASA Technical Reports Server (NTRS)

    Bhardwaj, Anil; Elsner, Ron F.; Waite, J. Hunter; Gladstone, G. Randall; Cravens, Tom E.; Ford, Peter G.

    2005-01-01

    In January 2004 Saturn was observed by Chandra ACIS-S in two exposures, 00:06 to 11:00 UT on 20 January and 14:32 UT on 26 January to 01:13 UT on 27 January. Each continuous observation lasted for about one full Saturn rotation. These observations detected an X-ray flare from the Saturn's disk and indicate that the entire Saturnian X-ray emission is highly variable -- a factor of $\\sim$4 variability in brightness in a week time. The Saturn X-ray flare has a time and magnitude matching feature with the solar X-ray flare, which suggests that the disk X-ray emission of Saturn is governed by processes happening on the Sun. These observations also unambiguously detected X-rays from Saturn's rings. The X-ray emissions from rings are present mainly in the 0.45-0.6 keV band centered on the atomic OK$\\alpha$ fluorescence line at 525 eV: indicating the production of X-rays due to oxygen atoms in the water icy rings. The characteristics of X-rays from Saturn's polar region appear to be statistically consistent with those from its disk X-rays, suggesting that X-ray emission from the polar cap region might be an extension of the Saturn disk X-ray emission.

  3. Modeling and characterization of X-ray yield in a polychromatic, lab-scale, X-ray computed tomography system

    NASA Astrophysics Data System (ADS)

    Mertens, J. C. E.; Chawla, Nikhilesh

    2015-05-01

    A modular X-ray computed micro-tomography (μXCT) system is characterized in terms of X-ray yield resulting both from the generated X-ray spectrum and from X-ray detection with an energy-sensitive detector. The X-ray computed tomography system is composed of a commercially available cone-beam microfocus X-ray source and a modular optically-coupled-CCD-scintillator X-ray detector. The X-ray yield is measured and reported in units independent from exposure time, X-ray tube beam target current, and cone-beam-to-detector geometry. The polychromatic X-ray source is modeled as a broad Bremsstrahlung X-ray spectrum in order to understand the effect of the controllable parameters, that is, X-ray tube accelerating voltage and X-ray beam filtering. An approach is adopted which expresses the absolute number of emitted X-rays. The response of the energy-sensitive detector to the modeled spectrum is modeled as a function of scintillator composition and thickness. The detection efficiency model for the polychromatic X-ray detector considers the response of the light collection system and the electronic imaging array in order to predict absolute count yield under the studied conditions. The modeling approach is applied to the specific hardware implemented in the current μXCT system. The model's predictions for absolute detection rate are in reasonable agreement with measured values under a range of conditions applied to the system for X-ray microtomography imaging, particularly for the LuAG:Ce scintillator material.

  4. X-ray nanotomography in a SEM

    NASA Astrophysics Data System (ADS)

    Pauwels, Bart; Liu, Xuan; Sasov, Alexander

    2010-09-01

    We have developed an x-ray computer tomography (CT) add-on to perform X-ray micro- and nanotomography in any scanning electron microscope (SEM). The electron beam inside the SEM is focused on a metal target to generate x-rays. Part of the X-rays pass through the object that is installed on a rotation stage. Shadow X-ray images are collected by a CCD camera with direct photon detection mounted on the external wall of the SEM specimen chamber. An extensive description on the working principles of this micro/nano-CT add-on together with some examples of CT-scans will be given in this paper. The resolution that can be obtained with this set-up and the influence of the shape of the electron beam are discussed. Furthermore, possible improvements on this SEM-CT set-up will be discussed: replacing the backilluminated CCD with a fully depleted CCD with improved quantum efficiency (QE) for higher energies, reduces the exposure time by 6 when using metal targets with x-ray characteristic lines around 10 keV.

  5. X-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    2000-01-01

    Dr. S. N. Zhang has lead a seven member group (Dr. Yuxin Feng, Mr. XuejunSun, Mr. Yongzhong Chen, Mr. Jun Lin, Mr. Yangsen Yao, and Ms. Xiaoling Zhang). This group has carried out the following activities: continued data analysis from space astrophysical missions CGRO, RXTE, ASCA and Chandra. Significant scientific results have been produced as results of their work. They discovered the three-layered accretion disk structure around black holes in X-ray binaries; their paper on this discovery is to appear in the prestigious Science magazine. They have also developed a new method for energy spectral analysis of black hole X-ray binaries; four papers on this topics were presented at the most recent Atlanta AAS meeting. They have also carried Monte-Carlo simulations of X-ray detectors, in support to the hardware development efforts at Marshall Space Flight Center (MSFC). These computation-intensive simulations have been carried out entirely on the computers at UAH. They have also carried out extensive simulations for astrophysical applications, taking advantage of the Monte-Carlo simulation codes developed previously at MSFC and further improved at UAH for detector simulations. One refereed paper and one contribution to conference proceedings have been resulted from this effort.

  6. X-ray Spectrometer

    NASA Technical Reports Server (NTRS)

    Porter, F. Scott

    2004-01-01

    The X-ray Spectrometer (XRS) instrument is a revolutionary non-dispersive spectrometer that will form the basis for the Astro-E2 observatory to be launched in 2005. We have recently installed a flight spare X R S microcalorimeter spectrometer at the EBIT-I facility at LLNL replacing the XRS from the earlier Astro-E mission and providing twice the resolution. The X R S microcalorimeter is an x-ray detector that senses the heat deposited by the incident photon. It achieves a high energy resolution by operating at 0.06K and by carefully controlling the heat capacity and thermal conductance. The XRS/EBIT instrument has 32 pixels in a square geometry and achieves an energy resolution of 6 eV at 6 keV, with a bandpass from 0.1 to 12 keV (or more at higher operating temperature). The instrument allows detailed studies of the x-ray line emission of laboratory plasmas. The XRS/EBIT also provides an extensive calibration "library" for the Astro-E2 observatory.

  7. Monitoring X-Ray Emission from X-Ray Bursters

    NASA Technical Reports Server (NTRS)

    Kaaret, Philip

    1998-01-01

    The goal of this investigation was to use the All-Sky Monitor on the Rossi X-Ray Timing Explorer (RXTE) in combination with the Burst and Transient Source Experiment on the Compton Gamma-Ray Observatory to simultaneously measure the x-ray (2-12 keV) and hard x-ray (20-100 keV) emission from x-ray bursters. The investigation was successful. We made the first simultaneous measurement of hard and soft x-ray emission and found a strong anticorrelation of hard and soft x-ray emission from the X-Ray Burster 4U 0614+091. The monitoring performed under this investigation was also important in triggering target of opportunity observations of x-ray bursters made under the investigation hard x-ray emission of x-ray bursters approved for RXTE cycles 1 and 2. These observations lead to a number of papers on high-frequency quasi-periodic oscillations and on hard x-ray emission from the x-ray bursters 4U 0614+091 and 4U 1705-44.

  8. Acute arsenic intoxication from environmental arsenic exposure

    SciTech Connect

    Franzblau, A.; Lilis, R. )

    1989-11-01

    Reports of acute arsenic poisoning arising from environmental exposure are rare. Two cases of acute arsenic intoxication resulting from ingestion of contaminated well water are described. These patients experienced a variety of problems: acute gastrointestinal symptoms, central and peripheral neurotoxicity, bone marrow suppression, hepatic toxicity, and mild mucous membrane and cutaneous changes. Although located adjacent to an abandoned mine, the well water had been tested for microorganisms only and was found to be safe. Regulations for testing of water from private wells for fitness to drink are frequently nonexistent, or only mandate biologic tests for microorganisms. Well water, particularly in areas near mining activity, should be tested for metals.

  9. Enhanced adhesion buffer layer for deep x-ray lithography using hard x-rays.

    SciTech Connect

    De Carlo, F.

    1998-08-28

    The first step in the fabrication of microstructure using deep x-ray lithography (DXRL) is the irradiation of a x-ray sensitive resist like polymethylmethacrylate (PMMA) by hard x-rays. At the Advanced Photon Source, a dedicated beamline allows the proper exposure of very thick (several mm) resists. To fabricate electroformed metal microstructure with heights of several mm, a PMMA sheet is glued onto a metallic plating base. An important requirement is that the PMMA layer must adhere well to the plating base. The adhesion is greatly reduced by the penetration of even a small fraction of hard x-rays through the mask absorber into the substrate. In this work we will show a novel technique to improve the adhesion of PMMA onto high-Z substrates for DXRL. Results of the improved adhesion are shown for different exposure/substrate conditions.

  10. Effects of X-Ray Dose On Rhizosphere Studies Using X-Ray Computed Tomography

    PubMed Central

    Zappala, Susan; Helliwell, Jonathan R.; Tracy, Saoirse R.; Mairhofer, Stefan; Sturrock, Craig J.; Pridmore, Tony; Bennett, Malcolm; Mooney, Sacha J.

    2013-01-01

    X-ray Computed Tomography (CT) is a non-destructive imaging technique originally designed for diagnostic medicine, which was adopted for rhizosphere and soil science applications in the early 1980s. X-ray CT enables researchers to simultaneously visualise and quantify the heterogeneous soil matrix of mineral grains, organic matter, air-filled pores and water-filled pores. Additionally, X-ray CT allows visualisation of plant roots in situ without the need for traditional invasive methods such as root washing. However, one routinely unreported aspect of X-ray CT is the potential effect of X-ray dose on the soil-borne microorganisms and plants in rhizosphere investigations. Here we aimed to i) highlight the need for more consistent reporting of X-ray CT parameters for dose to sample, ii) to provide an overview of previously reported impacts of X-rays on soil microorganisms and plant roots and iii) present new data investigating the response of plant roots and microbial communities to X-ray exposure. Fewer than 5% of the 126 publications included in the literature review contained sufficient information to calculate dose and only 2.4% of the publications explicitly state an estimate of dose received by each sample. We conducted a study involving rice roots growing in soil, observing no significant difference between the numbers of root tips, root volume and total root length in scanned versus unscanned samples. In parallel, a soil microbe experiment scanning samples over a total of 24 weeks observed no significant difference between the scanned and unscanned microbial biomass values. We conclude from the literature review and our own experiments that X-ray CT does not impact plant growth or soil microbial populations when employing a low level of dose (<30 Gy). However, the call for higher throughput X-ray CT means that doses that biological samples receive are likely to increase and thus should be closely monitored. PMID:23840640

  11. Fluctuation X-Ray Scattering

    SciTech Connect

    Saldin, PI: D. K.; Co-I's: J. C. H. Spence and P. Fromme

    2013-01-25

    The work supported by the grant was aimed at developing novel methods of finding the structures of biomolecules using x-rays from novel sources such as the x-ray free electron laser and modern synchrotrons

  12. Hard X-ray polarimetry with Astrosat-CZTI

    NASA Astrophysics Data System (ADS)

    Vadawale, S. V.; Chattopadhyay, T.; Rao, A. R.; Bhattacharya, D.; Bhalerao, V. B.; Vagshette, N.; Pawar, P.; Sreekumar, S.

    2015-06-01

    X-ray polarimetry is largely an unexplored area of an otherwise mature field of X-ray astronomy. Except for a few early attempts during the 1970s, no dedicated X-ray polarimeter has been flown during the past four decades. On the other hand, the scientific value of X-ray polarization measurement has been well known for a long time, and there has been significant technical progress in developing sensitive X-ray polarimeters in recent years. But there are no approved dedicated X-ray polarimetric experiments to be flown in the near future, so it is important to explore the polarimetric capabilities of other existing or planned instruments and examine whether they can provide significant astrophysical polarization measurements. In this paper, we present experimental results to show that the CZTI instrument onboard the forthcoming Indian astronomy mission, Astrosat, will be able to provide sensitive measurements of X-ray polarization in the energy range of 100-300 keV. CZTI will be able to constrain any intrinsic polarization greater than ~40% for bright X-ray sources (>500 mCrab) within a short exposure of ~100 ks with a 3-sigma confidence level. We show that this seemingly "modest" sensitivity can play a very significant role in addressing long pending questions, such as the contribution of relativistic jets to hard X-rays in black hole binaries and X-ray emission mechanism and geometry in X-ray pulsars.

  13. X-ray Crystallography Facility

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Edward Snell, a National Research Council research fellow at NASA's Marshall Space Flight Center (MSFC), prepares a protein crystal for analysis by x-ray crystallography as part of NASA's structural biology program. The small, individual crystals are bombarded with x-rays to produce diffraction patterns, a map of the intensity of the x-rays as they reflect through the crystal.

  14. Tunable X-ray source

    DOEpatents

    Boyce, James R.

    2011-02-08

    A method for the production of X-ray bunches tunable in both time and energy level by generating multiple photon, X-ray, beams through the use of Thomson scattering. The method of the present invention simultaneously produces two X-ray pulses that are tunable in energy and/or time.

  15. X-ray satellite

    NASA Technical Reports Server (NTRS)

    1985-01-01

    An overview of the second quarter 1985 development of the X-ray satellite project is presented. It is shown that the project is proceeding according to plan and that the projected launch date of September 9, 1987 is on schedule. An overview of the work completed and underway on the systems, subsystems, payload, assembly, ground equipment and interfaces is presented. Problem areas shown include cost increases in the area of focal instrumentation, the star sensor light scattering requirements, and postponements in the data transmission subsystems.

  16. SMM x ray polychromator

    NASA Technical Reports Server (NTRS)

    Saba, J. L. R.

    1993-01-01

    The objective of the X-ray Polychromator (XRP) experiment was to study the physical properties of solar flare plasma and its relation to the parent active region to understand better the flare mechanism and related solar activity. Observations were made to determine the temperature, density, and dynamic structure of the pre-flare and flare plasma as a function of wavelength, space and time, the extent to which the flare plasma departs from thermal equilibrium, and the variation of this departure with time. The experiment also determines the temperature and density structure of active regions and flare-induced changes in the regions.

  17. Soft x-ray lasers

    SciTech Connect

    Matthews, D.L.; Rosen, M.D.

    1988-12-01

    One of the elusive dreams of laser physicists has been the development of an x-ray laser. After 25 years of waiting, the x-ray laser has at last entered the scientific scene, although those now in operation are still laboratory prototypes. They produce soft x rays down to about five nanometers. X-ray lasers retain the usual characteristics of their optical counterparts: a very tight beam, spatial and temporal coherence, and extreme brightness. Present x-ray lasers are nearly 100 times brighter that the next most powerful x-ray source in the world: the electron synchrotron. Although Lawrence Livermore National Laboratory (LLNL) is widely known for its hard-x-ray laser program which has potential applications in the Strategic Defense Initiative, the soft x-ray lasers have no direct military applications. These lasers, and the scientific tools that result from their development, may one day have a place in the design and diagnosis of both laser fusion and hard x-ray lasers. The soft x-ray lasers now in operation at the LLNL have shown great promise but are still in the primitive state. Once x-ray lasers become reliable, efficient, and economical, they will have several important applications. Chief among them might be the creation of holograms of microscopic biological structures too small to be investigated with visible light. 5 figs.

  18. X-ray lithography source

    DOEpatents

    Piestrup, Melvin A.; Boyers, David G.; Pincus, Cary

    1991-01-01

    A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and elminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an exellent moderate-priced X-ray source for lithography.

  19. X-ray lithography source

    DOEpatents

    Piestrup, M.A.; Boyers, D.G.; Pincus, C.

    1991-12-31

    A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits is disclosed. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and eliminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an excellent moderate-priced X-ray source for lithography. 26 figures.

  20. Monitoring X-Ray Emission from X-Ray Bursters

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.; Kaaret, Philip

    1999-01-01

    The scientific goal of this project was to monitor a selected sample of x-ray bursters using data from the All-Sky Monitor (ASM) on the Rossi X-Ray Timing Explorer together with data from the Burst and Transient Source Experiment (BATSE) on the Compton Gamma-Ray Observatory to study the long-term temporal evolution of these sources in the x-ray and hard x-ray bands. The project was closely related to "Long-Term Hard X-Ray Monitoring of X-Ray Bursters", NASA project NAG5-3891, and and "Hard x-ray emission of x-ray bursters", NASA project NAG5-4633, and shares publications in common with both of these. The project involved preparation of software for use in monitoring and then the actual monitoring itself. These efforts have lead to results directly from the ASM data and also from Target of Opportunity Observations (TOO) made with the Rossi X-Ray Timing Explorer based on detection of transient hard x-ray outbursts with the ASM and BATSE.

  1. Abdominal x-ray

    MedlinePlus

    ... More Abdominal aortic aneurysm Abdominal pain Acute cholecystitis Acute kidney failure Addison disease Adenomyosis Annular pancreas Aplastic anemia Appendicitis Ascariasis Atheroembolic renal disease Biliary atresia Blind loop syndrome Cholangitis Chronic ...

  2. In Vivo Nanodetoxication for Acute Uranium Exposure.

    PubMed

    Guzmán, Luis; Durán-Lara, Esteban F; Donoso, Wendy; Nachtigall, Fabiane M; Santos, Leonardo S

    2015-01-01

    Accidental exposure to uranium is a matter of concern, as U(VI) is nephrotoxic in both human and animal models, and its toxicity is associated to chemical toxicity instead of radioactivity. We synthesized different PAMAM G4 and G5 derivatives in order to prove their interaction with uranium and their effect on the viability of red blood cells in vitro. Furthermore, we prove the effectiveness of the selected dendrimers in an animal model of acute uranium intoxication. The dendrimer PAMAM G4-Lys-Fmoc-Cbz demonstrated the ability to chelate the uranyl ion in vivo, improving the biochemical and histopathologic features caused by acute intoxication with uranium. PMID:26083036

  3. Hard X-Ray Emission of X-Ray Bursters

    NASA Technical Reports Server (NTRS)

    Kaaret, P.

    1999-01-01

    The primary goal of this proposal was to perform an accurate measurement of the broadband x-ray spectrum of a neutron-star low-mass x-ray binary found in a hard x-ray state. This goal was accomplished using data obtained under another proposal, which has provided exciting new information on the hard x-ray emission of neutron-star low-mass x-ray binaries. In "BeppoSAX Observations of the Atoll X-Ray Binary 4U0614+091", we present our analysis of the spectrum of 4U0614+091 over the energy band from 0.3-150 keV. Our data confirm the presence of a hard x-ray tail that can be modeled as thermal Comptonization of low-energy photons on electrons having a very high temperature, greater than 220 keV, or as a non-thermal powerlaw. Such a very hard x-ray spectrum has not been previously seen from neutron-star low-mass x-ray binaries. We also detected a spectral feature that can be interpreted as reprocessing, via Compton reflection, of the direct emission by an optically-thick disk and found a correlation between the photon index of the power-law tail and the fraction of radiation reflected which is similar to the correlation found for black hole candidate x-ray binaries and Seyfert galaxies. A secondary goal was to measure the timing properties of the x-ray emission from neutronstar low-mass x-ray binaries in their low/hard states.

  4. X-ray induced demagnetization of single-molecule magnets

    SciTech Connect

    Dreiser, Jan; Westerström, Rasmus; Piamonteze, Cinthia; Nolting, Frithjof; Rusponi, Stefano; Brune, Harald; Yang, Shangfeng; Popov, Alexey; Dunsch, Lothar; Greber, Thomas

    2014-07-21

    Low-temperature x-ray magnetic circular dichroism measurements on the endohedral single-molecule magnet DySc{sub 2}N@C{sub 80} at the Dy M{sub 4,5} edges reveal a shrinking of the opening of the observed hysteresis with increasing x-ray flux. Time-dependent measurements show that the exposure of the molecules to x-rays resonant with the Dy M{sub 5} edge accelerates the relaxation of magnetization more than off-resonant x-rays. The results cannot be explained by a homogeneous temperature rise due to x-ray absorption. Moreover, the observed large demagnetization cross sections indicate that the resonant absorption of one x-ray photon induces the demagnetization of many molecules.

  5. Hard X-ray emission from X-ray bursters.

    NASA Astrophysics Data System (ADS)

    Tavani, M.; Liang, E.

    1996-11-01

    Hard X-ray emission from compact objects has been considered a spectral signature of black hole candidates. However, SIGMA and BATSE recently detected transient emission in the energy range 30-200keV from several X-ray bursters (XRBs) believed to contain weakly magnetized neutron stars. At least seven XRBs (including Aquila X-1 and 4U 1608-52) are currently known to produce erratic hard X-ray outbursts with typical durations of several weeks. These results lead us to reconsider theoretical models of high-energy emission from compact objects, and in particular thermal Comptonization models vs. non-thermal models of particle energization and X-ray emission from weakly magnetized neutron stars. We summarize here recent results for magnetic field reconnection models of non-thermal particle acceleration and high-energy emission of accretion disks. For intermediate soft X-ray luminosities below the Eddington limit, non-thermal hard X-ray emission is predicted to have a (broken) power-law spectrum with intensity anticorrelated with the soft X-ray luminosity. Recent GINGA/BATSE data for the XRB 4U 1608-52 are in agreement with the mechanism of emission proposed here: transient hard X-ray emission consistent with a broken power-law spectrum was detected for a sub-Eddington soft X-ray luminosity.

  6. Miniature x-ray source

    DOEpatents

    Trebes, James E.; Stone, Gary F.; Bell, Perry M.; Robinson, Ronald B.; Chornenky, Victor I.

    2002-01-01

    A miniature x-ray source capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature x-ray source comprises a compact vacuum tube assembly containing a cathode, an anode, a high voltage feedthru for delivering high voltage to the anode, a getter for maintaining high vacuum, a connection for an initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is highly x-ray transparent and made, for example, from boron nitride. The compact size and potential for remote operation allows the x-ray source, for example, to be placed adjacent to a material sample undergoing analysis or in proximity to the region to be treated for medical applications.

  7. Solar X-ray physics

    SciTech Connect

    Bornmann, P.L. )

    1991-01-01

    Research on solar X-ray phenomena performed by American scientists during 1987-1990 is reviewed. Major topics discussed include solar images observed during quiescent times, the processes observed during solar flares, and the coronal, interplanetary, and terrestrial phenomena associated with solar X-ray flares. Particular attention is given to the hard X-ray emission observed at the start of the flare, the energy transfer to the soft X-ray emitting plasma, the late resolution of the flare as observed in soft X-ray, and the rate of occurrence of solar flares as a function of time and latitude. Pertinent aspects of nonflaring, coronal X-ray emission and stellar flares are also discussed. 175 refs.

  8. Severe Acute Respiratory Syndrome-Coronavirus Papain-Like Novel Protease Inhibitors: Design, Synthesis, Protein-Ligand X-ray Structure and Biological Evaluation

    SciTech Connect

    Ghosh, Arun K.; Takayama, Jun; Rao, Kalapala Venkateswar; Ratia, Kiira; Chaudhuri, Rima; Mulhearn, Debbie C.; Lee, Hyun; Nichols, Daniel B.; Baliji, Surendranath; Baker, Susan C.; Johnson, Michael E.; Mesecar, Andrew D.

    2012-02-21

    The design, synthesis, X-ray crystal structure, molecular modeling, and biological evaluation of a series of new generation SARS-CoV PLpro inhibitors are described. A new lead compound 3 (6577871) was identified via high-throughput screening of a diverse chemical library. Subsequently, we carried out lead optimization and structure-activity studies to provide a series of improved inhibitors that show potent PLpro inhibition and antiviral activity against SARS-CoV infected Vero E6 cells. Interestingly, the (S)-Me inhibitor 15h (enzyme IC{sub 50} = 0.56 {mu}M; antiviral EC{sub 50} = 9.1 {mu}M) and the corresponding (R)-Me 15g (IC{sub 50} = 0.32 {mu}M; antiviral EC{sub 50} = 9.1 {mu}M) are the most potent compounds in this series, with nearly equivalent enzymatic inhibition and antiviral activity. A protein-ligand X-ray structure of 15g-bound SARS-CoV PLpro and a corresponding model of 15h docked to PLpro provide intriguing molecular insight into the ligand-binding site interactions.

  9. Topological X-Rays Revisited

    ERIC Educational Resources Information Center

    Lynch, Mark

    2012-01-01

    We continue our study of topological X-rays begun in Lynch ["Topological X-rays and MRI's," iJMEST 33(3) (2002), pp. 389-392]. We modify our definition of a topological magnetic resonance imaging and give an affirmative answer to the question posed there: Can we identify a closed set in a box by defining X-rays to probe the interior and without…

  10. X-ray Absorption Spectroscopy

    SciTech Connect

    Yano, Junko; Yachandra, Vittal K.

    2009-07-09

    This review gives a brief description of the theory and application of X-ray absorption spectroscopy, both X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), especially, pertaining to photosynthesis. The advantages and limitations of the methods are discussed. Recent advances in extended EXAFS and polarized EXAFS using oriented membranes and single crystals are explained. Developments in theory in understanding the XANES spectra are described. The application of X-ray absorption spectroscopy to the study of the Mn4Ca cluster in Photosystem II is presented.

  11. Refractive Optics for Hard X-ray Transmission Microscopy

    SciTech Connect

    Simon, M.; Last, A.; Mohr, J.; Nazmov, V.; Reznikova, E.; Ahrens, G.; Voigt, A.

    2011-09-09

    For hard x-ray transmission microscopy at photon energies higher than 15 keV we design refractive condenser and imaging elements to be used with synchrotron light sources as well as with x-ray tube sources. The condenser lenses are optimized for low x-ray attenuation--resulting in apertures greater than 1 mm--and homogeneous intensity distribution on the detector plane, whereas the imaging enables high-resolution (<100 nm) full-field imaging. To obtain high image quality at reasonable exposure times, custom-tailored matched pairs of condenser and imaging lenses are being developed. The imaging lenses (compound refractive lenses, CRLs) are made of SU-8 negative resist by deep x-ray lithography. SU-8 shows high radiation stability. The fabrication technique enables high-quality lens structures regarding surface roughness and arrangement precision with arbitrary 2D geometry. To provide point foci, crossed pairs of lenses are used. Condenser lenses have been made utilizing deep x-ray lithographic patterning of thick SU-8 layers, too, whereas in this case, the aperture is limited due to process restrictions. Thus, in terms of large apertures, condenser lenses made of structured and rolled polyimide film are more attractive. Both condenser types, x-ray mosaic lenses and rolled x-ray prism lenses (RXPLs), are considered to be implemented into a microscope setup. The x-ray optical elements mentioned above are characterized with synchrotron radiation and x-ray laboratory sources, respectively.

  12. Luminescence properties after X-ray irradiation for dosimetry

    NASA Astrophysics Data System (ADS)

    Hong, Duk-Geun; Kim, Myung-Jin

    2016-05-01

    To investigate the luminescence characteristics after exposure to X-ray radiation, we developed an independent, small X-ray irradiation system comprising a Varian VF-50J mini X-ray generator, a Pb collimator, a delay shutter, and an Al absorber. With this system, the apparent dose rate increased linearly to 0.8 Gy/s against the emission current for a 50 kV anode potential when the shutter was delayed for an initial 4 s and the Al absorber was 300 µm thick. In addition, an approximately 20 mm diameter sample area was irradiated homogeneously with X rays. Based on three-dimensional (3D) thermoluminescence (TL) spectra, the small X-ray irradiator was considered comparable to the conventional 90Sr/90Y beta source even though the TL intensity from beta irradiation was higher than that from X-ray irradiation. The single aliquot regenerative (SAR) growth curve for the small X-ray irradiator was identical to that for the beta source. Therefore, we concluded that the characteristics of the small X-ray irradiator and the conventional 90Sr/90Y beta source were similar and that X ray irradiation had the potential for being suitable for use in luminescence dosimetry.

  13. X-ray beam pointer

    NASA Technical Reports Server (NTRS)

    Nelson, C. W.

    1980-01-01

    Inexpensive, readily assembled pointer aims X-ray machine for welded assembly radiographs. Plumb bob used for vertical alinement and yardstick used to visualize X-ray paths were inconvenient and inaccurate. Pointer cuts alinement time by one-half and eliminates necessity of retakes. For 3,000 weld radiographs, pointer will save 300 worker-hours and significant materials costs.

  14. Plug Would Collimate X Rays

    NASA Technical Reports Server (NTRS)

    Anders, Jeffrey E.; Adams, James F.

    1989-01-01

    Device creates narrow, well-defined beam for radiographic measurements of thickness. Cylindrical plug collimates and aligns X rays with respect to through holes in parts. Helps in determination of wall thickness by radiography. Lead absorbs X rays that do not pass axially through central hole. Lead/vinyl seals prevent off-axis rays from passing along periphery of plug.

  15. X-ray based extensometry

    NASA Technical Reports Server (NTRS)

    Jordan, E. H.; Pease, D. M.

    1988-01-01

    A totally new method of extensometry using an X-ray beam was proposed. The intent of the method is to provide a non-contacting technique that is immune to problems associated with density variations in gaseous environments that plague optical methods. X-rays are virtually unrefractable even by solids. The new method utilizes X-ray induced X-ray fluorescence or X-ray induced optical fluorescence of targets that have melting temperatures of over 3000 F. Many different variations of the basic approaches are possible. In the year completed, preliminary experiments were completed which strongly suggest that the method is feasible. The X-ray induced optical fluorescence method appears to be limited to temperatures below roughly 1600 F because of the overwhelming thermal optical radiation. The X-ray induced X-ray fluorescence scheme appears feasible up to very high temperatures. In this system there will be an unknown tradeoff between frequency response, cost, and accuracy. The exact tradeoff can only be estimated. It appears that for thermomechanical tests with cycle times on the order of minutes a very reasonable system may be feasible. The intended applications involve very high temperatures in both materials testing and monitoring component testing. Gas turbine engines, rocket engines, and hypersonic vehicles (NASP) all involve measurement needs that could partially be met by the proposed technology.

  16. X-ray shearing interferometer

    DOEpatents

    Koch, Jeffrey A.

    2003-07-08

    An x-ray interferometer for analyzing high density plasmas and optically opaque materials includes a point-like x-ray source for providing a broadband x-ray source. The x-rays are directed through a target material and then are reflected by a high-quality ellipsoidally-bent imaging crystal to a diffraction grating disposed at 1.times. magnification. A spherically-bent imaging crystal is employed when the x-rays that are incident on the crystal surface are normal to that surface. The diffraction grating produces multiple beams which interfere with one another to produce an interference pattern which contains information about the target. A detector is disposed at the position of the image of the target produced by the interfering beams.

  17. X-Ray Diffraction Apparatus

    NASA Technical Reports Server (NTRS)

    Blake, David F. (Inventor); Bryson, Charles (Inventor); Freund, Friedmann (Inventor)

    1996-01-01

    An x-ray diffraction apparatus for use in analyzing the x-ray diffraction pattern of a sample is introduced. The apparatus includes a beam source for generating a collimated x-ray beam having one or more discrete x-ray energies, a holder for holding the sample to be analyzed in the path of the beam, and a charge-coupled device having an array of pixels for detecting, in one or more selected photon energy ranges, x-ray diffraction photons produced by irradiating such a sample with said beam. The CCD is coupled to an output unit which receives input information relating to the energies of photons striking each pixel in the CCD, and constructs the diffraction pattern of photons within a selected energy range striking the CCD.

  18. X-Ray Tomographic Reconstruction

    SciTech Connect

    Bonnie Schmittberger

    2010-08-25

    Tomographic scans have revolutionized imaging techniques used in medical and biological research by resolving individual sample slices instead of several superimposed images that are obtained from regular x-ray scans. X-Ray fluorescence computed tomography, a more specific tomography technique, bombards the sample with synchrotron x-rays and detects the fluorescent photons emitted from the sample. However, since x-rays are attenuated as they pass through the sample, tomographic scans often produce images with erroneous low densities in areas where the x-rays have already passed through most of the sample. To correct for this and correctly reconstruct the data in order to obtain the most accurate images, a program employing iterative methods based on the inverse Radon transform was written. Applying this reconstruction method to a tomographic image recovered some of the lost densities, providing a more accurate image from which element concentrations and internal structure can be determined.

  19. Focusing X-Ray Telescopes

    NASA Technical Reports Server (NTRS)

    O'Dell, Stephen; Brissenden, Roger; Davis, William; Elsner, Ronald; Elvis, Martin; Freeman, Mark; Gaetz, Terrance; Gorenstein, Paul; Gubarev, Mikhall; Jerlus, Diab; Juda, Michael; Kolodziejczak, Jeffrey; Murray, Stephen; Petre, Robert; Podgorski, William; Ramsey, Brian; Reid, Paul; Saha, Timo; Wolk, Scott; Troller-McKinstry, Susan; Weisskopf, Martin; Wilke, Rudeger; Zhang, William

    2010-01-01

    During the half-century history of x-ray astronomy, focusing x-ray telescopes, through increased effective area and finer angular resolution, have improved sensitivity by 8 orders of magnitude. Here, we review previous and current x-ray-telescope missions. Next, we describe the planned next-generation x-ray-astronomy facility, the International X-ray Observatory (IXO). We conclude with an overview of a concept for the next next-generation facility, Generation X. Its scientific objectives will require very large areas (about 10,000 sq m) of highly-nested, lightweight grazing-incidence mirrors, with exceptional (about 0.1-arcsec) resolution. Achieving this angular resolution with lightweight mirrors will likely require on-orbit adjustment of alignment and figure.

  20. Observations of X-ray Sources with the Chandra X-ray Observatory

    NASA Astrophysics Data System (ADS)

    Garmire, Gordon

    2000-04-01

    The Chandra X-ray Observatory (CXO) offers unprecedented angular resolution and sensitivity compared to previous or currently flying X-ray Missions. Results of a number of observations conducted during the previous six months of operation will be presented. Some of the observations include very long exposures toward the Hubble Deep Field North, the supernova remnants 1987A, RCW103, and N103B, the Orion Nebula, the Galactic Center, M82 and a survey of low luminosity Active Galactic Nuclei. This work is a collaboration between scientists at Penn State University, MIT and Caltech. The support for this endeavor comes from NASA through contract NAS8-38252.

  1. Low-energy x-ray irradiation for electrophysiological studies

    SciTech Connect

    Schauer, D.A.; Zeman, G.H.; Pellmar, T.C.

    1989-01-01

    High-dose-rate acute whole-body exposures have been the main focus of radiobiology research conducted at the Armed Forces Radiobiology Research Institute (AFRRI) for many years. Extensive quantitative studies have been conducted analyzing behavioral effects, radiation-induced syndromes, and combined injury phenomena. Tolliver and Pellmar initiated a study to evaluate radiation damage to brain neurophysiology. A 50-kVp molybdenum target/filter x-ray tube was installed inside a lead-shielded Faraday cage. High-dose rates of up to 1.54 Gy/min (17.4-keV weighted average photons) were used to conduct local in vitro irradiations of the hippocampal region of guinea pig brains. Electrophysiological recordings of subtle changes in neuronal activity indicate this system is suitable for this application.

  2. High Resolution X-ray-Induced Acoustic Tomography

    NASA Astrophysics Data System (ADS)

    Xiang, Liangzhong; Tang, Shanshan; Ahmad, Moiz; Xing, Lei

    2016-05-01

    Absorption based CT imaging has been an invaluable tool in medical diagnosis, biology, and materials science. However, CT requires a large set of projection data and high radiation dose to achieve superior image quality. In this letter, we report a new imaging modality, X-ray Induced Acoustic Tomography (XACT), which takes advantages of high sensitivity to X-ray absorption and high ultrasonic resolution in a single modality. A single projection X-ray exposure is sufficient to generate acoustic signals in 3D space because the X-ray generated acoustic waves are of a spherical nature and propagate in all directions from their point of generation. We demonstrate the successful reconstruction of gold fiducial markers with a spatial resolution of about 350 μm. XACT reveals a new imaging mechanism and provides uncharted opportunities for structural determination with X-ray.

  3. High Resolution X-ray-Induced Acoustic Tomography

    PubMed Central

    Xiang, Liangzhong; Tang, Shanshan; Ahmad, Moiz; Xing, Lei

    2016-01-01

    Absorption based CT imaging has been an invaluable tool in medical diagnosis, biology, and materials science. However, CT requires a large set of projection data and high radiation dose to achieve superior image quality. In this letter, we report a new imaging modality, X-ray Induced Acoustic Tomography (XACT), which takes advantages of high sensitivity to X-ray absorption and high ultrasonic resolution in a single modality. A single projection X-ray exposure is sufficient to generate acoustic signals in 3D space because the X-ray generated acoustic waves are of a spherical nature and propagate in all directions from their point of generation. We demonstrate the successful reconstruction of gold fiducial markers with a spatial resolution of about 350 μm. XACT reveals a new imaging mechanism and provides uncharted opportunities for structural determination with X-ray. PMID:27189746

  4. High Resolution X-ray-Induced Acoustic Tomography.

    PubMed

    Xiang, Liangzhong; Tang, Shanshan; Ahmad, Moiz; Xing, Lei

    2016-01-01

    Absorption based CT imaging has been an invaluable tool in medical diagnosis, biology, and materials science. However, CT requires a large set of projection data and high radiation dose to achieve superior image quality. In this letter, we report a new imaging modality, X-ray Induced Acoustic Tomography (XACT), which takes advantages of high sensitivity to X-ray absorption and high ultrasonic resolution in a single modality. A single projection X-ray exposure is sufficient to generate acoustic signals in 3D space because the X-ray generated acoustic waves are of a spherical nature and propagate in all directions from their point of generation. We demonstrate the successful reconstruction of gold fiducial markers with a spatial resolution of about 350 μm. XACT reveals a new imaging mechanism and provides uncharted opportunities for structural determination with X-ray. PMID:27189746

  5. X-Ray Imaging System

    NASA Astrophysics Data System (ADS)

    1986-01-01

    The FluoroScan Imaging System is a high resolution, low radiation device for viewing stationary or moving objects. It resulted from NASA technology developed for x-ray astronomy and Goddard application to a low intensity x-ray imaging scope. FlouroScan Imaging Systems, Inc, (formerly HealthMate, Inc.), a NASA licensee, further refined the FluoroScan System. It is used for examining fractures, placement of catheters, and in veterinary medicine. Its major components include an x-ray generator, scintillator, visible light image intensifier and video display. It is small, light and maneuverable.

  6. X-ray burst sources

    NASA Technical Reports Server (NTRS)

    Lewin, W. H. G.

    1986-01-01

    There are about 100 bright X-ray sources in the Galaxy that are accretion-driven systems composed of a neutron star and a low mass companion that fills its critical Roche lobe. Many of these systems generate recurring X-ray bursts that are the result of thermonuclear flashes in the neutron star's surface layers, and are accompanied by a somewhat delayed optical burst due to X-ray heating of accretion disk. The Rapid Burster discovered in 1976 exhibits an interval between bursts that is strongly correlated with the energy in the preceding burst. There is no optical identification for this object.

  7. Combined Exposure to Simulated Microgravity and Acute or Chronic Radiation Reduces Neuronal Network Integrity and Survival

    PubMed Central

    Quintens, Roel; Samari, Nada; de Saint-Georges, Louis; van Oostveldt, Patrick; Baatout, Sarah; Benotmane, Mohammed Abderrafi

    2016-01-01

    During orbital or interplanetary space flights, astronauts are exposed to cosmic radiations and microgravity. However, most earth-based studies on the potential health risks of space conditions have investigated the effects of these two conditions separately. This study aimed at assessing the combined effect of radiation exposure and microgravity on neuronal morphology and survival in vitro. In particular, we investigated the effects of simulated microgravity after acute (X-rays) or during chronic (Californium-252) exposure to ionizing radiation using mouse mature neuron cultures. Acute exposure to low (0.1 Gy) doses of X-rays caused a delay in neurite outgrowth and a reduction in soma size, while only the high dose impaired neuronal survival. Of interest, the strongest effect on neuronal morphology and survival was evident in cells exposed to microgravity and in particular in cells exposed to both microgravity and radiation. Removal of neurons from simulated microgravity for a period of 24 h was not sufficient to recover neurite length, whereas the soma size showed a clear re-adaptation to normal ground conditions. Genome-wide gene expression analysis confirmed a modulation of genes involved in neurite extension, cell survival and synaptic communication, suggesting that these changes might be responsible for the observed morphological effects. In general, the observed synergistic changes in neuronal network integrity and cell survival induced by simulated space conditions might help to better evaluate the astronaut's health risks and underline the importance of investigating the central nervous system and long-term cognition during and after a space flight. PMID:27203085

  8. Combined Exposure to Simulated Microgravity and Acute or Chronic Radiation Reduces Neuronal Network Integrity and Survival.

    PubMed

    Pani, Giuseppe; Verslegers, Mieke; Quintens, Roel; Samari, Nada; de Saint-Georges, Louis; van Oostveldt, Patrick; Baatout, Sarah; Benotmane, Mohammed Abderrafi

    2016-01-01

    During orbital or interplanetary space flights, astronauts are exposed to cosmic radiations and microgravity. However, most earth-based studies on the potential health risks of space conditions have investigated the effects of these two conditions separately. This study aimed at assessing the combined effect of radiation exposure and microgravity on neuronal morphology and survival in vitro. In particular, we investigated the effects of simulated microgravity after acute (X-rays) or during chronic (Californium-252) exposure to ionizing radiation using mouse mature neuron cultures. Acute exposure to low (0.1 Gy) doses of X-rays caused a delay in neurite outgrowth and a reduction in soma size, while only the high dose impaired neuronal survival. Of interest, the strongest effect on neuronal morphology and survival was evident in cells exposed to microgravity and in particular in cells exposed to both microgravity and radiation. Removal of neurons from simulated microgravity for a period of 24 h was not sufficient to recover neurite length, whereas the soma size showed a clear re-adaptation to normal ground conditions. Genome-wide gene expression analysis confirmed a modulation of genes involved in neurite extension, cell survival and synaptic communication, suggesting that these changes might be responsible for the observed morphological effects. In general, the observed synergistic changes in neuronal network integrity and cell survival induced by simulated space conditions might help to better evaluate the astronaut's health risks and underline the importance of investigating the central nervous system and long-term cognition during and after a space flight. PMID:27203085

  9. X-Ray Imaging Study

    NASA Technical Reports Server (NTRS)

    OBrien, Susan K.; Workman, Gary L.

    1996-01-01

    The space environment in which the Space Station Freedom and other space platforms will orbit is truly a hostile environment. For example, the currently estimated integral fluence for electrons above 1 Mev at 2000 nautical miles is above 2 x 1O(exp 10) electrons/sq cm/day and the proton integral fluence is above 1 x 10(exp 9) protons/sq cm/day. At the 200 - 400 nautical miles, which is more representative of the altitude which will provide the environment for the Space Station, each of these fluences will be proportionally less; however, the data indicates that the radiation environment will obviously have an effect on structural materials exposed to the environment for long durations. The effects of this combined environment is the issue which needs to be understood for the long term exposure of structures in space. At the same time, there will be substantial potential for collisions between the space platforms and space debris. The current NASA catalogue contains over 4500 objects floating in space which are not considered payloads. This debris can have significant effects on collision with orbiting spacecraft. In order to better understand the effect of these hostile phenomena on spacecraft, several types of studies are being performed to simulate at some level the effect of the environment. In particular the study of debris clouds produced by hypervelocity impact on the various surfaces anticipated on the Space Station is very important at this point in time. The need to assess the threat of such debris clouds on space structures is an on-going activity. The Space Debris Impact facility in Building 4612 provides a test facility to monitor the types of damage produced with hypervelocity impact. These facilities are used to simulate space environmental effects from energetic particles. Flash radiography or x-ray imaging has traditionally provided such information and as such has been an important tool for recording damage in situ with the event. The proper

  10. Investigation of X-Ray Optical Anisotropy of Materials by means of X-Ray Interferometry

    SciTech Connect

    Mkrtchyan, Vahram P.; Gasparyan, Laura G.; Balyan, Minas K.

    2010-04-06

    A novel approach is proposed in the present work for investigation of X-ray optical anisotropy of materials, that is based on X-ray interferometric method of measurements. Unlike the existing methods, where the specimen to be tested is placed in the path of one of interfering beams, in the proposed approach the specimens under investigation are placed directly in the paths of both the interfering beams, owing to which the impact of other factors on the shift of interference Moire fringes is eliminated. In this way the Moire fringes simultaneously appear during the same exposure both in the absence and presence of specimens with different orientations of optical axes. Due to the fact that the relative displacement of Moire fringes is observed in three different columns of the same beam, it becomes possible to simultaneously observe and immediately identify the presence of X-ray optical anisotropy, as well as to measure the values of refractive indices n{sub o} and n{sub e} for specimens under study. By means of proposed method the X-ray optical anisotropy of cellophane film was registered and values of refractive indices n{sub o} and n{sub e} for cellophane were measured. It was established that cellophane is X-ray optically positive anisotropic medium.

  11. Investigation of X-Ray Optical Anisotropy of Materials by means of X-Ray Interferometry

    NASA Astrophysics Data System (ADS)

    Mkrtchyan, Vahram P.; Gasparyan, Laura G.; Balyan, Minas K.

    2010-04-01

    A novel approach is proposed in the present work for investigation of X-ray optical anisotropy of materials, that is based on X-ray interferometric method of measurements. Unlike the existing methods, where the specimen to be tested is placed in the path of one of interfering beams, in the proposed approach the specimens under investigation are placed directly in the paths of both the interfering beams, owing to which the impact of other factors on the shift of interference Moire fringes is eliminated. In this way the Moire fringes simultaneously appear during the same exposure both in the absence and presence of specimens with different orientations of optical axes. Due to the fact that the relative displacement of Moire fringes is observed in three different columns of the same beam, it becomes possible to simultaneously observe and immediately identify the presence of X-ray optical anisotropy, as well as to measure the values of refractive indices no and ne for specimens under study. By means of proposed method the X-ray optical anisotropy of cellophane film was registered and values of refractive indices no and ne for cellophane were measured. It was established that cellophane is X-ray optically positive anisotropic medium.

  12. Application of X-ray imaging techniques to auroral monitoring

    NASA Astrophysics Data System (ADS)

    Rust, D. M.; Burstein, P.

    The precipitation of energetic particles into the ionosphere produces bremsstrahlung X-rays and K-alpha line emission from excited oxygen and nitrogen. If viewed from a spacecraft in a highly elliptical polar orbit, this soft (0.3 - 3.0 keV) X-radiation will provide an almost uninterrupted record of dayside and nightside auroras. A grazing incidence X-ray telescope especially designed for such auroral monitoring is described. High photon collection efficiency will permit exposure times of approximately 100 seconds during substorms. Spectrophotometry will allow users to derive the energy spectrum of the precipitating particles. If placed in a 15 earth-radius orbit, the telescope can produce auroral X-ray images with 30 km resolution. Absolute position of X-ray auroras can be established with a small optical telescope co-aligned with the X-ray telescope. Comparison of X-ray and optical images will establish the height and global distribution of X-ray aurorae, relative to well-known optical auroras, thus melding the new X-ray results with knowledge of optical auroras.

  13. Miniature x-ray source

    DOEpatents

    Trebes, James E.; Bell, Perry M.; Robinson, Ronald B.

    2000-01-01

    A miniature x-ray source utilizing a hot filament cathode. The source has a millimeter scale size and is capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature source consists of a compact vacuum tube assembly containing the hot filament cathode, an anode, a high voltage feedthru for delivering high voltage to the cathode, a getter for maintaining high vacuum, a connector for initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is fabricated from highly x-ray transparent materials, such as sapphire, diamond, or boron nitride.

  14. Imaging X-ray spectrometer

    NASA Astrophysics Data System (ADS)

    Grant, P. A.; Jackson, J. W., Jr.; Alcorn, G. E.; Marshall, F. E.

    1984-09-01

    An X-ray spectrometer for providing imaging and energy resolution of an X-ray source is described. This spectrometer is comprised of a thick silicon wafer having an embedded matrix or grid of aluminum completely through the wafer fabricated, for example, by thermal migration. The aluminum matrix defines the walls of a rectangular array of silicon X-ray detector cells or pixels. A thermally diffused aluminum electrode is also formed centrally through each of the silicon cells with biasing means being connected to the aluminum cell walls and causes lateral charge carrier depletion between the cell walls so that incident X-ray energy causes a photoelectric reaction within the silicon producing collectible charge carriers in the form of electrons which are collected and used for imaging.

  15. Picosecond x-ray science.

    SciTech Connect

    Landahl, E.; Reis, D.; Wang, J.; Young, L.

    2006-01-01

    The report discusses the exciting times for short pulse X-rays and the current users of the technology in the United States. Tracking nuclear motions with X-rays transcends scientific disciplines and includes Biology, Materials Science, Condensed Matter and Chemistry. 1 picosecond accesses many phenomena previously hidden at 100ps. Synchrotron advantage over laser plasma and LCLS is that it's easily tunable. There is a large and diverse user community of this technology that is growing rapidly. A working group is being formed to implement 'fast track' Phases 1 and 2 which includes tunable, polarized, monochromatic, focused X-rays; variable pulse length (1 to 100ps) and 1 kHz, 10{sup 9} X-rays/s with 1% bandwidth. ERL would be a major advance for ultrafast time-resolved studies.

  16. X-ray microtomographic scanners

    SciTech Connect

    Syryamkin, V. I. Klestov, S. A.

    2015-11-17

    The article studies the operating procedures of an X-ray microtomographic scanner and the module of reconstruction and analysis 3D-image of a test sample in particular. An algorithm for 3D-image reconstruction based on image shadow projections and mathematical methods of the processing are described. Chapter 1 describes the basic principles of X-ray tomography and general procedures of the device developed. Chapters 2 and 3 are devoted to the problem of resources saving by the system during the X-ray tomography procedure, which is achieved by preprocessing of the initial shadow projections. Preprocessing includes background noise removing from the images, which reduces the amount of shadow projections in general and increases the efficiency of the group shadow projections compression. In conclusion, the main applications of X-ray tomography are presented.

  17. X-Ray Exam: Finger

    MedlinePlus

    ... KidsHealth in the Classroom What Other Parents Are Reading Upsetting News Reports? What to Say Vaccines: Which ... Results A radiologist, a doctor specially trained in reading and interpreting X-ray images, will look at ...

  18. X-Ray Exam: Hip

    MedlinePlus

    ... KidsHealth in the Classroom What Other Parents Are Reading Upsetting News Reports? What to Say Vaccines: Which ... For older kids, be sure to explain the importance of keeping still while the X-ray is ...

  19. X-Ray Exam: Foot

    MedlinePlus

    ... KidsHealth in the Classroom What Other Parents Are Reading Upsetting News Reports? What to Say Vaccines: Which ... For older kids, be sure to explain the importance of staying still while the X-ray is ...

  20. X-Ray Exam: Ankle

    MedlinePlus

    ... KidsHealth in the Classroom What Other Parents Are Reading Upsetting News Reports? What to Say Vaccines: Which ... For older kids, be sure to explain the importance of staying still while the X-ray is ...

  1. X-Ray Exam: Pelvis

    MedlinePlus

    ... KidsHealth in the Classroom What Other Parents Are Reading Upsetting News Reports? What to Say Vaccines: Which ... For older kids, be sure to explain the importance of keeping still while the X-ray is ...

  2. X-Ray Exam: Forearm

    MedlinePlus

    ... KidsHealth in the Classroom What Other Parents Are Reading Upsetting News Reports? What to Say Vaccines: Which ... For older kids, be sure to explain the importance of staying still while the X-ray is ...

  3. X-Ray Exam: Wrist

    MedlinePlus

    ... KidsHealth in the Classroom What Other Parents Are Reading Upsetting News Reports? What to Say Vaccines: Which ... For older kids, be sure to explain the importance of staying still while the X-ray is ...

  4. Imaging X-ray spectrometer

    NASA Technical Reports Server (NTRS)

    Grant, P. A.; Jackson, J. W., Jr.; Alcorn, G. E.; Marshall, F. E. (Inventor)

    1984-01-01

    An X-ray spectrometer for providing imaging and energy resolution of an X-ray source is described. This spectrometer is comprised of a thick silicon wafer having an embedded matrix or grid of aluminum completely through the wafer fabricated, for example, by thermal migration. The aluminum matrix defines the walls of a rectangular array of silicon X-ray detector cells or pixels. A thermally diffused aluminum electrode is also formed centrally through each of the silicon cells with biasing means being connected to the aluminum cell walls and causes lateral charge carrier depletion between the cell walls so that incident X-ray energy causes a photoelectric reaction within the silicon producing collectible charge carriers in the form of electrons which are collected and used for imaging.

  5. X-ray astronomical spectroscopy

    NASA Technical Reports Server (NTRS)

    Holt, S. S.

    1980-01-01

    The current status of the X-ray spectroscopy of celestial X-ray sources, ranging from nearby stars to distant quasars, is reviewed. Particular emphasis is placed on the role of such spectroscopy as a useful and unique tool in the elucidation of the physical parameters of the sources. The spectroscopic analysis of degenerate and nondegenerate stellar systems, galactic clusters and active galactic nuclei, and supernova remnants is discussed.

  6. Electromechanical x-ray generator

    DOEpatents

    Watson, Scott A; Platts, David; Sorensen, Eric B

    2016-05-03

    An electro-mechanical x-ray generator configured to obtain high-energy operation with favorable energy-weight scaling. The electro-mechanical x-ray generator may include a pair of capacitor plates. The capacitor plates may be charged to a predefined voltage and may be separated to generate higher voltages on the order of hundreds of kV in the AK gap. The high voltage may be generated in a vacuum tube.

  7. X-Rays, Pregnancy and You

    MedlinePlus

    ... and Procedures Medical Imaging Medical X-ray Imaging X-Rays, Pregnancy and You Share Tweet Linkedin Pin it ... the decision with your doctor. What Kind of X-Rays Can Affect the Unborn Child? During most x- ...

  8. Why Do I Need X-Rays?

    MedlinePlus

    ... to your desktop! more... Why Do I Need X-Rays? Article Chapters Why Do I Need X-Rays? ... of tooth decay. Updated: January 2012 Related Articles: X-Rays The Academy of General Dentistry (AGD) Sets the ...

  9. Soft x-ray contact imaging of biological specimens using a laser-produced plasma as an x-ray source

    SciTech Connect

    Cheng, P.C.

    1990-01-01

    The use of a laser-produced plasma as an x-ray source provides significant advantages over other types of sources for x-ray microradiography of, particularly, living biological specimens. The pulsed nature of the x-rays enables imaging of the specimen in a living state, and the small source size minimizes penumbral blurring. This makes it possible to make an exposure close to the source, thereby increasing the x-ray intensity. In this article, we will demonstrate the applications of x-ray contact microradiography in structural and developmental botany such as the localization of silica deposition and the floral morphologenesis of maize.

  10. Nanometer x-ray lithography

    NASA Astrophysics Data System (ADS)

    Hartley, Frank T.; Khan Malek, Chantal G.

    1999-10-01

    New developments for x-ray nanomachining include pattern transfer onto non-planar surfaces coated with electrodeposited resists using synchrotron radiation x-rays through extremely high-resolution mask made by chemically assisted focused ion beam lithography. Standard UV photolithographic processes cannot maintain sub-micron definitions over large variation in feature topography. The ability of x-ray printing to pattern thin or thick layers of photoresist with high resolution on non-planar surfaces of large and complex topographies with limited diffraction and scattering effects and no substrate reflection is known and can be exploited for patterning microsystems with non-planar 3D geometries as well as multisided and multilayered substrates. Thin conformal coatings of electro-deposited positive and negative tone photoresist have been shown to be x-ray sensitive and accommodate sub-micro pattern transfer over surface of extreme topographical variations. Chemically assisted focused ion beam selective anisotropic erosion was used to fabricate x-ray masks directly. Masks with feature sizes less than 20 nm through 7 microns of gold were made on bulk silicon substrates and x-ray mask membranes. The technique is also applicable to other high density materials. Such masks enable the primary and secondary patterning and/or 3D machining of Nano-Electro-Mechanical Systems over large depths or complex relief and the patterning of large surface areas with sub-optically dimensioned features.

  11. Universal x-ray unit

    SciTech Connect

    Charrier, P.

    1988-04-26

    An X-ray apparatus capable of X-ray beaming in a multiplicity of directions around and through the body of a horizontally lying stationary patient is described comprising: a horizontal patient's table; a ring in circumscribing position around the table; a X-ray equipment fixedly mounted on the ring for X-ray beaming through the table and through the body of a patient when lying thereon, the X-ray equipment comprising a source of X-rays; support means for holding the ring in the circumscribing position and first drive means on the support means and on the ring for rotating the ring about a first axis perpendicular to the general plane of the ring through the ring center; a suspension member having downwardly extending side legs, second drive means for oscillating the ring support means and the ring together in unison about the second axis; a frame having a top structure above the table, the ring and the suspension member; and a carrier assembly mounted on the top structure and at the center of the suspension member.

  12. Cosmic X-ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, D.; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1985-01-01

    A progress report of research activities carried out in the area of cosmic X-ray physics is presented. The Diffuse X-ray Spectrometer DXS which has been flown twice as a rocket payload is described. The observation times proved to be too small for meaningful X-ray data to be obtained. Data collection and reduction activities from the Ultra-Soft X-ray background (UXT) instrument are described. UXT consists of three mechanically-collimated X-ray gas proportional counters with window/filter combinations which allow measurements in three energy bands, Be (80-110 eV), B (90-187 eV), and O (e84-532 eV). The Be band measurements provide an important constraint on local absorption of X-rays from the hot component of the local interstellar medium. Work has also continued on the development of a calorimetric detector for high-resolution spectroscopy in the 0.1 keV - 8keV energy range.

  13. Laboratory cryo soft X-ray microscopy.

    PubMed

    Hertz, H M; von Hofsten, O; Bertilson, M; Vogt, U; Holmberg, A; Reinspach, J; Martz, D; Selin, M; Christakou, A E; Jerlström-Hultqvist, J; Svärd, S

    2012-02-01

    Lens-based water-window X-ray microscopy allows two- and three-dimensional (2D and 3D) imaging of intact unstained cells in their near-native state with unprecedented contrast and resolution. Cryofixation is essential to avoid radiation damage to the sample. Present cryo X-ray microscopes rely on synchrotron radiation sources, thereby limiting the accessibility for a wider community of biologists. In the present paper we demonstrate water-window cryo X-ray microscopy with a laboratory-source-based arrangement. The microscope relies on a λ=2.48-nm liquid-jet high-brightness laser-plasma source, normal-incidence multilayer condenser optics, 30-nm zone-plate optics, and a cryo sample chamber. We demonstrate 2D imaging of test patterns, and intact unstained yeast, protozoan parasites and mammalian cells. Overview 3D information is obtained by stereo imaging while complete 3D microscopy is provided by full tomographic reconstruction. The laboratory microscope image quality approaches that of the synchrotron microscopes, but with longer exposure times. The experimental image quality is analyzed from a numerical wave-propagation model of the imaging system and a path to reach synchrotron-like exposure times in laboratory microscopy is outlined. PMID:22119891

  14. Energy-selective filtration of dental x-ray beams

    SciTech Connect

    Gelskey, D.E.; Baker, C.G.

    1981-11-01

    Samarium is known for its ability to filter simultaneously low- and high-energy x-ray photons from an x-ray beam that are not useful in producing a diagnostic radiograph. This study was undertaken to determine the optimum thickness of samarium required to minimize patient exposure and exposure time. The results indicate that use of a filter thickness of 0.16 mm. minimized patient radiation exposure and permitted the use of an exposure time sufficiently short to minimize motion unsharpness. The incorporation of a 0.16 mm. samarium filter in the x-ray beam reduced exposure by about 40 percent as compared to a 2.5 mm. aluminum filter; the exposure time must be increased approximately twice to obtain optical densities equivalent to those produced with aluminum filtration.

  15. Center for X-Ray Optics, 1992

    SciTech Connect

    Not Available

    1993-08-01

    This report discusses the following topics: Center for X-Ray Optics; Soft X-Ray Imaging wit Zone Plate Lenses; Biological X-Ray microscopy; Extreme Ultraviolet Lithography for Nanoelectronic Pattern Transfer; Multilayer Reflective Optics; EUV/Soft X-ray Reflectometer; Photoemission Microscopy with Reflective Optics; Spectroscopy with Soft X-Rays; Hard X-Ray Microprobe; Coronary Angiography; and Atomic Scattering Factors.

  16. X-ray mask and method for making

    DOEpatents

    Morales, Alfredo M.

    2004-10-26

    The present invention describes a method for fabricating an x-ray mask tool which is a contact lithographic mask which can provide an x-ray exposure dose which is adjustable from point-to-point. The tool is useful in the preparation of LIGA plating molds made from PMMA, or similar materials. In particular the tool is useful for providing an ability to apply a graded, or "stepped" x-ray exposure dose across a photosensitive substrate. By controlling the x-ray radiation dose from point-to-point, it is possible to control the development process for removing exposed portions of the substrate; adjusting it such that each of these portions develops at a more or less uniformly rate regardless of feature size or feature density distribution.

  17. Medical x-ray-sensitive array based on CCD

    NASA Astrophysics Data System (ADS)

    Gnedenko, Valeri G.; Krasnjuk, Andrey A.; Larionov, Sergei V.; Phainberg, Evgeni M.; Shilin, Victor A.; Skrylev, Alexander S.; Stenin, Vladimir J.

    1996-04-01

    The achievements of CCD technology allow to design X-ray sensitive solid-state images for various medicine applications. The first medical systems have been created for using in dental practice and diagnosis. This radiovisiographic method allows to reduce X-ray exposure by 80%, except any films and provide paralleled diagnosis capacities which revolutionize every day practice. In the future a mosaic scanner with CCD chips will be used for detecting breast cancer.

  18. Soft x-ray imaging using Polaroid Land films

    SciTech Connect

    Wong, C.S.; Choi, P.; Deeney, C.

    1988-02-01

    It is demonstrated in this note that optical Polaroid Land films can be used as a convenient detector in the soft x-ray region. The performance of Polaroid 667 film has been found to be comparable to that of the Kodak direct exposure film (DEF) for soft x-ray pinhole imaging. By a suitable choice of multiple filters, qualitative information about a dense plasma has been obtained.

  19. X-ray Echo Spectroscopy.

    PubMed

    Shvyd'ko, Yuri

    2016-02-26

    X-ray echo spectroscopy, a counterpart of neutron spin echo, is being introduced here to overcome limitations in spectral resolution and weak signals of the traditional inelastic x-ray scattering (IXS) probes. An image of a pointlike x-ray source is defocused by a dispersing system comprised of asymmetrically cut specially arranged Bragg diffracting crystals. The defocused image is refocused into a point (echo) in a time-reversal dispersing system. If the defocused beam is inelastically scattered from a sample, the echo signal acquires a spatial distribution, which is a map of the inelastic scattering spectrum. The spectral resolution of the echo spectroscopy does not rely on the monochromaticity of the x rays, ensuring strong signals along with a very high spectral resolution. Particular schemes of x-ray echo spectrometers for 0.1-0.02 meV ultrahigh-resolution IXS applications (resolving power >10^{8}) with broadband ≃5-13  meV dispersing systems are introduced featuring more than 10^{3} signal enhancement. The technique is general, applicable in different photon frequency domains. PMID:26967404

  20. X-ray Echo Spectroscopy

    NASA Astrophysics Data System (ADS)

    Shvyd'ko, Yuri

    2016-02-01

    X-ray echo spectroscopy, a counterpart of neutron spin echo, is being introduced here to overcome limitations in spectral resolution and weak signals of the traditional inelastic x-ray scattering (IXS) probes. An image of a pointlike x-ray source is defocused by a dispersing system comprised of asymmetrically cut specially arranged Bragg diffracting crystals. The defocused image is refocused into a point (echo) in a time-reversal dispersing system. If the defocused beam is inelastically scattered from a sample, the echo signal acquires a spatial distribution, which is a map of the inelastic scattering spectrum. The spectral resolution of the echo spectroscopy does not rely on the monochromaticity of the x rays, ensuring strong signals along with a very high spectral resolution. Particular schemes of x-ray echo spectrometers for 0.1-0.02 meV ultrahigh-resolution IXS applications (resolving power >108 ) with broadband ≃5 - 13 meV dispersing systems are introduced featuring more than 103 signal enhancement. The technique is general, applicable in different photon frequency domains.

  1. [The influence of the spectrum and the type of exposure on the contrast of double-sided coated x-ray film].

    PubMed

    Blendl, C; Bollen, R; Freytag, K H

    1992-11-01

    The present article describes the circumstances concerning the use of testing aids such as sensitometers with one-sided exposure. It is shown which phenomena must be considered if radiographic films coated on both sides are exposed with a) standard pocket sensitometers (one-sided exposure), b) lab sensitometers (double-sided exposure to ANSI Ph 2.9 [1964]), c) x-radiation in the cassette, intensifying screen and film system (to DIN 6867 T 1). The effect of the emission spectrum on the resulting contrast factor is described. The importance of different emulsion technologies (e.g. orthochromatic anticross-over films) for the contrast factor with one-sided exposure is described. The cross-over factor (c.o.), the apparent variation in sensitivity of the front and back emulsion with one-sided exposure, is the cause of the reduction in the contrast factor (G average) as against double-sided exposure: delta G(%) = c.o.2 x 10(3)/8.4 PMID:1457475

  2. X-ray tensor tomography

    NASA Astrophysics Data System (ADS)

    Malecki, A.; Potdevin, G.; Biernath, T.; Eggl, E.; Willer, K.; Lasser, T.; Maisenbacher, J.; Gibmeier, J.; Wanner, A.; Pfeiffer, F.

    2014-02-01

    Here we introduce a new concept for x-ray computed tomography that yields information about the local micro-morphology and its orientation in each voxel of the reconstructed 3D tomogram. Contrary to conventional x-ray CT, which only reconstructs a single scalar value for each point in the 3D image, our approach provides a full scattering tensor with multiple independent structural parameters in each volume element. In the application example shown in this study, we highlight that our method can visualize sub-pixel fiber orientations in a carbon composite sample, hence demonstrating its value for non-destructive testing applications. Moreover, as the method is based on the use of a conventional x-ray tube, we believe that it will also have a great impact in the wider range of material science investigations and in future medical diagnostics. The authors declare no competing financial interests.

  3. X-ray Timing Measurements

    NASA Technical Reports Server (NTRS)

    Strohmayer, T.

    2008-01-01

    We present new, extended X-ray timing measurements of the ultra-compact binary candidates V407 Vul and RX J0806.3+1527 (J0806), as well as a summary of the first high resolution X-ray spectra of 50806 obtained with the Chandra/LETG. The temporal baseline for both objects is approximately 12 years, and our measurements confirm the secular spin-up in their X-ray periods. The spin-up rate in 50806 is remarkably uniform at 3.55x10(exp -16)Hz/s, with a measurement precision of 0.2%. We place a limit (90% confidence) on 1 d dot nu < 4x10(exp -26)Hz/sq s. Interestingly, for V407 Vul we find the first evidence that the spin-up rate is slowing, with d dot\

  4. X-ray Crystallography Facility

    NASA Technical Reports Server (NTRS)

    1999-01-01

    University of Alabama engineer Stacey Giles briefs NASA astronaut Dr. Bornie Dunbar about the design and capabilities of the X-ray Crystallography Facility under development at the Center for Macromolecular Crystallography of the University of Alabama at Birmingham, AL, April 21, 1999. The X-ray Crystallography Facility is designed to speed the collection of protein structure information from crystals grown aboard the International Space Station. By measuring and mapping the protein crystal structure in space, researchers will avoid exposing the delicate crystals to the rigors of space travel and make important research data available to scientists much faster. The X-ray Crystallography facility is being designed and developed by the Center for Macromolecular Crystallography of the University of Alabama at Birmingham, a NASA Commercial Space Center.

  5. X-ray Crystallography Facility

    NASA Technical Reports Server (NTRS)

    1999-01-01

    University of Alabama engineer Lance Weiss briefs NASA astronaut Dr. Bornie Dunbar about the design and capabilities of the X-ray Crystallography Facility under development at the Center for Macromolecular Crystallography of the University of Alabama at Birmingham, AL, April 21, 1999. The X-ray Crystallography Facility is designed to speed the collection of protein structure information from crystals grown aboard the International Space Station. By measuring and mapping the protein crystal structure in space, researchers will avoid exposing the delicate crystals to the rigors of space travel and make important research data available to scientists much faster. The X-ray Crystallography facility is being designed and developed by the Center for Macromolecular Crystallography of the University of Alabama at Birmingham, a NASA Commercial Space Center.

  6. X-ray fluorescence holography.

    PubMed

    Hayashi, Kouichi; Happo, Naohisa; Hosokawa, Shinya; Hu, Wen; Matsushita, Tomohiro

    2012-03-01

    X-ray fluorescence holography (XFH) is a method of atomic resolution holography which utilizes fluorescing atoms as a wave source or a monitor of the interference field within a crystal sample. It provides three-dimensional atomic images around a specified element and has a range of up to a few nm in real space. Because of this feature, XFH is expected to be used for medium-range local structural analysis, which cannot be performed by x-ray diffraction or x-ray absorption fine structure analysis. In this article, we explain the theory of XFH including solutions to the twin-image problem, an advanced measuring system, and data processing for the reconstruction of atomic images. Then, we briefly introduce our recent applications of this technique to the analysis of local lattice distortions in mixed crystals and nanometer-size clusters appearing in the low-temperature phase of a shape-memory alloy. PMID:22318258

  7. The Swift X-ray Telescope

    NASA Astrophysics Data System (ADS)

    Hill, J. E.; Burrows, D. N.; Nousek, J. A.; Wells, A.; Turner, M.; Willingale, R.; Holland, A.; Citterio, O.; Chincarini, G.; Campana, S.; Tagliaferri, G.; Swift XRT Team

    1999-12-01

    The Swift Gamma Ray Burst Explorer will be launched in 2003 to observe hundreds of gamma ray bursts per year and study their X-ray and optical afterglows, using a multiwavelength complement of three instruments: a wide-field Burst Alert Telescope (BAT), an X-Ray Telescope (XRT), and a UV/Optical Telescope (UVOT). The XRT is designed to study X-ray counterparts of the gamma ray bursts and their afterglows, beginning 20--70 s from the time of the burst, and continuing for days or weeks. The XRT utilizes a superb mirror set built for JET-X (Citterio et al. 1996) and a state-of-the-art XMM/EPIC CCD detector to provide a sensitive broad-band (0.2-10 keV) X-ray imager with effective area of 110 cm2 at 1.5 keV, field of view of 23.6 x 23.6 arcminutes, and angular resolution of 15 arcsec HPD. The sensitivity is 2 x 10-14 erg cm-2 s-1 in 104 seconds. The telescope electronics will be designed to provide automated source detection and position reporting, with a position good to 2.5 arcseconds transmitted to the ground within two minutes of the burst detection. The XRT will operate in an auto-exposure mode, adjusting the CCD readout mode automatically to optimize the science return for each frame as the source fades. The XRT will measure spectra and lightcurves of the GRB afterglow beginning within about a minute after the burst and will follow each burst until it fades from view, typically monitoring 2-3 ``old'' bursts at a time while waiting for a new burst to be detected. This work is supported at Penn State by NASA grant NAG5-8401 and at Leicester University by funding from PPARC.

  8. X-ray imaging: Perovskites target X-ray detection

    NASA Astrophysics Data System (ADS)

    Heiss, Wolfgang; Brabec, Christoph

    2016-05-01

    Single crystals of perovskites are currently of interest to help fathom fundamental physical parameters limiting the performance of perovskite-based polycrystalline solar cells. Now, such perovskites offer a technology platform for optoelectronic devices, such as cheap and sensitive X-ray detectors.

  9. Cosmic X-ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, D.; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1986-01-01

    The analysis of the beryllium-filtered data from Flight 17.020 was completed. The data base provided by the Wisconsin diffuse X-ray sky survey is being analyzed by correlating the B and C band emission with individual velocity components of neutral hydrogen. Work on a solid state detector to be used in high resolution spectroscopy of diffuse or extend X-ray sources is continuing. A series of 21 cm observations was completed. A paper on the effects of process parameter variation on the reflectivity of sputter-deposited tungsten-carvon multilayers was published.

  10. Portable X-Ray Device

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Portable x-ray instrument developed by NASA now being produced commercially as an industrial tool may soon find further utility as a medical system. The instrument is Lixiscope - Low Intensity X-Ray Imaging Scope -- a self-contained, battery-powered fluoroscope that produces an instant image through use of a small amount of radioactive isotope. Originally developed by Goddard Space Flight Center, Lixiscope is now being produced by Lixi, Inc. which has an exclusive NASA license for one version of the device.

  11. Low dose hard x-ray contact microscopy assisted by a photoelectric conversion layer

    SciTech Connect

    Gomella, Andrew; Martin, Eric W.; Lynch, Susanna K.; Wen, Han; Morgan, Nicole Y.

    2013-04-15

    Hard x-ray contact microscopy provides images of dense samples at resolutions of tens of nanometers. However, the required beam intensity can only be delivered by synchrotron sources. We report on the use of a gold photoelectric conversion layer to lower the exposure dose by a factor of 40 to 50, allowing hard x-ray contact microscopy to be performed with a compact x-ray tube. We demonstrate the method in imaging the transmission pattern of a type of hard x-ray grating that cannot be fitted into conventional x-ray microscopes due to its size and shape. Generally the method is easy to implement and can record images of samples in the hard x-ray region over a large area in a single exposure, without some of the geometric constraints associated with x-ray microscopes based on zone-plate or other magnifying optics.

  12. Soft x-ray resist characterization: Studies with a laser plasma x-ray source

    SciTech Connect

    Kubiak, G.D.; Outka, D.A. ); Zeigler, J.M. )

    1990-01-01

    Little work has been performed to characterize the exposure sensitivity, contrast, and tone of candidate resists for photon energies between 100--300 eV, the range in which projection soft x-ray lithography will be developed. We report here the characterization of near-edge x-ray absorption fine structure (NEXAFS) spectra, exposure sensitivity, contrast, and post-exposure processing of selected polysilane resists at photon energies close to the Si L{sub 2,3} absorption edge (100 eV). We find absorption resonance features in the NEXAFS spectra which we assign to excitation into Si--Si and Si--C {sigma}* orbitals. Using monochromatized XUV exposures on the Si--Si {sigma}* resonance at 105 eV, followed by solvent dissolution development, we have measured the exposure sensitivity curves of these resists. We find sensitivities in the range of 600--3000 mJ/cm{sup 2} and contrasts in the range from 0.5--1.4, depending on the polysilane side chain. We have also performed exposure sensitivity measurements at 92 eV, below the edge. Sensitivity decreases slightly compared to 105 eV exposures and the saturation depth and contrast both increase, as expected. We find also that exposing resist films to oxygen after XUV exposure, but before development increases the sensitivity markedly. 7 figs.

  13. Effects of soft x-ray irradiation on cell ultrastructure

    NASA Astrophysics Data System (ADS)

    Ford, Thomas W.; Page, Anton M.; Foster, Guy F.; Stead, Anthony D.

    1993-01-01

    The future of x-ray microscopy lies mainly in its potential for imaging fresh, hydrated biological material at a resolution superior to that of light microscopy. For the image to be accepted as representing the cellular organization of the living cell, it is essential that artefacts are not introduced as a result of the image collection system. One possible source of artefacts is cellular damage resulting form the irradiation of the material with soft x rays. Cells of the unicellular alga Chlorella have been examined by transmission electron microscopy (TEM) following exposure to different doses of monochromatic (380 eV) soft x rays. Extreme ultrastructural damage has been detected following doses of 103 - 104 Gy, in particular loss of cellular membranes such as the internal thylakoid membranes of the chloroplast. This is discussed in relation to dosage commonly used for imaging by soft x-ray microscopy.

  14. Dosimetry of x-ray beams: The measure of the problem

    SciTech Connect

    de Castro, T.M.

    1986-08-01

    This document contains the text of an oral presentation on dosimetry of analytical x-ray equipment presented at the Denver X-Ray Conference. Included are discussions of sources of background radiation, exposure limits from occupational sources, and the relationship of these sources to the high dose source of x-rays found in analytical machines. The mathematical basis of x-ray dosimetry is reviewed in preparation for more detailed notes on personnel dosimetry and the selection of the most appropriate dosimeter for a specific application. The presentation concludes with a discussion common to previous x-ray equipment accidents. 2 refs. (TEM)

  15. Compact x-ray source and panel

    DOEpatents

    Sampayon, Stephen E.

    2008-02-12

    A compact, self-contained x-ray source, and a compact x-ray source panel having a plurality of such x-ray sources arranged in a preferably broad-area pixelized array. Each x-ray source includes an electron source for producing an electron beam, an x-ray conversion target, and a multilayer insulator separating the electron source and the x-ray conversion target from each other. The multi-layer insulator preferably has a cylindrical configuration with a plurality of alternating insulator and conductor layers surrounding an acceleration channel leading from the electron source to the x-ray conversion target. A power source is connected to each x-ray source of the array to produce an accelerating gradient between the electron source and x-ray conversion target in any one or more of the x-ray sources independent of other x-ray sources in the array, so as to accelerate an electron beam towards the x-ray conversion target. The multilayer insulator enables relatively short separation distances between the electron source and the x-ray conversion target so that a thin panel is possible for compactness. This is due to the ability of the plurality of alternating insulator and conductor layers of the multilayer insulators to resist surface flashover when sufficiently high acceleration energies necessary for x-ray generation are supplied by the power source to the x-ray sources.

  16. Focused X-ray source

    DOEpatents

    Piestrup, M.A.; Boyers, D.G.; Pincus, C.I.; Maccagno, P.

    1990-08-21

    Disclosed is an intense, relatively inexpensive X-ray source (as compared to a synchrotron emitter) for technological, scientific, and spectroscopic purposes. A conical radiation pattern produced by a single foil or stack of foils is focused by optics to increase the intensity of the radiation at a distance from the conical radiator. 8 figs.

  17. X-ray backscatter imaging

    NASA Astrophysics Data System (ADS)

    Dinca, Dan-Cristian; Schubert, Jeffrey R.; Callerame, J.

    2008-04-01

    In contrast to transmission X-ray imaging systems where inspected objects must pass between source and detector, Compton backscatter imaging allows both the illuminating source as well as the X-ray detector to be on the same side of the target object, enabling the inspection to occur rapidly and in a wide variety of space-constrained situations. A Compton backscatter image is similar to a photograph of the contents of a closed container, taken through the container walls, and highlights low atomic number materials such as explosives, drugs, and alcohol, which appear as especially bright objects by virtue of their scattering characteristics. Techniques for producing X-ray images based on Compton scattering will be discussed, along with examples of how these systems are used for both novel security applications and for the detection of contraband materials at ports and borders. Differences between transmission and backscatter images will also be highlighted. In addition, tradeoffs between Compton backscatter image quality and scan speed, effective penetration, and X-ray source specifications will be discussed.

  18. X-rays and magnetism.

    PubMed

    Fischer, Peter; Ohldag, Hendrik

    2015-09-01

    Magnetism is among the most active and attractive areas in modern solid state physics because of intriguing phenomena interesting to fundamental research and a manifold of technological applications. State-of-the-art synthesis of advanced magnetic materials, e.g. in hybrid structures paves the way to new functionalities. To characterize modern magnetic materials and the associated magnetic phenomena, polarized x-rays have emerged as unique probes due to their specific interaction with magnetic materials. A large variety of spectroscopic and microscopic techniques have been developed to quantify in an element, valence and site-sensitive way properties of ferro-, ferri-, and antiferromagnetic systems, such as spin and orbital moments, and to image nanoscale spin textures and their dynamics with sub-ns time and almost 10 nm spatial resolution. The enormous intensity of x-rays and their degree of coherence at next generation x-ray facilities will open the fsec time window to magnetic studies addressing fundamental time scales in magnetism with nanometer spatial resolution. This review will give an introduction into contemporary topics of nanoscale magnetic materials and provide an overview of analytical spectroscopy and microscopy tools based on x-ray dichroism effects. Selected examples of current research will demonstrate the potential and future directions of these techniques. PMID:26288956

  19. Alpha proton x ray spectrometer

    NASA Technical Reports Server (NTRS)

    Rieder, Rudi; Waeke, H.; Economou, T.

    1994-01-01

    Mars Pathfinder will carry an alpha-proton x ray spectrometer (APX) for the determination of the elemental chemical composition of Martian rocks and soils. The instrument will measure the concentration of all major and some minor elements, including C, N, and O at levels above typically 1 percent.

  20. Focused X-ray source

    DOEpatents

    Piestrup, Melvin A.; Boyers, David G.; Pincus, Cary I.; Maccagno, Pierre

    1990-01-01

    An intense, relatively inexpensive X-ray source (as compared to a synchrotron emitter) for technological, scientific, and spectroscopic purposes. A conical radiation pattern produced by a single foil or stack of foils is focused by optics to increase the intensity of the radiation at a distance from the conical radiator.

  1. X-Ray Diffractive Optics

    NASA Technical Reports Server (NTRS)

    Dennis, Brian; Li, Mary; Skinner, Gerald

    2013-01-01

    X-ray optics were fabricated with the capability of imaging solar x-ray sources with better than 0.1 arcsecond angular resolution, over an order of magnitude finer than is currently possible. Such images would provide a new window into the little-understood energy release and particle acceleration regions in solar flares. They constitute one of the most promising ways to probe these regions in the solar atmosphere with the sensitivity and angular resolution needed to better understand the physical processes involved. A circular slit structure with widths as fine as 0.85 micron etched in a silicon wafer 8 microns thick forms a phase zone plate version of a Fresnel lens capable of focusing approx. =.6 keV x-rays. The focal length of the 3-cm diameter lenses is 100 microns, and the angular resolution capability is better than 0.1 arcsecond. Such phase zone plates were fabricated in Goddard fs Detector Development Lab. (DDL) and tested at the Goddard 600-microns x-ray test facility. The test data verified that the desired angular resolution and throughput efficiency were achieved.

  2. [The functional state of the mitochondrial respiratory chain of the small intestine enterocytes of the rats under the low dose rate X-ray total external exposure].

    PubMed

    2013-01-01

    The influence of the low-rate ionizing radiation (0.055 Gy/min) at the doses of 0.1; 0.5 and 1.0 Gy on the functional state of the mitochondria respiratory chain of the rat small intestine enterocytes was investigated. The dysfunction of the electron transport chain enzymes andchanges in the content of cytochromes b, c, a in themitochondrial inner membrane were revealed 1, 12 and 24 hours after exposure to radiation. The re- vealed disorders indicate early membrane sensitivity to the radiation effect. The inhibition of the H+ -ATPase activity in the studied dose range indicates the decrease of the mitochondrial energy capacity. PMID:25508872

  3. X-ray-induced photo-chemistry and X-ray absorption spectroscopy of biological samples

    PubMed Central

    George, Graham N.; Pickering, Ingrid J.; Pushie, M. Jake; Nienaber, Kurt; Hackett, Mark J.; Ascone, Isabella; Hedman, Britt; Hodgson, Keith O.; Aitken, Jade B.; Levina, Aviva; Glover, Christopher; Lay, Peter A.

    2012-01-01

    As synchrotron light sources and optics deliver greater photon flux on samples, X-ray-induced photo-chemistry is increasingly encountered in X-ray absorption spectroscopy (XAS) experiments. The resulting problems are particularly pronounced for biological XAS experiments. This is because biological samples are very often quite dilute and therefore require signal averaging to achieve adequate signal-to-noise ratios, with correspondingly greater exposures to the X-ray beam. This paper reviews the origins of photo-reduction and photo-oxidation, the impact that they can have on active site structure, and the methods that can be used to provide relief from X-ray-induced photo-chemical artifacts. PMID:23093745

  4. X-ray reprocessing in binaries

    NASA Astrophysics Data System (ADS)

    Paul, Biswajit

    2016-07-01

    We will discuss several aspects of X-ray reprocessing into X-rays or longer wavelength radiation in different kinds of binary systems. In high mass X-ray binaries, reprocessing of hard X-rays into emission lines or lower temperature black body emission is a useful tool to investigate the reprocessing media like the stellar wind, clumpy structures in the wind, accretion disk or accretion stream. In low mass X-ray binaries, reprocessing from the surface of the companion star, the accretion disk, warps and other structures in the accretion disk produce signatures in longer wavelength radiation. X-ray sources with temporal structures like the X-ray pulsars and thermonuclear burst sources are key in such studies. We will discuss results from several new investigations of X-ray reprocessing phenomena in X-ray binaries.

  5. [The functional state of the mitochondrial respiratory chain of the small intestine enterocytes of the rats under the low dose rate X-ray total external exposure].

    PubMed

    Khizhniak, S V; Stepanova, L I; Grubskaia, L V; Voĭtsitskiĭ, V M

    2013-01-01

    The influence of the low-rate ionizing radiation (0.055 Gy/min) at the doses of 0.1; 0.5 and 1.0 Gy on the functional state of the mitochondria respiratory chain of the rat small intestine enterocytes was investigated. The dysfunction of the electron transport chain enzymes and changes in the content of cytochromes b, c, a in the mitochondrial inner membrane were revealed 1, 12 and 24 hours after exposure to radiation. The revealed disorders indicate early membrane sensitivity to the radiation effect. The inhibition of the H+ -ATPase activity in the studied dose range indicates the decrease of the mitochondrial energy capacity. PMID:25486741

  6. Order of magnitude reduction of fluoroscopic x-ray dose

    NASA Astrophysics Data System (ADS)

    Bal, Abhinav; Robert, Normand; Machan, Lindsay; Deutsch, Meir; Kisselgoff, David; Babyn, Paul; Rowlands, John A.

    2012-03-01

    The role of fluoroscopic imaging is critical for diagnostic and image guided therapy. However, fluoroscopic imaging can require significant radiation leading to increased cancer risk and non-stochastic effects such as radiation burns. Our purpose is to reduce the exposure and dose to the patient by an order of magnitude in these procedures by use of the region of interest method. Method and Materials: Region of interest fluoroscopy (ROIF) uses a partial attenuator. The central region of the image has full exposure while the image periphery, there to provide context only, has a reduced exposure rate. ROIF using a static partial attenuator has been shown in our previous studies to reduce the dose area product (DAP) to the patient by at least 2.5 times. Significantly greater reductions in DAP would require improvements in flat panel detectors performance at low x-ray exposures or a different x-ray attenuation strategy. Thus we have investigated a second, dynamic, approach. We have constructed an x-ray shutter system allowing a normal x-ray exposure in the region of interest while reducing the number of x-ray exposures in the periphery through the rapid introduction, positioning and removal of an x-ray attenuating shutter to block radiation only for selected frames. This dynamic approach eliminates the DQE(0) loss associated with the use of static partial attenuator applied to every frame thus permitting a greater reduction in DAP. Results: We have compared the two methods by modeling and determined their fundamental limits.

  7. X-ray microdiffraction of biominerals.

    PubMed

    Tamura, Nobumichi; Gilbert, Pupa U P A

    2013-01-01

    Biominerals have complex and heterogeneous architectures, hence diffraction experiments with spatial resolutions between 500 nm and 10 μm are extremely useful to characterize them. X-ray beams in this size range are now routinely produced at many synchrotrons. This chapter provides a review of the different hard X-ray diffraction and scattering techniques, used in conjunction with efficient, state-of-the-art X-ray focusing optics. These include monochromatic X-ray microdiffraction, polychromatic (Laue) X-ray microdiffraction, and microbeam small-angle X-ray scattering. We present some of the most relevant discoveries made in the field of biomineralization using these approaches. PMID:24188780

  8. Center for X-Ray Optics, 1986

    SciTech Connect

    Not Available

    1987-07-01

    The Center for X-Ray Optics has made substantial progress during the past year on the development of very high resolution x-ray technologies, the generation of coherent radiation at x-ray wavelengths, and, based on these new developments, had embarked on several scientific investigations that would not otherwise have been possible. The investigations covered in this report are topics on x-ray sources, x-ray imaging and applications, soft x-ray spectroscopy, synchrotron radiation, advanced light source and magnet structures for undulators and wigglers. (LSP)

  9. Acute radiodermatitis from occupational exposure to iridium 192

    SciTech Connect

    Becker, J.; Rosen, T. )

    1989-12-01

    Industrial radiography using the man-made radioisotope iridium 192 is commonplace in the southern states. Despite established procedures and safeguards, accidental exposure may result in typical acute radiodermatitis. We have presented a clinical example of this phenomenon.9 references.

  10. Cellular- and molecular- level responses after radiofrequency radiation exposure, alone or in combination with x rays or chemicals. Annual technical report, 1 Apr 91-31 Mar 92

    SciTech Connect

    Meltz, M.L.

    1992-07-30

    The focus of the first year's activities, at a time when a major recruitment of personnel was underway, revolved around: selection of the appropriate cell line for performing the mammalian cell mutagenicity studies; preliminary studies with the Balb/c 3T3 cell transformation assay; mutation spectrum analysis of the spontaneous mutants arising in AS52 and BH4 chinese hamster ovary (CHO) cell lines; liposome encapsulation studies of the polymer diazoluminomelanin (DALM); and redesign of the thermal control system originally constructed as a prototype for the Radiofrequency Radiation Division at USAF Armstrong Laboratory. Most importantly, although the original proposal called for the study of the possible mutagenic interaction of microwaves and ionizing radiation using the AS52 line of CHO cells, the results of the mutation spectrum analysis study led to the decision to alter future protocols to perform these studies with the BH4 cells; otherwise, the experiments would predominantly be measuring small deletion type mutations, and would not have enough sensitivity to pick up alterations of other types of mutation which might occur due to the microwave exposures. In addition, the liposome studies revealed the difficulty of encapsulating chemically synthesized DALM in this biological system; these studies will need to be furthered using other resources. The redesign and construction of a modified thermal control system was begun, allowing for one control unit to perform the temperature measurement and temperature control functions in two separate incubator systems.

  11. Automatic Identification of Solar X-Ray Bright Points in Hinode X-Ray Data

    NASA Technical Reports Server (NTRS)

    Adams, M. L.; Tennant, Allyn F.; Cirtain, J. W.

    2010-01-01

    We have automated a method that is used to find point sources in Chandra X-ray telescope data, to identify solar bright points in Hinode X-ray data. This tool, called lextrct, first identifies candidate sources that are brighter than the surrounding background. The algorithm also allows selected pixels to be excluded from the source-finding, thus allowing saturated pixels (from flares and/or active regions) to be ignored. We then use lextrct to fit the sources to two-dimensional, elliptical Gaussians. The size and orientation give an approximation of the shape of the bright points. We are in the process of analyzing observations through the Al_poly filter with a four-second exposure time, to obtain a catalogue of bright points, which will include their sizes, lifetimes, intensities, and position on the solar disk

  12. Automatic Identification of Solar X-ray Bright Points in Hinode X-ray Data

    NASA Astrophysics Data System (ADS)

    Adams, Mitzi; Tennant, A. F.; Cirtain, J. W.

    2010-05-01

    We have automated a method that is used to find point sources in Chandra X-ray telescope data, to identify solar bright points in Hinode X-ray data. This tool, called lextrct, first identifies candidate sources that are brighter than the surrounding background. The algorithm also allows selected pixels to be excluded from the source-finding, thus allowing saturated pixels (from flares and/or active regions) to be ignored. We then use lextrct to fit the sources to two-dimensional, elliptical Gaussians. The size and orientation give an approximaton of the shape of the bright points. We are in the process of analyzing observations through the Al_poly filter with a four-second exposure time, to obtain a catalogue of bright points, which will include their sizes, lifetimes, intensities, and position on the solar disk.

  13. Flash imaging of fine structures of cellular organelles by contact x-ray microscopy with a high intensity laser plasma x-ray source

    NASA Astrophysics Data System (ADS)

    Kado, Masataka; Ishino, Masahiko; Kishimoto, Maki; Tamotsu, Satoshi; Yasuda, Keiko; Kinjo, Yasuhito; Shinohara, Kunio

    2011-09-01

    X-ray flash imaging by contact microscopy with a highly intense laser-plasma x-ray source was achieved for the observation of wet biological cells. The exposure time to obtain a single x-ray image was about 600 ps as determined by the pulse duration of the driving laser pulse. The x-ray flash imaging makes it possible to capture an x-ray image of living biological cells without any artificial treatment such as staining, fixation, freezing, and so on. The biological cells were cultivated directly on the surface of the silicon nitride membranes, which are used for the x-ray microscope. Before exposing the cells to x-rays they were observed by a conventional fluorescent microscope as reference, since the fluorescent microscopes can visualize specific organelles stained with fluorescent dye. Comparing the x-ray images with the fluorescent images of the exact same cells, each cellular organelle observed in the x-ray images was identified one by one and actin filaments and mitochondria were clearly identified in the x-ray images.

  14. Microgap x-ray detector

    SciTech Connect

    Wuest, Craig R.; Bionta, Richard M.; Ables, Elden

    1994-01-01

    An x-ray detector which provides for the conversion of x-ray photons into photoelectrons and subsequent amplification of these photoelectrons through the generation of electron avalanches in a thin gas-filled region subject to a high electric potential. The detector comprises a cathode (photocathode) and an anode separated by the thin, gas-filled region. The cathode may comprise a substrate, such a beryllium, coated with a layer of high atomic number material, such as gold, while the anode can be a single conducting plane of material, such as gold, or a plane of resistive material, such as chromium/silicon monoxide, or multiple areas of conductive or resistive material, mounted on a substrate composed of glass, plastic or ceramic. The charge collected from each electron avalanche by the anode is passed through processing electronics to a point of use, such as an oscilloscope.

  15. Microgap x-ray detector

    DOEpatents

    Wuest, C.R.; Bionta, R.M.; Ables, E.

    1994-05-03

    An x-ray detector is disclosed which provides for the conversion of x-ray photons into photoelectrons and subsequent amplification of these photoelectrons through the generation of electron avalanches in a thin gas-filled region subject to a high electric potential. The detector comprises a cathode (photocathode) and an anode separated by the thin, gas-filled region. The cathode may comprise a substrate, such a beryllium, coated with a layer of high atomic number material, such as gold, while the anode can be a single conducting plane of material, such as gold, or a plane of resistive material, such as chromium/silicon monoxide, or multiple areas of conductive or resistive material, mounted on a substrate composed of glass, plastic or ceramic. The charge collected from each electron avalanche by the anode is passed through processing electronics to a point of use, such as an oscilloscope. 3 figures.

  16. Hard X-ray astrophysics

    NASA Technical Reports Server (NTRS)

    Rothschild, R. E.

    1981-01-01

    Past hard X-ray and lower energy satellite instruments are reviewed and it is shown that observation above 20 keV and up to hundreds of keV can provide much valuable information on the astrophysics of cosmic sources. To calculate possible sensitivities of future arrays, the efficiencies of a one-atmosphere inch gas counter (the HEAO-1 A-2 xenon filled HED3) and a 3 mm phoswich scintillator (the HEAO-1 A-4 Na1 LED1) were compared. Above 15 keV, the scintillator was more efficient. In a similar comparison, the sensitivity of germanium detectors did not differ much from that of the scintillators, except at high energies where the sensitivity would remain flat and not rise with loss of efficiency. Questions to be addressed concerning the physics of active galaxies and the diffuse radiation background, black holes, radio pulsars, X-ray pulsars, and galactic clusters are examined.

  17. Soft x-ray tomoholography

    NASA Astrophysics Data System (ADS)

    Guehrs, Erik; Stadler, Andreas M.; Flewett, Sam; Frömmel, Stefanie; Geilhufe, Jan; Pfau, Bastian; Rander, Torbjörn; Schaffert, Stefan; Büldt, Georg; Eisebitt, Stefan

    2012-01-01

    We demonstrate an x-ray imaging method that combines Fourier transform holography with tomography (‘tomoholography’) for three-dimensional (3D) microscopic imaging. A 3D image of a diatom shell with a spatial resolution of 140 nm is presented. The experiment is realized by using a small gold sphere as the reference wave source for holographic imaging. This setup allows us to rotate the sample and to collect a number of 2D projections for tomography.

  18. Effect of x-rays on chromosome 21 nondisjunction

    SciTech Connect

    Strigini, P.; Pierluigi, M.; Forni, G.L.; Sansone, R.; Carobbi, S.; Grasso, M.; Dagna Bricarelli, F. )

    1990-01-01

    In a series of 156 females and 149 males with a Down syndrome (DS) child, a case-control study was performed to evaluate the effect of abdominal-pelvic exposure to diagnostic x-rays prior to conception on nondisjunction (ND). Cytogenetic analysis using QFQ banding allowed unequivocal identification of ND parents as cases. Partners of ND parents were treated as control group. Odds ratio for the association of x-rays exposure and ND occurrence (stratified for sex and age) was 1.85 (borderline to significance: with a 95% confidence interval 1-3.44). Such an association appeared highly significant in older fathers and borderline to significant in younger mothers, when age groups were analyzed separately. By comparing mean parental ages at birth of the propositus, the prevalence of exposure to x-rays appeared moderately associated with aging in control parents of both sexes. Furthermore, the mean age of unexposed ND parents of paternally derived SD cases was the same as the referent population's, suggesting that age is not a risk factor for ND in the male, except for being associated with increasing exposure risk. Conversely, risk attributable to x-rays exposure in the female appears to be progressively diluted with increasing age, by strongly age-dependent high risk, presumably due to biologic factors that are not affected by environmental exposure.

  19. X-ray Diode Preparation

    SciTech Connect

    Henderson, D J; Good, D E; Hogge, K W; Molina, I; Howe, R A; Lutz, S S; Flores, P A; McGillivray, K D; Skarda, W M; Nelson, D S; Ormond, E S; Cordova, S R

    2011-06-16

    A rod pinch x-ray diode assembly culminates in a coaxial anode cathode arrangement where a small anode rod extends through the aperture of a cathode plate. Shotto- shot repeatability in rod placement, and thus x-ray source spot position, has potential to positively affect radiographic image quality. Thus, how to both control and measure, according to a Cartesian coordinate system, anode rod tip displacement (x, y) (off the beam line-of-sight retical) and also anode rod tip extension (z) (along the line-of-sight center line) become salient issues relative to radiographic image set utility. To address these issues both hardware fabrication and x-ray diode assembly methods were reviewed, and additional controls were introduced. A photogrammetric procedure was developed to quantify anode rod tip position in situ. Computer models and mock-up assemblies with precision fiducials were produced to validate this procedure. Therefore, both anode rod tip displacement and anode rod tip extension parameters were successfully controlled. Rod position was measured and met the required specifications: (1) radial displacement <0.25 mm and (2) axial placement of ±0.25 mm. We demonstrated that precision control and measurement of large scale components is achievable in a pulse power system (i.e., hardware and operations). Correlations with diode performance and radiography are presented.

  20. X-Ray Crystallography Reagent

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R. (Inventor); Mosier, Benjamin (Inventor)

    2003-01-01

    Microcapsules prepared by encapsulating an aqueous solution of a protein, drug or other bioactive substance inside a semi-permeable membrane by are disclosed. The microcapsules are formed by interfacial coacervation under conditions where the shear forces are limited to 0-100 dynes per square centimeter at the interface. By placing the microcapsules in a high osmotic dewatering solution. the protein solution is gradually made saturated and then supersaturated. and the controlled nucleation and crystallization of the protein is achieved. The crystal-filled microcapsules prepared by this method can be conveniently harvested and stored while keeping the encapsulated crystals in essentially pristine condition due to the rugged. protective membrane. Because the membrane components themselves are x-ray transparent, large crystal-containing microcapsules can be individually selected, mounted in x-ray capillary tubes and subjected to high energy x-ray diffraction studies to determine the 3-D smucture of the protein molecules. Certain embodiments of the microcapsules of the invention have composite polymeric outer membranes which are somewhat elastic, water insoluble, permeable only to water, salts, and low molecular weight molecules and are structurally stable in fluid shear forces typically encountered in the human vascular system.

  1. X-Ray-powered Macronovae

    NASA Astrophysics Data System (ADS)

    Kisaka, Shota; Ioka, Kunihito; Nakar, Ehud

    2016-02-01

    A macronova (or kilonova) was observed as an infrared excess several days after the short gamma-ray burst GRB 130603B. Although the r-process radioactivity is widely discussed as an energy source, it requires a huge mass of ejecta from a neutron star (NS) binary merger. We propose a new model in which the X-ray excess gives rise to the simultaneously observed infrared excess via thermal re-emission, and explore what constraints this would place on the mass and velocity of the ejecta. This X-ray-powered model explains both the X-ray and infrared excesses with a single energy source such as the central engine like a black hole, and allows for a broader parameter region than the previous models, in particular a smaller ejecta mass ˜ {10}-3{--}{10}-2{M}⊙ and higher iron abundance mixed as suggested by general relativistic simulations for typical NS-NS mergers. We also discuss the other macronova candidates in GRB 060614 and GRB 080503, and the implications for the search of electromagnetic counterparts to gravitational waves.

  2. Miniaturized, High-Speed, Modulated X-Ray Source

    NASA Technical Reports Server (NTRS)

    Gendreau, Keith; Arzoumanian, Zaven; Kenyon, Steve; Spartana, Nick

    2013-01-01

    (TradeMark) multiplier. This system yields an extremely robust photon-driven electron source that can tolerate long, weeks or more, exposure to air with negligible degradation. The package is also small. When combined with the electron target, necessary vacuum fittings, and supporting components (but not including LED electronics or high-voltage sources), the entire modulated x-ray source weighs as little as 158 grams.

  3. New X-ray detections of Herbig stars

    NASA Astrophysics Data System (ADS)

    Stelzer, B.; Robrade, J.; Schmitt, J. H. M. M.; Bouvier, J.

    2009-01-01

    Context: The interpretation of X-ray detections from Herbig Ae/Be stars is disputed as it is not clear whether these intermediate-mass pre-main sequence stars are able to drive a dynamo and ensuing phenomena of magnetic activity. Alternative X-ray production mechanisms, related to stellar winds, star-disk magnetospheres, or unresolved late-type T Tauri star companions have been proposed. Aims: The companion hypothesis can be tested by resolving Herbig stars in X-rays from their known visual secondaries. Furthermore, their global X-ray properties (such as detection rate, luminosity, temperature, variability) may give clues to the emission mechanism by comparison to other types of stars, e.g. similar-age but lower-mass T Tauri stars, similar-mass but more evolved main-sequence A- and B-type stars, and with respect to model predictions. Methods: In a series of papers we have been investigating high-resolution X-ray Chandra images of Herbig Ae/Be and main-sequence B-type stars where known close visual companions are spatially separated from the primaries. Results: Here we report on six as yet unpublished Chandra exposures from our X-ray survey of Herbig stars. The target list comprises six Herbig stars with known cool companions, and three other A/B-type stars that are serendipitously in the Chandra field-of-view. In this sample we record a detection rate of 100%; i.e. all A/B-type stars display X-ray emission at levels of log(L_x/L_bol) ~ -5...-7. The analysis of hardness ratios confirms that HAeBes have hotter and/or more absorbed X-ray emitting plasma than more evolved B-type stars. Conclusions: Radiative winds are ruled out as an exclusive emission mechanism on the basis of the high X-ray temperatures. Confirming earlier results, the X-ray properties of Herbig Ae/Be stars are not vastly different from those of their late-type companion stars (if such are known). The diagnostics provided by the presently available data leave it open whether the hard X-ray emission

  4. Aspergillosis - chest x-ray (image)

    MedlinePlus

    ... usually occurs in immunocompromised individuals. Here, a chest x-ray shows that the fungus has invaded the lung ... are usually seen as black areas on an x-ray. The cloudiness on the left side of this ...

  5. Tuberculosis, advanced - chest x-rays (image)

    MedlinePlus

    ... tissue, and can cause tissue death. These chest x-rays show advanced pulmonary tuberculosis. There are multiple light ... location of cavities within these light areas. The x-ray on the left clearly shows that the opacities ...

  6. Advances in transmission x-ray optics

    SciTech Connect

    Ceglio, N.M.

    1983-01-01

    Recent developments in x-ray optics are reviewed. Specific advances in coded aperture imaging, zone plate lens fabrication, time and space resolved spectroscopy, and CCD x-ray detection are discussed.

  7. Producing X-rays at the APS

    ScienceCinema

    None

    2013-04-19

    An introduction and overview of the Advanced Photon Source at Argonne National Laboratory, the technology that produces the brightest X-ray beams in the Western Hemisphere, and the research carried out by scientists using those X-rays.

  8. Producing X-rays at the APS

    SciTech Connect

    2011-01-01

    An introduction and overview of the Advanced Photon Source at Argonne National Laboratory, the technology that produces the brightest X-ray beams in the Western Hemisphere, and the research carried out by scientists using those X-rays.

  9. Characterization and cross calibration of Agfa D4, D7, and D8 and Kodak SR45 x-ray films against direct exposure film at 4.0-5.5 keV

    SciTech Connect

    Lanier, N.E.; Cowan, J.S.; Workman, J.

    2006-04-15

    Kodak direct exposure film (DEF) [B. L. Henke et al., J. Opt. Soc. Am. B 3, 1540 (1986)] has been the standard for moderate energy (1-10 keV) x-ray diagnostic applications among the high-energy-density and inertial confinement fusion research communities. However, market forces have prompted Kodak to discontinue production of DEF, leaving these specialized communities searching for a replacement. We have conducted cross-calibration experiments and film characterizations on five possible substitutes for Kodak DEF. The film types studied were Kodak's Biomax MR (BMR) and SR45 along with Agfa's D8, D7, and D4sc. None of the films tested matched the speed of DEF. BMR and D8 were closest but D8 exhibited lower noise, with superior resolution and dynamic range. Agfa D7, Agfa D4sc, and Kodak SR45 were significantly less sensitive than BMR and D8, however, the improvements they yielded in resolution and dynamic range warrant their use if experimental constraints allow.

  10. “Protective Bystander Effects Simulated with the State-Vector Model”—HeLa x Skin Exposure to 137Cs Not Protective Bystander Response But Mammogram and Diagnostic X-Rays Are

    PubMed Central

    Leonard, Bobby E.

    2008-01-01

    The recent Dose Response journal article “Protective Bystander Effects Simulated with the State-Vector Model” (Schollnberger and Eckl 2007) identified the suppressive (below natural occurring, zero primer dose, spontaneous level) dose response for HeLa x skin exposure to 137Cs gamma rays (Redpath et al 2001) as a protective Bystander Effect (BE) behavior. I had previously analyzed the Redpath et al (2001) data with a Microdose Model and conclusively showed that the suppressive response was from Adaptive Response (AR) radio-protection (Leonard 2005, 2007a). The significance of my microdose analysis has been that low LET radiation induced single (i.e. only one) charged particle traversals through a cell can initiate a Poisson distributed activation of AR radio-protection. The purpose of this correspondence is to clarify the distinctions relative to the BE and the AR behaviors for the Redpath groups 137Cs data, show conversely however that the Redpath group data for mammography (Ko et al 2004) and diagnostic (Redpath et al 2003) X-rays do conclusively reflect protective bystander behavior and also herein emphasize the need for radio-biologist to apply microdosimetry in planning and analyzing their experiments for BE and AR. Whether we are adamantly pro-LNT, adamantly anti-LNT or, like most of us, just simple scientists searching for the truth in radio-biology, it is important that we accurately identify our results, especially when related to the LNT hypothesis controversy. PMID:18846260

  11. Characterization and cross calibration of Agfa D4, D7, and D8 and Kodak SR45 x-ray films against direct exposure film at 4.0-5.5 keV

    NASA Astrophysics Data System (ADS)

    Lanier, N. E.; Cowan, J. S.; Workman, J.

    2006-04-01

    Kodak direct exposure film (DEF) [B. L. Henke et al., J. Opt. Soc. Am. B 3, 1540 (1986)] has been the standard for moderate energy (1-10keV) x-ray diagnostic applications among the high-energy-density and inertial confinement fusion research communities. However, market forces have prompted Kodak to discontinue production of DEF, leaving these specialized communities searching for a replacement. We have conducted cross-calibration experiments and film characterizations on five possible substitutes for Kodak DEF. The film types studied were Kodak's Biomax MR (BMR) and SR45 along with Agfa's D8, D7, and D4sc. None of the films tested matched the speed of DEF. BMR and D8 were closest but D8 exhibited lower noise, with superior resolution and dynamic range. Agfa D7, Agfa D4sc, and Kodak SR45 were significantly less sensitive than BMR and D8, however, the improvements they yielded in resolution and dynamic range warrant their use if experimental constraints allow.

  12. X-ray radiation effects in multilayer epitaxial graphene

    SciTech Connect

    Hicks, Jeremy; Tinkey, Holly; Hankinson, John; Heer, Walt A. de; Conrad, Edward H.; Arora, Rajan; Kenyon, Eleazar; Chakraborty, Partha S.; Cressler, John D.; Berger, Claire

    2011-12-05

    We characterize multilayer graphene grown on C-face SiC before and after exposure to a total ionizing dose of 12 Mrad(SiO{sub 2}) using a 10 keV x-ray source. While we observe the partial peeling of the top graphene layers and the appearance of a modest Raman D-peak, we find that the electrical characteristics (mobility, sheet resistivity, free carrier concentration) of the material are mostly unaffected by radiation exposure. Combined with x-ray photoelectron spectroscopy data showing numerous carbon-oxygen bonds after irradiation, we conclude that the primary damage mechanism is through surface etching from reactive oxygen species created by the x-rays.

  13. NuSTAR Hard X-Ray Survey of the Galactic Center Region. II. X-Ray Point Sources

    NASA Astrophysics Data System (ADS)

    Hong, JaeSub; Mori, Kaya; Hailey, Charles J.; Nynka, Melania; Zhang, Shuo; Gotthelf, Eric; Fornasini, Francesca M.; Krivonos, Roman; Bauer, Franz; Perez, Kerstin; Tomsick, John A.; Bodaghee, Arash; Chiu, Jeng-Lun; Clavel, Maïca; Stern, Daniel; Grindlay, Jonathan E.; Alexander, David M.; Aramaki, Tsuguo; Baganoff, Frederick K.; Barret, Didier; Barrière, Nicolas; Boggs, Steven E.; Canipe, Alicia M.; Christensen, Finn E.; Craig, William W.; Desai, Meera A.; Forster, Karl; Giommi, Paolo; Grefenstette, Brian W.; Harrison, Fiona A.; Hong, Dooran; Hornstrup, Allan; Kitaguchi, Takao; Koglin, Jason E.; Madsen, Kristen K.; Mao, Peter H.; Miyasaka, Hiromasa; Perri, Matteo; Pivovaroff, Michael J.; Puccetti, Simonetta; Rana, Vikram; Westergaard, Niels J.; Zhang, William W.; Zoglauer, Andreas

    2016-07-01

    We present the first survey results of hard X-ray point sources in the Galactic Center (GC) region by NuSTAR. We have discovered 70 hard (3–79 keV) X-ray point sources in a 0.6 deg{}2 region around Sgr A* with a total exposure of 1.7 Ms, and 7 sources in the Sgr B2 field with 300 ks. We identify clear Chandra counterparts for 58 NuSTAR sources and assign candidate counterparts for the remaining 19. The NuSTAR survey reaches X-ray luminosities of ˜4× and ˜8 × 10{}32 erg s{}-1 at the GC (8 kpc) in the 3–10 and 10–40 keV bands, respectively. The source list includes three persistent luminous X-ray binaries (XBs) and the likely run-away pulsar called the Cannonball. New source-detection significance maps reveal a cluster of hard (>10 keV) X-ray sources near the Sgr A diffuse complex with no clear soft X-ray counterparts. The severe extinction observed in the Chandra spectra indicates that all the NuSTAR sources are in the central bulge or are of extragalactic origin. Spectral analysis of relatively bright NuSTAR sources suggests that magnetic cataclysmic variables constitute a large fraction (>40%–60%). Both spectral analysis and logN–logS distributions of the NuSTAR sources indicate that the X-ray spectra of the NuSTAR sources should have kT > 20 keV on average for a single temperature thermal plasma model or an average photon index of Γ = 1.5–2 for a power-law model. These findings suggest that the GC X-ray source population may contain a larger fraction of XBs with high plasma temperatures than the field population.

  14. NuSTAR Hard X-Ray Survey of the Galactic Center Region. II. X-Ray Point Sources

    NASA Astrophysics Data System (ADS)

    Hong, JaeSub; Mori, Kaya; Hailey, Charles J.; Nynka, Melania; Zhang, Shuo; Gotthelf, Eric; Fornasini, Francesca M.; Krivonos, Roman; Bauer, Franz; Perez, Kerstin; Tomsick, John A.; Bodaghee, Arash; Chiu, Jeng-Lun; Clavel, Maïca; Stern, Daniel; Grindlay, Jonathan E.; Alexander, David M.; Aramaki, Tsuguo; Baganoff, Frederick K.; Barret, Didier; Barrière, Nicolas; Boggs, Steven E.; Canipe, Alicia M.; Christensen, Finn E.; Craig, William W.; Desai, Meera A.; Forster, Karl; Giommi, Paolo; Grefenstette, Brian W.; Harrison, Fiona A.; Hong, Dooran; Hornstrup, Allan; Kitaguchi, Takao; Koglin, Jason E.; Madsen, Kristen K.; Mao, Peter H.; Miyasaka, Hiromasa; Perri, Matteo; Pivovaroff, Michael J.; Puccetti, Simonetta; Rana, Vikram; Westergaard, Niels J.; Zhang, William W.; Zoglauer, Andreas

    2016-07-01

    We present the first survey results of hard X-ray point sources in the Galactic Center (GC) region by NuSTAR. We have discovered 70 hard (3–79 keV) X-ray point sources in a 0.6 deg{}2 region around Sgr A* with a total exposure of 1.7 Ms, and 7 sources in the Sgr B2 field with 300 ks. We identify clear Chandra counterparts for 58 NuSTAR sources and assign candidate counterparts for the remaining 19. The NuSTAR survey reaches X-ray luminosities of ∼4× and ∼8 × 10{}32 erg s{}-1 at the GC (8 kpc) in the 3–10 and 10–40 keV bands, respectively. The source list includes three persistent luminous X-ray binaries (XBs) and the likely run-away pulsar called the Cannonball. New source-detection significance maps reveal a cluster of hard (>10 keV) X-ray sources near the Sgr A diffuse complex with no clear soft X-ray counterparts. The severe extinction observed in the Chandra spectra indicates that all the NuSTAR sources are in the central bulge or are of extragalactic origin. Spectral analysis of relatively bright NuSTAR sources suggests that magnetic cataclysmic variables constitute a large fraction (>40%–60%). Both spectral analysis and logN–logS distributions of the NuSTAR sources indicate that the X-ray spectra of the NuSTAR sources should have kT > 20 keV on average for a single temperature thermal plasma model or an average photon index of Γ = 1.5–2 for a power-law model. These findings suggest that the GC X-ray source population may contain a larger fraction of XBs with high plasma temperatures than the field population.

  15. X-RAY EMISSION FROM MAGNETIC MASSIVE STARS

    SciTech Connect

    Nazé, Yaël; Petit, Véronique; Rinbrand, Melanie; Owocki, Stan; Cohen, David; Ud-Doula, Asif; Wade, Gregg A.

    2014-11-01

    Magnetically confined winds of early-type stars are expected to be sources of bright and hard X-rays. To clarify the systematics of the observed X-ray properties, we have analyzed a large series of Chandra and XMM-Newton observations, corresponding to all available exposures of known massive magnetic stars (over 100 exposures covering ∼60% of stars compiled in the catalog of Petit et al.). We show that the X-ray luminosity is strongly correlated with the stellar wind mass-loss rate, with a power-law form that is slightly steeper than linear for the majority of the less luminous, lower- M-dot B stars and flattens for the more luminous, higher- M-dot O stars. As the winds are radiatively driven, these scalings can be equivalently written as relations with the bolometric luminosity. The observed X-ray luminosities, and their trend with mass-loss rates, are well reproduced by new MHD models, although a few overluminous stars (mostly rapidly rotating objects) exist. No relation is found between other X-ray properties (plasma temperature, absorption) and stellar or magnetic parameters, contrary to expectations (e.g., higher temperature for stronger mass-loss rate). This suggests that the main driver for the plasma properties is different from the main determinant of the X-ray luminosity. Finally, variations of the X-ray hardnesses and luminosities, in phase with the stellar rotation period, are detected for some objects and they suggest that some temperature stratification exists in massive stars' magnetospheres.

  16. Phase-sensitive X-ray imager

    DOEpatents

    Baker, Kevin Louis

    2013-01-08

    X-ray phase sensitive wave-front sensor techniques are detailed that are capable of measuring the entire two-dimensional x-ray electric field, both the amplitude and phase, with a single measurement. These Hartmann sensing and 2-D Shear interferometry wave-front sensors do not require a temporally coherent source and are therefore compatible with x-ray tubes and also with laser-produced or x-pinch x-ray sources.

  17. Advanced x-ray imaging spectrometer

    NASA Technical Reports Server (NTRS)

    Callas, John L. (Inventor); Soli, George A. (Inventor)

    1998-01-01

    An x-ray spectrometer that also provides images of an x-ray source. Coded aperture imaging techniques are used to provide high resolution images. Imaging position-sensitive x-ray sensors with good energy resolution are utilized to provide excellent spectroscopic performance. The system produces high resolution spectral images of the x-ray source which can be viewed in any one of a number of specific energy bands.

  18. Prenatal x-ray and childhood cancer in twins

    SciTech Connect

    Harvey, E.B.

    1983-01-01

    In order to evaluate the causal nature of the relationship between prenatal x-ray exposure and childhood cancer, a case control study was conducted in a population of over 32,000 twins born in the state of Connecticut from 1930-1969 and followed to age 15. Thirty-two incident cancer cases were identified by linking the Connecticut Twin and Tumor registries. Each case was matched with four controls on year of birth, sex, race, and survival. Prenatal x-ray information as well as reproductive, delivery and birth data were obtained from the hospital of birth, the physician providing prenatal care, private radiology groups and interviews with hospital staff. The case control study which obtained exposure information on selected subjects found an increased risk of childhood cancer from prenatal x-ray exposure. The risk associated with radiation exposure was elevated in the following subcategories: mother with history of pregnancy loss, a gravity greater than 1, under 30 years of age, and twins weighing five pounds or more at birth. The results, though based on small numbers, strengthen the association between prenatal x-ray exposure and childhood cancer.

  19. Center for X-ray Optics, 1988

    SciTech Connect

    Not Available

    1989-04-01

    This report briefly reviews the following topics: soft-x-ray imaging; reflective optics for hard x-rays; coherent XUV sources; spectroscopy with x-rays; detectors for coronary artery imaging; synchrotron-radiation optics; and support for the advanced light source.

  20. Student X-Ray Fluorescence Experiments

    ERIC Educational Resources Information Center

    Fetzer, Homer D.; And Others

    1975-01-01

    Describes the experimental arrangement for x-ray analysis of samples which involves the following: the radioisotopic x-ray disk source; a student-built fluorescence chamber; the energy dispersive x-ray detector, linear amplifier and bias supply; and a multichannel pulse height analyzer. (GS)

  1. Cryotomography x-ray microscopy state

    DOEpatents

    Le Gros, Mark; Larabell, Carolyn A.

    2010-10-26

    An x-ray microscope stage enables alignment of a sample about a rotation axis to enable three dimensional tomographic imaging of the sample using an x-ray microscope. A heat exchanger assembly provides cooled gas to a sample during x-ray microscopic imaging.

  2. Optical observations of X-ray systems

    NASA Astrophysics Data System (ADS)

    Gudets, R.

    The significance of optical observations of X-ray sources is discussed. A short review of X-ray and optical observations of X-ray stars in socialist countries, carried out by the Intercosmos program and by multilateral cooperation of the Academies of Sciences of Socialist Countries is given. Some examples and results of observations are presented.

  3. Electron beam parallel X-ray generator

    NASA Technical Reports Server (NTRS)

    Payne, P.

    1967-01-01

    Broad X ray source produces a highly collimated beam of low energy X rays - a beam with 2 to 5 arc minutes of divergence at energies between 1 and 6 keV in less than 5 feet. The X ray beam is generated by electron bombardment of a target from a large area electron gun.

  4. Advanced High Brilliance X-Ray Source

    NASA Technical Reports Server (NTRS)

    Gibson, Walter M.

    1998-01-01

    The possibility to dramatically increase the efficiency of laboratory based protein structure measurements through the use of polycapillary X-ray optics was investigated. This project initiated April 1, 1993 and concluded December 31, 1996 (including a no cost extension from June 31, 1996). This is a final report of the project. The basis for the project is the ability to collect X-rays from divergent electron bombardment laboratory X-ray sources and redirect them into quasiparallel or convergent (focused) beams. For example, a 0.1 radian (approx. 6 deg) portion of a divergent beam collected by a polycapillary collimator and transformed into a quasiparallel beam of 3 millradian (0.2 deg) could give a gain of 6(exp 2)/0.2(exp 2) x T for the intensity of a diffracted beam from a crystal with a 0.2 deg diffraction width. T is the transmission efficiency of the polycapillary diffraction optic, and for T=0.5, the gain would be 36/0.04 x O.5=45. In practice, the effective collection angle will depend on the source spot size, the input focal length of the optic (usually limited by the source spot-to-window distance on the x-ray tube) and the size of the crystal relative to the output diameter of the optic. The transmission efficiency, T, depends on the characteristics (fractional open area, surface roughness, shape and channel diameter) of the polycapillary optic and is typically in the range 0.2-0.4. These effects could substantially reduce the expected efficiency gain. During the course of this study, the possibility to use a weakly focused beam (0.5 deg convergence) was suggested which could give an additional 10-20 X efficiency gain for small samples . Weakly focused beams from double focusing mirrors are frequently used for macromolecular crystallography studies. Furthermore the crystals are typically oscillated by as much as 2 deg during each X-ray exposure in order to increase the reciprocal space (number of crystal planes) sampled and use of a slightly convergent

  5. Modeling the X-Ray Process, and X-Ray Flaw Size Parameter for POD Studies

    NASA Technical Reports Server (NTRS)

    Khoshti, Ajay

    2014-01-01

    Nondestructive evaluation (NDE) method reliability can be determined by a statistical flaw detection study called probability of detection (POD) study. In many instances the NDE flaw detectability is given as a flaw size such as crack length. The flaw is either a crack or behaving like a crack in terms of affecting the structural integrity of the material. An alternate approach is to use a more complex flaw size parameter. The X-ray flaw size parameter, given here, takes into account many setup and geometric factors. The flaw size parameter relates to X-ray image contrast and is intended to have a monotonic correlation with the POD. Some factors such as set-up parameters including X-ray energy, exposure, detector sensitivity, and material type that are not accounted for in the flaw size parameter may be accounted for in the technique calibration and controlled to meet certain quality requirements. The proposed flaw size parameter and the computer application described here give an alternate approach to conduct the POD studies. Results of the POD study can be applied to reliably detect small flaws through better assessment of effect of interaction between various geometric parameters on the flaw detectability. Moreover, a contrast simulation algorithm for a simple part-source-detector geometry using calibration data is also provided for the POD estimation.

  6. Modeling the X-ray Process, and X-ray Flaw Size Parameter for POD Studies

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay M.

    2014-01-01

    Nondestructive evaluation (NDE) method reliability can be determined by a statistical flaw detection study called probability of detection (POD) study. In many instances, the NDE flaw detectability is given as a flaw size such as crack length. The flaw is either a crack or behaving like a crack in terms of affecting the structural integrity of the material. An alternate approach is to use a more complex flaw size parameter. The X-ray flaw size parameter, given here, takes into account many setup and geometric factors. The flaw size parameter relates to X-ray image contrast and is intended to have a monotonic correlation with the POD. Some factors such as set-up parameters, including X-ray energy, exposure, detector sensitivity, and material type that are not accounted for in the flaw size parameter may be accounted for in the technique calibration and controlled to meet certain quality requirements. The proposed flaw size parameter and the computer application described here give an alternate approach to conduct the POD studies. Results of the POD study can be applied to reliably detect small flaws through better assessment of effect of interaction between various geometric parameters on the flaw detectability. Moreover, a contrast simulation algorithm for a simple part-source-detector geometry using calibration data is also provided for the POD estimation.

  7. Early effects of low dose 12C6+ ion or X-ray irradiation on human peripheral blood lymphocytes

    NASA Astrophysics Data System (ADS)

    Chen, Yingtai; Li, Yumin; Zhang, Hong; Xie, Yi; Chen, Xuezhong; Ren, Jinyu; Zhang, Xiaowei; Zhu, Zijiang; Liu, Hongliang; Zhang, Yawei

    2010-04-01

    The aim of this study was to estimate the acute effects of low dose 12C6+ ions or X-ray radiation on human immune function. The human peripheral blood lymphocytes (HPBL) of seven healthy donors were exposed to 0.05 Gy 12C6+ ions or X-ray radiation and cell responses were measured at 24 h after exposure. The cytotoxic activities of HPBL were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT); the percentages of T and NK cells subsets were detected by flow cytometry; mRNA expression of interleukin (IL)-2, tumor necrosis factor (TNF)-α and interferon (IFN)-γ were examined by real time quantitative RT-PCR (qRT-PCR); and these cytokines protein levels in supernatant of cultured cells were assayed by enzyme-linked immunosorbent assays (ELISA). The results showed that the cytotoxic activity of HPBL, mRNA expression of IL-2, IFN-γ and TNF-α in HPBL and their protein levels in supernatant were significantly increased at 24 h after exposure to 0.05 Gy 12C6+ ions radiation and the effects were stronger than observed for X-ray exposure. However, there was no significant change in the percentage of T and NK cells subsets of HPBL. These results suggested that 0.05 Gy high linear energy transfer (LET) 12C6+ radiation was a more effective approach to host immune enhancement than that of low LET X-ray. We conclude that cytokines production might be used as sensitive indicators of acute response to LDI.

  8. A study of the discrepant QSO X-ray luminosity function from the HEAO-2 data archive

    NASA Technical Reports Server (NTRS)

    Margon, B.

    1986-01-01

    Sensitive X-ray information for approximately 90 previously uncataloged Quasi-Stellar Objects (QSOs) in the redshift range 1.8 is less than or equal to z which is less than or equal to 3. Even with the longest esixting Einstein Observatory X-ray exposures, only 25% of these objects are positively detected in X-rays. The data were used to investigate the ensemble X-ray properties of high redshift QSOs, and the QSO population in general.

  9. Zernike x-ray ptychography.

    PubMed

    Vartiainen, Ismo; Mohacsi, Istvan; Stachnik, Karolina; Guizar-Sicairos, Manuel; David, Christian; Meents, Alke

    2016-02-15

    We present an imaging technique combining Zernike phase-contrast imaging and ptychography. The contrast formation is explained by following the theory of Zernike phase-contrast imaging. The method is demonstrated with x-rays at a photon energy of 6.2 keV, showing how ptychographic reconstruction of a phase sample leads to a Zernike phase-contrast image appearing in the amplitude reconstruction. In addition, the results presented in this Letter indicate an improvement of the resolution of the reconstructed object in the case of Zernike ptychography compared with the conventional one. PMID:26872172

  10. Three-dimensional x-ray microtomography

    SciTech Connect

    Flannery, B.P.; Deckman, H.W.; Roberge, W.G.; D'Amico, K.L.

    1987-09-18

    The new technique of x-ray microtomography nondestructively generates three-dimensional maps of the x-ray attenuation coefficient inside small samples with approximately 1 percent accuracy and with resolution approaching 1 micrometer. Spatially resolved elemental maps can be produced with synchrotron x-ray sources by scanning samples at energies just above and below characteristic atomic absorption edges. The system consists of a high-resolution imaging x-ray detector and high-speed algorithms for tomographic image reconstruction. The design and operation of the microtomography device are described, and tomographic images that illustrate it performance with both synchrotron and laboratory x-ray sources are presented.

  11. Comets: mechanisms of x-ray activity

    NASA Astrophysics Data System (ADS)

    Ibadov, Subhon

    2016-07-01

    Basic mechanisms of X-ray activity of comets are considered, including D-D mechanism corresponding to generation of X-rays due to production of hot short-living plasma clumps at high-velocity collisions between cometary and interplanetary dust particles as well as M-M one corresponding to production of X-rays due to recombination of multicharge ions of solar wind plasma via charge exchange process at their collisions with molecules/atoms of the cometary atmospheres. Peculiarities of the variation of the comet X-ray spectrum and X-ray luminosity with variation of its heliocentric distance are revealed.

  12. Atmospheric electron x-ray spectrometer

    NASA Technical Reports Server (NTRS)

    Feldman, Jason E. (Inventor); George, Thomas (Inventor); Wilcox, Jaroslava Z. (Inventor)

    2002-01-01

    The present invention comprises an apparatus for performing in-situ elemental analyses of surfaces. The invention comprises an atmospheric electron x-ray spectrometer with an electron column which generates, accelerates, and focuses electrons in a column which is isolated from ambient pressure by a:thin, electron transparent membrane. After passing through the membrane, the electrons impinge on the sample in atmosphere to generate characteristic x-rays. An x-ray detector, shaping amplifier, and multi-channel analyzer are used for x-ray detection and signal analysis. By comparing the resultant data to known x-ray spectral signatures, the elemental composition of the surface can be determined.

  13. X-ray Spectroscopy of Cooling Cluster

    SciTech Connect

    Peterson, J.R.; Fabian, A.C.; /Cambridge U., Inst. of Astron.

    2006-01-17

    We review the X-ray spectra of the cores of clusters of galaxies. Recent high resolution X-ray spectroscopic observations have demonstrated a severe deficit of emission at the lowest X-ray temperatures as compared to that expected from simple radiative cooling models. The same observations have provided compelling evidence that the gas in the cores is cooling below half the maximum temperature. We review these results, discuss physical models of cooling clusters, and describe the X-ray instrumentation and analysis techniques used to make these observations. We discuss several viable mechanisms designed to cancel or distort the expected process of X-ray cluster cooling.

  14. Ionospheric effects of solar x-rays

    NASA Astrophysics Data System (ADS)

    Danskin, Donald

    2016-07-01

    The ionospheric absorption of radio waves caused by solar x-ray bursts is measured directly by Riometers from the Canada Riometer Array. The absorption is found to be proportional to the square root of the flux intensity of the X-ray burst with time delays of 18-20 seconds between the peak X-ray emission and absorption in the ionosphere. A detailed analysis showed that some X-ray flares during 2011-2014 are more effective at producing absorption than others. Solar longitude of X-ray burst for several X-class flares shows no consistent pattern of enhancement in the absorption.

  15. X-Ray Protection Standards for Home Television Receivers.

    ERIC Educational Resources Information Center

    National Council on Radiation Protection and Measurements, Washington, DC.

    Levels of X-Ray emission and exposure from home television receivers are being questioned and found greater than previous public health and safety cautions and measurement limits have suggested. The latest changes in television components, designs, function, and manufacturing, have caused equipment standards and the effects of radiation to be…

  16. 21 CFR 1020.40 - Cabinet x-ray systems.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... the floor of the system. (3) Ports and apertures. (i) The insertion of any part of the human body... intended to prevent the generation of x radiation when access by any part of the human body to the interior... electron microscope equipment or to systems for intentional exposure of humans to x-rays. (b)...

  17. 21 CFR 1020.40 - Cabinet x-ray systems.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... the floor of the system. (3) Ports and apertures. (i) The insertion of any part of the human body... intended to prevent the generation of x radiation when access by any part of the human body to the interior... electron microscope equipment or to systems for intentional exposure of humans to x-rays. (b)...

  18. 21 CFR 1020.40 - Cabinet x-ray systems.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... the floor of the system. (3) Ports and apertures. (i) The insertion of any part of the human body... intended to prevent the generation of x radiation when access by any part of the human body to the interior... electron microscope equipment or to systems for intentional exposure of humans to x-rays. (b)...

  19. 21 CFR 1020.40 - Cabinet x-ray systems.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... the floor of the system. (3) Ports and apertures. (i) The insertion of any part of the human body... intended to prevent the generation of x radiation when access by any part of the human body to the interior... electron microscope equipment or to systems for intentional exposure of humans to x-rays. (b)...

  20. Formaldehyde exposure and acute health effects study

    SciTech Connect

    Quackenboss, J.J.; Lebowitz, M.D.; Michaud, J.P.; Bronnimann, D. )

    1989-01-01

    To assess the effects of formaldehyde exposures on health, exposure groups were defined using baseline exposure and health questionnaires. Formaldehyde concentrations were poorly correlated with these exposure classifications, perhaps due to the time delay between classification and monitoring. The 151 households reported here had a mean HCHO concentration of 35 (S.E. 1.5 and median 30) {mu}g/m{sup 3}. Passive samplers prepared in our lab were calibrated in a chamber to derive an estimated sampling rate of 0.311 {mu}g/(mg {center dot} m{sup {minus}3} {center dot} hr). They were also compared to commercially available samplers inside of the homes, with a correlation coefficient of 0.896 and mean difference of 2.6 {mu}g/m{sup 3}. In this report of initial findings from an ongoing study, daily symptoms and peak expiratory flow measurements were compared with an HCHO exposure classification based on the median measured concentrations. None of the symptoms groups were related to HCHO exposure when controlling for age and sex. There was a significant relationship between HCHO exposure and variability in peak expiratory flows that was dependent on age group. It may be especially important to assess the variability in reactive individuals and children to determine the short-term effects of HCHO exposures and possible long-term consequences.

  1. X-ray lithography using holographic images

    DOEpatents

    Howells, Malcolm R.; Jacobsen, Chris

    1995-01-01

    A non-contact X-ray projection lithography method for producing a desired X-ray image on a selected surface of an X-ray-sensitive material, such as photoresist material on a wafer, the desired X-ray image having image minimum linewidths as small as 0.063 .mu.m, or even smaller. A hologram and its position are determined that will produce the desired image on the selected surface when the hologram is irradiated with X-rays from a suitably monochromatic X-ray source of a selected wavelength .lambda.. On-axis X-ray transmission through, or off-axis X-ray reflection from, a hologram may be used here, with very different requirements for monochromaticity, flux and brightness of the X-ray source. For reasonable penetration of photoresist materials by X-rays produced by the X-ray source, the wavelength X, is preferably chosen to be no more than 13.5 nm in one embodiment and more preferably is chosen in the range 1-5 nm in the other embodiment. A lower limit on linewidth is set by the linewidth of available microstructure writing devices, such as an electron beam.

  2. Evolution of X-ray astronomy

    NASA Technical Reports Server (NTRS)

    Rossj, B.

    1981-01-01

    The evolution of X-ray astronomy up to the launching of the Einstein observatory is presented. The evaluation proceeded through the following major steps: (1) discovery of an extrasolar X-ray source, Sco X-1, orders of magnitude stronger than astronomers believed might exist; (2) identification of a strong X-ray source with the Crab Nebula; (3) identification of Sco X-1 with a faint, peculiar optical object; (4) demonstration that X-ray stars are binary systems, each consisting of a collapsed object accreting matter from an ordinary star; (5) discovery of X-ray bursts; (6) discovery of exceedingly strong X-ray emission from active galaxies, quasars and clusters of galaxies; (7) demonstration that the principal X-ray source is a hot gas filling the space between galaxies.

  3. X ray imaging microscope for cancer research

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Shealy, David L.; Brinkley, B. R.; Baker, Phillip C.; Barbee, Troy W., Jr.; Walker, Arthur B. C., Jr.

    1991-01-01

    The NASA technology employed during the Stanford MSFC LLNL Rocket X Ray Spectroheliograph flight established that doubly reflecting, normal incidence multilayer optics can be designed, fabricated, and used for high resolution x ray imaging of the Sun. Technology developed as part of the MSFC X Ray Microscope program, showed that high quality, high resolution multilayer x ray imaging microscopes are feasible. Using technology developed at Stanford University and at the DOE Lawrence Livermore National Laboratory (LLNL), Troy W. Barbee, Jr. has fabricated multilayer coatings with near theoretical reflectivities and perfect bandpass matching for a new rocket borne solar observatory, the Multi-Spectral Solar Telescope Array (MSSTA). Advanced Flow Polishing has provided multilayer mirror substrates with sub-angstrom (rms) smoothnesss for the astronomical x ray telescopes and x ray microscopes. The combination of these important technological advancements has paved the way for the development of a Water Window Imaging X Ray Microscope for cancer research.

  4. Extended range X-ray telescope

    NASA Technical Reports Server (NTRS)

    Hoover, R. B. (Inventor)

    1981-01-01

    An X-ray telescope system is described which is comprised of a tubular mount having a collecting region remote from the one axial end. A soft X-ray/XUV subsystem associated with the collecting region directs only relatively soft, near on-axis X-rays/XUV radiation incident on a first portion of the collecting region into a first detector sensitive to relatively soft X-rays/XUV radiation. A hard X-ray subsystem associated with the collecting region directs only relatively hard near on-axis X-rays incident on a second portion of the collecting region into a second detector sensitive to relatively hard X-rays.

  5. X-Ray Scan Detection for Cargo Integrity

    SciTech Connect

    Valencia, Juan D.; Miller, Steven D.

    2011-04-18

    ABSTRACT The increase of terrorism and its global impact has made the determination of the contents of cargo containers a necessity. Existing technology allows non-intrusive inspections to determine the contents of a container rapidly and accurately. However, some cargo shipments are exempt from such inspections. Hence, there is a need for a technology that enables rapid and accurate means of detecting whether such containers were non-intrusively inspected. Non-intrusive inspections are most commonly performed utilizing high powered X-ray equipment. The challenge is creating a device that can detect short duration X-ray scans while maintaining a portable, battery powered, low cost, and easy to use platform. The Pacific Northwest National Laboratory (PNNL) has developed a methodology and prototype device focused on this challenge. The prototype, developed by PNNL, is a battery powered electronic device that continuously measures its X-ray and Gamma exposure, calculates the dose equivalent rate, and makes a determination of whether the device has been exposed to the amount of radiation experienced during an X-ray inspection. Once an inspection is detected, the device will record a timestamp of the event and relay the information to authorized personnel via a visual alert, USB connection, and/or wireless communication. The results of this research demonstrate that PNNL’s prototype device can be effective at determining whether a container was scanned by X-ray equipment typically used for cargo container inspections. This paper focuses on laboratory measurements and test results acquired with the PNNL prototype device using several X-ray radiation levels. Keywords: Radiation, Scan, X-ray, Gamma, Detection, Cargo, Container, Wireless, RF

  6. X-ray deconvolution microscopy

    PubMed Central

    Ehn, Sebastian; Epple, Franz Michael; Fehringer, Andreas; Pennicard, David; Graafsma, Heinz; Noël, Peter; Pfeiffer, Franz

    2016-01-01

    Recent advances in single-photon-counting detectors are enabling the development of novel approaches to reach micrometer-scale resolution in x-ray imaging. One example of such a technology are the MEDIPIX3RX-based detectors, such as the LAMBDA which can be operated with a small pixel size in combination with real-time on-chip charge-sharing correction. This characteristic results in a close to ideal, box-like point spread function which we made use of in this study. The proposed method is based on raster-scanning the sample with sub-pixel sized steps in front of the detector. Subsequently, a deconvolution algorithm is employed to compensate for blurring introduced by the overlap of pixels with a well defined point spread function during the raster-scanning. The presented approach utilizes standard laboratory x-ray equipment while we report resolutions close to 10 μm. The achieved resolution is shown to follow the relationship pn with the pixel-size p of the detector and the number of raster-scanning steps n. PMID:27446649

  7. Submicron X-ray diffraction

    SciTech Connect

    MacDowell, Alastair; Celestre, Richard; Tamura, Nobumichi; Spolenak, Ralph; Valek, Bryan; Brown, Walter; Bravman, John; Padmore, Howard; Batterman, Boris; Patel, Jamshed

    2000-08-17

    At the Advanced Light Source in Berkeley the authors have instrumented a beam line that is devoted exclusively to x-ray micro diffraction problems. By micro diffraction they mean those classes of problems in Physics and Materials Science that require x-ray beam sizes in the sub-micron range. The instrument is for instance, capable of probing a sub-micron size volume inside micron sized aluminum metal grains buried under a silicon dioxide insulating layer. The resulting Laue pattern is collected on a large area CCD detector and automatically indexed to yield the grain orientation and deviatoric (distortional) strain tensor of this sub-micron volume. A four-crystal monochromator is then inserted into the beam, which allows monochromatic light to illuminate the same part of the sample. Measurement of diffracted photon energy allows for the determination of d spacings. The combination of white and monochromatic beam measurements allow for the determination of the total strain/stress tensor (6 components) inside each sub-micron sized illuminated volume of the sample.

  8. Parametric X-Ray Radiation

    NASA Astrophysics Data System (ADS)

    Shchagin, Alexander

    1997-10-01

    The main PXR properties [1,2] are considered in the paper: energy, width, smooth tuning of monochromatic PXR spectral line; fine structure and absolute differential yields of PXR in the vicinity of and at angular distances from Brag directions; angular spread of the PXR beam; the influence of incident electron energy and of the density effect on the PXR properties; linear polarization of PXR; background in PXR spectra. Experimental setups for linacs and the results of measurements are discussed. Experimental data are compared to theoretical calculations at PXR energies between 5 and 400 keV for incident electron energies ranging from 15 to 1200 MeV. Possible applications of PXR as a new source of a bright, tunable X-ray beam in science and industry are discussed. [1] A.V. Shchagin and N.A. Khizhnyak, NIM B119, 115-122 (1996). [2] A.V. Shchagin and X.K. Maruyama, "Parametric X-rays", a chapter in the book "Accelerator-based Atomic Physics Techniques and Applications", edited by S.M. Shafroth and J.C. Austin, AIP Press, 1997, pp 279-307.

  9. Transportable X-ray cart

    SciTech Connect

    1995-12-01

    The main body of the report summarizes the project scope, project milestones, highlights any unresolved problems encountered during the project and includes a summary of the financial information. The purpose of this CRADA was to assist Digiray Corporation in the development and evaluation of a Transportable Reverse Geometry X-Ray 0 (RGX-T) cart for aircraft inspection Scope: LLNL was to provide a review of the RGX-T engineering drawing package supplied by Digiray, suggest and incorporate design modifications, fabricate, assemble and provide performance evaluation testing of the RGX-T prototype. Major deliverables were (a) engineering design analysis and evaluation (b) cart prototype hardware, and (c) performance evaluation. Schedule: Procurement and technical delays extended the project twelve months past than the original four month project duration estimate. LLNL reviewed engineering drawings of the RGX-T prototype provided by Digiray, performed a engineering design analysis and evaluation, suggested and incorporated modifications to improve design safety factors, fabricated and assembled the prototype system, and evaluated the motion and positioning capabilities of the assembled system. The RGX-T provides a limited set of positioning orientations for the Digiray x-ray tube head that do not meet the overall Digiray requirements for aircraft inspection. In addition, mechanical stability concerns remain for positioning the tube head with the mechanical arm and for rolling the assembly with arbitrary orientation of the mechanical arm.

  10. X-ray lasing - Theory

    SciTech Connect

    Not Available

    1985-11-01

    The theoretical basis of lasing at very short wavelengths is discussed, and lasing at soft-x-ray (4-50 nm) wavelengths using the electron-collisional excitation scheme is successfully demonstrated. In research at LLNL, thin foils of selenium and yttrium are irradiated with laser light to generate a roughly cylindrical plasma containing neon-like ions. Excitation of ground state 2p electrons to the 3p state in the lasant medium is followed by very fast radioactive decay out of the 3s state, creating a population inversion between the 3s and 3p states. Stimulated x-ray emission is initiated by slower spontaneous decay from a 3p to 3s state. Design goals are to produce a plasma with a flat electron density of approximately 5 x 10 to the 20th/cu cm, a flat temperature profile, a scale length of at least 100 microns, and a population inversion lasting at least the 100 ps necessary to produce a significant gain. Good correlation is seen between experimental data and LANEX and XRASER theoretical modeling predictions over large variations in intensity, pulse length, and probing times. No explanation is found for the weakness of the J = 0 to J = 1 lasing transition line at 18.3 nm. 13 references.

  11. X-ray lasing - Theory

    NASA Astrophysics Data System (ADS)

    1985-11-01

    The theoretical basis of lasing at very short wavelengths is discussed, and lasing at soft-X-ray (4-50 nm) wavelengths using the electron-collisional excitation scheme is successfully demonstrated. In research at LLNL, thin foils of selenium and yttrium are irradiated with laser light to generate a roughly cylindrical plasma containing neon-like ions. Excitation of ground state 2p electrons to the 3p state in the lasant medium is followed by very fast radioactive decay out of the 3s state, creating a population inversion between the 3s and 3p states. Stimulated X-ray emission is initiated by slower spontaneous decay from a 3p to 3s state. Design goals are to produce a plasma with a flat electron density of approximately 5 x 10 to the 20th/cu cm, a flat temperature profile, a scale length of at least 100 microns, and a population inversion lasting at least the 100 ps necessary to produce a significant gain. Good correlation is seen between experimental data and LANEX and XRASER theoretical modeling predictions over large variations in intensity, pulse length, and probing times. No explanation is found for the weakness of the J = 0 to J = 1 lasing transition line at 18.3 nm.

  12. X-ray Multimodal Tomography Using Speckle-Vector Tracking

    NASA Astrophysics Data System (ADS)

    Berujon, Sebastien; Ziegler, Eric

    2016-04-01

    We demonstrate computerized tomography (CT) reconstructions from absorption, phase, and dark-field signals obtained from scans acquired when the x-ray probe light is modulated with speckle. Two different interlaced schemes are proposed to reduce the number of sample exposures. First, the already demonstrated x-ray speckle-vector tracking (XSVT) concept for projection imaging allows the three signal CT reconstructions from multiple images per projection. Second, a modified XSVT approach is shown to provide absorption and phase reconstructions, this time from a single image per angular projection. Reconstructions from data obtained at a synchrotron facility emphasize the potential of the approaches for the imaging of complex samples.

  13. Synchrotron beamlines for x-ray lithography

    NASA Astrophysics Data System (ADS)

    Trippe, Anthony P.; Pearce, W. J.

    1994-02-01

    Louisiana State University established the J. Bennett Johnston, Sr., Center for Advanced Microstructures and Devices (CAMD). Designed and constructed by the Brobeck Division of Maxwell Laboratories, the CAMD synchrotron light source is the first electron storage ring to be built by a commercial company in the United States. The synchrotron x-ray radiation generated at CAMD is an extremely useful exposure source for both thin and thick film lithography. Passing through a beamline containing two plane mirrors, the synchrotron light is used to expose thin resists for lithography of patterns with feature sizes of 0.25 micron and smaller. Two thick-resist beamlines, one using a single aspheric (collimating) mirror and one using a plane mirror, provide the higher flux photons required for miniaturization in silicon to produce microscopic mechanical devices including gears, motors, filters, and valves.

  14. Observational Aspects of Hard X-ray Polarimetry

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Tanmoy

    2016-04-01

    of such hard X-ray telescopes, which may provide sensitive polarization measurements due to flux concentration in hard X-rays with a very low background. On the other hand, such a configuration ensures implementation of an optimized geometry close to an ideal one for the Compton polarimeters. In this context, we initiated the development of a focal plane Compton polarimeter, consisting of a plastic scatterer surrounded by a cylindrical array of CsI(Tl) scintillators. Geant‑4 simulations of the planned configuration estimates 1% MDP for a 100 mCrab source in 1 million seconds of exposure. Sensitivity of the instrument is found to be critically dependent on the lower energy detection limit of the plastic scatterer; lower the threshold, better is the sensitivity. In the actual experiment, the plastic is readout by a photomultiplier tube procured from Saint-Gobain. We carried out extensive experiments to characterize the plastic especially for lower energy depositions. The CsI(Tl) scintillators are readout by Si photomultipliers (SiPM). SiPMs are small in size and robust and therefore provide the compactness necessary for the designing of focal plane detectors. Each of the CsI(Tl)-SiPM systems was characterized precisely to estimate their energy threshold and detection probability along the length of the scintillators away from SiPM. Finally, we integrated the Compton polarimeter and tested its response to polarized and unpolarized radiation and compared the experimental results with Geant‑4 simulation. Despite the growing realization of the scientific values of X-ray polarimetry and the efforts in developing sensitive X-ray polarimeters, there has not been a single dedicated X-ray polarimetry mission planned in near future. In this scenario, it is equally important to attempt polarization measurements from the existing or planned instruments which are not meant for X-ray polarization measurements but could be sensitive to it. There have been several attempts in past

  15. The Advanced X-ray Astrophysics Facility high resolution camera

    NASA Technical Reports Server (NTRS)

    Murray, Stephen S.; Chappell, Jon H.

    1986-01-01

    The HRC (High Resolution Camera) is a photon counting instrument to be flown on the Advanced X-Ray Astrophysics Facility (AXAF). It is a large field of view, high angular resolution, detector for the X-ray telescope. The HRC consists of a CsI coated microchannel plate (MCP) acting as a soft X-ray photocathode, followed by a second MCP for high electronic gain. The MCPs are readout by a crossed grid of resistively coupled wires to provide high spatial resolution along with timing and pulse height data. The instrument will be used in two modes, as a direct imaging detector with a limiting sensitivity of 10 to the -15th ergs/sq cm sec in a 10 to the 5th second exposure, and as a readout for an objective transmission grating providing spectral resolution of several hundreds to thousands.

  16. Method and apparatus for micromachining using hard X-rays

    DOEpatents

    Siddons, David Peter; Johnson, Erik D.; Guckel, Henry; Klein, Jonathan L.

    1997-10-21

    An X-ray source such as a synchrotron which provides a significant spectral content of hard X-rays is used to expose relatively thick photoresist such that the portions of the photoresist at an exit surface receive at least a threshold dose sufficient to render the photoresist susceptible to a developer, while the entrance surface of the photoresist receives an exposure which does not exceed a power limit at which destructive disruption of the photoresist would occur. The X-ray beam is spectrally shaped to substantially eliminate lower energy photons while allowing a substantial flux of higher energy photons to pass through to the photoresist target. Filters and the substrate of the X-ray mask may be used to spectrally shape the X-ray beam. Machining of photoresists such as polymethylmethacrylate to micron tolerances may be obtained to depths of several centimeters, and multiple targets may be exposed simultaneously. The photoresist target may be rotated and/or translated in the beam to form solids of rotation and other complex three-dimensional structures.

  17. Method and apparatus for micromachining using hard X-rays

    DOEpatents

    Siddons, D.P.; Johnson, E.D.; Guckel, H.; Klein, J.L.

    1997-10-21

    An X-ray source such as a synchrotron which provides a significant spectral content of hard X-rays is used to expose relatively thick photoresist such that the portions of the photoresist at an exit surface receive at least a threshold dose sufficient to render the photoresist susceptible to a developer, while the entrance surface of the photoresist receives an exposure which does not exceed a power limit at which destructive disruption of the photoresist would occur. The X-ray beam is spectrally shaped to substantially eliminate lower energy photons while allowing a substantial flux of higher energy photons to pass through to the photoresist target. Filters and the substrate of the X-ray mask may be used to spectrally shape the X-ray beam. Machining of photoresists such as polymethylmethacrylate to micron tolerances may be obtained to depths of several centimeters, and multiple targets may be exposed simultaneously. The photoresist target may be rotated and/or translated in the beam to form solids of rotation and other complex three-dimensional structures. 21 figs.

  18. Enhancement of X-ray dose absorption for medical applications

    NASA Astrophysics Data System (ADS)

    Lim, Sara; Montenegro, Maximiliano; Nahar, Sultana; Pradhan, Anil; Barth, Rolf; Nakkula, Robin; Bell, Erica; Yu, Yan

    2012-06-01

    Interaction of high-Z (HZ) elements with X-rays occurs efficiently at specific resonant energies. Cross sections for photoionization rapidly decrease after the K-edge; higher energy X-rays are mostly Compton-scattered. These features restrict the energy range for the use of HZ moities for radiosensitization in cancer therapy. Conventional X-ray sources such as linear accelerators (LINAC) used in radiotherapy emit a broad spectrum up to MeV energies. We explore the dichotomy between X-ray radiotherapy in two ranges: (i) E < 100 keV including HZ sensitization, and (ii) E > 100 keV where sensitization is inefficient. We perform Monte Carlo numerical simulations of tumor tissue embedded with platinum compounds and gold nanoparticles and compute radiation dose enhancement factors (DEF) upon irradiation with 100 kV, 170 kV and 6 MV sources. Our results demonstrate that the DEF peak below 100 keV and fall sharply above 200 keV to very small values. Therefore most of the X-ray output from LINACs up to the MeV range is utilized very inefficiently. We also describe experimental studies for implementation of option (i) using Pt and Au reagents and selected cancer cell lines. Resultant radiation exposure to patients could be greatly reduced, yet still result in increased tumoricidal ability.

  19. Radiation measurements around X-ray cabinet systems.

    PubMed

    Suric Mihic, M; Vucic, Z; Prlic, I; Lulic, I; Mestrovic, T

    2012-07-01

    Security personnel who operate X-ray units for the control of hand luggage and personal items at airports are generally not under dosimetric surveillance. A significant increase in the number of inspected items per passenger, due to rigorous air traffic security measures, raises a question of extended exposure of these workers to scattered X-ray radiation. A new approach to investigating directions of breaches of scattered X-ray radiation in the area near to an X-ray cabinet system, which is based on using active electronic dosemeters is presented. Influence of the increase in the number of inspected items in time on the dose rate is described. Time-dependent dose rates have showed a very good correlation with passengers undergoing security control prior to boarding an airplane. Measurements confirmed that an increase in the dose rate, coinciding with rush hours, was caused by scattered radiation passing through incompletely closed lead curtains. It is found that the doses at the entrance to the inspection tunnel are 50% higher than those at the exit, which is a consequence of inherent operational characteristics of X-ray cabinet systems. PMID:22302108

  20. THE DEEP LOOK AT THE HARD X-RAY SKY: THE SWIFT-INTEGRAL X-RAY (SIX) SURVEY

    SciTech Connect

    Bottacini, Eugenio; Ajello, Marco

    2012-08-01

    The supermassive black holes at the center of active galactic nuclei (AGNs) are surrounded by obscuring matter that can block nuclear radiation. Depending on the amount of blocked radiation, the flux from the AGN can be too faint to be detected by currently flying hard X-ray (above 15 keV) missions. At these energies only {approx}1% of the intensity of the cosmic X-ray background (CXB) can be resolved into point-like sources that are AGNs. In this work, we address the question of undetected sources contributing to the CXB with a very sensitive and new hard X-ray survey: the Swift-INTEGRAL X-ray survey, which is obtained with the new approach of combining the Swift/BAT and INTEGRAL/IBIS X-ray observations. We merge the observations of both missions, which enhances the exposure time and reduces systematic uncertainties. As a result, we obtain a new survey over a wide sky area of 6200 deg{sup 2} that is more sensitive than the surveys of Swift/BAT or INTEGRAL/IBIS alone. Our sample comprises 113 sources: 86 AGNs (Seyfert-like and blazars), 5 galaxies, 2 clusters of galaxies, 3 Galactic sources, 3 previously detected unidentified X-ray sources, and 14 unidentified sources. The scientific outcome from the study of the sample has been properly addressed to study the evolution of AGNs at redshift below 0.4. We do not find any evolution using the 1/V{sub max} method. Our sample of faint sources is a suitable target for the new generation hard X-ray telescopes with focusing techniques.

  1. The Deep Look at the Hard X-Ray Sky: The Swift-INTEGRAL X-Ray (SIX) Survey

    NASA Astrophysics Data System (ADS)

    Bottacini, Eugenio; Ajello, Marco; Greiner, Jochen

    2012-08-01

    The supermassive black holes at the center of active galactic nuclei (AGNs) are surrounded by obscuring matter that can block nuclear radiation. Depending on the amount of blocked radiation, the flux from the AGN can be too faint to be detected by currently flying hard X-ray (above 15 keV) missions. At these energies only ~1% of the intensity of the cosmic X-ray background (CXB) can be resolved into point-like sources that are AGNs. In this work, we address the question of undetected sources contributing to the CXB with a very sensitive and new hard X-ray survey: the Swift-INTEGRAL X-ray survey, which is obtained with the new approach of combining the Swift/BAT and INTEGRAL/IBIS X-ray observations. We merge the observations of both missions, which enhances the exposure time and reduces systematic uncertainties. As a result, we obtain a new survey over a wide sky area of 6200 deg2 that is more sensitive than the surveys of Swift/BAT or INTEGRAL/IBIS alone. Our sample comprises 113 sources: 86 AGNs (Seyfert-like and blazars), 5 galaxies, 2 clusters of galaxies, 3 Galactic sources, 3 previously detected unidentified X-ray sources, and 14 unidentified sources. The scientific outcome from the study of the sample has been properly addressed to study the evolution of AGNs at redshift below 0.4. We do not find any evolution using the 1/V max method. Our sample of faint sources is a suitable target for the new generation hard X-ray telescopes with focusing techniques.

  2. Modification of the TASMIP x-ray spectral model for the simulation of microfocus x-ray sources

    SciTech Connect

    Sisniega, A.; Vaquero, J. J.; Desco, M.

    2014-01-15

    Purpose: The availability of accurate and simple models for the estimation of x-ray spectra is of great importance for system simulation, optimization, or inclusion of photon energy information into data processing. There is a variety of publicly available tools for estimation of x-ray spectra in radiology and mammography. However, most of these models cannot be used directly for modeling microfocus x-ray sources due to differences in inherent filtration, energy range and/or anode material. For this reason the authors propose in this work a new model for the simulation of microfocus spectra based on existing models for mammography and radiology, modified to compensate for the effects of inherent filtration and energy range. Methods: The authors used the radiology and mammography versions of an existing empirical model [tungsten anode spectral model interpolating polynomials (TASMIP)] as the basis of the microfocus model. First, the authors estimated the inherent filtration included in the radiology model by comparing the shape of the spectra with spectra from the mammography model. Afterwards, the authors built a unified spectra dataset by combining both models and, finally, they estimated the parameters of the new version of TASMIP for microfocus sources by calibrating against experimental exposure data from a microfocus x-ray source. The model was validated by comparing estimated and experimental exposure and attenuation data for different attenuating materials and x-ray beam peak energy values, using two different x-ray tubes. Results: Inherent filtration for the radiology spectra from TASMIP was found to be equivalent to 1.68 mm Al, as compared to spectra obtained from the mammography model. To match the experimentally measured exposure data the combined dataset required to apply a negative filtration of about 0.21 mm Al and an anode roughness of 0.003 mm W. The validation of the model against real acquired data showed errors in exposure and attenuation in

  3. Beyond sunshine: Hard x-rays for precision microfabrication

    SciTech Connect

    Johnson, Erik D.; Siddons, D. Peter; Milne, J. Christopher; Gueckel, Henry; Klein, Jonathan L.

    1997-07-01

    For several years we have explored the use of hard x-rays for a broad range of lithographic applications. The high energy available from the NSLS x-ray ring (E>15 keV) allows the exposure of resist up to several cm thick, while maintaining micron level precision. The high flux and close proximity to the source at this machine make it possible to achieve workable exposures on realistic time scales, enabling production work. In addition to the conventional two-dimensional exposure schemes, we have demonstrated methods for achieving fully figured three dimensional objects with internal re-entrant geometry. Users from outside BNL have been sufficiently successful with their work at our prototype beamline (X-27B) that we have initiated the construction of a dedicated exposure station (X-14B) for High Aspect Ratio Precision Manufacture. An overview of our previous work as well as the current status of the new beamline will be described.

  4. Hard X-ray irradiation of cosmic silicate analogs: structural evolution and astrophysical implications

    NASA Astrophysics Data System (ADS)

    Gavilan, L.; Jäger, C.; Simionovici, A.; Lemaire, J. L.; Sabri, T.; Foy, E.; Yagoubi, S.; Henning, T.; Salomon, D.; Martinez-Criado, G.

    2016-03-01

    Context. Protoplanetary disks, interstellar clouds, and active galactic nuclei contain X-ray-dominated regions. X-rays interact with the dust and gas present in such environments. While a few laboratory X-ray irradiation experiments have been performed on ices, X-ray irradiation experiments on bare cosmic dust analogs have been scarce up to now. Aims: Our goal is to study the effects of hard X-rays on cosmic dust analogs via in situ X-ray diffraction. By using a hard X-ray synchrotron nanobeam, we seek to simulate cumulative X-ray exposure on dust grains during their lifetime in these astrophysical environments and provide an upper limit on the effect of hard X-rays on dust grain structure. Methods: We prepared enstatite (MgSiO3) nanograins, which are analogs to cosmic silicates, via the melting-quenching technique. These amorphous grains were then annealed to obtain polycrystalline grains. These were characterized via scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM) before irradiation. Powder samples were prepared in X-ray transparent substrates and were irradiated with hard X-rays nanobeams (29.4 keV) provided by beamline ID16B of the European Synchrotron Radiation Facility (Grenoble). X-ray diffraction images were recorded in transmission mode, and the ensuing diffractograms were analyzed as a function of the total X-ray exposure time. Results: We detected the amorphization of polycrystalline silicates embedded in an organic matrix after an accumulated X-ray exposure of 6.4 × 1027 eV cm-2. Pure crystalline silicate grains (without resin) do not exhibit amorphization. None of the amorphous silicate samples (pure and embedded in resin) underwent crystallization. We analyze the evolution of the polycrystalline sample embedded in an organic matrix as a function of X-ray exposure. Conclusions: Loss of diffraction peak intensity, peak broadening, and the disappearance of discrete spots and arcs reveal the amorphization

  5. X-ray effects in charge-ordered manganites: A magnetic mechanism of persistent photoconductivity

    SciTech Connect

    Keimer, B.; Casa, D.; Kiryukhin, V.; Saleh, O.A.; Hill, J.P.; Tomioka, Y.; Tokura, Y. |

    1998-12-31

    Charge-ordered manganites of composite Pr{sub 1{minus}x}(Ca{sub 1{minus}y}Sr{sub y}){sub x}MnO{sub 3} exhibit persistent photoconductivity when illuminated by x-rays. The authors review transport and x-ray diffraction data as functions of x-ray exposure, magnetic field, and temperature which shed light on the origin of this unusual behavior. The experimental evidence suggests that the mechanism primarily involves a ferromagnetic polarization of local spins by hot electrons generated by the x-rays.

  6. The trickle before the torrent-diffraction data from X-ray lasers.

    PubMed

    Maia, Filipe R N C; Hajdu, Janos

    2016-01-01

    Today Scientific Data launched a collection of publications describing data from X-ray free-electron lasers under the theme 'Structural Biology Applications of X-ray Lasers'. The papers cover data on nanocrystals, single virus particles, isolated cell organelles, and living cells. All data are deposited with the Coherent X-ray Imaging Data Bank (CXIDB) and available to the scientific community to develop ideas, tools and procedures to meet challenges with the expected torrents of data from new X-ray lasers, capable of producing billion exposures per day. PMID:27479637

  7. The trickle before the torrent—diffraction data from X-ray lasers

    PubMed Central

    Maia, Filipe R.N.C.; Hajdu, Janos

    2016-01-01

    Today Scientific Data launched a collection of publications describing data from X-ray free-electron lasers under the theme ‘Structural Biology Applications of X-ray Lasers’. The papers cover data on nanocrystals, single virus particles, isolated cell organelles, and living cells. All data are deposited with the Coherent X-ray Imaging Data Bank (CXIDB) and available to the scientific community to develop ideas, tools and procedures to meet challenges with the expected torrents of data from new X-ray lasers, capable of producing billion exposures per day. PMID:27479637

  8. Sensitivity of in vivo X-ray fluorescence determination of skeletal lead stores

    SciTech Connect

    Sokas, R.K.; Besarab, A.; McDiarmid, M.A.; Shapiro, I.M.; Bloch, P. )

    1990-09-01

    Eighteen patients with known past occupational lead exposure underwent parenteral diagnostic chelation with ethylenediaminetetraacetic acid and x-ray fluorescent determination of in vivo skeletal lead stores at the distal styloid process of the ulna and at the temporal base bone using a cobalt 57 source and measuring lead Ka x-rays. X-ray fluorescent lead measurements in both locations correlated with results of diagnostic chelation. Using a post-chelation urinary excretion of greater than 600 micrograms lead/24 h as the definition of high-lead stores, sensitivity of x-ray fluorescence at the wrist and temple was 56% and 39%, respectively.

  9. Cancer among medical diagnostic x-ray workers in China

    SciTech Connect

    Wang, J.X.; Boice, J.D. Jr.; Li, B.X.; Zhang, J.Y.; Fraumeni, J.F. Jr.

    1988-05-04

    Cancer incidence among 27,011 diagnostic x-ray workers was compared to that of 25,782 other medical specialists employed between 1950 and 1980 in China. X-ray workers had a 50% higher risk of developing cancer than the other specialists (relative risk (RR) = 1.5; 95% CI = 1.3-1.7). Leukemia was strongly linked to radiation work (RR = 3.5, n = 30). Cancers of the breast (RR = 1.4, n = 11), thyroid (RR = 2.1, n = 7), and skin (RR = 1.5, n = 6) were increased among x-ray workers employed for 10 or more years. High risks of cancers of the esophagus (RR = 3.5, n = 15) and liver (RR = 2.4, n = 48) were not consistent with a radiation effect since risk did not vary by duration of employment. This finding suggested that some differences might exist between groups of hospital workers in social class, alcohol intake, dietary habits, and other risk factors. No excess lung cancer (RR = 0.9, n = 22) or multiple myeloma (n = 0) was observed. Significant excesses of leukemia and cancers of the breast and thyroid occurred among x-ray workers first employed prior to 1960 when radiation exposures in China were high. In fact, it was not uncommon for employees to be given time off from x-ray work because their wbc count was severely depressed. These data indicated that repeated exposure to x-rays over many years can increase the risk of leukemia and several other tumors but apparently not that of lung cancer.

  10. High Mass X-ray Binary Pulsars

    NASA Astrophysics Data System (ADS)

    Naik, Sachindra

    2016-07-01

    High Mass X-ray Binaries (HMXBs) are interesting objects that provide a wide range of observational probes to the nature of the two stellar components, accretion process, stellar wind and orbital parameters of the systems. Most of the transient HMXBs are found to Be/X-ray binaries (~67%), consisting of a compact object (neutron star) in orbit around the companion Be star. The orbit of the compact object around the Be star is wide and highly eccentric. Be/X-ray binaries are generally quiescent in X-ray emission. The transient X-ray outbursts seen in these objects are known to be due to interaction between the compact object and the circumstellar disk surrounding the Be star. In the recent years, another class of transient HMXBs have been found which have supergiant companions and show shorter X-ray outbursts. X-ray, infrared and optical observations of these HMXBs provide vital information regarding these systems. The timing and broad-band X-ray spectral properties of a few HMXB pulsars, mainly Be/X-ray binary pulsars during regular X-ray outbursts will be discussed.

  11. Controlling X-rays With Light

    SciTech Connect

    Glover, Ernie; Hertlein, Marcus; Southworth, Steve; Allison, Tom; van Tilborg, Jeroen; Kanter, Elliot; Krassig, B.; Varma, H.; Rude, Bruce; Santra, Robin; Belkacem, Ali; Young, Linda

    2010-08-02

    Ultrafast x-ray science is an exciting frontier that promises the visualization of electronic, atomic and molecular dynamics on atomic time and length scales. A largelyunexplored area of ultrafast x-ray science is the use of light to control how x-rays interact with matter. In order to extend control concepts established for long wavelengthprobes to the x-ray regime, the optical control field must drive a coherent electronic response on a timescale comparable to femtosecond core-hole lifetimes. An intense field is required to achieve this rapid response. Here an intense optical control pulse isobserved to efficiently modulate photoelectric absorption for x-rays and to create an ultrafast transparency window. We demonstrate an application of x-ray transparencyrelevant to ultrafast x-ray sources: an all-photonic temporal cross-correlation measurement of a femtosecond x-ray pulse. The ability to control x-ray/matterinteractions with light will create new opportunities at current and next-generation x-ray light sources.

  12. Controlling x-rays with light.

    SciTech Connect

    Glover, T. E.; Hertlein, M. P.; Southworth, S. H.; Allison, T. K.; van Tilborg, J.; Kanter, E. P.; Krassig, B.; Varma, H. R.; Rude, B.; Santra, R.; Belkacem, A.; Young, L.; Chemical Sciences and Engineering Division; LBNL; Univ. of California at Berkley; Univ. of Chicago

    2010-01-01

    Ultrafast X-ray science is an exciting frontier that promises the visualization of electronic, atomic and molecular dynamics on atomic time and length scales. A largely unexplored area of ultrafast X-ray science is the use of light to control how X-rays interact with matter. To extend control concepts established for long-wavelength probes to the X-ray regime, the optical control field must drive a coherent electronic response on a timescale comparable to femtosecond core-hole lifetimes. An intense field is required to achieve this rapid response. Here, an intense optical control pulse is observed to efficiently modulate photoelectric absorption for X-rays and to create an ultrafast transparency window. We demonstrate an application of X-ray transparency relevant to ultrafast X-ray sources: an all-photonic temporal cross-correlation measurement of a femtosecond X-ray pulse. The ability to control X-ray-matter interactions with light will create new opportunities for present and next-generation X-ray light sources.

  13. A flying spot x-ray system for Compton backscatter imaging

    SciTech Connect

    Herr, M.D.; McInerney, J.J.; Copenhaver, G.L. ); Lamser, D.G. )

    1994-09-01

    A Compton x-ray backscatter imaging (CBI) system using a single detector and a mechanically rastered flying spot'' x-ray beam has been designed, built, and tested. While retaining the essential noninvasive imaging capability of previous multiple detector CBI devices, this single detector system incorporates several advances over earlier CBI devices: more efficient detection of scattered x-rays, reduced x-ray exposure, and a simplified scan protocol more suitable for use with humans. This new CBI system also has specific design features to permit automating data acquisition from multiple two-dimensional image planes for integration into a 3-D dynamic surface image. A simulated multislice scan study of a human thorax phantom provided x-ray dosimetry data verifying a very low x-ray dose delivered by this imaging device. Validation experiments with mechanical models show that surface displacement of typical heart beam frequencies can be measured to the nearest 0.1 mm (SD).

  14. The AAPM/RSNA physics tutorial for residents. X-ray generators.

    PubMed

    Seibert, J A

    1997-01-01

    The x-ray generator delivers the electrical power to energize the x-ray tube and permits the selection of x-ray energy, x-ray quantity, and exposure time. Major internal components of the generator include transformers, diodes and rectifier circuits, filament and stator circuits, timer switches, and kilovolt and milliampere meters. Single-phase, three-phase, high-frequency, and constant potential generators produce different voltage waveforms (ripple) and x-ray beam spectra. Phototimer and automatic brightness control subsystems measure radiation exposure incident on the image receptor to give instantaneous feedback for optimal radiographic film densities and fluoroscopic image brightness, respectively. At the generator control console, the operator sets the tube voltage, tube current, exposure time, phototimer film density, spot film acquisition, and fluoroscopic parameters. Selection of generator power and options depends on the intended clinical use. X-ray tube focal spot size and power loading capability should be matched to the x-ray generator and clinical imaging requirements. Single and multiple exposure rating charts as well as anode and housing thermal characteristic charts indicate power input and dissipation rates specific to a generator and x-ray tube target and housing. PMID:9397462

  15. Swift detection of an X-ray outburst from the SMC transient SXP 202A

    NASA Astrophysics Data System (ADS)

    Coe, M. J.; Evans, P. A.; Kennea, J. A.; Udalski, A.

    2016-08-01

    We report on the results from the Swift SMC Survey (S-CUBED), a wide area/short exposure survey of the SMC in X-rays performed by the Swift X-ray Telescope (XRT); see ATel #9299 for programme details.

  16. X-ray film holder permits single continuous picture of tubing joint

    NASA Technical Reports Server (NTRS)

    Diamond, J. W.; Hunt, V.; Mikesell, C.

    1968-01-01

    X ray technique produces a clear continuous picture of a welded brazed tubing joint on a single film with one exposure. A stationary X ray source located in the plane of the joint to be inspected, a means of rotating the tube, and a unique internal film holder and positioning fixture are used.

  17. Hard X-ray Imaging Microscopy using X-ray Guide Tube as Beam Condenser for Field Illumination

    NASA Astrophysics Data System (ADS)

    Suzuki, Yoshio; Takeuchi, Akihisa; Uesugi, Kentaro; Terada, Yasuko; Nakazawa, Hiromoto; Ohzawa, Sumito; Aoyama, Tomoki; Nii, Hajime; Handa, Katsumi

    2013-10-01

    An optical system for illumination of object in x-ray imaging microscopy is developed. The optical system is a beam condenser consisting of a single-bounce conical-shape mono-capillary (x-ray guide tube: XGT) made of Pyrex glass. The XGT condenser was tested at the beam line 47XU of SPring-8 using a Fresnel zone plate as an objective lens. Comparing with the microscope without beam condenser, the flux density is improved by a factor of 12-20 in the x-ray energy range of 6-8 keV. Test patterns with a 50 nm-structure are clearly resolved at 8 keV with an exposure time less than 1 s.

  18. Diffractive X-Ray Telescopes

    NASA Technical Reports Server (NTRS)

    Skinner, Gerald K.

    2010-01-01

    Diffractive X-ray telescopes, using zone plates, phase Fresnel lenses, or related optical elements have the potential to provide astronomers with true imaging capability with resolution many orders of magnitude better than available in any other waveband. Lenses that would be relatively easy to fabricate could have an angular resolution of the order of micro-arc-seconds or even better, that would allow, for example, imaging of the distorted spacetime in the immediate vicinity of the super-massive black holes in the center of active galaxies. What then is precluding their immediate adoption? Extremely long focal lengths, very limited bandwidth, and difficulty stabilizing the image are the main problems. The history, and status of the development of such lenses is reviewed here and the prospects for managing the challenges that they present are discussed.

  19. Industrial X-Ray Imaging

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In 1990, Lewis Research Center jointly sponsored a conference with the U.S. Air Force Wright Laboratory focused on high speed imaging. This conference, and early funding by Lewis Research Center, helped to spur work by Silicon Mountain Design, Inc. to break the performance barriers of imaging speed, resolution, and sensitivity through innovative technology. Later, under a Small Business Innovation Research contract with the Jet Propulsion Laboratory, the company designed a real-time image enhancing camera that yields superb, high quality images in 1/30th of a second while limiting distortion. The result is a rapidly available, enhanced image showing significantly greater detail compared to image processing executed on digital computers. Current applications include radiographic and pathology-based medicine, industrial imaging, x-ray inspection devices, and automated semiconductor inspection equipment.

  20. X-ray micrography and imaging of Escherichia coli cell shape using laser plasma pulsed point x-ray sources.

    PubMed Central

    Rajyaguru, J M; Kado, M; Richardson, M C; Muszynski, M J

    1997-01-01

    High-resolution x-ray microscopy is a relatively new technique and is performed mostly at a few large synchrotron x-ray sources that use exposure times of seconds. We utilized a bench-top source of single-shot laser (ns) plasma to generate x-rays similar to synchrotron facilities. A 5 microlitres suspension of Escherichia coli ATCC 25922 in 0.9% phosphate buffered saline was placed on polymethylmethyacrylate coated photoresist, covered with a thin (100 nm) SiN window and positioned in a vacuum chamber close to the x-ray source. The emission spectrum was tuned for optimal absorption by carbon-rich material. Atomic force microscope scans provided a surface and topographical image of differential x-ray absorption corresponding to specimen properties. By using this technique we observed a distinct layer around whole cells, possibly representing the Gram-negative envelope, darker stained areas inside the cell corresponding to chromosomal DNA as seen by thin section electron microscopy, and dent(s) midway through one cell, and 1/3- and 2/3-lengths in another cell, possibly representing one or more division septa. This quick and high resolution with depth-of-field microscopy technique is unmatched to image live hydrated ultrastructure, and has much potential for application in the study of fragile biological specimens. Images FIGURE 2 FIGURE 3 FIGURE 4 FIGURE 5 FIGURE 6 PMID:9083658

  1. Soft x-ray interferometry

    SciTech Connect

    Not Available

    1993-09-01

    The purpose of the soft x-ray interferometry workshop held at Lawrence Berkeley Laboratory was to discuss with the scientific community the proposed technical design of the soft x-ray Fourier-transform spectrometer being developed at the ALS. Different design strategies for the instrument`s components were discussed, as well as detection methods, signal processing issues, and how to meet the manufacturing tolerances that are necessary for the instrument to achieve the desired levels of performance. Workshop participants were encouraged to report on their experiences in the field of Fourier transform spectroscopy. The ALS is developing a Fourier transform spectrometer that is intended to operate up to 100 eV. The motivation is solely improved resolution and not the throughput (Jaquinot) or multiplex (Fellgett) advantage, neither of which apply for the sources and detectors used in this spectral range. The proposed implementation of this is via a Mach-Zehnder geometry that has been (1) distorted from a square to a rhombus to get grazing incidence of a suitable angle for 100 eV and (2) provided with a mirror-motion system to make the path difference between the interfering beams tunable. The experiment consists of measuring the emergent light intensity (I(x)) as a function of the path difference (x). The resolving power of the system is limited by the amount of path difference obtainable that is 1 cm (one million half-waves at 200{angstrom} wavelength) in the design thus allowing a resolving power of one million. The free spectral range of the system is limited by the closeness with which the function I(x) is sampled. It is proposed to illuminate a helium absorption cell with roughly 1%-band-width light from a monochromator thus allowing one hundred aliases without spectral overlap even for sampling of I(x) at one hundredth of the Nyquist frequency.

  2. Late B Star X-Ray Sources

    NASA Astrophysics Data System (ADS)

    Walter, Frederick M.

    The most basic conclusion to be drawn from the EINSTEIN stellar X-ray observations was that all stars are X-ray sources - except the late-B and early- to mid-A stars. While this is still true in general, observations with the ROSAT X-ray observatory have shown that young late-B/early-A stars, those in and near regions of star formation, are often bright X-ray sources. It is not yet clear why (or, indeed, whether) young B-A stars are often X-ray sources. We request time on the IUE to observe a sample of these stars. We will compare the line profiles against B star models against archival spectra, looking for evidence of mass loss or mass inflows, as well as evidence of transition region gas. Detection of the latter will prove that the B stars are indeed X-ray sources.

  3. Stimulated Electronic X-Ray Raman Scattering

    NASA Astrophysics Data System (ADS)

    Weninger, Clemens; Purvis, Michael; Ryan, Duncan; London, Richard A.; Bozek, John D.; Bostedt, Christoph; Graf, Alexander; Brown, Gregory; Rocca, Jorge J.; Rohringer, Nina

    2013-12-01

    We demonstrate strong stimulated inelastic x-ray scattering by resonantly exciting a dense gas target of neon with femtosecond, high-intensity x-ray pulses from an x-ray free-electron laser (XFEL). A small number of lower energy XFEL seed photons drive an avalanche of stimulated resonant inelastic x-ray scattering processes that amplify the Raman scattering signal by several orders of magnitude until it reaches saturation. Despite the large overall spectral width, the internal spiky structure of the XFEL spectrum determines the energy resolution of the scattering process in a statistical sense. This is demonstrated by observing a stochastic line shift of the inelastically scattered x-ray radiation. In conjunction with statistical methods, XFELs can be used for stimulated resonant inelastic x-ray scattering, with spectral resolution smaller than the natural width of the core-excited, intermediate state.

  4. Deep Extragalactic X-Ray Surveys

    NASA Astrophysics Data System (ADS)

    Brandt, W. N.; Hasinger, G.

    2005-09-01

    Deep surveys of the cosmic X-ray background are reviewed in the context of observational progress enabled by the Chandra X-Ray Observatory and the X-Ray Multi-Mirror Mission-Newton. The sources found by deep surveys are described along with their redshift and luminosity distributions, and the effectiveness of such surveys at selecting active galactic nuclei (AGN) is assessed. Some key results from deep surveys are highlighted, including (a) measurements of AGN evolution and the growth of supermassive black holes, (b) constraints on the demography and physics of high-redshift AGN, (c) the X-ray AGN content of infrared and submillimeter galaxies, and (d) X-ray emission from distant starburst and normal galaxies. We also describe some outstanding problems and future prospects for deep extragalactic X-ray surveys.

  5. Soft x-ray polarimeter laboratory tests

    NASA Astrophysics Data System (ADS)

    Murphy, Kendrah D.; Marshall, Herman L.; Schulz, Norbert S.; Jenks, Kevin; Sommer, Sophie J. B.; Marshall, Eric A.

    2010-07-01

    Multilayer-coated optics can strongly polarize X-rays and are central to a new design of a broad-band, soft X-ray polarimeter. We have begun laboratory work to verify the performance of components that could be used in future soft X-ray polarimetric instrumentation. We have reconfigured a 17 meter beamline facility, originally developed for testing transmission gratings for Chandra, to include a polarized X-ray source, an X-ray-dispersing transmission grating, and a multilayer-coated optic that illuminates a CCD detector. The X-rays produced from a Manson Model 5, multi-anode source are polarized by a multilayer-coated flat mirror. The current configuration allows for a 180 degree rotation of the source in order to rotate the direction of polarization. We will present progress in source characterization and system modulation measurements as well as null and robustness tests.

  6. Time resolved x-ray detection

    NASA Astrophysics Data System (ADS)

    Rentzepis, Peter M.

    1994-04-01

    The goal of the project was to design, develop and construct an x-ray detector with high sensitivity and picosecond time resolution. This was achieved. A Ford Aerospace Charged Coupled Device, CCD, was utilized as the x-ray sensitive material around which the design and construction of the picosecond x-ray detector was built. This device has now become a commercial product sold, among other companies, by Photometrics Inc., and Princeton Research Inc. In addition we designed and built the first picosecond x-ray system. This system was utilized for the first ever picosecond x-ray diffraction experiments. The picosecond x-ray system was utilized in the oxidative fuel cell project to measure the decomposition of methanol and the change of the structure of its platinum catalyst. Another direct product of the work is the publication of 36 papers, in major scientific journals, and two patents.

  7. X-rays for medical use

    NASA Astrophysics Data System (ADS)

    Hessenbruch, A.

    1995-11-01

    1995 is the centenary of the discovery of X-rays by the German physicist Wilhelm C Rontgen. In the past hundred years, the new rays have developed from being unknown to finding application in many walks of life, not least in medicine. This is so much so that in common speech the word `x-ray` refers not to a form of radiation but to an X-ray photograph taken for the purposes of diagnosis (as in: `I had an X-ray done to see if my leg was broken`). X-rays are now used routinely, and they are used both for diagnosis and for therapy. This paper will give an outline of the use of X-rays in medicine throughout our present century.

  8. Topological X-Rays and MRIs

    ERIC Educational Resources Information Center

    Lynch, Mark

    2002-01-01

    Let K be a compact subset of the interior of the unit disk D in the plane and suppose one can't see through the boundary of D and identify K. However, assume that one can take "topological X-rays" of D which measure the "density" of K along the lines of the X-rays. By taking these X-rays from all directions, a "topological MRI" is generated for…

  9. X ray microcalorimeters: Principles and performance

    NASA Technical Reports Server (NTRS)

    Moseley, S. H.; Juda, M.; Kelley, R. L.; Mccammon, D.; Stahle, C. K.; Szymkowiak, A. E.; Zhang, J.

    1992-01-01

    Microcalorimeters operating at cryogenic temperatures can be excellent X-ray spectrometers. They simultaneously offer very high spectral resolving power and high efficiency. These attributes are important for X-ray astronomy where most sources have low fluxes and where high spectral resolution is essential for understanding the physics of the emitting regions. The principles of operation of these detectors, limits to their sensitivity, design considerations, techniques of fabrication, and their performance as X-ray spectrometers, are reviewed.

  10. High speed x-ray beam chopper

    DOEpatents

    McPherson, Armon; Mills, Dennis M.

    2002-01-01

    A fast, economical, and compact x-ray beam chopper with a small mass and a small moment of inertia whose rotation can be synchronized and phase locked to an electronic signal from an x-ray source and be monitored by a light beam is disclosed. X-ray bursts shorter than 2.5 microseconds have been produced with a jitter time of less than 3 ns.

  11. X-ray data booklet. Revision

    SciTech Connect

    Vaughan, D.

    1986-04-01

    A compilation of data is presented. Included are properties of the elements, electron binding energies, characteristic x-ray energies, fluorescence yields for K and L shells, Auger energies, energy levels for hydrogen-, helium-, and neonlike ions, scattering factors and mass absorption coefficients, and transmission bands of selected filters. Also included are selected reprints on scattering processes, x-ray sources, optics, x-ray detectors, and synchrotron radiation facilities. (WRF)

  12. Lobster-Eye X-Ray Astronomy

    SciTech Connect

    Hudec, R.; Pina, L.; Marsikova, V.; Inneman, A.

    2010-07-15

    We report on technical and astrophysical aspects of Lobster-Eye wide-field X-ray telescopes expected to monitor the sky with high sensitivity and angular resolution of order of 1 arcmin. They will contribute essentially to study of various astrophysical objects such as AGN, SNe, Gamma-ray bursts (GRBs), X-ray flashes (XRFs), galactic binary sources, stars, CVs, X-ray novae, various transient sources, etc.

  13. X-ray microlaminography with polycapillary optics

    NASA Astrophysics Data System (ADS)

    Dąbrowski, K. M.; Dul, D. T.; Wróbel, A.; Korecki, P.

    2013-06-01

    We demonstrate layer-by-layer x-ray microimaging using polycapillary optics. The depth resolution is achieved without sample or source rotation and in a way similar to classical tomography or laminography. The method takes advantage from large angular apertures of polycapillary optics and from their specific microstructure, which is treated as a coded aperture. The imaging geometry is compatible with polychromatic x-ray sources and with scanning and confocal x-ray fluorescence setups.

  14. Applications of soft x-ray lasers

    SciTech Connect

    Skinner, C.H.

    1993-08-01

    The high brightness and short pulse duration of soft x-ray lasers provide unique advantages for novel applications. Imaging of biological specimens using x-ray lasers has been demonstrated by several groups. Other applications to fields such as chemistry, material science, plasma diagnostics, and lithography are beginning to emerge. We review the current status of soft x-ray lasers from the perspective of applications, and present an overview of the applications currently being developed.

  15. X-ray transmissive debris shield

    DOEpatents

    Spielman, Rick B.

    1994-01-01

    A composite window structure is described for transmitting x-ray radiation and for shielding radiation generated debris. In particular, separate layers of different x-ray transmissive materials are laminated together to form a high strength, x-ray transmissive debris shield which is particularly suited for use in high energy fluences. In one embodiment, the composite window comprises alternating layers of beryllium and a thermoset polymer.

  16. Industrial X-ray imaging based on scintillators and CMOS APS array: direct X-ray irradiation effects

    NASA Astrophysics Data System (ADS)

    Kim, Kwang Hyun; Jeon, Sung Chae; Kim, Young Soo; Cho, Gyuseong

    2005-01-01

    To see the effects of the direct X-ray in a Lanex screen-coupled CMOS APS imager, we measured modulation transfer function (MTF), noise power spectrum (NPS), and detective quantum efficiency (DQE). These measurements were performed under the condition of non-destructive test (NDT). By increasing the cumulative exposure on the imager, the MTF was degraded, and also leading to the DQE degradation. Each parameter changed by the exposure is described in detail.

  17. Observation of femtosecond X-ray interactions with matter using an X-ray-X-ray pump-probe scheme.

    PubMed

    Inoue, Ichiro; Inubushi, Yuichi; Sato, Takahiro; Tono, Kensuke; Katayama, Tetsuo; Kameshima, Takashi; Ogawa, Kanade; Togashi, Tadashi; Owada, Shigeki; Amemiya, Yoshiyuki; Tanaka, Takashi; Hara, Toru; Yabashi, Makina

    2016-02-01

    Resolution in the X-ray structure determination of noncrystalline samples has been limited to several tens of nanometers, because deep X-ray irradiation required for enhanced resolution causes radiation damage to samples. However, theoretical studies predict that the femtosecond (fs) durations of X-ray free-electron laser (XFEL) pulses make it possible to record scattering signals before the initiation of X-ray damage processes; thus, an ultraintense X-ray beam can be used beyond the conventional limit of radiation dose. Here, we verify this scenario by directly observing femtosecond X-ray damage processes in diamond irradiated with extraordinarily intense (∼10(19) W/cm(2)) XFEL pulses. An X-ray pump-probe diffraction scheme was developed in this study; tightly focused double-5-fs XFEL pulses with time separations ranging from sub-fs to 80 fs were used to excite (i.e., pump) the diamond and characterize (i.e., probe) the temporal changes of the crystalline structures through Bragg reflection. It was found that the pump and probe diffraction intensities remain almost constant for shorter time separations of the double pulse, whereas the probe diffraction intensities decreased after 20 fs following pump pulse irradiation due to the X-ray-induced atomic displacement. This result indicates that sub-10-fs XFEL pulses enable conductions of damageless structural determinations and supports the validity of the theoretical predictions of ultraintense X-ray-matter interactions. The X-ray pump-probe scheme demonstrated here would be effective for understanding ultraintense X-ray-matter interactions, which will greatly stimulate advanced XFEL applications, such as atomic structure determination of a single molecule and generation of exotic matters with high energy densities. PMID:26811449

  18. Compound refractive X-ray lens

    DOEpatents

    Nygren, David R.; Cahn, Robert; Cederstrom, Bjorn; Danielsson, Mats; Vestlund, Jonas

    2000-01-01

    An apparatus and method for focusing X-rays. In one embodiment, his invention is a commercial-grade compound refractive X-ray lens. The commercial-grade compound refractive X-ray lens includes a volume of low-Z material. The volume of low-Z material has a first surface which is adapted to receive X-rays of commercially-applicable power emitted from a commercial-grade X-ray source. The volume of low-Z material also has a second surface from which emerge the X-rays of commercially-applicable power which were received at the first surface. Additionally, the commercial-grade compound refractive X-ray lens includes a plurality of openings which are disposed between the first surface and the second surface. The plurality of openings are oriented such that the X-rays of commercially-applicable power which are received at the first surface, pass through the volume of low-Z material and through the plurality openings. In so doing, the X-rays which emerge from the second surface are refracted to a focal point.

  19. Bent crystal X-ray topography

    NASA Technical Reports Server (NTRS)

    Parker, D. L.

    1978-01-01

    A television X-ray topographic camera system was constructed. The system differs from the previous system in that it incorporates the X-ray TV imaging system and has a semi-automatic wafer loading system. Also the X-ray diffraction is in a vertical plane. This feature makes wafer loading easier and makes the system compatible with any commercial X-ray generating system. Topographs and results obtained from a study of the diffraction contrast variation with impurity concentration for both boron implanted and boron diffused silicon are included.

  20. Symbiotic stars in X-rays

    NASA Astrophysics Data System (ADS)

    Luna, G. J. M.; Sokoloski, J. L.; Mukai, K.; Nelson, T.

    2013-11-01

    Until recently, symbiotic binary systems in which a white dwarf accretes from a red giant were thought to be mainly a soft X-ray population. Here we describe the detection with the X-ray Telescope (XRT) on the Swift satellite of nine white dwarf symbiotics that were not previously known to be X-ray sources and one that had previously been detected as a supersoft X-ray source. The nine new X-ray detections were the result of a survey of 41 symbiotic stars, and they increase the number of symbiotic stars known to be X-ray sources by approximately 30%. The Swift/XRT telescope detected all of the new X-ray sources at energies greater than 2 keV. Their X-ray spectra are consistent with thermal emission and fall naturally into three distinct groups. The first group contains those sources with a single, highly absorbed hard component that we identify as probably coming from an accretion-disk boundary layer. The second group is composed of those sources with a single, soft X-ray spectral component that probably originates in a region where low-velocity shocks produce X-ray emission, i.e., a colliding-wind region. The third group consists of those sources with both hard and soft X-ray spectral components. We also find that unlike in the optical, where rapid, stochastic brightness variations from the accretion disk typically are not seen, detectable UV flickering is a common property of symbiotic stars. Supporting our physical interpretation of the two X-ray spectral components, simultaneous Swift UV photometry shows that symbiotic stars with harder X-ray emission tend to have stronger UV flickering, which is usually associated with accretion through a disk. To place these new observations in the context of previous work on X-ray emission from symbiotic stars, we modified and extended the α/β/γ classification scheme for symbiotic-star X-ray spectra that was introduced by Muerset et al. based upon observations with the ROSAT satellite, to include a new δ classification

  1. Symbiotic Stars in X-rays

    NASA Technical Reports Server (NTRS)

    Luna, G. J. M.; Sokoloski, J. L.; Mukai, K.; Nelson, T.

    2014-01-01

    Until recently, symbiotic binary systems in which a white dwarf accretes from a red giant were thought to be mainly a soft X-ray population. Here we describe the detection with the X-ray Telescope (XRT) on the Swift satellite of 9 white dwarf symbiotics that were not previously known to be X-ray sources and one that was previously detected as a supersoft X-ray source. The 9 new X-ray detections were the result of a survey of 41 symbiotic stars, and they increase the number of symbiotic stars known to be X-ray sources by approximately 30%. Swift/XRT detected all of the new X-ray sources at energies greater than 2 keV. Their X-ray spectra are consistent with thermal emission and fall naturally into three distinct groups. The first group contains those sources with a single, highly absorbed hard component, which we identify as probably coming from an accretion-disk boundary layer. The second group is composed of those sources with a single, soft X-ray spectral component, which likely arises in a region where low-velocity shocks produce X-ray emission, i.e. a colliding-wind region. The third group consists of those sources with both hard and soft X-ray spectral components. We also find that unlike in the optical, where rapid, stochastic brightness variations from the accretion disk typically are not seen, detectable UV flickering is a common property of symbiotic stars. Supporting our physical interpretation of the two X-ray spectral components, simultaneous Swift UV photometry shows that symbiotic stars with harder X-ray emission tend to have stronger UV flickering, which is usually associated with accretion through a disk. To place these new observations in the context of previous work on X-ray emission from symbiotic stars, we modified and extended the alpha/beta/gamma classification scheme for symbiotic-star X-ray spectra that was introduced by Muerset et al. based upon observations with the ROSAT satellite, to include a new sigma classification for sources with

  2. Models for galactic X-ray sources

    NASA Technical Reports Server (NTRS)

    Joss, P. C.

    1980-01-01

    Attention is given to those compact galactic X-ray sources whose X-ray luminosities are considerably in excess of the solar luminosity. It is pointed out that the key breakthrough in the development of an understanding of compact galactic X-ray sources was the discovery of X-ray pulsars with the UHURU satellite. There is now overwhelming evidence that these objects are neutron stars in close binary stellar systems. The X-ray pulsations are thought to be thermal emission from the magnetic polar caps of a neutron star that is accreting matter from a companion star and whose magnetic field is misaligned with its rotation axis. Among the compact galactic X-ray sources that are not X-ray pulsars, some still show direct evidence of binary membership, such as X-ray eclipses. There is evidence that the galactic-bulge sources are, in fact, close binary stellar systems. It is concluded, that the great majority of bright galactic X-ray sources, with only a tiny handful of exceptions (such as the Crab and Vela pulsars), are likely to be binaries.

  3. The Lunar X-ray Observatory (LXO)

    NASA Technical Reports Server (NTRS)

    Porter, F. Scott

    2008-01-01

    X-ray emission from charge exchange recombination between the highly ionized solar wind and neutral material i n Earth's magnetosheath has complicated x-ray observations of celestial objects with x-ray observatories including ROSAT, Chandra, XMM-Newton, and Suzaku. However, the charge-exchange emission can also be used as an important diagnostic of the solar-wind interacting with the magnetosheath. Soft x-ray observations from low-earth orbit or even the highly eccentric orbits of Chandra and XMM-Newton are likely superpositions of the celestial object of interest, the true extra-solar soft x-ray background, geospheric charge exchange, and heliospheric charge exchange. We show that with a small x-ray telescope placed either on the moon, in a similar vein as the Apollo ALSOP instruments, or at a stable orbit near L1, we can begin t o disentangle the complicated emission structure in the soft x-ray band. Here we present initial results of a feasibility study recently funded by NASA t o place a small x-ray telescope on the lunar surface. The telescope operates during lunar night to observe charge exchange interactions between the solar wind and magnetospheric neutrals, between the solar wind and the lunar atmosphere, and an unobstructed view of the soft x-ray background without the geospheric component.

  4. The efficacy of x-ray pelvimetry

    SciTech Connect

    Barton, J.J.; Garbaciak, J.A. Jr.; Ryan, G.M., Jr.

    1982-06-01

    Comparison is made of x-ray pelvimetry use on a public and private service in 1974 with experience in 1979, when the clinic service did no x-ray pelvimetry while the private service continued as before. It is concluded that the use of x-ray pelvimetry is inadequate as a predictor of cesarean section because of cephalopelvic disproportion, does not improve neonatal mortality, and poses potential hazards to the mother and fetus. Its use in the management of breech presentations is not currently established by our data. Guidelines are presented for the management of patients in labor without using x-ray pelvimetry.

  5. Tenma - Japan's X-ray satellite

    NASA Astrophysics Data System (ADS)

    Simpson, C.

    1984-06-01

    Japan's second X-ray satellite, designated 'Tenma', has temporal and spectral sensitivity superior to that of its predecessor, Hakucho. It is a spin-stabilized satellite whose attitude maneuvers are performed through the activation of a magnetic torquing coil, by means of which a typical, 20-deg transfer occupies several orbits. Tenma carries as its instrument set scintillation proportional counters for spectral and temporal studies, an X-ray focusing collector for the study of very soft X-ray sources, a transient source monitor for wide-field sky monitoring, and a radiation belt monitor/gamma-ray burst detector for monitoring the non-X-ray background.

  6. X-rays from the youngest stars

    NASA Technical Reports Server (NTRS)

    Feigelson, Eric D.

    1994-01-01

    The X-ray properties of classical and weak-lined T Tauri stars are briefly reviewed, emphasizing recent results from the ROSAT satellite and prospects for ASCA. The interpretation of the high level of T Tauri X-rays as enhanced solar-type magnetic activity is discussed and criticized. The census of X-ray emitters is significantly increasing estimates of galactic star formation efficiency, and X-ray emission may be important for self-regulation of star formation. ASCA images will detect star formation regions out to several kiloparsecs and will study the magnetically heated plasma around T Tauri stars. However, images will often suffer from crowding effects.

  7. Colloid Coalescence with Focused X Rays

    SciTech Connect

    Weon, B. M.; Kim, J. T.; Je, J. H.; Yi, J. M.; Wang, S.; Lee, W.-K.

    2011-07-01

    We show direct evidence that focused x rays enable us to merge polymer colloidal particles at room temperature. This phenomenon is ascribed to the photochemical scission of colloids with x rays, reducing the molecular weight, glass transition temperature, surface tension, and viscosity of colloids. The observation of the neck bridge growth with time shows that the x-ray-induced colloid coalescence is analogous to viscoelastic coalescence. This finding suggests a feasible protocol of photonic nanofabrication by sintering or welding of polymers, without thermal damage, using x-ray photonics.

  8. The Diffuse X-ray Spectrometer Experiment

    NASA Technical Reports Server (NTRS)

    Sanders, W. T.; Edgar, R. J.; Juda, M.; Kraushaar, W. L.; Mccammon, D.; Snowden, S. L.; Zhang, J.; Skinner, M. A.

    1992-01-01

    The Diffuse X-ray Spectrometer Experiment, or 'DXS', is designed to measure the spectrum of the low-energy diffuse X-ray background with about 10 eV energy resolution and 15-deg spatial resolution. During a 5-day Space Shuttle mission, DXS is to measure the spectrum of ten 15 x 15 deg regions lying along a single 150-deg-long great circle arc on the sky. DXS carries two large-area X-ray Bragg spectrometers for the 44-84 A wavelength range; these permit measurement of the wavelength spectrum of the cosmic low-energy diffuse X-ray background with good spectral resolution.

  9. Ultrashort X-ray pulse science

    SciTech Connect

    Chin, Alan Hap

    1998-05-01

    A variety of phenomena involves atomic motion on the femtosecond time-scale. These phenomena have been studied using ultrashort optical pulses, which indirectly probe atomic positions through changes in optical properties. Because x-rays can more directly probe atomic positions, ultrashort x-ray pulses are better suited for the study of ultrafast structural dynamics. One approach towards generating ultrashort x-ray pulses is by 90{sup o} Thomson scattering between terawatt laser pulses and relativistic electrons. Using this technique, the author generated {approx} 300 fs, 30 keV (0.4 {angstrom}) x-ray pulses. These x-ray pulses are absolutely synchronized with ultrashort laser pulses, allowing femtosecond optical pump/x-ray probe experiments to be performed. Using the right-angle Thomson scattering x-ray source, the author performed time-resolved x-ray diffraction studies of laser-perturbated InSb. These experiments revealed a delayed onset of lattice expansion. This delay is due to the energy relaxation from a dense electron-hole plasma to the lattice. The dense electron-hole plasma first undergoes Auger recombination, which reduces the carrier concentration while maintaining energy content. Longitudinal-optic (LO) phonon emission then couples energy to the lattice. LO phonon decay into acoustic phonons, and acoustic phonon propagation then causes the growth of a thermally expanded layer. Source characterization is instrumental in utilizing ultrashort x-ray pulses in time-resolved x-ray spectroscopies. By measurement of the electron beam diameter at the generation point, the pulse duration of the Thomson scattered x-rays is determined. Analysis of the Thomson scattered x-ray beam properties also provides a novel means of electron bunch characterization. Although the pulse duration is inferred for the Thomson scattering x-ray source, direct measurement is required for other x-ray pulse sources. A method based on the laser-assisted photoelectric effect (LAPE) has

  10. Microscopic x-ray luminescence computed tomography

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Zhu, Dianwen; Zhang, Kun; Li, Changqing

    2015-03-01

    X-ray luminescence computed tomography (XLCT) was emerged as a new hybrid imaging modality, in which the x-rays are used to excite phosphors emitting optical photons to be measured for imaging. In this paper, we reported a microscopic x-ray luminescence computed tomography (microXLCT) with a spatial resolution up to hundreds of micrometers for deep targets. We use a superfine x-ray pencil beam to scan the phosphor targets. The superfine x-ray pencil beam is generated by a small collimator mounted in front of a powerful x-ray tube (93212, Oxford Instrument). A CT detector is used to image the x-ray beam. We have generated an x-ray beam with a diameter of 192 micrometers with a collimator of 100 micrometers in diameter. The emitted optical photons on the top surface of phantom are reflected by a mirror and acquired by an electron multiplier charge-coupled device (EMCCD) camera (C9100-13, Hamamatsu Photonics). The microXLCT imaging system is built inside an x-ray shielding and light tight cabinet. The EMCCD camera is placed in a lead box. All the imaging components are controlled by a VC++ program. The optical photon propagation is modeled with the diffusion equation solved by the finite element method. We have applied different regularization methods including L2 and L1 in the microXLCT reconstruction algorithms. Numerical simulations and phantom experiments are used to validate the microXLCT imaging system.

  11. An Imaging X-Ray Polarimetry Mission

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin C.; Bellazini, Ronaldo; Costa, Enrico; Ramsey, Brian; O'Dell, Steve; Tennant, Allyn; Elsner, Ronald; Pavlov, George; Matt, Girogio; Kaspi, Vicky; Coppi, Paolo; Wu, Kinwah; Siegmund, Oswald

    2008-01-01

    Technical progress both in x-ray optics and in polarization-sensitive x-ray detectors, which our groups have pioneered, enables a scientifically powerful - yet inexpensive - dedicated mission for imaging x-ray polarimetry. Such a mission is sufficiently sensitive to measure x-ray (linear) polarization for a broad range of cosmic sources --- particularly those involving neutron stars, stellar black holes, and supermassive black holes (active galactic nuclei). We describe the technical elements, discuss a mission concept, and synopsiz:e the important physical and astrophysical questions such as mission would address.

  12. An Imaging X-Ray Polarimetry Mission

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin C.; Bellazini, Ronaldo; Costa, Enrico; Ramsey, Brian; O'Dell, Steve; Elsner, Ronald; Pavlov, George; Matt, Giorgio; Kaspi, Victoria; Tennant, Allyn; Coppi, Paolo; Wu, Kinwah; Siegmund, Oswald

    2008-01-01

    Technical progress both in x-ray optics and in polarization-sensitive x-ray detectors, which our groups have pioneered, enables a scientifically powerful---yet inexpensive---dedicated mission for imaging x-ray polarimetry. Such a mission is sufficiently sensitive to measure x-ray (linear) polarization for a broad range of cosmic sources --particularly those involving neutron stars, stellar black holes, and supermassive black holes (active galactic nuclei). We describe the technical elements, discuss a mission concept, and synopsize the important physical and astrophysical questions such a mission would address.

  13. Imaging with x-ray lasers

    SciTech Connect

    Da Silva, L.B.; Cauble, B.; Frieders, G.; Koch, J.A.; MacGowan, B.J.; Matthews, D.L.; Mrowka, S.; Ress, D.; Trebes, J.E.; Weiland, T.L.

    1993-11-01

    Collisionally pumped soft x-ray lasers now operate over a wavelength range extending from 35--300 {Angstrom}. These sources have high peak brightness and are now being utilized for x-ray imaging and plasma interferometry. In this paper we will describe our efforts to probe long scalelength plasmas using Moire deflectrometry and soft x-ray imaging. The progress in the development of short pulse x-ray lasers using a double pulse irradiation technique which incorporates a travelling wave pump will also be presented.

  14. X-ray laser microscope apparatus

    DOEpatents

    Suckewer, Szymon; DiCicco, Darrell S.; Hirschberg, Joseph G.; Meixler, Lewis D.; Sathre, Robert; Skinner, Charles H.

    1990-01-01

    A microscope consisting of an x-ray contact microscope and an optical microscope. The optical, phase contrast, microscope is used to align a target with respect to a source of soft x-rays. The source of soft x-rays preferably comprises an x-ray laser but could comprise a synchrotron or other pulse source of x-rays. Transparent resist material is used to support the target. The optical microscope is located on the opposite side of the transparent resist material from the target and is employed to align the target with respect to the anticipated soft x-ray laser beam. After alignment with the use of the optical microscope, the target is exposed to the soft x-ray laser beam. The x-ray sensitive transparent resist material whose chemical bonds are altered by the x-ray beam passing through the target mater GOVERNMENT LICENSE RIGHTS This invention was made with government support under Contract No. De-FG02-86ER13609 awarded by the Department of Energy. The Government has certain rights in this invention.

  15. Diagnostic x-ray procedures and risk of leukemia, lymphoma, and multiple myeloma

    SciTech Connect

    Boice, J.D. Jr.; Morin, M.M.; Glass, A.G.; Friedman, G.D.; Stovall, M.; Hoover, R.N.; Fraumeni, J.F. Jr. )

    1991-03-13

    Exposure to diagnostic x-rays and the risk of leukemia, non-Hodgkin's lymphoma (NHL), and multiple myeloma were studied within two prepaid health plans. Adult patients with leukemia (n = 565), NHL (n = 318), and multiple myeloma (n = 208) were matched to controls (n = 1390), and over 25,000 x-ray procedures were abstracted from medical records. Dose response was evaluated by assigning each x-ray procedure a score based on estimated bone marrow dose. X-ray exposure was not associated with chronic lymphocytic leukemia, one of the few malignant conditions never linked to radiation (relative risk (RR), 0.66). For all other forms of leukemia combined (n = 358), there was a slight elevation in risk (RR, 1.17) but no evidence of a dose-response relationship when x-ray procedures near the time of diagnosis were excluded. Similarly, patients with NHL were exposed to diagnostic x-ray procedures more often than controls (RR, 1.32), but the RR fell to 0.99 when the exposure to diagnostic x-ray procedures within 2 years of diagnosis was ignored. For multiple myeloma, overall risk was not significantly high (RR, 1.14), but there was consistent evidence of increasing risk with increasing numbers of diagnostic x-ray procedures. These data suggest that persons with leukemia and NHL undergo x-ray procedures frequently just prior to diagnosis for conditions related to the development or natural history of their disease. There was little evidence that diagnostic x-ray procedures were causally associated with leukemia or NHL. The risk for multiple myeloma, however, was increased among those patients who were frequently exposed to x-rays.

  16. VISUAL SYSTEM DYSFUNCTION FOLLOWING ACUTE TRIMETHYLTIN EXPOSURE IN RATS

    EPA Science Inventory

    Trimethyltin (TMT) has been shown to produce damage in the limbic system and several other brain areas. To date, damage to sensory systems has not been reported. The present study investigated the integrity of the visual system following acute exposure to TMT. Rats were chronical...

  17. EFFECTS OF ACUTE PYRETHROID EXPOSURE ON THERMOREGULATION IN RATS.

    EPA Science Inventory

    Pyrethroid insecticides produce acute neurotoxicity in mammals. According to the FQPA mandate, the USEPA is required to consider the risk of cumulative toxicity posed to humans through exposure to pyrethroid mixtures. Thermoregulatory response (TR) is being used to determine if t...

  18. PREDICTORS OF INDIVIDUAL DIFFERENCES IN ACUTE RESPONSE TO OZONE EXPOSURE

    EPA Science Inventory

    The purposes of this study were to identify personal characteristics which predict individual differences in acute response to ozone exposure and to develop a predictive model for decrements in FEV1 as a function of ozone concentration and individual predictors. esponse and predi...

  19. Biomarkers of Acute Respiratory Allergen Exposure: Screening For Sensitization Potential

    EPA Science Inventory

    Rationale: An in vitro assay to identify respiratory sensitizers will provide a rapid screen and reduce animal use. The study goal was to identify biomarkers that differentiate allergen versus non-allergen responses following an acute exposure. Methods: Female BALB/c mice rec...

  20. Health Impacts from Acute Radiation Exposure

    SciTech Connect

    Strom, Daniel J.

    2003-09-30

    Absorbed doses above1-2 Gy (100-200 rads) received over a period of a day or less lead to one or another of the acute radiation syndromes. These are the hematopoietic syndrome, the gastrointestinal (GI) syndrome, the cerebrovascular (CV) syndrome, the pulmonary syndrome, or the cutaneous syndrome. The dose that will kill about 50% of the exposed people within 60 days with minimal medical care, LD50-60, is around 4.5 Gy (450 rads) of low-LET radiation measured free in air. The GI syndrome may not be fatal with supportive medical care and growth factors below about 10 Gy (1000 rads), but above this is likely to be fatal. Pulmonary and cutaneous syndromes may or may not be fatal, depending on many factors. The CV syndrome is invariably fatal. Lower acute doses, or protracted doses delivered over days or weeks, may lead to many other health outcomes than death. These include loss of pregnancy, cataract, impaired fertility or temporary or permanent sterility, hair loss, skin ulceration, local tissue necrosis, developmental abnormalities including mental and growth retardation in persons irradiated as children or fetuses, radiation dermatitis, and other symptoms listed in Table 2 on page 12. Children of parents irradiated prior to conception may experience heritable ill-health, that is, genetic changes from their parents. These effects are less strongly expressed than previously thought. Populations irradiated to high doses at high dose rates have increased risk of cancer incidence and mortality, taken as about 10-20% incidence and perhaps 5-10% mortality per sievert of effective dose of any radiation or per gray of whole-body absorbed dose low-LET radiation. Cancer risks for non-uniform irradiation will be less.

  1. Nanoparticle-enhanced x-ray therapy for cancer

    NASA Astrophysics Data System (ADS)

    Letfullin, Renat R.; Rice, Colin E. W.; George, Thomas F.

    2016-03-01

    Photothermal therapies of nanophotohyperthermia and nanophotothermolysis utilize the light absorptive properties of nanoparticles to create heat and free radicals in a small localized region. Conjugating nanoparticles with various biomolecules allows for targeted delivery to specific tissues or even specific cells, cancerous cells being of particular interest. Previous studies have investigated nanoparticles at visible and infrared wavelengths where surface plasmon resonance leads to unique absorption characteristics. However, issues such as poor penetration depth of the visible light through biological tissues limits the effectiveness of delivery by noninvasive means. In other news, various nanoparticles have been investigated as contrast agents for traditional X-ray procedures, utilizing the strong absorption characteristics of the nanoparticles to enhance contrast of the detected X-ray image. Using X-rays to power photothermal therapies has three main advantages over visiblespectra wavelengths: the high penetration depth of X-rays through biological media makes noninvasive treatments very feasible; the high energy of individual photons means nanoparticles can be heated to desired temperatures with lower beam intensities, or activated to produce the free radicals; and X-ray sources are already common throughout the medical industry, making future implementation on existing equipment possible. This paper uses Lorenz-Mie theory to investigate the light absorption properties of various size gold nanoparticles over photon energies in the 1-100 keV range. These absorption values are then plugged into a thermal model to determine the temperatures reached by the nanoparticles for X-ray exposures of differing time and intensity. The results of these simulations are discussed in relation to the effective implementation of nanophotohyperthermia and nanophotothermolysis treatments.

  2. X-ray Spectral Measurements of a Dense Plasma Focus

    NASA Astrophysics Data System (ADS)

    Whitlock, Robert R.; Dozier, Charles M.; Newman, Daniel A.; Petr, Rodney A.; Freshman, Jay; Hoey, David W.; Heaton, John

    2002-10-01

    Absolute intensities of spectra in a dense-plasma-focus (DPF) source have been recorded and analyzed. This DPF source has been identified as one of the more promising sources for X-ray lithography. The source, developed by Science Research Laboratory, Inc., is currently undergoing testing and further development at BAE Systems, Inc. The DPF operates at 60 Hz and produces an average output pulse of ~5 J of X rays into 4π steradians in a continuous operation mode. In all runs, there was an initial number of pulses, typically between 30 to 40, during which the X-ray output increased and the DPF appeared to be undergoing a conditioning process, and after which a "steady-state" mode was achieved where the average X-ray power was relatively constant. Each spectral run was exposed to ~600 J of output, as measured by the PIN. The X-ray spectral region between 0.8 and 3 keV was recorded on Kodak DEF film in a potassium acid phthalate (KAP) convex curved-crystal spectrograph. The source emits neon line radiation from Ne IX and Ne X ionization stages in the 900 to 1300 eV region, suitable for lithographic exposures of photoresist. Two helium-like neon lines contribute more than 50% of the total energy. From continuum shape, plasma temperatures were found to be approximately 170-200 eV. The absolute, integrated spectral outputs were verified to within 30% by comparison with measurements by a PIN detector and a radiachromic X-ray dosimeter.

  3. X-ray scan detection for cargo integrity

    NASA Astrophysics Data System (ADS)

    Valencia, Juan; Miller, Steve

    2011-04-01

    The increase of terrorism and its global impact has made the determination of the contents of cargo containers a necessity. Existing technology allows non-intrusive inspections to determine the contents of a container rapidly and accurately. However, some cargo shipments are exempt from such inspections. Hence, there is a need for a technology that enables rapid and accurate means of detecting whether such containers were non-intrusively inspected. Non-intrusive inspections are most commonly performed utilizing high powered X-ray equipment. The challenge is creating a device that can detect short duration X-ray scans while maintaining a portable, battery powered, low cost, and easy to use platform. The Pacific Northwest National Laboratory (PNNL) has developed a methodology and prototype device focused on this challenge. The prototype, developed by PNNL, is a battery powered electronic device that continuously measures its X-ray and Gamma exposure, calculates the dose equivalent rate, and makes a determination of whether the device has been exposed to the amount of radiation experienced during an X-ray inspection. Once an inspection is detected, the device will record a timestamp of the event and relay the information to authorized personnel via a visual alert, USB connection, and/or wireless communication. The results of this research demonstrate that PNNL's prototype device can be effective at determining whether a container was scanned by X-ray equipment typically used for cargo container inspections. This paper focuses on laboratory measurements and test results acquired with the PNNL prototype device using several X-ray radiation levels.

  4. Fabrication of composite x-ray masks by micromilling

    NASA Astrophysics Data System (ADS)

    Coane, Philip J.; Friedrich, Craig R.

    1996-09-01

    An important aspect for the development of micromanufactured components and systems is to reduce the time and cost required to reach the prototype stage. At present, this development typically spans several years. Any fabrication approach which would reduce the cost and time-to-prototype would allow for the more rapid development of design concepts and the more rapid evolution of the design cycle. Direct fabrication of masks for X-ray lithography, by mechanical micromilling, is one potential avenue for rapid, lower cost development. The key process requirements for the fabrication of a typical X-ray mask involves the selection of both substrate and absorber materials. The substrate must provide a mechanically stable support for the patterned absorber without introducing excessive attenuation of the X- ray flux that ultimately reaches the resist surface. Frame supported, thin membranes (such as SiC, C, Si3N4, Si) are most often used as well as low atomic number bulk materials (Be). The choice of elemental composition and thickness for the absorber will be largely determined by the resist sensitivity and the X-ray wavelength used. Many process steps are required in order to define the final absorber pattern geometry and will generally involve either additive or subtractive processes. Mechanical micromilling techniques may be used with either a single bulk material which serves the dual role of both substrate and absorber or with a composite structure consisting of a thin gold layer deposited on a thick, low atomic number bulk substrate. Single material masks of aluminum and graphite have been investigated. A composite mask of graphite with a thin layer of sputtered gold has also been investigated. The paper will report on the developmental work for both types of masks and will give results for synchrotron X-ray exposure using these masks. Problems associated with using micromilling as an X- ray mask fabrication method will also be presented.

  5. Acute effects of bright light exposure on cortisol levels.

    PubMed

    Jung, Christopher M; Khalsa, Sat Bir S; Scheer, Frank A J L; Cajochen, Christian; Lockley, Steven W; Czeisler, Charles A; Wright, Kenneth P

    2010-06-01

    Multisynaptic neural and endocrine pathways from the suprachiasmatic nucleus of the hypothalamus have been hypothesized to communicate circadian and photic information to the adrenal glands. In humans, light exposure has been reported to have no effect, increase, or decrease cortisol levels. These inconsistent findings in humans may be related to differences among studies including the intensity (approximately 500 to 5500 lux), duration (15 min to 4 h), and circadian phase of light exposure. The authors assessed the influence of exposure to bright light on cortisol levels in humans during the rising and descending phases of the circadian rhythm of cortisol, that is, when cortisol levels are high. Twenty healthy men and women were studied using a within-subject research design. Subjects were studied in an environment free of time cues for 9 to 10 days. Subjects received a 6.7-h exposure of bright light (approximately 10,000 lux; equivalent to ambient light intensity just after sunrise or just before sunset) or dim light (approximately 3 lux; equivalent to candle light) during the biological night and morning. Bright light exposure significantly reduced plasma cortisol levels at both circadian phases studied, whereas dim light exposure had little effect on cortisol levels. The finding of an acute suppressive effect of bright light exposure on cortisol levels supports the existence of a mechanism by which photic information can acutely influence the human adrenal glands. PMID:20484692

  6. Chandra X-Ray Observatory Concept

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This is an artist's concept of the Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), fully developed in orbit in a star field with Earth. In 1999, the AXAF was renamed the CXO in honor of the late Indian-American Novel Laureate Subrahmanyan Chandrasekhar. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It is designed to observe x-rays from high energy regions of the Universe, such as hot gas in the renmants of exploded stars. It produces picture-like images of x-ray emissions analogous to those made in visible light, as well as gathers data on the chemical composition of x-ray radiating objects. The CXO helps astronomers world-wide better understand the structure and evolution of the universe by studying powerful sources of x-ray such as exploding stars, matter falling into black holes, and other exotic celestial objects. The Observatory has three major parts: (1) the x-ray telescope, whose mirrors will focus x-rays from celestial objects; (2) the science instruments that record the x-rays so that x-ray images can be produced and analyzed; and (3) the spacecraft, which provides the environment necessary for the telescope and the instruments to work. TRW, Inc. was the prime contractor for the development the CXO and NASA's Marshall Space Flight Center was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The Observatory was launched July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission. (Image courtesy of TRW).

  7. Chandra X-Ray Observatory Concept

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This is a computer rendering of the fully developed Chandra X-ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), in orbit in a star field. In 1999, the AXAF was renamed the CXO in honor of the late Indian-American Novel Laureate Subrahmanyan Chandrasekhar. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It is designed to observe x-rays from high energy regions of the Universe, such as hot gas in the renmants of exploded stars. It produces picture-like images of x-ray emissions analogous to those made in visible light, as well as gathers data on the chemical composition of x-ray radiating objects. The CXO helps astronomers world-wide better understand the structure and evolution of the universe by studying powerful sources of x-rays such as exploding stars, matter falling into black holes, and other exotic celestial objects. The Observatory has three major parts: (1) the x-ray telescope, whose mirrors will focus x-rays from celestial objects; (2) the science instruments that record the x-rays so that x-ray images can be produced and analyzed; and (3) the spacecraft, which provides the environment necessary for the telescope and the instruments to work. TRW, Inc. was the prime contractor for the development of the CXO and NASA's Marshall Space Flight Center was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The Observatory was launched July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission. (Image courtesy of TRW).

  8. Chandra X-Ray Observatory Computer Rendering

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This is a computer rendering of the fully developed Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF). In 1999, the AXAF was renamed the CXO in honor of the late Indian-American Novel Laureate Subrahmanyan Chandrasekhar. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It is designed to observe x-rays from high energy regions of the Universe, such as hot gas in the renmants of exploded stars. It produces picture-like images of x-ray emissions analogous to those made in visible light, as well as gathers data on the chemical composition of x-ray radiating objects. The CXO helps astronomers world-wide better understand the structure and evolution of the universe by studying powerful sources of x-ray such as exploding stars, matter falling into black holes, and other exotic celestial objects. The Observatory has three major parts: (1) the x-ray telescope, whose mirrors will focus x-rays from celestial objects; (2) the science instruments that record the x-rays so that x-ray images can be produced and analyzed; and (3) the spacecraft, which provides the environment necessary for the telescope and the instruments to work. TRW, Inc. was the prime contractor for the development of the CXO and NASA's Marshall Space Flight Center was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The Observatory was launched July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission. (Image courtesy of TRW).

  9. Wide field x-ray telescopes: Detecting x-ray transients/afterglows related to GRBs

    SciTech Connect

    Hudec, Rene; Pina, Ladislav; Inneman, Adolf; Gorenstein, Paul

    1998-05-16

    The recent discovery of X-ray afterglows of GRBs opens the possibility of analyses of GRBs by their X-ray detections. However, imaging X-ray telescopes in current use mostly have limited fields of view. Alternative X-ray optics geometries achieving very large fields of view have been theoretically suggested in the 70's but not constructed and used so far. We review the geometries and basic properties of the wide-field X-ray optical systems based on one- and two-dimensional lobster-eye geometry and suggest technologies for their development and construction. First results of the development of double replicated X-ray reflecting flats for use in one-dimensional X-ray optics of lobster-eye type are presented and discussed. The optimum strategy for locating GRBs upon their X-ray counterparts is also presented and discussed.

  10. The X-ray optics for X-ray pulsar navigation

    NASA Astrophysics Data System (ADS)

    Jin, Dongdong; Li, Wenbin; Lian, Jian; Shi, Yufeng; Song, Juan; Wang, Wencong; Sun, Shukun

    2016-01-01

    The effective X-ray optics is a key premise for X-ray pulsar detection and navigation. However, it is very difficult to focus the X-ray photons through refraction for the reason that the X-ray photon is very easy to be absorbed by the materials. The most effective ways for the X-ray focusing is reflection. In this paper, we will give a brief introduction of the theory of the grazing incidence and the corresponding optical systems. By comparing the design parameters of main X-ray astronomical telescope in NASA and ESA, we will give the development trend of the X-ray optics for X-ray pulsar navigation and introduce several new technology for the manufacture of the micro-pore optics (MPO).

  11. SN X-ray Progenitor?

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Identifying stars that explode, right before they explode, is a tricky proposition since the end of starlife comes swiftly: in thermonuclear deflagrations, in nuclear exhaustion, or maybe in a rapid swirling merger of two dead stellar cores. On the right in the image above is an image of the galaxy NGC 1404 taken by the UV/optical Telescope (UVOT) on the Swift observatory. The circle surrounds SN 2007on, a supernova of Type Ia produced by the explosion of a white dwarf star in a binary system. These types of supernovae are important since they are believed to be 'standard candles', events which have the same intrinsic brightness which can serve as an important yardstick to measure cosmic distances. On the left is an image of the same galaxy taken by the Chandra X-ray observatory four years before the supernova. Conspicuous in the SN source circle is a bright source in the Chandra image, believed to be emission from a compact object+normal star companion: a similar system to the supposed precursor of SN 2007on. If true this would be the first time a Type Ia supernova precursor has ever been seen. But astronomers are still debating whether the Chandra source really is the precursor or not; it seems there's a slight but significant difference in the location of the Chandra source and the supernova. Stay tuned for more developments.

  12. SMM X-ray polychromator

    NASA Technical Reports Server (NTRS)

    Strong, Keith T.; Haisch, Bernhard M. (Compiler); Lemen, James R. (Compiler); Acton, L. W.; Bawa, H. S.; Claflin, E. S.; Freeland, S. L.; Slater, G. L.; Kemp, D. L.; Linford, G. A.

    1988-01-01

    The range of observing and analysis programs accomplished with the X-Ray Polychromator (XRP) instruments during the decline of solar cycle 21 and the rise of the solar cycle 22 is summarized. Section 2 describes XRP operations and current status. This is meant as a guide on how the instrument is used to obtain data and what its capabilities are for potential users. The science section contains a series of representative abstracts from recently published papers on major XRP science topics. It is not meant to be a complete list but illustrates the type of science that can come from the analysis of the XRP data. There then follows a series of appendixes that summarize the major data bases that are available. Appendix A is a complete bibliography of papers and presentations produced using XRP data. Appendix B lists all the spectroscopic data accumulated by the Flat Crystal Spectrometer (FCS). Appendix C is a compilation of the XRP flare catalogue for events equivalent to a GOES C-level flare or greater. It lists the start, peak and end times as well as the peak Ca XIX flux.

  13. X-ray satellite (Rosat)

    NASA Technical Reports Server (NTRS)

    1986-01-01

    An overview of the current status of the ROSAT X-Ray satellite project is given. Areas discussed include an overview of problem areas, systems and mechanical subsystems, the electrical subsystem, power supply, data processing and transmission, the wide field camera, ground support equipment and the production scheduling. It is shown that the project is proceeding according to schedule, including the hardware production and costs. However, it is stated that estimated additional costs will exceed the plan. The previous schedule for production of the flight model will no longer be met. A modified milestone plan has been worked out with Dornier Systems. The current working schedule calls for a launch data of December 21, 1987; however, this does not take into account a 4-week buffer prior to transporting the flight model to the launch site. As of the date of this report, milestone M5 has been met. Previous problems with the gold vapor deposition on the flight model mirror due to contamination have been eliminated.

  14. Nonthermal X-ray Microflares

    NASA Astrophysics Data System (ADS)

    Christe, S.; Rauscher, E.; Krucker, S.; Lin, R. P.

    2004-12-01

    The Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) provides unique sensitivity in the 3-15 keV energy range, with an effective area ˜100 times larger than similar past instruments. Along with its high spectral resolution (1 keV) RHESSI is uniquely suited to study small events. Microflares have been observed by Benz & Grigis (2002) and Krucker et al. (2002) to have anomalously steep spectra ( spectral index between -5 and -8) extending down to ˜ 7 keV. Thermal emission is found to dominate below ˜ 7 keV. In many other respects, microflares show properties similar to larger flares. We present single event studies of different types of x-ray microflares. RHESSI observations during quiet times (04-May 10-14; GOES level low B class) reveal a set 5 microflares (>=A Class). These microflares show power law spectra (spectral index of ˜4-8) with little or no thermal emission in the 3- ˜7 keV energy range above the nonthermal part of the spectrum. Other microflares in the same GOES class range, however, have been found which show extremely hard spectra with emission up to 50 keV (power law index ˜2). At lower energies, emission is dominated by a hot thermal component (20 MK). This work was supported by NASA contract NAS5-98033.

  15. Discovery of low-redshift X-ray selected quasars - New clues to the QSO phenomenon

    NASA Technical Reports Server (NTRS)

    Grindlay, J. E.; Forman, W. R.; Steiner, J. E.; Canizares, C. R.; Mcclintock, J. E.

    1980-01-01

    The identification of six X-ray sources discovered by the Einstein Observatory with X-ray quasars is reported, and the properties of these X-ray selected quasars are discussed. The four high-latitude fields of 1 sq deg each in which the Einstein imaging proportional counter detected serendipitous X-ray sources at intermediate exposures of 10,000 sec were observed by 4-m and 1.5-m telescopes, and optical sources with uv excesses and emission line spectra typical of many low-redshift quasars and Seyfert 1 galaxies were found within the 1-arcsec error boxes of the X-ray sources. All six quasars identified were found to be radio quiet, with low redshift and relatively faint optical magnitudes, and to be similar in space density, colors and magnitude versus redshift relation to an optically selected sample at the same mean magnitude. X-ray luminosity was found to be well correlated with both continuum and broad-line emission luminosities for the known radio-quiet quasars and Seyfert 1 galaxies, and it was observed that the five objects with the lowest redshifts have very similar X-ray/optical luminosity ratios despite tenfold variations in X-ray luminosity. It is concluded that photoionization by a continuum extending to X-ray energies is the dominant excitation mechanism in radio-quiet quasars.

  16. Practical energy response estimation of photon counting detectors for spectral X-ray imaging

    NASA Astrophysics Data System (ADS)

    Kang, Dong-Goo; Lee, Jongha; Sung, Younghun; Lee, SeongDeok

    2010-04-01

    Spectral X-ray imaging is a promising technique to drastically improve the diagnostic quality of radiography and computed tomography (CT), since it enables material decomposition and/or identification based on the energy dependency of material-specific X-ray attenuation. Unlike the charge-integration based X-ray detectors, photon counting X-ray detectors (PCXDs) can discriminate the energies of incident X-ray photons and thereby multi-energy images can be obtained in single exposure. However, the measured data are not accurate since the spectra of incident X-rays are distorted according to the energy response function (ERF) of a PCXD. Thus ERF should be properly estimated in advance for accurate spectral imaging. This paper presents a simple method for ERF estimation based on a polychromatic X-ray source that is widely used for medical imaging. The method consists of three steps: source spectra measurement, detector spectra reconstruction, and ERF inverse estimation. Real spectra of an X-ray tube are first measured at all kVs by using an X-ray spectrometer. The corresponding detector spectra are obtained by threshold scans. The ERF is then estimated by solving the inverse problem. Simulations are conducted to demonstrate the concept of the proposed method.

  17. X-ray characterization of CMOS imaging detector with high resolution for fluoroscopic imaging application

    NASA Astrophysics Data System (ADS)

    Cha, Bo Kyung; Kim, Cho Rong; Jeon, Seongchae; Kim, Ryun Kyung; Seo, Chang-Woo; Yang, Keedong; Heo, Duchang; Lee, Tae-Bum; Shin, Min-Seok; Kim, Jong-Boo; Kwon, Oh-Kyung

    2013-12-01

    This paper introduces complementary metal-oxide semiconductor (CMOS) active pixel sensor (APS)-based X-ray imaging detectors with high spatial resolution for medical imaging application. In this study, our proposed X-ray CMOS imaging sensor has been fabricated by using a 0.35 μm 1 Poly 4 Metal CMOS process. The pixel size is 100 μm×100 μm and the pixel array format is 24×96 pixels, which provide a field-of-view (FOV) of 9.6 mm×2.4 mm. The 14.3-bit extend counting analog-to digital converter (ADC) with built-in binning mode was used to reduce the area and simultaneously improve the image resolution. Both thallium-doped CsI (CsI:Tl) and Gd2O2S:Tb scintillator screens were used as converters for incident X-rays to visible light photons. The optical property and X-ray imaging characterization such as X-ray to light response as a function of incident X-ray exposure dose, spatial resolution and X-ray images of objects were measured under different X-ray energy conditions. The measured results suggest that our developed CMOS-based X-ray imaging detector has the potential for fluoroscopic imaging and cone-beam computed tomography (CBCT) imaging applications.

  18. Diffraction leveraged modulation of X-ray pulses using MEMS-based X-ray optics

    DOEpatents

    Lopez, Daniel; Shenoy, Gopal; Wang, Jin; Walko, Donald A.; Jung, Il-Woong; Mukhopadhyay, Deepkishore

    2016-08-09

    A method and apparatus are provided for implementing Bragg-diffraction leveraged modulation of X-ray pulses using MicroElectroMechanical systems (MEMS) based diffractive optics. An oscillating crystalline MEMS device generates a controllable time-window for diffraction of the incident X-ray radiation. The Bragg-diffraction leveraged modulation of X-ray pulses includes isolating a particular pulse, spatially separating individual pulses, and spreading a single pulse from an X-ray pulse-train.

  19. X-ray Attenuation and Absorption Calculations.

    Energy Science and Technology Software Center (ESTSC)

    1988-02-25

    This point-source, polychromatic, discrete energy X-ray transport and energy deposition code system calculates first-order spectral estimates of X-ray energy transmission through slab materials and the associated spectrum of energy absorbed by the material.

  20. Accelerator-driven X-ray Sources

    SciTech Connect

    Nguyen, Dinh Cong

    2015-11-09

    After an introduction which mentions x-ray tubes and storage rings and gives a brief review of special relativity, the subject is treated under the following topics and subtopics: synchrotron radiation (bending magnet radiation, wiggler radiation, undulator radiation, brightness and brilliance definition, synchrotron radiation facilities), x-ray free-electron lasers (linac-driven X-ray FEL, FEL interactions, self-amplified spontaneous emission (SASE), SASE self-seeding, fourth-generation light source facilities), and other X-ray sources (energy recovery linacs, Inverse Compton scattering, laser wakefield accelerator driven X-ray sources. In summary, accelerator-based light sources cover the entire electromagnetic spectrum. Synchrotron radiation (bending magnet, wiggler and undulator radiation) has unique properties that can be tailored to the users’ needs: bending magnet and wiggler radiation is broadband, undulator radiation has narrow spectral lines. X-ray FELs are the brightest coherent X-ray sources with high photon flux, femtosecond pulses, full transverse coherence, partial temporal coherence (SASE), and narrow spectral lines with seeding techniques. New developments in electron accelerators and radiation production can potentially lead to more compact sources of coherent X-rays.

  1. X-ray determination of parts alignment

    NASA Technical Reports Server (NTRS)

    Nelson, C. W.

    1985-01-01

    A method for determining the alignment of adjoining metal objects is provided. The method comprises producing an X-ray image of adjoining surfaces of the two metal objects. The X-ray beam is tangential to the point the surfaces are joined. The method is particularly applicable where the alignment of the two metal objects is not readily susceptible to visual inspection.

  2. X-Ray Determination of Weld Misalinement

    NASA Technical Reports Server (NTRS)

    Nelson, C. W.

    1985-01-01

    Simple technique uses ordinary X-ray equipment. Weld line between hemispheres of hidden spherical pressure vessel examined for misalinement between hemispheres. Central X-ray tangent to pressure vessel at weld line. Technique not limited to spheres. Also used to check alinement between insulated sections of pipelines or chemical-reaction vessels without removing insulation or interrupting flow or process.

  3. Tracing the X-Ray Trail

    MedlinePlus

    What you need to know about… Tracing the X-ray Trail If you’ve just completed an x-ray, computed tomography (CT), magnetic resonance (MR) Start here! or other diagnostic imaging procedure, you probably want to know when you will ... los rayos X Si acaba de hacerse una radiografía, tomografía ¡Empezar ...

  4. Adenocarcinoma - chest x-ray (image)

    MedlinePlus

    This chest x-ray shows adenocarcinoma of the lung. There is a rounded light spot in the right upper lung (left side ... density. Diseases that may cause this type of x-ray result would be tuberculous or fungal granuloma, and ...

  5. Coccidioidomycosis - chest x-ray (image)

    MedlinePlus

    This chest x-ray shows the affects of a fungal infection, coccidioidomycosis. In the middle of the left lung (seen on the ... defined borders. Other diseases that may explain these x-ray findings include lung abscesses, chronic pulmonary tuberculosis, chronic ...

  6. X-rays Flares and Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Feigelson, Eric D.

    2011-04-01

    X-ray observations of star forming regions show that magnetic reconnection flares are powerful and frequent in pre-main sequence solar-type stars. Well-defined samples in the Orion Nebula Cluster and Taurus clouds exhibit flares with peak X- ray luminosities Lx˜10^29 - 10^32 erg/s, orders of magnitude stronger and more frequent than contemporary solar flares. X-rays are emitted in magnetic loops extending 0.1-10 R * above the stellar surface and thus have a favorable geometry to irradiate the protoplanetary disk. Several lines of evidence - fluorescent iron X-ray emission line, forbidden [NeII] infrared line, and excited molecular bands - support X-ray irradiation of cold material in some young systems. Several astrophysical consequences of X-ray irradiation are outlined. As ionization fractions need only reach 10-12 to induce the magnetorotational instability and associated turbulence, X-rays may be the principal determinant of the extent of the viscous "active zone" and laminar "dead zone" in the layered accretion disk. X-ray irradiation may thus play a major role in planet formation processes: particle settling; meter-size inspiral; protoplanetary migration; and dissipation of the gaseous disk.

  7. Course Manual for X-Ray Applications.

    ERIC Educational Resources Information Center

    Food and Drug Administration (DHEW), Rockville, MD. Bureau of Radiological Health.

    This publication is the third of three sequential course manuals for instructors in x-ray science and engineering. This course manual has been tested by introducing it into the Oregon State University curriculum. The publication is prepared for the purpose of improving the qualifications of x-ray users and to reduce the ionizing radiation exposure…

  8. Phased Contrast X-Ray Imaging

    ScienceCinema

    Erin Miller

    2012-12-31

    The Pacific Northwest National Laboratory is developing a range of technologies to broaden the field of explosives detection. Phased contrast X-ray imaging, which uses silicon gratings to detect distortions in the X-ray wave front, may be applicable to mail or luggage scanning for explosives; it can also be used in detecting other contraband, small-parts inspection, or materials characterization.

  9. Building X-ray tube based irradiators

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The construction of economical x-ray tube based irradiators in a variety of configurations is described using 1000 Watt x-ray tubes. Single tube, double tube, and four tube designs are described, as well as various cabinet construction techniques. Relatively high dose rates were achieved for small s...

  10. X-Ray Detection Visits the Classroom

    ERIC Educational Resources Information Center

    Peralta, Luis; Farinha, Ana; Pinto, Ana

    2008-01-01

    Film has been used to detect x-rays since the early days of their discovery by Rontgen. Although nowadays superseded by other techniques, film still provides a cheap means of x-ray detection, making it attractive in high-school or undergraduate university courses. If some sort of quantitative result is required, the film's optical absorbance or…

  11. X-ray spectroscopy of magnetic CVs

    NASA Astrophysics Data System (ADS)

    Matt, Giorgio

    I discuss two topics in X-ray spectroscopy of magnetic CVs: reflection from the white dwarf surface, and opacity effects in the post shock plasma. I also briefly mention future observational perspectives, with particular emphasis on the Constellation X-ray mission.

  12. Nearly Anastigmatic X-Ray Telescope

    NASA Technical Reports Server (NTRS)

    Korsch, D.

    1985-01-01

    Proposed X-ray telescope made of many concentric reflecting rings, each of which consists of two portions of cone. Proposed design is variation on conventional grazing incidence X-ray telescope, which has just one twosegment reflecting element but suffers from excessive astigmatism and field curvature. Using many short elements instead of single long element, new design gives nearly anastigmatic image.

  13. X-rays from intermediate mass stars

    NASA Astrophysics Data System (ADS)

    Robrade, Jan

    I will review the X-ray properties of intermediate mass stars and discuss possible X-ray generating mechanisms. Main-sequence stars of spectral type mid B to mid A neither drive sufficiently strong winds to produce shock generated X-rays, nor possess an outer convection zone to generate dynamo driven magnetic activity and coronae. Consequently they should be virtually X-ray dark and occasionally detected X-ray emission was usually attributed to undetected low-mass companions. However, in magnetic intermediate mass stars, the Ap/Bp stars, a different X-ray production mechanism may operate. It is termed the magnetically channeled wind-shock model, where the stellar wind from both hemispheres is channelled towards the equatorial plane, collides and forms a rigidly rotating disk around the star. The strong shocks of the nearly head-on wind collision as well as the existence of magnetically confined plasma in a dynamic circumstellar disk can lead to diverse X-ray phenomena. In this sense Ap/Bp stars bridge the 'classical' X-ray regimes of cool and hot stars.

  14. Motorized Beam Alignment of a Commercial X-ray Diffractometer

    NASA Technical Reports Server (NTRS)

    Van Zandt, Noah R.; Myers, James F.; Rogers, Richard B

    2013-01-01

    X-ray diffraction (XRD) is a powerful analysis method that allows researchers to noninvasively probe the crystalline structure of a material. This includes the ability to determine the crystalline phases present, quantify surface residual stresses, and measure the distribution of crystallographic orientations. The Structures and Materials Division at the NASA Glenn Research Center (GRC) heavily uses the on-site XRD lab to characterize advanced metal alloys, ceramics, and polymers. One of the x-ray diffractometers in the XRD lab (Bruker D8 Discover) uses three different x-ray tubes (Cu, Cr, and Mn) for optimal performance over numerous material types and various experimental techniques. This requires that the tubes be switched out and aligned between experiments. This alignment maximizes the x-ray tube s output through an iterative process involving four set screws. However, the output of the x-ray tube cannot be monitored during the adjustment process due to standard radiation safety engineering controls that prevent exposure to the x-ray beam when the diffractometer doors are open. Therefore, the adjustment process is a very tedious series of blind adjustments, each followed by measurement of the output beam using a PIN diode after the enclosure doors are shut. This process can take up to 4 hr to perform. This technical memorandum documents an in-house project to motorize this alignment process. Unlike a human, motors are not harmed by x-ray radiation of the energy range used in this instrument. Therefore, using motors to adjust the set screws will allow the researcher to monitor the x-ray tube s output while making interactive adjustments from outside the diffractometer. The motorized alignment system consists of four motors, a motor controller, and a hand-held user interface module. Our goal was to reduce the alignment time to less than 30 min. The time available was the 10-week span of the Lewis' Educational and Research Collaborative Internship Project (LERCIP

  15. Soft X-Ray Spectra of AGN Discovered Via Their Hard X-Ray

    NASA Technical Reports Server (NTRS)

    Schwartz, Daniel

    1998-01-01

    This final report is a study of the Active Galactic Nuclei (AGN). Investigation of the soft x-ray spectra of AGN were performed by using their hard x-ray emission. ROSAT observations of AGN was also performed, which allowed for the study of these x-ray spectra and the structures of 7 clusters of galaxies.

  16. The Advanced X-Ray Astrophysics Facility. Observing the Universe in X-Rays

    NASA Technical Reports Server (NTRS)

    Neal, V.

    1984-01-01

    An overview of the Advanced X ray Astronophysics Facility (AXAF) program is presented. Beginning with a brief introduction to X ray astrophysics, the AXAF observatory is described including the onboard instrumentation and system capabilities. Possible X ray sources suitable for AXAF observation are identified and defined.

  17. X-rays from hot subdwarfs

    NASA Astrophysics Data System (ADS)

    Mereghetti, Sandro; La Palombara, Nicola

    2016-09-01

    Thanks to the high sensitivity of the instruments on board the XMM-Newton and Chandra satellites, it has become possible to explore the properties of the X-ray emission from hot subdwarfs. The small but growing sample of hot subdwarfs detected in X-rays includes binary systems, in which the X-rays result from wind accretion onto a compact companion (white dwarf or neutron star), as well as isolated sdO stars in which X-rays are probably due to shock instabilities in the wind. X-ray observations of these low mass stars provide information which can be useful also for our understanding of the winds of more luminous and massive early-type stars and can lead to the discovery of particularly interesting binary systems.

  18. X-Rays from Green Pea Analogs

    NASA Astrophysics Data System (ADS)

    Brorby, Matthew

    2014-09-01

    X-rays may have contributed to the heating and reionization of the IGM in the early universe. High mass X-ray binaries (HMXB) within small, low-metallicity galaxies are expected to be the main source of X-rays at this time. Since studying these high-redshift galaxies is currently impossible, we turn to local analogs that have the same properties the galaxies in the early are expected to have. A number of recent studies have shown an enhanced number of HMXBs in nearby low metallicity galaxies. We propose to observe a sample of metal-deficient luminous compact galaxies (LCG) in order to determine if the X-ray luminosity is enhanced relative to SFR, thereby providing further evidence to the importance of X-rays in the early universe.

  19. X-ray emission from normal galaxies

    NASA Technical Reports Server (NTRS)

    Long, K. S.; Van Speybroeck, L. P.

    1983-01-01

    The results of Einstein Observatory studies of X-ray emission from normal galaxies, including the LMC and SMC, M31, M33, M101, NGC 247, M81 and M100, and N253 are surveyed. The X-ray luminosity of normal galaxies is proportional to their optical luminosity, revealing no strong dependence on galaxy type. The number of individual sources detected are comparable to the number of sources expected on mass considerations. There are substantial numbers of X-ray sources in the Magellanic Clouds with luminosities in the range 10 to the 35th-36th ergs/s, lower than most X-ray binaries but higher than known uncollapsed stellar systems. About seven X-ray sources with luminosities of at least 10 to the 39th ergs/s in the 0.5-3.0 keV band have been found in the arms of nearby spiral galaxies.

  20. Theoretical investigations of X-ray bursts

    NASA Technical Reports Server (NTRS)

    Taam, Ronald E.

    1987-01-01

    Current theoretical understanding of the X-ray burst phenomenon is reviewed, providing a framework in which the burst radiation can be used as a diagnostic of the fundamental properties of the underlying neutron star. The typical Type I X-ray burst is detected as a rapid increase in emission to a level about a factor of 10 above that seen during the quiescent state and recurs on time scales which range from several hours to several days. The thermonuclear flash model has successfully reproduced the basic features of the X-ray burst phenomenon and thereby provided strong theoretical evidence that neutron stars are involved. Topics covered include: theory of the emission spectrum; oscillation modes and prospects for diagnosing the thermal state of neutron stars through experiments on board the X-Ray Timing Explorer or the Advanced X-Ray Astrophysics Facility; applications to the mass and radius of a neutron star.

  1. White beam x-ray waveguide optics

    SciTech Connect

    Jarre, A.; Salditt, T.; Panzner, T.; Pietsch, U.; Pfeiffer, F.

    2004-07-12

    We report a white beam x-ray waveguide (WG) experiment. A resonant beam coupler x-ray waveguide (RBC) is used simultaneously as a broad bandpass (or multibandpass) monochromator and as a beam compressor. We show that, depending on the geometrical properties of the WG, the exiting beam consists of a defined number of wavelengths which can be shifted by changing the angle of incidence of the white x-ray synchrotron beam. The characteristic far-field pattern is recorded as a function of exit angle and energy. This x-ray optical setup may be used to enhance the intensity of coherent x-ray WG beams since the full energetic acceptance of the WG mode is transmitted.

  2. Polars - soft X-ray emitters?

    NASA Astrophysics Data System (ADS)

    Schwope, Axel

    2010-10-01

    The defining criterion of polars (AM Herculis stars) was their prominent soft X-ray emission, which led to numerous discoveries with the EINSTEIN, EXOSAT, ROSAT and EUVE satellites. XMM-Newton observations of those X-ray selected polars and genuine discoveries of new polar systems reveal growing evidence that the prevailence or even the existence of a soft X-ray component may be rather the exception than the rule. In the last decade polars were discovered in optical surveys like the SDSS and the CSS. Here we propose XMM-Newton observations of 5 optically selected polars to search for soft X-ray spectral components, answer the question why they escaped detection in past X-ray surveys and shed new light on the intrinsic energy distribution of polars.

  3. X-ray diagnostics of globular clusters

    NASA Technical Reports Server (NTRS)

    Grindlay, J. E.

    1982-01-01

    The presence of compact X-ray sources in globular clusters allows diagnostic studies of both the X-ray sources themselves and the globular clusters to be carried out. A review of much of this work, primarily based on Einstein X-ray observations and supporting studies of globular clusters at radio through UV wavelengths, is presented. The compact X-ray sources in globular clusters are found to be compact binaries containing neutron stars and - in a separate lower luminosity component of an apparently bimodal luminosity function - possibly white dwarfs. Implications for the formation and evolution of compact binary X-ray sources in globular clusters and in the galactic bulge are discussed. In particular, new evidence is presented that the galactic bulge sources may be compact binaries in the remnants of disrupted globular clusters.

  4. Apollo 15 X-ray fluorescence experiment

    NASA Technical Reports Server (NTRS)

    Adler, I.; Trombka, J.; Gerard, J.; Schmadebeck, R.; Lowman, P.; Blodgett, H.; Yin, L.; Eller, E.; Lamothe, R.; Gorenstein, P.

    1971-01-01

    The X-ray fluorescence spectrometer, carried in the SIM bay of the command service module was employed principally for compositional mapping of the lunar surface while in lunar orbit, and secondarily, for X-ray astronomical observations during the trans-earth coast. The lunar surface measurements involved observations of the intensity and characteristics energy distribution of the secondary or fluorescent X-rays produced by the interaction of solar X-rays with the lunar surface. The astronomical observations consisted of relatively long periods of measurements of X-rays from pre-selected galactic sources such as Cyg-X-1 and Sco X-1 as well as from the galactic poles.

  5. Instrument Development for X-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Ramsey, Brian; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Current x-ray observatories such as Chandra and XMM-Newton have delivered spectacular results at soft-x-ray energies thanks to their grazing incidence mirrors. To continue these advances necessitates the development of mirrors with even larger collecting areas, yet within manageable weights and budgets, and focal detectors with improved energy resolution. At higher energies where x-ray critical-grazing angles become very small, x-ray optics have typically not been employed and thus this region remains relatively unexplored at high sensitivity levels and fine angular resolutions. This situation is changing with the development of hard-x-ray optics carried aloft by high-altitude balloons, which promise to bring about dramatic advances. This presentation will review developments in all these areas.

  6. Perspectives of medical X-ray imaging

    NASA Astrophysics Data System (ADS)

    Freudenberger, J.; Hell, E.; Knüpfer, W.

    2001-06-01

    While X-ray image intensifiers (XII), storage phosphor screens and film-screen systems are still the work horses of medical imaging, large flat panel solid state detectors using either scintillators and amorphous silicon photo diode arrays (FD-Si), or direct X-ray conversion in amorphous selenium are reaching maturity. The main advantage with respect to image quality and low patient dose of the XII and FD-Si systems is caused by the rise of the Detector Quantum Efficiency originating from the application of thick needle-structured phosphor X-ray absorbers. With the detectors getting closer to an optimal state, further progress in medical X-ray imaging requires an improvement of the usable source characteristics. The development of clinical monochromatic X-ray sources of high power would not only allow an improved contrast-to-dose ratio by allowing smaller average photon energies in applications but would also lead to new imaging techniques.

  7. Guides for intraoral x-rays

    SciTech Connect

    Ogunsunlade, O.A.

    1988-03-15

    An h-shaped exterior guide for use in combination with a SNAP-A-RAY film holder for accurately aligning a beam from an X-ray cone with an X-ray film during the process of taking intraoral periapical dental X-rays of the maxillary and mandibular teeth is described comprising: a first guide arm laterally and detachably connectable through a housing means; a traverse arm extending from the midpoint of the first guide arm and parallel to the X-ray film; and a second guide arm extending perpendicularly from an end of the traverse arm toward a plane of the X-ray film and in parallel relation up to an end point of the first guide arm.

  8. Observational Aspects of Hard X-ray Polarimetry

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Tanmoy

    2016-04-01

    of such hard X-ray telescopes, which may provide sensitive polarization measurements due to flux concentration in hard X-rays with a very low background. On the other hand, such a configuration ensures implementation of an optimized geometry close to an ideal one for the Compton polarimeters. In this context, we initiated the development of a focal plane Compton polarimeter, consisting of a plastic scatterer surrounded by a cylindrical array of CsI(Tl) scintillators. Geant‑4 simulations of the planned configuration estimates 1% MDP for a 100 mCrab source in 1 million seconds of exposure. Sensitivity of the instrument is found to be critically dependent on the lower energy detection limit of the plastic scatterer; lower the threshold, better is the sensitivity. In the actual experiment, the plastic is readout by a photomultiplier tube procured from Saint-Gobain. We carried out extensive experiments to characterize the plastic especially for lower energy depositions. The CsI(Tl) scintillators are readout by Si photomultipliers (SiPM). SiPMs are small in size and robust and therefore provide the compactness necessary for the designing of focal plane detectors. Each of the CsI(Tl)-SiPM systems was characterized precisely to estimate their energy threshold and detection probability along the length of the scintillators away from SiPM. Finally, we integrated the Compton polarimeter and tested its response to polarized and unpolarized radiation and compared the experimental results with Geant‑4 simulation. Despite the growing realization of the scientific values of X-ray polarimetry and the efforts in developing sensitive X-ray polarimeters, there has not been a single dedicated X-ray polarimetry mission planned in near future. In this scenario, it is equally important to attempt polarization measurements from the existing or planned instruments which are not meant for X-ray polarization measurements but could be sensitive to it. There have been several attempts in past

  9. Quantitative Measurements of X-ray Intensity

    SciTech Connect

    Haugh, M. J., Schneider, M.

    2011-09-01

    This chapter describes the characterization of several X-ray sources and their use in calibrating different types of X-ray cameras at National Security Technologies, LLC (NSTec). The cameras are employed in experimental plasma studies at Lawrence Livermore National Laboratory (LLNL), including the National Ignition Facility (NIF). The sources provide X-rays in the energy range from several hundred eV to 110 keV. The key to this effort is measuring the X-ray beam intensity accurately and traceable to international standards. This is accomplished using photodiodes of several types that are calibrated using radioactive sources and a synchrotron source using methods and materials that are traceable to the U.S. National Institute of Standards and Technology (NIST). The accreditation procedures are described. The chapter begins with an introduction to the fundamental concepts of X-ray physics. The types of X-ray sources that are used for device calibration are described. The next section describes the photodiode types that are used for measuring X-ray intensity: power measuring photodiodes, energy dispersive photodiodes, and cameras comprising photodiodes as pixel elements. Following their description, the methods used to calibrate the primary detectors, the power measuring photodiodes and the energy dispersive photodiodes, as well as the method used to get traceability to international standards are described. The X-ray source beams can then be measured using the primary detectors. The final section then describes the use of the calibrated X-ray beams to calibrate X-ray cameras. Many of the references are web sites that provide databases, explanations of the data and how it was generated, and data calculations for specific cases. Several general reference books related to the major topics are included. Papers expanding some subjects are cited.

  10. Grazing incidence telescopes for x-ray astronomy

    NASA Astrophysics Data System (ADS)

    Gorenstein, Paul

    2012-01-01

    With grazing incidence telescopes, x-ray astronomy became a major branch of astrophysics. They are an indispensable tool in the study of >106 K thermal and non-thermal high energy phenomena occurring in objects from the solar system to the most distant sites in the universe. They have shed light upon dark matter and dark energy. Four cosmic missions with focusing grazing incidence x-ray telescopes based upon the Wolter 1 geometry are currently in space. They include two observatory class facilities launched in 1999, NASA's high resolution x-ray and ESA's high throughput XMM-Newton. Two others are Japan's Suzaku, performing a variety of studies, and the Swift XRT, which finds precise positions for the x-ray afterglows of gamma-ray bursts. Four new cosmic missions with Wolter-like focusing telescopes are scheduled for launch. They will provide much broader bandwidth (NuSTAR and Astro-H), perform a new sky survey with more exposure time and a broader energy range than previous surveys (eROSITA), have an imaging detector with much better energy resolution (Astro-H), and measure polarization (GEMS). The Kirkpatrick-Baez and the lobster-eye are two types of potentially useful grazing incidence telescopes that have not yet been in orbit. It may not be possible to improve upon Chandra's 0.5 arcsec resolution without new technology.

  11. THE SWIFT/BAT HARD X-RAY TRANSIENT MONITOR

    SciTech Connect

    Krimm, H. A.; Holland, S. T.; Corbet, R. H. D.; Pearlman, A. B.; Baumgartner, W. H.; Cummings, J. R.; Romano, P.; Kennea, J. A.; Bloom, J. S.; Barthelmy, S. D.; Gehrels, N.; Lien, A. Y.; Markwardt, C. B.; Ukwatta, T. N.; Palmer, D. M.; Sakamoto, T.; Stamatikos, M.

    2013-11-01

    The Swift/Burst Alert Telescope (BAT) hard X-ray transient monitor provides near real-time coverage of the X-ray sky in the energy range 15-50 keV. The BAT observes 88% of the sky each day with a detection sensitivity of 5.3 mCrab for a full-day observation and a time resolution as fine as 64 s. The three main purposes of the monitor are (1) the discovery of new transient X-ray sources, (2) the detection of outbursts or other changes in the flux of known X-ray sources, and (3) the generation of light curves of more than 900 sources spanning over eight years. The primary interface for the BAT transient monitor is a public Web site. Between 2005 February 12 and 2013 April 30, 245 sources have been detected in the monitor, 146 of them persistent and 99 detected only in outburst. Among these sources, 17 were previously unknown and were discovered in the transient monitor. In this paper, we discuss the methodology and the data processing and filtering for the BAT transient monitor and review its sensitivity and exposure. We provide a summary of the source detections and classify them according to the variability of their light curves. Finally, we review all new BAT monitor discoveries. For the new sources that are previously unpublished, we present basic data analysis and interpretations.

  12. The Swift/BAT Hard X-ray Transient Monitor

    NASA Technical Reports Server (NTRS)

    Krimm, H. A.; Holland, S. T.; Corbet, R.H.D.; Pearlman, A. B.; Romano, P.; Kennea, J. A.; Bloom, J. S.; Barthelmy, S. D.; Baumgartner, W. H.; Cummings, J. R.; Gehrels, N.; Lien, A. Y.; Markwardt, C. B.; Palmer, D. M.; Sakamoto, T.; Stamatikos, M.; Ukwatta, N.

    2013-01-01

    The Swift/Burst Alert Telescope (BAT) hard X-ray transient monitor provides near real-time coverage of the X-ray sky in the energy range 15-50 keV. The BAT observes 88% of the sky each day with a detection sensitivity of 5.3 mCrab for a full-day observation and a time resolution as ne as 64 seconds. The three main purposes of the monitor are (1) the discovery of new transient X-ray sources, (2) the detection of outbursts or other changes in the ux of known X-ray sources, and (3) the generation of light curves of more than 900 sources spanning over eight years. The primary interface for the BAT transient monitor is a public web page. Since 2005 February, 242 sources have been detected in the monitor, 149 of them persistent and 93 detected only in outburst. Among these sources, 16 were previously unknown and discovered in the transient monitor. In this paper, we discuss the methodology and the data processing and ltering for the BAT transient monitor and review its sensitivity and exposure. We provide a summary of the source detections and classify them according to the variability of their light curves. Finally, we review all new BAT monitor discoveries and present basic data analysis and interpretations for those sources with previously unpublished results.

  13. The Swift-BAT Hard X-Ray Transient Monitor

    NASA Technical Reports Server (NTRS)

    Krimm, H. A.; Holland, S. T.; Corbet, R. H. D.; Pearlman, A. B.; Romano, P.; Kennea, J. A.; Bloom, J. S.; Barthelmy, S. D.; Baumgartner, W. H.; Cummings, J. R.; Gehrels, N.; Lien, A. Y.; Markwardt, C. B.; Palmer, D. M.; Sakamoto, T.; Stamatikos, M.; Ukwatta, T. N.

    2013-01-01

    The Swift/Burst Alert Telescope (BAT) hard X-ray transient monitor provides near real-time coverage of the X-ray sky in the energy range 15-50 keV. The BAT observes 88% of the sky each day with a detection sensitivity of 5.3 mCrab for a full-day observation and a time resolution as fine as 64 s. The three main purposes of the monitor are (1) the discovery of new transient X-ray sources, (2) the detection of outbursts or other changes in the flux of known X-ray sources, and (3) the generation of light curves of more than 900 sources spanning over eight years. The primary interface for the BAT transient monitor is a public Web site. Between 2005 February 12 and 2013 April 30, 245 sources have been detected in the monitor, 146 of them persistent and 99 detected only in outburst. Among these sources, 17 were previously unknown and were discovered in the transient monitor. In this paper, we discuss the methodology and the data processing and filtering for the BAT transient monitor and review its sensitivity and exposure.We provide a summary of the source detections and classify them according to the variability of their light curves. Finally, we review all new BAT monitor discoveries. For the new sources that are previously unpublished, we present basic data analysis and interpretations.

  14. X-ray lasers for structural and dynamic biology

    NASA Astrophysics Data System (ADS)

    Spence, J. C. H.; Weierstall, U.; Chapman, H. N.

    2012-10-01

    Research opportunities and techniques are reviewed for the application of hard x-ray pulsed free-electron lasers (XFEL) to structural biology. These include the imaging of protein nanocrystals, single particles such as viruses, pump-probe experiments for time-resolved nanocrystallography, and snapshot wide-angle x-ray scattering (WAXS) from molecules in solution. The use of femtosecond exposure times, rather than freezing of samples, as a means of minimizing radiation damage is shown to open up new opportunities for the molecular imaging of biochemical reactions at room temperature in solution. This is possible using a ‘diffract-and-destroy’ mode in which the incident pulse terminates before radiation damage begins. Methods for delivering hundreds of hydrated bioparticles per second (in random orientations) to a pulsed x-ray beam are described. New data analysis approaches are outlined for the correlated fluctuations in fast WAXS, for protein nanocrystals just a few molecules on a side, and for the continuous x-ray scattering from a single virus. Methods for determining the orientation of a molecule from its diffraction pattern are reviewed. Methods for the preparation of protein nanocrystals are also reviewed. New opportunities for solving the phase problem for XFEL data are outlined. A summary of the latest results is given, which now extend to atomic resolution for nanocrystals. Possibilities for time-resolved chemistry using fast WAXS (solution scattering) from mixtures is reviewed, toward the general goal of making molecular movies of biochemical processes.

  15. The soft x ray telescope for Solar-A

    NASA Technical Reports Server (NTRS)

    Brown, W. A.; Acton, L. W.; Bruner, M. E.; Lemen, J. R.; Strong, K. T.

    1989-01-01

    The Solar-A satellite being prepared by the Institute for Sapce and Astronautical Sciences (ISAS) in Japan is dedicated to high energy observations of solar flares. The Soft X Ray Telescope (SXT) is being prepared to provide filtered images in the 2 to 60 A interval. The flight model is now undergoing tests in the 1000 foot tunnel at MSFC. Launch will be in September 1991. Earlier resolution and efficiency tests on the grazing incidence mirror have established its performance in soft x rays. The one-piece, two mirror grazing incidence telescope is supported in a strain free mount separated from the focal plane assembly by a carbon-epoxy metering tube whose windings and filler are chosen to minimize thermal and hygroscopic effects. The CCD detector images both the x ray and the concentric visible light aspect telescope. Optical filters provide images at 4308 and 4700 A. The SXT will be capable of producing over 8000 of the smallest partial frame images per day, or fewer but larger images, up to 1024 x 1024 pixel images. Image sequence with two or more of the five x ray analysis filters, with automatic exposure compensation to optimize the charge collection by the CCD detector, will be used to provide plasma diagnostics. Calculations using a differential emission measure code were used to optimize filter selection over the range of emission measure variations and to avoid redundancy, but the filters were chosen primarily to give ratios that are monotonic in plasma temperature.

  16. The peculiar optical-UV X-ray spectra of the X-ray weak quasar PG 0043+039

    NASA Astrophysics Data System (ADS)

    Kollatschny, W.; Schartel, N.; Zetzl, M.; Santos-Lleó, M.; Rodríguez-Pascual, P. M.; Ballo, L.; Talavera, A.

    2016-01-01

    Context. The object PG 0043+039 has been identified as a broad absorption line (BAL) quasar based on its UV spectra. However, this optical luminous quasar has not been detected before in deep X-ray observations, making it the most extreme X-ray weak quasar known today. Aims: This study aims to detect PG 0043+039 in a deep X-ray exposure. The question is what causes the extreme X-ray weakness of PG 0043+039? Does PG 0043+039 show other spectral or continuum peculiarities? Methods: We took simultaneous deep X-ray spectra with XMM-Newton, far-ultraviolet (FUV) spectra with the Hubble Space Telescope (HST), and optical spectra of PG 0043+039 with the Hobby-Eberly Telescope (HET) and Southern African Large Telescope (SALT) in July, 2013. Results: We have detected PG 0043+039 in our X-ray exposure taken in 2013. We presented our first results in a separate paper (Kollatschny et al. 2015). PG 0043+039 shows an extreme αox gradient (αox = -2.37). Furthermore, we were able to verify an X-ray flux of this source in a reanalysis of the X-ray data taken in 2005. At that time, it was fainter by a factor of 3.8 ±0.9 with αox = -2.55. The X-ray spectrum is compatible with a normal quasar power-law spectrum (Γ = 1.70-0.45+0.57) with moderate intrinsic absorption (NH = 5.5-3.9+6.9 × 1021 cm-2) and reflection. The UV/optical flux of PG 0043+039 has increased by a factor of 1.8 compared to spectra taken in the years 1990-1991. The FUV spectrum is highly peculiar and dominated by broad bumps besides Lyα. There is no detectable Lyman edge associated with the BAL absorbing gas seen in the CIV line. PG 0043+039 shows a maximum in the overall continuum flux at around λ ≈ 2500 Å in contrast to most other AGN where the maximum is found at shorter wavelengths. All the above is compatible with an intrinsically X-ray weak quasar, rather than an absorbed X-ray emission. Besides strong FeII multiplets and broad Balmer and HeI lines in the optical band we only detect a narrow [O ii

  17. Energy dependence measurement of small-type optically stimulated luminescence (OSL) dosimeter by means of characteristic X-rays induced with general diagnostic X-ray equipment.

    PubMed

    Takegami, Kazuki; Hayashi, Hiroaki; Okino, Hiroki; Kimoto, Natsumi; Maehata, Itsumi; Kanazawa, Yuki; Okazaki, Tohru; Hashizume, Takuya; Kobayashi, Ikuo

    2016-01-01

    For X-ray inspections by way of general X-ray equipment, it is important to measure an entrance-skin dose. Recently, a small optically stimulated luminescence (OSL) dosimeter was made commercially available by Landauer, Inc. The dosimeter does not interfere with the medical images; therefore, it is expected to be a convenient detector for measuring personal exposure doses. In an actual clinical situation, it is assumed that X-rays of different energies will be detected by a dosimeter. For evaluation of the exposure dose measured by a dosimeter, it is necessary to know the energy dependence of the dosimeter. Our aim in this study was to measure the energy dependence of the OSL dosimeter experimentally in the diagnostic X-ray region. Metal samples weighing several grams were irradiated and, in this way, characteristic X-rays having energies ranging from 8 to 85 keV were generated. Using these mono-energetic X-rays, the dosimeter was irradiated. Simultaneously, the fluence of the X-rays was determined with a CdTe detector. The energy-dependent efficiency of the dosimeter was derived from the measured value of the dosimeter and the fluence. Moreover, the energy-dependent efficiency was calculated by Monte-Carlo simulation. The efficiency obtained in the experiment was in good agreement with that of the simulation. In conclusion, our proposed method, in which characteristic X-rays are used, is valuable for measurement of the energy dependence of a small OSL dosimeter in the diagnostic X-ray region. PMID:26589210

  18. Large area soft x-ray collimator to facilitate x-ray optics testing

    NASA Technical Reports Server (NTRS)

    Espy, Samuel L.

    1994-01-01

    The first objective of this program is to design a nested conical foil x-ray optic which will collimate x-rays diverging from a point source. The collimator could then be employed in a small, inexpensive x-ray test stand which would be used to test various x-ray optics and detector systems. The second objective is to demonstrate the fabrication of the x-ray reflectors for this optic using lacquer-smoothing and zero-stress electroforming techniques.

  19. Human physiological responses to cold exposure: Acute responses and acclimatization to prolonged exposure.

    PubMed

    Castellani, John W; Young, Andrew J

    2016-04-01

    Cold exposure in humans causes specific acute and chronic physiological responses. This paper will review both the acute and long-term physiological responses and external factors that impact these physiological responses. Acute physiological responses to cold exposure include cutaneous vasoconstriction and shivering thermogenesis which, respectively, decrease heat loss and increase metabolic heat production. Vasoconstriction is elicited through reflex and local cooling. In combination, vasoconstriction and shivering operate to maintain thermal balance when the body is losing heat. Factors (anthropometry, sex, race, fitness, thermoregulatory fatigue) that influence the acute physiological responses to cold exposure are also reviewed. The physiological responses to chronic cold exposure, also known as cold acclimation/acclimatization, are also presented. Three primary patterns of cold acclimatization have been observed, a) habituation, b) metabolic adjustment, and c) insulative adjustment. Habituation is characterized by physiological adjustments in which the response is attenuated compared to an unacclimatized state. Metabolic acclimatization is characterized by an increased thermogenesis, whereas insulative acclimatization is characterized by enhancing the mechanisms that conserve body heat. The pattern of acclimatization is dependent on changes in skin and core temperature and the exposure duration. PMID:26924539

  20. Acute eosinophilic pneumonia associated with glyphosate-surfactant exposure.

    PubMed

    De Raadt, Wanda M; Wijnen, Petal A; Bast, Aalt; Bekers, Otto; Drent, Marjolein

    2015-01-01

    We report a case of a female patient who developed acute eosinophilic pneumonia (AEP) after recent onset of smoking and exposure to glyphosate-surfactant.The additional exposure associated with the recent start of smoking may have contributed to the development and/or severity of AEP.A clinical relapse after re-challenge four years later both with smoking and glyphosate-surfactant made the association highly likely.Respiratory distress is a factor of poor outcome and mortality after ingestion of glyphosate-surfactant.This case highlights the importance of a thorough exposure history e.g., possible occupational and environmental exposures together with drug-intake.Genotyping should be considered in cases of severe unexplained pulmonary damage. PMID:26278698

  1. [An asylum seeker with an abnormal chest X-ray].

    PubMed

    Akkerman, Onno W; Rook, Mieneke; van der Werf, Tjip S

    2016-01-01

    A 29-year-old pregnant woman from Syria was screened for tuberculosis upon arrival in the Netherlands. The chest X-ray showed a smooth sharply demarcated mass in her left upper lobe. A low-dose CT showed that the mass was lobulated and surrounded by a hyperlucent pulmonary segment. To protect the foetus from further exposure to radiation, an MRI was performed, which confirmed bronchial atresia with a mucocele of the distal bronchus. PMID:27096483

  2. Recent X-ray Variability of Eta Car Approaching The X-ray Eclipse

    NASA Technical Reports Server (NTRS)

    Corcoran, M.; Swank, J. H.; Ishibashi, K.; Gull, T.; Humphreys, R.; Damineli, A.; Walborn, N.; Hillier, D. J.; Davidson, K.; White, S. M.

    2002-01-01

    We discuss recent X-ray spectral variability of the supermassive star Eta Car in the interval since the last X-ray eclipse in 1998. We concentrate on the interval just prior to the next X-ray eclipse which is expected to occur in June 2003. We compare the X-ray behavior during the 2001-2003 cycle with the previous cycle (1996-1998) and note similarities and differences in the temporal X-ray behavior. We also compare a recent X-ray observation of Eta Car obtained with the Chandra high energy transmission grating in October 2002 with an earlier observation from Nov 2002, and interpret these results in terms of the proposed colliding wind binary model for the star. In addition we discuss planned observations for the upcoming X-ray eclipse.

  3. Selection of patients for x-ray examinations: Chest x-ray screening examinations

    SciTech Connect

    Not Available

    1983-08-01

    Five chest x-ray referral criteria statements have been developed and unanimously endorsed by a panel of physicians convened as part of a major voluntary cooperative effort between FDA's National Center for Devices and Radiological Health (NCDRH) and the medical professional community. The referral criteria statements include recommendations concerning the following applications of chest x-ray screening: mandated routine chest x-ray screening examinations, routine prenatal chest x-ray examinations, routine hospital admission chest x-ray examinations, chest x-ray examinations for tuberculosis detection and control, and routine chest x-ray examinations for occupational medicine. The complete text of the five referral criterial statements plus a brief discussion of the rationale for the development of each statement is presented.

  4. X-ray magnetic circular dichroism imaging with hard X-rays.

    PubMed

    Sato, K; Ueji, Y; Okitsu, K; Matsushita, T; Amemiya, Y

    2001-05-01

    X-ray polarization-contrast images resulting from X-ray magnetic circular dichroism (XMCD) in the hard X-ray region have been successfully recorded for the first time. The apparatus used consisted of an X-ray polarizer, double X-ray phase retarders, and a high-spatial-resolution X-ray charge-coupled-device detector. The sample used was a hexagonal-close-packed cobalt polycrystal foil having a thickness of about 4 microns. The X-ray polarization-contrast image resulting from XMCD was observed at a photon energy of 10 eV above the cobalt K-absorption edge (7709 eV). The observed contrast in the image was reversed by inversion of the magnetic field. Furthermore, the contrast was reversed again at a photon energy of 32 eV above the cobalt K-absorption edge. PMID:11486407

  5. Neurobehavioral effects of acute styrene exposure in fiberglass boatbuilders

    SciTech Connect

    Letz, R.; Mahoney, F.C.; Hershman, D.L.; Woskie, S.; Smith, T.J. )

    1990-11-01

    A field investigation of the effects of acute exposure to styrene among fiberglass boatbuilders was performed. Personal samples of styrene in breathing zone air and postshift urinary mandelic acid were collected for 105 workers exposed and not exposed to styrene in 6 fiberglass boatbuilding companies in New England. Three tests from the computerized Neurobehavioral Evaluation System (NES) were performed by the subjects in the morning before exposure to styrene, near midday, and at the end of the work day. Duration of exposure averaged 2.9 years (SD = 4.6), 8-hour TWA styrene exposure averaged 29.9 ppm (SD = 36.2), and urinary mandelic acid averaged 347 mg/g creatinine (SD = 465). Regression analyses indicated a statistically significant relationship between postshift performance on the Symbol-Digit test and both acute styrene exposure and mandelic acid. Other analyses comparing workers exposed to less than 50 ppm and greater than 50 ppm styrene also showed a significant effect on Symbol-Digit performance. All three NES tests showed test-retest correlation coefficients above .80, and ease of use for collection of neurobehavioral data under field conditions was demonstrated.

  6. Toward active x-ray telescopes

    NASA Astrophysics Data System (ADS)

    O'Dell, Stephen L.; Atkins, Carolyn; Button, Timothy W.; Cotroneo, Vincenzo; Davis, William N.; Doel, Peter; Feldman, Charlotte H.; Freeman, Mark D.; Gubarev, Mikhail V.; Kolodziejczak, Jeffery J.; Michette, Alan G.; Ramsey, Brian D.; Reid, Paul B.; Rodriguez Sanmartin, Daniel; Saha, Timo T.; Schwartz, Daniel A.; Trolier-McKinstry, Susan; Wilke, Rudeger H. T.; Willingale, Richard; Zhang, William W.

    2011-09-01

    Future x-ray observatories will require high-resolution (< 1") optics with very-large-aperture (> 25 m2) areas. Even with the next generation of heavy-lift launch vehicles, launch-mass constraints and aperture-area requirements will limit the areal density of the grazing-incidence mirrors to about 1 kg/m2 or less. Achieving sub-arcsecond x-ray imaging with such lightweight mirrors will require excellent mirror surfaces, precise and stable alignment, and exceptional stiffness or deformation compensation. Attaining and maintaining alignment and figure control will likely involve active (in-space adjustable) x-ray optics. In contrast with infrared and visible astronomy, active optics for x-ray astronomy is in its infancy. In the middle of the past decade, two efforts began to advance technologies for adaptive x-ray telescopes: The Smart X-ray Optics (SXO) Basic Technology project in the United Kingdom (UK) and the Generation-X (Gen-X) concept studies in the United States (US). This paper discusses relevant technological issues and summarizes progress toward active x-ray telescopes.

  7. Toward Adaptive X-Ray Telescopes

    NASA Technical Reports Server (NTRS)

    O'Dell, Stephen L.; Atkins, Carolyn; Button, Tim W.; Cotroneo, Vincenzo; Davis, William N.; Doel, Peer; Feldman, Charlotte H.; Freeman, Mark D.; Gubarev, Mikhail V.; Kolodziejczak, Jeffrey J.; Michette, Alan G.; Ramsey, Brian D.; Reid, Paul B.; Rodriguez Sanmartin, Daniel; Saha, Timo T.; Schwartz, Daniel A.; Trolier-McKinstry, Susan; Wilke, Rudeger H. T.; Willingale, Richard; Zhang, William W.

    2011-01-01

    Future x-ray observatories will require high-resolution (less than 1 inch) optics with very-large-aperture (greater than 25 square meter) areas. Even with the next generation of heavy-lift launch vehicles, launch-mass constraints and aperture-area requirements will limit the surface areal density of the grazing-incidence mirrors to about 1 kilogram per square meter or less. Achieving sub-arcsecond x-ray imaging with such lightweight mirrors will require excellent mirror surfaces, precise and stable alignment, and exceptional stiffness or deformation compensation. Attaining and maintaining alignment and figure control will likely involve adaptive (in-space adjustable) x-ray optics. In contrast with infrared and visible astronomy, adaptive optics for x-ray astronomy is in its infancy. In the middle of the past decade, two efforts began to advance technologies for adaptive x-ray telescopes: The Generation-X (Gen-X) concept studies in the United States, and the Smart X-ray Optics (SXO) Basic Technology project in the United Kingdom. This paper discusses relevant technological issues and summarizes progress toward adaptive x-ray telescopes.

  8. X-rays and Planet Formation

    NASA Astrophysics Data System (ADS)

    Feigelson, E. D.

    2005-12-01

    Planets form in cold circumstellar disks that can not emit X-rays. Nonetheless, X-ray band studies may have profound implications for the physical processes of planet formation in several ways. Observations of young stellar clusters, such as the recent Chandra Orion Ultradeep Project (COUP), demonstrate that all pre-main sequence stars produce powerful magnetic reconnection flares during the planet formation era. Calculations indicate that the X-rays can penetrate deeply into protoplanetary disks and will be the dominant source of gas ionization. COUP observations of fluorescent line emission in heavy disk stars and soft X-ray absorption in proplyds demonstrate that disk irradiation by X-rays does in fact occur. This may induce MHD turbulence in disk gases, which may substantially affect planetesimal growth and protoplanet migration. X-ray flares or associated shock waves may flash melt dustballs into chondrules, and spallation by energetic flare particles may generate shortlived radioactive isotopes which are prevalent in the meteoritic record. X-ray surveys are also useful for locating older stellar systems where the protoplanetary disk is dissipating but magnetic flaring continues. Infrared studies of such systems show a great diversity of older disk properties. The planned Constellation-X mission will propel all of these investigations in powerful ways. For example, reverberation mapping of fluorescent line emission following flares could give unique insights into the structure of the gaseous components of protoplanetary disks.

  9. X-ray monitoring for astrophysical applications

    NASA Astrophysics Data System (ADS)

    Pina, L.; Burrows, D.; Cash, W.; Cerna, D.; Gorenstein, P.; Hudec, R.; Inneman, A.; Jakubek, J.; Marsikova, V.; Sieger, L.; Tichy, V.

    2014-09-01

    This work addresses the issue of X-ray monitoring for astrophysical applications. The proposed wide-field optical system has not been used in space yet. The proposed novel approach is based on the use of 1D "Lobster eye" optics in combination with Timepix X-ray detector in the energy range 3 - 40 keV. The proposed project includes theoretical study and a functional sample of the Timepix X-ray detector with multifoil wide-field X-ray "Lobster eye" optics. Using optics to focus X-rays on a detector is the only solution in cases the intensity of impinging X-ray radiation is below the sensitivity of the detector, e.g. while monitoring astrophysical objects in space, or phenomena in the Earth's atmosphere. The optical system could be used in a student rocket experiment at University of Colorado. Ideal opportunity is to extend the CubeSat of Pennsylvania State University with the hard X-ray telescope demonstrator consisting of an optical module and Timepix detector.

  10. Toward Active X-ray Telescopes II

    NASA Technical Reports Server (NTRS)

    O'Dell, Stephen L.; Aldroft, Thomas L.; Atkins, Carolyn; Button, Timothy W.; Cotroneo, Vincenzo; Davis, William N.; Doel, Peter; Feldman, Charlotte H.; Freeman, Mark D.; Gubarev, Mikhail V.; Johnson-Wilke, Raegan L.; Kolodziejczak, Jeffery J.; Lillie, Charles F.; Michette, Alan G.; Ramsey, Brian D.; Reid, Paul B.; Sanmartin, Daniel Rodriguez; Saha, Timo T.; Schwartz, Daniel A.; Trolier-McKinstry, Susan E.; Ulmer, Melville P.; Wilke, Rudeger H. T.; Willingale, Richard; Zhang, William W.

    2012-01-01

    In the half century since the initial discovery of an astronomical (non-solar) x-ray source, the sensitivity for detection of cosmic x-ray sources has improved by ten orders of magnitude. Largely responsible for this dramatic progress has been the refinement of the (grazing-incidence) focusing x-ray telescope. The future of x-ray astronomy relies upon the development of x-ray telescopes with larger aperture areas (greater than 1 m2) and finer angular resolution (less than 1.). Combined with the special requirements of grazing-incidence optics, the mass and envelope constraints of space-borne telescopes render such advances technologically challenging.requiring precision fabrication, alignment, and assembly of large areas (greater than 100 m2) of lightweight (approximately 1 kg m2 areal density) mirrors. Achieving precise and stable alignment and figure control may entail active (in-space adjustable) x-ray optics. This paper discusses relevant programmatic and technological issues and summarizes progress toward active x-ray telescopes.

  11. Technological Challenges to X-Ray FELs

    SciTech Connect

    Nuhn, Heinz-Dieter

    1999-09-16

    There is strong interest in the development of x-ray free electron lasers (x-ray FELs). The interest is driven by the scientific opportunities provided by intense, coherent x-rays. An x-ray FEL has all the characteristics of a fourth-generation source: brightness several orders of magnitude greater than presently achieved in third-generation sources, full transverse coherence, and sub-picosecond long pulses. The SLAC and DESY laboratories have presented detailed design studies for X-Ray FEL user facilities around the 0.1 nm wavelength-regime (LCLS at SLAC, TESLA X-Ray FEL at DESY). Both laboratories are engaged in proof-of-principle experiments are longer wavelengths (TTF FEL Phase I at 71 nm, VISA at 600-800 nm) with results expected in 1999. The technologies needed to achieve the proposed performances are those of bright electron sources, of acceleration systems capable of preserving the brightness of the source, and of undulators capable of meeting the magnetic and mechanical tolerances that are required for operation in the SASE mode. This paper discusses the technological challenges presented by the X-Ray FEL projects.

  12. Technological challenges to X-ray FELs

    NASA Astrophysics Data System (ADS)

    Nuhn, Heinz-Dieter

    2000-05-01

    There is strong interest in the development of X-ray Free Electron Lasers (X-ray FELs). The interest is driven by the scientific opportunities provided by intense, coherent X-rays. An X-ray FEL has all the characteristics of a fourth-generation source: brightness several orders of magnitude greater than presently achieved in third-generation sources, full transverse coherence, and sub-picosecond long pulses. The SLAC and DESY laboratories have presented detailed design studies for X-ray FEL user-facilities around the 0.1 nm wavelength regime (LCLS at SLAC, TESLA X-ray FEL at DESY). Both laboratories are engaged in proof-of-principle experiments at longer wavelengths (TTF FEL Phase I at 71 nm, VISA at 600-800 nm) with results expected in 1999. The technologies needed to achieve the proposed performances are those of bright electron sources, of acceleration systems capable of preserving the brightness of the source, and of undulators capable of meeting the magnetic and mechanical tolerances that are required for operation in the SASE mode. This paper discusses the technological challenges presented by the X-ray FEL projects.

  13. GEMS X-ray Polarimeter Performance Simulations

    NASA Technical Reports Server (NTRS)

    Baumgartner, Wayne H.; Strohmayer, Tod; Kallman, Tim; Black, J. Kevin; Hill, Joanne; Swank, Jean

    2012-01-01

    The Gravity and Extreme Magnetism Small explorer (GEMS) is an X-ray polarization telescope selected as a NASA small explorer satellite mission. The X-ray Polarimeter on GEMS uses a Time Projection Chamber gas proportional counter to measure the polarization of astrophysical X-rays in the 2-10 keV band by sensing the direction of the track of the primary photoelectron excited by the incident X-ray. We have simulated the expected sensitivity of the polarimeter to polarized X-rays. We use the simulation package Penelope to model the physics of the interaction of the initial photoelectron with the detector gas and to determine the distribution of charge deposited in the detector volume. We then model the charge diffusion in the detector,and produce simulated track images. Within the track reconstruction algorithm we apply cuts on the track shape and focus on the initial photoelectron direction in order to maximize the overall sensitivity of the instrument, using this technique we have predicted instrument modulation factors nu(sub 100) for 100% polarized X-rays ranging from 10% to over 60% across the 2-10 keV X-ray band. We also discuss the simulation program used to develop and model some of the algorithms used for triggering, and energy measurement of events in the polarimeter.

  14. Application of an x-ray TV system to examining crystals that absorb x-rays strongly

    SciTech Connect

    Ingal, V.N.; Belyaeushaya, E.A.; Tronova, A.B.

    1985-08-01

    Single crystals with low dislocation densities made of lithium neobate, lithium tantalate, garnets, gallium arsendide, and indium phosphide are examined in order to enable the authors to reduce exposure times. The calculations for the mass attenuation coeffecient for characteristic radiation are calculated in those crystals for wide wavelength ranges, which has enabled a reduction in exposure times to result. An x-ray TV topographic system is described that employs an x-ray vidicon with controllee memory which enables the reduction of recording times for specimens of Si, SiC, and SiO/sub 2/ of diameter 30 mm to 10-20 min. The TV pictures show that the dislocation density in the crystal was at the limit of the method.

  15. Quasar x-ray spectra revisited

    NASA Technical Reports Server (NTRS)

    Shastri, P.; Wilkes, B. J.; Elvis, M.; Mcdowell, J.

    1992-01-01

    A sample of 45 quasars observed by the Imaging Proportional Counter (IPC) on the Einstein satellite is used to re-examine the relationship between the soft (0.2-3.5 keV) X-ray energy index and radio-loudness. We found the following: (1) the tendency for radio-loud quasars to have systematically flatter X-ray slopes than radio-quiet quasars (RQQ's) is confirmed with the soft X-ray excess having negligible effect; (2) there is a tendency for the flatness of the X-ray slope to correlate with radio core-dominance for radio-loud quasars, suggesting that a component of the X-ray emission is relativistically beamed; (3) for the RQQ's the soft X-ray slopes, with a mean of approximately 1.0, are consistent with the slopes found at higher energies (2-10 keV) although steeper than those observed for Seyfert 1 galaxies (also 2-10 keV) where the reflection model gives a good fit to the data; (4) the correlation of FeII emission line strength with X-ray energy index is confirmed for radio-quiet quasars using a subset of 18 quasars. The radio-loud quasars show no evidence for a correlation. This relation suggests a connection between the ionizing continuum and the line emission from the broad emission line region (BELR) of radio-quiet quasars, but in the opposite sense to that predicted by current photoionization models; and (5) the correlations of X-ray slope with radio core dominance and FeII equivalent width within the radio-loud and radio-quiet sub-classes respectively imply that the observed wide range of X-ray spectral slopes is real rather than due to the large measuring uncertainties for individual objects.

  16. Quasar X-ray spectra revisited

    NASA Technical Reports Server (NTRS)

    Shastri, P.; Wilkes, B. J.; Elvis, M.; Mcdowell, J.

    1993-01-01

    A sample of 45 quasars observed by the IPC on the Einstein satellite is used to reexamine the relationship of the soft X-ray energy index with radio properties and the optical Fe II emission. The tendency for radio-loud quasars to have systematically flatter X-ray energy indices than radio-quiet quasars is confirmed with the soft X-ray excess having negligible effect. There is a tendency for the flatness of the X-ray slope to correlate with radio core dominance for radio-loud quasars, suggesting that a component of the X-ray emission is relativistically beamed. For the radio-quiet quasars, the soft X-ray energy indices with a mean of about 1.0 are consistent with the indices found at higher energies, although steeper than those observed for Seyfert 1 galaxies where the reflection model gives a good fit to the data. The correlation of Fe II emission line strength with X-ray energy index is confirmed for radio-quiet quasars using a subset of 18 objects. The radio-loud quasars show no evidence for a correlation. This relation suggests a connection between the ionizing continuum and line emission from the broad emission-line region (BELR) of radio-quiet quasars, but in the opposite sense to that predicted by current photoionization models. The correlations of X-ray slope with radio core dominance and Fe II equivalent width within the radio-loud and radio-quiet subclasses, respectively, imply that the observed wide range of X-ray energy indices is real rather than due to the large measuring uncertainties for individual objects.

  17. Globular cluster x-ray sources

    PubMed Central

    Pooley, David

    2010-01-01

    Globular clusters and x-ray astronomy have a long and fruitful history. Uhuru and OSO-7 revealed highly luminous (> 1036 ergs-1) x-ray sources in globular clusters, and Einstein and ROSAT revealed a larger population of low-luminosity (< 1033 ergs-1) x-ray sources. It was realized early on that the high-luminosity sources were low-mass x-ray binaries in outburst and that they were orders of magnitude more abundant per unit mass in globular clusters than in the rest of the galaxy. However, the low-luminosity sources proved difficult to classify. Many ideas were put forth—low-mass x-ray binaries in quiescence (qLMXBs), cataclysmic variables (CVs), active main-sequence binaries (ABs), and millisecond pulsars (MSPs)—but secure identifications were scarce. In ROSAT observations of 55 clusters, about 25 low-luminosity sources were found. Chandra has now observed over 80 Galactic globular clusters, and these observations have revealed over 1,500 x-ray sources. The superb angular resolution has allowed for many counterpart identifications, providing clues to the nature of this population. It is a heterogeneous mix of qLMXBs, CVs, ABs, and MSPs, and it has been shown that the qLMXBs and CVs are both, in part, overabundant like the luminous LMXBs. The number of x-ray sources in a cluster correlates very well with its encounter frequency. This points to dynamical formation scenarios for the x-ray sources and shows them to be excellent tracers of the complicated internal dynamics. The relation between the encounter frequency and the number of x-ray sources has been used to suggest that we have misunderstood the dynamical states of globular clusters. PMID:20404204

  18. Medical mitigation strategies for acute radiation exposure during spaceflight.

    PubMed

    Epelman, Slava; Hamilton, Douglas R

    2006-02-01

    The United States Government has recently refocused their space program on manned missions to the Moon by 2018 and later to Mars. While there are many potential risks associated with exploration-class missions, one of the most serious and unpredictable is the effect of acute space radiation exposure, and the space program must make every reasonable effort to mitigate this risk. The two cosmic sources of radiation that could impact a mission outside the Earth's magnetic field are solar particle events (SPE) and galactic cosmic radiation (GCR). Either can cause acute and chronic medical illness. Numerous researchers are currently examining the ability of GCR exposure to induce the development of genetic changes that lead to malignancies and other delayed effects. However, relatively little has been published on the medical management of an acute SPE event and the potential impact on the mission and crew. This review paper will provide the readers with medical management options for an acute radiation event based on recommendations from the Department of Homeland Security (DHS), Centers for Disease Control (CDC), and evidence-based critical analysis of the scientific literature. It is the goal of this paper to stimulate debate regarding the definition of safety parameters for exploration-class missions to determine the level of medical care necessary to provide for the crew that will undertake such missions. PMID:16491581

  19. Lead foil in dental X-ray film: Backscattering rejection or image intensifier?

    NASA Astrophysics Data System (ADS)

    Hönnicke, M. G.; Delben, G. J.; Godoi, W. C.; Swinka-Filho, V.

    2014-11-01

    Dental X-ray films are still largely used due to sterilization issues, simplicity and, mainly, economic reasons. These films almost always are double coated (double emulsion) and have a lead foil in contact with the film for X-ray backscattering rejection. Herein we explore the use of the lead foil as an image intensifier. In these studies, spatial resolution was investigated when images were acquired on the dental X-ray films with and without the lead foil. Also, the lead foil was subjected to atomic analysis (fluorescent measurements) and structure analysis (X-ray diffraction). We determined that the use of the lead foil reduces the exposure time, however, does not affect the spatial resolution on the acquired images. This suggests that the fluorescent radiation spread is smaller than the grain sizes of the dental X-ray films.

  20. The x ray properties of a large, uniform QSO sample: Einstein observations of the LBQS

    NASA Technical Reports Server (NTRS)

    Margon, B.; Anderson, S. F.; Xu, X.; Green, P. J.; Foltz, C. B.

    1992-01-01

    Although there are large numbers of Quasi Stellar Objects (QSO's) now observed in X rays, extensive X-ray observations of uniformly selected, 'complete' QSO samples are more rare. The Large Bright QSO Survey (LBQS) consists of about 1000 objects with well understood properties, most brighter than B = 18.8 and thus amenable to X-ray detections in relatively brief exposures. The sample is thought to be highly complete in the range 0.2 less than z less than 3.3, a significantly broader interval than many other surveys. The Einstein IPC observed 150 of these objects, mostly serendipitously, during its lifetime. We report the results of an analysis of these IPC data, considering not only the 20 percent of the objects we find to have positive X-ray detections, but also the ensemble X-ray properties derived by 'image stacking'.

  1. Studies in the X-Ray Emission of Clusters of Galaxies and Other Topics

    NASA Technical Reports Server (NTRS)

    Vrtilek, Jan; Thronson, Harley (Technical Monitor)

    2001-01-01

    The paper discusses the following: (1) X-ray study of groups of galaxies with Chandra and XMM. (2) X-ray properties of point sources in Chandra deep fields. (3) Study of cluster substructure using wavelet techniques. (4) Combined study of galaxy clusters with X-ray and the S-Z effect. Groups of galaxies are the fundamental building blocks of large scale structure in the Universe. X-ray study of the intragroup medium offers a powerful approach to addressing some of the major questions that still remain about almost all aspects of groups: their ages, origins, importance of composition of various galaxy types, relations to clusters, and origin and enrichment of the intragroup gas. Long exposures with Chandra have opened new opportunities for the study of X-ray background. The presence of substructure within clusters of galaxies has substantial implications for our understanding of cluster evolution as well as fundamental questions in cosmology.

  2. Deep x-ray lithography for micromechanics

    SciTech Connect

    Christenson, T.R.; Guckel, H.

    1995-08-01

    Extensions of the German LIGA process have brought about fabrication capability suitable for cost effective production of precision engineered components. The process attributes allow fabrication of mechanical components which are not capable of being made via conventional subtractive machining methods. Two process improvements have been responsible for this extended capability which involve the areas of thick photoresist application and planarization via precision lapping. Application of low-stress x-ray photoresist has been achieved using room temperature solvent bonding of a preformed photoresist sheet. Precision diamond lapping and polishing has provided a flexible process for the planarization of a wide variety of electroplated metals in the presence of photoresist. Exposure results from the 2.5 GeV National Synchrotron Light Source storage ring at Brookhaven National Laboratory have shown that structural heights of several millimeter and above are possible. The process capabilities are also well suited for microactuator fabrication. Linear and rotational magnetic microactuators have been constructed which use coil winding technology with LIGA fabricated coil forms. Actuator output forces of 1 milliNewton have been obtained with power dissipation on the order of milliWatts. A rotational microdynamometer system which is capable of measuring torque-speed data is also discussed.

  3. X-ray Interferometer Using Prism Optics

    SciTech Connect

    Suzuki, Yoshio

    2004-05-12

    Two-beam X-ray interferometer using refractive optics has been developed. A prism made of acrylic resin is used as the beam deflector for hard X-ray wavefront dividing interferometer. This configuration is the same as that of the Fresnel's bi-prism interferometer or the Leith-Upatnieks type two-beam holography in visible light region. Therefore, quantitative analysis of the degree of transversal coherence can be performed by measuring the visibility of interference fringes. It is also possible to realize two-beam holographic imaging in hard X-ray regions.

  4. Large Area X-Ray Spectroscopy Mission

    NASA Technical Reports Server (NTRS)

    Tananbaum, H.

    1997-01-01

    The Large Area X-ray Spectroscopy (LAXS) mission concept study continues to evolve strongly following the merging of the LAXS mission with the Next Generation X-ray Observatory (NGXO, PI: Nick White) into the re-named High Throughput X-ray Spectroscopy (HTXS) Mission. HTXS retains key elements of the LAXS proposal, including the use of multiple satellites for risk-reduction and cost savings. A key achievement of the program has been the recommendation by the Structure and Evolution of the Universe (SEUS) (April 1997) for a new start for the HTXS mission in the 2000-2004 timeframe.

  5. X-ray phase-contrast methods

    SciTech Connect

    Lider, V. V. Kovalchuk, M. V.

    2013-11-15

    This review is devoted to a comparative description of the methods for forming X-ray phase-contrast images of weakly absorbing (phase) objects. These include the crystal interferometer method, the Talbot interferometer method, diffraction-enhanced X-ray imaging, and the in-line method. The potential of their practical application in various fields of science and technology is discussed. The publications on the development and optimization of X-ray phase-contrast methods and the experimental study of phase objects are analyzed.

  6. X-ray transmission microscope development

    NASA Technical Reports Server (NTRS)

    Kaukler, William F.; Rosenberger, Franz E.

    1995-01-01

    We are developing a hard x-ray microscope for direct observation of solidification dynamics in metal alloys and metal matrix composites. The Fein-Focus Inc. x-ray source was delivered in September and found to perform better than expected. Confirmed resolution of better than 2 micrometers was obtained and magnifications up to 800X were measured. Nickel beads of 30 micrometer diameter were easily detected through 6mm of aluminum. X-ray metallography was performed on several specimens showing high resolution and clear definition of 3-dimensional structures. Prototype furnace installed and tested.

  7. X-ray microscopy using synchrotron radiation

    SciTech Connect

    Jones, K.W.; Gordon, B.M.; Hanson, A.L.; Pounds, J.G.; Rivers, M.L.; Schidlovsky, G.; Smith, J.V.; Spanne, P.; Sutton, S.R.

    1989-01-01

    The system for x-ray microscopy now being developed at the X-26 beam line of the Brookhaven National Synchrotron Light Source (NSLS) is described here. Examples of the use of x-ray microscopy for trace element geochemistry, biology and medicine, and materials investigations are given to emphasize the scientific applications of the technique. Future directions for the improvement and further development of the X-26 microscope and of the x-ray microscopy field in general are discussed. 11 refs., 7 figs.

  8. The Future of X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin C.

    2013-01-01

    The most important next step is the development of X-ray optics comparable to (or better than) Chandra in angular resolution that far exceed Chandra s effective area. Use the long delay to establish an adequately funded, competitive technology program along the lines I have recommended. Don't be diverted from this objective, except for Explorer-class missions. Progress in X-ray optics, with emphasis on the angular resolution, is central to the paradigm-shifting discoveries and the contributions of X-ray astronomy to multiwavelength astrophysics over the past 51 years.

  9. X-ray streak crystal spectography

    SciTech Connect

    Kauffman, R.L.; Brown, T.; Medecki, H.

    1983-07-01

    We have built an x-ray streaked crystal spectrograph for making time-resolved x-ray spectral measurements. This instrument can access Bragg angles from 11/sup 0/ to 38/sup 0/ and x-ray spectra from 200 eV to greater than 10 keV. We have demonstrated resolving powers, E/..delta..E > 200 at 1 keV and time resolution less than 20 psec. A description of the instrument and an example of the data is given.

  10. 'Microquasars' and the X-ray background

    NASA Technical Reports Server (NTRS)

    Elvis, M.

    1984-01-01

    The recent discovery of small active nuclei (via emission lines) in normal spiral galaxies greatly expands the range of the quasar phenomenon. By using the relationship between Lx and L(H-alpha) found in more luminous Seyfert galaxies and assuming that it holds for smaller active nuclei, a bivariate X-ray luminosity function can be calculated. This luminosity function fits naturally onto the higher luminosity X-ray luminosity function derived from the HEAO-1/A2 survey. The contribution to the X-ray background from small active nuclei hiding in large spiral galaxies is greater than 15 percent.

  11. Optimal x-ray spectra for screen-film mammography.

    PubMed

    Jennings, R J; Eastgate, R J; Siedband, M P; Ergun, D L

    1981-01-01

    Theoretical and experimental techniques have been used to study optimal x-ray for screen-film mammography. A simple model of mammographic imaging predicts optimum x-ray energies which are significantly higher than the K-characteristic energies of Mo. A subjective comparison of x-ray spectra from Mo-anode and W-anode tubes indicates that spectra produced by a W-anode tube filtered with materials of atomic number just above that of Mo are more suitable for screen-film mammography than spectra produced by the Mo-anode/Mo-filter system. The imaging performance of K-edge filtered, W-anode tube spectra was compared to the performance of Mo-anode spectra using phantom measurements and mastectomy specimen radiography. It was shown that optimal W-anode spectra can produce equal contrast with an exposure reduction of a factor of two to three, a dose reduction of a factor of two, and equal or reducing tube loading, compared to Mo-anode spectra. A computer simulation was carried out to extend the initial, monoenergetic theory to the case of real, polychromatic sources. The effects of varying filter material and thickness, tube operating potential, and breast thickness were all studied. Since W-anode x-ray tubes are considered to be better for Xerox mammography than Mo-anode tubes, this study has shown that both Xerox and screen-film techniques can be performed optimally with a single, properly designed, W-anode x-ray tube. PMID:7290015

  12. STAR FORMATION IN ORION'S L1630 CLOUD: AN INFRARED AND MULTI-EPOCH X-RAY STUDY

    SciTech Connect

    Principe, David A.; Kastner, J. H.; Richmond, Michael; Grosso, Nicolas; Hamaguchi, Kenji

    2014-07-01

    X-ray emission is characteristic of young stellar objects (YSOs) and is known to be highly variable. We investigate, via an infrared and multi-epoch X-ray study of the L1630 dark cloud, whether and how X-ray variability in YSOs is related to protostellar evolutionary state. We have analyzed 11 Chandra X-Ray Observatory observations, obtained over the course of four years and totaling ∼240 ks exposure time, targeting the eruptive Class I YSO V1647 Ori in L1630. We used Two Micron All Sky Survey and Spitzer data to identify and classify IR counterparts to L1630 X-ray sources and identified a total of 52 X-ray-emitting YSOs with IR counterparts, including four Class I sources and one Class 0/I source. We have detected cool (<3 MK) plasma, possibly indicative of accretion shocks, in three classical T Tauri stars. A subsample of 27 X-ray-emitting YSOs were covered by 9 of the 11 Chandra observations targeting V1647 Ori and the vicinity. For these 27 YSOs, we have constructed X-ray light curves spanning approximately four years. These light curves highlight the variable nature of pre-main-sequence X-ray-emitting young stars; many of the L1630 YSOs vary by orders of magnitude in count rate between observations. We discuss possible scenarios to explain apparent trends between various X-ray spectral properties, X-ray variance, and YSO classification.

  13. "X-Ray Transients in Star-Forming Regions" and "Hard X-Ray Emission from X-Ray Bursters"

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.; Kaaret, Philip

    1999-01-01

    This grant funded work on the analysis of data obtained with the Burst and Transient Experiment (BATSE) on the Compton Gamma-Ray Observatory. The goal of the work was to search for hard x-ray transients in star forming regions using the all-sky hard x-ray monitoring capability of BATSE. Our initial work lead to the discovery of a hard x-ray transient, GRO J1849-03. Follow-up observations of this source made with the Wide Field Camera on BeppoSAX showed that the source should be identified with the previously known x-ray pulsar GS 1843-02 which itself is identified with the x-ray source X1845-024 originally discovered with the SAS-3 satellite. Our identification of the source and measurement of the outburst recurrence time, lead to the identification of the source as a Be/X-ray binary with a spin period of 94.8 s and an orbital period of 241 days. The funding was used primarily for partial salary and travel support for John Tomsick, then a graduate student at Columbia University. John Tomsick, now Dr. Tomsick, received his Ph.D. from Columbia University in July 1999, based partially on results obtained under this investigation. He is now a postdoctoral research scientist at the University of California, San Diego.

  14. Sensory and Cognitive Effects of Acute Exposure to Hydrogen Sulfide

    PubMed Central

    Fiedler, Nancy; Kipen, Howard; Ohman-Strickland, Pamela; Zhang, Junfeng; Weisel, Clifford; Laumbach, Robert; Kelly-McNeil, Kathie; Olejeme, Kelechi; Lioy, Paul

    2008-01-01

    Background Some epidemiologic studies have reported compromised cognitive and sensory performance among individuals exposed to low concentrations of hydrogen sulfide (H2S). Objectives We hypothesized a dose–response increase in symptom severity and reduction in sensory and cognitive performance in response to controlled H2S exposures. Methods In separate exposure sessions administered in random order over three consecutive weeks, 74 healthy subjects [35 females, 39 males; mean age (± SD) = 24.7 ± 4.2; mean years of education = 16.5 ± 2.4], were exposed to 0.05, 0.5, and 5 ppm H2S. During each exposure session, subjects completed ratings and tests before H2S exposure (baseline) and during the final hour of the 2-hr exposure period. Results Dose–response reduction in air quality and increases in ratings of odor intensity, irritation, and unpleasantness were observed. Total symptom severity was not significantly elevated across any exposure condition, but anxiety symptoms were significantly greater in the 5-ppm than in the 0.05-ppm condition. No dose–response effect was observed for sensory or cognitive measures. Verbal learning was compromised during each exposure condition. Conclusions Although some symptoms increased with exposure, the magnitude of these changes was relatively minor. Increased anxiety was significantly related to ratings of irritation due to odor. Whether the effect on verbal learning represents a threshold effect of H2S or an effect due to fatigue across exposure requires further investigation. These acute effects in a healthy sample cannot be directly generalized to communities where individuals have other health conditions and concomitant exposures. PMID:18197303

  15. Fabricating Blazed Diffraction Gratings by X-Ray Lithography

    NASA Technical Reports Server (NTRS)

    Mouroulis, Pantazis; Hartley, Frank; Wilson, Daniel

    2004-01-01

    Gray-scale x-ray lithography is undergoing development as a technique for fabricating blazed diffraction gratings. As such, gray-scale x-ray lithography now complements such other grating-fabrication techniques as mechanical ruling, holography, ion etching, laser ablation, laser writing, and electron-beam lithography. Each of these techniques offers advantages and disadvantages for implementing specific grating designs; no single one of these techniques can satisfy the design requirements for all applications. Gray-scale x-ray lithography is expected to be advantageous for making gratings on steeper substrates than those that can be made by electron-beam lithography. This technique is not limited to sawtooth groove profiles and flat substrates: various groove profiles can be generated on arbitrarily shaped (including highly curved) substrates with the same ease as sawtooth profiles can be generated on flat substrates. Moreover, the gratings fabricated by this technique can be made free of ghosts (spurious diffraction components attributable to small spurious periodicities in the locations of grooves). The first step in gray-scale x-ray lithography is to conformally coat a substrate with a suitable photoresist. An x-ray mask (see Figure 1) is generated, placed between the substrate and a source of collimated x-rays, and scanned over the substrate so as to create a spatial modulation in the exposure of the photoresist. Development of the exposed photoresist results in a surface corrugation that corresponds to the spatial modulation and that defines the grating surface. The grating pattern is generated by scanning an appropriately shaped x-ray area mask along the substrate. The mask example of Figure 1 would generate a blazed grating profile when scanned in the perpendicular direction at constant speed, assuming the photoresist responds linearly to incident radiation. If the resist response is nonlinear, then the mask shape can be modified to account for the

  16. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy.

    PubMed

    Miaja-Avila, L; O'Neil, G C; Uhlig, J; Cromer, C L; Dowell, M L; Jimenez, R; Hoover, A S; Silverman, K L; Ullom, J N

    2015-03-01

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ∼10(6) photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >10(7) laser pulses, we also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments. PMID:26798792

  17. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    PubMed Central

    Miaja-Avila, L.; O'Neil, G. C.; Uhlig, J.; Cromer, C. L.; Dowell, M. L.; Jimenez, R.; Hoover, A. S.; Silverman, K. L.; Ullom, J. N.

    2015-01-01

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ∼106 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >107 laser pulses, we also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments. PMID:26798792

  18. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    DOE PAGESBeta

    Miaja-Avila, L.; O'Neil, G. C.; Uhlig, J.; Cromer, C. L.; Dowell, M. L.; Jimenez, R.; Hoover, A. S.; Silverman, K. L.; Ullom, J. N.

    2015-03-02

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ~106 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >107 laser pulses, we also presentmore » data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.« less

  19. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    SciTech Connect

    Miaja-Avila, L.; O'Neil, G. C.; Uhlig, J.; Cromer, C. L.; Dowell, M. L.; Jimenez, R.; Hoover, A. S.; Silverman, K. L.; Ullom, J. N.

    2015-03-02

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ~106 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >107 laser pulses, we also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.

  20. X-ray source for mammography

    DOEpatents

    Logan, C.M.

    1994-12-20

    An x-ray source is described utilizing anode material which shifts the output spectrum to higher energy and thereby obtains higher penetrating ability for screening mammography application, than the currently utilized anode material. The currently used anode material (molybdenum) produces an energy x-ray spectrum of 17.5/19.6 keV, which using the anode material of this invention (e.g. silver, rhodium, and tungsten) the x-ray spectrum would be in the 20-35 keV region. Thus, the anode material of this invention provides for imaging of breasts with higher than average x-ray opacity without increase of the radiation dose, and thus reduces the risk of induced breast cancer due to the radiation dose administered for mammograms. 6 figures.