Science.gov

Sample records for acyl-coa cholesterol acyltransferase

  1. Acyl-coenzyme A:cholesterol acyltransferases

    PubMed Central

    Chang, Ta-Yuan; Li, Bo-Liang; Chang, Catherine C. Y.; Urano, Yasuomi

    2009-01-01

    The enzymes acyl-coenzyme A (CoA):cholesterol acyltransferases (ACATs) are membrane-bound proteins that utilize long-chain fatty acyl-CoA and cholesterol as substrates to form cholesteryl esters. In mammals, two isoenzymes, ACAT1 and ACAT2, encoded by two different genes, exist. ACATs play important roles in cellular cholesterol homeostasis in various tissues. This chapter summarizes the current knowledge on ACAT-related research in two areas: 1) ACAT genes and proteins and 2) ACAT enzymes as drug targets for atherosclerosis and for Alzheimer's disease. PMID:19141679

  2. Human plasma lecithin-cholesterol acyltransferase

    SciTech Connect

    Jauhiainen, M.; Stevenson, K.J.; Dolphin, P.J.

    1988-05-15

    Lecithin-cholesterol acyltransferase (LCAT) is a plasma enzyme which catalyzes the transacylation of the fatty acid at the sn-2 position of lecithin to cholesterol forming lysolecithin and cholesteryl ester. The substrates for and products of this reaction are present within the plasma lipoproteins upon which the enzyme acts to form the majority of cholesteryl ester in human plasma. The authors proposed a covalent catalytic mechanism of action for LCAT in which serine and histidine residues mediate lecithin cleavage and two cysteine residues cholesterol esterification. With the aid of sulfhydryl reactive trivalent organoarsenical compounds which are specific for vicinal thiols they have probed the geometry of the catalytic site. They conclude that the two catalytic cysteine residues of LCAT (Cys/sup 31/ and Cys /sup 184/) are vicinal with a calculated distance between their sulfur atoms of 3.50-3.62 A. The additional residue alkylated by teh bifunctional reagent is within the catalytic site and may represent a previously identified catalytic serine or histidine residue.

  3. Lipoprotein products of lecithin: cholesterol acyltransferase and cholesteryl ester transfer.

    PubMed

    Rose, H G; Ellerbe, P

    1982-09-14

    High-density lipoprotein substrates and products of human plasma lecithin: cholesterol acyltransferase have been labelled with radioisotopic cholesteryl esters in order to facilitate identification. [3H]Cholesteryl esters were formed by endogenous HDL3/VHDL enzyme (d greater than 1.125 g/ml) following incubation with mixed vesicles of phosphatidylcholine, unesterified cholesterol and 3H-labelled unesterified cholesterol. Transfer of labelled esters to acceptor lipoproteins (VLDL+LDL, d less than 1.063 g/ml) was employed to distinguish a hypothetical transfer complex. Separation of labelled HDL3/VHDL was by gel-permeation chromatography. The results indicate that a subpopulation of labelled HDL3/VHDL cholesteryl esters (43-61% of total) were removed by VLDL/LDL during a 3 h transfer period and these derive from the smaller lipoproteins of the spectrum. HDL carrying non-transferable [3H]cholesteryl esters localize to the larger HDL3. Transfer rates were proportional to ratios of acceptor to donor lipoproteins. Net transfer of cholesteryl esters from the smaller HDL3 also occurred, but was smaller in magnitude (about 10.5% of total). Acyltransferase assays indicated that enzyme distribution is skewed to larger-sized HDL3, suggesting that the non-transferable components might be lecithin: cholesterol acyltransferase-containing parent complexes, while the smaller transfer products contain little acyltransferase. The results fit the hypothesis that a parent HDL3-lecithin: cholesterol acyltransferase complex generates a smaller-sized lipoprotein product which is active in cholesteryl ester transport. PMID:7126623

  4. High-Density Lipoprotein, Lecithin: Cholesterol Acyltransferase, and Atherosclerosis

    PubMed Central

    Ossoli, Alice; Pavanello, Chiara

    2016-01-01

    Epidemiological data clearly show the existence of a strong inverse correlation between plasma high-density lipoprotein cholesterol (HDL-C) concentrations and the incidence of coronary heart disease. This relation is explained by a number of atheroprotective properties of HDL, first of all the ability to promote macrophage cholesterol transport. HDL are highly heterogeneous and are continuously remodeled in plasma thanks to the action of a number of proteins and enzymes. Among them, lecithin:cholesterol acyltransferase (LCAT) plays a crucial role, being the only enzyme able to esterify cholesterol within lipoproteins. LCAT is synthetized by the liver and it has been thought to play a major role in reverse cholesterol transport and in atheroprotection. However, data from animal studies, as well as human studies, have shown contradictory results. Increased LCAT concentrations are associated with increased HDL-C levels but not necessarily with atheroprotection. On the other side, decreased LCAT concentration and activity are associated with decreased HDL-C levels but not with increased atherosclerosis. These contradictory results confirm that HDL-C levels per se do not represent the functionality of the HDL system. PMID:27302716

  5. High-Density Lipoprotein, Lecithin: Cholesterol Acyltransferase, and Atherosclerosis.

    PubMed

    Ossoli, Alice; Pavanello, Chiara; Calabresi, Laura

    2016-06-01

    Epidemiological data clearly show the existence of a strong inverse correlation between plasma high-density lipoprotein cholesterol (HDL-C) concentrations and the incidence of coronary heart disease. This relation is explained by a number of atheroprotective properties of HDL, first of all the ability to promote macrophage cholesterol transport. HDL are highly heterogeneous and are continuously remodeled in plasma thanks to the action of a number of proteins and enzymes. Among them, lecithin:cholesterol acyltransferase (LCAT) plays a crucial role, being the only enzyme able to esterify cholesterol within lipoproteins. LCAT is synthetized by the liver and it has been thought to play a major role in reverse cholesterol transport and in atheroprotection. However, data from animal studies, as well as human studies, have shown contradictory results. Increased LCAT concentrations are associated with increased HDL-C levels but not necessarily with atheroprotection. On the other side, decreased LCAT concentration and activity are associated with decreased HDL-C levels but not with increased atherosclerosis. These contradictory results confirm that HDL-C levels per se do not represent the functionality of the HDL system. PMID:27302716

  6. Lecithin:Cholesterol Acyltransferase Deficiency Protects against Cholesterol-induced Hepatic Endoplasmic Reticulum Stress in Mice*

    PubMed Central

    Hager, Lauren; Li, Lixin; Pun, Henry; Liu, Lu; Hossain, Mohammad A.; Maguire, Graham F.; Naples, Mark; Baker, Chris; Magomedova, Lilia; Tam, Jonathan; Adeli, Khosrow; Cummins, Carolyn L.; Connelly, Philip W.; Ng, Dominic S.

    2012-01-01

    We recently reported that lecithin:cholesterol acyltransferase (LCAT) knock-out mice, particularly in the LDL receptor knock-out background, are hypersensitive to insulin and resistant to high fat diet-induced insulin resistance (IR) and obesity. We demonstrated that chow-fed Ldlr−/−xLcat+/+ mice have elevated hepatic endoplasmic reticulum (ER) stress, which promotes IR, compared with wild-type controls, and this effect is normalized in Ldlr−/−xLcat−/− mice. In the present study, we tested the hypothesis that hepatic ER cholesterol metabolism differentially regulates ER stress using these models. We observed that the Ldlr−/−xLcat+/+ mice accumulate excess hepatic total and ER cholesterol primarily attributed to increased reuptake of biliary cholesterol as we observed reduced biliary cholesterol in conjunction with decreased hepatic Abcg5/g8 mRNA, increased Npc1l1 mRNA, and decreased Hmgr mRNA and nuclear SREBP2 protein. Intestinal NPC1L1 protein was induced. Expression of these genes was reversed in the Ldlr−/−xLcat−/− mice, accounting for the normalization of total and ER cholesterol and ER stress. Upon feeding a 2% high cholesterol diet (HCD), Ldlr−/−xLcat−/− mice accumulated a similar amount of total hepatic cholesterol compared with the Ldlr−/−xLcat+/+ mice, but the hepatic ER cholesterol levels remained low in conjunction with being protected from HCD-induced ER stress and IR. Hepatic ER stress correlates strongly with hepatic ER free cholesterol but poorly with hepatic tissue free cholesterol. The unexpectedly low ER cholesterol seen in HCD-fed Ldlr−/−xLcat−/− mice was attributable to a coordinated marked up-regulation of ACAT2 and suppressed SREBP2 processing. Thus, factors influencing the accumulation of ER cholesterol may be important for the development of hepatic insulin resistance. PMID:22500017

  7. Metabolism of low-density lipoprotein free cholesterol by human plasma lecithin-cholesterol acyltransferase

    SciTech Connect

    Fielding, P.E.; Miida, Takashi; Fielding, C.J. )

    1991-09-03

    The metabolism of cholesterol derived from ({sup 3}H) cholesterol-labeled low-density lipoprotein (LDL) was determined in human blood plasma. LDL-derived free cholesterol first appeared in large {alpha}-migrating HDL (HDL{sub 2}) and was then transferred to small {alpha}-HDL (HDL{sub 3}) for esterification. The major part of such esters was retained within HDL of increasing size in the course of lecithin-cholesterol acyltransferase (LCAT) activity; the balance was recovered in LDL. Transfer of preformed cholesteryl esters within HDL contributed little to the labeled cholesteryl ester accumulating HDL{sub 2}. When cholesterol for esterification was derived instead from cell membranes, a significantly smaller proportion of this cholesteryl ester was subsequently recovered in LDL. These data suggest compartmentation of cholesteryl esters within plasma that have been formed from cell membrane or LDL free cholesterol, and the role for HDL{sub 2} as a relatively unreactive sink for LCAT-derived cholesteryl esters.

  8. Acute Sterol O-Acyltransferase 2 (SOAT2) Knockdown Rapidly Mobilizes Hepatic Cholesterol for Fecal Excretion

    PubMed Central

    Marshall, Stephanie M.; Gromovsky, Anthony D.; Kelley, Kathryn L.; Davis, Matthew A.; Wilson, Martha D.; Lee, Richard G.; Crooke, Rosanne M.; Graham, Mark J.; Rudel, Lawrence L.

    2014-01-01

    The primary risk factor for atherosclerotic cardiovascular disease is LDL cholesterol, which can be reduced by increasing cholesterol excretion from the body. Fecal cholesterol excretion can be driven by a hepatobiliary as well as a non-biliary pathway known as transintestinal cholesterol efflux (TICE). We previously showed that chronic knockdown of the hepatic cholesterol esterifying enzyme sterol O-acyltransferase 2 (SOAT2) increased fecal cholesterol loss via TICE. To elucidate the initial events that stimulate TICE, C57Bl/6 mice were fed a high cholesterol diet to induce hepatic cholesterol accumulation and were then treated for 1 or 2 weeks with an antisense oligonucleotide targeting SOAT2. Within 2 weeks of hepatic SOAT2 knockdown (SOAT2HKD), the concentration of cholesteryl ester in the liver was reduced by 70% without a reciprocal increase in hepatic free cholesterol. The rapid mobilization of hepatic cholesterol stores resulted in a ∼2-fold increase in fecal neutral sterol loss but no change in biliary cholesterol concentration. Acute SOAT2HKD increased plasma cholesterol carried primarily in lipoproteins enriched in apoB and apoE. Collectively, our data suggest that acutely reducing SOAT2 causes hepatic cholesterol to be swiftly mobilized and packaged onto nascent lipoproteins that feed cholesterol into the TICE pathway for fecal excretion. PMID:24901470

  9. A review on lecithin:cholesterol acyltransferase deficiency.

    PubMed

    Saeedi, Ramesh; Li, Min; Frohlich, Jiri

    2015-05-01

    Lecithin cholesterol acyl transferase (LCAT) is a plasma enzyme which esterifies cholesterol, and plays a key role in the metabolism of high-density lipoprotein cholesterol (HDL-C). Genetic disorders of LCAT are associated with lipoprotein abnormalities including low levels of HDL-C and presence of lipoprotein X, and clinical features mainly corneal opacities, changes in erythrocyte morphology and renal failure. Recombinant LCAT is being developed for the treatment of patients with LCAT deficiency. PMID:25172171

  10. Isolation of Acyl-CoA:cholesterol acyltransferase inhibitor from Persicaria vulgaris.

    PubMed

    Song, Hye Young; Rho, Mun-Chual; Lee, Seung Woong; Kwon, Oh Eok; Chang, Young-Duck; Lee, Hyun Sun; Kim, Young-Kook

    2002-09-01

    In the course of our search for Acyl-CoA:cholesterol acyltransferase (ACAT) inhibitors from natural sources, a new type of ACAT inhibitor was isolated from the methanol extract of Persicaria vulgaris. On the basis of spectral evidence, the structure of the active compound was identified as pheophorbide A. Pheophorbide A inhibited ACAT activity with an IC 50 value of 1.1 microg/ml in an enzyme assay using rat liver microsomes with a dose dependent fashion. PMID:12357403

  11. Some kinetic properties of plasma lecithin-cholesterol acyltransferase in hyper-alphalipoproteinemia in man

    SciTech Connect

    Nikiforova, A.A.; Alksnis, E.G.; Ivanova, E.M.

    1985-07-01

    The aim of this investigation was to study some kinetic properties of lecithin-cholesterol acyltransferase (LCAT) in the blood plasma of patients with hyper-alpha-lipoproteinemia, enabling the presence of LCAT isozymes in the blood to be detected. The velocity of the LCAT reaction was judged by determining labeled CHE formed from /sup 14/C-nonesterified CH and lecithin of HDL on incubation of the latter with the enzyme. Dependence of the velocity of the LCAT reaction on concentration of substrate (nonesterified HDL cholesterol) in four subjects with hyper-alpha-lipoproteinemia is shown.

  12. BacMam production of active recombinant lecithin-cholesterol acyltransferase: Expression, purification and characterization.

    PubMed

    Romanow, William G; Piper, Derek E; Fordstrom, Preston; Thibault, Stephen; Zhou, Mingyue; Walker, Nigel P C

    2016-09-01

    Lecithin-cholesterol acyltransferase (LCAT) is a key enzyme in the esterification of cholesterol and its subsequent incorporation into the core of high density lipoprotein (HDL) particles. It is also involved in reverse cholesterol transport (RCT), the mechanism by which cholesterol is removed from peripheral cells and transported to the liver for excretion. These processes are involved in the development of atherosclerosis and coronary heart disease (CHD) and may have therapeutic implications. This work describes the use of baculovirus as a transducing vector to express LCAT in mammalian cells, expression of the recombinant protein as a high-mannose glycoform suitable for deglycosylation by Endo H and its purification to homogeneity and characterization. The importance of producing underglycosylated forms of secreted glycoproteins to obtain high-resolution crystal structures is discussed. PMID:26363122

  13. Selectivity of pyripyropene derivatives in inhibition toward acyl-CoA:cholesterol acyltransferase 2 isozyme.

    PubMed

    Ohshiro, Taichi; Ohte, Satoshi; Matsuda, Daisuke; Ohtawa, Masaki; Nagamitsu, Tohru; Sunazuka, Toshiaki; Harigaya, Yoshihiro; Rudel, Lawrence L; Omura, Satoshi; Tomoda, Hiroshi

    2008-08-01

    Selectivity of 96 semisynthetic derivatives prepared from fungal pyripyropene A, originally isolated as a potent inhibitor of acyl-CoA:cholesterol acyltransferase (ACAT), toward ACAT1 and ACAT2 isozymes was investigated in the cell-based assay using ACAT1- and ACAT2-expressing CHO cells. Eighteen derivatives including PR-71 (7-O-isocaproyl derivative) showed much more potent ACAT2 inhibition (IC50: 6.0 to 62 nM) than pyripyropene A (IC50: 70 nM). Among them, however, natural pyripyropene A showed the highest selectivity toward ACAT2 with a selectivity index (SI) of >1000, followed by PR-71 (SI, 667). PMID:18997389

  14. Overexpression of lecithin:cholesterol acyltransferase in transgenic rabbits prevents diet-induced atherosclerosis.

    PubMed Central

    Hoeg, J M; Santamarina-Fojo, S; Bérard, A M; Cornhill, J F; Herderick, E E; Feldman, S H; Haudenschild, C C; Vaisman, B L; Hoyt, R F; Demosky, S J; Kauffman, R D; Hazel, C M; Marcovina, S M; Brewer, H B

    1996-01-01

    Lecithin:cholesterol acyltransferase (LCAT) is a key plasma enzyme in cholesterol and high density lipoprotein (HDL) metabolism. Transgenic rabbits overexpressing human LCAT had 15-fold greater plasma LCAT activity that nontransgenic control rabbits. This degree of overexpression was associated with a 6.7-fold increase in the plasma HDL cholesterol concentration in LCAT transgenic rabbits. On a 0.3% cholesterol diet, the HDL cholesterol concentrations increased from 24 +/- 1 to 39 +/- 3 mg/dl in nontransgenic control rabbits (n = 10; P < 0.05) and increased from 161 +/- 5 to 200 +/- 21 mg/dl (P < 0.001) in the LCAT transgenic rabbits (n = 9). Although the baseline non-HDL concentrations of control (4 +/- 3 mg/dl) and transgenic rabbits (18 +/- 4 mg/dl) were similar, the cholesterol-rich diet raised the non-HDL cholesterol concentrations, reflecting the atherogenic very low density, intermediate density, and low density lipoprotein particles observed by gel filtration chromatography. The non-HDL cholesterol rose to 509 +/- 57 mg/dl in controls compared with only 196 +/- 14 mg/dl in the LCAT transgenic rabbits (P < 0.005). The differences in the plasma lipoprotein response to a cholesterol-rich diet observed in the transgenic rabbits paralleled the susceptibility to developing aortic atherosclerosis. Compared with nontransgenic controls, LCAT transgenic rabbits were protected from diet-induced atherosclerosis with significant reductions determined by both quantitative planimetry (-86%; P < 0.003) and quantitative immunohistochemistry (-93%; P < 0.009). Our results establish the importance of LCAT in the metabolism of both HDL and apolipoprotein B-containing lipoprotein particles with cholesterol feeding and the response to diet-induced atherosclerosis. In addition, these findings identify LCAT as a new target for therapy to prevent atherosclerosis. Images Fig. 2 Fig. 3 Fig. 4 PMID:8876155

  15. Lecithin:Cholesterol Acyltransferase (LCAT) Deficiency Promotes Differentiation of Satellite Cells to Brown Adipocytes in a Cholesterol-dependent Manner.

    PubMed

    Nesan, Dinushan; Tavallaee, Ghazaleh; Koh, Deborah; Bashiri, Amir; Abdin, Rawand; Ng, Dominic S

    2015-12-18

    Our laboratory previously reported that lecithin:cholesterol acyltransferase (LCAT) and LDL receptor double knock-out mice (Ldlr(-/-)xLcat(-/-) or DKO) spontaneously develop functioning ectopic brown adipose tissue (BAT) in skeletal muscle, putatively contributing to protection from the diet-induced obesity phenotype. Here we further investigated their developmental origin and the mechanistic role of LCAT deficiency. Gene profiling of skeletal muscle in DKO newborns and adults revealed a classical lineage. Primary quiescent satellite cells (SC) from chow-fed DKO mice, not in Ldlr(-/-)xLcat(+/+) single-knock-out (SKO) or C57BL/6 wild type, were found to (i) express exclusively classical BAT-selective genes, (ii) be primed to express key functional BAT genes, and (iii) exhibit markedly increased ex vivo adipogenic differentiation into brown adipocytes. This gene priming effect was abrogated upon feeding the mice a 2% high cholesterol diet in association with accumulation of excess intracellular cholesterol. Ex vivo cholesterol loading of chow-fed DKO SC recapitulated the effect, indicating that cellular cholesterol is a key regulator of SC-to-BAT differentiation. Comparing adipogenicity of Ldlr(+/+)xLcat(-/-) (LCAT-KO) SC with DKO SC identified a role for LCAT deficiency in priming SC to express BAT genes. Additionally, we found that reduced cellular cholesterol is important for adipogenic differentiation, evidenced by increased induction of adipogenesis in cholesterol-depleted SC from both LCAT-KO and SKO mice. Taken together, we conclude that ectopic BAT in DKO mice is classical in origin, and its development begins in utero. We further showed complementary roles of LCAT deficiency and cellular cholesterol reduction in the SC-to-BAT adipogenesis. PMID:26494623

  16. Structure and function of lysosomal phospholipase A2 and lecithin:cholesterol acyltransferase.

    PubMed

    Glukhova, Alisa; Hinkovska-Galcheva, Vania; Kelly, Robert; Abe, Akira; Shayman, James A; Tesmer, John J G

    2015-01-01

    Lysosomal phospholipase A2 (LPLA2) and lecithin:cholesterol acyltransferase (LCAT) belong to a structurally uncharacterized family of key lipid-metabolizing enzymes responsible for lung surfactant catabolism and for reverse cholesterol transport, respectively. Whereas LPLA2 is predicted to underlie the development of drug-induced phospholipidosis, somatic mutations in LCAT cause fish eye disease and familial LCAT deficiency. Here we describe several high-resolution crystal structures of human LPLA2 and a low-resolution structure of LCAT that confirms its close structural relationship to LPLA2. Insertions in the α/β hydrolase core of LPLA2 form domains that are responsible for membrane interaction and binding the acyl chains and head groups of phospholipid substrates. The LCAT structure suggests the molecular basis underlying human disease for most of the known LCAT missense mutations, and paves the way for rational development of new therapeutics to treat LCAT deficiency, atherosclerosis and acute coronary syndrome. PMID:25727495

  17. Structure and function of lysosomal phospholipase A2 and lecithin:cholesterol acyltransferase

    NASA Astrophysics Data System (ADS)

    Glukhova, Alisa; Hinkovska-Galcheva, Vania; Kelly, Robert; Abe, Akira; Shayman, James A.; Tesmer, John J. G.

    2015-03-01

    Lysosomal phospholipase A2 (LPLA2) and lecithin:cholesterol acyltransferase (LCAT) belong to a structurally uncharacterized family of key lipid-metabolizing enzymes responsible for lung surfactant catabolism and for reverse cholesterol transport, respectively. Whereas LPLA2 is predicted to underlie the development of drug-induced phospholipidosis, somatic mutations in LCAT cause fish eye disease and familial LCAT deficiency. Here we describe several high-resolution crystal structures of human LPLA2 and a low-resolution structure of LCAT that confirms its close structural relationship to LPLA2. Insertions in the α/β hydrolase core of LPLA2 form domains that are responsible for membrane interaction and binding the acyl chains and head groups of phospholipid substrates. The LCAT structure suggests the molecular basis underlying human disease for most of the known LCAT missense mutations, and paves the way for rational development of new therapeutics to treat LCAT deficiency, atherosclerosis and acute coronary syndrome.

  18. Structure and function of lysosomal phospholipase A2 and lecithin:cholesterol acyltransferase

    PubMed Central

    Glukhova, Alisa; Hinkovska-Galcheva, Vania; Kelly, Robert; Abe, Akira; Shayman, James A; Tesmer, John JG

    2015-01-01

    Lysosomal phospholipase A2 (LPLA2) and lecithin:cholesterol acyltransferase (LCAT) belong to a structurally uncharacterized family of key lipid metabolizing enzymes responsible for lung surfactant catabolism and for reverse cholesterol transport, respectively. Whereas LPLA2 is predicted to underlie the development of drug-induced phospholipidosis, somatic mutations in LCAT cause fish eye disease and familial LCAT deficiency. Here we describe several high resolution crystal structures of human LPLA2 and a low resolution structure of LCAT that confirms its close structural relationship to LPLA2. Insertions in the α/β hydrolase core of LPLA2 form domains that are responsible for membrane interaction and binding the acyl chains and head groups of phospholipid substrates. The LCAT structure suggests the molecular basis underlying human disease for most of the known LCAT missense mutations, and paves the way for rational development of new therapeutics to treat LCAT deficiency, atherosclerosis and acute coronary syndrome. PMID:25727495

  19. A Lipolytic Lecithin:Cholesterol Acyltransferase Secreted by Toxoplasma Facilitates Parasite Replication and Egress.

    PubMed

    Pszenny, Viviana; Ehrenman, Karen; Romano, Julia D; Kennard, Andrea; Schultz, Aric; Roos, David S; Grigg, Michael E; Carruthers, Vern B; Coppens, Isabelle

    2016-02-19

    The protozoan parasite Toxoplasma gondii develops within a parasitophorous vacuole (PV) in mammalian cells, where it scavenges cholesterol. When cholesterol is present in excess in its environment, the parasite expulses this lipid into the PV or esterifies it for storage in lipid bodies. Here, we characterized a unique T. gondii homologue of mammalian lecithin:cholesterol acyltransferase (LCAT), a key enzyme that produces cholesteryl esters via transfer of acyl groups from phospholipids to the 3-OH of free cholesterol, leading to the removal of excess cholesterol from tissues. TgLCAT contains a motif characteristic of serine lipases "AHSLG" and the catalytic triad consisting of serine, aspartate, and histidine (SDH) from LCAT enzymes. TgLCAT is secreted by the parasite, but unlike other LCAT enzymes it is cleaved into two proteolytic fragments that share the residues of the catalytic triad and need to be reassembled to reconstitute enzymatic activity. TgLCAT uses phosphatidylcholine as substrate to form lysophosphatidylcholine that has the potential to disrupt membranes. The released fatty acid is transferred to cholesterol, but with a lower transesterification activity than mammalian LCAT. TgLCAT is stored in a subpopulation of dense granule secretory organelles, and following secretion, it localizes to the PV and parasite plasma membrane. LCAT-null parasites have impaired growth in vitro, reduced virulence in animals, and exhibit delays in egress from host cells. Parasites overexpressing LCAT show increased virulence and faster egress. These observations demonstrate that TgLCAT influences the outcome of an infection, presumably by facilitating replication and egress depending on the developmental stage of the parasite. PMID:26694607

  20. Identification of the active-site serine in human lecithin: cholesterol acyltransferase

    SciTech Connect

    Farooqui, J.; Wohl, R.C.; Kezdy, F.J.; Scanu, A.M.

    1987-05-01

    Lecithin:cholesterol acyltransferase (LCAT) from human plasma reacts stoichiometrically with diisopropylphosphorofluoridate (DFP) resulting in the complete loss of transacylase activity. Purified LCAT was covalently labeled with (TH) DFP and the labeled protein was reduced and carboxymethylated. Cyanogen bromide cleavage followed by gel permeation chromatography yielded a peptide of 4-5 KDa (LCAT CNBr-III) containing most of the radioactive label. Preliminary studies comparing the amino acid composition of the LCAT-CNBr-III with the sequence of LCAT indicate that this peptide corresponds to fragment 168-220. Automated Edman degradation of the radioactive peptide recovered a radioactive PTC-amino acid at cycle 14. Of all predicted CNBr fragments only peptide 168-220 contained a serine at residue 14 from the amino terminus of the peptide. The authors conclude that serine 181 is the active site serine of LCAT.

  1. Catalytic center of lecithin:cholesterol acyltransferase: isolation and sequence of diisopropyl fluorophosphate-labeled peptides

    SciTech Connect

    Park, Y.B.; Yueksel, U.G.; Gracy, R.W.; Lacko, A.G.

    1987-02-27

    Lecithin:cholesterol acyltransferase (LCAT) was purified from hog plasma and subsequently reacted with (/sup 3/H)-Diisopropyl fluorophosphate (DFP). The labeled enzyme was digested with pepsin and the peptides separated by high performance liquid chromatography (HPLC). Two radioactive peptides were isolated, subjected to automated amino acid sequencing and yielded the following data: A) Ile-Ser-Leu-Gly-Ala-Pro-Trp-Gly-Gly-Ser, and B) Tyr-Ile-Phe-Asp-x-Gly-Phe-Pro-Tyr-x-Asp-Pro-Val. Both of these sequences represent very highly conserved regions of the enzyme when compared to the sequence of human LCAT. Peptide (A) is considered to represent the catalytic center of LCAT based on comparisons with data reported in the literature.

  2. Severe high-density lipoprotein deficiency associated with autoantibodies against lecithin:cholesterol acyltransferase in non-Hodgkin lymphoma.

    PubMed

    Simonelli, Sara; Gianazza, Elisabetta; Mombelli, Giuliana; Bondioli, Alighiero; Ferraro, Giovanni; Penco, Silvana; Sirtori, Cesare R; Franceschini, Guido; Calabresi, Laura

    2012-01-23

    An antibody against the lecithin:cholesterol acyltransferase (LCAT) enzyme, which negates cholesterol esterification in plasma, causing severe high-density lipoprotein deficiency (HD), was identified in a woman with a large-cell non-Hodgkin lymphoma. Successful treatment of the lymphoma resulted in clearance of the antibody and complete correction of the defective cholesterol esterification and HD. To our knowledge, an acquired LCAT deficiency leading to severe HD has not been reported previously in association with a malignant disease, and this patient represents the first such documented case. PMID:22271127

  3. Apolipoprotein A-I Helsinki promotes intracellular acyl-CoA cholesterol acyltransferase (ACAT) protein accumulation.

    PubMed

    Toledo, Juan D; Garda, Horacio A; Cabaleiro, Laura V; Cuellar, Angela; Pellon-Maison, Magali; Gonzalez-Baro, Maria R; Gonzalez, Marina C

    2013-05-01

    Reverse cholesterol transport is a process of high antiatherogenic relevance in which apolipoprotein AI (apoA-I) plays an important role. The interaction of apoA-I with peripheral cells produces through mechanisms that are still poorly understood the mobilization of intracellular cholesterol depots toward plasma membrane. In macrophages, these mechanisms seem to be related to the modulation of the activity of acyl-CoA cholesterol acyltransferase (ACAT), the enzyme responsible for the intracellular cholesterol ester biosynthesis that is stored in lipid droplets. The activation of ACAT and the accumulation of lipid droplets play a key role in the transformation of macrophages into foam cells, leading to the formation of atheroma or atherosclerotic plaque. ApoA-I Helsinki (or ∆K107) is a natural apoA-I variant with a lysine deletion in the central protein region, carriers of which have increased atherosclerosis risk. We herein show that treatment of cultured RAW macrophages or CHOK1 cells with ∆K107, but not with wild-type apoA-I or a variant containing a similar deletion at the C-terminal region (∆K226), lead to a marked increase (more than 10 times) in the intracellular ACAT1 protein level as detected by western blot analysis. However, we could only detect a slight increase in cholesteryl ester produced by ∆K107 mainly when Chol loading was supplied by low-density lipoprotein (LDL). Although a similar choline-phospholipid efflux is evoked by these apoA-I variants, the change in phosphatidylcholine/sphyngomyelin distribution produced by wild-type apoA-I is not observed with either ∆K107 or ∆K226. PMID:23456478

  4. Acyl-coenzyme A:cholesterol O-acyltransferase is not identical to liver microsomal carboxylesterase.

    PubMed

    Diczfalusy, M A; Björkhem, I; Einarsson, K; Alexson, S E

    1996-04-01

    Acyl-coenzyme A (CoA):cholesterol O-acyltransferase (ACAT) is responsible for esterification of cholesterol in the cell. The enzyme has never been purified, but two cDNA sequences coding for this enzyme were recently reported. One of the sequences was identical to human liver carboxylesterase. We have used inhibitors to elucidate the relation between microsomal carboxylesterase, acyl-CoA hydrolase (ACH), and ACAT activities in rat liver. Low concentrations of serine esterase inhibitors strongly inhibited carboxylesterase and acyl-CoA hydrolase activities but stimulated ACAT activity. At higher concentrations, ACAT activity was also inhibited. A sulfhydryl-modifying agent was found to be a potent inhibitor of ACAT without affecting carboxylesterase activity. Similarly, two specific ACAT inhibitors, DL-melinamide and PD 138142-15, inhibited ACAT activity but did not affect carboxylesterase or ACH activities. Our data thus exclude ACAT as a liver microsomal carboxylesterase. The complex inhibition patterns observed with serine esterase inhibitors indicate that carboxylesterases and ACHs may interfere with ACAT activity by competing for the substrate. It is obvious that final identification of ACAT requires demonstration of an active homogenous protein. PMID:8624784

  5. Identification of genetic variants of lecithin cholesterol acyltransferase in individuals with high HDL‑C levels.

    PubMed

    Naseri, Mohsen; Hedayati, Mehdi; Daneshpour, Maryam Sadat; Bandarian, Fatemeh; Azizi, Fereidoun

    2014-07-01

    Among the most common lipid abnormalities, a low level of high-density lipoprotein-cholesterol (HDL‑C) is one of the first risk factors identified for coronary heart disease. Lecithin cholesterol acyltransferase (LCAT) has a pivotal role in the formation and maturation of HDL-C and in reverse cholesterol transport. To identify genetic loci associated with low HDL-C in a population-based cohort in Tehran, the promoter, coding regions and exon/intron boundaries of LCAT were amplified and sequenced in consecutive individuals (n=150) who had extremely low or high HDL-C levels but no other major lipid abnormalities. A total of 14 single-nucleotide polymorphisms (SNPs) were identified, of which 10 were found to be novel; the L393L, S232T and 16:67977696 C>A polymorphisms have been previously reported in the SNP Database (as rs5923, rs4986970 and rs11860115, respectively) and the non-synonymous R47M mutation has been reported in the Catalogue of Somatic Mutations in Cancer (COSM972635). Three of the SNPs identified in the present study (position 6,531 in exon 5, position 6,696 in exon 5 and position 5,151 in exon 1) led to an amino acid substitution. The most common variants were L393L (4886C/T) in exon 6 and Q177E, a novel mutation, in exon 5, and the prevalence of the heterozygous genotype of these two SNPs was significantly higher in the low HDL-C groups. Univariate conditional logistic regression odds ratios (ORs) were nominally significant for Q177E (OR, 5.64; P=0.02; 95% confidence interval, 1.2‑26.2). However, this finding was attenuated following adjustment for confounders. Further studies using a larger sample size may enhance the determination of the role of these SNPs. PMID:24789697

  6. Beta2-adrenergic activity modulates vascular tone regulation in lecithin:cholesterol acyltransferase knockout mice

    PubMed Central

    Manzini, S.; Pinna, C.; Busnelli, M.; Cinquanta, P.; Rigamonti, E.; Ganzetti, G.S.; Dellera, F.; Sala, A.; Calabresi, L.; Franceschini, G.; Parolini, C.; Chiesa, G.

    2015-01-01

    Lecithin:cholesterol acyltransferase (LCAT) deficiency is associated with hypoalphalipoproteinemia, generally a predisposing factor for premature coronary heart disease. The evidence of accelerated atherosclerosis in LCAT-deficient subjects is however controversial. In this study, the effect of LCAT deficiency on vascular tone and endothelial function was investigated in LCAT knockout mice, which reproduce the human lipoprotein phenotype. Aortas from wild-type (Lcatwt) and LCAT knockout (LcatKO) mice exposed to noradrenaline showed reduced contractility in LcatKO mice (P < 0.005), whereas acetylcholine exposure showed a lower NO-dependent relaxation in LcatKO mice (P < 0.05). Quantitative PCR and Western blotting analyses suggested an adequate eNOS expression in LcatKO mouse aortas. Real-time PCR analysis indicated increased expression of β2-adrenergic receptors vs wild-type mice. Aorta stimulation with noradrenaline in the presence of propranolol, to abolish the β-mediated relaxation, showed the same contractile response in the two mouse lines. Furthermore, propranolol pretreatment of mouse aortas exposed to L-NAME prevented the difference in responses between Lcatwt and LcatKO mice. The results indicate that LCAT deficiency leads to increased β2-adrenergic relaxation and to a consequently decreased NO-mediated vasodilation that can be reversed to guarantee a correct vascular tone. The present study suggests that LCAT deficiency is not associated with an impaired vascular reactivity. PMID:26254103

  7. Beta2-adrenergic activity modulates vascular tone regulation in lecithin:cholesterol acyltransferase knockout mice.

    PubMed

    Manzini, S; Pinna, C; Busnelli, M; Cinquanta, P; Rigamonti, E; Ganzetti, G S; Dellera, F; Sala, A; Calabresi, L; Franceschini, G; Parolini, C; Chiesa, G

    2015-11-01

    Lecithin:cholesterol acyltransferase (LCAT) deficiency is associated with hypoalphalipoproteinemia, generally a predisposing factor for premature coronary heart disease. The evidence of accelerated atherosclerosis in LCAT-deficient subjects is however controversial. In this study, the effect of LCAT deficiency on vascular tone and endothelial function was investigated in LCAT knockout mice, which reproduce the human lipoprotein phenotype. Aortas from wild-type (Lcat(wt)) and LCAT knockout (Lcat(KO)) mice exposed to noradrenaline showed reduced contractility in Lcat(KO) mice (P<0.005), whereas acetylcholine exposure showed a lower NO-dependent relaxation in Lcat(KO) mice (P<0.05). Quantitative PCR and Western blotting analyses suggested an adequate eNOS expression in Lcat(KO) mouse aortas. Real-time PCR analysis indicated increased expression of β2-adrenergic receptors vs wild-type mice. Aorta stimulation with noradrenaline in the presence of propranolol, to abolish the β-mediated relaxation, showed the same contractile response in the two mouse lines. Furthermore, propranolol pretreatment of mouse aortas exposed to L-NAME prevented the difference in responses between Lcat(wt) and Lcat(KO) mice. The results indicate that LCAT deficiency leads to increased β2-adrenergic relaxation and to a consequently decreased NO-mediated vasodilation that can be reversed to guarantee a correct vascular tone. The present study suggests that LCAT deficiency is not associated with an impaired vascular reactivity. PMID:26254103

  8. Hyperspectral Imaging and Spectroscopy of Fluorescently Coupled Acyl-CoA: Cholesterol Acyltransferase in Insect Cells

    NASA Technical Reports Server (NTRS)

    Malak, H.; Mahtani, H.; Herman, P.; Vecer, J.; Lu, X.; Chang, T. Y.; Richmond, Robert C.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    A high-performance hyperspectral imaging module with high throughput of light suitable for low-intensity fluorescence microscopic imaging and subsequent analysis, including single-pixel-defined emission spectroscopy, was tested on Sf21 insect cells expressing green fluorescence associated with recombinant green fluorescent protein linked or not with the membrane protein acyl-CoA:cholesterol acyltransferase. The imager utilized the phenomenon of optical activity as a new technique providing information over a spectral range of 220-1400 nm, and was inserted between the microscope and an 8-bit CCD video-rate camera. The resulting fluorescence image did not introduce observable image aberrations. The images provided parallel acquisition of well resolved concurrent spatial and spectral information such that fluorescence associated with green fluorescent protein alone was demonstrated to be diffuse within the Sf21 insect cell, and that green fluorescence associated with the membrane protein was shown to be specifically concentrated within regions of the cell cytoplasm. Emission spectra analyzed from different regions of the fluorescence image showed blue shift specific for the regions of concentration associated with the membrane protein.

  9. Selectivity of microbial acyl-CoA: cholesterol acyltransferase inhibitors toward isozymes.

    PubMed

    Ohshiro, Taichi; Rudel, Lawrence L; Omura, Satoshi; Tomoda, Hiroshi

    2007-01-01

    The selectivity of microbial inhibitors of acyl-CoA: cholesterol acyltransferase (ACAT) toward the two isozymes, ACAT1 and ACAT2, was assessed in cell-based assays. Purpactin A (IC50 values of ACAT1 vs. IC50 values of ACAT2; 2.5 microM vs. 1.5 microM), terpendole C (10 microM vs. 10 microM), glisoprenin A (4.3 microM vs. 10 microM), spylidone (25 microM vs. 5.0 microM) and synthetic CL-283,546 (0.1 microM vs. 0.09 microM) inhibited ACAT1 and ACAT2 to similar extents. Beauveriolides I (0.6 microM vs. 20 microM) and III (0.9 microM vs. >20 microM) inhibited ACAT1 rather selectively, while pyripyropenes A (>80 microM vs. 0.07 microM), B (48 microM vs. 2.0 microM), C (32 microM vs. 0.36 microM) and D (38 microM vs. 1.5 microM) showed selective inhibition against ACAT2. In particular, pyripyropene A was found to be the most selective ACAT2 inhibitor with a selective index of more than 1,000. PMID:17390588

  10. Rimonabant is a dual inhibitor of acyl CoA:cholesterol acyltransferases 1 and 2.

    PubMed

    Netherland, Courtney; Thewke, Douglas P

    2010-08-01

    Acyl coenzyme A:cholesterol acyltransferase (ACAT) catalyzes the intracellular synthesis of cholesteryl esters (CE). Both ACAT isoforms, ACAT1 and ACAT2, play key roles in the pathophysiology of atherosclerosis and ACAT inhibition retards atherosclerosis in animal models. Rimonabant, a type 1 cannabinoid receptor (CB1) antagonist, produces anti-atherosclerotic effects in humans and animals by mechanisms which are not completely understood. Rimonabant is structurally similar to two other cannabinoid receptor antagonists, AM251 and SR144528, recently identified as potent inhibitors of ACAT. Therefore, we examined the effects of Rimonabant on ACAT using both in vivo cell-based assays and in vitro cell-free assays. Rimonabant dose-dependently reduced ACAT activity in Raw 264.7 macrophages (IC(50)=2.9+/-0.38 microM) and isolated peritoneal macrophages. Rimonabant inhibited ACAT activity in intact CHO-ACAT1 and CHO-ACAT2 cells and in cell-free assays with approximately equal efficiency (IC(50)=1.5+/-1.2 microM and 2.2+/-1.1 microM for CHO-ACAT1 and CHO-ACAT2, respectively). Consistent with ACAT inhibition, Rimonabant treatment blocked ACAT-dependent processes in macrophages, oxysterol-induced apoptosis and acetylated-LDL induced foam cell formation. From these results we conclude that Rimonabant is an ACAT1/2 dual inhibitor and suggest that some of the atherosclerotic beneficial effects of Rimonabant are, at least partly, due to inhibition of ACAT. PMID:20609360

  11. Lecithin-cholesterol acyltransferase in brain: Does oxidative stress influence the 24-hydroxycholesterol esterification?

    PubMed

    La Marca, Valeria; Maresca, Bernardetta; Spagnuolo, Maria Stefania; Cigliano, Luisa; Dal Piaz, Fabrizio; Di Iorio, Giuseppe; Abrescia, Paolo

    2016-04-01

    24-Hydroxycholesterol (24OH-C) is esterified by the enzyme lecithin-cholesterol acyltransferase (LCAT) in the cerebrospinal fluid (CSF). We report here that the level of 24OH-C esters was lower in CSF of patients with amyotrophic lateral sclerosis than in healthy subjects (54% vs 68% of total 24OH-C, p=0.0005; n=8). Similarly, the level of 24OH-C esters in plasma was lower in patients than in controls (62% vs 77% of total 24OH-C; p=0.0076). The enzyme amount in CSF, as measured by densitometry of the protein band revealed by immunoblotting, was about 4-fold higher in patients than in controls (p=0.0085). As differences in the concentration of the LCAT stimulator Apolipoprotein E were not found, we hypothesized that the reduced 24OH-C esterification in CSF of patients might depend on oxidative stress. We actually found that oxidative stress reduced LCAT activity in vitro, and 24OH-C effectively stimulated the enzyme secretion from astrocytoma cells in culture. Enhanced LCAT secretion from astrocytes might represent an adaptive response to the increase of non-esterified 24OH-C percentage, aimed to avoid the accumulation of this neurotoxic compound. The low degree of 24OH-C esterification in CSF or plasma might reflect reduced activity of LCAT during neurodegeneration. PMID:26454063

  12. Regulation of plasma lecithin:cholesterol acyltransferase. II. Activation during alimentary lipemia.

    PubMed

    Rose, H G; Juliano, J

    1977-03-01

    The effect of dietary fat on plasma lecithin:cholesterol acyltransferase (LCAT) activity has been investigated in 14 normal male subjects. After determination of postabsorptive lipid and LCAT levels, a high-fat liquid test meal (1 to 2 gm./kg. body weight) was fed, followed by lipid and LCAT determinations at 2.5 hour intervals. Plasma triglycerides were elevated by 2.5 hours, peaked at 5.0 hours, fell at 7.5 hours, and were normalized by 10 hours. LCAT was unchanged at 2.5 hours but was elevated by 5.0 hours, exhibiting a broad plateau through 10 hours. Most subjects manifested peak responses at 7.5 hours. The mean maximal increase in individual subjects was 37.2 +/- 13.3 (S.D.) percent. LCAT changes similarly followed the elevation and recession of chylomicrons (Sf greater than 400) and very-low-density lipoprotein triglycerides, both of which closely paralleled plasma triglycerides. Enzyme responses were proportional to percentage elevations of plasma triglycerides (r = 0.93, p less than 0.01) and related to quantity of fat in the test diet. Three subjects who ingested the test diet devoid of the fat component showed no significant change in enzyme activity. Enzyme progress curves revealed linearity for 3 hours for both postabsorptive and lipemic (7.5 hour) plasma from the same subjects, supporting the validity of the assay as a measure of enzyme rate. These studies demonstrate an increase in cholesterol esterifying activity temporally related to the clearance of alimentary particles, suggesting a physiologic role in the clearance process. PMID:839110

  13. Agonistic Human Antibodies Binding to Lecithin-Cholesterol Acyltransferase Modulate High Density Lipoprotein Metabolism*

    PubMed Central

    Gunawardane, Ruwanthi N.; Fordstrom, Preston; Piper, Derek E.; Masterman, Stephanie; Siu, Sophia; Liu, Dongming; Brown, Mike; Lu, Mei; Tang, Jie; Zhang, Richard; Cheng, Janet; Gates, Andrew; Meininger, David; Chan, Joyce; Carlson, Tim; Walker, Nigel; Schwarz, Margrit; Delaney, John; Zhou, Mingyue

    2016-01-01

    Drug discovery opportunities where loss-of-function alleles of a target gene link to a disease-relevant phenotype often require an agonism approach to up-regulate or re-establish the activity of the target gene. Antibody therapy is increasingly recognized as a favored drug modality due to multiple desirable pharmacological properties. However, agonistic antibodies that enhance the activities of the target enzymes are rarely developed because the discovery of agonistic antibodies remains elusive. Here we report an innovative scheme of discovery and characterization of human antibodies capable of binding to and agonizing a circulating enzyme lecithin cholesterol acyltransferase (LCAT). Utilizing a modified human LCAT protein with enhanced enzymatic activity as an immunogen, we generated fully human monoclonal antibodies using the XenoMouseTM platform. One of the resultant agonistic antibodies, 27C3, binds to and substantially enhances the activity of LCAT from humans and cynomolgus macaques. X-ray crystallographic analysis of the 2.45 Å LCAT-27C3 complex shows that 27C3 binding does not induce notable structural changes in LCAT. A single administration of 27C3 to cynomolgus monkeys led to a rapid increase of plasma LCAT enzymatic activity and a 35% increase of the high density lipoprotein cholesterol that was observed up to 32 days after 27C3 administration. Thus, this novel scheme of immunization in conjunction with high throughput screening may represent an effective strategy for discovering agonistic antibodies against other enzyme targets. 27C3 and other agonistic human anti-human LCAT monoclonal antibodies described herein hold potential for therapeutic development for the treatment of dyslipidemia and cardiovascular disease. PMID:26644477

  14. Agonistic Human Antibodies Binding to Lecithin-Cholesterol Acyltransferase Modulate High Density Lipoprotein Metabolism.

    PubMed

    Gunawardane, Ruwanthi N; Fordstrom, Preston; Piper, Derek E; Masterman, Stephanie; Siu, Sophia; Liu, Dongming; Brown, Mike; Lu, Mei; Tang, Jie; Zhang, Richard; Cheng, Janet; Gates, Andrew; Meininger, David; Chan, Joyce; Carlson, Tim; Walker, Nigel; Schwarz, Margrit; Delaney, John; Zhou, Mingyue

    2016-02-01

    Drug discovery opportunities where loss-of-function alleles of a target gene link to a disease-relevant phenotype often require an agonism approach to up-regulate or re-establish the activity of the target gene. Antibody therapy is increasingly recognized as a favored drug modality due to multiple desirable pharmacological properties. However, agonistic antibodies that enhance the activities of the target enzymes are rarely developed because the discovery of agonistic antibodies remains elusive. Here we report an innovative scheme of discovery and characterization of human antibodies capable of binding to and agonizing a circulating enzyme lecithin cholesterol acyltransferase (LCAT). Utilizing a modified human LCAT protein with enhanced enzymatic activity as an immunogen, we generated fully human monoclonal antibodies using the XenoMouse(TM) platform. One of the resultant agonistic antibodies, 27C3, binds to and substantially enhances the activity of LCAT from humans and cynomolgus macaques. X-ray crystallographic analysis of the 2.45 Å LCAT-27C3 complex shows that 27C3 binding does not induce notable structural changes in LCAT. A single administration of 27C3 to cynomolgus monkeys led to a rapid increase of plasma LCAT enzymatic activity and a 35% increase of the high density lipoprotein cholesterol that was observed up to 32 days after 27C3 administration. Thus, this novel scheme of immunization in conjunction with high throughput screening may represent an effective strategy for discovering agonistic antibodies against other enzyme targets. 27C3 and other agonistic human anti-human LCAT monoclonal antibodies described herein hold potential for therapeutic development for the treatment of dyslipidemia and cardiovascular disease. PMID:26644477

  15. Ldl modified by hypochlorous acid is a potent inhibitor of lecithin-cholesterol acyltransferase activity.

    PubMed

    McCall, M R; Carr, A C; Forte, T M; Frei, B

    2001-06-01

    Modification of low density lipoprotein (LDL) by myeloperoxidase-generated HOCl has been implicated in human atherosclerosis. Incubation of LDL with HOCl generates several reactive intermediates, primarily N-chloramines, which may react with other biomolecules. In this study, we investigated the effects of HOCl-modified LDL on the activity of lecithin-cholesterol acyltransferase (LCAT), an enzyme essential for high density lipoprotein maturation and the antiatherogenic reverse cholesterol transport pathway. We exposed human LDL (0.5 mg protein/mL) to physiological concentrations of HOCl (25 to 200 micromol/L) and characterized the resulting LDL modifications to apolipoprotein B and lipids; the modified LDL was subsequently incubated with apolipoprotein B-depleted plasma (density >1.063 g/mL fraction), which contains functional LCAT. Increasing concentrations of HOCl caused various modifications to LDL, primarily, loss of lysine residues and increases in N-chloramines and electrophoretic mobility, whereas lipid hydroperoxides were only minor products. LCAT activity was extremely sensitive to HOCl-modified LDL and was reduced by 23% and 93% by LDL preincubated with 25 and 100 micromol/L HOCl, respectively. Addition of 200 micromol/L ascorbate or N-acetyl derivatives of cysteine or methionine completely prevented LCAT inactivation by LDL preincubated with

  16. Pyripyropenes, novel inhibitors of acyl-CoA:cholesterol acyltransferase produced by Aspergillus fumigatus. I. Production, isolation, and biological properties.

    PubMed

    Tomoda, H; Kim, Y K; Nishida, H; Masuma, R; Omura, S

    1994-02-01

    Aspergillus fumigatus FO-1289, a soil isolate, was found to produce a series of novel inhibitors of acyl-CoA:cholesterol acyltransferase (ACAT). Four active compounds, named pyripyropenes A, B, C and D, were isolated from the fermentation broth of the producing strain by solvent extraction, silica gel column chromatography, ODS column chromatography and preparative HPLC. Pyripyropenes A, B, C and D show very potent ACAT inhibitory activity in an enzyme assay system using rat liver microsomes with IC50 values of 58, 117, 53 and 268 nM, respectively. PMID:8150709

  17. Estrogen Decreases Atherosclerosis In Part By Reducing Hepatic Acyl-CoA:Cholesterol Acyltransferase 2 (ACAT2) In Monkeys

    PubMed Central

    Kavanagh, Kylie; Davis, Matthew A.; Zhang, Li; Wilson, Martha D.; Register, Thomas C.; Adams, Michael R.; Rudel, Lawrence L.; Wagner, Janice D.

    2009-01-01

    Objective Estrogens decrease atherosclerosis progression, mediated in part through changes in plasma lipids and lipoproteins. This study aimed to determine estrogen-induced changes in hepatic cholesterol metabolism, plasma lipoproteins, and the relationship of these changes to atherosclerosis extent. Methods and Results Ovariectomized monkeys (n=34) consumed atherogenic diets for 30 months which contained either no hormones (control, n=17) or conjugated equine estrogens (CEE, n=17) at a human dose equivalent of 0.625 mg/d. Hepatic cholesterol content, low-density lipoprotein (LDL) receptor expression, cholesterol 7α-hydroxylase and acyl-coenzyme A:cholesterol acyltransferase (ACAT) activity and expression levels were determined. CEE treatment resulted in lower plasma concentrations of very-low- and intermediate density lipoprotein cholesterol (V+IDLC; p=0.01), smaller LDL particles (p=0.002) and 50% lower hepatic cholesterol content (total, free and esterified; p<0.05 for all). Total ACAT activity was significantly lower (p=0.01), explained primarily by reductions in the activity of ACAT2. Estrogen regulation of enzymatic activity was at the protein level as both ACAT1 and 2 protein, but not mRNA levels, were lower (p=0.02 and <0.0001, respectively). ACAT2 activity was significantly associated with hepatic total cholesterol, plasma V+IDLC cholesterol, and atherosclerosis. Conclusions Atheroprotective effects of estrogen therapy may be related to reduced hepatic secretion of ACAT2-derived cholesteryl esters in plasma lipoproteins. Condensed Abstract Estrogen inhibits atherogenesis. We demonstrate in ovariectorized monkeys that estrogen therapy led to lower hepatic and circulating lipoprotein cholesterol, and lower ACAT2 protein and associated activity levels as compared to controls. Hepatic ACAT2 activity was highly correlated with, and was an independent predictor of coronary artery atherosclerosis extent. PMID:19759374

  18. Plasma lecithin:cholesterol acyltransferase and carotid intima-media thickness in European individuals at high cardiovascular risk

    PubMed Central

    Calabresi, Laura; Baldassarre, Damiano; Simonelli, Sara; Gomaraschi, Monica; Amato, Mauro; Castelnuovo, Samuela; Frigerio, Beatrice; Ravani, Alessio; Sansaro, Daniela; Kauhanen, Jussi; Rauramaa, Rainer; de Faire, Ulf; Hamsten, Anders; Smit, Andries J.; Mannarino, Elmo; Humphries, Steve E.; Giral, Philippe; Veglia, Fabrizio; Sirtori, Cesare R.; Franceschini, Guido; Tremoli, Elena

    2011-01-01

    Lecithin:cholesterol acyltransferase (LCAT) is the enzyme responsible for cholesterol esterification in plasma. LCAT is a major factor in HDL remodeling and metabolism, and it has long been believed to play a critical role in macrophage reverse cholesterol transport (RCT). The effect of LCAT on human atherogenesis is still controversial. In the present study, the plasma LCAT concentration was measured in all subjects (n = 540) not on drug treatment at the time of enrollment in the multicenter, longitudinal, observational IMPROVE study. Mean and maximum intima-media thickness (IMT) of the whole carotid tree was measured by B-mode ultrasonography in all subjects. In the entire cohort, LCAT quartiles were not associated with carotid mean and maximum IMT (P for trend 0.95 and 0.18, respectively), also after adjustment for age, gender, HDL-cholesterol (HDL-C), and triglycerides. No association between carotid IMT and LCAT quartiles was observed in men (P=0.30 and P=0.99 for mean and maximum IMT, respectively), whereas carotid IMT increased with LCAT quartiles in women (P for trend 0.14 and 0.019 for mean and maximum IMT, respectively). The present findings support the concept that LCAT is not required for an efficient reverse cholesterol transport and that a low plasma LCAT concentration and activity is not associated with increased atherosclerosis. PMID:21596929

  19. Regulation of high density lipoprotein receptors in cultured macrophages: role of acyl-CoA:cholesterol acyltransferase.

    PubMed Central

    Schmitz, G; Niemann, R; Brennhausen, B; Krause, R; Assmann, G

    1985-01-01

    The interaction of human serum high density lipoproteins (HDL) with mouse peritoneal macrophages and human blood monocytes was studied. Saturation curves for binding of apolipoprotein E-free [125I]HDL3 showed at least two components: non-specific binding and specific binding that saturated at approximately 40 micrograms HDL protein/ml. Scatchard analysis of specific binding of apo E-free [125I]-HDL3 to cultured macrophages yielded linear plots indicative of a single class of specific binding sites. Pretreatment of [125I]HDL3 with various apolipoprotein antibodies (anti apo A-I, anti apo A-II, anti apo C-II, anti apo C-III and anti apo E) and preincubation of the cells with anti-idiotype antibodies against apo A-I and apo A-II prior to the HDL binding studies revealed apolipoprotein A-I as the ligand involved in specific binding of HDL. Cellular cholesterol accumulation via incubation with acetylated LDL led to an increase in HDL binding sites as well as an increase in the activity of the cytoplasmic cholesterol esterifying enzyme acyl-CoA:cholesterol acyltransferase (ACAT). Incubation of the cholesterol-loaded cells in the presence of various ACAT inhibitors (Sandoz 58.035, Octimibate-Nattermann, progesterone) revealed a time- and dose-dependent amplification in HDL binding and HDL-mediated cholesterol efflux. It is concluded that the homeostasis of cellular cholesterol in macrophages is regulated in part by the number of HDL binding sites and that ACAT inhibitors enhance HDL-mediated cholesterol efflux from peripheral cells. Images Fig. 4. PMID:2998754

  20. Sterol O-Acyltransferase 2-Driven Cholesterol Esterification Opposes Liver X Receptor-Stimulated Fecal Neutral Sterol Loss.

    PubMed

    Warrier, Manya; Zhang, Jun; Bura, Kanwardeep; Kelley, Kathryn; Wilson, Martha D; Rudel, Lawrence L; Brown, J Mark

    2016-02-01

    Statin drugs have proven a successful and relatively safe therapy for the treatment of atherosclerotic cardiovascular disease (CVD). However, even with the substantial low-density lipoprotein (LDL) cholesterol lowering achieved with statin treatment, CVD remains the top cause of death in developed countries. Selective inhibitors of the cholesterol esterifying enzyme sterol-O acyltransferase 2 (SOAT2) hold great promise as effective CVD therapeutics. In mouse models, previous work has demonstrated that either antisense oligonucleotide (ASO) or small molecule inhibitors of SOAT2 can effectively reduce CVD progression, and even promote regression of established CVD. Although it is well known that SOAT2-driven cholesterol esterification can alter both the packaging and retention of atherogenic apoB-containing lipoproteins, here we set out to determine whether SOAT2-driven cholesterol esterification can also impact basal and liver X receptor (LXR)-stimulated fecal neutral sterol loss. These studies demonstrate that SOAT2 is a negative regulator of LXR-stimulated fecal neutral sterol loss in mice. PMID:26729489

  1. Association of lecithin-cholesterol acyltransferase activity measured as a serum cholesterol esterification rate and low-density lipoprotein heterogeneity with cardiovascular risk: a cross-sectional study.

    PubMed

    Tani, Shigemasa; Takahashi, Atsuhiko; Nagao, Ken; Hirayama, Atsushi

    2016-06-01

    The cholesterol-esterifying enzyme, lecithin-cholesterol acyltransferase (LCAT), is believed to play a key role in reverse cholesterol transport. However, recent investigations have demonstrated that higher LCAT activity levels increase the formation of triglyceride (TG)-rich lipoproteins (TRLs) and atherogenesis. We hypothesized that higher LCAT activity measured as a serum cholesterol esterification rate by the endogenous substrate method might increase the formation of TRLs and thereby alter low-density lipoprotein (LDL) heterogeneity. The estimated LDL particle size [relative LDL migration (LDL-Rm)] was measured by polyacrylamide gel electrophoresis with the LipoPhor system (Joko, Tokyo, Japan) in 538 consecutive patients with at least risk factor for atherosclerosis. Multivariate regression analysis after adjustments for traditional risk factors identified elevated TRL-related marker (TG, remnant-like particle cholesterol, apolipoprotein C-II, and apolipoprotein C-III) levels as independent predictors of smaller-sized LDL particle size, both in the overall subject population and in the subset of patients with serum LDL cholesterol levels of <100 mg/dL. Area under the receiver operating characteristic curve of the LCAT activity (0.79; sensitivity 60 %; specificity 84.8 %) was observed for the evaluation of the indicators of an LDL-Rm value of ≥0.40, which suggests the presence of large amounts of small-dense LDL. The results lend support to the hypothesis that increased LCAT activity may be associated with increased formation of TRLs, leading to a reduction in LDL particle size. Therefore, to reduce the risk of atherosclerotic cardiovascular disease, it may be of importance to pay attention not only to a quantitative change in the serum LDL-C, but also to the LCAT activity which is possibly associated with LDL heterogeneity. PMID:25894629

  2. Cloning and functional analysis of human acyl coenzyme A: Cholesterol acyltransferase1 gene P1 promoter.

    PubMed

    Ge, Jing; Cheng, Bei; Qi, Benling; Peng, Wen; Wen, Hui; Bai, Lijuan; Liu, Yun; Zhai, Wei

    2016-07-01

    Acyl-coenzyme A: cholesterol acyltransferase 1 (ACAT1) catalyzes the conversion of free cholesterol (FC) to cholesterol ester. The human ACAT1 gene P1 promoter has been cloned. However, the activity and specificity of the ACAT1 gene P1 promoter in diverse cell types remains unclear. The P1 promoter fragment was digested with KpnI/XhoI from a P1 promoter cloning vector, and was subcloned into the multiple cloning site of the Firefly luciferase vector pGL3‑Enhancer to obtain the construct P1E‑1. According to the analysis of biological information, the P1E‑1 plasmid was used to generate deletions of the ACAT1 gene P1 promoter with varying 5' ends and an identical 3' end at +65 by polymerase chain reaction (PCR). All the 5'‑deletion constructs of the P1 promoter were identified by PCR, restriction enzyme digestion mapping and DNA sequencing. The transcriptional activity of each construct was detected after transient transfection into THP‑1, HepG2, HEK293 and Hela cells using DEAE‑dextran and Lipofectamine 2000 liposome transfection reagent. Results showed that the transcriptional activity of the ACAT1 gene P1 promoter and deletions of P1 promoter in THP‑1 and HepG2 cells was higher than that in HEK293 and HeLa cells. Moreover, the transcriptional activity of P1E‑9 was higher compared with those of other deletions in THP‑1, HepG2, HEK293 and HeLa cells. These findings indicate that the transcriptional activity of the P1 promoter and the effects of deletions vary with different cell lines. Thus, the P1 promoter may drive ACAT1 gene expression with cell‑type specificity. In addition, the core sequence of ACAT1 gene P1 promoter was suggested to be between -125 and +65 bp. PMID:27220725

  3. Myeloid Acyl-CoA:Cholesterol Acyltransferase 1 Deficiency Reduces Lesion Macrophage Content and Suppresses Atherosclerosis Progression.

    PubMed

    Huang, Li-Hao; Melton, Elaina M; Li, Haibo; Sohn, Paul; Rogers, Maximillian A; Mulligan-Kehoe, Mary Jo; Fiering, Steven N; Hickey, William F; Chang, Catherine C Y; Chang, Ta-Yuan

    2016-03-18

    Acyl-CoA:cholesterol acyltransferase 1 (Acat1) converts cellular cholesterol to cholesteryl esters and is considered a drug target for treating atherosclerosis. However, in mouse models for atherosclerosis, global Acat1 knockout (Acat1(-/-)) did not prevent lesion development. Acat1(-/-) increased apoptosis within lesions and led to several additional undesirable phenotypes, including hair loss, dry eye, leukocytosis, xanthomatosis, and a reduced life span. To determine the roles of Acat1 in monocytes/macrophages in atherosclerosis, we produced a myeloid-specific Acat1 knockout (Acat1(-M/-M)) mouse and showed that, in the Apoe knockout (Apoe(-/-)) mouse model for atherosclerosis, Acat1(-M/-M) decreased the plaque area and reduced lesion size without causing leukocytosis, dry eye, hair loss, or a reduced life span. Acat1(-M/-M) enhanced xanthomatosis in apoe(-/-) mice, a skin disease that is not associated with diet-induced atherosclerosis in humans. Analyses of atherosclerotic lesions showed that Acat1(-M/-M) reduced macrophage numbers and diminished the cholesterol and cholesteryl ester load without causing detectable apoptotic cell death. Leukocyte migration analysis in vivo showed that Acat1(-M/-M) caused much fewer leukocytes to appear at the activated endothelium. Studies in inflammatory (Ly6C(hi)-positive) monocytes and in cultured macrophages showed that inhibiting ACAT1 by gene knockout or by pharmacological inhibition caused a significant decrease in integrin β 1 (CD29) expression in activated monocytes/macrophages. The sparse presence of lesion macrophages without Acat1 can therefore, in part, be attributed to decreased interaction between inflammatory monocytes/macrophages lacking Acat1 and the activated endothelium. We conclude that targeting ACAT1 in a myeloid cell lineage suppresses atherosclerosis progression while avoiding many of the undesirable side effects caused by global Acat1 inhibition. PMID:26801614

  4. Pyripyropenes, novel inhibitors of acyl-CoA:cholesterol acyltransferase produced by Aspergillus fumigatus. II. Structure elucidation of pyripyropenes A, B, C and D.

    PubMed

    Kim, Y K; Tomoda, H; Nishida, H; Sunazuka, T; Obata, R; Omura, S

    1994-02-01

    The structures of pyripyropenes A, B, C and D, novel acyl-CoA:cholesterol acyltransferase (ACAT) inhibitors, were determined mainly by spectroscopic studies including various NMR measurements. Pyripyropenes have a common structure which consists of pyridine, alpha-pyrone and sesquiterpene moieties. One of the three O-acetyl residues in the sesquiterpene moiety of pyripyropene A is replaced with an O-propionyl residue in pyripyropenes B, C and D. PMID:8150710

  5. High Pre-β1 HDL Concentrations and Low Lecithin: Cholesterol Acyltransferase Activities Are Strong Positive Risk Markers for Ischemic Heart Disease and Independent of HDL-Cholesterol

    PubMed Central

    Sethi, Amar A.; Sampson, Maureen; Warnick, Russell; Muniz, Nehemias; Vaisman, Boris; Nordestgaard, Børge G.; Tybjærg-Hansen, Anne; Remaley, Alan T.

    2016-01-01

    BACKGROUND We hypothesized that patients with high HDL-cholesterol (HDL-C) and ischemic heart disease (IHD) may have dysfunctional HDL or unrecognized nonconventional risk factors. METHODS Individuals with IHD (Copenhagen University Hospital) and either high HDL-C (n = 53; women ≥735 mg/L; men ≥619 mg/L) or low HDL-C (n = 42; women ≤387 mg/L; men ≤341 mg/L) were compared with individuals without IHD (Copenhagen City Heart Study) matched by age, sex, and HDL-C concentrations (n = 110). All participants had concentrations within reference intervals for LDL-C (<1600 mg/L) and triglyceride (<1500 mg/L), and none were treated with lipid-lowering medications. Pre-β1 HDL and phospholipid transfer protein concentrations were measured by using commercial kits and lecithin:cholesterol acyltransferase (LCAT) activity by using a proteoliposome cholesterol esterification assay. RESULTS Pre-β1 HDL concentrations were 2-fold higher in individuals with IHD vs no IHD in both the high [63 (5.7) vs 35 (2.3) mg/L; P < 0.0001] and low HDL-C [49 (5.0) vs 27 (1.5) mg/L; P = 0.001] groups. Low LCAT activity was also associated with IHD in the high [95.2 (6.7) vs 123.0 (5.3) μmol · L−1 · h−1; P = 0.002] and low [93.4 (8.3) vs 113.5 (4.9) μmol · L−1 · h−1; P = 0.03] HDL-C groups. ROC curves for pre-β1 HDL in the high–HDL-C groups yielded an area under the curve of 0.71 (95% CI: 0.61–0.81) for predicting IHD, which increased to 0.92 (0.87–0.97) when LCAT was included. Similar results were obtained for low HDL-C groups. An inverse correlation between LCAT activity and pre-β1 HDL was observed (r2 = 0.30; P < 0.0001) in IHD participants, which was stronger in the low HDL-C group (r2 = 0.56; P < 0.0001). CONCLUSIONS IHD was associated with high pre-β1 HDL concentrations and low LCAT levels, yielding correct classification in more than 90% of the IHD cases for which both were measured, thus making pre-β1 HDL concentration and LCAT activity level potentially

  6. Penicillium griseofulvum F1959, high-production strain of pyripyropene a, specific inhibitor of acyl-CoA: cholesterol acyltransferase 2.

    PubMed

    Choi, Jung Ho; Rho, Mun-Chual; Lee, Seung Woong; Choi, Ji Na; Lee, Hee Jeong; Bae, Kyung Sook; Kim, Koanhoi; Kim, Young Kook

    2008-10-01

    Acyl-coenzyme A: cholesterol acyltransferase (ACAT) catalyzes cholesterol esterification and plays an important role in the intestinal absorption of cholesterol, hepatic production of lipoproteins, and accumulation of cholesteryl ester within cells. During the course of screening to find ACAT inhibitors from microbial sources, the present authors isolated pyripyropene A from Penicillium griseofulvum F1959. Pyripyropene A, an ACAT2-specific inhibitor, has already been produced from Aspergillus fumigatus. Yet, Aspergillus fumigatus is a pathogen and only produces a limited amount of pyripyropene A, making the isolation of pyripyropene A troublesome. In contrast, Penicillium griseofulvum F1959 was found to produce approximately 28 times more pyripyropene A than Aspergillus fumigatus, plus this report also describes the ideal conditions for the production of pyripyropene A by Penicillium griseofulvum F1959 and its subsequent purification. PMID:18955816

  7. Plasma lipoproteins and lecithin:cholesterol acyltransferase distribution in patients on dialysis.

    PubMed

    McLeod, R; Reeve, C E; Frohlich, J

    1984-04-01

    Plasma lipoproteins and LCAT activity were studied using a single spin density gradient separation and an exogenous substrate enzyme assay in 41 patients on chronic hemodialysis and in 11 normal subjects. The plasma HDL cholesterol was markedly decreased (33 vs. 63 mg/dl, P less than 0.001) while total and LDL-cholesterol were unchanged in the patients. Plasma LCAT activity was significantly lower in the patient group (42 vs. 59 nmoles/4 hr/ml, P less than 0.001), but the distribution of activity (studied in 13 dialysis patients and 12 control subjects) was not different between the two groups: 90% being associated with HDL and VHDL lipoprotein fractions. To examine the possible genetic influence on the development of hypertriglyceridemia in the patient group, we examined the ratio of apolipoproteins E3/E2 and CII/CIII in ten of the patients and another group of 13 control subjects. The frequency of heterozygotes for E3 deficiency was not different between the patient (one of ten) and the control (two of 13) groups. While the patient group had lower CII/CIII ratio, the figures did not reach statistical significance. The low LCAT activity in the face of higher plasma triglycerides and low HDL may contribute to impaired lipolysis previously documented in uremic patients. A follow-up study performed 1 year after the initial study confirmed the decreased HDL (51 vs. 71 mg/dl, P less than 0.01) and LCAT activity (50 vs. 59 nmoles/hr/ml, P less than 0.02) in an exogenous substrate system (N = 20). LCAT measured using the endogenous substrate was not significantly different from the control group (49 vs. 55 nmoles/hr/ml).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:6482172

  8. The enzyme lecithin-cholesterol acyltransferase esterifies cerebrosterol and limits the toxic effect of this oxysterol on SH-SY5Y cells.

    PubMed

    La Marca, Valeria; Spagnuolo, Maria Stefania; Cigliano, Luisa; Marasco, Daniela; Abrescia, Paolo

    2014-07-01

    Cholesterol is mostly removed from the CNS by its conversion to cerebrosterol (24(S)-hydroxycholesterol, 24(S)OH-C), which is transported to the circulation for bile formation in liver. A neurotoxic role of this oxysterol was previously demonstrated in cell culture. Here, we provide evidence that the enzyme lecithin-cholesterol acyltransferase, long known to esterify cholesterol, also produces monoesters of 24(S)OH-C. Proteoliposomes containing apolipoprotein A-I or apolipoprotein E were used to stimulate the enzyme activity and entrap the formed esters. Proteoliposomes with apolipoprotein A-I were found to be more active than those with apolipoprotein E in stimulating the production of oxysteryl esters. Cholesterol and 24(S)OH-C were found to compete for enzyme activity. High levels of haptoglobin, as those circulating during the acute inflammatory phase, inhibited 24(S)OH-C esterification. When highly neurotoxic 24(S)OH-C was treated with enzyme and proteoliposomes before incubation with differentiated SH-SY5Y cells, the neuron survival improved. The esters of 24(S)OH-C, embedded into proteoliposomes by the enzyme and isolated from unesterified 24(S)OH-C by gel filtration chromatography, did not enter the neurons in culture. These results suggest that the enzyme, in the presence of the apolipoproteins, converts 24(S)OH-C into esters restricted to the extracellular environment, thus preventing or limiting oxysterol-induced neurotoxic injuries to neurons in culture. 24-hydroxycholesterol (24(S)OH-C) is neurotoxic. The enzyme lecithin-cholesterol acyltransferase (LCAT) synthesizes monoesters of 24(S)OH-C in reaction mixtures with proteoliposomes containing phospholipids and apolipoprotein A-I or apolipoprotein E. The esters, also produced by incubation of cerebrospinal fluid only with tritiated 24(S)OH-C, are embedded into lipoproteins that do not enter neurons in culture. The enzyme activity limits the toxicity of 24-hydroxycholesterol in neuron culture. PMID

  9. Expression of the Acyl-Coenzyme A: Cholesterol Acyltransferase GFP Fusion Protein in Sf21 Insect Cells

    NASA Technical Reports Server (NTRS)

    Mahtani, H. K.; Richmond, R. C.; Chang, T. Y.; Chang, C. C. Y.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    The enzyme acyl-coenzyme A:cholesterol acyltransferase (ACAT) is an important contributor to the pathological expression of plaque leading to artherosclerosis n a major health problem. Adequate knowledge of the structure of this protein will enable pharmaceutical companies to design drugs specific to the enzyme. ACAT is a membrane protein located in the endoplasmic reticulum.t The protein has never been purified to homogeneity.T.Y. Chang's laboratory at Dartmouth College provided a 4-kb cDNA clone (K1) coding for a structural gene of the protein. We have modified the gene sequence and inserted the cDNA into the BioGreen His Baculovirus transfer vector. This was successfully expressed in Sf2l insect cells as a GFP-labeled ACAT protein. The advantage to this ACAT-GFP fusion protein (abbreviated GCAT) is that one can easily monitor its expression as a function of GFP excitation at 395 nm and emission at 509 nm. Moreover, the fusion protein GCAT can be detected on Western blots with the use of commercially available GFP antibodies. Antibodies against ACAT are not readily available. The presence of the 6xHis tag in the transfer vector facilitates purification of the recombinant protein since 6xHis fusion proteins bind with high affinity to Ni-NTA agarose. Obtaining highly pure protein in large quantities is essential for subsequent crystallization. The purified GCAT fusion protein can readily be cleaved into distinct GFP and ACAT proteins in the presence of thrombin. Thrombin digests the 6xHis tag linking the two protein sequences. Preliminary experiments have indicated that both GCAT and ACAT are expressed as functional proteins. The ultimate aim is to obtain large quantities of the ACAT protein in pure and functional form appropriate for protein crystal growth. Determining protein structure is the key to the design and development of effective drugs. X-ray analysis requires large homogeneous crystals that are difficult to obtain in the gravity environment of earth

  10. Discovery of a potent and orally available acyl-CoA: cholesterol acyltransferase inhibitor as an anti-atherosclerotic agent: (4-phenylcoumarin)acetanilide derivatives.

    PubMed

    Ogino, Masaki; Fukui, Seiji; Nakada, Yoshihisa; Tokunoh, Ryosuke; Itokawa, Shigekazu; Kakoi, Yuichi; Nishimura, Satoshi; Sanada, Tsukasa; Fuse, Hiromitsu; Kubo, Kazuki; Wada, Takeo; Marui, Shogo

    2011-01-01

    Acyl-CoA: cholesterol acyltransferase (ACAT) is an intracellular enzyme that catalyzes cholesterol esterification. ACAT inhibitors are expected to be potent therapeutic agents for the treatment of atherosclerosis. A series of potent ACAT inhibitors based on an (4-phenylcoumarin)acetanilide scaffold was identified. Evaluation of the structure-activity relationships of a substituent on this scaffold, with an emphasis on improving the pharmacokinetic profile led to the discovery of 2-[7-chloro-4-(3-chlorophenyl)-6-methyl-2-oxo-2H-chromen-3-yl]-N-[4-chloro-2-(trifluoromethyl)phenyl]acetamide (23), which exhibited potent ACAT inhibitory activity (IC50=12 nM) and good pharmacokinetic profile in mice. Compound 23 also showed regressive effects on atherosclerotic plaques in apolipoprotein (apo)E knock out (KO) mice at a dose of 0.3 mg/kg per os (p.o.). PMID:21963637

  11. Lecithin-cholesterol acyltransferase (LCAT) catalyzes transacylation of intact cholesteryl esters. Evidence for the partial reversal of the forward LCAT reaction

    SciTech Connect

    Sorci-Thomas, M.; Babiak, J.; Rudel, L.L. )

    1990-02-15

    Lecithin-cholesterol acyltransferase (LCAT) catalyzes the intravascular synthesis of lipoprotein cholesteryl esters by converting cholesterol and lecithin to cholesteryl ester and lysolecithin. LCAT is unique in that it catalyzes sequential reactions within a single polypeptide sequence. In this report we find that LCAT mediates a partial reverse reaction, the transacylation of lipoprotein cholesteryl oleate, in whole plasma and in a purified, reconstituted system. As a result of the reverse transacylation reaction, a linear accumulation of (3H)cholesterol occurred during incubations of plasma containing high density lipoprotein labeled with (3H)cholesteryl oleate. When high density lipoprotein labeled with cholesteryl (14C)oleate was also included in the incubation the labeled fatty acyl moiety remained in the cholesteryl (14C)oleate pool showing that the formation of labeled cholesterol did not result from hydrolysis of the doubly labeled cholesteryl esters. The rate of release of (3H)cholesterol was only about 10% of the forward rate of esterification of cholesterol using partially purified human LCAT and was approximately 7% in whole monkey plasma. Therefore, net production of cholesterol via the reverse LCAT reaction would not occur. (3H)Cholesterol production from (3H)cholesteryl oleate was almost completely inhibited by a final concentration of 1.4 mM 5,5'-dithiobis(nitrobenzoic acid) during incubation with either purified LCAT or whole plasma. Addition of excess lysolecithin to the incubation system did not result in the formation of (14C)oleate-labeled lecithin, showing that the reverse reaction found here for LCAT was limited to the last step of the reaction. To explain these results we hypothesize that LCAT forms a (14C)oleate enzyme thioester intermediate after its attack on the cholesteryl oleate molecule.

  12. Modulation Peroxisome Proliferators Activated Receptor alpha (PPAR α) and Acyl Coenzyme A: Cholesterol Acyltransferase1 (ACAT1) Gene expression by Fatty Acids in Foam cell

    PubMed Central

    Zavvar Reza, Javad; Doosti, Mahmoud; salehipour, Masoud; PackneJad, Malehieh; Mojarrad, Majed; Heidari, Mansour; Emamian, Effat S

    2009-01-01

    Background One of the most important factors in the initiation and progression of atherosclerosis is the default in macrophage cholesterol homeostasis. Many genes and transcription factors such as Peroxisome Proliferators Activated Receptors (PPARs) and Acyl Coenzyme A: Cholesterol Acyltransferase1 (ACAT1) are involved in cholesterol homeostasis. Fatty Acids are important ligands of PPARα and the concentration of them can effect expression of ACAT1. So this study designed to clarified on the role of these genes and fatty acids on the lipid metabolism in foam cells. Methods This study examined effects of c9, t11-Conjugated Linoleic Acid(c9, t11-CLA), Alpha Linolenic Acid (LA), Eicosapentaenoic Acid (EPA) on the PPARα and ACAT1 genes expression by using Real time PCR and cholesterol homeostasis in THP-1 macrophages derived foam cells. Results Incubation of c9, t11-CLA, LA cause a significant reduction in intracellular Total Cholesterol, Free Cholesterol, cellular and Estrified Cholesterol concentrations (P ≤ 0.05). CLA and LA had no significant effect on the mRNA levels of ACAT1, but EPA increased ACAT1 mRNA expression (P = 0.003). Treatment with EPA increased PPARα mRNA levels (P ≤ 0.001), although CLA, LA had no significant effect on PPARα mRNA expression. Conclusion In conclusion, it seems that different fatty acids have different effects on gene expression and lipid metabolism and for complete conception study of the genes involved in lipid metabolism in foam cell all at once maybe is benefit. PMID:19725980

  13. Case report: A novel apolipoprotein A-I missense mutation apoA-I (Arg149Ser)Boston associated with decreased lecithin-cholesterol acyltransferase activation and cellular cholesterol efflux.

    PubMed

    Anthanont, Pimjai; Asztalos, Bela F; Polisecki, Eliana; Zachariah, Benoy; Schaefer, Ernst J

    2015-01-01

    We report a novel heterozygous apolipoprotein A-I (apoA-I) missense mutation (c.517C>A, p.Arg149Ser, designated as apoA-IBoston) in a 67-year-old woman and her 2 sons, who had mean serum high-density lipoprotein (HDL) cholesterol, apoA-I, and apoA-I in very large α-1 HDL that were 10%, 35%, and 16% of normal, respectively (all P < .05). The percentage of HDL cholesterol in the esterified form was also significantly (P < .05) reduced to 52% of control values. Cholesteryl ester tranfer protein (CETP) activity was normal. The mean global, adenosine triphosphate (ATP)-binding cassette transporter A1 and scavenger receptor B type I-mediated cellular cholesterol efflux capacity in apoB-depleted serum from affected family members were 41%, 37%, 47%, 54%, and 48% of control values, respectively (all P < .05). lecithin-cholesterol acyltransferase (LCAT) activity in plasma was 71% of controls, whereas in the cell-based assay, it was 73% of control values (P < .05). The data indicate that this novel apoA-I missense is associated with markedly decreased levels of HDL cholesterol and very large α-1 HDL, as well as decreased serum cellular cholesterol efflux and LCAT activity, but not with premature coronary heart disease, similar to other apoA-I mutations that have been associated with decreased LCAT activity. PMID:26073399

  14. Effect of sardine proteins on hyperglycaemia, hyperlipidaemia and lecithin:cholesterol acyltransferase activity, in high-fat diet-induced type 2 diabetic rats.

    PubMed

    Benaicheta, Nora; Labbaci, Fatima Z; Bouchenak, Malika; Boukortt, Farida O

    2016-01-14

    Type 2 diabetes (T2D) is a major risk factor of CVD. The effects of purified sardine proteins (SP) were examined on glycaemia, insulin sensitivity and reverse cholesterol transport in T2D rats. Rats fed a high-fat diet (HFD) for 5 weeks, and injected with a low dose of streptozotocin, were used. The diabetic rats were divided into four groups, and they were fed casein (CAS) or SP combined with 30 or 5% lipids, for 4 weeks. HFD-induced hyperglycaemia, insulin resistance and hyperlipidaemia in rats fed HFD, regardless of the consumed protein. In contrast, these parameters lowered in rats fed SP combined with 5 or 30% lipids, and serum insulin values reduced in SP v. CAS. HFD significantly increased total cholesterol and TAG concentrations in the liver and serum, whereas these parameters decreased with SP, regardless of lipid intake. Faecal cholesterol excretion was higher with SP v. CAS, combined with 30 or 5% lipids. Lecithin:cholesterol acyltransferase (LCAT) activity and HDL3-phospholipids (PL) were higher in CAS-HF than in CAS, whereas HDL2-cholesteryl esters (CE) were lower. Otherwise, LCAT activity and HDL2-CE were higher in the SP group than in the CAS group, whereas HDL3-PL and HDL3-unesterified cholesterol were lower. Moreover, LCAT activity lowered in the SP-HF group than in the CAS-HF group, when HDL2-CE was higher. In conclusion, these results indicate the potential effects of SP to improve glycaemia, insulin sensitivity and reverse cholesterol transport, in T2D rats. PMID:26507559

  15. Essential oil of Pinus koraiensis leaves exerts antihyperlipidemic effects via up-regulation of low-density lipoprotein receptor and inhibition of acyl-coenzyme A: cholesterol acyltransferase.

    PubMed

    Kim, Ji-Hyun; Lee, Hyo-Jung; Jeong, Soo-Jin; Lee, Min-Ho; Kim, Sung-Hoon

    2012-09-01

    Hyperlipidemia is an important factor to induce metabolic syndrome such as obesity, diabetes and cardiovascular diseases. Recently, some antihyperlipidemic agents from herbal medicines have been in the spotlight in the medical science field. Thus, the present study evaluated the antihyperlipidemic activities of the essential oil from the leaves of Pinus koraiensis SIEB (EOPK) that has been used as a folk remedy for heart disease. The reverse transcription polymerase chain reaction (RT-PCR) revealed that EOPK up-regulated low density lipoprotein receptor (LDLR) at the mRNA level as well as negatively suppressed the expression of sterol regulatory element-binding protein (SREBP)-1c, SREBP-2, 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGCR), fatty acid synthase (FAS) and glycerol-3-phosphate acyltransferase (GPAT) involved in lipid metabolism in HepG2 cells. Also, western blotting showed that EOPK activated LDLR and attenuated the expression of FAS at the protein level in the cells. Consistently, EOPK significantly inhibited the level of human acylcoenzyme A: cholesterol acyltransferase (hACAT)1 and 2 and reduced the low-density lipoprotein (LDL) oxidation activity. Furthermore, chromatography-mass spectrometry (GC-MS) analysis showed that EOPK, an essential oil mixture, contained camphene (21.11%), d-limonene (21.01%), α-pinene (16.74%) and borneol (11.52%). Overall, the findings suggest that EOPK can be a potent pharmaceutical agent for the prevention and treatment of hyperlipidemia. PMID:22275303

  16. The solid phase synthesis of a protein activator for lecithin-cholesterol acyltransferase corresponding to human plasma apoC-I.

    PubMed Central

    Sigler, G F; Soutar, A K; Smith, L C; Gotto, A M; Sparrow, J T

    1976-01-01

    Apolipoprotein C-I, a protein constituent of the very low density lipoproteins of human plasma, consists of a single chain of 57 amino acids. The total synthesis of a protein corresponding to apolipoprotein C-I in physical properties and compositions was accomplished by solid phase techniques employing a modified polystrene incorporating spacer groups between the point of attachment of the first residue and the polymer matrix. The synthetic apoprotein was shown to activate lecithin:cholesterol acyltransferase to the same extent as the native protein. Comparative lipid-binding studies with dimyristoyl phosphatidylcholine gave complexes for native and synthetic apoprotein which floated at the same density after ultracentrifugation in KBr gradients and had virtually the same lipid:protein ratios. Images PMID:179085

  17. The solid phase synthesis of a protein activator for lecithin-cholesterol acyltransferase corresponding to human plasma apoC-I.

    PubMed

    Sigler, G F; Soutar, A K; Smith, L C; Gotto, A M; Sparrow, J T

    1976-05-01

    Apolipoprotein C-I, a protein constituent of the very low density lipoproteins of human plasma, consists of a single chain of 57 amino acids. The total synthesis of a protein corresponding to apolipoprotein C-I in physical properties and compositions was accomplished by solid phase techniques employing a modified polystrene incorporating spacer groups between the point of attachment of the first residue and the polymer matrix. The synthetic apoprotein was shown to activate lecithin:cholesterol acyltransferase to the same extent as the native protein. Comparative lipid-binding studies with dimyristoyl phosphatidylcholine gave complexes for native and synthetic apoprotein which floated at the same density after ultracentrifugation in KBr gradients and had virtually the same lipid:protein ratios. PMID:179085

  18. The role of lecithin cholesterol acyltransferase and organic substances from coal in the etiology of Balkan endemic nephropathy: A new hypothesis

    USGS Publications Warehouse

    Pavlovic, N.M.; Orem, W.H.; Tatu, C.A.; Lerch, H.E.; Bunnell, J.E.; Feder, G.L.; Kostic, E.N.; Ordodi, V.L.

    2008-01-01

    Balkan endemic nephropathy (BEN) occurs in Serbia, Bulgaria, Romania, Bosnia and Herzegovina, and Croatia. BEN has been characterized as a chronic, slowly progressive renal disease of unknown etiology. In this study, we examined the influence of soluble organic compounds in drinking water leached from Pliocene lignite from BEN-endemic areas on plasma lecithin-cholesterol acyltransferase (LCAT) activity. We found that changes for all samples were the most prominent for the dilution category containing 90% plasma and 10% of diluting media. Water samples from BEN villages from Serbia and Romania showed higher LCAT inhibiting activity (p = 0.02) and (p = 0.003), respectively, compared to deionised water and non-endemic water. A secondary LCAT deficiency could result from this inhibitory effect of the organic compounds found in endemic water supplies and provide an ethiopathogenic basis for the development of BEN in the susceptible population. ?? 2007 Elsevier Ltd. All rights reserved.

  19. Defective activity of acyl-CoA:cholesterol O-acyltransferase in Niemann-Pick type C and type D fibroblasts.

    PubMed Central

    Byers, D M; Rastogi, S R; Cook, H W; Palmer, F B; Spence, M W

    1989-01-01

    The activity of acyl-CoA:cholesterol acyltransferase (ACAT; EC 2.3.1.26) was measured in fibroblast homogenates from Niemann-Pick Type C (NPC) and Type D (NPD) patients to determine whether these cells exhibit similar defects in the regulation of cholesterol esterification. ACAT activity in normal cells cultured in the absence of serum lipoproteins responded rapidly (within 6 h) to the addition of serum and reached peak levels at 12-24 h, whereas little stimulation of activity in NPC cells was observed. In contrast, ACAT activity in NPD fibroblasts (cell lines from four different patients) began to increase between 6 and 12 h after serum addition, reaching levels up to 50% of normal values at 24 h. ACAT activity in NPC and NPD cell extracts could not be stimulated by preincubation with normal cell homogenates, nor was complementation between NPC and NPD homogenates observed. Addition of 25-hydroxycholesterol to fibroblasts cultured in delipidated serum increased ACAT activity for all three cell types, although stimulation in NPD cells was less than that observed in NPC cells. ACAT activity of deoxycholate-solubilized homogenates reconstituted into phosphatidylcholine vesicles was independent of the presence of serum lipoproteins during culture and dependent on cholesterol present in the vesicles for all cell types. However, ACAT activities of mutant fibroblasts in vesicles plus cholesterol were significantly (about 40%) lower than control levels. These results suggest that the metabolic lesions in NPC and NPD cells are biochemically distinct and that both may involve factors in addition to the availability of cholesterol substrate for the ACAT enzyme. PMID:2590161

  20. Premature and severe cardiovascular disease in a Mexican male with markedly low high-density-lipoprotein-cholesterol levels and a mutation in the lecithin:cholesterol acyltransferase gene: a family study.

    PubMed

    Posadas-Sánchez, Rosalinda; Posadas-Romero, Carlos; Ocampo-Arcos, Wendy Angélica; Villarreal-Molina, María Teresa; Vargas-Alarcón, Gilberto; Antúnez-Argüelles, Erika; Mendoza-Pérez, Enrique; Cardoso-Saldaña, Guillermo; Martínez-Alvarado, Rocío; Medina-Urrutia, Aída; Jorge-Galarza, Esteban

    2014-06-01

    Epidemiological and clinical studies have shown that a low plasma high‑density lipoprotein cholesterol (HDL-C) level is a strong predictor of cardiovascular disease (CVD). Lecithin:cholesterol acyltransferase (LCAT) is a key enzyme in the formation, maturation and function of HDL. Therefore impaired LCAT function may enhance atherosclerosis because of defective cholesterol transport. In this study, we examined a 34-year old LCAT‑deficient patient and eight first-degree family members. There was a strong family history for CVD and type 2 diabetes mellitus (DM2). The proband was found homozygous for a previously reported LCAT gene mutation (Thr37Met). A sister and two sons of the proband were heterozygous for the same mutation. The proband had DM2 and showed severe multivessel coronary artery disease, corneal opacification and extremely low HDL-C levels. Large HDL particles were absent while small HDL particles were increased. The HDL of the patient had a reduced ability to promote cell cholesterol efflux, and the low‑density lipoproteins (LDL) were more susceptible to oxidation. Among his family members, two heterozygotes and one non-carrier had early carotid or coronary atherosclerosis. In conclusion, as the increased LDL oxidability and structural and functional abnormalities of HDL particles have been reported in patients with obesity and diabetes, the results suggested that the adverse coronary risk profile, and not being LCAT deficient, may be responsible for the CVD found in our proband, and for the early atherosclerosis observed in the two heterozygotes and in the wild‑type family members. PMID:24715031

  1. The Acyl-Coenzyme A:Cholesterol Acyltransferase Inhibitor CI-1011 Reverses Diffuse Brain Amyloid Pathology in Aged Amyloid Precursor Protein Transgenic Mice

    PubMed Central

    Huttunen, Henri J.; Havas, Daniel; Peach, Camilla; Barren, Cory; Duller, Stephan; Xia, Weiming; Frosch, Matthew P.; Hutter-Paier, Birgit; Windisch, Manfred; Kovacs, Dora M.

    2010-01-01

    Cerebral accumulation of amyloid β-peptide (Aβ) is characteristic of Alzheimer disease and of amyloid precursor protein (APP) transgenic mice. Here, we assessed the efficacy of CI-1011, an inhibitor of acyl-coenzyme A:cholesterol acyltransferase, which is suitable for clinical use, in reducing amyloid pathology in both young (6.5 months old) and aged (16 months old) hAPP transgenic mice. Treatment of young animals with CI-1011 decreased amyloid plaque load in the cortex and hippocampus and reduced the levels of insoluble Aβ40 and Aβ42 and C-terminal fragments of APP in brain extracts. In aged mice, CI-1011 specifically reduced diffuse amyloid plaques with a minor effect on thioflavin S+ dense-core plaques. Reduced diffusible amyloid was accompanied by suppression of astrogliosis and enhanced microglial activation. Collectively, these data suggest that CI-1011 treatment reduces amyloid burden in hAPP mice by limiting generation and increasing clearance of diffusible Aβ. PMID:20613640

  2. Trimerized apolipoprotein A-I (TripA) forms lipoproteins, activates lecithin: cholesterol acyltransferase, elicits lipid efflux, and is transported through aortic endothelial cells.

    PubMed

    Ohnsorg, Pascale M; Mary, Jean-Luc; Rohrer, Lucia; Pech, Michael; Fingerle, Jürgen; von Eckardstein, Arnold

    2011-12-01

    Apolipoprotein A-I (apoA-I) exerts many potentially anti-atherogenic properties and is therefore attractive for prevention and therapy of coronary heart disease. Since induction of apoA-I production by small molecules has turned out as difficult, application of exogenous apoA-I is pursued as an alternative therapeutic option. To counteract fast renal filtration of apoA-I, a trimeric high-molecular weight variant of apoA-I (TripA) was produced by recombinant technology. We compared TripA and apoA-I for important properties in reverse cholesterol transport. Reconstituted high-density lipoproteins (rHDL) containing TripA or apoA-I together with palmitoyl-2-oleyl-phosphatidylcholine (POPC) differed slightly by size. Compared to apoA-I, TripA activated lecithin:cholesterol acyltransferase (LCAT) with similar maximal velocity but concentration leading to half maximal velocity was slightly reduced (K(m)=2.1±0.3μg/mL vs. 0.59±0.06μg/mL). Both in the lipid-free form and as part of rHDL, TripA elicited cholesterol efflux from THP1-derived macrophages with similar kinetic parameters and response to liver-X-receptor activation as apoA-I. Lipid-free TripA is bound and transported by aortic endothelial cells through mechanisms which are competed by apoA-I and TripA and inhibited by knock-down of ATP-binding cassette transporter (ABC) A1. Pre-formed TripA/POPC particles were bound and transported by endothelial cells through mechanisms which are competed by excess native HDL as well as reconstituted HDL containing either apoA-I or TripA and which involve ABCG1 and scavenger receptor B1 (SR-BI). In conclusion, apoA-I and TripA show similar in vitro properties which are important for reverse cholesterol transport. These findings are important for further development of TripA as an anti-atherosclerotic drug. PMID:21930241

  3. Role of lecithin-cholesterol acyltransferase in the metabolism of oxidized phospholipids in plasma: studies with platelet-activating factor-acetyl hydrolase-deficient plasma.

    PubMed

    Subramanian, V S; Goyal, J; Miwa, M; Sugatami, J; Akiyama, M; Liu, M; Subbaiah, P V

    1999-07-01

    To determine the relative importance of platelet-activating factor-acetylhydrolase (PAF-AH) and lecithin-cholesterol acyltransferase (LCAT) in the hydrolysis of oxidized phosphatidylcholines (OXPCs) to lyso-phosphatidylcholine (lyso-PC), we studied the formation and metabolism of OXPCs in the plasma of normal and PAF-AH-deficient subjects. Whereas the loss of PC following oxidation was similar in the deficient and normal plasmas, the formation of lyso-PC was significantly lower, and the accumulation of OXPC was higher in the deficient plasma. Isolated LDL from the PAF-AH-deficient subjects was more susceptible to oxidation, and stimulated adhesion molecule synthesis in endothelial cells, more than the normal LDL. Oxidation of 16:0-[1-14C]-18:2 PC, equilibrated with plasma PC, resulted in the accumulation of labeled short- and long-chain OXPCs, in addition to the labeled aqueous products. The formation of the aqueous products decreased by 80%, and the accumulation of short-chain OXPC increased by 110% in the deficient plasma, compared to the normal plasma, showing that PAF-AH is predominantly involved in the hydrolysis of the truncated OXPCs. Labeled sn-2-acyl group from the long-chain OXPC was not only hydrolyzed to free fatty acid, but was preferentially transferred to diacylglycerol, in both the normal and deficient plasmas. In contrast, the acyl group from unoxidized PC was transferred only to cholesterol, showing that the specificity of LCAT is altered by OXPC. It is concluded that, while PAF-AH carries out the hydrolysis of mainly truncated OXPCs, LCAT hydrolyzes and transesterifies the long-chain OXPCs. PMID:10395969

  4. Polymorphism of rs1044925 in the acyl-CoA:cholesterol acyltransferase-1 gene and serum lipid levels in the Guangxi Bai Ku Yao and Han populations

    PubMed Central

    2010-01-01

    Background The association of rs1044925 polymorphism in the acyl-CoA:cholesterol acyltransferase-1 (ACAT-1) gene and serum lipid profiles is not well known in different ethnic groups. Bai Ku Yao is a special subgroup of the Yao minority in China. The present study was carried out to clarify the association of rs1044925 polymorphism in the ACAT-1 gene and several environmental factors with serum lipid levels in the Guangxi Bai Ku Yao and Han populations. Methods A total of 626 subjects of Bai Ku Yao and 624 participants of Han Chinese were randomly selected from our previous stratified randomized cluster samples. Genotyping of rs1044925 polymorphism in the ACAT-1 gene was performed by polymerase chain reaction and restriction fragment length polymorphism combined with gel electrophoresis, and then confirmed by direct sequencing. Results The levels of serum total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), apolipoprotein (Apo) AI and ApoB were lower in Bai Ku Yao than in Han (P < 0.01 for all). The frequency of A and C alleles was 79.0% and 21.0% in Bai Ku Yao, and 87.3% and 12.7% in Han (P < 0.001); respectively. The frequency of AA, AC and CC genotypes was 63.2%, 31.4% and 5.2% in Bai Ku Yao, and 75.6%, 23.2% and 1.1% in Han (P < 0.001); respectively. The levels of TC, LDL-C and ApoB in Bai Ku Yao but not in Han were different between the AA and AC/CC genotypes in females but not in males (P < 0.05 for all). The C allele carriers had lower serum TC, LDL-C and ApoB levels as compared with the C allele noncarriers. The levels of TC, LDL-C and ApoB in Bai Ku Yao but not in Han were correlated with genotypes in females but not in males (P < 0.05 for all). Serum lipid parameters were also correlated with sex, age, body mass index, alcohol consumption, and blood pressure in both ethnic groups (P < 0.05-0.001). Conclusions These results suggest that the polymorphism of rs1044925 in the ACAT-1 gene is mainly associated with female serum TC, LDL-C and

  5. The selectivity of beauveriolide derivatives in inhibition toward the two isozymes of acyl-CoA: cholesterol acyltransferase.

    PubMed

    Ohshiro, Taichi; Matsuda, Daisuke; Nagai, Kenichiro; Doi, Takayuki; Sunazuka, Toshiaki; Takahashi, Takashi; Rudel, Lawrence Lee; Omura, Satoshi; Tomoda, Hiroshi

    2009-04-01

    The selectivity of synthetic beauveriolide derivatives in inhibition toward the two isozymes of acyl-CoA : cholesterol acyltrasferase (ACAT), ACAT1 and ACAT2, was studied in cell-based assays using ACAT1- or ACAT2-expressing Chinese hamster ovary (CHO) cells. NBV274, 285 and 300 showed ACAT1 selective inhibition similar to that of natural beauveriolides I and III, NBV345 inhibited both isozymes with similar potency, but NBV281, 331 and 249 were found to selectively inhibit the ACAT2 isozyme. The structure-activity relationships indicated that a subtle structural difference in beauveriolide derivatives can affect the selectivity of inhibition of the ACAT isozymes. PMID:19336931

  6. The effect of inhibition of acyl coenzyme A-cholesterol acyltransferase (ACAT) on exercise performance in patients with peripheral arterial disease.

    PubMed

    Hiatt, William R; Klepack, Ellen; Nehler, Mark; Regensteiner, Judith G; Blue, John; Imus, James; Criqui, Michael H

    2004-11-01

    This study tested the hypothesis that avasimibe, an inhibitor of acyl coenzyme A-cholesterol acyltransferase (ACAT), would improve treadmill exercise performance in patients with claudication secondary to peripheral arterial disease (PAD). Four hundred and forty-two patients with PAD (ankle-brachial index in the index leg of < or =0.90 with a > or =20% reduction post-exercise) were enrolled from 39 centers in the USA. Patients were randomized to receive oral avasimibe 50 mg, 250 mg, 750 mg or placebo for a treatment period of 12 months. Changes from baseline in peak walking time (PWT) using a graded treadmill protocol were compared among groups after 6 and 12 months of treatment. Individual group comparisons were considered statistically significant if p < 0.0245 for the 50 mg and 250 mg groups and p < 0.001 for the 750 mg group. Patients randomized to the 50 mg group experienced a 0.76 min net increase over placebo in PWT, but this did not reach the pre-specified level of statistical significance (Hochberg procedure p = 0.027) using ANCOVA after 12 months of treatment after adjusting for multiple comparisons. This trend in PWT was supported by the changes in treadmill initial claudication time (ICT) (p = 0.026) and Walking Impairment Questionnaire (WIQ) walking distance score (p = 0.058). The 250 mg and 750 mg avasimibe dose groups failed to demonstrate an improvement in PWT over placebo after 6 months of treatment. In conclusion, while the ACAT inhibitor avasimibe did not show clear evidence of benefit on treadmill exercise performance in patients with PAD, the results add to our knowledge of the impact of treatments directed at atherosclerosis on functional endpoints. PMID:15678619

  7. Hypertriglyceridemia in lecithin-cholesterol acyltransferase-deficient mice is associated with hepatic overproduction of triglycerides, increased lipogenesis, and improved glucose tolerance.

    PubMed

    Ng, Dominic S; Xie, Chunhui; Maguire, Graham F; Zhu, Xianghong; Ugwu, Francisca; Lam, Eric; Connelly, Philip W

    2004-02-27

    Lecithin-cholesterol acyltransferase deficiency is frequently associated with hypertriglyceridemia (HTG) in animal models and humans. We investigated the mechanism of HTG in the ldlr-/- x lcat-/- (double knockout (dko)) mice using the ldlr-/- x lcat+/+ (knock-out (ko)) littermates as control. Mean fasting triglyceride (TG) levels in the dko mice were elevated 1.75-fold compared with their controls (p < 0.002). Both the very low density lipoprotein and the low density lipoprotein/intermediate density lipoprotein fractions separated by fast protein liquid chromatography were TG-enriched in the dko mice. In vitro lipolysis assay revealed that the dko mouse very low density lipoprotein (d < 1.019 g/ml) fraction separated by ultracentrifugation was a more efficient substrate for lipolysis by exogenous bovine lipoprotein lipase. Post-heparin lipoprotein lipase activity was reduced by 61% in the dko mice. Hepatic TG production rate, determined after intravenous Triton WR1339 injection, was increased 8-fold in the dko mice. Hepatic mRNA levels of sterol regulatory element binding protein-1 (srebp-1) and its target genes acetyl-CoA carboxylase-1 (acc-1), fatty acid synthase (fas), and stearoyl-CoA desaturase-1 (scd-1) were significantly elevated in the dko mice compared with the ko control. The hepatic mRNA levels of LXRalpha (lxralpha) and its target genes including angiopoietin-like protein 3 (angptl-3) in the dko mice were unchanged. Fasting glucose and insulin levels were reduced by 31 and 42%, respectively in the dko mice, in conjunction with a 49% reduction in hepatic pepck-1 mRNA (p = 0.014). Both the HTG and the improved fasting glucose phenotype seen in the dko mice are at least in part attributable to an up-regulation of the hepatic srebp-1c gene. PMID:14668345

  8. A Salmonella typhimurium-translocated Glycerophospholipid:Cholesterol Acyltransferase Promotes Virulence by Binding to the RhoA Protein Switch Regions

    SciTech Connect

    LaRock, Doris L.; Brzovic, Peter S.; Levin, Itay; Blanc, Marie-Pierre; Miller, Samuel I.

    2012-08-24

    Salmonella enterica serovar typhimurium translocates a glycerophospholipid: cholesterol acyltransferase (SseJ) into the host cytosol after its entry into mammalian cells. SseJ is recruited to the cytoplasmic face of the host cell phagosome membrane where it is activated upon binding the small GTPase, RhoA. SseJ is regulated similarly to cognate eukaryotic effectors, as only the GTP-bound form of RhoA family members stimulates enzymatic activity. Using NMR and biochemistry, this work demonstrates that SseJ competes effectively with Rhotekin, ROCK, and PKN1 in binding to a similar RhoA surface. The RhoA surface that binds SseJ includes the regulatory switch regions that control activation of mammalian effectors. These data were used to create RhoA mutants with altered SseJ binding and activation. This structure-function analysis supports a model in which SseJ activation occurs predominantly through binding to residues within switch region II. We further defined the nature of the interaction between SseJ and RhoA by constructing SseJ mutants in the RhoA binding surface. These data indicate that SseJ binding to RhoA is required for recruitment of SseJ to the endosomal network and for full Salmonella virulence for inbred susceptible mice, indicating that regulation of SseJ by small GTPases is an important virulence strategy of this bacterial pathogen. The dependence of a bacterial effector on regulation by a mammalian GTPase defines further how intimately host pathogen interactions have coevolved through similar and divergent evolutionary strategies.

  9. Effects of hypothyroidism and high-fat feeding on mRNA concentrations for the low-density-lipoprotein receptor and on acyl-CoA:cholesterol acyltransferase activities in rat liver.

    PubMed Central

    Salter, A M; Hayashi, R; al-Seeni, M; Brown, N F; Bruce, J; Sorensen, O; Atkinson, E A; Middleton, B; Bleackley, R C; Brindley, D N

    1991-01-01

    1. Induction of hypothyroidism in rats by feeding propylthiouracil (PTU) significantly increased serum cholesterol concentrations, and the effect was more pronounced for cholesterol in low-density lipoproteins (LDL) rather than high-density lipoproteins (HDL). The concentrations of serum triacylglycerol were decreased in hypothyroidism. These effects on serum lipids were also seen when the normal rats were pair-fed with the PTU-treated group. 2. Feeding a diet rich in saturated fat and cholesterol further increased cholesterol concentrations in LDL and also elevated that in very-low-density lipoprotein (VLDL) of hypothyroid rats. In euthyroid rats such a diet resulted in a relatively small increase in VLDL cholesterol, whereas LDL cholesterol was decreased. 3. Steady-state concentrations of mRNA for the hepatic LDL receptor were significantly decreased in the livers of hypothyroid rats, but were not significantly changed by high-fat feeding in euthyroid or hypothyroid rats. 4. The expression of the LDL receptor in hepatocytes cultured from hypothyroid rats was decreased relative to the euthyroid controls. 5. Whereas the esterification of cholesterol with oleate in hepatocytes cultured from hypothyroid rats was decreased, the activity of acyl-CoA:cholesterol acyltransferase (ACAT) in the livers of these animals was not changed. 6. High-fat feeding increased the hepatic ACAT activity in normal and hypothyroid rats. 7. Incubation of rat hepatocytes with 10 nM-tri-iodothyronine for 4 h increased the relative concentration of the mRNA for the LDL receptor by 25%. 8. It is therefore concluded that thyroid hormones stimulate the synthesis and expression of the hepatic LDL receptor. Elevated cholesterol concentrations in LDL in hypothyroidism probably result from a primary defect in the expression of the hepatic receptor, rather than indirectly via changes in ACAT activity. Images Fig. 1. PMID:2064617

  10. A Systematic Investigation of Structure/Function Requirements for the Apolipoprotein A-I/Lecithin Cholesterol Acyltransferase Interaction Loop of High-density Lipoprotein.

    PubMed

    Gu, Xiaodong; Wu, Zhiping; Huang, Ying; Wagner, Matthew A; Baleanu-Gogonea, Camelia; Mehl, Ryan A; Buffa, Jennifer A; DiDonato, Anthony J; Hazen, Leah B; Fox, Paul L; Gogonea, Valentin; Parks, John S; DiDonato, Joseph A; Hazen, Stanley L

    2016-03-18

    The interaction of lecithin-cholesterol acyltransferase (LCAT) with apolipoprotein A-I (apoA-I) plays a critical role in high-density lipoprotein (HDL) maturation. We previously identified a highly solvent-exposed apoA-I loop domain (Leu(159)-Leu(170)) in nascent HDL, the so-called "solar flare" (SF) region, and proposed that it serves as an LCAT docking site (Wu, Z., Wagner, M. A., Zheng, L., Parks, J. S., Shy, J. M., 3rd, Smith, J. D., Gogonea, V., and Hazen, S. L. (2007) Nat. Struct. Mol. Biol. 14, 861-868). The stability and role of the SF domain of apoA-I in supporting HDL binding and activation of LCAT are debated. Here we show by site-directed mutagenesis that multiple residues within the SF region (Pro(165), Tyr(166), Ser(167), and Asp(168)) of apoA-I are critical for both LCAT binding to HDL and LCAT catalytic efficiency. The critical role for possible hydrogen bond interaction at apoA-I Tyr(166) was further supported using reconstituted HDL generated from apoA-I mutants (Tyr(166) → Glu or Asn), which showed preservation in both LCAT binding affinity and catalytic efficiency. Moreover, the in vivo functional significance of NO2-Tyr(166)-apoA-I, a specific post-translational modification on apoA-I that is abundant within human atherosclerotic plaque, was further investigated by using the recombinant protein generated from E. coli containing a mutated orthogonal tRNA synthetase/tRNACUA pair enabling site-specific insertion of the unnatural amino acid into apoA-I. NO2-Tyr(166)-apoA-I, after subcutaneous injection into hLCAT(Tg/Tg), apoA-I(-/-) mice, showed impaired LCAT activation in vivo, with significant reduction in HDL cholesteryl ester formation. The present results thus identify multiple structural features within the solvent-exposed SF region of apoA-I of nascent HDL essential for optimal LCAT binding and catalytic efficiency. PMID:26797122

  11. Identification of the interaction site within acyl-CoA:cholesterol acyltransferase 2 for the isoform-specific inhibitor pyripyropene A.

    PubMed

    Das, Akash; Davis, Matthew A; Tomoda, Hiroshi; Omura, Satoshi; Rudel, Lawrence L

    2008-04-18

    Targeted deletion of acyl-CoA:cholesterol acyltransferase 2 (ACAT2) (A2), especially in the liver, protects hyperlipidemic mice from diet-induced hypercholesterolemia and atherosclerosis, whereas the deletion of ACAT1 (A1) is not as effective, suggesting ACAT2 may be the more appropriate target for treatment of atherosclerosis. Among the numerous ACAT inhibitors known, pyripyropene A (PPPA) is the only compound that has high selectivity (>2000-fold) for inhibition of ACAT2 compared with ACAT1. In the present study we sought to determine the PPPA interaction site of ACAT2. To achieve this goal we made several chimeric proteins where parts of ACAT2 were replaced by the analogous region of ACAT1. Differences in the amino acid sequence and the membrane topology were utilized to design the chimeras. Among chimeras, A2:1-428/A1:444-550 had 50% reduced PPPA selectivity, whereas C-terminal-truncated ACAT2 mutant A2:1-504 (C-terminal last 22 amino acids were deleted) remained selectively inhibited, indicating the PPPA-sensitive site is located within a region between amino acids 440 and 504. Three additional chimeras within this region helped narrow down the PPPA-sensitive site to a region containing amino acids 480-504, representing the fifth putative transmembrane domain of ACAT2. Subsequently, for this region we made single amino acid mutants where each amino acid in ACAT2 was individually changed to its ACAT1 counterpart. Mutation of Q492L, V493L, S494A resulted in only 30, 50, and 70% inhibition of the activity by PPPA, respectively (as opposed to greater than 95% with the wild type enzyme), suggesting these three residues are responsible for the selective inhibition by PPPA of ACAT2. Additionally, we found that PPPA non-covalently interacts with ACAT2 apparently without altering the oligomeric structure of the protein. The present study provides the first evidence for a unique motif in ACAT2 that can be utilized for making an ACAT2-specific drug. PMID:18285335

  12. Identification of the Interaction Site within Acyl-CoA:Cholesterol Acyltransferase 2 for the Isoform-specific Inhibitor Pyripyropene A*S⃞

    PubMed Central

    Das, Akash; Davis, Matthew A.; Tomoda, Hiroshi; Ômura, Satoshi; Rudel, Lawrence L.

    2008-01-01

    Targeted deletion of acyl-CoA:cholesterol acyltransferase 2 (ACAT2) (A2), especially in the liver, protects hyperlipidemic mice from diet-induced hypercholesterolemia and atherosclerosis, whereas the deletion of ACAT1 (A1) is not as effective, suggesting ACAT2 may be the more appropriate target for treatment of atherosclerosis. Among the numerous ACAT inhibitors known, pyripyropene A (PPPA) is the only compound that has high selectivity (>2000-fold) for inhibition of ACAT2 compared with ACAT1. In the present study we sought to determine the PPPA interaction site of ACAT2. To achieve this goal we made several chimeric proteins where parts of ACAT2 were replaced by the analogous region of ACAT1. Differences in the amino acid sequence and the membrane topology were utilized to design the chimeras. Among chimeras, A2:1–428/A1:444–550 had 50% reduced PPPA selectivity, whereas C-terminal-truncated ACAT2 mutant A2:1–504 (C-terminal last 22 amino acids were deleted) remained selectively inhibited, indicating the PPPA-sensitive site is located within a region between amino acids 440 and 504. Three additional chimeras within this region helped narrow down the PPPA-sensitive site to a region containing amino acids 480–504, representing the fifth putative transmembrane domain of ACAT2. Subsequently, for this region we made single amino acid mutants where each amino acid in ACAT2 was individually changed to its ACAT1 counterpart. Mutation of Q492L, V493L, S494A resulted in only 30, 50, and 70% inhibition of the activity by PPPA, respectively (as opposed to greater than 95% with the wild type enzyme), suggesting these three residues are responsible for the selective inhibition by PPPA of ACAT2. Additionally, we found that PPPA non-covalently interacts with ACAT2 apparently without altering the oligomeric structure of the protein. The present study provides the first evidence for a unique motif in ACAT2 that can be utilized for making an ACAT2-specific drug. PMID:18285335

  13. Purification of Recombinant Acyl-Coenzyme A:Cholesterol Acyltransferase 1 (ACAT1) from H293 Cells and Binding Studies Between the Enzyme and Substrates Using Difference Intrinsic Fluorescence Spectroscopy†

    PubMed Central

    Chang, Catherine CY; Miyazaki, Akira; Dong, Ruhong; Kheirollah, Alireza; Yu, Chunjiang; Geng, Yong; Higgs, Henry N; Chang, Ta-Yuan

    2010-01-01

    Acyl-coenzyme A:cholesterol acyltransferase 1 (ACAT1) is a membrane bound enzyme utilizing long-chain fatty acyl-coenzyme A and cholesterol to form cholesteryl esters and coenzyme A. Previously, we had expressed tagged human ACAT1 (hACAT1) in CHO cells and purified it to homogeneity; however, only a sparse amount of purified protein could be obtained. Here we report that the hACAT1 expression level in H293 cells is 18-fold higher than that in CHO cells. We have developed a milder purification procedure to purify the enzyme to homogeneity. The abundance of the purified protein enabled us to conduct difference intrinsic fluorescence spectroscopy to study the binding between the enzyme and its substrates in CHAPS/phospholipid mixed micelles. The results show that oleoyl CoA binds to ACAT1 with Kd=1.9 μM, and elicits significant structural changes of the protein as manifested by the significantly positive changes in its fluorescence spectrum; stearoyl CoA elicits a similar spectrum change with much lower in magnitude. Previously, kinetic studies had shown that cholesterol is an efficient substrate and an allosteric activator of ACAT1, while its diastereomer epicholesterol is neither a substrate nor an activator. Here we show that both cholesterol and epicholesterol induce positive changes in the ACAT1 fluorescence spectrum; however, the magnitude of spectrum changes induced by cholesterol is much larger than epicholesterol. These results show that stereospecificity, governed by the 3beta-OH moiety in steroid ring A, plays an important role in the binding of cholesterol to ACAT1. PMID:20964445

  14. Deletion of sterol O-acyltransferase 2 (SOAT2) function in mice deficient in lysosomal acid lipase (LAL) dramatically reduces esterified cholesterol sequestration in the small intestine and liver

    PubMed Central

    Lopez, Adam M.; Posey, Kenneth S.; Turley, Stephen D.

    2014-01-01

    Sterol O-acyltransferase 2 (SOAT2), also known as ACAT2, is the major cholesterol esterifying enzyme in the liver and small intestine (SI). Esterified cholesterol (EC) carried in certain classes of plasma lipoproteins is hydrolyzed by lysosomal acid lipase (LAL) when they are cleared from the circulation. Loss-of-function mutations in LIPA, the gene that encodes LAL, result in Wolman disease (WD) or cholesteryl ester storage disease (CESD). Hepatomegaly and a massive increase in tissue EC levels are hallmark features of both disorders. While these conditions can be corrected with enzyme replacement therapy, the question arose as to what effect the loss of SOAT2 function might have on tissue EC sequestration in LAL-deficient mice. When weaned at 21 days, Lal−/−:Soat2+/+ mice had a whole liver cholesterol content (mg/organ) of 24.7 mg vs. 1.9 mg in Lal+/+:Soat2+/+ littermates, with almost all the excess sterol being esterified. Over the next 31 days, liver cholesterol content in the Lal−/−:Soat2+/+ mice increased to 145 ± 2 mg but to only 29 ± 2 mg in their Lal−/−:Soat2−/− littermates. The level of EC accumulation in the SI of the Lal−/−:Soat2−/− mice was also much less than in their Lal−/−:Soat2+/+ littermates. In addition, there was a >70% reduction in plasma transaminase activities in the Lal−/−:Soat2−/− mice. These studies illustrate how the severity of disease in a mouse model for CESD can be substantially ameliorated by elimination of SOAT2 function. PMID:25450374

  15. The myocardial infarct size-limiting and antiarrhythmic effects of acyl-CoA:cholesterol acyltransferase inhibitor VULM 1457 protect the hearts of diabetic-hypercholesterolaemic rats against ischaemia/reperfusion injury both in vitro and in vivo.

    PubMed

    Adameová, Adriana; Ravingerová, Tána; Svec, Pavel; Faberová, Viera; Kuzelová, Magdaléna

    2007-12-01

    The study was designed to characterise the influence of a novel acyl-CoA:cholesterol acyltransferase inhibitor, VULM 1457, on the severity of myocardial ischaemia-reperfusion injury in a model of diabetes mellitus and hypercholesterolaemia induced by co-administration of streptozotocin and a high fat-cholesterol diet. We used Langendorff-perfused rat hearts to measure the size of myocardial infarction after 30 min of regional ischaemia, followed by a 2-h reperfusion period, and open-chest rats were exposed to 6 min of ischaemia and 10 min of reperfusion to analyse ventricular arrhythmias. In addition to the high fat-cholesterol diet, VULM 1457 was administered to the diabetic-hypercholesterolaemic rats for 5 days. Decreased plasma and liver cholesterol levels and a significantly reduced occurrence of ventricular fibrillation (29% vs. 100%, P<0.01), determined via the mean number and duration of episodes (0.6+/-0.4 and 2.1+/-1.4 s vs. 2.8+/-0.8 and 53.5+/-14.4 s in diabetic-hypercholesterolaemic rats, both P<0.01), were observed in these animals. Lethal ventricular fibrillation was suppressed, and arrhythmia severity was also significantly decreased in these animals as compared to the non-treated animals (2.9+/-0.6 vs. 4.9+/-0.2; P<0.05). A smaller infarct size, normalised to the size of area at risk, was observed in the treated diabetic-hypercholesterolaemic group as compared to the non-treated group (16.3+/-1.9% vs. 37.3+/-3.1%; P<0.01). Aside from remarkable hypolipidaemic activity, VULM 1457 improved the overall myocardial ischaemia-reperfusion injury outcomes in the diabetic-hypercholesterolaemic rats by suppressing arrhythmogenesis as well as by reducing myocardial necrosis. PMID:17764671

  16. Discovery of a novel acyl-CoA: cholesterol acyltransferase inhibitor: the synthesis, biological evaluation, and reduced adrenal toxicity of (4-phenylcoumarin)acetanilide derivatives with a carboxylic acid moiety.

    PubMed

    Ogino, Masaki; Nakada, Yoshihisa; Negoro, Nobuyuki; Itokawa, Shigekazu; Nishimura, Satoshi; Sanada, Tsukasa; Satomi, Tomoko; Kita, Shunbun; Kubo, Kazuki; Marui, Shogo

    2011-01-01

    As a part of our research for novel potent and orally available acyl-CoA: cholesterol acyltransferase (ACAT) inhibitors that can be used as anti-atherosclerotic agents, we recently reported the discovery of the (4-phenylcoumarine)acetanilide derivative 1. However, compound 1 showed adrenal toxicity in animal models. In order to search for safer ACAT inhibitors that do not have adrenal toxicity, we examined the inhibitory activity of ACAT in human macrophage and adrenal cells. The introduction of a carboxylic acid moiety on the pendant phenyl ring and the adjustment of the lipophilicity led to the discovery of (2E)-3-[7-chloro-3-[2-[[4-fluoro-2-(trifluoromethyl)phenyl]amino]-2-oxoethyl]-6-methyl-2-oxo-2H-chromen-4-yl]phenyl]acrylic acid (21e), which showed potent ACAT inhibitory activity in macrophages and a selectivity of around 30-fold over adrenal cells. In addition, compound 21e showed high adrenal safety in guinea pigs. PMID:22041073

  17. Acyl-coenzyme A:cholesterol acyltransferase 1 blockage enhances autophagy in the neurons of triple transgenic Alzheimer's disease mouse and reduces human P301L-tau content at the presymptomatic stage.

    PubMed

    Shibuya, Yohei; Niu, Zhaoyang; Bryleva, Elena Y; Harris, Brent T; Murphy, Stephanie R; Kheirollah, Alireza; Bowen, Zachary D; Chang, Catherine C Y; Chang, Ta-Yuan

    2015-07-01

    Patients with Alzheimer's disease (AD) display amyloidopathy and tauopathy. In mouse models of AD, pharmacological inhibition using small molecule enzyme inhibitors or genetic inactivation of acyl-coenzyme A (Acyl-CoA):cholesterol acyltransferase 1 (ACAT1) diminished amyloidopathy and restored cognitive deficits. In microglia, ACAT1 blockage increases autophagosome formation and stimulates amyloid β peptide1-42 degradation. Here, we hypothesize that in neurons ACAT1 blockage augments autophagy and increases autophagy-mediated degradation of P301L-tau protein. We tested this possibility in murine neuroblastoma cells ectopically expressing human tau and in primary neurons isolated from triple transgenic AD mice that express mutant forms of amyloid precursor protein, presenilin-1, and human tau. The results show that ACAT1 blockage increases autophagosome formation and decreases P301L-tau protein content without affecting endogenous mouse tau protein content. In vivo, lacking Acat1 decreases P301L-tau protein content in the brains of young triple transgenic AD mice but not in those of old mice, where extensive hyperphosphorylations and aggregation of P301L-tau take place. These results suggest that, in addition to ameliorating amyloidopathy in both young and old AD mice, ACAT1 blockage may benefit AD by reducing tauopathy at early stage. PMID:25930235

  18. Haptoglobin binding to apolipoprotein A-I prevents damage from hydroxyl radicals on its stimulatory activity of the enzyme lecithin-cholesterol acyl-transferase.

    PubMed

    Salvatore, Alfonso; Cigliano, Luisa; Bucci, Enrico M; Corpillo, Davide; Velasco, Silvia; Carlucci, Alessandro; Pedone, Carlo; Abrescia, Paolo

    2007-10-01

    Apolipoprotein A-I (ApoA-I), a major component of HDL, binds haptoglobin, a plasma protein transporting to liver or macrophages free Hb for preventing hydroxyl radical production. This work aimed to assess whether haptoglobin protects ApoA-I against this radical. Human ApoA-I structure, as analyzed by electrophoresis and MS, was found severely altered by hydroxyl radicals in vitro. Lower alteration of ApoA-I was found when HDL was oxidized in the presence of haptoglobin. ApoA-I oxidation was limited also when the complex of haptoglobin with both high-density lipoprotein and Hb, immobilized on resin beads, was exposed to hydroxyl radicals. ApoA-I function to stimulate cholesterol esterification was assayed in vitro by using ApoA-I-containing liposomes. Decreased stimulation was observed when liposomes oxidized without haptoglobin were used. Conversely, after oxidative stress in the presence of haptoglobin (0.5 microM monomer), the liposome activity did not change. Plasma of carrageenan-treated mice was analyzed by ELISA for the levels of haptoglobin and ApoA-I, and used to isolate HDL for MS analysis. Hydroxyproline-containing fragments of ApoA-I were found associated with low levels of haptoglobin (18 microM monomer), whereas they were not detected when the haptoglobin level increased (34-70 microM monomer). Therefore haptoglobin, when circulating at enhanced levels with free Hb during the acute phase of inflammation, might protect ApoA-I structure and function against hydroxyl radicals. PMID:17824618

  19. Bioengineering recombinant diacylglycerol acyltransferases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diacylglycerol acyltransferases (DGATs) catalyze the last and rate-limiting step of triacylglycerol (TAG) biosynthesis in eukaryotic organisms. At least 115 DGAT sequences are identified from 69 organisms in the GenBank databases. Only a few papers have been published in the last 28 years on the exp...

  20. Acyltransferases in bacteria.

    PubMed

    Röttig, Annika; Steinbüchel, Alexander

    2013-06-01

    Long-chain-length hydrophobic acyl residues play a vital role in a multitude of essential biological structures and processes. They build the inner hydrophobic layers of biological membranes, are converted to intracellular storage compounds, and are used to modify protein properties or function as membrane anchors, to name only a few functions. Acyl thioesters are transferred by acyltransferases or transacylases to a variety of different substrates or are polymerized to lipophilic storage compounds. Lipases represent another important enzyme class dealing with fatty acyl chains; however, they cannot be regarded as acyltransferases in the strict sense. This review provides a detailed survey of the wide spectrum of bacterial acyltransferases and compares different enzyme families in regard to their catalytic mechanisms. On the basis of their studied or assumed mechanisms, most of the acyl-transferring enzymes can be divided into two groups. The majority of enzymes discussed in this review employ a conserved acyltransferase motif with an invariant histidine residue, followed by an acidic amino acid residue, and their catalytic mechanism is characterized by a noncovalent transition state. In contrast to that, lipases rely on completely different mechanism which employs a catalytic triad and functions via the formation of covalent intermediates. This is, for example, similar to the mechanism which has been suggested for polyester synthases. Consequently, although the presented enzyme types neither share homology nor have a common three-dimensional structure, and although they deal with greatly varying molecule structures, this variety is not reflected in their mechanisms, all of which rely on a catalytically active histidine residue. PMID:23699259

  1. Acyltransferases in Bacteria

    PubMed Central

    Röttig, Annika

    2013-01-01

    SUMMARY Long-chain-length hydrophobic acyl residues play a vital role in a multitude of essential biological structures and processes. They build the inner hydrophobic layers of biological membranes, are converted to intracellular storage compounds, and are used to modify protein properties or function as membrane anchors, to name only a few functions. Acyl thioesters are transferred by acyltransferases or transacylases to a variety of different substrates or are polymerized to lipophilic storage compounds. Lipases represent another important enzyme class dealing with fatty acyl chains; however, they cannot be regarded as acyltransferases in the strict sense. This review provides a detailed survey of the wide spectrum of bacterial acyltransferases and compares different enzyme families in regard to their catalytic mechanisms. On the basis of their studied or assumed mechanisms, most of the acyl-transferring enzymes can be divided into two groups. The majority of enzymes discussed in this review employ a conserved acyltransferase motif with an invariant histidine residue, followed by an acidic amino acid residue, and their catalytic mechanism is characterized by a noncovalent transition state. In contrast to that, lipases rely on completely different mechanism which employs a catalytic triad and functions via the formation of covalent intermediates. This is, for example, similar to the mechanism which has been suggested for polyester synthases. Consequently, although the presented enzyme types neither share homology nor have a common three-dimensional structure, and although they deal with greatly varying molecule structures, this variety is not reflected in their mechanisms, all of which rely on a catalytically active histidine residue. PMID:23699259

  2. D38-cholesterol as a Raman active probe for imaging intracellular cholesterol storage.

    PubMed

    Alfonso-García, Alba; Pfisterer, Simon G; Riezman, Howard; Ikonen, Elina; Potma, Eric O

    2016-06-01

    We generated a highly deuterated cholesterol analog (D38-cholesterol) and demonstrated its use for selective vibrational imaging of cholesterol storage in mammalian cells. D38-cholesterol produces detectable signals in stimulated Raman scattering (SRS) imaging, is rapidly taken up by cells, and is efficiently metabolized by acyl-CoA cholesterol acyltransferase to form cholesteryl esters. Using hyperspectral SRS imaging of D38-cholesterol, we visualized cholesterol storage in lipid droplets. We found that some lipid droplets accumulated preferentially unesterified D38-cholesterol, whereas others stored D38-cholesteryl esters. In steroidogenic cells, D38-cholesteryl esters and triacylglycerols were partitioned into distinct sets of lipid droplets. Thus, hyperspectral SRS imaging of D38-cholesterol demonstrates a heterogeneous incorporation of neutral lipid species, i.e., free cholesterol, cholesteryl esters, and triacylglycerols, between individual lipid droplets in a cell. PMID:26719944

  3. D38-cholesterol as a Raman active probe for imaging intracellular cholesterol storage

    NASA Astrophysics Data System (ADS)

    Alfonso-García, Alba; Pfisterer, Simon G.; Riezman, Howard; Ikonen, Elina; Potma, Eric O.

    2016-06-01

    We generated a highly deuterated cholesterol analog (D38-cholesterol) and demonstrated its use for selective vibrational imaging of cholesterol storage in mammalian cells. D38-cholesterol produces detectable signals in stimulated Raman scattering (SRS) imaging, is rapidly taken up by cells, and is efficiently metabolized by acyl-CoA cholesterol acyltransferase to form cholesteryl esters. Using hyperspectral SRS imaging of D38-cholesterol, we visualized cholesterol storage in lipid droplets. We found that some lipid droplets accumulated preferentially unesterified D38-cholesterol, whereas others stored D38-cholesteryl esters. In steroidogenic cells, D38-cholesteryl esters and triacylglycerols were partitioned into distinct sets of lipid droplets. Thus, hyperspectral SRS imaging of D38-cholesterol demonstrates a heterogeneous incorporation of neutral lipid species, i.e., free cholesterol, cholesteryl esters, and triacylglycerols, between individual lipid droplets in a cell.

  4. Sequence analysis of diacylglycerol acyltransferases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diacylglycerol acyltransferases (DGATs) catalyze the final step of triacylglycerol (TAG) biosynthesis in eukaryotes. DGATs esterify sn-1,2-diacylglycerol with a long-chain fatty acyl-CoA. Plants and animals deficient in DGATs accumulate less TAG and over-expression of DGATs increases TAG. DGAT knock...

  5. Rapid labeling of lipoproteins in plasma with radioactive cholesterol. Application for measurement of plasma cholesterol esterification

    SciTech Connect

    Yen, F.T.; Nishida, T. )

    1990-02-01

    In order to efficiently and rapidly label lipoproteins in plasma with ({sup 3}H)cholesterol, micelles consisting of lysophosphatidylcholine (lysoPC) and ({sup 3}H)cholesterol (molar ratio, 50:1) were prepared. When trace amounts of these micelles were injected into plasma, ({sup 3}H)cholesterol rapidly equilibrated among the plasma lipoproteins, as compared to ({sup 3}H)cholesterol from an albumin-stabilized emulsion. The distributions of both ({sup 3}H)cholesterol and unlabeled free cholesterol in plasma lipoproteins were similar in labeled plasma samples. This method of labeling can be used for the measurement of cholesterol esterification, or lecithin:cholesterol acyltransferase activity, in small amounts (20-40 microliters) of plasma samples.

  6. Membrane topology of hedgehog acyltransferase.

    PubMed

    Matevossian, Armine; Resh, Marilyn D

    2015-01-23

    Hedgehog acyltransferase (Hhat) is a multipass transmembrane enzyme that mediates the covalent attachment of the 16-carbon fatty acid palmitate to the N-terminal cysteine of Sonic Hedgehog (Shh). Palmitoylation of Shh by Hhat is critical for short and long range signaling. Knowledge of the topological organization of Hhat transmembrane helices would enhance our understanding of Hhat-mediated Shh palmitoylation. Bioinformatics analysis of transmembrane domains within human Hhat using 10 different algorithms resulted in highly consistent predictions in the C-terminal, but not in the N-terminal, region of Hhat. To empirically determine the topology of Hhat, we designed and exploited Hhat constructs containing either terminal or 12 different internal epitope tags. We used selective permeabilization coupled with immunofluorescence as well as a protease protection assay to demonstrate that Hhat contains 10 transmembrane domains and 2 re-entrant loops. The invariant His and highly conserved Asp residues within the membrane-bound O-acyltransferase (MBOAT) homology domain are segregated on opposite sides of the endoplasmic reticulum membrane. The localization of His-379 on the lumenal membrane surface is consistent with a role for this invariant residue in catalysis. Analysis of the activity and stability of the Hhat constructs revealed that the C-terminal MBOAT domain is especially sensitive to manipulation. Moreover, there was remarkable similarity in the overall topological organization of Hhat and ghrelin O-acyltransferase, another MBOAT family member. Knowledge of the topological organization of Hhat could serve as an important tool for further design of selective Hhat inhibitors. PMID:25488661

  7. What's Cholesterol?

    MedlinePlus

    ... Most cholesterol is LDL (low-density lipoprotein) cholesterol. LDL cholesterol is more likely to clog blood vessels because ... Here's a way to remember the difference: the LDL cholesterol is the bad kind, so call it "lousy" ...

  8. Serine carboxypeptidase-like acyltransferases from plants.

    PubMed

    Mugford, Sam T; Milkowski, Carsten

    2012-01-01

    Serine carboxypeptidase-like (SCPL) acyltransferases facilitate transacylation reactions using energy-rich 1-O-β-glucose esters in the synthesis of an array of bioactive compounds and are associated with the diversification of plant natural products. SCPL acyltransferases have evolved from a hydrolytic ancestor by adapting functional elements of the proteases such as the catalytic triad, oxyanion hole, and substrate recognition H-bond network to their new function. As vacuolar proteins, SCPL acyltransferases define an alternative cellular route of transacylation spatially separated from the cytoplasmic enzymes of the BAHD acyltransferase family named according to the first characterized members (BEAT, AHCT, HCBT, and DAT). Recent efforts in cloning and characterization led to the identification of diagnostic peptides for SCPL acyltransferases, enabling the detection of candidate genes in several plant genomes. Detailed biochemical analysis of SCPL acyltransferases is strongly dependent on comprehensive heterologous expression systems, efficient protein purification protocols, and the supply of appropriate substrates. This chapter describes some useful techniques and strategies for identification and characterization of SCPL acyltransferases. PMID:23034234

  9. Topological Analysis of Hedgehog Acyltransferase, a Multipalmitoylated Transmembrane Protein*

    PubMed Central

    Konitsiotis, Antonio D.; Jovanović, Biljana; Ciepla, Paulina; Spitaler, Martin; Lanyon-Hogg, Thomas; Tate, Edward W.; Magee, Anthony I.

    2015-01-01

    Hedgehog proteins are secreted morphogens that play critical roles in development and disease. During maturation of the proteins through the secretory pathway, they are modified by the addition of N-terminal palmitic acid and C-terminal cholesterol moieties, both of which are critical for their correct function and localization. Hedgehog acyltransferase (HHAT) is the enzyme in the endoplasmic reticulum that palmitoylates Hedgehog proteins, is a member of a small subfamily of membrane-bound O-acyltransferase proteins that acylate secreted proteins, and is an important drug target in cancer. However, little is known about HHAT structure and mode of function. We show that HHAT is comprised of ten transmembrane domains and two reentrant loops with the critical His and Asp residues on opposite sides of the endoplasmic reticulum membrane. We further show that HHAT is palmitoylated on multiple cytosolic cysteines that maintain protein structure within the membrane. Finally, we provide evidence that mutation of the conserved His residue in the hypothesized catalytic domain results in a complete loss of HHAT palmitoylation, providing novel insights into how the protein may function in vivo. PMID:25505265

  10. Topological analysis of Hedgehog acyltransferase, a multipalmitoylated transmembrane protein.

    PubMed

    Konitsiotis, Antonio D; Jovanović, Biljana; Ciepla, Paulina; Spitaler, Martin; Lanyon-Hogg, Thomas; Tate, Edward W; Magee, Anthony I

    2015-02-01

    Hedgehog proteins are secreted morphogens that play critical roles in development and disease. During maturation of the proteins through the secretory pathway, they are modified by the addition of N-terminal palmitic acid and C-terminal cholesterol moieties, both of which are critical for their correct function and localization. Hedgehog acyltransferase (HHAT) is the enzyme in the endoplasmic reticulum that palmitoylates Hedgehog proteins, is a member of a small subfamily of membrane-bound O-acyltransferase proteins that acylate secreted proteins, and is an important drug target in cancer. However, little is known about HHAT structure and mode of function. We show that HHAT is comprised of ten transmembrane domains and two reentrant loops with the critical His and Asp residues on opposite sides of the endoplasmic reticulum membrane. We further show that HHAT is palmitoylated on multiple cytosolic cysteines that maintain protein structure within the membrane. Finally, we provide evidence that mutation of the conserved His residue in the hypothesized catalytic domain results in a complete loss of HHAT palmitoylation, providing novel insights into how the protein may function in vivo. PMID:25505265

  11. Regulation of biliary cholesterol secretion in the rat. Role of hepatic cholesterol esterification.

    PubMed Central

    Nervi, F; Bronfman, M; Allalón, W; Depiereux, E; Del Pozo, R

    1984-01-01

    Although the significance of the enterohepatic circulation of bile salts in the solubilization and biliary excretion of cholesterol is well established, little is known about the intrahepatic determinants of biliary cholesterol output. Studies were undertaken to elucidate some of these determinants in the rat. Feeding 1% diosgenin for 1 wk increased biliary cholesterol output and saturation by 400%. Bile flow, biliary bile salt, phospholipid and protein outputs remained in the normal range. When ethynyl estradiol (EE) was injected into these animals, biliary cholesterol output decreased to almost normal levels under circumstances of minor changes in the rates of biliary bile salt and phospholipid outputs. Similarly, when chylomicron cholesterol was intravenously injected into diosgenin-fed animals, biliary cholesterol output significantly decreased as a function of the dose of chylomicron cholesterol administered. Relative rates of hepatic cholesterol synthesis and esterification were measured in isolated hepatocytes. Although hepatic cholesterogenesis increased 300% in diosgenin-fed animals, the contribution of newly synthesized cholesterol to total biliary cholesterol output was only 19 +/- 9%, compared with 12 +/- 6% in control and 15 +/- 5% in diosgenin-fed and EE-injected rats. The rate of oleate incorporation into hepatocytic cholesterol esters was 30% inhibited in diosgenin-fed rats. When EE was injected into these animals, the rate of cholesterol esterification increased to almost 300%. To investigate further the interrelationship between hepatic cholesterol esterification and biliary cholesterol output, we studied 21 diosgenin-fed rats. Six of them received in addition EE and 10 received chylomicron cholesterol. The relationships between biliary cholesterol output as a function of both microsomal acyl-CoA:cholesterol acyltransferase (ACAT) activity and hepatic cholesterol ester concentration were significantly correlated in a reciprocal manner. From these

  12. About Cholesterol

    MedlinePlus

    ... High Blood Pressure Tools & Resources Stroke More About Cholesterol Updated:Aug 10,2016 It may surprise you ... our bodies to keep us healthy. What is cholesterol and where does it come from? Cholesterol is ...

  13. Cholesterol absorption.

    PubMed

    Ostlund, Richard E

    2002-03-01

    Cholesterol absorption is a key regulatory point in human lipid metabolism because it determines the amount of endogenous biliary as well as dietary cholesterol that is retained, thereby influencing whole body cholesterol balance. Plant sterols (phytosterols) and the drug ezetimibe reduce cholesterol absorption and low-density lipoprotein cholesterol in clinical trials, complementing the statin drugs, which inhibit cholesterol biosynthesis. The mechanism of cholesterol absorption is not completely known but involves the genes ABC1, ABCG5, and ABCG8, which are members of the ATP-binding cassette protein family and appear to remove unwanted cholesterol and phytosterols from the enterocyte. ABC1 is upregulated by the liver X (LXR) and retinoid X (RXR) nuclear receptors. Acylcholesterol acytransferase-2 is an intestinal enzyme that esterifies absorbed cholesterol and increases cholesterol absorption when dietary intake is high. New clinical treatments based on better understanding of absorption physiology are likely to substantially improve clinical cholesterol management in the future. PMID:17033296

  14. Macrophage-mediated cholesterol handling in atherosclerosis.

    PubMed

    Chistiakov, Dimitry A; Bobryshev, Yuri V; Orekhov, Alexander N

    2016-01-01

    Formation of foam cells is a hallmark at the initial stages of atherosclerosis. Monocytes attracted by pro-inflammatory stimuli attach to the inflamed vascular endothelium and penetrate to the arterial intima where they differentiate to macrophages. Intimal macrophages phagocytize oxidized low-density lipoproteins (oxLDL). Several scavenger receptors (SR), including CD36, SR-A1 and lectin-like oxLDL receptor-1 (LOX-1), mediate oxLDL uptake. In late endosomes/lysosomes of macrophages, oxLDL are catabolysed. Lysosomal acid lipase (LAL) hydrolyses cholesterol esters that are enriched in LDL to free cholesterol and free fatty acids. In the endoplasmic reticulum (ER), acyl coenzyme A: cholesterol acyltransferase-1 (ACAT1) in turn catalyses esterification of cholesterol to store cholesterol esters as lipid droplets in the ER of macrophages. Neutral cholesteryl ester hydrolases nCEH and NCEH1 are involved in a secondary hydrolysis of cholesterol esters to liberate free cholesterol that could be then out-flowed from macrophages by cholesterol ATP-binding cassette (ABC) transporters ABCA1 and ABCG1 and SR-BI. In atherosclerosis, disruption of lipid homoeostasis in macrophages leads to cholesterol accumulation and formation of foam cells. PMID:26493158

  15. Expression and purification of diacylglycerol acyltransferases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diacylglycerol acyltransferases (DGATs) are integral membrane proteins that catalyze the last step of triacylglycerol (TAG) biosynthesis in eukaryotic organisms. Plants and animals deficient in DGATs accumulate less TAG and over-expression of DGATs increases TAG. DGAT knockout mice are resistant to ...

  16. Bioengineering recombinant tung tree diacylglycerol acyltransferases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding plant oil biosynthesis will help to create new oilseed crops with value-added properties to replace petroleum-based compounds. Diacylglycerol acyltransferases (DGATs) are key enzymes catalyzing the last step of triacylglycerol (TAG) biosynthesis in eukaryotes. Plants and animals defici...

  17. Synthesis of Novel Acylglycerol Substrates for Acyltransferases.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    1,2-Diacylglycerols (DG) are the native substrates for the diacylglycerol acyltransferase (DGAT). It is difficult to chemically synthesize DG containing hydroxy fatty acids in specific positions on the glycerol backbone. An alternate approach is to start from acylglycerols containing hydroxy fatty...

  18. Cholesterol (image)

    MedlinePlus

    Cholesterol is a soft, waxy substance that is present in all parts of the body including the ... and obtained from animal products in the diet. Cholesterol is manufactured in the liver and is needed ...

  19. Regulation of cholesterol esterification by protein kinase C

    SciTech Connect

    Jeng, I.; Dills, C.; Klemm, N.; Wu, C.

    1986-03-05

    They have recently identified acyl-CoA cholesterol acyltransferase as the key enzyme for cholesterol esterification in the central nervous system. They found that the activity of glial acyl-CoA cholesterol acyltransferase could be controlled by a phosphorylation-dephosphorylation mechanism. However, repeated attempts to identify cyclic AMP as the bioregulator for this reaction failed. Recently, they have studied the possible involvement of protein kinase C in the regulation of glial cholesterol esterification. Phorbol-12-myristate 13-acetate (PMA) can activate cellular cholesterol esterification in a complex, time-dependent manner. Phorbol analogues inactive toward protein kinase C are also ineffective in this assay. Furthermore, oleoyl-acetyl-glycerol mimics the effect of PMA, confirming the proposal that protein kinase C mediates the effect of these compounds and that the natural bioregulator is probably diacylglycerol. Receptor-mediated polyphosphatidyl-inositol cleavage often produces diacylglycerol and inositol triphosphate. The synergic effects of these two compounds are known to be necessary to elicit other biological responses. Their preliminary studies using calcium ionophore A23187 indicates that Ca/sup + +/ is not required for cellular cholesterol esterification. In sum, glial cholesterol esterification is probably regulated by a calcium-independent and protein kinase C-dependent reaction.

  20. Membrane bound O-acyltransferases and their inhibitors.

    PubMed

    Masumoto, Naoko; Lanyon-Hogg, Thomas; Rodgers, Ursula R; Konitsiotis, Antonios D; Magee, Anthony I; Tate, Edward W

    2015-04-01

    Since the identification of the membrane-bound O-acyltransferase (MBOATs) protein family in the early 2000s, three distinct members [porcupine (PORCN), hedgehog (Hh) acyltransferase (HHAT) and ghrelin O-acyltransferase (GOAT)] have been shown to acylate specific proteins or peptides. In this review, topology determination, development of assays to measure enzymatic activities and discovery of small molecule inhibitors are compared and discussed for each of these enzymes. PMID:25849925

  1. BROWN ADIPOSE TISSUE FUNCTION IN SHORT-CHAIN ACYL-COA DEHYDROGENASE DEFICIENT MICE

    PubMed Central

    Skilling, Helen; Coen, Paul M.; Fairfull, Liane; Ferrell, Robert E.; Goodpaster, Bret H.; Vockley, Jerry; Goetzman, Eric S.

    2010-01-01

    Brown adipose tissue is a highly specialized organ that uses mitochondrial fatty acid oxidation to fuel nonshivering thermogenesis. In mice, mutations in the acyl-CoA dehydrogenase family of fatty acid oxidation genes are associated with sensitivity to cold. Brown adipose tissue function has not previously been characterized in these knockout strains. Short-chain acyl-CoA dehydrogenase (SCAD) deficient mice were found to have increased brown adipose tissue mass as well as modest cardiac hypertrophy. Uncoupling protein-1 was reduced by 70% in brown adipose tissue and this was not due to a change in mitochondrial number, nor was it due to decreased signal transduction through protein kinase A which is known to be a major regulator of uncoupling protein-1 expression. PKA activity and in vitro lipolysis were normal in brown adipose tissue, although in white adipose tissue a modest increase in basal lipolysis was seen in SCAD−/ − mice. Finally, an in vivo norepinephrine challenge of brown adipose tissue thermogenesis revealed normal heat production in SCAD−/− mice. These results suggest that reduced brown adipose tissue function is not the major factor causing cold sensitivity in acyl-CoA dehydrogenase knockout strains. We speculate that other mechanisms such as shivering capacity, cardiac function, and reduced hepatic glycogen stores are involved. PMID:20727852

  2. EXPRESSION OF TURKEY TRANSCRIPTION FACTORS AND ACYL COA OXIDASE IN DIFFERENT TISSUES AND GENETIC POPULATIONS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several transcription factors are involved in regulating lipid metabolism in various animal tissues. Peroxisome proliferator activated receptor (PPAR) gamma and PPAR alpha regulate both lipogenesis and fatty acid oxidation. Gene fragments for PPAR gamma, PPAR alpha, and acyl CoA oxidase (ACO) have b...

  3. High fat fed heart failure animals have enhanced mitochondrial function and acyl-coa dehydrogenase activities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have previously shown that administration of high fat in heart failure (HF) increased mitochondrial respiration and did not alter left ventricular (LV) function. PPARalpha is a nuclear transcription factor that activates expression of genes involved in fatty acid uptake and utilization. We hypoth...

  4. Protein kinase activators alter glial cholesterol esterification

    SciTech Connect

    Jeng, I.; Dills, C.; Klemm, N.; Wu, C.

    1986-05-01

    Similar to nonneural tissues, the activity of glial acyl-CoA cholesterol acyltransferase is controlled by a phosphorylation and dephosphorylation mechanism. Manipulation of cyclic AMP content did not alter the cellular cholesterol esterification, suggesting that cyclic AMP is not a bioregulator in this case. Therefore, the authors tested the effect of phorbol-12-myristate 13-acetate (PMA) on cellular cholesterol esterification to determine the involvement of protein kinase C. PMA has a potent effect on cellular cholesterol esterification. PMA depresses cholesterol esterification initially, but cells recover from inhibition and the result was higher cholesterol esterification, suggesting dual effects of protein kinase C. Studies of other phorbol analogues and other protein kinase C activators such as merezein indicate the involvement of protein kinase C. Oleoyl-acetyl glycerol duplicates the effect of PMA. This observation is consistent with a diacyl-glycerol-protein kinase-dependent reaction. Calcium ionophore A23187 was ineffective in promoting the effect of PMA. They concluded that a calcium-independent and protein C-dependent pathway regulated glial cholesterol esterification.

  5. Effect of clofibrate on cholesterol metabolism in rats treated with polychlorinated biphenyls

    SciTech Connect

    Nakagawa, M.; Shimokawa, T.; Noguchi, A.; Ishihara, N.; Kojima, S.

    1986-02-01

    Serum and hepatic cholesterol content in rats treated with polychlorinated biphenyls (PCBs, KC-400) were increased compared to those of control rats. This increase of cholesterol content was reduced to control level by simultaneous administration of ethyl p-chlorophenoxyisobutyrate (CPIB). Also, when lecithin-cholesterol acyltransferase (LCAT) activity was expressed as the net cholesterol esterification, the acyltransferase activity in rats treated with PCBs was elevated, while the elevated acyltransferase activity was brought to control level by simultaneous administration of CPIB. On the other hand, the amount of bile of rats treated with CPIB, PCBs and PCBs-CPIB was increased, but free and total cholesterol content in bile of these treated rats was decreased to 40-60% of those of control rats. Moreover, cytochrome P-450 content in liver microsomes of rats treated with CPIB, PCBs and PCBs-CPIB was increased. At the same time, cholesterol-metabolizing activity in liver microsomes of rats treated with CPIB, PCBs and PCBs-CPIB also was elevated. Similar results were obtained for drug metabolizing (aniline hydroxylation and aminopyrine N-demethylation) activity. In addition, the amount of bile acids excreted from rats treated with CPIB, PCBs and PCBs-CPIB was increased compared to that of control rats. These results suggest that hypercholesterolemia induced by oral ingestion of PCBs is recovered by CPIB treatment and that this hypocholesterolemic effect of CPIB may be related partly to the elevation of hepatic mixed function oxidase activity for cholesterol catabolism.

  6. Increased hepatic cholesterol esterification with essential fatty acid deficiency (EFAD): relationship to plasma lipoprotein (LP) cholesterol content

    SciTech Connect

    Ney, D.M.; Ziboh, V.A.; Schneeman, B.O.

    1986-03-01

    EFAD in the rat is associated with hepatic accumulation of esterified cholesterol and altered distribution of cholesterol between plasma and hepatic tissue. Little is known regarding the impact of EFAD on LP composition. To determine the relationship between hepatic cholesterol esterification and plasma lP composition in control (C) and EFAD male Wistar rats, the authors induced EFAD with continuous intragastric (IG) infusion of EFA-free solutions containing 3.5% of calories as triolein for 7 and 14 days. C animals received IG infusion of solutions containing 3.5% of calories as linoleic acid. Data in the EFAD groups reveal: (i) marked decreases in hepatic EFAs and increases in monoenoic acids; (ii) progressive increases in hepatic content of triglyceride and esterified cholesterol with 7 and 14 days of feeding; (iii) assay of acyl CoA:cholesterol acyltransferase activity in hepatic tissue using /sup 14/C-cholesterol demonstrates an increase in hepatic cholesterol esterification when compared to C animals. Increased hepatic cholesterol esterification correlates with elevated levels of esterified cholesterol in plasma VLDL and HDL particles. These data indicate that the elevated levels of cholesterol esters in LP particles is due, at least in part, to increased hepatic cholesterol esterification with EFAD.

  7. TG-interacting factor 1 acts as a transcriptional repressor of sterol O-acyltransferase 2[S

    PubMed Central

    Pramfalk, Camilla; Melhuish, Tiffany A.; Wotton, David; Jiang, Zhao-Yan; Eriksson, Mats; Parini, Paolo

    2014-01-01

    Acat2 [gene name: sterol O-acyltransferase 2 (SOAT2)] esterifies cholesterol in enterocytes and hepatocytes. This study aims to identify repressor elements in the human SOAT2 promoter and evaluate their in vivo relevance. We identified TG-interacting factor 1 (Tgif1) to function as an important repressor of SOAT2. Tgif1 could also block the induction of the SOAT2 promoter activity by hepatocyte nuclear factor 1α and 4α. Women have ∼30% higher hepatic TGIF1 mRNA compared with men. Depletion of Tgif1 in mice increased the hepatic Soat2 expression and resulted in higher hepatic lipid accumulation and plasma cholesterol levels. Tgif1 is a new player in human cholesterol metabolism. PMID:24478032

  8. Taurine ameliorates cholesterol metabolism by stimulating bile acid production in high-cholesterol-fed rats.

    PubMed

    Murakami, Shigeru; Fujita, Michiko; Nakamura, Masakazu; Sakono, Masanobu; Nishizono, Shoko; Sato, Masao; Imaizumi, Katsumi; Mori, Mari; Fukuda, Nobuhiro

    2016-03-01

    This study was designed to investigate the effects of dietary taurine on cholesterol metabolism in high-cholesterol-fed rats. Male Sprague-Dawley rats were randomly divided into two dietary groups (n = 6 in each group): a high-cholesterol diet containing 0.5% cholesterol and 0.15% sodium cholate, and a high-cholesterol diet with 5% (w/w) taurine. The experimental diets were given for 2 weeks. Taurine supplementation reduced the serum and hepatic cholesterol levels by 37% and 32%, respectively. Faecal excretion of bile acids was significantly increased in taurine-treated rats, compared with untreated rats. Biliary bile acid concentrations were also increased by taurine. Taurine supplementation increased taurine-conjugated bile acids by 61% and decreased glycine-conjugated bile acids by 53%, resulting in a significant decrease in the glycine/taurine (G/T) ratio. Among the taurine-conjugated bile acids, cholic acid and deoxycholic acid were significantly increased. In the liver, taurine supplementation increased the mRNA expression and enzymatic activity of hepatic cholesterol 7α-hydroxylase (CYP7A1), the rate-limiting enzyme for bile acid synthesis, by three- and two-fold, respectively. Taurine also decreased the enzymatic activity of acyl-CoA:cholesterol acyltransferase (ACAT) and microsomal triglyceride transfer protein (MTP). These observations suggest that taurine supplementation increases the synthesis and excretion of taurine-conjugated bile acids and stimulates the catabolism of cholesterol to bile acid by elevating the expression and activity of CYP7A1. This may reduce cholesterol esterification and lipoprotein assembly for very low density lipoprotein (VLDL) secretion, leading to reductions in the serum and hepatic cholesterol levels. PMID:26710098

  9. Regulation of cholesterol esterification by micellar cholesterol in CaCo-2 cells.

    PubMed

    Field, F J; Albright, E; Mathur, S N

    1987-09-01

    The regulation of acylcoenzyme A:cholesterol acyltransferase (ACAT) activity by cholesterol was studied in an established enterocyte cell line. CaCo-2 cells were grown in culture to confluency and dome formation. They were characterized morphologically by light and transmission electron microscopy. During the culture period, ACAT activity remained stable while the activities of the brush border enzymes sucrase and alkaline phosphatase progressively increased with time and plateaued 12 days after plating. As determined by the rate of incorporation of oleic acid into the individual lipid classes, the rate of triglyceride synthesis was twice that of phospholipid and 15 times that of cholesteryl ester synthesis in these cells. Incubating CaCo-2 cells with cholesterol solubilized in taurocholate micelles resulted in a significant increase in ACAT activity (149 +/- 5 pmol/dish per 2 hr vs. 366 +/- 5, (P less than 0.001) without changing the rates of triglyceride or phospholipid synthesis. The stimulation of ACAT activity by micellar cholesterol was rapid, occurring within 5 min and reaching a maximal effect by 2 hr. The regulation of ACAT activity by cholesterol was directly dependent upon the concentration of cholesterol solubilized in the micelle and was independent of protein synthesis. Incubating CaCo-2 cells with micellar cholesterol did not increase the esterification of, nor did the cholesterol enter the pool of, newly synthesized or performed cholesterol within 2 hr. The micellar cholesterol that was taken up by the cells was esterified within 5 min after starting the incubation. Progesterone, a known ACAT inhibitor, significantly decreased the rate of esterification of intracellular micellar cholesterol proving that the cholesterol taken up by CaCo-2 cells was indeed entering the ACAT pool. Despite increasing amounts of unesterified cholesterol entering the cells via micelles, the percent of cholesterol that was esterified at any one time remained constant at 1

  10. Structural Basis for the Acyltransferase Activity of Lecithin: Retinol Acyltransferase-like Proteins

    SciTech Connect

    Golczak, Marcin; Kiser, Philip D.; Sears, Avery E.; Lodowski, David T.; Blaner, William S.; Palczewski, Krzysztof

    2012-10-10

    Lecithin:retinol acyltransferase-like proteins, also referred to as HRAS-like tumor suppressors, comprise a vertebrate subfamily of papain-like or NlpC/P60 thiol proteases that function as phospholipid-metabolizing enzymes. HRAS-like tumor suppressor 3, a representative member of this group, plays a key role in regulating triglyceride accumulation and energy expenditure in adipocytes and therefore constitutes a novel pharmacological target for treatment of metabolic disorders causing obesity. Here, we delineate a catalytic mechanism common to lecithin:retinol acyltransferase-like proteins and provide evidence for their alternative robust lipid-dependent acyltransferase enzymatic activity. We also determined high resolution crystal structures of HRAS-like tumor suppressor 2 and 3 to gain insight into their active site architecture. Based on this structural analysis, two conformational states of the catalytic Cys-113 were identified that differ in reactivity and thus could define the catalytic properties of these two proteins. Finally, these structures provide a model for the topology of these enzymes and allow identification of the protein-lipid bilayer interface. This study contributes to the enzymatic and structural understanding of HRAS-like tumor suppressor enzymes.

  11. Soybean oil biosynthesis: role of diacylglycerol acyltransferases.

    PubMed

    Li, Runzhi; Hatanaka, Tomoko; Yu, Keshun; Wu, Yongmei; Fukushige, Hirotada; Hildebrand, David

    2013-03-01

    Diacylglycerol acyltransferase (DGAT) catalyzes the acyl-CoA-dependent acylation of sn-1,2-diacylglycerol to form seed oil triacylglycerol (TAG). To understand the features of genes encoding soybean (Glycine max) DGATs and possible roles in soybean seed oil synthesis and accumulation, two full-length cDNAs encoding type 1 diacylglycerol acyltransferases (GmDGAT1A and GmDGAT1B) were cloned from developing soybean seeds. These coding sequences share identities of 94 % and 95 % in protein and DNA sequences. The genomic architectures of GmDGAT1A and GmDGAT1B both contain 15 introns and 16 exons. Differences in the lengths of the first exon and most of the introns were found between GmDGAT1A and GmDGAT1B genomic sequences. Furthermore, detailed in silico analysis revealed a third predicted DGAT1, GmDGAT1C. GmDGAT1A and GmDGAT1B were found to have similar activity levels and substrate specificities. Oleoyl-CoA and sn-1,2-diacylglycerol were preferred substrates over vernoloyl-CoA and sn-1,2-divernoloylglycerol. Both transcripts are much more abundant in developing seeds than in other tissues including leaves, stem, roots, and flowers. Both soybean DGAT1A and DGAT1B are highly expressed at developing seed stages of maximal TAG accumulation with DGAT1B showing highest expression at somewhat later stages than DGAT1A. DGAT1A and DGAT1B show expression profiles consistent with important roles in soybean seed oil biosynthesis and accumulation. PMID:23322364

  12. Allostery and conformational dynamics in cAMP-binding acyltransferases.

    PubMed

    Podobnik, Marjetka; Siddiqui, Nida; Rebolj, Katja; Nambi, Subhalaxmi; Merzel, Franci; Visweswariah, Sandhya S

    2014-06-01

    Mycobacteria harbor unique proteins that regulate protein lysine acylation in a cAMP-regulated manner. These lysine acyltransferases from Mycobacterium smegmatis (KATms) and Mycobacterium tuberculosis (KATmt) show distinctive biochemical properties in terms of cAMP binding affinity to the N-terminal cyclic nucleotide binding domain and allosteric activation of the C-terminal acyltransferase domain. Here we provide evidence for structural features in KATms that account for high affinity cAMP binding and elevated acyltransferase activity in the absence of cAMP. Structure-guided mutational analysis converted KATms from a cAMP-regulated to a cAMP-dependent acyltransferase and identified a unique asparagine residue in the acyltransferase domain of KATms that assists in the enzymatic reaction in the absence of a highly conserved glutamate residue seen in Gcn5-related N-acetyltransferase-like acyltransferases. Thus, we have identified mechanisms by which properties of similar proteins have diverged in two species of mycobacteria by modifications in amino acid sequence, which can dramatically alter the abundance of conformational states adopted by a protein. PMID:24748621

  13. Thematic Review Series: Glycerolipids. Acyltransferases in bacterial glycerophospholipid synthesis*

    PubMed Central

    Zhang, Yong-Mei; Rock, Charles O.

    2008-01-01

    Phospholipid biosynthesis is a vital facet of bacterial physiology that begins with the synthesis of the fatty acids by a soluble type II fatty acid synthase. The bacterial glycerol-phosphate acyltransferases utilize the completed fatty acid chains to form the first membrane phospholipid and thus play a critical role in the regulation of membrane biogenesis. The first bacterial acyltransferase described was PlsB, a glycerol-phosphate acyltransferase. PlsB is a key regulatory point that coordinates membrane phospholipid formation with cell growth and macromolecular synthesis. Phosphatidic acid is then produced by PlsC, a 1-acylglycerol-phosphate acyltransferase. These two acyltransferases use thioesters of either CoA or acyl carrier protein (ACP) as the acyl donors and have homologs that perform the same reactions in higher organisms. However, the most prevalent glycerol-phosphate acyltransferase in the bacterial world is PlsY, which uses a recently discovered acyl-phosphate fatty acid intermediate as an acyl donor. This unique activated fatty acid is formed from the acyl-ACP end products of the fatty acid biosynthetic pathway by PlsX, an acyl-ACP:phosphate transacylase. PMID:18369234

  14. Effect of 17alpha-ethinylestradiol on activity of rat liver enzymes for synthesis and hydrolysis of cholesterol esters

    SciTech Connect

    Nikitin, Yu.P.; Dushkin, M.I.; Dolgov, A.V.; Gordienko, I.A.

    1987-01-01

    Administration of estrogens is known to lower the concentration of cholesterol esters in the blood vessel wall and may delay the development of arteriosclerosis. It is also known that under the influence of estrogens the redistribution of concentrations of free cholesterol and cholesterol esters takes place in rats between the blood and liver as a result of the intensification of receptor-dependent uptake of low-density lipoproteins by the hepatocytes. The mechanisms of this intracellular redistribution, however, have been inadequately studied. The purpose of this paper is to study the effects of 17alpha-ethinylestradiol on the activity of lysosomal and cytoplasmic cholesterol esterases, acyl-CoA-cholesterol-O-acyltransferase, lysosomal acid phosphatase, and beta-D-galactosidase. The activity was measured by using cholesterol (1-C 14)-oleate as the substrate. The influence of the estradiol is found to be based on cholesterol redistribution between the blood and liver. Accumulation of free cholesterol in the liver under these conditions stimulates bile acid formation. Depression of cholesterol ester synthesis as a result of direct inhibition of the acyltransferase by the estradiol is found to possibly contribute to the fall in the cholesterol level in the body. Liquid scintillation counting was used to measure distribution and accumulation.

  15. Women and Cholesterol

    MedlinePlus

    ... Blood Pressure Tools & Resources Stroke More Women and Cholesterol Updated:Apr 1,2016 The female sex hormone ... Glossary Related Sites Nutrition Center My Life Check Cholesterol • Home • About Cholesterol • Why Cholesterol Matters • Understand Your ...

  16. Cholesterol IQ Quiz

    MedlinePlus

    ... Pressure High Blood Pressure Tools & Resources Stroke More Cholesterol IQ Quiz Updated:Feb 2,2015 Begin the quiz Cholesterol • Home • About Cholesterol Introduction Good vs. Bad Cholesterol ...

  17. Cholesterol esterification during differentiation of mouse erythroleukemia (Friend) cells.

    PubMed

    Mulas, Maria Franca; Mandas, Antonella; Abete, Claudia; Dessì, Sandra; Mocali, Alessandra; Paoletti, Francesco

    2011-08-31

    Cholesterol is an essential constituent of all mammalian cell membranes and its availability is therefore a prerequisite for cellular growth and other functions. Several lines of evidence are now indicating an association between alterations of cholesterol homeostasis and cell cycle progression. However, the role of cholesterol in cell differentiation is still largely unknown. To begin to address this issue, in this study we examined changes in cholesterol metabolism and in the mRNA levels of proteins involved in cholesterol import and esterification (multi-drug resistance, MDR-3) and acylCoA: cholesterol acyltransferase (ACAT) and cholesterol export (caveolin-1) in Friend virus-induced erythroleukemia cells (MELC), in the absence or in the presence of the chemical inducer of differentiation, hexamethylene bisacetamide (HMBA). FBS-stimulated growth of MELC was accompanied by an immediate elevation of cholesterol synthesis and cholesterol esterification, and by an increase in the levels of MDR-3 and ACAT mRNAs. A decrease in caveolin-1 expression was also observed. However, when MELC were treated with HMBA, the inhibition of DNA synthesis caused by HMBA treatment, was associated with a decrease in cholesterol esterification and in ACAT and MDR-3 mRNA levels and an increase in caveolin-1 mRNA. Detection of cytoplasmic neutral lipids by staining MELC with oil red O, a dye able to evidence CE but not FC, revealed that HMBA-treatment also reduced growth-stimulated accumulation of cholesterol ester to approximately the same extent as the ACAT inhibitor, SaH. Overall, these results indicate for the first time a role of cholesterol esterification and of some related genes in differentiation of erythroid cells. PMID:22184540

  18. Cholesterol esterification during differentiation of mouse erythroleukemia (Friend) cells

    PubMed Central

    Mulas, Maria Franca; Mandas, Antonella; Abete, Claudia; Dessì, Sandra; Mocali, Alessandra; Paoletti, Francesco

    2011-01-01

    Cholesterol is an essential constituent of all mammalian cell membranes and its availability is therefore a prerequisite for cellular growth and other functions. Several lines of evidence are now indicating an association between alterations of cholesterol homeostasis and cell cycle progression. However, the role of cholesterol in cell differentiation is still largely unknown. To begin to address this issue, in this study we examined changes in cholesterol metabolism and in the mRNA levels of proteins involved in cholesterol import and esterification (multi-drug resistance, MDR-3) and acylCoA: cholesterol acyltransferase (ACAT) and cholesterol export (caveolin-1) in Friend virus-induced erythroleukemia cells (MELC), in the absence or in the presence of the chemical inducer of differentiation, hexamethylene bisacetamide (HMBA). FBS-stimulated growth of MELC was accompanied by an immediate elevation of cholesterol synthesis and cholesterol esterification, and by an increase in the levels of MDR-3 and ACAT mRNAs. A decrease in caveolin-1 expression was also observed. However, when MELC were treated with HMBA, the inhibition of DNA synthesis caused by HMBA treatment, was associated with a decrease in cholesterol esterification and in ACAT and MDR-3 mRNA levels and an increase in caveolin-1 mRNA. Detection of cytoplasmic neutral lipids by staining MELC with oil red O, a dye able to evidence CE but not FC, revealed that HMBA-treatment also reduced growth-stimulated accumulation of cholesterol ester to approximately the same extent as the ACAT inhibitor, SaH. Overall, these results indicate for the first time a role of cholesterol esterification and of some related genes in differentiation of erythroid cells. PMID:22184540

  19. Lecithin retinol acyltransferase forms functional homodimers.

    PubMed

    Jahng, Wan Jin; Cheung, Eric; Rando, Robert R

    2002-05-21

    Membrane-bound lecithin retinol acyltransferase (LRAT), an essential enzyme in vitamin A processing, catalyzes the formation of retinyl esters from vitamin A and lecithin. Cloned and expressed LRAT has a molecular mass of 25.3 kDa. The enzyme is not homologous to known enzymes and is, therefore, of substantial interest mechanistically. Along these lines, the functional protomeric state of LRAT is of importance. Gel electrophoretic studies on LRAT in the presence of SDS and disulfide reducing agents show the expected 25 kDa monomer. However, gel electrophoresis in the absence of a reducing agent and/or strong denaturing conditions reveals substantial dimer formation. LRAT monomers can be efficiently and irreversibly cross-linked by thiol reactive bismaleimides in retinal pigment epithelial (RPE) membranes generating LRAT homodimers. Cross-linked LRAT homodimers are fully active catalytically. The experiments suggest that LRAT monomers interact in membranes and form functional homodimers through protein-protein interactions and disulfide bond formation. PMID:12009892

  20. Evolution of serine carboxypeptidase-like acyltransferases in the monocots

    PubMed Central

    Mugford, Sam T

    2010-01-01

    The serine carboxypeptidases are a large family of proteases. in higher plants some members of this family have diversified and adopted new functions as acyltransferases required for the synthesis of natural products. we recently reported the first serine carboxypeptidase-like (scpl) acyltransferase enzyme to be characterized from monocotyledonous plants.1 This enzyme, AsSCPL1, is required for acylation of antimicrobial terpenes (avenacins) that are produced in the roots of oat (Avena spp.) and that provide protection against soil-borne pathogens. The SCPL acyltransferase enzyme family has undergone substantial expansion following the divergence of monocots and dicots. Here we discuss the evolution of this SCPL enzyme family in monocots, their contribution to metabolic diversity, and the roles of these enzymes in biotic and abiotic stress tolerance. PMID:20173416

  1. Guar gum effects on plasma low-density lipoprotein and hepatic cholesterol metabolism in guinea pigs fed low- and high-cholesterol diets: a dose-response study.

    PubMed

    Fernandez, M L; Sun, D M; Tosca, M; McNamara, D J

    1995-01-01

    Guinea pigs were fed semipurified diets containing either 0% or 12.5% guar gum (GG) with 0.04% cholesterol or increasing concentrations of GG (0%, 2.5%, 5%, 7.5%, 10%, and 12.5%) with 0.25% cholesterol (by wt). Compared to the 0% GG diet with 0.04% cholesterol, intake of the 12.5% GG diet with 0.04% cholesterol lowered plasma low-density-lipoprotein (LDL) concentrations, the ratio of LDL cholesteryl ester to protein, hepatic cholesterol concentrations, and the activity of acyl-CoA:cholesterol acyltransferase (ACAT), and increased 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase activity and hepatic apo B/E receptor number (P < 0.01). Intake of GG by animals fed 0.25% cholesterol diets resulted in modest effects on hepatic cholesterol pools and plasma LDL concentrations; however, significant negative correlations were found between both plasma LDL cholesterol and hepatic free cholesterol concentrations with the amount of dietary GG (P < 0.05). Hepatic HMG-CoA reductase was suppressed by the 0.25% cholesterol intake, and GG did not reverse this suppression. In contrast, ACAT activity was negatively correlated with the amount of dietary GG (P < 0.05), and GG intake increased the number of hepatic apo B/E receptors at all intakes with the 0.25% cholesterol diets. These results demonstrate that intake of GG significantly alters endogenous cholesterol metabolism by decreasing hepatic cholesterol pools, altering hepatic cholesterol homeostasis, and reducing plasma LDL concentrations. PMID:7825524

  2. Characterization of a Novel Intestinal Glycerol-3-phosphate Acyltransferase Pathway and Its Role in Lipid Homeostasis.

    PubMed

    Khatun, Irani; Clark, Ronald W; Vera, Nicholas B; Kou, Kou; Erion, Derek M; Coskran, Timothy; Bobrowski, Walter F; Okerberg, Carlin; Goodwin, Bryan

    2016-02-01

    Dietary triglycerides (TG) are absorbed by the enterocytes of the small intestine after luminal hydrolysis into monacylglycerol and fatty acids. Before secretion on chylomicrons, these lipids are reesterified into TG, primarily through the monoacylglycerol pathway. However, targeted deletion of the primary murine monoacylglycerol acyltransferase does not quantitatively affect lipid absorption, suggesting the existence of alternative pathways. Therefore, we investigated the role of the glycerol 3-phosphate pathway in dietary lipid absorption. The expression of glycerol-3-phosphate acyltransferase (GPAT3) was examined throughout the small intestine. To evaluate the role for GPAT3 in lipid absorption, mice harboring a disrupted GPAT3 gene (Gpat3(-/-)) were subjected to an oral lipid challenge and fed a Western-type diet to characterize the role in lipid and cholesterol homeostasis. Additional mechanistic studies were performed in primary enterocytes. GPAT3 was abundantly expressed in the apical surface of enterocytes in the small intestine. After an oral lipid bolus, Gpat3(-/-) mice exhibited attenuated plasma TG excursion and accumulated lipid in the enterocytes. Electron microscopy studies revealed a lack of lipids in the lamina propria and intercellular space in Gpat3(-/-) mice. Gpat3(-/-) enterocytes displayed a compensatory increase in the synthesis of phospholipid and cholesteryl ester. When fed a Western-type diet, hepatic TG and cholesteryl ester accumulation was significantly higher in Gpat3(-/-) mice compared with the wild-type mice accompanied by elevated levels of alanine aminotransferase, a marker of liver injury. Dysregulation of bile acid metabolism was also evident in Gpat3-null mice. These studies identify GPAT3 as a novel enzyme involved in intestinal lipid metabolism. PMID:26644473

  3. Role of Cholesterol Pathways in Norovirus Replication▿

    PubMed Central

    Chang, Kyeong-Ok

    2009-01-01

    Norwalk virus (NV) is a prototype strain of the noroviruses (family Caliciviridae) that have emerged as major causes of acute gastroenteritis worldwide. I have developed NV replicon systems using reporter proteins such as a neomycin-resistant protein (NV replicon-bearing cells) and a green fluorescent protein (pNV-GFP) and demonstrated that these systems were excellent tools to study virus replication in cell culture. In the present study, I first performed DNA microarray analysis of the replicon-bearing cells to identify cellular factors associated with NV replication. The analysis demonstrated that genes in lipid (cholesterol) or carbohydrate metabolic pathways were significantly (P < 0.001) changed by the gene ontology analysis. Among genes in the cholesterol pathways, I found that mRNA levels of hydroxymethylglutaryl-coenzyme A (HMG-CoA) synthase, squalene epoxidase, and acyl-CoA:cholesterol acyltransferase (ACAT), ACAT2, small heterodimer partner, and low-density lipoprotein receptor (LDLR)-related proteins were significantly changed in the cells. I also found that the inhibition of cholesterol biosynthesis using statins (an HMG-CoA reductase inhibitor) significantly increased the levels of NV proteins and RNA, whereas inhibitors of ACAT significantly reduced the replication of NV in replicon-bearing cells. Up- or downregulation of virus replication with these agents significantly correlated with the mRNA level of LDLR in replicon-bearing cells. Finally, I found that the expression of LDLR promoted NV replication in trans by transfection study with pNV-GFP. I conclude that the cholesterol pathways such as LDLR expression and ACAT activity may be crucial in the replication of noroviruses in cells, which may provide potential therapeutic targets for viral infection. PMID:19515767

  4. All about Cholesterol

    MedlinePlus

    ... are several kinds of fats in your blood. • LDL cholesterol is sometimes called “bad” cholesterol. It can narrow ... medicine to manage blood fats. They help lower LDL cholesterol. They also help lower your risk for a ...

  5. Cholesterol testing and results

    MedlinePlus

    ... lipoprotein (LDL cholesterol) High density lipoprotein (HDL cholesterol) Triglycerides (another type of fat in your blood) Very ... made of fat and protein. They carry cholesterol, triglycerides, and other fats, called lipids, in the blood ...

  6. High blood cholesterol levels

    MedlinePlus

    ... gov/ency/article/000403.htm High blood cholesterol levels To use the sharing features on this page, ... called "bad" cholesterol For many people, abnormal cholesterol levels are partly due to an unhealthy lifestyle. This ...

  7. Diacylglycerol Acyltransferase-2 (DGAT2) and Monoacylglycerol Acyltransferase-2 (MGAT2) Interact to Promote Triacylglycerol Synthesis*

    PubMed Central

    Jin, Youzhi; McFie, Pamela J.; Banman, Shanna L.; Brandt, Curtis; Stone, Scot J.

    2014-01-01

    Acyl CoA:1,2-diacylglycerol acyltransferase (DGAT)-2 is an integral membrane protein that catalyzes triacylglycerol (TG) synthesis using diacylglycerol and fatty acyl CoA as substrates. DGAT2 resides in the endoplasmic reticulum (ER), but when cells are incubated with fatty acids, DGAT2 interacts with lipid droplets presumably to catalyze localized TG synthesis for lipid droplet expansion. Previous studies have shown that DGAT2 interacts with proteins that synthesize its fatty acyl CoA substrates. In this study, we provide additional evidence that DGAT2 is present in a protein complex. Using a chemical cross-linker, disuccinimidyl suberate (DSS), we demonstrated that DGAT2 formed a dimer and was also part of a protein complex of ∼650 kDa, both in membranes and on lipid droplets. Using co-immunoprecipitation experiments and an in situ proximity ligation assay, we found that DGAT2 interacted with monoacylglycerol acyltransferase (MGAT)-2, an enzyme that catalyzes the synthesis of diacylglycerol. Deletion mutagenesis showed that the interaction with MGAT2 was dependent on the two transmembrane domains of DGAT2. No significant interaction of DGAT2 with lipin1, another enzyme that synthesizes diacylglycerol, could be detected. When co-expressed in cells, DGAT2 and MGAT2 co-localized in the ER and on lipid droplets. Co-expression also resulted in increased TG storage compared with expression of DGAT2 or MGAT2 alone. Incubating McArdle rat hepatoma RH7777 cells with 2-monoacylglycerol caused DGAT2 to translocate to lipid droplets. This also led to the formation of large cytosolic lipid droplets, characteristic of DGAT2, but not DGAT1, and indicated that DGAT2 can utilize monoacylglycerol-derived diacylglycerol. These findings suggest that the interaction of DGAT2 and MGAT2 serves to channel lipid substrates efficiently for TG biosynthesis. PMID:25164810

  8. Diacylglycerol acyltransferase-2 (DGAT2) and monoacylglycerol acyltransferase-2 (MGAT2) interact to promote triacylglycerol synthesis.

    PubMed

    Jin, Youzhi; McFie, Pamela J; Banman, Shanna L; Brandt, Curtis; Stone, Scot J

    2014-10-10

    Acyl CoA:1,2-diacylglycerol acyltransferase (DGAT)-2 is an integral membrane protein that catalyzes triacylglycerol (TG) synthesis using diacylglycerol and fatty acyl CoA as substrates. DGAT2 resides in the endoplasmic reticulum (ER), but when cells are incubated with fatty acids, DGAT2 interacts with lipid droplets presumably to catalyze localized TG synthesis for lipid droplet expansion. Previous studies have shown that DGAT2 interacts with proteins that synthesize its fatty acyl CoA substrates. In this study, we provide additional evidence that DGAT2 is present in a protein complex. Using a chemical cross-linker, disuccinimidyl suberate (DSS), we demonstrated that DGAT2 formed a dimer and was also part of a protein complex of ∼ 650 kDa, both in membranes and on lipid droplets. Using co-immunoprecipitation experiments and an in situ proximity ligation assay, we found that DGAT2 interacted with monoacylglycerol acyltransferase (MGAT)-2, an enzyme that catalyzes the synthesis of diacylglycerol. Deletion mutagenesis showed that the interaction with MGAT2 was dependent on the two transmembrane domains of DGAT2. No significant interaction of DGAT2 with lipin1, another enzyme that synthesizes diacylglycerol, could be detected. When co-expressed in cells, DGAT2 and MGAT2 co-localized in the ER and on lipid droplets. Co-expression also resulted in increased TG storage compared with expression of DGAT2 or MGAT2 alone. Incubating McArdle rat hepatoma RH7777 cells with 2-monoacylglycerol caused DGAT2 to translocate to lipid droplets. This also led to the formation of large cytosolic lipid droplets, characteristic of DGAT2, but not DGAT1, and indicated that DGAT2 can utilize monoacylglycerol-derived diacylglycerol. These findings suggest that the interaction of DGAT2 and MGAT2 serves to channel lipid substrates efficiently for TG biosynthesis. PMID:25164810

  9. Expression and purification of membrane protein diacylglycerol acyltransferase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diacylglycerol acyltransferases (DGATs) catalyze the last and rate-limiting step of triacylglycerol (TAG) biosynthesis in eukaryotic organisms. Plants and animals deficient in DGATs accumulate less TAG. Over-expression of DGATs increases TAG in seeds and other tissues. DGAT knockout mice are resista...

  10. Expression and purification of recombinant tung tree diacylglycerol acyltransferase 2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diacylglycerol acyltransferases (DGATs) catalyze the last step of triacylglycerol (TAG) biosynthesis in eukaryotic organisms. Plants and animals deficient in DGATs accumulate less TAG. Over-expression of DGATs increases TAG. DGAT knockout mice are resistant to diet-induced obesity and lack milk secr...

  11. Purification of recombinant tung tree diacylglycerol acyltransferases from E. coli

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding plant oil biosynthesis will help to create new oilseed crops with value-added properties to replace petroleum-based compounds. Diacylglycerol acyltransferases (DGATs) are key enzymes catalyzing the last step of triacylglycerol (TAG) biosynthesis in eukaryotes. Over-expression of DGATs ...

  12. Expression of tung tree diacylglycerol acyltransferase 1 in E. coli

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diacylglycerol acyltransferases (DGATs) catalyze the last step of triacylglycerol (TAG) biosynthesis in eukaryotic organisms. DGAT isoforms have nonredundant functions in TAG biosynthesis in species such as tung tree (Vernicia fordii) which contains 80% high-value eleostearic acid in its seed oils. ...

  13. Expression and purification of recombinant tung tree diacylglycerol acyltransferase 2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diacylglycerol acyltransferases (DGATs) are responsible for the last step of triacylglycerol (TAG) biosynthesis in eukaryotic organisms. Different forms of DGATs have nonredundant functions in TAG biosynthesis in species such as tung tree (Vernicia fordii), which contains approximately 80% high-valu...

  14. Serum Opacity Factor Enhances HDL-Mediated Cholesterol Efflux, Esterification and Anti Inflammatory Effects

    PubMed Central

    Tchoua, Urbain; Rosales, Corina; Tang, Daming; Gillard, Baiba K.; Vaughan, Ashley; Lin, Hu Yu; Courtney, Harry S.

    2011-01-01

    Serum opacity factor (SOF) is a streptococcal protein that disrupts the structure of human high density lipoproteins (HDL) releasing lipid-free apo A-I while forming a large cholesteryl ester-rich particle and a small neo HDL. Given its low cholesterol and high phospholipid contents, we tested the hypotheses that neo HDL is a better substrate for cholesterol esterification via lecithin:cholesterol acyltransferase (LCAT), better than HDL as an acceptor of THP-1 macrophage cholesterol efflux, and improves reduction of oxidized LDL-induced production of inflammatory markers. We observed that both cholesterol efflux and esterification were improved by recombinant (r)SOF treatment of whole plasma and that the underlying cause of the improved cholesterol esterification in plasma and macrophage cholesterol efflux to rSOF-treated plasma was due to the rSOF-mediated conversion of HDL to neo HDL. Moreover, the reduction of secretion of TNF-α and IL-6 by THP-1 cells by neo HDL was twice that of HDL. Studies in BHK cells overexpressing cholesterol transporters showed that efflux to neo HDL occurred primarily via ABCA1 not ABCG1. Thus, rSOF improves two steps in reverse cholesterol transport with a concomitant reduction in the release of macrophage markers of inflammation. We conclude that rSOF catalyzes a novel reaction that might be developed as a new therapy that prevents or reverses atherosclerosis via improved reverse cholesterol transport. PMID:20972840

  15. Membrane plasmalogen composition and cellular cholesterol regulation: a structure activity study

    PubMed Central

    2010-01-01

    Background Disrupted cholesterol regulation leading to increased circulating and membrane cholesterol levels is implicated in many age-related chronic diseases such as cardiovascular disease (CVD), Alzheimer's disease (AD), and cancer. In vitro and ex vivo cellular plasmalogen deficiency models have been shown to exhibit impaired intra- and extra-cellular processing of cholesterol. Furthermore, depleted brain plasmalogens have been implicated in AD and serum plasmalogen deficiencies have been linked to AD, CVD, and cancer. Results Using plasmalogen deficient (NRel-4) and plasmalogen sufficient (HEK293) cells we investigated the effect of species-dependent plasmalogen restoration/augmentation on membrane cholesterol processing. The results of these studies indicate that the esterification of cholesterol is dependent upon the amount of polyunsaturated fatty acid (PUFA)-containing ethanolamine plasmalogen (PlsEtn) present in the membrane. We further elucidate that the concentration-dependent increase in esterified cholesterol observed with PUFA-PlsEtn was due to a concentration-dependent increase in sterol-O-acyltransferase-1 (SOAT1) levels, an observation not reproduced by 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reductase inhibition. Conclusion The present study describes a novel mechanism of cholesterol regulation that is consistent with clinical and epidemiological studies of cholesterol, aging and disease. Specifically, the present study describes how selective membrane PUFA-PlsEtn enhancement can be achieved using 1-alkyl-2-PUFA glycerols and through this action reduce levels of total and free cholesterol in cells. PMID:20546600

  16. Luminol electrochemiluminescence for the analysis of active cholesterol at the plasma membrane in single mammalian cells.

    PubMed

    Ma, Guangzhong; Zhou, Junyu; Tian, Chunxiu; Jiang, Dechen; Fang, Danjun; Chen, Hongyuan

    2013-04-16

    A luminol electrochemiluminescence assay was reported to analyze active cholesterol at the plasma membrane in single mammalian cells. The cellular membrane cholesterol was activated by the exposure of the cells to low ionic strength buffer or the inhibition of intracellular acyl-coA/cholesterol acyltransferase (ACAT). The active membrane cholesterol was reacted with cholesterol oxidase in the solution to generate a peak concentration of hydrogen peroxide on the electrode surface, which induced a measurable luminol electrochemiluminescence. Further treatment of the active cells with mevastatin decreased the active membrane cholesterol resulting in a drop in luminance. No change in the intracellular calcium was observed in the presence of luminol and voltage, which indicated that our analysis process might not interrupt the intracellular cholesterol trafficking. Single cell analysis was performed by placing a pinhole below the electrode so that only one cell was exposed to the photomultiplier tube (PMT). Twelve single cells were analyzed individually, and a large deviation on luminance ratio observed exhibited the cell heterogeneity on the active membrane cholesterol. The smaller deviation on ACAT/HMGCoA inhibited cells than ACAT inhibited cells suggested different inhibition efficiency for sandoz 58035 and mevastatin. The new information obtained from single cell analysis might provide a new insight on the study of intracellular cholesterol trafficking. PMID:23527944

  17. Casein kinase II stimulates rat liver mitochondrial glycerophosphate acyltransferase activity.

    PubMed

    Onorato, Thomas M; Haldar, Dipak

    2002-09-01

    Rat liver mitochondrial glycerophosphate acyltransferase (mtGAT) possesses 14 consensus sites for casein kinase II (CKII) phosphorylation. To study the functional relevance of phosphorylation to the activity of mtGAT, we treated isolated rat liver mitochondria with CKII and found that CKII stimulated mtGAT activity approximately 2-fold. Protein phosphatase-lambda treatment reversed the stimulation of mtGAT by CKII. Labeling of both solubilized and non-solubilized mitochondria with CKII and [gamma-32P]ATP resulted in a 32P-labeled protein of 85kDa, the molecular weight of mtGAT. Our findings suggest that CKII stimulates mtGAT activity by phosphorylation of the acyltransferase. The significance of this observation with respect to hormonal control of the enzyme is discussed. PMID:12207885

  18. The amount of dietary cholesterol changes the mode of effects of (n-3) polyunsaturated fatty acid on lipoprotein cholesterol in hamsters.

    PubMed

    Lin, Mei-Huei; Lu, Shao-Chun; Huang, Po-Chao; Liu, Young-Chau; Liu, Shyun-Yeu

    2004-01-01

    This study was designed to investigate the effects of the interaction between dietary (n-3) polyunsaturated fatty acids (PUFA) and different dietary cholesterol content on plasma and liver cholesterol in hamsters. Male Syrian hamsters consumed diets containing an incremental increase in dietary cholesterol content (0, 0.025, 0.05, 0.1 and 0.2%, w/w) with either (n-3) PUFA (21 g/100 g fatty acids) or (n-6) PUFA (37.4 g/100 g fatty acids) fat for 6 weeks. In hamsters fed the nonatherogenic diet (0 or 0.025% dietary cholesterol), very low density lipoprotein (VLDL)-cholesterol levels in the (n-3) PUFA group were not significantly different from those in the (n-6) PUFA group, and low density lipoprotein (LDL)-cholesterol levels in the (n-3) PUFA group were significantly lower than those in the (n-6) PUFA group. In contrast, in hamsters fed the atherogenic diet (0.1 or 0.2% dietary cholesterol), VLDL- and LDL-cholesterol levels in the (n-3) PUFA group were significantly higher than those in the (n-6) PUFA group, in a dose-dependent manner. When the hamsters were fed with 0, 0.025, 0.05, 0.1 or 0.2% (w/w) dietary cholesterol, high density lipoprotein (HDL) cholesterol concentration was significantly lower in the (n-3) PUFA group than those in the (n-6) PUFA group. Hepatic cholesteryl esters were significantly lower, while hepatic microsomal acyl-coenzyme A:cholesterol acyltransferase activity and VLDL-cholesteryl esters were significantly higher in hamsters fed (n-3) PUFA with the atherogenic diet (0.1 or 0.2% dietary cholesterol) than in those fed (n-6) PUFA with the atherogenic diet. Our results demonstrate that the amount of dietary cholesterol is an important factor in determining the mode and extent of effects of dietary (n-3) PUFA, especially on VLDL- and LDL-cholesterol levels. When dietary cholesterol intake was above 0.1% (w/w), the plasma cholesterol-lowering effect of (n-3) PUFA disappeared, and instead, it showed a cholesterol-increasing effect. However, the

  19. Inhibitors of Hedgehog acyltransferase block Sonic Hedgehog signaling.

    PubMed

    Petrova, Elissaveta; Rios-Esteves, Jessica; Ouerfelli, Ouathek; Glickman, J Fraser; Resh, Marilyn D

    2013-04-01

    Inhibition of Sonic hedgehog (Shh) signaling is of great clinical interest. Here we exploit Hedgehog acyltransferase (Hhat)-mediated Shh palmitoylation, a modification critical for Shh signaling, as a new target for Shh pathway inhibition. A target-oriented high-throughput screen was used to identify small-molecule inhibitors of Hhat. In cells, these Hhat inhibitors specifically block Shh palmitoylation and inhibit autocrine and paracrine Shh signaling. PMID:23416332

  20. Biosynthesis of phosphatidylcholine by human lysophosphatidylcholine acyltransferase 1.

    PubMed

    Harayama, Takeshi; Shindou, Hideo; Shimizu, Takao

    2009-09-01

    Pulmonary surfactant is a complex of phospholipids and proteins lining the alveolar walls of the lung. It reduces surface tension in the alveoli, and is critical for normal respiration. Pulmonary surfactant phospholipids consist mainly of phosphatidylcholine (PC) and phosphatidylglycerol (PG). Although the phospholipid composition of pulmonary surfactant is well known, the enzyme(s) involved in its biosynthesis have remained obscure. We previously reported the cloning of murine lysophosphatidylcholine acyltransferase 1 (mLPCAT1) as a potential biosynthetic enzyme of pulmonary surfactant phospholipids. mLPCAT1 exhibits lysophosphatidylcholine acyltransferase (LPCAT) and lysophosphatidylglycerol acyltransferase (LPGAT) activities, generating PC and PG, respectively. However, the enzymatic activity of human LPCAT1 (hLPCAT1) remains controversial. We report here that hLPCAT1 possesses LPCAT and LPGAT activities. The activity of hLPCAT1 was inhibited by N-ethylmaleimide, indicating the importance of some cysteine residue(s) for the catalysis. We found a conserved cysteine (Cys(211)) in hLPCAT1 that is crucial for its activity. Evolutionary analyses of the close homologs of LPCAT1 suggest that it appeared before the evolution of teleosts and indicate that LPCAT1 may have evolved along with the lung to facilitate respiration. hLPCAT1 mRNA is highly expressed in the human lung. We propose that hLPCAT1 is the biosynthetic enzyme of pulmonary surfactant phospholipids. PMID:19383981

  1. Mechanistic analysis of ghrelin-O-acyltransferase using substrate analogs.

    PubMed

    Taylor, Martin S; Dempsey, Daniel R; Hwang, Yousang; Chen, Zan; Chu, Nam; Boeke, Jef D; Cole, Philip A

    2015-10-01

    Ghrelin-O-Acyltransferase (GOAT) is an 11-transmembrane integral membrane protein that octanoylates the metabolism-regulating peptide hormone ghrelin at Ser3 and may represent an attractive target for the treatment of type II diabetes and the metabolic syndrome. Protein octanoylation is unique to ghrelin in humans, and little is known about the mechanism of GOAT or of related protein-O-acyltransferases HHAT or PORC. In this study, we explored an in vitro microsomal ghrelin octanoylation assay to analyze its enzymologic features. Measurement of Km for 10-mer, 27-mer, and synthetic Tat-peptide-containing ghrelin substrates provided evidence for a role of charge interactions in substrate binding. Ghrelin substrates with amino-alanine in place of Ser3 demonstrated that GOAT can catalyze the formation of an octanoyl-amide bond at a similar rate compared with the natural reaction. A pH-rate comparison of these substrates revealed minimal differences in acyltransferase activity across pH 6.0-9.0, providing evidence that these reactions may be relatively insensitive to the basicity of the substrate nucleophile. The conserved His338 residue was required both for Ser3 and amino-Ala3 ghrelin substrates, suggesting that His338 may have a key catalytic role beyond that of a general base. PMID:26246082

  2. Inhibiting monoacylglycerol acyltransferase 1 ameliorates hepatic metabolic abnormalities but not inflammation and injury in mice.

    PubMed

    Soufi, Nisreen; Hall, Angela M; Chen, Zhouji; Yoshino, Jun; Collier, Sara L; Mathews, James C; Brunt, Elizabeth M; Albert, Carolyn J; Graham, Mark J; Ford, David A; Finck, Brian N

    2014-10-24

    Abnormalities in hepatic lipid metabolism and insulin action are believed to play a critical role in the etiology of nonalcoholic steatohepatitis. Monoacylglycerol acyltransferase (MGAT) enzymes convert monoacylglycerol to diacylglycerol, which is the penultimate step in one pathway for triacylglycerol synthesis. Hepatic expression of Mogat1, which encodes an MGAT enzyme, is increased in the livers of mice with hepatic steatosis, and knocking down Mogat1 improves glucose metabolism and hepatic insulin signaling, but whether increased MGAT activity plays a role in the etiology of nonalcoholic steatohepatitis is unclear. To examine this issue, mice were placed on a diet containing high levels of trans fatty acids, fructose, and cholesterol (HTF-C diet) or a low fat control diet for 4 weeks. Mice were injected with antisense oligonucleotides (ASOs) to knockdown Mogat1 or a scrambled ASO control for 12 weeks while remaining on diet. The HTF-C diet caused glucose intolerance, hepatic steatosis, and induced hepatic gene expression markers of inflammation, macrophage infiltration, and stellate cell activation. Mogat1 ASO treatment, which suppressed Mogat1 expression in liver and adipose tissue, attenuated weight gain, improved glucose tolerance, improved hepatic insulin signaling, and decreased hepatic triacylglycerol content compared with control ASO-treated mice on HTF-C chow. However, Mogat1 ASO treatment did not reduce hepatic diacylglycerol, cholesterol, or free fatty acid content; improve histologic measures of liver injury; or reduce expression of markers of stellate cell activation, liver inflammation, and injury. In conclusion, inhibition of hepatic Mogat1 in HTF-C diet-fed mice improves hepatic metabolic abnormalities without attenuating liver inflammation and injury. PMID:25213859

  3. Inhibiting Monoacylglycerol Acyltransferase 1 Ameliorates Hepatic Metabolic Abnormalities but Not Inflammation and Injury in Mice*

    PubMed Central

    Soufi, Nisreen; Hall, Angela M.; Chen, Zhouji; Yoshino, Jun; Collier, Sara L.; Mathews, James C.; Brunt, Elizabeth M.; Albert, Carolyn J.; Graham, Mark J.; Ford, David A.; Finck, Brian N.

    2014-01-01

    Abnormalities in hepatic lipid metabolism and insulin action are believed to play a critical role in the etiology of nonalcoholic steatohepatitis. Monoacylglycerol acyltransferase (MGAT) enzymes convert monoacylglycerol to diacylglycerol, which is the penultimate step in one pathway for triacylglycerol synthesis. Hepatic expression of Mogat1, which encodes an MGAT enzyme, is increased in the livers of mice with hepatic steatosis, and knocking down Mogat1 improves glucose metabolism and hepatic insulin signaling, but whether increased MGAT activity plays a role in the etiology of nonalcoholic steatohepatitis is unclear. To examine this issue, mice were placed on a diet containing high levels of trans fatty acids, fructose, and cholesterol (HTF-C diet) or a low fat control diet for 4 weeks. Mice were injected with antisense oligonucleotides (ASOs) to knockdown Mogat1 or a scrambled ASO control for 12 weeks while remaining on diet. The HTF-C diet caused glucose intolerance, hepatic steatosis, and induced hepatic gene expression markers of inflammation, macrophage infiltration, and stellate cell activation. Mogat1 ASO treatment, which suppressed Mogat1 expression in liver and adipose tissue, attenuated weight gain, improved glucose tolerance, improved hepatic insulin signaling, and decreased hepatic triacylglycerol content compared with control ASO-treated mice on HTF-C chow. However, Mogat1 ASO treatment did not reduce hepatic diacylglycerol, cholesterol, or free fatty acid content; improve histologic measures of liver injury; or reduce expression of markers of stellate cell activation, liver inflammation, and injury. In conclusion, inhibition of hepatic Mogat1 in HTF-C diet-fed mice improves hepatic metabolic abnormalities without attenuating liver inflammation and injury. PMID:25213859

  4. Cholesterol efflux and reverse cholesterol transport.

    PubMed

    Favari, Elda; Chroni, Angelika; Tietge, Uwe J F; Zanotti, Ilaria; Escolà-Gil, Joan Carles; Bernini, Franco

    2015-01-01

    Both alterations of lipid/lipoprotein metabolism and inflammatory events contribute to the formation of the atherosclerotic plaque, characterized by the accumulation of abnormal amounts of cholesterol and macrophages in the artery wall. Reverse cholesterol transport (RCT) may counteract the pathogenic events leading to the formation and development of atheroma, by promoting the high-density lipoprotein (HDL)-mediated removal of cholesterol from the artery wall. Recent in vivo studies established the inverse relationship between RCT efficiency and atherosclerotic cardiovascular diseases (CVD), thus suggesting that the promotion of this process may represent a novel strategy to reduce atherosclerotic plaque burden and subsequent cardiovascular events. HDL plays a primary role in all stages of RCT: (1) cholesterol efflux, where these lipoproteins remove excess cholesterol from cells; (2) lipoprotein remodeling, where HDL undergo structural modifications with possible impact on their function; and (3) hepatic lipid uptake, where HDL releases cholesterol to the liver, for the final excretion into bile and feces. Although the inverse association between HDL plasma levels and CVD risk has been postulated for years, recently this concept has been challenged by studies reporting that HDL antiatherogenic functions may be independent of their plasma levels. Therefore, assessment of HDL function, evaluated as the capacity to promote cell cholesterol efflux may offer a better prediction of CVD than HDL levels alone. Consistent with this idea, it has been recently demonstrated that the evaluation of serum cholesterol efflux capacity (CEC) is a predictor of atherosclerosis extent in humans. PMID:25522988

  5. Get Your Cholesterol Checked

    MedlinePlus

    ... You also get cholesterol by eating foods like egg yolks, fatty meats, and regular cheese. If you have too much cholesterol in your body, it can build up inside your blood vessels and make it hard for blood to ...

  6. Glycerolipid biosynthesis in Saccharomyces cerevisiae: sn-glycerol-3-phosphate and dihydroxyacetone phosphate acyltransferase activities.

    PubMed Central

    Schlossman, D M; Bell, R M

    1978-01-01

    Yeast acyl-coenzyme A:dihydroxyacetone-phosphate O-acyltransferase (DHAP acyltransferase; EC 2.3.1.42) was investigated to (i) determine whether its activity and that of acyl-coenzyme A:sn-glycerol-3-phosphate O-acyltransferase (glycerol-P acyltransferase; EC 2.3.1.15) represent dual catalytic functions of a single membranous enzyme, (ii) estimate the relative contributions of the glycerol-P and DHAP pathways for yeast glycerolipid synthesis, and (iii) evaluate the suitability of yeast for future genetic investigations of the eucaryotic glycerol-P and DHAP acyltransferase activities. The membranous DHAP acyltransferase activity showed an apparent Km of 0.79 mM for DHAP, with a Vmax of 5.3 nmol/min per mg, whereas the glycerol-P acyltransferase activity showed an apparent Km of 0.05 mM for glycerol-P, with a Vmax of 3.4 nmol/min per mg. Glycerol-P was a competitive inhibitor (Ki, 0.07 mM) of the DHAP acyltransferase activity, and DHAP was a competitive inhibitor (Ki, 0.91 mM) of the glycerol-P acyltransferase activity. The two acyltransferase activities exhibited marked similarities in their pH dependence, acyl-coenzyme A chain length preference and substrate concentration dependencies, thermolability, and patterns of inactivation by N-ethylmaleimide, trypsin, and detergents. Thus, the data strongly suggest that yeast glycerol-P and DHAP acyltransferase activities represent dual catalytic functions of a single membrane-bound enzyme. Furthermore, since no acyl-DHAP oxidoreductase activity could be detected in yeast membranes, the DHAP pathway for glycerolipid synthesis may not operate in yeast. PMID:25265

  7. [Inhibitory action of natural compounds of microbial origin on cholesterol metabolism].

    PubMed

    Fujioka, T

    1997-10-01

    1) Repeated administration of pravastatin significantly increased serum and liver cholesterol in rats. Hepatic LDL receptor activity was not changed and VLDL cholesterol secretion from the liver was increased. Net cholesterol synthesis in rat liver was increased after 7 days of repeated pravastatin administration. These results suggest that for rats, unlike other animals for which serum cholesterol is decreased, induced HMG-CoA reductase activity due to pravastatin treatment might overcome the inhibitory capability of pravastatin. 2) In the course of screening for squalene synthase inhibitors, novel zaragozic acids-F10863A, B, C and D-containing zaragozic acid D3 were isolated. F10863A was most potent and selectively inhibited cholesterol synthesis in freshly isolated rat hepatocytes among several cultured and isolated cells. It also showed in vivo serum cholesterol-lowering effects in hamsters and marmosets. However, the inhibition for squalene synthase proved to cause acidosis due to the accumulation of farnesol-derived dicarboxylic acids in urines. 3) A novel acyl-CoA: cholesterol acyltransferase (ACAT) inhibitor, designated epi-cochlioquinone A, a stereoisomer of cochlioquinone A, which has been previously reported as a nematocidal agent, was isolated from the fermentation broth of Stachybotrys bisbyi. It inhibited in vivo cholesterol absorption in rats by 50% at 75 mg/kg. PMID:9503410

  8. Age-related changes in the rate of esterification of plasma cholesterol in Fischer-344 rats.

    PubMed

    Carlile, S I; Kudchodkar, B J; Wang, C S; Lacko, A G

    1986-01-01

    Plasma cholesterol and triglyceride levels and selected molecular species of plasma cholesteryl esters and triglycerides were determined in 6-, 12-, 15-, 18-, 21-, and 24-month-old Fischer-344 rats. Lecithin:cholesterol acyltransferase (LCAT) activity was also determined using two independent methods utilizing endogenous and exogenous substrates. Plasma cholesterol levels increased up to 18 months of age and then plateaued. Of the plasma triglyceride molecular species investigated (C50, C52, C54 and C56), only the levels of C52 increased linearly with age. The concentration of other triglyceride molecular species did not change with age. The fractional rate of plasma cholesterol esterification showed a decreasing trend with age, whereas, the net cholesterol esterification rate showed a gradual age related increase. However, this latter parameter remained unchanged with age when the data were normalized for body weight. The cholesterol esterification rates measured using an exogenous substrate (estimating LCAT enzyme levels) showed essentially no change with age. These data indicate that changes in the levels and/or composition of lipoprotein substrate(s) for LCAT are likely causes of the observed age-related changes in the fractional rate of plasma cholesterol esterification. The net esterification rate of plasma cholesterol was significantly correlated with the plasma triglyceride levels when the animals for all age groups were treated as one experimental group. PMID:3959602

  9. Fast serial analysis of active cholesterol at the plasma membrane in single cells.

    PubMed

    Tian, Chunxiu; Zhou, Junyu; Wu, Zeng-Qiang; Fang, Danjun; Jiang, Dechen

    2014-01-01

    Previously, our group has utilized the luminol electrochemiluminescence to analyze the active cholesterol at the plasma membrane in single cells by the exposure of one cell to a photomultiplier tube (PMT) through a pinhole. In this paper, fast analysis of active cholesterol at the plasma membrane in single cells was achieved by a multimicroelectrode array without the pinhole. Single cells were directly located on the microelectrodes using cell-sized microwell traps. A cycle of voltage was applied on the microelectrodes sequentially to induce a peak of luminescence from each microelectrode for the serial measurement of active membrane cholesterol. A minimal time of 1.60 s was determined for the analysis of one cell. The simulation and the experimental data exhibited a semisteady-state distribution of hydrogen peroxide on the microelectrode after the reaction of cholesterol oxidase with the membrane cholesterol, which supported the relative accuracy of the serial analysis. An eight-microelectrode array was demonstrated to analyze eight single cells in 22 s serially, including the channel switching time. The results from 64 single cells either activated by low ion strength buffer or the inhibition of intracellular acyl-coA/cholesterol acyltransferase (ACAT) revealed that most of the cells analyzed had the similar active membrane cholesterol, while few cells had more active cholesterol resulting in the cellular heterogeneity. The fast single-cell analysis platform developed will be potentially useful for the analysis of more molecules in single cells using proper oxidases. PMID:24328095

  10. Cholesterol and Plants

    ERIC Educational Resources Information Center

    Behrman, E. J.; Gopalan, Venkat

    2005-01-01

    There is a widespread belief among the public and even among chemist that plants do not contain cholesterol. This wrong belief is the result of the fact that plants generally contain only small quantities of cholesterol and that analytical methods for the detection of cholesterol in this range were not developed until recently.

  11. Small Intestine but Not Liver Lysophosphatidylcholine Acyltransferase 3 (Lpcat3) Deficiency Has a Dominant Effect on Plasma Lipid Metabolism.

    PubMed

    Kabir, Inamul; Li, Zhiqiang; Bui, Hai H; Kuo, Ming-Shang; Gao, Guangping; Jiang, Xian-Cheng

    2016-04-01

    Lysophosphatidylcholine acyltransferase 3 (Lpcat3) is involved in phosphatidylcholine remodeling in the small intestine and liver. We investigated lipid metabolism in inducible intestine-specific and liver-specificLpcat3gene knock-out mice. We producedLpcat3-Flox/villin-Cre-ER(T2)mice, which were treated with tamoxifen (at days 1, 3, 5, and 7), to deleteLpcat3specifically in the small intestine. At day 9 after the treatment, we found that Lpcat3 deficiency in enterocytes significantly reduced polyunsaturated phosphatidylcholines in the enterocyte plasma membrane and reduced Niemann-Pick C1-like 1 (NPC1L1), CD36, ATP-binding cassette transporter 1 (ABCA1), and ABCG8 levels on the membrane, thus significantly reducing lipid absorption, cholesterol secretion through apoB-dependent and apoB-independent pathways, and plasma triglyceride, cholesterol, and phospholipid levels, as well as body weight. Moreover, Lpcat3 deficiency does not cause significant lipid accumulation in the small intestine. We also utilized adenovirus-associated virus-Cre to depleteLpcat3in the liver. We found that liver deficiency only reduces plasma triglyceride levels but not other lipid levels. Furthermore, there is no significant lipid accumulation in the liver. Importantly, small intestine Lpcat3 deficiency has a much bigger effect on plasma lipid levels than that of liver deficiency. Thus, inhibition of small intestine Lpcat3 might constitute a novel approach for treating hyperlipidemia. PMID:26828064

  12. Mechanism of transfer of LDL-derived free cholesterol to HDL subfractions in human plasma

    SciTech Connect

    Miida, T.; Fielding, C.J.; Fielding, P.E. )

    1990-11-01

    The transfer of ({sup 3}H)cholesterol in low-density lipoprotein (LDL) to different high-density lipoprotein (HDL) species in native human plasma was determined by using nondenaturing two-dimensional electrophoresis. Transfer from LDL had a t{sub 1/2} at 37{degree}C of 51 {plus minus} 8 min and an activation energy of 18.0 kCal mol{sup {minus}1}. There was unexpected specificity among HDL species as acceptors of LDL-derived labeled cholesterol. The largest fraction of the major {alpha}-migrating class (HDL{sub 2b}) was the major initial acceptor of LDL-derived cholesterol. Kinetic analysis indicated a rapid secondary transfer from HDL{sub 2b} to smaller {alpha}HDL (particularly HDL{sub 3}) driven enzymatically by the lecithin-cholesterol acyltransferase reaction. Rates of transfer among {alpha}HDL were most rapid from the largest {alpha}HDL fraction (HDL{sub 2b}), suggesting possible protein-mediated facilitation. Simultaneous measurements of the transport of LDL-derived and cell-derived isotopic cholesterol indicated that the former preferably utilized the {alpha}HDL pathyway, with little label in pre-{beta}HDL. The same experiments confirmed earlier data that cell-derived cholesterol is preferentially channeled through pre-{beta}HDL. The authors suggest that the functional heterogeneity of HDL demonstrated here includes the ability to independently process cell- and LDL-derived free cholesterol.

  13. Structure of a bacterial toxin-activating acyltransferase

    PubMed Central

    Greene, Nicholas P.; Hughes, Colin; Koronakis, Vassilis

    2015-01-01

    Secreted pore-forming toxins of pathogenic Gram-negative bacteria such as Escherichia coli hemolysin (HlyA) insert into host–cell membranes to subvert signal transduction and induce apoptosis and cell lysis. Unusually, these toxins are synthesized in an inactive form that requires posttranslational activation in the bacterial cytosol. We have previously shown that the activation mechanism is an acylation event directed by a specialized acyl-transferase that uses acyl carrier protein (ACP) to covalently link fatty acids, via an amide bond, to specific internal lysine residues of the protoxin. We now reveal the 2.15-Å resolution X-ray structure of the 172-aa ApxC, a toxin-activating acyl-transferase (TAAT) from pathogenic Actinobacillus pleuropneumoniae. This determination shows that bacterial TAATs are a structurally homologous family that, despite indiscernible sequence similarity, form a distinct branch of the Gcn5-like N-acetyl transferase (GNAT) superfamily of enzymes that typically use acyl-CoA to modify diverse bacterial, archaeal, and eukaryotic substrates. A combination of structural analysis, small angle X-ray scattering, mutagenesis, and cross-linking defined the solution state of TAATs, with intermonomer interactions mediated by an N-terminal α-helix. Superposition of ApxC with substrate-bound GNATs, and assay of toxin activation and binding of acyl-ACP and protoxin peptide substrates by mutated ApxC variants, indicates the enzyme active site to be a deep surface groove. PMID:26016525

  14. Radioassay of the stereospecificity of 2-monoacylglycerol acyltransferase

    SciTech Connect

    Manganaro, F.; Kuksis, A.; Myher, J.J.

    1982-01-01

    The 2-monoacylglycerol acyltransferase (EC 2.3.1.22, acylglycerol palmitoyl transferase) catalyzes the synthesis of X-1,2-diacylglycerols from 2-monoacylglycerol and acyl CoA with an apparently variable stereochemical specificity. A microassay for determining the ratio of sn-1,2- and sn-2,3-diacylglycerol formed by the acylation of radioactive 2-monoacylglycerol in intact cell or in cell-free systems in the presence of free fatty acids and cofactors has been developed. The diacyglycerols isolated by thin-layer chromatography using nonradioactive racemic diacylglycerols as carriers. The enantiomer content is determined following a chemical synthesis of X-1,2-diacylphosphatidylcholines and a stereospecific stepwise release of the sn-1,2- and sn-2,3-diacylglycerols by phospholipase C. By using thin-layer chromatography for the isolation of the hydrolysis products, known samples ranging in enantiomer ratios from 0.05 to 20 and containing 5000 to 200,000 cpm can be assayed to within 1% of the major and within 10% of the minor enantiomer content. The method is applicable to the determination of the enantiomer content of X-1,2-diacylglycerols generated via other acyltransferases and via lipolysis of triacylglycerols and diacylglycerolphospholipids in other biological systems.

  15. Lysophospholipid acyltransferases and eicosanoid biosynthesis in zebrafish myeloid cells.

    PubMed

    Zarini, Simona; Hankin, Joseph A; Murphy, Robert C; Gijón, Miguel A

    2014-10-01

    Eicosanoids derived from the enzymatic oxidation of arachidonic acid play important roles in a large number of physiological and pathological processes in humans. Many animal and cellular models have been used to investigate the intricate mechanisms regulating their biosynthesis and actions. Zebrafish is a widely used model to study the embryonic development of vertebrates. It expresses homologs of the key enzymes involved in eicosanoid production, and eicosanoids have been detected in extracts from adult or embryonic fish. In this study we prepared cell suspensions from kidney marrow, the main hematopoietic organ in fish. Upon stimulation with calcium ionophore, these cells produced eicosanoids including PGE2, LTB4, 5-HETE and, most abundantly, 12-HETE. They also produced small amounts of LTB5 derived from eicosapentaenoic acid. These eicosanoids were also produced in kidney marrow cells stimulated with ATP, and this production was greatly enhanced by preincubation with thimerosal, an inhibitor of arachidonate reacylation into phospholipids. Microsomes from these cells exhibited acyltransferase activities consistent with expression of MBOAT5/LPCAT3 and MBOAT7/LPIAT1, the main arachidonoyl-CoA:lysophospholipid acyltransferases. In summary, this work introduces a new cellular model to study the regulation of eicosanoid production through a phospholipid deacylation-reacylation cycle from a well-established, versatile vertebrate model species. PMID:25175316

  16. Home-Use Tests - Cholesterol

    MedlinePlus

    ... this test does: This is a home-use test kit to measure total cholesterol. What cholesterol is: Cholesterol is a fat (lipid) in your blood. High-density lipoprotein (HDL) ("good" cholesterol) helps protect your heart, but low-density lipoprotein (LDL) ("bad" cholesterol) can clog the arteries of your ...

  17. Bastadins, brominated-tyrosine derivatives, suppress accumulation of cholesterol ester in macrophages.

    PubMed

    Eguchi, Keisuke; Kato, Hikaru; Fujiwara, Yukio; Losung, Fitje; Mangindaan, Remy E P; de Voogd, Nicole J; Takeya, Motohiro; Tsukamoto, Sachiko

    2015-11-15

    The formation of foam cells in macrophages has been suggested to play an essential role in the progression of early atherosclerotic lesions in vivo and, thus, its suppression is considered to be one of the major approaches for the treatment of atherosclerosis. We isolated eight brominated-tyrosine derivatives, bastadins, from the EtOH extract of the marine sponge Ianthella vasta as inhibitors of the formation of foam cells induced by acetylated low-density lipoproteins in human monocyte-derived macrophages. Bastadin 6 was the strongest inhibitor of foam cell formation due to its suppression of acyl-coenzyme A:cholesterol acyltransferase. PMID:26403929

  18. Genetic regulation of cholesterol homeostasis: chromosomal organization of candidate genes.

    PubMed

    Welch, C L; Xia, Y R; Shechter, I; Farese, R; Mehrabian, M; Mehdizadeh, S; Warden, C H; Lusis, A J

    1996-07-01

    As part of an effort to dissect the genetic factors involved in cholesterol homeostasis in the mouse model, we report the mapping of 12 new candidate genes using linkage analysis. The genes include: cytoplasmic HMG-CoA synthase (Hmgcs 1, Chr 13), mitochondrial synthase (Hmgcs 2, Chr 3), a synthase-related sequence (Hmgcs 1-rs, Chr 12), mevalonate kinase (Mvk, Chr 5), farnesyl diphosphate synthase (Fdps, Chr 3), squalene synthase (Fdft 1, Chr 14), acyl-CoA:cholesterol acyltransferase (Acact, Chr 1), sterol regulatory element binding protein-1 (Srebf1, Chr 8) and -2 (Srebf2, Chr 15), apolipoprotein A-I regulatory protein (Tcfcoup2, Chr 7), low density receptor-related protein-related sequence (Lrp-rs, Chr 10), and Lrp-associated protein (Lrpap 1, Chr 5). In addition, the map positions for several lipoprotein receptor genes were refined. These genes include: low density lipoprotein receptor (Ldlr, Chr 9), very low density lipoprotein receptor (Vldlr, Chr 19), and glycoprotein 330 (Gp330, Chr 2). Some of these candidate genes are located within previously defined chromosomal regions (quantitative trait loci, QTLs) contributing to plasma lipoprotein levels, and Acact maps near a mouse mutation, ald, resulting in depletion of cholesteryl esters in the adrenals. The combined use of QTL and candidate gene mapping provides a powerful means of dissecting complex traits such as cholesterol homeostasis. PMID:8827514

  19. Impact of SCP-2/SCP-x gene ablation and dietary cholesterol on hepatic lipid accumulation

    PubMed Central

    Klipsic, Devon; Landrock, Danilo; Martin, Gregory G.; McIntosh, Avery L.; Landrock, Kerstin K.; Mackie, John T.; Schroeder, Friedhelm

    2015-01-01

    While a high-cholesterol diet induces hepatic steatosis, the role of intracellular sterol carrier protein-2/sterol carrier protein-x (SCP-2/SCP-x) proteins is unknown. We hypothesized that ablating SCP-2/SCP-x [double knockout (DKO)] would impact hepatic lipids (cholesterol and cholesteryl ester), especially in high-cholesterol-fed mice. DKO did not alter food consumption, and body weight (BW) gain decreased especially in females, concomitant with hepatic steatosis in females and less so in males. DKO-induced steatosis in control-fed wild-type (WT) mice was associated with 1) loss of SCP-2; 2) upregulation of liver fatty acid binding protein (L-FABP); 3) increased mRNA and/or protein levels of sterol regulatory element binding proteins (SREBP1 and SREBP2) as well as increased expression of target genes of cholesterol synthesis (Hmgcs1 and Hmgcr) and fatty acid synthesis (Acc1 and Fas); and 4) cholesteryl ester accumulation was also associated with increased acyl-CoA cholesterol acyltransferase-2 (ACAT2) in males. DKO exacerbated the high-cholesterol diet-induced hepatic cholesterol and glyceride accumulation, without further increasing SREBP1, SREBP2, or target genes. This exacerbation was associated both with loss of SCP-2 and concomitant downregulation of Ceh/Hsl, apolipoprotein B (ApoB), MTP, and/or L-FABP protein expression. DKO diminished the ability to secrete excess cholesterol into bile and oxidize cholesterol to bile acid for biliary excretion, especially in females. This suggested that SCP-2/SCP-x affects cholesterol transport to particular intracellular compartments, with ablation resulting in less to the endoplasmic reticulum for SREBP regulation, making more available for cholesteryl ester synthesis, for cholesteryl-ester storage in lipid droplets, and for bile salt synthesis and/or secretion. These alterations are significant findings, since they affect key processes in regulation of sterol metabolism. PMID:26113298

  20. Impact of SCP-2/SCP-x gene ablation and dietary cholesterol on hepatic lipid accumulation.

    PubMed

    Klipsic, Devon; Landrock, Danilo; Martin, Gregory G; McIntosh, Avery L; Landrock, Kerstin K; Mackie, John T; Schroeder, Friedhelm; Kier, Ann B

    2015-09-01

    While a high-cholesterol diet induces hepatic steatosis, the role of intracellular sterol carrier protein-2/sterol carrier protein-x (SCP-2/SCP-x) proteins is unknown. We hypothesized that ablating SCP-2/SCP-x [double knockout (DKO)] would impact hepatic lipids (cholesterol and cholesteryl ester), especially in high-cholesterol-fed mice. DKO did not alter food consumption, and body weight (BW) gain decreased especially in females, concomitant with hepatic steatosis in females and less so in males. DKO-induced steatosis in control-fed wild-type (WT) mice was associated with 1) loss of SCP-2; 2) upregulation of liver fatty acid binding protein (L-FABP); 3) increased mRNA and/or protein levels of sterol regulatory element binding proteins (SREBP1 and SREBP2) as well as increased expression of target genes of cholesterol synthesis (Hmgcs1 and Hmgcr) and fatty acid synthesis (Acc1 and Fas); and 4) cholesteryl ester accumulation was also associated with increased acyl-CoA cholesterol acyltransferase-2 (ACAT2) in males. DKO exacerbated the high-cholesterol diet-induced hepatic cholesterol and glyceride accumulation, without further increasing SREBP1, SREBP2, or target genes. This exacerbation was associated both with loss of SCP-2 and concomitant downregulation of Ceh/Hsl, apolipoprotein B (ApoB), MTP, and/or L-FABP protein expression. DKO diminished the ability to secrete excess cholesterol into bile and oxidize cholesterol to bile acid for biliary excretion, especially in females. This suggested that SCP-2/SCP-x affects cholesterol transport to particular intracellular compartments, with ablation resulting in less to the endoplasmic reticulum for SREBP regulation, making more available for cholesteryl ester synthesis, for cholesteryl-ester storage in lipid droplets, and for bile salt synthesis and/or secretion. These alterations are significant findings, since they affect key processes in regulation of sterol metabolism. PMID:26113298

  1. Children and Cholesterol

    MedlinePlus

    ... a coronary artery procedure; or who suffered a heart attack or sudden cardiac death before age 55. Those with a parent who has a history of high total cholesterol levels (240 mg/dL or higher). Talk to your child’s pediatrician ... Risk Calculator Printable Cholesterol Information Sheets Heart360 Health ...

  2. Kids and Cholesterol.

    ERIC Educational Resources Information Center

    Ficklen, Ellen

    1992-01-01

    According to a 1991 National Cholesterol Education Program report, the best way to avoid heart trouble is to take early preventive measures. This means that children over age two should follow the same low-fat, low-cholesterol guidelines already recommended for adults. Sidebars contain a fat glossary and tips for cutting fat in school lunches.…

  3. Electrochemical oxidation of cholesterol

    PubMed Central

    2015-01-01

    Summary Indirect cholesterol electrochemical oxidation in the presence of various mediators leads to electrophilic addition to the double bond, oxidation at the allylic position, oxidation of the hydroxy group, or functionalization of the side chain. Recent studies have proven that direct electrochemical oxidation of cholesterol is also possible and affords different products depending on the reaction conditions. PMID:25977713

  4. Cholesterol and Your Child

    MedlinePlus

    ... traveling together are called lipoproteins . Two kinds — low-density lipoprotein (LDL) and high-density lipoprotein (HDL) — are the ones that most of us have heard about. Low-density lipoproteins , or "bad cholesterol," are the primary cholesterol ...

  5. Lysophosphatidylethanolamine acyltransferase 1/membrane-bound O-acyltransferase 1 regulates morphology and function of P19C6 cell-derived neurons.

    PubMed

    Tabe, Shirou; Hikiji, Hisako; Ariyoshi, Wataru; Hashidate-Yoshida, Tomomi; Shindou, Hideo; Okinaga, Toshinori; Shimizu, Takao; Tominaga, Kazuhiro; Nishihara, Tatsuji

    2016-07-01

    Glycerophospholipids, which are components of biomembranes, are formed de novo by the Kennedy pathway and subsequently mature through the Lands cycle. Lysophospholipid acyltransferases (LPLATs) are key enzymes in both pathways and influence the fatty acid composition of biomembranes. Neuronal differentiation is characterized by neurite outgrowth, which requires biomembrane biosynthesis. However, the role of LPLATs in neuronal differentiation remains unknown. In this study, we examined whether LPLATs are involved in neuronal differentiation using all-trans-retinoic acid (ATRA)-treated P19C6 cells. In these cells, mRNA levels of lysophosphatidylethanolamine acyltransferase (LPEAT)-1/membrane-bound O-acyltransferase (MBOAT)-1 were higher than those in undifferentiated cells. LPEAT enzymatic activity increased with 16:0- and 18:1-CoA as acyl donors. When LPEAT1/MBOAT1 was knocked down with small interfering RNA (siRNA), outgrowth of neurites and expression of neuronal markers decreased in ATRA-treated P19C6 cells. Voltage-dependent calcium channel activity was also suppressed in these cells transfected with LPEAT1/MBOAT1 siRNA. These results suggest that LPEAT1/MBOAT1 plays an important role in neurite outgrowth and function.-Tabe, S., Hikiji, H., Ariyoshi, W., Hashidate-Yoshida, T., Shindou, H., Okinaga, T., Shimizu, T., Tominaga, K., Nishihara, T. Lysophosphatidylethanolamine acyltransferase 1/membrane-bound O-acyltransferase 1 regulates morphology and function of P19C6 cell-derived neurons. PMID:27048541

  6. Bile acid sequestrants for cholesterol

    MedlinePlus

    ... ency/patientinstructions/000787.htm Bile acid sequestrants for cholesterol To use the sharing features on this page, ... are medicines that help lower your LDL (bad) cholesterol . Too much cholesterol in your blood can stick ...

  7. What Your Cholesterol Levels Mean

    MedlinePlus

    ... Pressure Tools & Resources Stroke More What Your Cholesterol Levels Mean Updated:Aug 17,2016 How’s your cholesterol? Time to get it checked! Keeping your cholesterol levels healthy is a great way to keep your ...

  8. Haptoglobin binds apolipoprotein E and influences cholesterol esterification in the cerebrospinal fluid.

    PubMed

    Salvatore, Alfonso; Cigliano, Luisa; Carlucci, Alessandro; Bucci, Enrico M; Abrescia, Paolo

    2009-07-01

    Haptoglobin (Hpt) binds the apolipoprotein (Apo) A-I domain, which is involved in stimulating the enzyme lecithin-cholesterol acyltransferase (LCAT) for cholesterol esterification. This binding was shown to protect ApoA-I against hydroxyl radicals, thus preventing loss of ApoA-I function in enzyme stimulation. In this study, we report that Hpt is also able to bind ApoE. The Hpt binding site on the ApoE structure was mapped by using synthetic peptides, and found homologous to the Hpt binding site of ApoA-I. Hydroxyl radicals promoted in vitro the formation of ApoE-containing adducts which were detected by immunoblotting. Hpt impaired this oxidative modification whereas albumin did not. CSF from patients with multiple sclerosis or subjects without neurodegeneration contains oxidized forms of ApoE and ApoA-I similar to those observed in vitro. CSF was analyzed for its level of ApoA-I, ApoE, Hpt, cholesteryl esters, and unesterified cholesterol. The ratio of esterified with unesterified cholesterol, assumed to reflect the LCAT activity ex vivo, did not correlate with either analyzed protein, but conversely correlated with the ratio [Hpt]/([ApoE]+[ApoA-I]). The results suggest that Hpt might save the function of ApoA-I and ApoE for cholesterol esterification, a process contributing to cholesterol elimination from the brain. PMID:19457062

  9. [Sn-glycerol-3-phosphate acyltransferases (GPATs) in plants].

    PubMed

    Liu, Cong; Xiao, Dan-Wang; Shi, Chun-Lin; Hu, Xue-Fang; Wu, Ke-Bin; Guan, Chun-Yun; Xiong, Xing-Hua

    2013-12-01

    Sn-glycerol-3-phosphate acyltransferase (GPAT) catalyzes the acylation at sn-1 position of glycerol-3-phosphate to produce lysophosphatidic acid (LPA) in an acyl-CoA or acyl-ACP-dependent manner, which is the initial and rate-determining step of TAG biosynthetic pathway. Some GPATs have sn-2 transfer activity. Part members of the GPAT gene family have been cloned from different plant species. Based on their subcellular localizations, GPATs can be classified into three types, plastid GPATs, mitochondria GPATs and endoplasmic reticulum GPATs. GPATs exhibit diverse biochemical properties and are involved in synthesis of several lipids such as TAG, suberin, and cutin which play important roles in the growth and development of plants. This review summarized the current understanding of the chromosomal locus and gene structure of GPAT genes and the subcellular localization, sn-2 regiospecificity, substrates specialty, and functions of GPATs in plants. PMID:24645344

  10. Effectiveness of resistant starch, compared to guar gum, in depressing plasma cholesterol and enhancing fecal steroid excretion.

    PubMed

    Levrat, M A; Moundras, C; Younes, H; Morand, C; Demigné, C; Rémésy, C

    1996-10-01

    Amylase-resistant starch (RS) represents a substrate that can be administered in substantial amounts in the diet, in contrast to gel-forming polysaccharides, such as guar gum (GG). The aim of this work was thus to compare the effects of GG and RS on cholesterol metabolism in rats adapted to 0.4% cholesterol diets, using dietary GG or RS levels (8 or 20%, respectively) that led to a similar development of fermentations, as assessed by the degree of enlargement of the cecum. The RS diet elicited a marked rise in the cecal pool of short-chain fatty acids, especially acetic and butyric acid, whereas the GG diet favored high-propionic acid fermentations. Both polysaccharides markedly altered the cholesterol excretion, from 50% of ingested cholesterol in controls, up to about 70% in rats adapted to the RS or GG diets. With these diets, the fecal excretion of bile acids was enhanced (67 and 144% with the RS and GG diets, respectively). RS and GG diets were effective in lowering plasma cholesterol (about -40%) and triglycerides (-36%). There was practically no effect of the diets on cholesterol in d > 1.040 lipoproteins (high density lipoproteins), whereas RS (and to a larger extent, GG) were very effective to depress cholesterol in d < 1.040 lipoproteins (especially in triglyceride-rich lipoproteins). Fermentable polysaccharides counteracted the accumulation of cholesterol in the liver, especially cholesterol esters. In parallel, liver acyl CoA:cholesterol acyltransferase was depressed in rats fed the RS or GG diets, whereas only the GG diet counteracted the downregulation of 3-hydroxy-3-methylglutaryl-CoA by cholesterol. These data suggest that RS may be practically as effective as a gel-forming gum, such as GG, on steroid excretion and on cholesterol metabolism. PMID:8898306

  11. Tissue-specific knockouts of ACAT2 reveal that intestinal depletion is sufficient to prevent diet-induced cholesterol accumulation in the liver and blood[S

    PubMed Central

    Zhang, Jun; Kelley, Kathryn L.; Marshall, Stephanie M.; Davis, Matthew A.; Wilson, Martha D.; Sawyer, Janet K.; Farese, Robert V.; Brown, J. Mark; Rudel, Lawrence L.

    2012-01-01

    Acyl-CoA:cholesterol acyltransferase 2 (ACAT2) generates cholesterol esters (CE) for packaging into newly synthesized lipoproteins and thus is a major determinant of blood cholesterol levels. ACAT2 is expressed exclusively in the small intestine and liver, but the relative contributions of ACAT2 expression in these tissues to systemic cholesterol metabolism is unknown. We investigated whether CE derived from the intestine or liver would differentially affect hepatic and plasma cholesterol homeostasis. We generated liver-specific (ACAT2L−/L−) and intestine-specific (ACAT2SI−/SI−) ACAT2 knockout mice and studied dietary cholesterol-induced hepatic lipid accumulation and hypercholesterolemia. ACAT2SI−/SI− mice, in contrast to ACAT2L−/L− mice, had blunted cholesterol absorption. However, specific deletion of ACAT2 in the intestine generated essentially a phenocopy of the conditional knockout of ACAT2 in the liver, with reduced levels of plasma very low-density lipoprotein and hepatic CE, yet hepatic-free cholesterol does not build up after high cholesterol intake. ACAT2L−/L− and ACAT2SI−/SI− mice were equally protected from diet-induced hepatic CE accumulation and hypercholesterolemia. These results suggest that inhibition of intestinal or hepatic ACAT2 improves atherogenic hyperlipidemia and limits hepatic CE accumulation in mice and that depletion of intestinal ACAT2 is sufficient for most of the beneficial effects on cholesterol metabolism. Inhibitors of ACAT2 targeting either tissue likely would be beneficial for atheroprotection. PMID:22460046

  12. Dietary Fat and Cholesterol

    MedlinePlus

    ... Gynecology Medical Conditions Nutrition & Fitness Emotional Health Dietary Fat and Cholesterol Posted under Health Guides . Updated 23 ... warm What are the different types of dietary fat? The four main types of fat found in ...

  13. Get Your Cholesterol Checked

    MedlinePlus

    ... is checked with a blood test called a lipid profile. During the test, a nurse will take ... blood tests that can check cholesterol, but a lipid profile gives the most information. Find out more ...

  14. Compounds affecting cholesterol absorption

    NASA Technical Reports Server (NTRS)

    Hua, Duy H. (Inventor); Koo, Sung I. (Inventor); Noh, Sang K. (Inventor)

    2004-01-01

    A class of novel compounds is described for use in affecting lymphatic absorption of cholesterol. Compounds of particular interest are defined by Formula I: ##STR1## or a pharmaceutically acceptable salt thereof.

  15. High Blood Cholesterol

    MedlinePlus

    ... of cholesterol is called plaque. Plaque Buildup Can Lead to… Click for more information Artherosclerosis. Over time, ... disease (CHD). Angina. The buildup of plaque can lead to chest pain called angina. Angina is a ...

  16. Common Misconceptions about Cholesterol

    MedlinePlus

    ... most (and preferably all) days; and stressing the importance of avoiding tobacco products. Learn more about cholesterol ... Privacy Policy Popular Articles 1 Understanding Blood Pressure Readings 2 Sodium and Salt 3 Low Blood Pressure ...

  17. Cholesterol and Statins

    MedlinePlus

    ... the liver makes ldl & hdl In the liver, triglycerides, cholesterol, and proteins form together to make LDL ... This is especially important for individuals with high triglyceride and/or low HDL levels who are overweight ...

  18. Cholesterol in unusual places

    NASA Astrophysics Data System (ADS)

    Kučerka, N.; Nieh, M. P.; Marquardt, D.; Harroun, T. A.; Wassail, S. R.; Katsaras, J.

    2010-11-01

    Cholesterol is an essential component of mammalian cells, and is required for building and maintaining cell membranes, regulating their fluidity, and possibly acting as an antioxidant. Cholesterol has also been implicated in cell signaling processes, where it has been suggested that it triggers the formation of lipid rafts in the plasma membrane. Aside from cholesterol's physiological roles, what is also becoming clear is its poor affinity for lipids with unsaturated fatty acids as opposed to saturated lipids, such as sphingomyelin with which it forms rafts. We previously reported the location of cholesterol in membranes with varying degrees of acyl chain unsaturation as determined by neutron diffraction studies (Harroun et al 2006 Biochemistry 45, 1227; Harroun et al 2008 Biochemistry 47, 7090). In bilayers composed of phosphatidylcholine (PC) molecules with a saturated acyl chain at the sn-1 position or a monounsaturated acyl chain at both sn-1 and sn-2 positions, cholesterol was found in its much-accepted "upright" position. However, in dipolyunsaturated 1,2-diarachidonyl phosphatidylcholine (20:4-20:4PC) membranes the molecule was found sequestered in the center of the bilayers. In further experiments, mixing l-palmitoyl-2-oleoyl phosphatidylcholine (16:0-18:1 PC) with 20:4-20:4PC resulted in cholesterol reverting to its upright orientation at approximately 40 mol% 16:0-18:1 PC. Interestingly, the same effect was achieved with only 5 mol% 1,2-dimyristoyl phosphatidylchoile (14:0-14:0PC).

  19. MD-2 binds cholesterol.

    PubMed

    Choi, Soo-Ho; Kim, Jungsu; Gonen, Ayelet; Viriyakosol, Suganya; Miller, Yury I

    2016-02-19

    Cholesterol is a structural component of cellular membranes, which is transported from liver to peripheral cells in the form of cholesterol esters (CE), residing in the hydrophobic core of low-density lipoprotein. Oxidized CE (OxCE) is often found in plasma and in atherosclerotic lesions of subjects with cardiovascular disease. Our earlier studies have demonstrated that OxCE activates inflammatory responses in macrophages via toll-like receptor-4 (TLR4). Here we demonstrate that cholesterol binds to myeloid differentiation-2 (MD-2), a TLR4 ancillary molecule, which is a binding receptor for bacterial lipopolysaccharide (LPS) and is indispensable for LPS-induced TLR4 dimerization and signaling. Cholesterol binding to MD-2 was competed by LPS and by OxCE-modified BSA. Furthermore, soluble MD-2 in human plasma and MD-2 in mouse atherosclerotic lesions carried cholesterol, the finding supporting the biological significance of MD-2 cholesterol binding. These results help understand the molecular basis of TLR4 activation by OxCE and mechanisms of chronic inflammation in atherosclerosis. PMID:26806306

  20. Carboxy-terminal mutations of bile acid CoA:N-acyltransferase alter activity and substrate specificity.

    PubMed

    Styles, Nathan A; Shonsey, Erin M; Falany, Josie L; Guidry, Amber L; Barnes, Stephen; Falany, Charles N

    2016-07-01

    Bile acid CoA:amino acid N-acyltransferase (BAAT) is the terminal enzyme in the synthesis of bile salts from cholesterol and catalyzes the conjugation of taurine or glycine to bile acid CoA thioesters to form bile acid N-acylamidates. BAAT has a dual localization to the cytosol and peroxisomes, possibly due to an inefficient carboxy-terminal peroxisomal targeting signal (PTS), -serine-glutamine-leucine (-SQL). Mutational analysis was used to define the role of the carboxy terminus in peroxisomal localization and kinetic activity. Amidation activity of BAAT and BAAT lacking the final two amino acids (AAs) (BAAT-S) were similar, whereas the activity of BAAT with a canonical PTS sequence (BAAT-SKL) was increased >2.5-fold. Kinetic analysis of BAAT and BAAT-SKL showed that BAAT-SKL had a lower Km for taurine and glycine as well as a greater Vmax There was no difference in the affinity for cholyl-CoA. In contrast to BAAT, BAAT-SKL forms bile acid N-acylamidates with β-alanine. BAAT-S immunoprecipitated when incubated with peroxisomal biogenesis factor 5 (Pex5) and rabbit anti-Pex5 antibodies; however, deleting the final 12 AAs prevented coimmunoprecipitation with Pex5, indicating the Pex5 interaction involves more than the -SQL sequence. These results indicate that even small changes in the carboxy terminus of BAAT can have significant effects on activity and substrate specificity. PMID:27230263

  1. Novel role of a triglyceride-synthesizing enzyme: DGAT1 at the crossroad between triglyceride and cholesterol metabolism

    PubMed Central

    Sachdev, Vinay; Leopold, Christina; Bauer, Raimund; Patankar, Jay V.; Iqbal, Jahangir; Obrowsky, Sascha; Boverhof, Renze; Doktorova, Marcela; Scheicher, Bernhard; Goeritzer, Madeleine; Kolb, Dagmar; Turnbull, Andrew V.; Zimmer, Andreas; Hoefler, Gerald; Hussain, M. Mahmood; Groen, Albert K.; Kratky, Dagmar

    2016-01-01

    Acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1) is a key enzyme in triacylglycerol (TG) biosynthesis. Here we show that genetic deficiency and pharmacological inhibition of DGAT1 in mice alters cholesterol metabolism. Cholesterol absorption, as assessed by acute cholesterol uptake, was significantly decreased in the small intestine and liver upon DGAT1 deficiency/inhibition. Ablation of DGAT1 in the intestine (I-DGAT1−/−) alone is sufficient to cause these effects. Consequences of I-DGAT1 deficiency phenocopy findings in whole-body DGAT1−/− and DGAT1 inhibitor-treated mice. We show that deficiency/inhibition of DGAT1 affects cholesterol metabolism via reduced chylomicron size and increased trans-intestinal cholesterol excretion. These effects are independent of cholesterol uptake at the apical surface of enterocytes but mediated through altered dietary fatty acid metabolism. Our findings provide insight into a novel role of DGAT1 and identify a pathway by which intestinal DGAT1 deficiency affects whole-body cholesterol homeostasis in mice. Targeting intestinal DGAT1 may represent a novel approach for treating hypercholesterolemia. PMID:27344248

  2. Novel role of a triglyceride-synthesizing enzyme: DGAT1 at the crossroad between triglyceride and cholesterol metabolism.

    PubMed

    Sachdev, Vinay; Leopold, Christina; Bauer, Raimund; Patankar, Jay V; Iqbal, Jahangir; Obrowsky, Sascha; Boverhof, Renze; Doktorova, Marcela; Scheicher, Bernhard; Goeritzer, Madeleine; Kolb, Dagmar; Turnbull, Andrew V; Zimmer, Andreas; Hoefler, Gerald; Hussain, M Mahmood; Groen, Albert K; Kratky, Dagmar

    2016-09-01

    Acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1) is a key enzyme in triacylglycerol (TG) biosynthesis. Here we show that genetic deficiency and pharmacological inhibition of DGAT1 in mice alters cholesterol metabolism. Cholesterol absorption, as assessed by acute cholesterol uptake, was significantly decreased in the small intestine and liver upon DGAT1 deficiency/inhibition. Ablation of DGAT1 in the intestine (I-DGAT1(-/-)) alone is sufficient to cause these effects. Consequences of I-DGAT1 deficiency phenocopy findings in whole-body DGAT1(-/-) and DGAT1 inhibitor-treated mice. We show that deficiency/inhibition of DGAT1 affects cholesterol metabolism via reduced chylomicron size and increased trans-intestinal cholesterol excretion. These effects are independent of cholesterol uptake at the apical surface of enterocytes but mediated through altered dietary fatty acid metabolism. Our findings provide insight into a novel role of DGAT1 and identify a pathway by which intestinal DGAT1 deficiency affects whole-body cholesterol homeostasis in mice. Targeting intestinal DGAT1 may represent a novel approach for treating hypercholesterolemia. PMID:27344248

  3. Cholesterol-lowering activity of sesamin is associated with down-regulation on genes of sterol transporters involved in cholesterol absorption.

    PubMed

    Liang, Yin Tong; Chen, Jingnan; Jiao, Rui; Peng, Cheng; Zuo, Yuanyuan; Lei, Lin; Liu, Yuwei; Wang, Xiaobo; Ma, Ka Ying; Huang, Yu; Chen, Zhen-Yu

    2015-03-25

    Sesame seed is rich in sesamin. The present study was to (i) investigate the plasma cholesterol-lowering activity of dietary sesamin and (ii) examine the interaction of dietary sesamin with the gene expression of sterol transporters, enzymes, receptors, and proteins involved in cholesterol metabolism. Thirty hamsters were divided into three groups fed the control diet (CON) or one of two experimental diets containing 0.2% (SL) and 0.5% (SH) sesamin, respectively, for 6 weeks. Plasma total cholesterol (TC) levels in hamsters given the CON, SL, and SH diets were 6.62 ± 0.40, 5.32 ± 0.40, and 5.00 ± 0.44 mmol/L, respectively, indicating dietary sesamin could reduce plasma TC in a dose-dependent manner. Similarly, the excretion of total fecal neutral sterols was dose-dependently increased with the amounts of sesamin in diets (CON, 2.65 ± 0.57; SL, 4.30 ± 0.65; and SH, 5.84 ± 1.27 μmol/day). Addition of sesamin into diets was associated with down-regulation of mRNA of intestinal Niemann-Pick C1 like 1 protein (NPC1L1), acyl-CoA:cholesterol acyltransferase 2 (ACAT2), microsomal triacylglycerol transport protein (MTP), and ATP-binding cassette transporters subfamily G members 5 and 8 (ABCG5 and ABCG8). Results also showed that dietary sesamin could up-regulate hepatic cholesterol-7α-hydroxylase (CYP7A1), whereas it down-regulated hepatic 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reductase and liver X receptor alpha (LXRα). It was concluded that the cholesterol-lowering activity of sesamin was mediated by promoting the fecal excretion of sterols and modulating the genes involved in cholesterol absorption and metabolism. PMID:25745846

  4. Cholesterol depletion induces autophagy

    SciTech Connect

    Cheng, Jinglei; Ohsaki, Yuki; Tauchi-Sato, Kumi; Fujita, Akikazu; Fujimoto, Toyoshi . E-mail: tfujimot@med.nagoya-u.ac.jp

    2006-12-08

    Autophagy is a mechanism to digest cells' own components, and its importance in many physiological and pathological processes is being recognized. But the molecular mechanism that regulates autophagy is not understood in detail. In the present study, we found that cholesterol depletion induces macroautophagy. The cellular cholesterol in human fibroblasts was depleted either acutely using 5 mM methyl-{beta}-cyclodextrin or 10-20 {mu}g/ml nystatin for 1 h, or metabolically by 20 {mu}M mevastatin and 200 {mu}M mevalonolactone along with 10% lipoprotein-deficient serum for 2-3 days. By any of these protocols, marked increase of LC3-II was detected by immunoblotting and by immunofluorescence microscopy, and the increase was more extensive than that caused by amino acid starvation, i.e., incubation in Hanks' solution for several hours. The induction of autophagic vacuoles by cholesterol depletion was also observed in other cell types, and the LC3-positive membranes were often seen as long tubules, >50 {mu}m in length. The increase of LC3-II by methyl-{beta}-cyclodextrin was suppressed by phosphatidylinositol 3-kinase inhibitors and was accompanied by dephosphorylation of mammalian target of rapamycin. By electron microscopy, autophagic vacuoles induced by cholesterol depletion were indistinguishable from those seen after amino acid starvation. These results demonstrate that a decrease in cholesterol activates autophagy by a phosphatidylinositol 3-kinase-dependent mechanism.

  5. Cholesterol Absorption and Metabolism.

    PubMed

    Howles, Philip N

    2016-01-01

    Inhibitors of cholesterol absorption have been sought for decades as a means to treat and prevent cardiovascular diseases (CVDs) associated with hypercholesterolemia. Ezetimibe is the one clear success story in this regard, and other compounds with similar efficacy continue to be sought. In the last decade, the laboratory mouse, with all its genetic power, has become the premier experimental model for discovering the mechanisms underlying cholesterol absorption and has become a critical tool for preclinical testing of potential pharmaceutical entities. This chapter briefly reviews the history of cholesterol absorption research and the various gene candidates that have come under consideration as drug targets. The most common and versatile method of measuring cholesterol absorption is described in detail along with important considerations when interpreting results, and an alternative method is also presented. In recent years, reverse cholesterol transport (RCT) has become an area of intense new interest for drug discovery since this process is now considered another key to reducing CVD risk. The ultimate measure of RCT is sterol excretion and a detailed description is given for measuring neutral and acidic fecal sterols and interpreting the results. PMID:27150091

  6. Selective inhibitors of a PAF biosynthetic enzyme lysophosphatidylcholine acyltransferase 2.

    PubMed

    Tarui, Megumi; Shindou, Hideo; Kumagai, Kazuo; Morimoto, Ryo; Harayama, Takeshi; Hashidate, Tomomi; Kojima, Hirotatsu; Okabe, Takayoshi; Nagano, Tetsuo; Nagase, Takahide; Shimizu, Takao

    2014-07-01

    Platelet-activating factor (PAF) is a potent pro-inflammatory phospholipid mediator. In response to extracellular stimuli, PAF is rapidly biosynthesized by lyso-PAF acetyltransferase (lyso-PAFAT). Previously, we identified two types of lyso-PAFATs: lysophosphatidylcholine acyltransferase (LPCAT)1, mostly expressed in the lungs where it produces PAF and dipalmitoyl-phosphatidylcholine essential for respiration, and LPCAT2, which biosynthesizes PAF and phosphatidylcholine (PC) in the inflammatory cells. Under inflammatory conditions, LPCAT2, but not LPCAT1, is activated and upregulated to produce PAF. Thus, it is important to develop inhibitors specific for LPCAT2 in order to ameliorate PAF-related inflammatory diseases. Here, we report the first identification of LPCAT2-specific inhibitors, N-phenylmaleimide derivatives, selected from a 174,000-compound library using fluorescence-based high-throughput screening followed by the evaluation of the effects on LPCAT1 and LPCAT2 activities, cell viability, and cellular PAF production. Selected compounds competed with acetyl-CoA for the inhibition of LPCAT2 lyso-PAFAT activity and suppressed PAF biosynthesis in mouse peritoneal macrophages stimulated with a calcium ionophore. These compounds had low inhibitory effects on LPCAT1 activity, indicating that adverse effects on respiratory functions may be avoided. The identified compounds and their derivatives will contribute to the development of novel drugs for PAF-related diseases and facilitate the analysis of LPCAT2 functions in phospholipid metabolism in vivo. PMID:24850807

  7. Engineering the acyltransferase substrate specificity of assembly line polyketide synthases.

    PubMed

    Dunn, Briana J; Khosla, Chaitan

    2013-08-01

    Polyketide natural products act as a broad range of therapeutics, including antibiotics, immunosuppressants and anti-cancer agents. This therapeutic diversity stems from the structural diversity of these small molecules, many of which are produced in an assembly line manner by modular polyketide synthases. The acyltransferase (AT) domains of these megasynthases are responsible for selection and incorporation of simple monomeric building blocks, and are thus responsible for a large amount of the resulting polyketide structural diversity. The substrate specificity of these domains is often targeted for engineering in the generation of novel, therapeutically active natural products. This review outlines recent developments that can be used in the successful engineering of these domains, including AT sequence and structural data, mechanistic insights and the production of a diverse pool of extender units. It also provides an overview of previous AT domain engineering attempts, and concludes with proposed engineering approaches that take advantage of current knowledge. These approaches may lead to successful production of biologically active 'unnatural' natural products. PMID:23720536

  8. Molecular evolution of the lysophosphatidic acid acyltransferase (LPAAT) gene family.

    PubMed

    Körbes, Ana Paula; Kulcheski, Franceli Rodrigues; Margis, Rogério; Margis-Pinheiro, Márcia; Turchetto-Zolet, Andreia Carina

    2016-03-01

    Lysophosphatidic acid acyltransferases (LPAATs) perform an essential cellular function by controlling the production of phosphatidic acid (PA), a key intermediate in the synthesis of membrane, signaling and storage lipids. Although LPAATs have been extensively explored by functional and biotechnological studies, little is known about their molecular evolution and diversification. We performed a genome-wide analysis using data from several plants and animals, as well as other eukaryotic and prokaryotic species, to identify LPAAT genes and analyze their evolutionary history. We used phylogenetic and molecular evolution analysis to test the hypothesis of distinct origins for these genes. The reconstructed phylogeny supported the ancient origin of some isoforms (plant LPAAT1 and LPAATB; animal AGPAAT1/2), while others emerged more recently (plant LPAAT2/3/4/5; AGPAAT3/4/5/8). Additionally, the hypothesis of endosymbiotic origin of the plastidic isoform LPAAT1 was confirmed. LPAAT genes from plants and animals mainly experienced strong purifying selection pressures with limited functional divergence after the species-specific duplications. Gene expression analyses of LPAAT isoforms in model plants demonstrated distinct LPAAT expression patterns in these organisms. The results showed that distinct origins followed by diversification of the LPAAT genes shaped the evolution of TAG biosynthesis. The expression pattern of individual genes may be responsible for adaptation into multiple ecological niches. PMID:26721558

  9. Adiponutrin Functions as a Nutritionally Regulated Lysophosphatidic Acid Acyltransferase

    PubMed Central

    Kumari, Manju; Schoiswohl, Gabriele; Chitraju, Chandramohan; Paar, Margret; Cornaciu, Irina; Rangrez, Ashraf Y.; Wongsiriroj, Nuttaporn; Nagy, Harald M.; Ivanova, Pavlina T.; Scott, Sarah A.; Knittelfelder, Oskar; Rechberger, Gerald N.; Birner-Gruenberger, Ruth; Eder, Sandra; Brown, H. Alex; Haemmerle, Guenter; Oberer, Monika; Lass, Achim; Kershaw, Erin E.; Zimmermann, Robert; Zechner, Rudolf

    2012-01-01

    SUMMARY Numerous studies in humans link a nonsynonymous genetic polymorphism (I148M) in adiponutrin (ADPN) to various forms of fatty liver disease and liver cirrhosis. Despite its high clinical relevance, the molecular function of ADPN and the mechanism by which I148M variant affects hepatic metabolism are unclear. Here we show that ADPN promotes cellular lipid synthesis by converting lysophosphatidic acid (LPA) into phosphatidic acid. The ADPN-catalyzed LPA acyltransferase (LPAAT) reaction is specific for LPA and long-chain acyl-CoAs. Wild-type mice receiving a high-sucrose diet exhibit substantial upregulation of Adpn in the liver and a concomitant increase in LPAAT activity. In Adpn-deficient mice, this diet-induced increase in hepatic LPAAT activity is reduced. Notably, the I148M variant of human ADPN exhibits increased LPAAT activity leading to increased cellular lipid accumulation. This gain of function provides a plausible biochemical mechanism for the development of liver steatosis in subjects carrying the I148M variant. PMID:22560221

  10. Engineering the acyltransferase substrate specificity of assembly line polyketide synthases

    PubMed Central

    Dunn, Briana J.; Khosla, Chaitan

    2013-01-01

    Polyketide natural products act as a broad range of therapeutics, including antibiotics, immunosuppressants and anti-cancer agents. This therapeutic diversity stems from the structural diversity of these small molecules, many of which are produced in an assembly line manner by modular polyketide synthases. The acyltransferase (AT) domains of these megasynthases are responsible for selection and incorporation of simple monomeric building blocks, and are thus responsible for a large amount of the resulting polyketide structural diversity. The substrate specificity of these domains is often targeted for engineering in the generation of novel, therapeutically active natural products. This review outlines recent developments that can be used in the successful engineering of these domains, including AT sequence and structural data, mechanistic insights and the production of a diverse pool of extender units. It also provides an overview of previous AT domain engineering attempts, and concludes with proposed engineering approaches that take advantage of current knowledge. These approaches may lead to successful production of biologically active ‘unnatural’ natural products. PMID:23720536

  11. A close look at a ketosynthase from a trans-acyltransferase modular polyketide synthase

    PubMed Central

    Gay, Darren C.; Gay, Glen; Axelrod, Abram J.; Jenner, Matthew; Kohlhaas, Christoph; Kampa, Annette; Oldham, Neil J.; Piel, Jörn; Keatinge-Clay, Adrian T.

    2014-01-01

    SUMMARY The recently discovered trans-acyltransferase modular polyketide synthases catalyze the biosynthesis of a wide range of bioactive natural products in bacteria. Here we report the structure of the second ketosynthase from the bacillaene trans-acyltransferase polyketide synthase. This 1.95 Å-resolution structure provides the highest resolution view available of a modular polyketide synthase ketosynthase and reveals a flanking subdomain that is homologous to an ordered linker in cis-acyltransferase modular polyketide synthases. The structure of the cysteine-to-serine mutant of the ketosynthase acylated by its natural substrate provides high-resolution details of how a native polyketide intermediate is bound and helps explain the basis of ketosynthase substrate specificity. The substrate range of the ketosynthase was further investigated by mass spectrometry. PMID:24508341

  12. High blood cholesterol levels

    MedlinePlus

    Steps you can take to improve their cholesterol levels, and help prevent heart disease and a heart attack include: Quit smoking. This is the single biggest change you can make to reduce your risk of heart attack and stroke. Eat foods ...

  13. Niacin for cholesterol

    MedlinePlus

    ... this page, please enable JavaScript. Niacin is a B-vitamin. When taken as a prescription in larger doses, ... A.M. Editorial team. Related MedlinePlus Health Topics B Vitamins Cholesterol Browse the Encyclopedia A.D.A.M., ...

  14. Cholesterol, inflammasomes, and atherogenesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plasma cholesterol levels have been strongly associated with atherogenesis, underscoring the role of lipid metabolism in defining cardiovascular disease risk. However, atherosclerotic plaque is highly dynamic and contains elements of both the innate and adaptive immune system that respond to the abe...

  15. What's so special about cholesterol?

    PubMed

    Mouritsen, Ole G; Zuckermann, Martin J

    2004-11-01

    Cholesterol (or other higher sterols such as ergosterol and phytosterols) is universally present in large amounts (20-40 mol%) in eukaryotic plasma membranes, whereas it is universally absent in the membranes of prokaryotes. Cholesterol has a unique ability to increase lipid order in fluid membranes while maintaining fluidity and diffusion rates. Cholesterol imparts low permeability barriers to lipid membranes and provides for large mechanical coherence. A short topical review is given of these special properties of cholesterol in relation to the structure of membranes, with results drawn from a variety of theoretical and experimental studies. Particular focus is put on cholesterol's ability to promote a special membrane phase, the liquid-ordered phase, which is unique for cholesterol (and other higher sterols like ergosterol) and absent in membranes containing the cholesterol precursor lanosterol. Cholesterol's role in the formation of special membrane domains and so-called rafts is discussed. PMID:15726825

  16. Bile acid sequestrants for cholesterol

    MedlinePlus

    Bile acid sequestrants are medicines that help lower your LDL (bad) cholesterol . Too much cholesterol in your blood can ... block them. These medicines work by blocking bile acid in your stomach from being absorbed in your ...

  17. Plasma cholesterol-lowering activity of gingerol- and shogaol-enriched extract is mediated by increasing sterol excretion.

    PubMed

    Lei, Lin; Liu, Yuwei; Wang, Xiaobo; Jiao, Rui; Ma, Ka Ying; Li, Yuk Man; Wang, Lijun; Man, Sun Wa; Sang, Shengmin; Huang, Yu; Chen, Zhen-Yu

    2014-10-29

    The present study investigated the cholesterol-lowering activity of gingerol- and shogaol-enriched ginger extract (GSE). Thirty hamsters were divided into three groups and fed the control diet or one of the two experimental diets containing 0.5 and 1.0% GSE. Plasma total cholesterol, liver cholesterol, and aorta atherosclerotic plaque were dose-dependently decreased with increasing amounts of GSE added into diets. The fecal sterol analysis showed dietary GSE increased the excretion of both neutral and acidic sterols in a dose-dependent manner. GSE down-regulated the mRNA levels of intestinal Niemann-Pick C1-like 1 protein (NPC1L1), acyl CoA:cholesterol acyltransferase 2 (ACAT2), microsomal triacylglycerol transport protein (MTP), and ATP binding cassette transporter 5 (ABCG5), whereas it up-regulated hepatic cholesterol-7α-hydroxylase (CYP7A1). It was concluded that beneficial modification of the lipoprotein profile by dietary GSE was mediated by enhancing excretion of fecal cholesterol and bile acids via up-regulation of hepatic CYP7A1 and down-regulation of mRNA of intestinal NPC1L1, ACAT2, and MTP. PMID:25290252

  18. Membrane topology of murine glycerol-3-phosphate acyltransferase 2.

    PubMed

    Nakagawa, Tadahiko; Harada, Nagakatsu; Miyamoto, Aiko; Kawanishi, Yukiko; Yoshida, Masaki; Shono, Masayuki; Mawatari, Kazuaki; Takahashi, Akira; Sakaue, Hiroshi; Nakaya, Yutaka

    2012-02-17

    Glycerol-3-phosphate acyltransferase (GPAT) is a rate-limiting enzyme in mammalian triacylglycerol biosynthesis. GPAT is a target for the treatment of metabolic disorders associated with high lipid accumulation. Although the molecular basis for GPAT1 activation has been investigated extensively, the activation of other isoforms, such as GPAT2, is less well understood. Here the membrane topology of the GPAT2 protein was examined using an epitope-tag-based method. Exogenously expressed GPAT2 protein was present in the membrane fraction of transformed HEK293 cells even in the presence of Na(2)CO(3) (100 mM), indicating that GPAT2 is a membrane-bound protein. Trypsin treatment of the membrane fraction degraded the N-terminal (FLAG) and C-terminal (myc-epitope) protein tags of the GPAT2 protein. Bioinformatic analysis of the GPAT2 protein sequence indicated four hydrophobic sequences as potential membrane-spanning regions (TM1-TM4). Immunoblotting of the myc-epitope tag, which was inserted between each TM region of the GPAT2 protein, showed that the amino acid sequence between TM3 and TM4 was protected from trypsin digestion. These results suggest that the GPAT2 protein has two transmembrane segments and that the N-terminal and C-terminal regions of this protein face the cytoplasm. These results also suggest that the enzymatically active motifs I-III of the GPAT2 protein face the cytosol, while motif IV is within the membrane. It is expected that the use of this topological model of GPAT2 will be essential in efforts to elucidate the molecular mechanisms of GPAT2 activity in mammalian cells. PMID:22285183

  19. Facts about Blood Cholesterol. Revised.

    ERIC Educational Resources Information Center

    National Heart, Lung, and Blood Inst. (DHHS/NIH), Bethesda, MD.

    This fact sheet offers information on blood cholesterol and its implications for a healthy heart. An explanation is given of the known facts about cholesterol and how it affects the body. A chart is provided that lists various foods and their fat and cholesterol contents. (JD)

  20. Understand Your Risk for High Cholesterol

    MedlinePlus

    ... or trans fats also increases the amount of LDL cholesterol in your blood. If high blood cholesterol runs ... may not be enough to help lower your LDL blood cholesterol. View an animation of cholesterol . More information: Women ...

  1. Overview of Cholesterol and Lipid Disorders

    MedlinePlus

    ... Cholesterol and Lipid Disorders Dyslipidemia Hypolipidemia Cholesterol and triglycerides are important fats (lipids) in the blood. Cholesterol ... needs, but it also obtains cholesterol from food. Triglycerides, which are contained in fat cells, can be ...

  2. Differential lipid metabolism in monocytes and macrophages: influence of cholesterol loading.

    PubMed

    Fernandez-Ruiz, Irene; Puchalska, Patrycja; Narasimhulu, Chandrakala Aluganti; Sengupta, Bhaswati; Parthasarathy, Sampath

    2016-04-01

    The influence of the hypercholesterolemia associated with atherosclerosis on monocytes is poorly understood. Monocytes are exposed to high concentrations of lipids, particularly cholesterol and lysophosphatidylcholine (lyso-PC). Indeed, in line with recent reports, we found that monocytes accumulate cholesteryl esters (CEs) in hypercholesterolemic mice, demonstrating the need for studies that analyze the effects of lipid accumulation on monocytes. Here we analyze the effects of cholesterol and lyso-PC loading in human monocytes and macrophages. We found that cholesterol acyltransferase and CE hydrolase activities are lower in monocytes. Monocytes also showed a different expression profile of cholesterol influx and efflux genes in response to lipid loading and a different pattern of lyso-PC metabolism. In monocytes, increased levels of CE slowed the conversion of lyso-PC into PC. Interestingly, although macrophages accumulated glycerophosphocholine, phosphocholine was the main water-soluble choline metabolite being generated in monocytes, suggesting a role for mono- and diacylglycerol in the chemoattractability of these cells. In summary, monocytes and macrophages show significant differences in lipid metabolism and gene expression profiles in response to lipid loading. These findings provide new insights into the mechanisms of atherosclerosis and suggest potentials for targeting monocyte chemotactic properties not only in atherosclerosis but also in other diseases. PMID:26839333

  3. The Wax Ester Synthase/Acyl Coenzyme A:Diacylglycerol Acyltransferase from Acinetobacter sp. Strain ADP1: Characterization of a Novel Type of Acyltransferase

    PubMed Central

    Stöveken, Tim; Kalscheuer, Rainer; Malkus, Ursula; Reichelt, Rudolf; Steinbüchel, Alexander

    2005-01-01

    The wax ester synthase/acyl coenzyme A (acyl-CoA):diacylglycerol acyltransferase (WS/DGAT) catalyzes the final steps in triacylglycerol (TAG) and wax ester (WE) biosynthesis in the gram-negative bacterium Acinetobacter sp. strain ADP1. It constitutes a novel class of acyltransferases which is fundamentally different from acyltransferases involved in TAG and WE synthesis in eukaryotes. The enzyme was purified by a three-step purification protocol to apparent homogeneity from the soluble fraction of recombinant Escherichia coli Rosetta (DE3)pLysS (pET23a::atfA). Purified WS/DGAT revealed a remarkably low substrate specificity, accepting a broad range of various substances as alternative acceptor molecules. Besides having DGAT and WS activity, the enzyme possesses acyl-CoA:monoacylglycerol acyltransferase (MGAT) activity. The sn-1 and sn-3 positions of acylglycerols are accepted with higher specificity than the sn-2 position. Linear alcohols ranging from ethanol to triacontanol are efficiently acylated by the enzyme, which exhibits highest specificities towards medium-chain-length alcohols. The acylation of cyclic and aromatic alcohols, such as cyclohexanol or phenylethanol, further underlines the unspecific character of this enzyme. The broad range of possible substrates may lead to biotechnological production of interesting wax ester derivatives. Determination of the native molecular weight revealed organization as a homodimer. The large number of WS/DGAT-homologous genes identified in pathogenic mycobacteria and their possible importance for the pathogenesis and latency of these bacteria makes the purified WS/DGAT from Acinetobacter sp. strain ADP1 a valuable model for studying this group of proteins in pathogenic mycobacteria. PMID:15687201

  4. Topology of 1-Acyl-sn-glycerol-3-phosphate Acyltransferases SLC1 and ALE1 and Related Membrane-bound O-Acyltransferases (MBOATs) of Saccharomyces cerevisiae*

    PubMed Central

    Pagac, Martin; de la Mora, Hector Vazquez; Duperrex, Cécile; Roubaty, Carole; Vionnet, Christine; Conzelmann, Andreas

    2011-01-01

    In yeast, phosphatidic acid, the biosynthetic precursor for all glycerophospholipids and triacylglycerols, is made de novo by the 1-acyl-sn-glycerol-3-phosphate acyltransferases Ale1p and Slc1p. Ale1p belongs to the membrane-bound O-acyltransferase (MBOAT) family, which contains many enzymes acylating lipids but also others that acylate secretory proteins residing in the lumen of the ER. A histidine present in a very short loop between two predicted transmembrane domains is the only residue that is conserved throughout the MBOAT gene family. The yeast MBOAT proteins of known function comprise Ale1p, the ergosterol acyltransferases Are1p and Are2p, and Gup1p, the last of which acylates lysophosphatidylinositol moieties of GPI anchors on ER lumenal GPI proteins. C-terminal topology reporters added to truncated versions of Gup1p yield a topology predicting a lumenal location of its uniquely conserved histidine 447 residue. The same approach shows that Ale1p and Are2p also have the uniquely conserved histidine residing in the ER lumen. Because these data raised the possibility that phosphatidic acid could be made in the lumen of the ER, we further investigated the topology of the second yeast 1-acyl-sn-glycerol-3-phosphate acyltransferase, Slc1p. The location of C-terminal topology reporters, microsomal assays probing the protease sensitivity of inserted tags, and the accessibility of natural or artificially inserted cysteines to membrane-impermeant alkylating agents all indicate that the most conserved motif containing the presumed active site histidine of Slc1p is oriented toward the ER lumen, whereas other conserved motifs are cytosolic. The implications of these findings are discussed. PMID:21849510

  5. Cholesterol binding to ion channels

    PubMed Central

    Levitan, Irena; Singh, Dev K.; Rosenhouse-Dantsker, Avia

    2014-01-01

    Numerous studies demonstrated that membrane cholesterol is a major regulator of ion channel function. The goal of this review is to discuss significant advances that have been recently achieved in elucidating the mechanisms responsible for cholesterol regulation of ion channels. The first major insight that comes from growing number of studies that based on the sterol specificity of cholesterol effects, show that several types of ion channels (nAChR, Kir, BK, TRPV) are regulated by specific sterol-protein interactions. This conclusion is supported by demonstrating direct saturable binding of cholesterol to a bacterial Kir channel. The second major advance in the field is the identification of putative cholesterol binding sites in several types of ion channels. These include sites at locations associated with the well-known cholesterol binding motif CRAC and its reversed form CARC in nAChR, BK, and TRPV, as well as novel cholesterol binding regions in Kir channels. Notably, in the majority of these channels, cholesterol is suggested to interact mainly with hydrophobic residues in non-annular regions of the channels being embedded in between transmembrane protein helices. We also discuss how identification of putative cholesterol binding sites is an essential step to understand the mechanistic basis of cholesterol-induced channel regulation. Clearly, however, these are only the first few steps in obtaining a general understanding of cholesterol-ion channels interactions and their roles in cellular and organ functions. PMID:24616704

  6. Cholesterol dynamics in membranes.

    PubMed Central

    Yeagle, P L; Albert, A D; Boesze-Battaglia, K; Young, J; Frye, J

    1990-01-01

    Time-resolved fluorescence anisotropy of the sterol analogue, cholestatrienol, and 13C nuclear magnetic resonance (NMR) spin lattice relaxation time (T1c) measurements of [13C4] labeled cholesterol were exploited to determine the correlation times characterizing the major modes of motion of cholesterol in unsonicated phospholipid multilamellar liposomes. Two modes of motion were found to be important: (a) rotational diffusion and (b) time dependence of the orientation of the director for axial diffusion, or "wobble." From the time-resolved fluorescence anisotropy decays of cholestatrienol in egg phosphatidylcholine (PC) bilayers, a value for tau perpendicular, the correlation time for wobble, of 0.9 x 10(-9) s and a value for S perpendicular, the order parameter characterizing the same motion, of 0.45 s were calculated. Both tau perpendicular and S perpendicular were relatively insensitive to temperature and cholesterol content of the membranes. The T1c measurements of [13C4] labeled cholesterol did not provide a quantitative determination of tau parallel, the correlation time for axial diffusion. T1c from the lipid hydrocarbon chains suggested a value for tau perpendicular similar to that for cholesterol. Steady-state anisotropy measurements and time-resolved anisotropy measurements of cholestatrienol were used to probe sterol behavior in a variety of pure and mixed lipid multilamellar liposomes. Both the lipid headgroups and the lipid hydrocarbons chains contributed to the determination of the sterol environment in the membrane, as revealed by these fluorescence measurements. In particular, effects of the phosphatidylethanolamine (PE) headgroup and of multiple unsaturation in the lipid hydrocarbon chains were observed. However, while the steady-state anisotropy was sensitive to these factors, the time-resolved fluorescence analysis indicated that tau perpendicular was not strongly affected by the lipid composition of the membrane. S perpendicular may be increased

  7. Castor diacylglycerol acyltransferase type1(DGAT1)displays greater activity with diricinolein than Arabidopsis DGAT1

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Castor oil contains the hydroxy fatty acid ricinoleate as a major (90%) component. The diacylglycerol acyltransferase (DGAT) carries out the final reaction step in the biosynthesis of triacylglycerol, the principal constituent of seed oil, and has been considered to be the step that controls the oil...

  8. Structure-function analysis of diacylglycerol acyltransferase sequences from tung tree and 82 other Organisms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diacylglycerol acyltransferase family (DGATs) catalyzes the final and rate-limiting step of triacylglycerol (TAG) biosynthesis in eukaryotic organisms. DGATs esterify sn-1,2-diacylglycerol with a long-chain fatty acyl-CoA. Understanding the roles of DGATs will help to create transgenic plants with v...

  9. Developmental regulation of diacylglycerol acyltransferase family gene expression in tung tree tissues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diacylglycerol acyltransferases (DGAT) are responsible for the final and rate-limiting step of triacylglycerol (TAG) biosynthesis in eukaryotic organisms. DGAT genes have been identified in numerous organisms. Multiple isoforms of DGAT are present in eukaryotes, including DGAT1 and DGAT2 of tung tre...

  10. Structure-function analysis of diacylglycerol acyltransferase sequences from 70 organisms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diacylglycerol acyltransferases (DGATs) catalyze the final and rate-limiting step of triacylglycerol (TAG) biosynthesis in eukaryotic organisms. Understanding the roles of DGATs will help to create transgenic plants with value-added properties and provide clues for therapeutic intervention for obes...

  11. A Bifunctional Enzyme That Has Both Monoacylglycerol Acyltransferase and Acyl Hydrolase Activities1[W][OA

    PubMed Central

    Vijayaraj, Panneerselvam; Jashal, Charnitkaur B.; Vijayakumar, Anitha; Rani, Sapa Hima; Venkata Rao, D.K.; Rajasekharan, Ram

    2012-01-01

    Monoacylglycerol acyltransferase (MGAT) catalyzes the synthesis of diacylglycerol, the precursor of triacylglycerol biosynthesis and an important signaling molecule. Here, we describe the isolation and characterization of the peanut (Arachis hypogaea) MGAT gene. The soluble enzyme utilizes invariant histidine-62 and aspartate-67 residues of the acyltransferase motif for its MGAT activity. A sequence analysis revealed the presence of a hydrolase (GXSXG) motif, and enzyme assays revealed the presence of monoacylglycerol (MAG) and lysophosphatidylcholine (LPC) hydrolytic activities, indicating the bifunctional nature of the enzyme. The overexpression of the MGAT gene in yeast (Saccharomyces cerevisiae) caused an increase in triacylglycerol accumulation. Similar to the peanut MGAT, the Arabidopsis (Arabidopsis thaliana) homolog (At1g52760) also exhibited both acyltransferase and hydrolase activities. Interestingly, the yeast homolog lacks the conserved HX4D motif, and it is deficient in the acyltransferase function but exhibits MAG and LPC hydrolase activities. This study demonstrates the presence of a soluble MGAT/hydrolase in plants. The predicted three-dimensional homology modeling and substrate docking suggested the presence of two separate substrate (MAG and LPC)-binding sites in a single polypeptide. Our study describes a soluble bifunctional enzyme that has both MGAT and hydrolase functions. PMID:22915575

  12. Draft Genome Sequence of an Endophytic Actinoplanes Species, Encoding Uncommon trans-Acyltransferase Polyketide Synthases

    PubMed Central

    Centeno-Leija, Sara; Vinuesa, Pablo; Rodríguez-Peña, Karol; Trenado-Uribe, Miriam; Cárdenas-Conejo, Yair; Serrano-Posada, Hugo; Rodríguez-Sanoja, Romina

    2016-01-01

    Actinoplanes is an endophytic actinobacterium isolated from the medicinal plant Amphipterygium adstringens. The strain draft genome sequence reveals a gene cluster involved in the biosynthesis of a hybrid trans-acyltransferase (AT) polyketide, an unconventional bioactive metabolite never reported before in the genus Actinoplanes. PMID:27013046

  13. Structure-function analysis of diacylglycerol acyltransferase sequences for metabolic engineering and drug discovery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diacylglycerol acyltransferase families (DGATs) catalyze the final and rate-limiting step of triacylglycerol (TAG) biosynthesis in eukaryotic organisms. DGAT knockout mice are resistant to diet-induced obesity and lack milk secretion. Over-expression of DGATs increases TAG in plants. Therefore, unde...

  14. Expression of tung seed diacylglycerol acyltransferases (DGAT) in E. coli and yeast

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diacylglycerol acyltransferases (DGATs) catalyze the last step of triacylglycerol (TAG) biosynthesis in eukaryotic organisms. Plants and animals deficient in DGATs accumulate less TAG, resist obesity, and/or lack milk secretion. Over-expression of the DGATs increases TAG content in seeds and other t...

  15. Expression and purification of recombinant tung tree diacylglycerol acyltransferase 2.

    PubMed

    Cao, Heping; Chapital, Dorselyn C; Howard, O D; Deterding, Leesa J; Mason, Catherine B; Shockey, Jay M; Klasson, K Thomas

    2012-11-01

    Diacylglycerol acyltransferases (DGATs) esterify sn-1,2-diacylglycerol with a long-chain fatty acyl-CoA, the last and rate-limiting step of triacylglycerol (TAG) biosynthesis in eukaryotic organisms. At least 74 DGAT2 sequences from 61 organisms have been identified, but the expression of any DGAT2 as a partial or full-length protein in Escherichia coli had not been reported. The main objective of this study was to express and purify recombinant DGAT2 (rDGAT2) from E. coli for antigen production with a minor objective to compare rDGAT2 expression in yeast. A plasmid was engineered to express tung tree DGAT2 fused to maltose binding protein and poly-histidine (His) affinity tags. Immunoblotting showed that rDGAT2 was detected in the soluble, insoluble, and membrane fractions. The rDGAT2 in the soluble fraction was partially purified by amylose resin, nickel-nitrilotriacetic agarose (Ni-NTA) beads, and tandem affinity chromatography. Multiple proteins co-purified with rDGAT2. Size exclusion chromatography estimated the size of the rDGAT2-enriched fraction to be approximately eight times the monomer size. Affinity-purified rDGAT2 fractions had a yellow tint and contained fatty acids. The rDGAT2 in the insoluble fraction was partially solubilized by seven detergents with SDS being the most effective. Recombinant DGAT2 was purified to near homogeneity by SDS solubilization and Ni-NTA affinity chromatography. Mass spectrometry identified rDGAT2 as a component in the bands corresponding to the monomer and dimer forms as observed by SDS-PAGE. Protein bands with monomer and dimer sizes were also observed in the microsomal membranes of Saccharomyces cerevisiae expressing hemagglutinin-tagged DGAT2. Nonradioactive assay showed TAG synthesis activity of DGAT2 from yeast but not E. coli. The results suggest that rDGAT2 is present as monomer and dimer forms on SDS-PAGE, associated with other proteins, lipids, and membranes, and that post-translational modification of rDGAT2 may

  16. Overexpression of Peanut Diacylglycerol Acyltransferase 2 in Escherichia coli

    PubMed Central

    Yang, Lianqun; Zhang, Bin; Chen, Gao; Bi, Yuping

    2013-01-01

    Diacylglycerol acyltransferase (DGAT) is the rate-limiting enzyme in triacylglycerol biosynthesis in eukaryotic organisms. Triacylglycerols are important energy-storage oils in plants such as peanuts, soybeans and rape. In this study, Arachis hypogaea type 2 DGAT (AhDGAT2) genes were cloned from the peanut cultivar ‘Luhua 14’ using a homologous gene sequence method and rapid amplification of cDNA ends. To understand the role of AhDGAT2 in triacylglycerol biosynthesis, two AhDGAT2 nucleotide sequences that differed by three amino acids were expressed as glutathione S-transferase (GST) fusion proteins in Escherichia coli Rosetta (DE3). Following IPTG induction, the isozymes (AhDGAT2a and AhDGAT2b) were expressed as 64.5 kDa GST fusion proteins. Both AhDGAT2a and AhDGAT2b occurred in the host cell cytoplasm and inclusion bodies, with larger amounts in the inclusion bodies. Overexpression of AhDGATs depressed the host cell growth rates relative to non-transformed cells, but cells harboring empty-vector, AhDGAT2a–GST, or AhDGAT2b–GST exhibited no obvious growth rate differences. Interestingly, induction of AhDGAT2a–GST and AhDGAT2b–GST proteins increased the sizes of the host cells by 2.4–2.5 times that of the controls (post-IPTG induction). The total fatty acid (FA) levels of the AhDGAT2a–GST and AhDGAT2a–GST transformants, as well as levels of C12:0, C14:0, C16:0, C16:1, C18:1n9c and C18:3n3 FAs, increased markedly, whereas C15:0 and C21:0 levels were lower than in non-transformed cells or those containing empty-vectors. In addition, the levels of some FAs differed between the two transformant strains, indicating that the two isozymes might have different functions in peanuts. This is the first time that a full-length recombinant peanut DGAT2 has been produced in a bacterial expression system and the first analysis of its effects on the content and composition of fatty acids in E. coli. Our results indicate that AhDGAT2 is a strong candidate gene for

  17. Increased Long Chain acyl-Coa Synthetase Activity and Fatty Acid Import Is Linked to Membrane Synthesis for Development of Picornavirus Replication Organelles

    PubMed Central

    Scott, Alison J.; Ford, Lauren A.; Pei, Zhengtong; Watkins, Paul A.; Ernst, Robert K.; Belov, George A.

    2013-01-01

    All positive strand (+RNA) viruses of eukaryotes replicate their genomes in association with membranes. The mechanisms of membrane remodeling in infected cells represent attractive targets for designing future therapeutics, but our understanding of this process is very limited. Elements of autophagy and/or the secretory pathway were proposed to be hijacked for building of picornavirus replication organelles. However, even closely related viruses differ significantly in their requirements for components of these pathways. We demonstrate here that infection with diverse picornaviruses rapidly activates import of long chain fatty acids. While in non-infected cells the imported fatty acids are channeled to lipid droplets, in infected cells the synthesis of neutral lipids is shut down and the fatty acids are utilized in highly up-regulated phosphatidylcholine synthesis. Thus the replication organelles are likely built from de novo synthesized membrane material, rather than from the remodeled pre-existing membranes. We show that activation of fatty acid import is linked to the up-regulation of cellular long chain acyl-CoA synthetase activity and identify the long chain acyl-CoA syntheatse3 (Acsl3) as a novel host factor required for polio replication. Poliovirus protein 2A is required to trigger the activation of import of fatty acids independent of its protease activity. Shift in fatty acid import preferences by infected cells results in synthesis of phosphatidylcholines different from those in uninfected cells, arguing that the viral replication organelles possess unique properties compared to the pre-existing membranes. Our data show how poliovirus can change the overall cellular membrane homeostasis by targeting one critical process. They explain earlier observations of increased phospholipid synthesis in infected cells and suggest a simple model of the structural development of the membranous scaffold of replication complexes of picorna-like viruses, that may be relevant for other (+)RNA viruses as well. PMID:23762027

  18. DISTINCT TRANSCRIPTIONAL REGULATION OF LONG-CHAIN ACYL-COA SYNTHETASE ISOFORMS AND CYTOSOLIC THIOESTERASE 1 IN THE RODENT HEART BY FATTY ACIDS AND INSULIN

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The molecular mechanism(s) responsible for channeling long-chain fatty acids (LCFAs) into oxidative versus nonoxidative pathways is (are) poorly understood in the heart. Intracellular LCFAs are converted to long-chain fatty acyl-CoAs (LCFA-CoAs) by a family of long-chain acyl-CoA synthetases (ACSLs)...

  19. A NOVEL 78-KDA FATTY ACYL-COA SYNTHETASE (ACS1) OF BABESIA BOVIS STIMULATES MEMORY CD4+ T LYMPHOCYTE RESPONSES IN B. BOVIS-IMMUNE CATTLE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Antigen-specific CD4+ T lymphocyte responses contribute to protective immunity against Babesia bovis, however the antigens that induce these responses remain largely unknown. A proteomic approach was used to identify novel B. bovis antigens recognized by memory CD4+ T cells from immune cattle. Fract...

  20. Functional Roles of Three Cutin Biosynthetic Acyltransferases in Cytokinin Responses and Skotomorphogenesis

    PubMed Central

    Chai, Juan; Zhou, Qin; Wang, Li; Hirnerová, Eva; Mrvková, Michaela; Novák, Ondřej; Guo, Guang-Qin

    2015-01-01

    Cytokinins (CKs) regulate plant development and growth via a two-component signaling pathway. By forward genetic screening, we isolated an Arabidopsis mutant named grow fast on cytokinins 1 (gfc1), whose seedlings grew larger aerial parts on MS medium with CK. gfc1 is allelic to a previously reported cutin mutant defective in cuticular ridges (dcr). GFC1/DCR encodes a soluble BAHD acyltransferase (a name based on the first four enzymes characterized in this family: Benzylalcohol O-acetyltransferase, Anthocyanin O-hydroxycinnamoyltransferase, anthranilate N-hydroxycinnamoyl/benzoyltransferase and Deacetylvindoline 4-O-acetyltransferase) with diacylglycerol acyltransferase (DGAT) activity in vitro and is necessary for normal cuticle formation on epidermis in vivo. Here we show that gfc1 was a CK-insensitive mutant, as revealed by its low regeneration frequency in vitro and resistance to CK in adventitious root formation and dark-grown hypocotyl inhibition assays. In addition, gfc1 had de-etiolated phenotypes in darkness and was therefore defective in skotomorphogenesis. The background expression levels of most type-A Arabidopsis Response Regulator (ARR) genes were higher in the gfc1 mutant. The gfc1-associated phenotypes were also observed in the cutin-deficient glycerol-3-phosphate acyltransferase 4/8 (gpat4/8) double mutant [defective in glycerol-3-phosphate (G3P) acyltransferase enzymes GPAT4 and GPAT8, which redundantly catalyze the acylation of G3P by hydroxyl fatty acid (OH-FA)], but not in the cutin-deficient mutant cytochrome p450, family 86, subfamily A, polypeptide 2/aberrant induction of type three 1 (cyp86A2/att1), which affects the biosynthesis of some OH-FAs. Our results indicate that some acyltransferases associated with cutin formation are involved in CK responses and skotomorphogenesis in Arabidopsis. PMID:25803274

  1. Evolutionarily Distinct BAHD N-Acyltransferases Are Responsible for Natural Variation of Aromatic Amine Conjugates in Rice.

    PubMed

    Peng, Meng; Gao, Yanqiang; Chen, Wei; Wang, Wensheng; Shen, Shuangqian; Shi, Jian; Wang, Cheng; Zhang, Yu; Zou, Li; Wang, Shouchuang; Wan, Jian; Liu, Xianqing; Gong, Liang; Luo, Jie

    2016-07-01

    Phenolamides (PAs) are specialized (secondary) metabolites mainly synthesized by BAHD N-acyltransferases. Here, we report metabolic profiling coupled with association and linkage mapping of 11 PAs in rice (Oryza sativa). We identified 22 loci affecting PAs in leaves and 16 loci affecting PAs in seeds. We identified eight BAHD N-acyltransferases located on five chromosomes with diverse specificities, including four aromatic amine N-acyltransferases. We show that genetic variation in PAs is determined, at least in part, by allelic variation in the tissue specificity of expression of the BAHD genes responsible for their biosynthesis. Tryptamine hydroxycinnamoyl transferase 1/2 (Os-THT1/2) and tryptamine benzoyl transferase 1/2 (Os-TBT1/2) were found to be bifunctional tryptamine/tyramine N-acyltransferases. The specificity of Os-THT1 and Os-TBT1 for agmatine involved four tandem arginine residues, which have not been identified as specificity determinants for other plant BAHD transferases, illustrating the versatility of plant BAHD transferases in acquiring new acyl acceptor specificities. With phylogenetic analysis, we identified both divergent and convergent evolution of N-acyltransferases in plants, and we suggest that the BAHD family of tryptamine/tyramine N-acyltransferases evolved conservatively in monocots, especially in Gramineae. Our work demonstrates that omics-assisted gene-to-metabolite analysis provides a useful tool for bulk gene identification and crop genetic improvement. PMID:27354554

  2. Evolutionarily Distinct BAHD N-Acyltransferases Are Responsible for Natural Variation of Aromatic Amine Conjugates in Rice[OPEN

    PubMed Central

    Peng, Meng; Chen, Wei; Wang, Wensheng; Shen, Shuangqian; Shi, Jian; Wang, Cheng; Zhang, Yu; Zou, Li; Wang, Shouchuang; Wan, Jian; Liu, Xianqing; Gong, Liang; Luo, Jie

    2016-01-01

    Phenolamides (PAs) are specialized (secondary) metabolites mainly synthesized by BAHD N-acyltransferases. Here, we report metabolic profiling coupled with association and linkage mapping of 11 PAs in rice (Oryza sativa). We identified 22 loci affecting PAs in leaves and 16 loci affecting PAs in seeds. We identified eight BAHD N-acyltransferases located on five chromosomes with diverse specificities, including four aromatic amine N-acyltransferases. We show that genetic variation in PAs is determined, at least in part, by allelic variation in the tissue specificity of expression of the BAHD genes responsible for their biosynthesis. Tryptamine hydroxycinnamoyl transferase 1/2 (Os-THT1/2) and tryptamine benzoyl transferase 1/2 (Os-TBT1/2) were found to be bifunctional tryptamine/tyramine N-acyltransferases. The specificity of Os-THT1 and Os-TBT1 for agmatine involved four tandem arginine residues, which have not been identified as specificity determinants for other plant BAHD transferases, illustrating the versatility of plant BAHD transferases in acquiring new acyl acceptor specificities. With phylogenetic analysis, we identified both divergent and convergent evolution of N-acyltransferases in plants, and we suggest that the BAHD family of tryptamine/tyramine N-acyltransferases evolved conservatively in monocots, especially in Gramineae. Our work demonstrates that omics-assisted gene-to-metabolite analysis provides a useful tool for bulk gene identification and crop genetic improvement. PMID:27354554

  3. Modification of seed oil content and acyl composition in the brassicaceae by expression of a yeast sn-2 acyltransferase gene.

    PubMed Central

    Zou, J; Katavic, V; Giblin, E M; Barton, D L; MacKenzie, S L; Keller, W A; Hu, X; Taylor, D C

    1997-01-01

    A putative yeast sn-2 acyltransferase gene (SLC1-1), reportedly a variant acyltransferase that suppresses a genetic defect in sphingolipid long-chain base biosynthesis, has been expressed in a yeast SLC deletion strain. The SLC1-1 gene product was shown in vitro to encode an sn-2 acyltransferase capable of acylating sn-1 oleoyl-lysophosphatidic acid, using a range of acyl-CoA thioesters, including 18:1-, 22:1-, and 24:0-CoAs. The SLC1-1 gene was introduced into Arabidopsis and a high erucic acid-containing Brassica napus cv Hero under the control of a constitutive (tandem cauliflower mosaic virus 35S) promoter. The resulting transgenic plants showed substantial increases of 8 to 48% in seed oil content (expressed on the basis of seed dry weight) and increases in both overall proportions and amounts of very-long-chain fatty acids in seed triacylglycerols (TAGs). Furthermore, the proportion of very-long-chain fatty acids found at the sn-2 position of TAGs was increased, and homogenates prepared from developing seeds of transformed plants exhibited elevated lysophosphatidic acid acyltransferase (EC 2.3.1.51) activity. Thus, the yeast sn-2 acyltransferase has been shown to encode a protein that can exhibit lysophosphatidic acid acyltransferase activity and that can be used to change total fatty acid content and composition as well as to alter the stereospecific acyl distribution of fatty acids in seed TAGs. PMID:9212466

  4. Characterization of mouse lysophosphatidic acid acyltransferase 3: an enzyme with dual functions in the testis1s⃞

    PubMed Central

    Yuki, Koichi; Shindou, Hideo; Hishikawa, Daisuke; Shimizu, Takao

    2009-01-01

    Glycerophospholipids are structural and functional components of cellular membranes as well as precursors of various lipid mediators. Using acyl-CoAs as donors, glycerophospholipids are formed by the de novo pathway (Kennedy pathway) and modified in the remodeling pathway (Lands' cycle). Various acyltransferases, including two lysophosphatidic acid acyltransferases (LPAATs), have been discovered from a 1-acylglycerol-3-phosphate O-acyltransferase (AGPAT) family. Proteins of this family contain putative acyltransferase motifs, but their biochemical properties and physiological roles are not completely understood. Here, we demonstrated that mouse LPAAT3, previously known as mouse AGPAT3, possesses strong LPAAT activity and modest lysophosphatidylinositol acyltransferase activity with a clear preference for arachidonoyl-CoA as a donor. This enzyme is highly expressed in the testis, where CDP-diacylglycerol synthase 1 preferring 1-stearoyl-2-arachidonoyl-phosphatidic acid as a substrate is also highly expressed. Since 1-stearoyl-2-arachidonoyl species are the main components of phosphatidylinositol, mouse LPAAT3 may function in both the de novo and remodeling pathways and contribute to effective biogenesis of 1-stearoyl-2-arachidonoyl-phosphatidylinositol in the testis. Additionally, the expression of this enzyme in the testis increases significantly in an age-dependent manner, and β-estradiol may be an important regulator of this enzyme's induction. Our findings identify this acyltransferase as an alternative important enzyme to produce phosphatidylinositol in the testis. PMID:19114731

  5. The epigenetic drug 5-azacytidine interferes with cholesterol and lipid metabolism.

    PubMed

    Poirier, Steve; Samami, Samaneh; Mamarbachi, Maya; Demers, Annie; Chang, Ta Yuan; Vance, Dennis E; Hatch, Grant M; Mayer, Gaétan

    2014-07-01

    DNA methylation and histone acetylation inhibitors are widely used to study the role of epigenetic marks in the regulation of gene expression. In addition, several of these molecules are being tested in clinical trials or already in use in the clinic. Antimetabolites, such as the DNA-hypomethylating agent 5-azacytidine (5-AzaC), have been shown to lower malignant progression to acute myeloid leukemia and to prolong survival in patients with myelodysplastic syndromes. Here we examined the effects of DNA methylation inhibitors on the expression of lipid biosynthetic and uptake genes. Our data demonstrate that, independently of DNA methylation, 5-AzaC selectively and very potently reduces expression of key genes involved in cholesterol and lipid metabolism (e.g. PCSK9, HMGCR, and FASN) in all tested cell lines and in vivo in mouse liver. Treatment with 5-AzaC disturbed subcellular cholesterol homeostasis, thereby impeding activation of sterol regulatory element-binding proteins (key regulators of lipid metabolism). Through inhibition of UMP synthase, 5-AzaC also strongly induced expression of 1-acylglycerol-3-phosphate O-acyltransferase 9 (AGPAT9) and promoted triacylglycerol synthesis and cytosolic lipid droplet formation. Remarkably, complete reversal was obtained by the co-addition of either UMP or cytidine. Therefore, this study provides the first evidence that inhibition of the de novo pyrimidine synthesis by 5-AzaC disturbs cholesterol and lipid homeostasis, probably through the glycerolipid biosynthesis pathway, which may contribute mechanistically to its beneficial cytostatic properties. PMID:24855646

  6. The Epigenetic Drug 5-Azacytidine Interferes with Cholesterol and Lipid Metabolism*

    PubMed Central

    Poirier, Steve; Samami, Samaneh; Mamarbachi, Maya; Demers, Annie; Chang, Ta Yuan; Vance, Dennis E.; Hatch, Grant M.; Mayer, Gaétan

    2014-01-01

    DNA methylation and histone acetylation inhibitors are widely used to study the role of epigenetic marks in the regulation of gene expression. In addition, several of these molecules are being tested in clinical trials or already in use in the clinic. Antimetabolites, such as the DNA-hypomethylating agent 5-azacytidine (5-AzaC), have been shown to lower malignant progression to acute myeloid leukemia and to prolong survival in patients with myelodysplastic syndromes. Here we examined the effects of DNA methylation inhibitors on the expression of lipid biosynthetic and uptake genes. Our data demonstrate that, independently of DNA methylation, 5-AzaC selectively and very potently reduces expression of key genes involved in cholesterol and lipid metabolism (e.g. PCSK9, HMGCR, and FASN) in all tested cell lines and in vivo in mouse liver. Treatment with 5-AzaC disturbed subcellular cholesterol homeostasis, thereby impeding activation of sterol regulatory element-binding proteins (key regulators of lipid metabolism). Through inhibition of UMP synthase, 5-AzaC also strongly induced expression of 1-acylglycerol-3-phosphate O-acyltransferase 9 (AGPAT9) and promoted triacylglycerol synthesis and cytosolic lipid droplet formation. Remarkably, complete reversal was obtained by the co-addition of either UMP or cytidine. Therefore, this study provides the first evidence that inhibition of the de novo pyrimidine synthesis by 5-AzaC disturbs cholesterol and lipid homeostasis, probably through the glycerolipid biosynthesis pathway, which may contribute mechanistically to its beneficial cytostatic properties. PMID:24855646

  7. PRD125, a potent and selective inhibitor of sterol O-acyltransferase 2 markedly reduces hepatic cholesteryl ester accumulation and improves liver function in lysosomal acid lipase-deficient mice.

    PubMed

    Lopez, Adam M; Chuang, Jen-Chieh; Posey, Kenneth S; Ohshiro, Taichi; Tomoda, Hiroshi; Rudel, Lawrence L; Turley, Stephen D

    2015-11-01

    In most organs, the bulk of cholesterol is unesterified, although nearly all possess a varying capability of esterifying cholesterol through the action of either sterol O-acyltransferase (SOAT) 1 or, in the case of hepatocytes and enterocytes, SOAT2. Esterified cholesterol (EC) carried in plasma lipoproteins is hydrolyzed by lysosomal acid lipase (LAL) when they are cleared from the circulation. Loss-of-function mutations in LIPA, the gene that encodes LAL, result in Wolman disease or cholesteryl ester storage disease (CESD). Hepatomegaly and a massive increase in tissue EC levels are hallmark features of both disorders. While these conditions can be corrected with enzyme replacement therapy, the question arose as to whether pharmacological inhibition of SOAT2 might reduce tissue EC accretion in CESD. When weaned at 21 days, Lal(-/-) mice, of either gender, had a whole liver cholesterol content that was 12- to 13-fold more than that of matching Lal(+/+) littermates (23 versus 1.8 mg, respectively). In Lal(-/-) males given the selective SOAT2 inhibitor PRD125 1,11-O-o-methylbenzylidene-7-O-p-cyanobenzoyl-1,7,11-trideacetylpyripyropene A in their diet (∼10 mg/day per kg body weight) from 21 to 53 days, whole liver cholesterol content was 48.6 versus 153.7 mg in untreated 53-day-old Lal(-/-) mice. This difference reflected a 59% reduction in hepatic EC concentration (mg/g), combined with a 28% fall in liver mass. The treated mice also showed a 63% reduction in plasma alanine aminotransferase activity, in parallel with decisive falls in hepatic mRNA expression levels for multiple proteins that reflect macrophage presence and inflammation. These data implicate SOAT2 as a potential target in CESD management. PMID:26283692

  8. How cholesterol regulates endothelial biomechanics

    PubMed Central

    Hong, Zhongkui; Staiculescu, Marius C.; Hampel, Paul; Levitan, Irena; Forgacs, Gabor

    2012-01-01

    As endothelial cells form the barrier between blood flow and surrounding tissue, many of their functions depend on mechanical integrity, in particular those of the plasma membrane. As component and organizer of the plasma membrane, cholesterol is a regulator of cellular mechanical properties. Disruption of cholesterol balance leads to impairment of endothelial functions and eventually to disease. The mechanical properties of the membrane are strongly affected by the cytoskeleton. As Phosphatidylinositol-4,5-bisphosphate (PIP2) is a key mediator between the membrane and cytoskeleton, it also affects cellular biomechanical properties. Typically, PIP2 is concentrated in cholesterol-rich microdomains, such as caveolae and lipid rafts, which are particularly abundant in the endothelial plasma membrane. We investigated the connection between cholesterol and PIP2 by extracting membrane tethers from bovine aortic endothelial cells (BAEC) at different cholesterol levels and PIP2 conditions. Our results suggest that in BAEC the role of PIP2, as a mediator of membrane-cytoskeleton adhesion, is regulated by cholesterol. Our findings confirm the specific role of cholesterol in endothelial cells and may have implications for cholesterol-dependent vascular pathologies. PMID:23162471

  9. Epigenetic regulation of cholesterol homeostasis

    PubMed Central

    Meaney, Steve

    2014-01-01

    Although best known as a risk factor for cardiovascular disease, cholesterol is a vital component of all mammalian cells. In addition to key structural roles, cholesterol is a vital biochemical precursor for numerous biologically important compounds including oxysterols and bile acids, as well as acting as an activator of critical morphogenic systems (e.g., the Hedgehog system). A variety of sophisticated regulatory mechanisms interact to coordinate the overall level of cholesterol in cells, tissues and the entire organism. Accumulating evidence indicates that in additional to the more “traditional” regulatory schemes, cholesterol homeostasis is also under the control of epigenetic mechanisms such as histone acetylation and DNA methylation. The available evidence supporting a role for these mechanisms in the control of cholesterol synthesis, elimination, transport and storage are the focus of this review. PMID:25309573

  10. Enhancing the Acyltransferase Activity of Candida antarctica Lipase A by Rational Design.

    PubMed

    Müller, Janett; Sowa, Miriam A; Fredrich, Birte; Brundiek, Henrike; Bornscheuer, Uwe T

    2015-08-17

    A few lipases, such as Candida antarctica lipase A (CAL-A), are known to possess acyltransferase activity. This enables the enzyme to synthesize fatty acid esters from natural oils and alcohols even in the presence of bulk water. Unfortunately, fatty acids are still formed in these reactions as undesired side-products. To reduce the amount of fatty acids, several CAL-A variants were rationally designed based on its crystal structure. These variants were expressed in Escherichia coli and Pichia pastoris, purified, and their acyltransferase/hydrolase activities were investigated by various biocatalytic approaches. Among the investigated variants, mutant Asp122Leu showed a significant decrease in the hydrolytic activity, thus reducing the side-product yield during acylation. As desired, this variant retained wild-type process-relevant features like pH profile and thermostability. PMID:26058745

  11. Cholesterol - what to ask your doctor

    MedlinePlus

    ... this page: //medlineplus.gov/ency/patientinstructions/000211.htm Cholesterol - what to ask your doctor To use the ... this page, please enable JavaScript. Your body needs cholesterol to work properly. When you have extra cholesterol ...

  12. How to Get Your Cholesterol Tested

    MedlinePlus

    ... HDL) cholesterol, low-density lipoprotein (LDL) cholesterol and triglycerides. A small sample of blood will be drawn ... the amount of LDL (bad) cholesterol level and triglycerides can be affected by what you've recently ...

  13. What Do My Cholesterol Levels Mean?

    MedlinePlus

    ... Tools & Resources Stroke More What Do My Cholesterol Levels Mean? Updated:Mar 22,2016 High cholesterol can ... a fasting “lipoprotein profile” to measure your cholesterol levels. It assesses several types of fat in the ...

  14. The rv1184c Locus Encodes Chp2, an Acyltransferase in Mycobacterium tuberculosis Polyacyltrehalose Lipid Biosynthesis

    PubMed Central

    Touchette, Megan H.; Holsclaw, Cynthia M.; Previti, Mary L.; Solomon, Viven C.; Leary, Julie A.; Bertozzi, Carolyn R.

    2014-01-01

    Trehalose glycolipids are found in many bacteria in the suborder Corynebacterineae, but methyl-branched acyltrehaloses are exclusive to virulent species such as the human pathogen Mycobacterium tuberculosis. In M. tuberculosis, the acyltransferase PapA3 catalyzes the formation of diacyltrehalose (DAT), but the enzymes responsible for downstream reactions leading to the final product, polyacyltrehalose (PAT), have not been identified. The PAT biosynthetic gene locus is similar to that of another trehalose glycolipid, sulfolipid 1. Recently, Chp1 was characterized as the terminal acyltransferase in sulfolipid 1 biosynthesis. Here we provide evidence that the homologue Chp2 (Rv1184c) is essential for the final steps of PAT biosynthesis. Disruption of chp2 led to the loss of PAT and a novel tetraacyltrehalose species, TetraAT, as well as the accumulation of DAT, implicating Chp2 as an acyltransferase downstream of PapA3. Disruption of the putative lipid transporter MmpL10 resulted in a similar phenotype. Chp2 activity thus appears to be regulated by MmpL10 in a relationship similar to that between Chp1 and MmpL8 in sulfolipid 1 biosynthesis. Chp2 is localized to the cell envelope fraction, consistent with its role in DAT modification and possible regulatory interactions with MmpL10. Labeling of purified Chp2 by an activity-based probe was dependent on the presence of the predicted catalytic residue Ser141 and was inhibited by the lipase inhibitor tetrahydrolipstatin (THL). THL treatment of M. tuberculosis resulted in selective inhibition of Chp2 over PapA3, confirming Chp2 as a member of the serine hydrolase superfamily. Efforts to produce in vitro reconstitution of acyltransferase activity using straight-chain analogues were unsuccessful, suggesting that Chp2 has specificity for native methyl-branched substrates. PMID:25331437

  15. Lateral organization of cholesterol molecules in lipid-cholesterol assemblies.

    SciTech Connect

    Singh, Rajiv R. P.; Slepoy, Alexander; Sengupta, Pinaki; Cox, Daniel L.

    2005-05-01

    We present results of an off-lattice simulation of a two-component planar system, as a model for lateral organization of cholesterol molecules in lipid-cholesterol assemblies. We explore the existence of 'superlattice' structures even in fluid systems, in the absence of an underlying translational long-range order, and study their coupling to hexatic or bond-orientational order. We discuss our results in context of geometric superlattice theories and 'condensation complexes' in understanding a variety of experiments in artificial lipid-cholesterol assemblies.

  16. The LINKS motif zippers trans-acyltransferase polyketide synthase assembly lines into a biosynthetic megacomplex.

    PubMed

    Gay, Darren C; Wagner, Drew T; Meinke, Jessica L; Zogzas, Charles E; Gay, Glen R; Keatinge-Clay, Adrian T

    2016-03-01

    Polyketides such as the clinically-valuable antibacterial agent mupirocin are constructed by architecturally-sophisticated assembly lines known as trans-acyltransferase polyketide synthases. Organelle-sized megacomplexes composed of several copies of trans-acyltransferase polyketide synthase assembly lines have been observed by others through transmission electron microscopy to be located at the Bacillus subtilis plasma membrane, where the synthesis and export of the antibacterial polyketide bacillaene takes place. In this work we analyze ten crystal structures of trans-acyltransferase polyketide synthases ketosynthase domains, seven of which are reported here for the first time, to characterize a motif capable of zippering assembly lines into a megacomplex. While each of the three-helix LINKS (Laterally-INteracting Ketosynthase Sequence) motifs is observed to similarly dock with a spatially-reversed copy of itself through hydrophobic and ionic interactions, the amino acid sequences of this motif are not conserved. Such a code is appropriate for mediating homotypic contacts between assembly lines to ensure the ordered self-assembly of a noncovalent, yet tightly-knit, enzymatic network. LINKS-mediated lateral interactions would also have the effect of bolstering the vertical association of the polypeptides that comprise a polyketide synthase assembly line. PMID:26724270

  17. Glucose Polyester Biosynthesis. Purification and Characterization of a Glucose Acyltransferase1

    PubMed Central

    Li, Alice X.; Eannetta, Nancy; Ghangas, Gurdev S.; Steffens, John C.

    1999-01-01

    Glandular trichomes of the wild tomato species Lycopersicon pennellii secrete 2,3,4-O-tri-acyl-glucose (-Glc), which contributes to insect resistance. A Glc acyltransferase catalyzes the formation of diacyl-Glc by disproportionating two equivalents of 1-O-acyl-β-Glc, a high-energy molecule formed by a UDP-Glc dependent reaction. The acyltransferase was purified 4,900-fold from L. pennellii leaves by polyethylene glycol fractionation, diethylaminoethyl chromatography, concanavalin A affinity chromatography, and chromatofocusing. The acyltransferase possesses an isoelectric point of 4.8, a relative molecular mass around 110 kD, and is composed of 34- and 24-kD polypeptides as a heterotetramer. The 34- and 24-kD proteins were partially sequenced. The purified enzyme catalyzes both the disproportionation of 1-O-acyl-β-Glcs to generate 1,2-di-O-acyl-β-Glc and anomeric acyl exchange between 1-O-acyl-β-Glc and Glc. PMID:10517836

  18. Identification of a broad family of lipid A late acyltransferases with non-canonical substrate specificity

    PubMed Central

    Rubin, Erica J.; O’Brien, John P.; Ivanov, Petko L.; Brodbelt, Jennifer S.; Trent, M. Stephen

    2014-01-01

    Summary Most gram-negative organisms produce lipopolysaccharide (LPS), a complex macromolecule anchored to the bacterial membrane by the lipid A moiety. Lipid A is synthesized via the Raetz pathway, a conserved nine-step enzymatic process first characterized in Escherichia coli. The Epsilonproteobacterium Helicobacter pylori uses the Raetz pathway to synthesize lipid A; however, only eight of nine enzymes in the pathway have been identified in this organism. Here, we identify the missing acyltransferase, Jhp0255, which transfers a secondary acyl chain to the 3′-linked primary acyl chain of lipid A, an activity similar to that of E. coli LpxM. This enzyme, reannotated as LpxJ due to limited sequence similarity with LpxM, catalyzes addition of a C12:0 or C14:0 acyl chain to the 3′-linked primary acyl chain of lipid A, complementing an E. coli LpxM mutant. Enzymatic assays demonstrate that LpxJ and homologs in Campylobacter jejuni and Wolinella succinogenes can act before the 2′ secondary acyltransferase, LpxL, as well as the 3-deoxy-D-manno-octulosonic acid (Kdo) transferase, KdtA. Ultimately, LpxJ is one member of a large class of acyltransferases found in a diverse range of organisms that lack an E. coli LpxM homolog, suggesting that LpxJ participates in lipid A biosynthesis in place of an LpxM homolog. PMID:24372821

  19. Characterization of monoacylglycerol acyltransferase 2 inhibitors by a novel probe in binding assays.

    PubMed

    Ma, Zhengping; Chao, Hannguang J; Turdi, Huji; Hangeland, Jon J; Friends, Todd; Kopcho, Lisa M; Lawrence, R Michael; Cheng, Dong

    2016-05-15

    Monoacylglycerol acyltransferase 2 (MGAT2) is a membrane-bound lipid acyltransferase that catalyzes the formation of diacylglycerol using monoacylglycerol and fatty acyl CoA as substrates. MGAT2 is important for intestinal lipid absorption and is an emerging target for the treatment of metabolic diseases. In the current study, we identified and characterized four classes of novel MGAT2 inhibitors. We established both steady state and kinetic binding assay protocols using a novel radioligand, [(3)H]compound A. Diverse chemotypes of MGAT2 inhibitors were found to compete binding of [(3)H]compound A to MGAT2, indicating the broad utility of [(3)H]compound A for testing various classes of MGAT2 inhibitors. In the dynamic binding assays, the kinetic values of MGAT2 inhibitors such as Kon, Koff, and T1/2 were systematically defined. Of particular value, the residence times of inhibitors on MGAT2 enzyme were derived. We believe that the identification of novel classes of MGAT2 inhibitors and the detailed kinetic characterization provide valuable information for the identification of superior candidates for in vivo animal and clinical studies. The current work using a chemical probe to define inhibitory kinetics can be broadly applied to other membrane-bound acyltransferases. PMID:26925857

  20. Overexpression of diacylglycerol acyltransferase in Yarrowia lipolytica affects lipid body size, number and distribution.

    PubMed

    Gajdoš, Peter; Ledesma-Amaro, Rodrigo; Nicaud, Jean-Marc; Čertík, Milan; Rossignol, Tristan

    2016-09-01

    In the oleaginous yeast Yarrowia lipolytica, the diacylglycerol acyltransferases (DGATs) are major factors for triacylglycerol (TAG) synthesis. The Q4 strain, in which the four acyltransferases have been deleted, is unable to accumulate lipids and to form lipid bodies (LBs). However, the expression of a single acyltransferase in this strain restores TAG accumulation and LB formation. Using this system, it becomes possible to characterize the activity and specificity of an individual DGAT. Here, we examined the effects of DGAT overexpression on lipid accumulation and LB formation in Y. lipolytica Specifically, we evaluated the consequences of introducing one or two copies of the Y. lipolytica DGAT genes YlDGA1 and YlDGA2 Overall, multi-copy DGAT overexpression increased the lipid content of yeast cells. However, the size and distribution of LBs depended on the specific DGAT overexpressed. YlDGA2 overexpression caused the formation of large LBs, while YlDGA1 overexpression generated smaller but more numerous LBs. This phenotype was accentuated through the addition of a second copy of the overexpressed gene and might be linked to the distinct subcellular localization of each DGAT, i.e. YlDga1 being localized in LBs, while YlDga2 being localized in a structure strongly resembling the endoplasmic reticulum. PMID:27506614

  1. Serum cholesterol concentrations in parasuicide.

    PubMed Central

    Gallerani, M.; Manfredini, R.; Caracciolo, S.; Scapoli, C.; Molinari, S.; Fersini, C.

    1995-01-01

    OBJECTIVE--To evaluate whether people who have committed parasuicide have low serum cholesterol concentrations. DESIGN--Results of blood tests in subjects admitted to hospital for parasuicide compared with those of a control group of non-suicidal subjects; comparison in subgroup of parasuicide subjects of two sets of blood test results (one set from admission for parasuicide and the other from admission for some other illness). SETTING--General hospital, Ferrara, Italy. SUBJECTS--331 parasuicide subjects aged 44 (SD 21) years (109 with two sets of blood test results) and 331 controls. MAIN OUTCOME MEASURES--Serum cholesterol concentrations and possible association with parasuicide, considering sex, violence of method of parasuicide, and underlying psychiatric disorder. RESULTS--Lower serum cholesterol concentrations (4.96 (SD 1.16) mmol/l) were found in the parasuicide subjects than in the controls (5.43 (1.30); P < 0.001), regardless of sex and degree of violence of parasuicide method. Both men and women with two sets of blood test results had lower cholesterol concentrations after parasuicide. Linear regression analysis showed that the difference in cholesterol concentrations was significantly related to the length of time between the taking of the two sets of blood samples. CONCLUSION--The study showed low cholesterol concentrations after parasuicide. This finding agrees with previous studies, which suggest an association between low cholesterol concentration and suicide. PMID:7795448

  2. Cholesterol-metabolizing cytochromes P450: implications for cholesterol lowering

    PubMed Central

    Pikuleva, Irina A.

    2010-01-01

    Cardiovascular disease (CVD) continues to be a leading cause of death worldwide. Elevated serum cholesterol is one of the classical risk factors for CVD which also include age, hypertension, smoking, diabetes mellitus, obesity and family history. A number of therapeutic drug classes have been developed to treat hypercholesterolemia, yet, an important percentage of patients do not reach their treatment goals. Therefore, new cholesterol-lowering medications, having a site of action different from that of currently available drugs need to be developed. This review summarizes new information about cytochrome P450 enzymes 7A1, 27A1, and 46A1, that play key roles in cholesterol elimination and that have potential to serve as targets for cholesterol-lowering. PMID:18950282

  3. Cholesterol Perturbs Lipid Bilayers Nonuniversally

    SciTech Connect

    Pan Jianjun; Mills, Thalia T.; Tristram-Nagle, Stephanie; Nagle, John F.

    2008-05-16

    Cholesterol is well known to modulate the physical properties of biomembranes. Using modern x-ray scattering methods, we have studied the effects of cholesterol on the bending modulus K{sub C}, the thickness D{sub HH}, and the orientational order parameter S{sub xray} of lipid bilayers. We find that the effects are different for at least three classes of phospholipids characterized by different numbers of saturated hydrocarbon chains. Most strikingly, cholesterol strongly increases K{sub C} when both chains of the phospholipid are fully saturated but not at all when there are two monounsaturated chains.

  4. Targeting cancer using cholesterol conjugates

    PubMed Central

    Radwan, Awwad A.; Alanazi, Fares K.

    2013-01-01

    Conjugation of cholesterol moiety to active compounds for either cancer treatment or diagnosis is an attractive approach. Cholesterol derivatives are widely studied as cancer diagnostic agents and as anticancer derivatives either in vitro or in vivo using animal models. In largely growing studies, anticancer agents have been chemically conjugated to cholesterol molecules, to enhance their pharmacokinetic behavior, cellular uptake, target specificity, and safety. To efficiently deliver anticancer agents to the target cells and tissues, many different cholesterol–anticancer conjugates were synthesized and characterized, and their anticancer efficiencies were tested in vitro and in vivo. PMID:24493968

  5. Cholesterol and synaptic vesicle exocytosis

    PubMed Central

    Fratangeli, Alessandra

    2010-01-01

    Lipids may affect synaptic function in at least two ways: by acting as ligands for effector proteins [e.g., phosphatidylinositol (4,5) bisphosphate, diacylglycerol-mediated signaling] or by modifying the physicochemical properties and molecular organization of synaptic membranes. One that acts in the latter manner is cholesterol, an essential structural component of plasma membranes that is largely enriched in the membranes of synapses and synaptic vesicles, in which it may be involved in lipid-lipid and protein-lipid interactions. Cholesterol is an important constituent of the “membrane rafts” that may play a role in recruiting and organizing the specific proteins of the exocytic pathways. Furthermore, many synaptic proteins bind directly to cholesterol. The regulation of cholesterol and lipid levels may therefore influence the specific interactions and activity of synaptic proteins, and have a strong impact on synaptic functions. PMID:20798824

  6. Cholesterol and Breast Cancer Pathophysiology

    PubMed Central

    Nelson, Erik R.; Chang, Ching-yi; McDonnell, Donald P.

    2014-01-01

    Cholesterol is a risk factor for breast cancer although the mechanisms by which this occurs are not well understood. One hypothesis is that dyslipidemia results in increased cholesterol content in cell membranes thus impacting membrane fluidity and subsequent signaling. Additionally, studies demonstrate that the metabolite, 27-hydroxycholesterol (27HC), can function as an estrogen, increasing the proliferation of estrogen receptor positive breast cancer cells. This was unexpected as 27HC and other oxysterols activate the liver X receptors resulting in the reduction of intracellular cholesterol. Resolution of this paradox will require a dissection of the molecular mechanisms by which ER and LXR converge in breast cancer cells. Regardless, the observation that 27HC influences breast cancer provides rationale for strategies that target cholesterol metabolism. PMID:25458418

  7. Cholesterol confusion and statin controversy.

    PubMed

    DuBroff, Robert; de Lorgeril, Michel

    2015-07-26

    The role of blood cholesterol levels in coronary heart disease (CHD) and the true effect of cholesterol-lowering statin drugs are debatable. In particular, whether statins actually decrease cardiac mortality and increase life expectancy is controversial. Concurrently, the Mediterranean diet model has been shown to prolong life and reduce the risk of diabetes, cancer, and CHD. We herein review current data related to both statins and the Mediterranean diet. We conclude that the expectation that CHD could be prevented or eliminated by simply reducing cholesterol appears unfounded. On the contrary, we should acknowledge the inconsistencies of the cholesterol theory and recognize the proven benefits of a healthy lifestyle incorporating a Mediterranean diet to prevent CHD. PMID:26225201

  8. Cholesterol's location in lipid bilayers

    DOE PAGESBeta

    Marquardt, Drew; Kučerka, Norbert; Wassall, Stephen R.; Harroun, Thad A.; Katsaras, John

    2016-04-04

    It is well known that cholesterol modifies the physical properties of lipid bilayers. For example, the much studied liquid-ordered Lo phase contains rapidly diffusing lipids with their acyl chains in the all trans configuration, similar to gel phase bilayers. Moreover, the Lo phase is commonly associated with cholesterol-enriched lipid rafts, which are thought to serve as platforms for signaling proteins in the plasma membrane. Cholesterol's location in lipid bilayers has been studied extensively, and it has been shown – at least in some bilayers – to align differently from its canonical upright orientation, where its hydroxyl group is in themore » vicinity of the lipid–water interface. In this study we review recent works describing cholesterol's location in different model membrane systems with emphasis on results obtained from scattering, spectroscopic and molecular dynamics studies.« less

  9. Cholesterol confusion and statin controversy

    PubMed Central

    DuBroff, Robert; de Lorgeril, Michel

    2015-01-01

    The role of blood cholesterol levels in coronary heart disease (CHD) and the true effect of cholesterol-lowering statin drugs are debatable. In particular, whether statins actually decrease cardiac mortality and increase life expectancy is controversial. Concurrently, the Mediterranean diet model has been shown to prolong life and reduce the risk of diabetes, cancer, and CHD. We herein review current data related to both statins and the Mediterranean diet. We conclude that the expectation that CHD could be prevented or eliminated by simply reducing cholesterol appears unfounded. On the contrary, we should acknowledge the inconsistencies of the cholesterol theory and recognize the proven benefits of a healthy lifestyle incorporating a Mediterranean diet to prevent CHD. PMID:26225201

  10. Cholesterol's location in lipid bilayers.

    PubMed

    Marquardt, Drew; Kučerka, Norbert; Wassall, Stephen R; Harroun, Thad A; Katsaras, John

    2016-09-01

    It is well known that cholesterol modifies the physical properties of lipid bilayers. For example, the much studied liquid-ordered Lo phase contains rapidly diffusing lipids with their acyl chains in the all trans configuration, similar to gel phase bilayers. Moreover, the Lo phase is commonly associated with cholesterol-enriched lipid rafts, which are thought to serve as platforms for signaling proteins in the plasma membrane. Cholesterol's location in lipid bilayers has been studied extensively, and it has been shown - at least in some bilayers - to align differently from its canonical upright orientation, where its hydroxyl group is in the vicinity of the lipid-water interface. In this article we review recent works describing cholesterol's location in different model membrane systems with emphasis on results obtained from scattering, spectroscopic and molecular dynamics studies. PMID:27056099

  11. Mangiferin treatment inhibits hepatic expression of acyl-coenzyme A:diacylglycerol acyltransferase-2 in fructose-fed spontaneously hypertensive rats: a link to amelioration of fatty liver

    SciTech Connect

    Xing, Xiaomang; Li, Danyang; Chen, Dilong; Zhou, Liang; Chonan, Ritsu; Yamahara, Johji; Wang, Jianwei; Li, Yuhao

    2014-10-15

    Mangiferin, a xanthone glucoside, and its associated traditional herbs have been demonstrated to improve abnormalities of lipid metabolism. However, its underlying mechanisms remain largely unclear. This study investigated the anti-steatotic effect of mangiferin in fructose-fed spontaneously hypertensive rat (SHR)s that have a mutation in sterol regulatory element binding protein (SREBP)-1. The results showed that co-administration of mangiferin (15 mg/kg, once daily, by oral gavage) over 7 weeks dramatically diminished fructose-induced increases in hepatic triglyceride content and Oil Red O-stained area in SHRs. However, blood pressure, fructose and chow intakes, white adipose tissue weight and metabolic parameters (plasma concentrations of glucose, insulin, triglyceride, total cholesterol and non-esterified fatty acids) were unaffected by mangiferin treatment. Mechanistically, mangiferin treatment suppressed acyl-coenzyme A:diacylglycerol acyltransferase (DGAT)-2 expression at the mRNA and protein levels in the liver. In contrast, mangiferin treatment was without effect on hepatic mRNA and/or protein expression of SREBP-1/1c, carbohydrate response element binding protein, liver pyruvate kinase, fatty acid synthase, acetyl-CoA carboxylase-1, stearoyl-CoA desaturase-1, DGAT-1, monoacyglycerol acyltransferase-2, microsomal triglyceride transfer protein, peroxisome proliferator-activated receptor-alpha, carnitine palmitoyltransferase-1 and acyl-CoA oxidase. Collectively, our results suggest that mangiferin treatment ameliorates fatty liver in fructose-fed SHRs by inhibiting hepatic DGAT-2 that catalyzes the final step in triglyceride biosynthesis. The anti-steatotic effect of mangiferin may occur independently of the hepatic signals associated with de novo fatty acid synthesis and oxidation. - Highlights: • We investigated the anti-steatotic effect of mangiferin (MA) in fructose-fed SHR. • MA (15 mg/kg/day for 7 weeks) ameliorated fructose-induced fatty liver in

  12. Cholesterol and benign prostate disease.

    PubMed

    Freeman, Michael R; Solomon, Keith R

    2011-01-01

    The origins of benign prostatic diseases, such as benign prostatic hyperplasia (BPH) and chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS), are poorly understood. Patients suffering from benign prostatic symptoms report a substantially reduced quality of life, and the relationship between benign prostate conditions and prostate cancer is uncertain. Epidemiologic data for BPH and CP/CPPS are limited, however an apparent association between BPH symptoms and cardiovascular disease (CVD) has been consistently reported. The prostate synthesizes and stores large amounts of cholesterol and prostate tissues may be particularly sensitive to perturbations in cholesterol metabolism. Hypercholesterolemia, a major risk factor for CVD, is also a risk factor for BPH. Animal model and clinical trial findings suggest that agents that inhibit cholesterol absorption from the intestine, such as the class of compounds known as polyene macrolides, can reduce prostate gland size and improve lower urinary tract symptoms (LUTS). Observational studies indicate that cholesterol-lowering drugs reduce the risk of aggressive prostate cancer, while prostate cancer cell growth and survival pathways depend in part on cholesterol-sensitive biochemical mechanisms. Here we review the evidence that cholesterol metabolism plays a role in the incidence of benign prostate disease and we highlight possible therapeutic approaches based on this concept. PMID:21862201

  13. Facts about...Blood Cholesterol. Revised.

    ERIC Educational Resources Information Center

    National Heart, Lung, and Blood Inst. (DHHS/NIH), Bethesda, MD.

    This fact sheet on blood cholesterol examines the connection between cholesterol and heart disease, lists risk factors for heart disease that can and cannot be controlled, points out who can benefit from lowering blood cholesterol, distinguishes between blood and dietary cholesterol, describes low density lipoprotein and high density lipoprotein…

  14. Intestinal nuclear receptors in HDL cholesterol metabolism

    PubMed Central

    Degirolamo, Chiara; Sabbà, Carlo; Moschetta, Antonio

    2015-01-01

    The intestine plays a pivotal role in cholesterol homeostasis by functioning as an absorptive and secretory organ in the reverse cholesterol transport pathway. Enterocytes control cholesterol absorption, apoAI synthesis, HDL biogenesis, and nonbiliary cholesterol fecal disposal. Thus, intestine-based therapeutic interventions may hold promise in the management of diseases driven by cholesterol overload. Lipid-sensing nuclear receptors (NRs) are highly expressed in the intestinal epithelium and regulate transcriptionally the handling of cholesterol by the enterocytes. Here, we discuss the NR regulation of cholesterol fluxes across the enterocytes with special emphasis on NR exploitation as a bona fide novel HDL-raising strategy. PMID:25070952

  15. Intestinal nuclear receptors in HDL cholesterol metabolism.

    PubMed

    Degirolamo, Chiara; Sabbà, Carlo; Moschetta, Antonio

    2015-07-01

    The intestine plays a pivotal role in cholesterol homeostasis by functioning as an absorptive and secretory organ in the reverse cholesterol transport pathway. Enterocytes control cholesterol absorption, apoAI synthesis, HDL biogenesis, and nonbiliary cholesterol fecal disposal. Thus, intestine-based therapeutic interventions may hold promise in the management of diseases driven by cholesterol overload. Lipid-sensing nuclear receptors (NRs) are highly expressed in the intestinal epithelium and regulate transcriptionally the handling of cholesterol by the enterocytes. Here, we discuss the NR regulation of cholesterol fluxes across the enterocytes with special emphasis on NR exploitation as a bona fide novel HDL-raising strategy. PMID:25070952

  16. Response of the Cholesterol Metabolism to a Negative Energy Balance in Dairy Cows Depends on the Lactational Stage

    PubMed Central

    Albrecht, Christiane; Bruckmaier, Rupert M.

    2015-01-01

    The response of cholesterol metabolism to a negative energy balance (NEB) induced by feed restriction for 3 weeks starting at 100 days in milk (DIM) compared to the physiologically occurring NEB in week 1 postpartum (p.p.) was investigated in 50 dairy cows (25 control (CON) and 25 feed-restricted (RES)). Blood samples, liver biopsies and milk samples were taken in week 1 p.p., and in weeks 0 and 3 of feed restriction. Plasma concentrations of total cholesterol (C), phospholipids (PL), triglycerides (TAG), very low density lipoprotein-cholesterol (VLDL-C) and low density lipoprotein-cholesterol (LDL-C) increased in RES cows from week 0 to 3 during feed restriction and were higher in week 3 compared to CON cows. In contrast, during the physiologically occurring NEB in week 1 p.p., C, PL, TAG and lipoprotein concentrations were at a minimum. Plasma phospholipid transfer protein (PLTP) and lecithin:cholesterol acyltransferase (LCAT) activities did not differ between week 0 and 3 for both groups, whereas during NEB in week 1 p.p. PLTP activity was increased and LCAT activity was decreased. Milk C concentration was not affected by feed restriction in both groups, whereas milk C mass was decreased in week 3 for RES cows. In comparison, C concentration and mass in milk were elevated in week 1 p.p. Hepatic mRNA abundance of sterol regulatory element-binding factor-2 (SREBF-2), 3-hydroxy-3-methylglutaryl-coenzyme A synthase 1 (HMGCS1), 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR), and ATP-binding cassette transporter (ABCA1) were similar in CON and RES cows during feed restriction, but were upregulated during NEB in week 1 p.p. compared to the non-lactating stage without a NEB. In conclusion, cholesterol metabolism in dairy cows is affected by nutrient and energy deficiency depending on the stage of lactation. PMID:26034989

  17. Impact of Mifepristone, a Glucocorticoid/Progesterone Antagonist, on HDL Cholesterol, HDL Particle Concentration, and HDL Function

    PubMed Central

    Krauss, Ronald M.; Gross, Coleman; Ishida, Brian; Heinecke, Jay W.; Tang, Chongren; Amory, John K.; Schaefer, Peter M.; Cox, Cheryl J.; Kane, John; Purnell, Jonathan Q.; Weinstein, Richard L.; Vaisar, Tomáš

    2012-01-01

    Context: Mifepristone is a glucocorticoid and progestin antagonist under investigation for the treatment of Cushing's syndrome. Mifepristone decreases high-density lipoprotein (HDL) cholesterol (HDL-C) levels in treated patients, but the clinical significance of this is unclear because recent studies suggest that functional properties of HDL predict cardiovascular disease status better than does HDL-C concentration. Objective: The aim of the study was to characterize the impact of mifepristone administration on HDL particle concentration and function. Design and Setting: We conducted a double-blind, randomized, placebo-controlled trial at a single-site, clinical research center. Participants: Thirty healthy postmenopausal female volunteers participated in the study. Intervention: Individuals were randomized to receive daily oral mifepristone (600 mg) or placebo for 6 wk. Main Outcome Measures: We measured HDL-C, serum HDL particle concentration, and HDL-mediated cholesterol efflux by treatment group. Results: As expected, ACTH, cortisol, estradiol, and testosterone levels increased in the mifepristone group. Mifepristone treatment decreased HDL-C and HDL particle concentration by 26 and 25%, respectively, but did not alter pre-β HDL concentration. In contrast, the serum HDL-mediated cholesterol efflux decreased with mifepristone treatment by only 12%, resulting in an effective increase of the efflux capacity per HDL particle. No changes were observed in cholesterol ester transfer protein or lecithin:cholesterol acyltransferase activity. Conclusions: Treatment with mifepristone reduced HDL-C, HDL particle concentration, and serum HDL cholesterol efflux in postmenopausal women. However, on a per particle basis, the efflux capacity of serum HDL increased. These observations support the concept that a decrease in HDL-C may not represent proportional impairment of HDL function. PMID:22399518

  18. Anticholesterolemic effect of 3,4-di(OH)-phenylpropionic amides in high-cholesterol fed rats

    SciTech Connect

    Kim, Soon-Ja; Bok, Song-Hae; Lee, Sangku; Kim, Hye-Jin; Lee, Mi-Kyung; Park, Yong Bok; Choi, Myung-Sook . E-mail: mschoi@knu.ac.kr

    2005-10-01

    Two amide synthetic derivatives of 3,4-di(OH)-hydrocinnamate (HC), 3,4-dihydroxyphenylpropionic (L-serine methyl ester) amide (E030) and 3,4-dihydroxyphenylpropionic (L-aspartic acid) amide (E076), were investigated to compare their lipid-lowering efficacy with HC. Male rats were fed a 1 g/100 g high-cholesterol diet for 6 weeks with supplements of either clofibrate (0.02%, w/w), HC (0.025%, w/w), E030 (0.039%, w/w) or E076 (0.041%, w/w). The clofibrate supplement was used as a positive control for the lipid-lowering efficacy. The food intakes and body weight gains were not significantly different among the groups. The plasma and hepatic cholesterol and triglyceride levels were lower in clofibrate, HC, E030, and E076-supplemented groups compared to the control group. The supplementation of HC and its amide derivatives was as effective as clofibrate in increasing the ratio of HDL-cholesterol to total plasma cholesterol and reducing the atherogenic index (AI). The hepatic cholesterol level in the HC and E076 groups was significantly lower than that in the clofibrate group. The hepatic 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA reductase) and acyl-CoA:cholesterol acyltransferase (ACAT) activities were significantly lower in the all test groups than in the control group. The excretion of neutral sterol was significantly higher in the HC, E030, and E076-supplemented groups compared to the control group. The plasma AST and ALT activities, indirect indexes of hepatic toxicity, were significantly lower in the HC, E030, and E076-supplemented groups than in the control group. Accordingly, the current results suggest that E030 and E076, two amide synthetic derivatives of HC, are effective in lowering lipid activity.

  19. Response of the cholesterol metabolism to a negative energy balance in dairy cows depends on the lactational stage.

    PubMed

    Gross, Josef J; Kessler, Evelyne C; Albrecht, Christiane; Bruckmaier, Rupert M

    2015-01-01

    The response of cholesterol metabolism to a negative energy balance (NEB) induced by feed restriction for 3 weeks starting at 100 days in milk (DIM) compared to the physiologically occurring NEB in week 1 postpartum (p.p.) was investigated in 50 dairy cows (25 control (CON) and 25 feed-restricted (RES)). Blood samples, liver biopsies and milk samples were taken in week 1 p.p., and in weeks 0 and 3 of feed restriction. Plasma concentrations of total cholesterol (C), phospholipids (PL), triglycerides (TAG), very low density lipoprotein-cholesterol (VLDL-C) and low density lipoprotein-cholesterol (LDL-C) increased in RES cows from week 0 to 3 during feed restriction and were higher in week 3 compared to CON cows. In contrast, during the physiologically occurring NEB in week 1 p.p., C, PL, TAG and lipoprotein concentrations were at a minimum. Plasma phospholipid transfer protein (PLTP) and lecithin:cholesterol acyltransferase (LCAT) activities did not differ between week 0 and 3 for both groups, whereas during NEB in week 1 p.p. PLTP activity was increased and LCAT activity was decreased. Milk C concentration was not affected by feed restriction in both groups, whereas milk C mass was decreased in week 3 for RES cows. In comparison, C concentration and mass in milk were elevated in week 1 p.p. Hepatic mRNA abundance of sterol regulatory element-binding factor-2 (SREBF-2), 3-hydroxy-3-methylglutaryl-coenzyme A synthase 1 (HMGCS1), 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR), and ATP-binding cassette transporter (ABCA1) were similar in CON and RES cows during feed restriction, but were upregulated during NEB in week 1 p.p. compared to the non-lactating stage without a NEB. In conclusion, cholesterol metabolism in dairy cows is affected by nutrient and energy deficiency depending on the stage of lactation. PMID:26034989

  20. Mechanism and Physiologic Significance of the Suppression of Cholesterol Esterification in Human Interstitial Fluid.

    PubMed

    Miller, Norman E; Olszewski, Waldemar L; Miller, Irina P; Nanjee, Mahmud N

    2016-01-01

    Cholesterol esterification in high density lipoproteins (HDLs) by lecithin:cholesterol acyltransferase (LCAT) promotes unesterified cholesterol (UC) transfer from red cell membranes to plasma in vitro. However, it does not explain the transfer of UC from most peripheral cells to interstitial fluid in vivo, as HDLs in afferent peripheral lymph are enriched in UC. Having already reported that the endogenous cholesterol esterification rate (ECER) in lymph is only 5% of that in plasma, we have now explored the underlying mechanism. In peripheral lymph from 20 healthy men, LCAT concentration, LCAT activity (assayed using an optimized substrate), and LCAT specific activity averaged, respectively, 11.8, 10.3, and 84.9% of plasma values. When recombinant human LCAT was added to lymph, the increments in enzyme activity were similar to those when LCAT was added to plasma. Addition of apolipoprotein AI (apo AI), fatty acid-free albumin, Intralipid, or the d < 1.006 g/ml plasma fraction had no effect on ECER. During incubation of lymph plus plasma, the ECER was similar to that observed with buffer plus plasma. When lymph was added to heat-inactivated plasma, the ECER was 11-fold greater than with lymph plus buffer. Addition of discoidal proteoliposomes of apo AI and phosphatidycholine (PC) to lymph increased ECER 10-fold, while addition of apo AI/PC/UC disks did so by only six-fold. We conclude that the low ECER in lymph is due to a property of the HDLs, seemingly substrate inhibition of LCAT by excess cell-derived UC. This is reversed when lymph enters plasma, consequent upon redistribution of UC from lymph HDLs to plasma lipoproteins. PMID:27471469

  1. Mechanism and Physiologic Significance of the Suppression of Cholesterol Esterification in Human Interstitial Fluid

    PubMed Central

    Miller, Norman E.; Olszewski, Waldemar L.; Miller, Irina P.; Nanjee, Mahmud N.

    2016-01-01

    Cholesterol esterification in high density lipoproteins (HDLs) by lecithin:cholesterol acyltransferase (LCAT) promotes unesterified cholesterol (UC) transfer from red cell membranes to plasma in vitro. However, it does not explain the transfer of UC from most peripheral cells to interstitial fluid in vivo, as HDLs in afferent peripheral lymph are enriched in UC. Having already reported that the endogenous cholesterol esterification rate (ECER) in lymph is only 5% of that in plasma, we have now explored the underlying mechanism. In peripheral lymph from 20 healthy men, LCAT concentration, LCAT activity (assayed using an optimized substrate), and LCAT specific activity averaged, respectively, 11.8, 10.3, and 84.9% of plasma values. When recombinant human LCAT was added to lymph, the increments in enzyme activity were similar to those when LCAT was added to plasma. Addition of apolipoprotein AI (apo AI), fatty acid-free albumin, Intralipid, or the d < 1.006 g/ml plasma fraction had no effect on ECER. During incubation of lymph plus plasma, the ECER was similar to that observed with buffer plus plasma. When lymph was added to heat-inactivated plasma, the ECER was 11-fold greater than with lymph plus buffer. Addition of discoidal proteoliposomes of apo AI and phosphatidycholine (PC) to lymph increased ECER 10-fold, while addition of apo AI/PC/UC disks did so by only six-fold. We conclude that the low ECER in lymph is due to a property of the HDLs, seemingly substrate inhibition of LCAT by excess cell-derived UC. This is reversed when lymph enters plasma, consequent upon redistribution of UC from lymph HDLs to plasma lipoproteins. PMID:27471469

  2. Phosphatidylcholine: Greasing the Cholesterol Transport Machinery

    PubMed Central

    Lagace, Thomas A.

    2015-01-01

    Negative feedback regulation of cholesterol metabolism in mammalian cells ensures a proper balance of cholesterol with other membrane lipids, principal among these being the major phospholipid phosphatidylcholine (PC). Processes such as cholesterol biosynthesis and efflux, cholesteryl ester storage in lipid droplets, and uptake of plasma lipoproteins are tuned to the cholesterol/PC ratio. Cholesterol-loaded macrophages in atherosclerotic lesions display increased PC biosynthesis that buffers against elevated cholesterol levels and may also facilitate cholesterol trafficking to enhance cholesterol sensing and efflux. These same mechanisms could play a generic role in homeostatic responses to acute changes in membrane free cholesterol levels. Here, I discuss the established and emerging roles of PC metabolism in promoting intracellular cholesterol trafficking and membrane lipid homeostasis. PMID:27081313

  3. Cholesterol stabilizes fluid phosphoinositide domains

    PubMed Central

    Jiang, Zhiping; Redfern, Roberta E.; Isler, Yasmin; Ross, Alonzo H.

    2014-01-01

    Local accumulation of phosphoinositides (PIPs) is an important factor for a broad range of cellular events including membrane trafficking and cell signaling. The negatively charged phosphoinositide headgroups can interact with cations or cationic proteins and this electrostatic interaction has been identified as the main phosphoinositide clustering mechanism. However, an increasing number of reports show that phosphoinositide-mediated signaling events are at least in some cases cholesterol dependent, suggesting other possible contributors to the segregation of phosphoinositides. Using fluorescence microscopy on giant unilamellar vesicles and monolayers at the air/water interface, we present data showing that cholesterol stabilizes fluid phosphoinositide-enriched phases. The interaction with cholesterol is observed for all investigated phosphoinositides (PI(4)P, PI(3,4)P2, PI(3,5)P2, PI(4,5)P2 and PI(3,4,5)P3) as well as phosphatidylinositol. We find that cholesterol is present in the phosphoinositide-enriched phase and that the resulting phase is fluid. Cholesterol derivatives modified at the hydroxyl group (cholestenone, cholesteryl ethyl ether) do not promote formation of phosphoinositide domains, suggesting an instrumental role of the cholesterol hydroxyl group in the observed cholesterol/phosphoinositide interaction. This leads to the hypothesis that cholesterol participates in an intermolecular hydrogen bond network formed among the phosphoinositide lipids. We had previously reported that the intra- and intermolecular hydrogen bond network between the phosphoinositide lipids leads to a reduction of the charge density at the phosphoinositide phosphomonoester groups (Kooijman et al. Biochemistry 48, (2009) 9360). We believe that cholesterol acts as a spacer between the phosphoinositide lipids, thereby reducing the electrostatic repulsion, while participating in the hydrogen bond network, leading to its further stabilization. To illustrate the effect of

  4. Amperometric determination of serum total cholesterol with nanoparticles of cholesterol esterase and cholesterol oxidase.

    PubMed

    Aggarwal, V; Malik, J; Prashant, A; Jaiwal, P K; Pundir, C S

    2016-05-01

    We describe the preparation of glutaraldehyde cross-linked and functionalized cholesterol esterase nanoparticles (ChENPs) and cholesterol oxidase nanoparticles (ChOxNPs) aggregates and their co-immobilization onto Au electrode for improved amperometric determination of serum total cholesterol. Transmission electron microscope (TEM) images of ChENPs and ChOxNPs showed their spherical shape and average size of 35.40 and 56.97 nm, respectively. Scanning electron microscope (SEM) studies of Au electrode confirmed the co-immobilization of enzyme nanoparticles (ENPs). The biosensor exhibited optimal response at pH 5.5 and 40 °C within 5 s when polarized at +0.25 V versus Ag/AgCl. The working/linear range of the biosensor was 10-700 mg/dl for cholesterol. The sensor showed high sensitivity and measured total cholesterol as low as 0.1 mg/dl. The biosensor was evaluated and employed for total cholesterol determination in sera of apparently healthy and diseased persons. The analytical recovery of added cholesterol was 90%, whereas the within-batch and between-batch coefficients of variation (CVs) were less than 2% and less than 3%. There was a good correlation (r = 0.99) between serum cholesterol values as measured by the standard enzymic colorimetric method and the current method. The initial activity of ENPs/working electrode was reduced by 50% during its regular use (200 times) over a period of 60 days when stored dry at 4 °C. PMID:26853742

  5. Statins increase hepatic cholesterol synthesis and stimulate fecal cholesterol elimination in mice.

    PubMed

    Schonewille, Marleen; Freark de Boer, Jan; Mele, Laura; Wolters, Henk; Bloks, Vincent W; Wolters, Justina C; Kuivenhoven, Jan A; Tietge, Uwe J F; Brufau, Gemma; Groen, Albert K

    2016-08-01

    Statins are competitive inhibitors of HMG-CoA reductase, the rate-limiting enzyme of cholesterol synthesis. Statins reduce plasma cholesterol levels, but whether this is actually caused by inhibition of de novo cholesterol synthesis has not been clearly established. Using three different statins, we investigated the effects on cholesterol metabolism in mice in detail. Surprisingly, direct measurement of whole body cholesterol synthesis revealed that cholesterol synthesis was robustly increased in statin-treated mice. Measurement of organ-specific cholesterol synthesis demonstrated that the liver is predominantly responsible for the increase in cholesterol synthesis. Excess synthesized cholesterol did not accumulate in the plasma, as plasma cholesterol decreased. However, statin treatment led to an increase in cholesterol removal via the feces. Interestingly, enhanced cholesterol excretion in response to rosuvastatin and lovastatin treatment was mainly mediated via biliary cholesterol secretion, whereas atorvastatin mainly stimulated cholesterol removal via the transintestinal cholesterol excretion pathway. Moreover, we show that plasma cholesterol precursor levels do not reflect cholesterol synthesis rates during statin treatment in mice. In conclusion, cholesterol synthesis is paradoxically increased upon statin treatment in mice. However, statins potently stimulate the excretion of cholesterol from the body, which sheds new light on possible mechanisms underlying the cholesterol-lowering effects of statins. PMID:27313057

  6. Identification of acyltransferases required for cutin biosynthesis and production of cutin with suberin-like monomers.

    PubMed

    Li, Yonghua; Beisson, Fred; Koo, Abraham J K; Molina, Isabel; Pollard, Mike; Ohlrogge, John

    2007-11-13

    Cutin and suberin are the two major lipid-based polymers of plants. Cutin is the structural polymer of the epidermal cuticle, the waterproof layer covering primary aerial organs and which is often the structure first encountered by phytopathogens. Suberin contributes to the control of diffusion of water and solutes across internal root tissues and in periderms. The enzymes responsible for assembly of the cutin polymer are largely unknown. We have identified two Arabidopsis acyltransferases essential for cutin biosynthesis, glycerol-3-phosphate acyltransferase (GPAT) 4 and GPAT8. Double knockouts gpat4/gpat8 were strongly reduced in cutin and were less resistant to desiccation and to infection by the fungus Alternaria brassicicola. They also showed striking defects in stomata structure including a lack of cuticular ledges between guard cells, highlighting the importance of cutin in stomatal biology. Overexpression of GPAT4 or GPAT8 in Arabidopsis increased the content of C16 and C18 cutin monomers in leaves and stems by 80%. In order to modify cutin composition, the acyltransferase GPAT5 and the cytochrome P450-dependent fatty acyl oxidase CYP86A1, two enzymes associated with suberin biosynthesis, were overexpressed. When both enzymes were overexpressed together the epidermal polyesters accumulated new C20 and C22 omega-hydroxyacids and alpha,omega-diacids typical of suberin, and the fine structure and water-barrier function of the cuticle were altered. These results identify GPATs as partners of fatty acyl oxidases in lipid polyester synthesis and indicate that their cooverexpression provides a strategy to probe the role of cutin composition and quantity in the function of plant cuticles. PMID:17991776

  7. CGI-58/ABHD5 is a coenzyme A-dependent lysophosphatidic acid acyltransferase.

    PubMed

    Montero-Moran, Gabriela; Caviglia, Jorge M; McMahon, Derek; Rothenberg, Alexis; Subramanian, Vidya; Xu, Zhi; Lara-Gonzalez, Samuel; Storch, Judith; Carman, George M; Brasaemle, Dawn L

    2010-04-01

    Mutations in human CGI-58/ABHD5 cause Chanarin-Dorfman syndrome (CDS), characterized by excessive storage of triacylglycerol in tissues. CGI-58 is an alpha/beta-hydrolase fold enzyme expressed in all vertebrates. The carboxyl terminus includes a highly conserved consensus sequence (HXXXXD) for acyltransferase activity. Mouse CGI-58 was expressed in Escherichia coli as a fusion protein with two amino terminal 6-histidine tags. Recombinant CGI-58 displayed acyl-CoA-dependent acyltransferase activity to lysophosphatidic acid, but not to other lysophospholipid or neutral glycerolipid acceptors. Production of phosphatidic acid increased with time and increasing concentrations of recombinant CGI-58 and was optimal between pH 7.0 and 8.5. The enzyme showed saturation kinetics with respect to 1-oleoyl-lysophosphatidic acid and oleoyl-CoA and preference for arachidonoyl-CoA and oleoyl-CoA. The enzyme showed slight preference for 1-oleoyl lysophosphatidic acid over 1-palmitoyl, 1-stearoyl, or 1-arachidonoyl lysophosphatidic acid. Recombinant CGI-58 showed intrinsic fluorescence for tryptophan that was quenched by the addition of 1-oleoyl-lysophosphatidic acid, oleoyl-CoA, arachidonoyl-CoA, and palmitoyl-CoA, but not by lysophosphatidyl choline. Expression of CGI-58 in fibroblasts from humans with CDS increased the incorporation of radiolabeled fatty acids released from the lipolysis of stored triacylglycerols into phospholipids. CGI-58 is a CoA-dependent lysophosphatidic acid acyltransferase that channels fatty acids released from the hydrolysis of stored triacylglycerols into phospholipids. PMID:19801371

  8. Inhibition by acetyl-CoA of hepatic carnitine acyltransferase and fatty acid oxidation.

    PubMed Central

    McCormick, K; Notar-Francesco, V J; Sriwatanakul, K

    1983-01-01

    At micromolar concentrations, acetyl-CoA inhibited hepatic carnitine acyltransferase activity and mitochondrial fatty acid oxidation. The inhibitory effects were not nearly as potent on a molar basis as those of malonyl-CoA; nevertheless, the cytosolic concentrations of acetyl-CoA, as yet unknown, may be sufficient (greater than 30 microM) to curtail appreciably the mitochondrial transfer of long-chain acyl-CoA units and fatty acid oxidation. Hence acetyl-CoA may also partially regulate hepatic ketogenesis. PMID:6661211

  9. Functional study of diacylglycerol acyltransferase type 2 family in Chlamydomonas reinhardtii.

    PubMed

    Hung, Chun-Hsien; Ho, Ming-Yang; Kanehara, Kazue; Nakamura, Yuki

    2013-08-01

    Algal triacylglycerol biosynthesis is of increasing interest for potential biodiesel production. A model microalga, Chlamydomonas, has multiple isoforms of diacylglycerol acyltransferase type 2 (DGTT) catalyzing the final step of triacylglycerol biosynthesis; however, the functions of the isoforms are poorly understood. Here, we performed heterologous complementation assay of Chlamydomonas DGTT1 to 4 in a yeast mutant defective in triacylglycerol biosynthesis. DGTT1, 2 and 3 but not 4 complemented the phenotype, including triacylglycerol levels. Interestingly, complementation by DGTT2 increased triacylglycerol content by 9-fold. PMID:23770092

  10. Co-existence of classic familial lecithin-cholesterol acyl transferase deficiency and fish eye disease in the same family.

    PubMed

    Mahapatra, H S; Ramanarayanan, S; Gupta, A; Bhardwaj, M

    2015-01-01

    We report a family with a rare genetic disorder arising out of mutation in the gene that encodes for the enzyme lecithin-cholesterol acyltransferase (LCAT). The proband presented with nephrotic syndrome, hemolytic anemia, cloudy cornea, and dyslipidemia. Kidney biopsy showed certain characteristic features to suggest LCAT deficiency, and the enzyme activity in the serum was undetectable. Mother and younger sister showed corneal opacity and dyslipidemia but no renal or hematological involvement. These two members had a milder manifestation of the disease called fish eye disease. This case is presented to emphasize the importance of taking family history and doing a good clinical examination in patients with nephrotic syndrome and carefully analyze the lipid fractions in these subset of patients. PMID:26664212

  11. Co-existence of classic familial lecithin-cholesterol acyl transferase deficiency and fish eye disease in the same family

    PubMed Central

    Mahapatra, H. S.; Ramanarayanan, S.; Gupta, A.; Bhardwaj, M.

    2015-01-01

    We report a family with a rare genetic disorder arising out of mutation in the gene that encodes for the enzyme lecithin-cholesterol acyltransferase (LCAT). The proband presented with nephrotic syndrome, hemolytic anemia, cloudy cornea, and dyslipidemia. Kidney biopsy showed certain characteristic features to suggest LCAT deficiency, and the enzyme activity in the serum was undetectable. Mother and younger sister showed corneal opacity and dyslipidemia but no renal or hematological involvement. These two members had a milder manifestation of the disease called fish eye disease. This case is presented to emphasize the importance of taking family history and doing a good clinical examination in patients with nephrotic syndrome and carefully analyze the lipid fractions in these subset of patients. PMID:26664212

  12. Polarizable multipolar electrostatics for cholesterol

    NASA Astrophysics Data System (ADS)

    Fletcher, Timothy L.; Popelier, Paul L. A.

    2016-08-01

    FFLUX is a novel force field under development for biomolecular modelling, and is based on topological atoms and the machine learning method kriging. Successful kriging models have been obtained for realistic electrostatics of amino acids, small peptides, and some carbohydrates but here, for the first time, we construct kriging models for a sizeable ligand of great importance, which is cholesterol. Cholesterol's mean total (internal) electrostatic energy prediction error amounts to 3.9 kJ mol-1, which pleasingly falls below the threshold of 1 kcal mol-1 often cited for accurate biomolecular modelling. We present a detailed analysis of the error distributions.

  13. Involvement of an octose ketoreductase and two acyltransferases in the biosynthesis of paulomycins

    NASA Astrophysics Data System (ADS)

    Li, Jine; Wang, Min; Ding, Yong; Tang, Yue; Zhang, Zhiguo; Chen, Yihua

    2016-02-01

    C-4 hydroxyethyl branched octoses have been observed in polysaccharides of several genera of gram negative bacteria and in various antibiotics produced by gram positive bacteria. The C-4 hydroxyethyl branch was proposed to be converted from C-4 acetyl branch by an uncharacterized ketoreduction step. Paulomycins (PAUs) are glycosylated antibiotics with potent inhibitory activity against gram positive bacteria and are structurally defined by its unique C-4‧ hydroxyethyl branched paulomycose moiety. A novel aldo-keto-reductase, Pau7 was characterized as the enzyme catalyzing the stereospecific ketoreduction of 7‧-keto of PAU E (1) to give the C-4‧ hydroxyethyl branched paulomycose moiety of PAU F (2). An acyltransferase Pau6 further decorates the C-4‧ hydroxyethyl branch of paulomycose moiety of 2 by attaching various fatty acyl chains to 7‧-OH to generate diverse PAUs. In addition, another acyltransferase Pau24 was proposed to be responsible for the 13-O-acetylation of PAUs.

  14. Regulation of acyltransferase activity in immature maize embryos by abscisic acid and the osmotic environment.

    PubMed Central

    Pacheco-Moisés, F; Valencia-Turcotte, L; Altuzar-Martínez, M; Rodríguez-Sotres, R

    1997-01-01

    Maize (Zes mays L.) embryos, isolated from the developing seed and incubated in dilute buffer, show reduced triacylglycerol (TAG) synthesis, and accumulation stops after 24 h. Synthesis and accumulation can be maintained at high levels if the incubation medium contains abscisic acid (ABA) and/or a high osmotic concentration. Radiolabeled free fatty acids accumulate at higher levels in embryos that contain less TAG, and acetyl coenzyme A carboxylase activity remains essentially unchanged under all of the conditions tested. In contrast, the activities of the acyltransferases required for TAG synthesis remain high only in embryos incubated with ABA and/or a high osmotic concentration. Dose-response curves showed that 4 microM of ABA or mannitol at -1.0 MPa elicits a full response; both values are within the range considered to be physiological. The TAG synthesis capacity and discylglycerol acyltransferase activity lost by pretreatment of the embryos can be restored by re-exposure to ABA or high osmoticum. Germination is not involved because isolated scutellum halves showed the same changes in enzyme activity found in the whole embryo but did not germinate. Our results provide direct evidence for the regulation of TAG-synthesizing activities in maize embryos by ABA and the osmotic potential of the environment. PMID:9232885

  15. Diacylglycerol O-Acyltransferase Type-1 Synthesizes Retinyl Esters in the Retina and Retinal Pigment Epithelium

    PubMed Central

    Kaylor, Joanna J.; Radu, Roxana A.; Bischoff, Nicholas; Makshanoff, Jacob; Hu, Jane; Lloyd, Marcia; Eddington, Shannan; Bianconi, Tran; Bok, Dean; Travis, Gabriel H.

    2015-01-01

    Retinyl esters represent an insoluble storage form of vitamin A and are substrates for the retinoid isomerase (Rpe65) in cells of the retinal pigment epithelium (RPE). The major retinyl-ester synthase in RPE cells is lecithin:retinol acyl-transferase (LRAT). A second palmitoyl coenzyme A-dependent retinyl-ester synthase activity has been observed in RPE homogenates but the protein responsible has not been identified. Here we show that diacylglycerol O-acyltransferase-1 (DGAT1) is expressed in multiple cells of the retina including RPE and Müller glial cells. DGAT1 catalyzes the synthesis of retinyl esters from multiple retinol isomers with similar catalytic efficiencies. Loss of DGAT1 in dgat1 -/- mice has no effect on retinal anatomy or the ultrastructure of photoreceptor outer-segments (OS) and RPE cells. Levels of visual chromophore in dgat1 -/- mice were also normal. However, the normal build-up of all-trans-retinyl esters (all-trans-RE’s) in the RPE during the first hour after a deep photobleach of visual pigments in the retina was not seen in dgat1 -/- mice. Further, total retinyl-ester synthase activity was reduced in both dgat1 -/- retina and RPE. PMID:25974161

  16. Role of HXXXD-motif/BAHD acyltransferases in the biosynthesis of extracellular lipids.

    PubMed

    Molina, Isabel; Kosma, Dylan

    2015-04-01

    Terrestrial plants have evolved specific adaptations to preserve water and protect themselves from their environment. Such adaptations range from secondary metabolites and specialized structures that conduct water and nutrients, to cell wall modifications (i.e., cuticle and suberin) that prevent dehydration and provide a physical barrier to pathogens. Both the plant cuticle and suberized cell walls contain a lipid polymer framework embedded with waxes, and constitute a promising target for controlled genetic modification to improve desirable agronomic traits. Recent advances in genomic and molecular techniques coupled with the development of robust analytical methods have accelerated progress in comprehending these intractable lipid polymers. Gene products characterized in the wax, cutin and suberin pathways include a subset of HXXXD/BAHD family enzymes that catalyze acyl transfer reactions between CoA-activated hydroxycinnamic acid derivatives and hydroxylated aliphatics. This review highlights our current understanding of HXXXD/BAHD acyltransferases in extracellular lipid biosynthesis and discusses the chemical, ultrastructural and physiological ramifications of impairing the expression of BAHD acyltransferase-encoding genes related to cutin and suberin synthesis. PMID:25510356

  17. Architectural Organization of the Metabolic Regulatory Enzyme Ghrelin O-Acyltransferase*

    PubMed Central

    Taylor, Martin S.; Ruch, Travis R.; Hsiao, Po-Yuan; Hwang, Yousang; Zhang, Pingfeng; Dai, Lixin; Huang, Cheng Ran Lisa; Berndsen, Christopher E.; Kim, Min-Sik; Pandey, Akhilesh; Wolberger, Cynthia; Marmorstein, Ronen; Machamer, Carolyn; Boeke, Jef D.; Cole, Philip A.

    2013-01-01

    Ghrelin O-acyltransferase (GOAT) is a polytopic integral membrane protein required for activation of ghrelin, a secreted metabolism-regulating peptide hormone. Although GOAT is a potential therapeutic target for the treatment of obesity and diabetes and plays a key role in other physiologic processes, little is known about its structure or mechanism. GOAT is a member of the membrane-bound O-acyltransferase (MBOAT) family, a group of polytopic integral membrane proteins involved in lipid-biosynthetic and lipid-signaling reactions from prokaryotes to humans. Here we use phylogeny and a variety of bioinformatic tools to predict the topology of GOAT. Using selective permeabilization indirect immunofluorescence microscopy in combination with glycosylation shift immunoblotting, we demonstrate that GOAT contains 11 transmembrane helices and one reentrant loop. Development of the V5Glyc tag, a novel, small, and sensitive dual topology reporter, facilitated these experiments. The MBOAT family invariant residue His-338 is in the ER lumen, consistent with other family members, but conserved Asn-307 is cytosolic, making it unlikely that both are involved in catalysis. Photocross-linking of synthetic ghrelin analogs and inhibitors demonstrates binding to the C-terminal region of GOAT, consistent with a role of His-338 in the active site. This knowledge of GOAT architecture is important for a deeper understanding of the mechanism of GOAT and other MBOATs and could ultimately advance the discovery of selective inhibitors for these enzymes. PMID:24045953

  18. A soluble diacylglycerol acyltransferase is involved in triacylglycerol biosynthesis in the oleaginous yeast Rhodotorula glutinis.

    PubMed

    Rani, Sapa Hima; Saha, Saikat; Rajasekharan, Ram

    2013-01-01

    The biosynthesis of triacylglycerol (TAG) occurs in the microsomal membranes of eukaryotes. Here, we report the identification and functional characterization of diacylglycerol acyltransferase (DGAT), a member of the 10 S cytosolic TAG biosynthetic complex (TBC) in Rhodotorula glutinis. Both a full-length and an N-terminally truncated cDNA clone of a single gene were isolated from R. glutinis. The DGAT activity of the protein encoded by RgDGAT was confirmed in vivo by the heterologous expression of cDNA in a Saccharomyces cerevisiae quadruple mutant (H1246) that is defective in TAG synthesis. RgDGAT overexpression in yeast was found to be capable of acylating diacylglycerol (DAG) in an acyl-CoA-dependent manner. Quadruple mutant yeast cells exhibit growth defects in the presence of oleic acid, but wild-type yeast cells do not. In an in vivo fatty acid supplementation experiment, RgDGAT expression rescued quadruple mutant growth in an oleate-containing medium. We describe a soluble acyl-CoA-dependent DAG acyltransferase from R. glutinis that belongs to the DGAT3 class of enzymes. The study highlights the importance of an alternative TAG biosynthetic pathway in oleaginous yeasts. PMID:23103975

  19. Involvement of an octose ketoreductase and two acyltransferases in the biosynthesis of paulomycins

    PubMed Central

    Li, Jine; Wang, Min; Ding, Yong; Tang, Yue; Zhang, Zhiguo; Chen, Yihua

    2016-01-01

    C-4 hydroxyethyl branched octoses have been observed in polysaccharides of several genera of gram negative bacteria and in various antibiotics produced by gram positive bacteria. The C-4 hydroxyethyl branch was proposed to be converted from C-4 acetyl branch by an uncharacterized ketoreduction step. Paulomycins (PAUs) are glycosylated antibiotics with potent inhibitory activity against gram positive bacteria and are structurally defined by its unique C-4′ hydroxyethyl branched paulomycose moiety. A novel aldo-keto-reductase, Pau7 was characterized as the enzyme catalyzing the stereospecific ketoreduction of 7′-keto of PAU E (1) to give the C-4′ hydroxyethyl branched paulomycose moiety of PAU F (2). An acyltransferase Pau6 further decorates the C-4′ hydroxyethyl branch of paulomycose moiety of 2 by attaching various fatty acyl chains to 7′-OH to generate diverse PAUs. In addition, another acyltransferase Pau24 was proposed to be responsible for the 13-O-acetylation of PAUs. PMID:26877148

  20. The Mycobacterium tuberculosis LipB enzyme functions as a cysteine/lysine dyad acyltransferase

    PubMed Central

    Ma, Qingjun; Zhao, Xin; Eddine, Ali Nasser; Geerlof, Arie; Li, Xinping; Cronan, John E.; Kaufmann, Stefan H. E.; Wilmanns, Matthias

    2006-01-01

    Lipoic acid is essential for the activation of a number of protein complexes involved in key metabolic processes. Growth of Mycobacterium tuberculosis relies on a pathway in which the lipoate attachment group is synthesized from an endogenously produced octanoic acid moiety. In patients with multiple-drug-resistant M. tuberculosis, expression of one gene from this pathway, lipB, encoding for octanoyl-[acyl carrier protein]-protein acyltransferase is considerably up-regulated, thus making it a potential target in the search for novel antiinfectives against tuberculosis. Here we present the crystal structure of the M. tuberculosis LipB protein at atomic resolution, showing an unexpected thioether-linked active-site complex with decanoic acid. We provide evidence that the transferase functions as a cysteine/lysine dyad acyltransferase, in which two invariant residues (Lys-142 and Cys-176) are likely to function as acid/base catalysts. Analysis by MS reveals that the LipB catalytic reaction proceeds by means of an internal thioesteracyl intermediate. Structural comparison of LipB with lipoate protein ligase A indicates that, despite conserved structural and sequence active-site features in the two enzymes, 4′-phosphopantetheine-bound octanoic acid recognition is a specific property of LipB. PMID:16735476

  1. Human 1-Acylglycerol-3-phosphate O-Acyltransferase Isoforms 1 and 2

    PubMed Central

    Agarwal, Anil K.; Sukumaran, Suja; Cortés, Víctor A.; Tunison, Katie; Mizrachi, Dario; Sankella, Shireesha; Gerard, Robert D.; Horton, Jay D.; Garg, Abhimanyu

    2011-01-01

    Loss-of-function mutations in 1-acylglycerol-3-phosphate O-acyltransferase (AGPAT) 2 in humans and mice result in loss of both the white and brown adipose tissues from birth. AGPAT2 generates precursors for the synthesis of glycerophospholipids and triacylglycerols. Loss of adipose tissue, or lipodystrophy, results in hyperinsulinemia, diabetes mellitus, and severe hepatic steatosis. Here, we analyzed biochemical properties of human AGPAT2 and its close homolog, AGPAT1, and we studied their role in liver by transducing their expression via recombinant adenoviruses in Agpat2−/− mice. The in vitro substrate specificities of AGPAT1 and AGPAT2 are quite similar for lysophosphatidic acid and acyl-CoA. Protein homology modeling of both the AGPATs with glycerol-3-phosphate acyltransferase 1 (GPAT1) revealed that they have similar tertiary protein structure, which is consistent with their similar substrate specificities. When co-expressed, both isoforms co-localize to the endoplasmic reticulum. Despite such similarities, restoring AGPAT activity in liver by overexpression of either AGPAT1 or AGPAT2 in Agpat2−/− mice failed to ameliorate the hepatic steatosis. From these studies, we suggest that the role of AGPAT1 or AGPAT2 in liver lipogenesis is minimal and that accumulation of liver fat is primarily a consequence of insulin resistance and loss of adipose tissue in Agpat2−/− mice. PMID:21873652

  2. Membrane Cholesterol Modulates Superwarfarin Toxicity.

    PubMed

    Marangoni, M Natalia; Martynowycz, Michael W; Kuzmenko, Ivan; Braun, David; Polak, Paul E; Weinberg, Guy; Rubinstein, Israel; Gidalevitz, David; Feinstein, Douglas L

    2016-04-26

    Superwarfarins are modified analogs of warfarin with additional lipophilic aromatic rings, up to 100-fold greater potency, and longer biological half-lives. We hypothesized that increased hydrophobicity allowed interactions with amphiphilic membranes and modulation of biological responses. We find that superwarfarins brodifacoum and difenacoum increase lactate production and cell death in neuroblastoma cells. In contrast, neither causes changes in glioma cells that have higher cholesterol content. After choleterol depletion, lactate production was increased and cell viability was reduced. Drug-membrane interactions were examined by surface X-ray scattering using Langmuir monolayers of dipalmitoylphosphatidylcholine and/or cholesterol. Specular X-ray reflectivity data revealed that superwarfarins, but not warfarin, intercalate between dipalmitoylphosphatidylcholine molecules, whereas grazing incidence X-ray diffraction demonstrated changes in lateral crystalline order of the film. Neither agent showed significant interactions with monolayers containing >20% cholesterol. These findings demonstrate an affinity of superwarfarins to biomembranes and suggest that cellular responses to these agents are regulated by cholesterol content. PMID:27119638

  3. Community Guide to Cholesterol Resources.

    ERIC Educational Resources Information Center

    National Heart and Lung Inst. (DHHS/NIH), Bethesda, MD.

    This guide is divided into two sections, one for physicians and the other for patients. The physician section lists different resources including continuing medical education opportunities on the medical and scientific aspects of cholesterol and heart disease and on the physician's role in diagnosis and patient management. Additional materials on…

  4. Plant acyl-CoA:lysophosphatidylcholine acyltransferases (LPCATs) have different specificities in their forward and reverse reactions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Acyl-CoA:lysophosphatidylcholine acyltransferase (LPCAT) enzymes have central roles inacyl editing of phosphatidylcholine (PC). Plant LPCAT genes were expressed in yeast and characterized biochemically in microsomal preparations of the cells. Specificities for different acyl-CoAs were similar for se...

  5. The Glycerol-3-Phosphate Acyltransferase TbGAT is Dispensable for Viability and the Synthesis of Glycerolipids in Trypanosoma brucei.

    PubMed

    Patel, Nipul; Pirani, Karim A; Zhu, Tongtong; Cheung-See-Kit, Melanie; Lee, Sungsu; Chen, Daniel G; Zufferey, Rachel

    2016-09-01

    Glycerolipids are the main constituents of biological membranes in Trypanosoma brucei, which causes sleeping sickness in humans. Importantly, they occur as a structural component of the glycosylphosphatidylinositol lipid anchor of the abundant cell surface glycoproteins procyclin in procyclic forms and variant surface glycoprotein in bloodstream form, that play crucial roles for the development of the parasite in the insect vector and the mammalian host, respectively. The present work reports the characterization of the glycerol-3-phosphate acyltransferase TbGAT that initiates the biosynthesis of ester glycerolipids. TbGAT restored glycerol-3-phosphate acyltransferase activity when expressed in a Leishmania major deletion strain lacking this activity and exhibited preference for medium length, unsaturated fatty acyl-CoAs. TbGAT localized to the endoplasmic reticulum membrane with its N-terminal domain facing the cytosol. Despite that a TbGAT null mutant in T. brucei procyclic forms lacked glycerol-3-phosphate acyltransferase activity, it remained viable and exhibited similar growth rate as the wild type. TbGAT was dispensable for the biosynthesis of phosphatidylcholine, phosphatidylinositol, phosphatidylserine, and GPI-anchored protein procyclin. However, the null mutant exhibited a slight decrease in phosphatidylethanolamine biosynthesis that was compensated with a modest increase in production of ether phosphatidylcholine. Our data suggest that an alternative initial acyltransferase takes over TbGAT's function in its absence. PMID:26909872

  6. Inherited Cholesterol Disorder Significantly Boosts Heart Risks

    MedlinePlus

    ... genetic disorder that causes high levels of "bad" LDL cholesterol have an increased risk for heart disease and ... in previous studies. Compared to people with average LDL cholesterol levels (less than 130 mg/dL), those with ...

  7. High Cholesterol: Medicines to Help You

    MedlinePlus

    ... Consumer Information by Audience For Women High Cholesterol--Medicines To Help You Share Tweet Linkedin Pin it ... Test to check your cholesterol (LDL-C) Combination Medicines Brand Name Generic Name Advicor Niacin and Lovastatin ...

  8. Active membrane cholesterol as a physiological effector.

    PubMed

    Lange, Yvonne; Steck, Theodore L

    2016-09-01

    Sterols associate preferentially with plasma membrane sphingolipids and saturated phospholipids to form stoichiometric complexes. Cholesterol in molar excess of the capacity of these polar bilayer lipids has a high accessibility and fugacity; we call this fraction active cholesterol. This review first considers how active cholesterol serves as an upstream regulator of cellular sterol homeostasis. The mechanism appears to utilize the redistribution of active cholesterol down its diffusional gradient to the endoplasmic reticulum and mitochondria, where it binds multiple effectors and directs their feedback activity. We have also reviewed a broad literature in search of a role for active cholesterol (as opposed to bulk cholesterol or lipid domains such as rafts) in the activity of diverse membrane proteins. Several systems provide such evidence, implicating, in particular, caveolin-1, various kinds of ABC-type cholesterol transporters, solute transporters, receptors and ion channels. We suggest that this larger role for active cholesterol warrants close attention and can be tested easily. PMID:26874289

  9. Do You Know Your Cholesterol Levels?

    MedlinePlus

    ... Health Information Center Do You Know Your Cholesterol Levels? Print-friendly Version (PDF, 6.1 MB) Spanish ... Syndrome? My Family Plan To Lower Blood Cholesterol Levels My Heart Health Card Play It Smart, Take ...

  10. ATR-101, a Selective and Potent Inhibitor of Acyl-CoA Acyltransferase 1, Induces Apoptosis in H295R Adrenocortical Cells and in the Adrenal Cortex of Dogs.

    PubMed

    LaPensee, Christopher R; Mann, Jacqueline E; Rainey, William E; Crudo, Valentina; Hunt, Stephen W; Hammer, Gary D

    2016-05-01

    ATR-101 is a novel, oral drug candidate currently in development for the treatment of adrenocortical cancer. ATR-101 is a selective and potent inhibitor of acyl-coenzyme A:cholesterol O-acyltransferase 1 (ACAT1), an enzyme located in the endoplasmic reticulum (ER) membrane that catalyzes esterification of intracellular free cholesterol (FC). We aimed to identify mechanisms by which ATR-101 induces adrenocortical cell death. In H295R human adrenocortical carcinoma cells, ATR-101 decreases the formation of cholesteryl esters and increases FC levels, demonstrating potent inhibition of ACAT1 activity. Caspase-3/7 levels and terminal deoxynucleotidyl transferase 2'-deoxyuridine 5'-triphosphate nick end labeled-positive cells are increased by ATR-101 treatment, indicating activation of apoptosis. Exogenous cholesterol markedly potentiates the activity of ATR-101, suggesting that excess FC that cannot be adequately esterified increases caspase-3/7 activation and subsequent cell death. Inhibition of calcium release from the ER or the subsequent uptake of calcium by mitochondria reverses apoptosis induced by ATR-101. ATR-101 also activates multiple components of the unfolded protein response, an indicator of ER stress. Targeted knockdown of ACAT1 in an adrenocortical cell line mimicked the effects of ATR-101, suggesting that ACAT1 mediates the cytotoxic effects of ATR-101. Finally, in vivo treatment of dogs with ATR-101 decreased adrenocortical steroid production and induced cellular apoptosis that was restricted to the adrenal cortex. Together, these studies demonstrate that inhibition of ACAT1 by ATR-101 increases FC, resulting in dysregulation of ER calcium stores that result in ER stress, the unfolded protein response, and ultimately apoptosis. PMID:26986192

  11. Acyl-CoA:Diacylglycerol Acyltransferase 1 Expression Level in the Hematopoietic Compartment Impacts Inflammation in the Vascular Plaques of Atherosclerotic Mice

    PubMed Central

    Vujic, Nemanja; Porter Abate, Jess; Schlager, Stefanie; David, Tovo; Koliwad, Suneil K.

    2016-01-01

    The final step of triacylglycerol synthesis is catalyzed by acyl-CoA:diacylglycerol acyltransferases (DGATs). We have previously shown that ApoE-/-Dgat1-/- mice are protected from developing atherosclerosis in association with reduced foam cell formation. However, the role of DGAT1, specifically in myeloid and other hematopoietic cell types, in determining this protective phenotype is unknown. To address this question, we reconstituted the bone marrow of irradiated Ldlr–/–mice with that from wild-type (WT→ Ldlr–/–) and Dgat1–/–(Dgat1–/–→ Ldlr–/–) donor mice. We noted that DGAT1 in the hematopoietic compartment exerts a sex-specific effect on systemic cholesterol homeostasis. However, both male and female Dgat1–/–→ Ldlr–/–mice had higher circulating neutrophil and lower lymphocyte counts than control mice, suggestive of a classical inflammatory phenotype. Moreover, specifically examining the aortae of these mice revealed that Dgat1–/–→ Ldlr–/–mice have atherosclerotic plaques with increased macrophage content. This increase was coupled to a reduced plaque collagen content, leading to a reduced collagen-to-macrophage ratio. Together, these findings point to a difference in the inflammatory contribution to plaque composition between Dgat1–/–→ Ldlr–/–and control mice. By contrast, DGAT1 deficiency did not affect the transcriptional responses of cultured macrophages to lipoprotein treatment in vitro, suggesting that the alterations seen in the plaques of Dgat1–/–→ Ldlr–/–mice in vivo do not reflect a cell intrinsic effect of DGAT1 in macrophages. We conclude that although DGAT1 in the hematopoietic compartment does not impact the overall lipid content of atherosclerotic plaques, it exerts reciprocal effects on inflammation and fibrosis, two processes that control plaque vulnerability. PMID:27223895

  12. Molecular Characterization of Two Lysophospholipid:acyl-CoA Acyltransferases Belonging to the MBOAT Family in Nicotiana benthamiana.

    PubMed

    Zhang, Donghui; Jasieniecka-Gazarkiewicz, Katarzyna; Wan, Xia; Luo, Ling; Zhang, Yinbo; Banas, Antoni; Jiang, Mulan; Gong, Yangmin

    2015-01-01

    In the remodeling pathway for the synthesis of phosphatidylcholine (PC), acyl-CoA-dependent lysophosphatidylcholine (lysoPC) acyltransferase (LPCAT) catalyzes the reacylation of lysoPC. A number of genes encoding LPCATs have been cloned and characterized from several plants in recent years. Using Arabidopsis and other plant LPCAT sequences to screen the genome database of Nicotiana benthamiana, we identified two cDNAs encoding the putative tobacco LPCATs (NbLPCAT1 and NbLPCAT2). Both of them were predicted to encode a protein of 463 amino acids with high similarity to LPCATs from other plants. Protein sequence features such as the presence of at least eight putative transmembrane regions, four highly conserved signature motifs and several invariant residues indicate that NbLPCATs belong to the membrane bound O-acyltransferase family. Lysophospholipid acyltransferase activity of NbLPCATs was confirmed by testing lyso-platelet-activating factor (lysoPAF) sensitivity through heterologous expression of each full-length cDNA in a yeast mutant Y02431 (lca1△) disrupted in endogenous LPCAT enzyme activity. Analysis of fatty acid profiles of phospholipids from the NbLPCAT-expressing yeast mutant Y02431 cultures supplemented with polyunsaturated fatty acids suggested more incorporation of linoleic acid (18:2n6, LA) and α-linolenic acid (18:3n3, ALA) into PC compared to yeast mutant harbouring empty vector. In vitro enzymatic assay demonstrated that NbLPCAT1had high lysoPC acyltransferase activity with a clear preference for α-linolenoyl-CoA (18:3), while NbLPCAT2 showed a high lysophosphatidic acid (lysoPA) acyltransferase activity towards α-linolenoyl-CoA and a weak lysoPC acyltransferase activity. Tissue-specific expression analysis showed a ubiquitous expression of NbLPCAT1 and NbLPCAT2 in roots, stems, leaves, flowers and seeds, and a strong expression in developing flowers. This is the first report on the cloning and characterization of lysophospholipid

  13. Molecular Characterization of Two Lysophospholipid:acyl-CoA Acyltransferases Belonging to the MBOAT Family in Nicotiana benthamiana

    PubMed Central

    Wan, Xia; Luo, Ling; Zhang, Yinbo; Banas, Antoni; Jiang, Mulan; Gong, Yangmin

    2015-01-01

    In the remodeling pathway for the synthesis of phosphatidylcholine (PC), acyl-CoA-dependent lysophosphatidylcholine (lysoPC) acyltransferase (LPCAT) catalyzes the reacylation of lysoPC. A number of genes encoding LPCATs have been cloned and characterized from several plants in recent years. Using Arabidopsis and other plant LPCAT sequences to screen the genome database of Nicotiana benthamiana, we identified two cDNAs encoding the putative tobacco LPCATs (NbLPCAT1 and NbLPCAT2). Both of them were predicted to encode a protein of 463 amino acids with high similarity to LPCATs from other plants. Protein sequence features such as the presence of at least eight putative transmembrane regions, four highly conserved signature motifs and several invariant residues indicate that NbLPCATs belong to the membrane bound O-acyltransferase family. Lysophospholipid acyltransferase activity of NbLPCATs was confirmed by testing lyso-platelet-activating factor (lysoPAF) sensitivity through heterologous expression of each full-length cDNA in a yeast mutant Y02431 (lca1△) disrupted in endogenous LPCAT enzyme activity. Analysis of fatty acid profiles of phospholipids from the NbLPCAT-expressing yeast mutant Y02431 cultures supplemented with polyunsaturated fatty acids suggested more incorporation of linoleic acid (18:2n6, LA) and α-linolenic acid (18:3n3, ALA) into PC compared to yeast mutant harbouring empty vector. In vitro enzymatic assay demonstrated that NbLPCAT1had high lysoPC acyltransferase activity with a clear preference for α-linolenoyl-CoA (18:3), while NbLPCAT2 showed a high lysophosphatidic acid (lysoPA) acyltransferase activity towards α-linolenoyl-CoA and a weak lysoPC acyltransferase activity. Tissue-specific expression analysis showed a ubiquitous expression of NbLPCAT1 and NbLPCAT2 in roots, stems, leaves, flowers and seeds, and a strong expression in developing flowers. This is the first report on the cloning and characterization of lysophospholipid

  14. Quercetin regulates hepatic cholesterol metabolism by promoting cholesterol-to-bile acid conversion and cholesterol efflux in rats.

    PubMed

    Zhang, Min; Xie, Zongkai; Gao, Weina; Pu, Lingling; Wei, Jingyu; Guo, Changjiang

    2016-03-01

    Quercetin, a common member of the flavonoid family, is widely present in plant kingdom. Despite that quercetin is implicated in regulating cholesterol metabolism, the molecular mechanism is poorly understood. We hypothesized that quercetin regulates cholesterol homeostasis through regulating the key enzymes involved in hepatic cholesterol metabolism. To test this hypothesis, we compared the profile of key enzymes and transcription factors involved in the hepatic cholesterol metabolism in rats with or without quercetin supplementation. Twenty male Wistar rats were randomly divided into control and quercetin-supplemented groups. Serum total cholesterol, triglyceride, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and total bile acids in feces and bile were measured. Hepatic enzymatic activities were determined by activity assay kit and high-performance liquid chromatography-based analyses. The messenger RNA (mRNA) and protein expressions were determined by reverse transcriptase polymerase chain reaction and Western blot analyses, respectively. The results showed that the activity of hepatic cholesterol 7α-hydroxylase, a critical enzyme in the conversion of cholesterol to bile acids, was significantly elevated by quercetin. The expression of cholesterol 7α-hydroxylase, as well as liver X receptor α, an important transcription factor, was also increased at both mRNA and protein levels by quercetin. However, quercetin exposure had no impact on the activity of hepatic HMG-CoA reductase, a rate-limiting enzyme in the biosynthesis of cholesterol. We also found that quercetin treatment significantly increased ATP binding cassette transporter G1 mRNA and protein expression in the liver, suggesting that quercetin may increase hepatic cholesterol efflux. Collectively, the results presented here indicate that quercetin regulates hepatic cholesterol metabolism mainly through the pathways that promote cholesterol-to-bile acid conversion and

  15. Isolation of Cholesterol from an Egg Yolk

    ERIC Educational Resources Information Center

    Taber, Douglass F.; Li, Rui; Anson, Cory M.

    2011-01-01

    A simple procedure for the isolation of the cholesterol, by hydrolysis and extraction followed by column chromatography, is described. The cholesterol can be further purified by complexation with oxalic acid. It can also be oxidized and conjugated to cholestenone. The source of the cholesterol is one egg yolk, which contains about 200 mg of…

  16. A Cytosolic Acyltransferase Contributes to Triacylglycerol Synthesis in Sucrose-Rescued Arabidopsis Seed Oil Catabolism Mutants1[W][OA

    PubMed Central

    Hernández, M. Luisa; Whitehead, Lynne; He, Zhesi; Gazda, Valeria; Gilday, Alison; Kozhevnikova, Ekaterina; Vaistij, Fabián E.; Larson, Tony R.; Graham, Ian A.

    2012-01-01

    Triacylglycerol (TAG) levels and oil bodies persist in sucrose (Suc)-rescued Arabidopsis (Arabidopsis thaliana) seedlings disrupted in seed oil catabolism. This study set out to establish if TAG levels persist as a metabolically inert pool when downstream catabolism is disrupted, or if other mechanisms, such as fatty acid (FA) recycling into TAG are operating. We show that TAG composition changes significantly in Suc-rescued seedlings compared with that found in dry seeds, with 18:2 and 18:3 accumulating. However, 20:1 FA is not efficiently recycled back into TAG in young seedlings, instead partitioning into the membrane lipid fraction and diacylglycerol. In the lipolysis mutant sugar dependent1and the β-oxidation double mutant acx1acx2 (for acyl-Coenzyme A oxidase), levels of TAG actually increased in seedlings growing on Suc. We performed a transcriptomic study and identified up-regulation of an acyltransferase gene, DIACYLGLYCEROL ACYLTRANSFERASE3 (DGAT3), with homology to a peanut (Arachis hypogaea) cytosolic acyltransferase. The acyl-Coenzyme A substrate for this acyltransferase accumulates in mutants that are blocked in oil breakdown postlipolysis. Transient expression in Nicotiana benthamiana confirmed involvement in TAG synthesis and specificity toward 18:3 and 18:2 FAs. Double-mutant analysis with the peroxisomal ATP-binding cassette transporter mutant peroxisomal ABC transporter1 indicated involvement of DGAT3 in the partitioning of 18:3 into TAG in mutant seedlings growing on Suc. Fusion of the DGAT3 protein with green fluorescent protein confirmed localization to the cytosol of N. benthamiana. This work has demonstrated active recycling of 18:2 and 18:3 FAs into TAG when seed oil breakdown is blocked in a process involving a soluble cytosolic acyltransferase. PMID:22760209

  17. A land-plant-specific glycerol-3-phosphate acyltransferase family in Arabidopsis: substrate specificity, sn-2 preference, and evolution.

    PubMed

    Yang, Weili; Simpson, Jeffrey P; Li-Beisson, Yonghua; Beisson, Fred; Pollard, Mike; Ohlrogge, John B

    2012-10-01

    Arabidopsis (Arabidopsis thaliana) has eight glycerol-3-phosphate acyltransferase (GPAT) genes that are members of a plant-specific family with three distinct clades. Several of these GPATs are required for the synthesis of cutin or suberin. Unlike GPATs with sn-1 regiospecificity involved in membrane or storage lipid synthesis, GPAT4 and -6 are unique bifunctional enzymes with both sn-2 acyltransferase and phosphatase activity resulting in 2-monoacylglycerol products. We present enzymology, pathway organization, and evolutionary analysis of this GPAT family. Within the cutin-associated clade, GPAT8 is demonstrated as a bifunctional sn-2 acyltransferase/phosphatase. GPAT4, -6, and -8 strongly prefer C16:0 and C18:1 ω-oxidized acyl-coenzyme As (CoAs) over unmodified or longer acyl chain substrates. In contrast, suberin-associated GPAT5 can accommodate a broad chain length range of ω-oxidized and unsubstituted acyl-CoAs. These substrate specificities (1) strongly support polyester biosynthetic pathways in which acyl transfer to glycerol occurs after oxidation of the acyl group, (2) implicate GPAT specificities as one major determinant of cutin and suberin composition, and (3) argue against a role of sn-2-GPATs (Enzyme Commission 2.3.1.198) in membrane/storage lipid synthesis. Evidence is presented that GPAT7 is induced by wounding, produces suberin-like monomers when overexpressed, and likely functions in suberin biosynthesis. Within the third clade, we demonstrate that GPAT1 possesses sn-2 acyltransferase but not phosphatase activity and can utilize dicarboxylic acyl-CoA substrates. Thus, sn-2 acyltransferase activity extends to all subbranches of the Arabidopsis GPAT family. Phylogenetic analyses of this family indicate that GPAT4/6/8 arose early in land-plant evolution (bryophytes), whereas the phosphatase-minus GPAT1 to -3 and GPAT5/7 clades diverged later with the appearance of tracheophytes. PMID:22864585

  18. A sensitive assay for ABCA1-mediated cholesterol efflux using BODIPY -cholesterol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies have shown a negative association between cellular cholesterol efflux and coronary artery disease (CAD). Standard protocol for quantifying cholesterol efflux involves labeling cells with [(3)H]cholesterol and measuring release of the labeled sterol. Using [(3)H]cholesterol is not ideal for...

  19. Percentage of Adults with High Cholesterol Whose LDL Cholesterol Levels Are Adequately Controlled

    MedlinePlus

    ... of Adults with High Cholesterol Whose LDL Cholesterol Levels are Adequately Controlled High cholesterol can double a ... with High Cholesterol that is Controlled by Education Level 8k4c-k22f Download these data » Click on legends ...

  20. Dietary cholesterol and plasma lipoprotein profiles: Randomized controlled trials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Early work suggested that dietary cholesterol increased plasma total cholesterol concentrations in humans. Given the relationship between elevated plasma cholesterol concentrations and cardiovascular disease risk, dietary guidelines have consistently recommended limiting food sources of cholesterol....

  1. Non-cholesterol sterols and cholesterol metabolism in sitosterolemia.

    PubMed

    Othman, Rgia A; Myrie, Semone B; Jones, Peter J H

    2013-12-01

    Sitosterolemia (STSL) is a rare autosomal recessive disease, manifested by extremely elevated plant sterols (PS) in plasma and tissue, leading to xanthoma and premature atherosclerotic disease. Therapeutic approaches include limiting PS intake, interrupting enterohepatic circulation of bile acid using bile acid binding resins such as cholestyramine, and/or ileal bypass, and inhibiting intestinal sterol absorption by ezetimibe (EZE). The objective of this review is to evaluate sterol metabolism in STSL and the impact of the currently available treatments on sterol trafficking in this disease. The role of PS in initiation of xanthomas and premature atherosclerosis is also discussed. Blocking sterols absorption with EZE has revolutionized STSL patient treatment as it reduces circulating levels of non-cholesterol sterols in STSL. However, none of the available treatments including EZE have normalized plasma PS concentrations. Future studies are needed to: (i) explore where cholesterol and non-cholesterol sterols accumulate, (ii) assess to what extent these sterols in tissues can be mobilized after blocking their absorption, and (iii) define the factors governing sterol flux. PMID:24267242

  2. Cholesterol Depletion from a Ceramide/Cholesterol Mixed Monolayer: A Brewster Angle Microscope Study

    NASA Astrophysics Data System (ADS)

    Mandal, Pritam; Noutsi, Pakiza; Chaieb, Sahraoui

    2016-06-01

    Cholesterol is crucial to the mechanical properties of cell membranes that are important to cells’ behavior. Its depletion from the cell membranes could be dramatic. Among cyclodextrins (CDs), methyl beta cyclodextrin (MβCD) is the most efficient to deplete cholesterol (Chol) from biomembranes. Here, we focus on the depletion of cholesterol from a C16 ceramide/cholesterol (C16-Cer/Chol) mixed monolayer using MβCD. While the removal of cholesterol by MβCD depends on the cholesterol concentration in most mixed lipid monolayers, it does not depend very much on the concentration of cholesterol in C16-Cer/Chol monolayers. The surface pressure decay during depletion were described by a stretched exponential that suggested that the cholesterol molecules are unable to diffuse laterally and behave like static traps for the MβCD molecules. Cholesterol depletion causes morphology changes of domains but these disrupted monolayers domains seem to reform even when cholesterol level was low.

  3. Does cholesterol lowering prevent stroke?

    PubMed

    Henry, R Y; Kendall, M J

    1998-10-01

    The importance of lowering plasma cholesterol to reduce the incidence of coronary events is well established. However, in the prevention of stroke disease, control of hypertension has been the main aim of treatment and lipid lowering therapy has not hitherto been considered to be desirable or necessary. In this review, the evidence from large multicentre trials, imaging studies and meta-analyses is presented. It shows convincingly that HMG-CoA reductase inhibitors (Statins) reduce stroke risk. PMID:9875681

  4. Peptide mediators of cholesterol efflux

    DOEpatents

    Bielicki, John K.; Johansson, Jan

    2013-04-09

    The present invention provides a family of non-naturally occurring polypeptides having cholesterol efflux activity that parallels that of full-length apolipoproteins (e.g., Apo AI and Apo E), and having high selectivity for ABAC1 that parallels that of full-length apolipoproteins. The invention also provides compositions comprising such polypeptides, methods of identifying, screening and synthesizing such polypeptides, and methods of treating, preventing or diagnosing diseases and disorders associated with dyslipidemia, hypercholesterolemia and inflammation.

  5. Age related changes in the lipoprotein substrates for the esterification of plasma cholesterol in rats.

    PubMed

    Lee, S M; Kudchodkar, B J; Lacko, A G

    1991-11-15

    The activity of the enzyme lecithin:cholesterol acyltransferase (LCAT) and the properties of its lipoprotein substrates have been investigated in 6- and 19-month-old Fischer-344 rats. These studies were carried out to determine the nature of the relationship between the observed hypercholesterolemia and the age-related decrease in the fractional rate of lipoprotein cholesterol esterification. The distribution of LCAT activity of plasma fractions was determined following gel chromatography and ultracentrifugation respectively. LCAT activity was found to be associated with the high density lipoprotein (HDL) fraction when rat plasma was passed through a Bio-Gel A-5 M column. Upon density gradient ultracentrifugation for 24 h it was found associated with HDL fraction; d = 1.125-1.21 g/ml. However, following prolonged ultracentrifugation (40 h), the majority of the LCAT activity was displaced into the lipoprotein-free infranatant (d greater than 1.225 g/ml). The dissociation of LCAT from its complex with HDL occurred to a smaller extent in aged rat plasma than in young rat plasma. Substrate specificity studies indicated that HDL was a considerably better substrate for LCAT than very low density lipoproteins (VLDL) in both young and aged rats. In addition, HDL from young rats was a better substrate for LCAT than the HDL from aged rats. Incubation experiments followed by the isolation of lipoproteins and the subsequent analyses of their cholesterol contents revealed that the age-related hypercholesterolemia was mainly due to an increase in the cholesterol carried by lipoprotein fractions d = 1.025 -1.07 g/ml (LDL + HDL1). These and other low density lipoproteins (d less than 1.025 g/ml) were poor substrates for LCAT. However, these lipoproteins could provide free cholesterol for esterification by first transferring it to HDL (d = 1.07-1.21). The HDL isolated from the plasma of aged rats was enriched with apolipoprotein (apo) E and these lipoprotein particles were found to

  6. Mutations in the midway gene disrupt a Drosophila acyl coenzyme A: diacylglycerol acyltransferase.

    PubMed Central

    Buszczak, Michael; Lu, Xiaohui; Segraves, William A; Chang, Ta Yuan; Cooley, Lynn

    2002-01-01

    During Drosophila oogenesis, defective or unwanted egg chambers are eliminated during mid-oogenesis by programmed cell death. In addition, final cytoplasm transport from nurse cells to the oocyte depends upon apoptosis of the nurse cells. To study the regulation of germline apoptosis, we analyzed the midway mutant, in which egg chambers undergo premature nurse cell death and degeneration. The midway gene encodes a protein similar to mammalian acyl coenzyme A: diacylglycerol acyltransferase (DGAT), which converts diacylglycerol (DAG) into triacylglycerol (TAG). midway mutant egg chambers contain severely reduced levels of neutral lipids in the germline. Expression of midway in insect cells results in high levels of DGAT activity in vitro. These results show that midway encodes a functional DGAT and that changes in acylglycerol lipid metabolism disrupt normal egg chamber development in Drosophila. PMID:11973306

  7. Molecular characterization of three loss-of-function mutations in the isopenicillin N-acyltransferase gene (penDE) of Penicillium chrysogenum.

    PubMed Central

    Fernández, F J; Gutierrez, S; Velasco, J; Montenegro, E; Marcos, A T; Martín, J F

    1994-01-01

    Five mutants of Penicillium chrysogenum blocked in penicillin biosynthesis (npe) which are deficient in isopenicillin N-acyltransferase were isolated previously. Three of these mutants, npe6, npe7, and npe8, have been characterized at the molecular level and compared with npe10, a deletion mutant. Transcripts of normal size (1.15 kb) of the penDE genes, which encode isopenicillin N-acyltransferase, and also of the pcbAB (11.5 kb) and pcbC (1.1 kb) genes were observed in all mutants except for the npe10 mutant. Immunoblotting studies using antibodies against isopenicillin N-acyltransferase showed that all mutants (except npe10) formed the 40-kDa (unprocessed) protein and the 29-kDa subunit of the isopenicillin N-acyltransferase. The 11-kDa subunit could not be observed in the immunoblots. The mutant penDE genes of strains npe6, npe7, and npe8 were cloned and sequenced. These three strains showed a mutation in the penDE genes which results in a single amino acid change in each modified isopenicillin N-acyltransferase. The mutation in npe6 resulted in a change of Gly-150 to Val, whereas the mutation in both npe7 and npe8 introduced a change of Glu-258 to Lys. Replacement of the Val-150 and Lys-258 mutations by constructing hybrid isopenicillin N-acyltransferase molecules led to the recovery of the isopenicillin N-acyltransferase activity. The mutations in npe6, npe7, and npe8 do not affect the ability of the 40-kDa isopenicillin N-acyltransferase to be processed into the component subunits. Images PMID:7519594

  8. Comparative gene identification-58 (CGI-58) promotes autophagy as a putative lysophosphatidylglycerol acyltransferase.

    PubMed

    Zhang, Jun; Xu, Dan; Nie, Jia; Han, Ruili; Zhai, Yonggong; Shi, Yuguang

    2014-11-21

    CGI-58 is a lipid droplet-associated protein that, when mutated, causes Chanarin-Dorfman syndrome in humans, which is characterized by excessive storage of triglyceride in various tissues. However, the molecular mechanisms underlying the defect remain elusive. CGI-58 was previously reported to catalyze the resynthesis of phosphatidic acid as a lysophosphatidic acid acyltransferase. In addition to triglyceride, phosphatidic acid is also used a substrate for the synthesis of various mitochondrial phospholipids. In this report, we investigated the propensity of CGI-58 in the remodeling of various phospholipids. We found that the recombinant CGI-58 overexpressed in mammalian cells or purified from Sf9 insect cells catalyzed efficiently the reacylation of lysophosphatidylglycerol to phosphatidylglycerol (PG), which requires acyl-CoA as the acyl donor. In contrast, the recombinant CGI-58 was devoid of acyltransferase activity toward other lysophospholipids. Accordingly, overexpression and knockdown of CGI-58 adversely affected the endogenous PG level in C2C12 cells. PG is a substrate for the synthesis of cardiolipin, which is required for mitochondrial oxidative phosphorylation and mitophagy. Consequently, overexpression and knockdown of CGI-58 adversely affected autophagy and mitophagy in C2C12 cells. In support for a key role of CGI-58 in mitophagy, overexpression of CGI-58 significantly stimulated mitochondrial fission and translocation of PINK1 to mitochondria, key steps involved in mitophagy. Furthermore, overexpression of CGI-58 promoted mitophagic initiation through activation of 5'-AMP-activated protein kinase and inhibition of mTORC1 mammalian target of rapamycin complex 1 signaling, the positive and negative regulators of autophagy, respectively. Together, these findings identified novel molecular mechanisms by which CGI-58 regulates lipid homeostasis, because defective autophagy is implicated in dyslipidemia and fatty liver diseases. PMID:25315780

  9. Molecular characterization of a lysophosphatidylcholine acyltransferase gene belonging to the MBOAT family in Ricinus communis L.

    PubMed

    Arroyo-Caro, José María; Chileh, Tarik; Alonso, Diego López; García-Maroto, Federico

    2013-07-01

    Acyl-CoA:lysophosphatidylcholine acyltransferase (LPCAT, EC 2.3.1.23) catalyzes acylation of lysophosphatidylcholine (lysoPtdCho) to produce phosphatidylcholine (PtdCho), the main phospholipid in cellular membranes. This reaction is a key component of the acyl-editing process, involving recycling of the fatty acids (FA) mainly at the sn-2 position of PtdCho. Growing evidences indicate that the LPCAT reaction controls the direct entry of newly synthesized FA into PtdCho and, at least in some plant species, it has an important impact on the synthesis and composition of triacylglycerols. Here we describe the molecular characterization of the single LPCAT gene found in the genome of Ricinus communis (RcLPCAT) that is homologous to LPCAT genes of the MBOAT family previously described in Arabidopsis and Brassica. RcLPCAT is ubiquitously expressed in all organs of the castor plant. Biochemical properties have been studied by heterologous expression of RcLPCAT in the ale1 yeast mutant, defective in lysophospholipid acyltransferase activity. RcLPCAT preferentially acylates lysoPtdCho against other lysophospholipids (lysoPL) and does not discriminates the acyl chain in the acceptor, displaying a strong activity with alkyl lysoPL. Regarding the acyl-CoA donor, RcLPCAT uses monounsaturated fatty acid thioesters, such as oleoyl-CoA (18:1-CoA), as preferred donors, while it has a low activity with saturated fatty acids and shows a poor utilization of ricinoleoyl-CoA (18:1-OH-CoA). These characteristics are discussed in terms of a possible role of RcLPCAT in regulating the entry of FA into PtdCho and the exclusion from the membranes of the hydroxylated FA. PMID:23700249

  10. Homologous yeast lipases/acyltransferases exhibit remarkable cold-active properties.

    PubMed

    Neang, Pisey M; Subileau, Maeva; Perrier, Véronique; Dubreucq, Eric

    2014-11-01

    Lipases/acyltransferases catalyse acyltransfer to various nucleophiles preferentially to hydrolysis even in aqueous media with high thermodynamic activity of water (a w >0.9). Characterization of hydrolysis and acyltransfer activities in a large range of temperature (5 to 80 °C) of secreted recombinant homologous lipases of the Pseudozyma antarctica lipase A superfamily (CaLA) expressed in Pichia pastoris, enlighten the exceptional cold-activity of two remarkable lipases/acyltransferases: CpLIP2 from Candida parapsilosis and CtroL4 from Candida tropicalis. The activation energy of the reactions catalysed by CpLIP2 and CtroL4 was 18-23 kJ mol(-1) for hydrolysis and less than 15 kJ mol(-1) for transesterification between 5 and 35 °C, while it was respectively 43 and 47 kJ mol(-1) with the thermostable CaLA. A remarkable consequence is the high rate of the reactions catalysed by CpLIP2 and CtroL4 at very low temperatures, with CpLIP2 displaying at 5 °C 65 % of its alcoholysis activity and 45 % of its hydrolysis activity at 30 °C. These results suggest that, within the CaLA superfamily and its homologous subgroups, common structural determinants might allow both acyltransfer and cold-active properties. Such biocatalysts are of great interest for the efficient synthesis or functionalization of temperature-sensitive lipid derivatives, or more generally to lessen the environmental impact of biocatalytic processes. PMID:24770385

  11. Lysophosphatidate Acyltransferase in the Microsomes from Maturing Seeds of Meadowfoam (Limnanthes alba) 1

    PubMed Central

    Cao, Yi-zhi; Oo, Khaik-Cheang; Huang, Anthony H. C.

    1990-01-01

    Lysophosphatidate (LPA) acyltransferase (EC 2.3. 1.51) in the microsomes from the maturing seeds of meadowfoam (Limnanthes alba), nasturtium (Tropaeolum majus), palm (Syagrus cocoides), castor bean (Ricinus communis), soybean (Glycine max), maize (Zea mays), and rapeseed (Brassica napus) were tested for their specificities toward 1-oleoyl-LPA or 1-erucoyl-LPA, and oleoyl coenzyme A (CoA) or erucoyl CoA. All the enzymes could use either of the two acyl acceptors and oleoyl CoA, but only the meadowfoam enzyme could use erucoyl CoA as the acyl donor to produce dierucoyl phosphatidic acid (PA). The meadowfoam enzyme was studied further. It had an optimal activity at pH 7 to 8, and its activity was inhibited by 1 millimolar MnCl2, ZnCl2, or p-chloromercuribenzoate. In a test of substrate specificity using increasing concentrations of either 1-oleoyl-LPA or 1-erucoyl-LPA, and either oleoyl CoA or erucoyl CoA, the enzyme activity in producing PA was highest for dioleoyl-PA, followed successively by 1-oleoyl-2-erucoyl-PA, dierucoyl-PA, and 1-erucoyl-2-oleoyl-PA. In a test of substrate selectivity using a fixed combined concentration, but varying proportions, of 1-oleoyl-LPA and 1-erucoyl-LPA, and of oleoyl CoA and erucoyl CoA, the enzyme showed a pattern of acyl preference similar to that observed in the test of substrate specificity, but the preference toward oleoyl moiety in the substrates was slightly stronger. The meadowfoam microsomes could convert [14C]glycerol-3-phosphate to diacylglycerols and triacylglycerols in the presence of erucoyl CoA. The meadowfoam LPA acyltransferase is unique in its ability to produce dierucoyl-PA, and should be a prime candidate for use in the production of trierucin oils in rapeseed via genetic engineering. PMID:16667817

  12. Activity and Crystal Structure of Arabidopsis thalianaUDP-N-Acetylglucosamine Acyltransferase

    SciTech Connect

    Joo, Sang Hoon; Chung, Hak Suk; Raetz, Christian R.H.; Garrett, Teresa A.

    2012-08-31

    The UDP-N-acetylglucosamine (UDP-GlcNAc) acyltransferase, encoded by lpxA, catalyzes the first step of lipid A biosynthesis in Gram-negative bacteria, the (R)-3-hydroxyacyl-ACP-dependent acylation of the 3-OH group of UDP-GlcNAc. Recently, we demonstrated that the Arabidopsis thaliana orthologs of six enzymes of the bacterial lipid A pathway produce lipid A precursors with structures similar to those of Escherichia coli lipid A precursors [Li, C., et al. (2011) Proc. Natl. Acad. Sci. U.S.A. 108, 11387-11392]. To build upon this finding, we have cloned, purified, and determined the crystal structure of the A. thaliana LpxA ortholog (AtLpxA) to 2.1 {angstrom} resolution. The overall structure of AtLpxA is very similar to that of E. coli LpxA (EcLpxA) with an {alpha}-helical-rich C-terminus and characteristic N-terminal left-handed parallel {beta}-helix (L{beta}H). All key catalytic and chain length-determining residues of EcLpxA are conserved in AtLpxA; however, AtLpxA has an additional coil and loop added to the L{beta}H not seen in EcLpxA. Consistent with the similarities between the two structures, purified AtLpxA catalyzes the same reaction as EcLpxA. In addition, A. thaliana lpxA complements an E. coli mutant lacking the chromosomal lpxA and promotes the synthesis of lipid A in vivo similar to the lipid A produced in the presence of E. coli lpxA. This work shows that AtLpxA is a functional UDP-GlcNAc acyltransferase that is able to catalyze the same reaction as EcLpxA and supports the hypothesis that lipid A molecules are biosynthesized in Arabidopsis and other plants.

  13. The Role of Cholesterol in Cancer.

    PubMed

    Kuzu, Omer F; Noory, Mohammad A; Robertson, Gavin P

    2016-04-15

    The roles played by cholesterol in cancer development and the potential of therapeutically targeting cholesterol homeostasis is a controversial area in the cancer community. Several epidemiologic studies report an association between cancer and serum cholesterol levels or statin use, while others suggest that there is not one. Furthermore, the Cancer Genome Atlas (TCGA) project using next-generation sequencing has profiled the mutational status and expression levels of all the genes in diverse cancers, including those involved in cholesterol metabolism, providing correlative support for a role of the cholesterol pathway in cancer development. Finally, preclinical studies tend to more consistently support the role of cholesterol in cancer, with several demonstrating that cholesterol homeostasis genes can modulate development. Because of space limitations, this review provides selected examples of the epidemiologic, TCGA, and preclinical data, focusing on alterations in cholesterol homeostasis and its consequent effect on patient survival. In melanoma, this focused analysis demonstrated that enhanced expression of cholesterol synthesis genes was associated with decreased patient survival. Collectively, the studies in melanoma and other cancer types suggested a potential role of disrupted cholesterol homeostasis in cancer development but additional studies are needed to link population-based epidemiological data, the TCGA database results, and preclinical mechanistic evidence to concretely resolve this controversy. Cancer Res; 76(8); 2063-70. ©2016 AACR. PMID:27197250

  14. Importance of cholesterol in dopamine transporter function

    PubMed Central

    Jones, Kymry T.; Zhen, Juan; Reith, Maarten E.A.

    2012-01-01

    The conformation and function of the dopamine transporter (DAT) can be affected by manipulating membrane cholesterol, yet there is no agreement as to the impact of cholesterol on the activity of lipid-raft localized DATs compared to non-raft DATs. Given the paucity of information regarding the impact of cholesterol on substrate efflux by the DAT, this study explores its influence on the kinetics of DAT-mediated DA efflux induced by dextroamphetamine, as measured by rotating disk electrode voltammetry (RDEV). Treatment with methyl-β-cyclodextrin (mβCD), which effectively depletes total membrane cholesterol- uniformly affecting cholesterol-DAT interactions in both raft and non-raft membrane domains- reduced both DA uptake and efflux rate. In contrast, disruption of raft localized DAT by cholesterol chelation with nystatin had no effect, arguing against a vital role for raft-localized DAT in substrate uptake or efflux. Supra-normal repletion of cholesterol depleted cells with the analogue desmosterol, a non-raft promoting sterol, was as effective as cholesterol itself in restoring transport rates. Further studies with Zn2+ and the conformationally-biased W84L DAT mutant supported the idea that cholesterol is important for maintaining the outward-facing DAT with normal rates of conformational interconversions. Collectively, these results point to a role for direct cholesterol-DAT interactions in regulating DAT function. PMID:22957537

  15. The phase behavior of hydrated cholesterol.

    PubMed

    Loomis, C R; Shipley, G G; Small, D M

    1979-05-01

    The thermotropic phase behavior of cholesterol monohydrate in water was investigated by differential scanning calorimetry, polarizing light microscopy, and x-ray diffraction. In contrast to anhydrous cholesterol which undergoes a polymorphic crystalline transition at 39 degrees C and a crystalline to liquid transition at 151 degrees C, the closed system of cholesterol monohydrate and water exhibited three reversible endothermic transitions at 86, 123, and 157 degrees C. At 86 degrees C, cholesterol monohydrate loses its water of hydration, forming the high temperature polymorph of anhydrous cholesterol. At least 24 hours were required for re-hydration of cholesterol and the rate of hydration was dependent on the polymorphic crystalline form of anhydrous cholesterol. At 123 degrees C, anhydrous crystalline cholesterol in the presence of excess water undergoes a sharp transition to a birefringent liquid crystalline phase of smectic texture. The x-ray diffraction pattern obtained from this phase contained two sharp low-angle reflections at 37.4 and 18.7 A and a diffuse wide-angle reflection centered at 5.7 A, indicating a layered smectic type of liquid crystalline structure with each layer being two cholesterol molecules thick. The liquid crystalline phase is stable over the temperature range of 123 to 157 degrees C before melting to a liquid dispersed in water. The observation of a smectic liquid crystalline phase for hydrated cholesterol correlates with its high surface activity and helps to explain its ability to exist in high concentrations in biological membranes. PMID:458269

  16. Cloning and identification of the human LPAAT-zeta gene, a novel member of the lysophosphatidic acid acyltransferase family.

    PubMed

    Li, Dan; Yu, Long; Wu, Hai; Shan, Yuxi; Guo, Jinhu; Dang, Yongjun; Wei, Youheng; Zhao, Shouyuan

    2003-01-01

    Lysophosphatidic acid (LPA) is a naturally occurring component of phospholipid and plays a critical role in the regulation of many physiological and pathophysiological processes including cell growth, survival, and pro-angiogenesis. LPA is converted to phosphatidic acid by the action of lysophosphatidic acid acyltransferase (LPAAT). Five members of the LPAAT gene family have been detected in humans to date. Here, we report the identification of a novel LPAAT member, which is designated as LPAAT-zeta. LPAAT-zeta was predicted to encode a protein consisting of 456 amino acid residues with a signal peptide sequence and the acyltransferase domain. Northern blot analysis showed that LPAAT-zeta was ubiquitously expressed in all 16 human tissues examined, with levels in the skeletal muscle, heart, and testis being relatively high and in the lung being relatively low. The human LPAAT-zeta gene consisted of 13 exons and is positioned at chromosome 8p11.21. PMID:12938015

  17. Reduction of blood serum cholesterol

    NASA Technical Reports Server (NTRS)

    Winitz, M. (Inventor)

    1974-01-01

    By feeding a human subject as the sole source of sustenance a defined diet wherein the carbohydrate consists substantially entirely of glucose, maltose or a polysaccharide of glucose, the blood serum cholesterol level of the human subject is substantially reduced. If 25 percent of the carbohydrate is subsequently supplied in the form of sucrose, an immediate increase from the reduced level is observed. The remainder of the defined diet normally includes a source of amino acids, such as protein or a protein hydrolysate, vitamins, minerals and a source of essential fatty acid.

  18. microRNAs and cholesterol metabolism

    PubMed Central

    Moore, Kathryn J.; Rayner, Katey J.; Suárez, Yajaira; Fernández-Hernando, Carlos

    2010-01-01

    Cholesterol metabolism is tightly regulated at the cellular level. In addition to classic transcriptional regulation of cholesterol metabolism (e.g., by SREBP and LXR), members of a class of non-coding RNAs termed microRNAs (miRNAs) have recently been identified to be potent post-transcriptional regulators of lipid metabolism genes, including cholesterol homeostasis. We and others have recently shown that miR-33 regulates cholesterol efflux and HDL biogenesis by downregulating the expression of the ABC transporters, ABCA1 and ABCG1. In addition to miR-33, miR-122 and miR-370 have been shown to play important roles in regulating cholesterol and fatty acid metabolism. These new data suggest important roles of microRNAs in the epigenetic regulation of cholesterol metabolism and have opened new avenues for the treatment of dyslipidemias. PMID:20880716

  19. A distinct type of glycerol-3-phosphate acyltransferase with sn-2 preference and phosphatase activity producing 2-monoacylglycerol.

    PubMed

    Yang, Weili; Pollard, Mike; Li-Beisson, Yonghua; Beisson, Fred; Feig, Michael; Ohlrogge, John

    2010-06-29

    The first step in assembly of membrane and storage glycerolipids is acylation of glycerol-3-phosphate (G3P). All previously characterized membrane-bound, eukaryotic G3P acyltransferases (GPATs) acylate the sn-1 position to produce lysophosphatidic acid (1-acyl-LPA). Cutin is a glycerolipid with omega-oxidized fatty acids and glycerol as integral components. It occurs as an extracellular polyester on the aerial surface of all plants, provides a barrier to pathogens and resistance to stress, and maintains organ identity. We have determined that Arabidopsis acyltransferases GPAT4 and GPAT6 required for cutin biosynthesis esterify acyl groups predominantly to the sn-2 position of G3P. In addition, these acyltransferases possess a phosphatase domain that results in sn-2 monoacylglycerol (2-MAG) rather than LPA as the major product. Such bifunctional activity has not been previously described in any organism. The possible roles of 2-MAGs as intermediates in cutin synthesis are discussed. GPAT5, which is essential for the accumulation of suberin aliphatics, also exhibits a strong preference for sn-2 acylation. However, phosphatase activity is absent and 2-acyl-LPA is the major product. Clearly, plant GPATs can catalyze more reactions than the sn-1 acylation by which they are currently categorized. Close homologs of GPAT4-6 are present in all land plants, but not in animals, fungi or microorganisms (including algae). Thus, these distinctive acyltransferases may have been important for evolution of extracellular glycerolipid polymers and adaptation of plants to a terrestrial environment. These results provide insight into the biosynthetic assembly of cutin and suberin, the two most abundant glycerolipid polymers in nature. PMID:20551224

  20. Possible Role of Different Yeast and Plant Lysophospholipid:Acyl-CoA Acyltransferases (LPLATs) in Acyl Remodelling of Phospholipids.

    PubMed

    Jasieniecka-Gazarkiewicz, Katarzyna; Demski, Kamil; Lager, Ida; Stymne, Sten; Banaś, Antoni

    2016-01-01

    Recent results have suggested that plant lysophosphatidylcholine:acyl-coenzyme A acyltransferases (LPCATs) can operate in reverse in vivo and thereby catalyse an acyl exchange between the acyl-coenzyme A (CoA) pool and the phosphatidylcholine. We have investigated the abilities of Arabidopsis AtLPCAT2, Arabidopsis lysophosphatidylethanolamine acyltransferase (LPEAT2), S. cerevisiae lysophospholipid acyltransferase (Ale1) and S. cerevisiae lysophosphatidic acid acyltransferase (SLC1) to acylate lysoPtdCho, lysoPtdEtn and lysoPtdOH and act reversibly on the products of the acylation; the PtdCho, PtdEtn and PtdOH. The tested LPLATs were expressed in an S. cervisiae ale1 strain and enzyme activities were assessed in assays using microsomal preparations of the different transformants. The results show that, despite high activity towards lysoPtdCho, lysoPtdEtn and lysoPtdOH by the ALE1, its capacities to operate reversibly on the products of the acylation were very low. Slc1 readily acylated lysoPtdOH, lysoPtdCho and lysoPtdEtn but showed no reversibility towards PtdCho, very little reversibility towards PtdEtn and very high reversibility towards PtdOH. LPEAT2 showed the highest levels of reversibility towards PtdCho and PtdEtn of all LPLATs tested but low ability to operate reversibly on PtdOH. AtLPCAT2 showed good reversible activity towards PtdCho and PtdEtn and very low reversibility towards PtdOH. Thus, it appears that some of the LPLATs have developed properties that, to a much higher degree than other LPLATs, promote the reverse reaction during the same assay conditions and with the same phospholipid. The results also show that the capacity of reversibility can be specific for a particular phospholipid, albeit the lysophospholipid derivatives of other phospholipids serve as good acyl acceptors for the forward reaction of the enzyme. PMID:26643989

  1. Activation of Membrane Cholesterol by 63 Amphipaths†

    PubMed Central

    Lange, Yvonne; Ye, Jin; Duban, Mark-Eugene; Steck, Theodore L.

    2009-01-01

    A few membrane-intercalating amphipaths have been observed to stimulate the interaction of cholesterol with cholesterol oxidase, saponin and cyclodextrin, presumably by displacing cholesterol laterally from its phospholipid complexes. We now report that this effect, referred to as cholesterol activation, occurs with dozens of other amphipaths, including alkanols, saturated and cis- and trans-unsaturated fatty acids, fatty acid methyl esters, sphingosine derivatives, terpenes, alkyl ethers, ketones, aromatics and cyclic alkyl derivatives. The apparent potency of the agents tested ranged from 3 μM to 7 mM and generally paralleled their octanol/water partition coefficients, except that relative potency declined for compounds with> 10 carbons. Some small amphipaths activated cholesterol at a membrane concentration of ~3 moles per 100 moles bilayer lipids, about equimolar with the cholesterol they displaced. Lysophosphatidylserine countered the effects of all these agents, consistent with its ability to reduce the pool of active membrane cholesterol. Various amphipaths stabilized red cells against the hemolysis elicited by cholesterol depletion, presumably by substituting for the extracted sterol. The number and location of cis and trans fatty acid unsaturations and the absolute stereochemistry of enantiomer pairs had only small effects on amphipath potency. Nevertheless, potency varied ~7-fold within a group of diverse agents with similar partition coefficients. We infer that a wide variety of amphipaths can displace membrane cholesterol by competing stoichiometrically but with only limited specificity for its weak association with phospholipids. Any number of other drugs and experimental agents might do the same. PMID:19655814

  2. Structure of Cholesterol in Lipid Rafts

    NASA Astrophysics Data System (ADS)

    Toppozini, Laura; Meinhardt, Sebastian; Armstrong, Clare L.; Yamani, Zahra; Kučerka, Norbert; Schmid, Friederike; Rheinstädter, Maikel C.

    2014-11-01

    Rafts, or functional domains, are transient nano-or mesoscopic structures in the plasma membrane and are thought to be essential for many cellular processes such as signal transduction, adhesion, trafficking, and lipid or protein sorting. Observations of these membrane heterogeneities have proven challenging, as they are thought to be both small and short lived. With a combination of coarse-grained molecular dynamics simulations and neutron diffraction using deuterium labeled cholesterol molecules, we observe raftlike structures and determine the ordering of the cholesterol molecules in binary cholesterol-containing lipid membranes. From coarse-grained computer simulations, heterogenous membranes structures were observed and characterized as small, ordered domains. Neutron diffraction was used to study the lateral structure of the cholesterol molecules. We find pairs of strongly bound cholesterol molecules in the liquid-disordered phase, in accordance with the umbrella model. Bragg peaks corresponding to ordering of the cholesterol molecules in the raftlike structures were observed and indexed by two different structures: a monoclinic structure of ordered cholesterol pairs of alternating direction in equilibrium with cholesterol plaques, i.e., triclinic cholesterol bilayers.

  3. Lysobisphosphatidic acid controls endosomal cholesterol levels.

    PubMed

    Chevallier, Julien; Chamoun, Zeina; Jiang, Guowei; Prestwich, Glenn; Sakai, Naomi; Matile, Stefan; Parton, Robert G; Gruenberg, Jean

    2008-10-10

    Most cell types acquire cholesterol by endocytosis of circulating low density lipoprotein, but little is known about the mechanisms of intra-endosomal cholesterol transport and about the primary cause of its aberrant accumulation in the cholesterol storage disorder Niemann-Pick type C (NPC). Here we report that lysobisphosphatidic acid (LBPA), an unconventional phospholipid that is only detected in late endosomes, regulates endosomal cholesterol levels under the control of Alix/AlP1, which is an LBPA-interacting protein involved in sorting into multivesicular endosomes. We find that Alix down-expression decreases both LBPA levels and the lumenal vesicle content of late endosomes. Cellular cholesterol levels are also decreased, presumably because the storage capacity of endosomes is affected and thus cholesterol clearance accelerated. Both lumenal membranes and cholesterol can be restored in Alix knockdown cells by exogenously added LBPA. Conversely, we also find that LBPA becomes limiting upon pathological cholesterol accumulation in NPC cells, because the addition of exogenous LBPA, but not of LBPA isoforms or analogues, partially reverts the NPC phenotype. We conclude that LBPA controls the cholesterol capacity of endosomes. PMID:18644787

  4. Cholesterol modulates Orai1 channel function.

    PubMed

    Derler, Isabella; Jardin, Isaac; Stathopulos, Peter B; Muik, Martin; Fahrner, Marc; Zayats, Vasilina; Pandey, Saurabh K; Poteser, Michael; Lackner, Barbara; Absolonova, Marketa; Schindl, Rainer; Groschner, Klaus; Ettrich, Rüdiger; Ikura, Mitsu; Romanin, Christoph

    2016-01-26

    STIM1 (stromal interaction molecule 1) and Orai proteins are the essential components of Ca(2+) release-activated Ca(2+) (CRAC) channels. We focused on the role of cholesterol in the regulation of STIM1-mediated Orai1 currents. Chemically induced cholesterol depletion enhanced store-operated Ca(2+) entry (SOCE) and Orai1 currents. Furthermore, cholesterol depletion in mucosal-type mast cells augmented endogenous CRAC currents, which were associated with increased degranulation, a process that requires calcium influx. Single point mutations in the Orai1 amino terminus that would be expected to abolish cholesterol binding enhanced SOCE to a similar extent as did cholesterol depletion. The increase in Orai1 activity in cells expressing these cholesterol-binding-deficient mutants occurred without affecting the amount in the plasma membrane or the coupling of STIM1 to Orai1. We detected cholesterol binding to an Orai1 amino-terminal fragment in vitro and to full-length Orai1 in cells. Thus, our data showed that Orai1 senses the amount of cholesterol in the plasma membrane and that the interaction of Orai1 with cholesterol inhibits its activity, thereby limiting SOCE. PMID:26814231

  5. Regulation of Plasma Cholesterol by Lipoprotein Receptors

    NASA Astrophysics Data System (ADS)

    Brown, Michael S.; Kovanen, Petri T.; Goldstein, Joseph L.

    1981-05-01

    The lipoprotein transport system holds the key to understanding the mechanisms by which genes, diet, and hormones interact to regulate the plasma cholesterol level in man. Crucial components of this system are lipoprotein receptors in the liver and extrahepatic tissues that mediate the uptake and degradation of cholesterol-carrying lipoproteins. The number of lipoprotein receptors, and hence the efficiency of disposal of plasma cholesterol, can be increased by cholesterol-lowering drugs. Regulation of lipoprotein receptors can be exploited pharmacologically in the therapy of hypercholesterolemia and atherosclerosis in man.

  6. A serine carboxypeptidase-like acyltransferase is required for synthesis of antimicrobial compounds and disease resistance in oats.

    PubMed

    Mugford, Sam T; Qi, Xiaoquan; Bakht, Saleha; Hill, Lionel; Wegel, Eva; Hughes, Richard K; Papadopoulou, Kalliopi; Melton, Rachel; Philo, Mark; Sainsbury, Frank; Lomonossoff, George P; Roy, Abhijeet Deb; Goss, Rebecca J M; Osbourn, Anne

    2009-08-01

    Serine carboxypeptidase-like (SCPL) proteins have recently emerged as a new group of plant acyltransferases. These enzymes share homology with peptidases but lack protease activity and instead are able to acylate natural products. Several SCPL acyltransferases have been characterized to date from dicots, including an enzyme required for the synthesis of glucose polyesters that may contribute to insect resistance in wild tomato (Solanum pennellii) and enzymes required for the synthesis of sinapate esters associated with UV protection in Arabidopsis thaliana. In our earlier genetic analysis, we identified the Saponin-deficient 7 (Sad7) locus as being required for the synthesis of antimicrobial triterpene glycosides (avenacins) and for broad-spectrum disease resistance in diploid oat (Avena strigosa). Here, we report on the cloning of Sad7 and show that this gene encodes a functional SCPL acyltransferase, SCPL1, that is able to catalyze the synthesis of both N-methyl anthraniloyl- and benzoyl-derivatized forms of avenacin. Sad7 forms part of an operon-like gene cluster for avenacin synthesis. Oat SCPL1 (SAD7) is the founder member of a subfamily of monocot-specific SCPL proteins that includes predicted proteins from rice (Oryza sativa) and other grasses with potential roles in secondary metabolism and plant defense. PMID:19684243

  7. Neonatal dietary cholesterol and alleles of cholesterol 7-alpha hydroxylase affect piglet cerebrum weight, cholesterol concentration, and behavior

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This experiment was designed to test the effect of polymorphism in the cholesterol 7-alpha hydroxylase (CYP7) gene locus, and dietary cholesterol (C) on cerebrum C in neonatal pigs fed sow's milk formulas. Thirty-six pigs (18 male and 18 female) genetically selected for high (HG), or low (LG) plasma...

  8. Cholesterol exchange as a function of cholesterol/phospholipid mole ratios.

    PubMed Central

    Poznansky, M J; Czekanski, S

    1979-01-01

    The activation energy (Ea) for cholesterol exchange between dioleoyl phosphatidylcholine vesicles and erythrocyte 'ghosts' is measured as a function of molar percentage of cholesterol in both donor and acceptor membranes. A sharp increase in Ea occurs (from 39.9kJ/mol to 84kJ/mol) when the molar percentage of cholesterol decreases from 30 to 20%. PMID:444215

  9. Synthesis and structure-activity relationship of pyripyropene A derivatives as potent and selective acyl-CoA:cholesterol acyltransferase 2 (ACAT2) inhibitors: part 1.

    PubMed

    Ohtawa, Masaki; Yamazaki, Hiroyuki; Ohte, Satoshi; Matsuda, Daisuke; Ohshiro, Taichi; Rudel, Lawrence L; Omura, Satoshi; Tomoda, Hiroshi; Nagamitsu, Tohru

    2013-03-01

    In an effort to develop potent and selective inhibitors toward ACAT2, structure-activity relationship studies were carried out using derivatives based on pyripyropene A (PPPA, 1). We have successfully developed novel PPPA derivatives with a 7-O-substituted benzoyl substituent that significantly exhibit more potent ACAT2 inhibitory activity and higher ACAT2 isozyme selectivity than 1. PMID:23369538

  10. Design and synthesis of simple, yet potent and selective non-ring-A pyripyropene A-based inhibitors of acyl-coenzyme A: cholesterol acyltransferase 2 (ACAT2).

    PubMed

    Zhan, Yang; Zhang, Xiao-Wei; Xiong, Ying; Li, Bo-Liang; Nan, Fa-Jun

    2016-01-14

    A series of pyripyropene A-based compounds were designed and synthesized by opening the upper section of the A-ring, which significantly simplifies the structure and synthesis from commercially available starting materials. Representative compound (-)-3 exhibited potent activity against ACAT2 and greater selectivity for ACAT2 than for ACAT1. PMID:26584338

  11. Synthesis and structure-activity relationship of pyripyropene A derivatives as potent and selective acyl-CoA:cholesterol acyltransferase 2 (ACAT2) inhibitors: part 2.

    PubMed

    Ohtawa, Masaki; Yamazaki, Hiroyuki; Matsuda, Daisuke; Ohshiro, Taichi; Rudel, Lawrence L; Ōmura, Satoshi; Tomoda, Hiroshi; Nagamitsu, Tohru

    2013-05-01

    Synthesis and structure-activity relationships of 7-O-p-cyanobenzoyl pyripyropene A derivatives with modification at C1 and 11 are described. Regioselective mono-deprotection of di-tert-butylsilylene acetal was critical in their synthesis. PMID:23535327

  12. Synthesis and structure-activity relationship of pyripyropene A derivatives as potent and selective acyl-CoA:cholesterol acyltransferase 2 (ACAT2) inhibitors: part 3.

    PubMed

    Ohtawa, Masaki; Yamazaki, Hiroyuki; Ohte, Satoshi; Matsuda, Daisuke; Ohshiro, Taichi; Rudel, Lawrence L; Ōmura, Satoshi; Tomoda, Hiroshi; Nagamitsu, Tohru

    2013-07-01

    In an effort to develop potent and selective inhibitors toward ACAT2, structure-activity relationship studies were carried out using derivatives based on pyripyropene A (PPPA, 1). In particular, we investigated the possibility of introducing appropriate 1,11-O-benzylidene and 7-O-substituted benzoyl moieties into PPPA (1). The new o-substituted benzylidene derivatives showed higher selectivity for ACAT2 than PPPA (1). Among them, 1,11-O-o-methylbenzylidene-7-O-p-cyanobenzoyl PPPA derivative 7q and 1,11-O-o,o-dimethylbenzylidene-7-O-p-cyanobenzoyl PPPA derivative 7z proved to be potent ACAT2 inhibitors with unprecedented high isozyme selectivity. PMID:23711919

  13. Computational study enlightens the structural role of the alcohol acyltransferase DFGWG motif.

    PubMed

    Morales-Quintana, Luis; Moya-León, María Alejandra; Herrera, Raúl

    2015-08-01

    Alcohol acyltransferases (AAT) catalyze the esterification reaction of alcohols and acyl-CoA into esters in fruits and flowers. Despite the high divergence between AAT enzymes, two important and conserved motifs are shared: the catalytic HxxxD motif, and the DFGWG motif. The latter is proposed to play a structural role; however, its function remains unclear. The DFGWG motif is located in loop 21 and stabilized by a hydrogen bond between residues Y52 and D381. Also, this motif is distant from the HxxxD motif, and most probably without a direct role in the substrate interaction. To evaluate the role of the DFGWG motif, in silico analysis was performed in the VpAAT1 protein. Three mutants (Y52F, D381A and D381E) were evaluated. Major changes (size and shape) in the solvent channels were found, although no differences were revealed in the entire 3D structure. Molecular dynamics simulations and docking studies described unfavorable energies for interaction of the mutant proteins with different substrates, as well as unfavored ligand orientations in the solvent channel. Additionally, we examined the contribution of different energetic parameters to the total free energy of protein-ligand complexes by the MM-GBSA method. The complexes differed mainly in their van der Waals contributions and have unfavorable electrostatic interactions. VpAAT1, Y52F and D381A mutants showed a dramatic reduction in the binding capacity to several substrates, which is related to differences in electrostatic potential on the protein surfaces, suggesting that D381 from the DFGWG motif and residue Y52 play a crucial role in maintenance of the adequate solvent channel structure required for catalysis. Graphical abstract Molecular docking, molecular dynamics (MD) simulations and MM-GBSA free energy calculations were employed to obtain quantitative estimates for the binding free energies of wild type Vasconcellea pubescens alcohol acyltransferase (VpAAT1-WT) and the protein mutants. Left VpAAT1

  14. ACAT2 and ABCG5/G8 are both required for efficient cholesterol absorption in mice: evidence from thoracic lymph duct cannulation[S

    PubMed Central

    Nguyen, Tam M.; Sawyer, Janet K.; Kelley, Kathryn L.; Davis, Matthew A.; Kent, Carol R.; Rudel, Lawrence L.

    2012-01-01

    The metabolic fate of newly absorbed cholesterol and phytosterol is orchestrated through adenosine triphosphate-binding cassette transporter G5 and G8 heterodimer (G5G8), and acyl CoA:cholesterol acyltransferase 2 (ACAT2). We hypothesized that intestinal G5G8 limits sterol absorption by reducing substrate availability for ACAT2 esterification and have attempted to define the roles of these two factors using gene deletion studies in mice. Male ACAT2−/−, G5G8−/−, ACAT2−/−G5G8−/− (DKO), and wild-type (WT) control mice were fed a diet with 20% of energy as palm oil and 0.2% (w/w) cholesterol. Sterol absorption efficiency was directly measured by monitoring the appearance of [3H]sitosterol and [14C]cholesterol tracers in lymph after thoracic lymph duct cannulation. The average percentage (± SEM) absorption of [14C]cholesterol after 8 h of lymph collection was 40.55 ± 0.76%, 19.41 ± 1.52%, 32.13 ± 1.60%, and 21.27 ± 1.35% for WT, ACAT2−/−, G5G8−/−, and DKO mice, respectively. [3H]sitosterol absorption was <2% in WT and ACAT2−/− mice, whereas it was up to 6.8% in G5G8−/− and DKO mice. G5G8−/− mice also produced chylomicrons with ∼70% less cholesterol ester mass than WT mice. In contrast to expectations, the data demonstrated that the absence of G5G8 led to decreased intestinal cholesterol esterification and reduced cholesterol transport efficiency. Intestinal G5G8 appeared to limit the absorption of phytosterols; ACAT2 more efficiently esterified cholesterol than phytosterols. The data indicate that handling of sterols by the intestine involves both G5G8 and ACAT2 but that an additional factor (possibly Niemann-Pick C1-like 1) may be key in determining absorption efficiency. PMID:22669916

  15. Cholesterol reduction impairs exocytosis of synaptic vesicles.

    PubMed

    Linetti, Anna; Fratangeli, Alessandra; Taverna, Elena; Valnegri, Pamela; Francolini, Maura; Cappello, Valentina; Matteoli, Michela; Passafaro, Maria; Rosa, Patrizia

    2010-02-15

    Cholesterol and sphingolipids are abundant in neuronal membranes, where they help the organisation of the membrane microdomains involved in major roles such as axonal and dendritic growth, and synapse and spine stability. The aim of this study was to analyse their roles in presynaptic physiology. We first confirmed the presence of proteins of the exocytic machinery (SNARES and Ca(v)2.1 channels) in the lipid microdomains of cultured neurons, and then incubated the neurons with fumonisin B (an inhibitor of sphingolipid synthesis), or with mevastatin or zaragozic acid (two compounds that affect the synthesis of cholesterol by inhibiting HMG-CoA reductase or squalene synthase). The results demonstrate that fumonisin B and zaragozic acid efficiently decrease sphingolipid and cholesterol levels without greatly affecting the viability of neurons or the expression of synaptic proteins. Electron microscopy showed that the morphology and number of synaptic vesicles in the presynaptic boutons of cholesterol-depleted neurons were similar to those observed in control neurons. Zaragozic acid (but not fumonisin B) treatment impaired synaptic vesicle uptake of the lipophilic dye FM1-43 and an antibody directed against the luminal epitope of synaptotagmin-1, effects that depended on the reduction in cholesterol because they were reversed by cholesterol reloading. The time-lapse confocal imaging of neurons transfected with ecliptic SynaptopHluorin showed that cholesterol depletion affects the post-depolarisation increase in fluorescence intensity. Taken together, these findings show that reduced cholesterol levels impair synaptic vesicle exocytosis in cultured neurons. PMID:20103534

  16. Cholesterol modulates bitter taste receptor function.

    PubMed

    Pydi, Sai Prasad; Jafurulla, Md; Wai, Lisa; Bhullar, Rajinder P; Chelikani, Prashen; Chattopadhyay, Amitabha

    2016-09-01

    Bitter taste perception in humans is believed to act as a defense mechanism against ingestion of potential toxic substances. Bitter taste is perceived by 25 distinct bitter taste receptors (T2Rs) which belong to the family of G protein-coupled receptors (GPCRs). In the overall context of the role of membrane lipids in GPCR function, we show here that T2R4, a representative member of the bitter taste receptor family, displays cholesterol sensitivity in its signaling function. In order to gain further insight into cholesterol sensitivity of T2R4, we mutated two residues Tyr114(3.59) and Lys117(3.62) present in the cholesterol recognition amino acid consensus (CRAC) motif in T2R4 with alanines. We carried out functional characterization of the mutants by calcium mobilization, followed by cholesterol depletion and replenishment. CRAC motifs in GPCRs have previously been implicated in preferential cholesterol association. Our analysis shows that the CRAC motif represents an intrinsic feature of bitter taste receptors and is conserved in 22 out of 25 human T2Rs. We further demonstrate that Lys117, an important CRAC residue, is crucial in the reported cholesterol sensitivity of T2R4. Interestingly, cholesterol sensitivity of T2R4 was observed at quinine concentrations in the lower mM range. To the best of our knowledge, our results represent the first report addressing the molecular basis of cholesterol sensitivity in the function of taste receptors. PMID:27288892

  17. Computational model for monitoring cholesterol metabolism.

    PubMed

    Selvakumar, R; Rashith Muhammad, M; Poornima Devi, G

    2014-12-01

    A non-deterministic finite automaton is designed to observe the cholesterol metabolism with the states of acceptance and rejection. The acceptance state of the automaton depicts the normal level of metabolism and production of good cholesterol as an end product. The rejection state of this machine shows the inhibition of enzymatic activity in cholesterol synthesis and removal of free fatty acids. The deficiency in human cholesterol metabolism pathway results in abnormal accumulation of cholesterol in plasma, arterial tissues leading to diseases such as hypercholesterolemia, atherosclerosis respectively and formation of gallstones. The designed machine can be used to monitor the cholesterol metabolism at molecular level through regulation of enzymes involved in the biosynthesis and metabolism of cholesterol for the treatment of diseases incident due to the respective metabolic disorder. In addition, an algorithm for this machine has been developed to compare the programmed string with the given string. This study demonstrates the construction of a machine that is used for the development of molecular targeted therapy for the disorders in cholesterol metabolism. PMID:26396654

  18. Total cholesterol, low density lipoprotein cholesterol, and high density lipoprotein cholesterol and coronary heart disease in Scotland.

    PubMed Central

    Hargreaves, A D; Logan, R L; Thomson, M; Elton, R A; Oliver, M F; Riemersma, R A

    1991-01-01

    OBJECTIVE--To investigate long term changes in total cholesterol, high density lipoprotein cholesterol, and low density lipoprotein cholesterol concentrations and in measures of other risk factors for coronary heart disease and to assess their importance for the development of coronary heart disease in Scottish men. DESIGN--Longitudinal study entailing follow up in 1988-9 of men investigated during a study in 1976. SETTING--Edinburgh, Scotland. SUBJECTS--107 men from Edinburgh who had taken part in a comparative study of risk factors for heart disease with Swedish men in 1976 when aged 40. INTERVENTION--The men were invited to attend a follow up clinic in 1988-9 for measurement of cholesterol concentrations and other risk factor measurements. Eighty three attended and 24 refused to or could not attend. MAIN OUTCOME MEASURES--Changes in total cholesterol, high density lipoprotein cholesterol, and low density lipoprotein cholesterol concentrations, body weight, weight to height index, prevalence of smoking, and alcohol intake; number of coronary artery disease events. RESULTS--Mean serum total cholesterol concentration increased over the 12 years mainly due to an increase in the low density lipoprotein cholesterol fraction (from 3.53 (SD 0.09) to 4.56 (0.11) mmol/l) despite a reduction in high density lipoprotein cholesterol concentration. Body weight and weight to height index increased. Fewer men smoked more than 15 cigarettes/day in 1988-9 than in 1976. Blood pressure remained stable and fasting triglyceride concentrations did not change. The frequency of corneal arcus doubled. Alcohol consumption decreased significantly. Eleven men developed clinical coronary heart disease. High low density lipoprotein and low high density lipoprotein cholesterol concentrations in 1976, but not total cholesterol concentration, significantly predicted coronary heart disease (p = 0.05). Almost all of the men who developed coronary heart disease were smokers (91% v 53%, p less than

  19. Analysis of cholesterol trafficking with fluorescent probes

    PubMed Central

    Maxfield, Frederick R.; Wüstner, Daniel

    2013-01-01

    Cholesterol plays an important role in determining the biophysical properties of biological membranes, and its concentration is tightly controlled by homeostatic processes. The intracellular transport of cholesterol among organelles is a key part of the homeostatic mechanism, but sterol transport processes are not well understood. Fluorescence microscopy is a valuable tool for studying intracellular transport processes, but this method can be challenging for lipid molecules because addition of a fluorophore may alter the properties of the molecule greatly. We discuss the use of fluorescent molecules that can bind to cholesterol to reveal its distribution in cells. We also discuss the use of intrinsically fluorescent sterols that closely mimic cholesterol, as well as some minimally modified fluorophore-labeled sterols. Methods for imaging these sterols by conventional fluorescence microscopy and by multiphoton microscopy are described. Some label-free methods for imaging cholesterol itself are also discussed briefly. PMID:22325611

  20. Cholesterol granulomas in three meerkats (Suricata suricatta).

    PubMed

    Sladky, K K; Dalldorf, F G; Steinberg, H; Wright, J F; Loomis, M R

    2000-11-01

    Cholesterol granulomas are uncommon pathologic lesions in animals, although they are important intracranial tumors in humans. This report describes cholesterol granulomas associated with multiple organ systems of three captive meerkats. In the most severe case, meerkat No. 1, the pathologic behavior of the cholesterol granuloma was unique in that it appeared to locally invade the cerebrum and calvarium, possibly contributing to neurological deficits observed antemortem. A review of other meerkat necropsies revealed incidental, asymptomatic cholesterol granulomas in organs of two other individuals, meerkat Nos. 2 and 3. Histologically, all lesions were composed of cholesterol clefts admixed with large, foamy macrophages containing hemosiderin, multinucleated giant cells, lymphocytes, plasma cells, and foci of mineralization. Hypercholesterolemia was documented in two of the three meerkats. PMID:11105964

  1. Cholesterol-β1 AR interaction versus cholesterol-β2 AR interaction.

    PubMed

    Cang, Xiaohui; Yang, Linlin; Yang, Jing; Luo, Cheng; Zheng, Mingyue; Yu, Kunqian; Yang, Huaiyu; Jiang, Hualiang

    2014-05-01

    Two 8-µs all-atom molecular dynamics simulations have been performed on the two highly homologous G protein-coupled receptor (GPCR) subtypes, β1 - and β2 -adrenergic receptors, which were embedded in a lipid bilayer with randomly dispersed cholesterol molecules. During the simulations, cholesterol molecules accumulate to different surface regions of the two receptors, suggesting the subtype specificity of cholesterol-β-adrenergic receptor interaction and providing some clues to the physiological difference of the two subtypes. Meanwhile, comparison between the two receptors in interacting with cholesterols shed some new light on general determinants of cholesterol binding to GPCRs. Our results indicate that although the concave surface, charged residues and aromatic residues are important, neither of these stabilizing factors is indispensable for a cholesterol interaction site. Different combinations of these factors lead to the diversified binding modes of cholesterol binding to the receptors. Our long-time simulations, for the first time, revealed the pathway of a cholesterol molecule entering the consensus cholesterol motif (CCM) site, and the binding process of cholesterol to CCM is accompanied by a side chain flipping of the conserved Trp4.50. Moreover, the simulation results suggest that the I-/V-/L-rich region on the extracellular parts of helix 6 might be an alternatively conserved cholesterol-binding site for the class-A GPCRs. PMID:24265091

  2. Structural and Functional Studies of a trans-Acyltransferase Polyketide Assembly Line Enzyme that Catalyzes Stereoselective α- and β-Ketoreduction

    PubMed Central

    Piasecki, Shawn K.; Zheng, Jianting; Axelrod, Abram J.; Detelich, Madeline; Keatinge-Clay, Adrian T.

    2014-01-01

    While the cis-acyltransferase modular polyketide synthase assembly lines have largely been structurally dissected, enzymes from within the recently discovered trans-acyltransferase polyketide synthase assembly lines are just starting to be observed crystallographically. Here we examine the ketoreductase from the first polyketide synthase module of the bacillaene nonribosomal peptide synthetase/polyketide synthase at 2.35-Å resolution. This ketoreductase naturally reduces both α- and β-keto groups and is the only ketoreductase known to do so during the biosynthesis of a polyketide. The isolated ketoreductase not only reduced an N-acetylcysteamine-bound β-keto substrate to a D-β-hydroxy product, but also an N-acetylcysteamine- bound α-keto substrate to an L-α-hydroxy product. That the substrates must enter the active site from opposite directions to generate these stereochemistries suggests that the acyl-phosphopantetheine moiety is capable of accessing very different conformations despite being anchored to a serine residue of a docked acyl carrier protein. The features enabling stereocontrolled α-ketoreduction may not be extensive since a β-ketoreductase from a cis-acyltransferase polyketide synthase was identified that performs a completely stereoselective reduction of the same α-keto substrate to generate the D-α-hydroxy product. A sequence analysis of trans-acyltransferase ketoreductases reveals that a single residue, rather than a three-residue motif found in cis-acyltransferase ketoreductases, is predictive of the orientation of the resulting β-hydroxyl group. PMID:24634061

  3. Expression of Fungal diacylglycerol acyltransferase2 Genes to Increase Kernel Oil in Maize[OA

    PubMed Central

    Oakes, Janette; Brackenridge, Doug; Colletti, Ron; Daley, Maureen; Hawkins, Deborah J.; Xiong, Hui; Mai, Jennifer; Screen, Steve E.; Val, Dale; Lardizabal, Kathryn; Gruys, Ken; Deikman, Jill

    2011-01-01

    Maize (Zea mays) oil has high value but is only about 4% of the grain by weight. To increase kernel oil content, fungal diacylglycerol acyltransferase2 (DGAT2) genes from Umbelopsis (formerly Mortierella) ramanniana and Neurospora crassa were introduced into maize using an embryo-enhanced promoter. The protein encoded by the N. crassa gene was longer than that of U. ramanniana. It included 353 amino acids that aligned to the U. ramanniana DGAT2A protein and a 243-amino acid sequence at the amino terminus that was unique to the N. crassa DGAT2 protein. Two forms of N. crassa DGAT2 were tested: the predicted full-length protein (L-NcDGAT2) and a shorter form (S-NcDGAT2) that encoded just the sequences that share homology with the U. ramanniana protein. Expression of all three transgenes in maize resulted in small but statistically significant increases in kernel oil. S-NcDGAT2 had the biggest impact on kernel oil, with a 26% (relative) increase in oil in kernels of the best events (inbred). Increases in kernel oil were also obtained in both conventional and high-oil hybrids, and grain yield was not affected by expression of these fungal DGAT2 transgenes. PMID:21245192

  4. Identification and characterization of a type-2 diacylglycerol acyltransferase (DGAT2) from Rhodosporidium diobovatum.

    PubMed

    Chen, Zhihuan; Liu, Pengyan; Liu, Yanhua; Tang, Hui; Chen, Yunping; Zhang, Liping

    2014-12-01

    Triacylglycerols (TAGs), synthesized in the microsomal membranes of eukaryotes, serve as a primary storage form of carbon and energy in microorganisms. For this reason, TAGs produced by organisms have great potential to become biofuels and facilitate researchers to look for alternative renewable sources of energy. The present study describes the identification and functional characterization of a type-2 diacylglycerol acyltransferase from Rhodosporidium diobovatum, designated as RdDGAT, which catalyzed the final step of TAG synthesis. A full-length cDNA clone for RdDGAT was obtained, and its biological activity was proven by being expressed in a Saccharomyces cerevisiae quadruple mutant that was defective in TAG synthesis. Enzymatic assays were performed and finally the existence of TAGs in the transformed Saccharomyces cerevisiae quadruple mutant was determined using the method of thin-layer chromatography. Substrate preference experiments revealed that RdDGAT preferred unsaturated fatty acids over saturated ones. Through further analysis, we assume that the evolution and expression characteristics of the RdDGAT gene perhaps is the result of adaption to its oligotrophic and cold living environment. PMID:25294723

  5. Abrogating monoacylglycerol acyltransferase activity in liver improves glucose tolerance and hepatic insulin signaling in obese mice.

    PubMed

    Hall, Angela M; Soufi, Nisreen; Chambers, Kari T; Chen, Zhouji; Schweitzer, George G; McCommis, Kyle S; Erion, Derek M; Graham, Mark J; Su, Xiong; Finck, Brian N

    2014-07-01

    Monoacylglycerol acyltransferase (MGAT) enzymes convert monoacylglycerol to diacylglycerol (DAG), a lipid that has been linked to the development of hepatic insulin resistance through activation of protein kinase C (PKC). The expression of genes that encode MGAT enzymes is induced in the livers of insulin-resistant human subjects with nonalcoholic fatty liver disease, but whether MGAT activation is causal of hepatic steatosis or insulin resistance is unknown. We show that the expression of Mogat1, which encodes MGAT1, and MGAT activity are also increased in diet-induced obese (DIO) and ob/obmice. To probe the metabolic effects of MGAT1 in the livers of obese mice, we administered antisense oligonucleotides (ASOs) against Mogat1 to DIO and ob/ob mice for 3 weeks. Knockdown of Mogat1 in liver, which reduced hepatic MGAT activity, did not affect hepatic triacylglycerol content and unexpectedly increased total DAG content. Mogat1 inhibition also increased both membrane and cytosolic compartment DAG levels. However, Mogat1 ASO treatment significantly improved glucose tolerance and hepatic insulin signaling in obese mice. In summary, inactivation of hepatic MGAT activity, which is markedly increased in obese mice, improved glucose tolerance and hepatic insulin signaling independent of changes in body weight, intrahepatic DAG and TAG content, and PKC signaling. PMID:24595352

  6. Suppression of PPARγ-mediated monoacylglycerol O-acyltransferase 1 expression ameliorates alcoholic hepatic steatosis

    PubMed Central

    Yu, Jung Hwan; Song, Su Jin; Kim, Ara; Choi, Yoonjeong; Seok, Jo Woon; Kim, Hyo Jung; Lee, Yoo Jeong; Lee, Kwan Sik; Kim, Jae-woo

    2016-01-01

    Alcohol consumption is one of the major causes of hepatic steatosis, fibrosis, cirrhosis, and superimposed hepatocellular carcinoma. Ethanol metabolism alters the NAD+/NADH ratio, thereby suppressing the activity of sirtuin family proteins, which may affect lipid metabolism in liver cells. However, it is not clear how long-term ingestion of ethanol eventually causes lipid accumulation in liver. Here, we demonstrate that chronic ethanol ingestion activates peroxisome proliferator-activated receptor γ (PPARγ) and its target gene, monoacylglycerol O-acyltransferase 1 (MGAT1). During ethanol metabolism, a low NAD+/NADH ratio repressed NAD-dependent deacetylase sirtuin 1 (SIRT1) activity, concomitantly resulting in increased acetylated PPARγ with high transcriptional activity. Accordingly, SIRT1 transgenic mice exhibited a low level of acetylated PPARγ and were protected from hepatic steatosis driven by alcohol or PPARγ2 overexpression, suggesting that ethanol metabolism causes lipid accumulation through activation of PPARγ through acetylation. Among the genes induced by PPARγ upon alcohol consumption, MGAT1 has been shown to be involved in triglyceride synthesis. Thus, we tested the effect of MGAT1 knockdown in mice following ethanol consumption, and found a significant reduction in alcohol-induced hepatic lipid accumulation. These results suggest that MGAT1 may afford a promising approach to the treatment of fatty liver disease. PMID:27404390

  7. Rapid ester biosynthesis screening reveals a high activity alcohol-O-acyltransferase (AATase) from tomato fruit.

    PubMed

    Lin, Jyun-Liang; Zhu, Jie; Wheeldon, Ian

    2016-05-01

    Ethyl and acetate esters are naturally produced in various yeasts, plants, and bacteria. The biosynthetic pathways that produce these esters share a common reaction step, the condensation of acetyl/acyl-CoA with an alcohol by alcohol-O-acetyl/acyltransferase (AATase). Recent metabolic engineering efforts exploit AATase activity to produce fatty acid ethyl esters as potential diesel fuel replacements as well as short- and medium-chain volatile esters as fragrance and flavor compounds. These efforts have been limited by the lack of a rapid screen to quantify ester biosynthesis. Enzyme engineering efforts have also been limited by the lack of a high throughput screen for AATase activity. Here, we developed a high throughput assay for AATase activity and used this assay to discover a high activity AATase from tomato fruit, Solanum lycopersicum (Atf-S.l). Atf1-S.l exhibited broad specificity towards acyl-CoAs with chain length from C4 to C10 and was specific towards 1-pentanol. The AATase screen also revealed new acyl-CoA substrate specificities for Atf1, Atf2, Eht1, and Eeb1 from Saccharomyces cerevisiae, and Atf-C.m from melon fruit, Cucumis melo, thus increasing the pool of characterized AATases that can be used in ester biosynthesis of ester-based fragrance and flavor compounds as well as fatty acid ethyl ester biofuels. PMID:26814045

  8. Cloning and Functional Analysis of Three Diacylglycerol Acyltransferase Genes from Peanut (Arachis hypogaea L.)

    PubMed Central

    Zhang, Xiaowen; Chen, Mingna; Chen, Na; Pan, Lijuan; Wang, Tong; Wang, Mian; Yang, Zhen; Wang, Quanfu; Yu, Shanlin

    2014-01-01

    Diacylglycerol acyltransferase (DGAT) catalyzes the final and only committed acylation step in the synthesis of triacylglycerols. In this study, three novel AhDGATs genes were identified and isolated from peanut. Quantitative real-time RT-PCR analysis indicated that the AhDGAT1-2 transcript was more abundant in roots, seeds, and cotyledons, whereas the transcript abundances of AhDGAT1-1 and AhDGAT3-3 were higher in flowers than in the other tissues examined. During seed development, transcript levels of AhDGAT1-1 remained relatively low during the initial developmental stage but increased gradually during later stages, peaking at 50 days after pegging (DAP). Levels of AhDGAT1-2 transcripts were higher at 10 and 60 DAPs and much lower during other stages, whereas AhDGAT3-3 showed higher expression levels at 20 and 50 DAPs. In addition, AhDGAT transcripts were differentially expressed following exposure to abiotic stresses or abscisic acid. The activity of the three AhDGAT genes was confirmed by heterologous expression in a Saccharomyces cerevisiae TAG-deficient quadruple mutant. The recombinant yeasts restored lipid body formation and TAG biosynthesis, and preferentially incorporated unsaturated C18 fatty acids into lipids. The present study provides significant information useful in modifying the oil deposition of peanut through molecular breeding. PMID:25181516

  9. Poly specific trans-acyltransferase machinery revealed via engineered acyl-CoA synthetases.

    PubMed

    Koryakina, Irina; McArthur, John; Randall, Shan; Draelos, Matthew M; Musiol, Ewa M; Muddiman, David C; Weber, Tilmann; Williams, Gavin J

    2013-01-18

    Polyketide synthases construct polyketides with diverse structures and biological activities via the condensation of extender units and acyl thioesters. Although a growing body of evidence suggests that polyketide synthases might be tolerant to non-natural extender units, in vitro and in vivo studies aimed at probing and utilizing polyketide synthase specificity are severely limited to only a small number of extender units, owing to the lack of synthetic routes to a broad variety of acyl-CoA extender units. Here, we report the construction of promiscuous malonyl-CoA synthetase variants that can be used to synthesize a broad range of malonyl-CoA extender units substituted at the C2-position, several of which contain handles for chemoselective ligation and are not found in natural biosynthetic systems. We highlighted utility of these enzymes by probing the acyl-CoA specificity of several trans-acyltransferases, leading to the unprecedented discovery of poly specificity toward non-natural extender units, several of which are not found in naturally occurring biosynthetic pathways. These results reveal that polyketide biosynthetic machinery might be more tolerant to non-natural substrates than previously established, and that mutant synthetases are valuable tools for probing the specificity of biosynthetic machinery. Our data suggest new synthetic biology strategies for harnessing this promiscuity and enabling the regioselective modification of polyketides. PMID:23083014

  10. Click chemistry armed enzyme-linked immunosorbent assay to measure palmitoylation by hedgehog acyltransferase

    PubMed Central

    Lanyon-Hogg, Thomas; Masumoto, Naoko; Bodakh, George; Konitsiotis, Antonio D.; Thinon, Emmanuelle; Rodgers, Ursula R.; Owens, Raymond J.; Magee, Anthony I.; Tate, Edward W.

    2015-01-01

    Hedgehog signaling is critical for correct embryogenesis and tissue development. However, on maturation, signaling is also found to be aberrantly activated in many cancers. Palmitoylation of the secreted signaling protein sonic hedgehog (Shh) by the enzyme hedgehog acyltransferase (Hhat) is required for functional signaling. To quantify this important posttranslational modification, many in vitro Shh palmitoylation assays employ radiolabeled fatty acids, which have limitations in terms of cost and safety. Here we present a click chemistry armed enzyme-linked immunosorbent assay (click–ELISA) for assessment of Hhat activity through acylation of biotinylated Shh peptide with an alkyne-tagged palmitoyl-CoA (coenzyme A) analogue. Click chemistry functionalization of the alkyne tag with azido-FLAG peptide allows analysis through an ELISA protocol and colorimetric readout. This assay format identified the detergent n-dodecyl β-d-maltopyranoside as an improved solubilizing agent for Hhat activity. Quantification of the potency of RU-SKI small molecule Hhat inhibitors by click–ELISA indicated IC50 values in the low- or sub-micromolar range. A stopped assay format was also employed that allows measurement of Hhat kinetic parameters where saturating substrate concentrations exceed the binding capacity of the streptavidin-coated plate. Therefore, click–ELISA represents a nonradioactive method for assessing protein palmitoylation in vitro that is readily expandable to other classes of protein lipidation. PMID:26334609

  11. Putative DHHC-Cysteine-Rich Domain S-Acyltransferase in Plants

    PubMed Central

    Sun, Meihong; Liu, Shiyang; Qi, Baoxiu; Li, Xinzheng

    2013-01-01

    Protein S-acyltransferases (PATs) containing Asp-His-His-Cys within a Cys-rich domain (DHHC-CRD) are polytopic transmembrane proteins that are found in eukaryotic cells and mediate the S-acylation of target proteins. S-acylation is an important secondary and reversible modification that regulates the membrane association, trafficking and function of target proteins. However, little is known about the characteristics of PATs in plants. Here, we identified 804 PATs from 31 species with complete genomes. The analysis of the phylogenetic relationships suggested that all of the PATs fell into 8 groups. In addition, we analysed the phylogeny, genomic organization, chromosome localisation and expression pattern of PATs in Arabidopsis, Oryza sative, Zea mays and Glycine max. The microarray data revealed that PATs genes were expressed in different tissues and during different life stages. The preferential expression of the ZmPATs in specific tissues and the response of Zea mays to treatments with phytohormones and abiotic stress demonstrated that the PATs play roles in plant growth and development as well as in stress responses. Our data provide a useful reference for the identification and functional analysis of the members of this protein family. PMID:24155879

  12. A type 2 diacylglycerol acyltransferase accelerates the triacylglycerol biosynthesis in heterokont oleaginous microalga Nannochloropsis oceanica.

    PubMed

    Li, Da-Wei; Cen, Shi-Ying; Liu, Yu-Hong; Balamurugan, Srinivasan; Zheng, Xin-Yan; Alimujiang, Adili; Yang, Wei-Dong; Liu, Jie-Sheng; Li, Hong-Ye

    2016-07-10

    Oleaginous microalgae have received a considerable attention as potential biofuel feedstock. However, lack of industry-suitable strain with lipid rich biomass limits its commercial applications. Targeted engineering of lipogenic pathways represents a promising strategy to enhance the efficacy of microalgal oil production. In this study, a type 2 diacylglycerol acyltransferase (DGAT), a rate-limiting enzyme in triacylglycerol (TAG) biosynthesis, was identified and overexpressed in heterokont oleaginous microalga Nannochloropsis oceanica for the first time. Overexpression of DGAT2 in Nannochloropsis increased the relative transcript abundance by 3.48-fold in engineered microalgae cells. TAG biosynthesis was subsequently accelerated by DGAT2 overexpression and neutral lipid content was significantly elevated by 69% in engineered microalgae. The fatty acid profile determined by GC-MS revealed that fatty acid composition was altered in engineered microalgae. Saturated fatty acids and polyunsaturated fatty acids were found to be increased whereas monounsaturated fatty acids content decreased. Furthermore, DGAT2 overexpression did not show negative impact on algal growth parameters. The present investigation showed that the identified DGAT2 would be a potential candidate for enhancing TAG biosynthesis and might facilitate the development of promising oleaginous strains with industrial potential. PMID:27164260

  13. Molecular and phylogenetic analysis of pyridoxal phosphate-dependent acyltransferase of Exiguobacterium acetylicum.

    PubMed

    Rajendran, Narayanan; Smith, Colby; Mazhawidza, Williard

    2009-01-01

    The pyridoxal-5'-phosphate (PLP)-dependent family of enzymes is a very diverse group of proteins that metabolize small molecules like amino acids and sugars, and synthesize cofactors for other metabolic pathways through transamination, decarboxylation, racemization, and substitution reactions. In this study we employed degenerated primer-based PCR amplification, using genomic DNA isolated from the soil bacterium Exiguobacterium acetylicum strain SN as template. We revealed the presence of a PLP-dependent family of enzymes, such as PLP-dependent acyltransferase, and similarity to 8-amino-7-oxononoate synthase. Sequencing analysis and multiple alignment of the thymidine-adenine-cloned PCR amplicon revealed PLP-dependent family enzymes with specific confering codes and consensus amino acid residues specific to this group of functional proteins. Amino acid residues common to the majority of PLP-dependent enzymes were also revealed by the Lasergene MegAlign software. A phylogenetic tree was constructed. Its analysis revealed a close relationship of E. acetylicum to other bacteria isolated from extreme environments suggesting similarities in anabolic adaptability and evolutionary development. PMID:20158163

  14. Phosphatidic acid phosphatase and diacylglycerol acyltransferase: potential targets for metabolic engineering of microorganism oil.

    PubMed

    Jin, Hong-Hao; Jiang, Jian-Guo

    2015-04-01

    Oleaginous microorganism is becoming one of the most promising oil feedstocks for biodiesel production due to its great advantages in triglyceride (TAG) accumulation. Previous studies have shown that de novo TAG biosynthesis can be divided into two parts: the fatty acid biosynthesis pathway (the upstream part which generates acyl-CoAs) and the glycerol-3-phosphate acylation pathway (the downstream part in which three acyl groups are sequentially added onto a glycerol backbone). This review mainly focuses on two enzymes in the G3P pathway, phosphatidic acid phosphatase (PAP) and diacylglycerol acyltransferase (DGAT). The former catalyzes a dephosphorylation reaction, and the latter catalyzes a subsequent acylation reaction. Genes, functional motifs, transmembrane domains, action mechanism, and new studies of the two enzymes are discussed in detail. Furthermore, this review also covers diacylglycerol kinase, an enzyme that catalyzes the reverse reaction of diacylglycerol formation. In addition, PAP and DGAT are the conjunction points of the G3P pathway, the Kennedy pathway, and the CDP-diacylglycerol pathway (CDP-DAG pathway), and the mutual transformation between TAGs and phospholipids is discussed as well. Given that both the Kennedy and CDP-diacylglycerol pathways are in metabolic interlock (MI) with the G3P pathway, it is suggested that, via metabolic engineering, TAG accumulation can be improved by the two pathways based on the pivotal function of PAP and DGAT. PMID:25672855

  15. Engineering increased triacylglycerol accumulation in Saccharomyces cerevisiae using a modified type 1 plant diacylglycerol acyltransferase.

    PubMed

    Greer, Michael S; Truksa, Martin; Deng, Wei; Lung, Shiu-Cheung; Chen, Guanqun; Weselake, Randall J

    2015-03-01

    Diacylglycerol acyltransferase (DGAT) catalyzes the acyl-CoA-dependent acylation of sn-1,2-diacylglycerol to produce triacylglycerol (TAG). This enzyme, which is critical to numerous facets of oilseed development, has been highlighted as a genetic engineering target to increase storage lipid production in microorganisms designed for biofuel applications. Here, four transcriptionally active DGAT1 genes were identified and characterized from the oil crop Brassica napus. Overexpression of each BnaDGAT1 in Saccharomyces cerevisiae increased TAG biosynthesis. Further studies showed that adding an N-terminal tag could mask the deleterious influence of the DGATs' native N-terminal sequences, resulting in increased in vivo accumulation of the polypeptides and an increase of up to about 150-fold in in vitro enzyme activity. The levels of TAG and total lipid fatty acids in S. cerevisiae producing the N-terminally tagged BnaDGAT1.b at 72 h were 53 and 28 % higher than those in cultures producing untagged BnaA.DGAT1.b, respectively. These modified DGATs catalyzed the synthesis of up to 453 mg fatty acid/L by this time point. The results will be of benefit in the biochemical analysis of recombinant DGAT1 produced through heterologous expression in yeast and offer a new approach to increase storage lipid content in yeast for industrial applications. PMID:25520169

  16. Selective inhibitors of a PAF biosynthetic enzyme lysophosphatidylcholine acyltransferase 2[S

    PubMed Central

    Tarui, Megumi; Shindou, Hideo; Kumagai, Kazuo; Morimoto, Ryo; Harayama, Takeshi; Hashidate, Tomomi; Kojima, Hirotatsu; Okabe, Takayoshi; Nagano, Tetsuo; Nagase, Takahide; Shimizu, Takao

    2014-01-01

    Platelet-activating factor (PAF) is a potent pro-inflammatory phospholipid mediator. In response to extracellular stimuli, PAF is rapidly biosynthesized by lyso-PAF acetyltransferase (lyso-PAFAT). Previously, we identified two types of lyso-PAFATs: lysophosphatidylcholine acyltransferase (LPCAT)1, mostly expressed in the lungs where it produces PAF and dipalmitoyl-phosphatidylcholine essential for respiration, and LPCAT2, which biosynthesizes PAF and phosphatidylcholine (PC) in the inflammatory cells. Under inflammatory conditions, LPCAT2, but not LPCAT1, is activated and upregulated to produce PAF. Thus, it is important to develop inhibitors specific for LPCAT2 in order to ameliorate PAF-related inflammatory diseases. Here, we report the first identification of LPCAT2-specific inhibitors, N-phenylmaleimide derivatives, selected from a 174,000-compound library using fluorescence-based high-throughput screening followed by the evaluation of the effects on LPCAT1 and LPCAT2 activities, cell viability, and cellular PAF production. Selected compounds competed with acetyl-CoA for the inhibition of LPCAT2 lyso-PAFAT activity and suppressed PAF biosynthesis in mouse peritoneal macrophages stimulated with a calcium ionophore. These compounds had low inhibitory effects on LPCAT1 activity, indicating that adverse effects on respiratory functions may be avoided. The identified compounds and their derivatives will contribute to the development of novel drugs for PAF-related diseases and facilitate the analysis of LPCAT2 functions in phospholipid metabolism in vivo. PMID:24850807

  17. Reprogramming acyl carrier protein interactions of an acyl-CoA promiscuous trans-acyltransferase

    PubMed Central

    Ye, Zhixia; Musiol, Ewa M; Weber, Tilmann; Williams, Gavin J

    2014-01-01

    SUMMARY Protein interactions between acyl carrier proteins (ACP’s) and trans-acting acyltransferase domains (trans-AT’s) are critical for regioselective extender unit installation by many polyketide synthases. Yet, little is known regarding the specificity of these interactions, particularly for trans-AT’s with unusual extender unit specificities. Currently, the best-studied trans-AT with non-malonyl specificity is KirCII from kirromycin biosynthesis. Here, we developed a new assay to probe ACP interactions based on leveraging the extender unit promiscuity of KirCII. The assay allows us to identify residues on the ACP surface that contribute to specific recognition by KirCII. This information proved sufficient to modify a non-cognate ACP from a different biosynthetic system to be a substrate for KirCII. The findings form a foundation for further understanding the specificity of trans-AT:ACP protein interactions, and for engineering modular polyketide synthases to produce analogues. PMID:24726832

  18. Comparative gene identification 58/α/β hydrolase domain 5 lacks lysophosphatidic acid acyltransferase activity

    PubMed Central

    McMahon, Derek; Dinh, Anna; Kurz, Daniel; Shah, Dharika; Han, Gil-Soo; Carman, George M.; Brasaemle, Dawn L.

    2014-01-01

    Mutations in the gene encoding comparative gene identification 58 (CGI-58)/α/β hydrolase domain 5 (ABHD5) cause Chanarin-Dorfman syndrome, characterized by excessive triacylglycerol storage in cells and tissues. CGI-58 has been identified as a coactivator of adipose TG lipase (ATGL) and a lysophosphatidic acid acyltransferase (LPAAT). We developed a molecular model of CGI-58 structure and then mutated predicted active site residues and performed LPAAT activity assays of recombinant WT and mutated CGI-58. When mutations of predicted catalytic residues failed to reduce LPAAT activity, we determined that LPAAT activity was due to a bacterial contaminant of affinity purification procedures, plsC, the sole LPAAT in Escherichia coli. Purification protocols were optimized to reduce plsC contamination, in turn reducing LPAAT activity. When CGI-58 was expressed in SM2-1(DE3) cells that lack plsC, lysates lacked LPAAT activity. Additionally, mouse CGI-58 expressed in bacteria as a glutathione-S-transferase fusion protein and human CGI-58 expressed in yeast lacked LPAAT activity. Previously reported lipid binding activity of CGI-58 was revisited using protein-lipid overlays. Recombinant CGI-58 failed to bind lysophosphatidic acid, but interestingly, bound phosphatidylinositol 3-phosphate [PI(3)P] and phosphatidylinositol 5-phosphate [PI(5)P]. Prebinding CGI-58 with PI(3)P or PI(5)P did not alter its coactivation of ATGL in vitro. In summary, purified recombinant CGI-58 that is functional as an ATGL coactivator lacks LPAAT activity. PMID:24879803

  19. The last step in cocaine biosynthesis is catalyzed by a BAHD acyltransferase.

    PubMed

    Schmidt, Gregor Wolfgang; Jirschitzka, Jan; Porta, Tiffany; Reichelt, Michael; Luck, Katrin; Torre, José Carlos Pardo; Dolke, Franziska; Varesio, Emmanuel; Hopfgartner, Gérard; Gershenzon, Jonathan; D'Auria, John Charles

    2015-01-01

    The esterification of methylecgonine (2-carbomethoxy-3β-tropine) with benzoic acid is the final step in the biosynthetic pathway leading to the production of cocaine in Erythoxylum coca. Here we report the identification of a member of the BAHD family of plant acyltransferases as cocaine synthase. The enzyme is capable of producing both cocaine and cinnamoylcocaine via the activated benzoyl- or cinnamoyl-Coenzyme A thioesters, respectively. Cocaine synthase activity is highest in young developing leaves, especially in the palisade parenchyma and spongy mesophyll. These data correlate well with the tissue distribution pattern of cocaine as visualized with antibodies. Matrix-assisted laser-desorption ionization mass spectral imaging revealed that cocaine and cinnamoylcocaine are differently distributed on the upper versus lower leaf surfaces. Our findings provide further evidence that tropane alkaloid biosynthesis in the Erythroxylaceae occurs in the above-ground portions of the plant in contrast with the Solanaceae, in which tropane alkaloid biosynthesis occurs in the roots. PMID:25406120

  20. The Last Step in Cocaine Biosynthesis Is Catalyzed by a BAHD Acyltransferase[OPEN

    PubMed Central

    Schmidt, Gregor Wolfgang; Porta, Tiffany; Reichelt, Michael; Luck, Katrin; Torre, José Carlos Pardo; Dolke, Franziska; Varesio, Emmanuel; Hopfgartner, Gérard; Gershenzon, Jonathan

    2015-01-01

    The esterification of methylecgonine (2-carbomethoxy-3β-tropine) with benzoic acid is the final step in the biosynthetic pathway leading to the production of cocaine in Erythoxylum coca. Here we report the identification of a member of the BAHD family of plant acyltransferases as cocaine synthase. The enzyme is capable of producing both cocaine and cinnamoylcocaine via the activated benzoyl- or cinnamoyl-Coenzyme A thioesters, respectively. Cocaine synthase activity is highest in young developing leaves, especially in the palisade parenchyma and spongy mesophyll. These data correlate well with the tissue distribution pattern of cocaine as visualized with antibodies. Matrix-assisted laser-desorption ionization mass spectral imaging revealed that cocaine and cinnamoylcocaine are differently distributed on the upper versus lower leaf surfaces. Our findings provide further evidence that tropane alkaloid biosynthesis in the Erythroxylaceae occurs in the above-ground portions of the plant in contrast with the Solanaceae, in which tropane alkaloid biosynthesis occurs in the roots. PMID:25406120

  1. Suppression of PPARγ-mediated monoacylglycerol O-acyltransferase 1 expression ameliorates alcoholic hepatic steatosis.

    PubMed

    Yu, Jung Hwan; Song, Su Jin; Kim, Ara; Choi, Yoonjeong; Seok, Jo Woon; Kim, Hyo Jung; Lee, Yoo Jeong; Lee, Kwan Sik; Kim, Jae-Woo

    2016-01-01

    Alcohol consumption is one of the major causes of hepatic steatosis, fibrosis, cirrhosis, and superimposed hepatocellular carcinoma. Ethanol metabolism alters the NAD(+)/NADH ratio, thereby suppressing the activity of sirtuin family proteins, which may affect lipid metabolism in liver cells. However, it is not clear how long-term ingestion of ethanol eventually causes lipid accumulation in liver. Here, we demonstrate that chronic ethanol ingestion activates peroxisome proliferator-activated receptor γ (PPARγ) and its target gene, monoacylglycerol O-acyltransferase 1 (MGAT1). During ethanol metabolism, a low NAD(+)/NADH ratio repressed NAD-dependent deacetylase sirtuin 1 (SIRT1) activity, concomitantly resulting in increased acetylated PPARγ with high transcriptional activity. Accordingly, SIRT1 transgenic mice exhibited a low level of acetylated PPARγ and were protected from hepatic steatosis driven by alcohol or PPARγ2 overexpression, suggesting that ethanol metabolism causes lipid accumulation through activation of PPARγ through acetylation. Among the genes induced by PPARγ upon alcohol consumption, MGAT1 has been shown to be involved in triglyceride synthesis. Thus, we tested the effect of MGAT1 knockdown in mice following ethanol consumption, and found a significant reduction in alcohol-induced hepatic lipid accumulation. These results suggest that MGAT1 may afford a promising approach to the treatment of fatty liver disease. PMID:27404390

  2. Perturbed cholesterol homeostasis in aging spinal cord.

    PubMed

    Parkinson, Gemma M; Dayas, Christopher V; Smith, Doug W

    2016-09-01

    The spinal cord is vital for the processing of sensorimotor information and for its propagation to and from both the brain and the periphery. Spinal cord function is affected by aging, however, the mechanisms involved are not well-understood. To characterize molecular mechanisms of spinal cord aging, microarray analyses of gene expression were performed on cervical spinal cords of aging rats. Of the metabolic and signaling pathways affected, cholesterol-associated pathways were the most comprehensively altered, including significant downregulation of cholesterol synthesis-related genes and upregulation of cholesterol transport and metabolism genes. Paradoxically, a significant increase in total cholesterol content was observed-likely associated with cholesterol ester accumulation. To investigate potential mechanisms for the perturbed cholesterol homeostasis, we quantified the expression of myelin and neuroinflammation-associated genes and proteins. Although there was minimal change in myelin-related expression, there was an increase in phagocytic microglial and astrogliosis markers, particularly in the white matter. Together, these results suggest that perturbed cholesterol homeostasis, possibly as a result of increased inflammatory activation in spinal cord white matter, may contribute to impaired spinal cord function with aging. PMID:27459933

  3. Cholesterol Asymmetry in Synaptic Plasma Membranes

    PubMed Central

    Wood, W. Gibson; Igbavboa, Urule; Müller, Walter E.; Eckert, Gunter P.

    2010-01-01

    Lipids are essential for the structural and functional integrity of membranes. Membrane lipids are not randomly distributed but are localized in different domains. A common characteristic of these membrane domains is their association with cholesterol. Lipid rafts and caveolae are examples of cholesterol enriched domains, which have attracted keen interest. However, two other important cholesterol domains are the exofacial and cytofacial leaflets of the plasma membrane. The two leaflets that make up the bilayer differ in their fluidity, electrical charge, lipid distribution, and active sites of certain proteins. The synaptic plasma membrane (SPM) cytofacial leaflet contains over 85% of the total SPM cholesterol as compared with the exofacial leaflet. This asymmetric distribution of cholesterol is not fixed or immobile but can be modified by different conditions in vivo: 1) chronic ethanol consumption; 2) statins; 3) aging; and 4) apoE isoform. Several potential candidates have been proposed as mechanisms involved in regulation of SPM cholesterol asymmetry: apoE, low-density-lipoprotein receptor, sterol carrier protein-2, fatty acid binding proteins, polyunsaturated fatty acids, p-glycoprotein and caveolin-1. This review examines cholesterol asymmetry in SPM, potential mechanisms of regulation and impact on membrane structure and function. PMID:21214553

  4. Phospholipid-cholesterol bilayers under osmotic stress.

    PubMed Central

    Sparr, Emma; Hallin, Linda; Markova, Natalia; Wennerström, Håkan

    2002-01-01

    Isothermal (27 degrees C) phase behavior of dimyristoyl phosphatidyl choline-cholesterol mixtures at various osmotic pressures and cholesterol contents was investigated by means of isothermal sorption microcalorimetry and (2)H-nuclear magnetic resonance. The calorimetric method allows for simultaneous measurement of the partial molar enthalpy and the chemical potential (the osmotic pressure) of water, thus providing an almost complete thermodynamic description of the sorption process. From the experimental results, the Pi(osm) - X(chol) and the ternary composition phase diagrams are constructed. We note that there are strong similarities between the Pi(osm) - X(chol) phase diagram and the previously reported T - X(chol) phase diagram at excess water. At high cholesterol contents a single liquid ordered (L(alpha)(o)) phase is present over the whole range of water contents, implying that this phase has a remarkable stability not only at decreasing temperature but also at increasing osmotic pressure. At low cholesterol contents, the microcalorimetric experiments confirm the extraordinary property of cholesterol not to cause any substantial melting point depression. One important conclusion in the present study is that the P(beta) phase can dissolve cholesterol more readily than the L(beta) phase and that the addition of cholesterol induces the P(beta) phase. Finally, the putative P(beta) - L(alpha)(o) periodic modulated structure is discussed. PMID:12324420

  5. Cholesterol-sensitive Modulation of Transcytosis

    PubMed Central

    Leyt, Julieta; Melamed-Book, Naomi; Vaerman, Jean-Pierre; Cohen, Shulamit; Weiss, Aryeh M.

    2007-01-01

    Cholesterol-rich membrane domains (e.g., lipid rafts) are thought to act as molecular sorting machines, capable of coordinating the organization of signal transduction pathways within limited regions of the plasma membrane and organelles. The significance of these domains in polarized postendocytic sorting is currently not understood. We show that dimeric IgA stimulates the incorporation of its receptor into cholesterol-sensitive detergent-resistant membranes confined to the basolateral surface/basolateral endosomes. A fraction of human transferrin receptor was also found in basolateral detergent-resistant membranes. Disrupting these membrane domains by cholesterol depletion (using methyl-β-cyclodextrin) before ligand-receptor internalization caused depolarization of traffic from endosomes, suggesting that cholesterol in basolateral lipid rafts plays a role in polarized sorting after endocytosis. In contrast, cholesterol depletion performed after ligand internalization stimulated cargo transcytosis. It also stimulated caveolin-1 phosphorylation on tyrosine 14 and the appearance of the activated protein in dimeric IgA-containing apical organelles. We propose that cholesterol depletion stimulates the coupling of transcytotic and caveolin-1 signaling pathways, consequently prompting the membranes to shuttle from endosomes to the plasma membrane. This process may represent a unique compensatory mechanism required to maintain cholesterol balance on the cell surface of polarized epithelia. PMID:17392516

  6. Partial molecular volumes of lipids and cholesterol

    PubMed Central

    Greenwood, Alexander I.; Tristram-Nagle, Stephanie; Nagle, John F.

    2009-01-01

    Volumetric measurements are reported for fully hydrated lipid/cholesterol bilayer mixtures using the neutral flotation method. Apparent specific volume data were obtained with the lipids DOPC, POPC and DMPC at T = 30 °C, DPPC at 50 °C, and brain sphingomyelin (BSM) at 45 and 24 °C for mole fractions of cholesterol x from 0 to 0.5. Unlike previous cholesterol mixture studies, we converted our raw data to partial molecular volume VL of the lipid and VC of the cholesterol. The partial molecular volumes were constant for POPC and DOPC as x was varied, but had sharp breaks for the other lipids at values of xC near 0.25 ± 0.05. Results for x < xC clearly exhibit the condensation effect of cholesterol on DPPC, DMPC and BSM when measured at temperatures above their main transition temperatures TM. The break points at xC are compared to phase diagrams in the literature. For x > xC the values of the partial molecular volumes of cholesterol clustered near 630 ± 10 Å3 in all the lipids when measured for T > TM; we suggest that this is the most appropriate measure of the bare volume of cholesterol in lipid bilayers. PMID:16737691

  7. Understanding the role of histidine in the GHSxG acyltransferase active site motif: Evidence for histidine stabilization of the malonyl-enzyme intermediate

    DOE PAGESBeta

    Poust, Sean; Yoon, Isu; Adams, Paul D.; Katz, Leonard; Petzold, Christopher J.; Keasling, Jay D.

    2014-10-06

    Acyltransferases determine which extender units are incorporated into polyketide and fatty acid products. Thus, the ping-pong acyltransferase mechanism utilizes a serine in a conserved GHSxG motif. However, the role of the conserved histidine in this motif is poorly understood. We observed that a histidine to alanine mutation (H640A) in the GHSxG motif of the malonyl-CoA specific yersiniabactin acyltransferase results in an approximately seven-fold higher hydrolysis rate over the wildtype enzyme, while retaining transacylation activity. We propose two possibilities for the reduction in hydrolysis rate: either H640 structurally stabilizes the protein by hydrogen bonding with a conserved asparagine in the ferredoxin-likemore » subdomain of the protein, or a water-mediated hydrogen bond between H640 and the malonyl moiety stabilizes the malonyl-O-AT ester intermediate.« less

  8. A Double-Hotdog with a New Trick: Structure and Mechanism of the trans-Acyltransferase Polyketide Synthase Enoyl-isomerase

    PubMed Central

    2015-01-01

    Many polyketide natural products exhibit invaluable medicinal properties, yet much remains to be understood regarding the machinery responsible for their biosynthesis. The recently discovered trans-acyltransferase polyketide synthases employ processing enzymes that catalyze modifications unique from those of the classical cis-acyltransferase polyketide synthases. The enoyl-isomerase domains of these megasynthases shift double bonds and are well-represented by an enzyme that helps forge the triene system within the antibiotic produced by the prototypical bacillaene synthase. This first crystal structure of an enoyl-isomerase, at 1.73 Å resolution, not only revealed relationships between this class of enzymes and dehydratases but also guided an investigation into the mechanism of double bond migration. The catalytic histidine, positioned differently from that of dehydratases, was demonstrated to independently shuttle a proton between the γ- and α-positions of the intermediate. This unprecedented mechanism highlights the catalytic diversity of divergent enzymes within trans-acyltransferase polyketide synthases. PMID:25089587

  9. Understanding the role of histidine in the GHSxG acyltransferase active site motif: Evidence for histidine stabilization of the malonyl-enzyme intermediate

    SciTech Connect

    Poust, Sean; Yoon, Isu; Adams, Paul D.; Katz, Leonard; Petzold, Christopher J.; Keasling, Jay D.

    2014-10-06

    Acyltransferases determine which extender units are incorporated into polyketide and fatty acid products. Thus, the ping-pong acyltransferase mechanism utilizes a serine in a conserved GHSxG motif. However, the role of the conserved histidine in this motif is poorly understood. We observed that a histidine to alanine mutation (H640A) in the GHSxG motif of the malonyl-CoA specific yersiniabactin acyltransferase results in an approximately seven-fold higher hydrolysis rate over the wildtype enzyme, while retaining transacylation activity. We propose two possibilities for the reduction in hydrolysis rate: either H640 structurally stabilizes the protein by hydrogen bonding with a conserved asparagine in the ferredoxin-like subdomain of the protein, or a water-mediated hydrogen bond between H640 and the malonyl moiety stabilizes the malonyl-O-AT ester intermediate.

  10. Tissue storage and control of cholesterol metabolism in man on high cholesterol diets.

    PubMed

    Quintão, E C; Brumer, S; Stechhahn, K

    1977-03-01

    The possibility of accumulation of tissue cholesterol in human beings submitted to high cholesterol feeding was investigated in liver biopsies and through fecal sterol balance studies. Feeding to 10 individuals 3.1 to 3.4 g/day of cholesterol for 3 weeks raised the mean serum level from 293 to 349 mg/100 ml, namely 19%, whereas the liver cholesterol content was 417 mg/100 g of wet weight. In 10 control cases eating 0.1--0.4 g/day of cholesterol serum cholesterol remained stable throughout the experimental period and the liver cholesterol content was 256 mg/100 g. Difference of liver colesterol level between the two groups was 62%. In 7 patients submitted to two periods of balance investigation on a cholesterol-free synthetic formula diet respectively prior to (PI) and after (PIII) eating the high cholesterol solid food from 4 to 15 weeks (PII), fecal steroid excretion in PIII exceeded PI in 3 patients. Such data are a direct evidence for the existence of an efficient system to release acutely stored cholesterol. In one patient bile acid excretion accounted for the difference between PIII and PI. PMID:849375

  11. Cholesterol Depletion from a Ceramide/Cholesterol Mixed Monolayer: A Brewster Angle Microscope Study

    PubMed Central

    Mandal, Pritam; Noutsi, Pakiza; Chaieb, Sahraoui

    2016-01-01

    Cholesterol is crucial to the mechanical properties of cell membranes that are important to cells’ behavior. Its depletion from the cell membranes could be dramatic. Among cyclodextrins (CDs), methyl beta cyclodextrin (MβCD) is the most efficient to deplete cholesterol (Chol) from biomembranes. Here, we focus on the depletion of cholesterol from a C16 ceramide/cholesterol (C16-Cer/Chol) mixed monolayer using MβCD. While the removal of cholesterol by MβCD depends on the cholesterol concentration in most mixed lipid monolayers, it does not depend very much on the concentration of cholesterol in C16-Cer/Chol monolayers. The surface pressure decay during depletion were described by a stretched exponential that suggested that the cholesterol molecules are unable to diffuse laterally and behave like static traps for the MβCD molecules. Cholesterol depletion causes morphology changes of domains but these disrupted monolayers domains seem to reform even when cholesterol level was low. PMID:27245215

  12. Dietary cholesterol and fats at a young age: do they influence cholesterol metabolism in adult life?

    PubMed

    Temmerman, A M; Vonk, R J; Niezen-Koning, K; Berger, R; Fernandes, J

    1989-01-01

    The effects of dietary cholesterol and fats on cholesterol metabolism later in life were studied in Mongolian gerbils. Three groups were given a basic diet with soybean oil, palm kernel oil amounting to 8.75% (w/w), or the basic diet only. In three other groups, cholesterol (0.05%) was added to the above diets. Measurements were done in animals of the third generation on the diets. On all diets, teh serum cholesterol of the sucklings was increased as compared to the young that were suckled by mothers on the basic diet only, while body cholesterol was highest in sucklings of mothers on the basic diet or palm-kernel-oil-enriched diets. When the diets were replaced by the basic diets at 6 months of age, serum cholesterol was still increased at 12 months of age in animals previously fed on the cholesterol-enriched diets. Tissue cholesterol did not differ. However, after a challenge with cholesterol at that age, the differences in serum cholesterol were not significantly different. PMID:2802529

  13. The role of cholesterol in membrane fusion.

    PubMed

    Yang, Sung-Tae; Kreutzberger, Alex J B; Lee, Jinwoo; Kiessling, Volker; Tamm, Lukas K

    2016-09-01

    Cholesterol modulates the bilayer structure of biological membranes in multiple ways. It changes the fluidity, thickness, compressibility, water penetration and intrinsic curvature of lipid bilayers. In multi-component lipid mixtures, cholesterol induces phase separations, partitions selectively between different coexisting lipid phases, and causes integral membrane proteins to respond by changing conformation or redistribution in the membrane. But, which of these often overlapping properties are important for membrane fusion?-Here we review a range of recent experiments that elucidate the multiple roles that cholesterol plays in SNARE-mediated and viral envelope glycoprotein-mediated membrane fusion. PMID:27179407

  14. Raising HDL cholesterol in women

    PubMed Central

    Eapen, Danny J; Kalra, Girish L; Rifai, Luay; Eapen, Christina A; Merchant, Nadya; Khan, Bobby V

    2010-01-01

    High-density lipoprotein cholesterol (HDL-C) concentration is essential in the determination of coronary heart disease (CHD) risk in women. This is especially true in the postmenopausal state, where lipid profiles and CHD risk mimic that of age-matched men. Thus, interventions designed to reduce CHD risk by raising HDL-C levels may have particular significance during the transition to menopause. This review discusses HDL-C-raising therapies and the role of HDL in the primary prevention of CHD in women. Lifestyle-based interventions such as dietary change, aerobic exercise regimens, and smoking cessation are initial steps that are effective in raising HDL-C, and available data suggest women respond similarly to men with these interventions. When combined with pharmacotherapy, the effects of these lifestyle alterations are further amplified. Though studies demonstrating gender-specific differences in therapy are limited, niacin continues to be the most effective agent in raising HDL-C levels, especially when used in combination with fibrate or statin therapy. Emerging treatments such as HDL mimetic therapy show much promise in further raising HDL-C levels and improving cardiovascular outcomes. PMID:21072287

  15. Influence of different molecular species of phosphatidylcholine on cholesterol transport from lipoprotein recombinants in the rat

    SciTech Connect

    Leduc, R.; Patton, G.M.; Atkinson, D.; Robins, S.J.

    1987-06-05

    Studies were performed to determine to what extent phosphatidylcholines (PCs) of different composition influence the turnover of lipoprotein cholesterol. Lipoprotein recombinants with the composition and structure of spherical high density lipoproteins (HDL-R) were prepared with apoproteins, /sup 14/C-labeled unesterified cholesterol (UC), a (3H)cholesteryl ester (CE), and one of four single molecular species of PC. PCs were selected to include relatively hydrophilic species (16:1-16:1 and 16:0-18:2 PCs) and relatively hydrophobic species (18:0-18:2 and 20:1-20:1 PCs). PCs were also selected to include molecules with novel acyl group pairs (16:1-16:1 and 20:1-20:1 PCs) that would permit the whole molecule to be traced during its clearance from the serum. Rats were injected with HDL-R as an intravenous bolus, and serum, liver, and bile samples were obtained for up to 2 h. The clearance from the serum of each PC was monoexponential with the two most hydrophilic species much more rapidly cleared than either of the two less hydrophilic species. Clearance of specific PCs was not accompanied by PC remodeling (i.e. transacylations), and in the main could not be attributed to the action of lecithin-cholesterol acyltransferase (LCAT). In incubations designed to simulate in vivo conditions, no more than 15% of the disappearance of 16:1-16:1 PC, one of the most rapidly cleared PCs, was due to the action of LCAT. With 20:1-20:1 PC, one of the least rapidly cleared PCs, no LCAT activity could be detected. The clearance of radiolabeled UC was multiexponential and closely corresponded to the rate of disappearance of each PC. The clearance of radiolabeled CE was linear and, in contrast to UC, was the same with the administration of different PCs. Uptake of radiolabeled UC by the liver and excretion of radiolabeled UC into bile took place in parallel and corresponded to the rapidity of turnover of UC (and PCs) in the serum.

  16. Mitsugumin 56 (hedgehog acyltransferase-like) is a sarcoplasmic reticulum-resident protein essential for postnatal muscle maturation.

    PubMed

    Van, Bo; Nishi, Miyuki; Komazaki, Shinji; Ichimura, Atsuhiko; Kakizawa, Sho; Nakanaga, Keita; Aoki, Junken; Park, Ki-Ho; Ma, Jianjie; Ueyama, Tomomi; Ogata, Takehiro; Maruyama, Naoki; Takeshima, Hiroshi

    2015-04-28

    Mitsugumin 56 (MG56), also known as the membrane-bound O-acyl-transferase family member hedgehog acyltransferase-like, was identified as a new sarcoplasmic reticulum component in striated muscle. Mg56-knockout mice grew normally for a week after birth, but shortly thereafter exhibited a suckling defect and died under starvation conditions. In the knockout skeletal muscle, regular contractile features were largely preserved, but sarcoplasmic reticulum elements swelled and further developed enormous vacuoles. In parallel, the unfolded protein response was severely activated in the knockout muscle, and presumably disrupted muscle development leading to the suckling failure. Therefore, MG56 seems essential for postnatal skeletal muscle maturation. PMID:25841338

  17. Use of BODIPY-Cholesterol (TF-Chol) for Visualizing Lysosomal Cholesterol Accumulation.

    PubMed

    Hölttä-Vuori, Maarit; Sezgin, Erdinc; Eggeling, Christian; Ikonen, Elina

    2016-09-01

    Dipyrromethene difluoride-cholesterol (TopFluor-Cholesterol, TF-Chol) is a widely used cholesterol analogue due to its excellent fluorescence properties and considerable similarity with natural cholesterol in terms of membrane partitioning. However, the suitability of TF-Chol for detecting lysosomal cholesterol deposition has recently been questioned. Here, we highlight the fact that the method of lipid delivery and the analysis of time-point both affect the membrane distribution and labeling pattern of TF-Chol, similarly as with radiolabeled cholesterol. Lysosomal sterol accumulation characteristic to a lysosomal storage disease is most readily detected when the probe is introduced via the physiological route, i.e. as a sterol fatty acid ester in low-density lipoprotein particles. When administered to cells from solvent, lysosomal sterol sequestration becomes evident after an overnight equilibration between membranes. PMID:27187581

  18. Type 1 diacylglycerol acyltransferases of Brassica napus preferentially incorporate oleic acid into triacylglycerol

    PubMed Central

    Aznar-Moreno, Jose; Denolf, Peter; Van Audenhove, Katrien; De Bodt, Stefanie; Engelen, Steven; Fahy, Deirdre; Wallis, James G.; Browse, John

    2015-01-01

    DGAT1 enzymes (acyl-CoA:diacylglycerol acyltransferase 1, EC 2.3.1.20) catalyse the formation of triacylglycerols (TAGs), the most abundant lipids in vegetable oils. Thorough understanding of the enzymology of oil accumulation is critical to the goal of modifying oilseeds for improved vegetable oil production. Four isoforms of BnDGAT1, the final and rate-limiting step in triacylglycerol synthesis, were characterized from Brassica napus, one of the world’s most important oilseed crops. Transcriptional profiling of developing B. napus seeds indicated two genes, BnDGAT1-1 and BnDGAT1-2, with high expression and two, BnDGAT1-3 and BnDGAT1-4, with low expression. The activities of each BnDGAT1 isozyme were characterized following expression in a strain of yeast deficient in TAG synthesis. TAG from B. napus seeds contain only 10% palmitic acid (16:0) at the sn-3 position, so it was surprising that all four BnDGAT1 isozymes exhibited strong (4- to 7-fold) specificity for 16:0 over oleic acid (18:1) as the acyl-CoA substrate. However, the ratio of 18:1-CoA to 16:0-CoA in B. napus seeds during the peak period of TAG synthesis is 3:1. When substrate selectivity assays were conducted with 18:1-CoA and 16:0-CoA in a 3:1 ratio, the four isozymes incorporated 18:1 in amounts 2- to 5-fold higher than 16:0. This strong sensitivity of the BnDGAT1 isozymes to the relative concentrations of acyl-CoA substrates substantially explains the observed fatty acid composition of B. napus seed oil. Understanding these enzymes that are critical for triacylglycerol synthesis will facilitate genetic and biotechnological manipulations to improve this oilseed crop. PMID:26195728

  19. Developmental Regulation of Diacylglycerol Acyltransferase Family Gene Expression in Tung Tree Tissues

    PubMed Central

    Cao, Heping; Shockey, Jay M.; Klasson, K. Thomas; Chapital, Dorselyn C.; Mason, Catherine B.; Scheffler, Brian E.

    2013-01-01

    Diacylglycerol acyltransferases (DGAT) catalyze the final and rate-limiting step of triacylglycerol (TAG) biosynthesis in eukaryotic organisms. DGAT genes have been identified in numerous organisms. Multiple isoforms of DGAT are present in eukaryotes. We previously cloned DGAT1 and DGAT2 genes of tung tree (Vernicia fordii), whose novel seed TAGs are useful in a wide range of industrial applications. The objective of this study was to understand the developmental regulation of DGAT family gene expression in tung tree. To this end, we first cloned a tung tree gene encoding DGAT3, a putatively soluble form of DGAT that possesses 11 completely conserved amino acid residues shared among 27 DGAT3s from 19 plant species. Unlike DGAT1 and DGAT2 subfamilies, DGAT3 is absent from animals. We then used TaqMan and SYBR Green quantitative real-time PCR, along with northern and western blotting, to study the expression patterns of the three DGAT genes in tung tree tissues. Expression results demonstrate that 1) all three isoforms of DGAT genes are expressed in developing seeds, leaves and flowers; 2) DGAT2 is the major DGAT mRNA in tung seeds, whose expression profile is well-coordinated with the oil profile in developing tung seeds; and 3) DGAT3 is the major form of DGAT mRNA in tung leaves, flowers and immature seeds prior to active tung oil biosynthesis. These results suggest that DGAT2 is probably the major TAG biosynthetic isoform in tung seeds and that DGAT3 gene likely plays a significant role in TAG metabolism in other tissues. Therefore, DGAT2 should be a primary target for tung oil engineering in transgenic organisms. PMID:24146944

  20. Type 1 diacylglycerol acyltransferases of Brassica napus preferentially incorporate oleic acid into triacylglycerol.

    PubMed

    Aznar-Moreno, Jose; Denolf, Peter; Van Audenhove, Katrien; De Bodt, Stefanie; Engelen, Steven; Fahy, Deirdre; Wallis, James G; Browse, John

    2015-10-01

    DGAT1 enzymes (acyl-CoA:diacylglycerol acyltransferase 1, EC 2.3.1.20) catalyse the formation of triacylglycerols (TAGs), the most abundant lipids in vegetable oils. Thorough understanding of the enzymology of oil accumulation is critical to the goal of modifying oilseeds for improved vegetable oil production. Four isoforms of BnDGAT1, the final and rate-limiting step in triacylglycerol synthesis, were characterized from Brassica napus, one of the world's most important oilseed crops. Transcriptional profiling of developing B. napus seeds indicated two genes, BnDGAT1-1 and BnDGAT1-2, with high expression and two, BnDGAT1-3 and BnDGAT1-4, with low expression. The activities of each BnDGAT1 isozyme were characterized following expression in a strain of yeast deficient in TAG synthesis. TAG from B. napus seeds contain only 10% palmitic acid (16:0) at the sn-3 position, so it was surprising that all four BnDGAT1 isozymes exhibited strong (4- to 7-fold) specificity for 16:0 over oleic acid (18:1) as the acyl-CoA substrate. However, the ratio of 18:1-CoA to 16:0-CoA in B. napus seeds during the peak period of TAG synthesis is 3:1. When substrate selectivity assays were conducted with 18:1-CoA and 16:0-CoA in a 3:1 ratio, the four isozymes incorporated 18:1 in amounts 2- to 5-fold higher than 16:0. This strong sensitivity of the BnDGAT1 isozymes to the relative concentrations of acyl-CoA substrates substantially explains the observed fatty acid composition of B. napus seed oil. Understanding these enzymes that are critical for triacylglycerol synthesis will facilitate genetic and biotechnological manipulations to improve this oilseed crop. PMID:26195728

  1. Ghrelin O-acyltransferase knockout mice show resistance to obesity when fed high-sucrose diet.

    PubMed

    Kouno, Tetsuya; Akiyama, Nobuteru; Ito, Takahito; Okuda, Tomohiko; Nanchi, Isamu; Notoya, Mitsuru; Oka, Shogo; Yukioka, Hideo

    2016-02-01

    Ghrelin is an appetite-stimulating hormone secreted from stomach. Since the discovery that acylation of the serine-3 residue by ghrelin O-acyltransferase (GOAT) is essential for exerting its functions, GOAT has been regarded as an therapeutic target for attenuating appetite, and thus for the treatment of obesity and diabetes. However, contrary to the expectations, GOAT-knockout (KO) mice have not shown meaningful body weight reduction, under high-fat diet. Here, in this study, we sought to determine whether GOAT has a role in body weight regulation and glucose metabolism with a focus on dietary sucrose, because macronutrient composition of diet is important for appetite regulation. We found that peripherally administered acylated-ghrelin, but not unacylated one, stimulated sucrose consumption in a two-bottle-drinking test. The role of acylated-ghrelin in sucrose preference was further supported by the finding that GOAT KO mice consumed less sucrose solution compared with WT littermates. Then, we investigated the effect of dietary composition of sucrose on food intake and body weight in GOAT KO and WT mice. As a result, when fed on high-fat diet, food intake and body weight were similar between GOAT KO and WT mice. However, when fed on high-fat, high-sucrose diet, GOAT KO mice showed significantly reduced food intake and marked resistance to obesity, leading to amelioration of glucose metabolism. These results suggest that blockade of acylated-ghrelin production offers therapeutic potential for obesity and metabolic disorders caused by overeating of palatable food. PMID:26645250

  2. Oral Carcinogenesis Induced by 4-Nitroquinoline 1-Oxide in Lecithin:retinol Acyltransferase Gene Knockout Mice

    PubMed Central

    Liu, Limin; Tang, Xiao-Han; Scognamiglio, Theresa; Gudas, Lorraine J.

    2010-01-01

    Lecithin:retinol acyltransferase (LRAT) regulates retinol (vitamin A) metabolism by esterifying retinol. LRAT expression is decreased in cultured human head and neck squamous cell carcinoma (SCCHN) relative to normal epithelial cells. We investigated whether the carcinogen 4-nitroquinoline 1-oxide (4-NQO) induced a higher incidence of oral cancer in LRAT knockout than wild type (Wt) mice. We also investigated retinol deprivation during 4-NQO treatment in LRAT−/− mice as a model for rapid retinol deficiency. We observed higher levels of secreted frizzled-related protein 2 (Sfrp2), an inhibitor of WNT signaling, in tongue tumors in LRAT−/− versus Wt. LRAT−/− embryonic stem cells also expressed higher Sfrp2 transcripts, indicating an interaction between retinol and WNT signaling. Cox-2, Cyclin D1, p21, Trop2, and RARβ2 were not differentially expressed in Wt versus LRAT−/− tongue tumors. Wt and LRAT−/− mice fed a retinol sufficient diet showed the same oral tumor incidence after 4-NQO. In contrast, tongue tumors developed in 60% of Wt and in 100% of LRAT−/− mice fed a retinol deficient diet during 4-NQO treatment (p=0.22); moreover, the BrdU labeling index was 21.0±2.4% in LRAT−/− normal tongue epithelium as compared to 9.9±0.8% in Wt (p<0.001). Thus, partial retinol deficiency during carcinogen treatment (achieved in LRAT−/−) resulted in more proliferating cells in tongue epithelia from LRAT−/− mice and ultimately a greater probability of carcinogenesis. PMID:19954945

  3. Coexpressing Escherichia coli cyclopropane synthase with Sterculia foetida Lysophosphatidic acid acyltransferase enhances cyclopropane fatty acid accumulation.

    PubMed

    Yu, Xiao-Hong; Prakash, Richa Rawat; Sweet, Marie; Shanklin, John

    2014-01-01

    Cyclopropane fatty acids (CPAs) are desirable as renewable chemical feedstocks for the production of paints, plastics, and lubricants. Toward our goal of creating a CPA-accumulating crop, we expressed nine higher plant cyclopropane synthase (CPS) enzymes in the seeds of fad2fae1 Arabidopsis (Arabidopsis thaliana) and observed accumulation of less than 1% CPA. Surprisingly, expression of the Escherichia coli CPS gene resulted in the accumulation of up to 9.1% CPA in the seed. Coexpression of a Sterculia foetida lysophosphatidic acid acyltransferase (SfLPAT) increases CPA accumulation up to 35% in individual T1 seeds. However, seeds with more than 9% CPA exhibit wrinkled seed morphology and reduced size and oil accumulation. Seeds with more than 11% CPA exhibit strongly decreased seed germination and establishment, and no seeds with CPA more than 15% germinated. That previous reports suggest that plant CPS prefers the stereospecific numbering (sn)-1 position whereas E. coli CPS acts on sn-2 of phospholipids prompted us to investigate the preferred positions of CPS on phosphatidylcholine (PC) and triacylglycerol. Unexpectedly, in planta, E. coli CPS acts primarily on the sn-1 position of PC; coexpression of SfLPAT results in the incorporation of CPA at the sn-2 position of lysophosphatidic acid. This enables a cycle that enriches CPA at both sn-1 and sn-2 positions of PC and results in increased accumulation of CPA. These data provide proof of principle that CPA can accumulate to high levels in transgenic seeds and sets the stage for the identification of factors that will facilitate the movement of CPA from PC into triacylglycerol to produce viable seeds with additional CPA accumulation. PMID:24204024

  4. Crystal structure of the acyltransferase domain of the iterative polyketide synthase in enediyne biosynthesis.

    PubMed

    Liew, Chong Wai; Nilsson, Martina; Chen, Ming Wei; Sun, Huihua; Cornvik, Tobias; Liang, Zhao-Xun; Lescar, Julien

    2012-06-29

    Biosynthesis of the enediyne natural product dynemicin in Micromonospora chersina is initiated by DynE8, a highly reducing iterative type I polyketide synthase that assembles polyketide intermediates from the acetate units derived solely from malonyl-CoA. To understand the substrate specificity and the evolutionary relationship between the acyltransferase (AT) domains of DynE8, fatty acid synthase, and modular polyketide synthases, we overexpressed a 44-kDa fragment of DynE8 (hereafter named AT(DYN10)) encompassing its entire AT domain and the adjacent linker domain. The crystal structure at 1.4 Å resolution unveils a α/β hydrolase and a ferredoxin-like subdomain with the Ser-His catalytic dyad located in the cleft between the two subdomains. The linker domain also adopts a α/β fold abutting the AT catalytic domain. Co-crystallization with malonyl-CoA yielded a malonyl-enzyme covalent complex that most likely represents the acyl-enzyme intermediate. The structure explains the preference for malonyl-CoA with a conserved arginine orienting the carboxylate group of malonate and several nonpolar residues that preclude α-alkyl malonyl-CoA binding. Co-crystallization with acetyl-CoA revealed two noncovalently bound acetates generated by the enzymatic hydrolysis of acetyl-CoA that acts as an inhibitor for DynE8. This suggests that the AT domain can upload the acyl groups from either malonyl-CoA or acetyl-CoA onto the catalytic Ser(651) residue. However, although the malonyl group can be transferred to the acyl carrier protein domain, transfer of the acetyl group to the acyl carrier protein domain is suppressed. Local structural differences may account for the different stability of the acyl-enzyme intermediates. PMID:22589546

  5. Lecithin:Retinol Acyltransferase: A Key Enzyme Involved in the Retinoid (visual) Cycle.

    PubMed

    Sears, Avery E; Palczewski, Krzysztof

    2016-06-01

    Lecithin:retinol acyltransferase (LRAT) catalyzes the acyl transfer from the sn-1 position of phosphatidylcholine (PC) to all-trans-retinol, creating fatty acid retinyl esters (palmitoyl, stearoyl, and some unsaturated derivatives). In the eye, these retinyl esters are substrates for the 65 kDa retinoid isomerase (RPE65). LRAT is well characterized biochemically, and recent structural data from closely related family members of the NlpC/P60 superfamily and a chimeric protein have established its catalytic mechanism. Mutations in the LRAT gene are responsible for approximately 1% of reported cases of Leber congenital amaurosis (LCA). Lack of functional LRAT, expressed in the retinal pigmented epithelium (RPE), results in loss of the visual chromophore and photoreceptor degeneration. LCA is a rare hereditary retinal dystrophy with an early onset associated with mutations in one of 21 known genes. Protocols have been devised to identify therapeutics that compensate for mutations in RPE65, also associated with LCA. The same protocols can be adapted to combat dystrophies associated with LRAT. Improvement in the visual function of clinical recipients of therapy with recombinant adeno-associated virus (rAAV) vectors incorporating the RPE65 gene provides a proof of concept for LRAT, which functions in the same cell type and metabolic pathway as RPE65. In parallel, a clinical trial that employs oral 9-cis-retinyl acetate to replace the missing chromophore in RPE65 and LRAT causative disease has proven to be effective and free of adverse effects. This article summarizes the biochemistry of LRAT and examines chromophore replacement as a treatment for LCA caused by LRAT mutations. PMID:27183166

  6. Lysophosphatidic Acid Acyltransferase β (LPAATβ) Promotes the Tumor Growth of Human Osteosarcoma

    PubMed Central

    Rastegar, Farbod; Gao, Jian-Li; Shenaq, Deana; Luo, Qing; Shi, Qiong; Kim, Stephanie H.; Jiang, Wei; Wagner, Eric R.; Huang, Enyi; Gao, Yanhong; Shen, Jikun; Yang, Ke; He, Bai-Cheng; Chen, Liang; Zuo, Guo-Wei; Luo, Jinyong; Luo, Xiaoji; Bi, Yang; Liu, Xing; Li, Mi; Hu, Ning; Wang, Linyuan; Luther, Gaurav; Luu, Hue H.; Haydon, Rex C.; He, Tong-Chuan

    2010-01-01

    Background Osteosarcoma is the most common primary malignancy of bone with poorly characterized molecular pathways important in its pathogenesis. Increasing evidence indicates that elevated lipid biosynthesis is a characteristic feature of cancer. We sought to investigate the role of lysophosphatidic acid acyltransferase β (LPAATβ, aka, AGPAT2) in regulating the proliferation and growth of human osteosarcoma cells. LPAATβ can generate phosphatidic acid, which plays a key role in lipid biosynthesis as well as in cell proliferation and survival. Although elevated expression of LPAATβ has been reported in several types of human tumors, the role of LPAATβ in osteosarcoma progression has yet to be elucidated. Methodology/Principal Findings Endogenous expression of LPAATβ in osteosarcoma cell lines is analyzed by using semi-quantitative PCR and immunohistochemical staining. Adenovirus-mediated overexpression of LPAATβ and silencing LPAATβ expression is employed to determine the effect of LPAATβ on osteosarcoma cell proliferation and migration in vitro and osteosarcoma tumor growth in vivo. We have found that expression of LPAATβ is readily detected in 8 of the 10 analyzed human osteosarcoma lines. Exogenous expression of LPAATβ promotes osteosarcoma cell proliferation and migration, while silencing LPAATβ expression inhibits these cellular characteristics. We further demonstrate that exogenous expression of LPAATβ effectively promotes tumor growth, while knockdown of LPAATβ expression inhibits tumor growth in an orthotopic xenograft model of human osteosarcoma. Conclusions/Significance Our results strongly suggest that LPAATβ expression may be associated with the aggressive phenotypes of human osteosarcoma and that LPAATβ may play an important role in regulating osteosarcoma cell proliferation and tumor growth. Thus, targeting LPAATβ may be exploited as a novel therapeutic strategy for the clinical management of osteosarcoma. This is especially

  7. Expression, Purification, and Characterization of Mouse Glycine N-acyltransferase in Escherichia coli

    PubMed Central

    Dempsey, Daniel R.; Bond, Jason D.; Carpenter, Anne-Marie; Ospina, Santiago Rodriguez; Merkler, David J.

    2014-01-01

    Glycine N-acyltransferase (GLYAT) is a phase II metabolic detoxification enzyme for exogenous (xenobiotic) and endogenous carboxylic acids; consisting of fatty acids, benzoic acid, and salicylic acid. GLYAT catalyzes the formation of hippurate (N-benzoylglycine) from the corresponding glycine and benzoyl-CoA. Herein, we report the successful expression, purification, and characterization of recombinant mouse GLYAT (mGLYAT). A 34 kDa mGLYAT protein was expressed in Escherichia coli and purified to homogeneity by nickel affinity chromatography to a final yield of 2.5 mg/L culture. Characterization for both amino donors and amino acceptors were completed, with glycine serving as the best amino donor substrate, (kcat/Km)app = (5.2 ± 0.20) × 102M−1s−1, and benzoyl-CoA serving as the best the amino acceptor substrate, (kcat/Km)app = (4.5 ± 0.27) × 105M−1s−1. Our data demonstrate that mGLYAT will catalyzed the chain length specific (C2-C6) formation of N-acylglycines. The steady-state kinetic constants determined for recombinant mGLYAT for the substrates benzoyl-CoA and glycine, were shown to be consistent with other reported species (rat, human, bovine, ovine, and rhesus monkey). The successful recombinant expression and purification of mGLYAT can lead to solve unanswered questions associated with this enzyme, consisting of what is the chemical mechanism and what catalytic residues are essential for the how this phase II metabolic detoxification enzyme conjugates glycine to xenobiotic and endogenous carboxylic acids. PMID:24576660

  8. [Cholesterol and atherosclerosis. Historical considerations and treatment].

    PubMed

    Zárate, Arturo; Manuel-Apolinar, Leticia; Basurto, Lourdes; De la Chesnaye, Elsa; Saldívar, Iván

    2016-01-01

    Cholesterol is a precursor of steroid hormones and an essential component of the cell membrane, however, altered regulation of the synthesis, absorption and excretion of cholesterol predispose to cardiovascular diseases of atherosclerotic origin. Despite, the recognition of historical events for 200 years, starting with Michel Chevreul naming «cholesterol»; later on, Lobstein coining the term atherosclerosis and Marchand introducing it, Anichkov identifying cholesterol in atheromatous plaque, and Brown and Goldstein discovering LDL receptor; as well as the emerging of different drugs, such as fibrates, statins and cetrapibs this decade, promising to increase HDL and the most recent ezetimibe and anti-PCSK9 to inhibit the degradation of LDL receptor, however morbidity has not been reduced in cardiovascular disease. PMID:26774359

  9. Cholesterol oxidation products and their biological importance.

    PubMed

    Kulig, Waldemar; Cwiklik, Lukasz; Jurkiewicz, Piotr; Rog, Tomasz; Vattulainen, Ilpo

    2016-09-01

    The main biological cause of oxysterols is the oxidation of cholesterol. They differ from cholesterol by the presence of additional polar groups that are typically hydroxyl, keto, hydroperoxy, epoxy, or carboxyl moieties. Under typical conditions, oxysterol concentration is maintained at a very low and precisely regulated level, with an excess of cholesterol. Like cholesterol, many oxysterols are hydrophobic and hence confined to cell membranes. However, small chemical differences between the sterols can significantly affect how they interact with other membrane components, and this in turn can have a substantial effect on membrane properties. In this spirit, this review describes the biological importance and the roles of oxysterols in the human body. We focus primarily on the effect of oxysterols on lipid membranes, but we also consider other issues such as enzymatic and nonenzymatic synthesis processes of oxysterols as well as pathological conditions induced by oxysterols. PMID:26956952

  10. HDL Function, Dysfunction, and Reverse Cholesterol Transport

    PubMed Central

    Fisher, Edward A.; Feig, Jonathan E.; Hewing, Bernd; Hazen, Stanley L.; Smith, Jonathan D.

    2012-01-01

    Although high HDL-cholesterol levels are associated with decreased cardiovascular risk in epidemiological studies, recent genetic and pharmacological findings have raised doubts about the beneficial effects of HDL. Raising HDL levels in animal models by infusion or over expression of apolipoprotein A-I has shown clear vascular improvements, such as delayed atherosclerotic lesion progression and accelerated lesion regression, along with increased reverse cholesterol transport. Inflammation and other factors, such as myeloperoxidase mediated oxidation, can impair HDL production and HDL function, in regard to its reverse cholesterol transport, antioxidant, and anti-inflammatory activities. Thus, tests of HDL function, which have not yet been developed as routine diagnostic assays, may prove useful and be a better predictor of cardiovascular risk than HDL-cholesterol levels. PMID:23152494

  11. Serum cholesterol concentration and coronary heart disease in population with low cholesterol concentrations.

    PubMed Central

    Chen, Z; Peto, R; Collins, R; MacMahon, S; Lu, J; Li, W

    1991-01-01

    OBJECTIVE--To examine the relation between serum cholesterol concentration and mortality (from coronary heart disease and from other causes) below the range of cholesterol values generally seen in Western populations. DESIGN--Prospective observational study based on 8-13 years of follow up of subjects in a population with low cholesterol concentrations. SETTING--Urban Shanghai, China. SUBJECTS--9021 Chinese men and women aged 35-64 at baseline. MAIN OUTCOME MEASURE--Death from coronary heart disease and other causes. RESULTS--The average serum cholesterol concentration was 4.2 mmol/l at baseline examination, and only 43 (7%) of the deaths that occurred during 8-13 years of follow up were attributed to coronary heart disease. There was a strongly positive, and apparently independent, relation between serum cholesterol concentration and death from coronary heart disease (z = 3.47, p less than 0.001), and within the range of usual serum cholesterol concentration studied (3.8-4.7 mmol/l) there was no evidence of any threshold. After appropriate adjustment for the regression dilution bias, a 4 (SD 1)% difference in usual cholesterol concentration was associated with a 21 (SD 6)% (95% confidence interval 9% to 35%) difference in mortality from coronary heart disease. There was no significant relation between serum cholesterol concentration and death from stroke or all types of cancer. The 79 deaths due to liver cancer or other chronic liver disease were inversely related to cholesterol concentration at baseline. CONCLUSION--Blood cholesterol concentration was directly related to mortality from coronary heart disease even in those with what was, by Western standards, a "low" cholesterol concentration. There was no good evidence of an adverse effect of cholesterol on other causes of death. PMID:1888927

  12. Cholesterol Degradation by Gordonia cholesterolivorans ▿ †

    PubMed Central

    Drzyzga, O.; Fernández de las Heras, L.; Morales, V.; Navarro Llorens, J. M.; Perera, J.

    2011-01-01

    This paper reports physiological and genetic data about the type strain Gordonia cholesterolivorans, a strain that is able to degrade steroid compounds containing a long carbon side chain such as cholesterol (C27), cholestenone (C27), ergosterol (C28), and stigmasterol (C29). The length of the carbon side chain appears to be of great importance for this bacterium, as the strain is unable to grow using steroids with a shorter or nonaliphatic carbon side chain such as cholic acid (C24), progesterone (C21), testosterone, androsterone, 4-androstene-3,17-dione (all C19), and further steroids. This study also demonstrates that the degradation of cholesterol is a quite common feature of the genus Gordonia by comparing Gordonia cholesterolivorans with some other species of this genus (e.g., G. sihwensis, G. hydrophobica, G. australis, and G. neofelifaecis). Pyrosequencing of the genome of G. cholesterolivorans led to the identification of two conventional cholesterol oxidase genes on an 8-kb and a 12.8-kb genomic fragment with genetic organizations that are quite unique as compared to the genomes of other cholesterol-degrading bacteria sequenced so far. The identified two putative cholesterol oxidases of G. cholesterolivorans are both intracellularly acting enzymes of the class I type. Whereas one of these two cholesterol oxidases (ChoOx-1) shows high identity with an oxidoreductase of the opportunistic pathogen G. bronchialis and is not transcribed during growth with cholesterol, the other one (ChoOx-2) appears phylogenetically closer to cholesterol oxidases from members of the genus Rhodococcus and is transcribed constitutively. By using targeted gene disruption, a G. cholesterolivorans ChoOx-2 gene mutant strain that was unable to grow with steroids was obtained. PMID:21622796

  13. Cholesterol aided etching of tomatine gold nanoparticles: a non-enzymatic blood cholesterol monitor.

    PubMed

    Raj, Vidya; Johnson, Teslin; Joseph, Kuruvilla

    2014-10-15

    Colloidal gold is extensively used for molecular sensing because of the wide flexibilities it offers in terms of modifications of the gold nanoparticles (GNPs) surface with a variety of functional groups. We describe a simple, enzyme free assay for the detection of cholesterol, and demonstrate its applicability by estimating cholesterol in human serum samples. To enable cholesterol detection, we functionalized GNPs with tomatine, a glycoalkaloid found in the leaves and stem of tomato plants. The binding of cholesterol onto tomatine functionalized gold nanoparticles (TGNPs) was characterized by a blue shift in the plasmon absorption spectra (SPR) followed by reduction in the particle size. The TGNPs have been core etched with increasing concentration of cholesterol and with 800 ng/mL of cholesterol particles in the size range of 10-12 nm have been obtained. This behavior was attributed to the enhanced hydrophobicity of the surface acquired by cholesterol binding resulting in the folding or shrinkage of molecule in turn leading to core etching. The method was successfully applied for the detection of cholesterol in real samples and agrees well with values obtained from the conventional method. Because of its significant plasmonic shift and simplicity, this biosensor could be used for cholesterol detection as it does not demand either any hazardous and costly chemicals or any complex synthetic routes. PMID:24811192

  14. Statin-induced chronic cholesterol depletion inhibits Leishmania donovani infection: Relevance of optimum host membrane cholesterol.

    PubMed

    Kumar, G Aditya; Roy, Saptarshi; Jafurulla, Md; Mandal, Chitra; Chattopadhyay, Amitabha

    2016-09-01

    Leishmania are obligate intracellular protozoan parasites that invade and survive within host macrophages leading to leishmaniasis, a major cause of mortality and morbidity worldwide, particularly among economically weaker sections in tropical and subtropical regions. Visceral leishmaniasis is a potent disease caused by Leishmania donovani. The detailed mechanism of internalization of Leishmania is poorly understood. A basic step in the entry of Leishmania involves interaction of the parasite with the host plasma membrane. In this work, we have explored the effect of chronic metabolic cholesterol depletion using lovastatin on the entry and survival of Leishmania donovani in host macrophages. We show here that chronic cholesterol depletion of host macrophages results in reduction in the attachment of Leishmania promastigotes, along with a concomitant reduction in the intracellular amastigote load. These results assume further relevance since chronic cholesterol depletion is believed to mimic physiological cholesterol modulation. Interestingly, the reduction in the ability of Leishmania to enter host macrophages could be reversed upon metabolic replenishment of cholesterol. Importantly, enrichment of host membrane cholesterol resulted in reduction in the entry and survival of Leishmania in host macrophages. As a control, the binding of Escherichia coli to host macrophages remained invariant under these conditions, thereby implying specificity of cholesterol requirement for effective leishmanial infection. To the best of our knowledge, these results constitute the first comprehensive demonstration that an optimum content of host membrane cholesterol is necessary for leishmanial infection. Our results assume relevance in the context of developing novel therapeutic strategies targeting cholesterol-mediated leishmanial infection. PMID:27319380

  15. Cholesterol Modulates the Dimer Interface of the β2-Adrenergic Receptor via Cholesterol Occupancy Sites

    PubMed Central

    Prasanna, Xavier; Chattopadhyay, Amitabha; Sengupta, Durba

    2014-01-01

    The β2-adrenergic receptor is an important member of the G-protein-coupled receptor (GPCR) superfamily, whose stability and function are modulated by membrane cholesterol. The recent high-resolution crystal structure of the β2-adrenergic receptor revealed the presence of possible cholesterol-binding sites in the receptor. However, the functional relevance of cholesterol binding to the receptor remains unexplored. We used MARTINI coarse-grained molecular-dynamics simulations to explore dimerization of the β2-adrenergic receptor in lipid bilayers containing cholesterol. A novel (to our knowledge) aspect of our results is that receptor dimerization is modulated by membrane cholesterol. We show that cholesterol binds to transmembrane helix IV, and cholesterol occupancy at this site restricts its involvement at the dimer interface. With increasing cholesterol concentration, an increased presence of transmembrane helices I and II, but a reduced presence of transmembrane helix IV, is observed at the dimer interface. To our knowledge, this study is one of the first to explore the correlation between cholesterol occupancy and GPCR organization. Our results indicate that dimer plasticity is relevant not just as an organizational principle but also as a subtle regulatory principle for GPCR function. We believe these results constitute an important step toward designing better drugs for GPCR dimer targets. PMID:24655504

  16. Obesity, Cholesterol Metabolism and Breast Cancer Pathogenesis

    PubMed Central

    McDonnell, Donald P.; Park, Sunghee; Goulet, Matthew T.; Jasper, Jeff; Wardell, Suzanne E.; Chang, Ching-yi; Norris, John D.; Guyton, John R.; Nelson, Erik R.

    2014-01-01

    Obesity and altered lipid metabolism are risk factors for breast cancer in pre- and post-menopausal women. These pathologic relationships have been attributed in part to the impact of cholesterol on the biophysical properties of cell membranes and to the influence of these changes on signaling events initiated at the membrane. However, more recent studies have indicated that the oxysterol 27-hydroxycholesterol (27HC), and not cholesterol per se, may be the primary biochemical link between lipid metabolism and cancer. The enzyme responsible for production of 27HC from cholesterol, CYP27A1, is expressed primarily in the liver and in macrophages. In addition significantly elevated expression of this enzyme within breast tumors has also been observed. It is believed that 27HC, acting through the liver X receptor (LXR) in macrophages and possibly other cells is involved in maintaining organismal cholesterol homeostasis. It has also been shown recently that 27HC is an estrogen receptor (ER) agonist in breast cancer cells and that it stimulates the growth and metastasis of tumors in several models of breast cancer. These findings provide the rationale for the clinical evaluation of pharmaceutical approaches that interfere with cholesterol/27HC synthesis as a means to mitigate the impact of cholesterol on breast cancer pathogenesis. PMID:25060521

  17. Dietary Cholesterol Modulates Pathogen Blocking by Wolbachia

    PubMed Central

    Caragata, Eric P.; Rancès, Edwige; Hedges, Lauren M.; Gofton, Alexander W.; Johnson, Karyn N.; O'Neill, Scott L.; McGraw, Elizabeth A.

    2013-01-01

    The bacterial endosymbiont Wolbachia pipientis protects its hosts from a range of pathogens by limiting their ability to form infections inside the insect. This “pathogen blocking” could be explained by innate immune priming by the symbiont, competition for host-derived resources between pathogens and Wolbachia, or the direct modification of the cell or cellular environment by Wolbachia. Recent comparative work in Drosophila and the mosquito Aedes aegypti has shown that an immune response is not required for pathogen blocking, implying that there must be an additional component to the mechanism. Here we have examined the involvement of cholesterol in pathogen blocking using a system of dietary manipulation in Drosophila melanogaster in combination with challenge by Drosophila C virus (DCV), a common fly pathogen. We observed that flies reared on cholesterol-enriched diets infected with the Wolbachia strains wMelPop and wMelCS exhibited reduced pathogen blocking, with viral-induced mortality occurring 2–5 days earlier than flies reared on Standard diet. This shift toward greater virulence in the presence of cholesterol also corresponded to higher viral copy numbers in the host. Interestingly, an increase in dietary cholesterol did not have an effect on Wolbachia density except in one case, but this did not directly affect the strength of pathogen blocking. Our results indicate that host cholesterol levels are involved with the ability of Wolbachia-infected flies to resist DCV infections, suggesting that cholesterol contributes to the underlying mechanism of pathogen blocking. PMID:23825950

  18. Role of cholesterol in parasitic infections

    PubMed Central

    Bansal, Devendra; Bhatti, Harinderpal Singh; Sehgal, Rakesh

    2005-01-01

    The requirement of cholesterol for internalization of eukaryotic pathogens like protozoa (Leishmaniasis, Malaria and Toxoplasmosis) and the exchange of cholesterol along with other metabolites during reproduction in Schistosomes (helminths) under variable circumstances are poorly understood. In patients infected with some other helminthes, alterations in the lipid profile have been observed. Also, the mechanisms involved in lipid changes especially in membrane proteins related to parasite infections remain uncertain. Present review of literature shows that parasites induce significant changes in lipid parameters, as has been shown in the in vitro study where substitution of serum by lipid/cholesterol in medium and in experimental models (in vivo). Thus changes in lipid profile occur in patients having active infections with most of the parasites. Membrane proteins are probably involved in such reactions. All parasites may be metabolising cholesterol, but the exact relationship with pathogenic mechanism is not clear. So far, studies suggest that there may be some factors or enzymes, which allow the parasite to breakup and consume lipid/cholesterol. Further studies are needed for better understanding of the mechanisms involved in vivo. The present review analysis the various studies till date and the role of cholesterol in pathogenesis of different parasitic infections. PMID:15882457

  19. Obesity, cholesterol metabolism, and breast cancer pathogenesis.

    PubMed

    McDonnell, Donald P; Park, Sunghee; Goulet, Matthew T; Jasper, Jeff; Wardell, Suzanne E; Chang, Ching-Yi; Norris, John D; Guyton, John R; Nelson, Erik R

    2014-09-15

    Obesity and altered lipid metabolism are risk factors for breast cancer in pre- and post-menopausal women. These pathologic relationships have been attributed in part to the impact of cholesterol on the biophysical properties of cell membranes and to the influence of these changes on signaling events initiated at the membrane. However, more recent studies have indicated that the oxysterol 27-hydroxycholesterol (27HC), and not cholesterol per se, may be the primary biochemical link between lipid metabolism and cancer. The enzyme responsible for production of 27HC from cholesterol, CYP27A1, is expressed primarily in the liver and in macrophages. In addition, significantly elevated expression of this enzyme within breast tumors has also been observed. It is believed that 27HC, acting through the liver X receptor in macrophages and possibly other cells, is involved in maintaining organismal cholesterol homeostasis. It has also been shown recently that 27HC is an estrogen receptor agonist in breast cancer cells and that it stimulates the growth and metastasis of tumors in several models of breast cancer. These findings provide the rationale for the clinical evaluation of pharmaceutical approaches that interfere with cholesterol/27HC synthesis as a means to mitigate the impact of cholesterol on breast cancer pathogenesis. Cancer Res; 74(18); 4976-82. ©2014 AACR. PMID:25060521

  20. The link between cholesterol and Alzheimer's disease.

    PubMed

    Sjögren, Magnus; Blennow, Kaj

    2005-01-01

    A leading hypothesis on the pathophysiology of Alzheimer's disease (AD) is the mis-metabolism of amyloid precursor protein. This mis-metabolism causes the 42-amino acid form of A beta(Abeta42) to form oligomers that in turn start a chain of events leading to the accumulation of amyloid plaques. Vascular factors such as hypertension, hypercholesterolemia and diabetes as well as the inheritance of the epsilon4 allele of the ApoE gene are risk factors for AD. These risks are thought to promote the production of beta-amyloid (Abeta). An association between cholesterol and the development of AD was suggested in 1994 and since then, research has confirmed a link between cholesterol and the development of AD. A high cholesterol level in mid-life is a risk for AD and statins i.e. cholesterol-lowering drugs, reduce this risk. Statins inhibit enzymes involved in the endogenous synthesis of cholesterol and evidence is mounting that they also affect enzymes in Abeta metabolism i.e. beta-secretase. This normalises the breakdown of the precursor of Abeta, amyloid precursor protein, thereby promoting the nonamyloidogenic pathway. This review focusses on the link between cholesterol and Alzheimer's disease. PMID:16156481

  1. Cholesterol suppresses antimicrobial effect of statins

    PubMed Central

    Haeri, Mohammad Reza; White, Kenneth; Qharebeglou, Mohammad; Ansar, Malek Moein

    2015-01-01

    Objective(s): Isoprenoid biosynthesis is a key metabolic pathway to produce a wide variety of biomolecules such as cholesterol and carotenoids, which target cell membranes. On the other hand, it has been reported that statins known as inhibitors of isoprenoid biosynthesis and cholesterol lowering agents, may have a direct antimicrobial effect on the some bacteria. The exact action of statins in microbial metabolism is not clearly understood. It is possible that statins inhibit synthesis or utilization of some sterol precursor necessary for bacterial membrane integrity. Accordingly, this study was designed in order to examine if statins inhibit the production of a compound, which can be used in the membrane, and whether cholesterol would replace it and rescue bacteria from toxic effects of statins. Materials and Methods: To examine the possibility we assessed antibacterial effect of statins with different classes; lovastatin, simvastatin, and atorvastatin, alone and in combination with cholesterol on two Gram-positive (Staphylococcus aureus and Enterococcus faecalis) and two Gram-negative (Pseudomonas aeruginosa and Escherichia coli) bacteria using gel diffusion assay. Results: Our results showed that all of the statins except for lovastatin had significant antibacterial property in S. aureus, E. coli, and Enter. faecalis. Surprisingly, cholesterol nullified the antimicrobial action of effective statins in statin-sensitive bacteria. Conclusion: It is concluded that statins may deprive bacteria from a metabolite responsible for membrane stability, which is effectively substituted by cholesterol. PMID:26877857

  2. The Structural Basis of Cholesterol Activity in Membranes

    SciTech Connect

    Olsen, Brett N.; Bielska, Agata; Lee, Tiffany; Daily, Michael D.; Covey, Douglas F.; Schlesinger, Paul H.; Baker, Nathan A.; Ory, Daniel S.

    2013-10-15

    Although the majority of free cellular cholesterol is present in the plasma membrane, cholesterol homeostasis is principally regulated through sterol-sensing proteins that reside in the cholesterol-poor endoplasmic reticulum (ER). In response to acute cholesterol loading or depletion, there is rapid equilibration between the ER and plasma membrane cholesterol pools, suggesting a biophysical model in which the availability of plasma membrane cholesterol for trafficking to internal membranes modulates ER membrane behavior. Previous studies have predominantly examined cholesterol availability in terms of binding to extramembrane acceptors, but have provided limited insight into the structural changes underlying cholesterol activation. In this study, we use both molecular dynamics simulations and experimental membrane systems to examine the behavior of cholesterol in membrane bilayers. We find that cholesterol depth within the bilayer provides a reasonable structural metric for cholesterol availability and that this is correlated with cholesterol-acceptor binding. Further, the distribution of cholesterol availability in our simulations is continuous rather than divided into distinct available and unavailable pools. This data provide support for a revised cholesterol activation model in which activation is driven not by saturation of membrane-cholesterol interactions but rather by bulk membrane remodeling that reduces membrane-cholesterol affinity.

  3. Cholesterol transport through lysosome-peroxisome membrane contacts.

    PubMed

    Chu, Bei-Bei; Liao, Ya-Cheng; Qi, Wei; Xie, Chang; Du, Ximing; Wang, Jiang; Yang, Hongyuan; Miao, Hong-Hua; Li, Bo-Liang; Song, Bao-Liang

    2015-04-01

    Cholesterol is dynamically transported among organelles, which is essential for multiple cellular functions. However, the mechanism underlying intracellular cholesterol transport has remained largely unknown. We established an amphotericin B-based assay enabling a genome-wide shRNA screen for delayed LDL-cholesterol transport and identified 341 hits with particular enrichment of peroxisome genes, suggesting a previously unappreciated pathway for cholesterol transport. We show dynamic membrane contacts between peroxisome and lysosome, which are mediated by lysosomal Synaptotagmin VII binding to the lipid PI(4,5)P2 on peroxisomal membrane. LDL-cholesterol enhances such contacts, and cholesterol is transported from lysosome to peroxisome. Disruption of critical peroxisome genes leads to cholesterol accumulation in lysosome. Together, these findings reveal an unexpected role of peroxisome in intracellular cholesterol transport. We further demonstrate massive cholesterol accumulation in human patient cells and mouse model of peroxisomal disorders, suggesting a contribution of abnormal cholesterol accumulation to these diseases. PMID:25860611

  4. Chromatographic separation of cholesterol in foods.

    PubMed

    Fenton, M

    1992-10-30

    Based on the current literature and on experience gained in the laboratory, a simplified procedure using direct saponification (0.4 M potassium hydroxide in ethanol and heating at 60 degrees C for 1 h) is the most appropriate method for the determination of total cholesterol in foods. Extraction of the unsaponifiable matter with hexane is efficient and no extra clean-up is required before quantification. An internal standard, 5 alpha-cholestane or epicoprostanol, should be added to the sample prior to saponification and, together with reference standards, carried through the entire procedure to ensure accurate results. A significant improvement in cholesterol methodology has been achieved by decreasing the sample size and performing all the sample preparation steps in a single tube. The method has the advantages of elimination of an initial solvent extraction for total lipids and errors resulting from multiple extractions, transfers, filtration and wash steps after saponification. The resulting hexane extract, which contains a variety of sterols and fat soluble vitamins, requires an efficient capillary column for complete resolution of cholesterol from the other compounds present. The development of fused-silica capillary columns using cross-linked and bonded liquid phases has provided high thermal stability, inertness and separation efficiency and, together with automated cold on-column gas chromatographic injection systems, has resulted in reproducible cholesterol determinations in either underivatized or derivatized form. If free cholesterol and its esters need to be determined separately, they are initially extracted with other lipids with chloroform-methanol followed by their separation by column or thin-layer chromatography and subsequently analysed by gas or liquid chromatography. Although capillary gas chromatography offers superior efficiency in separation, the inherent benefits of liquid chromatography makes it a potential alternative. Isotope dilution

  5. Kinetic characterization of the inhibition of acyl coenzyme A: steroid acyltransferases by tributyltin in the eastern mud snail (Ilyanassa obsoleta).

    PubMed

    Sternberg, Robin M; LeBlanc, Gerald A

    2006-06-30

    Exposure to tributyltin (TBT) has been causally associated with the global occurrence of a pseudohermaphroditic condition called imposex in neogastropod species. TBT elevates free testosterone levels in these organisms, and this upsurge in testosterone may be involved in the development of imposex. We investigated the ability of TBT to inhibit acyl coenzyme A:testosterone acyltransferase (ATAT) activity as well as microsomal acyl-coenzyme A:17beta-estradiol acyltransferase (AEAT) in a neogastropod, the eastern mud snail Ilyanassa obsoleta as a mechanism by which TBT elevates free testosterone. TBT significantly inhibited both ATAT and AEAT activities in vitro at toxicologically relevant in vivo concentrations. Kinetic analyses revealed that TBT is a competitive inhibitor of ATAT (K(i)= approximately 9microM) and is a weaker, noncompetitive inhibitor of AEAT (K(i)= approximately 31microM). ATAT and AEAT activities associated with different microsome preparations were significantly correlated, and 17beta-estradiol competitively inhibited the fatty acid esterification of testosterone suggesting that one enzyme is responsible for biotransforming both testosterone and 17beta-estradiol to their corresponding fatty acid esters. Overall, the results of this study supply the much-needed mechanistic support for the hypothesis that TBT elevates free testosterone in neogastropods by inhibiting their major regulatory process for maintaining free testosterone homeostasis-the fatty acid esterification of testosterone. PMID:16638618

  6. Glycerol-3-phosphate acyltransferase 4 is essential for the normal development of reproductive organs and the embryo in Brassica napus

    PubMed Central

    Chen, Xue; Chen, Guanqun; Truksa, Martin; Snyder, Crystal L.; Shah, Saleh; Weselake, Randall J.

    2014-01-01

    The enzyme sn-glycerol-3-phosphate acyltransferase 4 (GPAT4) is involved in the biosynthesis of plant lipid poly-esters. The present study further characterizes the enzymatic activities of three endoplasmic reticulum-bound GPAT4 isoforms of Brassica napus and examines their roles in the development of reproductive organs and the embryo. All three BnGPAT4 isoforms exhibited sn-2 acyltransferase and phosphatase activities with dicarboxylic acid-CoA as acyl donor. When non-substituted acyl-CoA was used as acyl donor, the rate of acylation was considerably lower and phosphatase activity was not manifested. RNA interference (RNAi)-mediated down-regulation of all GPAT4 homologues in B. napus under the control of the napin promoter caused abnormal development of several reproductive organs and reduced seed set. Microscopic examination and reciprocal crosses revealed that both pollen grains and developing embryo sacs of the B. napus gpat4 lines were affected. The gpat4 mature embryos showed decreased cutin content and altered monomer composition. The defective embryo development further affected the oil body morphology, oil content, and fatty acid composition in gpat4 seeds. These results suggest that GPAT4 has a critical role in the development of reproductive organs and the seed of B. napus. PMID:24821955

  7. Structural basis for selective recognition of acyl chains by the membrane-associated acyltransferase PatA

    PubMed Central

    Albesa-Jové, David; Svetlíková, Zuzana; Tersa, Montse; Sancho-Vaello, Enea; Carreras-González, Ana; Bonnet, Pascal; Arrasate, Pedro; Eguskiza, Ander; Angala, Shiva K.; Cifuente, Javier O.; Korduláková, Jana; Jackson, Mary; Mikušová, Katarína; Guerin, Marcelo E.

    2016-01-01

    The biosynthesis of phospholipids and glycolipids are critical pathways for virtually all cell membranes. PatA is an essential membrane associated acyltransferase involved in the biosynthesis of mycobacterial phosphatidyl-myo-inositol mannosides (PIMs). The enzyme transfers a palmitoyl moiety from palmitoyl–CoA to the 6-position of the mannose ring linked to 2-position of inositol in PIM1/PIM2. We report here the crystal structures of PatA from Mycobacterium smegmatis in the presence of its naturally occurring acyl donor palmitate and a nonhydrolyzable palmitoyl–CoA analog. The structures reveal an α/β architecture, with the acyl chain deeply buried into a hydrophobic pocket that runs perpendicular to a long groove where the active site is located. Enzyme catalysis is mediated by an unprecedented charge relay system, which markedly diverges from the canonical HX4D motif. Our studies establish the mechanistic basis of substrate/membrane recognition and catalysis for an important family of acyltransferases, providing exciting possibilities for inhibitor design. PMID:26965057

  8. Structural basis for selective recognition of acyl chains by the membrane-associated acyltransferase PatA.

    PubMed

    Albesa-Jové, David; Svetlíková, Zuzana; Tersa, Montse; Sancho-Vaello, Enea; Carreras-González, Ana; Bonnet, Pascal; Arrasate, Pedro; Eguskiza, Ander; Angala, Shiva K; Cifuente, Javier O; Korduláková, Jana; Jackson, Mary; Mikušová, Katarína; Guerin, Marcelo E

    2016-01-01

    The biosynthesis of phospholipids and glycolipids are critical pathways for virtually all cell membranes. PatA is an essential membrane associated acyltransferase involved in the biosynthesis of mycobacterial phosphatidyl-myo-inositol mannosides (PIMs). The enzyme transfers a palmitoyl moiety from palmitoyl-CoA to the 6-position of the mannose ring linked to 2-position of inositol in PIM1/PIM2. We report here the crystal structures of PatA from Mycobacterium smegmatis in the presence of its naturally occurring acyl donor palmitate and a nonhydrolyzable palmitoyl-CoA analog. The structures reveal an α/β architecture, with the acyl chain deeply buried into a hydrophobic pocket that runs perpendicular to a long groove where the active site is located. Enzyme catalysis is mediated by an unprecedented charge relay system, which markedly diverges from the canonical HX4D motif. Our studies establish the mechanistic basis of substrate/membrane recognition and catalysis for an important family of acyltransferases, providing exciting possibilities for inhibitor design. PMID:26965057

  9. Fatty acyl donor selectivity in membrane bound O-acyltransferases and communal cell fate decision-making

    PubMed Central

    Tuladhar, Rubina; Lum, Lawrence

    2015-01-01

    The post-translational modification of proteins with lipid moieties confers spatial and temporal control of protein function by restricting their subcellular distribution or movement in the extracellular milieu. Yet, little is known about the significance of lipid selectivity to the activity of proteins targeted for such modifications. Membrane bound O-acyl transferases (MBOATs) are a superfamily of multipass enzymes that transfer fatty acids on to lipid or protein substrates. Three MBOATs constitute a subfamily with secreted signalling molecules for substrates, the Wnt, Hedgehog (Hh) and Ghrelin proteins. Given their important roles in adult tissue homoeostasis, all three molecules and their respective associated acyltransferases provide a framework for interrogating the role of extracellular acylation events in cell-to-cell communication. Here, we discuss how the preference for a fatty acyl donor in the Wnt acyltransferase porcupine (Porcn) and possibly in other protein lipidation enzymes may provide a means for coupling metabolic health at the single cell level to communal cell fate decision-making in complex multicellular organisms. PMID:25849923

  10. Fatty acyl donor selectivity in membrane bound O-acyltransferases and communal cell fate decision-making.

    PubMed

    Tuladhar, Rubina; Lum, Lawrence

    2015-04-01

    The post-translational modification of proteins with lipid moieties confers spatial and temporal control of protein function by restricting their subcellular distribution or movement in the extracellular milieu. Yet, little is known about the significance of lipid selectivity to the activity of proteins targeted for such modifications. Membrane bound O-acyl transferases (MBOATs) are a superfamily of multipass enzymes that transfer fatty acids on to lipid or protein substrates. Three MBOATs constitute a subfamily with secreted signalling molecules for substrates, the Wnt, Hedgehog (Hh) and Ghrelin proteins. Given their important roles in adult tissue homoeostasis, all three molecules and their respective associated acyltransferases provide a framework for interrogating the role of extracellular acylation events in cell-to-cell communication. Here, we discuss how the preference for a fatty acyl donor in the Wnt acyltransferase porcupine (Porcn) and possibly in other protein lipidation enzymes may provide a means for coupling metabolic health at the single cell level to communal cell fate decision-making in complex multicellular organisms. PMID:25849923

  11. Purification and characterisation of acyl-CoA: glycerol 3-phosphate acyltransferase from oil palm (Elaeis guineensis) tissues.

    PubMed

    Manaf, A M; Harwood, J L

    2000-01-01

    Glycerol 3-phosphate acyltransferase (GPAT, EC 2.3.15) catalyses the first step of the Kennedy pathway for acyl lipid formation. This enzyme was studied using high-speed particulate fractions from oil palm (Elaeis guineensis Jacq.) tissue cultures and mesocarp acetone powders. The fractions were incubated with [(14)C]glycerol 3-phosphate and incorporation of radioactivity into Kennedy pathway intermediates studied. Optimal conditions were broadly similar between the two preparations but those from fruit mesocarp clearly contained more active enzymes for the subsequent stages of the Kennedy pathway - as exemplified by the appreciable accumulation of radioactivity in triacylglycerol. Experiments with different acyl-CoA substrates showed that the GPAT in both high-speed particulate preparations had a significant preference for palmitate. Glycerol 3-phosphate acyltransferase was solubilised from both preparations with optimal solubilisation being achieved at 0.5% (w/v) CHAPS concentrations. Solubilised GPATs were purified further using DE52 ion-exchange chromatography and Sephadex G-100 molecular exclusion chromatography. Purifications of up to about 70-fold were achieved. The purified GPATs showed a strong preference for palmitoyl-CoA compared to other acyl-CoA donors, in keeping with the importance of palmitate in palm oil. PMID:10664139

  12. Functionally Divergent Alleles and Duplicated Loci Encoding an Acyltransferase Contribute to Acylsugar Metabolite Diversity in Solanum Trichomes[OPEN

    PubMed Central

    Schilmiller, Anthony L.; Moghe, Gaurav D.; Fan, Pengxiang; Ghosh, Banibrata; Ning, Jing; Jones, A. Daniel; Last, Robert L.

    2015-01-01

    Glandular trichomes from tomato (Solanum lycopersicum) and other species in the Solanaceae produce and secrete a mixture of O-acylsugars (aliphatic esters of sucrose and glucose) that contribute to insect defense. Despite their phylogenetic distribution and diversity, relatively little is known about how these specialized metabolites are synthesized. Mass spectrometric profiling of acylsugars in the S. lycopersicum x Solanum pennellii introgression lines identified a chromosome 11 locus containing a cluster of BAHD acyltransferases with one gene (named Sl-ASAT3) expressed in tip cells of type I trichomes where acylsugars are made. Sl-ASAT3 was shown to encode an acyl-CoA-dependent acyltransferase that catalyzes the transfer of short (four to five carbons) branched acyl chains to the furanose ring of di-acylsucrose acceptors to produce tri-acylsucroses, which can be further acetylated by Sl-ASAT4 (previously Sl-AT2). Among the wild tomatoes, diversity in furanose ring acyl chains on acylsucroses was most striking in Solanum habrochaites. S. habrochaites accessions from Ecuador and northern Peru produced acylsucroses with short (≤C5) or no acyl chains on the furanose ring. Accessions from central and southern Peru had the ability to add short or long (up to C12) acyl chains to the furanose ring. Multiple ASAT3-like sequences were found in most accessions, and their in vitro activities correlated with observed geographical diversity in acylsugar profiles. PMID:25862303

  13. Castor Phospholipid:Diacylglycerol Acyltransferase Facilitates Efficient Metabolism of Hydroxy Fatty Acids in Transgenic Arabidopsis1[W][OA

    PubMed Central

    van Erp, Harrie; Bates, Philip D.; Burgal, Julie; Shockey, Jay; Browse, John

    2011-01-01

    Producing unusual fatty acids (FAs) in crop plants has been a long-standing goal of green chemistry. However, expression of the enzymes that catalyze the primary synthesis of these unusual FAs in transgenic plants typically results in low levels of the desired FA. For example, seed-specific expression of castor (Ricinus communis) fatty acid hydroxylase (RcFAH) in Arabidopsis (Arabidopsis thaliana) resulted in only 17% hydroxy fatty acids (HFAs) in the seed oil. In order to increase HFA levels, we investigated castor phospholipid:diacylglycerol acyltransferase (PDAT). We cloned cDNAs encoding three putative PDAT enzymes from a castor seed cDNA library and coexpressed them with RcFAH12. One isoform, RcPDAT1A, increased HFA levels to 27%. Analysis of HFA-triacylglycerol molecular species and regiochemistry, along with analysis of the HFA content of phosphatidylcholine, indicates that RcPDAT1A functions as a PDAT in vivo. Expression of RcFAH12 alone leads to a significant decrease in FA content of seeds. Coexpression of RcPDAT1A and RcDGAT2 (for diacylglycerol acyltransferase 2) with RcFAH12 restored FA levels to nearly wild-type levels, and this was accompanied by a major increase in the mass of HFAs accumulating in the seeds. We show the usefulness of RcPDAT1A for engineering plants with high levels of HFAs and alleviating bottlenecks due to the production of unusual FAs in transgenic oilseeds. PMID:21173026

  14. The yeast acyltransferase Sct1p regulates fatty acid desaturation by competing with the desaturase Ole1p

    PubMed Central

    De Smet, Cedric H.; Vittone, Elisa; Scherer, Max; Houweling, Martin; Liebisch, Gerhard; Brouwers, Jos F.; de Kroon, Anton I.P.M.

    2012-01-01

    The degree of fatty acid unsaturation, that is, the ratio of unsaturated versus saturated fatty acyl chains, determines membrane fluidity. Regulation of expression of the fatty acid desaturase Ole1p was hitherto the only known mechanism governing the degree of fatty acid unsaturation in Saccharomyces cerevisiae. We report a novel mechanism for the regulation of fatty acid desaturation that is based on competition between Ole1p and the glycerol-3-phosphate acyltransferase Sct1p/Gat2p for the common substrate C16:0-CoA. Deletion of SCT1 decreases the content of saturated fatty acids, whereas overexpression of SCT1 dramatically decreases the desaturation of fatty acids and affects phospholipid composition. Whereas overexpression of Ole1p increases desaturation, co-overexpression of Ole1p and Sct1p results in a fatty acid composition intermediate between those obtained upon overexpression of the enzymes separately. On the basis of these results, we propose that Sct1p sequesters C16:0-CoA into lipids, thereby shielding it from desaturation by Ole1p. Ta­king advantage of the growth defect conferred by overexpressing SCT1, we identified the acyltransferase Cst26p/Psi1p as a regulator of Sct1p activity by affecting the phosphorylation state and overexpression level of Sct1p. The level of Sct1p phosphorylation is increased when cells are supplemented with saturated fatty acids, demonstrating the physiological relevance of our findings. PMID:22323296

  15. Synthesis and characterisation of 5-acyl-6,7-dihydrothieno[3,2-c]pyridine inhibitors of Hedgehog acyltransferase.

    PubMed

    Lanyon-Hogg, Thomas; Masumoto, Naoko; Bodakh, George; Konitsiotis, Antonio D; Thinon, Emmanuelle; Rodgers, Ursula R; Owens, Raymond J; Magee, Anthony I; Tate, Edward W

    2016-06-01

    In this data article we describe synthetic and characterisation data for four members of the 5-acyl-6,7-dihydrothieno[3,2-c]pyridine (termed "RU-SKI") class of inhibitors of Hedgehog acyltransferase, including associated NMR spectra for final compounds. RU-SKI compounds were selected for synthesis based on their published high potencies against the enzyme target. RU-SKI 41 (9a), RU-SKI 43 (9b), RU-SKI 101 (9c), and RU-SKI 201 (9d) were profiled for activity in the related article "Click chemistry armed enzyme linked immunosorbent assay to measure palmitoylation by Hedgehog acyltransferase" (Lanyon-Hogg et al., 2015) [1]. (1)H NMR spectral data indicate different amide conformational ratios between the RU-SKI inhibitors, as has been observed in other 5-acyl-6,7-dihydrothieno[3,2-c]pyridines. The synthetic and characterisation data supplied in the current article provide validated access to the class of RU-SKI inhibitors. PMID:27077078

  16. Glycerol-3-phosphate acyltransferase 4 is essential for the normal development of reproductive organs and the embryo in Brassica napus.

    PubMed

    Chen, Xue; Chen, Guanqun; Truksa, Martin; Snyder, Crystal L; Shah, Saleh; Weselake, Randall J

    2014-08-01

    The enzyme sn-glycerol-3-phosphate acyltransferase 4 (GPAT4) is involved in the biosynthesis of plant lipid poly-esters. The present study further characterizes the enzymatic activities of three endoplasmic reticulum-bound GPAT4 isoforms of Brassica napus and examines their roles in the development of reproductive organs and the embryo. All three BnGPAT4 isoforms exhibited sn-2 acyltransferase and phosphatase activities with dicarboxylic acid-CoA as acyl donor. When non-substituted acyl-CoA was used as acyl donor, the rate of acylation was considerably lower and phosphatase activity was not manifested. RNA interference (RNAi)-mediated down-regulation of all GPAT4 homologues in B. napus under the control of the napin promoter caused abnormal development of several reproductive organs and reduced seed set. Microscopic examination and reciprocal crosses revealed that both pollen grains and developing embryo sacs of the B. napus gpat4 lines were affected. The gpat4 mature embryos showed decreased cutin content and altered monomer composition. The defective embryo development further affected the oil body morphology, oil content, and fatty acid composition in gpat4 seeds. These results suggest that GPAT4 has a critical role in the development of reproductive organs and the seed of B. napus. PMID:24821955

  17. Aspirin Prevention of Cholesterol Gallstone Formation in Prairie Dogs

    NASA Astrophysics Data System (ADS)

    Lee, Sum P.; Carey, Martin C.; Lamont, J. Thomas

    1981-03-01

    When prairie dogs (Cynomys ludovicianus) are fed a diet containing cholesterol, a marked increase in gallbladder mucin secretion parallels the evolution of cholesterol supersaturated bile. Gelation of mucin precedes the precipitation of cholesterol liquid and solid crystals and the development of gallstones. Aspirin given to prairie dogs inhibited mucin hypersecretion and gel accumulation and prevented gallstone formation without influencing the cholesterol content of supersaturated bile. This suggests that gallbladder mucin is a nucleation matrix for cholesterol gallstones.

  18. Prevention of cholesterol gallstones by inhibiting hepatic biosynthesis and intestinal absorption of cholesterol

    PubMed Central

    Wang, Helen H; Portincasa, Piero; de Bari, Ornella; Liu, Kristina J; Garruti, Gabriella; Neuschwander-Tetri, Brent A; Wang, David Q.-H

    2013-01-01

    Cholesterol cholelithiasis is a multifactorial disease influenced by a complex interaction of genetic and environmental factors, and represents a failure of biliary cholesterol homeostasis in which the physical-chemical balance of cholesterol solubility in bile is disturbed. The primary pathophysiologic event is persistent hepatic hypersecretion of biliary cholesterol, which has both hepatic and small intestinal components. The majority of the environmental factors are probably related to Western-type dietary habits, including excess cholesterol consumption. Laparoscopic cholecystectomy, one of the most commonly performed surgical procedures in the US, is nowadays a major treatment for gallstones. However, it is invasive and can cause surgical complications, and not all patients with symptomatic gallstones are candidates for surgery. The hydrophilic bile acid, ursodeoxycholic acid (UDCA) has been employed as first-line pharmacological therapy in a subgroup of symptomatic patients with small, radiolucent cholesterol gallstones. Long-term administration of UDCA can promote the dissolution of cholesterol gallstones. However, the optimal use of UDCA is not always achieved in clinical practice because of failure to titrate the dose adequately. Therefore, the development of novel, effective, and noninvasive therapies is crucial for reducing the costs of health care associated with gallstones. In this review, we summarize recent progress in investigating the inhibitory effects of ezetimibe and statins on intestinal absorption and hepatic biosynthesis of cholesterol, respectively, for the treatment of gallstones, as well as in elucidating their molecular mechanisms by which combination therapy could prevent this very common liver disease worldwide. PMID:23419155

  19. Cholesterol and markers of cholesterol turnover in multiple sclerosis: relationship with disease outcomes.

    PubMed

    Zhornitsky, Simon; McKay, Kyla A; Metz, Luanne M; Teunissen, Charlotte E; Rangachari, Manu

    2016-01-01

    Multiple sclerosis (MS) is a chronic central nervous system disease that is associated with progressive loss of myelin and subsequent axonal degeneration. Cholesterol is an essential component of mammalian cellular and myelin membranes. In this systematic review, we examined the relationship between levels of cholesterol and markers of cholesterol turnover in circulation and/or cerebrospinal fluid (CSF) and disease outcomes in adults with clinically isolated syndrome (CIS) or confirmed MS. Studies suggest that elevated levels of circulating low density lipoprotein cholesterol (LDL), total cholesterol, and particularly, apolipoprotein B and oxidized LDL are associated with adverse clinical and MRI outcomes in MS. These relationships were observed as early as CIS. The studies also suggest that oxysterols, cholesterol precursors, and apolipoprotein E may be markers of specific disease processes in MS, but more research is required to elucidate these processes and relationships. Taken together, the data indicate that cholesterol and markers of cholesterol turnover have potential to be used clinically as biomarkers of disease activity and may even be implicated in the pathogenesis of MS. PMID:26856944

  20. Cholesterol Status Modulates mRNA and Protein Levels of Genes Associated with Cholesterol Metabolism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dietary saturated (S), monounsaturated (MU) and polyunsaturated (PU) fatty acids (FA) and cholesterol have been shown to be major determinants of plasma lipoprotein profiles. The objective was to determine the effect of whole body cholesterol status and dietary fatty acid saturation on genes associ...

  1. A novel alkyne cholesterol to trace cellular cholesterol metabolism and localization.

    PubMed

    Hofmann, Kristina; Thiele, Christoph; Schött, Hans-Frieder; Gaebler, Anne; Schoene, Mario; Kiver, Yuriy; Friedrichs, Silvia; Lütjohann, Dieter; Kuerschner, Lars

    2014-03-01

    Cholesterol is an important lipid of mammalian cells and plays a fundamental role in many biological processes. Its concentration in the various cellular membranes differs and is tightly regulated. Here, we present a novel alkyne cholesterol analog suitable for tracing both cholesterol metabolism and localization. This probe can be detected by click chemistry employing various reporter azides. Alkyne cholesterol is accepted by cellular enzymes from different biological species (Brevibacterium, yeast, rat, human) and these enzymes include cholesterol oxidases, hydroxylases, and acyl transferases that generate the expected metabolites in in vitro and in vivo assays. Using fluorescence microscopy, we studied the distribution of cholesterol at subcellular resolution, detecting the lipid in the Golgi and at the plasma membrane, but also in the endoplasmic reticulum and mitochondria. In summary, alkyne cholesterol represents a versatile, sensitive, and easy-to-use tool for tracking cellular cholesterol metabolism and localization as it allows for manifold detection methods including mass spectrometry, thin-layer chromatography/fluorography, and fluorescence microscopy. PMID:24334219

  2. Leishmania Dihydroxyacetonephosphate Acyltransferase LmDAT is Important for Ether Lipid Biosynthesis but not for the Integrity of Detergent Resistant Membranes

    PubMed Central

    Zufferey, Rachel; Al-Ani, Gada K.; Dunlap, Kara

    2009-01-01

    Glycerolipid biosynthesis in Leishmania initiates with the acylation of glycerol-3-phosphate by a single glycerol-3-phosphate acyltransferase, LmGAT, or of dihydroxyacetonephosphate by a dihydroxyacetonephosphate acyltransferase, LmDAT. We previously reported that acylation of the precursor dihydroxyacetonephosphate rather than glycerol-3-phosphate is the physiologically relevant pathway for Leishmania parasites. We demonstrated that LmDAT is important for normal growth, survival during the stationary phase, and for virulence. Here, we assessed the role of LmDAT in glycerolipid metabolism and metacyclogenesis. LmDAT was found to be implicated in the biosynthesis of ether glycerolipids, including the ether-lipid derived virulence factor lipophosphoglycan and glycosylphosphatidylinositol-anchored proteins. The null mutant produced longer lipophosphoglycan molecules that were not released in the medium, and augmented levels of glycosylphosphatidylinositol-anchored proteins. In addition, the integrity of detergent resistant membranes was not affected by the absence of the LmDAT gene. Further, our genetic analyses strongly suggest that LmDAT was colethal with the glycerol-3-phosphate acyltransferase encoding gene LmGAT, implying that Leishmania expresses only two acyltransferases that initiate the biosynthesis of its cellular glycerolipids. Last, despite the fact that LmDAT is important for virulence the null mutant still exhibited the typical characteristics of metacyclics. PMID:19720088

  3. Morphological and metabolic changes in transgenic wheat with altered glycerol-3-phosphate acyltransferase or acyl-acyl carrier protein (ACP) thioesterase activities.

    PubMed

    Edlin, D A; Kille, P; Wilkinson, M D; Jones, H D; Harwood, J L

    2000-12-01

    We have transformed varieties of wheat with a Pisum sativum glycerol-3-phosphate acyltransferase gene, and also with an Arabidopsis thaliana acyl-ACP thioesterase gene. Morphological (growth, organelle development) and metabolic changes (fatty acid labelling of chloroplast and non-chloroplast lipids) have been observed in transgenics with altered gene expression for either enzyme. PMID:11171169

  4. Identification of D-amino acid dehydrogenase as an upstream regulator of the autoinduction of a putative acyltransferase in Corynebacterium glutamicum.

    PubMed

    Lee, Jung-Hoon; Kim, Yong-Jae; Shin, Hee-Sung; Lee, Heung-Shick; Jin, Shouguang; Ha, Un-Hwan

    2016-06-01

    Expression of a putative acyltransferase encoded by NCgl- 0350 of Corynebacterium glutamicum is induced by cell-free culture fluids obtained from stationary-phase growth of both C. glutamicum and Pseudomonas aeruginosa, providing evidence for interspecies communication. Here, we further confirmed that such communication occurs by showing that acyltransferase expression is induced by culture fluid obtained from diverse Gram-negative and -positive bacterial strains, including Escherichia coli, Salmonella Typhimurium, Bacillus subtilis, Staphylococcus aureus, Mycobacterium sp. strain JC1, and Mycobacterium smegmatis. A homologous acyltransferase encoded by PA5238 of P. aeruginosa was also induced by fluids obtained from P. aeruginosa as well as other bacterial strains, as observed for NCgl0350 of C. glutamicum. Because C. glutamicum is difficult to study using molecular approaches, the homologous gene PA5238 of P. aeruginosa was used to identify PA5309 as an upstream regulator of expression. A homologous D-amino acid dehydrogenase encoded by NCgl- 2909 of C. glutamicum was cloned based on amino acid similarity to PA5309, and its role in the regulation of NCgl0350 expression was confirmed. Moreover, NCgl2909 played positive roles in growth of C. glutamicum. Thus, we identified a D-amino acid dehydrogenase as an upstream regulator of the autoinduction of a putative acyltransferase in C. glutamicum. PMID:27225460

  5. Quantification of In Vitro Macrophage Cholesterol Efflux and In Vivo Macrophage-Specific Reverse Cholesterol Transport.

    PubMed

    Escolà-Gil, Joan Carles; Lee-Rueckert, Miriam; Santos, David; Cedó, Lídia; Blanco-Vaca, Francisco; Julve, Josep

    2015-01-01

    Promotion of reverse cholesterol transport (RCT) is thought to be a major HDL-mediated mechanism for protecting against atherosclerosis. Preclinical studies support the concept that increasing cholesterol efflux from macrophages may confer atheroprotective benefits independently of the plasma HDL-cholesterol concentration. The application of the macrophage-to-feces RCT method in genetically engineered mice has provided evidence that this major HDL property correlates closely with changes in atherosclerosis susceptibility. This chapter provides details on the methodologies currently used to measure in vitro cholesterol efflux from macrophages or in vivo macrophage-specific RCT. The general principles and techniques described herein may be applied to measure the in vitro cholesterol efflux capacity of human serum in macrophage cultures and to evaluate the effect of different experimental pathophysiological conditions or the efficacy of different therapeutic strategies on the modulation of in vivo macrophage-RCT in mice. PMID:26445792

  6. A diet rich in leafy vegetable fiber improves cholesterol metabolism in high-cholesterol fed rats.

    PubMed

    Ezz El-Arab, A M

    2009-10-01

    In the present study, the hypocholesterolemic effect of leaf vegetable (Jew's mallow) was studied in high-cholesterol fed rats. The animals were fed diets supplemented with cholesterol (0.25%) for 4 weeks. Leaf vegetable diet produced an important hypocholesterolemic action: it led to a significant lowering (p<0.05) of cholesterol in the plasma and liver, as well as of the atherogenic index and a significant increase (p<0.05) in cecal short chain fatty acids, with respect to the control group. Concurrently, total fecal neutral sterols in the excretion increased (p<0.05) and apparent absorption of dietary cholesterol was significantly depressed (-58%). The consumption of leaf vegetable (Jew's mallow) with a hypercholesterolemic diet improved the lipidemic profile and increased excretion of the total cholesterol end-products. PMID:20387744

  7. Localization of cholesterol in sphingomyelinase-treated fibroblasts.

    PubMed Central

    Pörn, M I; Slotte, J P

    1995-01-01

    The distribution of cellular unesterified cholesterol was studied in fibroblasts, which had been depleted of plasma membrane sphingomyelin by exposure to exogenous sphingomyelinase. This treatment has previously been shown to induce an increase in cholesterol esterification, a decrease in the biosynthesis of cholesterol, and a decreased susceptibility of cell cholesterol to oxidation with cholesterol oxidase. When the cellular localization of cholesterol was studied with fluorescent filipin staining, sphingomyelin depletion did not cause any visible changes in the filipin-cholesterol staining pattern, suggesting that the major part of cellular cholesterol was retained in the plasma membrane after sphingomyelinase treatment. After the oxidation of cell-surface cholesterol with cholesterol oxidase, the plasma membrane was no longer stained by filipin, but the plasma membrane cholesterol of sphingomyelin-depleted cells appeared to be resistant to oxidation with cholesterol oxidase when sphingomyelinase was used as an oxidation-promoting agent. However, the use of hypotonic buffer or phosphatidylcholine-specific phospholipase C together with cholesterol oxidase resulted in a complete oxidation of the cell-surface cholesterol in sphingomyelin-depleted cells, as evidenced by the filipin-cholesterol staining pattern. Similar results were obtained when [3H]cholesterol-labelled fibroblasts were used for determination of the susceptibility to cholesterol oxidation. The kinetics of [3H]cholesterol oxidation in sphingomyelin-depleted cells with cholesterol oxidase in hypotonic buffer indicated that approximately 85% of the cellular cholesterol still resided in the plasma membrane after sphingomyelin depletion. These results are contradictory to earlier reports on sphingomyelinase-induced changes in cellular cholesterol distribution and suggest that minor changes in the kinetics of cholesterol transport from the plasma membrane to the endoplasmic reticulum may be responsible

  8. Overexpression of the active diacylglycerol acyltransferase variant transforms Saccharomyces cerevisiae into an oleaginous yeast.

    PubMed

    Kamisaka, Yasushi; Kimura, Kazuyoshi; Uemura, Hiroshi; Yamaoka, Masakazu

    2013-08-01

    Lipid production by Saccharomyces cerevisiae was improved by overexpression of the yeast diacylglycerol acyltransferase Dga1p lacking the N-terminal 29 amino acids (Dga1∆Np), which was previously found to be an active form in the ∆snf2 mutant. Overexpression of Dga1∆Np in the ∆snf2 mutant, however, did not increase lipid content as expected, which prompted us to search for a more suitable strain in which to study the role of Dga1∆Np in lipid accumulation. We found that the overexpression of Dga1∆Np in the ∆dga1 mutant effectively increased the lipid content up to about 45 % in the medium containing 10 % glucose. The high lipid content of the transformant was dependent on glucose concentration, nitrogen limitation, and active leucine biosynthesis. To better understand the effect of dga1 disruption on the ability of Dga1∆Np to stimulate lipid accumulation, the ∆dga1-1 mutant, in which the 3'-terminal 36 bp of the dga1 open reading frame (ORF) remained, and the ∆dga1-2 mutant, in which the 3'-terminal 36 bp were also deleted, were prepared with URA3 disruption cassettes. Surprisingly, the overexpression of Dga1∆Np in the ∆dga1-1 mutant had a lower lipid content than the original ∆dga1 mutant, whereas overexpression in the ∆dga1-2 mutant led to a high lipid content of about 45 %. These results indicated that deletion of the 3' terminal region of the dga1 ORF, rather than abrogation of genomic Dga1p expression, was crucial for the effect of Dga1∆Np on lipid accumulation. To investigate whether dga1 disruption affected gene expression adjacent to DGA1, we found that the overexpression of Esa1p together with Dga1∆Np in the ∆dga1 mutant reverted the lipid content to the level of the wild-type strain overexpressing Dga1∆Np. In addition, RT-qPCR analysis revealed that ESA1 mRNA expression in the ∆dga1 mutant was decreased compared to the wild-type strain at the early stages of culture, suggesting that lowered Esa1p expression is

  9. Cholesterol metabolites exported from human brain.

    PubMed

    Iuliano, Luigi; Crick, Peter J; Zerbinati, Chiara; Tritapepe, Luigi; Abdel-Khalik, Jonas; Poirot, Marc; Wang, Yuqin; Griffiths, William J

    2015-07-01

    The human brain contains approximately 25% of the body's cholesterol. The brain is separated from the circulation by the blood brain barrier. While cholesterol will not passes this barrier, oxygenated forms of cholesterol can cross the barrier. Here by measuring the difference in the oxysterol content of blood plasma in the jugular vein and in a forearm vein by mass spectrometry (MS) we were able to determine the flux of more than 20 cholesterol metabolites between brain and the circulation. We confirm that 24S-hydroxycholesterol is exported from brain at a rate of about 2-3mg/24h. Gas chromatography (GC)-MS data shows that the cholesterol metabolites 5α-hydroxy-6-oxocholesterol (3β,5α-dihydroxycholestan-6-one), 7β-hydroxycholesterol and 7-oxocholesterol, generally considered to be formed through reactive oxygen species, are similarly exported from brain at rates of about 0.1, 2 and 2mg/24h, respectively. Although not to statistical significance both GC-MS and liquid chromatography (LC)-MS methods indicate that (25R)26-hydroxycholesterol is imported to brain, while LC-MS indicates that 7α-hydroxy-3-oxocholest-4-enoic acid is exported from brain. PMID:25668615

  10. LDL cholesterol: controversies and future therapeutic directions.

    PubMed

    Ridker, Paul M

    2014-08-16

    Lifelong exposure to raised concentrations of LDL cholesterol increases cardiovascular event rates, and the use of statin therapy as an adjunct to diet, exercise, and smoking cessation has proven highly effective in reducing the population burden associated with hyperlipidaemia. Yet, despite consistent biological, genetic, and epidemiological data, and evidence from randomised trials, there is controversy among national guidelines and clinical practice with regard to LDL cholesterol, its measurement, the usefulness of population-based screening, the net benefit-to-risk ratio for different LDL-lowering drugs, the benefit of treatment targets, and whether aggressive lowering of LDL is safe. Several novel therapies have been introduced for the treatment of people with genetic defects that result in loss of function within the LDL receptor, a major determinant of inherited hyperlipidaemias. Moreover, the usefulness of monoclonal antibodies that extend the LDL-receptor lifecycle (and thus result in substantial lowering of LDL cholesterol below the levels achieved with statins alone) is being assessed in phase 3 trials that will enrol more than 60,000 at-risk patients worldwide. These trials represent an exceptionally rapid translation of genetic observations into clinical practice and will address core questions of how low LDL cholesterol can be safely reduced, whether the mechanism of LDL-cholesterol lowering matters, and whether ever more aggressive lipid-lowering provides a safe, long-term mechanism to prevent atherothrombotic complications. PMID:25131980

  11. Melatonin directly interacts with cholesterol and alleviates cholesterol effects in dipalmitoylphosphatidylcholine monolayers.

    PubMed

    Choi, Youngjik; Attwood, Simon J; Hoopes, Matthew I; Drolle, Elizabeth; Karttunen, Mikko; Leonenko, Zoya

    2014-01-01

    Melatonin is a pineal hormone that has been shown to have protective effects in several diseases that are associated with cholesterol dysregulation, including cardiovascular disease, Alzheimer's disease, and certain types of cancers. Cholesterol is a major membrane constituent with both a structural and functional influence. It is also known that melatonin readily partitions into cellular membranes. We investigated the effects of melatonin and cholesterol on the structure and physical properties of a 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) monolayer as a simple membrane model using the Langmuir-Blodgett (L-B) monolayer technique and molecular dynamics (MD) simulations. We report that melatonin increases the area per lipid and elastic compressibility of the DPPC monolayer in a concentration dependent manner, while cholesterol has the opposite effect. When both melatonin and cholesterol were present in the monolayer, the compression isotherms showed normalization of the area per molecule towards that of the pure DPPC monolayer, thus indicating that melatonin counteracts and alleviates cholesterol's effects. Atomistic MD simulations of melatonin enriched DPPC systems correlate with our experimental findings and illustrate the structural effects of both cholesterol and melatonin. Our results suggest that melatonin is able to lessen the influence of cholesterol through two different mechanisms. Firstly, we have shown that melatonin has a fluidizing effect on monolayers comprising only lipid molecules. Secondly, we also observe that melatonin interacts directly with cholesterol. Our findings suggest a direct nonspecific interaction of melatonin may be a mechanism involved in reducing cholesterol associated membrane effects, thus suggesting the existence of a new mechanism of melatonin's action. This may have important biological relevance in addition to the well-known anti-oxidative and receptor binding effects. PMID:24651707

  12. Enzymatic Quantification of Cholesterol and Cholesterol Esters from Silicone Hydrogel Contact Lenses

    PubMed Central

    Pucker, Andrew D.; Thangavelu, Mirunalni

    2010-01-01

    Purpose. The purpose of this work was to develop an enzymatic method of quantification of cholesterol and cholesterol esters derived from contact lenses, both in vitro and ex vivo. Methods. Lotrafilcon B (O2 Optix; CIBA Vision, Inc., Duluth, GA) and galyfilcon A (Acuvue Advance; Vistakon, Inc., Jacksonville, FL) silicone hydrogel contact lenses were independently incubated in cholesterol oleate solutions varying in concentrations. After incubation, the lenses were removed and underwent two separate 2:1 chloroform-methanol extractions. After in vitro studies, 10 human subjects wore both lotrafilcon B and galyfilcon A contact lenses for 7 days. The lenses also underwent two separate 2:1 chloroform-methanol extractions. All in vitro and ex vivo samples were quantified with a cholesterol esterase enzymatic reaction. Results. Calibration curves from quantifications of in vitro contact lens samples soaked in successively decreasing concentrations of cholesterol oleate yielded coefficients of determination (R2) of 0.99 (lotrafilcon B) and 0.97 (galyfilcon A). For in vitro contact lens samples, galyfilcon A was associated with an average cholesterol oleate extraction of 39.85 ± 48.65 μg/lens, whereas lotrafilcon B was associated with 5.86 ± 3.36 μg/lens (P = 0.05) across both extractions and all incubation concentrations. For ex vivo contact lens samples, there was significantly more cholesterol and cholesterol esters deposited on galyfilcon A (5.77 ± 1.87 μg/lens) than on lotrafilcon B (2.03 ± 1.62 μg/lens; P = 0.0005). Conclusions. This is an efficient and simple method of quantifying total cholesterol extracted from silicone hydrogel contact lenses and, potentially, the meibum and/or tear film. Certain silicone hydrogel materials demonstrate more affinity for cholesterol and its esters than do others. PMID:20089871

  13. A Land-Plant-Specific Glycerol-3-Phosphate Acyltransferase Family in Arabidopsis: Substrate Specificity, sn-2 Preference, and Evolution1[W][OA

    PubMed Central

    Yang, Weili; Simpson, Jeffrey P.; Li-Beisson, Yonghua; Beisson, Fred; Pollard, Mike; Ohlrogge, John B.

    2012-01-01

    Arabidopsis (Arabidopsis thaliana) has eight glycerol-3-phosphate acyltransferase (GPAT) genes that are members of a plant-specific family with three distinct clades. Several of these GPATs are required for the synthesis of cutin or suberin. Unlike GPATs with sn-1 regiospecificity involved in membrane or storage lipid synthesis, GPAT4 and -6 are unique bifunctional enzymes with both sn-2 acyltransferase and phosphatase activity resulting in 2-monoacylglycerol products. We present enzymology, pathway organization, and evolutionary analysis of this GPAT family. Within the cutin-associated clade, GPAT8 is demonstrated as a bifunctional sn-2 acyltransferase/phosphatase. GPAT4, -6, and -8 strongly prefer C16:0 and C18:1 ω-oxidized acyl-coenzyme As (CoAs) over unmodified or longer acyl chain substrates. In contrast, suberin-associated GPAT5 can accommodate a broad chain length range of ω-oxidized and unsubstituted acyl-CoAs. These substrate specificities (1) strongly support polyester biosynthetic pathways in which acyl transfer to glycerol occurs after oxidation of the acyl group, (2) implicate GPAT specificities as one major determinant of cutin and suberin composition, and (3) argue against a role of sn-2-GPATs (Enzyme Commission 2.3.1.198) in membrane/storage lipid synthesis. Evidence is presented that GPAT7 is induced by wounding, produces suberin-like monomers when overexpressed, and likely functions in suberin biosynthesis. Within the third clade, we demonstrate that GPAT1 possesses sn-2 acyltransferase but not phosphatase activity and can utilize dicarboxylic acyl-CoA substrates. Thus, sn-2 acyltransferase activity extends to all subbranches of the Arabidopsis GPAT family. Phylogenetic analyses of this family indicate that GPAT4/6/8 arose early in land-plant evolution (bryophytes), whereas the phosphatase-minus GPAT1 to -3 and GPAT5/7 clades diverged later with the appearance of tracheophytes. PMID:22864585

  14. Aspirin Increases the Solubility of Cholesterol in Lipid Membranes

    NASA Astrophysics Data System (ADS)

    Alsop, Richard; Barrett, Matthew; Zheng, Sonbo; Dies, Hannah; Rheinstadter, Maikel

    2014-03-01

    Aspirin (ASA) is often prescribed for patients with high levels of cholesterol for the secondary prevention of myocardial events, a regimen known as the Low-Dose Aspirin Therapy. We have recently shown that Aspirin partitions in lipid bilayers. However, a direct interplay between ASA and cholesterol has not been investigated. Cholesterol is known to insert itself into the membrane in a dispersed state at moderate concentrations (under ~37.5%) and decrease fluidity of membranes. We prepared model lipid membranes containing varying amounts of both ASA and cholesterol molecules. The structure of the bilayers as a function of ASA and cholesterol concentration was determined using high-resolution X-ray diffraction. At cholesterol levels of more than 40mol%, immiscible cholesterol plaques formed. Adding ASA to the membranes was found to dissolve the cholesterol plaques, leading to a fluid lipid bilayer structure. We present first direct evidence for an interaction between ASA and cholesterol on the level of the cell membrane.

  15. [Basic mechanisms: absorption and excretion of cholesterol and other sterols].

    PubMed

    Cofan Pujol, Montserrat

    2014-01-01

    Cholesterol is of vital importance for vertebrate cell membrane structure and function. It is obvious that adequate regulation of cholesterol homeostasis is essential. Hypercholesterolemia promotes atherosclerosis and thereby represents a major risk factor for cardiovascular disease. The liver has been considered the major site of control in maintenance of cholesterol homeostasis. The liver facilitates clearance of (very) low density lipoprotein particles and cholesterol-containing chylomicron remnants, synthesizes cholesterol, synthesizes and secretes (nascent) high density lipoprotein particles, secretes cholesterol and bile salts to bile, and is involved in reverse cholesterol transport. In recent years, however, the importance of the intestine in many aspects of cholesterol physiology is increasingly recognized. It has become apparent that direct secretion of cholesterol from the blood compartment into the intestine, or transintestinal cholesterol excretion, plays a major role in disposal of cholesterol via the feces. This review will discuss current knowledge on the physiology of cholesterol homeostasis, with emphasis on cholesterol absorption, cholesterol synthesis and fecal excretion, and therapeutic options for hypercholesterolemia. PMID:24461630

  16. CHOBIMALT: A Cholesterol-Based Detergent†

    PubMed Central

    Howell, Stanley C.; Mittal, Ritesh; Huang, Lijun; Travis, Benjamin; Breyer, Richard M.; Sanders, Charles R.

    2010-01-01

    Cholesterol and its hemisuccinate and sulfate derivatives are widely used in studies of purified membrane proteins, but are difficult to solubilize in aqueous solution, even in the presence of detergent micelles. Other cholesterol derivatives do not form conventional micelles and lead to viscous solutions. To address these problems a cholesterol-based detergent, CHOBIMALT, has been synthesized and characterized. At concentrations above 3–4μM, CHOBIMALT forms micelles without the need for elevated temperatures or sonic disruption. Diffusion and fluorescence measurements indicated that CHOBIMALT micelles are large (210 ± 30 kDa). The ability to solubilize a functional membrane protein was explored using a G-protein coupled receptor, the human kappa opioid receptor type 1 (hKOR1). While CHOBIMALT alone was not found to be effective as a surfactant for membrane extraction, when added to classical detergent micelles CHOBIMALT was observed to dramatically enhance the thermal stability of solubilized hKOR1. PMID:20919740

  17. Distribution and Spectroscopy of Green Fluorescent Protein and Acyl-CoA: Cholesterol Acytransferase in Sf21 Insect Cells

    NASA Technical Reports Server (NTRS)

    Richmond, R. C.; Mahtani, H.; Lu, X.; Chang, T. Y.; Malak, H.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Acyl-CoA: cholesterol acyltransferase (ACAT) is thought to significantly participate in the pathway of cholesterol esterification that underlies the pathology of artherosclerosis. This enzyme is a membrane protein known to be preferentially bound within the endoplasmic reticulum of mammalian cells, from which location it esterifies cholesterol derived from low density lipoprotein. Cultures of insect cells were separately infected with baculovirus containing the gene for green fluroescent protein (GFP) and with baculovirus containing tandem genes for GFP and ACAT. These infected cultures expressed GFP and the fusion protein GCAT, respectively, with maximum expression occurring on the fourth day after infection. Extraction of GFP- and of GCAT-expressing cells with urea and detergent resulted in recovery of fluorescent protein in aqueous solution. Fluorescence spectra at neutral pH were identical for both GFP and GCAT extracts in aqueous solution, indicating unperturbed tertiary structure for the GFP moiety within GCAT. In a cholesterol esterification assay, GCAT demonstrated ACAT activity, but with less efficiency compared to native ACAT. It was hypothesized that the membrane protein ACAT would lead to differences in localization of GCAT compared to GFP within the respective expressing insect cells. The GFP marker directly and also within the fusion protein GCAT was accordingly used as the intracellular probe that was fluorescently analyzed by the new biophotonics technique of hyperspectral imaging. In that technique, fluorescence imaging was obtained from two dimensional arrays of cells, and regions of interest from within those images were then retrospectively analyzed for the emission spectra that comprises the image. Results of hyperspectral imaging of insect cells on day 4 postinfection showed that GCAT was preferentially localized to the cytoplasm of these cells compared to GFP. Furthermore, the emission spectra obtained for the localized GCAT displayed a peak

  18. Electron Transfer Pathways in Cholesterol Synthesis.

    PubMed

    Porter, Todd D

    2015-10-01

    Cholesterol synthesis in the endoplasmic reticulum requires electron input at multiple steps and utilizes both NADH and NADPH as the electron source. Four enzymes catalyzing five steps in the pathway require electron input: squalene monooxygenase, lanosterol demethylase, sterol 4α-methyl oxidase, and sterol C5-desaturase. The electron-donor proteins for these enzymes include cytochrome P450 reductase and the cytochrome b5 pathway. Here I review the evidence for electron donor protein requirements with these enzymes, the evidence for additional electron donor pathways, and the effect of deletion of these redox enzymes on cholesterol and lipid metabolism. PMID:26344922

  19. Differing rates of cholesterol absorption among inbred mouse strains yield differing levels of HDL-cholesterol.

    PubMed

    Sontag, Timothy J; Chellan, Bijoy; Getz, Godfrey S; Reardon, Catherine A

    2013-09-01

    Inbred strains of mice with differing susceptibilities to atherosclerosis possess widely varying plasma HDL levels. Cholesterol absorption and lipoprotein formation were compared between atherosclerosis-susceptible, low-HDL C57BL6/J mice and atherosclerosis-resistant, high-HDL FVBN/J mice. [(3)H]cholesterol and triglyceride appeared in the plasma of FVB mice gavaged with cholesterol in olive oil at a much higher rate than in C57 mice. The plasma cholesterol was found almost entirely as HDL-cholesterol in both strains. Inhibition of lipoprotein catabolism with Tyloxapol revealed that the difference in the rate of [(3)H]cholesterol appearance in the plasma was due entirely to a greater rate of chylomicron secretion from the intestine of the FVB mice. Lipid absorption into the 2nd quarter of the small intestine is greater in the FVB mice and indicates that this region may contain the factors that give rise to the differences in absorption observed between the two mouse strains. Additionally, ad libitum feeding prior to cholesterol gavage accentuates the absorption rate differences compared with fasting. The resultant remodeling of the increased levels of chylomicron in the plasma may contribute to increased plasma HDL. Intestinal gene expression analysis reveals several genes that may play a role in these differences, including microsomal triglyceride transfer protein and ABCG8. PMID:23812556

  20. Serum cholesterol and variant in cholesterol-related gene CETP predict white matter microstructure.

    PubMed

    Warstadt, Nicholus M; Dennis, Emily L; Jahanshad, Neda; Kohannim, Omid; Nir, Talia M; McMahon, Katie L; de Zubicaray, Greig I; Montgomery, Grant W; Henders, Anjali K; Martin, Nicholas G; Whitfield, John B; Jack, Clifford R; Bernstein, Matt A; Weiner, Michael W; Toga, Arthur W; Wright, Margaret J; Thompson, Paul M

    2014-11-01

    Several common genetic variants influence cholesterol levels, which play a key role in overall health. Myelin synthesis and maintenance are highly sensitive to cholesterol concentrations, and abnormal cholesterol levels increase the risk for various brain diseases, including Alzheimer's disease. We report significant associations between higher serum cholesterol (CHOL) and high-density lipoprotein levels and higher fractional anisotropy in 403 young adults (23.8 ± 2.4 years) scanned with diffusion imaging and anatomic magnetic resonance imaging at 4 Tesla. By fitting a multi-locus genetic model within white matter areas associated with CHOL, we found that a set of 18 cholesterol-related, single-nucleotide polymorphisms implicated in Alzheimer's disease risk predicted fractional anisotropy. We focused on the single-nucleotide polymorphism with the largest individual effects, CETP (rs5882), and found that increased G-allele dosage was associated with higher fractional anisotropy and lower radial and mean diffusivities in voxel-wise analyses of the whole brain. A follow-up analysis detected white matter associations with rs5882 in the opposite direction in 78 older individuals (74.3 ± 7.3 years). Cholesterol levels may influence white matter integrity, and cholesterol-related genes may exert age-dependent effects on the brain. PMID:24997672

  1. Serum Cholesterol and Variant in Cholesterol-Related Gene CETP Predict White Matter Microstructure

    PubMed Central

    Warstadt, Nicholus M.; Dennis, Emily L.; Jahanshad, Neda; Kohannim, Omid; Nir, Talia M.; McMahon, Katie L.; de Zubicaray, Greig I.; Montgomery, Grant W.; Henders, Anjali K.; Martin, Nicholas G.; Whitfield, John B.; Jack, Clifford R.; Bernstein, Matt A.; Weiner, Michael W.; Toga, Arthur W.; Wright, Margaret J.; Thompson, Paul M.

    2014-01-01

    Several common genetic variants influence cholesterol levels, which play a key role in overall health. Myelin synthesis and maintenance are highly sensitive to cholesterol concentrations, and abnormal cholesterol levels increase the risk for various brain diseases, including Alzheimer's disease (AD). We report significant associations between higher serum cholesterol (CHOL) levels and high-density lipoproteins (HDL) and higher fractional anisotropy in 403 young adults (23.8±2.4 years) scanned with diffusion imaging and anatomical MRI at 4 Tesla. By fitting a multi-locus genetic model within white matter areas associated with CHOL, we found that a set of 18 cholesterol-related SNPs implicated in AD risk predicted FA. We focused on the SNP with the largest individual effects - CETP (rs5882) – and found that increased G-allele dosage was associated with higher FA and lower radial and mean diffusivities in voxel-wise analyses of the whole brain. A follow-up analysis detected WM associations with rs5882 in the opposite direction in 78 older individuals (74.3±7.3 years). Cholesterol levels may influence WM integrity, and cholesterol-related genes may exert age-dependent effects. PMID:24997672

  2. Cholesterol homeostasis: How do cells sense sterol excess?

    PubMed

    Howe, Vicky; Sharpe, Laura J; Alexopoulos, Stephanie J; Kunze, Sarah V; Chua, Ngee Kiat; Li, Dianfan; Brown, Andrew J

    2016-09-01

    Cholesterol is vital in mammals, but toxic in excess. Consequently, elaborate molecular mechanisms have evolved to maintain this sterol within narrow limits. How cells sense excess cholesterol is an intriguing area of research. Cells sense cholesterol, and other related sterols such as oxysterols or cholesterol synthesis intermediates, and respond to changing levels through several elegant mechanisms of feedback regulation. Cholesterol sensing involves both direct binding of sterols to the homeostatic machinery located in the endoplasmic reticulum (ER), and indirect effects elicited by sterol-dependent alteration of the physical properties of membranes. Here, we examine the mechanisms employed by cells to maintain cholesterol homeostasis. PMID:26993747

  3. An amperometric cholesterol biosensor based on epoxy resin membrane bound cholesterol oxidase

    PubMed Central

    Pundir, C.S.; Narang, Jagriti; Chauhan, Nidhi; Sharma, Preety; Sharma, Renu

    2012-01-01

    Background & objectives: The use of epoxy resin membrane as a support for immobilization of enzyme has resulted into improved sensitivity and stability of biosensors for uric acid, ascorbic acid and polyphenols. The present work was aimed to prepare an improved amperometric biosensor for determination of serum cholesterol required in the diagnostics and management of certain pathological conditions. Methods: Epoxy resin membrane with immobilized cholesterol oxidase was mounted on the cleaned platinum (Pt) electrode with a parafilm to construct a working electrode. This working electrode along with Ag/AgCl as reference and Ag wire as an auxiliary electrode were connected through a three terminal electrometer to construct a cholesterol biosensor. Results: The sensor showed optimum response within 25 sec at pH 7.0 and 45°C. The linear working range of biosensor was 1.0 to 8.0 mM cholesterol. Km and Imax for cholesterol were 5.0 mM and 9.09 μA, respectively. The biosensor measured serum cholesterol. The minimum detection limit of the sensor was 1.0 mM. The mean analytical recoveries of added cholesterol in serum (2.84 and 4.13 mM) were 91.4±2.8 and 92.3±3.1 per cent (n=6), respectively. Within and between assay coefficient of variation (CV) were <2 and <4 per cent, respectively. Biosensor had a storage life of 6 months at 4°C. Interpretation & conclusions: The use of epoxy resin membrane as a support for immobilization of cholesterol oxidase has resulted into an improved amperometric cholesterol biosensor. The present biosensor had an advantage over the existing biosensors as it worked at comparatively lower potential. PMID:23168704

  4. Cholesterol versus cholesterol sulfate: effects on properties of phospholipid bilayers containing docosahexaenoic acid.

    PubMed

    Schofield, M; Jenski, L J; Dumaual, A C; Stillwell, W

    1998-09-01

    The important omega-3 fatty acid docosahexaenoic acid (DHA) is present at high concentration in some membranes that also contain the unusual sterol cholesterol sulfate (CS). The association between these lipids and their effect on membrane structure is presented here. Differential scanning calorimetry (DSC), MC540 fluorescence, erythritol permeability, pressure/area isotherms on lipid monolayers and molecular modeling are used to compare the effect of CS and cholesterol on model phospholipid membranes. By DSC, CS decreases the main phase transition temperature and broadens the transitions of dipalmitolyphosphatidylcholine (DPPC), 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (18:0,18:1 PC) and 1-stearoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine (18:0,22:6 PC) to a much larger extent than does cholesterol. In addition CS produces a three-component transition in 18:0,18:1 PC bilayers that is not seen with cholesterol. In a mixed phospholipid bilayer composed of 18:0,18:1 PC/18:0,22:6 PC (1:1, mol/mol), CS at 2.5 membrane mol% or more induces lateral phase separation while cholesterol does not. CS decreases lipid packing density and increases permeability of 18:0,18:1 PC and 18:0,22:6 PC bilayers to a much larger extent than cholesterol. CS disrupts oleic acid-containing bilayers more than those containing DHA. Molecular modeling confirms that the anionic sulfate moiety on CS renders this sterol more polar than cholesterol with the consequence that CS likely resides higher (extends further into the aqueous environment) in the bilayer. CS can therefore be preferentially accommodated into DHA-enriched bilayers where its tetracyclic ring system may fit into the delta 4 pocket of DHA, a location excluded to cholesterol. It is proposed that CS may in part replace the membrane function of cholesterol in DHA-rich membranes. PMID:9807808

  5. MCPIP is induced by cholesterol and participated in cholesterol-caused DNA damage in HUVEC

    PubMed Central

    Da, Jingjing; Zhuo, Ming; Qian, Minzhang

    2015-01-01

    Hypercholesterolemia is an important risk factor for atherosclerosis and cholesterol treatment would cause multiple damages, including DNA damage, on endothelial cells. In this work, we have used human umbilical vein endothelial cell line (HUVEC) to explore the mechanism of cholesterol induced damage. We have found that cholesterol treatment on HUVEC could induce the expression of MCPIP1. When given 12.5 mg/L cholesterol on HUVEC, the expression of MCPIP1 starts to increase since 4 hr after treatment and at 24 hr after treatment it could reach to 10 fold of base line level. We hypothesis this induction of MCPIP1 may contribute to the damaging process and we have used siRNA of MCPIP1 in further research. This MCPIP1 siRNA (siMCPIP) could down regulate MCPIP1 by 73.4% and when using this siRNA on HUVECs, we could see the cholesterol induced DNA damage have been reduced. We have detected DNA damage by γH2AX foci formation in nuclear, γH2AX protein level and COMET assay. Compare to cholesterol alone group, siMCPIP group shows much less γH2AX foci formation in nuclear after cholesterol treatment, less γH2AX protein level in cell and also less tail moment detected in COMET assay. We have also seen that using siMCPIP1 could result in less reactive oxygen species (ROS) in cell after cholesterol treatment. We have also seen that using siMCPIP could reduce the protein level of Nox4 and p47phox, two major regulators in ROS production. These results suggest that MCPIP1 may play an important role in cholesterol induced damage. PMID:26617772

  6. Regulation of biliary cholesterol secretion. Functional relationship between the canalicular and sinusoidal cholesterol secretory pathways in the rat.

    PubMed Central

    Nervi, F; Marinović, I; Rigotti, A; Ulloa, N

    1988-01-01

    The functional interrelationship between biliary cholesterol secretion, sinusoidal lipoprotein cholesterol secretion and bile salt synthesis was studied in the rat. Diosgenin, fructose, and colestipol in the diet were used to, respectively, influence biliary cholesterol output, VLDL production and bile salt synthesis. In the acute bile fistula rat, biliary cholesterol output was 700% increased by diosgenin and 50% decreased by fructose. In the rats fed both diosgenin and fructose, biliary cholesterol secretion was increased only by approximately 200%, whereas biliary bile salts and phospholipid outputs were unchanged. In the isolated perfused liver, VLDL-cholesterol output was 50% reduced by diosgenin alone, but was unchanged following feeding of diosgenin plus fructose. However, the livers of rats fed diosgenin plus fructose exhibited a 700% increase in VLDL-triglyceride production and a 200% increase in VLDL-cholesterol output. A significant reciprocal relationship between VLDL-cholesterol secretion and the coupling ratio of cholesterol to bile salts in bile was observed. Colestipol added to the diet maintained both sinusoidal and biliary cholesterol outputs within the normal range. In the chronic bile fistula rat, colestipol increased bile salt synthesis by 100% while diosgenin and fructose diets had no effect. Similarly, the addition of fructose to the colestipol diet did not decrease bile salt synthesis. These data suggest a reciprocal relationship between biliary cholesterol secretion and hepatic secretion of cholesterol as VLDL particles. The free cholesterol pool used for bile salt synthesis seems functionally unrelated to the pool from which VLDL-cholesterol and biliary cholesterol originate. These findings support the idea that metabolic compartmentalization of hepatic cholesterol is a major determinant of the quantity of cholesterol available for recruitment by the bile salt-dependent biliary cholesterol secretory mechanism. PMID:3198756

  7. Golgi membrane fission requires the CtBP1-S/BARS-induced activation of lysophosphatidic acid acyltransferase δ.

    PubMed

    Pagliuso, Alessandro; Valente, Carmen; Giordano, Lucia Laura; Filograna, Angela; Li, Guiling; Circolo, Diego; Turacchio, Gabriele; Marzullo, Vincenzo Manuel; Mandrich, Luigi; Zhukovsky, Mikhail A; Formiggini, Fabio; Polishchuk, Roman S; Corda, Daniela; Luini, Alberto

    2016-01-01

    Membrane fission is an essential cellular process by which continuous membranes split into separate parts. We have previously identified CtBP1-S/BARS (BARS) as a key component of a protein complex that is required for fission of several endomembranes, including basolateral post-Golgi transport carriers. Assembly of this complex occurs at the Golgi apparatus, where BARS binds to the phosphoinositide kinase PI4KIIIβ through a 14-3-3γ dimer, as well as to ARF and the PKD and PAK kinases. We now report that, when incorporated into this complex, BARS binds to and activates a trans-Golgi lysophosphatidic acid (LPA) acyltransferase type δ (LPAATδ) that converts LPA into phosphatidic acid (PA); and that this reaction is essential for fission of the carriers. LPA and PA have unique biophysical properties, and their interconversion might facilitate the fission process either directly or indirectly (via recruitment of proteins that bind to PA, including BARS itself). PMID:27401954

  8. Golgi membrane fission requires the CtBP1-S/BARS-induced activation of lysophosphatidic acid acyltransferase δ

    PubMed Central

    Pagliuso, Alessandro; Valente, Carmen; Giordano, Lucia Laura; Filograna, Angela; Li, Guiling; Circolo, Diego; Turacchio, Gabriele; Marzullo, Vincenzo Manuel; Mandrich, Luigi; Zhukovsky, Mikhail A.; Formiggini, Fabio; Polishchuk, Roman S.; Corda, Daniela; Luini, Alberto

    2016-01-01

    Membrane fission is an essential cellular process by which continuous membranes split into separate parts. We have previously identified CtBP1-S/BARS (BARS) as a key component of a protein complex that is required for fission of several endomembranes, including basolateral post-Golgi transport carriers. Assembly of this complex occurs at the Golgi apparatus, where BARS binds to the phosphoinositide kinase PI4KIIIβ through a 14-3-3γ dimer, as well as to ARF and the PKD and PAK kinases. We now report that, when incorporated into this complex, BARS binds to and activates a trans-Golgi lysophosphatidic acid (LPA) acyltransferase type δ (LPAATδ) that converts LPA into phosphatidic acid (PA); and that this reaction is essential for fission of the carriers. LPA and PA have unique biophysical properties, and their interconversion might facilitate the fission process either directly or indirectly (via recruitment of proteins that bind to PA, including BARS itself). PMID:27401954

  9. Crystallization and preliminary X-ray analysis of the glycerol-3-phosphate 1-acyltransferase from squash (Cucurbita moschata).

    PubMed

    Turnbull, A P; Rafferty, J B; Sedelnikova, S E; Slabas, A R; Schierer, T P; Kroon, J T; Nishida, I; Murata, N; Simon, J W; Rice, D W

    2001-03-01

    Glycerol-3-phosphate 1-acyltransferase (E.C. 2.3.1.15; G3PAT) catalyses the incorporation of an acyl group from either acyl-acyl carrier proteins (acylACPs) or acylCoAs into the sn-1 position of glycerol 3-phosphate to yield 1-acylglycerol 3-phosphate. Crystals of squash G3PAT have been obtained by the hanging-drop method of vapour diffusion using PEG 4000 as the precipitant. These crystals are most likely to belong to space group P2(1)2(1)2(1), with approximate unit-cell parameters a = 61.1, b = 65.1, c = 103.3 A, alpha = beta = gamma = 90 degrees and a monomer in the asymmetric unit. X-ray diffraction data to 1.9 A resolution have been collected in-house using a MAR 345 imaging-plate system. PMID:11223529

  10. Two Clades of Type-1 Brassica napus Diacylglycerol Acyltransferase Exhibit Differences in Acyl-CoA Preference.

    PubMed

    Greer, Michael S; Pan, Xue; Weselake, Randall J

    2016-06-01

    Diacylglycerol acyltransferase (DGAT) catalyzes the acyl-CoA-dependent acylation of sn-1, 2-diacylglycerol to produce triacylglycerol, which is the main component of the seed oil of Brassica oilseed species. Phylogenetic analysis of the amino acid sequences encoded by four transcriptionally active DGAT1 genes from Brassica napus suggests that the gene forms diverged over time into two clades (I and II), with representative members in each genome (A and C). The majority of the amino acid sequence differences in these forms of DGAT1, however, reside outside of motifs suggested to be involved in catalysis. Despite this, the clade II enzymes displayed a significantly enhanced preference for linoleoyl-CoA when assessed using in-vitro enzyme assays with yeast microsomes containing recombinant enzyme forms. These findings contribute to our understanding of triacylglycerol biosynthesis in B. napus, and may advance our ability to engineer DGAT1s with desired substrate selectivity properties. PMID:27138895

  11. Garbanzo diet lowers cholesterol in hamsters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cholesterol-lowering potential of diets with 22% protein from Chickpea (Cicer arietinum, European variety of Garbanzo, Kabuli Chana), Bengal gram (Cicer arietinum, Asian variety of Garbanzo, Desi Chana, smaller in size, yellow to black color), lentils, soy protein isolate, hydrolyzed salmon protein...

  12. [Giant cholesterol cysts of the petrous apex].

    PubMed

    Pellet, W; Valenzuela, S; Malca, S; Cannoni, M; Perez-Castillo, A M

    1992-01-01

    In connection with their two own cases, the authors deal about the giant cholesterol cysts of the petrous apex. The lesions which are to be differentiated from epidermoid cysts are cholesterol granulomas. Their petrous apex location explains their characteristic large appearance. As each cholesterol granuloma, they occur when a bony cell is obstructed. This chronic obstruction induces mucosal edema then bleedings which lead to the formation and, by the lack of drainage, to the accumulation of cholesterol crystals. These crystals initiate a non specific reaction to foreign bodies, a granuloma, which also can bleed. Thus, a continuous cycle perpetuates the growth of the lesion. This lesion, when it is localized in the petrous apex, can reach a big size before the appearance of some signs. Usually, these are otologic (sensorineural hearing loss, tinnitus, vertigo) and/or cranial nerve palsies (V, VI, VII). C.T. scan (well defined, sharply marginated bony expansible lesion with isodense to the brain central part) and M.R.I. (central region of increased intensity on both T1 and T2 weighted images and peripheral rim of markedly decreased signal intensity in all instances) features are characteristic enough to allow diagnose with other petrous apex lesions (cholesteatoma, mucocele, epithelial cyst, histiocytosis X, ...). Surgical treatment must try to evacuate and to aerate the cavity or perhaps to obliterate it with fatty pieces in order to prevent the recurrence. PMID:1299772

  13. Mitochondria, cholesterol and cancer cell metabolism.

    PubMed

    Ribas, Vicent; García-Ruiz, Carmen; Fernández-Checa, José C

    2016-12-01

    Given the role of mitochondria in oxygen consumption, metabolism and cell death regulation, alterations in mitochondrial function or dysregulation of cell death pathways contribute to the genesis and progression of cancer. Cancer cells exhibit an array of metabolic transformations induced by mutations leading to gain-of-function of oncogenes and loss-of-function of tumor suppressor genes that include increased glucose consumption, reduced mitochondrial respiration, increased reactive oxygen species generation and cell death resistance, all of which ensure cancer progression. Cholesterol metabolism is disturbed in cancer cells and supports uncontrolled cell growth. In particular, the accumulation of cholesterol in mitochondria emerges as a molecular component that orchestrates some of these metabolic alterations in cancer cells by impairing mitochondrial function. As a consequence, mitochondrial cholesterol loading in cancer cells may contribute, in part, to the Warburg effect stimulating aerobic glycolysis to meet the energetic demand of proliferating cells, while protecting cancer cells against mitochondrial apoptosis due to changes in mitochondrial membrane dynamics. Further understanding the complexity in the metabolic alterations of cancer cells, mediated largely through alterations in mitochondrial function, may pave the way to identify more efficient strategies for cancer treatment involving the use of small molecules targeting mitochondria, cholesterol homeostasis/trafficking and specific metabolic pathways. PMID:27455839

  14. The Success Story of LDL Cholesterol Lowering.

    PubMed

    Pedersen, Terje R

    2016-02-19

    We can look back at >100 years of cholesterol research that has brought medicine to a stage where people at risk of severe or fatal coronary heart disease have a much better prognosis than before. This progress has not come about without resistance. Perhaps one of the most debated topics in medicine, the cholesterol controversy, could only be brought to rest through the development of new clinical research methods that were capable of taking advantage of the amazing achievements in basic and pharmacological science after the second World War. It was only after understanding the biochemistry and physiology of cholesterol synthesis, transport and clearance from the blood that medicine could take advantage of drugs and diets to reduce the risk of atherosclerotic diseases. This review points to the highlights of the history of low-density lipoprotein-cholesterol lowering, with the discovery of the low-density lipoprotein receptor and its physiology and not only the development of statins as the stellar moments but also the development of clinical trial methodology as an effective tool to provide scientifically convincing evidence. PMID:26892969

  15. Cholesterol - Multiple Languages: MedlinePlus

    MedlinePlus

    ... Hindi (हिन्दी) Japanese (日本語) Korean (한국어) Portuguese (português) Russian (Русский) Somali (af Soomaali) Spanish (español) Tagalog ( ... 한국어 (Korean) Bilingual PDF Health Information Translations Portuguese (português) Cholesterol Colesterol - português (Portuguese) Bilingual PDF Health Information ...

  16. Intracranial cholesterol granuloma in a cat.

    PubMed

    Ricci, Emanuele; Abbiati, Gianluca; Cantile, Carlo

    2010-11-01

    A case of intracranial cholesterol granuloma is described in a 4-year-old neutered European male cat presented with a 5-month history of progressive weakness, ataxia and depression. On clinical evaluation, haematological and biochemical profiles revealed only mild hypercholesterolemia and magnetic resonance imaging showed a large space-occupying extra-axial mass in the area of the falx, not homogeneous after contrast enhancement. At post-mortem examination, an orange-yellowish mass of 22 mm in diameter extended from the right frontal lobe to the temporo-parietal region, causing atrophy of the prosencephalic region of the brain. The site of origin of the mass was within the subarachnoid space of the supracallosum sulcus of the right cerebral hemisphere. Histological examination of the lesion revealed abundant deposits of cholesterol clefts, surrounded by clusters of macrophages and multinucleated giant cells. Neither inflammatory lesions, nor cholesterol deposits were detected in other areas of the brain and in other organs. On the basis of the histological examination, a diagnosis of intracranial cholesterol granuloma was made. PMID:20543528

  17. Retinal cholesterol emboli during diagnostic cardiac catheterization.

    PubMed

    Blanco, V R; Morís, C; Barriales, V; González, C

    2000-11-01

    Retinal embolism is a highly infrequent complication of cardiac catheterization of thrombotic, lipidic, and calcific etiology. We provide the first reported clinical case of retinal embolism caused by cholesterol crystal without systemic adverse effects as a severe complication of diagnostic cardiac catheterization. Cathet. Cardiovasc. Intervent. 51:323-325, 2000. PMID:11066118

  18. Molecularly "wired" cholesterol oxidase for biosensing.

    PubMed

    Leonida, Mihaela D; Aurian-Blajeni, Benedict

    2015-02-01

    The influence of several factors on the activity of cholesterol oxidase (ChOx) transiently exposed to a room temperature ionic liquid (RTIL) was studied. Presence of flavin adenine dinucleotide (FAD, prosthetic group of ChOx) during exposure to RTIL makes the procedure enzyme-friendly, while the use of RTIL (green reagent) makes it environmentally-friendly. Following exposure to RTIL and its subsequent removal, FAD becomes part of the molecular structure of the refolded protein (a molecular "wire"). This makes the procedure used here a molecular one. The factors studied were: FAD presence in RTIL during modification, water presence during exposure to RTIL, and ratio FAD:RTIL during "wiring". Performance parameters monitored were: enzyme activity before and after "wiring" (expressed as (dA/dt)/mg enzyme, and measured spectrophotometrically), peak current in an amperometric biosensor for cholesterol detection, and linearity of the biosensor response depending on cholesterol concentration. After RTIL removal, the modified enzyme (ME) retained a high percentage of the added FAD, which supplemented that of the native enzyme (functioning as a "wire" and enhancing electron transfer kinetics), and a fraction of the initial activity. Used in an amperometric biosensor, ME showed catalytic activity, linear behavior as a function of cholesterol concentration, and stability. PMID:25579496

  19. Limnanthes douglasii lysophosphatidic acid acyltransferases: immunological quantification, acyl selectivity and functional replacement of the Escherichia coli plsC gene.

    PubMed Central

    Brown, Adrian P; Carnaby, Simon; Brough, Clare; Brazier, Melissa; Slabas, Antoni R

    2002-01-01

    Antibodies were raised against the two membrane-bound lysophosphatidic acid acyltransferase (LPAAT) enzymes from Limnanthes douglasii (meadowfoam), LAT1 and LAT2, using the predicted soluble portion of each protein as recombinant protein antigens. The antibodies can distinguish between the two acyltransferase proteins and demonstrate that both migrate in an anomalous fashion on SDS/PAGE gels. The antibodies were used to determine that LAT1 is present in both leaf and developing seeds, whereas LAT2 is only detectable in developing seeds later than 22 daf (days after flowering). Both proteins were found exclusively in microsomal fractions and their amount was determined using the recombinant antigens as quantification standards. LAT1 is present at a level of 27 pg/microg of membrane protein in leaf tissue and

  20. Silencing an N-acyltransferase-like involved in lignin biosynthesis in Nicotiana attenuata dramatically alters herbivory-induced phenolamide metabolism.

    PubMed

    Gaquerel, Emmanuel; Kotkar, Hemlata; Onkokesung, Nawaporn; Galis, Ivan; Baldwin, Ian T

    2013-01-01

    In a transcriptomic screen of Manduca sexta-induced N-acyltransferases in leaves of Nicotiana attenuata, we identified an N-acyltransferase gene sharing a high similarity with the tobacco lignin-biosynthetic hydroxycinnamoyl-CoA:shikimate/quinate hydroxycinnamoyl transferase (HCT) gene whose expression is controlled by MYB8, a transcription factor that regulates the production of phenylpropanoid polyamine conjugates (phenolamides, PAs). To evaluate the involvement of this HCT-like gene in lignin production as well as the resulting crosstalk with PA metabolism during insect herbivory, we transiently silenced (by VIGs) the expression of this gene and performed non-targeted (UHPLC-ESI/TOF-MS) metabolomics analyses. In agreement with a conserved function of N. attenuata HCT-like in lignin biogenesis, HCT-silenced plants developed weak, soft stems with greatly reduced lignin contents. Metabolic profiling demonstrated large shifts (up to 12% deregulation in total extracted ions in insect-attacked leaves) due to a large diversion of activated coumaric acid units into the production of developmentally and herbivory-induced coumaroyl-containing PAs (N',N''-dicoumaroylspermidine, N',N''-coumaroylputrescine, etc) and to minor increases in the most abundant free phenolics (chlorogenic and cryptochlorogenic acids), all without altering the production of well characterized herbivory-responsive caffeoyl- and feruloyl-based putrescine and spermidine PAs. These data are consistent with a strong metabolic tension, exacerbated during herbivory, over the allocation of coumaroyl-CoA units among lignin and unusual coumaroyl-containing PAs, and rule out a role for HCT-LIKE in tuning the herbivory-induced accumulation of other PAs. Additionally, these results are consistent with a role for lignification as an induced anti-herbivore defense. PMID:23704878

  1. Sex and depot differences in ex vivo adipose tissue fatty acid storage and glycerol-3-phosphate acyltransferase activity

    PubMed Central

    Morgan-Bathke, Maria; Chen, Liang; Oberschneider, Elisabeth; Harteneck, Debra

    2015-01-01

    Adipose tissue fatty acid storage varies according to sex, adipose tissue depot, and degree of fat gain. However, the mechanism(s) for these variations is not completely understood. We examined whether differences in adipose tissue glycerol-3-phosphate acyltransferase (GPAT) might play a role in these variations. We optimized an enzyme activity assay for total GPAT and GPAT1 activity in human adipose tissue and measured GPAT activity. Omental and subcutaneous adipose tissue was collected from obese and nonobese adults for measures of GPAT and GPAT1 activities, ex vivo palmitate storage, acyl-CoA synthetase (ACS) and diacylglycerol-acyltransferase (DGAT) activities, and CD36 protein. Total GPAT and GPAT1 activities decreased as a function of adipocyte size in both omental (r = −0.71, P = 0.003) and subcutaneous (r = −0.58, P = 0.04) fat. The relative contribution of GPAT1 to total GPAT activity increased as a function of adipocyte size, accounting for up to 60% of GPAT activity in those with the largest adipocytes. We found strong, positive correlations between ACS, GPAT, and DGAT activities for both sexes and depots (r values 0.58–0.91) and between these storage factors and palmitate storage rates into TAG (r values 0.55–0.90). We conclude that: 1) total GPAT activity decreases as a function of adipocyte size; 2) GPAT1 can account for over half of adipose GPAT activity in hypertrophic obesity; and 3) ACS, GPAT, and DGAT are coordinately regulated. PMID:25738782

  2. Essential Role of Lysophosphatidylcholine Acyltransferase 3 in the Induction of Macrophage Polarization in PMA-Treated U937 Cells.

    PubMed

    Taniguchi, Kosuke; Hikiji, Hisako; Okinaga, Toshinori; Hashidate-Yoshida, Tomomi; Shindou, Hideo; Ariyoshi, Wataru; Shimizu, Takao; Tominaga, Kazuhiro; Nishihara, Tatsuji

    2015-12-01

    Lysophospholipid acyltransferases (LPLATs) regulate the diversification of fatty acid composition in biological membranes. Lysophosphatidylcholine acyltransferases (LPCATs) are members of the LPLATs that play a role in inflammatory responses. M1 macrophages differentiate in response to lipopolysaccharide (LPS) and are pro-inflammatory, whereas M2 macrophages, which differentiate in response to interleukin-4 (IL-4), are anti-inflammatory and involved in homeostasis and wound healing. In the present study, we showed that LPCATs play an important role in M1/M2-macrophage polarization. LPS changed the shape of PMA-treated U937 cells from rounded to spindle shaped and upregulated the mRNA and protein expression of the M1 macrophage markers CXCL10, TNF-α, and IL-1β. IL-4 had no effect on the shape of PMA-treated U937 cells and upregulated the M2 macrophage markers CD206, IL-1ra, and TGF-β in PMA-treated U937 cells. These results suggest that LPS and IL-4 promote the differentiation of PMA-treated U937 cells into M1- and M2-polarized macrophages, respectively. LPS significantly downregulated the mRNA expression of LPCAT3, one of four LPCAT isoforms, and suppressed its enzymatic activity toward linoleoyl-CoA and arachidonoyl-CoA in PMA-treated U937 cells. LPCAT3 knockdown induced a spindle-shaped morphology typical of M1-polarized macrophages, and increased the secretion of CXCL10 and decreased the levels of CD206 in IL-4-activated U937 cells. This indicates that knockdown of LPCAT3 shifts the differentiation of PMA-treated U937 cells to M1-polarized macrophages. Our findings suggest that LPCAT3 plays an important role in M1/M2-macrophage polarization, providing novel potential therapeutic targets for the regulation of immune and inflammatory disorders. PMID:25994902

  3. Silencing an N-Acyltransferase-Like Involved in Lignin Biosynthesis in Nicotiana attenuata Dramatically Alters Herbivory-Induced Phenolamide Metabolism

    PubMed Central

    Onkokesung, Nawaporn; Galis, Ivan; Baldwin, Ian T.

    2013-01-01

    In a transcriptomic screen of Manduca sexta-induced N-acyltransferases in leaves of Nicotiana attenuata, we identified an N-acyltransferase gene sharing a high similarity with the tobacco lignin-biosynthetic hydroxycinnamoyl-CoA:shikimate/quinate hydroxycinnamoyl transferase (HCT) gene whose expression is controlled by MYB8, a transcription factor that regulates the production of phenylpropanoid polyamine conjugates (phenolamides, PAs). To evaluate the involvement of this HCT-like gene in lignin production as well as the resulting crosstalk with PA metabolism during insect herbivory, we transiently silenced (by VIGs) the expression of this gene and performed non-targeted (UHPLC-ESI/TOF-MS) metabolomics analyses. In agreement with a conserved function of N. attenuata HCT-like in lignin biogenesis, HCT-silenced plants developed weak, soft stems with greatly reduced lignin contents. Metabolic profiling demonstrated large shifts (up to 12% deregulation in total extracted ions in insect-attacked leaves) due to a large diversion of activated coumaric acid units into the production of developmentally and herbivory-induced coumaroyl-containing PAs (N′,N′′-dicoumaroylspermidine, N′,N′′-coumaroylputrescine, etc) and to minor increases in the most abundant free phenolics (chlorogenic and cryptochlorogenic acids), all without altering the production of well characterized herbivory-responsive caffeoyl- and feruloyl-based putrescine and spermidine PAs. These data are consistent with a strong metabolic tension, exacerbated during herbivory, over the allocation of coumaroyl-CoA units among lignin and unusual coumaroyl-containing PAs, and rule out a role for HCT-LIKE in tuning the herbivory-induced accumulation of other PAs. Additionally, these results are consistent with a role for lignification as an induced anti-herbivore defense. PMID:23704878

  4. Poor Sleep May Not Add to Cholesterol Problems, Study Finds

    MedlinePlus

    ... nih.gov/medlineplus/news/fullstory_157561.html Poor Sleep May Not Add to Cholesterol Problems, Study Finds ... disease risk factors such as high cholesterol, because sleep apnea -- another type of sleep disorder -- has been ...

  5. Talk with Your Health Care Provider about High Cholesterol

    MedlinePlus

    ... you do? Always ask your provider what your cholesterol numbers are and write them down. Discuss these ... provider may prescribe medicine to help lower your cholesterol. y y Take your medicine every day, or ...

  6. Weight Loss Surgery May Boost Good Cholesterol in Obese Boys

    MedlinePlus

    ... or federal policy. More Health News on: Cholesterol Obesity in Children Weight Loss Surgery Recent Health News Related MedlinePlus Health Topics Cholesterol Obesity in Children Weight Loss Surgery About MedlinePlus Site Map FAQs ...

  7. Fluorimetric determination of cholesterol in hypercholesterolemia serum

    NASA Astrophysics Data System (ADS)

    Lan, Xiufeng; Liu, Jiangang; Liu, Ying; Luo, Xiaosen; Lu, Jian; Ni, Xiaowu

    2005-01-01

    With the increase of people"s living standard and the changes of living form, the number of people who suffer from hypercholesterolemia is increasing. It is not only harmful to heart and blood vessel, but also leading to obstruction of cognition. The conventional blood detection technology has weakness such as complex operation, long detecting period, and bad visibility. In order to develop a new detection method that can checkout hypercholesterolemia conveniently, spectroscopy of cholesterol in hypercholesterolemia serum is obtained by the multifunctional grating spectrograph. The experiment results indicate that, under the excitation of light-emitting diode (LED) with the wavelength at 407 nm, the serum from normal human and the hypercholesterolemia serum emit different fluorescence spectra. The former can emit one fluorescence region with the peak locating at 516 nm while the latter can emit two more regions with peaks locating at 560 nm and 588 nm. Moreover, the fluorescence intensity of serum is non-linear increasing with the concentration of cholesterol increases when the concentration of cholesterol is lower than 13.8 mmol/L, and then, with the concentration of cholesterol increase, the fluorescence intensity decreases. However, the fluorescence intensity is still much higher than that of serum from normal human. Conclusions can be educed from the experiments: the intensity and the shape of fluorescence spectra of hypercholesterolemia serum are different of those of normal serum, from which the cholesterol abnormal in blood can be judged. The consequences in this paper may offer an experimental reference for the diagnosis of the hypercholesterolemia.

  8. Cryptosporidium parvum scavenges LDL-derived cholesterol and micellar cholesterol internalized into enterocytes

    PubMed Central

    Ehrenman, Karen; Wanyiri, Jane W.; Bhat, Najma; Ward, Honorine D.; Coppens, Isabelle

    2013-01-01

    Cryptosporidium spp. are responsible for devastating diarrhea in immunodeficient individuals. In the intestinal tract, the developmental stages of the parasite are confined to the apical surfaces of epithelial cells. Upon invasion, Cryptosporidium incorporates the microvillous membrane of the enterocyte to form the parasitophorous vacuole (PV) and sequesters itself from the host cytoplasm by rearranging the host cytoskeleton. Cryptosporidium parvum has minimal anabolic capabilities and relies on transporters and salvage pathways to meet its basic metabolic requirements. The cholesterol salvage pathway is crucial for the development of protozoan parasites. In this study, we have examined the sources of cholesterol from C. parvum infecting enterocytes. We illustrated that the intracellular stages of Cryptosporidium as well as the oocysts shed by the host, contain cholesterol. Incubation of infected enterocytes in lipoprotein-free medium impairs parasite development and results in substantial decrease in cholesterol content associated with the PV. Among lipoproteins, LDL constitutes an important source of cholesterol for Cryptosporidium. Dietary cholesterol incorporated into micelles is internalized into enterocytes by the NPC1L1 transporter. We showed that C. parvum also obtains cholesterol from micelles in enterocytes. Pharmacological blockade of NPC1L1 function by ezetimibe or moderate down-regulation of NPC1L1 expression decreases parasite infectivity. These observations indicate that, despite its dual sequestration from the intestinal lumen and the host cytoplasm, C. parvum can, in fact, obtain cholesterol both from the gut’s lumen and the host cell. This study highlights the evolutionary advantages for epicellular pathogens to access to nutrients from the outside and inside of the host cell. PMID:23311949

  9. Polymer sorbent with the properties of an artificial cholesterol receptor

    NASA Astrophysics Data System (ADS)

    Polyakova, I. V.; Ezhova, N. M.; Osipenko, A. A.; Pisarev, O. A.

    2015-02-01

    A cholesterol-imprinted polymer sorbent and the corresponding reticular control copolymer were synthesized from hydroxyethyl methacrylate and ethyleneglycol dimethacrylate. The sorption isotherms of cholesterol were analyzed using the generalized Langmuir and Freundlich equations. In the case of the imprinted reticular polymer, cholesterol sorption occurred on the energetically homogeneous binding centers, forming one monolayer, while the nonspecific sorption of cholesterol on the control copolymer occurred with energetically nonhomogeneous binding of the sorbate and depended on the physicochemical conditions of sorption.

  10. Synthesis of a Smoothened Cholesterol: 18,19-Di-nor-cholesterol

    PubMed Central

    2015-01-01

    Herein, we report the first synthesis of a demethylated form of cholesterol (18,19-di-nor-cholesterol), in which the C18 and C19 methyl groups of the β-face were eliminated. Recent molecular simulations modeling 18,19-di-nor-cholesterol have suggested that cholesterol’s opposing rough β-face and smooth α-face play necessary roles in cholesterol’s membrane condensing abilities and, additionally, that specific facial preferences are displayed as cholesterol interacts with different neighboring lipids and transmembrane proteins. Inspired by these poorly characterized biochemical interactions, an extensive 18-step synthesis was completed as part of a collaborative effort, wherein synthesizing a “smoothened” cholesterol analogue would provide a direct way to experimentally measure the significance of the β-face methyl groups. Starting from known perhydrochrysenone A, the synthesis of 18,19-di-nor-cholesterol was accomplished with an excellent overall yield of 3.5%. The use of the highly stereoselective Dieckmann condensation and the employment of Evans’ chiral auxiliary were both key to ensuring the success of this synthesis. PMID:24823889

  11. Synthetic LXR agonist suppresses endogenous cholesterol biosynthesis and efficiently lowers plasma cholesterol.

    PubMed

    Pfeifer, Thomas; Buchebner, Marlene; Chandak, Prakash G; Patankar, Jay; Kratzer, Adelheid; Obrowsky, Sascha; Rechberger, Gerald N; Kadam, Rajendra S; Kompella, Uday B; Kostner, Gerhard M; Kratky, Dagmar; Levak-Frank, Sanja

    2011-02-01

    The liver X receptors (LXRs) are key regulators of genes involved in cholesterol homeostasis. Natural ligands and activators of LXRs are oxysterols. Numerous steroidal and non-steroidal synthetic LXR ligands are under development as potential drugs for individuals suffering from lipid disorders. N,N-dimethyl-3β-hydroxycholenamide (DMHCA) is a steroidal ligand of LXRs that exerts anti-atherogenic effects in apolipoprotein E-deficient mice without causing negative side effects such as liver steatosis or hypertriglyceridemia. In this report, we investigated the consequences of DMHCA treatment on cholesterol homeostasis in vivo and in vitro. Despite its hydrophobicity, DMHCA is readily absorbed by C57BL/6 mice and taken up by intestinal cells, the lung, heart and kidneys, but is undetectable in the brain. DMHCA significantly reduces cholesterol absorption and uptake in duodenum and jejunum of the small intestine and in turn leads to a reduction of plasma cholesterol by 24%. The most striking finding of this study is that DMHCA inhibited the enzyme 3β-hydroxysterol-Δ24-reductase resulting in an accumulation of desmosterol in the plasma and in feces. Thus, the reduction of plasma cholesterol was due to a block in the final step of cholesterol biosynthesis. Taken together, DMHCA is an interesting compound with properties distinct from other LXR ligands and might be used to study desmosterol-mediated effects in cells and tissues. PMID:21190543

  12. On the puzzling distribution of cholesterol in the plasma membrane.

    PubMed

    Giang, H; Schick, M

    2016-09-01

    The distribution of cholesterol between the two leaves of the plasma membrane in mammalian cells presents a conundrum; given cholesterol's known affinity for sphingomyelin, which resides predominantly in the exoplasmic leaf, why is it that experiment finds a majority of the cholesterol in the cytoplasmic leaf? This article reviews a recently proposed solution to this puzzle. PMID:26724709

  13. Understanding Lipoproteins as Transporters of Cholesterol and Other Lipids

    ERIC Educational Resources Information Center

    Biggerstaff, Kyle D.; Wooten, Joshua S.

    2004-01-01

    A clear picture of lipoprotein metabolism is essential for understanding the pathophysiology of atherosclerosis. Many students are taught that low-density lipoprotein-cholesterol is "bad" and high-density lipoprotein-cholesterol is "good." This misconception leads to students thinking that lipoproteins are types of cholesterol rather than…

  14. Carbon Inverse Opal Rods for Nonenzymatic Cholesterol Detection.

    PubMed

    Zhong, Qifeng; Xie, Zhuoying; Ding, Haibo; Zhu, Cun; Yang, Zixue; Gu, Zhongze

    2015-11-18

    Carbon inverse opal rods made from silica photonic crystal rods are used for nonenzymatic cholesterol sensing. The characteristic reflection peak originating from the physical periodic structure works as sensing signals for quantitatively estimating cholesterol concentrations. Carbon inverse opal rods work both in cholesterol standard solutions and human serum. They are suitable for practical use in clinical diagnose. PMID:26415111

  15. 25-Hydroxycholesterol Increases the Availability of Cholesterol in Phospholipid Membranes

    SciTech Connect

    Olsen, Brett N.; Schlesinger, Paul H.; Ory, Daniel S.; Baker, Nathan A.

    2011-02-01

    Side-chain oxysterols are enzymatically generated oxidation products of cholesterol that serve a central role in mediating cholesterol homeostasis. Recent work has shown that side-chain oxysterols, such as 25-hydroxycholesterol (25-HC), alter membrane structure in very different ways from cholesterol, suggesting a possible mechanism for how these oxysterols regulate cholesterol homeostasis. Here we extend our previous work, using molecular dynamics simulations of 25-HC and cholesterol mixtures in 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) bilayers to examine interactions between 25-HC and cholesterol in the same bilayer. When added to cholesterol-containing membranes, 25-HC causes larger changes in membrane structure than when added to cholesterol-free membranes, demonstrating interactions between the two sterols. We also find that the presence of 25-HC changes the position, orientation, and solvent accessibility of cholesterol, shifting it into the water interface and therefore its availability to external acceptors. This is consistent with experimental results showing that oxysterols can trigger cholesterol trafficking from the plasma membrane to the endoplasmic reticulum. These interactions provide a potential mechanism for 25-HC-mediated regulation of cholesterol trafficking and homeostasis through direct modulation of cholesterol availability.

  16. Effect of melatonin on cholesterol absorption in rats.

    PubMed

    Hussain, Saad Abdul-Rehman

    2007-04-01

    This study evaluated the influence of melatonin on cholesterol absorption in rats fed on high cholesterol diet (HCD). HCD induced a remarkable increase in hepatic and plasma total cholesterol, plasma very low density lipoprotein (VLDL) and low density lipoprotein (LDL) cholesterol, a decrease in high density lipoprotein (HDL) cholesterol and an elevation in triacylglyceride (TG) levels in plasma and in the liver. Melatonin suspension (10 mg/kg), specially prepared for this purpose, cholestyramine (230 mg/kg) and ezetimibe (145 microg/kg) were administered orally to the rats fed HCD for 30 days. Melatonin significantly reduced cholesterol absorption in rats fed on HCD and caused significant decreases in total cholesterol, TG, VLDL- and LDL-cholesterol in the plasma and contents of cholesterol and TG in the liver. The level of HDL cholesterol was significantly increased after melatonin. These results suggested that inhibition of cholesterol absorption caused by melatonin could be a mechanism contributing to the positive changes in plasma cholesterol, lipoprotein profile and the lipid contents in the liver. PMID:17349025

  17. Hypercholesterolemia: The Role of Schools in Cholesterol Screening.

    ERIC Educational Resources Information Center

    Price, James H.; Casler, Suzanne M.

    1997-01-01

    Examines the prevalence of cardiovascular disease risk factors among children and adolescents, the pros and cons of cholesterol screening among youth, cholesterol assessments of at-risk youth, and the role of schools in cholesterol education and screening (focusing on comprehensive school health education and services). (SM)

  18. Effects of Cholesterol-altering Pharmaceuticals on Cholesterol Metabolism, Steroidogenesis, and Gene Expression in the Fathead Minnow (Pimephales promelas)

    EPA Science Inventory

    Pharmaceuticals that target cholesterol biosynthesis and uptake are among the most widely prescribed drugs and have been detected in the aquatic environment. Fibrates are a class of pharmaceuticals that indirectly modulate cholesterol biosynthesis through effects on peroxisome pr...

  19. Understanding Cholesterol and Heart Health | NIH MedlinePlus the Magazine

    MedlinePlus

    ... cholesterol throughout the body: Low-density lipoproteins (LDL): LDL cholesterol sometimes is called "bad" cholesterol. A high LDL ... or even death. The higher the level of LDL cholesterol in your blood, the GREATER your chance is ...

  20. Cholesterol Levels: What You Need to Know | NIH MedlinePlus the Magazine

    MedlinePlus

    ... please turn Javascript on. Feature: High Cholesterol Cholesterol Levels: What You Need to Know Past Issues / Summer 2012 Table of Contents Measuring Cholesterol Levels Learn more at MedlinePlus: https://medlineplus.gov/cholesterol. ...

  1. Effect of plant sterol-enriched diets on plasma and egg yolk cholesterol concentrations and cholesterol metabolism in laying hens.

    PubMed

    Liu, X; Zhao, H L; Thiessen, S; House, J D; Jones, P J H

    2010-02-01

    Egg exists as a major dietary source of cholesterol in Western diets. In North America, laying hen diets are usually devoid of cholesterol when diets are formulated to exclude animal-based products. Hence, laying hens meet their physiological cholesterol requirement through de novo synthesis. Plant sterols exert a cholesterol-lowering effect in humans by interfering with intestinal sterol absorption. However, it is unknown whether plant sterol supplementation could be effective in reducing intestinal reabsorption of biliary cholesterol in laying hens, thus modulating whole body cholesterol in favor of lower plasma and yolk cholesterol content. The current study was designed to investigate the effect of diets enriched with 0, 0.5, 1, and 2% plant sterols on cholesterol absorption, synthesis, as well as plasma, liver, and egg yolk cholesterol concentrations in laying hens. After 8 wk of plant sterol intervention (first 2 wk were acclimatization), feed intake, BW, egg weight, egg yolk weight, egg production, Haugh units, liver mass, plasma, and hepatic cholesterol concentrations did not differ as a function of plant sterol supplementation. Egg cholesterol concentrations (mg/g) fluctuated during the 6-wk experimental period. At wk 6, a minor reduction in egg yolk cholesterol concentration (mg per g of yolk, P<0.05, vs. control) was observed in hens fed 1 and 2% cholesterol-enriched diets, respectively. However, such result failed to affect total egg cholesterol content. No statistical difference was observed across treatments over 6 wk. Neither cholesterol absorption rates nor synthesis differed as a function of treatment. Results suggested that overall cholesterol content in egg yolk was not affected by feeding hens plant sterol-enriched diets over 6 wk. PMID:20075279

  2. The Transport of Exogenous Cholesterol in the Rabbit

    PubMed Central

    Rudel, L. L.; Morris, M. D.; Felts, J. M.

    1972-01-01

    Thoracic lymph duct cannulations were performed shortly after a meal in rabbits trained to ingest a moderate fat, low cholesterol diet. A tracer dose of cholesterol-3H was administered to label exogenous (dietary) cholesterol during absorption. Sequential lymph samples were collected up to 24 hr postprandially, after which ultracentrifugal fractionation of lymph lipoproteins was carried out. The d < 1.006 lipoproteins were separated into two classes, chylomicra and very low density lipoproteins (VLDL). A comparison was made between chylomicra and VLDL of lymph in the transport of exogenous cholesterol after ingestion of a single meal. The per cent of exogenous cholesterol present in VLDL of sequential lymph collections progressively increased with time after a meal and by 18 hr had reached a value of 80% or greater. In chylomicra the per cent of exogenous cholesterol of sequential lymph collections progressively decreased. Therefore, exogenous cholesterol was preferentially transported in VLDL compared with chylomicra. Cholesterol ester specific activity (CESA) of lymph chylomicra and VLDL increased at a more rapid rate than free cholesterol specific activity (FCSA). CESA of VLDL was three times higher than FCSA at the maximum. Exogenous cholesterol which appeared in both chylomicra and VLDL was consistently 80% esterified. while the per cent of total cholesterol esterified decreased with time and was significantly lower than that for exogenous cholesterol from 6 to 24 hr postprandially. These results demonstrate preferential esterification of exogenous cholesterol during absorption and indicate that a mechanism exists within the intestinal mucosal cell to maintain both free and esterified exogenous cholesterol in a chemically distinct pool from endogenous cholesterol during incorporation into both chylomicra and VLDL. PMID:4341437

  3. Endoscopic Transnasal Approach for Cholesterol Granuloma of the Petrous Apex

    PubMed Central

    Samadian, Mohammad; Akbari Dilmaghani, Nader; Ahmady Roozbahany, Navid; Farzin, Navid; Bahadoram, Mohammad

    2015-01-01

    Cholesterol granulomas are rare round or ovoid cysts. They contain cholesterol crystals surrounded by foreign bodies of giant cells and are characterized by chronic inflammation. Large cholesterol granuloma can compress surrounding tissue especially cranial nerves. There are several types of surgery for the resection of cholesterol granuloma. We describe 4 cases of cholesterol granuloma operated on via transnasal endoscopic approach. In this report, we describe radiologic and pathologic features of this lesion and explain the advantages and disadvantages of transsphenoidal endoscopic approach for these rare lesions. PMID:26266065

  4. [HDL cholesterol as a sensitive diagnostic parameter in malaria].

    PubMed

    Kittl, E M; Diridl, G; Lenhart, V; Neuwald, C; Tomasits, J; Pichler, H; Bauer, K

    1992-01-01

    In patients with malaria the lipid parameters triglycerides, cholesterol, and HDL-cholesterol were determined routinely. At the time of admission hypertriglyceridemia, hypocholesterolemia, and an extreme decrease in HDL-cholesterol were found. This dyslipoproteinemia was present in cases of falciparum malaria, as well as in cases of benign tertian malaria. The extent of HDL-cholesterol decrease showed no correlation to the severity of the clinical course of disease. HDL-cholesterol has proven to be an independent diagnostic laboratory finding in cases of suspected malarial infection. This parameter displays high diagnostic sensitivity, but no specificity for malaria. PMID:1546481

  5. Is the FXR the fix for cholesterol gallstone disease?

    PubMed

    Juran, Brian D; Lazaridis, Konstantinos N

    2005-07-01

    Cholesterol gallstone disease is characterized by several events, including cholesterol precipitation in bile, increased bile salt hydrophobicity and gallbladder inflammation. Here, we describe the same phenotype in mice lacking the bile acid receptor, FXR. Furthermore, in susceptible wild-type mice that recapitulate human cholesterol gallstone disease, treatment with a synthetic FXR agonist prevented sequelae of the disease. These effects were mediated by FXR-dependent increases in biliary bile salt and phospholipid concentrations, which restored cholesterol solubility and thereby prevented gallstone formation. Taken together, these results indicate that FXR is a promising therapeutic target for treating or preventing cholesterol gallstone disease. PMID:15962294

  6. Cholesterol: a novel regulatory role in myelin formation.

    PubMed

    Saher, Gesine; Quintes, Susanne; Nave, Klaus-Armin

    2011-02-01

    Myelin consists of tightly compacted membranes that form an insulating sheath around axons. The function of myelin for rapid saltatory nerve conduction is dependent on its unique composition, highly enriched in glycosphingolipids and cholesterol. Cholesterol emerged as the only integral myelin component that is essential and rate limiting for the development of CNS and PNS myelin. Experiments with conditional mouse mutants that lack cholesterol biosynthesis in oligodendrocytes revealed that only minimal changes of the CNS myelin lipid composition are tolerated. In Schwann cells of the PNS, protein trafficking and myelin compaction depend on cholesterol. In this review, the authors summarize the role of cholesterol in myelin biogenesis and myelin disease. PMID:21343408

  7. Identification and characterization of a novel anthocyanin malonyltransferase from scarlet sage (Salvia splendens) flowers: an enzyme that is phylogenetically separated from other anthocyanin acyltransferases.

    PubMed

    Suzuki, Hirokazu; Sawada, Shin'ya; Watanabe, Kazufumi; Nagae, Shiro; Yamaguchi, Masa-Atsu; Nakayama, Toru; Nishino, Tokuzo

    2004-06-01

    Anthocyanin acyltransferases (AATs) catalyze a regiospecific acyl transfer from acyl-CoA to the glycosyl moiety of anthocyanins, thus playing an important role in flower coloration. The known AATs are subfamily members of an acyltransferase family, the BAHD family, which play important roles in secondary metabolism in plants. Here, we describe the purification, characterization, and cDNA cloning of a novel anthocyanin malonyltransferase from scarlet sage (Salvia splendens) flowers. The purified enzyme (hereafter referred to as Ss5MaT2) is a monomeric 46-kDa protein that catalyzes the transfer of the malonyl group from malonyl-CoA to the 4"'-hydroxyl group of the 5-glucosyl moiety of anthocyanins. Thus, it is a malonyl-CoA:anthocyanin 5-glucoside 4"'-O-malonyltransferase. On the basis of the partial amino acid sequences of the purified enzyme, we isolated a cDNA that encodes an acyltransferase protein. The steady-state transcript level of the gene was the highest in recently opened, fully pigmented flowers and was also correlated with the trend observed for an AAT gene responsible for the first malonylation step during salvianin biosynthesis. Immunoprecipitation studies using antibodies against the recombinant acyltransferase protein corroborated the identity of this cDNA as that encoding Ss5MaT2. The deduced amino acid sequence of Ss5MaT2 showed a low similarity (22-24% identity) to those of AATs and lacked the AAT-specific signature sequence. A phylogenetic analysis suggested that Ss5MaT2 is more related to acetyl-CoA:benzylalcohol acetyltransferase (BEAT) rather than to AAT. This is another example in which enzymes with similar, although not identical, substrate evolved from different branches of the BAHD family. PMID:15165190

  8. Identification of an arylalkylamine N-acyltransferase from Drosophila melanogaster that catalyzes the formation of long-chain N-acylserotonins

    PubMed Central

    Dempsey, Daniel R.; Jeffries, Kristen A.; Anderson, Ryan L.; Carpenter, Anne-Marie; Ospina, Santiago Rodriguez; Merkler, David J.

    2014-01-01

    Arylalkylamine N-acyltransferase-like 22 (AANATL2) from Drosophila melanogaster was expressed and shown to catalyze the formation of long-chain N-acylserotonins and N-acydopamines. Subsequent identification of endogenous amounts of N-acylserotonins and colocalization of these fatty acid amides and AANATL2 transcripts gives supporting evidence that AANATL2 has a role in the biosynthetic formation of these important cell signalling lipids. PMID:24444601

  9. Step by Step: Eating To Lower Your High Blood Cholesterol. Revised.

    ERIC Educational Resources Information Center

    National Heart, Lung, and Blood Inst. (DHHS/NIH), Bethesda, MD.

    This booklet offers advice for adults who want to lower their blood cholesterol level. The first section, "What You Need To Know about High Blood Cholesterol," discusses blood cholesterol and why it matters, what cholesterol numbers mean, and what affects blood cholesterol levels. Section 2, "What You Need To Do To Lower Blood Cholesterol,"…

  10. Potent and selective mediators of cholesterol efflux

    DOEpatents

    Bielicki, John K; Johansson, Jan

    2015-03-24

    The present invention provides a family of non-naturally occurring polypeptides having cholesterol efflux activity that parallels that of full-length apolipoproteins (e.g., Apo AI and Apo E), and having high selectivity for ABAC1 that parallels that of full-length apolipoproteins. The invention also provides compositions comprising such polypeptides, methods of identifying, screening and synthesizing such polypeptides, and methods of treating, preventing or diagnosing diseases and disorders associated with dyslipidemia, hypercholesterolemia and inflammation.

  11. Cholesterol - Multiple Languages: MedlinePlus

    MedlinePlus

    ... 繁體中文) French (français) Hindi (हिन्दी) Japanese (日本語) Korean (한국어) Portuguese (português) Russian (Русский) Somali (af Soomaali) ... コレステロール - 日本語 (Japanese) Bilingual PDF Health Information Translations Korean (한국어) Cholesterol 콜레스테롤 - 한국어 (Korean) Bilingual PDF Health ...

  12. Cholesterol in serum lipoprotein fractions after spaceflight

    NASA Technical Reports Server (NTRS)

    Leach, Carolyn S.; Johnson, Philip C., Jr.; Krauhs, Jane M.; Cintron, Nitza M.

    1988-01-01

    Results are reported from blood-lipid measurements obtained from 125 Space Shuttle crew members before and after space flight. The data are presented in tables and discussed in detail. The main differences noted between preflight and postflight values are a 12.8-percent decrease in high-density lipoproteins on postflight day 1 and significant decreases in total cholesterol and both high- and low-density lipoproteins later in the 23-day postflight period.

  13. A highly conserved mycobacterial cholesterol catabolic pathway

    PubMed Central

    García-Fernández, Esther; Frank, Daniel J.; Galán, Beatriz; Kells, Petrea M.; Podust, Larissa M.; García, José L.; Ortiz de Montellano, Paul R.

    2013-01-01

    Summary Degradation of the cholesterol side-chain in M. tuberculosis is initiated by two cytochromes P450, CYP125A1 and CYP142A1, that sequentially oxidize C26 to the alcohol, aldehyde and acid metabolites. Here we report characterization of the homologous enzymes CYP125A3 and CYP142A2 from M. smegmatis mc2 155. Heterologously expressed, purified CYP125A3 and CYP142A2 bound cholesterol, 4-cholesten-3-one, and antifungal azole drugs. CYP125A3 or CYP142A2 reconstituted with spinach ferredoxin and ferredoxin reductase efficiently hydroxylated 4-cholesten-3-one to the C-26 alcohol and subsequently to the acid. The X-ray structures of both substrate-free CYP125A3 and CYP142A2 and of cholest-4-en-3-one-bound CYP142A2 reveal significant differences in the substrate binding sites compared with the homologous M. tuberculosis proteins. Deletion of cyp125A3 or cyp142A2 does not impair growth of M. smegmatis mc2 155 on cholesterol. However, deletion only of cyp125A3 causes a reduction of both the alcohol and acid metabolites and a strong induction of cyp142 at the mRNA and protein levels, indicating that CYP142A2 serves as a functionally redundant back up enzyme for CYP125A3. In contrast to M. tuberculosis, the M. smegmatis Δcyp125Δcyp142 double mutant retains its ability to grow on cholesterol albeit with a diminished capacity, indicating an additional level of redundancy within its genome. PMID:23489718

  14. Cholesterol in the retina: the best is yet to come

    PubMed Central

    Pikuleva, Irina A.; Curcio, Christine A.

    2014-01-01

    Historically understudied, cholesterol in the retina is receiving more attention now because of genetic studies showing that several cholesterol-related genes are risk factors for age-related macular degeneration (AMD) and because eye pathology studies showing high cholesterol content of drusen, aging Bruch's membrane, and newly found subretinal lesions. The challenge before us is determining how the cholesterol-AMD link is realized. Meeting this challenge will require an excellent understanding these genes’ roles in retinal physiology and how chorioretinal cholesterol is maintained. In the first half of this review, we will succinctly summarize physico-chemical properties of cholesterol, its distribution in the human body, general principles of maintenance and metabolism, and differences in cholesterol handling in human and mouse that impact on experimental approaches. This information will provide a backdrop to the second part of the review focusing on unique aspects of chorioretinal cholesterol homeostasis, aging in Bruch's membrane, cholesterol in AMD lesions, a model for lesion biogenesis, a model for macular vulnerability based on vascular biology, and alignment of AMD-related genes and pathobiology using cholesterol and an atherosclerosis-like progression as unifying features. We conclude with recommendations for the most important research steps we can take towards delineating the cholesterol-AMD link. PMID:24704580

  15. Human FABP1 T94A variant enhances cholesterol uptake.

    PubMed

    Huang, Huan; McIntosh, Avery L; Landrock, Kerstin K; Landrock, Danilo; Storey, Stephen M; Martin, Gregory G; Gupta, Shipra; Atshaves, Barbara P; Kier, Ann B; Schroeder, Friedhelm

    2015-07-01

    Although expression of the human liver fatty acid binding protein (FABP1) T94A variant alters serum lipoprotein cholesterol levels in human subjects, nothing is known whereby the variant elicits these effects. This issue was addressed by in vitro cholesterol binding assays using purified recombinant wild-type (WT) FABP1 T94T and T94A variant proteins and in cultured primary human hepatocytes expressing the FABP1 T94T (genotyped as TT) or T94A (genotyped as CC) proteins. The human FABP1 T94A variant protein had 3-fold higher cholesterol-binding affinity than the WT FABP1 T94T as shown by NBD-cholesterol fluorescence binding assays and by cholesterol isothermal titration microcalorimetry (ITC) binding assays. CC variant hepatocytes also exhibited 30% higher total FABP1 protein. HDL- and LDL-mediated NBD-cholesterol uptake was faster in CC variant than TT WT human hepatocytes. VLDL-mediated uptake of NBD-cholesterol did not differ between CC and TT human hepatocytes. The increased HDL- and LDL-mediated NBD-cholesterol uptake was not associated with any significant change in mRNA levels of SCARB1, LDLR, CETP, and LCAT encoding the key proteins in lipoprotein cholesterol uptake. Thus, the increased HDL- and LDL-mediated NBD-cholesterol uptake by CC hepatocytes may be associated with higher affinity of T94A protein for cholesterol and/or increased total T94A protein level. PMID:25732850

  16. Effect of cholesterol nanodomains on monolayer morphology and dynamics

    PubMed Central

    Kim, KyuHan; Choi, Siyoung Q.; Zell, Zachary A.; Squires, Todd M.; Zasadzinski, Joseph A.

    2013-01-01

    At low mole fractions, cholesterol segregates into 10- to 100-nm-diameter nanodomains dispersed throughout primarily dipalmitoylphosphatidylcholine (DPPC) domains in mixed DPPC:cholesterol monolayers. The nanodomains consist of 6:1 DPPC:cholesterol “complexes” that decorate and lengthen DPPC domain boundaries, consistent with a reduced line tension, λ. The surface viscosity of the monolayer, ηs, decreases exponentially with the area fraction of the nanodomains at fixed surface pressure over the 0.1- to 10-Hz range of frequencies common to respiration. At fixed cholesterol fraction, the surface viscosity increases exponentially with surface pressure in similar ways for all cholesterol fractions. This increase can be explained with a free-area model that relates ηs to the pure DPPC monolayer compressibility and collapse pressure. The elastic modulus, G′, initially decreases with cholesterol fraction, consistent with the decrease in λ expected from the line-active nanodomains, in analogy to 3D emulsions. However, increasing cholesterol further causes a sharp increase in G′ between 4 and 5 mol% cholesterol owing to an evolution in the domain morphology, so that the monolayer is elastic rather than viscous over 0.1–10 Hz. Understanding the effects of small mole fractions of cholesterol should help resolve the controversial role cholesterol plays in human lung surfactants and may give clues as to how cholesterol influences raft formation in cell membranes. PMID:23901107

  17. Isoform dependent regulation of human HCN channels by cholesterol

    PubMed Central

    Fürst, Oliver; D’Avanzo, Nazzareno

    2015-01-01

    Cholesterol has been shown to regulate numerous ion channels. HCN channels represent the molecular correlate of If or Ih in sinoatrial node (SAN) and neuronal cells. Previous studies have implicated a role for cholesterol in the regulation of rabbit HCN4 channels with effects on pacing in the rabbit SAN. Using electrophysiological and biochemical approaches, we examined the effect of cholesterol modulation on human HCN1, HCN2 and HCN4 isoforms. Patch-clamp experiments uncovered isoform specific differences in the effect of cholesterol on gating kinetics upon depletion by MβCD or mevastatin or enrichment using MβCD/cholesterol. Most dramatically cholesterol had isoform specific effects on mode-shifting, which has been suggested to play a key role in stabilizing firing rate and preventing arrhythmic firing in SAN cells and neurons. Mode-shifting in HCN1 channels was insensitive to cholesterol manipulation, while HCN2 and HCN4 were strongly affected. Trafficking of each isoform to the plasma membrane was also affected by cholesterol modulation differentially between isoforms, however, each isoform remained localized in lipid raft domains after cholesterol depletion. These effects may contribute to the side effects of cholesterol reducing therapies including disrupted heart rhythm and neuropathic pain, as well as the susceptibility of sinus dysfunction in patients with elevated cholesterol. PMID:26404789

  18. LXR driven induction of HDL-cholesterol is independent of intestinal cholesterol absorption and ABCA1 protein expression.

    PubMed

    Kannisto, Kristina; Gåfvels, Mats; Jiang, Zhao-Yan; Slätis, Katharina; Hu, Xiaoli; Jorns, Carl; Steffensen, Knut R; Eggertsen, Gösta

    2014-01-01

    We investigated whether: (1) liver X receptor (LXR)-driven induction of high-density lipoprotein cholesterol (HDL-C) and other LXR-mediated effects on cholesterol metabolism depend on intestinal cholesterol absorption; and (2) combined treatment with the LXR agonist GW3965 and the cholesterol absorption inhibitor ezetimibe results in synergistic effects on cholesterol metabolism that could be beneficial for treatment of atherosclerosis. Mice were fed 0.2 % cholesterol and treated with GW3965+ezetimibe, GW3965 or ezetimibe. GW3965+ezetimibe treatment elevated serum HDL-C and Apolipoprotein (Apo) AI, effectively reduced the intestinal cholesterol absorption and increased the excretion of faecal neutral sterols. No changes in intestinal ATP-binding cassette (ABC) A1 or ABCG5 protein expression were observed, despite increased mRNA expression, while hepatic ABCA1 was slightly reduced. The combined treatment caused a pronounced down-regulation of intestinal Niemann-Pick C1-like 1 (NPC1L1) and reduced hepatic and intestinal cholesterol levels. GW3965 did not affect the intestinal cholesterol absorption, but increased serum HDL-C and ApoAI levels. GW3965 also increased Apoa1 mRNA levels in primary mouse hepatocytes and HEPA1-6 cells. Ezetimibe reduced the intestinal cholesterol absorption, ABCA1 and ABCG5, but did not affect the serum HDL-C or ApoAI levels. Thus, the LXR-driven induction of HDL-C and ApoAI was independent of the intestinal cholesterol absorption and increased expression of intestinal or hepatic ABCA1 was not required. Inhibited influx of cholesterol via NPC1L1 and/or low levels of intracellular cholesterol prevented post-transcriptional expression of intestinal ABCA1 and ABCG5, despite increased mRNA levels. Combined LXR activation and blocked intestinal cholesterol absorption induced effective faecal elimination of cholesterol. PMID:24163219

  19. Mechanisms of cholesterol-lowering effects of dietary insoluble fibres: relationships with intestinal and hepatic cholesterol parameters.

    PubMed

    van Bennekum, Ariëtte M; Nguyen, David V; Schulthess, Georg; Hauser, Helmut; Phillips, Michael C

    2005-09-01

    Fibres with a range of abilities to perturb cholesterol homeostasis were used to investigate how the serum cholesterol-lowering effects of insoluble dietary fibres are related to parameters of intestinal cholesterol absorption and hepatic cholesterol homeostasis in mice. Cholestyramine, chitosan and cellulose were used as examples of fibres with high, intermediate and low bile acid-binding capacities, respectively. The serum cholesterol levels in a control group of mice fed a high fat/high cholesterol (HFHC) diet for 3 weeks increased about 2-fold to 4.3 mm and inclusion of any of these fibres at 7.5 % of the diet prevented this increase from occurring. In addition, the amount of cholesterol accumulated in hepatic stores due to the HFHC diet was reduced by treatment with these fibres. The three kinds of fibres showed similar hypocholesterolaemic activity; however, cholesterol depletion of liver tissue was greatest with cholestyramine. The mechanisms underlying the cholesterol-lowering effect of cholestyramine were (1) decreased cholesterol (food) intake, (2) decreased cholesterol absorption efficiency, and (3) increased faecal bile acid and cholesterol excretion. The latter effects can be attributed to the high bile acid-binding capacity of cholestyramine. In contrast, incorporation of chitosan or cellulose in the diet reduced cholesterol (food) intake, but did not affect either intestinal cholesterol absorption or faecal sterol output. The present study provides strong evidence that above all satiation and satiety effects underlie the cholesterol-lowering properties of insoluble dietary fibres with moderate or low bile acid-binding capabilities. PMID:16176602

  20. Liver fatty acid binding protein gene ablation potentiates hepatic cholesterol accumulation in cholesterol-fed female mice.

    PubMed

    Martin, Gregory G; Atshaves, Barbara P; McIntosh, Avery L; Mackie, John T; Kier, Ann B; Schroeder, Friedhelm

    2006-01-01

    Although liver fatty acid binding protein (L-FABP) is postulated to influence cholesterol homeostasis, the physiological significance of this hypothesis remains to be resolved. This issue was addressed by examining the response of young (7 wk) female mice to L-FABP gene ablation and a cholesterol-rich diet. In control-fed mice, L-FABP gene ablation alone induced hepatic cholesterol accumulation (2.6-fold), increased bile acid levels, and increased body weight gain (primarily as fat tissue mass). In cholesterol-fed mice, L-FABP gene ablation further enhanced the hepatic accumulation of cholesterol (especially cholesterol ester, 12-fold) and potentiated the effects of dietary cholesterol on increased body weight gain, again mainly as fat tissue mass. However, in contrast to the effects of L-FABP gene ablation in control-fed mice, biliary levels of bile acids (as well as cholesterol and phospholipids) were reduced. These phenotypic alterations were not associated with differences in food intake. In conclusion, it was shown for the first time that L-FABP altered cholesterol metabolism and the response of female mice to dietary cholesterol. While the biliary and lipid phenotype of female wild-type L-FABP+/+ mice was sensitive to dietary cholesterol, L-FABP gene ablation dramatically enhanced many of the effects of dietary cholesterol to greatly induce hepatic cholesterol (primarily cholesterol ester) and triacylglycerol accumulation as well as to potentiate body weight gain (primarily as fat tissue mass). Taken together, these data support the hypothesis that L-FABP is involved in the physiological regulation of cholesterol metabolism, body weight gain, and obesity. PMID:16123197