Science.gov

Sample records for acyl-coa binding domain

  1. Cellulose binding domain proteins

    DOEpatents

    Shoseyov, O.; Shpiegl, I.; Goldstein, M.; Doi, R.

    1998-11-17

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

  2. Cellulose binding domain proteins

    DOEpatents

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc; Doi, Roy

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  3. Cellulose binding domain fusion proteins

    DOEpatents

    Shoseyov, O.; Yosef, K.; Shpiegl, I.; Goldstein, M.A.; Doi, R.H.

    1998-02-17

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

  4. Cellulose binding domain fusion proteins

    DOEpatents

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  5. The monocyte binding domain(s) on human immunoglobulin G.

    PubMed

    Woof, J M; Nik Jaafar, M I; Jefferis, R; Burton, D R

    1984-06-01

    Monocyte binding has previously been assigned to the C gamma 3 domain of human immunoglobulin G (IgG) largely on the ability of the pFc' fragment to inhibit the monocyte-IgG interaction. This ability is markedly reduced compared to the intact parent IgG. We find this result with a conventional pFc' preparation but this preparation is found to contain trace contamination of parent IgG as demonstrated by reactivity with monoclonal antibodies directed against C gamma 2 domain and light-chain epitopes of human IgG. Extensive immunoaffinity purification of the pFc' preparation removes its inhibitory ability indicating that this originates in the trace contamination of parent IgG (or Fc). Neither of the human IgG1 paraproteins TIM, lacking the C gamma 2 domain, or SIZ, lacking the C gamma 3 domain, are found to inhibit the monocyte-IgG interaction. The hinge-deleted IgG1 Dob protein shows little or no inhibitory ability. Indirect evidence for the involvement of the C gamma 2 domain in monocyte binding is considered. We suggest finally that the site of interaction is found either on the C gamma 2 domain alone or between the C gamma 2 and C gamma 3 domains. PMID:6235444

  6. Nucleic acids encoding a cellulose binding domain

    DOEpatents

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1996-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  7. Nucleic acids encoding a cellulose binding domain

    DOEpatents

    Shoseyov, O.; Shpiegl, I.; Goldstein, M.A.; Doi, R.H.

    1996-03-05

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 15 figs.

  8. Cellulose-binding domains: biotechnological applications.

    PubMed

    Levy, Ilan; Shoseyov, Oded

    2002-11-01

    Many researchers have acknowledged the fact that there exists an immense potential for the application of the cellulose-binding domains (CBDs) in the field of biotechnology. This becomes apparent when the phrase "cellulose-binding domain" is used as the key word for a computerized patent search; more then 150 hits are retrieved. Cellulose is an ideal matrix for large-scale affinity purification procedures. This chemically inert matrix has excellent physical properties as well as low affinity for nonspecific protein binding. It is available in a diverse range of forms and sizes, is pharmaceutically safe, and relatively inexpensive. Present studies into the application of CBDs in industry have established that they can be applied in the modification of physical and chemical properties of composite materials and the development of modified materials with improved properties. In agro-biotechnology, CBDs can be used to modify polysaccharide materials both in vivo and in vitro. The CBDs exert nonhydrolytic fiber disruption on cellulose-containing materials. The potential applications of "CBD technology" range from modulating the architecture of individual cells to the modification of an entire organism. Expressing these genes under specific promoters and using appropriate trafficking signals, can be used to alter the nutritional value and texture of agricultural crops and their final products. PMID:14550028

  9. Structural and Histone Binding Ability Characterizations of Human PWWP Domains

    SciTech Connect

    Wu, Hong; Zeng, Hong; Lam, Robert; Tempel, Wolfram; Amaya, Maria F.; Xu, Chao; Dombrovski, Ludmila; Qiu, Wei; Wang, Yanming; Min, Jinrong

    2013-09-25

    The PWWP domain was first identified as a structural motif of 100-130 amino acids in the WHSC1 protein and predicted to be a protein-protein interaction domain. It belongs to the Tudor domain 'Royal Family', which consists of Tudor, chromodomain, MBT and PWWP domains. While Tudor, chromodomain and MBT domains have long been known to bind methylated histones, PWWP was shown to exhibit histone binding ability only until recently. The PWWP domain has been shown to be a DNA binding domain, but sequence analysis and previous structural studies show that the PWWP domain exhibits significant similarity to other 'Royal Family' members, implying that the PWWP domain has the potential to bind histones. In order to further explore the function of the PWWP domain, we used the protein family approach to determine the crystal structures of the PWWP domains from seven different human proteins. Our fluorescence polarization binding studies show that PWWP domains have weak histone binding ability, which is also confirmed by our NMR titration experiments. Furthermore, we determined the crystal structures of the BRPF1 PWWP domain in complex with H3K36me3, and HDGF2 PWWP domain in complex with H3K79me3 and H4K20me3. PWWP proteins constitute a new family of methyl lysine histone binders. The PWWP domain consists of three motifs: a canonical {beta}-barrel core, an insertion motif between the second and third {beta}-strands and a C-terminal {alpha}-helix bundle. Both the canonical {beta}-barrel core and the insertion motif are directly involved in histone binding. The PWWP domain has been previously shown to be a DNA binding domain. Therefore, the PWWP domain exhibits dual functions: binding both DNA and methyllysine histones.

  10. Structural and evolutionary division of phosphotyrosine binding (PTB) domains.

    PubMed

    Uhlik, Mark T; Temple, Brenda; Bencharit, Sompop; Kimple, Adam J; Siderovski, David P; Johnson, Gary L

    2005-01-01

    Proteins encoding phosphotyrosine binding (PTB) domains function as adaptors or scaffolds to organize the signaling complexes involved in wide-ranging physiological processes including neural development, immunity, tissue homeostasis and cell growth. There are more than 200 proteins in eukaryotes and nearly 60 human proteins having PTB domains. Six PTB domain encoded proteins have been found to have mutations that contribute to inherited human diseases including familial stroke, hypercholesteremia, coronary artery disease, Alzheimer's disease and diabetes, demonstrating the importance of PTB scaffold proteins in organizing critical signaling complexes. PTB domains bind both peptides and headgroups of phosphatidylinositides, utilizing two distinct binding motifs to mediate spatial organization and localization within cells. The structure of PTB domains confers specificity for binding peptides having a NPXY motif with differing requirements for phosphorylation of the tyrosine within this recognition sequence. In this review, we use structural, evolutionary and functional analysis to divide PTB domains into three groups represented by phosphotyrosine-dependent Shc-like, phosphotyrosine-dependent IRS-like and phosphotyrosine-independent Dab-like PTBs, with the Dab-like PTB domains representing nearly 75% of proteins encoding PTB domains. In addition, we further define the binding characteristics of the cognate ligands for each group of PTB domains. The signaling complexes organized by PTB domain encoded proteins are largely unknown and represents an important challenge in systems biology for the future. PMID:15567406

  11. Structural Dynamics of the Cereblon Ligand Binding Domain

    PubMed Central

    Hartmann, Marcus D.; Boichenko, Iuliia; Coles, Murray; Lupas, Andrei N.; Hernandez Alvarez, Birte

    2015-01-01

    Cereblon, a primary target of thalidomide and its derivatives, has been characterized structurally from both bacteria and animals. Especially well studied is the thalidomide binding domain, CULT, which shows an invariable structure across different organisms and in complex with different ligands. Here, based on a series of crystal structures of a bacterial representative, we reveal the conformational flexibility and structural dynamics of this domain. In particular, we follow the unfolding of large fractions of the domain upon release of thalidomide in the crystalline state. Our results imply that a third of the domain, including the thalidomide binding pocket, only folds upon ligand binding. We further characterize the structural effect of the C-terminal truncation resulting from the mental-retardation linked R419X nonsense mutation in vitro and offer a mechanistic hypothesis for its irresponsiveness to thalidomide. At 1.2Å resolution, our data provide a view of thalidomide binding at atomic resolution. PMID:26024445

  12. The Intimin periplasmic domain mediates dimerisation and binding to peptidoglycan.

    PubMed

    Leo, Jack C; Oberhettinger, Philipp; Chaubey, Manish; Schütz, Monika; Kühner, Daniel; Bertsche, Ute; Schwarz, Heinz; Götz, Friedrich; Autenrieth, Ingo B; Coles, Murray; Linke, Dirk

    2015-01-01

    Intimin and Invasin are prototypical inverse (Type Ve) autotransporters and important virulence factors of enteropathogenic Escherichia coli and Yersinia spp. respectively. In addition to a C-terminal extracellular domain and a β-barrel transmembrane domain, both proteins also contain a short N-terminal periplasmic domain that, in Intimin, includes a lysin motif (LysM), which is thought to mediate binding to peptidoglycan. We show that the periplasmic domain of Intimin does bind to peptidoglycan both in vitro and in vivo, but only under acidic conditions. We were able to determine a dissociation constant of 0.8 μM for this interaction, whereas the Invasin periplasmic domain, which lacks a LysM, bound only weakly in vitro and failed to bind peptidoglycan in vivo. We present the solution structure of the Intimin LysM, which has an additional α-helix conserved within inverse autotransporter LysMs but lacking in others. In contrast to previous reports, we demonstrate that the periplasmic domain of Intimin mediates dimerisation. We further show that dimerisation and peptidoglycan binding are general features of LysM-containing inverse autotransporters. Peptidoglycan binding by the periplasmic domain in the infection process may aid in resisting mechanical and chemical stress during transit through the gastrointestinal tract. PMID:25353290

  13. Alpha-amylase starch binding domains: cooperative effects of binding to starch granules of multiple tandemly arranged domains.

    PubMed

    Guillén, D; Santiago, M; Linares, L; Pérez, R; Morlon, J; Ruiz, B; Sánchez, S; Rodríguez-Sanoja, R

    2007-06-01

    The Lactobacillus amylovorus alpha-amylase starch binding domain (SBD) is a functional domain responsible for binding to insoluble starch. Structurally, this domain is dissimilar from other reported SBDs because it is composed of five identical tandem modules of 91 amino acids each. To understand adsorption phenomena specific to this SBD, the importance of their modular arrangement in relationship to binding ability was investigated. Peptides corresponding to one, two, three, four, or five modules were expressed as His-tagged proteins. Protein binding assays showed an increased capacity of adsorption as a function of the number of modules, suggesting that each unit of the SBD may act in an additive or synergic way to optimize binding to raw starch. PMID:17468268

  14. Fused protein domains inhibit DNA binding by LexA.

    PubMed Central

    Golemis, E A; Brent, R

    1992-01-01

    Many studies of transcription activation employ fusions of activation domains to DNA binding domains derived from the bacterial repressor LexA and the yeast activator GAL4. Such studies often implicitly assume that DNA binding by the chimeric proteins is equivalent to that of the protein donating the DNA binding moiety. To directly investigate this issue, we compared operator binding by a series of LexA-derivative proteins to operator binding by native LexA, by using both in vivo and in vitro assays. We show that operator binding by many proteins such as LexA-Myc, LexA-Fos, and LexA-Bicoid is severely impaired, while binding of other LexA-derivative proteins, such as those that carry bacterially encoded acidic sequences ("acid blobs"), is not. Our results also show that DNA binding by LexA derivatives that contain the LexA carboxy-terminal dimerization domain (amino acids 88 to 202) is considerably stronger than binding by fusions that lack it and that heterologous dimerization motifs cannot substitute for the LexA88-202 function. These results suggest the need to reevaluate some previous studies of activation that employed LexA derivatives and modifications to recent experimental approaches that use LexA and GAL4 derivatives to detect and study protein-protein interactions. Images PMID:1620111

  15. Computational Analysis of the Binding Specificities of PH Domains

    PubMed Central

    Jiang, Zhi; Liang, Zhongjie; Shen, Bairong; Hu, Guang

    2015-01-01

    Pleckstrin homology (PH) domains share low sequence identities but extremely conserved structures. They have been found in many proteins for cellular signal-dependent membrane targeting by binding inositol phosphates to perform different physiological functions. In order to understand the sequence-structure relationship and binding specificities of PH domains, quantum mechanical (QM) calculations and sequence-based combined with structure-based binding analysis were employed in our research. In the structural aspect, the binding specificities were shown to correlate with the hydropathy characteristics of PH domains and electrostatic properties of the bound inositol phosphates. By comparing these structure properties with sequence-based profiles of physicochemical properties, PH domains can be classified into four functional subgroups according to their binding specificities and affinities to inositol phosphates. The method not only provides a simple and practical paradigm to predict binding specificities for functional genomic research but also gives new insight into the understanding of the basis of diseases with respect to PH domain structures. PMID:26881206

  16. Comprehensive Identification of RNA-Binding Domains in Human Cells.

    PubMed

    Castello, Alfredo; Fischer, Bernd; Frese, Christian K; Horos, Rastislav; Alleaume, Anne-Marie; Foehr, Sophia; Curk, Tomaz; Krijgsveld, Jeroen; Hentze, Matthias W

    2016-08-18

    Mammalian cells harbor more than a thousand RNA-binding proteins (RBPs), with half of these employing unknown modes of RNA binding. We developed RBDmap to determine the RNA-binding sites of native RBPs on a proteome-wide scale. We identified 1,174 binding sites within 529 HeLa cell RBPs, discovering numerous RNA-binding domains (RBDs). Catalytic centers or protein-protein interaction domains are in close relationship with RNA-binding sites, invoking possible effector roles of RNA in the control of protein function. Nearly half of the RNA-binding sites map to intrinsically disordered regions, uncovering unstructured domains as prevalent partners in protein-RNA interactions. RNA-binding sites represent hot spots for defined posttranslational modifications such as lysine acetylation and tyrosine phosphorylation, suggesting metabolic and signal-dependent regulation of RBP function. RBDs display a high degree of evolutionary conservation and incidence of Mendelian mutations, suggestive of important functional roles. RBDmap thus yields profound insights into native protein-RNA interactions in living cells. PMID:27453046

  17. Molecular Evolution of the Oxygen-Binding Hemerythrin Domain

    PubMed Central

    Alvarez-Carreño, Claudia; Becerra, Arturo; Lazcano, Antonio

    2016-01-01

    Background The evolution of oxygenic photosynthesis during Precambrian times entailed the diversification of strategies minimizing reactive oxygen species-associated damage. Four families of oxygen-carrier proteins (hemoglobin, hemerythrin and the two non-homologous families of arthropodan and molluscan hemocyanins) are known to have evolved independently the capacity to bind oxygen reversibly, providing cells with strategies to cope with the evolutionary pressure of oxygen accumulation. Oxygen-binding hemerythrin was first studied in marine invertebrates but further research has made it clear that it is present in the three domains of life, strongly suggesting that its origin predated the emergence of eukaryotes. Results Oxygen-binding hemerythrins are a monophyletic sub-group of the hemerythrin/HHE (histidine, histidine, glutamic acid) cation-binding domain. Oxygen-binding hemerythrin homologs were unambiguously identified in 367/2236 bacterial, 21/150 archaeal and 4/135 eukaryotic genomes. Overall, oxygen-binding hemerythrin homologues were found in the same proportion as single-domain and as long protein sequences. The associated functions of protein domains in long hemerythrin sequences can be classified in three major groups: signal transduction, phosphorelay response regulation, and protein binding. This suggests that in many organisms the reversible oxygen-binding capacity was incorporated in signaling pathways. A maximum-likelihood tree of oxygen-binding hemerythrin homologues revealed a complex evolutionary history in which lateral gene transfer, duplications and gene losses appear to have played an important role. Conclusions Hemerythrin is an ancient protein domain with a complex evolutionary history. The distinctive iron-binding coordination site of oxygen-binding hemerythrins evolved first in prokaryotes, very likely prior to the divergence of Firmicutes and Proteobacteria, and spread into many bacterial, archaeal and eukaryotic species. The later

  18. A novel p53-binding domain in CUL7.

    PubMed

    Kasper, Jocelyn S; Arai, Takehiro; DeCaprio, James A

    2006-09-15

    CUL7 is a member of the cullin RING ligase family and forms an SCF-like complex with SKP1 and FBXW8. CUL7 is required for normal mouse embryonic development and cellular proliferation, and is highly homologous to PARC, a p53-associated, parkin-like cytoplasmic protein. We determined that CUL7, in a manner similar to PARC, can bind directly to p53 but does not affect p53 expression. We identified a discrete, co-linear domain in CUL7 that is conserved in PARC and HERC2, and is necessary and sufficient for p53-binding. The presence of p53 stabilized expression of this domain and we demonstrate that this p53-binding domain of CUL7 contributes to the cytoplasmic localization of CUL7. The results support the model that p53 plays a role in regulation of CUL7 activity. PMID:16875676

  19. A novel p53-binding domain in CUL7

    SciTech Connect

    Kasper, Jocelyn S.; Arai, Takehiro; De Caprio, James A. . E-mail: james_decaprio@dfci.harvard.edu

    2006-09-15

    CUL7 is a member of the cullin RING ligase family and forms an SCF-like complex with SKP1 and FBXW8. CUL7 is required for normal mouse embryonic development and cellular proliferation, and is highly homologous to PARC, a p53-associated, parkin-like cytoplasmic protein. We determined that CUL7, in a manner similar to PARC, can bind directly to p53 but does not affect p53 expression. We identified a discrete, co-linear domain in CUL7 that is conserved in PARC and HERC2, and is necessary and sufficient for p53-binding. The presence of p53 stabilized expression of this domain and we demonstrate that this p53-binding domain of CUL7 contributes to the cytoplasmic localization of CUL7. The results support the model that p53 plays a role in regulation of CUL7 activity.

  20. Structural stabilization of GTP-binding domains in circularly permuted GTPases: Implications for RNA binding

    PubMed Central

    Anand, Baskaran; Verma, Sunil Kumar; Prakash, Balaji

    2006-01-01

    GTP hydrolysis by GTPases requires crucial residues embedded in a conserved G-domain as sequence motifs G1–G5. However, in some of the recently identified GTPases, the motif order is circularly permuted. All possible circular permutations were identified after artificially permuting the classical GTPases and subjecting them to profile Hidden Markov Model searches. This revealed G4–G5–G1–G2–G3 as the only possible circular permutation that can exist in nature. It was also possible to recognize a structural rationale for the absence of other permutations, which either destabilize the invariant GTPase fold or disrupt regions that provide critical residues for GTP binding and hydrolysis, such as Switch-I and Switch-II. The circular permutation relocates Switch-II to the C-terminus and leaves it unfastened, thus affecting GTP binding and hydrolysis. Stabilizing this region would require the presence of an additional domain following Switch-II. Circularly permuted GTPases (cpGTPases) conform to such a requirement and always possess an ‘anchoring’ C-terminal domain. There are four sub-families of cpGTPases, of which three possess an additional domain N-terminal to the G-domain. The biochemical function of these domains, based on available experimental reports and domain recognition analysis carried out here, are suggestive of RNA binding. The features that dictate RNA binding are unique to each subfamily. It is possible that RNA-binding modulates GTP binding or vice versa. In addition, phylogenetic analysis indicates a closer evolutionary relationship between cpGTPases and a set of universally conserved bacterial GTPases that bind the ribosome. It appears that cpGTPases are RNA-binding proteins possessing a means to relate GTP binding to RNA binding. PMID:16648363

  1. PDZ Domain Binding Selectivity Is Optimized Across the Mouse Proteome

    PubMed Central

    Stiffler, Michael A.; Chen, Jiunn R.; Grantcharova, Viara P.; Lei, Ying; Fuchs, Daniel; Allen, John E.; Zaslavskaia, Lioudmila A.; MacBeath, Gavin

    2009-01-01

    PDZ domains have long been thought to cluster into discrete functional classes defined by their peptide-binding preferences. We used protein microarrays and quantitative fluorescence polarization to characterize the binding selectivity of 157 mouse PDZ domains with respect to 217 genome-encoded peptides. We then trained a multidomain selectivity model to predict PDZ domain–peptide interactions across the mouse proteome with an accuracy that exceeds many large-scale, experimental investigations of protein-protein interactions. Contrary to the current paradigm, PDZ domains do not fall into discrete classes; instead, they are evenly distributed throughout selectivity space, which suggests that they have been optimized across the proteome to minimize cross-reactivity. We predict that focusing on families of interaction domains, which facilitates the integration of experimentation and modeling, will play an increasingly important role in future investigations of protein function. PMID:17641200

  2. PTEN-PDZ domain interactions: binding of PTEN to PDZ domains of PTPN13.

    PubMed

    Sotelo, Natalia S; Schepens, Jan T G; Valiente, Miguel; Hendriks, Wiljan J A J; Pulido, Rafael

    2015-05-01

    Protein modular interactions mediated by PDZ domains are essential for the establishment of functional protein networks controlling diverse cellular functions. The tumor suppressor PTEN possesses a C-terminal PDZ-binding motif (PDZ-BM) that is recognized by a specific set of PDZ domains from scaffolding and regulatory proteins. Here, we review the current knowledge on PTEN-PDZ domain interactions and tumor suppressor networks, describe methodology suitable to analyze these interactions, and report the binding of PTEN and the PDZ domain-containing protein tyrosine phosphatase PTPN13. Yeast two-hybrid and GST pull-down analyses showed that PTEN binds to PDZ2/PTPN13 domain in a manner that depends on the specific PTPN13 PDZ domain arrangement involving the interdomain region between PDZ1 and PDZ2. Furthermore, a specific binding profile of PTEN to PDZ2/PTPN13 domain was observed by mutational analysis of the PTEN PDZ-BM. Our results disclose a PDZ-mediated physical interaction of PTEN and PTPN13 with potential relevance in tumor suppression and cell homeostasis. PMID:25448478

  3. Identification of Novel Anionic Phospholipid Binding Domains in Neutral Sphingomyelinase 2 with Selective Binding Preference*

    PubMed Central

    Wu, Bill X.; Clarke, Christopher J.; Matmati, Nabil; Montefusco, David; Bartke, Nana; Hannun, Yusuf A.

    2011-01-01

    Sphingolipids such as ceramide are recognized as vital regulators of many biological processes. Neutral sphingomyelinase 2 (nSMase2) is one of the key enzymes regulating ceramide production. It was previously shown that the enzymatic activity of nSMase2 was dependent on anionic phospholipids (APLs). In this study, the structural requirements for APL-selective binding of nSMase2 were determined and characterized. Using lipid-protein overlay assays, nSMase2 interacted specifically and directly with several APLs, including phosphatidylserine and phosphatidic acid. Lipid-protein binding studies of deletion mutants identified two discrete APL binding domains in the N terminus of nSMase2. Further, mutagenesis experiments pinpointed the core sequences and major cationic amino acids in the domains that are necessary for the cooperative activation of nSMase2 by APLs. The first domain included the first amino-terminal hydrophobic segment and Arg-33, which were essential for nSMase2 to interact with APLs. The second binding domain was comprised of the second hydrophobic segment and Arg-92 and Arg-93. Moreover, mutation of one or both domains decreased APL binding and APL-dependent catalytic activity of nSMase2. Further, mutation of both domains in nSMase2 reduced its plasma membrane localization. Finally, these binding domains are also important for the capability of nSMase2 to rescue the defects of yeast lacking the nSMase homologue, ISC1. In conclusion, these data have identified the APL binding domains of nSMase2 for the first time. The analysis of interactions between nSMase2 and APLs will contribute to our understanding of signaling pathways mediated by sphingolipid metabolites. PMID:21550973

  4. Methods of detection using a cellulose binding domain fusion product

    DOEpatents

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1999-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  5. Methods of use of cellulose binding domain proteins

    DOEpatents

    Shoseyov, O.; Shpiegl, I.; Goldstein, M.A.; Doi, R.H.

    1997-09-23

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

  6. Methods of use of cellulose binding domain proteins

    DOEpatents

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1997-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  7. Methods of detection using a cellulose binding domain fusion product

    DOEpatents

    Shoseyov, O.; Shpiegl, I.; Goldstein, M.A.; Doi, R.H.

    1999-01-05

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 34 figs.

  8. The receptor binding domain of botulinum neurotoxin serotype C binds phosphoinositides.

    PubMed

    Zhang, Yanfeng; Varnum, Susan M

    2012-03-01

    Botulinum neurotoxins (BoNTs) are the most toxic proteins known for humans and animals with an extremely low LD(50) of ∼1 ng/kg. BoNTs generally require a protein and a ganglioside on the cell membrane surface for binding, which is known as a "dual receptor" mechanism for host intoxication. Recent studies have suggested that in addition to gangliosides, other membrane lipids such as phosphoinositides may be involved in the interactions with the receptor binding domain (HCR) of BoNTs for better membrane penetration. Using two independent lipid-binding assays, we tested the interactions of BoNT/C-HCR with lipids in vitro domain. BoNT/C-HCR was found to bind negatively charged phospholipids, preferentially phosphoinositides in both assays. Interactions with phosphoinositides may facilitate tighter binding between neuronal membranes and BoNT/C. PMID:22120109

  9. The evolution of putative starch-binding domains.

    PubMed

    Machovic, Martin; Janecek, Stefan

    2006-11-27

    The present bioinformatics analysis was focused on the starch-binding domains (SBDs) and SBD-like motifs sequentially related to carbohydrate-binding module (CBM) families CBM20 and CBM21. Originally, these SBDs were known from microbial amylases only. At present homologous starch- and glycogen-binding domains (or putative SBD sequences) have been recognised in various plant and animal proteins. The sequence comparison clearly showed that the SBD-like sequences in genethonin-1, starch synthase III and glucan branching enzyme should possess the real SBD function since the two tryptophans (or at least two aromatics) of the typical starch-binding site 1 are conserved in their sequences. The same should apply also for the sequences corresponding with the so-called KIS-domain of plant AKINbetagamma protein that is a homologue of the animal AMP-activated protein kinase (AMPK). The evolutionary tree classified the compared SBDs into three distinct groups: (i) the family CBM20 (the motifs from genethonins, laforins, starch excess 4 protein, beta-subunits of the animal AMPK and all plant and yeast homologues, and eventually from amylopullulanases); (ii) the family CBM21 (the motifs from regulatory subunits of protein phosphatase 1 together with those from starch synthase III); and (iii) the (CBM20+CBM21)-related group (the motifs from the pullulanase subfamily consisting of pullulanase, branching enzyme, isoamylase and maltooligosyl trehalohydrolase). PMID:17084392

  10. Structural Basis for Viral Late-Domain Binding to Alix

    SciTech Connect

    Lee,S.; Joshi, A.; Nagashima, K.; Freed, E.; Hurley, J.

    2007-01-01

    The modular protein Alix is a central node in endosomal-lysosomal trafficking and the budding of human immunodeficiency virus (HIV)-1. The Gag p6 protein of HIV-1 contains a LYPx{sub n}LxxL motif that is required for Alix-mediated budding and binds a region of Alix spanning residues 360-702. The structure of this fragment of Alix has the shape of the letter 'V' and is termed the V domain. The V domain has a topologically complex arrangement of 11 {alpha}-helices, with connecting loops that cross three times between the two arms of the V. The conserved residue Phe676 is at the center of a large hydrophobic pocket and is crucial for binding to a peptide model of HIV-1 p6. Overexpression of the V domain inhibits HIV-1 release from cells. This inhibition of release is reversed by mutations that block binding of the Alix V domain to p6.

  11. Structures of the spectrin-ankyrin interaction binding domains

    SciTech Connect

    Ipsaro, Jonathan J.; Huang, Lei; Mondragón, Alfonso

    2010-01-07

    As key components of the erythrocyte membrane skeleton, spectrin and ankyrin specifically interact to tether the spectrin cytoskeleton to the cell membrane. The structure of the spectrin binding domain of ankyrin and the ankyrin binding domain of spectrin have been solved to elucidate the structural basis for ankyrin-spectrin recognition. The structure of repeats 14 and 15 of spectrin shows that these repeats are similar to all other spectrin repeats. One feature that could account for the preference of ankyrin for these repeats is the presence of a conserved, negatively charged patch on one side of repeat 14. The structure of the ankyrin ZU5 domain shows a novel structure containing a {beta} core. The structure reveals that the canonical ZU5 consensus sequence is likely to be missing an important region that codes for a {beta} strand that forms part of the core of the domain. In addition, a positively charged region is suggestive of a binding surface for the negatively charged spectrin repeat 14. Previously reported mutants of ankyrin that map to this region lie mostly on the surface of the protein, although at least one is likely to be part of the core.

  12. Structure of the RNA-Binding Domain of Telomerase: Implications For RNA Recognition and Binding

    SciTech Connect

    Rouda,S.; Skordalakes, E.

    2007-01-01

    Telomerase, a ribonucleoprotein complex, replicates the linear ends of eukaryotic chromosomes, thus taking care of the 'end of replication problem.' TERT contains an essential and universally conserved domain (TRBD) that makes extensive contacts with the RNA (TER) component of the holoenzyme, and this interaction is thought to facilitate TERT/TER assembly and repeat-addition processivity. Here, we present a high-resolution structure of TRBD from Tetrahymena thermophila. The nearly all-helical structure comprises a nucleic acid-binding fold suitable for TER binding. An extended pocket on the surface of the protein, formed by two conserved motifs (CP and T motifs) comprises TRBD's RNA-binding pocket. The width and the chemical nature of this pocket suggest that it binds both single- and double-stranded RNA, possibly stem I, and the template boundary element (TBE). Moreover, the structure provides clues into the role of this domain in TERT/TER stabilization and telomerase repeat-addition processivity.

  13. SARS Coronavirus-unique Domain (SUD): Three-domain Molecular Architecture in Solution and RNA Binding

    PubMed Central

    Johnson, Margaret A.; Chatterjee, Amarnath; Neuman, Benjamin W.; Wüthrich, Kurt

    2010-01-01

    The nonstructural protein 3 (nsp3) of the severe acute respiratory syndrome coronavirus (SARS-CoV) includes a “SARS-unique region” (SUD) consisting of three globular domains separated by short linker peptide segments. This paper reports NMR structure determinations of the C-terminal domain (SUD-C) and of a two-domain construct (SUD-MC) containing the middle domain (SUD-M) and the C-terminal domain, and NMR data on the conformational states of the N-terminal domain (SUD-N) and the SUD-NM two-domain construct. Both SUD-N and SUD-NM are monomeric and globular in solution, and in SUD-NM there is high mobility in the two-residue interdomain linking sequence, with no preferred relative orientation of the two domains. SUD-C adopts a frataxin-like fold and has structural similarity to DNA-binding domains of DNA-modifying enzymes. The structures of both SUD-M (previously determined) and SUD-C (from the present study) are maintained in SUD-MC, where the two domains are flexibly linked. Gel shift experiments showed that both SUD-C and SUD-MC bind to single-stranded RNA and recognize purine bases more strongly than pyrimidine bases, whereby SUD-MC binds to a more restricted set of purine-containing RNA sequences than SUD-M. NMR chemical shift perturbation experiments with observation of the 15N-labeled proteins further resulted in the delineation of the RNA binding sites, i.e., in SUD-M a positively charged surface area with a pronounced cavity, and in SUD-C several residues of an antiparallel β-sheet. Overall, the present data provide evidence for molecular mechanisms involving concerted actions of SUD-M and SUD-C, which result in specific RNA-binding that might be unique to the SUD, and thus to the SARS-CoV. PMID:20493876

  14. Insights into how nucleotide-binding domains power ABC transport.

    PubMed

    Newstead, Simon; Fowler, Philip W; Bilton, Paul; Carpenter, Elisabeth P; Sadler, Peter J; Campopiano, Dominic J; Sansom, Mark S P; Iwata, So

    2009-09-01

    The mechanism by which nucleotide-binding domains (NBDs) of ABC transporters power the transport of substrates across cell membranes is currently unclear. Here we report the crystal structure of an NBD, FbpC, from the Neisseria gonorrhoeae ferric iron uptake transporter with an unusual and substantial domain swap in the C-terminal regulatory domain. This entanglement suggests that FbpC is unable to open to the same extent as the homologous protein MalK. Using molecular dynamics we demonstrate that this is not the case: both NBDs open rapidly once ATP is removed. We conclude from this result that the closed structures of FbpC and MalK have higher free energies than their respective open states. This result has important implications for our understanding of the mechanism of power generation in ABC transporters, because the unwinding of this free energy ensures that the opening of these two NBDs is also powered. PMID:19748342

  15. Predicting binding within disordered protein regions to structurally characterised peptide-binding domains.

    PubMed

    Khan, Waqasuddin; Duffy, Fergal; Pollastri, Gianluca; Shields, Denis C; Mooney, Catherine

    2013-01-01

    Disordered regions of proteins often bind to structured domains, mediating interactions within and between proteins. However, it is difficult to identify a priori the short disordered regions involved in binding. We set out to determine if docking such peptide regions to peptide binding domains would assist in these predictions.We assembled a redundancy reduced dataset of SLiM (Short Linear Motif) containing proteins from the ELM database. We selected 84 sequences which had an associated PDB structures showing the SLiM bound to a protein receptor, where the SLiM was found within a 50 residue region of the protein sequence which was predicted to be disordered. First, we investigated the Vina docking scores of overlapping tripeptides from the 50 residue SLiM containing disordered regions of the protein sequence to the corresponding PDB domain. We found only weak discrimination of docking scores between peptides involved in binding and adjacent non-binding peptides in this context (AUC 0.58).Next, we trained a bidirectional recurrent neural network (BRNN) using as input the protein sequence, predicted secondary structure, Vina docking score and predicted disorder score. The results were very promising (AUC 0.72) showing that multiple sources of information can be combined to produce results which are clearly superior to any single source.We conclude that the Vina docking score alone has only modest power to define the location of a peptide within a larger protein region known to contain it. However, combining this information with other knowledge (using machine learning methods) clearly improves the identification of peptide binding regions within a protein sequence. This approach combining docking with machine learning is primarily a predictor of binding to peptide-binding sites, and is not intended as a predictor of specificity of binding to particular receptors. PMID:24019881

  16. Ubiquitin binds to and regulates a subset of SH3 domains

    PubMed Central

    Stamenova, Svetoslava D.; French, Michael E.; He, Yuan; Francis, Smitha A.; Kramer, Zachary B.; Hicke, Linda

    2009-01-01

    Summary SH3 domains are modules of 50-70 amino acids that promote interactions among proteins, often participating in the assembly of large dynamic complexes. These domains bind to peptide ligands, which usually contain a core Pro-X-X-Pro (PXXP) sequence. Here we identify a class of SH3 domains that binds to ubiquitin. The yeast endocytic protein Sla1, as well as the mammalian proteins CIN85 and amphiphysin, carry ubiquitin-binding SH3 domains. Ubiquitin and peptide ligands bind to the same hydrophobic groove on the SH3 domain surface, and ubiquitin and a PXXP-containing protein fragment compete for binding to SH3 domains. We conclude that a subset of SH3 domains constitutes a distinct type of ubiquitin-binding domain, and that ubiquitin-binding can negatively regulate interaction of SH3 domains with canonical proline-rich ligands. PMID:17244534

  17. Escherichia coli lipoprotein binds human plasminogen via an intramolecular domain

    PubMed Central

    Gonzalez, Tammy; Gaultney, Robert A.; Floden, Angela M.; Brissette, Catherine A.

    2015-01-01

    Escherichia coli lipoprotein (Lpp) is a major cellular component that exists in two distinct states, bound-form and free-form. Bound-form Lpp is known to interact with the periplasmic bacterial cell wall, while free-form Lpp is localized to the bacterial cell surface. A function for surface-exposed Lpp has yet to be determined. We hypothesized that the presence of C-terminal lysinses in the surface-exposed region of Lpp would facilitate binding to the host zymogen plasminogen (Plg), a protease commandeered by a number of clinically important bacteria. Recombinant Lpp was synthesized and the binding of Lpp to Plg, the effect of various inhibitors on this binding, and the effects of various mutations of Lpp on Lpp–Plg interactions were examined. Additionally, the ability of Lpp-bound Plg to be converted to active plasmin was analyzed. We determined that Lpp binds Plg via an atypical domain located near the center of mature Lpp that may not be exposed on the surface of intact E. coli according to the current localization model. Finally, we found that Plg bound by Lpp can be converted to active plasmin. While the consequences of Lpp binding Plg are unclear, these results prompt further investigation of the ability of surface exposed Lpp to interact with host molecules such as extracellular matrix components and complement regulators, and the role of these interactions in infections caused by E. coli and other bacteria. PMID:26500634

  18. Sequential coagulation factor VIIa domain binding to tissue factor

    SciTech Connect

    Oesterlund, Maria; Persson, Egon; Freskgard, Per-Ola . E-mail: msv@ifm.liu.se

    2005-12-02

    Vessel wall tissue factor (TF) is exposed to blood upon vascular damage which enables association with factor VIIa (FVIIa). This leads to initiation of the blood coagulation cascade through localization and allosteric induction of FVIIa procoagulant activity. To examine the docking pathway of the FVIIa-TF complex, various residues in the extracellular part of TF (sTF) that are known to interact with FVIIa were replaced with cysteines labelled with a fluorescent probe. By using stopped-flow fluorescence kinetic measurements in combination with surface plasmon resonance analysis, we studied the association of the resulting sTF variants with FVIIa. We found the docking trajectory to be a sequence of events in which the protease domain of FVIIa initiates contact with sTF. Thereafter, the two proteins are tethered via the first epidermal growth factor-like and finally the {gamma}-carboxyglutamic acid (Gla) domain. The two labelled sTF residues interacting with the protease domain of FVIIa bind or become eventually ordered at different rates, revealing kinetic details pertinent to the allosteric activation of FVIIa by sTF. Moreover, when the Gla domain of FVIIa is removed the difference in the rate of association for the remaining domains is much more pronounced.

  19. Control of domain swapping in bovine odorant-binding protein.

    PubMed Central

    Ramoni, Roberto; Vincent, Florence; Ashcroft, Alison E; Accornero, Paolo; Grolli, Stefano; Valencia, Christel; Tegoni, Mariella; Cambillau, Christian

    2002-01-01

    As revealed by the X-ray structure, bovine odorant-binding protein (OBPb) is a domain swapped dimer [Tegoni, Ramoni, Bignetti, Spinelli and Cambillau (1996) Nat. Struct. Biol. 3, 863-867; Bianchet, Bains, Petosi, Pevsner, Snyder, Monaco and Amzel (1996) Nat. Struct. Biol. 3, 934-939]. This contrasts with all known mammalian OBPs, which are monomers, and in particular with porcine OBP (OBPp), sharing 42.3% identity with OBPb. By the mechanism of domain swapping, monomers are proposed to evolve into dimers and oligomers, as observed in human prion. Comparison of bovine and porcine OBP sequences pointed at OBPp glycine 121, in the hinge linking the beta-barrel to the alpha-helix. The absence of this residue in OBPb might explain why the normal lipocalin beta-turn is not formed. In order to decipher the domain swapping determinants we have produced a mutant of OBPb in which a glycine residue was inserted after position 121, and a mutant of OBPp in which glycine 121 was deleted. The latter mutation did not result in dimerization, while OBPb-121Gly+ became monomeric, suggesting that domain swapping was reversed. Careful structural analysis revealed that besides the presence of a glycine in the hinge, the dimer interface formed by the C-termini and by the presence of the lipocalins conserved disulphide bridge may also control domain swapping. PMID:11931632

  20. Immunochemical analysis of the glucocorticoid receptor: identification of a third domain separate from the steroid-binding and DNA-binding domains.

    PubMed Central

    Carlstedt-Duke, J; Okret, S; Wrange, O; Gustafsson, J A

    1982-01-01

    The glucocorticoid-receptor complex can be subdivided into three separate domains by limited proteolysis with trypsin or alpha-chymotrypsin. The following characteristics can be separated: steroid-binding activity (domain A), DNA-binding activity (domain B), and immunoactivity (domain C). We have previously reported the separation of the steroid-binding domain from the DNA-binding domain by limited proteolysis of the receptor with trypsin. In this paper, we report the detection by immunochemical analysis of a third domain of the glucocorticoid receptor, which does not bind hormone. Immunoactivity was detected by using specific antiglucocorticoid receptor antibodies raised in rabbits against purified rat liver glucocorticoid receptor and the assay used was an enzyme-linked immunosorbent assay. After digestion with alpha-chymotrypsin, the immunoactive region of the receptor (domain C) was separated from the other two domains (A and B). The immunoactive fragment was found to have a Stokes radius of 2.6 nm. Further digestion with alpha-chymotrypsin resulted in separation of the immunoactive fragment to give a fragment having a Stokes radius of 1.4 nm. The immunoactive domain could be separated from the half of the glucocorticoid receptor containing the steroid-binding and the DNA-binding domains (Stokes radius, 3.3 nm), by limited proteolysis of the receptor by alpha-chymotrypsin followed by gel filtration or chromatography on DNA-cellulose. PMID:6181503

  1. Polyphosphoinositide binding domains: key to inositol lipid biology

    PubMed Central

    Hammond, Gerald R. V.; Balla, Tamas

    2014-01-01

    Polyphosphoinositides (PPIn) are an important family of phospholipids located on the cytoplasmic leaflet of eukaryotic cell membranes. Collectively, they are critical for the regulation many aspects of membrane homeostasis and signaling, with notable relevance to human physiology and disease. This regulation is achieved through the selective interaction of these lipids with hundreds of cellular proteins, and thus the capability to study these localized interactions is crucial to understanding their functions. In this review, we discuss current knowledge of the principle types of PPIn-protein interactions, focusing on specific lipid-binding domains. We then discuss how these domains have been re-tasked by biologists as molecular probes for these lipids in living cells. Finally, we describe how the knowledge gained with these probes, when combined with other techniques, has led to the current view of the lipids’ localization and function in eukaryotes, focusing mainly on animal cells. PMID:25732852

  2. MODELING THE BINDING OF THE METABOLITES OF SOME POLYCYCLIC AROMTIC HYDROCARBONS TO THE LIGAND BINDING DOMAIN OF THE ESTROGEN RECEPTOR

    EPA Science Inventory

    Modeling the binding of the metabolites of some Polycyclic Aromatic Hydrocarbons to the ligand binding domain of the estrogen receptor
    James Rabinowitz, Stephen Little, Katrina Brown, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC; Un...

  3. Targeting the inhibitor of Apoptosis Protein BIR3 binding domains.

    PubMed

    Jaquith, James B

    2014-05-01

    The Inhibitor of Apoptosis Proteins (IAPs) play a critical role in the regulation of cellular apoptosis and cytokine signaling. IAP family members include XIAP, cIAP1, cIAP2, NAIP, survivin, Apollon/Bruce, ML-IAP/livin and TIAP. The IAPs have been targeted using both antisense oligonucleotides and small molecule inhibitors. Several research teams have advanced compounds that bind the highly conserved BIR3 domains of the IAPs into clinical trials, as single agents and in combination with standard of care. This patent review highlights the medicinal chemistry strategies that have been applied to the development of clinical compounds. PMID:24998289

  4. Intersubunit binding domains within tyrosine hydroxylase and tryptophan hydroxylase.

    PubMed

    Yohrling, G J; Jiang, G C; Mockus, S M; Vrana, K E

    2000-08-01

    Tryptophan hydroxylase (TPH), the rate-limiting enzyme in the biosynthesis of the neurotransmitter serotonin (5-HT) belongs to the aromatic amino acid hydroxylase superfamily, which includes phenylalanine hydroxylase (PAH) and tyrosine hydroxylase (TH). The crystal structures for both PAH and TH have been reported, but a crystallographic model of TPH remains elusive. For this reason, we have utilized the information presented in the TH crystal structure in combination with primary sequence alignments to design point mutations in potential structural domains of the TPH protein. Mutation of a TH salt bridge (K170E) was sufficient to alter enzyme macromolecular assembly. We found that the disruption of the cognate intersubunit dimerization salt bridge (K111-E223) in TPH, however, did not affect the macromolecular assembly of TPH. Enzyme peaks representing only tetramers were observed with size exclusion chromatography. By contrast, a single-point mutation within the tetramerization domain of TPH (L435A) was sufficient to disrupt the normal homotetrameric assembly of TPH. These studies indicate that, although the proposed salt bridge dimerization interface of TH is conserved in TPH, this hypothetical TPH intersubunit binding domain, K111-E223, is not required for the proper macromolecular assembly of the protein. However, leucine 435 within the tetramerization domain is necessary for the proper macromolecular assembly of TPH. PMID:10900078

  5. Crystal Structure of the Botulinum Neurotoxin Type G Binding Domain: Insight into Cell Surface Binding

    SciTech Connect

    Stenmark, Pål; Dong, Min; Dupuy, Jérôme; Chapman, Edwin R.; Stevens, Raymond C.

    2011-11-02

    Botulinum neurotoxins (BoNTs) typically bind the neuronal cell surface via dual interactions with both protein receptors and gangliosides. We present here the 1.9-{angstrom} X-ray structure of the BoNT serotype G (BoNT/G) receptor binding domain (residues 868-1297) and a detailed view of protein receptor and ganglioside binding regions. The ganglioside binding motif (SxWY) has a conserved structure compared to the corresponding regions in BoNT serotype A and BoNT serotype B (BoNT/B), but several features of interactions with the hydrophilic face of the ganglioside are absent at the opposite side of the motif in the BoNT/G ganglioside binding cleft. This may significantly reduce the affinity between BoNT/G and gangliosides. BoNT/G and BoNT/B share the protein receptor synaptotagmin (Syt) I/II. The Syt binding site has a conserved hydrophobic plateau located centrally in the proposed protein receptor binding interface (Tyr1189, Phe1202, Ala1204, Pro1205, and Phe1212). Interestingly, only 5 of 14 residues that are important for binding between Syt-II and BoNT/B are conserved in BoNT/G, suggesting that the means by which BoNT/G and BoNT/B bind Syt diverges more than previously appreciated. Indeed, substitution of Syt-II Phe47 and Phe55 with alanine residues had little effect on the binding of BoNT/G, but strongly reduced the binding of BoNT/B. Furthermore, an extended solvent-exposed hydrophobic loop, located between the Syt binding site and the ganglioside binding cleft, may serve as a third membrane association and binding element to contribute to high-affinity binding to the neuronal membrane. While BoNT/G and BoNT/B are homologous to each other and both utilize Syt-I/Syt-II as their protein receptor, the precise means by which these two toxin serotypes bind to Syt appears surprisingly divergent.

  6. Solution structure and binding specificity of the p63 DNA binding domain.

    PubMed

    Enthart, Andreas; Klein, Christian; Dehner, Alexander; Coles, Murray; Gemmecker, Gerd; Kessler, Horst; Hagn, Franz

    2016-01-01

    p63 is a close homologue of p53 and, together with p73, is grouped into the p53 family of transcription factors. p63 is known to be involved in the induction of controlled apoptosis important for differentiation processes, germ line integrity and development. Despite its high homology to p53, especially within the DNA binding domain (DBD), p63-DBD does not show cooperative DNA binding properties and is significantly more stable against thermal and chemical denaturation. Here, we determined the solution structure of p63-DBD and show that it is markedly less dynamic than p53-DBD. In addition, we also investigate the effect of a double salt bridge present in p53-DBD, but not in p63-DBD on the cooperative binding behavior and specificity to various DNA sites. Restoration of the salt bridges in p63-DBD by mutagenesis leads to enhanced binding affinity to p53-specific, but not p63-specific response elements. Furthermore, we show that p63-DBD is capable of binding to anti-apoptotic BclxL via its DNA binding interface, a feature that has only been shown for p53 so far. These data suggest that all p53 family members - despite alterations in the specificity and binding affinity - are capable of activating pro-apoptotic pathways in a tissue specific manner. PMID:27225672

  7. Solution structure and binding specificity of the p63 DNA binding domain

    PubMed Central

    Enthart, Andreas; Klein, Christian; Dehner, Alexander; Coles, Murray; Gemmecker, Gerd; Kessler, Horst; Hagn, Franz

    2016-01-01

    p63 is a close homologue of p53 and, together with p73, is grouped into the p53 family of transcription factors. p63 is known to be involved in the induction of controlled apoptosis important for differentiation processes, germ line integrity and development. Despite its high homology to p53, especially within the DNA binding domain (DBD), p63-DBD does not show cooperative DNA binding properties and is significantly more stable against thermal and chemical denaturation. Here, we determined the solution structure of p63-DBD and show that it is markedly less dynamic than p53-DBD. In addition, we also investigate the effect of a double salt bridge present in p53-DBD, but not in p63-DBD on the cooperative binding behavior and specificity to various DNA sites. Restoration of the salt bridges in p63-DBD by mutagenesis leads to enhanced binding affinity to p53-specific, but not p63-specific response elements. Furthermore, we show that p63-DBD is capable of binding to anti-apoptotic BclxL via its DNA binding interface, a feature that has only been shown for p53 so far. These data suggest that all p53 family members - despite alterations in the specificity and binding affinity - are capable of activating pro-apoptotic pathways in a tissue specific manner. PMID:27225672

  8. Glutathione Binding to the Bcl-2 Homology-3 Domain Groove

    PubMed Central

    Zimmermann, Angela K.; Loucks, F. Alexandra; Schroeder, Emily K.; Bouchard, Ron J.; Tyler, Kenneth L.; Linseman, Daniel A.

    2008-01-01

    Bcl-2 protects cells against mitochondrial oxidative stress and subsequent apoptosis. However, the mechanism underlying the antioxidant function of Bcl-2 is currently unknown. Recently, Bax and several Bcl-2 homology-3 domain (BH3)-only proteins (Bid, Puma, and Noxa) have been shown to induce a pro-oxidant state at mitochondria (1-4). Given the opposing effects of Bcl-2 and Bax/BH3-only proteins on the redox state of mitochondria, we hypothesized that the antioxidant function of Bcl-2 is antagonized by its interaction with the BH3 domains of pro-apoptotic family members. Here, we show that BH3 mimetics that bind to a hydrophobic surface (the BH3 groove) of Bcl-2 induce GSH-sensitive mitochondrial dysfunction and apoptosis in cerebellar granule neurons. BH3 mimetics displace a discrete mitochondrial GSH pool in neurons and suppress GSH transport into isolated rat brain mitochondria. Moreover, BH3 mimetics and the BH3-only protein, Bim, inhibit a novel interaction between Bcl-2 and GSH in vitro. These results suggest that Bcl-2 regulates an essential pool of mitochondrial GSH and that this regulation may depend upon Bcl-2 directly interacting with GSH via the BH3 groove. We conclude that this novel GSH binding property of Bcl-2 likely plays a central role in its antioxidant function at mitochondria. PMID:17690097

  9. Normal gating of CFTR requires ATP binding to both nucleotide-binding domains and hydrolysis at the second nucleotide-binding domain.

    PubMed

    Berger, Allan L; Ikuma, Mutsuhiro; Welsh, Michael J

    2005-01-11

    ATP interacts with the two nucleotide-binding domains (NBDs) of CFTR to control gating. However, it is unclear whether gating involves ATP binding alone, or also involves hydrolysis at each NBD. We introduced phenylalanine residues into nonconserved positions of each NBD Walker A motif to sterically prevent ATP binding. These mutations blocked [alpha-(32)P]8-N(3)-ATP labeling of the mutated NBD and reduced channel opening rate without changing burst duration. Introducing cysteine residues at these positions and modifying with N-ethylmaleimide produced the same gating behavior. These results indicate that normal gating requires ATP binding to both NBDs, but ATP interaction with one NBD is sufficient to support some activity. We also studied mutations of the conserved Walker A lysine residues (K464A and K1250A) that prevent hydrolysis. By combining substitutions that block ATP binding with Walker A lysine mutations, we could differentiate the role of ATP binding vs. hydrolysis at each NBD. The K1250A mutation prolonged burst duration; however, blocking ATP binding prevented the long bursts. These data indicate that ATP binding to NBD2 allowed channel opening and that closing was delayed in the absence of hydrolysis. The corresponding NBD1 mutations showed relatively little effect of preventing ATP hydrolysis but a large inhibition of blocking ATP binding. These data suggest that ATP binding to NBD1 is required for normal activity but that hydrolysis has little effect. Our results suggest that both NBDs contribute to channel gating, NBD1 binds ATP but supports little hydrolysis, and ATP binding and hydrolysis at NBD2 are key for normal gating. PMID:15623556

  10. Normal gating of CFTR requires ATP binding to both nucleotide-binding domains and hydrolysis at the second nucleotide-binding domain

    PubMed Central

    Berger, Allan L.; Ikuma, Mutsuhiro; Welsh, Michael J.

    2005-01-01

    ATP interacts with the two nucleotide-binding domains (NBDs) of CFTR to control gating. However, it is unclear whether gating involves ATP binding alone, or also involves hydrolysis at each NBD. We introduced phenylalanine residues into nonconserved positions of each NBD Walker A motif to sterically prevent ATP binding. These mutations blocked [α-32P]8-N3-ATP labeling of the mutated NBD and reduced channel opening rate without changing burst duration. Introducing cysteine residues at these positions and modifying with N-ethylmaleimide produced the same gating behavior. These results indicate that normal gating requires ATP binding to both NBDs, but ATP interaction with one NBD is sufficient to support some activity. We also studied mutations of the conserved Walker A lysine residues (K464A and K1250A) that prevent hydrolysis. By combining substitutions that block ATP binding with Walker A lysine mutations, we could differentiate the role of ATP binding vs. hydrolysis at each NBD. The K1250A mutation prolonged burst duration; however, blocking ATP binding prevented the long bursts. These data indicate that ATP binding to NBD2 allowed channel opening and that closing was delayed in the absence of hydrolysis. The corresponding NBD1 mutations showed relatively little effect of preventing ATP hydrolysis but a large inhibition of blocking ATP binding. These data suggest that ATP binding to NBD1 is required for normal activity but that hydrolysis has little effect. Our results suggest that both NBDs contribute to channel gating, NBD1 binds ATP but supports little hydrolysis, and ATP binding and hydrolysis at NBD2 are key for normal gating. PMID:15623556

  11. NMR Solution Structure and DNA Binding Model of the DNA Binding Domain of Competence Protein A

    PubMed Central

    Hobbs, Carey A.; Bobay, Benjamin G.; Thompson, Richele J.; Perego, Marta; Cavanagh, John

    2010-01-01

    Competence protein A (ComA) is a response regulator protein involved in the development of genetic competence in the Gram-positive spore forming bacterium Bacillus subtilis, as well as the regulation of the production of degradative enzymes and antibiotic synthesis. ComA belongs to the NarL family of proteins which are characterized by a C-terminal transcriptional activator domain that consists of a bundle of four helices, where the second and third helices (α8 and α9) form a helix-turn-helix DNA binding domain. Using NMR spectroscopy, the high resolution three-dimensional solution structure of the C-terminal DNA-binding domain of ComA (ComAC) has been determined. In addition, surface plasmon resonance and NMR protein-DNA titration experiments allowed for the analysis of the interaction of ComAC with its target DNA sequences. Combining the solution structure and biochemical data, a model of ComAC bound to the ComA recognition sequences on the srfA promoter has been developed. The model shows that for DNA binding, ComA uses the conserved helix-turn-helix motif present in other NarL family members. However, the model also reveals that ComA may use a slightly different part of the helix-turn-helix motif and there appears to be some associated domain re-orientation. These observations suggest a basis for DNA binding specificity within the NarL family. PMID:20302877

  12. Domain Selection in Metallothionein 1A: Affinity-Controlled Mechanisms of Zinc Binding and Cadmium Exchange.

    PubMed

    Pinter, Tyler B J; Irvine, Gordon W; Stillman, Martin J

    2015-08-18

    Mammalian metallothioneins (MTs) are small, metal binding proteins implicated in cellular metal ion homeostasis and heavy metal detoxification. Divalent, metal-saturated MTs form two distinct domains; the N-terminal β domain binds three metals using nine Cys residues, and the C-terminal α domain binds four metals with 11 Cys residues. Domain selection during zinc binding and cadmium exchange to human MT1A was examined using a series of competition reactions with mixtures of the isolated domain fragments. These experiments were conducted at two biologically significant pH conditions where MTs exist in vivo. Neither zinc binding nor cadmium exchange showed any significant degree of specificity or selectivity based on detailed analysis of electrospray ionization mass spectrometric and circular dichroic data. Under acidic conditions, zinc binding and cadmium exchange showed slight α domain selectivity because of the increased preference for cooperative clustering of the α domain. Modeling of the reactions showed that at both physiological (7.4) and acidic (5.8) pHs, zinc binding and cadmium exchanges occur essentially randomly between the two fragments. The metal binding affinity distributions between the domain fragments are comingled and not significantly separated as required for a domain specific mechanism. The models show rather that the order of the binding events follows the order of the binding affinities that are distributed across both domains and that this can be considered quantitatively by the KF(Cd)/KF(Zn) binding constant ratio for each metal bound. PMID:26167879

  13. The Receptor Binding Domain of Botulinum Neurotoxin Stereotype C Binds Phosphoinositides

    SciTech Connect

    Zhang, Yanfeng; Varnum, Susan M.

    2012-03-01

    Botulinum neurotoxins (BoNTs) are the most toxic proteins known for humans and animals with an extremely low LD50 of {approx} 1 ng/kg. BoNTs generally require a protein and a ganglioside on the cell membrane surface for binding, which is known as a 'dual receptor' mechanism for host intoxication. Recent studies have suggested that in addition to gangliosides, other membrane lipids such as phosphoinositides may be involved in the interactions with the receptor binding domain (HCR) of BoNTs for better membrane penetration. Here, using two independent lipid-binding assays, we tested the interactions of BoNT/C-HCR with lipids in vitro. BoNT/C-HCR was found to bind negatively charged phospholipids, preferentially phosphoinositides. Additional interactions to phosphoinositides may help BoNT/C bind membrane more tightly and transduct signals for subsequent steps of intoxication. Our results provide new insights into the mechanisms of host cell membrane recognition by BoNTs.

  14. The RNA binding domain of Pumilio antagonizes poly-adenosine binding protein and accelerates deadenylation.

    PubMed

    Weidmann, Chase A; Raynard, Nathan A; Blewett, Nathan H; Van Etten, Jamie; Goldstrohm, Aaron C

    2014-08-01

    PUF proteins are potent repressors that serve important roles in stem cell maintenance, neurological processes, and embryonic development. These functions are driven by PUF protein recognition of specific binding sites within the 3' untranslated regions of target mRNAs. In this study, we investigated mechanisms of repression by the founding PUF, Drosophila Pumilio, and its human orthologs. Here, we evaluated a previously proposed model wherein the Pumilio RNA binding domain (RBD) binds Argonaute, which in turn blocks the translational activity of the eukaryotic elongation factor 1A. Surprisingly, we found that Argonautes are not necessary for repression elicited by Drosophila and human PUFs in vivo. A second model proposed that the RBD of Pumilio represses by recruiting deadenylases to shorten the mRNA's polyadenosine tail. Indeed, the RBD binds to the Pop2 deadenylase and accelerates deadenylation; however, this activity is not crucial for regulation. Rather, we determined that the poly(A) is necessary for repression by the RBD. Our results reveal that poly(A)-dependent repression by the RBD requires the poly(A) binding protein, pAbp. Furthermore, we show that repression by the human PUM2 RBD requires the pAbp ortholog, PABPC1. Pumilio associates with pAbp but does not disrupt binding of pAbp to the mRNA. Taken together, our data support a model wherein the Pumilio RBD antagonizes the ability of pAbp to promote translation. Thus, the conserved function of the PUF RBD is to bind specific mRNAs, antagonize pAbp function, and promote deadenylation. PMID:24942623

  15. Membrane Binding and Modulation of the PDZ Domain of PICK1

    PubMed Central

    Erlendsson, Simon; Madsen, Kenneth Lindegaard

    2015-01-01

    Scaffolding proteins serve to assemble protein complexes in dynamic processes by means of specific protein-protein and protein-lipid binding domains. Many of these domains bind either proteins or lipids exclusively; however, it has become increasingly evident that certain domains are capable of binding both. Especially, many PDZ domains, which are highly abundant protein-protein binding domains, bind lipids and membranes. Here we provide an overview of recent large-scale studies trying to generalize and rationalize the binding patterns as well as specificity of PDZ domains towards membrane lipids. Moreover, we review how these PDZ-membrane interactions are regulated in the case of the synaptic scaffolding protein PICK1 and how this might affect cellular localization and function. PMID:26501328

  16. Ligand binding to WW tandem domains of YAP2 transcriptional regulator is under negative cooperativity.

    PubMed

    Schuchardt, Brett J; Mikles, David C; Hoang, Lawrence M; Bhat, Vikas; McDonald, Caleb B; Sudol, Marius; Farooq, Amjad

    2014-12-01

    YES-associated protein 2 (YAP2) transcriptional regulator drives a multitude of cellular processes, including the newly discovered Hippo tumor suppressor pathway, by virtue of the ability of its WW domains to bind and recruit PPXY-containing ligands to specific subcellular compartments. Herein, we employ an array of biophysical tools to investigate allosteric communication between the WW tandem domains of YAP2. Our data show that the WW tandem domains of YAP2 negatively cooperate when binding to their cognate ligands. Moreover, the molecular origin of such negative cooperativity lies in an unfavorable entropic contribution to the overall free energy relative to ligand binding to isolated WW domains. Consistent with this notion, the WW tandem domains adopt a fixed spatial orientation such that the WW1 domain curves outwards and stacks onto the binding groove of the WW2 domain, thereby sterically hindering ligand binding to both itself and its tandem partner. Although ligand binding to both WW domains disrupts such interdomain stacking interaction, they reorient themselves and adopt an alternative fixed spatial orientation in the liganded state by virtue of their ability to engage laterally so as to allow their binding grooves to point outwards and away from each other. In short, while the ability of WW tandem domains to aid ligand binding is well documented, our demonstration that they may also be subject to negative binding cooperativity represents a paradigm shift in our understanding of the molecular action of this ubiquitous family of protein modules. PMID:25283809

  17. Ligand Binding to WW Tandem Domains of YAP2 Transcriptional Regulator Is Under Negative Cooperativity

    PubMed Central

    Schuchardt, Brett J.; Mikles, David C.; Hoang, Lawrence M.; Bhat, Vikas; McDonald, Caleb B.; Sudol, Marius; Farooq, Amjad

    2014-01-01

    YAP2 transcriptional regulator drives a multitude of cellular processes, including the newly discovered Hippo tumor suppressor pathway, by virtue of the ability of its WW domains to bind and recruit PPXY-containing ligands to specific subcellular compartments. Herein, we employ an array of biophysical tools to investigate allosteric communication between the WW tandem domains of YAP2. Our data show that the WW tandem domains of YAP2 negatively cooperate when binding to their cognate ligands. Moreover, the molecular origin of such negative cooperativity lies in an unfavorable entropic contribution to the overall free energy relative to ligand binding to isolated WW domains. Consistent with this notion, the WW tandem domains adopt a fixed spatial orientation such that the WW1 domain curves outwards and stacks onto the binding groove of WW2 domain, thereby sterically hindering ligand binding to both itself and its tandem partner. Although ligand binding to both WW domains disrupts such interdomain stacking interaction, they reorient themselves and adopt an alternative fixed spatial orientation in the liganded state by virtue of their ability to engage laterally so as to allow their binding grooves to point outwards and away from each other. In short, while the ability of WW tandem domains to aid ligand binding is well-documented, our demonstration that they may also be subject to negative binding cooperativity represents a paradigm shift in our understanding of the molecular action of this ubiquitous family of protein modules. PMID:25283809

  18. Structure of the ERM protein moesin reveals the FERM domain fold masked by an extended actin binding tail domain.

    PubMed

    Pearson, M A; Reczek, D; Bretscher, A; Karplus, P A

    2000-04-28

    The ezrin-radixin-moesin (ERM) protein family link actin filaments of cell surface structures to the plasma membrane, using a C-terminal F-actin binding segment and an N-terminal FERM domain, a common membrane binding module. ERM proteins are regulated by an intramolecular association of the FERM and C-terminal tail domains that masks their binding sites. The crystal structure of a dormant moesin FERM/tail complex reveals that the FERM domain has three compact lobes including an integrated PTB/PH/ EVH1 fold, with the C-terminal segment bound as an extended peptide masking a large surface of the FERM domain. This extended binding mode suggests a novel mechanism for how different signals could produce varying levels of activation. Sequence conservation suggests a similar regulation of the tumor suppressor merlin. PMID:10847681

  19. Integrin LFA-1 alpha subunit contains an ICAM-1 binding site in domains V and VI.

    PubMed Central

    Stanley, P; Bates, P A; Harvey, J; Bennett, R I; Hogg, N

    1994-01-01

    In order to identify a binding site for ligand intercellular adhesion molecule-1 (ICAM-1) on the beta 2 integrin lymphocyte function-associated antigen-1 (LFA-1), protein fragments of LFA-1 were made by in vitro translation of a series of constructs which featured domain-sized deletions starting from the N-terminus of the alpha subunit of LFA-1. Monoclonal antibodies and ICAM-1 were tested for their ability to bind to these protein fragments. Results show that the putative divalent cation binding domains V and VI contain an ICAM-1 binding site. A series of consecutive peptides covering these domains indicated two discontinuous areas as specific contact sites: residues 458-467 in domain V and residues 497-516 in domain VI. A three-dimensional model of these domains of LFA-1 was constructed based on the sequence similarity to known EF hands. The two regions critical for the interaction of LFA-1 with ICAM-1 lie adjacent to each other, the first next to the non-functional EF hand in domain V and the second coinciding with the potential divalent cation binding loop in domain VI. The binding of ICAM-1 with the domain V and VI region in solution was not sensitive to divalent cation chelation. In short, a critical motif for ICAM-1 binding to the alpha subunit of LFA-1 is shared between two regions of domains V and VI. Images PMID:7909511

  20. Cooperative DNA Binding and Sequence-Selective Recognition Conferred by the STAT Amino-Terminal Domain

    NASA Astrophysics Data System (ADS)

    Xu, Xiang; Sun, Ya-Lin; Hoey, Timothy

    1996-08-01

    STAT proteins (signal transducers and activators of transcription) activate distinct target genes despite having similar DNA binding preferences. The transcriptional specificity of STAT proteins was investigated on natural STAT binding sites near the interferon-gamma gene. These sites are arranged in multiple copies and required cooperative interactions for STAT binding. The conserved amino-terminal domain of STAT proteins was required for cooperative DNA binding, although this domain was not essential for dimerization or binding to a single site. Cooperative binding interactions enabled the STAT proteins to recognize variations of the consensus site. These sites can be specific for the different STAT proteins and may function to direct selective transcriptional activation.

  1. The neural cell adhesion molecule (NCAM) heparin binding domain binds to cell surface heparan sulfate proteoglycans.

    PubMed

    Kallapur, S G; Akeson, R A

    1992-12-01

    The neural cell adhesion molecule (NCAM) has been strongly implicated in several aspects of neural development. NCAM mediated adhesion has been proposed to involve a homophilic interaction between NCAMs on adjacent cells. The heparin binding domain (HBD) is an amino acid sequence within NCAM and has been shown to be involved in NCAM mediated adhesion but the relationship of this domain to NCAM segments mediating homophilic adhesion has not been defined. In the present study, a synthetic peptide corresponding to the HBD has been used as a substrate to determine its role in NCAM mediated adhesion. A neural cell line expressing NCAM (B35) and its derived clone which does not express NCAM (B35 clone 3) adhered similarly to plates coated with HBD peptide. A polyclonal antiserum to NCAM inhibited B35 cell-HBD peptide adhesion by only 10%, a value not statistically different from inhibition caused by preimmune serum. Both these experiments suggested no direct NCAM-HBD interactions. To test whether the HBD peptide bound to cell surface heparan sulfate proteoglycans (HSPG), HSPG synthesis was inhibited using beta-D-xyloside. After treatment, B35 cell adhesion to the HBD peptide, but not to control substrates, was significantly decreased. B35 cell adhesion to the HBD peptide could be inhibited by 10(-7) M heparin but not chondroitin sulfate. Preincubation of the substrate (HBD peptide) with heparin caused dramatic reduction of B35 cell-HBD peptide adhesion whereas preincubation of B35 cells with heparin caused only modest reductions in cell-HBD adhesion. Furthermore, inhibition of HSPG sulfation with sodium chlorate also decreased the adhesion of B35 cells to the HBD peptide. These results strongly suggest that, within the assay system, the NCAM HBD does not participate in homophilic interactions but binds to cell surface heparan sulfate proteoglycan. This interaction potentially represents an important mechanism of NCAM adhesion and further supports the view that NCAM has

  2. T antigen origin-binding domain of simian virus 40: determinants of specific DNA binding.

    PubMed

    Bradshaw, Elizabeth M; Sanford, David G; Luo, Xuelian; Sudmeier, James L; Gurard-Levin, Zachary A; Bullock, Peter A; Bachovchin, William W

    2004-06-01

    To better understand origin recognition and initiation of DNA replication, we have examined by NMR complexes formed between the origin-binding domain of SV40 T antigen (T-ag-obd), the initiator protein of the SV40 virus, and cognate and noncognate DNA oligomers. The results reveal two structural effects associated with "origin-specific" binding that are absent in nonspecific DNA binding. The first is the formation of a hydrogen bond (H-bond) involving His 203, a residue that genetic studies have previously identified as crucial to both specific and nonspecific DNA binding in full-length T antigen. In free T-ag-obd, the side chain of His 203 has a pK(a) value of approximately 5, titrating to the N(epsilon)(1)H tautomer at neutral pH (Sudmeier, J. L., et al. (1996) J. Magn. Reson., Ser. B 113, 236-247). In complexes with origin DNA, His 203 N(delta)(1) becomes protonated and remains nontitrating as the imidazolium cation at all pH values from 4 to 8. The H-bonded N(delta1)H resonates at 15.9 ppm, an unusually large N-H proton chemical shift, of a magnitude previously observed only in the catalytic triad of serine proteases at low pH. The formation of this H-bond requires the middle G/C base pair of the recognition pentanucleotide, GAGGC. The second structural effect is a selective distortion of the A/T base pair characterized by a large (0.6 ppm) upfield chemical-shift change of its Watson-Crick proton, while nearby H-bonded protons remain relatively unaffected. The results indicate that T antigen, like many other DNA-binding proteins, may employ "catalytic" or "transition-state-like" interactions in binding its cognate DNA (Jen-Jacobson, L. (1997) Biopolymers 44, 153-180), which may be the solution to the well-known paradox between the relatively modest DNA-binding specificity exhibited by initiator proteins and the high specificity of initiation. PMID:15170330

  3. Structural Basis of Rnd1 Binding to Plexin Rho GTPase Binding Domains (RBDs)

    SciTech Connect

    Wang, Hui; Hota, Prasanta K.; Tong, Yufeng; Li, Buren; Shen, Limin; Nedyalkova, Lyudmila; Borthakur, Susmita; Kim, SoonJeung; Tempel, Wolfram; Buck, Matthias; Park, Hee-Won

    2011-09-20

    Plexin receptors regulate cell adhesion, migration, and guidance. The Rho GTPase binding domain (RBD) of plexin-A1 and -B1 can bind GTPases, including Rnd1. By contrast, plexin-C1 and -D1 reportedly bind Rnd2 but associate with Rnd1 only weakly. The structural basis of this differential Rnd1 GTPase binding to plexin RBDs remains unclear. Here, we solved the structure of the plexin-A2 RBD in complex with Rnd1 and the structures of the plexin-C1 and plexin-D1 RBDs alone, also compared with the previously determined plexin-B1 RBD.Rnd1 complex structure. The plexin-A2 RBD {center_dot} Rnd1 complex is a heterodimer, whereas plexin-B1 and -A2 RBDs homodimerize at high concentration in solution, consistent with a proposed model for plexin activation. Plexin-C1 and -D1 RBDs are monomeric, consistent with major residue changes in the homodimerization loop. In plexin-A2 and -B1, the RBD {beta}3-{beta}4 loop adjusts its conformation to allow Rnd1 binding, whereas minimal structural changes occur in Rnd1. The plexin-C1 and -D1 RBDs lack several key non-polar residues at the corresponding GTPase binding surface and do not significantly interact with Rnd1. Isothermal titration calorimetry measurements on plexin-C1 and -D1 mutants reveal that the introduction of non-polar residues in this loop generates affinity for Rnd1. Structure and sequence comparisons suggest a similar mode of Rnd1 binding to the RBDs, whereas mutagenesis suggests that the interface with the highly homologous Rnd2 GTPase is different in detail. Our results confirm, from a structural perspective, that Rnd1 does not play a role in the activation of plexin-C1 and -D1. Plexin functions appear to be regulated by subfamily-specific mechanisms, some of which involve different Rho family GTPases.

  4. Binding to retinoblastoma pocket domain does not alter the inter-domain flexibility of the J domain of SV40 large T antigen.

    PubMed

    Williams, Christina K; Vaithiyalingam, Sivaraja; Hammel, Michal; Pipas, James; Chazin, Walter J

    2012-02-15

    Simian Virus 40 uses the large T antigen (Tag) to bind and inactivate retinoblastoma tumor suppressor proteins (Rb), which can result in cellular transformation. Tag is a modular protein with four domains connected by flexible linkers. The N-terminal J domain of Tag is necessary for Rb inactivation. Binding of Rb is mediated by an LXCXE consensus motif immediately C-terminal to the J domain. Nuclear magnetic resonance (NMR) and small angle X-ray scattering (SAXS) were used to study the structural dynamics and interaction of Rb with the LXCXE motif, the J domain and a construct (N(260)) extending from the J domain through the origin binding domain (OBD). NMR and SAXS data revealed substantial flexibility between the domains in N(260). Binding of pRb to a construct containing the LXCXE motif and the J domain revealed weak interactions between pRb and the J domain. Analysis of the complex of pRb and N(260) indicated that the OBD is not involved and retains its dynamic independence from the remainder of Tag. These results support a 'chaperone' model in which the J domain of Tag changes its orientation as it acts upon different protein complexes. PMID:22227098

  5. Comparison of S. cerevisiae F-BAR domain structures reveals a conserved inositol phosphate binding site

    PubMed Central

    Moravcevic, Katarina; Alvarado, Diego; Schmitz, Karl R.; Kenniston, Jon A.; Mendrola, Jeannine M.; Ferguson, Kathryn M.; Lemmon, Mark A.

    2015-01-01

    SUMMARY F-BAR domains control membrane interactions in endocytosis, cytokinesis, and cell signaling. Although generally thought to bind curved membranes containing negatively charged phospholipids, numerous functional studies argue that differences in lipid-binding selectivities of F-BAR domains are functionally important. Here, we compare membrane-binding properties of the S. cerevisiae F-BAR domains in vitro and in vivo. Whereas some F-BAR domains (such as Bzz1p and Hof1p F-BARs) bind equally well to all phospholipids, the F-BAR domain from the RhoGAP Rgd1p preferentially binds phosphoinositides. We determined X-ray crystal structures of F-BAR domains from Hof1p and Rgd1p, the latter bound to an inositol phosphate. The structures explain phospholipid-binding selectivity differences, and reveal an F-BAR phosphoinositide binding site that is fully conserved in a mammalian RhoGAP called Gmip, and is partly retained in certain other F-BAR domains. Our findings reveal previously unappreciated determinants of F-BAR domain lipid-binding specificity, and provide a basis for its prediction from sequence. PMID:25620000

  6. Proline-rich sequences that bind to Src homology 3 domains with individual specificities.

    PubMed Central

    Alexandropoulos, K; Cheng, G; Baltimore, D

    1995-01-01

    To study the binding specificity of Src homology 3 (SH3) domains, we have screened a mouse embryonic expression library for peptide fragments that interact with them. Several clones were identified that express fragments of proteins which, through proline-rich binding sites, exhibit differential binding specificity to various SH3 domains. Src-SH3-specific binding uses a sequence of 7 aa of the consensus RPLPXXP, in which the N-terminal arginine is very important. The SH3 domains of the Src-related kinases Fyn, Lyn, and Hck bind to this sequence with the same affinity as that of the Src SH3. In contrast, a quite different proline-rich sequence from the Btk protein kinase binds to the Fyn, Lyn, and Hck SH3 domains, but not to the Src SH3. Specific binding of the Abl SH3 requires a longer, more proline-rich sequence but no arginine. One clone that binds to both Src and Abl SH3 domains through a common site exhibits reversed binding orientation, in that an arginine indispensable for binding to all tested SH3 domains occurs at the C terminus. Another clone contains overlapping yet distinct Src and Abl SH3 binding sites. Binding to the SH3 domains is mediated by a common PXXP amino acid sequence motif present on all ligands, and specificity comes about from other interactions, often ones involving arginine. The rules governing in vivo usage of particular sites by particular SH3 domains are not clear, but one binding orientation may be more specific than another. Images Fig. 1 Fig. 2 Fig. 3 PMID:7536925

  7. An aprotinin binding site localized in the hormone binding domain of the estrogen receptor from calf uterus.

    PubMed

    Nigro, V; Medici, N; Abbondanza, C; Minucci, S; Moncharmont, B; Molinari, A M; Puca, G A

    1990-07-31

    It has been proposed that the estrogen receptor bears proteolytic activity responsible for its own transformation. This activity was inhibited by aprotinin. Incubation of transformed ER with aprotinin modified the proteolytic digestion of the hormone binding subunit by proteinase K. The smallest hormone-binding fragment of the ER, obtained by tryptic digestion, was still able to bind to aprotinin. These results suggest that aprotinin interacts with ER and the hormone-binding domain of ER is endowed with a specific aprotinin-binding site. PMID:1696480

  8. The BEN domain is a novel sequence-specific DNA-binding domain conserved in neural transcriptional repressors

    PubMed Central

    Dai, Qi; Ren, Aiming; Westholm, Jakub O.; Serganov, Artem A.; Patel, Dinshaw J.; Lai, Eric C.

    2013-01-01

    We recently reported that Drosophila Insensitive (Insv) promotes sensory organ development and has activity as a nuclear corepressor for the Notch transcription factor Suppressor of Hairless [Su(H)]. Insv lacks domains of known biochemical function but contains a single BEN domain (i.e., a “BEN-solo” protein). Our chromatin immunoprecipitation (ChIP) sequencing (ChIP-seq) analysis confirmed binding of Insensitive to Su(H) target genes in the Enhancer of split gene complex [E(spl)-C]; however, de novo motif analysis revealed a novel site strongly enriched in Insv peaks (TCYAATHRGAA). We validate binding of endogenous Insv to genomic regions bearing such sites, whose associated genes are enriched for neural functions and are functionally repressed by Insv. Unexpectedly, we found that the Insv BEN domain binds specifically to this sequence motif and that Insv directly regulates transcription via this motif. We determined the crystal structure of the BEN–DNA target complex, revealing homodimeric binding of the BEN domain and extensive nucleotide contacts via α helices and a C-terminal loop. Point mutations in key DNA-contacting residues severely impair DNA binding in vitro and capacity for transcriptional regulation in vivo. We further demonstrate DNA-binding and repression activities by the mammalian neural BEN-solo protein BEND5. Altogether, we define novel DNA-binding activity in a conserved family of transcriptional repressors, opening a molecular window on this extensive gene family. PMID:23468431

  9. The ligand binding domain of the nicotinic acetylcholine receptor. Immunological analysis.

    PubMed

    Kachalsky, S G; Aladjem, M; Barchan, D; Fuchs, S

    1993-03-01

    The interaction of the acetylcholine receptor (AChR) binding site domain with specific antibodies and with alpha-bungarotoxin (alpha-BTX) has been compared. The cloned and expressed ligand binding domain of the mouse AChR alpha-subunit binds alpha-BTX, whereas the mongoose-expressed domain is not recognized by alpha-BTX. On the other hand, both the mouse and mongoose domains bind to the site-specific monoclonal antibody 5.5. These results demonstrate that the structural requirements for binding of alpha-BTX and mcAb 5.5, both of which interact with the AChR binding site, are distinct from each other. PMID:8440381

  10. A SAM oligomerization domain shapes the genomic binding landscape of the LEAFY transcription factor

    PubMed Central

    Sayou, Camille; Nanao, Max H.; Jamin, Marc; Posé, David; Thévenon, Emmanuel; Grégoire, Laura; Tichtinsky, Gabrielle; Denay, Grégoire; Ott, Felix; Peirats Llobet, Marta; Schmid, Markus; Dumas, Renaud; Parcy, François

    2016-01-01

    Deciphering the mechanisms directing transcription factors (TFs) to specific genome regions is essential to understand and predict transcriptional regulation. TFs recognize short DNA motifs primarily through their DNA-binding domain. Some TFs also possess an oligomerization domain suspected to potentiate DNA binding but for which the genome-wide influence remains poorly understood. Here we focus on the LEAFY transcription factor, a master regulator of flower development in angiosperms. We have determined the crystal structure of its conserved amino-terminal domain, revealing an unanticipated Sterile Alpha Motif oligomerization domain. We show that this domain is essential to LEAFY floral function. Moreover, combined biochemical and genome-wide assays suggest that oligomerization is required for LEAFY to access regions with low-affinity binding sites or closed chromatin. This finding shows that domains that do not directly contact DNA can nevertheless have a profound impact on the DNA binding landscape of a TF. PMID:27097556

  11. A SAM oligomerization domain shapes the genomic binding landscape of the LEAFY transcription factor.

    PubMed

    Sayou, Camille; Nanao, Max H; Jamin, Marc; Posé, David; Thévenon, Emmanuel; Grégoire, Laura; Tichtinsky, Gabrielle; Denay, Grégoire; Ott, Felix; Peirats Llobet, Marta; Schmid, Markus; Dumas, Renaud; Parcy, François

    2016-01-01

    Deciphering the mechanisms directing transcription factors (TFs) to specific genome regions is essential to understand and predict transcriptional regulation. TFs recognize short DNA motifs primarily through their DNA-binding domain. Some TFs also possess an oligomerization domain suspected to potentiate DNA binding but for which the genome-wide influence remains poorly understood. Here we focus on the LEAFY transcription factor, a master regulator of flower development in angiosperms. We have determined the crystal structure of its conserved amino-terminal domain, revealing an unanticipated Sterile Alpha Motif oligomerization domain. We show that this domain is essential to LEAFY floral function. Moreover, combined biochemical and genome-wide assays suggest that oligomerization is required for LEAFY to access regions with low-affinity binding sites or closed chromatin. This finding shows that domains that do not directly contact DNA can nevertheless have a profound impact on the DNA binding landscape of a TF. PMID:27097556

  12. Wnts grasp the WIF domain of Wnt Inhibitory Factor 1 at two distinct binding sites.

    PubMed

    Kerekes, Krisztina; Bányai, László; Patthy, László

    2015-10-01

    Wnts have a structure resembling a hand with "thumb" and "index" fingers that grasp the cysteine rich domains of Frizzled receptors at two distinct binding sites. In the present work we show that the WIF domain of Wnt Inhibitory Factor 1 is also bound by Wnts at two sites. Using C-terminal domains of Wnt5a and Wnt7a and arginine-scanning mutagenesis of the WIF domain we demonstrate that, whereas the N-terminal, lipid-modified "thumb" of Wnts interacts with the alkyl-binding site of the WIF domain, the C-terminal domain of Wnts (Wnt-CTD) binds to a surface on the opposite side of the WIF domain. PMID:26342861

  13. PROPERTIES OF CATALYTIC, LINKER AND CHITIN-BINDING DOMAINS OF INSECT CHITINASE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Manduca sexta (tobacco hornworm) chitinase is a glycoprotein that consists of an N-terminal catalytic domain, a Ser/Thr-rich linker region, and a C-terminal chitin-binding domain. To delineate the properties of these domains, we have generated truncated forms of chitinase, which were expressed in i...

  14. Solution structure of telomere binding domain of AtTRB2 derived from Arabidopsis thaliana

    SciTech Connect

    Yun, Ji-Hye; Lee, Won Kyung; Kim, Heeyoun; Kim, Eunhee; Cheong, Chaejoon; Cho, Myeon Haeng; Lee, Weontae

    2014-09-26

    Highlights: • We have determined solution structure of Myb domain of AtTRB2. • The Myb domain of AtTRB2 is located in the N-terminal region. • The Myb domain of AtTRB2 binds to plant telomeric DNA without fourth helix. • Helix 2 and 3 of the Myb domain of AtTRB2 are involved in DNA recognition. • AtTRB2 is a novel protein distinguished from other known plant TBP. - Abstract: Telomere homeostasis is regulated by telomere-associated proteins, and the Myb domain is well conserved for telomere binding. AtTRB2 is a member of the SMH (Single-Myb-Histone)-like family in Arabidopsis thaliana, having an N-terminal Myb domain, which is responsible for DNA binding. The Myb domain of AtTRB2 contains three α-helices and loops for DNA binding, which is unusual given that other plant telomere-binding proteins have an additional fourth helix that is essential for DNA binding. To understand the structural role for telomeric DNA binding of AtTRB2, we determined the solution structure of the Myb domain of AtTRB2 (AtTRB2{sub 1–64}) using nuclear magnetic resonance (NMR) spectroscopy. In addition, the inter-molecular interaction between AtTRB2{sub 1–64} and telomeric DNA has been characterized by the electrophoretic mobility shift assay (EMSA) and NMR titration analyses for both plant (TTTAGGG)n and human (TTAGGG)n telomere sequences. Data revealed that Trp28, Arg29, and Val47 residues located in Helix 2 and Helix 3 are crucial for DNA binding, which are well conserved among other plant telomere binding proteins. We concluded that although AtTRB2 is devoid of the additional fourth helix in the Myb-extension domain, it is able to bind to plant telomeric repeat sequences as well as human telomeric repeat sequences.

  15. Cross-talk among structural domains of human DBP upon binding 25-hydroxyvitamin D

    PubMed Central

    Ray, Arjun; Swamy, Narasimha; Ray, Rahul

    2007-01-01

    Serum vitamin D-binding protein (DBP) is structurally very similar to serum albumin (ALB); both have three distinct structural domains and high cysteine-content. Yet, functionally they are very different. DBP possesses high affinity for vitamin D metabolites and G-actin, but ALB does not. It has been suggested that there may be cross-talk among the domains so that binding of one ligand may influence the binding of others. In this study we have employed 2-p-toluidinyl-6-sulphonate (TNS), a reporter molecule that fluoresces upon binding to hydrophobic pockets of DBP. We observed that recombinant domain III possesses strong binding for TNS, which is not influenced by 25-hydroxyvitamin D3 (25-OH-D3), yet TNS-fluorescence of the whole protein is quenched by 25-OH-D3. These results provide a direct evidence of cross-talk among the structural domains of DBP. PMID:18035050

  16. STRUCTURAL FOLD, CONSERVATION AND FE(II) BINDING OF THE INTRACELLULAR DOMAIN OF PROKARYOTE FEOB

    PubMed Central

    Hung, Kuo-Wei; Chang, Yi-Wei; Eng, Edward T.; Chen, Jai-Hui; Chen, Yi-Chung; Sun, Yuh-Ju; Hsiao, Chwan-Deng; Dong, Gang; Spasov, Krasimir A.; Unger, Vinzenz M.; Huang, Tai-huang

    2010-01-01

    FeoB is a G-protein coupled membrane protein essential for Fe(II) uptake in prokaryotes. Here, we report the crystal structures of the intracellular domain of FeoB (NFeoB) from Klebsiella pneumoniae (KpNFeoB) and Pyrococcus furiosus (PfNFeoB) with and without bound ligands. In the structures, a canonical G-protein domain (G domain) is followed by a helical bundle domain (S-domain), which despite its lack of sequence similarity between species is structurally conserved. In the nucleotide-free state, the G-domain’s two switch regions point away from the binding site. This gives rise to an open binding pocket whose shallowness is likely to be responsible for the low nucleotide binding affinity. Nucleotide binding induced significant conformational changes in the G5 motif which in the case of GMPPNP binding was accompanied by destabilization of the switch I region. In addition to the structural data, we demonstrate that Fe(II)-induced foot printing cleaves the protein close to a putative Fe(II)-binding site at the tip of switch I, and we identify functionally important regions within the S-domain. Moreover, we show that NFeoB exists as a monomer in solution, and that its two constituent domains can undergo large conformational changes. The data show that the S-domain plays important roles in FeoB function. PMID:20123128

  17. Fibronectin-binding protein of Streptococcus pyogenes: sequence of the binding domain involved in adherence of streptococci to epithelial cells.

    PubMed Central

    Talay, S R; Valentin-Weigand, P; Jerlström, P G; Timmis, K N; Chhatwal, G S

    1992-01-01

    The sequence of the fibronectin-binding domain of the fibronectin-binding protein of Streptococcus pyogenes (Sfb protein) was determined, and its role in streptococcal adherence was investigated by use of an Sfb fusion protein in adherence studies. A 1-kb DNA fragment coding for the binding domain of Sfb protein was cloned into the expression vector pEX31 to produce an Sfb fusion protein consisting of the N-terminal part of MS2 polymerase and a C-terminal fragment of the streptococcal protein. Induction of the vector promoter resulted in hyperexpression of fibronectin-binding fusion protein in the cytoplasm of the recombinant Escherichia coli cells. Sequence determination of the cloned 1-kb fragment revealed an in-frame reading frame for a 268-amino-acid peptide composed of a 37-amino-acid sequence which is completely repeated three times and incompletely repeated a fourth time. Cloning of one repeat into pEX31 resulted in expression of small fusion peptides that show fibronectin-binding activity, indicating that one repeat contains at least one binding domain. Each repeat exhibits two charged domains and shows high homology with the 38-amino-acid D3 repeat of the fibronectin-binding protein of Staphylococcus aureus. Sequence comparison with other streptococcal ligand-binding surface proteins, including M protein, failed to reveal significant homology, which suggests that Sfb protein represents a novel type of functional protein in S. pyogenes. The Sfb fusion protein isolated from the cytoplasm of recombinant cells was purified by fast protein liquid chromatography. It showed a strong competitive inhibition of fibronectin binding to S. pyogenes and of the adherence of bacteria to cultured epithelial cells. In contrast, purified streptococcal lipoteichoic acid showed only a weak inhibition of fibronectin binding and streptococcal adherence. These results demonstrate that Sfb protein is directly involved in the fibronectin-mediated adherence of S. pyogenes to

  18. Structure-function relationships in the catalytic and starch binding domains of glucoamylase.

    PubMed

    Coutinho, P M; Reilly, P J

    1994-03-01

    Sixteen primary sequences from five sub-families of fungal, yeast and bacterial glucoamylases were related to structural information from the model of the catalytic domain of Aspergillus awamori var. X100 glucoamylase obtained by protein crystallography. This domain is composed of thirteen alpha-helices, with five conserved regions defining the active site. Interactions between methyl alpha-maltoside and active site residues were modelled, and the importance of these residues on the catalytic action of different glucoamylases was shown by their presence in each primary sequence. The overall structure of the starch binding domain of some fungal glucoamylases was determined based on homology to the C-terminal domains of Bacillus cyclodextrin glucosyl-transferases. Crystallography indicated that this domain contains 6-8 beta-strands and homology allowed the attribution of a disulfide bridge in the glucoamylase starch binding domain. Glucoamylase residues Thr525, Asn530 and Trp560, homologous to Bacillus stearothermophilus cyclodextrin glucosyltransferase residues binding to maltose in the C-terminal domain, could be involved in raw-starch binding. The structure and length of the linker region between the catalytic and starch binding domains in fungal glucoamylases can vary substantially, a further indication of the functional independence of the two domains. PMID:8177888

  19. IQGAP proteins reveal an atypical phosphoinositide (aPI) binding domain with a pseudo C2 domain fold.

    PubMed

    Dixon, Miles J; Gray, Alexander; Schenning, Martijn; Agacan, Mark; Tempel, Wolfram; Tong, Yufeng; Nedyalkova, Lyudmila; Park, Hee-Won; Leslie, Nicholas R; van Aalten, Daan M F; Downes, C Peter; Batty, Ian H

    2012-06-29

    Class I phosphoinositide (PI) 3-kinases act through effector proteins whose 3-PI selectivity is mediated by a limited repertoire of structurally defined, lipid recognition domains. We describe here the lipid preferences and crystal structure of a new class of PI binding modules exemplified by select IQGAPs (IQ motif containing GTPase-activating proteins) known to coordinate cellular signaling events and cytoskeletal dynamics. This module is defined by a C-terminal 105-107 amino acid region of which IQGAP1 and -2, but not IQGAP3, binds preferentially to phosphatidylinositol 3,4,5-trisphosphate (PtdInsP(3)). The binding affinity for PtdInsP(3), together with other, secondary target-recognition characteristics, are comparable with those of the pleckstrin homology domain of cytohesin-3 (general receptor for phosphoinositides 1), an established PtdInsP(3) effector protein. Importantly, the IQGAP1 C-terminal domain and the cytohesin-3 pleckstrin homology domain, each tagged with enhanced green fluorescent protein, were both re-localized from the cytosol to the cell periphery following the activation of PI 3-kinase in Swiss 3T3 fibroblasts, consistent with their common, selective recognition of endogenous 3-PI(s). The crystal structure of the C-terminal IQGAP2 PI binding module reveals unexpected topological similarity to an integral fold of C2 domains, including a putative basic binding pocket. We propose that this module integrates select IQGAP proteins with PI 3-kinase signaling and constitutes a novel, atypical phosphoinositide binding domain that may represent the first of a larger group, each perhaps structurally unique but collectively dissimilar from the known PI recognition modules. PMID:22493426

  20. IQGAP Proteins Reveal an Atypical Phosphoinositide (aPI) Binding Domain with a Pseudo C2 Domain Fold

    SciTech Connect

    Dixon, Miles J.; Gray, Alexander; Schenning, Martijn; Agacan, Mark; Tempel, Wolfram; Tong, Yufeng; Nedyalkova, Lyudmila; Park, Hee-Won; Leslie, Nicholas R.; van Aalten, Daan M.F.; Downes, C. Peter; Batty, Ian H.

    2012-10-16

    Class I phosphoinositide (PI) 3-kinases act through effector proteins whose 3-PI selectivity is mediated by a limited repertoire of structurally defined, lipid recognition domains. We describe here the lipid preferences and crystal structure of a new class of PI binding modules exemplified by select IQGAPs (IQ motif containing GTPase-activating proteins) known to coordinate cellular signaling events and cytoskeletal dynamics. This module is defined by a C-terminal 105-107 amino acid region of which IQGAP1 and -2, but not IQGAP3, binds preferentially to phosphatidylinositol 3,4,5-trisphosphate (PtdInsP3). The binding affinity for PtdInsP3, together with other, secondary target-recognition characteristics, are comparable with those of the pleckstrin homology domain of cytohesin-3 (general receptor for phosphoinositides 1), an established PtdInsP3 effector protein. Importantly, the IQGAP1 C-terminal domain and the cytohesin-3 pleckstrin homology domain, each tagged with enhanced green fluorescent protein, were both re-localized from the cytosol to the cell periphery following the activation of PI 3-kinase in Swiss 3T3 fibroblasts, consistent with their common, selective recognition of endogenous 3-PI(s). The crystal structure of the C-terminal IQGAP2 PI binding module reveals unexpected topological similarity to an integral fold of C2 domains, including a putative basic binding pocket. We propose that this module integrates select IQGAP proteins with PI 3-kinase signaling and constitutes a novel, atypical phosphoinositide binding domain that may represent the first of a larger group, each perhaps structurally unique but collectively dissimilar from the known PI recognition modules.

  1. The Binding of Syndapin SH3 Domain to Dynamin Proline-rich Domain Involves Short and Long Distance Elements.

    PubMed

    Luo, Lin; Xue, Jing; Kwan, Ann; Gamsjaeger, Roland; Wielens, Jerome; von Kleist, Lisa; Cubeddu, Liza; Guo, Zhong; Stow, Jennifer L; Parker, Michael W; Mackay, Joel P; Robinson, Phillip J

    2016-04-29

    Dynamin is a GTPase that mediates vesicle fission during synaptic vesicle endocytosis. Its long C-terminal proline-rich domain contains 13 PXXP motifs, which orchestrate its interactions with multiple proteins. The SH3 domains of syndapin and endophilin bind the PXXP motifs called Site 2 and 3 (Pro-786-Pro-793) at the N-terminal end of the proline-rich domain, whereas the amphiphysin SH3 binds Site 9 (Pro-833-Pro-836) toward the C-terminal end. In some proteins, SH3/peptide interactions also involve short distance elements, which are 5-15 amino acid extensions flanking the central PXXP motif for high affinity binding. Here we found two previously unrecognized elements in the central and the C-terminal end of the dynamin proline-rich domain that account for a significant increase in syndapin binding affinity compared with a previously reported Site 2 and Site 3 PXXP peptide alone. The first new element (Gly-807-Gly-811) is short distance element on the C-terminal side of Site 2 PXXP, which might contact a groove identified under the RT loop of the SH3 domain. The second element (Arg-838-Pro-844) is located about 50 amino acids downstream of Site 2. These two elements provide additional specificity to the syndapin SH3 domain outside of the well described polyproline-binding groove. Thus, the dynamin/syndapin interaction is mediated via a network of multiple contacts outside the core PXXP motif over a previously unrecognized extended region of the proline-rich domain. To our knowledge this is the first example among known SH3 interactions to involve spatially separated and extended long-range elements that combine to provide a higher affinity interaction. PMID:26893375

  2. Identification of the minimal binding region of a Plasmodium falciparum IgM binding PfEMP1 domain

    PubMed Central

    Semblat, Jean-Philippe; Ghumra, Ashfaq; Czajkowsky, Daniel M.; Wallis, Russell; Mitchell, Daniel A.; Raza, Ahmed; Rowe, J.Alexandra

    2015-01-01

    Binding of host immunoglobulin is a common immune evasion mechanism demonstrated by microbial pathogens. Previous work showed that the malaria parasite Plasmodium falciparum binds the Fc-region of human IgM molecules, resulting in a coating of IgM on the surface of infected erythrocytes. IgM binding is a property of P. falciparum strains showing virulence-related phenotypes such as erythrocyte rosetting. The parasite ligands for IgM binding are members of the diverse P. falciparum Erythrocyte Membrane Protein One (PfEMP1) family. However, little is known about the amino acid sequence requirements for IgM binding. Here we studied an IgM binding domain from a rosette-mediating PfEMP1 variant, DBL4ζ of TM284var1, and found that the minimal IgM binding region mapped to the central region of the DBL domain, comprising all of subdomain 2 and adjoining parts of subdomains 1 and 3. Site-directed mutagenesis of charged amino acids within subdomain 2, predicted by molecular modelling to form the IgM binding site, showed no marked effect on IgM binding properties. Overall, this study identifies the minimal IgM binding region of a PfEMP1 domain, and indicates that the existing homology model of PfEMP1-IgM interaction is incorrect. Further work is needed to identify the specific interaction site for IgM within the minimal binding region of PfEMP1. PMID:26094597

  3. An Unusual Cation-Binding Site and Distinct Domain-Domain Interactions Distinguish Class II Enolpyruvylshikimate-3-phosphate Synthases.

    PubMed

    Light, Samuel H; Krishna, Sankar N; Minasov, George; Anderson, Wayne F

    2016-03-01

    Enolpyruvylshikimate-3-phosphate synthase (EPSPS) catalyzes a critical step in the biosynthesis of a number of aromatic metabolites. An essential prokaryotic enzyme and the molecular target of the herbicide glyphosate, EPSPSs are the subject of both pharmaceutical and commercial interest. Two EPSPS classes that exhibit low sequence homology, differing substrate/glyphosate affinities, and distinct cation activation properties have previously been described. Here, we report structural studies of the monovalent cation-binding class II Coxiella burnetii EPSPS (cbEPSPS). Three cbEPSPS crystal structures reveal that the enzyme undergoes substantial conformational changes that alter the electrostatic potential of the active site. A complex with shikimate-3-phosphate, inorganic phosphate (Pi), and K(+) reveals that ligand induced domain closure produces an unusual cation-binding site bordered on three sides by the N-terminal domain, C-terminal domain, and the product Pi. A crystal structure of the class I Vibrio cholerae EPSPS (vcEPSPS) clarifies the basis of differential class I and class II cation responsiveness, showing that in class I EPSPSs a lysine side chain occupies the would-be cation-binding site. Finally, we identify distinct patterns of sequence conservation at the domain-domain interface and propose that the two EPSPS classes have evolved to differently optimize domain opening-closing dynamics. PMID:26813771

  4. Recognition of the disordered p53 transactivation domain by the transcriptional adapter zinc finger domains of CREB-binding protein.

    PubMed

    Krois, Alexander S; Ferreon, Josephine C; Martinez-Yamout, Maria A; Dyson, H Jane; Wright, Peter E

    2016-03-29

    An important component of the activity of p53 as a tumor suppressor is its interaction with the transcriptional coactivators cyclic-AMP response element-binding protein (CREB)-binding protein (CBP) and p300, which activate transcription of p53-regulated stress response genes and stabilize p53 against ubiquitin-mediated degradation. The highest affinity interactions are between the intrinsically disordered N-terminal transactivation domain (TAD) of p53 and the TAZ1 and TAZ2 domains of CBP/p300. The NMR spectra of simple binary complexes of the TAZ1 and TAZ2 domains with the p53TAD suffer from exchange broadening, but innovations in construct design and isotopic labeling have enabled us to obtain high-resolution structures using fusion proteins, uniformly labeled in the case of the TAZ2-p53TAD fusion and segmentally labeled through transintein splicing for the TAZ1-p53TAD fusion. The p53TAD is bipartite, with two interaction motifs, termed AD1 and AD2, which fold to form short amphipathic helices upon binding to TAZ1 and TAZ2 whereas intervening regions of the p53TAD remain flexible. Both the AD1 and AD2 motifs bind to hydrophobic surfaces of the TAZ domains, with AD2 making more extensive hydrophobic contacts consistent with its greater contribution to the binding affinity. Binding of AD1 and AD2 is synergistic, and structural studies performed with isolated motifs can be misleading. The present structures of the full-length p53TAD complexes demonstrate the versatility of the interactions available to an intrinsically disordered domain containing bipartite interaction motifs and provide valuable insights into the structural basis of the affinity changes that occur upon stress-related posttranslational modification. PMID:26976603

  5. Defining a minimal estrogen receptor DNA binding domain.

    PubMed Central

    Mader, S; Chambon, P; White, J H

    1993-01-01

    The estrogen receptor (ER) is a transcriptional regulator which binds to cognate palindromic DNA sequences known as estrogen response elements (EREs). A 66 amino acid core region which contains two zinc fingers and is highly conserved among the nuclear receptors is essential for site specific DNA recognition. However, it remains unclear how many flanking amino acids in addition to the zinc finger core are required for DNA binding. Here, we have characterized the minimal DNA binding region of the human ER by analysing the DNA binding properties of a series of deletion mutants expressed in bacteria. We find that the 66 amino acid zinc finger core of the DBD fails to bind DNA, and that the C-terminal end of the minimal ER DBD required for binding to perfectly palindromic EREs corresponds to the limit of 100% amino acid homology between the chicken and human receptors, which represents the boundary between regions C and D in the ER. Moreover, amino acids of region D up to 30 residues C-terminal to the zinc fingers greatly stabilize DNA binding by the DBD to perfectly palindromic EREs and are absolutely required for formation of gel retardation complexes by the DBD on certain physiological imperfectly palindromic EREs. These results indicate that in addition to the zinc finger core, amino acids C-terminal to the core in regions C and D play a key role in DNA binding by the ER, particularly to imperfectly palindromic response elements. The ER DBD expressed in E. coli binds as a dimer to ERE palindromes in a highly cooperative manner and forms only low levels of monomeric protein-DNA complexes on either palindromic or half-palindromic response elements. Conversion of ER amino acids 222 to 226, which lie within region C, to the corresponding residues of the human RAR alpha abolishes formation of dimeric protein-DNA complexes. Conversely, replacement of the same region of RAR alpha with ER residues 222 to 226 creates a derivative that, unlike the RAR alpha DBD, binds

  6. Characterization of substrate binding of the WW domains in human WWP2 protein.

    PubMed

    Jiang, Jiahong; Wang, Nan; Jiang, Yafei; Tan, Hongwei; Zheng, Jimin; Chen, Guangju; Jia, Zongchao

    2015-07-01

    WW domains harbor substrates containing proline-rich motifs, but the substrate specificity and binding mechanism remain elusive for those WW domains less amenable for structural studies, such as human WWP2 (hWWP2). Herein we have employed multiple techniques to investigate the second WW domain (WW2) in hWWP2. Our results show that hWWP2 is a specialized E3 for PPxY motif-containing substrates only and does not recognize other amino acids and phospho-residues. The strongest binding affinity of WW2, and the incompatibility between each WW domain, imply a novel relationship, and our SPR experiment reveals a dynamic binding mode in Class-I WW domains for the first time. The results from alanine-scanning mutagenesis and modeling further point to functionally conserved residues in WW2. PMID:25999310

  7. SH3b Cell wall binding domains can enhance anti-staphylococcal activity of endolysin lytic domains.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacteriophage endolysins are peptidoglycan hydrolases and a potential new source of antimicrobials. A large subset of these proteins contain a C-terminal SH3b_5 cell wall binding domain that has been shown [for some] to be essential for accurate cell wall recognition and subsequent staphylolytic ac...

  8. Evaluation of Selected Binding Domains for the Analysis of Ubiquitinated Proteomes

    NASA Astrophysics Data System (ADS)

    Nakayasu, Ernesto S.; Ansong, Charles; Brown, Joseph N.; Yang, Feng; Lopez-Ferrer, Daniel; Qian, Wei-Jun; Smith, Richard D.; Adkins, Joshua N.

    2013-08-01

    Ubiquitination is an abundant post-translational modification that consists of covalent attachment of ubiquitin to lysine residues or the N-terminus of proteins. Mono- and polyubiquitination have been shown to be involved in many critical eukaryotic cellular functions and are often disrupted by intracellular bacterial pathogens. Affinity enrichment of ubiquitinated proteins enables global analysis of this key modification. In this context, the use of ubiquitin-binding domains is a promising but relatively unexplored alternative to more broadly used immunoaffinity or tagged affinity enrichment methods. In this study, we evaluated the application of eight ubiquitin-binding domains that have differing affinities for ubiquitination states. Small-scale proteomics analysis identified ~200 ubiquitinated protein candidates per ubiquitin-binding domain pull-down experiment. Results from subsequent Western blot analyses that employed anti-ubiquitin or monoclonal antibodies against polyubiquitination at lysine 48 and 63 suggest that ubiquitin-binding domains from Dsk2 and ubiquilin-1 have the broadest specificity in that they captured most types of ubiquitination, whereas the binding domain from NBR1 was more selective to polyubiquitination. These data demonstrate that with optimized purification conditions, ubiquitin-binding domains can be an alternative tool for proteomic applications. This approach is especially promising for the analysis of tissues or cells resistant to transfection, of which the overexpression of tagged ubiquitin is a major hurdle.

  9. The endothelial cell binding determinant of human factor IX resides in the. gamma. -carboxyglutamic acid domain

    SciTech Connect

    Toomey, J.R.; Roberts, H.R.; Stafford, D.W. ); Smith, K.J. United Blood Services, Albuquerque, NM )

    1992-02-18

    The blood coagulation factor IX(a) binds specifically to a site on endothelial cells with a K{sub d} of 2.0-3.0 nM. A number of previous studies have attempted to define the region(s) of factor IX(a) that mediate this interaction. These studies suggested that there are two regions of factor IX(a), the {gamma}-carboxyglutamic acid (Gla) domain and the epidermal growth factor like (EGF-like) domains, that mediate high-affinity binding to endothelial cells. Recently, however, the participation of the EGF1 domain has been excluded from the interaction. This indicated that if there was an EGF component of factor IX contributing to the binding affinity, then it must be in the second EGF-like domain. In order to further evaluate this relationship, the authors performed competitive binding experiments between {sup 125}I plasma factor IX and a set of six chimeric proteins composed of portions of factor VII and factor IX. The data suggest that the high-affinity interaction between factor IX and the endothelial cell binding site is mediated by the factor IX Gla domain and that the factor IX EGF domains are not involved in binding specificity.

  10. Ligand binding to the PDZ domains of postsynaptic density protein 95.

    PubMed

    Toto, Angelo; Pedersen, Søren W; Karlsson, O Andreas; Moran, Griffin E; Andersson, Eva; Chi, Celestine N; Strømgaard, Kristian; Gianni, Stefano; Jemth, Per

    2016-05-01

    Cellular scaffolding and signalling is generally governed by multidomain proteins, where each domain has a particular function. Postsynaptic density protein 95 (PSD-95) is involved in synapse formation and is a typical example of such a multidomain protein. Protein-protein interactions of PSD-95 are well studied and include the following three protein ligands: (i)N-methyl-d-aspartate-type ionotropic glutamate receptor subunit GluN2B, (ii) neuronal nitric oxide synthase and (iii) cysteine-rich protein (CRIPT), all of which bind to one or more of the three PDZ domains in PSD-95. While interactions for individual PDZ domains of PSD-95 have been well studied, less is known about the influence of neighbouring domains on the function of the respective individual domain. We therefore performed a systematic study on the ligand-binding kinetics of PSD-95 using constructs of different size for PSD-95 and its ligands. Regarding the canonical peptide-binding pocket and relatively short peptides (up to 15-mer), the PDZ domains in PSD-95 by and large work as individual binding modules. However, in agreement with previous studies, residues outside of the canonical binding pocket modulate the affinity of the ligands. In particular, the dissociation of the 101 amino acid CRIPT from PSD-95 is slowed down at least 10-fold for full-length PSD-95 when compared with the individual PDZ3 domain. PMID:26941280

  11. Identification of Novel Membrane-binding Domains in Multiple Yeast Cdc42 Effectors

    PubMed Central

    Takahashi, Satoe

    2007-01-01

    The Rho-type GTPase Cdc42 is a central regulator of eukaryotic cell polarity and signal transduction. In budding yeast, Cdc42 regulates polarity and mitogen-activated protein (MAP) kinase signaling in part through the PAK-family kinase Ste20. Activation of Ste20 requires a Cdc42/Rac interactive binding (CRIB) domain, which mediates its recruitment to membrane-associated Cdc42. Here, we identify a separate domain in Ste20 that interacts directly with membrane phospholipids and is critical for its function. This short region, termed the basic-rich (BR) domain, can target green fluorescent protein to the plasma membrane in vivo and binds PIP2-containing liposomes in vitro. Mutation of basic or hydrophobic residues in the BR domain abolishes polarized localization of Ste20 and its function in both MAP kinase–dependent and independent pathways. Thus, Cdc42 binding is required but is insufficient; instead, direct membrane binding by Ste20 is also required. Nevertheless, phospholipid specificity is not essential in vivo, because the BR domain can be replaced with several heterologous lipid-binding domains of varying lipid preferences. We also identify functionally important BR domains in two other yeast Cdc42 effectors, Gic1 and Gic2, suggesting that cooperation between protein–protein and protein–membrane interactions is a prevalent mechanism during Cdc42-regulated signaling and perhaps for other dynamic localization events at the cell cortex. PMID:17914055

  12. Proton-translocating nicotinamide nucleotide transhydrogenase. Reconstitution of the extramembranous nucleotide-binding domains.

    PubMed

    Yamaguchi, M; Hatefi, Y

    1995-11-24

    The nicotinamide nucleotide transhydrogenase of bovine mitochondria is a homodimer of monomer M(r) = 109,065. The monomer is composed of three domains, an NH2-terminal 430-residue-long hydrophilic domain I that binds NAD(H), a central 400-residue-long hydrophobic domain II that is largely membrane intercalated and carries the enzyme's proton channel, and a COOH-terminal 200-residue-long hydrophilic domain III that binds NADP(H). Domains I and III protrude into the mitochondrial matrix, where they presumably come together to form the enzyme's catalytic site. The two-subunit transhydrogenase of Escherichia coli and the three-subunit transhydrogenase of Rhodospirillum rubrum have each the same overall tridomain hydropathy profile as the bovine enzyme. Domain I of the R. rubrum enzyme (the alpha 1 subunit) is water soluble and easily removed from the chromatophore membranes. We have isolated domain I of the bovine transhydrogenase after controlled trypsinolysis of the purified enzyme and have expressed in E. coli and purified therefrom domain III of this enzyme. This paper shows that an active bidomain transhydrogenase lacking domain II can be reconstituted by the combination of purified bovine domains I plus III or R. rubrum domain I plus bovine domain III. PMID:7499307

  13. Anti-peptide monoclonal antibody imaging of a common binding domain involved in muscle regulation.

    PubMed Central

    Van Eyk, J. E.; Caday-Malcolm, R. A.; Yu, L.; Irvin, R. T.; Hodges, R. S.

    1995-01-01

    Multiple-component regulatory protein systems function through a generalized mechanism where a single regulatory protein or ligand binds to a variety of receptors to modulate specific functions in a physiologically sensitive context. Muscle contraction is regulated by the interaction of actin with troponin I (TnI) or myosin in a Ca(2+)-sensitive manner. Actin utilizes a single binding domain (residues 1-28) to bind to residues 104-115 of TnI (Van Eyk JE, Sönnichsen FD, Sykes BD, Hodges RS, 1991, In: Rüegg JC, ed, Peptides as probes in muscle research, Heidelberg, Germany: Springer-Verlag, pp 15-31) and to myosin subfragment 1 (S1, an enzymatic fragment of myosin containing both the actin and ATP binding sites) (Van Eyk JE, Hodges RS, 1991, Biochemistry 30:11676-11682) in a Ca(2+)-sensitive manner. We have utilized an anti-TnI peptide (104-115) monoclonal antibody, Mab B4, that binds specifically to TnI, to image the common binding domain of actin and thus mimic the activity of actin including activation of the S1 ATPase activity and TnI-mediated regulation of the S1 ATPase. Mab B4 has also been utilized to identify a receptor binding domain on myosin (residues 633-644) that is recognized by actin. Interestingly, Mab B4 binds to the native protein receptors TnI and S1 with relative affinities of 100- and 25,000-fold higher than the binding affinity to the 12-residue peptide immunogen. Thus, anti-peptide monoclonal antibodies prepared against a receptor binding domain can mimic the ligand binding domain and be utilized as a powerful tool for the detailed analysis of complex multiple-component regulatory systems. PMID:7613476

  14. Functional characterization of the Cdc42p binding domain of yeast Ste20p protein kinase.

    PubMed Central

    Leberer, E; Wu, C; Leeuw, T; Fourest-Lieuvin, A; Segall, J E; Thomas, D Y

    1997-01-01

    Ste20p from Saccharomyces cerevisiae belongs to the Ste20p/p65PAK family of protein kinases which are highly conserved from yeast to man and regulate conserved mitogen-activated protein kinase pathways. Ste20p fulfills multiple roles in pheromone signaling, morphological switching and vegetative growth and binds Cdc42p, a Rho-like small GTP binding protein required for polarized morphogenesis. We have analyzed the functional consequences of mutations that prevent binding of Cdc42p to Ste20p. The complete amino-terminal, non-catalytic half of Ste20p, including the conserved Cdc42p binding domain, was dispensable for heterotrimeric G-protein-mediated pheromone signaling. However, the Cdc42p binding domain was necessary for filamentous growth in response to nitrogen starvation and for an essential function that Ste20p shares with its isoform Cla4p during vegetative growth. Moreover, the Cdc42p binding domain was required for cell-cell adhesion during conjugation. Subcellular localization of wild-type and mutant Ste20p fused to green fluorescent protein showed that the Cdc42p binding domain is needed to direct localization of Ste20p to regions of polarized growth. These results suggest that Ste20p is regulated in different developmental pathways by different mechanisms which involve heterotrimeric and small GTP binding proteins. PMID:9009270

  15. Structural and functional characterizations reveal the importance of a zinc binding domain in Bloom's syndrome helicase

    PubMed Central

    Guo, Rong-bin; Rigolet, Pascal; Zargarian, Loussiné; Fermandjian, Serge; Xi, Xu Guang

    2005-01-01

    Bloom's syndrome (BS) is an autosomal recessive human disorder characterized by genomic instability and a predisposition to a wide variety of cancers. The gene mutated in BS, BLM, encodes a protein containing three domains: an N-terminal domain whose function remains elusive, a helicase domain characterized by seven ‘signature’ motifs conserved in a wide range of helicases and a C-terminal extension that can be further divided into two sub-domains: RecQ-Ct and HRDC. The RecQ-Ct domain appears essential because two point-mutations altering highly conserved cysteine residues within this domain have been found in BS patients. We report herein that BLM contains a zinc ion. Modelling studies suggest that four conserved cysteine residues within the RecQ-Ct domain coordinate this zinc ion and subsequent mutagenesis studies further confirm this prediction. Biochemical and biophysical studies show that the ATPase, helicase and DNA binding activities of the mutants are severely modified. Structural analysis of both wild-type and mutant proteins reveal that alteration of cysteine residues does not significantly change the overall conformation. The observed defects in ATPase and helicase activities were inferred to result from a compromise of DNA binding. Our results implicate an important role of this zinc binding domain in both DNA binding and protein conformation. They could be pivotal for understanding the molecular basis of BS disease. PMID:15930159

  16. Ligand binding PAS domains in a genomic, cellular, and structural context

    PubMed Central

    Henry, Jonathan T.; Crosson, Sean

    2012-01-01

    Per-Arnt-Sim (PAS) domains occur in proteins from all kingdoms of life. In the bacterial kingdom, PAS domains are commonly positioned at the amino terminus of signaling proteins such as sensor histidine kinases, cyclic-di-GMP synthases/hydrolases, and methyl-accepting chemotaxis proteins. Although these domains are highly divergent at the primary sequence level, the structures of dozens of PAS domains across a broad section of sequence space have been solved, revealing a conserved three-dimensional architecture. An all-versus-all alignment of 63 PAS structures demonstrates that the PAS domain family forms structural clades on the basis of two principal variables: (a) topological location inside or outside the plasma membrane and (b) the class of small molecule that they bind. The binding of a chemically diverse range of small-molecule metabolites is a hallmark of the PAS domain family. PAS ligand binding either functions as a primary cue to initiate a cellular signaling response or provides the domain with the capacity to respond to secondary physical or chemical signals such as gas molecules, redox potential, or photons. This review synthesizes the current state of knowledge of the structural foundations and evolution of ligand recognition and binding by PAS domains. PMID:21663441

  17. BclxL Changes Conformation upon Binding to Wild-type but Not Mutant p53 DNA Binding Domain*

    PubMed Central

    Hagn, Franz; Klein, Christian; Demmer, Oliver; Marchenko, Natasha; Vaseva, Angelina; Moll, Ute M.; Kessler, Horst

    2010-01-01

    p53 can induce apoptosis through mitochondrial membrane permeabilization by interaction of its DNA binding region with the anti-apoptotic proteins BclxL and Bcl2. However, little is known about the action of p53 at the mitochondria in molecular detail. By using NMR spectroscopy and fluorescence polarization we characterized the binding of wild-type and mutant p53 DNA binding domains to BclxL and show that the wild-type p53 DNA binding domain leads to structural changes in the BH3 binding region of BclxL, whereas mutants fail to induce such effects due to reduced affinity. This was probed by induced chemical shift and residual dipolar coupling data. These data imply that p53 partly achieves its pro-apoptotic function at the mitochondria by facilitating interaction between BclxL and BH3-only proteins in an allosteric mode of action. Furthermore, we characterize for the first time the binding behavior of Pifithrin-μ, a specific small molecule inhibitor of the p53-BclxL interaction, and present a structural model of the protein-ligand complex. A rather unusual behavior is revealed whereby Pifithrin-μ binds to both sides of the protein-protein complex. These data should facilitate the rational design of more potent specific BclxL-p53 inhibitors. PMID:19955567

  18. BclxL changes conformation upon binding to wild-type but not mutant p53 DNA binding domain.

    PubMed

    Hagn, Franz; Klein, Christian; Demmer, Oliver; Marchenko, Natasha; Vaseva, Angelina; Moll, Ute M; Kessler, Horst

    2010-01-29

    p53 can induce apoptosis through mitochondrial membrane permeabilization by interaction of its DNA binding region with the anti-apoptotic proteins BclxL and Bcl2. However, little is known about the action of p53 at the mitochondria in molecular detail. By using NMR spectroscopy and fluorescence polarization we characterized the binding of wild-type and mutant p53 DNA binding domains to BclxL and show that the wild-type p53 DNA binding domain leads to structural changes in the BH3 binding region of BclxL, whereas mutants fail to induce such effects due to reduced affinity. This was probed by induced chemical shift and residual dipolar coupling data. These data imply that p53 partly achieves its pro-apoptotic function at the mitochondria by facilitating interaction between BclxL and BH3-only proteins in an allosteric mode of action. Furthermore, we characterize for the first time the binding behavior of Pifithrin-mu, a specific small molecule inhibitor of the p53-BclxL interaction, and present a structural model of the protein-ligand complex. A rather unusual behavior is revealed whereby Pifithrin-mu binds to both sides of the protein-protein complex. These data should facilitate the rational design of more potent specific BclxL-p53 inhibitors. PMID:19955567

  19. Characterization of ERM transactivation domain binding to the ACID/PTOV domain of the Mediator subunit MED25

    PubMed Central

    Landrieu, Isabelle; Verger, Alexis; Baert, Jean-Luc; Rucktooa, Prakash; Cantrelle, François-Xavier; Dewitte, Frédérique; Ferreira, Elisabeth; Lens, Zoé; Villeret, Vincent; Monté, Didier

    2015-01-01

    The N-terminal acidic transactivation domain (TAD) of ERM/ETV5 (ERM38–68), a PEA3 group member of Ets-related transcription factors, directly interacts with the ACID/PTOV domain of the Mediator complex subunit MED25. Molecular details of this interaction were investigated using nuclear magnetic resonance (NMR) spectroscopy. The TAD is disordered in solution but has a propensity to adopt local transient secondary structure. We show that it folds upon binding to MED25 and that the resulting ERM–MED25 complex displays characteristics of a fuzzy complex. Mutational analysis further reveals that two aromatic residues in the ERM TAD (F47 and W57) are involved in the binding to MED25 and participate in the ability of ERM TAD to activate transcription. Mutation of a key residue Q451 in the VP16 H1 binding pocket of MED25 affects the binding of ERM. Furthermore, competition experiments show that ERM and VP16 H1 share a common binding interface on MED25. NMR data confirms the occupancy of this binding pocket by ERM TAD. Based on these experimental data, a structural model of a functional interaction is proposed. This study provides mechanistic insights into the Mediator–transactivator interactions. PMID:26130716

  20. A stable ATP binding to the nucleotide binding domain is important for reliable gating cycle in an ABC transporter CFTR

    PubMed Central

    Shimizu, Hiroyasu; Yu, Ying-Chun; Kono, Koichi; Kubota, Takahiro; Yasui, Masato; Li, Min

    2016-01-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) anion channel, a member of ABC transporter superfamily, gates following ATP-dependent conformational changes of the nucleotide binding domains (NBD). Reflecting the hundreds of milliseconds duration of the channel open state corresponding to the dimerization of two NBDs, macroscopic WT-CFTR currents usually showed a fast, single exponential relaxation upon removal of cytoplasmic ATP. Mutations of tyrosine1219, a residue critical for ATP binding in second NBD (NBD2), induced a significant slow phase in the current relaxation, suggesting that weakening ATP binding affinity at NBD2 increases the probability of the stable open state. The slow phase was effectively diminished by a higher affinity ATP analogue. These data suggest that a stable binding of ATP to NBD2 is required for normal CFTR gating cycle, andthat the instability of ATP binding frequently halts the gating cycle in the open state presumably through a failure of ATP hydrolysis at NBD2. PMID:20628841

  1. A stable ATP binding to the nucleotide binding domain is important for reliable gating cycle in an ABC transporter CFTR.

    PubMed

    Shimizu, Hiroyasu; Yu, Ying-Chun; Kono, Koichi; Kubota, Takahiro; Yasui, Masato; Li, Min; Hwang, Tzyh-Chang; Sohma, Yoshiro

    2010-09-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) anion channel, a member of ABC transporter superfamily, gates following ATP-dependent conformational changes of the nucleotide binding domains (NBD). Reflecting the hundreds of milliseconds duration of the channel open state corresponding to the dimerization of two NBDs, macroscopic WT-CFTR currents usually showed a fast, single exponential relaxation upon removal of cytoplasmic ATP. Mutations of tyrosine1219, a residue critical for ATP binding in second NBD (NBD2), induced a significant slow phase in the current relaxation, suggesting that weakening ATP binding affinity at NBD2 increases the probability of the stable open state. The slow phase was effectively diminished by a higher affinity ATP analogue. These data suggest that a stable binding of ATP to NBD2 is required for normal CFTR gating cycle, andthat the instability of ATP binding frequently halts the gating cycle in the open state presumably through a failure of ATP hydrolysis at NBD2. PMID:20628841

  2. The Role of Flexibility and Conformational Selection in the Binding Promiscuity of PDZ Domains

    PubMed Central

    Münz, Márton; Hein, Jotun; Biggin, Philip C.

    2012-01-01

    In molecular recognition, it is often the case that ligand binding is coupled to conformational change in one or both of the binding partners. Two hypotheses describe the limiting cases involved; the first is the induced fit and the second is the conformational selection model. The conformational selection model requires that the protein adopts conformations that are similar to the ligand-bound conformation in the absence of ligand, whilst the induced-fit model predicts that the ligand-bound conformation of the protein is only accessible when the ligand is actually bound. The flexibility of the apo protein clearly plays a major role in these interpretations. For many proteins involved in signaling pathways there is the added complication that they are often promiscuous in that they are capable of binding to different ligand partners. The relationship between protein flexibility and promiscuity is an area of active research and is perhaps best exemplified by the PDZ domain family of proteins. In this study we use molecular dynamics simulations to examine the relationship between flexibility and promiscuity in five PDZ domains: the human Dvl2 (Dishevelled-2) PDZ domain, the human Erbin PDZ domain, the PDZ1 domain of InaD (inactivation no after-potential D protein) from fruit fly, the PDZ7 domain of GRIP1 (glutamate receptor interacting protein 1) from rat and the PDZ2 domain of PTP-BL (protein tyrosine phosphatase) from mouse. We show that despite their high structural similarity, the PDZ binding sites have significantly different dynamics. Importantly, the degree of binding pocket flexibility was found to be closely related to the various characteristics of peptide binding specificity and promiscuity of the five PDZ domains. Our findings suggest that the intrinsic motions of the apo structures play a key role in distinguishing functional properties of different PDZ domains and allow us to make predictions that can be experimentally tested. PMID:23133356

  3. The DNA-Binding Domain of Yeast Rap1 Interacts with Double-Stranded DNA in Multiple Binding Modes

    PubMed Central

    2015-01-01

    Saccharomyces cerevisiae repressor-activator protein 1 (Rap1) is an essential protein involved in multiple steps of DNA regulation, as an activator in transcription, as a repressor at silencer elements, and as a major component of the shelterin-like complex at telomeres. All the known functions of Rap1 require the known high-affinity and specific interaction of the DNA-binding domain with its recognition sequences. In this work, we focus on the interaction of the DNA-binding domain of Rap1 (Rap1DBD) with double-stranded DNA substrates. Unexpectedly, we found that while Rap1DBD forms a high-affinity 1:1 complex with its DNA recognition site, it can also form lower-affinity complexes with higher stoichiometries on DNA. These lower-affinity interactions are independent of the presence of the recognition sequence, and we propose they originate from the ability of Rap1DBD to bind to DNA in two different binding modes. In one high-affinity binding mode, Rap1DBD likely binds in the conformation observed in the available crystal structures. In the other alternative lower-affinity binding mode, we propose that a single Myb-like domain of the Rap1DBD makes interactions with DNA, allowing for more than one protein molecule to bind to the DNA substrates. Our findings suggest that the Rap1DBD does not simply target the protein to its recognition sequence but rather it might be a possible point of regulation. PMID:25382181

  4. Akt1 binds focal adhesion kinase via the Akt1 kinase domain independently of the pleckstrin homology domain.

    PubMed

    Basson, M D; Zeng, B; Wang, S

    2015-10-01

    Akt1 and focal adhesion kinase (FAK) are protein kinases that play key roles in normal cell signaling. Individually, aberrant expression of these kinases has been linked to a variety of cancers. Together, Akt1/FAK interactions facilitate cancer metastasis by increasing cell adhesion under conditions of increased extracellular pressure. Pathological and iatrogenic sources of pressure arise from tumor growth against constraining stroma or direct perioperative manipulation. We previously reported that 15 mmHg increased extracellular pressure causes Akt1 to both directly interact with FAK and to phosphorylate and activate it. We investigated the nature of the Akt1/FAK binding by creating truncations of recombinant FAK, conjugated to glutathione S-transferase (GST), to pull down full-length Akt1. Western blots probing for Akt1 showed that FAK/Akt1 binding persisted in FAK truncations consisting of only amino acids 1-126, FAK(NT1), which contains the F1 subdomain of its band 4.1, ezrin, radixin, and moesin (FERM) domain. Using FAK(NT1) as bait, we then pulled down truncated versions of recombinant Akt1 conjugated to HA (human influenza hemagglutinin). Probes for GST-FAK(NT1) showed Akt1-FAK binding to occur in the absence of the both the Akt1 (N)-terminal pleckstrin homology (PH) domain and its adjacent hinge region. The Akt1 (C)-terminal regulatory domain was equally unnecessary for Akt1/FAK co-immunoprecipitation. Truncations involving the Akt1 catalytic domain showed that the domain by itself was enough to pull down FAK. Additionally, a fragment spanning from the PH domain to half way through the catalytic domain demonstrated increased FAK binding compared to full length Akt1. These results begin to delineate the Akt1/FAK interaction and can be used to manipulate their force-activated signal interactions. Furthermore, the finding that the N-terminal half of the Akt1 catalytic domain binds so strongly to FAK when cleaved from the rest of the protein may suggest a means

  5. Artificial zinc finger DNA binding domains: versatile tools for genome engineering and modulation of gene expression.

    PubMed

    Hossain, Mir A; Barrow, Joeva J; Shen, Yong; Haq, Md Imdadul; Bungert, Jörg

    2015-11-01

    Genome editing and alteration of gene expression by synthetic DNA binding activities gained a lot of momentum over the last decade. This is due to the development of new DNA binding molecules with enhanced binding specificity. The most commonly used DNA binding modules are zinc fingers (ZFs), TALE-domains, and the RNA component of the CRISPR/Cas9 system. These binding modules are fused or linked to either nucleases that cut the DNA and induce DNA repair processes, or to protein domains that activate or repress transcription of genes close to the targeted site in the genome. This review focuses on the structure, design, and applications of ZF DNA binding domains (ZFDBDs). ZFDBDs are relatively small and have been shown to penetrate the cell membrane without additional tags suggesting that they could be delivered to cells without a DNA or RNA intermediate. Advanced algorithms that are based on extensive knowledge of the mode of ZF/DNA interactions are used to design the amino acid composition of ZFDBDs so that they bind to unique sites in the genome. Off-target binding has been a concern for all synthetic DNA binding molecules. Thus, increasing the specificity and affinity of ZFDBDs will have a significant impact on their use in analytical or therapeutic settings. PMID:25989233

  6. Crystal structure of mouse coronavirus receptor-binding domain complexed with its murine receptor

    SciTech Connect

    Peng, Guiqing; Sun, Dawei; Rajashankar, Kanagalaghatta R.; Qian, Zhaohui; Holmes, Kathryn V.; Li, Fang

    2011-09-28

    Coronaviruses have evolved diverse mechanisms to recognize different receptors for their cross-species transmission and host-range expansion. Mouse hepatitis coronavirus (MHV) uses the N-terminal domain (NTD) of its spike protein as its receptor-binding domain. Here we present the crystal structure of MHV NTD complexed with its receptor murine carcinoembryonic antigen-related cell adhesion molecule 1a (mCEACAM1a). Unexpectedly, MHV NTD contains a core structure that has the same {beta}-sandwich fold as human galectins (S-lectins) and additional structural motifs that bind to the N-terminal Ig-like domain of mCEACAM1a. Despite its galectin fold, MHV NTD does not bind sugars, but instead binds mCEACAM1a through exclusive protein-protein interactions. Critical contacts at the interface have been confirmed by mutagenesis, providing a structural basis for viral and host specificities of coronavirus/CEACAM1 interactions. Sugar-binding assays reveal that galectin-like NTDs of some coronaviruses such as human coronavirus OC43 and bovine coronavirus bind sugars. Structural analysis and mutagenesis localize the sugar-binding site in coronavirus NTDs to be above the {beta}-sandwich core. We propose that coronavirus NTDs originated from a host galectin and retained sugar-binding functions in some contemporary coronaviruses, but evolved new structural features in MHV for mCEACAM1a binding.

  7. Membrane Binding and Self-Association of the Epsin N-Terminal Homology Domain

    PubMed Central

    Lai, Chun-Liang; Jao, Christine C.; Lyman, Edward; Gallop, Jennifer L.; Peter, Brian J.; McMahon, Harvey T.; Langen, Ralf; Voth, Gregory A.

    2012-01-01

    Epsin possesses a conserved epsin N-terminal homology (ENTH) domain that acts as a phosphatidylinositol 4,5-bisphosphate‐lipid‐targeting and membrane‐curvature‐generating element. Upon binding phosphatidylinositol 4,5‐bisphosphate, the N-terminal helix (H0) of the ENTH domain becomes structured and aids in the aggregation of ENTH domains, which results in extensive membrane remodeling. In this article, atomistic and coarse-grained (CG) molecular dynamics (MD) simulations are used to investigate the structure and the stability of ENTH domain aggregates on lipid bilayers. EPR experiments are also reported for systems composed of different ENTH-bound membrane morphologies, including membrane vesicles as well as preformed membrane tubules. The EPR data are used to help develop a molecular model of ENTH domain aggregates on preformed lipid tubules that are then studied by CG MD simulation. The combined computational and experimental approach suggests that ENTH domains exist predominantly as monomers on vesiculated structures, while ENTH domains self-associate into dimeric structures and even higher‐order oligomers on the membrane tubes. The results emphasize that the arrangement of ENTH domain aggregates depends strongly on whether the local membrane curvature is isotropic or anisotropic. The molecular mechanism of ENTH‐domain-induced membrane vesiculation and tubulation and the implications of the epsin's role in clathrin-mediated endocytosis resulting from the interplay between ENTH domain membrane binding and ENTH domain self-association are also discussed. PMID:22922484

  8. Flexible DNA binding of the BTB/POZ-domain protein FBI-1.

    PubMed

    Pessler, Frank; Hernandez, Nouria

    2003-08-01

    POZ-domain transcription factors are characterized by the presence of a protein-protein interaction domain called the POZ or BTB domain at their N terminus and zinc fingers at their C terminus. Despite the large number of POZ-domain transcription factors that have been identified to date and the significant insights that have been gained into their cellular functions, relatively little is known about their DNA binding properties. FBI-1 is a BTB/POZ-domain protein that has been shown to modulate HIV-1 Tat trans-activation and to repress transcription of some cellular genes. We have used various viral and cellular FBI-1 binding sites to characterize the interaction of a POZ-domain protein with DNA in detail. We find that FBI-1 binds to inverted sequence repeats downstream of the HIV-1 transcription start site. Remarkably, it binds efficiently to probes carrying these repeats in various orientations and spacings with no particular rotational alignment, indicating that its interaction with DNA is highly flexible. Indeed, FBI-1 binding sites in the adenovirus 2 major late promoter, the c-fos gene, and the c-myc P1 and P2 promoters reveal variously spaced direct, inverted, and everted sequence repeats with the consensus sequence G(A/G)GGG(T/C)(C/T)(T/C)(C/T) for each repeat. PMID:12750370

  9. Activation Domain-Mediated Enhancement of Activator Binding to Chromatin in Mammalian Cells

    NASA Astrophysics Data System (ADS)

    Bunker, Christopher A.; Kingston, Robert E.

    1996-10-01

    DNA binding by transcriptional activators is typically an obligatory step in the activation of gene expression. Activator binding and subsequent steps in transcription are repressed by genomic chromatin. Studies in vitro have suggested that overcoming this repression is an important function of some activation domains. Here we provide quantitative in vivo evidence that the activation domain of GAL4-VP16 can increase the affinity of GAL4 for its binding site on genomic DNA in mammalian cells. Moreover, the VP16 activation domain has a much greater stimulatory effect on expression from a genomic reporter gene than on a transiently transfected reporter gene, where factor binding is more permissive. We found that not all activation domains showed a greater activation potential in a genomic context, suggesting that only some activation domains can function in vivo to alleviate the repressive effects of chromatin. These data demonstrate the importance of activation domains in relieving chromatin-mediated repression in vivo and suggest that one way they function is to increase binding of the activator itself.

  10. The binding of vinca domain agents to tubulin: structural and biochemical studies.

    PubMed

    Cormier, Anthony; Knossow, Marcel; Wang, Chunguang; Gigant, Benoît

    2010-01-01

    Vinca domain ligands are small molecules that interfere with the binding of vinblastine to tubulin and inhibit microtubule assembly. Many such compounds cause isodesmic association which results in difficulties in biochemical or structural studies of their interaction with tubulin. The complex of two tubulins with the stathmin-like domain of the RB3 protein (T(2)R) is a protofilament-like short assembly that does not assemble further. This has allowed structural studies of the binding of several vinca domain ligands by X-ray crystallography as crystals of the corresponding complexes diffract to near atomic resolution. This proved that their sites are located at the interface of two tubulin molecules arranged as in a curved protofilament. These sites overlap with that of vinblastine. Structural data are generally consistent with the results of available structure-function studies, though subtle differences exist. Binding in solution to the vinca domain displayed in T(2)R is conveniently studied by fluorescence spectroscopy or by monitoring inhibition of the T(2)R GTPase activity. In addition, inhibition of nucleotide exchange allows characterization of the binding to the vinca domain moiety displayed by the beta-subunit of an isolated tubulin molecule. T(2)R is therefore a useful tool to characterize and dissect the binding of vinca domain ligands to tubulin. In addition, these studies have provided new information on the interaction of tubulin with guanine nucleotides, namely on the mechanisms of nucleotide exchange and hydrolysis. PMID:20466145

  11. Simultaneous Binding of Two Peptidyl Ligands by a Src Homology 2 Domain

    SciTech Connect

    Zhang, Yanyan; Zhang, Jinjin; Yuan, Chunhua; Hard, Ryan L.; Park, In-Hee; Li, Chenglong; Bell, Charles; Pei, Dehua

    2012-03-15

    Src homology 2 (SH2) domains mediate protein-protein interactions by recognizing phosphotyrosine (pY)-containing sequences of target proteins. In all of the SH2 domain-pY peptide interactions described to date, the SH2 domain binds to a single pY peptide. Here, determination of the cocrystal structure of the N-terminal SH2 domain of phosphatase SHP-2 bound to a class IV peptide (VIpYFVP) revealed a noncanonical 1:2 (protein-peptide) complex. The first peptide binds in a canonical manner with its pY side chain inserted in the usual binding pocket, while the second pairs up with the first to form two antiparallel {beta}-strands that extend the central {beta}-sheet of the SH2 domain. This unprecedented binding mode was confirmed in the solution phase by NMR experiments and shown to be adopted by pY peptides derived from cellular proteins. Site-directed mutagenesis and surface plasmon resonance studies revealed that the binding of the first peptide is pY-dependent, but phosphorylation is not required for the second peptide. Our findings suggest a potential new function for the SH2 domain as a molecular clamp to promote dimerization of signaling proteins.

  12. Calmodulin-binding domains in Alzheimer's disease proteins: extending the calcium hypothesis.

    PubMed

    O'Day, Danton H; Myre, Michael A

    2004-08-01

    The calcium hypothesis of Alzheimer's disease (AD) invokes the disruption of calcium signaling as the underlying cause of neuronal dysfunction and ultimately apoptosis. As a primary calcium signal transducer, calmodulin (CaM) responds to cytosolic calcium fluxes by binding to and regulating the activity of target CaM-binding proteins (CaMBPs). Ca(2+)-dependent CaMBPs primarily contain domains (CaMBDs) that can be classified into motifs based upon variations on the basic amphiphilic alpha-helix domain involving conserved hydrophobic residues at positions 1-10, 1-14 or 1-16. In contrast, an IQ or IQ-like domain often mediates Ca(2+)-independent CaM-binding. Based on these attributes, a search for CaMBDs reveals that many of the proteins intimately linked to AD may be calmodulin-binding proteins, opening new avenues for research on this devastating disease. PMID:15249195

  13. High throughput strategy to identify inhibitors of histone-binding domains

    PubMed Central

    Wagner, Elise K.; Albaugh, Brittany N.; Denu, John M.

    2015-01-01

    Many epigenetic proteins recognize the posttranslational modification state of chromatin through their histone binding domains, and thereby recruit nuclear complexes to specific loci within the genome. A number of these domains have been implicated in cancer and other diseases through aberrant binding of chromatin; therefore, identifying small molecules that disrupt histone binding could be a powerful mechanism for disease therapy. We have developed a high throughput assay for the detection of histone peptide:domain interactions utilizing AlphaScreen technology. Here, we describe how the assay can be first optimized and then performed for high throughput screening of small molecule binding inhibitors. We also describe strategies for biochemical validation of small molecules identified. PMID:22910207

  14. Understanding the molecular basis of substrate binding specificity of PTB domains

    PubMed Central

    Sain, Neetu; Tiwari, Garima; Mohanty, Debasisa

    2016-01-01

    Protein-protein interactions mediated by phosphotyrosine binding (PTB) domains play a crucial role in various cellular processes. In order to understand the structural basis of substrate recognition by PTB domains, multiple explicit solvent atomistic simulations of 100ns duration have been carried out on 6 PTB-peptide complexes with known binding affinities. MM/PBSA binding energy values calculated from these MD trajectories and residue based statistical pair potential score show good correlation with the experimental dissociation constants. Our analysis also shows that the modeled structures of PTB domains can be used to develop less compute intensive residue level statistical pair potential based approaches for predicting interaction partners of PTB domains. PMID:27526776

  15. A small molecule directly inhibits the p53 transactivation domain from binding to replication protein A

    PubMed Central

    Glanzer, Jason G.; Carnes, Katie A.; Soto, Patricia; Liu, Shengqin; Parkhurst, Lawrence J.; Oakley, Gregory G.

    2013-01-01

    Replication protein A (RPA), essential for DNA replication, repair and DNA damage signalling, possesses six ssDNA-binding domains (DBDs), including DBD-F on the N-terminus of the largest subunit, RPA70. This domain functions as a binding site for p53 and other DNA damage and repair proteins that contain amphipathic alpha helical domains. Here, we demonstrate direct binding of both ssDNA and the transactivation domain 2 of p53 (p53TAD2) to DBD-F, as well as DBD-F-directed dsDNA strand separation by RPA, all of which are inhibited by fumaropimaric acid (FPA). FPA binds directly to RPA, resulting in a conformational shift as determined through quenching of intrinsic tryptophan fluorescence in full length RPA. Structural analogues of FPA provide insight on chemical properties that are required for inhibition. Finally, we confirm the inability of RPA possessing R41E and R43E mutations to bind to p53, destabilize dsDNA and quench tryptophan fluorescence by FPA, suggesting that protein binding, DNA modulation and inhibitor binding all occur within the same site on DBD-F. The disruption of p53–RPA interactions by FPA may disturb the regulatory functions of p53 and RPA, thereby inhibiting cellular pathways that control the cell cycle and maintain the integrity of the human genome. PMID:23267009

  16. Crystal Structure of Human SSRP1 Middle Domain Reveals a Role in DNA Binding

    PubMed Central

    Zhang, Wenjuan; Zeng, Fuxing; Liu, Yiwei; Shao, Chen; Li, Sai; Lv, Hui; Shi, Yunyu; Niu, Liwen; Teng, Maikun; Li, Xu

    2015-01-01

    SSRP1 is a subunit of the FACT complex, an important histone chaperone required for transcriptional regulation, DNA replication and damage repair. SSRP1 also plays important roles in transcriptional regulation independent of Spt16 and interacts with other proteins. Here, we report the crystal structure of the middle domain of SSRP1. It consists of tandem pleckstrin homology (PH) domains. These domains differ from the typical PH domain in that PH1 domain has an extra conserved βαβ topology. SSRP1 contains the well-characterized DNA-binding HMG-1 domain. Our studies revealed that SSRP1-M can also participate in DNA binding, and that this binding involves one positively charged patch on the surface of the structure. In addition, SSRP1-M did not bind to histones, which was assessed through pull-down assays. This aspect makes the protein different from other related proteins adopting the double PH domain structure. Our studies facilitate the understanding of SSRP1 and provide insights into the molecular mechanisms of interaction with DNA and histones of the FACT complex. PMID:26687053

  17. Identification of two independent nucleosome-binding domains in the transcriptional co-activator SPBP.

    PubMed

    Darvekar, Sagar; Johnsen, Sylvia Sagen; Eriksen, Agnete Bratsberg; Johansen, Terje; Sjøttem, Eva

    2012-02-15

    Transcriptional regulation requires co-ordinated action of transcription factors, co-activator complexes and general transcription factors to access specific loci in the dense chromatin structure. In the present study we demonstrate that the transcriptional co-regulator SPBP [stromelysin-1 PDGF (platelet-derived growth factor)-responsive element binding protein] contains two independent chromatin-binding domains, the SPBP-(1551-1666) region and the C-terminal extended PHD [ePHD/ADD (extended plant homeodomain/ATRX-DNMT3-DNMT3L)] domain. The region 1551-1666 is a novel core nucleosome-interaction domain located adjacent to the AT-hook motif in the DNA-binding domain. This novel nucleosome-binding region is critically important for proper localization of SPBP in the cell nucleus. The ePHD/ADD domain associates with nucleosomes in a histone tail-dependent manner, and has significant impact on the dynamic interaction between SPBP and chromatin. Furthermore, SPBP and its homologue RAI1 (retinoic-acid-inducible protein 1), are strongly enriched on chromatin in interphase HeLa cells, and both proteins display low nuclear mobility. RAI1 contains a region with homology to the novel nucleosome-binding region SPBP-(1551-1666) and an ePHD/ADD domain with ability to bind nucleosomes. These results indicate that the transcriptional co-regulator SPBP and its homologue RAI1 implicated in Smith-Magenis syndrome and Potocki-Lupski syndrome both belong to the expanding family of chromatin-binding proteins containing several domains involved in specific chromatin interactions. PMID:22081970

  18. Mutation analysis of the cellulose-binding domain of the Clostridium cellulovorans cellulose-binding protein A.

    PubMed Central

    Goldstein, M A; Doi, R H

    1994-01-01

    Cellulose-binding protein A (CbpA) has been previously shown to mediate the interaction between crystalline cellulose substrates and the cellulase enzyme complex of Clostridium cellulovorans. CbpA contains a family III cellulose-binding domain (CBD) which, when expressed independently, binds specifically to crystalline cellulose. A series of N- and C-terminal deletions and a series of small internal deletions of the CBD were created to determine whether the entire region previously described as a CBD is required for the cellulose-binding function. The N- and C-terminal deletions reduced binding affinity by 10- to 100-fold. Small internal deletions of the CBD resulted in substantial reduction of CBD function. Some, but not all, point mutations throughout the sequence had significant disruptive effects on the binding ability of the CBD. Thus, mutations in any region of the CBD had effects on the binding of the fragment to cellulose. The results indicate that the entire 163-amino-acid region of the CBD is required for maximal binding to crystalline cellulose. Images PMID:7961505

  19. Structure-function analysis of the DNA binding domain of Saccharomyces cerevisiae ABF1.

    PubMed Central

    Cho, G; Kim, J; Rho, H M; Jung, G

    1995-01-01

    To localize the DNA binding domain of the Saccharomyces cerevisiae Ars binding factor 1 (ABF1), a multifunctional DNA binding protein, plasmid constructs carrying point mutations and internal deletions in the ABF1 gene were generated and expressed in Escherichia coli. Normal and mutant ABF1 proteins were purified by affinity chromatography and their DNA binding activities were analyzed. The substitution of His61, Cys66 and His67 respectively, located in the zinc finger motif in the N-terminal region (amino acids 40-91), eliminated the DNA binding activity of ABF1 protein. Point mutations in the middle region of ABF1, specifically at Leu353, Leu399, Tyr403, Gly404, Phe410 and Lys434, also eliminated or reduced DNA binding activity. However, the DNA binding activity of point mutants of Ser307, Ser496 and Glu649 was the same as that of wild-type ABF1 protein and deletion mutants of amino acids 200-265, between the zinc finger region and the middle region (residues 323-496) retained DNA binding activity. As a result, we confirmed that the DNA binding domain of ABF1 appears to be bipartite and another DNA binding motif, other than the zinc finger motif, is situated between amino acid residues 323 and 496. Images PMID:7659521

  20. Verprolin function in endocytosis and actin organization. Roles of the Las17p (yeast WASP)-binding domain and a novel C-terminal actin-binding domain.

    PubMed

    Thanabalu, Thirumaran; Rajmohan, Rajamuthiah; Meng, Lei; Ren, Gang; Vajjhala, Parimala R; Munn, Alan L

    2007-08-01

    Vrp1p (verprolin, End5p) is the yeast ortholog of human Wiskott-Aldrich syndrome protein (WASP)-interacting protein (WIP). Vrp1p localizes to the cortical actin cytoskeleton, is necessary for its polarization to sites of growth and is also essential for endocytosis. At elevated temperature, Vrp1p becomes essential for growth. A C-terminal Vrp1p fragment (C-Vrp1p) retains the ability to localize to the cortical actin cytoskeleton and function in actin-cytoskeleton polarization, endocytosis and growth. Here, we demonstrate that two submodules in C-Vrp1p are required for actin-cytoskeleton polarization: a novel C-terminal actin-binding submodule (CABS) that contains a novel G-actin-binding domain, which we call a verprolin homology 2 C-terminal (VH2-C) domain; and a second submodule comprising the Las17p-binding domain (LBD) that binds Las17p (yeast WASP). The LBD localizes C-Vrp1p to membranes and the cortical actin cytoskeleton. Intriguingly, the LBD is sufficient to restore endocytosis and growth at elevated temperature to Vrp1p-deficient cells. The CABS also restores these functions, but only if modified by a lipid anchor to provide membrane association. Our findings highlight the role of Las17p binding for Vrp1p membrane association, suggest general membrane association may be more important than specific targeting to the cortical actin cytoskeleton for Vrp1p function in endocytosis and cell growth, and suggest that Vrp1p binding to individual effectors may alter their physiological activity. PMID:17635585

  1. Structural and evolutionary divergence of cyclic nucleotide binding domains in eukaryotic pathogens: Implications for drug design.

    PubMed

    Mohanty, Smita; Kennedy, Eileen J; Herberg, Friedrich W; Hui, Raymond; Taylor, Susan S; Langsley, Gordon; Kannan, Natarajan

    2015-10-01

    Many cellular functions in eukaryotic pathogens are mediated by the cyclic nucleotide binding (CNB) domain, which senses second messengers such as cyclic AMP and cyclic GMP. Although CNB domain-containing proteins have been identified in many pathogenic organisms, an incomplete understanding of how CNB domains in pathogens differ from other eukaryotic hosts has hindered the development of selective inhibitors for CNB domains associated with infectious diseases. Here, we identify and classify CNB domain-containing proteins in eukaryotic genomes to understand the evolutionary basis for CNB domain functional divergence in pathogens. We identify 359 CNB domain-containing proteins in 31 pathogenic organisms and classify them into distinct subfamilies based on sequence similarity within the CNB domain as well as functional domains associated with the CNB domain. Our study reveals novel subfamilies with pathogen-specific variations in the phosphate-binding cassette. Analyzing these variations in light of existing structural and functional data provides new insights into ligand specificity and promiscuity and clues for drug design. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases. PMID:25847873

  2. Stability and Sugar Recognition Ability of Ricin-Like Carbohydrate Binding Domains

    SciTech Connect

    Yao, Jianzhuang; Nellas, Ricky B; Glover, Mary M; Shen, Tongye

    2011-01-01

    Lectins are a class of proteins known for their novel binding to saccharides. Understanding this sugar recognition process can be crucial in creating structure-based designs of proteins with various biological roles. We focus on the sugar binding of a particular lectin, ricin, which has two -trefoil carbohydrate-binding domains (CRDs) found in several plant protein toxins. The binding ability of possible sites of ricin-like CRD has been puzzling. The apo and various (multiple) ligand-bound forms of the sugar-binding domains of ricin were studied by molecular dynamics simulations. By evaluating structural stability, hydrogen bond dynamics, flexibility, and binding energy, we obtained a detailed picture of the sugar recognition of the ricin-like CRD. Unlike what was previously believed, we found that the binding abilities of the two known sites are not independent of each other. The binding ability of one site is positively affected by the other site. While the mean positions of different binding scenarios are not altered significantly, the flexibility of the binding pockets visibly decreases upon multiple ligand binding. This change in flexibility seems to be the origin of the binding cooperativity. All the hydrogen bonds that are strong in the monoligand state are also strong in the double-ligand complex, although the stability is much higher in the latter form due to cooperativity. These strong hydrogen bonds in a monoligand state are deemed to be the essential hydrogen bonds. Furthermore, by examining the structural correlation matrix, the two domains are structurally one entity. Galactose hydroxyl groups, OH4 and OH3, are the most critical parts in both site 1 and site 2 recognition.

  3. Two Unique Ligand-Binding Clamps of Rhizopus oryzae Starch Binding Domain for Helical Structure Disruption of Amylose

    PubMed Central

    Jiang, Ting-Ying; Ci, Yuan-Pei; Chou, Wei-I; Lee, Yuan-Chuan; Sun, Yuh-Ju; Chou, Wei-Yao; Li, Kun-Mou; Chang, Margaret Dah-Tsyr

    2012-01-01

    The N-terminal starch binding domain of Rhizopus oryzae glucoamylase (RoSBD) has a high binding affinity for raw starch. RoSBD has two ligand-binding sites, each containing a ligand-binding clamp: a polyN clamp residing near binding site I is unique in that it is expressed in only three members of carbohydrate binding module family 21 (CBM21) members, and a Y32/F58 clamp located at binding site II is conserved in several CBMs. Here we characterized different roles of these sites in the binding of insoluble and soluble starches using an amylose-iodine complex assay, atomic force microscopy, isothermal titration calorimetry, site-directed mutagenesis, and structural bioinformatics. RoSBD induced the release of iodine from the amylose helical cavity and disrupted the helical structure of amylose type III, thereby significantly diminishing the thickness and length of the amylose type III fibrils. A point mutation in the critical ligand-binding residues of sites I and II, however, reduced both the binding affinity and amylose helix disruption. This is the first molecular model for structure disruption of the amylose helix by a non-hydrolytic CBM21 member. RoSBD apparently twists the helical amylose strands apart to expose more ligand surface for further SBD binding. Repeating the process triggers the relaxation and unwinding of amylose helices to generate thinner and shorter amylose fibrils, which are more susceptible to hydrolysis by glucoamylase. This model aids in understanding the natural roles of CBMs in protein-glycan interactions and contributes to potential molecular engineering of CBMs. PMID:22815939

  4. Identification of two uridine binding domain peptides of the UDP-glucose-binding site of rabbit muscle glycogenin.

    PubMed

    Carrizo, M E; Curtino, J A

    1998-12-30

    Glycogenin, the autoglucosyltransferase that initiates the de novo biosynthesis of glycogen, photoaffinity labeled with [beta32P]5-azido-UDP-glucose. The photoinsertion of the azidouridine derivative showed activating ultraviolet light dependency, saturation effects, and inhibition by UDP-glucose, thus demonstrating the specificity of the interaction. In the absence of Mn2+, the requirement for the catalytic activity of glycogenin, the photolabeling decreased by 70%. Competitive binding experiments indicated that the pyrophosphate or a phosphate was the moiety of UDP-glucose implicated in the strongest interaction at the binding site. Proteolytic digestion of photolabeled glycogenin resulted in the identification of two labeled fragments, 89-143 and 168-233, that carried the uridine binding sites. This is the first report of the region of glycogenin that harbors the UDP-glucose-binding domain. PMID:9918805

  5. The N-terminal domain determines the affinity and specificity of H1 binding to chromatin

    SciTech Connect

    Oeberg, Christine; Belikov, Sergey

    2012-04-06

    Highlights: Black-Right-Pointing-Pointer wt Human histone H1.4 and hH1.4 devoid of N-terminal domain, {Delta}N-hH1.4, were compared. Black-Right-Pointing-Pointer Both histones bind to chromatin, however, {Delta}N-hH1.4 displays lower binding affinity. Black-Right-Pointing-Pointer Interaction of {Delta}N-hH1.4 with chromatin includes a significant unspecific component. Black-Right-Pointing-Pointer N-terminal domain is a determinant of specificity of histone H1 binding to chromatin. -- Abstract: Linker histone H1, one of the most abundant nuclear proteins in multicellular eukaryotes, is a key component of the chromatin structure mainly due to its role in the formation and maintenance of the 30 nm chromatin fiber. It has a three-domain structure; a central globular domain flanked by a short N-terminal domain and a long, highly basic C-terminal domain. Previous studies have shown that the binding abilities of H1 are at large determined by the properties of the C-terminal domain; much less attention has been paid to role of the N-terminal domain. We have previously shown that H1 can be reconstituted via cytoplasmic mRNA injection in Xenopus oocytes, cells that lack somatic H1. The heterologously expressed H1 proteins are incorporated into in vivo assembled chromatin at specific sites and the binding event is monitored as an increase in nucleosomal repeat length (NRL). Using this setup we have here compared the binding properties of wt-H1.4 and hH1.4 devoid of its N-terminal domain ({Delta}N-hH1.4). The {Delta}N-hH1.4 displays a drastically lower affinity for chromatin binding as compared to the wild type hH1.4. Our data also indicates that {Delta}N-hH1.4 is more prone to unspecific chromatin binding than the wild type. We conclude that the N-terminal domain of H1 is an important determinant of affinity and specificity of H1-chromatin interactions.

  6. Crystal Structure of the Chromodomain Helicase DNA-binding Protein 1 (Chd1) DNA-binding Domain in Complex with DNA

    SciTech Connect

    Sharma A.; Heroux A.; Jenkins K. R.; Bowman G. D.

    2011-12-09

    Chromatin remodelers are ATP-dependent machines that dynamically alter the chromatin packaging of eukaryotic genomes by assembling, sliding, and displacing nucleosomes. The Chd1 chromatin remodeler possesses a C-terminal DNA-binding domain that is required for efficient nucleosome sliding and believed to be essential for sensing the length of DNA flanking the nucleosome core. The structure of the Chd1 DNA-binding domain was recently shown to consist of a SANT and SLIDE domain, analogous to the DNA-binding domain of the ISWI family, yet the details of how Chd1 recognized DNA were not known. Here we present the crystal structure of the Saccharomyces cerevisiae Chd1 DNA-binding domain in complex with a DNA duplex. The bound DNA duplex is straight, consistent with the preference exhibited by the Chd1 DNA-binding domain for extranucleosomal DNA. Comparison of this structure with the recently solved ISW1a DNA-binding domain bound to DNA reveals that DNA lays across each protein at a distinct angle, yet contacts similar surfaces on the SANT and SLIDE domains. In contrast to the minor groove binding seen for Isw1 and predicted for Chd1, the SLIDE domain of the Chd1 DNA-binding domain contacts the DNA major groove. The majority of direct contacts with the phosphate backbone occur only on one DNA strand, suggesting that Chd1 may not strongly discriminate between major and minor grooves.

  7. Mutations that bypass tRNA binding activate the intrinsically defective kinase domain in GCN2

    PubMed Central

    Qiu, Hongfang; Hu, Cuihua; Dong, Jinsheng; Hinnebusch, Alan G.

    2002-01-01

    The protein kinase GCN2 is activated in amino acid-starved cells on binding of uncharged tRNA to a histidyl-tRNA synthetase (HisRS)-related domain. We isolated two point mutations in the protein kinase (PK) domain, R794G and F842L, that permit strong kinase activity in the absence of tRNA binding. These mutations also bypass the requirement for ribosome binding, dimerization, and association with the GCN1/GCN20 regulatory complex, suggesting that all of these functions facilitate tRNA binding to wild-type GCN2. While the isolated wild-type PK domain was completely inert, the mutant PK was highly active in vivo and in vitro. These results identify an inhibitory structure intrinsic to the PK domain that must be overcome on tRNA binding by interactions with a regulatory region, most likely the N terminus of the HisRS segment. As Arg 794 and Phe 842 are predicted to lie close to one another and to the active site, they may participate directly in misaligning active site residues. Autophosphorylation of the activation loop was stimulated by R794G and F842L, and the autophosphorylation sites remained critical for GCN2 function in the presence of these mutations. Our results imply a two-step activation mechanism involving distinct conformational changes in the PK domain. PMID:12023305

  8. Potent inhibition of Grb2 SH2 domain binding by non-phosphate-containing ligands.

    PubMed

    Yao, Z J; King, C R; Cao, T; Kelley, J; Milne, G W; Voigt, J H; Burke, T R

    1999-01-14

    Development of Grb2 Src homology 2 (SH2) domain binding inhibitors has important implications for treatment of a variety of diseases, including several cancers. In cellular studies, inhibitors of Grb2 SH2 domain binding have to date been large, highly charged peptides which relied on special transport devices for cell membrane penetration. Work presented in the current study examines a variety of pTyr mimetics in the context of a high-affinity Grb2 binding platform. Among the analogues studied are new non-phosphorus-containing pTyr mimetics 23a and 23b which, when incorporated into tripeptide structures 18f and 20f, are able to inhibit Grb2 SH2 domain binding with affinities among the best yet reported for non-phosphorus-containing SH2 domain inhibitors (IC50 values of 6.7 and 1.3 microM, respectively). The present study has also demonstrated the usefulness of the Nalpha-oxalyl group as an auxiliary which enhances the binding potency of both phosphorus- and non-phosphorus-containing pTyr mimetics. When combined with the (phosphonomethyl)phenylalanine (Pmp) residue to give analogues such as L-20d, potent inhibition of Grb2 SH2 domain binding can be achieved both in extracellular assays using isolated Grb2 SH2 domain protein and in intracellular systems measuring the association of endogenous Grb2 with its cognate p185erbB-2 ligand. These latter effects can be achieved at micromolar to submicromolar concentrations without prodrug derivatization. The oxalyl-containing pTyr mimetics presented in this study should be of general usefulness for the development of other Grb2 SH2 domain antagonists, independent of the beta-bend-mimicking platform utilized for their display. PMID:9888830

  9. Structure of the C-terminal heme-binding domain of THAP domain containing protein 4 from Homo sapiens

    SciTech Connect

    Bianchetti, Christopher M.; Bingman, Craig A.; Phillips, Jr., George N.

    2012-03-15

    The thanatos (the Greek god of death)-associated protein (THAP) domain is a sequence-specific DNA-binding domain that contains a C2-CH (Cys-Xaa{sub 2-4}-Cys-Xaa{sub 35-50}-Cys-Xaa{sub 2}-His) zinc finger that is similar to the DNA domain of the P element transposase from Drosophila. THAP-containing proteins have been observed in the proteome of humans, pigs, cows, chickens, zebrafish, Drosophila, C. elegans, and Xenopus. To date, there are no known THAP domain proteins in plants, yeast, or bacteria. There are 12 identified human THAP domain-containing proteins (THAP0-11). In all human THAP protein, the THAP domain is located at the N-terminus and is {approx}90 residues in length. Although all of the human THAP-containing proteins have a homologous N-terminus, there is extensive variation in both the predicted structure and length of the remaining protein. Even though the exact function of these THAP proteins is not well defined, there is evidence that they play a role in cell proliferation, apoptosis, cell cycle modulation, chromatin modification, and transcriptional regulation. THAP-containing proteins have also been implicated in a number of human disease states including heart disease, neurological defects, and several types of cancers. Human THAP4 is a 577-residue protein of unknown function that is proposed to bind DNA in a sequence-specific manner similar to THAP1 and has been found to be upregulated in response to heat shock. THAP4 is expressed in a relatively uniform manner in a broad range of tissues and appears to be upregulated in lymphoma cells and highly expressed in heart cells. The C-terminal domain of THAP4 (residues 415-577), designated here as cTHAP4, is evolutionarily conserved and is observed in all known THAP4 orthologs. Several single-domain proteins lacking a THAP domain are found in plants and bacteria and show significant levels of homology to cTHAP4. It appears that cTHAP4 belongs to a large class of proteins that have yet to be fully

  10. Crucial role for the VWF A1 domain in binding to type IV collagen.

    PubMed

    Flood, Veronica H; Schlauderaff, Abraham C; Haberichter, Sandra L; Slobodianuk, Tricia L; Jacobi, Paula M; Bellissimo, Daniel B; Christopherson, Pamela A; Friedman, Kenneth D; Gill, Joan Cox; Hoffmann, Raymond G; Montgomery, Robert R

    2015-04-01

    Von Willebrand factor (VWF) contains binding sites for platelets and for vascular collagens to facilitate clot formation at sites of injury. Although previous work has shown that VWF can bind type IV collagen (collagen 4), little characterization of this interaction has been performed. We examined the binding of VWF to collagen 4 in vitro and extended this characterization to a murine model of defective VWF-collagen 4 interactions. The interactions of VWF and collagen 4 were further studied using plasma samples from a large study of both healthy controls and subjects with different types of von Willebrand disease (VWD). Our results show that collagen 4 appears to bind VWF exclusively via the VWF A1 domain, and that specific sequence variations identified through VWF patient samples and through site-directed mutagenesis in the VWF A1 domain can decrease or abrogate this interaction. In addition, VWF-dependent platelet binding to collagen 4 under flow conditions requires an intact VWF A1 domain. We observed that decreased binding to collagen 4 was associated with select VWF A1 domain sequence variations in type 1 and type 2M VWD. This suggests an additional mechanism through which VWF variants may alter hemostasis. PMID:25662333

  11. Crucial role for the VWF A1 domain in binding to type IV collagen

    PubMed Central

    Schlauderaff, Abraham C.; Haberichter, Sandra L.; Slobodianuk, Tricia L.; Jacobi, Paula M.; Bellissimo, Daniel B.; Christopherson, Pamela A.; Friedman, Kenneth D.; Gill, Joan Cox; Hoffmann, Raymond G.; Montgomery, Robert R.; Abshire, T.; Dunn, A.; Bennett, C.; Lusher, J.; Rajpurkar, M.; Brown, D.; Shapiro, A.; Lentz, S.; Gill, J.; Leissinger, C.; Ragni, M.; Hord, J.; Manco-Johnson, M.; Strouse, J.; Ma, A.; Valentino, L.; Boggio, L.; Sharathkumar, A.; Gruppo, R.; Kerlin, B.; Journeycake, J.; Kulkarni, R.; Green, D.; Mahoney, D.; Mathias, L.; Bedros, A.; Diamond, C.; Neff, A.; DiMichele, D.; Giardina, P.; Cohen, A.; Paidas, M.; Werner, E.; Matsunaga, A.; Tarantino, M.; Shafer, F.; Konkle, B.; Cuker, A.; Kouides, P.; Stein, D.

    2015-01-01

    Von Willebrand factor (VWF) contains binding sites for platelets and for vascular collagens to facilitate clot formation at sites of injury. Although previous work has shown that VWF can bind type IV collagen (collagen 4), little characterization of this interaction has been performed. We examined the binding of VWF to collagen 4 in vitro and extended this characterization to a murine model of defective VWF–collagen 4 interactions. The interactions of VWF and collagen 4 were further studied using plasma samples from a large study of both healthy controls and subjects with different types of von Willebrand disease (VWD). Our results show that collagen 4 appears to bind VWF exclusively via the VWF A1 domain, and that specific sequence variations identified through VWF patient samples and through site-directed mutagenesis in the VWF A1 domain can decrease or abrogate this interaction. In addition, VWF-dependent platelet binding to collagen 4 under flow conditions requires an intact VWF A1 domain. We observed that decreased binding to collagen 4 was associated with select VWF A1 domain sequence variations in type 1 and type 2M VWD. This suggests an additional mechanism through which VWF variants may alter hemostasis. PMID:25662333

  12. LFA-1 and Mac-1 integrins bind to the serine/threonine-rich domain of thrombomodulin.

    PubMed

    Kawamoto, Eiji; Okamoto, Takayuki; Takagi, Yoshimi; Honda, Goichi; Suzuki, Koji; Imai, Hiroshi; Shimaoka, Motomu

    2016-05-13

    LFA-1 (αLβ2) and Mac-1 (αMβ2) integrins regulate leukocyte trafficking in health and disease by binding primarily to IgSF ligand ICAM-1 and ICAM-2 on endothelial cells. Here we have shown that the anti-coagulant molecule thrombomodulin (TM), found on the surface of endothelial cells, functions as a potentially new ligand for leukocyte integrins. We generated a recombinant extracellular domain of human TM and Fc fusion protein (TM-domains 123-Fc), and showed that pheripheral blood mononuclear cells (PBMCs) bind to TM-domains 123-Fc dependent upon integrin activation. We then demonstrated that αL integrin-blocking mAb, αM integrin-blocking mAb, and β2 integrin-blocking mAb inhibited the binding of PBMCs to TM-domains 123-Fc. Furthermore, we show that the serine/threonine-rich domain (domain 3) of TM is required for the interaction with the LFA-1 (αLβ2) and Mac-1 (αMβ2) integrins to occur on PBMCs. These results demonstrate that the LFA-1 and Mac-1 integrins on leukocytes bind to TM, thereby establishing the molecular and structural basis underlying LFA-1 and Mac-1 integrin interaction with TM on endothelial cells. In fact, integrin-TM interactions might be involved in the dynamic regulation of leukocyte adhesion with endothelial cells. PMID:27055590

  13. Plant Kinesin-Like Calmodulin Binding Protein Employs Its Regulatory Domain for Dimerization

    PubMed Central

    Vinogradova, Maia V.; Malanina, Galina G.; Waitzman, Joshua S.; Rice, Sarah E.; Fletterick, Robert J.

    2013-01-01

    Kinesin-like calmodulin binding protein (KCBP), a Kinesin-14 family motor protein, is involved in the structural organization of microtubules during mitosis and trichome morphogenesis in plants. The molecular mechanism of microtubule bundling by KCBP remains unknown. KCBP binding to microtubules is regulated by Ca2+-binding proteins that recognize its C-terminal regulatory domain. In this work, we have discovered a new function of the regulatory domain. We present a crystal structure of an Arabidopsis KCBP fragment showing that the C-terminal regulatory domain forms a dimerization interface for KCBP. This dimerization site is distinct from the dimerization interface within the N-terminal domain. Side chains of hydrophobic residues of the calmodulin binding helix of the regulatory domain form the C-terminal dimerization interface. Biochemical experiments show that another segment of the regulatory domain located beyond the dimerization interface, its negatively charged coil, is unexpectedly and absolutely required to stabilize the dimers. The strong microtubule bundling properties of KCBP are unaffected by deletion of the C-terminal regulatory domain. The slow minus-end directed motility of KCBP is also unchanged in vitro. Although the C-terminal domain is not essential for microtubule bundling, we suggest that KCBP may use its two independent dimerization interfaces to support different types of bundled microtubule structures in cells. Two distinct dimerization sites may provide a mechanism for microtubule rearrangement in response to Ca2+ signaling since Ca2+- binding proteins can disengage KCBP dimers dependent on its C-terminal dimerization interface. PMID:23805258

  14. Plant Kinesin-Like Calmodulin Binding Protein Employs Its Regulatory Domain for Dimerization.

    PubMed

    Vinogradova, Maia V; Malanina, Galina G; Waitzman, Joshua S; Rice, Sarah E; Fletterick, Robert J

    2013-01-01

    Kinesin-like calmodulin binding protein (KCBP), a Kinesin-14 family motor protein, is involved in the structural organization of microtubules during mitosis and trichome morphogenesis in plants. The molecular mechanism of microtubule bundling by KCBP remains unknown. KCBP binding to microtubules is regulated by Ca(2+)-binding proteins that recognize its C-terminal regulatory domain. In this work, we have discovered a new function of the regulatory domain. We present a crystal structure of an Arabidopsis KCBP fragment showing that the C-terminal regulatory domain forms a dimerization interface for KCBP. This dimerization site is distinct from the dimerization interface within the N-terminal domain. Side chains of hydrophobic residues of the calmodulin binding helix of the regulatory domain form the C-terminal dimerization interface. Biochemical experiments show that another segment of the regulatory domain located beyond the dimerization interface, its negatively charged coil, is unexpectedly and absolutely required to stabilize the dimers. The strong microtubule bundling properties of KCBP are unaffected by deletion of the C-terminal regulatory domain. The slow minus-end directed motility of KCBP is also unchanged in vitro. Although the C-terminal domain is not essential for microtubule bundling, we suggest that KCBP may use its two independent dimerization interfaces to support different types of bundled microtubule structures in cells. Two distinct dimerization sites may provide a mechanism for microtubule rearrangement in response to Ca(2+) signaling since Ca(2+)- binding proteins can disengage KCBP dimers dependent on its C-terminal dimerization interface. PMID:23805258

  15. Polyelectrolyte Complex for Heparin Binding Domain Osteogenic Growth Factor Delivery.

    PubMed

    Wing Moon Lam, Raymond; Abbah, Sunny Akogwu; Ming, Wang; Naidu, Mathanapriya; Ng, Felly; Tao, Hu; Goh Cho Hong, James; Ting, Kang; Hee Kit, Wong

    2016-01-01

    During reconstructive bone surgeries, supraphysiological amounts of growth factors are empirically loaded onto scaffolds to promote successful bone fusion. Large doses of highly potent biological agents are required due to growth factor instability as a result of rapid enzymatic degradation as well as carrier inefficiencies in localizing sufficient amounts of growth factor at implant sites. Hence, strategies that prolong the stability of growth factors such as BMP-2/NELL-1, and control their release could actually lower their efficacious dose and thus reduce the need for larger doses during future bone regeneration surgeries. This in turn will reduce side effects and growth factor costs. Self-assembled PECs have been fabricated to provide better control of BMP-2/NELL-1 delivery via heparin binding and further potentiate growth factor bioactivity by enhancing in vivo stability. Here we illustrate the simplicity of PEC fabrication which aids in the delivery of a variety of growth factors during reconstructive bone surgeries. PMID:27585207

  16. Detection of persistent organic pollutants binding modes with androgen receptor ligand binding domain by docking and molecular dynamics

    PubMed Central

    2013-01-01

    Background Persistent organic pollutants (POPs) are persistent in the environment after release from industrial compounds, combustion productions or pesticides. The exposure of POPs has been related to various reproductive disturbances, such as reduced semen quality, testicular cancer, and imbalanced sex ratio. Among POPs, dichlorodiphenyldichloroethylene (4,4’-DDE) and polychlorinated biphenyls (PCBs) are the most widespread and well-studied compounds. Recent studies have revealed that 4,4’-DDE is an antagonist of androgen receptor (AR). However, the mechanism of the inhibition remains elusive. CB-153 is the most common congener of PCBs, while the action of CB-153 on AR is still under debate. Results Molecular docking and molecular dynamics (MD) approaches have been employed to study binding modes and inhibition mechanism of 4,4’-DDE and CB-153 against AR ligand binding domain (LBD). Several potential binding sites have been detected and analyzed. One possible binding site is the same binding site of AR natural ligand androgen 5α-dihydrotestosterone (DHT). Another one is on the ligand-dependent transcriptional activation function (AF2) region, which is crucial for the co-activators recruitment. Besides, a novel possible binding site was observed for POPs with low binding free energy with the receptor. Detailed interactions between ligands and the receptor have been represented. The disrupting mechanism of POPs against AR has also been discussed. Conclusions POPs disrupt the function of AR through binding to three possible biding sites on AR/LBD. One of them shares the same binding site of natural ligand of AR. Another one is on AF2 region. The third one is in a cleft near N-terminal of the receptor. Significantly, values of binding free energy of POPs with AR/LBD are comparable to that of natural ligand androgen DHT. PMID:24053684

  17. The calmodulin-binding domain of the mouse 90-kDa heat shock protein.

    PubMed

    Minami, Y; Kawasaki, H; Suzuki, K; Yahara, I

    1993-05-01

    The mouse 90-kDa heat shock protein (HSP90) and Ca(2+)-calmodulin were cross-linked at an equimolar ratio using a carbodiimide zero-length cross-linker. To identify the calmodulin-binding domain(s) of HSP90, CNBr-cleaved peptide fragments of HSP90 were mixed with Ca(2+)-calmodulin and cross-linked. Amino acid sequence determination revealed that an HSP90 alpha-derived peptide starting at the 486th amino acid residue was contained in the cross-linked products, which contains a calmodulin-binding motif (from Lys500 to Ile520). A similar motif is present also in HSP90 beta (from Lys491 to Val511). The synthetic peptides corresponding to these putative calmodulin-binding sequences were found to be cross-linked with Ca(2+)-calmodulin and to prevent the cross-linking of HSP90 and Ca(2+)-calmodulin. Both HSP90 alpha and HSP90 beta bind Ca2+. The HSP90 peptides bind HSP90 and thereby inhibit the binding of Ca2+. In addition, the HSP90 peptides augment the self-oligomerization of HSP90 induced at elevated temperatures. These results suggest that the calmodulin-binding domain of HSP90 might interact with another part of the same molecule and that Ca(2+)-calmodulin might modulate the structure and function of HSP90 through abolishing the intramolecular interaction. PMID:8486648

  18. A Substrate-induced Biotin Binding Pocket in the Carboxyltransferase Domain of Pyruvate Carboxylase*

    PubMed Central

    Lietzan, Adam D.; St. Maurice, Martin

    2013-01-01

    Biotin-dependent enzymes catalyze carboxyl transfer reactions by efficiently coordinating multiple reactions between spatially distinct active sites. Pyruvate carboxylase (PC), a multifunctional biotin-dependent enzyme, catalyzes the bicarbonate- and MgATP-dependent carboxylation of pyruvate to oxaloacetate, an important anaplerotic reaction in mammalian tissues. To complete the overall reaction, the tethered biotin prosthetic group must first gain access to the biotin carboxylase domain and become carboxylated and then translocate to the carboxyltransferase domain, where the carboxyl group is transferred from biotin to pyruvate. Here, we report structural and kinetic evidence for the formation of a substrate-induced biotin binding pocket in the carboxyltransferase domain of PC from Rhizobium etli. Structures of the carboxyltransferase domain reveal that R. etli PC occupies a symmetrical conformation in the absence of the biotin carboxylase domain and that the carboxyltransferase domain active site is conformationally rearranged upon pyruvate binding. This conformational change is stabilized by the interaction of the conserved residues Asp590 and Tyr628 and results in the formation of the biotin binding pocket. Site-directed mutations at these residues reduce the rate of biotin-dependent reactions but have no effect on the rate of biotin-independent oxaloacetate decarboxylation. Given the conservation with carboxyltransferase domains in oxaloacetate decarboxylase and transcarboxylase, the structure-based mechanism described for PC may be applicable to the larger family of biotin-dependent enzymes. PMID:23698000

  19. The Crystal Structure of the Heparin-Binding Reelin-N Domain of F-Spondin

    SciTech Connect

    Tan, Kemin; Duquette, Mark; Liu, Jin-huan; Lawler, Jack; Wang, Jia-huai

    2008-09-23

    The extracellular matrix protein F-spondin mediates axon guidance during neuronal development. Its N-terminal domain, termed the reelin-N domain, is conserved in F-spondins, reelins, and other extracellular matrix proteins. In this study, a recombinant human reelin-N domain has been expressed, purified, and shown to bind heparin. The crystal structure of the reelin-N domain resolved to 2.0 {angstrom} reveals a variant immunoglobulin-like fold and potential heparin-binding sites. Substantial conformational variations even in secondary structure are observed between the two chemically identical reelin-N domains in one crystallographic asymmetric unit. The variations may result from extensive, highly specific interactions across the interface of the two reelin-N domains. The calculated values of buried surface area and the interface's shape complementarity are consistent with the formation of a weak dimer. The homophilic asymmetric dimer can potentially offer advantages in binding to ligands such as glycosaminoglycans, which may, in turn, bridge the two reelin-N domains and stabilize the dimer.

  20. Allosteric role of the large-scale domain opening in biological catch-binding

    NASA Astrophysics Data System (ADS)

    Pereverzev, Yuriy V.; Prezhdo, Oleg V.; Sokurenko, Evgeni V.

    2009-05-01

    The proposed model demonstrates the allosteric role of the two-domain region of the receptor protein in the increased lifetimes of biological receptor/ligand bonds subjected to an external force. The interaction between the domains is represented by a bounded potential, containing two minima corresponding to the attached and separated conformations of the two protein domains. The dissociative potential with a single minimum describing receptor/ligand binding fluctuates between deep and shallow states, depending on whether the domains are attached or separated. A number of valuable analytic expressions are derived and are used to interpret experimental data for two catch bonds. The P-selectin/P-selectin-glycoprotein-ligand-1 (PSGL-1) bond is controlled by the interface between the epidermal growth factor (EGF) and lectin domains of P-selectin, and the type 1 fimbrial adhesive protein (FimH)/mannose bond is governed by the interface between the lectin and pilin domains of FimH. Catch-binding occurs in these systems when the external force stretches the receptor proteins and increases the interdomain distance. The allosteric effect is supported by independent measurements, in which the domains are kept separated by attachment of another ligand. The proposed model accurately describes the experimentally observed anomalous behavior of the lifetimes of the P-selectin/PSGL-1 and FimH/mannose complexes as a function of applied force and provides valuable insights into the mechanism of catch-binding.

  1. P-glycoprotein substrate binding domains are located at the transmembrane domain/transmembrane domain interfaces: a combined photoaffinity labeling-protein homology modeling approach.

    PubMed

    Pleban, Karin; Kopp, Stephan; Csaszar, Edina; Peer, Michael; Hrebicek, Thomas; Rizzi, Andreas; Ecker, Gerhard F; Chiba, Peter

    2005-02-01

    P-glycoprotein (P-gp) is an energy-dependent multidrug efflux pump conferring resistance to cancer chemotherapy. Characterization of the mechanism of drug transport at a molecular level represents an important prerequisite for the design of pump inhibitors, which resensitize cancer cells to standard chemotherapy. In addition, P-glycoprotein plays an important role for early absorption, distribution, metabolism, excretion, and toxicity profiling in drug development. A set of propafenonetype substrate photoaffinity ligands has been used in this study in conjunction with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry to define the substrate binding domain(s) of P-gp in more detail. The highest labeling was observed in transmembrane segments 3, 5, 8, and 11. A homology model for P-gp was generated on the basis of the dimeric crystal structure of Vibrio cholerae MsbA, an essential lipid transporter. Thereafter, the labeling pattern was projected onto the 3D atomic-detail model of P-gp to allow a visualization of the binding domain(s). Labeling is predicted by the model to occur at the two transmembrane domain/transmembrane domain interfaces formed between the amino- and carboxyl-terminal half of P-gp. These interfaces are formed by transmembrane (TM) segments 3 and 11 on one hand and TM segments 5 and 8 on the other hand. Available data on LmrA and AcrB, two bacterial multidrug efflux pumps, suggest that binding at domain interfaces may be a general feature of polyspecific drug efflux pumps. PMID:15509712

  2. Effectors of animal and plant pathogens use a common domain to bind host phosphoinositides

    PubMed Central

    Salomon, Dor; Guo, Yirui; Kinch, Lisa N.; Grishin, Nick V.; Gardner, Kevin H.; Orth, Kim

    2016-01-01

    Bacterial Type III Secretion Systems deliver effectors into host cells to manipulate cellular processes to the advantage of the pathogen. Many host targets of these effectors are found on membranes. Therefore, to identify their targets, effectors often use specialized membrane-localization domains to localize to appropriate host membranes. However, the molecular mechanisms used by many domains are unknown. Here we identify a conserved bacterial phosphoinositide-binding domain (BPD) that is found in functionally diverse Type III effectors of both plant and animal pathogens. We show that members of the BPD family functionally bind phosphoinositides and mediate localization to host membranes. Moreover, NMR studies reveal that the BPD of the newly identified Vibrio parahaemolyticus Type III effector VopR is unfolded in solution, but folds into a specific structure upon binding its ligand phosphatidylinositol-(4,5)-bisphosphate. Thus, our findings suggest a possible mechanism for promoting refolding of Type III effectors after delivery into host cells. PMID:24346350

  3. Bacterial cadherin domains as carbohydrate binding modules: determination of affinity constants to insoluble complex polysaccharides.

    PubMed

    Fraiberg, Milana; Borovok, Ilya; Weiner, Ronald M; Lamed, Raphael; Bayer, Edward A

    2012-01-01

    Cadherin (CA) and cadherin-like (CADG) doublet domains from the complex polysaccharide-degrading marine bacterium, Saccharophagus degradans 2-40, demonstrated reversible calcium-dependent binding to different complex polysaccharides, which serve as growth substrates for the bacterium. Here we describe a procedure based on adsorption of CA and CADG doublet domains to different insoluble complex polysaccharides, followed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) for visualizing and quantifying the distribution of cadherins between the bound and unbound fractions. Scatchard plots were employed to determine the kinetics of interactions of CA and CADG with several complex carbohydrates. On the basis of these binding studies, the CA and CADG doublet domains are proposed to form a new family of carbohydrate-binding module (CBM). PMID:22843394

  4. FHA domains as phospho-threonine binding modules in cell signaling.

    PubMed

    Hammet, Andrew; Pike, Brietta L; McNees, Carolyn J; Conlan, Lindus A; Tenis, Nora; Heierhorst, Jörg

    2003-01-01

    Forkhead-associated (FHA) domains are present in >200 diverse proteins in all phyla from bacteria to mammals and seem to be particularly prevalent in proteins with cell cycle control functions. Recent work from several laboratories has considerably improved our understanding of the structure and function of these domains that were virtually unknown a few years ago, and the first disease associations of FHA domains have now emerged. FHA domains form 11-stranded beta-sandwiches that contain some 100-180 amino acid residues with a high degree of sequence diversity. FHA domains act as phosphorylation-dependent protein-protein interaction modules that preferentially bind to phospho-threonine residues in their targets. Interestingly, point mutations in the human CHK2 gene that lead to single-residue amino acid substitutions in the FHA domain of this cell cycle checkpoint kinase have been found to cause a subset of cases of the Li-Fraumeni multi-cancer syndrome. PMID:12716058

  5. Ligand-Binding Properties of the Carboxyl-Terminal Repeat Domain of Streptococcus mutans Glucan-Binding Protein A

    PubMed Central

    Haas, Wolfgang; Banas, Jeffrey A.

    2000-01-01

    Streptococcus mutans glucan-binding protein A (GbpA) has sequence similarity in its carboxyl-terminal domain with glucosyltransferases (GTFs), the enzymes responsible for catalyzing the synthesis of the glucans to which GbpA and GTFs can bind and which promote S. mutans attachment to and accumulation on the tooth surface. It was predicted that this C-terminal region, comprised of what have been termed YG repeats, represents the GbpA glucan-binding domain (GBD). In an effort to test this hypothesis and to quantitate the ligand-binding specificities of the GbpA GBD, several fusion proteins were generated and tested by affinity electrophoresis or by precipitation of protein-ligand complexes, allowing the determination of binding constants. It was determined that the 16 YG repeats in GbpA comprise its GBD and that GbpA has a greater affinity for dextran (a water-soluble form of glucan) than for mutan (a water-insoluble form of glucan). Placement of the GBD at the carboxyl terminus was necessary for maximum glucan binding, and deletion of as few as two YG repeats from either end of the GBD reduced the affinity for dextran by over 10-fold. Interestingly, the binding constant of GbpA for dextran was 34-fold higher than that calculated for the GBDs of two S. mutans GTFs, one of which catalyzes the synthesis of water-soluble glucan and the other of which catalyzes the synthesis of water-insoluble glucan. PMID:10633107

  6. Ligand-binding properties of the carboxyl-terminal repeat domain of Streptococcus mutans glucan-binding protein A.

    PubMed

    Haas, W; Banas, J A

    2000-02-01

    Streptococcus mutans glucan-binding protein A (GbpA) has sequence similarity in its carboxyl-terminal domain with glucosyltransferases (GTFs), the enzymes responsible for catalyzing the synthesis of the glucans to which GbpA and GTFs can bind and which promote S. mutans attachment to and accumulation on the tooth surface. It was predicted that this C-terminal region, comprised of what have been termed YG repeats, represents the GbpA glucan-binding domain (GBD). In an effort to test this hypothesis and to quantitate the ligand-binding specificities of the GbpA GBD, several fusion proteins were generated and tested by affinity electrophoresis or by precipitation of protein-ligand complexes, allowing the determination of binding constants. It was determined that the 16 YG repeats in GbpA comprise its GBD and that GbpA has a greater affinity for dextran (a water-soluble form of glucan) than for mutan (a water-insoluble form of glucan). Placement of the GBD at the carboxyl terminus was necessary for maximum glucan binding, and deletion of as few as two YG repeats from either end of the GBD reduced the affinity for dextran by over 10-fold. Interestingly, the binding constant of GbpA for dextran was 34-fold higher than that calculated for the GBDs of two S. mutans GTFs, one of which catalyzes the synthesis of water-soluble glucan and the other of which catalyzes the synthesis of water-insoluble glucan. PMID:10633107

  7. Starch-binding domains in the CBM45 family--low-affinity domains from glucan, water dikinase and α-amylase involved in plastidial starch metabolism.

    PubMed

    Glaring, Mikkel A; Baumann, Martin J; Abou Hachem, Maher; Nakai, Hiroyuki; Nakai, Natsuko; Santelia, Diana; Sigurskjold, Bent W; Zeeman, Samuel C; Blennow, Andreas; Svensson, Birte

    2011-04-01

    Starch-binding domains are noncatalytic carbohydrate-binding modules that mediate binding to granular starch. The starch-binding domains from the carbohydrate-binding module family 45 (CBM45, http://www.cazy.org) are found as N-terminal tandem repeats in a small number of enzymes, primarily from photosynthesizing organisms. Isolated domains from representatives of each of the two classes of enzyme carrying CBM45-type domains, the Solanum tuberosumα-glucan, water dikinase and the Arabidopsis thaliana plastidial α-amylase 3, were expressed as recombinant proteins and characterized. Differential scanning calorimetry was used to verify the conformational integrity of an isolated CBM45 domain, revealing a surprisingly high thermal stability (T(m) of 84.8 °C). The functionality of CBM45 was demonstrated in planta by yellow/green fluorescent protein fusions and transient expression in tobacco leaves. Affinities for starch and soluble cyclodextrin starch mimics were measured by adsorption assays, surface plasmon resonance and isothermal titration calorimetry analyses. The data indicate that CBM45 binds with an affinity of about two orders of magnitude lower than the classical starch-binding domains from extracellular microbial amylolytic enzymes. This suggests that low-affinity starch-binding domains are a recurring feature in plastidial starch metabolism, and supports the hypothesis that reversible binding, effectuated through low-affinity interaction with starch granules, facilitates dynamic regulation of enzyme activities and, hence, of starch metabolism. PMID:21294843

  8. The alpha2beta1 integrin inhibitor rhodocetin binds to the A-domain of the integrin alpha2 subunit proximal to the collagen-binding site.

    PubMed Central

    Eble, Johannes A; Tuckwell, Danny S

    2003-01-01

    Rhodocetin is a snake venom protein that binds to alpha2beta1 integrin, inhibiting its interaction with its endogenous ligand collagen. We have determined the mechanism by which rhodocetin inhibits the function of alpha2beta1. The interaction of alpha2beta1 with collagen and rhodocetin differed: Ca(2+) ions and slightly acidic pH values increased the binding of alpha2beta1 integrin to rhodocetin in contrast with their attenuating effect on collagen binding, suggesting that rhodocetin preferentially binds to a less active conformation of alpha2beta1 integrin. The alpha2A-domain [von Willebrand factor domain A homology domain (A-domain) of the integrin alpha2 subunit] is the major site for collagen binding to alpha2beta1. Recombinant alpha2A-domain bound rhodocetin, demonstrating that the A-domain is also the rhodocetin-binding domain. Although the interaction of alpha2beta1 with rhodocetin is affected by altering divalent cations, the interaction of the A-domain was divalent-cation-independent. The rhodocetin-binding site on the alpha2A-domain was mapped first by identifying an anti-alpha2 antibody that blocked rhodocetin binding and then mapping the epitope of the antibody using human-mouse alpha2A-domain chimaeras; and secondly, by binding studies with alpha2A-domain, which bear point mutations in the vicinity of the mapped epitope. In this way, the rhodocetin-binding site was identified as the alpha3-alpha4 loop plus adjacent alpha-helices. This region is known to form part of the collagen-binding site, thus attaining a mainly competitive mode of inhibition by rhodocetin. PMID:12871211

  9. Inhibition of HIV derived lentiviral production by TAR RNA binding domain of TAT protein

    PubMed Central

    Mi, Michael Y; Zhang, Jiying; He, Yukai

    2005-01-01

    Background A critical step in the production of new HIV virions involves the TAT protein binding to the TAR element. The TAT protein contains in close proximity its TAR RNA binding domain and protein transduction domain (PTD). The PTD domain of TAT has been identified as being instrumental in the protein's ability to cross mammalian cell and nuclear membranes. All together, this information led us to form the hypothesis that a protein containing the TAR RNA binding domain could compete with the native full length TAT protein and effectively block the TAR RNA binding site in transduced HIV infected cells. Results We synthesized a short peptide named Tat-P, which contained the TAR RNA binding and PTD domains to examine whether the peptide has the potential of inhibiting TAT dependent HIV replication. We investigated the inhibiting effects of Tat-P in vitro using a HIV derived lentiviral vector model. We found that the TAT PTD domain not only efficiently transduced test cells, but also effectively inhibited the production of lentiviral particles in a TAT dependent manner. These results were also supported by data derived from the TAT activated LTR-luciferase expression model and RNA binding assays. Conclusion Tat-P may become part of a category of anti-HIV drugs that competes with full length TAT proteins to inhibit HIV replication. In addition, this study indicates that the HIV derived lentiviral vector system is a safe and reliable screening method for anti-HIV drugs, especially for those targeting the interaction of TAT and TAR RNAs. PMID:16293193

  10. Identification of pleckstrin-homology-domain-containing proteins with novel phosphoinositide-binding specificities.

    PubMed Central

    Dowler, S; Currie , R A; Campbell , D G; Deak, M; Kular, G; Downes, C P; Alessi, D R

    2000-01-01

    The second messenger phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P(3)] is generated by the action of phosphoinositide 3-kinase (PI 3-kinase), and regulates a plethora of cellular processes. An approach for dissecting the mechanisms by which these processes are regulated is to identify proteins that interact specifically with PtdIns(3,4,5)P(3). The pleckstrin homology (PH) domain has become recognized as the specialized module used by many proteins to interact with PtdIns(3,4,5)P(3). Recent work has led to the identification of a putative phosphatidylinositol 3,4,5-trisphosphate-binding motif (PPBM) at the N-terminal regions of PH domains that interact with this lipid. We have searched expressed sequence tag databases for novel proteins containing PH domains possessing a PPBM. Surprisingly, many of the PH domains that we identified do not bind PtdIns(3,4,5)P(3), but instead possess unexpected and novel phosphoinositide-binding specificities in vitro. These include proteins possessing PH domains that interact specifically with PtdIns(3,4)P(2) [TAPP1 (tandem PH-domain-containing protein-1) and TAPP2], PtdIns4P [FAPP1 (phosphatidylinositol-four-phosphate adaptor protein-1)], PtdIns3P [PEPP1 (phosphatidylinositol-three-phosphate-binding PH-domain protein-1) and AtPH1] and PtdIns(3,5)P(2) (centaurin-beta2). We have also identified two related homologues of PEPP1, termed PEPP2 and PEPP3, that may also interact with PtdIns3P. This study lays the foundation for future work to establish the phospholipid-binding specificities of these proteins in vivo, and their physiological role(s). PMID:11001876

  11. Simultaneous prediction of binding free energy and specificity for PDZ domain-peptide interactions

    PubMed Central

    Crivelli, Joseph J.; Lemmon, Gordon; Kaufmann, Kristian W.; Meiler, Jens

    2014-01-01

    Interactions between protein domains and linear peptides underlie many biological processes. Among these interactions, the recognition of C-terminal peptides by PDZ domains is one of the most ubiquitous. In this work, we present a mathematical model for PDZ domain-peptide interactions capable of predicting both affinity and specificity of binding based on x-ray crystal structures and comparative modeling with Rosetta. We developed our mathematical model using a large phage display dataset describing binding specificity for a wild type PDZ domain and 91 single mutants, as well as binding affinity data for a wild type PDZ domain binding to 28 different peptides. Structural refinement was carried out through several Rosetta protocols, the most accurate of which included flexible peptide docking and several iterations of side chain repacking and backbone minimization. Our findings emphasize the importance of backbone flexibility and the energetic contributions of side chain-side chain hydrogen bonds in accurately predicting interactions. We also determined that predicting PDZ domain-peptide interactions became increasingly challenging as the length of the peptide increased in the N-terminal direction. In the training dataset, predicted binding energies correlated with those derived through calorimetry and specificity switches introduced through single mutations at interface positions were recapitulated. In independent tests, our best performing protocol was capable of predicting dissociation constants well within one order of magnitude of the experimental values and specificity profiles at the level of accuracy of previous studies. To our knowledge, this approach represents the first integrated protocol for predicting both affinity and specificity for PDZ domain-peptide interactions. PMID:24305904

  12. Sequence Discrimination by Alternatively Spliced Isoforms of a DNA Binding Zinc Finger Domain

    NASA Astrophysics Data System (ADS)

    Gogos, Joseph A.; Hsu, Tien; Bolton, Jesse; Kafatos, Fotis C.

    1992-09-01

    Two major developmentally regulated isoforms of the Drosophila chorion transcription factor CF2 differ by an extra zinc finger within the DNA binding domain. The preferred DNA binding sites were determined and are distinguished by an internal duplication of TAT in the site recognized by the isoform with the extra finger. The results are consistent with modular interactions between zinc fingers and trinucleotides and also suggest rules for recognition of AT-rich DNA sites by zinc finger proteins. The results show how modular finger interactions with trinucleotides can be used, in conjunction with alternative splicing, to alter the binding specificity and increase the spectrum of sites recognized by a DNA binding domain. Thus, CF2 may potentially regulate distinct sets of target genes during development.

  13. Crystal structure of the DNA binding domain of the replication initiation protein E1 from papillomavirus.

    PubMed

    Enemark, E J; Chen, G; Vaughn, D E; Stenlund, A; Joshua-Tor, L

    2000-07-01

    Papillomaviral infection causes both benign and malignant lesions and is a necessary cause of cervical carcinoma. Replication of this virus requires the replication initiation proteins E1 and E2, which bind cooperatively at the origin of replication (ori) as an (E1)2-(E2)2-DNA complex. This is a precursor to larger E1 complexes that distort and unwind the ori. We present the crystal structure of the E1 DNA binding domain refined to 1.9 A resolution. Residues critical for DNA binding are located on an extended loop and an alpha helix. We identify the E1 dimerization surface by selective mutations at an E1/E1 interface observed in the crystal and propose a model for the (E1)2-DNA complex. These and other observations suggest how the E1 DNA binding domain orchestrates assembly of the hexameric helicase on the ori. PMID:10949036

  14. ADAR Proteins: Double-stranded RNA and Z-DNA Binding Domains

    PubMed Central

    Barraud, Pierre; Allain, Frédéric H.-T

    2012-01-01

    Adenosine deaminases acting on RNA (ADARs) catalyze adenosine to inosine editing within double-stranded RNA (dsRNA) substrates. Inosine is read as a guanine by most cellular processes and therefore these changes create codons for a different amino acid, stop codons or even a new splice-site allowing protein diversity generated from a single gene. We are reviewing here the current structural and molecular knowledge on RNA editing by the ADAR family of protein. We focus especially on two types of nucleic acid binding domains present in ADARs, namely the double-stranded RNA and Z-DNA binding domains. PMID:21728134

  15. Glucoamylase starch-binding domain of Aspergillus niger B1: molecular cloning and functional characterization.

    PubMed Central

    Paldi, Tzur; Levy, Ilan; Shoseyov, Oded

    2003-01-01

    Carbohydrate-binding modules (CBMs) are protein domains located within a carbohydrate-active enzyme, with a discrete fold that can be separated from the catalytic domain. Starch-binding domains (SBDs) are CBMs that are usually found at the C-terminus in many amylolytic enzymes. The SBD from Aspergillus niger B1 (CMI CC 324262) was cloned and expressed in Escherichia coli as an independent domain and the recombinant protein was purified on starch. The A. niger B1 SBD was found to be similar to SBD from A. kawachii, A. niger var. awamori and A. shirusami (95-96% identity) and was classified as a member of the CBM family 20. Characterization of SBD binding to starch indicated that it is essentially irreversible and that its affinity to cationic or anionic starch, as well as to potato or corn starch, does not differ significantly. These observations indicate that the fundamental binding area on these starches is essentially the same. Natural and chemically modified starches are among the most useful biopolymers employed in the industry. Our study demonstrates that SBD binds effectively to both anionic and cationic starch. PMID:12646045

  16. Sec1/Munc18 protein Vps33 binds to SNARE domains and the quaternary SNARE complex

    PubMed Central

    Lobingier, Braden T.; Merz, Alexey J.

    2012-01-01

    Soluble N-ethylmaleimide–sensitive factor attachment protein receptor (SNARE) proteins catalyze membrane fusion events in the secretory and endolysosomal systems, and all SNARE-mediated fusion processes require cofactors of the Sec1/Munc18 (SM) family. Vps33 is an SM protein and subunit of the Vps-C complexes HOPS (homotypic fusion and protein sorting) and CORVET (class C core vacuole/endosome tethering), which are central regulators of endocytic traffic. Here we present biochemical studies of interactions between Saccharomyces cerevisiae vacuolar SNAREs and the HOPS holocomplex or Vps33 alone. HOPS binds the N-terminal Habc domain of the Qa-family SNARE Vam3, but Vps33 is not required for this interaction. Instead, Vps33 binds the SNARE domains of Vam3, Vam7, and Nyv1. Vps33 directly binds vacuolar quaternary SNARE complexes, and the affinity of Vps33 for SNARE complexes is greater than for individual SNAREs. Through targeted mutational analyses, we identify missense mutations of Vps33 that produce a novel set of defects, including cargo missorting and the loss of Vps33-HOPS association. Together these data suggest a working model for membrane docking: HOPS associates with N-terminal domains of Vam3 and Vam7 through Vps33-independent interactions, which are followed by binding of Vps33, the HOPS SM protein, to SNARE domains and finally to the quaternary SNARE complex. Our results also strengthen the hypothesis that SNARE complex binding is a core attribute of SM protein function. PMID:23051737

  17. A Novel Approach to Predict Core Residues on Cancer-Related DNA-Binding Domains

    PubMed Central

    Wong, Ka-Chun

    2016-01-01

    Protein–DNA interactions are involved in different cancer pathways. In particular, the DNA-binding domains of proteins can determine where and how gene regulatory regions are bound in different cell lines at different stages. Therefore, it is essential to develop a method to predict and locate the core residues on cancer-related DNA-binding domains. In this study, we propose a computational method to predict and locate core residues on DNA-binding domains. In particular, we have selected the cancer-related DNA-binding domains for in-depth studies, namely, winged Helix Turn Helix family, homeodomain family, and basic Helix-Loop-Helix family. The results demonstrate that the proposed method can predict the core residues involved in protein–DNA interactions, as verified by the existing structural data. Given its good performance, various aspects of the method are discussed and explored: for instance, different uses of prediction algorithm, different protein domains, and hotspot threshold setting. PMID:27279732

  18. The high-affinity peptidoglycan binding domain of Pseudomonas phage endolysin KZ144

    SciTech Connect

    Briers, Yves; Schmelcher, Mathias; Loessner, Martin J.; Hendrix, Jelle; Engelborghs, Yves; Volckaert, Guido; Lavigne, Rob

    2009-05-29

    The binding affinity of the N-terminal peptidoglycan binding domain of endolysin KZ144 (PBD{sub KZ}), originating from Pseudomonas aeruginosa bacteriophage {phi}KZ, has been examined using a fusion protein of PBD{sub KZ} and green fluorescent protein (PBD{sub KZ}-GFP). A fluorescence recovery after photobleaching analysis of bound PBD{sub KZ}-GFP molecules showed less than 10% fluorescence recovery in the bleached area within 15 min. Surface plasmon resonance analysis confirmed this apparent high binding affinity revealing an equilibrium affinity constant of 2.95 x 10{sup 7} M{sup -1} for the PBD{sub KZ}-peptidoglycan interaction. This unique domain, which binds to the peptidoglycan of all tested Gram-negative species, was harnessed to improve the specific activity of the peptidoglycan hydrolase domain KMV36C. The chimeric peptidoglycan hydrolase (PBD{sub KZ}-KMV36C) exhibits a threefold higher specific activity than the native catalytic domain (KMV36C). These results demonstrate that the modular assembly of functional domains is a rational approach to improve the specific activity of endolysins from phages infecting Gram-negatives.

  19. The Cytoplasmic Domain of Anthrax Toxin Receptor 1 Affects Binding of the Protective Antigen▿

    PubMed Central

    Go, Mandy Y.; Chow, Edith M. C.; Mogridge, Jeremy

    2009-01-01

    The protective antigen (PA) component of anthrax toxin binds the I domain of the receptor ANTXR1. Integrin I domains convert between open and closed conformations that bind ligand with high and low affinities, respectively; this process is regulated by signaling from the cytoplasmic domains. To assess whether intracellular signals might influence the interaction between ANTXR1 and PA, we compared two splice variants of ANTXR1 that differ only in their cytoplasmic domains. We found that cells expressing ANTXR1 splice variant 1 (ANTXR1-sv1) bound markedly less PA than did cells expressing a similar level of the shorter splice variant ANTXR1-sv2. ANTXR1-sv1 but not ANTXR1-sv2 associated with the actin cytoskeleton, although disruption of the cytoskeleton did not affect binding of ANTXR-sv1 to PA. Introduction of a cytoplasmic domain missense mutation found in the related receptor ANTXR2 in a patient with juvenile hyaline fibromatosis impaired actin association and increased binding of PA to ANTXR1-sv1. These results suggest that ANTXR1 has two affinity states that may be modulated by cytoplasmic signals. PMID:18936178

  20. A Novel Approach to Predict Core Residues on Cancer-Related DNA-Binding Domains.

    PubMed

    Wong, Ka-Chun

    2016-01-01

    Protein-DNA interactions are involved in different cancer pathways. In particular, the DNA-binding domains of proteins can determine where and how gene regulatory regions are bound in different cell lines at different stages. Therefore, it is essential to develop a method to predict and locate the core residues on cancer-related DNA-binding domains. In this study, we propose a computational method to predict and locate core residues on DNA-binding domains. In particular, we have selected the cancer-related DNA-binding domains for in-depth studies, namely, winged Helix Turn Helix family, homeodomain family, and basic Helix-Loop-Helix family. The results demonstrate that the proposed method can predict the core residues involved in protein-DNA interactions, as verified by the existing structural data. Given its good performance, various aspects of the method are discussed and explored: for instance, different uses of prediction algorithm, different protein domains, and hotspot threshold setting. PMID:27279732

  1. A bistable genetic switch based on designable DNA-binding domains.

    PubMed

    Lebar, Tina; Bezeljak, Urban; Golob, Anja; Jerala, Miha; Kadunc, Lucija; Pirš, Boštjan; Stražar, Martin; Vučko, Dušan; Zupančič, Uroš; Benčina, Mojca; Forstnerič, Vida; Gaber, Rok; Lonzarić, Jan; Majerle, Andreja; Oblak, Alja; Smole, Anže; Jerala, Roman

    2014-01-01

    Bistable switches are fundamental regulatory elements of complex systems, ranging from electronics to living cells. Designed genetic toggle switches have been constructed from pairs of natural transcriptional repressors wired to inhibit one another. The complexity of the engineered regulatory circuits can be increased using orthogonal transcriptional regulators based on designed DNA-binding domains. However, a mutual repressor-based toggle switch comprising DNA-binding domains of transcription-activator-like effectors (TALEs) did not support bistability in mammalian cells. Here, the challenge of engineering a bistable switch based on monomeric DNA-binding domains is solved via the introduction of a positive feedback loop composed of activators based on the same TALE domains as their opposing repressors and competition for the same DNA operator site. This design introduces nonlinearity and results in epigenetic bistability. This principle could be used to employ other monomeric DNA-binding domains such as CRISPR for applications ranging from reprogramming cells to building digital biological memory. PMID:25264186

  2. Evaluation of the Interaction between Phosphohistidine Analogues and Phosphotyrosine Binding Domains

    PubMed Central

    McAllister, Tom E; Horner, Katherine A; Webb, Michael E

    2014-01-01

    We have investigated the interaction of peptides containing phosphohistidine analogues and their homologues with the prototypical phosphotyrosine binding SH2 domain from the eukaryotic cell signalling protein Grb2 by using a combination of isothermal titration calorimetry and a fluorescence anisotropy competition assay. These investigations demonstrated that the triazole class of phosphohistidine analogues are capable of binding too, suggesting that phosphohistidine could potentially be detected by this class of proteins in vivo. PMID:24771713

  3. Calcium binding to calmodulin mutants having domain-specific effects on the regulation of ion channels.

    PubMed

    VanScyoc, Wendy S; Newman, Rhonda A; Sorensen, Brenda R; Shea, Madeline A

    2006-12-01

    Calmodulin (CaM) is an essential, eukaryotic protein comprised of two highly homologous domains (N and C). CaM binds four calcium ions cooperatively, regulating a wide array of target proteins. A genetic screen of Paramecia by Kung [Kung, C. et al. (1992) Cell Calcium 13, 413-425] demonstrated that the domains of CaM have separable physiological roles: "under-reactive" mutations affecting calcium-dependent sodium currents mapped to the N-domain, while "over-reactive" mutations affecting calcium-dependent potassium currents localized to the C-domain of CaM. To determine whether and how these mutations affected intrinsic calcium-binding properties of CaM domains, phenylalanine fluorescence was used to monitor calcium binding to sites I and II (N-domain) and tyrosine fluorescence was used to monitor sites III and IV (C-domain). To explore interdomain interactions, binding properties of each full-length mutant were compared to those of its corresponding domain fragments. The calcium-binding properties of six under-reactive mutants (V35I/D50N, G40E, G40E/D50N, D50G, E54K, and G59S) and one over-reactive mutant (M145V) were indistinguishable from those of wild-type CaM, despite their deleterious physiological effects on ion-channel regulation. Four over-reactive mutants (D95G, S101F, E104K, and H135R) significantly decreased the calcium affinity of the C-domain. Of these, one (E104K) also increased the calcium affinity of the N-domain, demonstrating that the magnitude and direction of wild-type interdomain coupling had been perturbed. This suggests that, while some of these mutations alter calcium-binding directly, others probably alter CaM-channel association or calcium-triggered conformational change in the context of a ternary complex with the affected ion channel. PMID:17128970

  4. Structural and functional similarities between the nucleotide-binding domains of CFTR and GTP-binding proteins.

    PubMed Central

    Carson, M R; Welsh, M J

    1995-01-01

    The opening and closing of the CFTR Cl- channel are regulated by ATP hydrolysis at its two nucleotide binding domains (NBDs). However, the mechanism and functional significance of ATP hydrolysis are unknown. Sequence similarity between the NBDs of CFTR and GTP-binding proteins suggested the NBDs might have a structure and perhaps a function like that of GTP-binding proteins. Based on this similarity, we predicted that the terminal residue of the LSGGQ motif in the NBDs of CFTR corresponds to a highly conserved glutamine residue in GTP-binding proteins that directly catalyzes the GTPase reaction. Mutations of this residue in NBD1 or NBD2, which were predicted to increase or decrease the rate of hydrolysis, altered the duration of channel closed and open times in a specific manner without altering ion conduction properties or ADP-dependent inhibition. These results suggest that the NBDs of CFTR, and consequently other ABC transporters, may have a structure and a function analogous to those of GTP-binding proteins. We conclude that the rates of ATP hydrolysis at NBD1 and at NBD2 determine the duration of the two states of the channel, closed and open, much as the rate of GTP hydrolysis by GTP-binding proteins determines the duration of their active state. Images FIGURE 3 FIGURE 4 PMID:8599650

  5. Structures of apo IRF-3 and IRF-7 DNA binding domains: effect of loop L1 on DNA binding

    SciTech Connect

    De Ioannes, Pablo; Escalante, Carlos R.; Aggarwal, Aneel K.

    2013-11-20

    Interferon regulatory factors IRF-3 and IRF-7 are transcription factors essential in the activation of interferon-{beta} (IFN-{beta}) gene in response to viral infections. Although, both proteins recognize the same consensus IRF binding site AANNGAAA, they have distinct DNA binding preferences for sites in vivo. The X-ray structures of IRF-3 and IRF-7 DNA binding domains (DBDs) bound to IFN-{beta} promoter elements revealed flexibility in the loops (L1-L3) and the residues that make contacts with the target sequence. To characterize the conformational changes that occur on DNA binding and how they differ between IRF family members, we have solved the X-ray structures of IRF-3 and IRF-7 DBDs in the absence of DNA. We found that loop L1, carrying the conserved histidine that interacts with the DNA minor groove, is disordered in apo IRF-3 but is ordered in apo IRF-7. This is reflected in differences in DNA binding affinities when the conserved histidine in loop L1 is mutated to alanine in the two proteins. The stability of loop L1 in IRF-7 derives from a unique combination of hydrophobic residues that pack against the protein core. Together, our data show that differences in flexibility of loop L1 are an important determinant of differential IRF-DNA binding.

  6. Properties of the DNA-binding domain of the simian virus 40 large T antigen.

    PubMed Central

    McVey, D; Strauss, M; Gluzman, Y

    1989-01-01

    T antigen (Tag) from simian virus 40 binds specifically to two distinct sites in the viral origin of replication and to single-stranded DNA. Analysis of the protein domain responsible for these activities revealed the following. (i) The C-terminal boundary of the origin-specific and single-strand-specific DNA-binding domain is at or near amino acid 246; furthermore, the maximum of these DNA-binding activities coincides with a narrow C-terminal boundary, spanning 4 amino acids (246 to 249) and declines sharply in proteins with C termini which differ by a few (4 to 10) amino acids; (ii) a polypeptide spanning residues 132 to 246 of Tag is an independent domain responsible for origin-specific DNA binding and presumably for single-stranded DNA binding; and (iii) a comparison of identical N-terminal fragments of Tag purified from mammalian and bacterial cells revealed differential specificity and levels of activity between the two sources of protein. A role for posttranslational modification (phosphorylation) in controlling the DNA-binding activity of Tag is discussed. Images PMID:2555700

  7. Putative binding modes of Ku70-SAP domain with double strand DNA: a molecular modeling study.

    PubMed

    Hu, Shaowen; Pluth, Janice M; Cucinotta, Francis A

    2012-05-01

    The channel structure of the Ku protein elegantly reveals the mechanistic basis of sequence-independent DNA-end binding, which is essential to genome integrity after exposure to ionizing radiation or in V(D)J recombination. However, contradicting evidence indicates that this protein is also involved in the regulation of gene expression and in other regulatory processes with intact chromosomes. This computational study predicts that a putative DNA binding domain of this protein, the SAP domain, can form DNA-bound complexes with relatively high affinities (ΔG ≈ -20 kcal mol(-1)). The binding modes are searched by low frequency vibration modes driven by the fully flexible docking method while binding affinities are calculated by the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method. We find this well defined 5 kDa domain with a helix-extended loop-helix structure is suitable to form favorable electrostatic and hydrophobic interactions with either the major groove or the minor groove of DNA. The calculation also reveals the sequence specified binding preference which may relate to the observed pause sites when Ku translocates along DNA and the perplex binding of Ku with circular DNA. PMID:21947447

  8. Critical VWF A1 Domain Residues Influence Type VI Collagen Binding

    PubMed Central

    Flood, Veronica H.; Gill, Joan Cox; Christopherson, Pamela A.; Bellissimo, Daniel B.; Friedman, Kenneth D.; Haberichter, Sandra L.; Lentz, Steven R.; Montgomery, Robert R.

    2013-01-01

    Summary Background Von Willebrand factor (VWF) binds to subendothelial collagen at sites of vascular injury. Laboratory testing for von Willebrand disease (VWD), however, does not always include collagen binding assays (VWF:CB) and standard VWF:CB assays use type I and/or type III collagen rather than type VI collagen. Objectives We report here on several mutations that exclusively alter binding to type VI collagen. Patients/methods Healthy controls and index cases from the Zimmerman Program for the Molecular and Clinical Biology of VWD were analyzed for VWF antigen (VWF:Ag), VWF ristocetin cofactor activity, and VWF:CB with types I, III, and VI collagen. VWF gene sequencing was performed for all subjects. Results Two healthy controls and one type 1 VWD subject were heterozygous for an A1 domain sequence variation, R1399H, and displayed a selective decreased binding to type VI collagen but not types I and III. Expression of recombinant 1399H VWF resulted in absent binding to type VI collagen. Two other VWF A1 domain mutations, S1387I and Q1402P, displayed diminished binding to type VI collagen. An 11 amino acid deletion in the A1 domain also abrogated binding to type VI collagen. Conclusions VWF:CB may be useful in diagnosis of VWD, as a decreased VWF:CB/VWF:Ag ratio may reflect specific loss of collagen binding ability. Mutations that exclusively affect type VI collagen binding may be associated with bleeding, yet missed by current VWF testing. PMID:22507569

  9. Redox state of p63 and p73 core domains regulates sequence-specific DNA binding.

    PubMed

    Tichý, Vlastimil; Navrátilová, Lucie; Adámik, Matej; Fojta, Miroslav; Brázdová, Marie

    2013-04-19

    Cysteine oxidation and covalent modification of redox sensitive transcription factors including p53 are known, among others, as important events in cell response to oxidative stress. All p53 family proteins p53, p63 and p73 act as stress-responsive transcription factors. Oxidation of p53 central DNA binding domain destroys its structure and abolishes its sequence-specific binding by affecting zinc ion coordination at the protein-DNA interface. Proteins p63 and p73 can bind the same response elements as p53 but exhibit distinct functions. Moreover, all three proteins contain highly conserved cysteines in central DNA binding domain suitable for possible redox modulation. In this work we report for the first time the redox sensitivity of p63 and p73 core domains to a thiol oxidizing agent azodicarboxylic acid bis[dimethylamide] (diamide). Oxidation of both p63 and p73 abolished sequence-specific binding to p53 consensus sequence, depending on the agent concentration. In the presence of specific DNA all p53 family core domains were partially protected against loss of DNA binding activity due to diamide treatment. Furthermore, we detected conditional reversibility of core domain oxidation for all p53 family members and a role of zinc ions in this process. We showed that p63 and p73 proteins had greater ability to resist the diamide oxidation in comparison with p53. Our results show p63 and p73 as redox sensitive proteins with possible functionality in response of p53 family proteins to oxidative stress. PMID:23501101

  10. Matrix Domain Modulates HIV-1 Gag's Nucleic Acid Chaperone Activity via Inositol Phosphate Binding

    PubMed Central

    Jones, Christopher P.; Datta, Siddhartha A. K.; Rein, Alan; Rouzina, Ioulia; Musier-Forsyth, Karin

    2011-01-01

    Retroviruses replicate by reverse transcribing their single-stranded RNA genomes into double-stranded DNA using specific cellular tRNAs to prime cDNA synthesis. In HIV-1, human tRNA3Lys serves as the primer and is packaged into virions during assembly. The viral Gag protein is believed to chaperone tRNA3Lys placement onto the genomic RNA primer binding site; however, the timing and possible regulation of this event are currently unknown. Composed of the matrix (MA), capsid (CA), nucleocapsid (NC), and p6 domains, the multifunctional HIV-1 Gag polyprotein orchestrates the highly coordinated process of virion assembly, but the contribution of these domains to tRNA3Lys annealing is unclear. Here, we show that NC is absolutely essential for annealing and that the MA domain inhibits Gag's tRNA annealing capability. During assembly, MA specifically interacts with inositol phosphate (IP)-containing lipids in the plasma membrane (PM). Surprisingly, we find that IPs stimulate Gag-facilitated tRNA annealing but do not stimulate annealing in Gag variants lacking the MA domain or containing point mutations involved in PM binding. Moreover, we find that IPs prevent MA from binding to nucleic acids but have little effect on NC or Gag. We propose that Gag binds to RNA either with both NC and MA domains or with NC alone and that MA-IP interactions alter Gag's binding mode. We propose that MA's interactions with the PM trigger the switch between these two binding modes and stimulate Gag's chaperone function, which may be important for the regulation of events such as tRNA primer annealing. PMID:21123373

  11. Conserved SMP domains of the ERMES complex bind phospholipids and mediate tether assembly

    PubMed Central

    AhYoung, Andrew P.; Jiang, Jiansen; Zhang, Jiang; Khoi Dang, Xuan; Loo, Joseph A.; Zhou, Z. Hong; Egea, Pascal F.

    2015-01-01

    Membrane contact sites (MCS) between organelles are proposed as nexuses for the exchange of lipids, small molecules, and other signals crucial to cellular function and homeostasis. Various protein complexes, such as the endoplasmic reticulum-mitochondrial encounter structure (ERMES), function as dynamic molecular tethers between organelles. Here, we report the reconstitution and characterization of subcomplexes formed by the cytoplasm-exposed synaptotagmin-like mitochondrial lipid-binding protein (SMP) domains present in three of the five ERMES subunits—the soluble protein Mdm12, the endoplasmic reticulum (ER)-resident membrane protein Mmm1, and the mitochondrial membrane protein Mdm34. SMP domains are conserved lipid-binding domains found exclusively in proteins at MCS. We show that the SMP domains of Mdm12 and Mmm1 associate into a tight heterotetramer with equimolecular stoichiometry. Our 17-Å-resolution EM structure of the complex reveals an elongated crescent-shaped particle in which two Mdm12 subunits occupy symmetric but distal positions at the opposite ends of a central ER-anchored Mmm1 homodimer. Rigid body fitting of homology models of these SMP domains in the density maps reveals a distinctive extended tubular structure likely traversed by a hydrophobic tunnel. Furthermore, these two SMP domains bind phospholipids and display a strong preference for phosphatidylcholines, a class of phospholipids whose exchange between the ER and mitochondria is essential. Last, we show that the three SMP-containing ERMES subunits form a ternary complex in which Mdm12 bridges Mmm1 to Mdm34. Our findings highlight roles for SMP domains in ERMES assembly and phospholipid binding and suggest a structure-based mechanism for the facilitated transport of phospholipids between organelles. PMID:26056272

  12. Differential polyubiquitin recognition by tandem ubiquitin binding domains of Rabex-5.

    PubMed

    Shin, Donghyuk; Lee, Sei Young; Han, Seungsoo; Ren, Shuo; Kim, Soyoun; Aikawa, Yoshikatsu; Lee, Sangho

    2012-07-13

    Linkage-specific polyubiquitination regulates many cellular processes. The N-terminal fragment of Rabex-5 (Rabex-5(9-73)) contains tandem ubiquitin binding domains: A20_ZF and MIU. The A20_ZF-MIU of Rabex-5 is known to bind monoubiquitin but molecular details of polyubiquitin binding affinity and linkage selectivity by Rabex-5(9-73) remain elusive. Here we report that Rabex-5(9-73) binds linear, K63- and K48-linked tetraubiquitin (Ub(4)) chains with K(d) of 0.1-1 μM, determined by biolayer interferometry. Mutational analysis of qualitative and quantitative binding data reveals that MIU is more important than A20_ZF in linkage-specific polyubiquitin recognition. MIU prefers binding to linear and K63-linked Ub(4) with sub μM affinities. However, A20_ZF recognizes the three linkage-specific Ub(4) with similar affinities with K(d) of 3-4 μM, unlike ZnF4 of A20. Taken together, our data suggest differential physiological roles of the two ubiquitin binding domains in Rabex-5. PMID:22705550

  13. The structural plasticity of SCA7 domains defines their differential nucleosome-binding properties

    PubMed Central

    Bonnet, Jacques; Wang, Ying-Hui; Spedale, Gianpiero; Atkinson, R Andrew; Romier, Christophe; Hamiche, Ali; Pijnappel, W W M Pim; Timmers, H Th Marc; Tora, László; Devys, Didier; Kieffer, Bruno

    2010-01-01

    SAGA (Spt–Ada–Gcn5 acetyltransferase), a coactivator complex involved in chromatin remodelling, harbours both histone acetylation and deubiquitination activities. ATXN7/Sgf73 and ATXN7L3, two subunits of the SAGA deubiquitination module, contain an SCA7 domain characterized by an atypical zinc-finger. We show that the yeast Sgf73–SCA7 domain is not required to recruit Sgf73 into SAGA. Instead, it binds to nucleosomes, a property that is conserved in the human ATXN7–SCA7 domain but is lost in the ATXN7L3 domain. The solution structures of the SCA7 domain of both ATXN7 and ATXN7L3 reveal a new, common zinc-finger motif at the heart of two distinct folds, providing a molecular basis for the observed functional differences. PMID:20634802

  14. The Tomato Nucleotide-binding Leucine-rich Repeat Immune Receptor I-2 Couples DNA-binding to Nucleotide-binding Domain Nucleotide Exchange.

    PubMed

    Fenyk, Stepan; Dixon, Christopher H; Gittens, William H; Townsend, Philip D; Sharples, Gary J; Pålsson, Lars-Olof; Takken, Frank L W; Cann, Martin J

    2016-01-15

    Plant nucleotide-binding leucine-rich repeat (NLR) proteins enable plants to recognize and respond to pathogen attack. Previously, we demonstrated that the Rx1 NLR of potato is able to bind and bend DNA in vitro. DNA binding in situ requires its genuine activation following pathogen perception. However, it is unknown whether other NLR proteins are also able to bind DNA. Nor is it known how DNA binding relates to the ATPase activity intrinsic to NLR switch function required to immune activation. Here we investigate these issues using a recombinant protein corresponding to the N-terminal coiled-coil and nucleotide-binding domain regions of the I-2 NLR of tomato. Wild type I-2 protein bound nucleic acids with a preference of ssDNA ≈ dsDNA > ssRNA, which is distinct from Rx1. I-2 induced bending and melting of DNA. Notably, ATP enhanced DNA binding relative to ADP in the wild type protein, the null P-loop mutant K207R, and the autoactive mutant S233F. DNA binding was found to activate the intrinsic ATPase activity of I-2. Because DNA binding by I-2 was decreased in the presence of ADP when compared with ATP, a cyclic mechanism emerges; activated ATP-associated I-2 binds to DNA, which enhances ATP hydrolysis, releasing ADP-bound I-2 from the DNA. Thus DNA binding is a general property of at least a subset of NLR proteins, and NLR activation is directly linked to its activity at DNA. PMID:26601946

  15. The Tomato Nucleotide-binding Leucine-rich Repeat Immune Receptor I-2 Couples DNA-binding to Nucleotide-binding Domain Nucleotide Exchange*

    PubMed Central

    Fenyk, Stepan; Dixon, Christopher H.; Gittens, William H.; Townsend, Philip D.; Sharples, Gary J.; Pålsson, Lars-Olof; Takken, Frank L. W.; Cann, Martin J.

    2016-01-01

    Plant nucleotide-binding leucine-rich repeat (NLR) proteins enable plants to recognize and respond to pathogen attack. Previously, we demonstrated that the Rx1 NLR of potato is able to bind and bend DNA in vitro. DNA binding in situ requires its genuine activation following pathogen perception. However, it is unknown whether other NLR proteins are also able to bind DNA. Nor is it known how DNA binding relates to the ATPase activity intrinsic to NLR switch function required to immune activation. Here we investigate these issues using a recombinant protein corresponding to the N-terminal coiled-coil and nucleotide-binding domain regions of the I-2 NLR of tomato. Wild type I-2 protein bound nucleic acids with a preference of ssDNA ≈ dsDNA > ssRNA, which is distinct from Rx1. I-2 induced bending and melting of DNA. Notably, ATP enhanced DNA binding relative to ADP in the wild type protein, the null P-loop mutant K207R, and the autoactive mutant S233F. DNA binding was found to activate the intrinsic ATPase activity of I-2. Because DNA binding by I-2 was decreased in the presence of ADP when compared with ATP, a cyclic mechanism emerges; activated ATP-associated I-2 binds to DNA, which enhances ATP hydrolysis, releasing ADP-bound I-2 from the DNA. Thus DNA binding is a general property of at least a subset of NLR proteins, and NLR activation is directly linked to its activity at DNA. PMID:26601946

  16. ATP binding to the pseudokinase domain of JAK2 is critical for pathogenic activation.

    PubMed

    Hammarén, Henrik M; Ungureanu, Daniela; Grisouard, Jean; Skoda, Radek C; Hubbard, Stevan R; Silvennoinen, Olli

    2015-04-14

    Pseudokinases lack conserved motifs typically required for kinase activity. Nearly half of pseudokinases bind ATP, but only few retain phosphotransfer activity, leaving the functional role of nucleotide binding in most cases unknown. Janus kinases (JAKs) are nonreceptor tyrosine kinases with a tandem pseudokinase-kinase domain configuration, where the pseudokinase domain (JAK homology 2, JH2) has important regulatory functions and harbors mutations underlying hematological and immunological diseases. JH2 of JAK1, JAK2, and TYK2 all bind ATP, but the significance of this is unclear. We characterize the role of nucleotide binding in normal and pathogenic JAK signaling using comprehensive structure-based mutagenesis. Disruption of JH2 ATP binding in wild-type JAK2 has only minor effects, and in the presence of type I cytokine receptors, the mutations do not affect JAK2 activation. However, JH2 mutants devoid of ATP binding ameliorate the hyperactivation of JAK2 V617F. Disrupting ATP binding in JH2 also inhibits the hyperactivity of other pathogenic JAK2 mutants, as well as of JAK1 V658F, and prevents induction of erythrocytosis in a JAK2 V617F myeloproliferative neoplasm mouse model. Molecular dynamic simulations and thermal-shift analysis indicate that ATP binding stabilizes JH2, with a pronounced effect on the C helix region, which plays a critical role in pathogenic activation of JAK2. Taken together, our results suggest that ATP binding to JH2 serves a structural role in JAKs, which is required for aberrant activity of pathogenic JAK mutants. The inhibitory effect of abrogating JH2 ATP binding in pathogenic JAK mutants may warrant novel therapeutic approaches. PMID:25825724

  17. Characterization of the fibrinogen binding domain of bacteriophage lysin from Streptococcus mitis.

    PubMed

    Seo, Ho Seong; Sullam, Paul M

    2011-09-01

    The binding of bacteria to human platelets is a likely central mechanism in the pathogenesis of infective endocarditis. Platelet binding by Streptococcus mitis SF100 is mediated in part by a lysin encoded by the lysogenic bacteriophage SM1. In addition to its role in the phage life cycle, lysin mediates the binding of S. mitis to human platelets via its interaction with fibrinogen on the platelet surface. To better define the region of lysin mediating fibrinogen binding, we tested a series of purified lysin truncation variants for their abilities to bind this protein. These studies revealed that the fibrinogen binding domain of lysin is contained within the region spanned by amino acid residues 102 to 198 (lysin(102-198)). This region has no sequence homology to other known fibrinogen binding proteins. Lysin(102-198) bound fibrinogen comparably to full-length lysin and with the same selectivity for the fibrinogen Aα and Bβ chains. Lysin(102-198) also inhibited the binding in vitro of S. mitis to human fibrinogen and platelets. When assessed by platelet aggregometry, the disruption of the lysin gene in SF100 resulted in a significantly longer time to the onset of aggregation of human platelets than that of the parent strain. The preincubation of platelets with purified lysin(102-198) also delayed the onset of aggregation by SF100. These results indicate that the binding of lysin to fibrinogen is mediated by a specific domain of the phage protein and that this interaction is important for both platelet binding and aggregation by S. mitis. PMID:21690235

  18. A summary of staphylococcal C-terminal SH3b_5 cell wall binding domains.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Staphylococcal peptidoglycan hydrolases are a potential new source of antimicrobials. A large subset of these proteins contain a C-terminal SH3b_5 cell wall binding domain that has been shown for some to be essential for accurate cell wall recognition and subsequent staphylolytic activity, propert...

  19. The Anabaena sensory rhodopsin transducer defines a novel superfamily of prokaryotic small-molecule binding domains

    PubMed Central

    De Souza, Robson F; Iyer, Lakshminarayan M; Aravind, L

    2009-01-01

    The Anabaena sensory rhodopsin transducer (ASRT) is a small protein that has been claimed to function as a signaling molecule downstream of the cyanobacterial sensory rhodopsin. However, orthologs of ASRT have been detected in several bacteria that lack rhodopsin, raising questions about the generality of this function. Using sequence profile searches we show that ASRT defines a novel superfamily of β-sandwich fold domains. Through contextual inference based on domain architectures and predicted operons and structural analysis we present strong evidence that these domains bind small molecules, most probably sugars. We propose that the intracellular versions like ASRT probably participate as sensors that regulate a diverse range of sugar metabolism operons or even the light sensory behavior in Anabaena by binding sugars or related metabolites. We also show that one of the extracellular versions define a predicted sugar-binding structure in a novel cell-surface lipoprotein found across actinobacteria, including several pathogens such as Tropheryma, Actinomyces and Thermobifida. The analysis of this superfamily also provides new data to investigate the evolution of carbohydrate binding modes in β-sandwich domains with very different topologies. Reviewers: This article was reviewed by M. Madan Babu and Mark A. Ragan. PMID:19682383

  20. Conserved DNA binding and self-association domains of the Drosophila zeste protein.

    PubMed Central

    Chen, J D; Chan, C S; Pirrotta, V

    1992-01-01

    The zeste gene product is involved in two types of genetic effects dependent on chromosome pairing: transvection and the zeste-white interaction. Comparison of the predicted amino acid sequence with that of the Drosophila virilis gene shows that several blocks of amino acid sequence have been very highly conserved. One of these regions corresponds to the DNA binding domain. Site-directed mutations in this region indicate that a sequence resembling that of the homeodomain DNA recognition helix is essential for DNA binding activity. The integrity of an amphipathic helical region is also essential for binding activity and is likely to be responsible for dimerization of the DNA binding domain. Another very strongly conserved domain of zeste is the C-terminal region, predicted to form a long helical structure with two sets of heptad repeats that constitute two long hydrophobic ridges at opposite ends and on opposite faces of the helix. We show that this domain is responsible for the extensive aggregation properties of zeste that are required for its role in transvection phenomena. A model is proposed according to which the hydrophobic ridges induce the formation of open-ended coiled-coil structures holding together many hundreds of zeste molecules and possibly anchoring these complexes to other nuclear structures. Images PMID:1732733

  1. Kits and methods of detection using cellulose binding domain fusion proteins

    DOEpatents

    Shoseyov, O.; Yosef, K.

    1998-04-14

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

  2. Kits and methods of detection using cellulose binding domain fusion proteins

    DOEpatents

    Shoseyov, Oded

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  3. A small cellulose binding domain protein in Phytophtora is cell wall localized

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cellulose binding domains (CBD) are structurally conserved regions linked to catalytic regions of cellulolytic enzymes. While widespread amongst saprophytic fungi that subsist on plant cell wall polysaccharides, they are not generally present in plant pathogenic fungi. A genome wide survey of CBDs w...

  4. 1918 Influenza receptor binding domain variants bind and replicate in primary human airway cells regardless of receptor specificity.

    PubMed

    Davis, A Sally; Chertow, Daniel S; Kindrachuk, Jason; Qi, Li; Schwartzman, Louis M; Suzich, Jon; Alsaaty, Sara; Logun, Carolea; Shelhamer, James H; Taubenberger, Jeffery K

    2016-06-01

    The 1918 influenza pandemic caused ~50 million deaths. Many questions remain regarding the origin, pathogenicity, and mechanisms of human adaptation of this virus. Avian-adapted influenza A viruses preferentially bind α2,3-linked sialic acids (Sia) while human-adapted viruses preferentially bind α2,6-linked Sia. A change in Sia preference from α2,3 to α2,6 is thought to be a requirement for human adaptation of avian influenza viruses. Autopsy data from 1918 cases, however, suggest that factors other than Sia preference played a role in viral binding and entry to human airway cells. Here, we evaluated binding and entry of five 1918 influenza receptor binding domain variants in a primary human airway cell model along with control avian and human influenza viruses. We observed that all five variants bound and entered cells efficiently and that Sia preference did not predict entry of influenza A virus to primary human airway cells evaluated in this model. PMID:27062579

  5. Critical Role of Heparin Binding Domains of Ameloblastin for Dental Epithelium Cell Adhesion and Ameloblastoma Proliferation*

    PubMed Central

    Sonoda, Akira; Iwamoto, Tsutomu; Nakamura, Takashi; Fukumoto, Emiko; Yoshizaki, Keigo; Yamada, Aya; Arakaki, Makiko; Harada, Hidemitsu; Nonaka, Kazuaki; Nakamura, Seiji; Yamada, Yoshihiko; Fukumoto, Satoshi

    2009-01-01

    AMBN (ameloblastin) is an enamel matrix protein that regulates cell adhesion, proliferation, and differentiation of ameloblasts. In AMBN-deficient mice, ameloblasts are detached from the enamel matrix, continue to proliferate, and form a multiple cell layer; often, odontogenic tumors develop in the maxilla with age. However, the mechanism of AMBN functions in these biological processes remains unclear. By using recombinant AMBN proteins, we found that AMBN had heparin binding domains at the C-terminal half and that these domains were critical for AMBN binding to dental epithelial cells. Overexpression of full-length AMBN protein inhibited proliferation of human ameloblastoma AM-1 cells, but overexpression of heparin binding domain-deficient AMBN protein had no inhibitory effect. In full-length AMBN-overexpressing AM-1 cells, the expression of Msx2, which is involved in the dental epithelial progenitor phenotype, was decreased, whereas the expression of cell proliferation inhibitors p21 and p27 was increased. We also found that the expression of enamelin, a marker of differentiated ameloblasts, was induced, suggesting that AMBN promotes odontogenic tumor differentiation. Thus, our results suggest that AMBN promotes cell binding through the heparin binding sites and plays an important role in preventing odontogenic tumor development by suppressing cell proliferation and maintaining differentiation phenotype through Msx2, p21, and p27. PMID:19648121

  6. Analysis of the hormone-binding domain of steroid receptors using chimeras generated by homologous recombination

    SciTech Connect

    Martinez, Elisabeth D.; Pattabiraman, Nagarajan; Danielsen, Mark . E-mail: dan@bc.georgetown.edu

    2005-08-15

    The glucocorticoid receptor and the mineralocorticoid receptor are members of the steroid receptor family that exhibit ligand cross-reactivity. Specificity of steroid receptor action is investigated in the present work by the construction and characterization of chimeras between the glucocorticoid receptor and the mineralocorticoid receptor. We used an innovative approach to make novel steroid receptor proteins in vivo that in general, contrary to our expectations, show increased ligand specificity compared to the parental receptors. We describe a receptor that is specific for the potent synthetic glucocorticoid triamcinolone acetonide and does not bind aldosterone. A further set of chimeras has an increased ability to discriminate between ligands, responding potently to mineralocorticoids and only very weakly to synthetic glucocorticoids. A chimera with the fusion site in the hinge highlights the importance of the region between the DNA-binding and the hormone-binding domains since, unlike both the glucocorticoid and mineralocorticoid receptors, it only responds to mineralocorticoids. One chimera has reduced specificity in that it acts as a general corticoid receptor, responding to glucocorticoids and mineralocorticoids with similar potency and efficacy. Our data suggest that regions of the glucocorticoid and mineralocorticoid receptor hormone-binding domains are functionally non-reciprocal. We present transcriptional, hormone-binding, and structure-modeling evidence that suggests that receptor-specific interactions within and across domains mediate aspects of specificity in transcriptional responses to steroids.

  7. A Prevalent Peptide-Binding Domain Guides Ribosomal Natural Product Biosynthesis

    PubMed Central

    Burkhart, Brandon J.; Hudson, Graham A.; Dunbar, Kyle L.; Mitchell, Douglas A.

    2015-01-01

    Ribosomally synthesized and posttranslationally modified peptides (RiPPs) are a rapidly growing natural product class. RiPP precursor peptides can undergo extensive enzymatic tailoring, yielding structurally and functionally diverse products, and their biosynthetic logic makes them attractive bioengineering targets. Recent work suggests that unrelated RiPP modifying enzymes contain structurally similar precursor peptide-binding domains. Using profile hidden Markov model comparisons, we discovered related and previously unrecognized peptide-binding domains in proteins spanning the majority of known prokaryotic RiPP classes; thus, we named this conserved domain the RiPP precursor peptide recognition element (RRE). Through binding studies, we verify the role of the RRE for three distinct RiPP classes: linear azole-containing peptides, thiopeptides, and lasso peptides. Because numerous RiPP biosynthetic enzymes act on peptide substrates, our findings have powerful predictive value as to which protein(s) drive substrate binding, laying a foundation for further characterization of RiPP biosynthetic pathways and the rational engineering of new peptide-binding activities. PMID:26167873

  8. The Smc5-Smc6 heterodimer associates with DNA through several independent binding domains

    PubMed Central

    Roy, Marc-André; Dhanaraman, Thillaivillalan; D’Amours, Damien

    2015-01-01

    The Smc5-6 complex is required for the maintenance of genome integrity through its functions in DNA repair and chromosome biogenesis. However, the specific mode of action of Smc5 and Smc6 in these processes remains largely unknown. We previously showed that individual components of the Smc5-Smc6 complex bind strongly to DNA as monomers, despite the absence of a canonical DNA-binding domain (DBD) in these proteins. How heterodimerization of Smc5-6 affects its binding to DNA, and which parts of the SMC molecules confer DNA-binding activity is not known at present. To address this knowledge gap, we characterized the functional domains of the Smc5-6 heterodimer and identify two DBDs in each SMC molecule. The first DBD is located within the SMC hinge region and its adjacent coiled-coil arms, while the second is found in the conserved ATPase head domain. These DBDs can independently recapitulate the substrate preference of the full-length Smc5 and Smc6 proteins. We also show that heterodimerization of full-length proteins specifically increases the affinity of the resulting complex for double-stranded DNA substrates. Collectively, our findings provide critical insights into the structural requirements for effective binding of the Smc5-6 complex to DNA repair substrates in vitro and in live cells. PMID:25984708

  9. Nerve growth factor binding domain of the nerve growth factor receptor

    SciTech Connect

    Welcher, A.A.; Bitler, C.M.; Radeke, M.J.; Shooter, E.M. )

    1991-01-01

    A structural analysis of the rat low-affinity nerve growth factor (NGF) receptor was undertaken to define the NGF binding domain. Mutant NGF receptor DNA constructs were expressed in mouse fibroblasts or COS cells, and the ability of the mutant receptors to bind NGF was assayed. In the first mutant, all but 16 amino acid residues of the intracellular domain of the receptor were removed. This receptor bound NGF with a K{sub d} comparable to that of the wild-type receptor. A second mutant contained only the four cysteine-rich sequences from the extracellular portion of the protein. This mutant was expressed in COS cells and the resultant protein was a secreted soluble form of the receptor that was able to bind NGF. Two N-terminal deletions, in which either the first cystein-rich sequence or the first and part of the second cystein-rich sequences were removed, bound NGF. However, a mutant lacking all four cysteine-rich sequences was unable to bind NGF. These results show that the four cysteine-rich sequences of the NGF receptor contain the NGF binding domain.

  10. Optimal fusion of antibody binding domains resulted in higher affinity and wider specificity.

    PubMed

    Dong, Jinhua; Kojima, Tomoki; Ohashi, Hiroyuki; Ueda, Hiroshi

    2015-11-01

    Antibody is a very important protein in biotechnological and biomedical fields because of its high affinity and specificity to various antigens. Due to the rise of human antibody therapeutics, its cost-effective purification is an urgent issue for bio-industry. In this study, we made novel fusion proteins PAxPG with a flexible (DDAKK)n linker between the two Ig binding domains derived from Staphylococcus protein A and Streptococcus protein G. The fusion proteins bound human and mouse IgGs and their fragments with up to 58-times higher affinity and wider specificity than the parental binding domains. Interestingly, the optimal linker for human Fab fragment was n = 4, which was close to the modeled distance between the termini of domains bound to heavy chain, implying increased avidity as a possible mechanism. For binding to Fc, the longest n=6 linker gave the highest affinity, implying longer interchain distance between the two binding sites. The novel fusion protein with optimized interdomain linker length will be a useful tool for the purification and detection of various IgGs including mouse IgG1 that binds only weakly to natural protein A. PMID:25910963

  11. VHS domains of ESCRT-0 cooperate in high-avidity binding to polyubiquitinated cargo

    SciTech Connect

    Ren, Xuefeng; Hurley, James H.

    2010-03-30

    VHS (Vps27, Hrs, and STAM) domains occur in ESCRT-0 subunits Hrs and STAM, GGA adapters, and other trafficking proteins. The structure of the STAM VHS domain-ubiquitin complex was solved at 2.6 {angstrom} resolution, revealing that determinants for ubiquitin recognition are conserved in nearly all VHS domains. VHS domains from all classes of VHS-domain containing proteins in yeast and humans, including both subunits of ESCRT-0, bound ubiquitin in vitro. ESCRTs have been implicated in the sorting of Lys63-linked polyubiquitinated cargo. Intact human ESCRT-0 binds Lys63-linked tetraubiquitin 50-fold more tightly than monoubiquitin, though only 2-fold more tightly than Lys48-linked tetraubiquitin. The gain in affinity is attributed to the cooperation of flexibly connected VHS and UIM motifs of ESCRT-0 in avid binding to the polyubiquitin chain. Mutational analysis of all the five ubiquitin-binding sites in yeast ESCRT-0 shows that cooperation between them is required for the sorting of the Lys63-linked polyubiquitinated cargo Cps1 to the vacuole.

  12. The neurofibromin recruitment factor Spred1 binds to the GAP related domain without affecting Ras inactivation.

    PubMed

    Dunzendorfer-Matt, Theresia; Mercado, Ellen L; Maly, Karl; McCormick, Frank; Scheffzek, Klaus

    2016-07-01

    Neurofibromatosis type 1 (NF1) and Legius syndrome are related diseases with partially overlapping symptoms caused by alterations of the tumor suppressor genes NF1 (encoding the protein neurofibromin) and SPRED1 (encoding sprouty-related, EVH1 domain-containing protein 1, Spred1), respectively. Both proteins are negative regulators of Ras/MAPK signaling with neurofibromin functioning as a Ras-specific GTPase activating protein (GAP) and Spred1 acting on hitherto undefined components of the pathway. Importantly, neurofibromin has been identified as a key protein in the development of cancer, as it is genetically altered in a large number of sporadic human malignancies unrelated to NF1. Spred1 has previously been demonstrated to interact with neurofibromin via its N-terminal Ena/VASP Homology 1 (EVH1) domain and to mediate membrane translocation of its target dependent on its C-terminal Sprouty domain. However, the region of neurofibromin required for the interaction with Spred1 has remained unclear. Here we show that the EVH1 domain of Spred1 binds to the noncatalytic (GAPex) portion of the GAP-related domain (GRD) of neurofibromin. Binding is compatible with simultaneous binding of Ras and does not interfere with GAP activity. Our study points to a potential targeting function of the GAPex subdomain of neurofibromin that is present in all known canonical RasGAPs. PMID:27313208

  13. Solution structure of the Drosha double-stranded RNA-binding domain

    PubMed Central

    2010-01-01

    Background Drosha is a nuclear RNase III enzyme that initiates processing of regulatory microRNA. Together with partner protein DiGeorge syndrome critical region 8 (DGCR8), it forms the Microprocessor complex, which cleaves precursor transcripts called primary microRNA to produce hairpin precursor microRNA. In addition to two RNase III catalytic domains, Drosha contains a C-terminal double-stranded RNA-binding domain (dsRBD). To gain insight into the function of this domain, we determined the nuclear magnetic resonance (NMR) solution structure. Results We report here the solution structure of the dsRBD from Drosha (Drosha-dsRBD). The αβββα fold is similar to other dsRBD structures. A unique extended loop distinguishes this domain from other dsRBDs of known structure. Conclusions Despite uncertainties about RNA-binding properties of the Drosha-dsRBD, its structure suggests it retains RNA-binding features. We propose that this domain may contribute to substrate recognition in the Drosha-DGCR8 Microprocessor complex. PMID:20226070

  14. The neurofibromin recruitment factor Spred1 binds to the GAP related domain without affecting Ras inactivation

    PubMed Central

    Dunzendorfer-Matt, Theresia; Mercado, Ellen L.; Maly, Karl; McCormick, Frank; Scheffzek, Klaus

    2016-01-01

    Neurofibromatosis type 1 (NF1) and Legius syndrome are related diseases with partially overlapping symptoms caused by alterations of the tumor suppressor genes NF1 (encoding the protein neurofibromin) and SPRED1 (encoding sprouty-related, EVH1 domain-containing protein 1, Spred1), respectively. Both proteins are negative regulators of Ras/MAPK signaling with neurofibromin functioning as a Ras-specific GTPase activating protein (GAP) and Spred1 acting on hitherto undefined components of the pathway. Importantly, neurofibromin has been identified as a key protein in the development of cancer, as it is genetically altered in a large number of sporadic human malignancies unrelated to NF1. Spred1 has previously been demonstrated to interact with neurofibromin via its N-terminal Ena/VASP Homology 1 (EVH1) domain and to mediate membrane translocation of its target dependent on its C-terminal Sprouty domain. However, the region of neurofibromin required for the interaction with Spred1 has remained unclear. Here we show that the EVH1 domain of Spred1 binds to the noncatalytic (GAPex) portion of the GAP-related domain (GRD) of neurofibromin. Binding is compatible with simultaneous binding of Ras and does not interfere with GAP activity. Our study points to a potential targeting function of the GAPex subdomain of neurofibromin that is present in all known canonical RasGAPs. PMID:27313208

  15. Identification of the Receptor-Binding Domain of the Spike Glycoprotein of Human Betacoronavirus HKU1

    PubMed Central

    Ou, Xiuyuan; Góes, Luiz Gustavo Bentim; Osborne, Christina; Castano, Anna; Holmes, Kathryn V.

    2015-01-01

    ABSTRACT Coronavirus spike (S) glycoproteins mediate receptor binding, membrane fusion, and virus entry and determine host range. Murine betacoronavirus (β-CoV) in group A uses the N-terminal domain (NTD) of S protein to bind to its receptor, whereas the β-CoVs severe acute respiratory syndrome CoV in group B and Middle East respiratory syndrome CoV in group C and several α-CoVs use the downstream C domain in their S proteins to recognize their receptor proteins. To identify the receptor-binding domain in the spike of human β-CoV HKU1 in group A, we generated and mapped a panel of monoclonal antibodies (MAbs) to the ectodomain of HKU1 spike protein. They did not cross-react with S proteins of any other CoV tested. Most of the HKU1 spike MAbs recognized epitopes in the C domain between amino acids 535 and 673, indicating that this region is immunodominant. Two of the MAbs blocked HKU1 virus infection of primary human tracheal-bronchial epithelial (HTBE) cells. Preincubation of HTBE cells with a truncated HKU1 S protein that includes the C domain blocked infection with HKU1 virus, but preincubation of cells with truncated S protein containing only the NTD did not block infection. These data suggest that the receptor-binding domain (RBD) of HKU1 spike protein is located in the C domain, where the spike proteins of α-CoVs and β-CoVs in groups B and C bind to their specific receptor proteins. Thus, two β-CoVs in group A, HKU1 and murine CoV, have evolved to use different regions of their spike glycoproteins to recognize their respective receptor proteins. IMPORTANCE Mouse hepatitis virus, a β-CoV in group A, uses the galectin-like NTD in its spike protein to bind its receptor protein, while HCoV-OC43, another β-CoV in group A, uses the NTD to bind to its sialic-acid containing receptor. In marked contrast, the NTD of the spike glycoprotein of human respiratory β-CoV HKU1, which is also in group A, does not bind sugar. In this study, we showed that for the

  16. Ezrin self-association involves binding of an N-terminal domain to a normally masked C-terminal domain that includes the F-actin binding site.

    PubMed Central

    Gary, R; Bretscher, A

    1995-01-01

    Ezrin is a membrane-cytoskeletal linking protein that is concentrated in actin-rich surface structures. It is closely related to the microvillar proteins radixin and moesin and to the tumor suppressor merlin/schwannomin. Cell extracts contain ezrin dimers and ezrin-moesin heterodimers in addition to monomers. Truncated ezrin fusion proteins were assayed by blot overlay to determine which regions mediate self-association. Here we report that ezrin self-association occurs by head-to-tail joining of distinct N-terminal and C-terminal domains. It is likely that these domains, termed N- and C-ERMADs (ezrin-radixin-moesin association domain), are responsible for homotypic and heterotypic associations among ERM family members. The N-ERMAD of ezrin resided within amino acids 1-296; deletion of 10 additional residues resulted in loss of activity. The C-ERMAD was mapped to the last 107 amino acids of ezrin, residues 479-585. The two residues at the C-terminus were required for activity, and the region from 530-585 was insufficient. The C-ERMAD was masked in the native monomer. Exposure of this domain required unfolding ezrin with sodium dodecyl sulfate or expressing the domain as part of a truncated protein. Intermolecular association could not occur unless the C-ERMAD had been made accessible to its N-terminal partner. It can be inferred that dimerization in vivo requires an activation step that exposes this masked domain. The conformationally inaccessible C-terminal region included the F-actin binding site, suggesting that this activity is likewise regulated by masking. Images PMID:7579708

  17. Solution structure of the DNA binding domain of HIV-1 integrase.

    PubMed

    Lodi, P J; Ernst, J A; Kuszewski, J; Hickman, A B; Engelman, A; Craigie, R; Clore, G M; Gronenborn, A M

    1995-08-01

    The solution structure of the DNA binding domain of HIV-1 integrase (residues 220-270) has been determined by multidimensional NMR spectroscopy. The protein is a dimer in solution, and each subunit is composed of a five-stranded beta-barrel with a topology very similar to that of the SH3 domain. The dimer is formed by a stacked beta-interface comprising strands 2, 3, and 4, with the two triple-stranded antiparallel beta-sheets, one from each subunit, oriented antiparallel to each other. One surface of the dimer, bounded by the loop between strands beta 1 and beta 2, forms a saddle-shaped groove with dimensions of approximately 24 x 23 x 12 A in cross section. Lys264, which has been shown from mutational data to be involved in DNA binding, protrudes from this surface, implicating the saddle-shaped groove as the potential DNA binding site. PMID:7632683

  18. Eukaryotic RNases H1 act processively by interactions through the duplex RNA-binding domain

    PubMed Central

    Gaidamakov, Sergei A.; Gorshkova, Inna I.; Schuck, Peter; Steinbach, Peter J.; Yamada, Hirofumi; Crouch, Robert J.; Cerritelli, Susana M.

    2005-01-01

    Ribonucleases H have mostly been implicated in eliminating short RNA primers used for initiation of lagging strand DNA synthesis. Escherichia coli RNase HI cleaves these RNA–DNA hybrids in a distributive manner. We report here that eukaryotic RNases H1 have evolved to be processive enzymes by attaching a duplex RNA-binding domain to the RNase H region. Highly conserved amino acids of the duplex RNA-binding domain are required for processivity and nucleic acid binding, which leads to dimerization of the protein. The need for a processive enzyme underscores the importance in eukaryotic cells of processing long hybrids, most of which remain to be identified. However, long RNA–DNA hybrids formed during immunoglobulin class-switch recombination are potential targets for RNase H1 in the nucleus. In mitochondria, where RNase H1 is essential for DNA formation during embryogenesis, long hybrids may be involved in DNA replication. PMID:15831789

  19. Structure and VP16 binding of the Mediator Med25 activator interaction domain.

    PubMed

    Vojnic, Erika; Mourão, André; Seizl, Martin; Simon, Bernd; Wenzeck, Larissa; Larivière, Laurent; Baumli, Sonja; Baumgart, Karen; Meisterernst, Michael; Sattler, Michael; Cramer, Patrick

    2011-04-01

    Eukaryotic transcription is regulated by interactions between gene-specific activators and the coactivator complex Mediator. Here we report the NMR structure of the Mediator subunit Med25 (also called Arc92) activator interaction domain (ACID) and analyze the structural and functional interaction of ACID with the archetypical acidic transcription activator VP16. Unlike other known activator targets, ACID forms a seven-stranded β-barrel framed by three helices. The VP16 subdomains H1 and H2 bind to opposite faces of ACID and cooperate during promoter-dependent activated transcription in a in vitro system. The activator-binding ACID faces are functionally required and conserved among higher eukaryotes. Comparison with published activator structures reveals that the VP16 activation domain uses distinct interaction modes to adapt to unrelated target surfaces and folds that evolved for activator binding. PMID:21378965

  20. The extended arms of DNA-binding domains: a tale of tails.

    PubMed

    Crane-Robinson, Colyn; Dragan, Anatoly I; Privalov, Peter L

    2006-10-01

    DNA-binding domains (DBDs) frequently have N- or C-terminal tails, rich in lysine and/or arginine and disordered in free solution, that bind the DNA separately from and in the opposite groove to the folded domain. Is their role simply to increase affinity for DNA or do they have a role in specificity, that is, sequence recognition? One approach to answering this question is to analyze the contribution of such tails to the overall energetics of binding. It turns out that, despite similarities of amino acid sequence, three distinct categories of DBD extension exist: (i) those that are purely electrostatic and lack specificity, (ii) those that are largely non-electrostatic with a high contribution to specificity and (iii) those of mixed character that show sequence preference. Because in all cases the tails also increase the affinity for target DNA, they represent a crucial component of the machinery for selective gene activation or repression. PMID:16920361

  1. LINC Complexes Form by Binding of Three KASH Peptides to Domain Interfaces of Trimeric SUN Proteins

    SciTech Connect

    Sosa, Brian A.; Rothballer, Andrea; Kutay, Ulrike; Schwartz, Thomas U.

    2012-08-31

    Linker of nucleoskeleton and cytoskeleton (LINC) complexes span the nuclear envelope and are composed of KASH and SUN proteins residing in the outer and inner nuclear membrane, respectively. LINC formation relies on direct binding of KASH and SUN in the perinuclear space. Thereby, molecular tethers are formed that can transmit forces for chromosome movements, nuclear migration, and anchorage. We present crystal structures of the human SUN2-KASH1/2 complex, the core of the LINC complex. The SUN2 domain is rigidly attached to a trimeric coiled coil that prepositions it to bind three KASH peptides. The peptides bind in three deep and expansive grooves formed between adjacent SUN domains, effectively acting as molecular glue. In addition, a disulfide between conserved cysteines on SUN and KASH covalently links both proteins. The structure provides the basis of LINC complex formation and suggests a model for how LINC complexes might arrange into higher-order clusters to enhance force-coupling.

  2. Agonist binding to the NMDA receptor drives movement of its cytoplasmic domain without ion flow.

    PubMed

    Dore, Kim; Aow, Jonathan; Malinow, Roberto

    2015-11-24

    The NMDA receptor (R) plays important roles in brain physiology and pathology as an ion channel. Here we examine the ion flow-independent coupling of agonist to the NMDAR cytoplasmic domain (cd). We measure FRET between fluorescently tagged cytoplasmic domains of GluN1 subunits of NMDARs expressed in neurons. Different neuronal compartments display varying levels of FRET, consistent with different NMDARcd conformations. Agonist binding drives a rapid and transient ion flow-independent reduction in FRET between GluN1 subunits within individual NMDARs. Intracellular infusion of an antibody targeting the GluN1 cytoplasmic domain blocks agonist-driven FRET changes in the absence of ion flow, supporting agonist-driven movement of the NMDARcd. These studies indicate that extracellular ligand binding to the NMDAR can transmit conformational information into the cell in the absence of ion flow. PMID:26553997

  3. Structural basis for selective binding of m6A RNA by the YTHDC1 YTH domain.

    PubMed

    Xu, Chao; Wang, Xiao; Liu, Ke; Roundtree, Ian A; Tempel, Wolfram; Li, Yanjun; Lu, Zhike; He, Chuan; Min, Jinrong

    2014-11-01

    N(6)-methyladenosine (m(6)A) is the most abundant internal modification of nearly all eukaryotic mRNAs and has recently been reported to be recognized by the YTH domain family proteins. Here we present the crystal structures of the YTH domain of YTHDC1, a member of the YTH domain family, and its complex with an m(6)A-containing RNA. Our structural studies, together with transcriptome-wide identification of YTHDC1-binding sites and biochemical experiments, not only reveal the specific mode of m(6)A-YTH binding but also explain the preferential recognition of the GG(m(6)A)C sequences by YTHDC1. PMID:25242552

  4. Agonist binding to the NMDA receptor drives movement of its cytoplasmic domain without ion flow

    PubMed Central

    Dore, Kim; Aow, Jonathan; Malinow, Roberto

    2015-01-01

    The NMDA receptor (R) plays important roles in brain physiology and pathology as an ion channel. Here we examine the ion flow-independent coupling of agonist to the NMDAR cytoplasmic domain (cd). We measure FRET between fluorescently tagged cytoplasmic domains of GluN1 subunits of NMDARs expressed in neurons. Different neuronal compartments display varying levels of FRET, consistent with different NMDARcd conformations. Agonist binding drives a rapid and transient ion flow-independent reduction in FRET between GluN1 subunits within individual NMDARs. Intracellular infusion of an antibody targeting the GluN1 cytoplasmic domain blocks agonist-driven FRET changes in the absence of ion flow, supporting agonist-driven movement of the NMDARcd. These studies indicate that extracellular ligand binding to the NMDAR can transmit conformational information into the cell in the absence of ion flow. PMID:26553997

  5. Neutralization of Clostridium difficile toxin A with single-domain antibodies targeting the cell receptor binding domain.

    PubMed

    Hussack, Greg; Arbabi-Ghahroudi, Mehdi; van Faassen, Henk; Songer, J Glenn; Ng, Kenneth K-S; MacKenzie, Roger; Tanha, Jamshid

    2011-03-18

    Clostridium difficile is a leading cause of nosocomial infection in North America and a considerable challenge to healthcare professionals in hospitals and nursing homes. The gram-positive bacterium produces two high molecular weight exotoxins, toxin A (TcdA) and toxin B (TcdB), which are the major virulence factors responsible for C. difficile-associated disease and are targets for C. difficile-associated disease therapy. Here, recombinant single-domain antibody fragments (V(H)Hs), which specifically target the cell receptor binding domains of TcdA or TcdB, were isolated from an immune llama phage display library and characterized. Four V(H)Hs (A4.2, A5.1, A20.1, and A26.8), all shown to recognize conformational epitopes, were potent neutralizers of the cytopathic effects of toxin A on fibroblast cells in an in vitro assay. The neutralizing potency was further enhanced when V(H)Hs were administered in paired or triplet combinations at the same overall V(H)H concentration, suggesting recognition of nonoverlapping TcdA epitopes. Biacore epitope mapping experiments revealed that some synergistic combinations consisted of V(H)Hs recognizing overlapping epitopes, an indication that factors other than mere epitope blocking are responsible for the increased neutralization. Further binding assays revealed TcdA-specific V(H)Hs neutralized toxin A by binding to sites other than the carbohydrate binding pocket of the toxin. With favorable characteristics such as high production yield, potent toxin neutralization, and intrinsic stability, these V(H)Hs are attractive systemic therapeutics but are more so as oral therapeutics in the destabilizing environment of the gastrointestinal tract. PMID:21216961

  6. Proteolytic dissection of Zab, the Z-DNA-binding domain of human ADAR1

    NASA Technical Reports Server (NTRS)

    Schwartz, T.; Lowenhaupt, K.; Kim, Y. G.; Li, L.; Brown, B. A. 2nd; Herbert, A.; Rich, A.

    1999-01-01

    Zalpha is a peptide motif that binds to Z-DNA with high affinity. This motif binds to alternating dC-dG sequences stabilized in the Z-conformation by means of bromination or supercoiling, but not to B-DNA. Zalpha is part of the N-terminal region of double-stranded RNA adenosine deaminase (ADAR1), a candidate enzyme for nuclear pre-mRNA editing in mammals. Zalpha is conserved in ADAR1 from many species; in each case, there is a second similar motif, Zbeta, separated from Zalpha by a more divergent linker. To investigate the structure-function relationship of Zalpha, its domain structure was studied by limited proteolysis. Proteolytic profiles indicated that Zalpha is part of a domain, Zab, of 229 amino acids (residues 133-361 in human ADAR1). This domain contains both Zalpha and Zbeta as well as a tandem repeat of a 49-amino acid linker module. Prolonged proteolysis revealed a minimal core domain of 77 amino acids (positions 133-209), containing only Zalpha, which is sufficient to bind left-handed Z-DNA; however, the substrate binding is strikingly different from that of Zab. The second motif, Zbeta, retains its structural integrity only in the context of Zab and does not bind Z-DNA as a separate entity. These results suggest that Zalpha and Zbeta act as a single bipartite domain. In the presence of substrate DNA, Zab becomes more resistant to proteases, suggesting that it adopts a more rigid structure when bound to its substrate, possibly with conformational changes in parts of the protein.

  7. Nonspecific Binding Domains in Lipid Membranes Induced by Phospholipase A2.

    PubMed

    Hong, Chia Yee; Han, Chung-Ta; Chao, Ling

    2016-07-12

    Phospholipase A2 (PLA2) is a peripheral membrane protein that can hydrolyze phospholipids to produce lysolipids and fatty acids. It has been found to play crucial roles in various cellular processes and is thought as a potential candidate for triggering drug release from liposomes for medical treatment. Here, we directly observed that PLA2 hydrolysis reaction can induce the formation of PLA2-binding domains at lipid bilayer interface and found that the formation was significantly influenced by the fluidity of the lipid bilayer. We prepared supported lipid bilayers (SLBs) with various molar ratios of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) to adjust the reactivity and fluidity of the lipid bilayers. A significant amount of the PLA2-induced domains was observed in mixtures of DPPC and DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine) but not in either pure DPPC or pure DOPC bilayer, which might be the reason that previous studies rarely observed these domains in lipid bilayer systems. The fluorescently labeled PLA2 experiment showed that newly formed domains acted as binding templates for PLA2. The AFM result showed that the induced domain has stepwise plateau structure, suggesting that PLA2 hydrolysis products may align as bilayers and accumulate layer by layer on the support, and the hydrophobic acyl chains at the side of the layer structure may be exposed to the outside aqueous environment. The introduced hydrophobic region could have hydrophobic interactions with proteins and therefore can attract the binding of not only PLA2 but also other types of proteins such as proteoglycans and streptavidin. The results suggest that the formation of PLA2-induced domains may convert part of a zwitterionic nonsticky lipid membrane to a site where biomolecules can nonspecifically bind. PMID:27218880

  8. Intragenic suppressors of Hsp70 mutants: Interplay between the ATPase- and peptide-binding domains

    PubMed Central

    Davis, Julie E.; Voisine, Cindy; Craig, Elizabeth A.

    1999-01-01

    ATP hydrolysis and polypeptide binding, the two key activities of Hsp70 molecular chaperones, are inherent properties of different domains of the protein. The coupling of these two activities is critical because the bound nucleotide determines, in part, the affinity of Hsp70s for protein substrate. In addition, cochaperones of the Hsp40 (DnaJ) class, which stimulate Hsp70 ATPase activity, have been proposed to play an important role in promoting efficient Hsp70 substrate binding. Because little is understood about this functional interaction between domains of Hsp70s, we investigated mutations in the region encoding the ATPase domain that acted as intragenic suppressors of a lethal mutation (I485N) mapping to the peptide-binding domain of the mitochondrial Hsp70 Ssc1. Analogous amino acid substitution in the ATPase domain of the Escherichia coli Hsp70 DnaK had a similar intragenic suppressive effect on the corresponding I462T temperature-sensitive peptide-binding domain mutation. I462T protein had a normal basal ATPase activity and was capable of nucleotide-dependent conformation changes. However, the reduced affinity of I462T for substrate peptide (and DnaJ) is likely responsible for the inability of I462T to function in vivo. The suppressor mutation (D79A) appears to partly alleviate the defect in DnaJ ATPase stimulation caused by I462T, suggesting that alteration in the interaction with DnaJ may alter the chaperone cycle to allow productive interaction with polypeptide substrates. Preservation of the intragenic suppression phenotypes between eukaryotic mitochondrial and bacterial Hsp70s suggests that the phenomenon studied here is a fundamental aspect of the function of Hsp70:Hsp40 chaperone machines. PMID:10430932

  9. Recombinant Collagen Engineered to Bind to Discoidin Domain Receptor Functions as a Receptor Inhibitor*

    PubMed Central

    An, Bo; Abbonante, Vittorio; Xu, Huifang; Gavriilidou, Despoina; Yoshizumi, Ayumi; Bihan, Dominique; Farndale, Richard W.; Kaplan, David L.; Balduini, Alessandra; Leitinger, Birgit; Brodsky, Barbara

    2016-01-01

    A bacterial collagen-like protein Scl2 has been developed as a recombinant collagen model system to host human collagen ligand-binding sequences, with the goal of generating biomaterials with selective collagen bioactivities. Defined binding sites in human collagen for integrins, fibronectin, heparin, and MMP-1 have been introduced into the triple-helical domain of the bacterial collagen and led to the expected biological activities. The modular insertion of activities is extended here to the discoidin domain receptors (DDRs), which are collagen-activated receptor tyrosine kinases. Insertion of the DDR-binding sequence from human collagen III into bacterial collagen led to specific receptor binding. However, even at the highest testable concentrations, the construct was unable to stimulate DDR autophosphorylation. The recombinant collagen expressed in Escherichia coli does not contain hydroxyproline (Hyp), and complementary synthetic peptide studies showed that replacement of Hyp by Pro at the critical Gly-Val-Met-Gly-Phe-Hyp position decreased the DDR-binding affinity and consequently required a higher concentration for the induction of receptor activation. The ability of the recombinant bacterial collagen to bind the DDRs without inducing kinase activation suggested it could interfere with the interactions between animal collagen and the DDRs, and such an inhibitory role was confirmed in vitro and with a cell migration assay. This study illustrates that recombinant collagen can complement synthetic peptides in investigating structure-activity relationships, and this system has the potential for the introduction or inhibition of specific biological activities. PMID:26702058

  10. Gating of the CFTR Cl- channel by ATP-driven nucleotide-binding domain dimerisation.

    PubMed

    Hwang, Tzyh-Chang; Sheppard, David N

    2009-05-15

    The cystic fibrosis transmembrane conductance regulator (CFTR) plays a fundamental role in fluid and electrolyte transport across epithelial tissues. Based on its structure, function and regulation, CFTR is an ATP-binding cassette (ABC) transporter. These transporters are assembled from two membrane-spanning domains (MSDs) and two nucleotide-binding domains (NBDs). In the vast majority of ABC transporters, the NBDs form a common engine that utilises the energy of ATP hydrolysis to pump a wide spectrum of substrates through diverse transmembrane pathways formed by the MSDs. By contrast, in CFTR the MSDs form a pathway for passive anion flow that is gated by cycles of ATP binding and hydrolysis by the NBDs. Here, we consider how the interaction of ATP with two ATP-binding sites, formed by the NBDs, powers conformational changes in CFTR structure to gate the channel pore. We explore how conserved sequences from both NBDs form ATP-binding sites at the interface of an NBD dimer and highlight the distinct roles that each binding site plays during the gating cycle. Knowledge of how ATP gates the CFTR Cl- channel is critical for understanding CFTR's physiological role, its malfunction in disease and the mechanism of action of small molecules that modulate CFTR channel gating. PMID:19332488

  11. Gating of the CFTR Cl− channel by ATP-driven nucleotide-binding domain dimerisation

    PubMed Central

    Hwang, Tzyh-Chang; Sheppard, David N

    2009-01-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) plays a fundamental role in fluid and electrolyte transport across epithelial tissues. Based on its structure, function and regulation, CFTR is an ATP-binding cassette (ABC) transporter. These transporters are assembled from two membrane-spanning domains (MSDs) and two nucleotide-binding domains (NBDs). In the vast majority of ABC transporters, the NBDs form a common engine that utilises the energy of ATP hydrolysis to pump a wide spectrum of substrates through diverse transmembrane pathways formed by the MSDs. By contrast, in CFTR the MSDs form a pathway for passive anion flow that is gated by cycles of ATP binding and hydrolysis by the NBDs. Here, we consider how the interaction of ATP with two ATP-binding sites, formed by the NBDs, powers conformational changes in CFTR structure to gate the channel pore. We explore how conserved sequences from both NBDs form ATP-binding sites at the interface of an NBD dimer and highlight the distinct roles that each binding site plays during the gating cycle. Knowledge of how ATP gates the CFTR Cl− channel is critical for understanding CFTR's physiological role, its malfunction in disease and the mechanism of action of small molecules that modulate CFTR channel gating. PMID:19332488

  12. Recombinant Collagen Engineered to Bind to Discoidin Domain Receptor Functions as a Receptor Inhibitor.

    PubMed

    An, Bo; Abbonante, Vittorio; Xu, Huifang; Gavriilidou, Despoina; Yoshizumi, Ayumi; Bihan, Dominique; Farndale, Richard W; Kaplan, David L; Balduini, Alessandra; Leitinger, Birgit; Brodsky, Barbara

    2016-02-26

    A bacterial collagen-like protein Scl2 has been developed as a recombinant collagen model system to host human collagen ligand-binding sequences, with the goal of generating biomaterials with selective collagen bioactivities. Defined binding sites in human collagen for integrins, fibronectin, heparin, and MMP-1 have been introduced into the triple-helical domain of the bacterial collagen and led to the expected biological activities. The modular insertion of activities is extended here to the discoidin domain receptors (DDRs), which are collagen-activated receptor tyrosine kinases. Insertion of the DDR-binding sequence from human collagen III into bacterial collagen led to specific receptor binding. However, even at the highest testable concentrations, the construct was unable to stimulate DDR autophosphorylation. The recombinant collagen expressed in Escherichia coli does not contain hydroxyproline (Hyp), and complementary synthetic peptide studies showed that replacement of Hyp by Pro at the critical Gly-Val-Met-Gly-Phe-Hyp position decreased the DDR-binding affinity and consequently required a higher concentration for the induction of receptor activation. The ability of the recombinant bacterial collagen to bind the DDRs without inducing kinase activation suggested it could interfere with the interactions between animal collagen and the DDRs, and such an inhibitory role was confirmed in vitro and with a cell migration assay. This study illustrates that recombinant collagen can complement synthetic peptides in investigating structure-activity relationships, and this system has the potential for the introduction or inhibition of specific biological activities. PMID:26702058

  13. Structural Analysis of the Receptor Binding Domain of Botulinum Neurotoxin Serotype D

    SciTech Connect

    Y Zhang; G Buchko; L Qin; H Robinson; S Varnum

    2011-12-31

    Botulinum neurotoxins (BoNTs) are the most toxic proteins known. The mechanism for entry into neuronal cells for serotypes A, B, E, F, and G involves a well understood dual receptor (protein and ganglioside) process, however, the mechanism of entry for serotypes C and D remains unclear. To provide structural insights into how BoNT/D enters neuronal cells, the crystal structure of the receptor binding domain (S863-E1276) for this serotype (BoNT/D-HCR) was determined at 1.65{angstrom} resolution. While BoNT/D-HCR adopts an overall fold similar to that observed in other known BoNT HCRs, several major structural differences are present. These structural differences are located at, or near, putative receptor binding sites and may be responsible for BoNT/D host preferences. Two loops, S1195-I1204 and K1236-N1244, located on both sides of the putative protein receptor binding pocket, are displaced >10{angstrom} relative to the corresponding residues in the crystal structures of BoNT/B and G. Obvious clashes were observed in the putative protein receptor binding site when the BoNT/B protein receptor synaptotagmin II was modeled into the BoNT/D-HCR structure. Although a ganglioside binding site has never been unambiguously identified in BoNT/D-HCR, a shallow cavity in an analogous location to the other BoNT serotypes HCR domains is observed in BoNT/D-HCR that has features compatible with membrane binding. A portion of a loop near the putative receptor binding site, K1236-N1244, is hydrophobic and solvent-exposed and may directly bind membrane lipids. Liposome-binding experiments with BoNT/D-HCR demonstrate that this membrane lipid may be phosphatidylethanolamine.

  14. Structural analysis of the receptor binding domain of botulinum neurotoxin serotype D

    SciTech Connect

    Zhang, Yanfeng; Buchko, Garry W.; Qin, Lin; Robinson, Howard; Varnum, Susan M.

    2010-10-28

    Botulinum neurotoxins (BoNTs) are the most toxic proteins known. The mechanism for entry into neuronal cells for serotypes A, B, E, F, and G involves a well understood dual receptor (protein and ganglioside) process, however, the mechanism of entry for serotypes C and D remains unclear. To provide structural insights into how BoNT/D enters neuronal cells, the crystal structure of the receptor binding domain (S863-E1276) for this serotype (BoNT/D-HCR) was determined at 1.65 Å resolution. While BoNT/D-HCR adopts an overall fold similar to that observed in other known BoNT HCRs, several major structural differences are present. These structural differences are located at, or near, putative receptor binding sites and may be responsible for BoNT/D host preferences. Two loops, S1195-I1204 and K1236-N1244, located on both sides of the putative protein receptor binding pocket, are displaced >10 Å relative to the corresponding residues in the crystal structures of BoNT/B and G. Obvious clashes were observed in the putative protein receptor binding site when the BoNT/B protein receptor synaptotagmin II was modeled into the BoNT/D-HCR structure. Although a ganglioside binding site has never been unambiguously identified in BoNT/D-HCR, a shallow cavity in an analogous location to the other BoNT serotypes HCR domains is observed in BoNT/D-HCR that has features compatible with membrane binding. A portion of a loop near the putative receptor binding site, K1236-N1244, is hydrophobic and solvent-exposed and may directly bind membrane lipids. Liposome-binding experiments with BoNT/D-HCR demonstrate that this membrane lipid may be phosphatidylethanolamine.

  15. The exomer cargo adaptor structure reveals a novel GTPase-binding domain

    PubMed Central

    Paczkowski, Jon E; Richardson, Brian C; Strassner, Amanda M; Fromme, J Christopher

    2012-01-01

    Cargo adaptors control intracellular trafficking of transmembrane proteins by sorting them into membrane transport carriers. The COPI, COPII, and clathrin cargo adaptors are structurally well characterized, but other cargo adaptors remain poorly understood. Exomer is a specialized cargo adaptor that sorts specific proteins into trans-Golgi network (TGN)-derived vesicles in response to cellular signals. Exomer is recruited to the TGN by the Arf1 GTPase, a universally conserved trafficking regulator. Here, we report the crystal structure of a tetrameric exomer complex composed of two copies each of the Chs5 and Chs6 subunits. The structure reveals the FN3 and BRCT domains of Chs5, which together we refer to as the FBE domain (FN3–BRCT of exomer), project from the exomer core complex. The overall architecture of the FBE domain is reminiscent of the appendage domains of other cargo adaptors, although it exhibits a distinct topology. In contrast to appendage domains, which bind accessory factors, we show that the primary role of the FBE domain is to bind Arf1 for recruitment of exomer to membranes. PMID:23000721

  16. Use of cellulases and recombinant cellulose binding domains for refining TCF kraft pulp.

    PubMed

    Cadena, Edith M; Chriac, A Iulia; Pastor, F I Javier; Diaz, Pilar; Vidal, Teresa; Torres, Antonio L

    2010-01-01

    The modular endoglucanase Cel9B from Paenibacillus barcinonensis is a highly efficient biocatalyst, which expedites pulp refining and reduces the associated energy costs as a result. In this work, we set out to identify the specific structural domain or domains responsible for the action of this enzyme on cellulose fibre surfaces with a view to facilitating the development of new cellulases for optimum biorefining. Using the recombinant enzymes GH9-CBD3c, Fn3-CBD3b, and CBD3b, which are truncated forms of Cel9B, allowed us to assess the individual effects of the catalytic, cellulose binding, and fibronectin-like domains of the enzyme on the refining of TCF kraft pulp from Eucalyptus globulus. Based on the physico-mechanical properties obtained, the truncated form containing the catalytic domain (GH9-CBD3c) has a strong effect on fibre morphology. Comparing its effect with that of the whole cellulase (Cel9B) revealed that the truncated enzyme contributes to increasing paper strength through improved tensile strength and burst strength and also that the truncated form is more effective than the whole enzyme in improving tear resistance. Therefore, the catalytic domain of Cel9B has biorefining action on pulp. Although cellulose binding domains (CBDs) are less efficient toward pulp refining, evidence obtained in this work suggests that CBD3b alters fibre surfaces and influences paper properties as a result. PMID:20730755

  17. An intermolecular binding mechanism involving multiple LysM domains mediates carbohydrate recognition by an endopeptidase

    SciTech Connect

    Wong, Jaslyn E. M. M.; Midtgaard, Søren Roi; Gysel, Kira; Thygesen, Mikkel B.; Sørensen, Kasper K.; Jensen, Knud J.; Stougaard, Jens; Thirup, Søren; Blaise, Mickaël

    2015-03-01

    The crystal and solution structures of the T. thermophilus NlpC/P60 d, l-endopeptidase as well as the co-crystal structure of its N-terminal LysM domains bound to chitohexaose allow a proposal to be made regarding how the enzyme recognizes peptidoglycan. LysM domains, which are frequently present as repetitive entities in both bacterial and plant proteins, are known to interact with carbohydrates containing N-acetylglucosamine (GlcNAc) moieties, such as chitin and peptidoglycan. In bacteria, the functional significance of the involvement of multiple LysM domains in substrate binding has so far lacked support from high-resolution structures of ligand-bound complexes. Here, a structural study of the Thermus thermophilus NlpC/P60 endopeptidase containing two LysM domains is presented. The crystal structure and small-angle X-ray scattering solution studies of this endopeptidase revealed the presence of a homodimer. The structure of the two LysM domains co-crystallized with N-acetyl-chitohexaose revealed a new intermolecular binding mode that may explain the differential interaction between LysM domains and short or long chitin oligomers. By combining the structural information with the three-dimensional model of peptidoglycan, a model suggesting how protein dimerization enhances the recognition of peptidoglycan is proposed.

  18. Cyclic nucleotide binding and structural changes in the isolated GAF domain of Anabaena adenylyl cyclase, CyaB2

    PubMed Central

    Badireddy, Suguna; Rajendran, Abinaya; Anand, Ganesh Srinivasan

    2015-01-01

    GAF domains are a large family of regulatory domains, and a subset are found associated with enzymes involved in cyclic nucleotide (cNMP) metabolism such as adenylyl cyclases and phosphodiesterases. CyaB2, an adenylyl cyclase from Anabaena, contains two GAF domains in tandem at the N-terminus and an adenylyl cyclase domain at the C-terminus. Cyclic AMP, but not cGMP, binding to the GAF domains of CyaB2 increases the activity of the cyclase domain leading to enhanced synthesis of cAMP. Here we show that the isolated GAFb domain of CyaB2 can bind both cAMP and cGMP, and enhanced specificity for cAMP is observed only when both the GAFa and the GAFb domains are present in tandem (GAFab domain). In silico docking and mutational analysis identified distinct residues important for interaction with either cAMP or cGMP in the GAFb domain. Structural changes associated with ligand binding to the GAF domains could not be detected by bioluminescence resonance energy transfer (BRET) experiments. However, amide hydrogen-deuterium exchange mass spectrometry (HDXMS) experiments provided insights into the structural basis for cAMP-induced allosteric regulation of the GAF domains, and differences in the changes induced by cAMP and cGMP binding to the GAF domain. Thus, our findings could allow the development of molecules that modulate the allosteric regulation by GAF domains present in pharmacologically relevant proteins. PMID:25922789

  19. Conformational States and Kinetics of the Calcium Binding Domain of NADPH Oxidase 5

    PubMed Central

    Wei, Chin-Chuan; Motl, Nicole; Levek, Kelli; Chen, Liu Qi; Yang, Ya-Ping; Johnson, Tremylla; Hamilton, Lindsey; Stuehr, Dennis J

    2010-01-01

    Superoxide generated by human NADPH oxidase 5 (NOX5) is of growing importance for various physiological and pathological processes. The activity of NOX5 appears to be regulated by a self-contained Ca2+ binding domain (CaBD). Recently Bánfi et al. suggest that the conformational change of CaBD upon Ca2+ binding is essential for domain-domain interaction and superoxide production. The authors studied its structural change using intrinsic Trp fluorescence and hydrophobic dye binding; however, their conformational study was not thorough and the kinetics of metal binding was not demonstrated. Here we generated the recombinant CaBD and an E99Q/E143Q mutant to characterize them using fluorescence spectroscopy. Ca2+ binding to CaBD induces a conformational change that exposes hydrophobic patches and increases the quenching accessibilities of its Trp residues and AEDANS at Cys107. The circular dichroism spectra indicated no significant changes in the secondary structures of CaBD upon metal binding. Stopped-flow spectrometry revealed a fast Ca2+ dissociation from the N-terminal half, followed by a slow Ca2+ dissociation from the C-terminal half. Combined with a chemical stability study, we concluded that the C-terminal half of CaBD has a higher Ca2+ binding affinity, a higher chemical stability, and a slow Ca2+ dissociation. The Mg2+-bound CaBD was also investigated and the results indicate that its structure is similar to the apo form. The rate of Mg2+ dissociation was close to that of Ca2+ dissociation. Our data suggest that the N- and C-terminal halves of CaBD are not completely structurally independent. PMID:20648216

  20. A Low Affinity Ground State Conformation for the Dynein Microtubule Binding Domain*

    PubMed Central

    McNaughton, Lynn; Tikhonenko, Irina; Banavali, Nilesh K.; LeMaster, David M.; Koonce, Michael P.

    2010-01-01

    Dynein interacts with microtubules through a dedicated binding domain that is dynamically controlled to achieve high or low affinity, depending on the state of nucleotide bound in a distant catalytic pocket. The active sites for microtubule binding and ATP hydrolysis communicate via conformational changes transduced through a ∼10-nm length antiparallel coiled-coil stalk, which connects the binding domain to the roughly 300-kDa motor core. Recently, an x-ray structure of the murine cytoplasmic dynein microtubule binding domain (MTBD) in a weak affinity conformation was published, containing a covalently constrained β+ registry for the coiled-coil stalk segment (Carter, A. P., Garbarino, J. E., Wilson-Kubalek, E. M., Shipley, W. E., Cho, C., Milligan, R. A., Vale, R. D., and Gibbons, I. R. (2008) Science 322, 1691–1695). We here present an NMR analysis of the isolated MTBD from Dictyostelium discoideum that demonstrates the coiled-coil β+ registry corresponds to the low energy conformation for this functional region of dynein. Addition of sequence encoding roughly half of the coiled-coil stalk proximal to the binding tip results in a decreased affinity of the MTBD for microtubules. In contrast, addition of the complete coiled-coil sequence drives the MTBD to the conformationally unstable, high affinity binding state. These results suggest a thermodynamic coupling between conformational free energy differences in the α and β+ registries of the coiled-coil stalk that acts as a switch between high and low affinity conformations of the MTBD. A balancing of opposing conformations in the stalk and MTBD enables potentially modest long-range interactions arising from ATP binding in the motor core to induce a relaxation of the MTBD into the stable low affinity state. PMID:20351100

  1. A Complete Backbone Assignment of the Apolipoprotein E LDL Receptor Binding Domain [Letter to the Editor

    SciTech Connect

    Xu, Chao; Sivashanmugam, Arun; Hoyt, David W.; Wang, Jianjun

    2005-06-01

    Human apolipoprotein E (apoE) is a 299-residue exchangeable apolipoprotein that was initially recognized as a major determinant in lipoprotein metabolism and cardiovascular diseases. Recent evidence has indicated that apoE also plays critical roles in several other important biological processes not directly related to its lipid transport function, including Alzheimer's disease, cognitive function, immunoregulation, cell signaling, and possibly even infectious diseases. ApoE contains two structural/functional domains: A N-terminal domain spanning residues 1-191 that is responsible for apoE's LDL receptor binding activity and a C-terminal domain (residues 216-199) that is responsible for lipoprotein-binding (1). The x-ray crystal structure of the lipid-free apoE N-terminal domain was solved by Wilson et al in 1991 which represented the only high-resolution structure of this protein. This structure showed an unusually elongated four-helix bundle (2) that was organized in such 2 a way that its hydrophobic faces were directed towards the protein interior, whereas the hydrophilic faces were oriented towards the solvent. The major receptor-binding region, residues 130-150, was located on the fourth helix. The amphipathic a-helices were connected by short loops, giving rise to a compact, globular structure. However, this structure only contained residues 23-165. Recent studies have shown that residues beyond residues 23-165 are also very important to the apoE LDL receptor binding activity. For example, a mutation at position R172 reduces the receptor binding activity of apoE to only {approx}2% (3). In addition, an E3K mutant significantly increased the apoE receptor binding activity as well (4). While the x-ray crystal structure of the apoE N-terminal domain provided detailed structural information for most region of this domain, this structure does not provide an explanation of the above experimental results regarding the structural contribution to apoE's LDL receptor

  2. Functional characterization of spectrin-actin-binding domains in 4.1 family of proteins.

    PubMed

    Gimm, J Aura; An, Xiuli; Nunomura, Wataru; Mohandas, Narla

    2002-06-11

    Protein 4.1R is the prototypical member of a protein family that includes 4.1G, 4.1B, and 4.1N. 4.1R plays a crucial role in maintaining membrane mechanical integrity by binding cooperatively to spectrin and actin through its spectrin-actin-binding (SAB) domain. While the binary interaction between 4.1R and spectrin has been well characterized, the actin binding site in 4.1R remains unidentified. Moreover, little is known about the interaction of 4.1R homologues with spectrin and actin. In the present study, we showed that the 8 aa motif (LKKNFMES) within the 10 kDa spectrin-actin-binding domain of 4.1R plays a critical role in binding of 4.1R to actin. Recombinant 4.1R SAB domain peptides with mutations in this motif showed a marked decrease in their ability to form ternary complexes with spectrin and actin. Binary protein-protein interaction studies revealed that this decrease resulted from the inability of mutant SAB peptides to bind to actin filaments while affinity for spectrin was unchanged. We also documented that the 14 C-terminal residues of the 21 amino acid cassette encoded by exon 16 in conjunction with residues 27-43 encoded by exon 17 constituted a fully functional minimal spectrin-binding motif. Finally, we showed that 4.1N SAB domain was unable to form a ternary complex with spectrin and actin, while 4.1G and 4.1B SAB domains were able to form such a complex but less efficiently than 4.1R SAB. This was due to a decrease in the ability of 4.1G and 4.1B SAB domain to interact with actin but not with spectrin. These data enabled us to propose a model for the 4.1R-spectrin-actin ternary complex which may serve as a general paradigm for regulation of spectrin-based cytoskeleton interaction in various cell types. PMID:12044158

  3. Small molecules that allosterically inhibit p21-activated kinase activity by binding to the regulatory p21-binding domain.

    PubMed

    Kim, Duk-Joong; Choi, Chang-Ki; Lee, Chan-Soo; Park, Mee-Hee; Tian, Xizhe; Kim, Nam Doo; Lee, Kee-In; Choi, Joong-Kwon; Ahn, Jin Hee; Shin, Eun-Young; Shin, Injae; Kim, Eung-Gook

    2016-01-01

    p21-activated kinases (PAKs) are key regulators of actin dynamics, cell proliferation and cell survival. Deregulation of PAK activity contributes to the pathogenesis of various human diseases, including cancer and neurological disorders. Using an ELISA-based screening protocol, we identified naphtho(hydro)quinone-based small molecules that allosterically inhibit PAK activity. These molecules interfere with the interactions between the p21-binding domain (PBD) of PAK1 and Rho GTPases by binding to the PBD. Importantly, they inhibit the activity of full-length PAKs and are selective for PAK1 and PAK3 in vitro and in living cells. These compounds may potentially be useful for determining the details of the PAK signaling pathway and may also be used as lead molecules in the development of more selective and potent PAK inhibitors. PMID:27126178

  4. Small molecules that allosterically inhibit p21-activated kinase activity by binding to the regulatory p21-binding domain

    PubMed Central

    Kim, Duk-Joong; Choi, Chang-Ki; Lee, Chan-Soo; Park, Mee-Hee; Tian, Xizhe; Kim, Nam Doo; Lee, Kee-In; Choi, Joong-Kwon; Ahn, Jin Hee; Shin, Eun-Young; Shin, Injae; Kim, Eung-Gook

    2016-01-01

    p21-activated kinases (PAKs) are key regulators of actin dynamics, cell proliferation and cell survival. Deregulation of PAK activity contributes to the pathogenesis of various human diseases, including cancer and neurological disorders. Using an ELISA-based screening protocol, we identified naphtho(hydro)quinone-based small molecules that allosterically inhibit PAK activity. These molecules interfere with the interactions between the p21-binding domain (PBD) of PAK1 and Rho GTPases by binding to the PBD. Importantly, they inhibit the activity of full-length PAKs and are selective for PAK1 and PAK3 in vitro and in living cells. These compounds may potentially be useful for determining the details of the PAK signaling pathway and may also be used as lead molecules in the development of more selective and potent PAK inhibitors. PMID:27126178

  5. Recombinant preparation and functional studies of EspI ATP binding domain from Mycobacterium tuberculosis.

    PubMed

    Chen, Hanyu; Wang, Huilin; Sun, Tao; Tian, Shuangliang; Lin, Donghai; Guo, Chenyun

    2016-07-01

    The ESX-1 secretion system of Mycobacterium tuberculosis is required for the virulence of tubercle bacillus. EspI, the ESX-1 secretion-associated protein in Mycobacterium tuberculosis (MtEspI), is involved in repressing the activity of ESX-1-mediated secretion when the cellular ATP level is low. The ATP binding domain of MtEspI plays a crucial role in this regulatory process. However, further structural and functional studies of MtEspI are hindered due to the bottleneck of obtaining stable and pure recombinant protein. In this study, we systematically analyzed the structure and function of MtEspI using bioinformatics tools and tried various expression constructs to recombinantly express full-length and truncated MtEspI ATP binding domain. Finally, we prepared pure and stable MtEspI ATP binding domain, MtEspI415-493, in Escherichia coli by fusion expression and purification with dual tag, Glutathione S-transferase (GST) tag and (His)6 tag. (31)P NMR titration assay indicated that MtEspI415-493 possessed a moderate affinity (∼μM) for ATP and the residue K425 was located at the binding site. The protocol described here may provide a train of thought for recombinant preparation of other ESX-1 secretion-associated proteins. PMID:27017992

  6. Evolutionary history of redox metal-binding domains across the tree of life.

    PubMed

    Harel, Arye; Bromberg, Yana; Falkowski, Paul G; Bhattacharya, Debashish

    2014-05-13

    Oxidoreductases mediate electron transfer (i.e., redox) reactions across the tree of life and ultimately facilitate the biologically driven fluxes of hydrogen, carbon, nitrogen, oxygen, and sulfur on Earth. The core enzymes responsible for these reactions are ancient, often small in size, and highly diverse in amino acid sequence, and many require specific transition metals in their active sites. Here we reconstruct the evolution of metal-binding domains in extant oxidoreductases using a flexible network approach and permissive profile alignments based on available microbial genome data. Our results suggest there were at least 10 independent origins of redox domain families. However, we also identified multiple ancient connections between Fe2S2- (adrenodoxin-like) and heme- (cytochrome c) binding domains. Our results suggest that these two iron-containing redox families had a single common ancestor that underwent duplication and divergence. The iron-containing protein family constitutes ∼50% of all metal-containing oxidoreductases and potentially catalyzed redox reactions in the Archean oceans. Heme-binding domains seem to be derived via modular evolutionary processes that ultimately form the backbone of redox reactions in both anaerobic and aerobic respiration and photosynthesis. The empirically discovered network allows us to peer into the ancient history of microbial metabolism on our planet. PMID:24778258

  7. Evolutionary history of redox metal-binding domains across the tree of life

    PubMed Central

    Harel, Arye; Bromberg, Yana; Falkowski, Paul G.; Bhattacharya, Debashish

    2014-01-01

    Oxidoreductases mediate electron transfer (i.e., redox) reactions across the tree of life and ultimately facilitate the biologically driven fluxes of hydrogen, carbon, nitrogen, oxygen, and sulfur on Earth. The core enzymes responsible for these reactions are ancient, often small in size, and highly diverse in amino acid sequence, and many require specific transition metals in their active sites. Here we reconstruct the evolution of metal-binding domains in extant oxidoreductases using a flexible network approach and permissive profile alignments based on available microbial genome data. Our results suggest there were at least 10 independent origins of redox domain families. However, we also identified multiple ancient connections between Fe2S2- (adrenodoxin-like) and heme- (cytochrome c) binding domains. Our results suggest that these two iron-containing redox families had a single common ancestor that underwent duplication and divergence. The iron-containing protein family constitutes ∼50% of all metal-containing oxidoreductases and potentially catalyzed redox reactions in the Archean oceans. Heme-binding domains seem to be derived via modular evolutionary processes that ultimately form the backbone of redox reactions in both anaerobic and aerobic respiration and photosynthesis. The empirically discovered network allows us to peer into the ancient history of microbial metabolism on our planet. PMID:24778258

  8. A Novel Kinesin-Like Protein with a Calmodulin-Binding Domain

    NASA Technical Reports Server (NTRS)

    Wang, W.; Takezawa, D.; Narasimhulu, S. B.; Reddy, A. S. N.; Poovaiah, B. W.

    1996-01-01

    Calcium regulates diverse developmental processes in plants through the action of calmodulin. A cDNA expression library from developing anthers of tobacco was screened with S-35-labeled calmodulin to isolate cDNAs encoding calmodulin-binding proteins. Among several clones isolated, a kinesin-like gene (TCK1) that encodes a calmodulin-binding kinesin-like protein was obtained. The TCK1 cDNA encodes a protein with 1265 amino acid residues. Its structural features are very similar to those of known kinesin heavy chains and kinesin-like proteins from plants and animals, with one distinct exception. Unlike other known kinesin-like proteins, TCK1 contains a calmodulin-binding domain which distinguishes it from all other known kinesin genes. Escherichia coli-expressed TCK1 binds calmodulin in a Ca(2+)-dependent manner. In addition to the presence of a calmodulin-binding domain at the carboxyl terminal, it also has a leucine zipper motif in the stalk region. The amino acid sequence at the carboxyl terminal of TCK1 has striking homology with the mechanochemical motor domain of kinesins. The motor domain has ATPase activity that is stimulated by microtubules. Southern blot analysis revealed that TCK1 is coded by a single gene. Expression studies indicated that TCKI is expressed in all of the tissues tested. Its expression is highest in the stigma and anther, especially during the early stages of anther development. Our results suggest that Ca(2+)/calmodulin may play an important role in the function of this microtubule-associated motor protein and may be involved in the regulation of microtubule-based intracellular transport.

  9. Solution structure and backbone dynamics of the DNA-binding domain of FOXP1: Insight into its domain swapping and DNA binding

    PubMed Central

    Chu, Yuan-Ping; Chang, Chia-Hao; Shiu, Jia-Hau; Chang, Yao-Tsung; Chen, Chiu-Yueh; Chuang, Woei-Jer

    2011-01-01

    FOXP1 belongs to the P-subfamily of forkhead transcription factors and contains a conserved forkhead DNA-binding domain. According to size exclusion chromatography analysis, the forkhead domain of FOXP1 existed as a mixture of monomer and dimer. The dissociation constants of the forkhead domain of wild-type, C61S, and C61Y mutants of FOXP1 were 27.3, 28.8, and 332.0 μM, respectively. In contrast, FOXP1 A39P mutant formed only a monomer. NMR analysis also showed that FOXP1 C61S and C61Y mutants existed as a mixture. The solution structure of FOXP1 A39P/C61Y mutant was similar to the X-ray structure of the FOXP2 monomer. Comparison of backbone dynamics of FOXP1 A39P/C61Y and C61Y mutants showed that the residues preceding helix 3, the hinge region, exhibited the largest conformational exchange in FOXP1 monomer. The A39 residue of FOXP1 dimer has a lower order parameter with internal motion on the ps-ns timescale, suggesting that the dynamics of the hinge region of FOXP1 are important in the formation of the swapped dimer. The analysis also showed that the residues exhibiting the motions on the ps-ns and μs-ms timescales were located at the DNA-binding surface of FOXP1, suggesting the interactions between FOXP1 and DNA may be highly dynamic. PMID:21416545

  10. The structure of the Ca{sup 2+}-binding , glycosylated F-spondin domain of F-spondin- A C2-domain variant in an extracellular matrix protein.

    SciTech Connect

    Tan, K.; Lawler, J.

    2011-05-10

    F-spondin is a multi-domain extracellular matrix (ECM) protein and a contact-repellent molecule that directs axon outgrowth and cell migration during development. The reelin{_}N domain and the F-spondin domain (FS domain) comprise a proteolytic fragment that interacts with the cell membrane and guides the projection of commissural axons to floor plate. The FS domain is found in F-spondins, mindins, M-spondin and amphiF-spondin. We present the crystal structure of human F-spondin FS domain at 1.95{angstrom} resolution. The structure reveals a Ca{sup 2+}-binding C2 domain variant with an 8-stranded antiparallel {beta}-sandwich fold. Though the primary sequences of the FS domains of F-spondin and mindin are less than 36% identical, their overall structures are very similar. The unique feature of F-spondin FS domain is the presence of three disulfide bonds associated with the N- and C-termini of the domain and a highly conserved N-linked glycosylation site. The integrin-binding motif found in mindin is not conserved in the F-spondin FS domain. The structure of the F-spondin FS domain completes the structural studies of the multiple-domain ECM molecule. The homology of its core structure to a common Ca{sup 2+}- and lipid-binding C2 domain suggests that the F-spondin FS domain may be responsible for part of the membrane targeting of F-spondin in its regulation of axon development. The structural properties of the FS domain revealed in this study pave the way for further exploration into the functions of F-spondin.

  11. Structure of Alzheimer’s disease amyloid precursor protein copper-binding domain at atomic resolution

    SciTech Connect

    Kong, Geoffrey Kwai-Wai; Adams, Julian J.; Cappai, Roberto; Parker, Michael W.

    2007-10-01

    An atomic resolution structure of the copper-binding domain of the Alzheimer’s disease amyloid precursor protein is presented. Amyloid precursor protein (APP) plays a central role in the pathogenesis of Alzheimer’s disease, as its cleavage generates the Aβ peptide that is toxic to cells. APP is able to bind Cu{sup 2+} and reduce it to Cu{sup +} through its copper-binding domain (CuBD). The interaction between Cu{sup 2+} and APP leads to a decrease in Aβ production and to alleviation of the symptoms of the disease in mouse models. Structural studies of CuBD have been undertaken in order to better understand the mechanism behind the process. Here, the crystal structure of CuBD in the metal-free form determined to ultrahigh resolution (0.85 Å) is reported. The structure shows that the copper-binding residues of CuBD are rather rigid but that Met170, which is thought to be the electron source for Cu{sup 2+} reduction, adopts two different side-chain conformations. These observations shed light on the copper-binding and redox mechanisms of CuBD. The structure of CuBD at atomic resolution provides an accurate framework for structure-based design of molecules that will deplete Aβ production.

  12. Taste substance binding elicits conformational change of taste receptor T1r heterodimer extracellular domains

    PubMed Central

    Nango, Eriko; Akiyama, Shuji; Maki-Yonekura, Saori; Ashikawa, Yuji; Kusakabe, Yuko; Krayukhina, Elena; Maruno, Takahiro; Uchiyama, Susumu; Nuemket, Nipawan; Yonekura, Koji; Shimizu, Madoka; Atsumi, Nanako; Yasui, Norihisa; Hikima, Takaaki; Yamamoto, Masaki; Kobayashi, Yuji; Yamashita, Atsuko

    2016-01-01

    Sweet and umami tastes are perceived by T1r taste receptors in oral cavity. T1rs are class C G-protein coupled receptors (GPCRs), and the extracellular ligand binding domains (LBDs) of T1r1/T1r3 and T1r2/T1r3 heterodimers are responsible for binding of chemical substances eliciting umami or sweet taste. However, molecular analyses of T1r have been hampered due to the difficulties in recombinant expression and protein purification, and thus little is known about mechanisms for taste perception. Here we show the first molecular view of reception of a taste substance by a taste receptor, where the binding of the taste substance elicits a different conformational state of T1r2/T1r3 LBD heterodimer. Electron microscopy has showed a characteristic dimeric structure. Förster resonance energy transfer and X-ray solution scattering have revealed the transition of the dimerization manner of the ligand binding domains, from a widely spread to compactly organized state upon taste substance binding, which may correspond to distinct receptor functional states. PMID:27160511

  13. Deciphering the unconventional peptide binding to the PDZ domain of MAST2.

    PubMed

    Delhommel, Florent; Chaffotte, Alain; Terrien, Elouan; Raynal, Bertrand; Buc, Henri; Delepierre, Muriel; Cordier, Florence; Wolff, Nicolas

    2015-07-01

    Phosphatase and tensin homologue (PTEN) and microtubule-associated serine threonine kinase 2 (MAST2) are key negative regulators of survival pathways in neuronal cells. The two proteins interact via the PDZ (PSD-95, Dlg1, Zo-1) domain of MAST2 (MAST2-PDZ). During infection by rabies virus, the viral glycoprotein competes with PTEN for interaction with MAST2-PDZ and promotes neuronal survival. The C-terminal PDZ-binding motifs (PBMs) of the two proteins bind similarly to MAST2-PDZ through an unconventional network of connectivity involving two anchor points. Combining stopped-flow fluorescence, analytical ultracentrifugation (AUC), microcalorimetry and NMR, we document the kinetics of interaction between endogenous and viral ligands to MAST2-PDZ as well as the dynamic and structural effects of these interactions. Viral and PTEN peptide interactions to MAST2-PDZ occur via a unique kinetic step which involves both canonical C-terminal PBM binding and N-terminal anchoring. Indirect effects induced by the PBM binding include modifications to the structure and dynamics of the PDZ dimerization surface which prevent MAST2-PDZ auto-association. Such an energetic communication between binding sites and distal surfaces in PDZ domains provides interesting clues for protein regulation overall. PMID:25942057

  14. Structural Analysis on the Pathologic Mutant Glucocorticoid Receptor Ligand-Binding Domains.

    PubMed

    Hurt, Darrell E; Suzuki, Shigeru; Mayama, Takafumi; Charmandari, Evangelia; Kino, Tomoshige

    2016-02-01

    Glucocorticoid receptor (GR) gene mutations may cause familial or sporadic generalized glucocorticoid resistance syndrome. Most of the missense forms distribute in the ligand-binding domain and impair its ligand-binding activity and formation of the activation function (AF)-2 that binds LXXLL motif-containing coactivators. We performed molecular dynamics simulations to ligand-binding domain of pathologic GR mutants to reveal their structural defects. Several calculated parameters including interaction energy for dexamethasone or the LXXLL peptide indicate that destruction of ligand-binding pocket (LBP) is a primary character. Their LBP defects are driven primarily by loss/reduction of the electrostatic interaction formed by R611 and T739 of the receptor to dexamethasone and a subsequent conformational mismatch, which deacylcortivazol resolves with its large phenylpyrazole moiety and efficiently stimulates transcriptional activity of the mutant receptors with LBP defect. Reduced affinity of the LXXLL peptide to AF-2 is caused mainly by disruption of the electrostatic bonds to the noncore leucine residues of this peptide that determine the peptide's specificity to GR, as well as by reduced noncovalent interaction against core leucines and subsequent exposure of the AF-2 surface to solvent. The results reveal molecular defects of pathologic mutant receptors and provide important insights to the actions of wild-type GR. PMID:26745667

  15. Structural Analysis of the Ligand-Binding Domain of the Aspartate Receptor Tar from Escherichia coli.

    PubMed

    Mise, Takeshi

    2016-07-01

    The Escherichia coli cell-surface aspartate receptor Tar mediates bacterial chemotaxis toward an attractant, aspartate (Asp), and away from a repellent, Ni(2+). These signals are transmitted from the extracellular region of Tar to the cytoplasmic region via the transmembrane domain. The mechanism by which extracellular signals are transmitted into the cell through conformational changes in Tar is predicted to involve a piston displacement of one of the α4 helices of the homodimer. To understand the molecular mechanisms underlying the induction of Tar activity by an attractant, the three-dimensional structures of the E. coli Tar periplasmic domain with and without bound aspartate, Asp-Tar and apo-Tar, respectively, were determined. Of the two ligand-binding sites, only one site was occupied, and it clearly showed the electron density of an aspartate. The slight changes in conformation and the electrostatic surface potential around the aspartate-binding site were observed. In addition, the presence of an aspartate stabilized residues Phe-150' and Arg-73. A pistonlike displacement of helix α4b' was also induced by aspartate binding as predicted by the piston model. Taken together, these small changes might be related to the induction of Tar activity and might disturb binding of the second aspartate to the second binding site in E. coli. PMID:27292793

  16. Taste substance binding elicits conformational change of taste receptor T1r heterodimer extracellular domains.

    PubMed

    Nango, Eriko; Akiyama, Shuji; Maki-Yonekura, Saori; Ashikawa, Yuji; Kusakabe, Yuko; Krayukhina, Elena; Maruno, Takahiro; Uchiyama, Susumu; Nuemket, Nipawan; Yonekura, Koji; Shimizu, Madoka; Atsumi, Nanako; Yasui, Norihisa; Hikima, Takaaki; Yamamoto, Masaki; Kobayashi, Yuji; Yamashita, Atsuko

    2016-01-01

    Sweet and umami tastes are perceived by T1r taste receptors in oral cavity. T1rs are class C G-protein coupled receptors (GPCRs), and the extracellular ligand binding domains (LBDs) of T1r1/T1r3 and T1r2/T1r3 heterodimers are responsible for binding of chemical substances eliciting umami or sweet taste. However, molecular analyses of T1r have been hampered due to the difficulties in recombinant expression and protein purification, and thus little is known about mechanisms for taste perception. Here we show the first molecular view of reception of a taste substance by a taste receptor, where the binding of the taste substance elicits a different conformational state of T1r2/T1r3 LBD heterodimer. Electron microscopy has showed a characteristic dimeric structure. Förster resonance energy transfer and X-ray solution scattering have revealed the transition of the dimerization manner of the ligand binding domains, from a widely spread to compactly organized state upon taste substance binding, which may correspond to distinct receptor functional states. PMID:27160511

  17. The Importin β Binding Domain as a Master Regulator of Nucleocytoplasmic Transport

    PubMed Central

    Lott, Kaylen; Cingolani, Gino

    2010-01-01

    Specific and efficient recognition of import cargoes is essential to ensure nucleocytoplasmic transport. To this end, the prototypical karyopherin importin β associates with import cargoes directly or, more commonly, through import adaptors, such as importin α and snurportin. Adaptor proteins bind the nuclear localization sequence (NLS) of import cargoes while recruiting importin β via an N-terminal importin β binding (IBB) domain. The use of adaptors greatly expands and amplifies the repertoire of cellular cargoes that importin β can efficiently import into the cell nucleus and allows for fine regulation of nuclear import. Accordingly, the IBB-domain is a dedicated NLS, unique to adaptor proteins that functions as a molecular liaison between importin β and import cargoes. This review provides an overview of the molecular role played by the IBB-domain in orchestrating nucleocytoplasmic transport. Recent work has determined that the IBB-domain has specialized functions at every step of the import and export pathway. Unexpectedly, this stretch of ∼40 amino acids plays an essential role in regulating processes such as formation of the import complex, docking and translocation through the nuclear pore complex (NPC), release of import cargoes into the cell nucleus and finally recycling of import adaptors and importin β into the cytoplasm. Thus, the IBB-domain is a master regulator of nucleocytoplasmic transport, whose complex molecular function is only recently beginning to emerge. PMID:21029753

  18. ALOG domains: provenance of plant homeotic and developmental regulators from the DNA-binding domain of a novel class of DIRS1-type retroposons

    PubMed Central

    2012-01-01

    Members of the Arabidopsis LSH1 and Oryza G1 (ALOG) family of proteins have been shown to function as key developmental regulators in land plants. However, their precise mode of action remains unclear. Using sensitive sequence and structure analysis, we show that the ALOG domains are a distinct version of the N-terminal DNA-binding domain shared by the XerC/D-like, protelomerase, topoisomerase-IA, and Flp tyrosine recombinases. ALOG domains are distinguished by the insertion of an additional zinc ribbon into this DNA-binding domain. In particular, we show that the ALOG domain is derived from the XerC/D-like recombinases of a novel class of DIRS-1-like retroposons. Copies of this element, which have been recently inactivated, are present in several marine metazoan lineages, whereas the stramenopile Ectocarpus, retains an active copy of the same. Thus, we predict that ALOG domains help establish organ identity and differentiation by binding specific DNA sequences and acting as transcription factors or recruiters of repressive chromatin. They are also found in certain plant defense proteins, where they are predicted to function as DNA sensors. The evolutionary history of the ALOG domain represents a unique instance of a domain, otherwise exclusively found in retroelements, being recruited as a specific transcription factor in the streptophyte lineage of plants. Hence, they add to the growing evidence for derivation of DNA-binding domains of eukaryotic specific TFs from mobile and selfish elements. PMID:23146749

  19. Engineered staphylococcal protein A's IgG-binding domain with cathepsin L inhibitory activity

    SciTech Connect

    Bratkovic, Tomaz . E-mail: tomaz.bratkovic@ffa.uni-lj.si; Berlec, Ales; Popovic, Tatjana; Lunder, Mojca; Kreft, Samo; Urleb, Uros; Strukelj, Borut

    2006-10-13

    Inhibitory peptide of papain-like cysteine proteases, affinity selected from a random disulfide constrained phage-displayed peptide library, was grafted to staphylococcal protein A's B domain. Scaffold protein was additionally modified in order to allow solvent exposed display of peptide loop. Correct folding of fusion proteins was confirmed by CD-spectroscopy and by the ability to bind the Fc-region of rabbit IgG, a characteristic of parent domain. The recombinant constructs inhibited cathepsin L with inhibitory constants in the low-micromolar range.

  20. Phenylalanine Binding Is Linked to Dimerization of the Regulatory Domain of Phenylalanine Hydroxylase

    PubMed Central

    2015-01-01

    Analytical ultracentrifugation has been used to analyze the oligomeric structure of the isolated regulatory domain of phenylalanine hydroxylase. The protein exhibits a monomer–dimer equilibrium with a dissociation constant of ∼46 μM; this value is unaffected by the removal of the 24 N-terminal residues or by phosphorylation of Ser16. In contrast, phenylalanine binding (Kd = 8 μM) stabilizes the dimer. These results suggest that dimerization of the regulatory domain of phenylalanine hydroxylase is linked to allosteric activation of the enzyme. PMID:25299136

  1. Domain rearrangement of SRP protein Ffh upon binding 4.5S RNA and the SRP receptor FtsY.

    PubMed

    Buskiewicz, Iwona; Kubarenko, Andriy; Peske, Frank; Rodnina, Marina V; Wintermeyer, Wolfgang

    2005-06-01

    The signal recognition particle (SRP) mediates membrane targeting of translating ribosomes displaying a signal-anchor sequence. In Escherichia coli, SRP consists of 4.5S RNA and a protein, Ffh, that recognizes the signal peptide emerging from the ribosome and the SRP receptor at the membrane, FtsY. In the present work, we studied the interactions between the NG and M domains in Ffh and their rearrangements upon complex formation with 4.5S RNA and/or FtsY. In free Ffh, the NG and M domains are facing one another in an orientation that allows cross-linking between positions 231 in the G domain and 377 in the M domain. There are binding interactions between the two domains, as the isolated domains form a strong complex. The interdomain contacts are disrupted upon binding of Ffh to 4.5S RNA, consuming a part of the total binding energy of 4.5S RNA-Ffh association that is roughly equivalent to the free energy of domain binding to each other. In the SRP particle, the NG domain binds to 4.5S RNA in a region adjacent to the binding site of the M domain. Ffh binding to FtsY also requires a reorientation of NG and M domains. These results suggest that in free Ffh, the binding sites for 4.5S RNA and FtsY are occluded by strong domain-domain interactions which must be disrupted for the formation of SRP or the Ffh-FtsY complex. PMID:15923378

  2. Structural fold, conservation and Fe(II) binding of the intracellular domain of prokaryote FeoB

    SciTech Connect

    Hung, Kuo-Wei; Chang, Yi-Wei; Eng, Edward T.; Chen, Jai-Hui; Chen, Yi-Chung; Sun, Yuh-Ju; Hsiao, Chwan-Deng; Dong, Gang; Spasov, Krasimir A.; Unger, Vinzenz M.; Huang, Tai-huang

    2010-09-17

    FeoB is a G-protein coupled membrane protein essential for Fe(II) uptake in prokaryotes. Here, we report the crystal structures of the intracellular domain of FeoB (NFeoB) from Klebsiella pneumoniae (KpNFeoB) and Pyrococcus furiosus (PfNFeoB) with and without bound ligands. In the structures, a canonical G-protein domain (G domain) is followed by a helical bundle domain (S-domain), which despite its lack of sequence similarity between species is structurally conserved. In the nucleotide-free state, the G-domain's two switch regions point away from the binding site. This gives rise to an open binding pocket whose shallowness is likely to be responsible for the low nucleotide-binding affinity. Nucleotide binding induced significant conformational changes in the G5 motif which in the case of GMPPNP binding was accompanied by destabilization of the switch I region. In addition to the structural data, we demonstrate that Fe(II)-induced foot printing cleaves the protein close to a putative Fe(II)-binding site at the tip of switch I, and we identify functionally important regions within the S-domain. Moreover, we show that NFeoB exists as a monomer in solution, and that its two constituent domains can undergo large conformational changes. The data show that the S-domain plays important roles in FeoB function.

  3. Ligand-binding domains of nuclear receptors facilitate tight control of split CRISPR activity.

    PubMed

    Nguyen, Duy P; Miyaoka, Yuichiro; Gilbert, Luke A; Mayerl, Steven J; Lee, Brian H; Weissman, Jonathan S; Conklin, Bruce R; Wells, James A

    2016-01-01

    Cas9-based RNA-guided nuclease (RGN) has emerged to be a versatile method for genome editing due to the ease of construction of RGN reagents to target specific genomic sequences. The ability to control the activity of Cas9 with a high temporal resolution will facilitate tight regulation of genome editing processes for studying the dynamics of transcriptional regulation or epigenetic modifications in complex biological systems. Here we show that fusing ligand-binding domains of nuclear receptors to split Cas9 protein fragments can provide chemical control over split Cas9 activity. The method has allowed us to control Cas9 activity in a tunable manner with no significant background, which has been challenging for other inducible Cas9 constructs. We anticipate that our design will provide opportunities through the use of different ligand-binding domains to enable multiplexed genome regulation of endogenous genes in distinct loci through simultaneous chemical regulation of orthogonal Cas9 variants. PMID:27363581

  4. Guanine nucleotide binding to the Bateman domain mediates the allosteric inhibition of eukaryotic IMP dehydrogenases.

    PubMed

    Buey, Rubén M; Ledesma-Amaro, Rodrigo; Velázquez-Campoy, Adrián; Balsera, Mónica; Chagoyen, Mónica; de Pereda, José M; Revuelta, José L

    2015-01-01

    Inosine-5'-monophosphate dehydrogenase (IMPDH) plays key roles in purine nucleotide metabolism and cell proliferation. Although IMPDH is a widely studied therapeutic target, there is limited information about its physiological regulation. Using Ashbya gossypii as a model, we describe the molecular mechanism and the structural basis for the allosteric regulation of IMPDH by guanine nucleotides. We report that GTP and GDP bind to the regulatory Bateman domain, inducing octamers with compromised catalytic activity. Our data suggest that eukaryotic and prokaryotic IMPDHs might have developed different regulatory mechanisms, with GTP/GDP inhibiting only eukaryotic IMPDHs. Interestingly, mutations associated with human retinopathies map into the guanine nucleotide-binding sites including a previously undescribed non-canonical site and disrupt allosteric inhibition. Together, our results shed light on the mechanisms of the allosteric regulation of enzymes mediated by Bateman domains and provide a molecular basis for certain retinopathies, opening the door to new therapeutic approaches. PMID:26558346

  5. Guanine nucleotide binding to the Bateman domain mediates the allosteric inhibition of eukaryotic IMP dehydrogenases

    NASA Astrophysics Data System (ADS)

    Buey, Rubén M.; Ledesma-Amaro, Rodrigo; Velázquez-Campoy, Adrián; Balsera, Mónica; Chagoyen, Mónica; de Pereda, José M.; Revuelta, José L.

    2015-11-01

    Inosine-5'-monophosphate dehydrogenase (IMPDH) plays key roles in purine nucleotide metabolism and cell proliferation. Although IMPDH is a widely studied therapeutic target, there is limited information about its physiological regulation. Using Ashbya gossypii as a model, we describe the molecular mechanism and the structural basis for the allosteric regulation of IMPDH by guanine nucleotides. We report that GTP and GDP bind to the regulatory Bateman domain, inducing octamers with compromised catalytic activity. Our data suggest that eukaryotic and prokaryotic IMPDHs might have developed different regulatory mechanisms, with GTP/GDP inhibiting only eukaryotic IMPDHs. Interestingly, mutations associated with human retinopathies map into the guanine nucleotide-binding sites including a previously undescribed non-canonical site and disrupt allosteric inhibition. Together, our results shed light on the mechanisms of the allosteric regulation of enzymes mediated by Bateman domains and provide a molecular basis for certain retinopathies, opening the door to new therapeutic approaches.

  6. Ligand-binding domains of nuclear receptors facilitate tight control of split CRISPR activity

    PubMed Central

    Nguyen, Duy P.; Miyaoka, Yuichiro; Gilbert, Luke A.; Mayerl, Steven J.; Lee, Brian H.; Weissman, Jonathan S.; Conklin, Bruce R.; Wells, James A.

    2016-01-01

    Cas9-based RNA-guided nuclease (RGN) has emerged to be a versatile method for genome editing due to the ease of construction of RGN reagents to target specific genomic sequences. The ability to control the activity of Cas9 with a high temporal resolution will facilitate tight regulation of genome editing processes for studying the dynamics of transcriptional regulation or epigenetic modifications in complex biological systems. Here we show that fusing ligand-binding domains of nuclear receptors to split Cas9 protein fragments can provide chemical control over split Cas9 activity. The method has allowed us to control Cas9 activity in a tunable manner with no significant background, which has been challenging for other inducible Cas9 constructs. We anticipate that our design will provide opportunities through the use of different ligand-binding domains to enable multiplexed genome regulation of endogenous genes in distinct loci through simultaneous chemical regulation of orthogonal Cas9 variants. PMID:27363581

  7. Guanine nucleotide binding to the Bateman domain mediates the allosteric inhibition of eukaryotic IMP dehydrogenases

    PubMed Central

    Buey, Rubén M.; Ledesma-Amaro, Rodrigo; Velázquez-Campoy, Adrián; Balsera, Mónica; Chagoyen, Mónica; de Pereda, José M.; Revuelta, José L.

    2015-01-01

    Inosine-5′-monophosphate dehydrogenase (IMPDH) plays key roles in purine nucleotide metabolism and cell proliferation. Although IMPDH is a widely studied therapeutic target, there is limited information about its physiological regulation. Using Ashbya gossypii as a model, we describe the molecular mechanism and the structural basis for the allosteric regulation of IMPDH by guanine nucleotides. We report that GTP and GDP bind to the regulatory Bateman domain, inducing octamers with compromised catalytic activity. Our data suggest that eukaryotic and prokaryotic IMPDHs might have developed different regulatory mechanisms, with GTP/GDP inhibiting only eukaryotic IMPDHs. Interestingly, mutations associated with human retinopathies map into the guanine nucleotide-binding sites including a previously undescribed non-canonical site and disrupt allosteric inhibition. Together, our results shed light on the mechanisms of the allosteric regulation of enzymes mediated by Bateman domains and provide a molecular basis for certain retinopathies, opening the door to new therapeutic approaches. PMID:26558346

  8. Genetic analysis of sequences in maltoporin that contribute to binding domains and pore structure.

    PubMed Central

    Heine, H G; Francis, G; Lee, K S; Ferenci, T

    1988-01-01

    Maltoporin (LamB protein) is a maltodextrin transport protein in the outer membrane of Escherichia coli with binding sites for bacteriophage lambda and maltosaccharides. Binding of starch by bacteria was found to inhibit swarming of Escherichia coli in soft agar plates; the inhibition was dependent on the maltodextrin affinity of maltoporin. On the basis of this observation, chemotactic cell-sorting techniques were developed for the isolation and analysis of mutants with an altered starch-binding phenotype. Fifteen lamB mutations generated by hydroxylamine and linker mutagenesis, as well as spontaneous mutations, were analyzed. The effects of the mutations on starch and lambda-binding, as well as transport specificity, were assayed. Mutations that affect residues near 8 to 18, 74 to 82, and 118 to 121 were found to affect starch binding and maltodextrin-selective functions strongly, confirming and extending previous results with substitutions at these regions. Substitutions and insertions in two previously undefined regions in the protein, in or near residues 194 and 360, also resulted in defects in maltodextrin-specific functions and indicate that C-terminal parts of the protein also contribute to the discontinuous binding and pore domains. There was a detectable transport defect in all binding-affected mutants, and one mutation caused near-total pore blocking towards both maltose and nonmaltoside. The highly discontinuous phage lambda-binding site was affected by mutations near residues 9 and 10 and 194, as well as previously established regions near residues 18, 148 to 165, 245 to 259, and 380 to 400. The significance of these mutations is discussed in the context of a model of the functional topology of maltoporin. The additional role of regions near residues 10 and 120 in maltoporin assembly, as well as starch binding, was suggested by the temperature-sensitive biogenesis of maltoporin in strains with one- or two-codon insertion at these sites. Images PMID

  9. Structural Studies of the Alzheimer's Amyloid Precursor Protein Copper-Binding Domain Reveal How It Binds Copper Ions

    SciTech Connect

    Kong, G.K.-W.; Adams, J.J.; Harris, H.H.; Boas, J.F.; Curtain, C.C.; Galatis, D.; Master, C.L.; Barnham, K.J.; McKinstry, W.J.; Cappai, R.; Parker, M.W.; /Sydney U. /Monash U. /Melbourne U.

    2007-07-09

    Alzheimer's disease (AD) is the major cause of dementia. Amyloid {beta} peptide (A {beta}), generated by proteolytic cleavage of the amyloid precursor protein (APP), is central to AD pathogenesis. APP can function as a metalloprotein and modulate copper (Cu) transport, presumably via its extracellular Cu-binding domain (CuBD). Cu binding to the CuBD reduces A{beta} levels, suggesting that a Cu mimetic may have therapeutic potential. We describe here the atomic structures of apo CuBD from three crystal forms and found they have identical Cu-binding sites despite the different crystal lattices. The structure of Cu[2+]-bound CuBD reveals that the metal ligands are His147, His151, Tyrl68 and two water molecules, which are arranged in a square pyramidal geometry. The site resembles a Type 2 non-blue Cu center and is supported by electron paramagnetic resonance and extended X-ray absorption fine structure studies. A previous study suggested that Met170 might be a ligand but we suggest that this residue plays a critical role as an electron donor in CuBDs ability to reduce Cu ions. The structure of Cu[+]-bound CuBD is almost identical to the Cu[2+]-bound structure except for the loss of one of the water ligands. The geometry of the site is unfavorable for Cu[+], thus providing a mechanism by which CuBD could readily transfer Cu ions to other proteins.

  10. Domain rearrangement of SRP protein Ffh upon binding 4.5S RNA and the SRP receptor FtsY

    PubMed Central

    BUSKIEWICZ, IWONA; KUBARENKO, ANDRIY; PESKE, FRANK; RODNINA, MARINA V.; WINTERMEYER, WOLFGANG

    2005-01-01

    The signal recognition particle (SRP) mediates membrane targeting of translating ribosomes displaying a signal-anchor sequence. In Escherichia coli, SRP consists of 4.5S RNA and a protein, Ffh, that recognizes the signal peptide emerging from the ribosome and the SRP receptor at the membrane, FtsY. In the present work, we studied the interactions between the NG and M domains in Ffh and their rearrangements upon complex formation with 4.5S RNA and/or FtsY. In free Ffh, the NG and M domains are facing one another in an orientation that allows cross-linking between positions 231 in the G domain and 377 in the M domain. There are binding interactions between the two domains, as the isolated domains form a strong complex. The interdomain contacts are disrupted upon binding of Ffh to 4.5S RNA, consuming a part of the total binding energy of 4.5S RNA-Ffh association that is roughly equivalent to the free energy of domain binding to each other. In the SRP particle, the NG domain binds to 4.5S RNA in a region adjacent to the binding site of the M domain. Ffh binding to FtsY also requires a reorientation of NG and M domains. These results suggest that in free Ffh, the binding sites for 4.5S RNA and FtsY are occluded by strong domain–domain interactions which must be disrupted for the formation of SRP or the Ffh-FtsY complex. PMID:15923378

  11. In Silico Screening for Inhibitors of P-Glycoprotein That Target the Nucleotide Binding Domains

    PubMed Central

    Brewer, Frances K.; Follit, Courtney A.; Vogel, Pia D.

    2014-01-01

    Multidrug resistances and the failure of chemotherapies are often caused by the expression or overexpression of ATP-binding cassette transporter proteins such as the multidrug resistance protein, P-glycoprotein (P-gp). P-gp is expressed in the plasma membrane of many cell types and protects cells from accumulation of toxins. P-gp uses ATP hydrolysis to catalyze the transport of a broad range of mostly hydrophobic compounds across the plasma membrane and out of the cell. During cancer chemotherapy, the administration of therapeutics often selects for cells which overexpress P-gp, thereby creating populations of cancer cells resistant to a variety of chemically unrelated chemotherapeutics. The present study describes extremely high-throughput, massively parallel in silico ligand docking studies aimed at identifying reversible inhibitors of ATP hydrolysis that target the nucleotide-binding domains of P-gp. We used a structural model of human P-gp that we obtained from molecular dynamics experiments as the protein target for ligand docking. We employed a novel approach of subtractive docking experiments that identified ligands that bound predominantly to the nucleotide-binding domains but not the drug-binding domains of P-gp. Four compounds were found that inhibit ATP hydrolysis by P-gp. Using electron spin resonance spectroscopy, we showed that at least three of these compounds affected nucleotide binding to the transporter. These studies represent a successful proof of principle demonstrating the potential of targeted approaches for identifying specific inhibitors of P-gp. PMID:25270578

  12. Modulating LOV Domain Photodynamics with a Residue Alteration outside the Chromophore Binding Site†

    PubMed Central

    Song, Sang-Hun; Freddolino, Peter L.; Nash, Abigail I.; Carroll, Elizabeth C.; Schulten, Klaus; Gardner, Kevin H.; Larsen, Delmar S.

    2011-01-01

    Phototropins, a class of light-activated protein kinases, are essential for several blue light responses in plants and algae, including phototropism. These proteins contain two internal light, oxygen, and voltage sensitive (LOV) domains, which bind flavin chromophores and undergo a reversible photochemical formation of a cysteinyl-flavin adduct as part of the light sensing process. While the photodynamic properties of such photosensory domains are dictated by interactions between the chromophore and surrounding protein, more distant residues can play a significant role as well. Here we explore the role of the Phe434 residue in the photosensory response of the second LOV domain of Avena sativa phototropin 1 (AsLOV2), a model photochemical system for these LOV domains. Phe434 lies over 6 Å from the FMN chromophore in AsLOV2; nevertheless, a F434Y point mutation is likely to change several structural features of the chromophore binding site, as we demonstrate using molecular dynamics simulations. Transient absorption signals spanning 15 decades in time were compared for wildtype AsLOV2 and the F434Y mutant, showing that the latter has significantly altered photodynamics including (i) a faster intersystem crossing leading to triplet formation on a nanosecond time scale, (ii) biphasic formation of adduct state kinetics on the microsecond time scale, and (iii) greatly accelerated ground-state recovery kinetics on a second time scale. We present mechanistic models that link these spectroscopic differences to changes in the configuration of the critical cysteine residue and in the chromophore’s accessibility to solvent and oxygen according to MD trajectories and purging experiments. Taken together, these results demonstrate the importance of residues outside the chromophore-binding pocket in modulating LOV domain photodynamics. PMID:21323358

  13. Positive regulatory domain I binding factor 1 silences class II transactivator expression in multiple myeloma cells.

    PubMed

    Ghosh, N; Gyory, I; Wright, G; Wood, J; Wright, K L

    2001-05-01

    The major histocompatibility complex (MHC) class II transactivator (CIITA) acts as a master switch to activate expression of the genes required for MHC-II antigen presentation. During B-cell to plasma cell differentiation, MHC-II expression is actively silenced, but the mechanism has been unknown. In plasma cell tumors such as multiple myeloma the repression of MHC-II is associated with the loss of CIITA. We have identified that positive regulatory domain I binding factor 1 (PRDI-BF1), a transcriptional repressor, inhibits CIITA expression in multiple myeloma cell lines. Repression of CIITA depends on the DNA binding activity of PRDI-BF1 and its specific binding site in the CIITA promoter. Deletion of a histone deacetylase recruitment domain in PRDI-BF1 does not inhibit repression of CIITA nor does blocking histone deacetylase activity. This is in contrast to PRDI-BF1 repression of the c-myc promoter. Repression of CIITA requires either the N-terminal acidic and conserved PR motif or the proline-rich domain. PRDI-BF1 has been shown to be a key regulator of B-cell and macrophage differentiation. These findings now indicate that PRDI-BF1 has at least two mechanisms of repression whose function is dependent on the nature of the target promoter. Importantly, PRDI-BF1 is defined as the key molecule in silencing CIITA and thus MHC-II in multiple myeloma cells. PMID:11279146

  14. A preformed compact ribosome-binding domain in the cricket paralysis-like virus IRES RNAs

    PubMed Central

    COSTANTINO, DAVID; KIEFT, JEFFREY S.

    2005-01-01

    The internal ribosome site RNA of the cricket paralysis-like viruses (CrPV-like) binds directly to the ribosome, assembling the translation machinery without initiation factors. This mechanism does not require initiator tRNA, and translation starts from a non-AUG codon. A wealth of biochemical data has yielded a working model for this process, but the three-dimensional structure and biophysical characteristics of the unbound CrPV-like IRES RNAs are largely unexplored. Here, we demonstrate that the CrPV-like IRESes prefold into a two-part structure in the presence of magnesium ions. The largest part is a prefolded compact RNA domain that shares folding and structural characteristics with other compactly folded RNAs such as group I intron RNAs and RNase P RNA. Chemical probing reveals that the CrPV-like IRES’ compact domain contains RNA helices that are packed tightly enough to exclude solvent, and analytical ultracentrifugation indicates a large change in the shape of the IRES upon folding. Formation of this compact domain is necessary for binding of the 40S subunit, and the structural organization of the unbound IRES RNA is consistent with the hypothesis that the IRES is functionally and structurally preorganized before ribosome binding. PMID:15701733

  15. Ubiquitin binding by the CUE domain promotes endosomal localization of the Rab5 GEF Vps9

    PubMed Central

    Shideler, Tess; Nickerson, Daniel P.; Merz, Alexey J.; Odorizzi, Greg

    2015-01-01

    Vps9 and Muk1 are guanine nucleotide exchange factors (GEFs) in Saccharomyces cerevisiae that regulate membrane trafficking in the endolysosomal pathway by activating Rab5 GTPases. We show that Vps9 is the primary Rab5 GEF required for biogenesis of late endosomal multivesicular bodies (MVBs). However, only Vps9 (but not Muk1) is required for the formation of aberrant class E compartments that arise upon dysfunction of endosomal sorting complexes required for transport (ESCRTs). ESCRT dysfunction causes ubiquitinated transmembrane proteins to accumulate at endosomes, and we demonstrate that endosomal recruitment of Vps9 is promoted by its ubiquitin-binding CUE domain. Muk1 lacks ubiquitin-binding motifs, but its fusion to the Vps9 CUE domain allows Muk1 to rescue endosome morphology, cargo trafficking, and cellular stress-tolerance phenotypes that result from loss of Vps9 function. These results indicate that ubiquitin binding by the CUE domain promotes Vps9 function in endolysosomal membrane trafficking via promotion of localization. PMID:25673804

  16. Solution structure of the ubiquitin-binding domain in Swa2p from Saccharomyces cerevisiae.

    PubMed

    Chim, Nicholas; Gall, Walter E; Xiao, Jing; Harris, Mark P; Graham, Todd R; Krezel, Andrzej M

    2004-03-01

    The SWA2/AUX1 gene has been proposed to encode the Saccharomyces cerevisiae ortholog of mammalian auxilin. Swa2p is required for clathrin assembly/dissassembly in vivo, thereby implicating it in intracellular protein and lipid trafficking. While investigating the 287-residue N-terminal region of Swa2p, we found a single stably folded domain between residues 140 and 180. Using binding assays and structural analysis, we established this to be a ubiquitin-associated (UBA) domain, unidentified by bioinformatics of the yeast genome. We determined the solution structure of this Swa2p domain and found a characteristic three-helix UBA fold. Comparisons of structures of known UBA folds reveal that the position of the third helix is quite variable. This helix in Swa2p UBA contains a bulkier tyrosine in place of smaller residues found in other UBAs and cannot pack as close to the second helix. The molecular surface of Swa2p UBA has a mostly negative potential, with a single hydrophobic surface patch found also in the UBA domains of human protein, HHR23A. The presence of a UBA domain implicates Swa2p in novel roles involving ubiquitin and ubiquitinated substrates. We propose that Swa2p is a multifunctional protein capable of recognizing several proteins through its protein-protein recognition domains. PMID:14997574

  17. CXCL1/MGSA Is a Novel Glycosaminoglycan (GAG)-binding Chemokine: STRUCTURAL EVIDENCE FOR TWO DISTINCT NON-OVERLAPPING BINDING DOMAINS.

    PubMed

    Sepuru, Krishna Mohan; Rajarathnam, Krishna

    2016-02-19

    In humans, the chemokine CXCL1/MGSA (hCXCL1) plays fundamental and diverse roles in pathophysiology, from microbial killing to cancer progression, by orchestrating the directed migration of immune and non-immune cells. Cellular trafficking is highly regulated and requires concentration gradients that are achieved by interactions with sulfated glycosaminoglycans (GAGs). However, very little is known regarding the structural basis underlying hCXCL1-GAG interactions. We addressed this by characterizing the binding of GAG heparin oligosaccharides to hCXCL1 using NMR spectroscopy. Binding experiments under conditions at which hCXCL1 exists as monomers and dimers indicate that the dimer is the high-affinity GAG ligand. NMR experiments and modeling studies indicate that lysine and arginine residues mediate binding and that they are located in two non-overlapping domains. One domain, consisting of N-loop and C-helical residues (defined as α-domain) has also been identified previously as the GAG-binding domain for the related chemokine CXCL8/IL-8. The second domain, consisting of residues from the N terminus, 40s turn, and third β-strand (defined as β-domain) is novel. Eliminating β-domain binding by mutagenesis does not perturb α-domain binding, indicating two independent GAG-binding sites. It is known that N-loop and N-terminal residues mediate receptor activation, and we show that these residues are also involved in extensive GAG interactions. We also show that the GAG-bound hCXCL1 completely occlude receptor binding. We conclude that hCXCL1-GAG interactions provide stringent control over regulating chemokine levels and receptor accessibility and activation, and that chemotactic gradients mediate cellular trafficking to the target site. PMID:26721883

  18. Binding Moral Foundations and the Narrowing of Ideological Conflict to the Traditional Morality Domain.

    PubMed

    Malka, Ariel; Osborne, Danny; Soto, Christopher J; Greaves, Lara M; Sibley, Chris G; Lelkes, Yphtach

    2016-09-01

    Moral foundations theory (MFT) posits that binding moral foundations (purity, authority, and ingroup loyalty) are rooted in the need for groups to promote order and cohesion, and that they therefore underlie political conservatism. We present evidence that binding foundations (and the related construct of disgust sensitivity) are associated with lower levels of ideological polarization on political issues outside the domain of moral traditionalism. Consistent support for this hypothesis was obtained from three large American Internet-based samples and one large national sample of New Zealanders (combined N = 7,874). We suggest that when political issues do not have inherent relevance to moral traditionalism, binding foundations promote a small centrist shift away from ideologically prescribed positions, and that they do so out of desire for national uniformity and cohesion. PMID:27340150

  19. Halophilic characterization of starch-binding domain from Kocuria varians α-amylase.

    PubMed

    Yamaguchi, Rui; Inoue, Yasuhiro; Tokunaga, Hiroko; Ishibashi, Matsujiro; Arakawa, Tsutomu; Sumitani, Jun-ichi; Kawaguchi, Takashi; Tokunaga, Masao

    2012-01-01

    The tandem starch-binding domains (KvSBD) located at carboxy-terminal region of halophilic α-amylase from moderate halophile, Kocuria varians, were expressed in E. coli with amino-terminal hexa-His-tag and purified to homogeneity. The recombinant KvSBD showed binding activity to raw starch granules at low to high salt concentrations. The binding activity of KvSBD to starch was fully reversible after heat-treatment at 85°C. Circular dichroism and thermal scanning experiments indicated that KvSBD showed fully reversible refolding upon cooling after complete melting at 70°C in the presence of 0.2-2.0M NaCl. The refolding rate was enhanced with higher salt concentration. PMID:22020156

  20. Sensitive and rapid detection of staphylococcus aureus in milk via cell binding domain of lysin.

    PubMed

    Yu, Junping; Zhang, Yun; Zhang, Yun; Li, Heng; Yang, Hang; Wei, Hongping

    2016-03-15

    Staphylococcus aureus (S. aureus) is an important food-borne pathogen in dairy products contaminated through raw ingredients or improper food handling. Rapid detection of S. aureus with high sensitivity is of significance for food quality and safety. In this study, a new method was developed for detecting S. aureus in milk by coupling immunomagnetic separation with enzyme linked cell wall binding domain (CBD) of lysin plyV12, which can bind to S. aureus with high affinity. There are millions of binding sites present on the cell surface of S. aureus for the CBD attachment, which greatly improves the detection sensitivity. The method has the overall testing time of only 1.5h with the detection limit of 4 × 10(3)CFU/mL in spiked milk. Because it is simple, rapid and sensitive, this method could be used for the detection of S. aureus in various food samples. PMID:26433070

  1. Inactivation of Multiple Bacterial Histidine Kinases by Targeting the ATP-Binding Domain

    PubMed Central

    2015-01-01

    Antibacterial agents that exploit new targets will be required to combat the perpetual rise of bacterial resistance to current antibiotics. We are exploring the inhibition of histidine kinases, constituents of two-component systems. Two-component systems are the primary signaling pathways that bacteria utilize to respond to their environment. They are ubiquitous in bacteria and trigger various pathogenic mechanisms. To attenuate these signaling pathways, we sought to broadly target the histidine kinase family by focusing on their highly conserved ATP-binding domain. Development of a fluorescence polarization displacement assay facilitated high-throughput screening of ∼53 000 diverse small molecules for binding to the ATP-binding pocket. Of these compounds, nine inhibited the catalytic activity of two or more histidine kinases. These scaffolds could provide valuable starting points for the design of broadly effective HK inhibitors, global reduction of bacterial signaling, and ultimately, a class of antibiotics that function by a new mechanism of action. PMID:25531939

  2. Tailor-Made Ezrin Actin Binding Domain to Probe Its Interaction with Actin In-Vitro

    PubMed Central

    Shrivastava, Rohini; Köster, Darius; Kalme, Sheetal; Mayor, Satyajit; Neerathilingam, Muniasamy

    2015-01-01

    Ezrin, a member of the ERM (Ezrin/Radixin/Moesin) protein family, is an Actin-plasma membrane linker protein mediating cellular integrity and function. In-vivo study of such interactions is a complex task due to the presence of a large number of endogenous binding partners for both Ezrin and Actin. Further, C-terminal actin binding capacity of the full length Ezrin is naturally shielded by its N-terminal, and only rendered active in the presence of Phosphatidylinositol bisphosphate (PIP2) or phosphorylation at the C-terminal threonine. Here, we demonstrate a strategy for the design, expression and purification of constructs, combining the Ezrin C-terminal actin binding domain, with functional elements such as fusion tags and fluorescence tags to facilitate purification and fluorescence microscopy based studies. For the first time, internal His tag was employed for purification of Ezrin actin binding domain based on in-silico modeling. The functionality (Ezrin-actin interaction) of these constructs was successfully demonstrated by using Total Internal Reflection Fluorescence Microscopy. This design can be extended to other members of the ERM family as well. PMID:25860910

  3. Crystallographicand Biochemical Analysis of the Ran-Binding Zinc Finger Domain

    SciTech Connect

    Partridge, J.; Schwartz, T

    2009-01-01

    The nuclear pore complex (NPC) resides in circular openings within the nuclear envelope and serves as the sole conduit to facilitate nucleocytoplasmic transport in eukaryotes. The asymmetric distribution of the small G protein Ran across the nuclear envelope regulates directionality of protein transport. Ran interacts with the NPC of metazoa via two asymmetrically localized components, Nup153 at the nuclear face and Nup358 at the cytoplasmic face. Both nucleoporins contain a stretch of distinct, Ran-binding zinc finger domains. Here, we present six crystal structures of Nup153-zinc fingers in complex with Ran and a 1.48 {angstrom} crystal structure of RanGDP. Crystal engineering allowed us to obtain well diffracting crystals so that all ZnF-Ran complex structures are refined to high resolution. Each of the four zinc finger modules of Nup153 binds one Ran molecule in apparently non-allosteric fashion. The affinity is measurably higher for RanGDP than for RanGTP and varies modestly between the individual zinc fingers. By microcalorimetric and mutational analysis, we determined that one specific hydrogen bond accounts for most of the differences in the binding affinity of individual zinc fingers. Genomic analysis reveals that only in animals do NPCs contain Ran-binding zinc fingers. We speculate that these organisms evolved a mechanism to maintain a high local concentration of Ran at the vicinity of the NPC, using this zinc finger domain as a sink.

  4. Crystallographic and Biochemical Analysis of the Ran-Binding Zinc Finger Domain

    SciTech Connect

    Partridge, James R.; Schwartz, Thomas U.; MIT

    2009-08-13

    The nuclear pore complex (NPC) resides in circular openings within the nuclear envelope and serves as the sole conduit to facilitate nucleocytoplasmic transport in eukaryotes. The asymmetric distribution of the small G protein Ran across the nuclear envelope regulates directionality of protein transport. Ran interacts with the NPC of metazoa via two asymmetrically localized components, Nup153 at the nuclear face and Nup358 at the cytoplasmic face. Both nucleoporins contain a stretch of distinct, Ran-binding zinc finger domains. Here, we present six crystal structures of Nup153-zinc fingers in complex with Ran and a 1.48 {angstrom} crystal structure of RanGDP. Crystal engineering allowed us to obtain well diffracting crystals so that all ZnF-Ran complex structures are refined to high resolution. Each of the four zinc finger modules of Nup153 binds one Ran molecule in apparently non-allosteric fashion. The affinity is measurably higher for RanGDP than for RanGTP and varies modestly between the individual zinc fingers. By microcalorimetric and mutational analysis, we determined that one specific hydrogen bond accounts for most of the differences in the binding affinity of individual zinc fingers. Genomic analysis reveals that only in animals do NPCs contain Ran-binding zinc fingers. We speculate that these organisms evolved a mechanism to maintain a high local concentration of Ran at the vicinity of the NPC, using this zinc finger domain as a sink.

  5. Epsin N-terminal homology domains bind on opposite sides of two SNAREs

    PubMed Central

    Wang, Jing; Gossing, Michael; Fang, Pengfei; Zimmermann, Jana; Li, Xu; von Mollard, Gabriele Fischer; Niu, Liwen; Teng, Maikun

    2011-01-01

    SNARE proteins are crucial for membrane fusion in vesicular transport. To ensure efficient and accurate fusion, SNAREs need to be sorted into different budding vesicles. This process is usually regulated by specific recognition between SNAREs and their adaptor proteins. How different pairs of SNAREs and adaptors achieve their recognition is unclear. Here, we report the recognition between yeast SNARE Vti1p and its adaptor Ent3p derived from three crystal structures. Surprisingly, this yeast pair Vti1p/Ent3p interacts through a distinct binding site compared to their homologues vti1b/epsinR in mammals. An opposite surface on Vti1p_Habc domain binds to a conserved area on the epsin N-terminal homology (ENTH) domain of Ent3p. Two-hybrid, in vitro pull-down and in vivo experiments indicate this binding interface is important for correct localization of Vti1p in the cell. This previously undescribed discovery that a cargo and adaptor pair uses different binding sites across species suggests the diversity of SNARE-adaptor recognition in vesicular transport. PMID:21746902

  6. Site-directed mutants of human RECQ1 reveal functional importance of the zinc binding domain.

    PubMed

    Sami, Furqan; Gary, Ronald K; Fang, Yayin; Sharma, Sudha

    2016-08-01

    RecQ helicases are a highly conserved family of ATP-dependent DNA-unwinding enzymes with key roles in DNA replication and repair in all kingdoms of life. The RECQ1 gene encodes the most abundant RecQ homolog in humans. We engineered full-length RECQ1 harboring point mutations in the zinc-binding motif (amino acids 419-480) within the conserved RecQ-specific-C-terminal (RQC) domain known to be critical for diverse biochemical and cellular functions of RecQ helicases. Wild-type RECQ1 contains a zinc ion. Substitution of three of the four conserved cysteine residues that coordinate zinc severely impaired the ATPase and DNA unwinding activities but retained DNA binding and single strand DNA annealing activities. Furthermore, alteration of these residues attenuated zinc binding and significantly changed the overall conformation of full-length RECQ1 protein. In contrast, substitution of cysteine residue at position 471 resulted in a wild-type like RECQ1 protein. Differential contribution of the conserved cysteine residues to the structure and functions of the RECQ1 protein is also inferred by homology modeling. Overall, our results indicate that the zinc binding motif in the RQC domain of RECQ1 is a key structural element that is essential for the structure-functions of RECQ1. Given the recent association of RECQ1 mutations with breast cancer, these results will contribute to understanding the molecular basis of RECQ1 functions in cancer etiology. PMID:27248010

  7. Exploring the binding domain of EmrE, the smallest multidrug transporter.

    PubMed

    Sharoni, Michal; Steiner-Mordoch, Sonia; Schuldiner, Shimon

    2005-09-23

    EmrE is a small multidrug transporter in Escherichia coli that extrudes various positively charged drugs across the plasma membrane in exchange with protons, thereby rendering cells resistant to these compounds. Biochemical experiments indicate that the basic functional unit of EmrE is a dimer where the common binding site for protons and substrate is formed by the interaction of an essential charged residue (Glu14) from both EmrE monomers. Previous studies implied that other residues in the vicinity of Glu14 are part of the binding domain. Alkylation of Cys replacements in the same transmembrane domain inhibits the activity of the protein and this inhibition is fully prevented by substrates of EmrE. To monitor directly the reaction we tested also the extent of modification using fluorescein-5-maleimide. While most residues are not accessible or only partially accessible, four, Y4C, I5C, L7C, and A10C, were modified at least 80%. Furthermore, preincubation with tetraphenylphosphonium reduces the reaction of two of these residues by up to 80%. To study other essential residues we generated functional hetero-oligomers and challenged them with various methane thiosulfonates. Taken together the findings imply the existence of a binding cavity accessible to alkylating reagents where at least three residues from TM1, Tyr40 from TM2, and Trp63 in TM3 are involved in substrate binding. PMID:16049002

  8. Anthrax toxin lethal factor domain 3 is highly mobile and responsive to ligand binding

    PubMed Central

    Maize, Kimberly M.; Kurbanov, Elbek K.; De La Mora-Rey, Teresa; Geders, Todd W.; Hwang, Dong-Jin; Walters, Michael A.; Johnson, Rodney L.; Amin, Elizabeth A.; Finzel, Barry C.

    2014-01-01

    The secreted anthrax toxin consists of three components: the protective antigen (PA), edema factor (EF) and lethal factor (LF). LF, a zinc metalloproteinase, compromises the host immune system primarily by targeting mitogen-activated protein kinase kinases in macrophages. Peptide substrates and small-molecule inhibitors bind LF in the space between domains 3 and 4 of the hydrolase. Domain 3 is attached on a hinge to domain 2 via residues Ile300 and Pro385, and can move through an angular arc of greater than 35° in response to the binding of different ligands. Here, multiple LF structures including five new complexes with co-crystallized inhibitors are compared and three frequently populated LF conformational states termed ‘bioactive’, ‘open’ and ‘tight’ are identified. The bioactive position is observed with large substrate peptides and leaves all peptide-recognition subsites open and accessible. The tight state is seen in unliganded and small-molecule complex structures. In this state, domain 3 is clamped over certain substrate subsites, blocking access. The open position appears to be an intermediate state between these extremes and is observed owing to steric constraints imposed by specific bound ligands. The tight conformation may be the lowest-energy conformation among the reported structures, as it is the position observed with no bound ligand, while the open and bioactive conformations are likely to be ligand-induced. PMID:25372673

  9. Bacterial SPOR domains are recruited to septal peptidoglycan by binding to glycan strands that lack stem peptides

    PubMed Central

    Yahashiri, Atsushi; Jorgenson, Matthew A.; Weiss, David S.

    2015-01-01

    Bacterial SPOR domains bind peptidoglycan (PG) and are thought to target proteins to the cell division site by binding to “denuded” glycan strands that lack stem peptides, but uncertainties remain, in part because septal-specific binding has yet to be studied in a purified system. Here we show that fusions of GFP to SPOR domains from the Escherichia coli cell-division proteins DamX, DedD, FtsN, and RlpA all localize to septal regions of purified PG sacculi obtained from E. coli and Bacillus subtilis. Treatment of sacculi with an amidase that removes stem peptides enhanced SPOR domain binding, whereas treatment with a lytic transglycosylase that removes denuded glycans reduced SPOR domain binding. These findings demonstrate unequivocally that SPOR domains localize by binding to septal PG, that the physiologically relevant binding site is indeed a denuded glycan, and that denuded glycans are enriched in septal PG rather than distributed uniformly around the sacculus. Accumulation of denuded glycans in the septal PG of both E. coli and B. subtilis, organisms separated by 1 billion years of evolution, suggests that sequential removal of stem peptides followed by degradation of the glycan backbone is an ancient feature of PG turnover during bacterial cell division. Linking SPOR domain localization to the abundance of a structure (denuded glycans) present only transiently during biogenesis of septal PG provides a mechanism for coordinating the function of SPOR domain proteins with the progress of cell division. PMID:26305949

  10. Structural insights into the specific binding of huntingtin proline-rich region with the SH3 and WW domains.

    PubMed

    Gao, Yong-Guang; Yan, Xian-Zhong; Song, Ai-Xin; Chang, Yong-Gang; Gao, Xue-Chao; Jiang, Nan; Zhang, Qi; Hu, Hong-Yu

    2006-12-01

    The interactions of huntingtin (Htt) with the SH3 domain- or WW domain-containing proteins have been implicated in the pathogenesis of Huntington's disease (HD). We report the specific interactions of Htt proline-rich region (PRR) with the SH3GL3-SH3 domain and HYPA-WW1-2 domain pair by NMR. The results show that Htt PRR binds with the SH3 domain through nearly its entire chain, and that the binding region on the domain includes the canonical PxxP-binding site and the specificity pocket. The C terminus of PRR orients to the specificity pocket, whereas the N terminus orients to the PxxP-binding site. Htt PRR can also specifically bind to WW1-2; the N-terminal portion preferentially binds to WW1, while the C-terminal portion binds to WW2. This study provides structural insights into the specific interactions between Htt PRR and its binding partners as well as the alteration of these interactions that involve PRR, which may have implications for the understanding of HD. PMID:17161366

  11. DNA and Protein Footprinting Analysis of the Modulation of DNA Binding by the N-Terminal Domain of the Saccharomyces cervisiae TATA Binding Protein

    SciTech Connect

    Gupta,S.; Cheng, H.; Mollah, A.; Jamison, E.; Morris, S.; Chance, M.; Khrapunov, S.; Brenowitz, M.

    2007-01-01

    Recombinant full-length Saccharomyces cerevisiae TATA binding protein (TBP) and its isolated C-terminal conserved core domain (TBPc) were prepared with measured high specific DNA-binding activities. Direct, quantitative comparison of TATA box binding by TBP and TBPc reveals greater affinity by TBPc for either of two high-affinity sequences at several different experimental conditions. TBPc associates more rapidly than TBP to TATA box bearing DNA and dissociates more slowly. The structural origins of the thermodynamic and kinetic effects of the N-terminal domain on DNA binding by TBP were explored in comparative studies of TBPc and TBP by 'protein footprinting' with hydroxyl radical ({center_dot}OH) side chain oxidation. Some residues within TBPc and the C-terminal domain of TBP are comparably protected by DNA, consistent with solvent accessibility changes calculated from core domain crystal structures. In contrast, the reactivity of some residues located on the top surface and the DNA-binding saddle of the C-terminal domain differs between TBP and TBPc in both the presence and absence of bound DNA; these results are not predicted from the crystal structures. A strikingly different pattern of side chain oxidation is observed for TBP when a nonionic detergent is present. Taken together, these results are consistent with the N-terminal domain actively modulating TATA box binding by TBP and nonionic detergent modulating the interdomain interaction.

  12. Identification of the Receptor Binding Domain of the Mouse Mammary Tumor Virus Envelope Protein

    PubMed Central

    Zhang, Yuanming; Rassa, John C.; deObaldia, Maria Elena; Albritton, Lorraine M.; Ross, Susan R.

    2003-01-01

    Mouse mammary tumor virus (MMTV) is a betaretrovirus that infects rodent cells and uses mouse transferrin receptor 1 for cell entry. To characterize the interaction of MMTV with its receptor, we aligned the MMTV envelope surface (SU) protein with that of Friend murine leukemia virus (F-MLV) and identified a putative receptor-binding domain (RBD) that included a receptor binding sequence (RBS) of five amino acids and a heparin-binding domain (HBD). Mutation of the HBD reduced virus infectivity, and soluble heparan sulfate blocked infection of cells by wild-type pseudovirus. Interestingly, some but not all MMTV-like elements found in primary and cultured human breast cancer cell lines, termed h-MTVs, had sequence alterations in the putative RBS. Single substitution of one of the amino acids found in an h-MTV RBS variant in the RBD of MMTV, Phe40 to Ser, did not alter species tropism but abolished both virus binding to cells and infectivity. Neutralizing anti-SU monoclonal antibodies also recognized a glutathione S-transferase fusion protein that contained the five-amino-acid RBS region from MMTV. The critical Phe40 residue is located on a surface of the MMTV RBD model that is distant from and may be structurally more rigid than the region of F-MLV RBD that contains its critical binding site residues. This suggests that, in contrast to other murine retroviruses, binding to its receptor may result in few or no changes in MMTV envelope protein conformation. PMID:12970432

  13. Sequence similarity between the erythrocyte binding domain of the Plasmodium vivax Duffy binding protein and the V3 loop of HIV-1 strain MN reveals a functional heparin binding motif involved in binding to the Duffy antigen receptor for chemokines

    PubMed Central

    2011-01-01

    Background The HIV surface glycoprotein gp120 (SU, gp120) and the Plasmodium vivax Duffy binding protein (PvDBP) bind to chemokine receptors during infection and have a site of amino acid sequence similarity in their binding domains that often includes a heparin binding motif (HBM). Infection by either pathogen has been found to be inhibited by polyanions. Results Specific polyanions that inhibit HIV infection and bind to the V3 loop of X4 strains also inhibited DBP-mediated infection of erythrocytes and DBP binding to the Duffy Antigen Receptor for Chemokines (DARC). A peptide including the HBM of PvDBP had similar affinity for heparin as RANTES and V3 loop peptides, and could be specifically inhibited from heparin binding by the same polyanions that inhibit DBP binding to DARC. However, some V3 peptides can competitively inhibit RANTES binding to heparin, but not the PvDBP HBM peptide. Three other members of the DBP family have an HBM sequence that is necessary for erythrocyte binding, however only the protein which binds to DARC, the P. knowlesi alpha protein, is inhibited by heparin from binding to erythrocytes. Heparitinase digestion does not affect the binding of DBP to erythrocytes. Conclusion The HBMs of DBPs that bind to DARC have similar heparin binding affinities as some V3 loop peptides and chemokines, are responsible for specific sulfated polysaccharide inhibition of parasite binding and invasion of red blood cells, and are more likely to bind to negative charges on the receptor than cell surface glycosaminoglycans. PMID:22122911

  14. Structural architecture and interplay of the nucleotide- and erythrocyte binding domain of the reticulocyte binding protein Py235 from Plasmodium yoelii.

    PubMed

    Grüber, Ardina; Manimekalai, Malathy S S; Preiser, Peter R; Grüber, Gerhard

    2012-11-01

    Human malaria is caused by the cyclical invasion of the host's red blood cells (RBCs) by the invasive form of the parasite, the merozoite. The invasion of the RBC involves a range of parasite ligand receptor interactions, a process which is under intensive investigation. Two protein families are known to be important in the recognition and invasion of the human erythrocyte, the erythrocyte-binding like (EBL) proteins and the reticulocyte binding like proteins, of which the Py235 family in Plasmodium yoelii is a member. Recently the nucleotide binding domain (NBD94), that plays a role in ATP sensing, and the erythrocyte binding domain (EBD) of Py235, called EBD(1-194), have been identified. Binding of ATP leads to conformational changes within Py235 from P. yoelli and results in enhanced binding of the protein to the RBC. Structural features of these domains have been obtained, providing the platform to discuss how the structural architecture creates the basis for an interplay of the sensing NBD and the EBD domain in Py235. In analogy to the receptor-mediated ligand-dimerization model of the EBL proteins PvDBP and PfEBA-175 from Plasmodium vivax and Plasmodium falciparum, respectively, we hypothesise that Py235 of P. yoelii binds via its EBD(1-194) domain to the RBC receptor, thereby inducing dimerization of the Py235-receptor complex. PMID:22878128

  15. Intrinsic Pleckstrin Homology (PH) Domain Motion in Phospholipase C-β Exposes a Gβγ Protein Binding Site.

    PubMed

    Kadamur, Ganesh; Ross, Elliott M

    2016-05-20

    Mammalian phospholipase C-β (PLC-β) isoforms are stimulated by heterotrimeric G protein subunits and members of the Rho GTPase family of small G proteins. Although recent structural studies showed how Gαq and Rac1 bind PLC-β, there is a lack of consensus regarding the Gβγ binding site in PLC-β. Using FRET between cerulean fluorescent protein-labeled Gβγ and the Alexa Fluor 594-labeled PLC-β pleckstrin homology (PH) domain, we demonstrate that the PH domain is the minimal Gβγ binding region in PLC-β3. We show that the isolated PH domain can compete with full-length PLC-β3 for binding Gβγ but not Gαq, Using sequence conservation, structural analyses, and mutagenesis, we identify a hydrophobic face of the PLC-β PH domain as the Gβγ binding interface. This PH domain surface is not solvent-exposed in crystal structures of PLC-β, necessitating conformational rearrangement to allow Gβγ binding. Blocking PH domain motion in PLC-β by cross-linking it to the EF hand domain inhibits stimulation by Gβγ without altering basal activity or Gαq response. The fraction of PLC-β cross-linked is proportional to the fractional loss of Gβγ response. Cross-linked PLC-β does not bind Gβγ in a FRET-based Gβγ-PLC-β binding assay. We propose that unliganded PLC-β exists in equilibrium between a closed conformation observed in crystal structures and an open conformation where the PH domain moves away from the EF hands. Therefore, intrinsic movement of the PH domain in PLC-β modulates Gβγ access to its binding site. PMID:27002154

  16. Inhibition of Nuclear Receptor Binding SET Domain 2/Multiple Myeloma SET Domain by LEM-06 Implication for Epigenetic Cancer Therapies

    PubMed Central

    di Luccio, Eric

    2015-01-01

    Background: Multiple myeloma SET domain (MMSET)/nuclear receptor binding SET domain 2 (NSD2) is a lysine histone methyltransferase (HMTase) and bona fide oncoprotein found aberrantly expressed in several cancers, suggesting potential role for novel therapeutic strategies. In particular, MMSET/NSD2 is emerging as a target for therapeutic interventions against multiple myeloma, especially t(4;14) myeloma that is associated with a significantly worse prognosis than other biological subgroups. Multiple myeloma is the second most common hematological malignancy in the United States, after non-Hodgkin lymphoma and remains an incurable malignancy. Thus, effective therapeutic strategies are greatly needed. HMTases inhibitors are scarce and no NSDs inhibitors have been isolated. Methods: We used homology modeling, molecular modeling simulations, virtual ligand screening, computational chemistry software for structure-activity relationship and performed in vitro H3K36 histone lysine methylation inhibitory assay using recombinant human NSD2-SET and human H3.1 histone. Results: Here, we report the discovery of LEM-06, a hit small molecule inhibitor of NSD2, with an IC50 of 0.8 mM against H3K36 methylation in vitro. Conclusions: We propose LEM-06 as a hit inhibitor that is useful to further optimize for exploring the biology of NSD2. LEM-06 derivatives may pave the way to specific NSD2 inhibitors suitable for therapeutic efforts against malignancies. PMID:26151044

  17. Structurally conserved erythrocyte-binding domain in Plasmodium provides a versatile scaffold for alternate receptor engagement

    PubMed Central

    Gruszczyk, Jakub; Lim, Nicholas T. Y.; Arnott, Alicia; He, Wen-Qiang; Nguitragool, Wang; Roobsoong, Wanlapa; Mok, Yee-Foong; Murphy, James M.; Smith, Katherine R.; Lee, Stuart; Bahlo, Melanie; Mueller, Ivo; Barry, Alyssa E.

    2016-01-01

    Understanding how malaria parasites gain entry into human red blood cells is essential for developing strategies to stop blood stage infection. Plasmodium vivax preferentially invades reticulocytes, which are immature red blood cells. The organism has two erythrocyte-binding protein families: namely, the Duffy-binding protein (PvDBP) and the reticulocyte-binding protein (PvRBP) families. Several members of the PvRBP family bind reticulocytes, specifically suggesting a role in mediating host cell selectivity of P. vivax. Here, we present, to our knowledge, the first high-resolution crystal structure of an erythrocyte-binding domain from PvRBP2a, solved at 2.12 Å resolution. The monomeric molecule consists of 10 α-helices and one short β-hairpin, and, although the structural fold is similar to that of PfRh5—the essential invasion ligand in Plasmodium falciparum—its surface properties are distinct and provide a possible mechanism for recognition of alternate receptors. Sequence alignments of the crystallized fragment of PvRBP2a with other PvRBPs highlight the conserved placement of disulfide bonds. PvRBP2a binds mature red blood cells through recognition of an erythrocyte receptor that is neuraminidase- and chymotrypsin-resistant but trypsin-sensitive. By examining the patterns of sequence diversity within field isolates, we have identified and mapped polymorphic residues to the PvRBP2a structure. Using mutagenesis, we have also defined the critical residues required for erythrocyte binding. Characterization of the structural features that govern functional erythrocyte binding for the PvRBP family provides a framework for generating new tools that block P. vivax blood stage infection. PMID:26715754

  18. A single residue mutation abolishes attachment of the CBM26 starch-binding domain from Lactobacillus amylovorus alpha-amylase.

    PubMed

    Rodríguez-Sanoja, Romina; Oviedo, N; Escalante, L; Ruiz, B; Sánchez, S

    2009-03-01

    Starch is degraded by amylases that frequently have a modular structure composed of a catalytic domain and at least one non-catalytic domain that is involved in polysaccharide binding. The C-terminal domain from the Lactobacillus amylovorus alpha-amylase has an unusual architecture composed of five tandem starch-binding domains (SBDs). These domains belong to family 26 in the carbohydrate-binding modules (CBM) classification. It has been reported that members of this family have only one site for starch binding, where aromatic amino acids perform the binding function. In SBDs, fold similarities are better conserved than sequences; nevertheless, it is possible to identify in CBM26 members at least two aromatic residues highly conserved. We attempt to explain polysaccharide recognition for the L. amylovorus alpha-amylase SBD through site-directed mutagenesis of aromatic amino acids. Three amino acids were identified as essential for binding, two tyrosines and one tryptophan. Y18L and Y20L mutations were found to decrease the SBD binding capacity, but unexpectedly, the mutation at W32L led to a total loss of affinity, either with linear or ramified substrates. The critical role of Trp 32 in substrate binding confirms the presence of just one binding site in each alpha-amylase SBD. PMID:19052787

  19. Phylogenetic Distribution and Evolution of the Linked RNA-Binding and NOT1-Binding Domains in the Tristetraprolin Family of Tandem CCCH Zinc Finger Proteins

    PubMed Central

    Perera, Lalith

    2014-01-01

    In humans, the tristetraprolin or TTP family of CCCH tandem zinc finger (TZF) proteins comprises 3 members, encoded by the genes ZFP36, ZFP36L1, and ZFP36L2. These proteins have direct orthologues in essentially all vertebrates studied, with the exception of birds, which appear to lack a version of ZFP36. Additional family members are found in rodents, amphibians, and fish. In general, the encoded proteins contain 2 critical macromolecular interaction domains: the CCCH TZF domain, which is necessary for high-affinity binding to AU-rich elements in mRNA; and an extreme C-terminal domain that, in the case of TTP, interacts with NOT1, the scaffold of a large multi-protein complex that contains deadenylases. TTP and its related proteins act by first binding to AU-rich elements in mRNA, and then recruiting deadenylases to the mRNA, where they can processively remove the adenosine residues from the poly(A) tail. Highly conserved TZF domains have been found in unicellular eukaryotes such as yeasts, and these domains can bind AU-rich elements that resemble those bound by the mammalian proteins. However, certain fungi appear to lack proteins with intact TZF domains, and the TTP family proteins that are expressed in other fungi often lack the characteristic C-terminal NOT1 binding domain found in the mammalian proteins. For these reasons, we investigated the phylogenetic distribution of the relevant sequences in available databases. Both domains are present in family member proteins from most lineages of eukaryotes, suggesting their mutual presence in a common ancestor. However, the vertebrate type of NOT1-binding domain is missing in most fungi, and the TZF domain itself has disappeared or degenerated in recently evolved fungi. Nonetheless, both domains are present together in the proteins from several unicellular eukaryotes, including at least 1 fungus, and they seem to have remained together during the evolution of metazoans. PMID:24697206

  20. Lipid binding by the Unique and SH3 domains of c-Src suggests a new regulatory mechanism

    PubMed Central

    Pérez, Yolanda; Maffei, Mariano; Igea, Ana; Amata, Irene; Gairí, Margarida; Nebreda, Angel R.; Bernadó, Pau; Pons, Miquel

    2013-01-01

    c-Src is a non-receptor tyrosine kinase involved in numerous signal transduction pathways. The kinase, SH3 and SH2 domains of c-Src are attached to the membrane-anchoring SH4 domain through the flexible Unique domain. Here we show intra- and intermolecular interactions involving the Unique and SH3 domains suggesting the presence of a previously unrecognized additional regulation layer in c-Src. We have characterized lipid binding by the Unique and SH3 domains, their intramolecular interaction and its allosteric modulation by a SH3-binding peptide or by Calcium-loaded calmodulin binding to the Unique domain. We also show reduced lipid binding following phosphorylation at conserved sites of the Unique domain. Finally, we show that injection of full-length c-Src with mutations that abolish lipid binding by the Unique domain causes a strong in vivo phenotype distinct from that of wild-type c-Src in a Xenopus oocyte model system, confirming the functional role of the Unique domain in c-Src regulation. PMID:23416516

  1. PDZ Binding Domains, Structural Disorder and Phosphorylation: A Menage-a-trois Tailing Dcp2 mRNA Decapping Enzymes.

    PubMed

    Gunawardana, Dilantha

    2016-01-01

    Diverse cellular activities are mediated through the interaction of protein domains and their binding partners. One such protein domain widely distributed in the higher metazoan world is the PDZ domain, which facilitates abundant protein-protein interactions. The PDZ domain-PDZ binding domain interaction has been implicated in several pathologies including Alzheimer's disease, Parkinson's disease and Down syndrome. PDZ domains bind to C-terminal peptides/proteins which have either of the following combinations: S/T-X-hydrophobic-COOH for type I, hydrophobic-Xhydrophobic- COOH for type II, and D/E-X-hydrophobic-COOH for type III, although hydrophobicity in the termini form the key characteristic of the PDZ-binding domains. We identified and characterized a Dcp2 type mRNA decapping enzyme from Arabidopsis thaliana, a protein containing a putative PDZ-binding domain using mutagenesis and protein biochemistry. Now we are using bioinformatics to study the Cterminal end of mRNA decapping enzymes from complex metazoans with the aim of (1) identifying putative PDZ-binding domains (2) Correlating structural disorder with PDZ binding domains and (3) Demonstrating the presence of phosphorylation sites in C-terminal extremities of Dcp2 type mRNA decapping enzymes. It is proposed here that the trinity of PDZbinding domains, structural disorder and phosphorylation-susceptible sites are a feature of the Dcp2 family of decapping enzymes and perhaps is a wider trick in protein evolution where scaffolding/tethering is a requirement for localization and function. It is critical though laboratory-based supporting evidence is sought to back-up this bioinformatics exploration into tail regions of mRNA decapping enzymes. PMID:27151193

  2. Estrogen receptor transcription and transactivation: Structure-function relationship in DNA- and ligand-binding domains of estrogen receptors

    PubMed Central

    Ruff, Marc; Gangloff, Monique; Marie Wurtz, Jean; Moras, Dino

    2000-01-01

    Estrogen receptors are members of the nuclear receptor steroid family that exhibit specific structural features, ligand-binding domain sequence identity and dimeric interactions, that single them out. The crystal structures of their DNA-binding domains give some insight into how nuclear receptors discriminate between DNA response elements. The various ligand-binding domain crystal structures of the two known estrogen receptor isotypes (α and β) allow one to interpret ligand specificity and reveal the interactions responsible for stabilizing the activation helix H12 in the agonist and antagonist positions. PMID:11250728

  3. Crystal structure of the trithorax group protein ASH2L reveals a forkhead-like DNA binding domain

    SciTech Connect

    Sarvan, Sabina; Avdic, Vanja; Tremblay, Véronique; Chaturvedi, Chandra-Prakash; Zhang, Pamela; Lanouette, Sylvain; Blais, Alexandre; Brunzelle, Joseph S; Brand, Marjorie; Couture, Jean-François

    2012-05-02

    Absent, small or homeotic discs-like 2 (ASH2L) is a trithorax group (TrxG) protein and a regulatory subunit of the SET1 family of lysine methyltransferases. Here we report that ASH2L binds DNA using a forkhead-like helix-wing-helix (HWH) domain. In vivo, the ASH2L HWH domain is required for binding to the {beta}-globin locus control region, histone H3 Lys4 (H3K4) trimethylation and maximal expression of the {beta}-globin gene (Hbb-1), validating the functional importance of the ASH2L DNA binding domain.

  4. Structural, biochemical, and functional characterization of the cyclic nucleotide binding homology domain from the mouse EAG1 potassium channel.

    PubMed

    Marques-Carvalho, Maria J; Sahoo, Nirakar; Muskett, Frederick W; Vieira-Pires, Ricardo S; Gabant, Guillaume; Cadene, Martine; Schönherr, Roland; Morais-Cabral, João H

    2012-10-12

    KCNH channels are voltage-gated potassium channels with important physiological functions. In these channels, a C-terminal cytoplasmic region, known as the cyclic nucleotide binding homology (CNB-homology) domain displays strong sequence similarity to cyclic nucleotide binding (CNB) domains. However, the isolated domain does not bind cyclic nucleotides. Here, we report the X-ray structure of the CNB-homology domain from the mouse EAG1 channel. Through comparison with the recently determined structure of the CNB-homology domain from the zebrafish ELK (eag-like K(+)) channel and the CNB domains from the MlotiK1 and HCN (hyperpolarization-activated cyclic nucleotide-gated) potassium channels, we establish the structural features of CNB-homology domains that explain the low affinity for cyclic nucleotides. Our structure establishes that the "self-liganded" conformation, where two residues of the C-terminus of the domain are bound in an equivalent position to cyclic nucleotides in CNB domains, is a conserved feature of CNB-homology domains. Importantly, we provide biochemical evidence that suggests that there is also an unliganded conformation where the C-terminus of the domain peels away from its bound position. A functional characterization of this unliganded conformation reveals a role of the CNB-homology domain in channel gating. PMID:22732247

  5. NMDA receptor desensitization regulated by direct binding to PDZ1-2 domains of PSD-95

    PubMed Central

    Sornarajah, Lavan; Vasuta, Oana Cristina; Zhang, Lily; Sutton, Christine; Li, Bo; El-Husseini, Alaa; Raymond, Lynn A.

    2010-01-01

    Regulation of NMDA receptor (NMDAR) activity by desensitization is important in physiological and pathological states; NMDAR desensitization contributes in shaping synaptic responses and may be protective by limiting calcium influx during sustained glutamate insults. We previously reported that glycine-independent desensitization decreases during hippocampal neuronal development, correlating with NMDAR synaptic localization and association with post-synaptic density 95 (PSD-95). PSD-95/Discs large/zona occludens (PDZ)-1,2 domains of PSD-95 bind to the C-terminus of NMDAR NR2 subunits. The role of PSD-95 in anchoring signaling proteins near NMDARs is well documented. To determine if PSD-95-induced changes in NMDAR desensitization occur because of direct binding to NR2 or due to recruitment of regulatory proteins, we tested the effects of various PSD-95 constructs on NMDAR currents in human embryonic kidney 293 (HEK293) cells and neurons. In HEK cells, wild-type PSD-95 significantly reduced wild-type NMDAR desensitization without altering currents of NMDARs containing NR2A-S1462A, a mutation that abolishes PSD-95 binding. The PSD-95 N-terminus truncated after the PDZ1-2 domains was sufficient for this effect in neurons with low endogenous PSD-95 levels; in NMDAR-expressing HEK cells, the effect persisted when PSD-95 multimerization was eliminated. Moreover, other PSD-95 family members with highly homologous PDZ1-2 domains significantly reduced NMDAR desensitization. In mature neurons, disruption of PSD-95/NMDAR interaction through protein kinase C (PKC) activation increased desensitization to levels found in immature neurons, and this effect was not due to PKC direct regulation of NMDAR activity. We conclude that direct binding of PSD-95 increases stability of NMDAR responses to agonist exposure in neuronal and non-neuronal cells. PMID:18400955

  6. Streptococcus pneumoniae Genome-wide Identification and Characterization of BOX Element-binding Domains.

    PubMed

    Zhang, Qiao; Wang, Changzheng; Wan, Min; Wu, Yin; Ma, Qianli

    2015-11-01

    The BOX elements are short repetitive DNA sequences that distribute randomly in intergenic regions of the Streptococcus pneumoniae genome. The function and origin of such elements are still unknown, but they were found to modulate expression of neighboring genes. Evidences suggested that the modulation's mechanism can be fulfilled by sequence-specific interaction of BOX elements with transcription factor family proteins. However, the type and function of these BOX-binding proteins still remain largely unexplored to date. In the current study we described a synthetic protocol to investigate the recognition and interaction between a highly conserved site of BOX elements and the DNA-binding domains of a variety of putative transcription factors in the pneumococcal genome. With the protocol we were able to predict those high-affinity domain binders of the conserved BOX DNA site (BOX DNA) in a high-throughput manner, and analyzed sequence-specific interaction in the domainDNA recognition at molecular level. Consequently, a number of putative transcription factor domains with both high affinity and specificity for the BOX DNA were identified, from which the helix-turn-helix (HTH) motif of a small heat shock factor was selected as a case study and tested for its binding capability toward the double-stranded BOX DNA using fluorescence anisotropy analysis. As might be expected, a relatively high affinity was detected for the interaction of HTH motif with BOX DNA with dissociation constant at nanomolar level. Molecular dynamics simulation, atomic structure examination and binding energy analysis revealed a complicated network of intensive nonbonded interactions across the complex interface, which confers both stability and specificity for the complex architecture. PMID:27491035

  7. The TCF C-clamp DNA binding domain expands the Wnt transcriptome via alternative target recognition

    PubMed Central

    Hoverter, Nate P.; Zeller, Michael D.; McQuade, Miriam M.; Garibaldi, Angela; Busch, Anke; Selwan, Elizabeth M.; Hertel, Klemens J.; Baldi, Pierre; Waterman, Marian L.

    2014-01-01

    LEF/TCFs direct the final step in Wnt/β-catenin signalling by recruiting β-catenin to genes for activation of transcription. Ancient, non-vertebrate TCFs contain two DNA binding domains, a High Mobility Group box for recognition of the Wnt Response Element (WRE; 5′-CTTTGWWS-3′) and the C-clamp domain for recognition of the GC-rich Helper motif (5′-RCCGCC-3′). Two vertebrate TCFs (TCF-1/TCF7 and TCF-4/TCF7L2) use the C-clamp as an alternatively spliced domain to regulate cell-cycle progression, but how the C-clamp influences TCF binding and activity genome-wide is not known. Here, we used a doxycycline inducible system with ChIP-seq to assess how the C-clamp influences human TCF1 binding genome-wide. Metabolic pulse-labeling of nascent RNA with 4′Thiouridine was used with RNA-seq to connect binding to the Wnt transcriptome. We find that the C-clamp enables targeting to a greater number of gene loci for stronger occupancy and transcription regulation. The C-clamp uses Helper sites concurrently with WREs for gene targeting, but it also targets TCF1 to sites that do not have readily identifiable canonical WREs. The coupled ChIP-seq/4′Thiouridine-seq analysis identified new Wnt target genes, including additional regulators of cell proliferation. Thus, C-clamp containing isoforms of TCFs are potent transcriptional regulators with an expanded transcriptome directed by C-clamp-Helper site interactions. PMID:25414359

  8. Functional connectivity between tRNA binding domains in glutaminyl-tRNA synthetase.

    PubMed

    Sherman, J M; Thomann, H U; Söll, D

    1996-03-15

    The structure of Escherichia coli glutaminyl-tRNA synthetase (GlnRS) in complex with tRNAGln and ATP has identified a number a sequence-specific protein-tRNA interactions. The contribution to glutamine identity has previously been determined for the nucleotides in tRNAGln. Here, we report the mutational analysis of residues in all three tRNA recognition domains of GlnRS, thus completing a survey of the major sequence-specific contacts between GlnRS and tRNAGln. Specifically, we analyzed the GlnRS determinants involved in recognition of the anticodon which is essential for glutamine identity and in the communication of anticodon recognition to the acceptor binding domain in GlnRS. A combined in vivo and in vitro approach has demonstrated that Arg341, which makes a single sequence-specific hydrogen bond with U35 in the anticodon of tRNAGln, is involved in initial RNA recognition and is an important positive determinant for this base in both cognate and non- cognate tRNA contexts. However, Arg341, as well as Arg402, which interacts with G36 in the anticodon, are negative determinants for non-cognate nucleotides at their respective positions. Analysis of acceptor-anticodon binding double mutants and of a mutation of Glu323 in the loop-strand-helix connectivity subdomain in GlnRS has further implicated this domain in the functional communication of anticodon recognition. The better than expected activity (anticooperativity) of these double mutants has led us to propose an "anticodon-independent" mechanism, in which the removal of certain synthetase interactions with the anticodon eliminates structural constraints, thus allowing the relaxed specificity mutants in the acceptor binding domain ot make more productive interactions. PMID:8601833

  9. Molecular interfaces of the galactose-binding protein Tectonin domains in host-pathogen interaction.

    PubMed

    Low, Diana Hooi Ping; Frecer, Vladimir; Le Saux, Agnès; Srinivasan, Ganesh Anand; Ho, Bow; Chen, Jianzhu; Ding, Jeak Ling

    2010-03-26

    Beta-propeller proteins function in catalysis, protein-protein interaction, cell cycle regulation, and innate immunity. The galactose-binding protein (GBP) from the plasma of the horseshoe crab, Carcinoscorpius rotundicauda, is a beta-propeller protein that functions in antimicrobial defense. Studies have shown that upon binding to Gram-negative bacterial lipopolysaccharide (LPS), GBP interacts with C-reactive protein (CRP) to form a pathogen-recognition complex, which helps to eliminate invading microbes. However, the molecular basis of interactions between GBP and LPS and how it interplays with CRP remain largely unknown. By homology modeling, we showed that GBP contains six beta-propeller/Tectonin domains. Ligand docking indicated that Tectonin domains 6 to 1 likely contain the LPS binding sites. Protein-protein interaction studies demonstrated that Tectonin domain 4 interacts most strongly with CRP. Hydrogen-deuterium exchange mass spectrometry mapped distinct sites of GBP that interact with LPS and with CRP, consistent with in silico predictions. Furthermore, infection condition (lowered Ca(2+) level) increases GBP-CRP affinity by 1000-fold. Resupplementing the system with a physiological level of Ca(2+) did not reverse the protein-protein affinity to the basal state, suggesting that the infection-induced complex had undergone irreversible conformational change. We propose that GBP serves as a bridging molecule, participating in molecular interactions, GBP-LPS and GBP-CRP, to form a stable pathogen-recognition complex. The interaction interfaces in these two partners suggest that Tectonin domains can differentiate self/nonself, crucial to frontline defense against infection. In addition, GBP shares architectural and functional homologies to a human protein, hTectonin, suggesting its evolutionarily conservation for approximately 500 million years, from horseshoe crab to human. PMID:20118243

  10. Domains of ERRgamma that mediate homodimerization and interaction with factors stimulating DNA binding.

    PubMed

    Hentschke, Moritz; Süsens, Ute; Borgmeyer, Uwe

    2002-08-01

    The estrogen receptor-related receptor gamma (ERRgamma/ERR3/NR3B3) is an orphan member of the nuclear receptor superfamily closely related to the estrogen receptors. To explore the DNA binding characteristics, the protein-DNA interaction was studied in electrophoretic mobility shift assays (EMSAs). In vitro translated ERRgamma binds as a homodimer to direct repeats (DR) without spacing of the nuclear receptor half-site 5'-AGGTCA-3' (DR-0), to extended half-sites, and to the inverted estrogen response element. Using ERRgamma deletion constructs, binding was found to be dependent on the presence of sequences in the ligand binding domain (LBD). A far-Western analysis revealed that ERRgamma forms dimers even in the absence of DNA. Two elements, located in the hinge region and in the LBD, respectively, are necessary for DNA-independent dimerization. DNA binding of bacterial expressed ERRgamma requires additional factors present in the serum and in cellular extracts. Fusion proteins of the germ cell nuclear factor (GCNF/NR6A1) with ERRgamma showed that the characteristic feature to be stimulated by additional factors can be transferred to a heterologous protein. The stimulating activity was further characterized and its target sequence narrowed down to a small element in the hinge region. PMID:12180985

  11. Identification of the integrin binding domain of the Yersinia pseudotuberculosis invasin protein.

    PubMed

    Leong, J M; Fournier, R S; Isberg, R R

    1990-06-01

    The invasin protein of the pathogenic Yersinia pseudotuberculosis mediates entry of the bacterium into cultured mammalian cells by binding several beta 1 chain integrins. In this study, we identified the region of invasin responsible for cell recognition. Thirty-two monoclonal antibodies directed against invasin were isolated, and of those, six blocked cell attachment to invasin. These six antibodies recognized epitopes within the last 192 amino acids of invasin. Deletion mutants of invasin and maltose-binding protein (MBP)--invasin fusion proteins were generated and tested for cell attachment. All of the invasin derivatives that carried the carboxyl-terminal 192 amino acids retained cell binding activity. One carboxyl-terminal invasin fragment and seven MBP--invasin fusion proteins were purified. The purified derivatives that retained binding activity inhibited bacterial entry into cultured mammalian cells. These results indicated that the carboxyl-terminal 192 amino acids of invasin contains the integrin-binding domain, even though this region does not contain the tripeptide sequence Arg-Gly-Asp. PMID:1693333

  12. In vivo binding properties of SH2 domains from GTPase-activating protein and phosphatidylinositol 3-kinase.

    PubMed Central

    Cooper, J A; Kashishian, A

    1993-01-01

    We have used a transient expression system and mutant platelet-derived growth factor (PDGF) receptors to study the binding specificities of the Src homology 2 (SH2) regions of the Ras GTPase-activator protein (GAP) and the p85 alpha subunit of phosphatidylinositol 3-kinase (PI3 kinase). A number of fusion proteins, each tagged with an epitope allowing recognition by a monoclonal antibody, were expressed at levels comparable to those of endogenous GAP. Fusion proteins containing the central SH2-SH3-SH2 region of GAP or the C-terminal region of p85 alpha, which includes two SH2 domains, bound to PDGF receptors in response to PDGF stimulation. Both fusion proteins showed the same requirements for tyrosine phosphorylation sites in the PDGF receptor as the full-length proteins from which they were derived, i.e., binding of the GAP fusion protein was reduced by mutation of Tyr-771, and binding of the p85 fusion protein was reduced by mutation of Tyr-740, Tyr-751, or both residues. Fusion proteins containing single SH2 domains from either GAP or p85 alpha did not bind detectably to PDGF receptors in this system, suggesting that two SH2 domains in a single polypeptide cooperate to raise the affinity of binding. The sequence specificities of individual SH2 domains were deduced from the binding properties of fusion proteins containing one SH2 domain from GAP and another from p85. The results suggest that the C-terminal GAP SH2 domain specifies binding to Tyr-771, the C-terminal p85 alpha SH2 domain binds to either Tyr-740 or Tyr-751, and each protein's N-terminal SH2 domain binds to unidentified phosphorylation sites.(ABSTRACT TRUNCATED AT 250 WORDS) Images PMID:8382774

  13. On the interactions between nucleotide binding domains and membrane spanning domains in cystic fibrosis transmembrane regulator: A molecular dynamic study.

    PubMed

    Belmonte, Luca; Moran, Oscar

    2015-04-01

    The Cystic Fibrosis Transmembrane Regulator (CFTR) is a membrane protein whose mutations cause cystic fibrosis, a lethal genetic disease. We performed a molecular dynamic (MD) study of the properties of the nucleotide binding domains (NBD) whose conformational changes, upon ATP binding, are the direct responsible of the gating mechanisms of CFTR. This study was done for the wild type (WT) CFTR and for the two most common mutations, ΔF508, that produces a traffic defect of the protein, and the mutation G551D, that causes a gating defect on CFTR. Using an homology model of the open channel conformation of the CFTR we thus introduced the mutations to the structure. Although the overall structures of the G551D and ΔF508 are quite well conserved, the NBD1-NBD2 interactions are severely modified in both mutants. NBD1 and NBD2 are indeed destabilized with a higher internal energy (Ei) in the ΔF508-CFTR. Differently, Ei does not change in the NBDs of G551D but, while the number of close contacts between NBD1 and NBD2 in ΔF508 is increased, a significant reduction of close contacts is found in the G551D mutated form. Hydrogen bonds formation between NBDs of the two mutated forms is also altered and it is slightly increased for the ΔF508, while are severely reduced in G551D. A consequent modification of the NBDs-ICLs interactions between residues involved in the transduction of the ATP binding and the channel gating is also registered. Indeed, while a major interaction is noticed between NBDs interface and ICL2 and ICL4 in the WT, this interaction is somehow altered in both mutated forms plausibly with effect on channel gating. Thus, single point mutations of the CFTR protein can reasonably results in channel gating defects due to alteration of the interaction mechanisms between the NBDs and NBDs-ICLs interfaces upon ATP-binding process. PMID:25640670

  14. Structure, function, and tethering of DNA-binding domains in σ⁵⁴ transcriptional activators.

    PubMed

    Vidangos, Natasha; Maris, Ann E; Young, Anisa; Hong, Eunmi; Pelton, Jeffrey G; Batchelor, Joseph D; Wemmer, David E

    2013-12-01

    We compare the structure, activity, and linkage of DNA-binding domains (DBDs) from σ(54) transcriptional activators and discuss how the properties of the DBDs and the linker to the neighboring domain are affected by the overall properties and requirements of the full proteins. These transcriptional activators bind upstream of specific promoters that utilize σ(54)-polymerase. Upon receiving a signal the activators assemble into hexamers, which then, through adenosine triphosphate (ATP) hydrolysis, drive a conformational change in polymerase that enables transcription initiation. We present structures of the DBDs of activators nitrogen regulatory protein C 1 (NtrC1) and Nif-like homolog 2 (Nlh2) from the thermophile Aquifex aeolicus. The structures of these domains and their relationship to other parts of the activators are discussed. These structures are compared with previously determined structures of the DBDs of NtrC4, NtrC, ZraR, and factor for inversion stimulation. The N-terminal linkers that connect the DBDs to the central domains in NtrC1 and Nlh2 were studied and found to be unstructured. Additionally, a crystal structure of full-length NtrC1 was solved, but density of the DBDs was extremely weak, further indicating that the linker between ATPase and DBDs functions as a flexible tether. Flexible linking of ATPase and DBDs is likely necessary to allow assembly of the active hexameric ATPase ring. The comparison of this set of activators also shows clearly that strong dimerization of the DBD only occurs when other domains do not dimerize strongly. PMID:23818155

  15. Defining the Erythrocyte Binding Domains of Plasmodium vivax Tryptophan Rich Antigen 33.5

    PubMed Central

    Bora, Hema; Tyagi, Rupesh Kumar; Sharma, Yagya Dutta

    2013-01-01

    Tryptophan-rich antigens play important role in host-parasite interaction. One of the Plasmodium vivax tryptophan-rich antigens called PvTRAg33.5 had earlier been shown to be predominantly of alpha helical in nature with multidomain structure, induced immune responses in humans, binds to host erythrocytes, and its sequence is highly conserved in the parasite population. In the present study, we divided this protein into three different parts i.e. N-terminal (amino acid position 24–106), middle (amino acid position 107–192), and C-terminal region (amino acid position 185–275) and determined the erythrocyte binding activity of these fragments. This binding activity was retained by the middle and C-terminal fragments covering 107 to 275 amino acid region of the PvTRAg33.5 protein. Eight non-overlapping peptides covering this 107 to 275 amino acid region were then synthesized and tested for their erythrocyte binding activity to further define the binding domains. Only two peptides, peptide P4 (at 171–191 amino acid position) and peptide P8 (at 255–275 amino acid position), were found to contain the erythrocyte binding activity. Competition assay revealed that each peptide recognizes its own erythrocyte receptor. These two peptides were found to be located on two parallel helices at one end of the protein in the modelled structure and could be exposed on its surface to form a suitable site for protein-protein interaction. Natural antibodies present in the sera of the P. vivax exposed individuals or the polyclonal rabbit antibodies against this protein were able to inhibit the erythrocyte binding activity of PvTRAg33.5, its fragments, and these two synthetic peptides P4 and P8. Further studies on receptor-ligand interaction might lead to the development of the therapeutic reagent. PMID:23638151

  16. Identification of the Calmodulin-Binding Domains of Fas Death Receptor

    PubMed Central

    Chang, Bliss J.; Samal, Alexandra B.; Vlach, Jiri; Fernandez, Timothy F.; Brooke, Dewey; Prevelige, Peter E.; Saad, Jamil S.

    2016-01-01

    The extrinsic apoptotic pathway is initiated by binding of a Fas ligand to the ectodomain of the surface death receptor Fas protein. Subsequently, the intracellular death domain of Fas (FasDD) and that of the Fas-associated protein (FADD) interact to form the core of the death-inducing signaling complex (DISC), a crucial step for activation of caspases that induce cell death. Previous studies have shown that calmodulin (CaM) is recruited into the DISC in cholangiocarcinoma cells and specifically interacts with FasDD to regulate the apoptotic/survival signaling pathway. Inhibition of CaM activity in DISC stimulates apoptosis significantly. We have recently shown that CaM forms a ternary complex with FasDD (2:1 CaM:FasDD). However, the molecular mechanism by which CaM binds to two distinct FasDD motifs is not fully understood. Here, we employed mass spectrometry, nuclear magnetic resonance (NMR), biophysical, and biochemical methods to identify the binding regions of FasDD and provide a molecular basis for the role of CaM in Fas–mediated apoptosis. Proteolytic digestion and mass spectrometry data revealed that peptides spanning residues 209–239 (Fas-Pep1) and 251–288 (Fas-Pep2) constitute the two CaM-binding regions of FasDD. To determine the molecular mechanism of interaction, we have characterized the binding of recombinant/synthetic Fas-Pep1 and Fas-Pep2 peptides with CaM. Our data show that both peptides engage the N- and C-terminal lobes of CaM simultaneously. Binding of Fas-Pep1 to CaM is entropically driven while that of Fas-Pep2 to CaM is enthalpically driven, indicating that a combination of electrostatic and hydrophobic forces contribute to the stabilization of the FasDD–CaM complex. Our data suggest that because Fas-Pep1 and Fas-Pep2 are involved in extensive intermolecular contacts with the death domain of FADD, binding of CaM to these regions may hinder its ability to bind to FADD, thus greatly inhibiting the initiation of apoptotic signaling

  17. Identification of the Calmodulin-Binding Domains of Fas Death Receptor.

    PubMed

    Chang, Bliss J; Samal, Alexandra B; Vlach, Jiri; Fernandez, Timothy F; Brooke, Dewey; Prevelige, Peter E; Saad, Jamil S

    2016-01-01

    The extrinsic apoptotic pathway is initiated by binding of a Fas ligand to the ectodomain of the surface death receptor Fas protein. Subsequently, the intracellular death domain of Fas (FasDD) and that of the Fas-associated protein (FADD) interact to form the core of the death-inducing signaling complex (DISC), a crucial step for activation of caspases that induce cell death. Previous studies have shown that calmodulin (CaM) is recruited into the DISC in cholangiocarcinoma cells and specifically interacts with FasDD to regulate the apoptotic/survival signaling pathway. Inhibition of CaM activity in DISC stimulates apoptosis significantly. We have recently shown that CaM forms a ternary complex with FasDD (2:1 CaM:FasDD). However, the molecular mechanism by which CaM binds to two distinct FasDD motifs is not fully understood. Here, we employed mass spectrometry, nuclear magnetic resonance (NMR), biophysical, and biochemical methods to identify the binding regions of FasDD and provide a molecular basis for the role of CaM in Fas-mediated apoptosis. Proteolytic digestion and mass spectrometry data revealed that peptides spanning residues 209-239 (Fas-Pep1) and 251-288 (Fas-Pep2) constitute the two CaM-binding regions of FasDD. To determine the molecular mechanism of interaction, we have characterized the binding of recombinant/synthetic Fas-Pep1 and Fas-Pep2 peptides with CaM. Our data show that both peptides engage the N- and C-terminal lobes of CaM simultaneously. Binding of Fas-Pep1 to CaM is entropically driven while that of Fas-Pep2 to CaM is enthalpically driven, indicating that a combination of electrostatic and hydrophobic forces contribute to the stabilization of the FasDD-CaM complex. Our data suggest that because Fas-Pep1 and Fas-Pep2 are involved in extensive intermolecular contacts with the death domain of FADD, binding of CaM to these regions may hinder its ability to bind to FADD, thus greatly inhibiting the initiation of apoptotic signaling pathway

  18. An Aptamer against the Matrix Binding Domain on the Hepatitis B Virus Capsid Impairs Virion Formation

    PubMed Central

    Orabi, Ahmed; Bieringer, Maria; Geerlof, Arie

    2015-01-01

    ABSTRACT The hepatitis B virus (HBV) particle is an icosahedral nucleocapsid surrounded by a lipid envelope containing viral surface proteins. A small domain (matrix domain [MD]) in the large surface protein L and a narrow region (matrix binding domain [MBD]) including isoleucine 126 on the capsid surface have been mapped, in which point mutations such as core I126A specifically blocked nucleocapsid envelopment. It is possible that the two domains interact with each other during virion morphogenesis. By the systematic evolution of ligands by exponential enrichment (SELEX) method, we evolved DNA aptamers from an oligonucleotide library binding to purified recombinant capsids but not binding to the corresponding I126A mutant capsids. Aptamers bound to capsids were separated from unbound molecules by filtration. After 13 rounds of selections and amplifications, 16 different aptamers were found among 73 clones. The four most frequent aptamers represented more than 50% of the clones. The main aptamer, AO-01 (13 clones, 18%), showed the lowest dissociation constant (Kd) of 180 ± 82 nM for capsid binding among the four molecules. Its Kd for I126A capsids was 1,306 ± 503 nM. Cotransfection of Huh7 cells with AO-01 and an HBV genomic construct resulted in 47% inhibition of virion production at 3 days posttransfection, but there was no inhibition by cotransfection of an aptamer with a random sequence. The half-life of AO-01 in cells was 2 h, which might explain the incomplete inhibition. The results support the importance of the MBD for nucleocapsid envelopment. Inhibiting the MD-MBD interaction with a low-molecular-weight substance might represent a new approach for an antiviral therapy. IMPORTANCE Approximately 240 million people are persistently infected with HBV. To date, antiviral therapies depend on a single target, the viral reverse transcriptase. Future additional targets could be viral protein-protein interactions. We selected a 55-base-long single-stranded DNA

  19. Novel DNA-binding element within the C-terminal extension of the nuclear receptor DNA-binding domain

    PubMed Central

    Jakób, Michał; Kołodziejczyk, Robert; Orłowski, Marek; Krzywda, Szymon; Kowalska, Agnieszka; Dutko-Gwóźdź, Joanna; Gwóźdź, Tomasz; Kochman, Marian; Jaskólski, Mariusz; Ożyhar, Andrzej

    2007-01-01

    The heterodimer of the ecdysone receptor (EcR) and ultraspiracle (Usp), members of the nuclear receptors superfamily, is considered as the functional receptor for ecdysteroids initiating molting and metamorphosis in insects. Here we report the 1.95 Å structure of the complex formed by the DNA-binding domains (DBDs) the EcR and the Usp, bound to the natural pseudopalindromic response element. Comparison of the structure with that obtained previously, using an idealized response element, shows how the EcRDBD, which has been previously reported to possess extraordinary flexibility, accommodates DNA-induced structural changes. Part of the C-terminal extension (CTE) of the EcRDBD folds into an α-helix whose location in the minor groove does not match any of the locations previously observed for nuclear receptors. Mutational analyses suggest that the α-helix is a component of EcR-box, a novel element indispensable for DNA-binding and located within the nuclear receptor CTE. This element seems to be a general feature of all known EcRs. PMID:17426125

  20. A green fluorescent protein solubility screen in E. coli reveals domain boundaries of the GTP-binding domain in the P element transposase

    PubMed Central

    Sabogal, Alex; Rio, Donald C

    2010-01-01

    Guanosine triphosphate (GTP) binding and hydrolysis events often act as molecular switches in proteins, modulating conformational changes between active and inactive states in many signaling molecules and transport systems. The P element transposase of Drosophila melanogaster requires GTP binding to proceed along its reaction pathway, following initial site-specific DNA binding. GTP binding is unique to P elements and may represent a novel form of transpositional regulation, allowing the bound transposase to find a second site, looping the transposon DNA for strand cleavage and excision. The GTP-binding activity has been previously mapped to the central portion of the transposase protein; however, the P element transposase contains little sequence identity with known GTP-binding folds. To identify soluble, active transposase domains, a GFP solubility screen was used testing the solubility of random P element gene fragments in E. coli. The screen produced a single clone spanning known GTP-binding residues in the central portion of the transposase coding region. This clone, amino acids 275–409 in the P element transposase, was soluble, highly expressed in E.coli and active for GTP-binding activity, therefore is a candidate for future biochemical and structural studies. In addition, the chimeric screen revealed a minimal N-terminal THAP DNA-binding domain attached to an extended leucine zipper coiled-coil dimerization domain in the P element transposase, precisely delineating the DNA-binding and dimerization activities on the primary sequence. This study highlights the use of a GFP-based solubility screen on a large multidomain protein to identify highly expressed, soluble truncated domain subregions. PMID:20842711

  1. Temperature dependence of estrogen binding: importance of a subzone in the ligand binding domain of a novel piscine estrogen receptor.

    PubMed

    Tan, N S; Frecer, V; Lam, T J; Ding, J L

    1999-11-11

    The full length estrogen receptor from Oreochromis aureus (OaER) was cloned and expressed in vitro and in vivo as a functional transcription factor. Amino acid residues involved in the thermal stability of the receptor are located at/near subzones beta1 and beta3, which are highly conserved in other non-piscine species but not in OaER. Hormone binding studies, however, indicate that OaER is thermally stable but exhibited a approximately 3-fold reduced affinity for estrogen at elevated temperatures. Transfection of OaER into various cell lines cultured at different temperatures displayed a significant estrogen dose-response shift compared with that of chicken ER (cER). At 37 degrees C, OaER requires approximately 80-fold more estrogen to achieve half-maximal stimulation of CAT. Lowering of the incubation temperature from 37 degrees C to 25 degrees C or 20 degrees C resulted in a 4-fold increase in its affinity for estrogen. The thermally deficient transactivation of OaER at temperatures above 25 degrees C was fully prevented by high levels of estrogen. Thus, compared to cER, the OaER exhibits reduced affinity for estrogen at elevated temperature as reflected in its deficient transactivation capability. Amino acid replacements of OaER beta3 subzones with corresponding amino acids from cER could partially rescue this temperature sensitivity. The three-dimensional structure of the OaER ligand binding domain (LBD) was modelled based on conformational similarity and sequence homology with human RXRalpha apo, RARgamma holo and ERalpha LBDs. Unliganded and 17beta-estradiol-liganded OaER LBD retained the overall folding pattern of the nuclear receptor LBDs. The residues at/near the subzone beta3 of the LBD constitute the central core of OaER structure. Thus, amino acid alteration at this region potentially alters the structure and consequently its temperature-dependent ligand binding properties. PMID:10559464

  2. Crystal structure of the nucleotide-binding domain of mortalin, the mitochondrial Hsp70 chaperone

    PubMed Central

    Amick, Joseph; Schlanger, Simon E; Wachnowsky, Christine; Moseng, Mitchell A; Emerson, Corey C; Dare, Michelle; Luo, Wen-I; Ithychanda, Sujay S; Nix, Jay C; Cowan, J A; Page, Richard C; Misra, Saurav

    2014-01-01

    Mortalin, a member of the Hsp70-family of molecular chaperones, functions in a variety of processes including mitochondrial protein import and quality control, Fe-S cluster protein biogenesis, mitochondrial homeostasis, and regulation of p53. Mortalin is implicated in regulation of apoptosis, cell stress response, neurodegeneration, and cancer and is a target of the antitumor compound MKT-077. Like other Hsp70-family members, Mortalin consists of a nucleotide-binding domain (NBD) and a substrate-binding domain. We determined the crystal structure of the NBD of human Mortalin at 2.8 Å resolution. Although the Mortalin nucleotide-binding pocket is highly conserved relative to other Hsp70 family members, we find that its nucleotide affinity is weaker than that of Hsc70. A Parkinson's disease-associated mutation is located on the Mortalin-NBD surface and may contribute to Mortalin aggregation. We present structure-based models for how the Mortalin-NBD may interact with the nucleotide exchange factor GrpEL1, with p53, and with MKT-077. Our structure may contribute to the understanding of disease-associated Mortalin mutations and to improved Mortalin-targeting antitumor compounds. PMID:24687350

  3. A new metal binding domain involved in cadmium, cobalt and zinc transport.

    PubMed

    Smith, Aaron T; Barupala, Dulmini; Stemmler, Timothy L; Rosenzweig, Amy C

    2015-09-01

    The P1B-ATPases, which couple cation transport across membranes to ATP hydrolysis, are central to metal homeostasis in all organisms. An important feature of P1B-ATPases is the presence of soluble metal binding domains (MBDs) that regulate transport activity. Only one type of MBD has been characterized extensively, but bioinformatics analyses indicate that a diversity of MBDs may exist in nature. Here we report the biochemical, structural and functional characterization of a new MBD from the Cupriavidus metallidurans P1B-4-ATPase CzcP (CzcP MBD). The CzcP MBD binds two Cd(2+), Co(2+) or Zn(2+) ions in distinct and unique sites and adopts an unexpected fold consisting of two fused ferredoxin-like domains. Both in vitro and in vivo activity assays using full-length CzcP, truncated CzcP and several variants indicate a regulatory role for the MBD and distinct functions for the two metal binding sites. Taken together, these findings elucidate a previously unknown MBD and suggest new regulatory mechanisms for metal transport by P1B-ATPases. PMID:26192600

  4. A new metal binding domain involved in cadmium, cobalt and zinc transport

    PubMed Central

    Smith, Aaron T.; Barupala, Dulmini; Stemmler, Timothy L.; Rosenzweig, Amy C.

    2015-01-01

    The P1B-ATPases, which couple cation transport across membranes to ATP hydrolysis, are central to metal homeostasis in all organisms. An important feature of P1B-ATPases is the presence of soluble metal binding domains that regulate transport activity. Only one type of MBD has been characterized extensively, but bioinformatics analyses indicate that a diversity of MBDs may exist in nature. Here we report the biochemical, structural, and functional characterization of a new MBD from the Cupriavidus metallidurans P1B-4-ATPase CzcP (CzcP MBD). The CzcP MBD binds two Cd2+, Co2+, or Zn2+ ions in distinct and unique sites, and adopts an unexpected fold consisting of two fused ferredoxin-like domains. Both in vitro and in vivo activity assays using full length CzcP, truncated CzcP, and several variants indicate a regulatory role for the MBD and distinct functions for the two metal binding sites. Taken together, these findings elucidate a previously unknown MBD and suggest new regulatory mechanisms for metal transport by P1B-ATPases. PMID:26192600

  5. The influence of adnectin binding on the extracellular domain of epidermal growth factor receptor

    PubMed Central

    Iacob, Roxana E.; Chen, Guodong; Ahn, Joomi; Houel, Stephane; Wei, Hui; Mo, Jingjie; Tao, Li; Cohen, Daniel; Xie, Dianlin; Lin, Zheng; Morin, Paul E.; Doyle, Michael L.; Tymiak, Adrienne A.; Engen, John R.

    2014-01-01

    The precise and unambiguous elucidation and characterization of interactions between a high affinity recognition entity and its cognate protein provides important insights for the design and development of drugs with optimized properties and efficacy. In oncology, one important target protein has been shown to be the epidermal growth factor receptor (EGFR) through the development of therapeutic anticancer antibodies that are selective inhibitors of EGFR activity. More recently, smaller protein derived from the tenth type III domain of human fibronectin termed an adnectin has also been shown to inhibit EGFR in clinical studies. The mechanism of EGFR inhibition by either an adnectin or an antibody results from specific binding of the high affinity protein to the extracellular portion of EGFR (exEGFR) in a manner that prevents phosphorylation of the intracellular kinase domain of the receptor and thereby blocks intracellular signaling. Here the structural changes induced upon binding were studied by probing the solution conformations of full length exEGFR alone and bound to a cognate adnectin through hydrogen/deuterium exchange mass spectrometry (HDX MS). The effects of binding in solution were identified and compared with the structure of a bound complex determined by X-ray crystallography. PMID:25223306

  6. RNA-binding proteins with prion-like domains in ALS and FTLD-U.

    PubMed

    Gitler, Aaron D; Shorter, James

    2011-01-01

    Amyotrophic lateral sclerosis (ALS, also known as Lou Gehrig's disease) is a debilitating, and universally fatal, neurodegenerative disease that devastates upper and lower motor neurons. The causes of ALS are poorly understood. A central role for RNA-binding proteins and RNA metabolism in ALS has recently emerged. The RNA-binding proteins, TDP-43 and FUS, are principal components of cytoplasmic inclusions found in motor neurons of ALS patients and mutations in TDP-43 and FUS are linked to familial and sporadic ALS. Pathology and genetics also connect TDP-43 and FUS with frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U). It was unknown whether mechanisms of FUS aggregation and toxicity were similar or different to those of TDP-43. To address this issue, we have employed yeast models and pure protein biochemistry to define mechanisms underlying TDP-43 and FUS aggregation and toxicity, and to identify genetic modifiers relevant for human disease. We have identified prion-like domains in FUS and TDP-43 and provide evidence that these domains are required for aggregation. Our studies have defined key similarities as well as important differences between the two proteins. Collectively, however, our findings lead us to suggest that FUS and TDP-43, though similar RNA-binding proteins, likely aggregate and confer disease phenotypes via distinct mechanisms. PMID:21847013

  7. A New Metal Binding Domain Involved in Cadmium, Cobalt and Zinc Transport

    SciTech Connect

    Smith, Aaron T.; Barupala, Dulmini; Stemmler, Timothy L.; Rosenzweig, Amy C.

    2015-07-20

    In the P1B-ATPases, which couple cation transport across membranes to ATP hydrolysis, are central to metal homeostasis in all organisms. An important feature of P1B-ATPases is the presence of soluble metal binding domains (MBDs) that regulate transport activity. Only one type of MBD has been characterized extensively, but bioinformatics analyses indicate that a diversity of MBDs may exist in nature. Here we report the biochemical, structural and functional characterization of a new MBD from the Cupriavidus metallidurans P1B-4-ATPase CzcP (CzcP MBD). The CzcP MBD binds two Cd2+, Co2+ or Zn2+ ions in distinct and unique sites and adopts an unexpected fold consisting of two fused ferredoxin-like domains. Both in vitro and in vivo activity assays using full-length CzcP, truncated CzcP and several variants indicate a regulatory role for the MBD and distinct functions for the two metal binding sites. Moreover, these findings elucidate a previously unknown MBD and suggest new regulatory mechanisms for metal transport by P1B-ATPases.

  8. The Influence of Adnectin Binding on the Extracellular Domain of Epidermal Growth Factor Receptor

    NASA Astrophysics Data System (ADS)

    Iacob, Roxana E.; Chen, Guodong; Ahn, Joomi; Houel, Stephane; Wei, Hui; Mo, Jingjie; Tao, Li; Cohen, Daniel; Xie, Dianlin; Lin, Zheng; Morin, Paul E.; Doyle, Michael L.; Tymiak, Adrienne A.; Engen, John R.

    2014-12-01

    The precise and unambiguous elucidation and characterization of interactions between a high affinity recognition entity and its cognate protein provides important insights for the design and development of drugs with optimized properties and efficacy. In oncology, one important target protein has been shown to be the epidermal growth factor receptor (EGFR) through the development of therapeutic anticancer antibodies that are selective inhibitors of EGFR activity. More recently, smaller protein derived from the 10th type III domain of human fibronectin termed an adnectin has also been shown to inhibit EGFR in clinical studies. The mechanism of EGFR inhibition by either an adnectin or an antibody results from specific binding of the high affinity protein to the extracellular portion of EGFR (exEGFR) in a manner that prevents phosphorylation of the intracellular kinase domain of the receptor and thereby blocks intracellular signaling. Here, the structural changes induced upon binding were studied by probing the solution conformations of full length exEGFR alone and bound to a cognate adnectin through hydrogen/deuterium exchange mass spectrometry (HDX MS). The effects of binding in solution were identified and compared with the structure of a bound complex determined by X-ray crystallography.

  9. The STAS domain of mammalian SLC26A5 prestin harbours an anion-binding site.

    PubMed

    Lolli, Graziano; Pasqualetto, Elisa; Costanzi, Elisa; Bonetto, Greta; Battistutta, Roberto

    2016-02-15

    Prestin is a unique ATP- and Ca(2+)-independent molecular motor with piezoelectric characteristics responsible for the electromotile properties of mammalian cochlear outer hair cells, i.e. the capacity of these cells to modify their length in response to electric stimuli. This 'electromotility' is at the basis of the exceptional sensitivity and frequency selectivity distinctive of mammals. Prestin belongs to the SLC26 (solute carrier 26) family of anion transporters and needs anions to function properly, particularly Cl(-). In the present study, using X-ray crystallography we reveal that the STAS (sulfate transporter and anti-sigma factor antagonist) domain of mammalian prestin, considered an 'incomplete' transporter, harbours an unanticipated anion-binding site. In parallel, we present the first crystal structure of a prestin STAS domain from a non-mammalian vertebrate prestin (chicken) that behaves as a 'full' transporter. Notably, in chicken STAS, the anion-binding site is lacking because of a local structural rearrangement, indicating that the presence of the STAS anion-binding site is exclusive to mammalian prestin. PMID:26635354

  10. Structure of the S1S2 Glutamate Binding Domain of GluR3

    PubMed Central

    Ahmed, Ahmed H.; Wang, Qi; Sondermann, Holger; Oswald, Robert E.

    2009-01-01

    Glutamate receptors are the most prevalent excitatory neurotransmitter receptors in the vertebrate central nervous system. Determining the structural differences between the binding sites of different subtypes is crucial to our understanding of neuronal circuits and to the development of subtype specific drugs. The structures of the binding domain (S1S2) of the GluR3 (flip) AMPA receptor subunit bound to glutamate and AMPA and the GluR2 (flop) subunit bound to glutamate were determined by X-ray crystallography to 1.9, 2.1, and 1.55 Å, respectively. Overall, the structure of GluR3 (flip) S1S2 is very similar to GluR2 (flop) S1S2 (backbone RMSD of 0.30 ± 0.05 for glutamate-bound and 0.26 ± 0.01 for AMPA-bound). The differences in the flip and flop isoforms are subtle and largely arise from one hydrogen bond across the dimer interface and associated water molecules. Comparison of the binding affinity for various agonists and partial agonists suggest that the S1S2 domains of GluR2 and GluR3 show only small differences in affinity, unlike what is found for the intact receptors (with the exception of one ligand, Cl-HIBO, which has a ten-fold difference in affinity for GluR2 vs GluR3). PMID:19003990

  11. The nucleotide-binding domain of NLRC5 is critical for nuclear import and transactivation activity

    SciTech Connect

    Meissner, Torsten B.; Li, Amy; Liu, Yuen-Joyce; Gagnon, Etienne; Kobayashi, Koichi S.

    2012-02-24

    Highlights: Black-Right-Pointing-Pointer NLRC5 requires an intact NLS for its function as MHC class I transactivator. Black-Right-Pointing-Pointer Nuclear presence of NLRC5 is required for MHC class I induction. Black-Right-Pointing-Pointer Nucleotide-binding controls nuclear import and transactivation activity of NLRC5. -- Abstract: Major histocompatibility complex (MHC) class I and class II are crucial for the function of the human adaptive immune system. A member of the NLR (nucleotide-binding domain, leucine-rich repeat) protein family, NLRC5, has recently been identified as a transcriptional regulator of MHC class I and related genes. While a 'master regulator' of MHC class II genes, CIITA, has long been known, NLRC5 specifically associates with and transactivates the proximal promoters of MHC class I genes. In this study, we analyzed the molecular requirements of NLRC5 nuclear import and transactivation activity. We show that NLRC5-mediated MHC class I gene induction requires an intact nuclear localization signal and nuclear distribution of NLRC5. In addition, we find that the nucleotide-binding domain (NBD) of NLRC5 is critical not only for nuclear translocation but also for the transactivation of MHC class I genes. Changing the cellular localization of NLRC5 is likely to immediately impact MHC class I expression as well as MHC class I-mediated antigen presentation. NLRC5 may thus provide a promising target for the modulation of MHC class I antigen presentation, especially in the setting of transplant medicine.

  12. Allosteric communication between DNA-binding and light-responsive domains of diatom class I aureochromes

    PubMed Central

    Banerjee, Ankan; Herman, Elena; Serif, Manuel; Maestre-Reyna, Manuel; Hepp, Sebastian; Pokorny, Richard; Kroth, Peter G.; Essen, Lars-Oliver; Kottke, Tilman

    2016-01-01

    The modular architecture of aureochrome blue light receptors, found in several algal groups including diatoms, is unique by having the LOV-type photoreceptor domain fused to the C-terminus of its putative effector, an N-terminal DNA-binding bZIP module. The structural and functional understanding of aureochromes’ light-dependent signaling mechanism is limited, despite their promise as an optogenetic tool. We show that class I aureochromes 1a and 1c from the diatom Phaeodactylum tricornutum are regulated in a light-independent circadian rhythm. These aureochromes are capable to form functional homo- and heterodimers, which recognize the ACGT core sequence within the canonical ‘aureo box’, TGACGT, in a light-independent manner. The bZIP domain holds a more folded and less flexible but extended conformation in the duplex DNA-bound state. FT-IR spectroscopy in the absence and the presence of DNA shows light-dependent helix unfolding in the LOV domain, which leads to conformational changes in the bZIP region. The solution structure of DNA bound to aureochrome points to a tilted orientation that was further validated by molecular dynamics simulations. We propose that aureochrome signaling relies on an allosteric pathway from LOV to bZIP that results in conformational changes near the bZIP-DNA interface without major effects on the binding affinity. PMID:27179025

  13. BuD, a helix–loop–helix DNA-binding domain for genome modification

    PubMed Central

    Stella, Stefano; Molina, Rafael; López-Méndez, Blanca; Juillerat, Alexandre; Bertonati, Claudia; Daboussi, Fayza; Campos-Olivas, Ramon; Duchateau, Phillippe; Montoya, Guillermo

    2014-01-01

    DNA editing offers new possibilities in synthetic biology and biomedicine for modulation or modification of cellular functions to organisms. However, inaccuracy in this process may lead to genome damage. To address this important problem, a strategy allowing specific gene modification has been achieved through the addition, removal or exchange of DNA sequences using customized proteins and the endogenous DNA-repair machinery. Therefore, the engineering of specific protein–DNA interactions in protein scaffolds is key to providing ‘toolkits’ for precise genome modification or regulation of gene expression. In a search for putative DNA-binding domains, BurrH, a protein that recognizes a 19 bp DNA target, was identified. Here, its apo and DNA-bound crystal structures are reported, revealing a central region containing 19 repeats of a helix–loop–helix modular domain (BurrH domain; BuD), which identifies the DNA target by a single residue-to-nucleotide code, thus facilitating its redesign for gene targeting. New DNA-binding specificities have been engineered in this template, showing that BuD-derived nucleases (BuDNs) induce high levels of gene targeting in a locus of the human haemoglobin β (HBB) gene close to mutations responsible for sickle-cell anaemia. Hence, the unique combination of high efficiency and specificity of the BuD arrays can push forward diverse genome-modification approaches for cell or organism redesign, opening new avenues for gene editing. PMID:25004980

  14. Allosteric communication between DNA-binding and light-responsive domains of diatom class I aureochromes.

    PubMed

    Banerjee, Ankan; Herman, Elena; Serif, Manuel; Maestre-Reyna, Manuel; Hepp, Sebastian; Pokorny, Richard; Kroth, Peter G; Essen, Lars-Oliver; Kottke, Tilman

    2016-07-01

    The modular architecture of aureochrome blue light receptors, found in several algal groups including diatoms, is unique by having the LOV-type photoreceptor domain fused to the C-terminus of its putative effector, an N-terminal DNA-binding bZIP module. The structural and functional understanding of aureochromes' light-dependent signaling mechanism is limited, despite their promise as an optogenetic tool. We show that class I aureochromes 1a and 1c from the diatom Phaeodactylum tricornutum are regulated in a light-independent circadian rhythm. These aureochromes are capable to form functional homo- and heterodimers, which recognize the ACGT core sequence within the canonical 'aureo box', TGACGT, in a light-independent manner. The bZIP domain holds a more folded and less flexible but extended conformation in the duplex DNA-bound state. FT-IR spectroscopy in the absence and the presence of DNA shows light-dependent helix unfolding in the LOV domain, which leads to conformational changes in the bZIP region. The solution structure of DNA bound to aureochrome points to a tilted orientation that was further validated by molecular dynamics simulations. We propose that aureochrome signaling relies on an allosteric pathway from LOV to bZIP that results in conformational changes near the bZIP-DNA interface without major effects on the binding affinity. PMID:27179025

  15. The tRNA-binding moiety in GCN2 contains a dimerization domain that interacts with the kinase domain and is required for tRNA binding and kinase activation

    PubMed Central

    Qiu, Hongfang; Dong, Jinsheng; Hu, Cuihua; Francklyn, Christopher S.; Hinnebusch, Alan G.

    2001-01-01

    GCN2 stimulates translation of GCN4 mRNA in amino acid-starved cells by phosphorylating translation initiation factor 2. GCN2 is activated by binding of uncharged tRNA to a domain related to histidyl-tRNA synthetase (HisRS). The HisRS-like region contains two dimerization domains (HisRS-N and HisRS-C) required for GCN2 function in vivo but dispensable for dimerization by full-length GCN2. Residues corresponding to amino acids at the dimer interface of Escherichia coli HisRS were required for dimerization of recombinant HisRS-N and for tRNA binding by full-length GCN2, suggesting that HisRS-N dimerization promotes tRNA binding and kinase activation. HisRS-N also interacted with the protein kinase (PK) domain, and a deletion impairing this interaction destroyed GCN2 function without reducing tRNA binding; thus, HisRS-N–PK interaction appears to stimulate PK function. The C-terminal domain of GCN2 (C-term) interacted with the PK domain in a manner disrupted by an activating PK mutation (E803V). These results suggest that the C-term is an autoinhibitory domain, counteracted by tRNA binding. We conclude that multiple domain interactions, positive and negative, mediate the activation of GCN2 by uncharged tRNA. PMID:11250908

  16. Enzymatic Activities of RNase H Domains of HIV-1 Reverse Transcriptase with Substrate Binding Domains of Bacterial RNases H1 and H2.

    PubMed

    Permanasari, Etin-Diah; Yasukawa, Kiyoshi; Kanaya, Shigenori

    2015-06-01

    Thermotoga maritima RNase H1 and Bacillus stearothermophilus RNase H2 have an N-terminal substrate binding domain, termed hybrid binding domain (TmaHBD), and N-terminal domain (BstNTD), respectively. HIV-1 reverse transcriptase (RT) is a heterodimer consisting of a P66 subunit and a P51 subunit. The P66 subunit contains a C-terminal RNase H domain, which exhibits RNase H activity either in the presence of Mg(2+) or Mn(2+) ions. The isolated RNase H domain of HIV-1 RT (RNH(HIV)) is inactive, possibly due to the lack of a substrate binding ability, disorder of a loop containing His539, and increased flexibility. To examine whether the activity of RNH(HIV) is restored by the attachment of TmaHBD or BstNTD to its N-terminus, two chimeric proteins, TmaHBD-RNH(HIV) and BstNTD-RNH(HIV), were constructed and characterized. Both chimeric proteins bound to RNA/DNA hybrid more strongly than RNH(HIV) and exhibited enzymatic activity in the presence of Mn(2+) ions. They did not exhibit activity or exhibited very weak activity in the presence of Mg(2+) ions. These results indicate that TmaHBD and BstNTD function as an RNA/DNA hybrid binding tag, and greatly increase the substrate binding affinity and Mn(2+)-dependent activity of RNH(HIV) but do not restore the Mg(2+)-dependent activity of RNH(HIV). PMID:25673083

  17. Biochemical Characterization of Nonamer Binding Domain of RAG1 Reveals its Thymine Preference with Respect to Length and Position.

    PubMed

    Raveendran, Deepthi; Raghavan, Sathees C

    2016-01-01

    RAG complex consisting of RAG1 and RAG2 is a site-specific endonuclease responsible for the generation of antigen receptor diversity. It cleaves recombination signal sequence (RSS), comprising of conserved heptamer and nonamer. Nonamer binding domain (NBD) of RAG1 plays a central role in the recognition of RSS. To investigate the DNA binding properties of the domain, NBD of murine RAG1 was cloned, expressed and purified. Electrophoretic mobility shift assays showed that NBD binds with high affinity to nonamer in the context of 12/23 RSS or heteroduplex DNA. NBD binding was specific to thymines when single stranded DNA containing poly A, C, G or T were used. Biolayer interferometry studies showed that poly T binding to NBD was robust and comparable to that of 12RSS. More than 23 nt was essential for NBD binding at homothymidine stretches. On a double-stranded DNA, NBD could bind to A:T stretches, but not G:C or random sequences. Although NBD is indispensable for sequence specific activity of RAGs, external supplementation of purified nonamer binding domain to NBD deleted cRAG1/cRAG2 did not restore its activity, suggesting that the overall domain architecture of RAG1 is important. Therefore, we define the sequence requirements of NBD binding to DNA. PMID:26742581

  18. Biochemical Characterization of Nonamer Binding Domain of RAG1 Reveals its Thymine Preference with Respect to Length and Position

    PubMed Central

    Raveendran, Deepthi; Raghavan, Sathees C.

    2016-01-01

    RAG complex consisting of RAG1 and RAG2 is a site-specific endonuclease responsible for the generation of antigen receptor diversity. It cleaves recombination signal sequence (RSS), comprising of conserved heptamer and nonamer. Nonamer binding domain (NBD) of RAG1 plays a central role in the recognition of RSS. To investigate the DNA binding properties of the domain, NBD of murine RAG1 was cloned, expressed and purified. Electrophoretic mobility shift assays showed that NBD binds with high affinity to nonamer in the context of 12/23 RSS or heteroduplex DNA. NBD binding was specific to thymines when single stranded DNA containing poly A, C, G or T were used. Biolayer interferometry studies showed that poly T binding to NBD was robust and comparable to that of 12RSS. More than 23 nt was essential for NBD binding at homothymidine stretches. On a double-stranded DNA, NBD could bind to A:T stretches, but not G:C or random sequences. Although NBD is indispensable for sequence specific activity of RAGs, external supplementation of purified nonamer binding domain to NBD deleted cRAG1/cRAG2 did not restore its activity, suggesting that the overall domain architecture of RAG1 is important. Therefore, we define the sequence requirements of NBD binding to DNA. PMID:26742581

  19. The p53 tetramer shows an induced-fit interaction of the C-terminal domain with the DNA-binding domain

    PubMed Central

    D'Abramo, M; Bešker, N; Desideri, A; Levine, A J; Melino, G; Chillemi, G

    2016-01-01

    The Trp53 gene is the most frequently mutated gene in all human cancers. Its protein product p53 is a very powerful transcription factor that can activate different biochemical pathways and affect the regulation of metabolism, senescence, DNA damage response, cell cycle and cell death. The understanding of its function at the molecular level could be of pivotal relevance for therapy. Investigation of long-range intra- and interdomain communications in the p53 tetramer–DNA complex was performed by means of an atomistic model that included the tetramerization helices in the C-terminal domain, the DNA-binding domains and a consensus DNA-binding site of 18 base pairs. Nonsymmetric dynamics are illustrated in the four DNA-binding domains, with loop L1 switching from inward to outward conformations with respect to the DNA major groove. Direct intra- and intermonomeric long-range communications between the tetramerization and DNA-binding domains are noted. These long-distance conformational changes link the C terminus with the DNA-binding domain and provide a biophysical rationale for the reported functional regulation of the p53 C-terminal region. A fine characterization of the DNA deformation caused by p53 binding is obtained, with ‘static' deformations always present and measured by the slide parameter in the central thymine–adenine base pairs; we also detect ‘dynamic' deformations switched on and off by particular p53 tetrameric conformations and measured by the roll and twist parameters in the same base pairs. These different conformations can indeed modulate the electrostatic potential isosurfaces of the whole p53–DNA complex. These results provide a molecular/biophysical understanding of the evident role of the C terminus in post-translational modification that regulates the transcriptional function of p53. Furthermore, the unstructured C terminus is able to facilitate contacts between the core DNA-binding domains of the tetramer. PMID:26477317

  20. The p53 tetramer shows an induced-fit interaction of the C-terminal domain with the DNA-binding domain.

    PubMed

    D'Abramo, M; Bešker, N; Desideri, A; Levine, A J; Melino, G; Chillemi, G

    2016-06-23

    The Trp53 gene is the most frequently mutated gene in all human cancers. Its protein product p53 is a very powerful transcription factor that can activate different biochemical pathways and affect the regulation of metabolism, senescence, DNA damage response, cell cycle and cell death. The understanding of its function at the molecular level could be of pivotal relevance for therapy. Investigation of long-range intra- and interdomain communications in the p53 tetramer-DNA complex was performed by means of an atomistic model that included the tetramerization helices in the C-terminal domain, the DNA-binding domains and a consensus DNA-binding site of 18 base pairs. Nonsymmetric dynamics are illustrated in the four DNA-binding domains, with loop L1 switching from inward to outward conformations with respect to the DNA major groove. Direct intra- and intermonomeric long-range communications between the tetramerization and DNA-binding domains are noted. These long-distance conformational changes link the C terminus with the DNA-binding domain and provide a biophysical rationale for the reported functional regulation of the p53 C-terminal region. A fine characterization of the DNA deformation caused by p53 binding is obtained, with 'static' deformations always present and measured by the slide parameter in the central thymine-adenine base pairs; we also detect 'dynamic' deformations switched on and off by particular p53 tetrameric conformations and measured by the roll and twist parameters in the same base pairs. These different conformations can indeed modulate the electrostatic potential isosurfaces of the whole p53-DNA complex. These results provide a molecular/biophysical understanding of the evident role of the C terminus in post-translational modification that regulates the transcriptional function of p53. Furthermore, the unstructured C terminus is able to facilitate contacts between the core DNA-binding domains of the tetramer. PMID:26477317

  1. Two carbohydrate recognizing domains from Cycas revoluta leaf lectin show the distinct sugar-binding specificity-A unique mannooligosaccharide recognition by N-terminal domain.

    PubMed

    Shimokawa, Michiko; Haraguchi, Tomokazu; Minami, Yuji; Yagi, Fumio; Hiemori, Keiko; Tateno, Hiroaki; Hirabayashi, Jun

    2016-07-01

    Cycas revoluta leaf lectin (CRLL) of mannose-recognizing jacalin-related lectin (mJRL) has two tandem repeated carbohydrate recognition domains, and shows the characteristic sugar-binding specificity toward high mannose-glycans, compared with other mJRLs. We expressed the N-terminal domain and C-terminal domain (CRLL-N and CRLL-C) separately, to determine the fine sugar-binding specificity of each domain, using frontal affinity chromatography, glycan array and equilibrium dialysis. The specificity of CRLL toward high mannose was basically derived from CRLL-N, whereas CRLL-C had affinity for α1-6 extended mono-antennary complex-type glycans. Notably, the affinity of CRLL-N was most potent to one of three Man 8 glycans and Man 9 glycan, whereas the affinity of CRLL-C decreased with the increase in the number of extended α1-2 linked mannose residue. The recognition of the Man 8 glycans by CRLL-N has not been found for other mannose recognizing lectins. Glycan array reflected these specificities of the two domains. Furthermore, it was revealed by equilibrium dialysis method that the each domain had two sugar-binding sites, similar with Banlec, banana mannose-binding Jacalin-related lectin. PMID:26867733

  2. DNA Bending is Induced in an Enhancer by the DNA-Binding Domain of the Bovine Papillomavirus E2 Protein

    NASA Astrophysics Data System (ADS)

    Moskaluk, Christopher; Bastia, Deepak

    1988-03-01

    The E2 gene of bovine papillomavirus type 1 has been shown to encode a DNA-binding protein and to trans-activate the viral enhancer. We have localized the DNA-binding domain of the E2 protein to the carboxyl-terminal 126 amino acids of the E2 open reading frame. The DNA-binding domain has been expressed in Escherichia coli and partially purified. Gel retardation and DNase I ``footprinting'' on the bovine papillomavirus type 1 enhancer identify the sequence motif ACCN6GGT (in which N = any nucleotide) as the E2 binding site. Using electrophoretic methods we have shown that the DNA-binding domain changes conformation of the enhancer by inducing significant DNA bending.

  3. The DNA binding domain of GAL4 forms a binuclear metal ion complex.

    PubMed

    Pan, T; Coleman, J E

    1990-03-27

    The transcription factor GAL4 from Saccharomyces cerevisiae requires Zn(II) or Cd(II) for specific recognition of the UASG sequence (Pan & Coleman, 1989). An N-terminal fragment consisting of the first 63 amino acid residues of GAL4 [GAL4(63)] has been obtained by partial tryptic proteolysis of a cloned and overproduced N-terminal domain of 149 residues, GAL(149). We show that GAL4(63) contains the minimal GAL4 DNA binding domain. GAL4(63) binds tightly 1-2 mol of Zn(II) or 2 mol of Cd(II). 113Cd NMR of 113Cd(II)-substituted GAL4(63) reveals structural identity between the metal binding domains of GAL4(63) and that of the larger precursor GAL4(149). 113Cd(II) can be substituted for the Zn(II) in GAL4(63), and two 113Cd NMR signals are observed at 706 and 669 ppm, both suggesting coordination of 113Cd(II) to three or four -S- ligands. With the exception of the N-terminal methionine, the only sulfur-containing residues are the six highly conserved cysteines. High-resolution 1H NMR of Zn(II)-GAL4(63) and Cd(II)-GAL4(63) show the two proteins to have almost identical conformations and to be present as monomers in solutions up to millimolar concentration. This leads us to postulate that GAL4 does not possess a TFIIIA-like "Zn-finger" but forms a binuclear metal cluster involving all six cysteines in a "cloverleaf"-like array. GAL4(63) contains about 60% alpha-helix, estimated from circular dichroism. Removal of the native Zn(II) causes substantial unfolding of the secondary structure. Unlike GAL4(149), the resultant apoprotein is not induced to refold by readdition of Zn(II) at low concentrations. PMID:2186803

  4. WRNIP1 accumulates at laser light irradiated sites rapidly via its ubiquitin-binding zinc finger domain and independently from its ATPase domain

    SciTech Connect

    Nomura, Hironoshin; Yoshimura, Akari; Edo, Takato; Kanno, Shin-ichiro; Tada, Syusuke; Seki, Masayuki; Yasui, Akira; Enomoto, Takemi

    2012-01-27

    Highlights: Black-Right-Pointing-Pointer WRNIP1 accumulates in laser light irradiated sites very rapidly via UBZ domain. Black-Right-Pointing-Pointer The ATPase domain of WRNIP1 is dispensable for its accumulation. Black-Right-Pointing-Pointer The accumulation of WRNIP1 seems not to be dependent on the interaction with WRN. -- Abstract: WRNIP1 (Werner helicase-interacting protein 1) was originally identified as a protein that interacts with the Werner syndrome responsible gene product. WRNIP1 contains a ubiquitin-binding zinc-finger (UBZ) domain in the N-terminal region and two leucine zipper motifs in the C-terminal region. In addition, it possesses an ATPase domain in the middle of the molecule and the lysine residues serving as ubiquitin acceptors in the entire of the molecule. Here, we report that WRNIP1 accumulates in laser light irradiated sites very rapidly via its ubiquitin-binding zinc finger domain, which is known to bind polyubiquitin and to be involved in ubiquitination of WRNIP1 itself. The accumulation of WRNIP1 in laser light irradiated sites also required the C-terminal region containing two leucine zippers, which is reportedly involved in the oligomerization of WRNIP1. Mutated WRNIP1 with a deleted ATPase domain or with mutations in lysine residues, which serve as ubiquitin acceptors, accumulated in laser light irradiated sites, suggesting that the ATPase domain of WRNIP1 and ubiquitination of WRNIP1 are dispensable for the accumulation.

  5. Chimeric Plant Calcium/Calmodulin-Dependent Protein Kinase Gene with a Neural Visinin-Like Calcium-Binding Domain

    NASA Technical Reports Server (NTRS)

    Patil, Shameekumar; Takezawa, D.; Poovaiah, B. W.

    1995-01-01

    Calcium, a universal second messenger, regulates diverse cellular processes in eukaryotes. Ca-2(+) and Ca-2(+)/calmodulin-regulated protein phosphorylation play a pivotal role in amplifying and diversifying the action of Ca-2(+)- mediated signals. A chimeric Ca-2(+)/calmodulin-dependent protein kinase (CCaMK) gene with a visinin-like Ca-2(+)- binding domain was cloned and characterized from lily. The cDNA clone contains an open reading frame coding for a protein of 520 amino acids. The predicted structure of CCaMK contains a catalytic domain followed by two regulatory domains, a calmodulin-binding domain and a visinin-like Ca-2(+)-binding domain. The amino-terminal region of CCaMK contains all 11 conserved subdomains characteristic of serine/threonine protein kinases. The calmodulin-binding region of CCaMK has high homology (79%) to alpha subunit of mammalian Ca-2(+)/calmodulin-dependent protein kinase. The calmodulin-binding region is fused to a neural visinin-like domain that contains three Ca-2(+)-binding EF-hand motifs and a biotin-binding site. The Escherichia coli-expressed protein (approx. 56 kDa) binds calmodulin in a Ca-2(+)-dependent manner. Furthermore, Ca-45-binding assays revealed that CCaMK directly binds Ca-2(+). The CCaMK gene is preferentially expressed in developing anthers. Southern blot analysis revealed that CCaMK is encoded by a single gene. The structural features of the gene suggest that it has multiple regulatory controls and could play a unique role in Ca-2(+) signaling in plants.

  6. Structure, dynamics and RNA binding of the multi-domain splicing factor TIA-1

    PubMed Central

    Wang, Iren; Hennig, Janosch; Jagtap, Pravin Kumar Ankush; Sonntag, Miriam; Valcárcel, Juan; Sattler, Michael

    2014-01-01

    Alternative pre-messenger ribonucleic acid (pre-mRNA) splicing is an essential process in eukaryotic gene regulation. The T-cell intracellular antigen-1 (TIA-1) is an apoptosis-promoting factor that modulates alternative splicing of transcripts, including the pre-mRNA encoding the membrane receptor Fas. TIA-1 is a multi-domain ribonucleic acid (RNA) binding protein that recognizes poly-uridine tract RNA sequences to facilitate 5′ splice site recognition by the U1 small nuclear ribonucleoprotein (snRNP). Here, we characterize the RNA interaction and conformational dynamics of TIA-1 by nuclear magnetic resonance (NMR), isothermal titration calorimetry (ITC) and small angle X-ray scattering (SAXS). Our NMR-derived solution structure of TIA-1 RRM2–RRM3 (RRM2,3) reveals that RRM2 adopts a canonical RNA recognition motif (RRM) fold, while RRM3 is preceded by an non-canonical helix α0. NMR and SAXS data show that all three RRMs are largely independent structural modules in the absence of RNA, while RNA binding induces a compact arrangement. RRM2,3 binds to pyrimidine-rich FAS pre-mRNA or poly-uridine (U9) RNA with nanomolar affinities. RRM1 has little intrinsic RNA binding affinity and does not strongly contribute to RNA binding in the context of RRM1,2,3. Our data unravel the role of binding avidity and the contributions of the TIA-1 RRMs for recognition of pyrimidine-rich RNAs. PMID:24682828

  7. Expression, immobilization and enzymatic properties of glutamate decarboxylase fused to a cellulose-binding domain.

    PubMed

    Park, Hyemin; Ahn, Jungoh; Lee, Juwhan; Lee, Hyeokwon; Kim, Chunsuk; Jung, Joon-Ki; Lee, Hongweon; Lee, Eun Gyo

    2012-01-01

    Escherichia coli-derived glutamate decarboxylase (GAD), an enzyme that catalyzes the conversion of glutamic acid to gamma-aminobutyric acid (GABA), was fused to the cellulose-binding domain (CBD) and a linker of Trichoderma harzianum endoglucanase II. To prevent proteolysis of the fusion protein, the native linker was replaced with a S(3)N(10) peptide known to be completely resistant to E. coli endopeptidase. The CBD-GAD expressed in E. coli was successfully immobilized on Avicel, a crystalline cellulose, with binding capacity of 33 ± 2 nmol(CBD-GAD)/g(Avicel) and the immobilized enzymes retained 60% of their initial activities after 10 uses. The results of this report provide a feasible alternative to produce GABA using immobilized GAD through fusion to CBD. PMID:22312257

  8. Structural domains in NADPH: Protochlorophyllide oxidoreductases involved in catalysis and substrate binding. Final report

    SciTech Connect

    Timko, Michael P.

    1999-09-24

    Until recently little direct information was available about specific structural determinants within the light-dependent NADPH: protochlorophyllide oxidoreductases (PORs) required for substrate and cofactor binding, catalytic activity, and thylakoid membrane localization. Based on our previous DOE-funded studies, during the past year we brought to fruition a number of ongoing experiments, initiated several new avenues of investigations, and overall have made considerable progress towards establishing the basic structural parameters governing POR function. Our studies to date have defined residues and domains involved in substrate and cofactor binding and catalysis, and elaborated on the mechanism for membrane localization of POR in developing plastids. Our results and their significance, as well as our work in progress, are detailed.

  9. Crystal structures of complexes of vitamin D receptor ligand-binding domain with lithocholic acid derivatives

    PubMed Central

    Masuno, Hiroyuki; Ikura, Teikichi; Morizono, Daisuke; Orita, Isamu; Yamada, Sachiko; Shimizu, Masato; Ito, Nobutoshi

    2013-01-01

    The secondary bile acid lithocholic acid (LCA) and its derivatives act as selective modulators of the vitamin D receptor (VDR), although their structures fundamentally differ from that of the natural hormone 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3)]. Here, we have determined the crystal structures of the ligand-binding domain of rat VDR (VDR-LBD) in ternary complexes with a synthetic partial peptide of the coactivator MED1 (mediator of RNA polymerase II transcription subunit 1) and four ligands, LCA, 3-keto LCA, LCA acetate, and LCA propionate, with the goal of elucidating their agonistic mechanism. LCA and its derivatives bind to the same ligand-binding pocket (LBP) of VDR-LBD that 1,25(OH)2D3 binds to, but in the opposite orientation; their A-ring is positioned at the top of the LBP, whereas their acyclic tail is located at the bottom of the LBP. However, most of the hydrophobic and hydrophilic interactions observed in the complex with 1,25(OH)2D3 are reproduced in the complexes with LCA and its derivatives. Additional interactions between VDR-LBD and the C-3 substituents of the A-ring are also observed in the complexes with LCA and its derivatives. These may result in the observed difference in the potency among the LCA-type ligands. PMID:23723390

  10. Crystal structure of NL63 respiratory coronavirus receptor-binding domain complexed with its human receptor

    SciTech Connect

    Wu, Kailang; Li, Weikai; Peng, Guiqing; Li, Fang

    2010-03-04

    NL63 coronavirus (NL63-CoV), a prevalent human respiratory virus, is the only group I coronavirus known to use angiotensin-converting enzyme 2 (ACE2) as its receptor. Incidentally, ACE2 is also used by group II SARS coronavirus (SARS-CoV). We investigated how different groups of coronaviruses recognize the same receptor, whereas homologous group I coronaviruses recognize different receptors. We determined the crystal structure of NL63-CoV spike protein receptor-binding domain (RBD) complexed with human ACE2. NL63-CoV RBD has a novel {beta}-sandwich core structure consisting of 2 layers of {beta}-sheets, presenting 3 discontinuous receptor-binding motifs (RBMs) to bind ACE2. NL63-CoV and SARS-CoV have no structural homology in RBD cores or RBMs; yet the 2 viruses recognize common ACE2 regions, largely because of a 'virus-binding hotspot' on ACE2. Among group I coronaviruses, RBD cores are conserved but RBMs are variable, explaining how these viruses recognize different receptors. These results provide a structural basis for understanding viral evolution and virus-receptor interactions.

  11. Novel RNA chaperone domain of RNA-binding protein La is regulated by AKT phosphorylation

    PubMed Central

    Kuehnert, Julia; Sommer, Gunhild; Zierk, Avery W.; Fedarovich, Alena; Brock, Alexander; Fedarovich, Dzmitry; Heise, Tilman

    2015-01-01

    The cellular function of the cancer-associated RNA-binding protein La has been linked to translation of viral and cellular mRNAs. Recently, we have shown that the human La protein stimulates IRES-mediated translation of the cooperative oncogene CCND1 in cervical cancer cells. However, there is little known about the underlying molecular mechanism by which La stimulates CCND1 IRES-mediated translation, and we propose that its RNA chaperone activity is required. Herein, we show that La binds close to the CCND1 start codon and demonstrate that La's RNA chaperone activity can change the folding of its binding site. We map the RNA chaperone domain (RCD) within the C-terminal region of La in close proximity to a novel AKT phosphorylation site (T389). Phosphorylation at T389 by AKT-1 strongly impairs its RNA chaperone activity. Furthermore, we demonstrate that the RCD as well as T389 is required to stimulate CCND1 IRES-mediated translation in cells. In summary, we provide a model whereby a novel interplay between RNA-binding, RNA chaperoning and AKT phosphorylation of La protein regulates CCND1 IRES-mediated translation. PMID:25520193

  12. Nuclear protein LEDGF/p75 recognizes supercoiled DNA by a novel DNA-binding domain

    PubMed Central

    Tsutsui, Kimiko M.; Sano, Kuniaki; Hosoya, Osamu; Miyamoto, Tadashi; Tsutsui, Ken

    2011-01-01

    Lens epithelium-derived growth factor (LEDGF) or p75 is a co-activator of general transcription and also involved in insertion of human immunodeficiency virus type I (HIV-1) cDNA into host cell genome, which occurs preferentially to active transcription units. These phenomena may share an underlying molecular mechanism in common. We report here that LEDGF/p75 binds negatively supercoiled DNA selectively over unconstrained DNA. We identified a novel DNA-binding domain in the protein and termed it ‘supercoiled DNA-recognition domain’ (SRD). Recombinant protein fragments containing SRD showed a preferential binding to supercoiled DNA in vitro. SRD harbors a characteristic cluster of lysine and glutamic/aspartic acid residues. A polypeptide mimicking the cluster (K9E9K9) also showed this specificity, suggesting that the cluster is an essential element for the supercoil recognition. eGFP-tagged LEDGF/p75 expressed in the nucleus distributed partially in transcriptionally active regions that were identified by immunostaining of methylated histone H3 (H3K4me3) or incorporation of Br-UTP. This pattern of localization was observed with SRD alone but abolished if the protein lacked SRD. Thus, these results imply that LEDGF/p75 guides its binding partners, including HIV-1 integrase, to the active transcription site through recognition of negative supercoils generated around it. PMID:21345933

  13. Heparin binding domain of antithrombin III: Characterization using a synthetic peptide directed polyclonal antibody

    SciTech Connect

    Smith, J.W.; Dey, B.; Knauer, D.J. )

    1990-09-25

    Antithrombin III (ATIII) is a plasma-borne serine protease inhibitor that apparently forms covalent complexes with thrombin. The interaction between ATIII and thrombin is enhanced several thousandfold by the glycosaminoglycan, heparin. The authors have previously proposed that the heparin binding site of ATIII residues within a region extending from amino acid residues 114-156. Computer-assisted analysis of this region revealed the presence of a 22 amino acid domain (residues 124-145), part of which shows a strong potential for the formation of an amphipathic helix: hydrophobic on one face and highly positively charged on the other. In the presence studies, polyclonal antisera were generated against a synthetic peptide corresponding to residues 124-145 in native human ATIII. Affinity-purified IgG from these antisera, as well as monovalent Fab's derived from them, specifically blocked the binding of heparin to ATIII. Additionally, occupancy of the heparin binding site by these same monovalent and bivalent IgG's at least partially substituted for heparin, accelerating linkage formation between ATIII and thrombin. These results provide the first immunological evidence that region 124-145 is directly involved in the binding of heparin to ATIII and that an antibody-induced conformational change within this region can mediate ATIII activation.

  14. Structure-Based Design of a Periplasmic Binding Protein Antagonist that Prevents Domain Closure

    SciTech Connect

    Borrok, M. Jack; Zhu, Yimin; Forest, Katrina T.; Kiessling, Laura L.

    2009-07-31

    Many receptors undergo ligand-induced conformational changes to initiate signal transduction. Periplasmic binding proteins (PBPs) are bacterial receptors that exhibit dramatic conformational changes upon ligand binding. These proteins mediate a wide variety of fundamental processes including transport, chemotaxis, and quorum sensing. Despite the importance of these receptors, no PBP antagonists have been identified and characterized. In this study, we identify 3-O-methyl-D-glucose as an antagonist of glucose/galactose-binding protein and demonstrate that it inhibits glucose chemotaxis in E. coli. Using small-angle X-ray scattering and X-ray crystallography, we show that this antagonist acts as a wedge. It prevents the large-scale domain closure that gives rise to the active signaling state. Guided by these results and the structures of open and closed glucose/galactose-binding protein, we designed and synthesized an antagonist composed of two linked glucose residues. These findings provide a blueprint for the design of new bacterial PBP inhibitors. Given the key role of PBPs in microbial physiology, we anticipate that PBP antagonists will have widespread uses as probes and antimicrobial agents.

  15. Eisosomes Are Dynamic Plasma Membrane Domains Showing Pil1-Lsp1 Heteroligomer Binding Equilibrium

    PubMed Central

    Olivera-Couto, Agustina; Salzman, Valentina; Mailhos, Milagros; Digman, Michelle A.; Gratton, Enrico; Aguilar, Pablo S.

    2015-01-01

    Eisosomes are plasma membrane domains concentrating lipids, transporters, and signaling molecules. In the budding yeast Saccharomyces cerevisiae, these domains are structured by scaffolds composed mainly by two cytoplasmic proteins Pil1 and Lsp1. Eisosomes are immobile domains, have relatively uniform size, and encompass thousands of units of the core proteins Pil1 and Lsp1. In this work we used fluorescence fluctuation analytical methods to determine the dynamics of eisosome core proteins at different subcellular locations. Using a combination of scanning techniques with autocorrelation analysis, we show that Pil1 and Lsp1 cytoplasmic pools freely diffuse whereas an eisosome-associated fraction of these proteins exhibits slow dynamics that fit with a binding-unbinding equilibrium. Number and brightness analysis shows that the eisosome-associated fraction is oligomeric, while cytoplasmic pools have lower aggregation states. Fluorescence lifetime imaging results indicate that Pil1 and Lsp1 directly interact in the cytoplasm and within the eisosomes. These results support a model where Pil1-Lsp1 heterodimers are the minimal eisosomes building blocks. Moreover, individual-eisosome fluorescence fluctuation analysis shows that eisosomes in the same cell are not equal domains: while roughly half of them are mostly static, the other half is actively exchanging core protein subunits. PMID:25863055

  16. Asymmetry adjacent to the collagen-like domain in rat liver mannose-binding protein.

    PubMed Central

    Wallis, R; Drickamer, K

    1997-01-01

    Rat liver mannose-binding protein (MBP-C) is the smallest known member of the collectin family of animal lectins, many of which are involved in defence against microbial pathogens. It consists of an N-terminal collagen-like domain linked to C-terminal carbohydrate-recognition domains. MBP-C, overproduced in Chinese-hamster ovary cells, is post-translationally modified and processed in a manner similar to the native lectin. Analytical ultracentrifugation experiments indicate that MBP-C is trimeric, with a weight-averaged molecular mass of approx. 77 kDa. The rate of sedimentation of MBP-C and its mobility on gel filtration suggest a highly elongated molecule. Anomalous behaviour on gel filtration due to this extended conformation may explain previous suggestions that MBP-C forms a higher oligomer. The polypeptide chains of the MBP-C trimer are linked by disulphide bonds between two cysteine residues at the N-terminal junction of the collagen-like domain. Analysis of an N-terminal tryptic fragment reveals that the disulphide bonding in MBP-C is heterogeneous and asymmetrical. These results indicate that assembly of MBP-C oligomers probably proceeds in a C- to N-terminal direction: trimerization at the C-terminus is followed by assembly of the collagenous domain and finally formation of N-terminal disulphide bonds. The relatively simple organization of MBP-C provides a template for understanding larger, more complex collectins. PMID:9230118

  17. Eisosomes are dynamic plasma membrane domains showing pil1-lsp1 heteroligomer binding equilibrium.

    PubMed

    Olivera-Couto, Agustina; Salzman, Valentina; Mailhos, Milagros; Digman, Michelle A; Gratton, Enrico; Aguilar, Pablo S

    2015-04-01

    Eisosomes are plasma membrane domains concentrating lipids, transporters, and signaling molecules. In the budding yeast Saccharomyces cerevisiae, these domains are structured by scaffolds composed mainly by two cytoplasmic proteins Pil1 and Lsp1. Eisosomes are immobile domains, have relatively uniform size, and encompass thousands of units of the core proteins Pil1 and Lsp1. In this work we used fluorescence fluctuation analytical methods to determine the dynamics of eisosome core proteins at different subcellular locations. Using a combination of scanning techniques with autocorrelation analysis, we show that Pil1 and Lsp1 cytoplasmic pools freely diffuse whereas an eisosome-associated fraction of these proteins exhibits slow dynamics that fit with a binding-unbinding equilibrium. Number and brightness analysis shows that the eisosome-associated fraction is oligomeric, while cytoplasmic pools have lower aggregation states. Fluorescence lifetime imaging results indicate that Pil1 and Lsp1 directly interact in the cytoplasm and within the eisosomes. These results support a model where Pil1-Lsp1 heterodimers are the minimal eisosomes building blocks. Moreover, individual-eisosome fluorescence fluctuation analysis shows that eisosomes in the same cell are not equal domains: while roughly half of them are mostly static, the other half is actively exchanging core protein subunits. PMID:25863055

  18. Nucleotide binding and allosteric modulation of the second AAA+ domain of ClpB probed by transient kinetic studies.

    PubMed

    Werbeck, Nicolas D; Kellner, Julian N; Barends, Thomas R M; Reinstein, Jochen

    2009-08-01

    The bacterial AAA+ chaperone ClpB provides thermotolerance by disaggregating aggregated proteins in collaboration with the DnaK chaperone system. Like many other AAA+ proteins, ClpB is believed to act as a biological motor converting the chemical energy of ATP into molecular motion. ClpB has two ATPase domains, NBD1 and NBD2, on one polypeptide chain. The functional unit of ClpB is a homohexameric ring, with a total of 12 potential nucleotide binding sites. Previously, two separate constructs, one each containing NBD1 or NBD2, have been shown to form a functional complex with chaperone activity when mixed. Here we aimed to elucidate the nucleotide binding properties of the ClpB complex using pre-steady state kinetics and fluorescent nucleotides. For this purpose, we first disassembled the complex and characterized in detail the binding kinetics of a construct comprising NBD2 and the C-terminal domain of ClpB. The monomeric construct bound nucleotides very tightly. ADP bound 2 orders of magnitude more tightly than ATP; this difference in binding affinity resulted almost exclusively from different dissociation rate constants. The nucleotide binding properties of NBD2 changed when this construct was complemented with a construct comprising NBD1 and the middle domain. Our approach shows how complex formation can influence the binding properties of the individual domains and allows us to assign nucleotide binding features of this highly complex, multimeric enzyme to specific domains. PMID:19594134

  19. Complex between α-bungarotoxin and an α7 nicotinic receptor ligand-binding domain chimaera

    PubMed Central

    Bren, Nina; Cheng, Kevin; Gomoto, Ryan; Chen, Lin; Sine, Steven M.

    2014-01-01

    To identify high-affinity interactions between long-chain α-neurotoxins and nicotinic receptors, we determined the crystal structure of the complex between α-btx (α-bungarotoxin) and a pentameric ligand-binding domain constructed from the human α7 AChR (acetylcholine receptor) and AChBP (acetylcholine-binding protein). The complex buries ~2000 Å2 (1 Å = 0.1 nm) of surface area, within which Arg36 and Phe32 from finger II of α-btx form a π-cation stack that aligns edge-to-face with the conserved Tyr184 from loop-C of α7, while Asp30 of α-btx forms a hydrogen bond with the hydroxy group of Tyr184. These inter-residue interactions diverge from those in a 4.2 Å structure of α-ctx (α-cobratoxin) bound to AChBP, but are similar to those in a 1.94 Å structure of α-btx bound to the monomeric α1 extracellular domain, although compared with the monomer-bound complex, the α-btx backbone exhibits a large shift relative to the protein surface. Mutational analyses show that replacing Tyr184 with a threonine residue abolishes high-affinity α-btx binding, whereas replacing with a phenylalanine residue maintains high affinity. Comparison of the α-btx complex with that coupled to the agonist epibatidine reveals structural rearrangements within the binding pocket and throughout each subunit. The overall findings high-light structural principles by which α-neurotoxins interact with nicotinic receptors. PMID:23800261

  20. Interfacial binding and aggregation of lamin A tail domains associated with Hutchinson-Gilford progeria syndrome

    PubMed Central

    Kalinowski, Agnieszka; Yaron, Peter N.; Qin, Zhao; Shenoy, Siddharth; Buehler, Markus J.; Lösche, Mathias; Dahl, Kris Noel

    2014-01-01

    Hutchinson-Gilford progeria syndrome is a premature aging disorder associated with the expression of Δ50 lamin A (Δ50LA), a mutant form of the nuclear structural protein lamin A (LA). Δ50LA is missing 50 amino acids from the tail domain and retains a C-terminal farnesyl group that is cleaved from the wild-type LA. Many of the cellular pathologies of HGPS are thought to be a consequence of protein-membrane association mediated by the retained farnesyl group. To better characterize the protein-membrane interface, we quantified binding of purified recombinant Δ50LA tail domain (Δ50LA-TD) to tethered bilayer membranes composed of phosphatidylserine and phosphocholine using surface plasmon resonance. Farnesylated Δ50LATD binds to the membrane interface only in the presence of Ca2+ or Mg2+ at physiological ionic strength. At extremely low ionic strength, both the farnesylated and non-farnesylated forms of Δ50LA-TD bind to the membrane surface in amounts that exceed those expected for a densely packed protein monolayer. Interestingly, the wild-type LA-TD with no farnesylation also associates with membranes at low ionic strength but forms only a single layer. We suggest that electrostatic interactions are mediated by charge clusters with a net positive charge that we calculate on the surface of the LA-TDs. These studies suggest that the accumulation of Δ50LA at the inner nuclear membrane observed in cells is due to a combination of aggregation and membrane association rather than simple membrane binding; electrostatics plays an important role in mediating this association. PMID:25194277

  1. Maximal stimulation of meiotic recombination by a yeast transcription factor requires the transcription activation domain and a DNA-binding domain.

    PubMed Central

    Kirkpatrick, D T; Fan, Q; Petes, T D

    1999-01-01

    The DNA sequences located upstream of the yeast HIS4 represent a very strong meiotic recombination hotspot. Although the activity of this hotspot requires the transcription activator Rap1p, the level of HIS4 transcription is not directly related to the level of recombination. We find that the recombination-stimulating activity of Rap1p requires the transcription activation domain of the protein. We show that a hybrid protein with the Gal4p DNA-binding domain and the Rap1p activation domain can stimulate recombination in a strain in which Gal4p-binding sites are inserted upstream of HIS4. In addition, we find recombination hotspot activity associated with the Gal4p DNA-binding sites that is independent of known transcription factors. We suggest that yeast cells have two types of recombination hotspots, alpha (transcription factor dependent) and beta (transcription factor independent). PMID:10224246

  2. Pax-3-DNA interaction: flexibility in the DNA binding and induction of DNA conformational changes by paired domains.

    PubMed Central

    Chalepakis, G; Wijnholds, J; Gruss, P

    1994-01-01

    The mouse Pax-3 gene encodes a protein that is a member of the Pax family of DNA binding proteins. Pax-3 contains two DNA binding domains: a paired domain (PD) and a paired type homeodomain (HD). Both domains are separated by 53 amino acids and interact synergistically with a sequence harboring an ATTA motif (binding to the HD) and a GTTCC site (binding to the PD) separated by 5 base pairs. Here we show that the interaction of Pax-3 with these two binding sites is independent of their angular orientation. In addition, the protein spacer region between the HD and the PD can be shortened without changing the spatial flexibility of the two DNA binding domains which interact with DNA. Furthermore, by using circular permutation analysis we determined that binding of Pax-3 to a DNA fragment containing a specific binding site causes conformational changes in the DNA, as indicated by the different mobilities of the Pax-3-DNA complexes. The ability to change the conformation of the DNA was found to be an intrinsic property of the Pax-3 PD and of all Pax proteins that we tested so far. These in vitro studies suggest that interaction of Pax proteins with their specific sequences in vivo may result in an altered DNA conformation. Images PMID:8065927

  3. Cadherin Domains in the Polysaccharide-Degrading Marine Bacterium Saccharophagus degradans 2-40 Are Carbohydrate-Binding Modules▿

    PubMed Central

    Fraiberg, Milana; Borovok, Ilya; Bayer, Edward A.; Weiner, Ronald M.; Lamed, Raphael

    2011-01-01

    The complex polysaccharide-degrading marine bacterium Saccharophagus degradans strain 2-40 produces putative proteins that contain numerous cadherin and cadherin-like domains involved in intercellular contact interactions. The current study reveals that both domain types exhibit reversible calcium-dependent binding to different complex polysaccharides which serve as growth substrates for the bacterium. PMID:21036994

  4. Kinase Associated-1 Domains Drive MARK/PAR1 Kinases to Membrane Targets by Binding Acidic Phospholipids

    SciTech Connect

    Moravcevic, Katarina; Mendrola, Jeannine M.; Schmitz, Karl R.; Wang, Yu-Hsiu; Slochower, David; Janmey, Paul A.; Lemmon, Mark A.

    2011-09-28

    Phospholipid-binding modules such as PH, C1, and C2 domains play crucial roles in location-dependent regulation of many protein kinases. Here, we identify the KA1 domain (kinase associated-1 domain), found at the C terminus of yeast septin-associated kinases (Kcc4p, Gin4p, and Hsl1p) and human MARK/PAR1 kinases, as a membrane association domain that binds acidic phospholipids. Membrane localization of isolated KA1 domains depends on phosphatidylserine. Using X-ray crystallography, we identified a structurally conserved binding site for anionic phospholipids in KA1 domains from Kcc4p and MARK1. Mutating this site impairs membrane association of both KA1 domains and intact proteins and reveals the importance of phosphatidylserine for bud neck localization of yeast Kcc4p. Our data suggest that KA1 domains contribute to coincidence detection, allowing kinases to bind other regulators (such as septins) only at the membrane surface. These findings have important implications for understanding MARK/PAR1 kinases, which are implicated in Alzheimer's disease, cancer, and autism.

  5. Trp[superscript 2313]-His[superscript 2315] of Factor VIII C2 Domain Is Involved in Membrane Binding Structure of a Complex Between the C[subscript 2] Domain and an Inhibitor of Membrane Binding

    SciTech Connect

    Liu, Zhuo; Lin, Lin; Yuan, Cai; Nicolaes, Gerry A.F.; Chen, Liqing; Meehan, Edward J.; Furie, Bruce; Furie, Barbara; Huang, Mingdong

    2010-11-03

    Factor VIII (FVIII) plays a critical role in blood coagulation by forming the tenase complex with factor IXa and calcium ions on a membrane surface containing negatively charged phospholipids. The tenase complex activates factor X during blood coagulation. The carboxyl-terminal C2 domain of FVIII is the main membrane-binding and von Willebrand factor-binding region of the protein. Mutations of FVIII cause hemophilia A, whereas elevation of FVIII activity is a risk factor for thromboembolic diseases. The C2 domain-membrane interaction has been proposed as a target of intervention for regulation of blood coagulation. A number of molecules that interrupt FVIII or factor V (FV) binding to cell membranes have been identified through high throughput screening or structure-based design. We report crystal structures of the FVIII C2 domain under three new crystallization conditions, and a high resolution (1.15 {angstrom}) crystal structure of the FVIII C2 domain bound to a small molecular inhibitor. The latter structure shows that the inhibitor binds to the surface of an exposed {beta}-strand of the C2 domain, Trp{sup 2313}-His{sup 2315}. This result indicates that the Trp{sup 2313}-His{sup 2315} segment is an important constituent of the membrane-binding motif and provides a model to understand the molecular mechanism of the C2 domain membrane interaction.

  6. BROWN ADIPOSE TISSUE FUNCTION IN SHORT-CHAIN ACYL-COA DEHYDROGENASE DEFICIENT MICE

    PubMed Central

    Skilling, Helen; Coen, Paul M.; Fairfull, Liane; Ferrell, Robert E.; Goodpaster, Bret H.; Vockley, Jerry; Goetzman, Eric S.

    2010-01-01

    Brown adipose tissue is a highly specialized organ that uses mitochondrial fatty acid oxidation to fuel nonshivering thermogenesis. In mice, mutations in the acyl-CoA dehydrogenase family of fatty acid oxidation genes are associated with sensitivity to cold. Brown adipose tissue function has not previously been characterized in these knockout strains. Short-chain acyl-CoA dehydrogenase (SCAD) deficient mice were found to have increased brown adipose tissue mass as well as modest cardiac hypertrophy. Uncoupling protein-1 was reduced by 70% in brown adipose tissue and this was not due to a change in mitochondrial number, nor was it due to decreased signal transduction through protein kinase A which is known to be a major regulator of uncoupling protein-1 expression. PKA activity and in vitro lipolysis were normal in brown adipose tissue, although in white adipose tissue a modest increase in basal lipolysis was seen in SCAD−/ − mice. Finally, an in vivo norepinephrine challenge of brown adipose tissue thermogenesis revealed normal heat production in SCAD−/− mice. These results suggest that reduced brown adipose tissue function is not the major factor causing cold sensitivity in acyl-CoA dehydrogenase knockout strains. We speculate that other mechanisms such as shivering capacity, cardiac function, and reduced hepatic glycogen stores are involved. PMID:20727852

  7. EXPRESSION OF TURKEY TRANSCRIPTION FACTORS AND ACYL COA OXIDASE IN DIFFERENT TISSUES AND GENETIC POPULATIONS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several transcription factors are involved in regulating lipid metabolism in various animal tissues. Peroxisome proliferator activated receptor (PPAR) gamma and PPAR alpha regulate both lipogenesis and fatty acid oxidation. Gene fragments for PPAR gamma, PPAR alpha, and acyl CoA oxidase (ACO) have b...

  8. High fat fed heart failure animals have enhanced mitochondrial function and acyl-coa dehydrogenase activities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have previously shown that administration of high fat in heart failure (HF) increased mitochondrial respiration and did not alter left ventricular (LV) function. PPARalpha is a nuclear transcription factor that activates expression of genes involved in fatty acid uptake and utilization. We hypoth...

  9. Detection of the TCDD Binding-Fingerprint within the Ah Receptor Ligand Binding Domain by Structurally Driven Mutagenesis and Functional Analysis†

    PubMed Central

    Pandini, Alessandro; Soshilov, Anatoly A.; Song, Yujuan; Zhao, Jing; Bonati, Laura; Denison, Michael S.

    2010-01-01

    The aryl hydrocarbon receptor (AhR) is a ligand-dependent, basic helix–loop–helix Per-Arnt-Sim (PAS)-containing transcription factor that can bind and be activated by structurally diverse chemicals, including the toxic environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Our previous three-dimensional homology model of the mouse AhR (mAhR) PAS B ligand binding domain allowed identification of the binding site and its experimental validation. We have extended this analysis by conducting comparative structural modeling studies of the ligand binding domains of six additional high-affinity mammalian AhRs. These results, coupled with site-directed mutagenesis and AhR functional analysis, have allowed detection of the “TCDD binding-fingerprint” of conserved residues within the ligand binding cavity necessary for high-affinity TCDD binding and TCDD-dependent AhR transformation DNA binding. The essential role of selected residues was further evaluated using molecular docking simulations of TCDD with both wild-type and mutant mAhRs. Taken together, our results dramatically improve our understanding of the molecular determinants of TCDD binding and provide a basis for future studies directed toward rationalizing the observed species differences in AhR sensitivity to TCDD and understanding the mechanistic basis for the dramatic diversity in AhR ligand structure. PMID:19456125

  10. The RNA recognition motif domains of RBM5 are required for RNA binding and cancer cell proliferation inhibition

    SciTech Connect

    Zhang, Lei; Zhang, Qing; Yang, Yu; Wu, Chuanfang

    2014-02-14

    Highlights: • RNA recognition motif domains of RBM5 are essential for cell proliferation inhibition. • RNA recognition motif domains of RBM5 are essential for apoptosis induction. • RNA recognition motif domains of RBM5 are essential for RNA binding. • RNA recognition motif domains of RBM5 are essential for caspase-2 alternative splicing. - Abstract: RBM5 is a known putative tumor suppressor gene that has been shown to function in cell growth inhibition by modulating apoptosis. RBM5 also plays a critical role in alternative splicing as an RNA binding protein. However, it is still unclear which domains of RBM5 are required for RNA binding and related functional activities. We hypothesized the two putative RNA recognition motif (RRM) domains of RBM5 spanning from amino acids 98–178 and 231–315 are essential for RBM5-mediated cell growth inhibition, apoptosis regulation, and RNA binding. To investigate this hypothesis, we evaluated the activities of the wide-type and mutant RBM5 gene transfer in low-RBM5 expressing A549 cells. We found that, unlike wild-type RBM5 (RBM5-wt), a RBM5 mutant lacking the two RRM domains (RBM5-ΔRRM), is unable to bind RNA, has compromised caspase-2 alternative splicing activity, lacks cell proliferation inhibition and apoptosis induction function in A549 cells. These data provide direct evidence that the two RRM domains of RBM5 are required for RNA binding and the RNA binding activity of RBM5 contributes to its function on apoptosis induction and cell growth inhibition.

  11. Evolutionary analysis of the global landscape of protein domain types and domain architectures associated with family 14 carbohydrate-binding modules.

    PubMed

    Chang, Ti-Cheng; Stergiopoulos, Ioannis

    2015-07-01

    Domain promiscuity is a powerful evolutionary force that promotes functional innovation in proteins, thus increasing proteome and organismal complexity. Carbohydrate-binding modules, in particular, are known to partake in complex modular architectures that play crucial roles in numerous biochemical and molecular processes. However, the extent, functional, and evolutionary significance of promiscuity is shrouded in mystery for most CBM families. Here, we analyzed the global promiscuity of family 14 carbohydrate-binding modules (CBM14s) and show that fusion, fission, and reorganization events with numerous other domain types interplayed incessantly in a lineage-dependent manner to likely facilitate species adaptation and functional innovation in the family. PMID:26067847

  12. A Novel Catalytic Function of Synthetic IgG-Binding Domain (Z Domain) from Staphylococcal Protein A: Light Emission with Coelenterazine.

    PubMed

    Inouye, Satoshi; Sahara-Miura, Yuiko

    2014-01-01

    The synthetic IgG-binding domain (Z domain) of staphylococcal protein A catalyzes the oxidation of coelenterazine to emit light like a coelenterazine-utilizing luciferase. The Z domain derivatives (ZZ-gCys, Z-gCys and Z-domain) were purified and the luminescence properties were characterized by comparing with coelenterazine-utilizing luciferases, including Renilla luciferase, Gaussia luciferase and the catalytic 19 kDa protein of Oplophorus luciferase. Three Z domain derivatives showed luminescence activity with coelenterazine and the order of the initial maximum intensity of luminescence was ZZ-gCys (100%) > Z-gCys (36.8%) > Z-domain (1.1%) > bovine serum albumin (BSA; 0.9%) > staphylococcal protein A (0.1%) and the background value of coelenterazine (0.1%) in our conditions. The luminescence properties of ZZ-gCys showed the similarity to that of Gaussia luciferase, including the luminescence pattern, the emission spectrum, the stimulation by halogen ions and nonionic detergents and the substrate specificity for coelenterazine analogues. In contrast, the luminescence properties of Z-gCys were close to the catalytic 19 kDa protein of Oplophorus luciferase. The catalytic region of the Z domain for the luminescence reaction might be different from the IgG-binding region of the Z domain. PMID:24138575

  13. Carbohydrate-binding module 74 is a novel starch-binding domain associated with large and multidomain α-amylase enzymes.

    PubMed

    Valk, Vincent; Lammerts van Bueren, Alicia; van der Kaaij, Rachel M; Dijkhuizen, Lubbert

    2016-06-01

    Microbacterium aurum B8.A is a bacterium that originates from a potato starch-processing plant and employs a GH13 α-amylase (MaAmyA) enzyme that forms pores in potato starch granules. MaAmyA is a large and multi-modular protein that contains a novel domain at its C terminus (Domain 2). Deletion of Domain 2 from MaAmyA did not affect its ability to degrade starch granules but resulted in a strong reduction in granular pore size. Here, we separately expressed and purified this Domain 2 in Escherichia coli and determined its likely function in starch pore formation. Domain 2 independently binds amylose, amylopectin, and granular starch but does not have any detectable catalytic (hydrolytic or oxidizing) activity on α-glucan substrates. Therefore, we propose that this novel starch-binding domain is a new carbohydrate-binding module (CBM), the first representative of family CBM74 that assists MaAmyA in efficient pore formation in starch granules. Protein sequence-based BLAST searches revealed that CBM74 occurs widespread, but in bacteria only, and is often associated with large and multi-domain α-amylases containing family CBM25 or CBM26 domains. CBM74 may specifically function in binding to granular starches to enhance the capability of α-amylase enzymes to degrade resistant starches (RSs). Interestingly, the majority of family CBM74 representatives are found in α-amylases originating from human gut-associated Bifidobacteria, where they may assist in resistant starch degradation. The CBM74 domain thus may have a strong impact on the efficiency of RS digestion in the mammalian gastrointestinal tract. PMID:27101946

  14. Identification of Src, Fyn, and Lyn SH3-binding proteins: implications for a function of SH3 domains.

    PubMed Central

    Weng, Z; Thomas, S M; Rickles, R J; Taylor, J A; Brauer, A W; Seidel-Dugan, C; Michael, W M; Dreyfuss, G; Brugge, J S

    1994-01-01

    Src homology 3 (SH3) domains mediate protein-protein interactions necessary for the coupling of cellular proteins involved in intracellular signal transduction. We previously established solution-binding conditions that allow affinity isolation of Src SH3-binding proteins from cellular extracts (Z. Weng, J. A. Taylor, C. E. Turner, J. S. Brugge, and C. Seidel-Dugan, J. Biol. Chem. 268:14956-14963, 1993). In this report, we identified three of these proteins: Shc, a signaling protein that couples membrane tyrosine kinases with Ras; p62, a protein which can bind to p21rasGAP; and heterogeneous nuclear ribonucleoprotein K, a pre-mRNA-binding protein. All of these proteins contain proline-rich peptide motifs that could serve as SH3 domain ligands, and the binding of these proteins to the Src SH3 domain was inhibited with a proline-rich Src SH3 peptide ligand. These three proteins, as well as most of the other Src SH3 ligands, also bound to the SH3 domains of the closely related protein tyrosine kinases Fyn and Lyn. However, Src- and Lyn-specific SH3-binding proteins were also detected, suggesting subtle differences in the binding specificity of the SH3 domains from these related proteins. Several Src SH3-binding proteins were phosphorylated in Src-transformed cells. The phosphorylation of these proteins was not detected in cells transformed by a mutant variant of Src lacking the SH3 domain, while there was little change in tyrosine phosphorylation of other Src-induced phosphoproteins. In addition, the coprecipitation of v-Src with two tyrosyl-phosphorylated proteins with M(r)s of 62,000 and 130,000 was inhibited by incubation with a Src SH3 peptide ligand, suggesting that the binding of these substrate proteins is dependent on interactions with the SH3 domain. These results strongly suggest a role for the Src SH3 domain in the recruitment of substrates to this protein tyrosine kinase, either through direct interaction with the SH3 domain or indirectly through

  15. The N-terminal fingers of chicken GATA-2 and GATA-3 are independent sequence-specific DNA binding domains.

    PubMed

    Pedone, P V; Omichinski, J G; Nony, P; Trainor, C; Gronenborn, A M; Clore, G M; Felsenfeld, G

    1997-05-15

    The GATA family of vertebrate DNA binding regulatory proteins are expressed in diverse tissues and at different times of development. However, the DNA binding regions of these proteins possess considerable homology and recognize a rather similar range of DNA sequence motifs. DNA binding is mediated through two domains, each containing a zinc finger. Previous results have led to the conclusion that although in some cases the N-terminal finger can contribute to specificity and strength of binding, it does not bind independently, whereas the C-terminal finger is both necessary and sufficient for binding. Here we show that although this is true for the N-terminal finger of GATA-1, those of GATA-2 and GATA-3 are capable of strong independent binding with a preference for the motif GATC. Binding requires the presence of two basic regions located on either side of the N-terminal finger. The absence of one of these near the GATA-1 N-terminal finger probably accounts for its inability to bind. The combination of a single finger and two basic regions is a new variant of a motif that has been previously found in the binding domains of other finger proteins. Our results suggest that the DNA binding properties of the N-terminal finger may help distinguish GATA-2 and GATA-3 from GATA-1 and the other GATA family members in their selective regulatory roles in vivo. PMID:9184231

  16. BS69/ZMYND11 C-Terminal Domains Bind and Inhibit EBNA2

    PubMed Central

    Shen, Chih-Lung; Gonzalez-Hurtado, Elsie; Zhang, Zhi-Min; Xu, Muyu; Martinez, Ernest; Peng, Chih-Wen; Song, Jikui

    2016-01-01

    Epstein-Barr virus (EBV) nuclear antigen 2 (EBNA2) plays an important role in driving immortalization of EBV-infected B cells through regulating the expression of many viral and cellular genes. We report a structural study of the tumor suppressor BS69/ZMYND11 C-terminal region, comprised of tandem coiled-coil-MYND domains (BS69CC-MYND), in complex with an EBNA2 peptide containing a PXLXP motif. The coiled-coil domain of BS69 self-associates to bring two separate MYND domains in close proximity, thereby enhancing the BS69 MYND-EBNA2 interaction. ITC analysis of BS69CC-MYND with a C-terminal fragment of EBNA2 further suggests that the BS69CC-MYND homodimer synergistically binds to the two EBNA2 PXLXP motifs that are respectively located in the conserved regions CR7 and CR8. Furthermore, we showed that EBNA2 interacts with BS69 and down-regulates its expression at both mRNA and protein levels in EBV-infected B cells. Ectopic BS69CC-MYND is recruited to viral target promoters through interactions with EBNA2, inhibits EBNA2-mediated transcription activation, and impairs proliferation of lymphoblastoid cell lines (LCLs). Substitution of critical residues in the MYND domain impairs the BS69-EBNA2 interaction and abolishes the BS69 inhibition of the EBNA2-mediated transactivation and LCL proliferation. This study identifies the BS69 C-terminal domains as an inhibitor of EBNA2, which may have important implications in development of novel therapeutic strategies against EBV infection. PMID:26845565

  17. The Src Homology 3 Domain Is Required for Junctional Adhesion Molecule Binding to the Third PDZ Domain of the Scaffolding Protein ZO-1

    SciTech Connect

    Nomme, Julian; Fanning, Alan S.; Caffrey, Michael; Lye, Ming F.; Anderson, James M.; Lavie, Arnon

    2012-01-20

    Tight junctions are cell-cell contacts that regulate the paracellular flux of solutes and prevent pathogen entry across cell layers. The assembly and permeability of this barrier are dependent on the zonula occludens (ZO) membrane-associated guanylate kinase (MAGUK) proteins ZO-1, -2, and -3. MAGUK proteins are characterized by a core motif of protein-binding domains that include a PDZ domain, a Src homology 3 (SH3) domain, and a region of homology to guanylate kinase (GUK); the structure of this core motif has never been determined for any MAGUK. To better understand how ZO proteins organize the assembly of protein complexes we have crystallized the entire PDZ3-SH3-GUK core motif of ZO-1. We have also crystallized this core motif in complex with the cytoplasmic tail of the ZO-1 PDZ3 ligand, junctional adhesion molecule A (JAM-A) to determine how the activity of different domains is coordinated. Our study shows a new feature for PDZ class II ligand binding that implicates the two highly conserved Phe{sup -2} and Ser{sup -3} residues of JAM. Our x-ray structures and NMR experiments also show for the first time a role for adjacent domains in the binding of ligands to PDZ domains in the MAGUK proteins family.

  18. Structure-Activity Based Study of the Smac-Binding Pocket Within the DIR3 Domain of XIAP

    SciTech Connect

    Wist,A.; Gu, L.; Riedl, S.; Shi, Y.; McLendon, G.

    2007-01-01

    A small series of peptide mimics was designed and synthesized to contain a heterocyclic ring in place of the potentially labile N-terminal peptide bond of the tetrapeptide containing the Smac-XIAP-binding motif. Two Smac mimics were shown to bind to the BIR3 domain of XIAP with moderate affinity and one displayed increased activity in cells relative to the Smac peptides. The structures of BIR3-XIAP in complex with a Smac peptide and a peptide mimic were solved and analyzed to elucidate the structure-activity relationship surrounding the Smac-binding domain within BIR3-XIAP.

  19. High efficiency motility of bacteria-driven liposome with raft domain binding method.

    PubMed

    Kojima, Masaru; Zhang, Zhenhai; Nakajima, Masahiro; Fukuda, Toshio

    2012-12-01

    From the viewpoint of energy efficiency and size reduction, many people have proposed the use of microbes as actuators. Some bacteria can swim in an aqueous environment. Therefore, flagellated chemotactic bacteria have been utilized as actuators for the propulsion of micro-objects by randomly attaching several bacteria to their surface. A liposome is a well-known component used for drug delivery that can contain biologically active compounds. In the present study, we used an antibody and biotin-streptavidin binding technique to combine bacteria and liposomes and create bacteria-driven liposomes. Furthermore, a novel raft domain binding technique was developed and used to limit the attachment of bacteria to small areas of the liposome surface. The effect of the number and configuration of the attached bacteria on propulsion speed was then studied experimentally. The motility of the raft domain liposome with bacteria was higher than that of the normal liposome with bacteria. This method could be used to create bacteria-driven liposomes with highly efficient motility and could lead to the development of microrobots as drug delivery systems. PMID:23053448

  20. A structural model for the nucleotide binding domains of the flavocytochrome b-245 beta-chain.

    PubMed Central

    Taylor, W. R.; Jones, D. T.; Segal, A. W.

    1993-01-01

    NADPH is a system in phagocytic cells that generates O2- and hydrogen peroxide in the endocytic vacuole, both of which are important for killing of the engulfed microbe. Dysfunction of this oxidase results in the syndrome of chronic granulomatous disease, characterized by a profound predisposition to bacterial and fungal infections. A flavocytochrome b is the site of most of the mutations causing this syndrome. The FAD and NADPH binding sites have been located on the beta subunit of this molecule, the C-terminal half of which showed weak sequence similarity to other reductases, including the ferredoxin-NADP reductase (FNR) of known structure. This enabled us to build a model of the nucleotide binding domains of the flavocytochrome using this structure as a template. The model was built initially using a novel automatic modeling method based on distance-matrix projection and then refined using energy minimization with appropriate side-chain torsional constraints. The resulting model rationalized much of the observed sequence conservation and identified a large insertion as a potential regulatory domain. It confirms the inclusion of the neutrophil flavocytochrome b-245 (Cb-245) as a member of the FNR family of reductases and strongly supports its function as the proximal electron transporting component of the NADPH oxidase. PMID:8251942

  1. Structural Basis and Function of XRN2-Binding by XTB Domains

    PubMed Central

    Richter, Hannes; Katic, Iskra; Gut, Heinz; Großhans, Helge

    2016-01-01

    The ribonuclease XRN2 is an essential player in RNA metabolism. In Caenorhabditis elegans, XRN2 functions with PAXT-1, which shares a putative XRN2-binding domain (XTBD) with otherwise unrelated mammalian proteins. Here, we characterize structure and function of an XTBD – XRN2 complex. Although XTBD stably interconnects two XRN2 domains through numerous interacting residues, mutation of a single critical residue suffices to disrupt XTBD – XRN2 complexes in vitro, and recapitulates paxt-1 null mutant phenotypes in vivo. Demonstrating conservation of function, vertebrate XTBD-containing proteins bind XRN2 in vitro, and human CDKN2AIPNL (C2AIL) can substitute for PAXT-1 in vivo. In vertebrates, where three distinct XTBD-containing proteins exist, XRN2 may partition to distinct stable heterodimeric complexes, likely differing in subcellular localization or function. In C. elegans, complex formation with the unique PAXT-1 serves to preserve the stability of XRN2 in the absence of substrate. PMID:26779609

  2. Novel variants identified in methyl-CpG-binding domain genes in autistic individuals

    PubMed Central

    Cukier, Holly N.; Rabionet, Raquel; Konidari, Ioanna; Rayner-Evans, Melissa Y.; Baltos, Mary L.; Wright, Harry H.; Abramson, Ruth K.; Martin, Eden R.; Cuccaro, Michael L.; Pericak-Vance, Margaret A.

    2010-01-01

    Misregulation of the methyl-CpG-binding protein 2 (MECP2) gene has been found to cause a myriad of neurological disorders including autism, mental retardation, seizures, learning disabilities, and Rett syndrome. We hypothesized that mutations in other members of the methyl-CpG-binding domain (MBD) family may also cause autistic features in individuals. We evaluated 226 autistic individuals for alterations in the four genes most homologous to MECP2: MBD1, MBD2, MBD3, and MBD4. A total of 46 alterations were identified in the four genes, including ten missense changes and two deletions that alter coding sequence. Several are either unique to our autistic population or cosegregate with affected individuals within a family, suggesting a possible relation of these variations to disease etiology. Variants include a R23M alteration in two affected half brothers which falls within the MBD domain of the MBD3 protein, as well as a frameshift in MBD4 that is predicted to truncate almost half of the protein. These results suggest that rare cases of autism may be influenced by mutations in members of the dynamic MBD protein family. PMID:19921286

  3. Novel variants identified in methyl-CpG-binding domain genes in autistic individuals.

    PubMed

    Cukier, Holly N; Rabionet, Raquel; Konidari, Ioanna; Rayner-Evans, Melissa Y; Baltos, Mary L; Wright, Harry H; Abramson, Ruth K; Martin, Eden R; Cuccaro, Michael L; Pericak-Vance, Margaret A; Gilbert, John R

    2010-07-01

    Misregulation of the methyl-CpG-binding protein 2 (MECP2) gene has been found to cause a myriad of neurological disorders including autism, mental retardation, seizures, learning disabilities, and Rett syndrome. We hypothesized that mutations in other members of the methyl-CpG-binding domain (MBD) family may also cause autistic features in individuals. We evaluated 226 autistic individuals for alterations in the four genes most homologous to MECP2: MBD1, MBD2, MBD3, and MBD4. A total of 46 alterations were identified in the four genes, including ten missense changes and two deletions that alter coding sequence. Several are either unique to our autistic population or cosegregate with affected individuals within a family, suggesting a possible relation of these variations to disease etiology. Variants include a R23M alteration in two affected half brothers which falls within the MBD domain of the MBD3 protein, as well as a frameshift in MBD4 that is predicted to truncate almost half of the protein. These results suggest that rare cases of autism may be influenced by mutations in members of the dynamic MBD protein family. PMID:19921286

  4. Direct Correlation of DNA Binding and Single Protein Domain Motion via Dual Illumination Fluorescence Microscopy

    PubMed Central

    2015-01-01

    We report a dual illumination, single-molecule imaging strategy to dissect directly and in real-time the correlation between nanometer-scale domain motion of a DNA repair protein and its interaction with individual DNA substrates. The strategy was applied to XPD, an FeS cluster-containing DNA repair helicase. Conformational dynamics was assessed via FeS-mediated quenching of a fluorophore site-specifically incorporated into XPD. Simultaneously, binding of DNA molecules labeled with a spectrally distinct fluorophore was detected by colocalization of the DNA- and protein-derived signals. We show that XPD undergoes thermally driven conformational transitions that manifest in spatial separation of its two auxiliary domains. DNA binding does not strictly enforce a specific conformation. Interaction with a cognate DNA damage, however, stabilizes the compact conformation of XPD by increasing the weighted average lifetime of this state by 140% relative to an undamaged DNA. Our imaging strategy will be a valuable tool to study other FeS-containing nucleic acid processing enzymes. PMID:25204359

  5. Insights into the binding of PARP inhibitors to the catalytic domain of human tankyrase-2

    PubMed Central

    Qiu, Wei; Lam, Robert; Voytyuk, Oleksandr; Romanov, Vladimir; Gordon, Roni; Gebremeskel, Simon; Vodsedalek, Jakub; Thompson, Christine; Beletskaya, Irina; Battaile, Kevin P.; Pai, Emil F.; Rottapel, Robert; Chirgadze, Nickolay Y.

    2014-01-01

    The poly(ADP-ribose) polymerase (PARP) family represents a new class of therapeutic targets with diverse potential disease indications. PARP1 and PARP2 inhibitors have been developed for breast and ovarian tumors manifesting double-stranded DNA-repair defects, whereas tankyrase 1 and 2 (TNKS1 and TNKS2, also known as PARP5a and PARP5b, respectively) inhibitors have been developed for tumors with elevated β-catenin activity. As the clinical relevance of PARP inhibitors continues to be actively explored, there is heightened interest in the design of selective inhibitors based on the detailed structural features of how small-molecule inhibitors bind to each of the PARP family members. Here, the high-resolution crystal structures of the human TNKS2 PARP domain in complex with 16 various PARP inhibitors are reported, including the compounds BSI-201, AZD-2281 and ABT-888, which are currently in Phase 2 or 3 clinical trials. These structures provide insight into the inhibitor-binding modes for the tankyrase PARP domain and valuable information to guide the rational design of future tankyrase-specific inhibitors. PMID:25286857

  6. Nuclear receptor ligand-binding domains: reduction of helix H12 dynamics to favour crystallization

    SciTech Connect

    Nahoum, Virginie; Lipski, Alexandra; Quillard, Fabien; Guichou, Jean-François; Boublik, Yvan; Pérez, Efrèn; Germain, Pierre; Lera, Angel R. de; Bourguet, William

    2008-07-01

    Attempts have been made to crystallize the ligand-binding domain of the human retinoid X receptor in complex with a variety of newly synthesized ligands. An inverse correlation was observed between the ‘crystallizability’ and the structural dynamics of the various receptor–ligand complexes. Crystallization trials of the human retinoid X receptor α ligand-binding domain (RXRα LBD) in complex with various ligands have been carried out. Using fluorescence anisotropy, it has been found that when compared with agonists these small-molecule effectors enhance the dynamics of the RXRα LBD C-terminal helix H12. In some cases, the mobility of this helix could be dramatically reduced by the addition of a 13-residue co-activator fragment (CoA). In keeping with these observations, crystals have been obtained of the corresponding ternary RXRα LBD–ligand–CoA complexes. In contrast, attempts to crystallize complexes with a highly mobile H12 remained unsuccessful. These experimental observations substantiate the previously recognized role of co-regulator fragments in facilitating the crystallization of nuclear receptor LBDs.

  7. Insights into the binding of PARP inhibitors to the catalytic domain of human tankyrase-2

    SciTech Connect

    Qiu, Wei; Lam, Robert; Voytyuk, Oleksandr; Romanov, Vladimir; Gordon, Roni; Gebremeskel, Simon; Vodsedalek, Jakub; Thompson, Christine; Beletskaya, Irina; Battaile, Kevin P.; Pai, Emil F.; Rottapel, Robert; Chirgadze, Nickolay Y.

    2014-07-31

    The poly(ADP-ribose) polymerase (PARP) family represents a new class of therapeutic targets with diverse potential disease indications. PARP1 and PARP2 inhibitors have been developed for breast and ovarian tumors manifesting double-stranded DNA-repair defects, whereas tankyrase 1 and 2 (TNKS1 and TNKS2, also known as PARP5a and PARP5b, respectively) inhibitors have been developed for tumors with elevated β-catenin activity. As the clinical relevance of PARP inhibitors continues to be actively explored, there is heightened interest in the design of selective inhibitors based on the detailed structural features of how small-molecule inhibitors bind to each of the PARP family members. Here, the high-resolution crystal structures of the human TNKS2 PARP domain in complex with 16 various PARP inhibitors are reported, including the compounds BSI-201, AZD-2281 and ABT-888, which are currently in Phase 2 or 3 clinical trials. These structures provide insight into the inhibitor-binding modes for the tankyrase PARP domain and valuable information to guide the rational design of future tankyrase-specific inhibitors.

  8. A Nucleotide Phosphatase Activity in the Nucleotide Binding Domain of an Orphan Resistance Protein from Rice*

    PubMed Central

    Fenyk, Stepan; de San Eustaquio Campillo, Alba; Pohl, Ehmke; Hussey, Patrick J.; Cann, Martin J.

    2012-01-01

    Plant resistance proteins (R-proteins) are key components of the plant immune system activated in response to a plethora of different pathogens. R-proteins are P-loop NTPase superfamily members, and current models describe their main function as ATPases in defense signaling pathways. Here we show that a subset of R-proteins have evolved a new function to combat pathogen infection. This subset of R-proteins possesses a nucleotide phosphatase activity in the nucleotide-binding domain. Related R-proteins that fall in the same phylogenetic clade all show the same nucleotide phosphatase activity indicating a conserved function within at least a subset of R-proteins. R-protein nucleotide phosphatases catalyze the production of nucleoside from nucleotide with the nucleotide monophosphate as the preferred substrate. Mutation of conserved catalytic residues substantially reduced activity consistent with the biochemistry of P-loop NTPases. Kinetic analysis, analytical gel filtration, and chemical cross-linking demonstrated that the nucleotide-binding domain was active as a multimer. Nuclear magnetic resonance and nucleotide analogues identified the terminal phosphate bond as the target of a reaction that utilized a metal-mediated nucleophilic attack by water on the phosphoester. In conclusion, we have identified a group of R-proteins with a unique function. This biochemical activity appears to have co-evolved with plants in signaling pathways designed to resist pathogen attack. PMID:22157756

  9. Novel missense mutation in the cyclic nucleotide-binding domain of HERG causes long QT syndrome

    SciTech Connect

    Satler, C.A.; Walsh, E.P.; Vesely, M.R.

    1996-10-02

    Autosomal-dominant long QT syndrome (LQT) is an inherited disorder, predisposing affected individuals to sudden death from tachyarrhythmias. To identify the gene(s) responsible for LQT, we identified and characterized an LQT family consisting of 48 individuals. DNA was screened with 150 microsatellite polymorphic markers encompassing approximately 70% of the genome. We found evidence for linkage of the LQT phenotype to chromosome 7(q35-36). Marker D7S636 yielded a maximum lod score of 6.93 at a recombination fraction ({theta}) of 0.00. Haplotype analysis further localized the LQT gene within a 6-2-cM interval. HERG encodes a potassium channel which has been mapped to this region. Single-strand conformational polymorphism analyses demonstrated aberrant bands that were unique to all affected individuals. DNA sequencing of the aberrant bands demonstrated a G to A substitution in all affected patients; this point mutation results in the substitution of a highly conserved valine residue with a methionine (V822M) in the cyclic nucleotide-binding domain of this potassium channel. The cosegregation of this distinct mutation with LQT demonstrates that HERG is the LQT gene in this pedigree. Furthermore, the location and character of this mutation suggests that the cyclic nucleotide-binding domain of the potassium channel encoded by HERG plays an important role in normal cardiac repolarization and may decrease susceptibility to ventricular tachyarrhythmias. 38 refs., 7 figs., 2 tabs.

  10. Expression and Purification of Functional Ligand-binding Domains of T1R3 Taste Receptors

    SciTech Connect

    Nie,Y.; Hobbs, J.; Vigues, S.; Olson, W.; Conn, G.; Munger, S.

    2006-01-01

    Chemosensory receptors, including odor, taste, and vomeronasal receptors, comprise the largest group of G protein-coupled receptors (GPCRs) in the mammalian genome. However, little is known about the molecular determinants that are critical for the detection and discrimination of ligands by most of these receptors. This dearth of understanding is due in part to difficulties in preparing functional receptors suitable for biochemical and biophysical analyses. Here we describe in detail two strategies for the expression and purification of the ligand-binding domain of T1R taste receptors, which are constituents of the sweet and umami taste receptors. These class C GPCRs contain a large extracellular N-terminal domain (NTD) that is the site of interaction with most ligands and that is amenable to expression as a separate polypeptide in heterologous cells. The NTD of mouse T1R3 was expressed as two distinct fusion proteins in Escherichia coli and purified by column chromatography. Spectroscopic analysis of the purified NTD proteins shows them to be properly folded and capable of binding ligands. This methodology should not only facilitate the characterization of T1R ligand interactions but may also be useful for dissecting the function of other class C GPCRs such as the large family of orphan V2R vomeronasal receptors.

  11. Insights into the binding of PARP inhibitors to the catalytic domain of human tankyrase-2

    DOE PAGESBeta

    Qiu, Wei; Lam, Robert; Voytyuk, Oleksandr; Romanov, Vladimir; Gordon, Roni; Gebremeskel, Simon; Vodsedalek, Jakub; Thompson, Christine; Beletskaya, Irina; Battaile, Kevin P.; et al

    2014-07-31

    The poly(ADP-ribose) polymerase (PARP) family represents a new class of therapeutic targets with diverse potential disease indications. PARP1 and PARP2 inhibitors have been developed for breast and ovarian tumors manifesting double-stranded DNA-repair defects, whereas tankyrase 1 and 2 (TNKS1 and TNKS2, also known as PARP5a and PARP5b, respectively) inhibitors have been developed for tumors with elevated β-catenin activity. As the clinical relevance of PARP inhibitors continues to be actively explored, there is heightened interest in the design of selective inhibitors based on the detailed structural features of how small-molecule inhibitors bind to each of the PARP family members. Here, themore » high-resolution crystal structures of the human TNKS2 PARP domain in complex with 16 various PARP inhibitors are reported, including the compounds BSI-201, AZD-2281 and ABT-888, which are currently in Phase 2 or 3 clinical trials. These structures provide insight into the inhibitor-binding modes for the tankyrase PARP domain and valuable information to guide the rational design of future tankyrase-specific inhibitors.« less

  12. Genetic analysis of the cell binding domain region of the chicken fibronectin gene.

    PubMed

    Kubomura, S; Obara, M; Karasaki, Y; Taniguchi, H; Gotoh, S; Tsuda, T; Higashi, K; Ohsato, K; Hirano, H

    1987-11-20

    We have determined the nucleotide sequence of the cell binding domain region of the chicken fibronectin gene and analyzed it evolutionaly. We present here the complete nucleotide sequence of 4.3 kb HindIII/EcoRI segment from the clone lambda FC23 of the chicken fibronectin gene. There were five exons in this segment. When we lined up the amino acid of exons 28, 29 and 31, three alignments, known as the Type III repeat, appeared. Tetrapeptide, -RGDS-, called the cell binding domain, existed in the second repeat, coding exon 30. It was presumed that the Type III repeats were composed of two exons in the chicken gene, the same as in the rat and humans. We found repeatedly appearing amino-acid sequences such as -TIT- (three arrays in these Type III repeats) but also found one of the amino acids substituted in the tripeptide in these Type III repeats (seven arrays). We analyzed these repeats from the point of view of evolution. We used three of the nucleotide sequences (12-18 bp) coding such -TIT- repeats as a unit length for comparing the various homologies after dividing the coding region into 56 segments. The mutual homology of the divided segments to each one of three showed 53% on average. On the other hand, the mutual nucleotide homology of the Type III repeat was 44%. This suggested that the Type III repeat may have been developed by frequent duplication of small gene units. PMID:2823899

  13. Structure-Based Identification, Characterization, and Disruption of Human Securin-Binding SH3 Domains in Lung Cancer.

    PubMed

    Wang, Keping; Qiu, Tiefeng; Li, Xianwen

    2016-05-27

    The human securin is an oncogenic transcription factor that has been found to promote migration and invasion of lung cancer and many other tumors. The protein contains a PxxP motif that can be recognized and bound by diverse cellular partners via Src homology (SH3) domain to regulate biological and pathological events. The motif is covered by a decapeptide segment (161)LGPPSPVKMP(170) (SecPeptide) as the potential binding site of SH3 domains. Here, we attempted to systemically identify the SH3 binding partners of human securin in lung cancer and to characterize the intermolecular interaction between SecPeptide and the identified SH3 domains. A bioinformatics protocol that integrated literature curation, complex structural modeling, and binding affinity analysis was described to perform systematic search against an array of SH3-containing proteins involved in lung cancer signaling pathway and, consequently, three putative domains, namely GRB2, CRK, and RasGAP, were identified that have high potential to recognize and bind SecPeptide. The molecular mechanism and biological implication underlying the intermolecular interaction between these domains and SecPetide were investigated at structural and energetic level. Surface plasmon resonance assay revealed a high or moderate affinity of SecPeptide and its two mutants binding to CRK-SH3 domain with dissociation constants Kd = 79.8, 24.2, and 64.6 µM, respectively. PMID:27210447

  14. Binding of basal transcription factor TFIIH to the acidic activation domains of VP16 and p53.

    PubMed Central

    Xiao, H; Pearson, A; Coulombe, B; Truant, R; Zhang, S; Regier, J L; Triezenberg, S J; Reinberg, D; Flores, O; Ingles, C J

    1994-01-01

    Acidic transcriptional activation domains function well in both yeast and mammalian cells, and some have been shown to bind the general transcription factors TFIID and TFIIB. We now show that two acidic transactivators, herpes simplex virus VP16 and human p53, directly interact with the multisubunit human general transcription factor TFIIH and its Saccharomyces cerevisiae counterpart, factor b. The VP16- and p53-binding domains in these factors lie in the p62 subunit of TFIIH and in the homologous subunit, TFB1, of factor b. Point mutations in VP16 that reduce its transactivation activity in both yeast and mammalian cells weaken its binding to both yeast and human TFIIH. This suggests that binding of activation domains to TFIIH is an important aspect of transcriptional activation. Images PMID:7935417

  15. Recurrent hormone-binding domain truncated ESR1 amplifications in primary endometrial cancers suggest their implication in hormone independent growth

    PubMed Central

    Holst, Frederik; Hoivik, Erling A.; Gibson, William J.; Taylor-Weiner, Amaro; Schumacher, Steven E.; Asmann, Yan W.; Grossmann, Patrick; Trovik, Jone; Necela, Brian M.; Thompson, E. Aubrey; Meyerson, Matthew; Beroukhim, Rameen; Salvesen, Helga B.; Cherniack, Andrew D.

    2016-01-01

    The estrogen receptor alpha (ERα) is highly expressed in both endometrial and breast cancers, and represents the most prevalent therapeutic target in breast cancer. However, anti-estrogen therapy has not been shown to be effective in endometrial cancer. Recently it has been shown that hormone-binding domain alterations of ERα in breast cancer contribute to acquired resistance to anti-estrogen therapy. In analyses of genomic data from The Cancer Genome Atlas (TCGA), we observe that endometrial carcinomas manifest recurrent ESR1 gene amplifications that truncate the hormone-binding domain encoding region of ESR1 and are associated with reduced mRNA expression of exons encoding the hormone-binding domain. These findings support a role for hormone-binding alterations of ERα in primary endometrial cancer, with potentially important therapeutic implications. PMID:27160768

  16. Recurrent hormone-binding domain truncated ESR1 amplifications in primary endometrial cancers suggest their implication in hormone independent growth.

    PubMed

    Holst, Frederik; Hoivik, Erling A; Gibson, William J; Taylor-Weiner, Amaro; Schumacher, Steven E; Asmann, Yan W; Grossmann, Patrick; Trovik, Jone; Necela, Brian M; Thompson, E Aubrey; Meyerson, Matthew; Beroukhim, Rameen; Salvesen, Helga B; Cherniack, Andrew D

    2016-01-01

    The estrogen receptor alpha (ERα) is highly expressed in both endometrial and breast cancers, and represents the most prevalent therapeutic target in breast cancer. However, anti-estrogen therapy has not been shown to be effective in endometrial cancer. Recently it has been shown that hormone-binding domain alterations of ERα in breast cancer contribute to acquired resistance to anti-estrogen therapy. In analyses of genomic data from The Cancer Genome Atlas (TCGA), we observe that endometrial carcinomas manifest recurrent ESR1 gene amplifications that truncate the hormone-binding domain encoding region of ESR1 and are associated with reduced mRNA expression of exons encoding the hormone-binding domain. These findings support a role for hormone-binding alterations of ERα in primary endometrial cancer, with potentially important therapeutic implications. PMID:27160768

  17. Characterization of an Additional Binding Surface on the p97 N-Terminal Domain Involved in Bipartite Cofactor Interactions.

    PubMed

    Hänzelmann, Petra; Schindelin, Hermann

    2016-01-01

    The type II AAA ATPase p97 interacts with a large number of cofactors that regulate its function by recruiting it to different cellular pathways. Most of the cofactors interact with the N-terminal (N) domain of p97, either via ubiquitin-like domains or short linear binding motifs. While some linear binding motifs form α helices, another group features short stretches of unstructured hydrophobic sequences as found in the so-called SHP (BS1, binding segment 1) motif. Here we present the crystal structure of a SHP-binding motif in complex with p97, which reveals a so far uncharacterized binding site on the p97 N domain that is different from the conserved binding surface of all other known p97 cofactors. This finding explains how cofactors like UFD1/NPL4 and p47 can utilize a bipartite binding mechanism to interact simultaneously with the same p97 monomer via their ubiquitin-like domain and SHP motif. PMID:26712280

  18. Co-operative DNA binding by GAGA transcription factor requires the conserved BTB/POZ domain and reorganizes promoter topology.

    PubMed Central

    Katsani, K R; Hajibagheri, M A; Verrijzer, C P

    1999-01-01

    The POZ domain is a conserved protein-protein interaction motif present in a variety of transcription factors involved in development, chromatin remodelling and human cancers. Here, we study the role of the POZ domain of the GAGA transcription factor in promoter recognition. Natural target promoters for GAGA typically contain multiple GAGA-binding elements. Our results show that the POZ domain mediates strong co-operative binding to multiple sites but inhibits binding to single sites. Protein cross-linking and gel filtration chromatography experiments established that the POZ domain is required for GAGA oligomerization into higher order complexes. Thus, GAGA oligomerization increases binding specificity by selecting only promoters with multiple sites. Electron microscopy revealed that GAGA binds to multiple sites as a large oligomer and induces bending of the promoter DNA. Our results indicate a novel mode of DNA binding by GAGA, in which a large GAGA complex binds multiple GAGA elements that are spread out over a region of a few hundred base pairs. We suggest a model in which the promoter DNA is wrapped around a GAGA multimer in a conformation that may exclude normal nucleosome formation. PMID:9927429

  19. Functional Analysis of a Bacterial Antifreeze Protein Indicates a Cooperative Effect between Its Two Ice-Binding Domains.

    PubMed

    Wang, Chen; Oliver, Erin E; Christner, Brent C; Luo, Bing-Hao

    2016-07-19

    Antifreeze proteins make up a class of ice-binding proteins (IBPs) that are possessed and expressed by certain cold-adapted organisms to enhance their freezing tolerance. Here we report the biophysical and functional characterization of an IBP discovered in a bacterium recovered from a deep glacial ice core drilled at Vostok Station, Antarctica (IBPv). Our study showed that the recombinant protein rIBPv exhibited a thermal hysteresis of 2 °C at concentrations of >50 μM, effectively inhibited ice recrystallization, and enhanced bacterial viability during freeze-thaw cycling. Circular dichroism scans indicated that rIBPv mainly consists of β strands, and its denaturing temperature was 53.5 °C. Multiple-sequence alignment of homologous IBPs predicted that IBPv contains two ice-binding domains, a feature unique among known IBPs. To examine functional differences between the IBPv domains, each domain was cloned, expressed, and purified. The second domain (domain B) expressed greater ice binding activity. Data from thermal hysteresis and gel filtration assays supported the idea that the two domains cooperate to achieve a higher ice binding effect by forming heterodimers. However, physical linkage of the domains was not required for this effect. PMID:27359086

  20. GST-Induced dimerization of DNA-binding domains alters characteristics of their interaction with DNA.

    PubMed

    Niedziela-Majka, A; Rymarczyk, G; Kochman, M; Ozyhar, A

    1998-11-01

    The steroid hormone 20-hydroxyecdysone (20E) plays a key role in the induction and modulation of morphogenetic events throughout Drosophila melanogaster development. Two members of the nuclear receptor superfamily, the product of the EcR (EcR) and of the ultraspiracle genes (Usp), heterodimerize to form its functional receptor. To study the receptor-DNA interaction, critical for regulating 20E-dependent gene expression, it is necessary to produce large quantities of EcR and Usp DNA-binding domains. Toward this end DNA-binding domains of EcR and Usp (EcRDBD and UspDBD, respectively) were cloned and expressed in Escherichia coli as fusion proteins with glutathione S-transferase (GST). However, the results of DNA-binding studies obtained with purified GST-DBDs were found to be questionable because the fused proteins oligomerized in solution due to the presence of GST. Therefore DBDs were released from GST-chimeric proteins by thrombin cleavage and then purified by glutathione-Sepharose 4B chromatography and by gel filtration on Superdex 75 HR. The gel mobility-shift experiments showed that UspDBD exhibited higher affinity than EcRDBD toward a 20-hydroxyecdysone response element from the Drosophila hsp 27 gene (hsp 27pal). Furthermore, formation of the heterodimeric EcRDBD-UspDBD complex was observed to be synergistic when equimolar mixture of both DBDs was incubated with hsp 27pal. Surprisingly, GST-EcRDBD bound hsp 27pal with higher affinity than GST-UspDBD. This difference was accompanied by the impaired ability of the GST-DBDs to interact synergistically with hsp 27pal. This is the first report on expression and purification of the soluble DBDs of the functional ecdysteroid receptor with satisfying yields. Furthermore, our results add to the recent findings which indicate the need for caution in interpreting the activities of GST fusion proteins. PMID:9790883

  1. BuD, a helix–loop–helix DNA-binding domain for genome modification

    SciTech Connect

    Stella, Stefano; Molina, Rafael; López-Méndez, Blanca; Juillerat, Alexandre; Bertonati, Claudia; Daboussi, Fayza; Campos-Olivas, Ramon; Duchateau, Phillippe; Montoya, Guillermo

    2014-07-01

    Crystal structures of BurrH and the BurrH–DNA complex are reported. DNA editing offers new possibilities in synthetic biology and biomedicine for modulation or modification of cellular functions to organisms. However, inaccuracy in this process may lead to genome damage. To address this important problem, a strategy allowing specific gene modification has been achieved through the addition, removal or exchange of DNA sequences using customized proteins and the endogenous DNA-repair machinery. Therefore, the engineering of specific protein–DNA interactions in protein scaffolds is key to providing ‘toolkits’ for precise genome modification or regulation of gene expression. In a search for putative DNA-binding domains, BurrH, a protein that recognizes a 19 bp DNA target, was identified. Here, its apo and DNA-bound crystal structures are reported, revealing a central region containing 19 repeats of a helix–loop–helix modular domain (BurrH domain; BuD), which identifies the DNA target by a single residue-to-nucleotide code, thus facilitating its redesign for gene targeting. New DNA-binding specificities have been engineered in this template, showing that BuD-derived nucleases (BuDNs) induce high levels of gene targeting in a locus of the human haemoglobin β (HBB) gene close to mutations responsible for sickle-cell anaemia. Hence, the unique combination of high efficiency and specificity of the BuD arrays can push forward diverse genome-modification approaches for cell or organism redesign, opening new avenues for gene editing.

  2. FMN binding and photochemical properties of plant putative photoreceptors containing two LOV domains, LOV/LOV proteins.

    PubMed

    Kasahara, Masahiro; Torii, Mayumi; Fujita, Akimitsu; Tainaka, Kengo

    2010-11-01

    LOV domains function as blue light-sensing modules in various photoreceptors in plants, fungi, algae, and bacteria. A LOV/LOV protein (LLP) has been found from Arabidopsis thaliana (AtLLP) as a two LOV domain-containing protein. However, its function remains unknown. We isolated cDNA clones coding for an LLP homolog from tomato (Solanum lycopersicum) and two homologs from the moss Physcomitrella patens. The tomato LLP (SlLLP) contains two LOV domains (LOV1 and LOV2 domains), as in AtLLP. Most of the amino acids required for association with chromophore are conserved in both LOV domains, except that the amino acid at the position equivalent to the cysteine essential for cysteinyl adduct formation is glycine in the LOV1 domain as in AtLLP. When expressed in Escherichia coli, SlLLP binds FMN and undergoes a self-contained photocycle upon irradiation of blue light. Analyses using mutant SlLLPs revealed that SlLLP binds FMN in both LOV domains, although the LOV1 domain does not show spectral changes on irradiation. However, when Gly(66) in the LOV1 domain, which is located at the position equivalent to the essential cysteine of LOV domains, is replaced by cysteine, the mutated LOV1 domain shows light-induced spectral changes. In addition, all four LOV domains of P. patens LLPs (PpLLP1 and PpLLP2) show the typical features of LOV domains, including the reactive cysteine in each. This study shows that plants have a new LOV domain-containing protein family with the typical biochemical and photochemical properties of other LOV domain-containing proteins such as the phototropins. PMID:20826774

  3. Radiation-induced oxidative damage to the DNA-binding domain of the lactose repressor.

    PubMed

    Gillard, Nathalie; Goffinont, Stephane; Buré, Corinne; Davidkova, Marie; Maurizot, Jean-Claude; Cadene, Martine; Spotheim-Maurizot, Melanie

    2007-05-01

    Understanding the cellular effects of radiation-induced oxidation requires the unravelling of key molecular events, particularly damage to proteins with important cellular functions. The Escherichia coli lactose operon is a classical model of gene regulation systems. Its functional mechanism involves the specific binding of a protein, the repressor, to a specific DNA sequence, the operator. We have shown previously that upon irradiation with gamma-rays in solution, the repressor loses its ability to bind the operator. Water radiolysis generates hydroxyl radicals (OH* radicals) which attack the protein. Damage of the repressor DNA-binding domain, called the headpiece, is most likely to be responsible of this loss of function. Using CD, fluorescence spectroscopy and a combination of proteolytic cleavage with MS, we have examined the state of the irradiated headpiece. CD measurements revealed a dose-dependent conformational change involving metastable intermediate states. Fluorescence measurements showed a gradual degradation of tyrosine residues. MS was used to count the number of oxidations in different regions of the headpiece and to narrow down the parts of the sequence bearing oxidized residues. By calculating the relative probabilities of reaction of each amino acid with OH. radicals, we can predict the most probable oxidation targets. By comparing the experimental results with the predictions we conclude that Tyr7, Tyr12, Tyr17, Met42 and Tyr47 are the most likely hotspots of oxidation. The loss of repressor function is thus correlated with chemical modifications and conformational changes of the headpiece. PMID:17263689

  4. 'Black sheep' that don't leave the double-stranded RNA-binding domain fold.

    PubMed

    Gleghorn, Michael L; Maquat, Lynne E

    2014-07-01

    The canonical double-stranded RNA (dsRNA)-binding domain (dsRBD) is composed of an α1-β1-β2-β3-α2 secondary structure that folds in three dimensions to recognize dsRNA. Recently, structural and functional studies of divergent dsRBDs revealed adaptations that include intra- and/or intermolecular protein interactions, sometimes in the absence of detectable dsRNA-binding ability. We describe here how discrete dsRBD components can accommodate pronounced amino-acid sequence changes while maintaining the core fold. We exemplify the growing importance of divergent dsRBDs in mRNA decay by discussing Dicer, Staufen (STAU)1 and 2, trans-activation responsive RNA-binding protein (TARBP)2, protein activator of protein kinase RNA-activated (PKR) (PACT), DiGeorge syndrome critical region (DGCR)8, DEAH box helicase proteins (DHX) 9 and 30, and dsRBD-like fold-containing proteins that have ribosome-related functions. We also elaborate on the computational limitations to discovering yet-to-be-identified divergent dsRBDs. PMID:24954387

  5. Radiation-induced oxidative damage to the DNA-binding domain of the lactose repressor

    PubMed Central

    Gillard, Nathalie; Goffinont, Stephane; Buré, Corinne; Davidkova, Marie; Maurizot, Jean-Claude; Cadene, Martine; Spotheim-Maurizot, Melanie

    2007-01-01

    Understanding the cellular effects of radiation-induced oxidation requires the unravelling of key molecular events, particularly damage to proteins with important cellular functions. The Escherichia coli lactose operon is a classical model of gene regulation systems. Its functional mechanism involves the specific binding of a protein, the repressor, to a specific DNA sequence, the operator. We have shown previously that upon irradiation with γ-rays in solution, the repressor loses its ability to bind the operator. Water radiolysis generates hydroxyl radicals (OH· radicals) which attack the protein. Damage of the repressor DNA-binding domain, called the headpiece, is most likely to be responsible of this loss of function. Using CD, fluorescence spectroscopy and a combination of proteolytic cleavage with MS, we have examined the state of the irradiated headpiece. CD measurements revealed a dose-dependent conformational change involving metastable intermediate states. Fluorescence measurements showed a gradual degradation of tyrosine residues. MS was used to count the number of oxidations in different regions of the headpiece and to narrow down the parts of the sequence bearing oxidized residues. By calculating the relative probabilities of reaction of each amino acid with OH· radicals, we can predict the most probable oxidation targets. By comparing the experimental results with the predictions we conclude that Tyr7, Tyr12, Tyr17, Met42 and Tyr47 are the most likely hotspots of oxidation. The loss of repressor function is thus correlated with chemical modifications and conformational changes of the headpiece. PMID:17263689

  6. The Leptospiral Antigen Lp49 is a Two-Domain Protein with Putative Protein Binding Function

    SciTech Connect

    Oliveira Giuseppe,P.; Oliveira Neves, F.; Nascimento, A.; Gomes Guimaraes, B.

    2008-01-01

    Pathogenic Leptospira is the etiological agent of leptospirosis, a life-threatening disease that affects populations worldwide. Currently available vaccines have limited effectiveness and therapeutic interventions are complicated by the difficulty in making an early diagnosis of leptospirosis. The genome of Leptospira interrogans was recently sequenced and comparative genomic analysis contributed to the identification of surface antigens, potential candidates for development of new vaccines and serodiagnosis. Lp49 is a membrane-associated protein recognized by antibodies present in sera from early and convalescent phases of leptospirosis patients. Its crystal structure was determined by single-wavelength anomalous diffraction using selenomethionine-labelled crystals and refined at 2.0 Angstroms resolution. Lp49 is composed of two domains and belongs to the all-beta-proteins class. The N-terminal domain folds in an immunoglobulin-like beta-sandwich structure, whereas the C-terminal domain presents a seven-bladed beta-propeller fold. Structural analysis of Lp49 indicates putative protein-protein binding sites, suggesting a role in Leptospira-host interaction. This is the first crystal structure of a leptospiral antigen described to date.

  7. A novel zinc binding domain conserved in metalloendopeptidases from bacteria to man

    SciTech Connect

    Becker, A.B.; Ding, L.; Roth, R.A. )

    1992-01-01

    Protease III, PTR, a metalloendopeptidase from E. Coli, is 46% similar to mammalian insulin degrading enzyme and shares three regions of high homology which are between 54% and 80% identical. One of these regions contains a potential active site domain, HXXEH, which is an inversion of the zinc binding domain described in other metalloendopeptidases, HEXXH. To test if this region represents the active site in PTR, the histidine residues in this domain were mutated to arginine and the glutamate residue to glutamine. The mutant and wildtype enzymes were over-expressed in bacteria and purified to homogeneity using conventional column chromatography. All three mutants were assayed for proteolytic activity towards an exogenous substrate, insulin, and were found to be devoid of activity. The amount and type of metal associated with each protein was then determined using atomic absorption spectrophotometry. Three lines of evidence indicate that the loss of activity in the mutants is not due to distortion of the three-dimensional structure of the protein: (1) the mutants are secreted into the periplasmic space and chromatograph normally; (2) all three mutants are able to cross-link insulin at approximately normal levels; (3) the mutants compete equally with wildtype PTR in a radioimmunoassay.

  8. The dynamin-binding domains of Dap160/intersectin affect bulk membrane retrieval in synapses

    PubMed Central

    Winther, Åsa M. E.; Jiao, Wei; Vorontsova, Olga; Rees, Kathryn A.; Koh, Tong-Wey; Sopova, Elena; Schulze, Karen L.; Bellen, Hugo J.; Shupliakov, Oleg

    2013-01-01

    Summary Dynamin-associated protein 160 kDa (Dap160)/intersectin interacts with several synaptic proteins and affects endocytosis and synapse development. The functional role of the different protein interaction domains is not well understood. Here we show that Drosophila Dap160 lacking the dynamin-binding SH3 domains does not affect the development of the neuromuscular junction but plays a key role in synaptic vesicle recycling. dap160 mutants lacking dynamin-interacting domains no longer accumulate dynamin properly at the periactive zone, and it becomes dispersed in the bouton during stimulation. This is accompanied by a reduction in uptake of the dye FM1-43 and an accumulation of large vesicles and membrane invaginations. However, we do not observe an increase in the number of clathrin-coated intermediates. We also note a depression in evoked excitatory junction potentials (EJPs) during high-rate stimulation, accompanied by aberrantly large miniature EJPs. The data reveal the important role of Dap160 in the targeting of dynamin to the periactive zone, where it is required to suppress bulk synaptic vesicle membrane retrieval during high-frequency activity. PMID:23321638

  9. Formation of Amyloid-Like Fibrils by Y-Box Binding Protein 1 (YB-1) Is Mediated by Its Cold Shock Domain and Modulated by Disordered Terminal Domains

    PubMed Central

    Guryanov, Sergey G.; Selivanova, Olga M.; Nikulin, Alexey D.; Enin, Gennady A.; Melnik, Bogdan S.; Kretov, Dmitry A.; Serdyuk, Igor N.; Ovchinnikov, Lev P.

    2012-01-01

    YB-1, a multifunctional DNA- and RNA-binding nucleocytoplasmic protein, is involved in the majority of DNA- and mRNA-dependent events in the cell. It consists of three structurally different domains: its central cold shock domain has the structure of a β-barrel, while the flanking domains are predicted to be intrinsically disordered. Recently, we showed that YB-1 is capable of forming elongated fibrils under high ionic strength conditions. Here we report that it is the cold shock domain that is responsible for formation of YB-1 fibrils, while the terminal domains differentially modulate this process depending on salt conditions. We demonstrate that YB-1 fibrils have amyloid-like features, including affinity for specific dyes and a typical X-ray diffraction pattern, and that in contrast to most of amyloids, they disassemble under nearly physiological conditions. PMID:22590640

  10. Sequence similarity between the erythrocyte binding domain 1 of the Plasmodium vivax Duffy binding protein and the V3 loop of HIV-1 strain MN reveals binding residues for the Duffy Antigen Receptor for Chemokines

    PubMed Central

    2011-01-01

    Background The surface glycoprotein (SU, gp120) of the human immunodeficiency virus (HIV) must bind to a chemokine receptor, CCR5 or CXCR4, to invade CD4+ cells. Plasmodium vivax uses the Duffy Binding Protein (DBP) to bind the Duffy Antigen Receptor for Chemokines (DARC) and invade reticulocytes. Results Variable loop 3 (V3) of HIV-1 SU and domain 1 of the Plasmodium vivax DBP share a sequence similarity. The site of amino acid sequence similarity was necessary, but not sufficient, for DARC binding and contained a consensus heparin binding site essential for DARC binding. Both HIV-1 and P. vivax can be blocked from binding to their chemokine receptors by the chemokine, RANTES and its analog AOP-RANTES. Site directed mutagenesis of the heparin binding motif in members of the DBP family, the P. knowlesi alpha, beta and gamma proteins abrogated their binding to erythrocytes. Positively charged residues within domain 1 are required for binding of P. vivax and P. knowlesi erythrocyte binding proteins. Conclusion A heparin binding site motif in members of the DBP family may form part of a conserved erythrocyte receptor binding pocket. PMID:21281498

  11. Crystallization and preliminary crystallographic characterization of the origin-binding domain of the bacteriophage λ O replication initiator

    SciTech Connect

    Struble, E. B.; Bianchet, M. A.; McMacken, R.

    2007-06-01

    Crystallization and preliminary diffraction data of the N-terminal 19–139 fragment of the origin-binding domain of bacteriophage λ O replication initiator are reported. The bacteriophage λ O protein binds to the λ replication origin (oriλ) and serves as the primary replication initiator for the viral genome. The binding energy derived from the binding of O to oriλ is thought to help drive DNA opening to facilitate initiation of DNA replication. Detailed understanding of this process is severely limited by the lack of high-resolution structures of O protein or of any lambdoid phage-encoded paralogs either with or without DNA. The production of crystals of the origin-binding domain of λ O that diffract to 2.5 Å is reported. Anomalous dispersion methods will be used to solve this structure.

  12. Cytoplasmic domains determine signal specificity, cellular routing characteristics and influence ligand binding of epidermal growth factor and insulin receptors.

    PubMed Central

    Riedel, H; Dull, T J; Honegger, A M; Schlessinger, J; Ullrich, A

    1989-01-01

    The cell surface receptors for insulin and epidermal growth factor (EGF) both employ a tyrosine-specific protein kinase activity to fulfil their distinct biological roles. To identify the structural domains responsible for various receptor activities, we have generated chimeric receptor polypeptides consisting of major EGF and insulin receptor structural domains and examined their biochemical properties and cellular signalling activities. The EGF-insulin receptor hybrids are properly synthesized and transported to the cell surface, where they form binding competent structures that are defined by the origin of their extracellular domains. While their ligand binding affinities are altered, we find that these chimeric receptors are fully functional in transmitting signals across the plasma membrane and into the cell. Thus, EGF receptor and insulin receptor cytoplasmic domain signalling capabilities are independent of their new heterotetrameric or monomeric environments respectively. Furthermore, the cytoplasmic domains carry the structural determinants that define kinase specificity, mitogenic and transforming potential, and receptor routing. Images PMID:2583088

  13. Localization of the equine IgG-binding domain in the fibrinogen-binding protein (FgBP) of Streptococcus equi subsp. equi.

    PubMed

    Meehan, Mary; Lewis, Melanie J; Byrne, Caroline; O'Hare, David; Woof, Jenny M; Owen, Peter

    2009-08-01

    Fibrinogen-binding protein (FgBP, also termed SeM) is a cell-wall-associated anti-phagocytic M-like protein of the equine pathogen Streptococcus equi subsp. equi, and binds fibrinogen (Fg) and IgG. FgBP binds Fg avidly through residues located at the extreme N terminus of the molecule, whereas the IgG-binding site is more centrally located between the A and B repeats. FgBP binds equine IgG4 and IgG7 subclasses through interaction with the CH2-CH3 interdomain region of IgG-Fc, and possesses overlapping Fc-binding sites with protein A and protein G. In this study, FgBP truncates containing defined internal deletions were used to identify a stretch of 14 aa (residues 335-348) critical for IgG binding. Protein chimeras consisting of the non-IgG-binding alpha-helical coiled-coil M5 protein fused to FgBP sequences were used to identify a minimal equine IgG-binding domain consisting of residues 329-360. Competition ELISA tests suggested that IgG does not compromise Fg binding and vice versa. PMID:19423628

  14. De novo design and engineering of functional metal and porphyrin-binding protein domains

    NASA Astrophysics Data System (ADS)

    Everson, Bernard H.

    In this work, I describe an approach to the rational, iterative design and characterization of two functional cofactor-binding protein domains. First, a hybrid computational/experimental method was developed with the aim of algorithmically generating a suite of porphyrin-binding protein sequences with minimal mutual sequence information. This method was explored by generating libraries of sequences, which were then expressed and evaluated for function. One successful sequence is shown to bind a variety of porphyrin-like cofactors, and exhibits light- activated electron transfer in mixed hemin:chlorin e6 and hemin:Zn(II)-protoporphyrin IX complexes. These results imply that many sophisticated functions such as cofactor binding and electron transfer require only a very small number of residue positions in a protein sequence to be fixed. Net charge and hydrophobic content are important in determining protein solubility and stability. Accordingly, rational modifications were made to the aforementioned design procedure in order to improve its overall success rate. The effects of these modifications are explored using two `next-generation' sequence libraries, which were separately expressed and evaluated. Particular modifications to these design parameters are demonstrated to effectively double the purification success rate of the procedure. Finally, I describe the redesign of the artificial di-iron protein DF2 into CDM13, a single chain di-Manganese four-helix bundle. CDM13 acts as a functional model of natural manganese catalase, exhibiting a kcat of 0.08s-1 under steady-state conditions. The bound manganese cofactors have a reduction potential of +805 mV vs NHE, which is too high for efficient dismutation of hydrogen peroxide. These results indicate that as a high-potential manganese complex, CDM13 may represent a promising first step toward a polypeptide model of the Oxygen Evolving Complex of the photosynthetic enzyme Photosystem II.

  15. Structural features and ligand binding properties of tandem WW domains from YAP and TAZ, nuclear effectors of the Hippo pathway.

    PubMed

    Webb, Claire; Upadhyay, Abhishek; Giuntini, Francesca; Eggleston, Ian; Furutani-Seiki, Makoto; Ishima, Rieko; Bagby, Stefan

    2011-04-26

    The paralogous multifunctional adaptor proteins YAP and TAZ are the nuclear effectors of the Hippo pathway, a central mechanism of organ size control and stem cell self-renewal. WW domains, mediators of protein-protein interactions, are essential for YAP and TAZ function, enabling interactions with PPxY motifs of numerous partner proteins. YAP has single and double WW domain isoforms (YAP1 and YAP2) whereas only a single WW domain isoform of TAZ has been described to date. Here we identify the first example of a double WW domain isoform of TAZ. Using NMR, we have characterized conformational features and peptide binding of YAP and TAZ tandem WW domains (WW1-WW2). The solution structure of YAP WW2 confirms that it has a canonical three-stranded antiparallel β-sheet WW domain fold. While chemical shift-based analysis indicates that the WW domains in the tandem WW pairs retain the characteristic WW domain fold, 15N relaxation data show that, within the respective WW pairs, YAP WW1 and both WW1 and WW2 of TAZ undergo conformational exchange. 15N relaxation data also indicate that the linker between the WW domains is flexible in both YAP and TAZ. Within both YAP and TAZ tandem WW pairs, WW1 and WW2 bind single PPxY-containing peptide ligand concurrently and noncooperatively with sub-mM affinity. YAP and TAZ WW1-WW2 bind a dual PPxY-containing peptide with approximately 6-fold higher affinity. Our results indicate that both WW domains in YAP and TAZ are functional and capable of enhanced affinity binding to multi-PPxY partner proteins such as LATS1, ErbB4, and AMOT. PMID:21417403

  16. The BARD1 BRCT domain contributes to p53 binding, cytoplasmic and mitochondrial localization, and apoptotic function.

    PubMed

    Tembe, Varsha; Martino-Echarri, Estefania; Marzec, Kamila A; Mok, Myth T S; Brodie, Kirsty M; Mills, Kate; Lei, Ying; DeFazio, Anna; Rizos, Helen; Kettle, Emma; Boadle, Ross; Henderson, Beric R

    2015-09-01

    BARD1 is a breast cancer tumor suppressor with multiple domains and functions. BARD1 comprises a tandem BRCT domain at the C-terminus, and this sequence has been reported to target BARD1 to distinct subcellular locations such as nuclear DNA breakage sites and the centrosome through binding to regulatory proteins such as HP1 and OLA1, respectively. We now identify the BRCT domain as a binding site for p53. We first confirmed previous reports that endogenous BARD1 binds to p53 by immunoprecipitation assay, and further show that BARD1/p53 complexes locate at mitochondria suggesting a cellular location for p53 regulation of BARD1 apoptotic activity. We used a proximity ligation assay to map three distinct p53 binding sequences in human BARD1, ranging from weak (425-525) and modest (525-567) to strong (551-777 comprising BRCT domains). Deletion of the BRCT sequence caused major defects in the ability of BARD1 to (1) bind p53, (2) localize to the cytoplasm and mitochondria, and (3) induce Bax oligomerization and apoptosis. Our data suggest that BARD1 can move to mitochondria independent of p53, but subsequently associates with p53 to induce Bax clustering in part by decreasing mitochondrial Bcl-2 levels. We therefore identify a role for the BRCT domain in stimulating BARD1 nuclear export and mitochondrial localization, and in assembling mitochondrial BARD1/p53 complexes to regulate specific activities such as apoptotic function. PMID:26022179

  17. Structure of the effector-binding domain of the arabinose repressor AraR from Bacillus subtilis

    SciTech Connect

    Procházková, Kateřina; Čermáková, Kateřina; Pachl, Petr; Sieglová, Irena; Fábry, Milan; Otwinowski, Zbyszek; Řezáčová, Pavlína

    2012-02-01

    The crystal structure of the effector-binding domain of the transcriptional repressor AraR from B. subtilis in complex with the effector molecule (l-arabinose) was determined at 2.2 Å resolution. A detailed analysis of the crystal identified a dimer organization that is distinctive from that of other members of the GalR/LacI family. In Bacillus subtilis, the arabinose repressor AraR negatively controls the expression of genes in the metabolic pathway of arabinose-containing polysaccharides. The protein is composed of two domains of different phylogenetic origin and function: an N-terminal DNA-binding domain belonging to the GntR family and a C-terminal effector-binding domain that shows similarity to members of the GalR/LacI family. The crystal structure of the C-terminal effector-binding domain of AraR in complex with the effector l-arabinose has been determined at 2.2 Å resolution. The l-arabinose binding affinity was characterized by isothermal titration calorimetry and differential scanning fluorimetry; the K{sub d} value was 8.4 ± 0.4 µM. The effect of l-arabinose on the protein oligomeric state was investigated in solution and detailed analysis of the crystal identified a dimer organization which is distinctive from that of other members of the GalR/LacI family.

  18. Phosphoinositide binding by the SNX27 FERM domain regulates its localization at the immune synapse of activated T-cells

    PubMed Central

    Ghai, Rajesh; Tello-Lafoz, Maria; Norwood, Suzanne J.; Yang, Zhe; Clairfeuille, Thomas; Teasdale, Rohan D.; Mérida, Isabel; Collins, Brett M.

    2015-01-01

    ABSTRACT Sorting nexin 27 (SNX27) controls the endosomal-to-cell-surface recycling of diverse transmembrane protein cargos. Crucial to this function is the recruitment of SNX27 to endosomes which is mediated by the binding of phosphatidylinositol-3-phosphate (PtdIns3P) by its phox homology (PX) domain. In T-cells, SNX27 localizes to the immunological synapse in an activation-dependent manner, but the molecular mechanisms underlying SNX27 translocation remain to be clarified. Here, we examined the phosphoinositide-lipid-binding capabilities of full-length SNX27, and discovered a new PtdInsP-binding site within the C-terminal 4.1, ezrin, radixin, moesin (FERM) domain. This binding site showed a clear preference for bi- and tri-phosphorylated phophoinositides, and the interaction was confirmed through biophysical, mutagenesis and modeling approaches. At the immunological synapse of activated T-cells, cell signaling regulates phosphoinositide dynamics, and we find that perturbing phosphoinositide binding by the SNX27 FERM domain alters the SNX27 distribution in both endosomal recycling compartments and PtdIns(3,4,5)P3-enriched domains of the plasma membrane during synapse formation. Our results suggest that SNX27 undergoes dynamic partitioning between different membrane domains during immunological synapse assembly, and underscore the contribution of unique lipid interactions for SNX27 orchestration of cargo trafficking. PMID:25472716

  19. Homology modeling study of bovine μ-calpain inhibitor-binding domains.

    PubMed

    Chai, Han-Ha; Lim, Dajeong; Lee, Seung-Hwan; Chai, Hee-Yeoul; Jung, Eunkyoung

    2014-01-01

    The activated mammalian CAPN-structures, the CAPN/CAST complex in particular, have become an invaluable target model using the structure-based virtual screening of drug candidates from the discovery phase to development for over-activated CAPN linked to several diseases, such as post-ischemic injury and cataract formation. The effect of Ca²⁺-binding to the enzyme is thought to include activation, as well as the dissociation, aggregation, and autolysis of small regular subunits. Unfortunately, the Ca²⁺-activated enzyme tends to aggregate when provided as a divalent ion at the high-concentration required for the protease crystallization. This is also makes it very difficult to crystallize the whole-length enzyme itself, as well as the enzyme-inhibitor complex. Several parameters that influence CAPN activity have been investigated to determine its roles in Ca²⁺-modulation, autoproteolysis, phosphorylation, and intracellular distribution and inhibition by its endogenous inhibitor CAST. CAST binds and inhibits CAPN via its CAPN-inhibitor domains (four repeating domains 1-4; CAST1-4) when CAPN is activated by Ca²⁺-binding. An important key to understanding CAPN1 inhibition by CAST is to determine how CAST interacts at the molecular level with CAPN1 to inhibit its protease activity. In this study, a 3D structure model of a CAPN1 bound bovine CAST4 complex was built by comparative modeling based on the only known template structure of a rat CAPN2/CAST4 complex. The complex model suggests certain residues of bovine CAST4, notably, the TIPPKYQ motif sequence, and the structural elements of these residues, which are important for CAPN1 inhibition. In particular, as CAST4 docks near the flexible active site of CAPN1, conformational changes at the interaction site after binding could be directly related to CAST4 inhibitory activity. These functional interfaces can serve as a guide to the site-mutagenesis in research on bovine CAPN1 structure-function relationships

  20. Homology Modeling Study of Bovine μ-Calpain Inhibitor-Binding Domains

    PubMed Central

    Chai, Han-Ha; Lim, Dajeong; Lee, Seung-Hwan; Chai, Hee-Yeoul; Jung, Eunkyoung

    2014-01-01

    The activated mammalian CAPN-structures, the CAPN/CAST complex in particular, have become an invaluable target model using the structure-based virtual screening of drug candidates from the discovery phase to development for over-activated CAPN linked to several diseases, such as post-ischemic injury and cataract formation. The effect of Ca2+-binding to the enzyme is thought to include activation, as well as the dissociation, aggregation, and autolysis of small regular subunits. Unfortunately, the Ca2+-activated enzyme tends to aggregate when provided as a divalent ion at the high-concentration required for the protease crystallization. This is also makes it very difficult to crystallize the whole-length enzyme itself, as well as the enzyme-inhibitor complex. Several parameters that influence CAPN activity have been investigated to determine its roles in Ca2+-modulation, autoproteolysis, phosphorylation, and intracellular distribution and inhibition by its endogenous inhibitor CAST. CAST binds and inhibits CAPN via its CAPN-inhibitor domains (four repeating domains 1–4; CAST1–4) when CAPN is activated by Ca2+-binding. An important key to understanding CAPN1 inhibition by CAST is to determine how CAST interacts at the molecular level with CAPN1 to inhibit its protease activity. In this study, a 3D structure model of a CAPN1 bound bovine CAST4 complex was built by comparative modeling based on the only known template structure of a rat CAPN2/CAST4 complex. The complex model suggests certain residues of bovine CAST4, notably, the TIPPKYQ motif sequence, and the structural elements of these residues, which are important for CAPN1 inhibition. In particular, as CAST4 docks near the flexible active site of CAPN1, conformational changes at the interaction site after binding could be directly related to CAST4 inhibitory activity. These functional interfaces can serve as a guide to the site-mutagenesis in research on bovine CAPN1 structure-function relationships for the

  1. Binding of a proline-independent hydrophobic motif by the Candida albicans Rvs167-3 SH3 domain.

    PubMed

    Gkourtsa, Areti; van den Burg, Janny; Avula, Teja; Hochstenbach, Frans; Distel, Ben

    2016-09-01

    Src-homology 3 (SH3) domains are small protein-protein interaction modules. While most SH3 domains bind to proline-x-x-proline (PxxP) containing motifs in their binding partners, some SH3 domains recognize motifs other than proline-based sequences. Recently, we showed that the SH3 domain of Candida albicans Rvs167-3 binds peptides enriched in hydrophobic residues and containing a single proline residue (RΦxΦxΦP, where x is any amino acid and Φ is a hydrophobic residue). Here, we demonstrate that the proline in this motif is not required for Rvs167-3 SH3 recognition. Through mutagenesis studies we show that binding of the peptide ligand involves the conserved tryptophan in the canonical PxxP binding pocket as well as residues in the extended n-Src loop of Rvs167-3 SH3. Our studies establish a novel, proline-independent, binding sequence for Rvs167-3 SH3 (RΦxΦxΦ) that is comprised of a positively charged residue (arginine) and three hydrophobic residues. PMID:27393996

  2. Crystal structure of human sex hormone-binding globulin: steroid transport by a laminin G-like domain

    PubMed Central

    Grishkovskaya, Irina; Avvakumov, George V.; Sklenar, Gisela; Dales, David; Hammond, Geoffrey L.; Muller, Yves A.

    2000-01-01

    Human sex hormone-binding globulin (SHBG) transports sex steroids in blood and regulates their access to target tissues. In biological fluids, SHBG exists as a homodimer and each monomer comprises two laminin G-like domains (G domains). The crystal structure of the N–terminal G domain of SHBG in complex with 5α–dihydrotestosterone at 1.55 Å resolution reveals both the architecture of the steroid-binding site and the quaternary structure of the dimer. We also show that G domains have jellyroll topology and are struc– turally related to pentraxin. In each SHBG monomer, the steroid intercalates into a hydrophobic pocket within the β–sheet sandwich. The steroid and a 20 Å distant calcium ion are not located at the dimer interface. Instead, two separate steroid-binding pockets and calcium-binding sites exist per dimer. The structure displays intriguing disorder for loop segment Pro130–Arg135. In all other jellyroll proteins, this loop is well ordered. If modelled accordingly, it covers the steroid-binding site and could thereby regulate access of ligands to the binding pocket. PMID:10675319

  3. Time-resolved multimodal analysis of Src Homology 2 (SH2) domain binding in signaling by receptor tyrosine kinases

    PubMed Central

    Jadwin, Joshua A; Oh, Dongmyung; Curran, Timothy G; Ogiue-Ikeda, Mari; Jia, Lin; White, Forest M; Machida, Kazuya; Yu, Ji; Mayer, Bruce J

    2016-01-01

    While the affinities and specificities of SH2 domain-phosphotyrosine interactions have been well characterized, spatio-temporal changes in phosphosite availability in response to signals, and their impact on recruitment of SH2-containing proteins in vivo, are not well understood. To address this issue, we used three complementary experimental approaches to monitor phosphorylation and SH2 binding in human A431 cells stimulated with epidermal growth factor (EGF): 1) phospho-specific mass spectrometry; 2) far-Western blotting; and 3) live cell single-molecule imaging of SH2 membrane recruitment. Far-Western and MS analyses identified both well-established and previously undocumented EGF-dependent tyrosine phosphorylation and binding events, as well as dynamic changes in binding patterns over time. In comparing SH2 binding site phosphorylation with SH2 domain membrane recruitment in living cells, we found in vivo binding to be much slower. Delayed SH2 domain recruitment correlated with clustering of SH2 domain binding sites on the membrane, consistent with membrane retention via SH2 rebinding. DOI: http://dx.doi.org/10.7554/eLife.11835.001 PMID:27071344

  4. Implications of Human Transient Receptor Potential Melastatin 8 (TRPM8) Channel Gating from Menthol Binding Studies of the Sensing Domain.

    PubMed

    Rath, Parthasarathi; Hilton, Jacob K; Sisco, Nicholas J; Van Horn, Wade D

    2016-01-12

    The transient receptor potential melastatin 8 (TRPM8) ion channel is the primary cold sensor in humans. TRPM8 is gated by physiologically relevant cold temperatures and chemical ligands that induce cold sensations, such as the analgesic compound menthol. Characterization of TRPM8 ligand-gated channel activation will lead to a better understanding of the fundamental mechanisms that underlie TRPM8 function. Here, the direct binding of menthol to the isolated hTRPM8 sensing domain (transmembrane helices S1-S4) is investigated. These data are compared with two mutant sensing domain proteins, Y745H (S2 helix) and R842H (S4 helix), which have been previously identified in full length TRPM8 to be menthol insensitive. The data presented herein show that menthol specifically binds to the wild type, Y745H, and R842H TRPM8 sensing domain proteins. These results are the first to show that menthol directly binds to the TRPM8 sensing domain and indicates that Y745 and R842 residues, previously identified in functional studies as crucial to menthol sensitivity, do not affect menthol binding but instead alter coupling between the sensing domain and the pore domain. PMID:26653082

  5. Conserved Cysteine Residue in the DNA-Binding Domain of the Bovine Papillomavirus Type 1 E2 Protein Confers Redox Regulation of the DNA- Binding Activity in Vitro

    NASA Astrophysics Data System (ADS)

    McBride, Alison A.; Klausner, Richard D.; Howley, Peter M.

    1992-08-01

    The bovine papillomavirus type 1 E2 open reading frame encodes three proteins involved in viral DNA replication and transcriptional regulation. These polypeptides share a carboxyl-terminal domain with a specific DNA-binding activity; through this domain the E2 polypeptides form dimers. In this study, we demonstrate the inhibition of E2 DNA binding in vitro by reagents that oxidize or otherwise chemically modify the free sulfydryl groups of reactive cysteine residues. However, these reagents had no effect on DNA-binding activity when the E2 polypeptide was first bound to DNA, suggesting that the free sulfydryl group(s) may be protected by DNA binding. Sensitivity to sulfydryl modification was mapped to a cysteine residue at position 340 in the E2 DNA-binding domain, an amino acid that is highly conserved among the E2 proteins of different papillomaviruses. Replacement of this residue with other amino acids abrogated the sensitivity to oxidation-reduction changes but did not affect the DNA-binding property of the E2 protein. These results suggest that papillomavirus DNA replication and transcriptional regulation could be modulated through the E2 proteins by changes in the intracellular redox environment. Furthermore, a motif consisting of a reactive cysteine residue carboxyl-terminal to a lysine residue in a basic region of the DNA-binding domain is a feature common to a number of transcriptional regulatory proteins that, like E2, are subject to redox regulation. Thus, posttranslational regulation of the activity of these proteins by the intracellular redox environment may be a general phenomenon.

  6. Multivalent binding of formin-binding protein 21 (FBP21)-tandem-WW domains fosters protein recognition in the pre-spliceosome.

    PubMed

    Klippel, Stefan; Wieczorek, Marek; Schümann, Michael; Krause, Eberhard; Marg, Berenice; Seidel, Thorsten; Meyer, Tim; Knapp, Ernst-Walter; Freund, Christian

    2011-11-01

    The high abundance of repetitive but nonidentical proline-rich sequences in spliceosomal proteins raises the question of how these known interaction motifs recruit their interacting protein domains. Whereas complex formation of these adaptors with individual motifs has been studied in great detail, little is known about the binding mode of domains arranged in tandem repeats and long proline-rich sequences including multiple motifs. Here we studied the interaction of the two adjacent WW domains of spliceosomal protein FBP21 with several ligands of different lengths and composition to elucidate the hallmarks of multivalent binding for this class of recognition domains. First, we show that many of the proteins that define the cellular proteome interacting with FBP21-WW1-WW2 contain multiple proline-rich motifs. Among these is the newly identified binding partner SF3B4. Fluorescence resonance energy transfer (FRET) analysis reveals the tandem-WW domains of FBP21 to interact with splicing factor 3B4 (SF3B4) in nuclear speckles where splicing takes place. Isothermal titration calorimetry and NMR shows that the tandem arrangement of WW domains and the multivalency of the proline-rich ligands both contribute to affinity enhancement. However, ligand exchange remains fast compared with the NMR time scale. Surprisingly, a N-terminal spin label attached to a bivalent ligand induces NMR line broadening of signals corresponding to both WW domains of the FBP21-WW1-WW2 protein. This suggests that distinct orientations of the ligand contribute to a delocalized and semispecific binding mode that should facilitate search processes within the spliceosome. PMID:21917930

  7. A conformational analysis of mouse Nalp3 domain structures by molecular dynamics simulations, and binding site analysis.

    PubMed

    Sahoo, Bikash R; Maharana, Jitendra; Bhoi, Gopal K; Lenka, Santosh K; Patra, Mahesh C; Dikhit, Manas R; Dubey, Praveen K; Pradhan, Sukanta K; Behera, Bijay K

    2014-05-01

    Scrutinizing various nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) genes in higher eukaryotes is very important for understanding the intriguing mechanism of the host defense against pathogens. The nucleotide-binding domain (NACHT), leucine-rich repeat (LRR), and pyrin domains (PYD)-containing protein 3 (Nalp3), is an intracellular innate immune receptor and is associated with several immune system related disorders. Despite Nalp3's protective role during a pathogenic invasion, the molecular features and structural organization of this crucial protein is poorly understood. Using comparative modeling and molecular dynamics simulations, we have studied the structural architecture of Nalp3 domains, and characterized the dynamic and energetic parameters of adenosine triphosphate (ATP) binding in NACHT, and pathogen-derived ligands muramyl dipeptide (MDP) and imidazoquinoline with LRR domains. The results suggested that walker A, B and extended walker B motifs were the key ATP binding regions in NACHT that mediate self-oligomerization. The analysis of the binding sites of MDP and imidazoquinoline revealed LRR 7-9 to be the most energetically favored site for imidazoquinoline interaction. However, the binding free energy calculations using the Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) method indicated that MDP is incompatible for activating the Nalp3 molecule in its monomeric form, and suggest its complex interaction with NOD2 or other NLRs accounts for MDP recognition. The high binding affinity of ATP with NACHT was correlated to the experimental data for human NLRs. Our binding site prediction for imidazoquinoline in LRR warrants further investigation via in vivo models. This is the first study that provides ligand recognition in mouse Nalp3 and its spatial structural arrangements. PMID:24595807

  8. Mixed-lineage kinase 2-SH3 domain binds dynamin and greatly enhances activation of GTPase by phospholipid.

    PubMed Central

    Rasmussen, R K; Rusak, J; Price, G; Robinson, P J; Simpson, R J; Dorow, D S

    1998-01-01

    Mixed-lineage kinase 2 (MLK2) is a cytoplasmic protein kinase expressed at high levels in mammalian brain. The MLK2 structure is composed of a Src homology 3 (SH3) domain, two leucine zippers, a basic motif, a Cdc42/Rac interactive binding motif and a large C-terminal domain rich in proline, serine and threonine residues. To begin to define the role of MLK2 in mammalian brain, we used an MLK2-SH3 domain-glutathione S-transferase fusion protein (GST-MLK2-SH3) to isolate MLK2-binding proteins from rat brain extract. This analysis revealed that the major MLK2-SH3-domain-binding protein in rat brain is the GTPase dynamin. By using two different forms of the dynamin proline-rich domain as affinity ligands, the binding site for MLK2-SH3 was mapped to the C-terminal region of dynamin between residues 832 and 864. In GTPase assays, the addition of MLK2-SH3 stimulated the activity of purified dynamin I by 3-fold over the basal level, whereas the addition of a known dynamin activator, phosphatidylserine (PtdSer), stimulated a 6-fold increase. When MLK2-SH3 was added to the assay together with PtdSer, however, dynamin GTPase activity accelerated by more than 23-fold over basal level. An MLK2 mutant (MLK2-W59A-SH3), with alanine replacing a conserved tryptophan residue in the SH3 domain consensus motif, had no effect on dynamin activity, either alone or in the presence of PtdSer. In the same assay the SH3 domain from the regulatory subunit of phosphatidylinositol 3'-kinase stimulated a similar synergistic acceleration of dynamin GTPase activity in the presence of PtdSer. These results suggest that synergy between phospholipid and SH3 domain binding might be a general mechanism for the regulation of GTP hydrolysis by dynamin. PMID:9742220

  9. The carboxyterminal EF domain of erythroid α-spectrin is necessary for optimal spectrin-actin binding

    PubMed Central

    Korsgren, Catherine

    2010-01-01

    Spectrin and protein 4.1R crosslink F-actin, forming the membrane skeleton. Actin and 4.1R bind to one end of β-spectrin. The adjacent end of α-spectrin, called the EF domain, is calmodulin-like, with calcium-dependent and calcium-independent EF hands. The severely anemic sph1J/sph1J mouse has very fragile red cells and lacks the last 13 amino acids in the EF domain, implying that the domain is critical for skeletal integrity. To test this, we constructed a minispectrin heterodimer from the actin-binding domain, the EF domain, and 4 adjacent spectrin repeats in each chain. The minispectrin bound to F-actin in the presence of native human protein 4.1R. Formation of the spectrin-actin-4.1R complex was markedly attenuated when the minispectrin contained the shortened sph1J α-spectrin. The α-spectrin deletion did not interfere with spectrin heterodimer assembly or 4.1R binding but abolished the binary interaction between spectrin and F-actin. The data show that the α-spectrin EF domain greatly amplifies the function of the β-spectrin actin-binding domain (ABD) in forming the spectrin-actin-4.1R complex. A model, based on the structure of α-actinin, suggests that the EF domain modulates the function of the ABD and that the C-terminal EF hands (EF34) may bind to the linker that connects the ABD to the first spectrin repeat. PMID:20585040

  10. Degradation of LIM domain-binding protein three during processing of Spanish dry-cured ham.

    PubMed

    Gallego, Marta; Mora, Leticia; Fraser, Paul D; Aristoy, María-Concepción; Toldrá, Fidel

    2014-04-15

    Extensive proteolysis takes place during the processing of dry-cured ham due to the action of muscle peptidases. The aim of this work was to study the degradation of LIM domain binding protein 3 (LDB3), which is located at the Z-lines of the sarcomere, at different times during the Spanish dry-cured ham processing (2, 3.5, 5, 6.5, and 9 months). A total of 107 peptides have been identified by mass spectrometry, most of them generated from the first region of the protein sequence (position 1-90) providing evidence for the complexity and variability of proteolytic reactions throughout the whole process of dry-curing. Methionine oxidation has been observed in several peptides by the end of the process. The potential of some of the identified peptides to be used as biomarkers of dry-cured ham processing has also been considered. PMID:24295685

  11. Solution structure of the origin DNA-binding domain of SV40 T-antigen.

    PubMed

    Luo, X; Sanford, D G; Bullock, P A; Bachovchin, W W

    1996-12-01

    The structure of the domain from simian virus 40 (SV40) large T-antigen that binds to the SV40 origin of DNA replication (T-ag-OBD131-260) has been determined by nuclear magnetic resonance spectroscopy. The overall fold, consisting of a central five-stranded antiparallel beta-sheet flanked by two alpha-helices on one side and one alpha-helix and one 3(10)-helix on the other, is a new one. Previous mutational analyses have identified two elements, termed A (approximately 152-155) and B2 (203-207), as essential for origin-specific recognition. These elements form two closely juxtaposed loops that define a continuous surface on the protein. The addition of a duplex oligonucleotide containing the origin recognition pentanucleotide GAGGC induces chemical shift changes and slows amide proton exchange in resonances from this region, indicating that this surface directly contacts the DNA. PMID:8946857

  12. Fast folding of a prototypic polypeptide: the immunoglobulin binding domain of streptococcal protein G.

    PubMed

    Kuszewski, J; Clore, G M; Gronenborn, A M

    1994-11-01

    The folding of the small (56 residues) highly stable B1 immunoglobulin binding domain (GB1) of streptococcal protein G has been investigated by quenched-flow deuterium-hydrogen exchange. This system represents a paradigm for the study of protein folding because it exhibits no complicating features superimposed upon the intrinsic properties of the polypeptide chain. Collapse to a semicompact state exhibiting partial order, reflected in protection factors for ND-NH exchange up to 10-fold higher than that expected for a random coil, occurs within the dead time (< or = 1 ms) of the quenched flow apparatus. This is followed by the formation of the fully native state, as monitored by the fractional proton occupancy of 26 backbone amide groups spread throughout the protein, in a single rapid concerted step with a half-life of 5.2 ms at 5 degrees C. PMID:7703841

  13. Structure of starch binding domains of halophilic alpha-amylase at low pH.

    PubMed

    Yamaguchi, Rui; Ishibashi, Matsujiro; Tokunaga, Hiroko; Arakawa, Tsutomu; Tokunaga, Masao

    2013-07-01

    The solubility and structural properties of halophilic proteins are ascribed to their abundant acidic residues, resulting in large net negative charges at neutral pH. This study examined the effects of low pH, i.e., reduction of net negative charges on the structural properties of starch binding domain (SBD) of halophilic Kocuria varians α-amylase. Titration to pH 2.1 caused loss of 233 nm peak characteristic of aromatic interactions present in the native SBD at neutral pH and resulted in the spectrum with a 216 nm valley characteristic of β-sheet. The low pH β-sheet structure was stable against heat treatment. The addition of NaCl and trifluoroethanol resulted in decrease and increase of the 216 nm signal, without altering the spectral shape. These structural properties were significantly different from those of the native protein. PMID:23033857

  14. Maturation of Shark Single-Domain (IgNAR) Antibodies: Evidence for Induced-Fit Binding

    SciTech Connect

    Stanfield, R.L.; Dooley, H.; Verdino, P.; Flajnik, M.F.; Wilson, I.A.; /Scripps Res. Inst. /Maryland U.

    2007-07-13

    Sharks express an unusual heavy-chain isotype called IgNAR, whose variable regions bind antigen as independent soluble domains. To further probe affinity maturation of the IgNAR response, we structurally characterized the germline and somatically matured versions of a type II variable (V) region, both in the presence and absence of its antigen, hen egg-white lysozyme. Despite a disulfide bond linking complementarity determining regions (CDRs) 1 and 3, both germline and somatically matured V regions displayed significant structural changes in these CDRs upon complex formation with antigen. Somatic mutations in the IgNAR V region serve to increase the number of contacts with antigen, as reflected by a tenfold increase in affinity, and one of these mutations appears to stabilize the CDR3 region. In addition, a residue in the HV4 loop plays an important role in antibody-antigen interaction, consistent with the high rate of somatic mutations in this non-CDR loop.

  15. The binding of TIA-1 to RNA C-rich sequences is driven by its C-terminal RRM domain.

    PubMed

    Cruz-Gallardo, Isabel; Aroca, Ángeles; Gunzburg, Menachem J; Sivakumaran, Andrew; Yoon, Je-Hyun; Angulo, Jesús; Persson, Cecilia; Gorospe, Myriam; Karlsson, B Göran; Wilce, Jacqueline A; Díaz-Moreno, Irene

    2014-01-01

    T-cell intracellular antigen-1 (TIA-1) is a key DNA/RNA binding protein that regulates translation by sequestering target mRNAs in stress granules (SG) in response to stress conditions. TIA-1 possesses three RNA recognition motifs (RRM) along with a glutamine-rich domain, with the central domains (RRM2 and RRM3) acting as RNA binding platforms. While the RRM2 domain, which displays high affinity for U-rich RNA sequences, is primarily responsible for interaction with RNA, the contribution of RRM3 to bind RNA as well as the target RNA sequences that it binds preferentially are still unknown. Here we combined nuclear magnetic resonance (NMR) and surface plasmon resonance (SPR) techniques to elucidate the sequence specificity of TIA-1 RRM3. With a novel approach using saturation transfer difference NMR (STD-NMR) to quantify protein-nucleic acids interactions, we demonstrate that isolated RRM3 binds to both C- and U-rich stretches with micromolar affinity. In combination with RRM2 and in the context of full-length TIA-1, RRM3 significantly enhanced the binding to RNA, particularly to cytosine-rich RNA oligos, as assessed by biotinylated RNA pull-down analysis. Our findings provide new insight into the role of RRM3 in regulating TIA-1 binding to C-rich stretches, that are abundant at the 5' TOPs (5' terminal oligopyrimidine tracts) of mRNAs whose translation is repressed under stress situations. PMID:24824036

  16. The binding of TIA-1 to RNA C-rich sequences is driven by its C-terminal RRM domain

    PubMed Central

    Cruz-Gallardo, Isabel; Aroca, Ángeles; Gunzburg, Menachem J; Sivakumaran, Andrew; Yoon, Je-Hyun; Angulo, Jesús; Persson, Cecilia; Gorospe, Myriam; Karlsson, B Göran; Wilce, Jacqueline A; Díaz-Moreno, Irene

    2014-01-01

    T-cell intracellular antigen-1 (TIA-1) is a key DNA/RNA binding protein that regulates translation by sequestering target mRNAs in stress granules (SG) in response to stress conditions. TIA-1 possesses three RNA recognition motifs (RRM) along with a glutamine-rich domain, with the central domains (RRM2 and RRM3) acting as RNA binding platforms. While the RRM2 domain, which displays high affinity for U-rich RNA sequences, is primarily responsible for interaction with RNA, the contribution of RRM3 to bind RNA as well as the target RNA sequences that it binds preferentially are still unknown. Here we combined nuclear magnetic resonance (NMR) and surface plasmon resonance (SPR) techniques to elucidate the sequence specificity of TIA-1 RRM3. With a novel approach using saturation transfer difference NMR (STD-NMR) to quantify protein–nucleic acids interactions, we demonstrate that isolated RRM3 binds to both C- and U-rich stretches with micromolar affinity. In combination with RRM2 and in the context of full-length TIA-1, RRM3 significantly enhanced the binding to RNA, particularly to cytosine-rich RNA oligos, as assessed by biotinylated RNA pull-down analysis. Our findings provide new insight into the role of RRM3 in regulating TIA-1 binding to C-rich stretches, that are abundant at the 5′ TOPs (5′ terminal oligopyrimidine tracts) of mRNAs whose translation is repressed under stress situations. PMID:24824036

  17. Solution structure of the THAP domain from Caenorhabditis elegans C-terminal binding protein (CtBP).

    PubMed

    Liew, Chu Kong; Crossley, Merlin; Mackay, Joel P; Nicholas, Hannah R

    2007-02-16

    The THAP (Thanatos-associated protein) domain is a recently discovered zinc-binding domain found in proteins involved in transcriptional regulation, cell-cycle control, apoptosis and chromatin modification. It contains a single zinc atom ligated by cysteine and histidine residues within a Cys-X(2-4)-Cys-X(35-53)-Cys-X(2)-His consensus. We have determined the NMR solution structure of the THAP domain from Caenorhabditis elegans C-terminal binding protein (CtBP) and show that it adopts a fold containing a treble clef motif, bearing similarity to the zinc finger-associated domain (ZAD) from Drosophila Grauzone. The CtBP THAP domain contains a large, positively charged surface patch and we demonstrate that this domain can bind to double-stranded DNA in an electrophoretic mobility-shift assay. These data, together with existing reports, indicate that THAP domains might exhibit a functional diversity similar to that observed for classical and GATA-type zinc fingers. PMID:17174978

  18. The N-Terminal Domain of the Flo1 Flocculation Protein from Saccharomyces cerevisiae Binds Specifically to Mannose Carbohydrates ▿

    PubMed Central

    Goossens, Katty V. Y.; Stassen, Catherine; Stals, Ingeborg; Donohue, Dagmara S.; Devreese, Bart; De Greve, Henri; Willaert, Ronnie G.

    2011-01-01

    Saccharomyces cerevisiae cells possess a remarkable capacity to adhere to other yeast cells, which is called flocculation. Flocculation is defined as the phenomenon wherein yeast cells adhere in clumps and sediment rapidly from the medium in which they are suspended. These cell-cell interactions are mediated by a class of specific cell wall proteins, called flocculins, that stick out of the cell walls of flocculent cells. The N-terminal part of the three-domain protein is responsible for carbohydrate binding. We studied the N-terminal domain of the Flo1 protein (N-Flo1p), which is the most important flocculin responsible for flocculation of yeast cells. It was shown that this domain is both O and N glycosylated and is structurally composed mainly of β-sheets. The binding of N-Flo1p to d-mannose, α-methyl-d-mannoside, various dimannoses, and mannan confirmed that the N-terminal domain of Flo1p is indeed responsible for the sugar-binding activity of the protein. Moreover, fluorescence spectroscopy data suggest that N-Flo1p contains two mannose carbohydrate binding sites with different affinities. The carbohydrate dissociation constants show that the affinity of N-Flo1p for mono- and dimannoses is in the millimolar range for the binding site with low affinity and in the micromolar range for the binding site with high affinity. The high-affinity binding site has a higher affinity for low-molecular-weight (low-MW) mannose carbohydrates and no affinity for mannan. However, mannan as well as low-MW mannose carbohydrates can bind to the low-affinity binding site. These results extend the cellular flocculation model on the molecular level. PMID:21076009

  19. Distinct class of DNA-binding domains is exemplified by a master regulator of phenotypic switching in Candida albicans

    PubMed Central

    Lohse, Matthew B.; Zordan, Rebecca E.; Cain, Christopher W.; Johnson, Alexander D.

    2010-01-01

    Among the most important classes of regulatory proteins are the sequence-specific DNA-binding proteins that control transcription through the occupancy of discrete DNA sequences within genomes. Currently, this class of proteins encompasses at least 37 distinct structural superfamilies and more than 100 distinct structural motifs. In this paper, we examine the transcriptional regulator Wor1, a master regulator of white-opaque switching in the human fungal pathogen Candida albicans. As assessed by a variety of algorithms, this protein has no sequence or structural similarity to any known DNA-binding protein. It is, however, conserved across the vast fungal lineage, with a 300aa region of sequence conservation. Here, we show that this 300aa region of Wor1 exhibits sequence-specific DNA binding and therefore represents a new superfamily of DNA-binding proteins. We identify the 14-nucleotide-pair DNA sequence recognized by Wor1, characterize the site through mutational analysis, and demonstrate that this sequence is sufficient for the Wor1-dependent activation of transcription in vivo. Within the 300aa DNA-binding conserved region, which we have termed the WOPR box, are two domains (WOPRa and WOPRb), dissimilar to each other but especially well-conserved across the fungal lineage. We show that the WOPR box binds DNA as a monomer and that neither domain, when expressed and purified separately, exhibits sequence-specific binding. DNA binding is restored, however, when the two isolated domains are added together. These results indicate that the WOPR family of DNA-binding proteins involves an unusual coupling between two dissimilar, covalently linked domains. PMID:20660774

  20. Domain structure of the large subunit of Escherichia coli carbamoyl phosphate synthetase. Location of the binding site for the allosteric inhibitor UMP in the COOH-terminal domain

    SciTech Connect

    Rubio, V.; Cervera, J.; Bendala, E. ); Lusty, C.J. ); Britton, H.G. )

    1991-01-29

    The large subunit of Escherichia coli carbamoyl phosphate synthetase is responsible for carbamoyl phosphate synthesis from NH{sub 3} and for the binding of the allosteric activators ornithine and IMP and of the inhibitor UMP. Elastase, trypsin, and chymotrypsin inactivate the enzyme and cleave the large subunit at a site approximately 15 kDa from the COOH terminus UMP, IMP, and ornithine prevent this cleavage and the inactivation. Upon irradiation with ultraviolet light in the presence of ({sup 14}C)UMP, the large subunit is labeled selectively and specifically. The labeling is inhibited by ornithine and IMP. Cleavage of the 15-kDa COOH-terminal region by prior treatment of the enzyme with trypsin prevents the labeling on subsequent irradation with ({sup 14}C)UMP. The ({sup 14}C)UMP-labeled large subunit is resistant to proteolytic cleavage, but if it is treated with SDS the resistance is lost, indicating that UMP is cross-linked to its binding site and that the protection is due to conformational factors. Since the binding sites for IMP and UMP overlap, most probably IMP also binds in this domain. The protection from proteolysis by ornithine suggests that ornithine binds in the same domain. To account for the effects of the allosteric effectors on the binding of ATP, the authors propose a scheme where the two halves of the large subunit form a pseudohomodimer by complementary isologous association, thus placing the NH{sub 2} half, which is involved in the binding of the molecule of ATP that yields P{sub i}, close to the regulatory domain.

  1. Distinct characteristics of single starch-binding domain SBD1 derived from tandem domains SBD1-SBD2 of halophilic Kocuria varians alpha-amylase.

    PubMed

    Yamaguchi, Rui; Arakawa, Tsutomu; Tokunaga, Hiroko; Ishibashi, Matsujiro; Tokunaga, Masao

    2012-03-01

    Kocuria varians alpha-amylase contains tandem starch-binding domains SBD1-SBD2 (SBD12) that possess typical halophilic characteristics. Recombinant tandem domains SBD12 and single domain SBD1, both with amino-terminal hexa-His tag, were expressed in and purified to homogeneity from Escherichia coli. The circular dichroism (CD) spectrum of His-SBD12 was characterized by a positive peak at 233 nm ascribed to the aromatic stacking. Although the signal occurred in the far UV region, it is an indication of tertiary structure folding. CD spectrum of single domain His-SBD1 exhibited the same peak position, signal intensity and spectral shape as those of His-SBD12, suggesting that the aromatic stacking must occur within the domain, and that two SBD domains in SBD12 and SBD1 has a similar folded structure. This structural observation was consistent with the biological activity that His-SBD1 showed binding activity against raw starch granules and amylose resin with 70-80% efficiency compared with binding of equimolar His-SBD12. Although the thermal unfolding rate of SBD12 and SBD1 were similar, the refolding rates of SBD12 and SBD1 from thermal melting were greatly different: His-SBD12 refolded slowly (T(1/2) = ~84 min), while refolding of single domain His-SBD1 was found to be 20-fold faster (T(1/2) = 4.2 min). The possible mechanism of this large difference in refolding rate was discussed. Maltose at 20 mM showed 5-6 °C increase in thermal melting of both His-SBD12 and His-SBD1, while its effects on the time course of unfolding and refolding were insignificant. PMID:22388479

  2. Alternative splicing within the ligand binding domain of the human constitutive androstane receptor.

    PubMed

    Savkur, Rajesh S; Wu, Yifei; Bramlett, Kelli S; Wang, Minmin; Yao, Sufang; Perkins, Douglas; Totten, Michelle; Searfoss, George; Ryan, Timothy P; Su, Eric W; Burris, Thomas P

    2003-01-01

    The human constitutive androstane receptor (hCAR; NR1I3) is a member of the nuclear receptor superfamily. The activity of hCAR is regulated by a variety of xenobiotics including clotrimazole and acetaminophen metabolites. hCAR, in turn, regulates a number of genes responsible for xenobiotic metabolism and transport including several cytochrome P450s (CYP 2B5, 2C9, and 3A4) and the multidrug resistance-associated protein 2 (MRP2, ABCC2). Thus, hCAR is believed to be a mediator of drug-drug interactions. We identified two novel hCAR splice variants: hCAR2 encodes a receptor in which alternative splice acceptor sites are utilized resulting in a 4 amino acid insert between exons 6 and 7, and a 5 amino acid insert between 7 and 8, and hCAR3 encodes a receptor with exon 7 completely deleted resulting in a 39 amino acid deletion. Both hCAR2 and hCAR3 mRNAs are expressed in a pattern similar to the initially described MB67 (hCAR1) with some key distinctions. Although the levels of expression vary depending on the tissue examined, hCAR2 and hCAR3 contribute 6-8% of total hCAR mRNA in liver. Analysis of the activity of these variants indicates that both hCAR2 and hCAR3 lose the ability to heterodimerize with RXR and lack transactivation activity in cotransfection experiments where either full-length receptor or GAL4 DNA-binding domain/CAR ligand binding domain chimeras were utilized. Although the role of hCAR2 and hCAR3 is currently unclear, these additional splice variants may provide for increased diversity in terms of responsiveness to xenobiotics. PMID:14567971

  3. Retinol Binding Protein-Albumin Domain III Fusion Protein Deactivates Hepatic Stellate Cells

    PubMed Central

    Park, Sangeun; Choi, Soyoung; Lee, Min-Goo; Lim, Chaeseung; Oh, Junseo

    2012-01-01

    Liver fibrosis is characterized by accumulation of extracellular matrix, and activated hepatic stellate cells (HSCs) are the primary source of the fibrotic neomatrix and considered as therapeutic target cells. We previously showed that albumin in pancreatic stellate cells (PSCs), the key cell type for pancreatic fibrogenesis, is directly involved in the formation of vitamin A-containing lipid droplets, inhibiting PSC activation. In this study, we evaluated the anti-fibrotic activity of both albumin and retinol binding protein-albumin domain III fusion protein (R-III), designed for stellate cell-targeted delivery of albumin III, in rat primary HSCs and investigated the underlying mechanism. Forced expression of albumin or R-III in HSCs after passage 2 (activated HSCs) induced lipid droplet formation and deactivated HSCs, whereas point mutations in high-affinity fatty acid binding sites of albumin domain III abolished their activities. Exogenous R-III, but not albumin, was successfully internalized into and deactivated HSC-P2. When HSCs at day 3 after plating (pre-activated HSCs) were cultured in the presence of purified R-III, spontaneous activation of HSCs was inhibited even after passage 2, suggestive of a potential for preventive effect. Furthermore, treatment of HSCs-P2 with R-III led to a significant reduction in both cytoplasmic levels of all-trans retinoic acid and the subsequent retinoic acid signaling. Therefore, our data suggest that albumin deactivates HSCs with reduced retinoic acid levels and that R-III may have therapeutic and preventive potentials on liver fibrosis. PMID:23161170

  4. Dynamics of the Ligand Binding Domain Layer during AMPA Receptor Activation.

    PubMed

    Baranovic, Jelena; Chebli, Miriam; Salazar, Hector; Carbone, Anna L; Faelber, Katja; Lau, Albert Y; Daumke, Oliver; Plested, Andrew J R

    2016-02-23

    Ionotropic glutamate receptors are postsynaptic tetrameric ligand-gated channels whose activity mediates fast excitatory transmission. Glutamate binding to clamshell-shaped ligand binding domains (LBDs) triggers opening of the integral ion channel, but how the four LBDs orchestrate receptor activation is unknown. Here, we present a high-resolution x-ray crystal structure displaying two tetrameric LBD arrangements fully bound to glutamate. Using a series of engineered metal ion trapping mutants, we showed that the more compact of the two assemblies corresponds to an arrangement populated during activation of full-length receptors. State-dependent cross-linking of the mutants identified zinc bridges between the canonical active LBD dimers that formed when the tetramer was either fully or partially bound by glutamate. These bridges also stabilized the resting state, consistent with the recently published full-length apo structure. Our results provide insight into the activation mechanism of glutamate receptors and the complex conformational space that the LBD layer can sample. PMID:26910426

  5. Ultrafast differential flexibility of Cro-protein binding domains of two operator DNAs with different sequences.

    PubMed

    Choudhury, Susobhan; Ghosh, Basusree; Singh, Priya; Ghosh, Raka; Roy, Siddhartha; Pal, Samir Kumar

    2016-07-21

    The nature of the interface of specific protein-DNA complexes has attracted immense interest in contemporary molecular biology. Although extensive studies on the role of flexibility of DNA in the specific interaction in the genetic regulatory activity of lambda Cro (Cro-protein) have been performed, the exploration of quantitative features remains deficient. In this study, we have mutated (site directed mutagenesis: SDM) Cro-protein at the 37th position with a cysteine residue (G37C) retaining the functional integrity of the protein and labelled the cysteine residue, which is close to the interface, with a fluorescent probe (AEDANS), for the investigation of its interface with operator DNAs (OR3 and OR2). We have employed picosecond resolved polarization gated fluorescence spectroscopy and the well known strategy of solvation dynamics for the exploration of physical motions of the fluorescent probes and associated environments, respectively. Even though this particular probe on the protein (AEDANS) shows marginal changes in its structural flexibility upon interaction with the DNAs, a non-covalent DNA bound probe (DAPI), which binds to the minor groove, shows a major differential alteration in the dynamical flexibility in the OR3-Cro complex when compared to that of the OR2 complex with the Cro-protein. We attempt to correlate the observed significant structural fluctuation of the Cro-protein binding domain of OR3 for the specificity of the protein to the operator DNA. PMID:27326896

  6. Enhanced Purification of Ubiquitinated Proteins by Engineered Tandem Hybrid Ubiquitin-binding Domains (ThUBDs).

    PubMed

    Gao, Yuan; Li, Yanchang; Zhang, Chengpu; Zhao, Mingzhi; Deng, Chen; Lan, Qiuyan; Liu, Zexian; Su, Na; Wang, Jingwei; Xu, Feng; Xu, Yongru; Ping, Lingyan; Chang, Lei; Gao, Huiying; Wu, Junzhu; Xue, Yu; Deng, Zixin; Peng, Junmin; Xu, Ping

    2016-04-01

    Ubiquitination is one of the most common post-translational modifications, regulating protein stability and function. However, the proteome-wide profiling of ubiquitinated proteins remains challenging due to their low abundance in cells. In this study, we systematically evaluated the affinity of ubiquitin-binding domains (UBDs) to different types of ubiquitin chains. By selecting UBDs with high affinity and evaluating various UBD combinations with different lengths and types, we constructed two artificial tandem hybrid UBDs (ThUBDs), including four UBDs made of DSK2p-derived ubiquitin-associated (UBA) and ubiquilin 2-derived UBA (ThUDQ2) and of DSK2p-derived UBA and RABGEF1-derived A20-ZnF (ThUDA20). ThUBD binds to ubiquitinated proteins, with markedly higher affinity than naturally occurring UBDs. Furthermore, it displays almost unbiased high affinity to all seven lysine-linked chains. Using ThUBD-based profiling with mass spectrometry, we identified 1092 and 7487 putative ubiquitinated proteins from yeast and mammalian cells, respectively, of which 362 and 1125 proteins had ubiquitin-modified sites. These results demonstrate that ThUBD is a refined and promising approach for enriching the ubiquitinated proteome while circumventing the need to overexpress tagged ubiquitin variants and use antibodies to recognize ubiquitin remnants, thus providing a readily accessible tool for the protein ubiquitination research community. PMID:27037361

  7. The C-terminus of p53 binds the N-terminal domain of MDM2

    PubMed Central

    Poyurovsky, Masha V.; Katz, Chen; Laptenko, Oleg; Beckerman, Rachel; Lokshin, Maria; Ahn, Jinwoo; Byeon, In-Ja L.; Gabizon, Ronen; Mattia, Melissa; Zupnick, Andrew; Brown, Lewis M.; Friedler, Assaf; Prives, Carol

    2010-01-01

    The p53 tumor suppressor interacts with its negative regulator Mdm2 via the former’s N-terminal region and core domain. Yet the extreme p53 C-terminal region contains lysine residues ubiquitinated by Mdm2 and can bear post-translational modifications that inhibit Mdm2–p53 association. We show that, the Mdm2–p53 interaction is decreased upon deletion, mutation or acetylation of the p53 C-terminus. Mdm2 decreases the association of full-length but not C-terminally deleted p53 with a DNA target sequence in vitro and in cells. Further, using multiple approaches we demonstrate that a peptide from p53 C-terminus directly binds Mdm2 N-terminus in vitro. We also show that p300-acetylated p53 binds inefficiently to Mdm2 in vitro, and Nutlin-3 treatment induces C-terminal modification(s) of p53 in cells, explaining the low efficiency of Nutlin-3 in dissociating p53-MDM2 in vitro. PMID:20639885

  8. Novel regulation of Smad3 oligomerization and DNA binding by its linker domain.

    PubMed

    Vasilaki, Eleftheria; Siderakis, Manos; Papakosta, Paraskevi; Skourti-Stathaki, Konstantina; Mavridou, Sofia; Kardassis, Dimitris

    2009-09-01

    Smad proteins are key effectors of the transforming growth factor beta (TGFbeta) signaling pathway in mammalian cells. Smads are composed of two highly structured and conserved domains called Mad homology 1 (MH1) and 2 (MH2), which are linked together by a nonconserved linker region. The recent identification of phosphorylation sites and binding sites for ubiquitin ligases in the linker regions of TGFbeta and bone morphogenetic protein (BMP) receptor-regulated Smads suggested that the linker may contribute to the regulation of Smad function by facilitating cross-talks with other signaling pathways. In the present study, we have generated and characterized novel Smad3 mutants bearing individual substitutions of conserved and nonconserved amino acid residues within a previously described transcriptionally active linker fragment. Our analysis showed that the conserved linker amino acids glutamine 222 and proline 229 play important roles in Smad functions such as homo- and hetero-oligomerization, nuclear accumulation in response to TGFbeta stimulation, and DNA binding. Furthermore, a Smad3 mutant bearing a substitution of the nonconserved amino acid asparagine 218 to alanine displayed enhanced transactivation potential relative to wild type Smad3. Finally, Smad3 P229A inhibited TGFbeta signaling when overexpressed in mammalian cells. In conclusion, our data are in line with previous studies supporting an important regulatory role of the linker region of Smads in their function as key transducers of TGFbeta signaling. PMID:19645436

  9. Obligate coupling of CFTR pore opening to tight nucleotide-binding domain dimerization.

    PubMed

    Mihályi, Csaba; Töröcsik, Beáta; Csanády, László

    2016-01-01

    In CFTR, the chloride channel mutated in cystic fibrosis (CF) patients, ATP-binding-induced dimerization of two cytosolic nucleotide binding domains (NBDs) opens the pore, and dimer disruption following ATP hydrolysis closes it. Spontaneous openings without ATP are rare in wild-type CFTR, but in certain CF mutants constitute the only gating mechanism, stimulated by ivacaftor, a clinically approved CFTR potentiator. The molecular motions underlying spontaneous gating are unclear. Here we correlate energetic coupling between residues across the dimer interface with spontaneous pore opening/closure in single CFTR channels. We show that spontaneous openings are also strictly coupled to NBD dimerization, which may therefore occur even without ATP. Coordinated NBD/pore movements are therefore intrinsic to CFTR: ATP alters the stability, but not the fundamental structural architecture, of open- and closed-pore conformations. This explains correlated effects of phosphorylation, mutations, and drugs on ATP-driven and spontaneous activity, providing insights for understanding CF mutation and drug mechanisms. PMID:27328319

  10. A novel and highly specific phage endolysin cell wall binding domain for detection of Bacillus cereus.

    PubMed

    Kong, Minsuk; Sim, Jieun; Kang, Taejoon; Nguyen, Hoang Hiep; Park, Hyun Kyu; Chung, Bong Hyun; Ryu, Sangryeol

    2015-09-01

    Rapid, specific and sensitive detection of pathogenic bacteria is crucial for public health and safety. Bacillus cereus is harmful as it causes foodborne illness and a number of systemic and local infections. We report a novel phage endolysin cell wall-binding domain (CBD) for B. cereus and the development of a highly specific and sensitive surface plasmon resonance (SPR)-based B. cereus detection method using the CBD. The newly discovered CBD from endolysin of PBC1, a B. cereus-specific bacteriophage, provides high specificity and binding capacity to B. cereus. By using the CBD-modified SPR chips, B. cereus can be detected at the range of 10(5)-10(8) CFU/ml. More importantly, the detection limit can be improved to 10(2) CFU/ml by using a subtractive inhibition assay based on the pre-incubation of B. cereus and CBDs, removal of CBD-bound B. cereus, and SPR detection of the unbound CBDs. The present study suggests that the small and genetically engineered CBDs can be promising biological probes for B. cereus. We anticipate that the CBD-based SPR-sensing methods will be useful for the sensitive, selective, and rapid detection of B. cereus. PMID:26043681

  11. Obligate coupling of CFTR pore opening to tight nucleotide-binding domain dimerization

    PubMed Central

    Mihályi, Csaba; Töröcsik, Beáta; Csanády, László

    2016-01-01

    In CFTR, the chloride channel mutated in cystic fibrosis (CF) patients, ATP-binding-induced dimerization of two cytosolic nucleotide binding domains (NBDs) opens the pore, and dimer disruption following ATP hydrolysis closes it. Spontaneous openings without ATP are rare in wild-type CFTR, but in certain CF mutants constitute the only gating mechanism, stimulated by ivacaftor, a clinically approved CFTR potentiator. The molecular motions underlying spontaneous gating are unclear. Here we correlate energetic coupling between residues across the dimer interface with spontaneous pore opening/closure in single CFTR channels. We show that spontaneous openings are also strictly coupled to NBD dimerization, which may therefore occur even without ATP. Coordinated NBD/pore movements are therefore intrinsic to CFTR: ATP alters the stability, but not the fundamental structural architecture, of open- and closed-pore conformations. This explains correlated effects of phosphorylation, mutations, and drugs on ATP-driven and spontaneous activity, providing insights for understanding CF mutation and drug mechanisms. DOI: http://dx.doi.org/10.7554/eLife.18164.001 PMID:27328319

  12. Bacterial Cellulose-Binding Domain Modulates in Vitro Elongation of Different Plant Cells1

    PubMed Central

    Shpigel, Etai; Roiz, Levava; Goren, Raphael; Shoseyov, Oded

    1998-01-01

    Recombinant cellulose-binding domain (CBD) derived from the cellulolytic bacterium Clostridium cellulovorans was found to modulate the elongation of different plant cells in vitro. In peach (Prunus persica L.) pollen tubes, maximum elongation was observed at 50 μg mL−1 CBD. Pollen tube staining with calcofluor showed a loss of crystallinity in the tip zone of CBD-treated pollen tubes. At low concentrations CBD enhanced elongation of Arabidopsis roots. At high concentrations CBD dramatically inhibited root elongation in a dose-responsive manner. Maximum effect on root hair elongation was at 100 μg mL−1, whereas root elongation was inhibited at that concentration. CBD was found to compete with xyloglucan for binding to cellulose when CBD was added first to the cellulose, before the addition of xyloglucan. When Acetobacter xylinum L. was used as a model system, CBD was found to increase the rate of cellulose synthase in a dose-responsive manner, up to 5-fold compared with the control. Electron microscopy examination of the cellulose ribbons produced by A. xylinum showed that CBD treatment resulted in a splayed ribbon composed of separate fibrillar subunits, compared with a thin, uniform ribbon in the control. PMID:9701575

  13. Sorting by the cytoplasmic domain of the amyloid precursor protein binding receptor SorLA.

    PubMed

    Nielsen, Morten S; Gustafsen, Camilla; Madsen, Peder; Nyengaard, Jens R; Hermey, Guido; Bakke, Oddmund; Mari, Muriel; Schu, Peter; Pohlmann, Regina; Dennes, André; Petersen, Claus M

    2007-10-01

    SorLA/LR11 (250 kDa) is the largest and most composite member of the Vps10p-domain receptors, a family of type 1 proteins preferentially expressed in neuronal tissue. SorLA binds several ligands, including neurotensin, platelet-derived growth factor-bb, and lipoprotein lipase, and via complex-formation with the amyloid precursor protein it downregulates generation of Alzheimer's disease-associated Abeta-peptide. The receptor is mainly located in vesicles, suggesting a function in protein sorting and transport. Here we examined SorLA's trafficking using full-length and chimeric receptors and find that its cytoplasmic tail mediates efficient Golgi body-endosome transport, as well as AP-2 complex-dependent endocytosis. Functional sorting sites were mapped to an acidic cluster-dileucine-like motif and to a GGA binding site in the C terminus. Experiments in permanently or transiently AP-1 mu1-chain-deficient cells established that the AP-1 adaptor complex is essential to SorLA's transport between Golgi membranes and endosomes. Our results further implicate the GGA proteins in SorLA trafficking and provide evidence that SNX1 and Vps35, as parts of the retromer complex or possibly in a separate context, are engaged in retraction of the receptor from endosomes. PMID:17646382

  14. Adhesin receptors of human oral bacteria and modeling of putative adhesin-binding domains.

    PubMed

    Cassels, F J; Hughes, C V; Nauss, J L

    1995-09-01

    Adherence by bacteria to a surface is critical to their survival in the human oral cavity. Many types of molecules are present in the saliva and serous exudates that form the acquired pellicle, a coating on the tooth surface, and serve as receptor molecules for adherent bacteria. The primary colonizing bacteria utilize adhesins to adhere to specific pellicle receptor molecules, then may adhere to other primary colonizers via adhesins, or may present receptor molecules to be utilized by secondary colonizing species. The most common primary colonizing bacteria are streptococci, and six streptococcal cell wall polysaccharide receptor molecules have been structurally characterized. A comparison of the putative adhesin disaccharide-binding regions of the six polysaccharides suggests three groups. A representative of each group was modeled in molecular dynamics simulations. In each case it was found that a loop formed between the galactofuranose beta (Galf beta) and an oxygen of the nearest phosphate group on the reducing side of the Galf beta, that this loop was stabilized by hydrogen bonds, and that within each loop resides the putative disaccharide-binding domain. PMID:8519475

  15. Gambogic acid deactivates cytosolic and mitochondrial thioredoxins by covalent binding to the functional domain.

    PubMed

    Yang, Jing; Li, Chenglin; Ding, Li; Guo, Qinglong; You, Qidong; Jin, Shaohong

    2012-06-22

    Gambogic acid (1) is a cytotoxic caged xanthone derived from the resin of Garcinia hanburyi. Compound 1 selectively induces apoptosis in cancer cells, at least partially, by targeting the stress response to reactive oxygen species (ROS). However, the molecular mechanism of ROS toxicity stimulated by 1 remains poorly understood. In this study, mass spectrometric and biochemical pharmacological approaches were used that resulted in the identification of both cytosolic thioredoxin (TRX-1) and mitochondrial thioredoxin (TRX-2) as the molecular targets of 1. The results obtained showed that 1 deactivates TRX-1/2 proteins by covalent binding to the active cysteine residues in the functional domain via Michael addition reactions. Since both TRX-1 and TRX-2 play key roles in regulating the redox signaling of cancer cells, the present findings may shed light on the relationship between protein binding and cellular ROS accumulation induced by 1. This provides support for the current clinical trials of gambogic acid (1) being conducted alone or in combination with other agents that appear to increase ROS generation in order to selectively kill cancer cells. PMID:22663155

  16. In vivo phosphorylation of CFTR promotes formation of a nucleotide-binding domain heterodimer

    PubMed Central

    Mense, Martin; Vergani, Paola; White, Dennis M; Altberg, Gal; Nairn, Angus C; Gadsby, David C

    2006-01-01

    The human ATP-binding cassette (ABC) protein CFTR (cystic fibrosis transmembrane conductance regulator) is a chloride channel, whose dysfunction causes cystic fibrosis. To gain structural insight into the dynamic interaction between CFTR's nucleotide-binding domains (NBDs) proposed to underlie channel gating, we introduced target cysteines into the NBDs, expressed the channels in Xenopus oocytes, and used in vivo sulfhydryl-specific crosslinking to directly examine the cysteines' proximity. We tested five cysteine pairs, each comprising one introduced cysteine in the NH2-terminal NBD1 and another in the COOH-terminal NBD2. Identification of crosslinked product was facilitated by co-expression of NH2-terminal and COOH-terminal CFTR half channels each containing one NBD. The COOH-terminal half channel lacked all native cysteines. None of CFTR's 18 native cysteines was found essential for wild type-like, phosphorylation- and ATP-dependent, channel gating. The observed crosslinks demonstrate that NBD1 and NBD2 interact in a head-to-tail configuration analogous to that in homodimeric crystal structures of nucleotide-bound prokaryotic NBDs. CFTR phosphorylation by PKA strongly promoted both crosslinking and opening of the split channels, firmly linking head-to-tail NBD1–NBD2 association to channel opening. PMID:17036051

  17. Dynamics and allostery of the ionotropic glutamate receptors and the ligand binding domain.

    PubMed

    Tobi, Dror

    2016-02-01

    The dynamics of the ligand-binding domain (LBD) and the intact ionotropic glutamate receptor (iGluR) were studied using Gaussian Network Model (GNM) analysis. The dynamics of LBDs with various allosteric modulators is compared using a novel method of multiple alignment of GNM modes of motion. The analysis reveals that allosteric effectors change the dynamics of amino acids at the upper lobe interface of the LBD dimer as well as at the hinge region between the upper- and lower- lobes. For the intact glutamate receptor the analysis show that the clamshell-like movement of the LBD upper and lower lobes is coupled to the bending of the trans-membrane domain (TMD) helices which may open the channel pore. The results offer a new insight on the mechanism of action of allosteric modulators on the iGluR and support the notion of TMD helices bending as a possible mechanism for channel opening. In addition, the study validates the methodology of multiple GNM modes alignment as a useful tool to study allosteric effect and its relation to proteins dynamics. PMID:26677170

  18. Probing nucleotide-binding effects on backbone dynamics and folding of the nucleotide-binding domain of the sarcoplasmic/endoplasmic-reticulum Ca2+-ATPase.

    PubMed Central

    Abu-Abed, Mona; Millet, Oscar; MacLennan, David H; Ikura, Mitsuhiko

    2004-01-01

    In muscle cells, SERCA (sarcoplasmic/endoplasmic-reticulum Ca2+-ATPase) plays a key role in restoring cytoplasmic Ca2+ levels to resting concentrations after transient surges caused by excitation-coupling cycles. The mechanism by which Ca2+ is translocated to the lumen of the ER (endoplasmic reticulum) involves major conformational rearrangements among the three cytoplasmic domains: actuator (A), nucleotide-binding (N) and phosphorylation (P) domains; and within the transmembrane Ca2+-binding domain of SERCA. CD, fluorescence spectroscopy and NMR spectroscopy were used in the present study to probe the conformation and stability of the isolated N domain of SERCA (SERCA-N), in the presence and absence of AMP-PNP (adenosine 5'-[beta,gamma-imido]triphosphate). CD and tryptophan fluorescence spectroscopy results established that the effects of nucleotide binding were not readily manifested on the global fold and structural stability of SERCA-N. 15N-backbone-relaxation experiments revealed site-specific changes in backbone dynamics that converge on the central beta-sheet domain. Nucleotide binding produced diverse effects on dynamics, with enhanced mobility observed for Ile369, Cys420, Arg467, Asp568, Phe593 and Gly598, whereas rigidifying effects were found for Ser383, Leu419, Thr484 and Thr532. These results demonstrate that the overall fold and backbone motional properties of SERCA-N remained essentially the same in the presence of AMP-PNP, yet revealing evidence for internal counter-balancing effects on backbone dynamics upon binding the nucleotide, which propagate through the central beta-sheet. PMID:14987197

  19. Influence of the hinge region and its adjacent domains on binding and signaling patterns of the thyrotropin and follitropin receptor.

    PubMed

    Schaarschmidt, Jörg; Huth, Sandra; Meier, René; Paschke, Ralf; Jaeschke, Holger

    2014-01-01

    Glycoprotein hormone receptors (GPHR) have a large extracellular domain (ECD) divided into the leucine rich repeat (LRR) domain for binding of the glycoprotein hormones and the hinge region (HinR), which connects the LRR domain with the transmembrane domain (TMD). Understanding of the activation mechanism of GPHRs is hindered by the unknown interaction of the ECD with the TMD and the structural changes upon ligand binding responsible for receptor activation. Recently, our group showed that the HinR of the thyrotropin receptor (TSHR) can be replaced by those of the follitropin (FSHR) and lutropin receptor (LHCGR) without effects on surface expression and hTSH signaling. However, differences in binding characteristics for bovine TSH at the various HinRs were obvious. To gain further insights into the interplay between LRR domain, HinR and TMD we generated chimeras between the TSHR and FSHR. Our results obtained by the determination of cell surface expression, ligand binding and G protein activation confirm the similar characteristics of GPHR HinRs but they also demonstrate an involvement of the HinR in ligand selectivity indicated by the observed promiscuity of some chimeras. While the TSHR HinR contributes to specific binding of TSH and its variants, no such contribution is observed for FSH and its analog TR4401 at the HinR of the FSHR. Furthermore, the charge distribution at the poorly characterized LRR domain/HinR transition affected ligand binding and signaling even though this area is not in direct contact with the ligand. In addition our results also demonstrate the importance of the TMD/HinR interface. Especially the combination of the TSHR HinR with the FSHR-TMD resulted in a loss of cell surface expression of the respective chimeras. In conclusion, the HinRs of GPHRs do not only share similar characteristics but also behave as ligand specific structural and functional entities. PMID:25340405

  20. Influence of the Hinge Region and Its Adjacent Domains on Binding and Signaling Patterns of the Thyrotropin and Follitropin Receptor

    PubMed Central

    Schaarschmidt, Jörg; Huth, Sandra; Meier, René; Paschke, Ralf; Jaeschke, Holger

    2014-01-01

    Glycoprotein hormone receptors (GPHR) have a large extracellular domain (ECD) divided into the leucine rich repeat (LRR) domain for binding of the glycoprotein hormones and the hinge region (HinR), which connects the LRR domain with the transmembrane domain (TMD). Understanding of the activation mechanism of GPHRs is hindered by the unknown interaction of the ECD with the TMD and the structural changes upon ligand binding responsible for receptor activation. Recently, our group showed that the HinR of the thyrotropin receptor (TSHR) can be replaced by those of the follitropin (FSHR) and lutropin receptor (LHCGR) without effects on surface expression and hTSH signaling. However, differences in binding characteristics for bovine TSH at the various HinRs were obvious. To gain further insights into the interplay between LRR domain, HinR and TMD we generated chimeras between the TSHR and FSHR. Our results obtained by the determination of cell surface expression, ligand binding and G protein activation confirm the similar characteristics of GPHR HinRs but they also demonstrate an involvement of the HinR in ligand selectivity indicated by the observed promiscuity of some chimeras. While the TSHR HinR contributes to specific binding of TSH and its variants, no such contribution is observed for FSH and its analog TR4401 at the HinR of the FSHR. Furthermore, the charge distribution at the poorly characterized LRR domain/HinR transition affected ligand binding and signaling even though this area is not in direct contact with the ligand. In addition our results also demonstrate the importance of the TMD/HinR interface. Especially the combination of the TSHR HinR with the FSHR-TMD resulted in a loss of cell surface expression of the respective chimeras. In conclusion, the HinRs of GPHRs do not only share similar characteristics but also behave as ligand specific structural and functional entities. PMID:25340405

  1. Methyl Binding Domain Protein 2 (MBD2) dependent proliferation and survival of breast cancer cells

    PubMed Central

    Mian, Omar Y.; Wang, Shou Zhen; Zhu, Sheng Zu; Gnanapragasam, Merlin N.; Graham, Laura; Bear, Harry D.; Ginder, Gordon D.

    2011-01-01

    Methyl Cytosine Binding Domain Protein 2 (MBD2) has been shown to bind to and mediate repression of methylated tumor suppressor genes in cancer cells, where re-patterning of CpG methylation and associated gene silencing is common. We have investigated the role of MBD2 in breast cancer cell growth and tumor suppressor gene expression. We show that stable shRNA mediated knockdown of MBD2 leads to growth suppression of cultured human mammary epithelial cancer lines, SK-BR-3, MDA-MB-231, and MDA-MB-435. The peak anti-proliferative occurs only after sustained, stable MBD2 knockdown. Once established, the growth inhibition persists over time and leads to a markedly decreased propensity for aggressive breast cancer cell lines to form in vivo xenograft tumors in BALB/C nu/nu mice. The growth effects of MBD2 knockdown are accompanied by de-repression of tumor suppressor genes including DAPK1 and KLK10. Chromatin immunoprecipitation assays and bisulfite sequencing demonstrate MBD2 binding directly to the hyper-methylated and CpG-rich promoters of both DAPK1 and KLK10. Remarkably, the promoter CpG-island associated methylation of these genes remained stable despite robust transcriptional activation in MBD2 knockdown cells. Expression of a shRNA-resistant MBD2 protein resulted in restoration of growth and re-silencing of the MBD2 dependent tumor suppressor genes. Our data suggest that uncoupling CpG-methylation from repressive chromatin remodeling and histone modifications by removing MBD2 is sufficient to initiate and maintain tumor suppressor gene transcription and suppress neoplastic cell growth. These results demonstrate a role for MBD2 in cancer progression and provide support for the prospect of targeting MBD2 therapeutically in aggressive breast cancers. PMID:21693597

  2. The Receptor-Binding Domain in the VP1u Region of Parvovirus B19

    PubMed Central

    Leisi, Remo; Di Tommaso, Chiarina; Kempf, Christoph; Ros, Carlos

    2016-01-01

    Parvovirus B19 (B19V) is known as the human pathogen causing the mild childhood disease erythema infectiosum. B19V shows an extraordinary narrow tissue tropism for erythroid progenitor cells in the bone marrow, which is determined by a highly restricted uptake. We have previously shown that the specific internalization is mediated by the interaction of the viral protein 1 unique region (VP1u) with a yet unknown cellular receptor. To locate the receptor-binding domain (RBD) within the VP1u, we analyzed the effect of truncations and mutations on the internalization capacity of the recombinant protein into UT7/Epo cells. Here we report that the N-terminal amino acids 5–80 of the VP1u are necessary and sufficient for cellular binding and internalization; thus, this N-terminal region represents the RBD required for B19V uptake. Using site-directed mutagenesis, we further identified a cluster of important amino acids playing a critical role in VP1u internalization. In silico predictions and experimental results suggest that the RBD is structured as a rigid fold of three α-helices. Finally, we found that dimerization of the VP1u leads to a considerably enhanced cellular binding and internalization. Taken together, we identified the RBD that mediates B19V uptake and mapped functional and structural motifs within this sequence. The findings reveal insights into the uptake process of B19V, which contribute to understand the pathogenesis of the infection and the neutralization of the virus by the immune system. PMID:26927158

  3. Mutations in the putative calcium-binding domain of polyomavirus VP1 affect capsid assembly

    NASA Technical Reports Server (NTRS)

    Haynes, J. I. 2nd; Chang, D.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    Calcium ions appear to play a major role in maintaining the structural integrity of the polyomavirus and are likely involved in the processes of viral uncoating and assembly. Previous studies demonstrated that a VP1 fragment extending from Pro-232 to Asp-364 has calcium-binding capabilities. This fragment contains an amino acid stretch from Asp-266 to Glu-277 which is quite similar in sequence to the amino acids that make up the calcium-binding EF hand structures found in many proteins. To assess the contribution of this domain to polyomavirus structural integrity, the effects of mutations in this region were examined by transfecting mutated viral DNA into susceptible cells. Immunofluorescence studies indicated that although viral protein synthesis occurred normally, infective viral progeny were not produced in cells transfected with polyomavirus genomes encoding either a VP1 molecule lacking amino acids Thr-262 through Gly-276 or a VP1 molecule containing a mutation of Asp-266 to Ala. VP1 molecules containing the deletion mutation were unable to bind 45Ca in an in vitro assay. Upon expression in Escherichia coli and purification by immunoaffinity chromatography, wild-type VP1 was isolated as pentameric, capsomere-like structures which could be induced to form capsid-like structures upon addition of CaCl2, consistent with previous studies. However, although VP1 containing the point mutation was isolated as pentamers which were indistinguishable from wild-type VP1 pentamers, addition of CaCl2 did not result in their assembly into capsid-like structures. Immunogold labeling and electron microscopy studies of transfected mammalian cells provided in vivo evidence that a mutation in this region affects the process of viral assembly.

  4. The Receptor-Binding Domain in the VP1u Region of Parvovirus B19.

    PubMed

    Leisi, Remo; Di Tommaso, Chiarina; Kempf, Christoph; Ros, Carlos

    2016-03-01

    Parvovirus B19 (B19V) is known as the human pathogen causing the mild childhood disease erythema infectiosum. B19V shows an extraordinary narrow tissue tropism for erythroid progenitor cells in the bone marrow, which is determined by a highly restricted uptake. We have previously shown that the specific internalization is mediated by the interaction of the viral protein 1 unique region (VP1u) with a yet unknown cellular receptor. To locate the receptor-binding domain (RBD) within the VP1u, we analyzed the effect of truncations and mutations on the internalization capacity of the recombinant protein into UT7/Epo cells. Here we report that the N-terminal amino acids 5-80 of the VP1u are necessary and sufficient for cellular binding and internalization; thus, this N-terminal region represents the RBD required for B19V uptake. Using site-directed mutagenesis, we further identified a cluster of important amino acids playing a critical role in VP1u internalization. In silico predictions and experimental results suggest that the RBD is structured as a rigid fold of three α-helices. Finally, we found that dimerization of the VP1u leads to a considerably enhanced cellular binding and internalization. Taken together, we identified the RBD that mediates B19V uptake and mapped functional and structural motifs within this sequence. The findings reveal insights into the uptake process of B19V, which contribute to understand the pathogenesis of the infection and the neutralization of the virus by the immune system. PMID:26927158

  5. Concerted but Noncooperative Activation of Nucleotide and Actuator Domains of the Ca-ATPase Upon Calcium Binding

    SciTech Connect

    Chen, Baowei; Mahaney, James E.; Mayer, M. Uljana; Bigelow, Diana J.; Squier, Thomas C.

    2008-11-25

    Calcium-dependent domain movements of the nucleotide (N) and actuator (A) domains of the SERCA2a isoform of the Ca-ATPase were assessed using constructs containing engineered tetracysteine binding motifs, which were expressed in insect High-Five cells and subsequently labeled with the biarsenical fluorophore 4’,5’-bis(1,3,2-dithoarsolan-2-yl)fluorescein (FlAsH-EDT2). Maximum catalytic function is retained in microsomes isolated from High-Five cells and labeled with FlAsH-EDT2. Distance measurements using the nucleotide analog TNP-ATP, which acts as a fluorescence resonance energy transfer (FRET) acceptor from FlAsH, identify a 2.4 Å increase in the spatial separation between the N- and A-domains induced by high-affinity calcium binding; this structural change is comparable to that observed in crystal structures. No significant distance changes occur across the N-domain between FlAsH and TNP-ATP, indicating that calcium activation induces rigid body domain movements rather than intradomain conformational changes. Calcium-dependent decreases in the fluorescence of FlAsH bound respectively to either the N- or A-domains indicate coordinated and noncooperative domain movements, where both N- and A-domains domains display virtually identical calcium dependencies (i.e., Kd = 4.8 ± 0.4 μM). We suggest that occupancy of a single high-affinity calcium binding site induces the rearrangement of the A- and N-domains of the Ca-ATPase to form an intermediate state, which facilitates ATP utilization upon occupancy of the second high-affinity calcium site to enhance transport efficiency.

  6. The energetic cost of domain reorientation in maltose-binding protein as studied by NMR and fluorescence spectroscopy.

    PubMed

    Millet, Oscar; Hudson, Rhea P; Kay, Lewis E

    2003-10-28

    Maltose-binding protein (MBP) is a two-domain protein that undergoes a ligand-mediated conformational rearrangement from an "open" to a "closed" structure on binding to maltooligosaccharides. To characterize the energy landscape associated with this transition, we have generated five variants of MBP with mutations located in the hinge region of the molecule. Residual dipolar couplings, measured in the presence of a weak alignment medium, have been used to establish that the average structures of the mutant proteins are related to each other by domain rotation about an invariant axis, with the rotation angle varying from 5 degrees to 28 degrees. Additionally, the domain orientations observed in the wild-type apo and ligand-bound (maltose, maltotriose, etc.) structures are related through a rotation of 35 degrees about the same axis. Remarkably, the free energy of unfolding, measured by equilibrium denaturation experiments and monitored by fluorescence spectroscopy, shows a linear correlation with the rotation angle, with the stability of the (apo)protein decreasing with domain closure by 212 +/- 16 cal mol-1 per degree of rotation. The apparent binding energy for maltose also shows a similar correlation with the interdomain angle, suggesting that the mutations, as they relate to binding, affect predominantly the ligand-free structure. The linearity of the energy change is interpreted in terms of an increase in the extent of hydrophobic surface that becomes solvent accessible on closure. The combination of structural, stability, and binding data allows separation of the energetics of domain reorientation from ligand binding. This work presents a near quantitative structure-energy-binding relationship for a series of mutants of MBP, illustrating the power of combined studies involving protein engineering and solution NMR spectroscopy. PMID:14530390

  7. Characteristics and composition of the vitamin K-dependent gamma-glutamyl carboxylase-binding domain on osteocalcin.

    PubMed Central

    Houben, Roger J T J; Rijkers, Dirk T S; Stanley, Thomas B; Acher, Francine; Azerad, Robert; Käkönen, Sanna-Maria; Vermeer, Cees; Soute, Berry A M

    2002-01-01

    Two different sites on vitamin K-dependent gamma-glutamyl carboxylase (VKC) are involved in enzyme-substrate interaction: the propeptide-binding site required for high-affinity substrate binding and the active site for glutamate carboxylation. Synthetic descarboxy osteocalcin (d-OC) is a low-K(m) substrate for the VKC, but unique since it possesses a high-affinity recognition site for the VKC, distinct from the propeptide which is essential as a binding site for VKC. However, the exact location and composition of this VKC-recognition domain on d-OC has remained unclear until now. Using a stereospecific substrate analogue [t-butyloxycarbonyl-(2S,4S)-4-methylglutamic acid-Glu-Val (S-MeTPT)] we demonstrate in this paper that the high affinity of d-OC for VKC cannot be explained by a direct interaction with either the active site or with the propeptide-binding site on VKC. It is shown using various synthetic peptides derived from d-OC that there are two domains on d-OC necessary for recognition: one located between residues 1 and 12 and a second between residues 26 and 39, i.e. at the C-terminal side of the gamma-carboxyglutamate (Gla) domain. Both internal sequences contribute substantially to the efficiency of carboxylation. On the basis of these data we postulate the presence of a second high-affinity substrate-binding site on VKC capable of specifically binding d-OC, which is the first vitamin K-dependent substrate of which the VKC binding domain is interrupted by the Gla domain. PMID:11988107

  8. The N-terminal domain of MuB protein has striking structural similarity to DNA-binding domains and mediates MuB filament-filament interactions.

    PubMed

    Dramićanin, Marija; López-Méndez, Blanca; Boskovic, Jasminka; Campos-Olivas, Ramón; Ramón-Maiques, Santiago

    2015-08-01

    MuB is an ATP-dependent DNA-binding protein that regulates the activity of MuA transposase and delivers the target DNA for transposition of phage Mu. Mechanistic insight into MuB function is limited to its AAA+ ATPase module, which upon ATP binding assembles into helical filaments around the DNA. However, the structure and function of the flexible N-terminal domain (NTD) appended to the AAA+ module remains uncharacterized. Here we report the solution structure of MuB NTD determined by NMR spectroscopy. The structure reveals a compact domain formed by four α-helices connected by short loops, and confirms the presence of a helix-turn-helix motif. High structural similarity and sequence homology with λ repressor-like DNA-binding domains suggest a possible role of MuB NTD in DNA binding. We also demonstrate that the NTD directly mediates the ability of MuB to establish filament-filament interactions. These findings lead us to a model in which the NTD interacts with the AAA+ spirals and perhaps also with the DNA bound within the filament, favoring MuB polymerization and filament clustering. We propose that the MuB NTD-dependent filament interactions might be an effective mechanism to bridge distant DNA regions during Mu transposition. PMID:26169224

  9. Role of the Cro repressor carboxy-terminal domain and flexible dimer linkage in operator and nonspecific DNA binding.

    PubMed

    Hubbard, A J; Bracco, L P; Eisenbeis, S J; Gayle, R B; Beaton, G; Caruthers, M H

    1990-10-01

    A series of mutations comprising single and multiple substitutions, deletions, and extensions within the carboxy-terminal domain of the bacteriophage lambda Cro repressor have been constructed. These mutations generally affect the affinity of repressor for specific and nonspecific DNA. Additionally, substitution of the carboxy-terminal alanine with several amino acids capable of hydrogen-bonding interactions leads to improved specific binding affinities. A mutation is also described whereby cysteine links the two Cro monomers by a disulfide bond. As a consequence, a significant improvement in nonspecific binding and a concomitant reduction in specific binding are observed with this mutant. These results provide evidence that the carboxy terminus of Cro repressor is an important DNA binding domain and that a flexible connection between the two repressor monomers is a critical factor in modulating the affinity of wild-type repressor for DNA. PMID:2271592

  10. Nucleotide binding by the widespread high-affinity cyclic di-GMP receptor MshEN domain.

    PubMed

    Wang, Yu-Chuan; Chin, Ko-Hsin; Tu, Zhi-Le; He, Jin; Jones, Christopher J; Sanchez, David Zamorano; Yildiz, Fitnat H; Galperin, Michael Y; Chou, Shan-Ho

    2016-01-01

    C-di-GMP is a bacterial second messenger regulating various cellular functions. Many bacteria contain c-di-GMP-metabolizing enzymes but lack known c-di-GMP receptors. Recently, two MshE-type ATPases associated with bacterial type II secretion system and type IV pilus formation were shown to specifically bind c-di-GMP. Here we report crystal structure of the MshE N-terminal domain (MshEN1-145) from Vibrio cholerae in complex with c-di-GMP at a 1.37 Å resolution. This structure reveals a unique c-di-GMP-binding mode, featuring a tandem array of two highly conserved binding motifs, each comprising a 24-residue sequence RLGxx(L/V/I)(L/V/I)xxG(L/V/I)(L/V/I)xxxxLxxxLxxQ that binds half of the c-di-GMP molecule, primarily through hydrophobic interactions. Mutating these highly conserved residues markedly reduces c-di-GMP binding and biofilm formation by V. cholerae. This c-di-GMP-binding motif is present in diverse bacterial proteins exhibiting binding affinities ranging from 0.5 μM to as low as 14 nM. The MshEN domain contains the longest nucleotide-binding motif reported to date. PMID:27578558

  11. Structure of the fMet-tRNAfMet-binding domain of B.stearothermophilus initiation factor IF2

    PubMed Central

    Meunier, Sylvie; Spurio, Roberto; Czisch, Michael; Wechselberger, Rainer; Guenneugues, Marc; Gualerzi, Claudio O.; Boelens, Rolf

    2000-01-01

    The three-dimensional structure of the fMet-tRNAfMet -binding domain of translation initiation factor IF2 from Bacillus stearothermophilus has been determined by heteronuclear NMR spectroscopy. Its structure consists of six antiparallel β-strands, connected via loops, and forms a closed β-barrel similar to domain II of elongation factors EF-Tu and EF-G, despite low sequence homology. Two structures of the ternary complexes of the EF-Tu⋅aminoacyl-tRNA⋅ GDP analogue have been reported and were used to propose and discuss the possible fMet-tRNAfMet-binding site of IF2. PMID:10775275

  12. Structural and mutational analyses of the receptor binding domain of botulinum D/C mosaic neurotoxin: Insight into the ganglioside binding mechanism

    SciTech Connect

    Nuemket, Nipawan; Tanaka, Yoshikazu; Tsukamoto, Kentaro; Tsuji, Takao; Nakamura, Keiji; Kozaki, Shunji; Yao, Min; Tanaka, Isao

    2011-07-29

    Highlights: {yields} We determined the crystal structure of the receptor binding domain of BoNT in complex with 3'-sialyllactose. {yields} An electron density derived from the 3'-sialyllactose was confirmed at the cleft in the C-terminal subdomain. {yields} Alanine site-directed mutagenesis showed that GBS and GBL are important for ganglioside binding. {yields} A cell binding mechanism, which involves cooperative contribution of two sites, was proposed. -- Abstract: Clostridium botulinum type D strain OFD05, which produces the D/C mosaic neurotoxin, was isolated from cattle killed by the recent botulism outbreak in Japan. The D/C mosaic neurotoxin is the most toxic of the botulinum neurotoxins (BoNT) characterized to date. Here, we determined the crystal structure of the receptor binding domain of BoNT from strain OFD05 in complex with 3'-sialyllactose at a resolution of 3.0 A. In the structure, an electron density derived from the 3'-sialyllactose was confirmed at the cleft in the C-terminal subdomain. Alanine site-directed mutagenesis showed the significant contribution of the residues surrounding the cleft to ganglioside recognition. In addition, a loop adjoining the cleft also plays an important role in ganglioside recognition. In contrast, little effect was observed when the residues located around the surface previously identified as the protein receptor binding site in other BoNTs were substituted. The results of cell binding analysis of the mutants were significantly correlated with the ganglioside binding properties. Based on these observations, a cell binding mechanism of BoNT from strain OFD05 is proposed, which involves cooperative contribution of two ganglioside binding sites.

  13. NMR structure of a specific DNA complex of Zn-containing DNA binding domain of GATA-1.

    PubMed

    Omichinski, J G; Clore, G M; Schaad, O; Felsenfeld, G; Trainor, C; Appella, E; Stahl, S J; Gronenborn, A M

    1993-07-23

    The three-dimensional solution structure of a complex between the DNA binding domain of the chicken erythroid transcription factor GATA-1 and its cognate DNA site has been determined with multidimensional heteronuclear magnetic resonance spectroscopy. The DNA binding domain consists of a core which contains a zinc coordinated by four cysteines and a carboxyl-terminal tail. The core is composed of two irregular antiparallel beta sheets and an alpha helix, followed by a long loop that leads into the carboxyl-terminal tail. The amino-terminal part of the core, including the helix, is similar in structure, although not in sequence, to the amino-terminal zinc module of the glucocorticoid receptor DNA binding domain. In the other regions, the structures of these two DNA binding domains are entirely different. The DNA target site in contact with the protein spans eight base pairs. The helix and the loop connecting the two antiparallel beta sheets interact with the major groove of the DNA. The carboxyl-terminal tail, which is an essential determinant of specific binding, wraps around into the minor groove. The complex resembles a hand holding a rope with the palm and fingers representing the protein core and the thumb, the carboxyl-terminal tail. The specific interactions between GATA-1 and DNA in the major groove are mainly hydrophobic in nature, which accounts for the preponderance of thymines in the target site. A large number of interactions are observed with the phosphate backbone. PMID:8332909

  14. Essential lysine residues within transmembrane helix 1 of diphtheria toxin facilitate COPI binding and catalytic domain entry

    PubMed Central

    Trujillo, Carolina; Taylor-Parker, Julian; Harrison, Robert; Murphy, John R.

    2014-01-01

    The translocation of the diphtheria toxin catalytic domain from the lumen of early endosomes into the cytosol of eukaryotic cells is an essential step in the intoxication process. We have previously shown that the in vitro translocation of the catalytic domain from the lumen of toxin pre-loaded endosomal vesicles to the external medium requires the addition of cytosolic proteins including coatomer protein complex I (COPI) to the reaction mixture. Further, we have shown that transmembrane helix 1 plays an essential, but as yet undefined role in the entry process. We have used both site-directed mutagenesis and a COPI complex precipitation assay to demonstrate that interaction(s) between at least three lysine residues in transmembrane helix 1 are essential for both COPI complex binding and the delivery of the catalytic domain into the target cell cytosol. Finally, a COPI binding domain swap was used to demonstrate that substitution of the lysine-rich transmembrane helix 1with the COPI binding portion of the p23 adaptor cytoplasmic tail results in a mutant that displays full wild type activity. Thus, irrespective of sequence, the ability of transmembrane helix 1 to bind to COPI complex appears to be the essential feature for catalytic domain delivery to the cytosol. PMID:20398220

  15. Coupling of folding and DNA-binding in the bZIP domains of Jun-Fos heterodimeric transcription factor.

    PubMed

    Seldeen, Kenneth L; McDonald, Caleb B; Deegan, Brian J; Farooq, Amjad

    2008-05-01

    In response to mitogenic stimuli, the heterodimeric transcription factor Jun-Fos binds to the promoters of a diverse array of genes involved in critical cellular responses such as cell growth and proliferation, cell cycle regulation, embryogenic development and cancer. In so doing, Jun-Fos heterodimer regulates gene expression central to physiology and pathology of the cell in a specific and timely manner. Here, using the technique of isothermal titration calorimetry (ITC), we report detailed thermodynamics of the bZIP domains of Jun-Fos heterodimer to synthetic dsDNA oligos containing the TRE and CRE consensus promoter elements. Our data suggest that binding of the bZIP domains to both TRE and CRE is under enthalpic control and accompanied by entropic penalty at physiological temperatures. Although the bZIP domains bind to both TRE and CRE with very similar affinities, the enthalpic contributions to the free energy of binding to CRE are more favorable than TRE, while the entropic penalty to the free energy of binding to TRE is smaller than CRE. Despite such differences in their thermodynamic signatures, enthalpy and entropy of binding of the bZIP domains to both TRE and CRE are highly temperature-dependent and largely compensate each other resulting in negligible effect of temperature on the free energy of binding. From the plot of enthalpy change versus temperature, the magnitude of heat capacity change determined is much larger than that expected from the direct association of bZIP domains with DNA. This observation is interpreted to suggest that the basic regions in the bZIP domains are largely unstructured in the absence of DNA and only become structured upon interaction with DNA in a coupled folding and binding manner. Our new findings are rationalized in the context of 3D structural models of bZIP domains of Jun-Fos heterodimer in complex with dsDNA oligos containing the TRE and CRE consensus sequences. Taken together, our study demonstrates that enthalpy is

  16. A hepatitis C virus (HCV) internal ribosome entry site (IRES) domain III–IV-targeted aptamer inhibits translation by binding to an apical loop of domain IIId

    PubMed Central

    Kikuchi, Kunio; Umehara, Takuya; Fukuda, Kotaro; Kuno, Atsushi; Hasegawa, Tsunemi; Nishikawa, Satoshi

    2005-01-01

    The hepatitis C virus (HCV) has a positive single-stranded RNA genome, and translation starts within the internal ribosome entry site (IRES) in a cap-independent manner. The IRES is well conserved among HCV subtypes and has a unique structure consisting of four domains. We used an in vitro selection procedure to isolate RNA aptamers capable of binding to the IRES domains III–IV. The aptamers that were obtained shared the consensus sequence ACCCA, which is complementary to the apical loop of domain IIId that is known to be a critical region of IRES-dependent translation. This convergence suggests that domain IIId is preferentially selected in an RNA–RNA interaction. Mutation analysis showed that the aptamer binding was sequence and structure dependent. One of the aptamers inhibited translation both in vitro and in vivo. Our results indicate that domain IIId is a suitable target site for HCV blockage and that rationally designed RNA aptamers have great potential as anti-HCV drugs. PMID:15681618

  17. Structure of a Thyroid Hormone Receptor DNA-Binding Domain Homodimer Bound to an Inverted Palindrome DNA Response Element

    SciTech Connect

    Chen, Yi; Young, Matthew A.

    2010-10-22

    Thyroid hormone receptor (TR), as a member of the nuclear hormone receptor family, can recognize and bind different classes of DNA response element targets as either a monomer, a homooligomer, or a heterooligomer. We report here the first crystal structure of a homodimer TR DNA-binding domain (DBD) in complex with an inverted repeat class of thyroid response element (TRE). The structure shows a nearly symmetric structure of the TR DBD assembled on the F2 TRE where the base recognition contacts in the homodimer DNA complex are conserved relative to the previously published structure of a TR-9-cis-retinoic acid receptor heterodimer DNA complex. The new structure also reveals that the T-box region of the DBD can function as a structural hinge that enables a large degree of flexibility in the position of the C-terminal extension helix that connects the DBD to the ligand-binding domain. Although the isolated TR DBDs exist as monomers in solution, we have measured highly cooperative binding of the two TR DBD sub