Science.gov

Sample records for adam protein mimics

  1. Synthetic Peptides as Protein Mimics

    PubMed Central

    Groß, Andrea; Hashimoto, Chie; Sticht, Heinrich; Eichler, Jutta

    2016-01-01

    The design and generation of molecules capable of mimicking the binding and/or functional sites of proteins represents a promising strategy for the exploration and modulation of protein function through controlled interference with the underlying molecular interactions. Synthetic peptides have proven an excellent type of molecule for the mimicry of protein sites because such peptides can be generated as exact copies of protein fragments, as well as in diverse chemical modifications, which includes the incorporation of a large range of non-proteinogenic amino acids as well as the modification of the peptide backbone. Apart from extending the chemical and structural diversity presented by peptides, such modifications also increase the proteolytic stability of the molecules, enhancing their utility for biological applications. This article reviews recent advances by this and other laboratories in the use of synthetic protein mimics to modulate protein function, as well as to provide building blocks for synthetic biology. PMID:26835447

  2. Development of protein mimics for intracellular delivery.

    PubMed

    deRonde, Brittany M; Tew, Gregory N

    2015-07-01

    Designing delivery agents for therapeutics is an ongoing challenge. As treatments and desired cargoes become more complex, the need for improved delivery vehicles becomes critical. Excellent delivery vehicles must ensure the stability of the cargo, maintain the cargo's solubility, and promote efficient delivery and release. In order to address these issues, many research groups have looked to nature for design inspiration. Proteins, such as HIV-1 trans-activator of transcription (TAT) and Antennapedia homeodomain protein, are capable of crossing cellular membranes. However, due to the complexities of their structures, they are synthetically challenging to reproduce in the laboratory setting. Being able to incorporate the key features of these proteins that enable cell entry into simpler scaffolds opens up a wide range of opportunities for the development of new delivery reagents with improved performance. This review charts the development of protein mimics based on cell-penetrating peptides (CPPs) and how structure-activity relationships (SARs) with these molecules and their protein counterparts ultimately led to the use of polymeric scaffolds. These scaffolds deviate from the normal peptide backbone, allowing for simpler, synthetic procedures to make carriers and tune chemical compositions for application specific needs. Successful design of polymeric protein mimics would allow researchers to further understand the key features in proteins and peptides necessary for efficient delivery and to design the next generation of more efficient delivery reagents. PMID:25858701

  3. Designing Mimics of Membrane Active Proteins

    PubMed Central

    Sgolastra, Federica; deRonde, Brittany M.; Sarapas, Joel M.; Som, Abhigyan; Tew, Gregory N.

    2014-01-01

    CONSPECTUS As a semi-permeable barrier that controls the flux of biomolecules in and out the cell, the plasma membrane is critical in cell function and survival. Many proteins interact with the plasma membrane and modulate its physiology. Within this large landscape of membrane-active molecules, researchers have focused significant attention on two specific classes of peptides, antimicrobial peptides (AMPs) and cell penetrating peptides (CPPs) because of their unique properties. In this account, we describe our efforts over the last decade to build and understand synthetic mimics of antimicrobial peptides (SMAMPs). These endeavors represent one specific example of a much larger effort to understand how synthetic molecules interact with and manipulate the plasma membrane. Using both defined molecular weight oligomers and easier to produce, but heterogeneous, polymers, it has been possible to generate scaffolds with biological potency superior to the natural analogs. In one case, a compound has progressed through a phase II clinical trial for pan)staph infections. Modern biophysical assays highlighted the interplay between the synthetic scaffold and lipid composition leading to negative Gaussian curvature, a requirement for both pore formation and endosomal escape. The complexity of this interplay between lipids, bilayer components, and the scaffolds remains to be better resolved, but significant new insight has been provided. It is worthwhile to consider the various aspects of permeation and how these are related to ‘pore formation.’ More recently, our efforts have expanded toward protein transduction domains, or cell penetrating peptide, mimics. The combination of unique molecular scaffolds and guanidinium) rich side chains has produced an array of polymers with robust transduction (and delivery) activity. Being a new area, the fundamental interactions between these new scaffolds and the plasma membrane are just beginning to be understood. Negative Gaussian

  4. Tetraspanin12 regulates ADAM10-dependent cleavage of amyloid precursor protein

    PubMed Central

    Xu, Daosong; Sharma, Chandan; Hemler, Martin E.

    2009-01-01

    Using mass spectrometry, we identified ADAM10 (a membrane-associated metalloproteinase) as a partner for TSPAN12, a tetraspanin protein. TSPAN12-ADAM10 interaction was confirmed by reciprocal coimmunoprecipitation in multiple tumor cell lines. TSPAN12, to a greater extent than other tetraspanins (CD81, CD151, CD9, and CD82), associated with ADAM10 but not with ADAM17. Overexpression of TSPAN12 enhanced ADAM10-dependent shedding of amyloid precursor protein (APP) in MCF7 (breast cancer) and SH-SY5Y (neuroblastoma) cell lines. Conversely, siRNA ablation of endogenous TSPAN12 markedly diminished APP proteolysis in both cell lines. Furthermore, TSPAN12 overexpression enhanced ADAM10 prodomain maturation, whereas TSPAN12 ablation diminished ADAM10 maturation. A palmitoylation-deficient TSPAN12 mutant failed to associate with ADAM10, inhibited ADAM10-dependent proteolysis of APP, and inhibited ADAM10 maturation, most likely by interfering with endogenous wild-type TSPAN12. In conclusion, TSPAN12 serves as a novel and robust partner for ADAM10 and promotes ADAM10 maturation, thereby facilitating ADAM10-dependent proteolysis of APP. This novel mode of regulating APP cleavage is of relevance to Alzheimer’s disease therapy.—Xu, D., Sharma, C., Hemler, M. E. Tetraspanin12 regulates ADAM10-dependent cleavage of amyloid precursor protein. PMID:19587294

  5. Amyloid protein unfolding and insertion kinetics on neuronal membrane mimics

    NASA Astrophysics Data System (ADS)

    Qiu, Liming; Buie, Creighton; Vaughn, Mark; Cheng, Kwan

    2010-03-01

    Atomistic details of beta-amyloid (Aβ ) protein unfolding and lipid interaction kinetics mediated by the neuronal membrane surface are important for developing new therapeutic strategies to prevent and cure Alzheimer's disease. Using all-atom MD simulations, we explored the early unfolding and insertion kinetics of 40 and 42 residue long Aβ in binary lipid mixtures with and without cholesterol that mimic the cholesterol-depleted and cholesterol-enriched lipid nanodomains of neurons. The protein conformational transition kinetics was evaluated from the secondary structure profile versus simulation time plot. The extent of membrane disruption was examined by the calculated order parameters of lipid acyl chains and cholesterol fused rings as well as the density profiles of water and lipid headgroups at defined regions across the lipid bilayer from our simulations. Our results revealed that both the cholesterol content and the length of the protein affect the protein-insertion and membrane stability in our model lipid bilayer systems.

  6. ADAM and ADAMTS Family Proteins and Snake Venom Metalloproteinases: A Structural Overview.

    PubMed

    Takeda, Soichi

    2016-01-01

    A disintegrin and metalloproteinase (ADAM) family proteins constitute a major class of membrane-anchored multidomain proteinases that are responsible for the shedding of cell-surface protein ectodomains, including the latent forms of growth factors, cytokines, receptors and other molecules. Snake venom metalloproteinases (SVMPs) are major components in most viper venoms. SVMPs are primarily responsible for hemorrhagic activity and may also interfere with the hemostatic system in envenomed animals. SVMPs are phylogenetically most closely related to ADAMs and, together with ADAMs and related ADAM with thrombospondin motifs (ADAMTS) family proteinases, constitute adamalysins/reprolysins or the M12B clan (MEROPS database) of metalloproteinases. Although the catalytic domain structure is topologically similar to that of other metalloproteinases such as matrix metalloproteinases, the M12B proteinases have a modular structure with multiple non-catalytic ancillary domains that are not found in other proteinases. Notably, crystallographic studies revealed that, in addition to the conserved metalloproteinase domain, M12B members share a hallmark cysteine-rich domain designated as the "ADAM_CR" domain. Despite their name, ADAMTSs lack disintegrin-like structures and instead comprise two ADAM_CR domains. This review highlights the current state of our knowledge on the three-dimensional structures of M12B proteinases, focusing on their unique domains that may collaboratively participate in directing these proteinases to specific substrates. PMID:27196928

  7. ADAM and ADAMTS Family Proteins and Snake Venom Metalloproteinases: A Structural Overview

    PubMed Central

    Takeda, Soichi

    2016-01-01

    A disintegrin and metalloproteinase (ADAM) family proteins constitute a major class of membrane-anchored multidomain proteinases that are responsible for the shedding of cell-surface protein ectodomains, including the latent forms of growth factors, cytokines, receptors and other molecules. Snake venom metalloproteinases (SVMPs) are major components in most viper venoms. SVMPs are primarily responsible for hemorrhagic activity and may also interfere with the hemostatic system in envenomed animals. SVMPs are phylogenetically most closely related to ADAMs and, together with ADAMs and related ADAM with thrombospondin motifs (ADAMTS) family proteinases, constitute adamalysins/reprolysins or the M12B clan (MEROPS database) of metalloproteinases. Although the catalytic domain structure is topologically similar to that of other metalloproteinases such as matrix metalloproteinases, the M12B proteinases have a modular structure with multiple non-catalytic ancillary domains that are not found in other proteinases. Notably, crystallographic studies revealed that, in addition to the conserved metalloproteinase domain, M12B members share a hallmark cysteine-rich domain designated as the “ADAM_CR” domain. Despite their name, ADAMTSs lack disintegrin-like structures and instead comprise two ADAM_CR domains. This review highlights the current state of our knowledge on the three-dimensional structures of M12B proteinases, focusing on their unique domains that may collaboratively participate in directing these proteinases to specific substrates. PMID:27196928

  8. De novo design of protein mimics of B-DNA.

    PubMed

    Yüksel, Deniz; Bianco, Piero R; Kumar, Krishna

    2016-01-01

    Structural mimicry of DNA is utilized in nature as a strategy to evade molecular defences mounted by host organisms. One such example is the protein Ocr - the first translation product to be expressed as the bacteriophage T7 infects E. coli. The structure of Ocr reveals an intricate and deliberate arrangement of negative charges that endows it with the ability to mimic ∼24 base pair stretches of B-DNA. This uncanny resemblance to DNA enables Ocr to compete in binding the type I restriction modification (R/M) system, and neutralizes the threat of hydrolytic cleavage of viral genomic material. Here, we report the de novo design and biophysical characterization of DNA mimicking peptides, and describe the inhibitory action of the designed helical bundles on a type I R/M enzyme, EcoR124I. This work validates the use of charge patterning as a design principle for creation of protein mimics of DNA, and serves as a starting point for development of therapeutic peptide inhibitors against human pathogens that employ molecular camouflage as part of their invasion stratagem. PMID:26568416

  9. ADAM and ADAMTS family proteins and their role in the colorectal cancer etiopathogenesis

    PubMed Central

    Przemyslaw, Leszczynski; Boguslaw, Hendrich Andrzej; Elzbieta, Szmida; Malgorzata, Sasiadek Maria

    2013-01-01

    The ADAM and ADAMTS families, also called adamalysins belong to an important group of extracellular matrix proteins. The ADAMs family belong to both the transmembrane and secreted proteins, while ADAMTS family only contains secreted forms. Adamalysins play an important role in the cell phenotype regulation via their activities in signaling pathways, cell adhesion and migration. The human proteome contains 21 ADAM, and 19 ADAMTS proteins, which are involved in extracellular matrix remodeling, shedding of various substrates such as: adhesion ligands, growth factors, their receptors and diverse cytokines. Recent studies provide evidence that adamalysins play a crucial role in colorectal cancer (CRC) etiopathogenesis. It seems possible that adamalysins might be used as CRC prediction markers or potential pharmaceutical targets. [BMB Reports 2013; 46(3): 139-150] PMID:23527857

  10. Relating structure and internalization for ROMP-based protein mimics.

    PubMed

    Backlund, Coralie M; Takeuchi, Toshihide; Futaki, Shiroh; Tew, Gregory N

    2016-07-01

    Elucidating the predominant cellular entry mechanism for protein transduction domains (PTDs) and their synthetic mimics (PTDMs) is a complicated problem that continues to be a significant source of debate in the literature. The PTDMs reported here provide a well-controlled platform to vary molecular composition for structure activity relationship studies to further our understanding of PTDs, their non-covalent association with cargo, and their cellular internalization pathways. Specifically, several guanidine rich homopolymers, along with an amphiphilic block copolymer were used to investigate the relationship between structure and internalization activity in HeLa cells, both alone and non-covalently complexed with EGFP by flow cytometery and confocal imaging. The findings indicate that while changing the amount of positive charge on our PTDMs does not seem to affect the endosomal uptake, the presence of hydrophobicity appears to be a critical factor for the polymers to enter cells either alone, or with associated cargo. PMID:27039278

  11. The sorting protein PACS-2 promotes ErbB signalling by regulating recycling of the metalloproteinase ADAM17

    PubMed Central

    Dombernowsky, Sarah Louise; Samsøe-Petersen, Jacob; Petersen, Camilla Hansson; Instrell, Rachael; Hedegaard, Anne-Mette Bornhardt; Thomas, Laurel; Atkins, Katelyn Mae; Auclair, Sylvain; Albrechtsen, Reidar; Mygind, Kasper Johansen; Fröhlich, Camilla; Howell, Michael; Parker, Peter; Thomas, Gary; Kveiborg, Marie

    2015-01-01

    The metalloproteinase ADAM17 activates ErbB signalling by releasing ligands from the cell surface, a key step underlying epithelial development, growth, and tumour progression. However, mechanisms acutely controlling ADAM17 cell-surface availability to modulate the extent of ErbB ligand release are poorly understood. Here, through a functional genome-wide siRNA screen, we identify the sorting protein PACS-2 as a regulator of ADAM17 trafficking and ErbB signalling. PACS-2 loss reduces ADAM17 cell-surface levels and ADAM17-dependent ErbB ligand shedding, without apparent effects on related proteases. PACS-2 co-localizes with ADAM17 on early endosomes and PACS-2 knockdown decreases the recycling and stability of internalized ADAM17. Hence, PACS-2 sustains ADAM17 cell-surface activity by diverting ADAM17 away from degradative pathways. Interestingly, Pacs2-deficient mice display significantly reduced levels of phosphorylated EGFR and intestinal proliferation. We suggest that this mechanism controlling ADAM17 cell-surface availability and EGFR signalling may play a role in intestinal homeostasis, with potential implications for cancer biology. PMID:26108729

  12. Cleavage of neuregulin-1 by BACE1 or ADAM10 protein produces differential effects on myelination.

    PubMed

    Luo, Xiaoyang; Prior, Marguerite; He, Wanxia; Hu, Xiangyou; Tang, Xiaoying; Shen, Weizhen; Yadav, Satya; Kiryu-Seo, Sumiko; Miller, Robert; Trapp, Bruce D; Yan, Riqiang

    2011-07-01

    Neuregulin-1 (Nrg1) is encoded by a single gene and exists in naturally secreted and transmembrane isoforms. Nrg1 exerts its signaling activity through interaction with its cognate ErbB receptors. Multiple membrane-anchored Nrg1 isoforms, present in six different membrane topologies, must be processed by a protease to initiate a signaling cascade. Here, we demonstrate that BACE1 and ADAM10 can process type I and III Nrg1 at two adjacent sites. Our cleavage site mapping experiments showed that the BACE1 cleavage site is located eight amino acids downstream of the ADAM10 cleavage site, and this order of cleavage is the opposite of amyloid precursor protein cleavage by these two enzymes. Cleavages were further confirmed via optimized electrophoresis. Cleavage of type I or III Nrg1 by ADAM10 and BACE1 released a signaling-capable N-terminal fragment (ntf), either Nrg1-ntfα or Nrg1-ntfβ, which could similarly activate an ErbB receptor as evidenced by increased phosphorylation of Akt and ERK, two downstream signaling molecules. Although both Nrg1-ntfα and Nrg1-ntfβ could initiate a common signaling cascade, inhibition or down-regulation of ADAM10 alone in a co-culture system did not affect normal myelination, whereas specific inhibition of BACE1 impaired normal myelination. Thus, processing of Nrg1 by BACE1 appears to be more critical for regulating myelination. Our results imply that a significant inhibition of BACE1 could potentially impair Nrg1 signaling activity in vivo. PMID:21576249

  13. Circulating ADAM17 Level Reflects Disease Activity in Proteinase-3 ANCA-Associated Vasculitis.

    PubMed

    Bertram, Anna; Lovric, Svjetlana; Engel, Alissa; Beese, Michaela; Wyss, Kristin; Hertel, Barbara; Park, Joon-Keun; Becker, Jan U; Kegel, Johanna; Haller, Hermann; Haubitz, Marion; Kirsch, Torsten

    2015-11-01

    ANCA-associated vasculitides are characterized by inflammatory destruction of small vessels accompanied by enhanced cleavage of membrane-bound proteins. One of the main proteases responsible for ectodomain shedding is disintegrin and metalloproteinase domain-containing protein 17 (ADAM17). Given its potential role in aggravating vascular dysfunction, we examined the role of ADAM17 in active proteinase-3 (PR3)-positive ANCA-associated vasculitis (AAV). ADAM17 concentration was significantly increased in plasma samples from patients with active PR3-AAV compared with samples from patients in remission or from other controls with renal nonvascular diseases. Comparably, plasma levels of the ADAM17 substrate syndecan-1 were significantly enhanced in active AAV. We also observed that plasma-derived ADAM17 retained its specific proteolytic activity and was partly located on extracellular microparticles. Transcript levels of ADAM17 were increased in blood samples of patients with active AAV, but those of ADAM10 or tissue inhibitor of metalloproteinases 3, which inhibits ADAMs, were not. We also performed a microRNA (miR) screen and identified miR-634 as significantly upregulated in blood samples from patients with active AAV. In vitro, miR-634 mimics induced a proinflammatory phenotype in monocyte-derived macrophages, with enhanced expression and release of ADAM17 and IL-6. These data suggest that ADAM17 has a prominent role in AAV and might account for the vascular complications associated with this disease. PMID:25788529

  14. Adams-Harbertson protein precipitation-based wine tannin method found invalid.

    PubMed

    Brooks, Larry; McCloskey, Leo; McKesson, Doug; Sylvan, Marshall

    2008-01-01

    The poor precision of the Adams-Harbertson wine tannin assay which was proposed for commercial winemaking, thereby creating the real possibility of quality control problems, is documented. The method is a version of the Hagerman and Butler protein precipitation-based tannin method. An extensive invalidation of the assay results with luxury wine data shows that the assay cannot distinguish bottled wine with reasonable accuracy. Five laboratories used Adams-Harbertson to assay 9 replicates each, of 3 bottled wines (n = 135) found in California supermarkets, with tannin concentrations of nominally 500 and 1000 ppm by high-performance liquid chromatography (HPLC). Reliability exceeded the +/-5% industry requirement by nominally 5 times (z-score based on 5% distribution). Coefficient of variation was +/-27%, making the standard deviation range 54% for Pinot Noir, 34% for Merlot, and 44% for Cabernet Sauvignon. Validity exceeded the 100% requirement. Intralaboratory validity recovery was 55-63%. Interwinery validity was 71-178% of the mean for Pinot Noir, 81-144% for Merlot, and 83-164% for Cabernet Sauvignon. Range as a function of the mean was 89% for Pinot Noir, 55% for Merlot, and 67% for Cabernet Sauvignon. Expect intermethod validity to be nominally 50%, i.e., percent recovery to HPLC. These statistically significant errors were predicted by the literature. First-order error is related to the tannin-protein equilibrium constant (Ka), as suggested by the original author, Hagerman, and the protein equivalence point error as suggested by Silber. This does not obviate second-order errors for tannin-protein analytical chemistry. Winemakers using the measurements risk making wines that are relatively more tannic than the measurements report. PMID:18980123

  15. Protein structure. Crystal structures of translocator protein (TSPO) and mutant mimic of a human polymorphism.

    PubMed

    Li, Fei; Liu, Jian; Zheng, Yi; Garavito, R Michael; Ferguson-Miller, Shelagh

    2015-01-30

    The 18-kilodalton translocator protein (TSPO), proposed to be a key player in cholesterol transport into mitochondria, is highly expressed in steroidogenic tissues, metastatic cancer, and inflammatory and neurological diseases such as Alzheimer's and Parkinson's. TSPO ligands, including benzodiazepine drugs, are implicated in regulating apoptosis and are extensively used in diagnostic imaging. We report crystal structures (at 1.8, 2.4, and 2.5 angstrom resolution) of TSPO from Rhodobacter sphaeroides and a mutant that mimics the human Ala(147)→Thr(147) polymorphism associated with psychiatric disorders and reduced pregnenolone production. Crystals obtained in the lipidic cubic phase reveal the binding site of an endogenous porphyrin ligand and conformational effects of the mutation. The three crystal structures show the same tightly interacting dimer and provide insights into the controversial physiological role of TSPO and how the mutation affects cholesterol binding. PMID:25635101

  16. Muscle uncoupling protein 3 overexpression mimics endurance training and reduces circulating biomarkers of incomplete β-oxidation

    PubMed Central

    Aguer, Céline; Fiehn, Oliver; Seifert, Erin L.; Bézaire, Véronic; Meissen, John K.; Daniels, Amanda; Scott, Kyle; Renaud, Jean-Marc; Padilla, Marta; Bickel, David R.; Dysart, Michael; Adams, Sean H.; Harper, Mary-Ellen

    2013-01-01

    Exercise substantially improves metabolic health, making the elicited mechanisms important targets for novel therapeutic strategies. Uncoupling protein 3 (UCP3) is a mitochondrial inner membrane protein highly selectively expressed in skeletal muscle. Here we report that moderate UCP3 overexpression (roughly 3-fold) in muscles of UCP3 transgenic (UCP3 Tg) mice acts as an exercise mimetic in many ways. UCP3 overexpression increased spontaneous activity (∼40%) and energy expenditure (∼5–10%) and decreased oxidative stress (∼15–20%), similar to exercise training in wild-type (WT) mice. The increase in complete fatty acid oxidation (FAO; ∼30% for WT and ∼70% for UCP3 Tg) and energy expenditure (∼8% for WT and 15% for UCP3 Tg) in response to endurance training was higher in UCP3 Tg than in WT mice, showing an additive effect of UCP3 and endurance training on these two parameters. Moreover, increases in circulating short-chain acylcarnitines in response to acute exercise in untrained WT mice were absent with training or in UCP3 Tg mice. UCP3 overexpression had the same effect as training in decreasing long-chain acylcarnitines. Outcomes coincided with a reduction in muscle carnitine acetyltransferase activity that catalyzes the formation of acylcarnitines. Overall, results are consistent with the conclusions that circulating acylcarnitines could be used as a marker of incomplete muscle FAO and that UCP3 is a potential target for the treatment of prevalent metabolic diseases in which muscle FAO is affected.—Aguer, C., Fiehn, O., Seifert, E. L., Bézaire, V., Meissen, J. K., Daniels, A., Scott, K., Renaud, J.-M., Padilla, M., Bickel, D. R., Dysart, M., Adams, S. H., Harper, M.-E. Muscle uncoupling protein 3 overexpression mimics endurance training and reduces circulating biomarkers of incomplete β-oxidation. PMID:23825224

  17. "Eye of tiger sign" mimic in an adolescent boy with mitochondrial membrane protein associated neurodegeneration (MPAN).

    PubMed

    Yoganathan, Sangeetha; Sudhakar, Sniya Valsa; Thomas, Maya; Dutta, Atanu Kumar; Danda, Sumita

    2016-05-01

    Neurodegeneration with brain iron accumulation (NBIA) refers to an inherited heterogeneous group of disorders pathologically characterized by focal brain iron deposition. Clinical phenotype, imaging findings and genotype are variable among the different types of this disorder. In this case report, we describe the imaging finding of an adolescent boy with mitochondrial membrane protein associated neurodegeneration (MPAN), a subentity of NBIA. Magnetic resonance imaging of brain revealed hypointensity of globi pallidi with medial medullary lamina appearing as a hyperintense streak in T2 weighted images. Mild cerebellar atrophy in T2 weighted images and blooming of substantia nigra and globi pallidi in susceptibility weighted images were also observed. Imaging findings in patients with MPAN mimics the eye of tiger appearance in patients with pantothenate kinase associated neurodegeneration. Classical phenotype and eye of tiger sign mimic in imaging of patients with NBIA should raise the suspect for MPAN. Genetic studies helps in the confirmation of diagnosis of this neurodegenerative disorder. PMID:26602591

  18. Structural basis for activity of highly efficient RNA mimics of green fluorescent protein

    PubMed Central

    Warner, Katherine Deigan; Chen, Michael C.; Song, Wenjiao; Strack, Rita L.; Thorn, Andrea; Jaffrey, Samie R.; Ferré-D’Amaré, Adrian R.

    2014-01-01

    Green fluorescent protein (GFP) and its derivatives revolutionized the study of proteins. Spinach is a recently reported in vitro evolved RNA mimic of GFP, which as genetically encoded fusions, makes possible live-cell, real-time imaging of biological RNAs, without resorting to large RNA-binding protein-GFP fusions. To elucidate the molecular basis of Spinach fluorescence, we have solved its co-crystal structure bound to its cognate exogenous chromophore, revealing that Spinach activates the small molecule by immobilizing it between a base triple, a G-quadruplex, and an unpaired guanine. Mutational and NMR analyses indicate that the G-quadruplex is essential for Spinach fluorescence, is also present in other fluorogenic RNAs, and may represent a general strategy for RNAs to induce fluorescence of chromophores. The structure has guided the design of a miniaturized 'Baby Spinach', and provides the foundation for structure-driven design and tuning of fluorescent RNAs. PMID:25026079

  19. ADAM Proteases and Gastrointestinal Function.

    PubMed

    Jones, Jennifer C; Rustagi, Shelly; Dempsey, Peter J

    2016-01-01

    A disintegrin and metalloproteinases (ADAMs) are a family of cell surface proteases that regulate diverse cellular functions, including cell adhesion, migration, cellular signaling, and proteolysis. Proteolytically active ADAMs are responsible for ectodomain shedding of membrane-associated proteins. ADAMs rapidly modulate key cell signaling pathways in response to changes in the extracellular environment (e.g., inflammation) and play a central role in coordinating intercellular communication within the local microenvironment. ADAM10 and ADAM17 are the most studied members of the ADAM family in the gastrointestinal tract. ADAMs regulate many cellular processes associated with intestinal development, cell fate specification, and the maintenance of intestinal stem cell/progenitor populations. Several signaling pathway molecules that undergo ectodomain shedding by ADAMs [e.g., ligands and receptors from epidermal growth factor receptor (EGFR)/ErbB and tumor necrosis factor α (TNFα) receptor (TNFR) families] help drive and control intestinal inflammation and injury/repair responses. Dysregulation of these processes through aberrant ADAM expression or sustained ADAM activity is linked to chronic inflammation, inflammation-associated cancer, and tumorigenesis. PMID:26667078

  20. ADAM Proteases and Gastrointestinal Function

    PubMed Central

    Jones, Jennifer C.; Rustagi, Shelly; Dempsey, Peter J.

    2016-01-01

    A disintegrin and metalloproteinases (ADAMs) are a family of cell surface proteases that regulate diverse cellular functions, including cell adhesion, migration, cellular signaling, and proteolysis. Proteolytically active ADAMs are responsible for ectodomain shedding of membrane-associated proteins. ADAMs rapidly modulate key cell signaling pathways in response to changes in the extracellular environment (e.g., inflammation) and play a central role in coordinating intercellular communication within the local microenvironment. ADAM10 and ADAM17 are the most studied members of the ADAM family in the gastrointestinal tract. ADAMs regulate many cellular processes associated with intestinal development, cell fate specification, and the maintenance of intestinal stem cell/progenitor populations. Several signaling pathway molecules that undergo ectodomain shedding by ADAMs [e.g., ligands and receptors from epidermal growth factor receptor (EGFR)/ErbB and tumor necrosis factor α (TNFα) receptor (TNFR) families] help drive and control intestinal inflammation and injury/repair responses. Dysregulation of these processes through aberrant ADAM expression or sustained ADAM activity is linked to chronic inflammation, inflammation-associated cancer, and tumorigenesis. PMID:26667078

  1. ELISA-mimic screen for synthetic polymer nanoparticles with high affinity to target proteins.

    PubMed

    Yonamine, Yusuke; Hoshino, Yu; Shea, Kenneth J

    2012-09-10

    Synthetic polymer nanoparticles (NPs) that display high affinity to protein targets have significant potential for medical and biotechnological applications as protein capture agents or functional replacements of antibodies ("plastic antibodies"). In this study, we modified an immunological assay (enzyme-linked immunosorbent assay: ELISA) into a high-throughput screening method to select nanoparticles with high affinity to target proteins. Histone and fibrinogen were chosen as target proteins to demonstrate this concept. The selection process utilized a biotinylated NP library constructed with combinations of functional monomers. The screen identified NPs with distinctive functional group compositions that exhibited high affinity to either histone or fibrinogen. The variation of protein affinity with changes in the nature and amount of functional groups in the NP provided chemical insight into the principle determinants of protein-NP binding. The NP affinity was semiquantified using the ELISA-mimic assay by varying the NP concentrations. The screening results were found to correlate with solution-based assay results. This screening system utilizing a biotinylated NP is a general approach to optimize functional monomer compositions and can be used to rapidly search for synthetic polymers with high (or low) affinity for target biological macromolecules. PMID:22813352

  2. Amyloid β-sheet mimics that antagonize protein aggregation and reduce amyloid toxicity

    NASA Astrophysics Data System (ADS)

    Cheng, Pin-Nan; Liu, Cong; Zhao, Minglei; Eisenberg, David; Nowick, James S.

    2012-11-01

    The amyloid protein aggregation associated with diseases such as Alzheimer's, Parkinson's and type II diabetes (among many others) features a bewildering variety of β-sheet-rich structures in transition from native proteins to ordered oligomers and fibres. The variation in the amino-acid sequences of the β-structures presents a challenge to developing a model system of β-sheets for the study of various amyloid aggregates. Here, we introduce a family of robust β-sheet macrocycles that can serve as a platform to display a variety of heptapeptide sequences from different amyloid proteins. We have tailored these amyloid β-sheet mimics (ABSMs) to antagonize the aggregation of various amyloid proteins, thereby reducing the toxicity of amyloid aggregates. We describe the structures and inhibitory properties of ABSMs containing amyloidogenic peptides from the amyloid-β peptide associated with Alzheimer's disease, β2-microglobulin associated with dialysis-related amyloidosis, α-synuclein associated with Parkinson's disease, islet amyloid polypeptide associated with type II diabetes, human and yeast prion proteins, and Tau, which forms neurofibrillary tangles.

  3. ADAM9 enhances CDCP1 protein expression by suppressing miR-218 for lung tumor metastasis.

    PubMed

    Chiu, Kuo-Liang; Kuo, Ting-Ting; Kuok, Qian-Yu; Lin, Yu-Sen; Hua, Chung-Hung; Lin, Chen-Yuan; Su, Pei-Yuan; Lai, Liang-Chuan; Sher, Yuh-Pyng

    2015-01-01

    Metastasis is the leading cause of death in cancer patients due to the difficulty of controlling this complex process. MicroRNAs (miRNA), endogenous noncoding short RNAs with important biological and pathological functions, may play a regulatory role during cancer metastasis, but this role has yet to be fully defined. We previously demonstrated that ADAM9 enhanced the expression of the pro-migratory protein CDCP1 to promote lung metastasis; however, the regulatory process remains unknown. Here we demonstrate that endogenous miR-218, which is abundant in normal lung tissue but suppressed in lung tumors, is regulated during the process of ADAM9-mediated CDCP1 expression. Suppression of miR-218 was associated with high migration ability in lung cancer cells. Direct interaction between miR-218 and the 3'-UTR of CDCP1 mRNAs was detected in luciferase-based transcription reporter assays. CDCP1 protein levels decreased as expression levels of miR-218 increased, and increased in cells treated with miR-218 antagomirs. Induction of miR-218 inhibited tumor cell mobility, anchorage-free survival, and tumor-initiating cell formation in vitro and delayed tumor metastases in mice. Our findings revealed an integrative tumor suppressor function of miR-218 in lung carcinogenesis and metastasis. PMID:26553452

  4. ADAM9 enhances CDCP1 protein expression by suppressing miR-218 for lung tumor metastasis

    PubMed Central

    Chiu, Kuo-Liang; Kuo, Ting-Ting; Kuok, Qian-Yu; Lin, Yu-Sen; Hua, Chung-Hung; Lin, Chen-Yuan; Su, Pei-Yuan; Lai, Liang-Chuan; Sher, Yuh-Pyng

    2015-01-01

    Metastasis is the leading cause of death in cancer patients due to the difficulty of controlling this complex process. MicroRNAs (miRNA), endogenous noncoding short RNAs with important biological and pathological functions, may play a regulatory role during cancer metastasis, but this role has yet to be fully defined. We previously demonstrated that ADAM9 enhanced the expression of the pro-migratory protein CDCP1 to promote lung metastasis; however, the regulatory process remains unknown. Here we demonstrate that endogenous miR-218, which is abundant in normal lung tissue but suppressed in lung tumors, is regulated during the process of ADAM9-mediated CDCP1 expression. Suppression of miR-218 was associated with high migration ability in lung cancer cells. Direct interaction between miR-218 and the 3′-UTR of CDCP1 mRNAs was detected in luciferase-based transcription reporter assays. CDCP1 protein levels decreased as expression levels of miR-218 increased, and increased in cells treated with miR-218 antagomirs. Induction of miR-218 inhibited tumor cell mobility, anchorage-free survival, and tumor-initiating cell formation in vitro and delayed tumor metastases in mice. Our findings revealed an integrative tumor suppressor function of miR-218 in lung carcinogenesis and metastasis. PMID:26553452

  5. Defining the loop structures in proteins based on composite β-turn mimics.

    PubMed

    Dhar, Jesmita; Chakrabarti, Pinak

    2015-06-01

    Asx- and ω-turns are β-turn mimics, which replace the conventional main-chain hydrogen bonds seen in the latter by those involving the side chains, and both involve three residues. In this paper we analyzed the cases where these turns occur together--side by side, with or without any gap, overlapping and in any order. These composite turns (of length 3-15 residues), occurring at ∼1 per 100 residues, may constitute the full length of many loops, and when the residues in the two component turns overlap or are adjacent to each other, the composite may take well-defined shape. It is thus possible for non-regular regions in protein structure to form local structural motifs, akin to the regular geometrical features exhibited by secondary structures. Composites having the order ω-turns followed by Asx-turns can constitute N-terminal helix capping motif. Ternary composite turns (made up of ω-, Asx- and ST-turns), some with characteristic shape, have also been identified. Delineation of composite turns would help in characterizing loops in protein structures, which often have functional roles. Some sequence patterns seen in composites can be used for their incorporation in protein design. PMID:25870305

  6. MiR-222 modulates multidrug resistance in human colorectal carcinoma by down-regulating ADAM-17.

    PubMed

    Xu, Ke; Liang, Xin; Shen, Ke; Sun, Liyun; Cui, Daling; Zhao, Yuxia; Tian, Jianhui; Ni, Lei; Liu, Jianwen

    2012-10-15

    Colorectal carcinoma is a frequent cause of cancer-related death in men and women throughout the world. MicroRNAs are endogenous small noncoding RNAs that negatively regulate gene expression at the posttranscriptional level. We investigated the role of ADAM-17 (a desintegrin and metalloproteases 17) as a novel multidrug resistance (MDR) mechanism in multidrug-resistant colorectal carcinoma (CRC) and the role of miR-222 in the development of MDR in CRC cells. We found that the high expression of ADAM-17, which results in growth factor shedding and growth factor receptor activation could induce drug resistance in CRC. Pharmacological inhibition of ADAM-17, in conjunction with chemotherapy, may have therapeutic potential for the treatment of CRC. ADAM-17 is a predicted target of miR-222, which was downregulated in multidrug-resistant CRC cells. The presence of miR-222 was consistently inversely proportionate to the expression levels of ADAM-17. We found that elevated levels of miR-222 in the mimics-transfected HCT116/L-OHP and HCT-8/VCR cells reduced the ADAM-17 protein level and the luciferase activity of an ADAM-17 3' untranslated region-based reporter and sensitized these cells' apoptosis to some anticancer drugs. Our findings suggest that miR-222 could play a role in the development of MDR by modulation of ADAM-17, the new MDR treatment target in colorectal carcinoma cells. PMID:22677042

  7. Expanding The Scope Of Oligo-pyrrolinone-pyrrolidines As Protein-protein Interface Mimics

    PubMed Central

    Raghuraman, Arjun; Xin, Dongyue; Perez, Lisa M.; Burgess, Kevin

    2013-01-01

    Oligo-pyrrolinone-pyrrolidines (generic structure 1) have the potential to interfere with protein-protein interactions (PPIs), but to reduce this to practice it is necessary to be able to synthesize these structures with a variety of different side-chains corresponding to genetically encoded proteins. This paper describes expansion of the synthetic scope of 1, the difficulties encountered in this process, particularly issues with epimerization and slow coupling rates, and methods to overcome them. Finally, spectroscopic and physicochemical properties as well as proteolytic stabilities of molecules in this series were measured; these data highlight the suitability of oligo-pyrrolinone-pyrrolidines for the development of pharmacological probes or pharmaceutical leads. PMID:23654284

  8. Potent inhibition of protein-tyrosine phosphatase by phosphotyrosine-mimic containing cyclic peptides.

    PubMed

    Akamatsu, M; Roller, P P; Chen, L; Zhang, Z Y; Ye, B; Burke, T R

    1997-01-01

    In an effort to derive potent and bioavailable protein-tyrosine phosphatase inhibitors, we have previously reported hexameric peptides based on the epidermal growth factor receptor sequence EGFR988-993 (Asp-Ala-Asp-Glu-Xxx-Leu, where Xxx = Tyr), in which the tyrosyl residue has been replaced by the non-hydrolyzable phosphotyrosyl mimics phosphonomethylphenylalanine (Pmp), difluorophosphonomethylphenylalanine (F2Pmp) and O-malonyltyrosine (OMT). Inhibitory potencies (IC50 values) of these peptides against the tyrosine phosphatase PTP IB were 200, 0.2 and 10 microM, respectively. Since cellular penetration of peptides containing highly charged phosphonate residues is compromised, and good bioreversible protection strategies for the F2Pmp residue have not yet been reported, the OMT residue is of particular interest in that it affords potential new prodrug approaches. In the current study we have prepared cyclized versions of the OMT-containing EGFR988-993 peptide in order to increase its proteolytic stability and restrain conformational flexibility. Three different cyclic analogues were synthesized. Two of these were cyclized through the peptide backbone ('head to tail') using in one case a single glycine spacer (heptamer peptide) and in the second instance, two glycines (octamer peptide). In a PTPI-based assay the cyclic heptamer experienced a two-fold loss of potency (Ki = 25.2 +/- 3.9 microM) relative to the linear hexamer parent (Ki = 13 +/- 0.9 microM), while the cyclic octamer demonstrated a live-fold increase in potency (Ki = 2.60 +/- 0.11 microM). The third peptide was cyclized by means of a sulfide bridge between the side chain of a C-terminally added cysteine residue and the beta-carbon of a N-terminal acetyl residue. Although the overall size of this ring was identical to that exhibited by the preceding backbone-cyclized octamer, it displayed a three-fold enhancement in potency (Ki = 0.73 +/- 0.03 microM). The structural basis for the observed results are

  9. A library of MiMICs allows tagging of genes and reversible, spatial and temporal knockdown of proteins in Drosophila

    SciTech Connect

    Nagarkar-Jaiswal, Sonal; Lee, Pei-Tseng; Campbell, Megan E.; Chen, Kuchuan; Anguiano-Zarate, Stephanie; Cantu Gutierrez, Manuel; Busby, Theodore; Lin, Wen-Wen; He, Yuchun; Schulze, Karen L.; Booth, Benjamin W.; Evans-Holm, Martha; Venken, Koen J.T.; Levis, Robert W.; Spradling, Allan C.; Hoskins, Roger A.; Bellen, Hugo J.

    2015-03-31

    Here, we document a collection of ~7434 MiMIC (Minos Mediated Integration Cassette) insertions of which 2854 are inserted in coding introns. They allowed us to create a library of 400 GFP-tagged genes. We show that 72% of internally tagged proteins are functional, and that more than 90% can be imaged in unfixed tissues. Moreover, the tagged mRNAs can be knocked down by RNAi against GFP (iGFPi), and the tagged proteins can be efficiently knocked down by deGradFP technology. The phenotypes associated with RNA and protein knockdown typically correspond to severe loss of function or null mutant phenotypes. Finally, we demonstrate reversible, spatial, and temporal knockdown of tagged proteins in larvae and adult flies. This new strategy and collection of strains allows unprecedented in vivo manipulations in flies for many genes. These strategies will likely extend to vertebrates.

  10. A library of MiMICs allows tagging of genes and reversible, spatial and temporal knockdown of proteins in Drosophila

    DOE PAGESBeta

    Nagarkar-Jaiswal, Sonal; Lee, Pei-Tseng; Campbell, Megan E.; Chen, Kuchuan; Anguiano-Zarate, Stephanie; Cantu Gutierrez, Manuel; Busby, Theodore; Lin, Wen-Wen; He, Yuchun; Schulze, Karen L.; et al

    2015-03-31

    Here, we document a collection of ~7434 MiMIC (Minos Mediated Integration Cassette) insertions of which 2854 are inserted in coding introns. They allowed us to create a library of 400 GFP-tagged genes. We show that 72% of internally tagged proteins are functional, and that more than 90% can be imaged in unfixed tissues. Moreover, the tagged mRNAs can be knocked down by RNAi against GFP (iGFPi), and the tagged proteins can be efficiently knocked down by deGradFP technology. The phenotypes associated with RNA and protein knockdown typically correspond to severe loss of function or null mutant phenotypes. Finally, we demonstratemore » reversible, spatial, and temporal knockdown of tagged proteins in larvae and adult flies. This new strategy and collection of strains allows unprecedented in vivo manipulations in flies for many genes. These strategies will likely extend to vertebrates.« less

  11. What's an Adam's Apple?

    MedlinePlus

    ... Help White House Lunch Recipes What's an Adam's Apple? KidsHealth > For Kids > What's an Adam's Apple? Print A A A Text Size You're ... the throat. This is what's called an Adam's apple. Everyone's larynx grows during puberty, but a girl's ...

  12. A supersandwich electrochemiluminescence immunosensor based on mimic-intramolecular interaction for sensitive detection of proteins.

    PubMed

    He, Ying; Chai, Yaqin; Yuan, Ruo; Wang, Haijun; Bai, Lijuan; Liao, Ni

    2014-10-21

    An electrochemiluminescence (ECL) immunoassay protocol was developed based on mimic-intramolecular interaction for sensitive detection of prostate specific antigen (PSA). It was constructed by integrating the ECL luminophore (tris(4,4'-dicarboxylicacid-2,2'-bipyridyl)-ruthenium(ii)dichloride (Ru(dcbpy)3(2+))) and coreactant (histidine) into the supersandwich DNA structure. This strategy was more effective in amplifying the ECL signal by shortening the electronic transmission distance, improving the ECL luminous stability and enhancing the ECL luminous efficiency. The ECL matrices denoted as MWCNTs@PDA-AuNPs were fabricated through spontaneous oxidative polymerization of dopamine (DA) on multiwalled carbon nanotubes (MWCNTs) and reducing HAuCl4 to produce gold nanoparticles (AuNPs) by DA simultaneously. Then, the prepared matrices were applied to bind capture antibodies. Moreover, supersandwich Ab2 bioconjugate was designed using a PAMAM dendrimer to immobilize the detection antibody and supersandwich DNA structure. The PAMAM dendrimer, with a plurality of secondary and tertiary amine groups, not only facilitated high-density immobilization of the detection antibody and supersandwich DNA structure, but also greatly amplified the ECL signal of Ru(dcbpy)3(2+). The supersandwich DNA structure contained multiple Ru(dcbpy)3(2+) and histidine, further amplifying the ECL signal. The proposed supersandwich immunosensor showed high sensitivity with a detection limit of 4.2 fg mL(-1) and a wide linear range of 0.01 pg mL(-1)-40.00 ng mL(-1). With the excellent stability, satisfying precision and reproducibility, the proposed immunosensor indicates promising practicability for clinical diagnosis. PMID:25122008

  13. Okadaic acid mimics multiple changes in early protein phosphorylation and gene expression induced by tumor necrosis factor or interleukin-1.

    PubMed

    Guy, G R; Cao, X; Chua, S P; Tan, Y H

    1992-01-25

    Okadaic acid, a phosphatase inhibitor from a marine organism, mimics tumor necrosis factor/interleukin-1 (TNF/IL-1) in inducing changes in early cellular protein phosphorylation. A total of approximately 116 proteins exhibit significant and concordant changes in phosphorylation or dephosphorylation within 15 min in human fibroblasts activated by either okadaic acid, TNF, or IL-1. The fidelity of this mimicry by okadaic acid extends to the phosphorylation of the 27 hsp complex, stathmin, eIF-4E, myosin light chain, nucleolin, epidermal growth factor receptor, and other cdc2-kinase substrates (c-abl, RB, and p53). The okadaic acid-induced pattern of protein phosphorylation is distinct from that observed in cells treated with phorbol 12-myristate 13-acetate or with ligands like epidermal growth factor, cyclic AMP agonists, bradykinin, or interferons. Like TNF, okadaic acid also induces the transcription of immediate early response genes like c-jun and Egr-1 as well as the interleukin-6 genes. The overall early effects of okadaic acid uniquely parallel those of TNF/IL-1 and not those of other cytokines or ligands. Regulation of protein phosphatase inhibition is discussed as a mechanism for TNF/IL-1 signal transduction. PMID:1370482

  14. A library of MiMICs allows tagging of genes and reversible, spatial and temporal knockdown of proteins in Drosophila

    PubMed Central

    Nagarkar-Jaiswal, Sonal; Lee, Pei-Tseng; Campbell, Megan E; Chen, Kuchuan; Anguiano-Zarate, Stephanie; Cantu Gutierrez, Manuel; Busby, Theodore; Lin, Wen-Wen; He, Yuchun; Schulze, Karen L; Booth, Benjamin W; Evans-Holm, Martha; Venken, Koen JT; Levis, Robert W; Spradling, Allan C; Hoskins, Roger A; Bellen, Hugo J

    2015-01-01

    Here, we document a collection of ∼7434 MiMIC (Minos Mediated Integration Cassette) insertions of which 2854 are inserted in coding introns. They allowed us to create a library of 400 GFP-tagged genes. We show that 72% of internally tagged proteins are functional, and that more than 90% can be imaged in unfixed tissues. Moreover, the tagged mRNAs can be knocked down by RNAi against GFP (iGFPi), and the tagged proteins can be efficiently knocked down by deGradFP technology. The phenotypes associated with RNA and protein knockdown typically correspond to severe loss of function or null mutant phenotypes. Finally, we demonstrate reversible, spatial, and temporal knockdown of tagged proteins in larvae and adult flies. This new strategy and collection of strains allows unprecedented in vivo manipulations in flies for many genes. These strategies will likely extend to vertebrates. DOI: http://dx.doi.org/10.7554/eLife.05338.001 PMID:25824290

  15. A DNA mimic: the structure and mechanism of action for the anti-repressor protein AbbA.

    PubMed

    Tucker, Ashley T; Bobay, Benjamin G; Banse, Allison V; Olson, Andrew L; Soderblom, Erik J; Moseley, M Arthur; Thompson, Richele J; Varney, Kristen M; Losick, Richard; Cavanagh, John

    2014-05-01

    Bacteria respond to adverse environmental conditions by switching on the expression of large numbers of genes that enable them to adapt to unfavorable circumstances. In Bacillus subtilis, many adaptive genes are under the negative control of the global transition state regulator, the repressor protein AbrB. Stressful conditions lead to the de-repression of genes under AbrB control. Contributing to this de-repression is AbbA, an anti-repressor that binds to and blocks AbrB from binding to DNA. Here, we have determined the NMR structure of the functional AbbA dimer, confirmed that it binds to the N-terminal DNA-binding domain of AbrB, and have provided an initial description for the interaction using computational docking procedures. Interestingly, we show that AbbA has structural and surface characteristics that closely mimic the DNA phosphate backbone, enabling it to readily carry out its physiological function. PMID:24534728

  16. A DNA Mimic: The Structure and Mechanism of Action for the Anti-Repressor Protein AbbA

    PubMed Central

    Tucker, Ashley T.; Bobay, Benjamin G.; Banse, Allison V.; Olson, Andrew L.; Soderblom, Erik J.; Moseley, M. Arthur; Thompson, Richele J.; Varney, Kristen M.; Losick, Richard; Cavanagh, John

    2014-01-01

    Bacteria respond to adverse environmental conditions by switching on the expression of large numbers of genes that enable them to adapt to unfavorable circumstances. In Bacillus subtilis, many adaptive genes are under the negative control of the global transition state regulator, the repressor protein AbrB. Stressful conditions lead to the de-repression of genes under AbrB control. Contributing to this de-repression is AbbA, an anti-repressor that binds to and blocks AbrB from binding to DNA. Here, we have determined the NMR structure of the functional AbbA dimer, confirmed that it binds to the N-terminal DNA-binding domain of AbrB, and have provided an initial description for the interaction using computational docking procedures. Interestingly, we show that AbbA has structural and surface characteristics that closely mimic the DNA phosphate backbone, enabling it to readily carry out its physiological function. PMID:24534728

  17. Conjugated-protein mimics with molecularly imprinted reconstructible and transformable regions that are assembled using space-filling prosthetic groups.

    PubMed

    Takeuchi, Toshifumi; Mori, Takuya; Kuwahara, Atsushi; Ohta, Takeo; Oshita, Azusa; Sunayama, Hirobumi; Kitayama, Yukiya; Ooya, Tooru

    2014-11-17

    Conjugated-protein mimics were obtained using a new molecular imprinting strategy combined with post-imprinting modifications. An antibiotic was employed as a model template molecule, and a polymerizable template molecule was designed, which was composed of the antibiotic and two different prosthetic groups attached through a disulfide bond and Schiff base formation. After co-polymerization with a cross-linker, the template molecule was removed together with the prosthetic groups, yielding the apo-type scaffold. Through conjugation of the two different prosthetic groups at pre-determined positions within the apo-type scaffold, the apo cavity was transformed into a functionalized holo cavity, which enables the on/off switching of the molecular recognition ability, signal transduction activity for binding events, and photoresponsive activity. PMID:25257234

  18. Solution NMR of membrane proteins in bilayer mimics: small is beautiful, but sometimes bigger is better.

    PubMed

    Poget, Sébastien F; Girvin, Mark E

    2007-12-01

    Considerable progress has been made recently on solution NMR studies of multi-transmembrane helix membrane protein systems of increasing size. Careful correlation of structure with function has validated the physiological relevance of these studies in detergent micelles. However, larger micelle and bicelle systems are sometimes required to stabilize the active forms of dynamic membrane proteins, such as the bacterial small multidrug resistance transporters. Even in these systems with aggregate molecular weights well over 100 kDa, solution NMR structural studies are feasible-but challenging. PMID:17961504

  19. Solution NMR of membrane proteins in bilayer mimics: Small is beautiful, but sometimes bigger is better

    PubMed Central

    Poget, Sébastien F.; Girvin, Mark E.

    2007-01-01

    Considerable progress has been made recently on solution NMR studies of multi-transmembrane helix membrane protein systems of increasing size. Careful correlation of structure with function has validated the physiological relevance of these studies in detergent micelles. However, larger micelle and bicelle systems are sometimes required to stabilize the active forms of dynamic membrane proteins, such as the bacterial small multidrug resistance transporters. Even in these systems with aggregate molecular weights well over 100 kDa, solution NMR structural studies are feasible – but challenging. PMID:17961504

  20. Sequence-Specific Interaction between the Disintegrin Domain of Mouse ADAM 3 and Murine Eggs: Role of β1 Integrin-associated Proteins CD9, CD81, and CD98

    PubMed Central

    Takahashi, Yuji; Bigler, Dora; Ito, Yasuhiko; White, Judith M.

    2001-01-01

    ADAM 3 is a sperm surface glycoprotein that has been implicated in sperm-egg adhesion. Because little is known about the adhesive activity of ADAMs, we investigated the interaction of ADAM 3 disintegrin domains, made in bacteria and in insect cells, with murine eggs. Both recombinant proteins inhibited sperm-egg binding and fusion with potencies similar to that which we recently reported for the ADAM 2 disintegrin domain. Alanine scanning mutagenesis revealed a critical importance for the glutamine at position 7 of the disintegrin loop. Fluorescent beads coated with the ADAM 3 disintegrin domain bound to the egg surface. Bead binding was inhibited by an authentic, but not by a scrambled, peptide analog of the disintegrin loop. Bead binding was also inhibited by the function-blocking anti-α6 monoclonal antibody (mAb) GoH3, but not by a nonfunction blocking anti-α6 mAb, or by mAbs against either the αv or β3 integrin subunits. We also present evidence that in addition to the tetraspanin CD9, two other β1-integrin-associated proteins, the tetraspanin CD81 as well as the single pass transmembrane protein CD98 are expressed on murine eggs. Antibodies to CD9 and CD98 inhibited in vitro fertilization and binding of the ADAM 3 disintegrin domain. Our findings are discussed in terms of the involvement of multiple sperm ADAMs and multiple egg β1 integrin-associated proteins in sperm-egg binding and fusion. We propose that an egg surface “tetraspan web” facilitates fertilization and that it may do so by fostering ADAM–integrin interactions. PMID:11294888

  1. Myositis Mimics.

    PubMed

    Michelle, E Harlan; Mammen, Andrew L

    2015-10-01

    Patients with autoimmune myositis typically present with muscle weakness, elevated serum levels of muscle enzymes, and abnormal muscle biopsies. However, patients with other acquired myopathies or genetic muscle diseases may have remarkably similar presentations. Making the correct diagnosis of another muscle disease can prevent these patients from being exposed to the risks of immunosuppressive medications, which benefit those with myositis, but not those with other types of muscle disease. Here, we review some of the most common acquired and inherited muscle diseases that can mimic autoimmune myositis, including inclusion body myositis, limb girdle muscular dystrophies, metabolic myopathies, mitochondrial myopathies, and endocrine myopathies. We emphasize aspects of the medical history, physical exam, laboratory evaluation, and muscle biopsy analysis that can help clinicians distinguish myositis mimics from true autoimmune myositis. PMID:26290112

  2. Tuning the Protein-Induced Absorption Shifts of Retinal in Engineered Rhodopsin Mimics.

    PubMed

    Suomivuori, Carl-Mikael; Lang, Lucas; Sundholm, Dage; Gamiz-Hernandez, Ana P; Kaila, Ville R I

    2016-06-01

    Rational design of light-capturing properties requires understanding the molecular and electronic structure of chromophores in their native chemical or biological environment. We employ here large-scale quantum chemical calculations to study the light-capturing properties of retinal in recently designed human cellular retinol binding protein II (hCRBPII) variants (Wang et al. Science, 2012, 338, 1340-1343). Our calculations show that these proteins absorb across a large part of the visible spectrum by combined polarization and electrostatic effects. These effects stabilize the ground or excited state energy levels of the retinal by perturbing the Schiff-base or β-ionone moieties of the chromophore, which in turn modulates the amount of charge transfer within the molecule. Based on the predicted tuning principles, we design putative in silico mutations that further shift the absorption properties of retinal in hCRBPII towards the ultraviolet and infrared regions of the spectrum. PMID:27120137

  3. Polymer adhesion at surfaces: biological adhesive proteins and their synthetic mimics

    NASA Astrophysics Data System (ADS)

    Messersmith, Phillip

    2008-03-01

    Mussels are famous for their ability to permanently adhere to a wide variety of wet surfaces, such as rocks, metal and polymer ship hulls, and wood structures. They accomplish this through specialized proteins collectively referred to as mussel adhesive proteins (MAPs). The biophysical aspects of MAP adhesion is being revealed through the use of single molecule force measurements. The results provide insight into the adhesive roles of key amino acids found in these proteins, including the magnitude of adhesive forces, cooperative effects, and their self-healing properties. This molecular-level information is being incorporated into designs of biomimetic polymer coatings for a variety of applications. Our biomimetic approach to polymer design will be illustrated by a few examples where adhesive constituents found in MAPs are exploited to make wet-adhesive polymer coatings. In addition, small molecule analogs of MAPs can be used to apply thin functional films onto virtually any material surface using a facile approach. These coatings have a variety of potential uses in microelectronics, water treatment, prevention of environmental biofouling, and for control of biointerfacial phenomena at the surfaces of medical/diagnostic devices.

  4. Design, Synthesis, and Dynamics of a Green Fluorescent Protein Fluorophore Mimic with an Ultrafast Switching Function.

    PubMed

    Paolino, Marco; Gueye, Moussa; Pieri, Elisa; Manathunga, Madushanka; Fusi, Stefania; Cappelli, Andrea; Latterini, Loredana; Pannacci, Danilo; Filatov, Michael; Léonard, Jérémie; Olivucci, Massimo

    2016-08-10

    While rotary molecular switches based on neutral and cationic organic π-systems have been reported, structurally homologous anionic switches providing complementary properties have not been prepared so far. Here we report the design and preparation of a molecular switch mimicking the anionic p-HBDI chromophore of the green fluorescent protein. The investigation of the mechanism and dynamics of the E/Z switching function is carried out both computationally and experimentally. The data consistently support axial rotary motion occurring on a sub-picosecond time scale. Transient spectroscopy and trajectory simulations show that the nonadiabatic decay process occurs in the vicinity of a conical intersection (CInt) between a charge transfer state and a covalent/diradical state. Comparison of our anionic p-HBDI-like switch with the previously reported cationic N-alkyl indanylidene pyrrolinium switch mimicking visual pigments reveals that these similar systems translocate, upon vertical excitation, a similar net charge in the same axial direction. PMID:27322488

  5. Highly efficient enzyme encapsulation in a protein nanocage: towards enzyme catalysis in a cellular nanocompartment mimic

    NASA Astrophysics Data System (ADS)

    Schoonen, Lise; Nolte, Roeland J. M.; van Hest, Jan C. M.

    2016-07-01

    The study of enzyme behavior in small nanocompartments is crucial for the understanding of biocatalytic processes in the cellular environment. We have developed an enzymatic conjugation strategy to attach a model enzyme to the interior of a cowpea chlorotic mottle virus capsid. It is shown that with this methodology high encapsulation efficiencies can be achieved. Additionally, we demonstrate that the encapsulation does not affect the enzyme performance in terms of a decreased activity or a hampered substrate diffusion. Finally, it is shown that the encapsulated enzymes are protected against proteases. We believe that our strategy can be used to study enzyme kinetics in an environment that approaches physiological conditions.The study of enzyme behavior in small nanocompartments is crucial for the understanding of biocatalytic processes in the cellular environment. We have developed an enzymatic conjugation strategy to attach a model enzyme to the interior of a cowpea chlorotic mottle virus capsid. It is shown that with this methodology high encapsulation efficiencies can be achieved. Additionally, we demonstrate that the encapsulation does not affect the enzyme performance in terms of a decreased activity or a hampered substrate diffusion. Finally, it is shown that the encapsulated enzymes are protected against proteases. We believe that our strategy can be used to study enzyme kinetics in an environment that approaches physiological conditions. Electronic supplementary information (ESI) available: Experimental procedures for the cloning, expression, and purification of all proteins, as well as supplementary figures and calculations. See DOI: 10.1039/c6nr04181g

  6. Evolution of Strategies to Prepare Synthetic Mimics of Carboxylate-Bridged Diiron Protein Active Sites

    PubMed Central

    Do, Loi H.; Lippard, Stephen J.

    2011-01-01

    We present a comprehensive review of research conducted in our laboratory in pursuit of the long-term goal of reproducing the structures and reactivity of carboxylate-bridged diiron centers used in biology to activate dioxygen for the conversion of hydrocarbons to alcohols and related products. This article describes the evolution of strategies devised to achieve these goals and illustrates the challenges in getting there. Particular emphasis is placed on controlling the geometry and coordination environment of the diiron core, preventing formation of polynuclear iron clusters, maintaining the structural integrity of model complexes during reactions with dioxygen, and tuning the ligand framework to stabilize desired oxygenated diiron species. Studies of the various model systems have improved our understanding of the electronic and physical characteristics of carboxylate-bridged diiron units and their reactivity toward molecular oxygen and organic moieties. The principles and lessons that have emerged from these investigations will guide future efforts to develop more sophisticated diiron protein model complexes. PMID:22113107

  7. Molecular and Structural Characterization of a Novel Escherichia coli Interleukin Receptor Mimic Protein

    PubMed Central

    Moriel, Danilo G.; Paxman, Jason J.; Lo, Alvin W.; Tan, Lendl; Sullivan, Matthew J.; Dando, Samantha J.; Beatson, Scott A.

    2016-01-01

    ABSTRACT Urinary tract infection (UTI) is a disease of extremely high incidence in both community and nosocomial settings. UTIs cause significant morbidity and mortality, with approximately 150 million cases globally per year. Uropathogenic Escherichia coli (UPEC) is the primary cause of UTI and is generally treated empirically. However, the rapidly increasing incidence of UTIs caused by multidrug-resistant UPEC strains has led to limited available treatment options and highlights the urgent need to develop alternative treatment and prevention strategies. In this study, we performed a comprehensive analysis to define the regulation, structure, function, and immunogenicity of recently identified UPEC vaccine candidate C1275 (here referred to as IrmA). We showed that the irmA gene is highly prevalent in UPEC, is cotranscribed with the biofilm-associated antigen 43 gene, and is regulated by the global oxidative stress response OxyR protein. Localization studies identified IrmA in the UPEC culture supernatant. We determined the structure of IrmA and showed that it adopts a unique domain-swapped dimer architecture. The dimeric structure of IrmA displays similarity to those of human cytokine receptors, including the interleukin-2 receptor (IL-2R), interleukin-4 receptor (IL-4R), and interleukin-10 receptor (IL-10R) binding domains, and we showed that purified IrmA can bind to their cognate cytokines. Finally, we showed that plasma from convalescent urosepsis patients contains high IrmA antibody titers, demonstrating the strong immunogenicity of IrmA. Taken together, our results indicate that IrmA may play an important role during UPEC infection. PMID:26980835

  8. A Disintegrin and Metalloproteinase10 (ADAM10) Regulates NOTCH Signaling during Early Retinal Development

    PubMed Central

    Toonen, Joseph A.; Ronchetti, Adam; Sidjanin, D. J.

    2016-01-01

    ADAM10 and ADAM17 are two closely related members of the ADAM (a disintegrin and metalloprotease) family of membrane-bound sheddases, which proteolytically cleave surface membrane proteins. Both ADAM10 and ADAM17 have been implicated in the proteolytic cleavage of NOTCH receptors and as such regulators of NOTCH signaling. During retinal development, NOTCH signaling facilitates retinal neurogenesis by maintaining progenitor cells in a proliferative state and by mediating retinal cell fates. However, the roles of ADAM10 and ADAM17 in the retina are not well defined. In this study, we set out to clarify the roles of ADAM10 and ADAM17 during early retinal development. The retinal phenotype of conditionally abated Adam17 retinae (Adam17 CKO) did not differ from the controls whereas conditionally ablated Adam10 retinae (Adam10 CKO) exhibited abnormal morphogenesis characterized by the formation of rosettes and a loss of retinal laminae phenotypically similar to morphological abnormalities identified in mice with retinal NOTCH signaling deficiency. Additionally, Adam10 CKO retinae exhibited abnormal neurogenesis characterized by fewer proliferating progenitor cells and greater differentiation of early photoreceptors and retinal ganglion cells. Moreover, constitutive activation of the NOTCH1-intracellular domain (N1-ICD) rescued Adam10 CKO abnormal neurogenesis, as well as abnormal retinal morphology by maintaining retinal cells in the progenitor state. Collectively these findings provide in vivo genetic evidence that ADAM10, and not ADAM17, is indispensable for proper retinal development as a regulator of NOTCH signaling. PMID:27224017

  9. The ADAMS interactive interpreter

    SciTech Connect

    Rietscha, E.R.

    1990-12-17

    The ADAMS (Advanced DAta Management System) project is exploring next generation database technology. Database management does not follow the usual programming paradigm. Instead, the database dictionary provides an additional name space environment that should be interactively created and tested before writing application code. This document describes the implementation and operation of the ADAMS Interpreter, an interactive interface to the ADAMS data dictionary and runtime system. The Interpreter executes individual statements of the ADAMS Interface Language, providing a fast, interactive mechanism to define and access persistent databases. 5 refs.

  10. ADAM15 expression is downregulated in melanoma metastasis compared to primary melanoma

    SciTech Connect

    Ungerer, Christopher; Doberstein, Kai; Boehm, Beate; Pfeilschifter, Josef; Mihic-Probst, Daniela; Gutwein, Paul

    2010-10-22

    Research highlights: {yields} Strong ADAM15 expression is found in normal melanocytes. {yields} ADAM15 expression is significantly downregulated in patients with melanoma metastasis. {yields} TGF-{beta} can downregulate ADAM15 expression in melanoma cells. {yields} Overexpression of ADAM15 in melanoma cells inhibits migration, proliferation and invasion of melanoma cells. {yields} Conclusion: ADAM15 represents an tumor suppressor protein in melanoma. -- Abstract: In a mouse melanoma metastasis model it has been recently shown that ADAM15 overexpression in melanoma cells significantly reduced the number of metastatic nodules on the lung. Unfortunately, the expression of ADAM15 in human melanoma tissue has not been determined so far. In our study, we characterized the expression of ADAM15 in tissue micro-arrays of patients with primary melanoma with melanoma metastasis. ADAM15 was expressed in melanocytes and endothelial cells of benign nevi and melanoma tissue. Importantly, ADAM15 was significantly downregulated in melanoma metastasis compared to primary melanoma. We further demonstrate that IFN-{gamma} and TGF-{beta} downregulate ADAM15 protein levels in melanoma cells. To investigate the role of ADAM15 in melanoma progression, we overexpressed ADAM15 in melanoma cells. Importantly, overexpression of ADAM15 in melanoma cells reduced the migration, invasion and the anchorage dependent and independent cell growth of melanoma cells. In summary, the downregulation of ADAM15 plays an important role in melanoma progression and ADAM15 act as a tumorsuppressor in melanoma.

  11. Self-assembled bifunctional surface mimics an enzymatic and templating protein for the synthesis of a metal oxide semiconductor.

    PubMed

    Kisailus, David; Truong, Quyen; Amemiya, Yosuke; Weaver, James C; Morse, Daniel E

    2006-04-11

    The recent discovery and characterization of silicatein, a mineral-synthesizing enzyme that assembles to form the filamentous organic core of the glassy skeletal elements (spicules) of a marine sponge, has led to the development of new low-temperature synthetic routes to metastable semiconducting metal oxides. These protein filaments were shown in vitro to catalyze the hydrolysis and structurally direct the polycondensation of metal oxides at neutral pH and low temperature. Based on the confirmation of the catalytic mechanism and the essential participation of specific serine and histidine residues (presenting a nucleophilic hydroxyl and a nucleophilicity-enhancing hydrogen-bonding imidazole nitrogen) in silicatein's catalytic active site, we therefore sought to develop a synthetic mimic that provides both catalysis and the surface determinants necessary to template and structurally direct heterogeneous nucleation through condensation. Using lithographically patterned poly(dimethylsiloxane) stamps, bifunctional self-assembled monolayer surfaces containing the essential catalytic and templating elements were fabricated by using alkane thiols microcontact-printed on gold substrates. The interface between chemically distinct self-assembled monolayer domains provided the necessary juxtaposition of nucleophilic (hydroxyl) and hydrogen-bonding (imidazole) agents to catalyze the hydrolysis of a gallium oxide precursor and template the condensed product to form gallium oxohydroxide (GaOOH) and the defect spinel, gamma-gallium oxide (gamma-Ga(2)O(3)). Using this approach, the production of patterned substrates for catalytic synthesis and templating of semiconductors for device applications can be envisioned. PMID:16585518

  12. Anionic Lipid Content Presents a Barrier to the Activity of ROMP-Based Synthetic Mimics of Protein Transduction Domains (PTDMs).

    PubMed

    Lis, Michael; Dorner, Franziska; Tew, Gregory N; Lienkamp, Karen

    2016-06-14

    Many biophysical studies of protein transduction domains (PTDs) and their synthetic mimics (PTDMs) focus on the interaction between the polycationic PTD(M) and anionic phospholipid surfaces. Most, but not all, of these studies suggest that these cation-anion interactions are vital for membrane activity. In this study, the effect of anionic lipid content on PTDM performance was examined for three ring-opening metathesis (ROMP)-based PTDMs with varying hydrophobicity. Using a series of dye-loaded vesicles with gradually increasing anionic lipid content, we saw that increased anionic lipid content inhibited dye release caused by these PTDMs. This result is the opposite of what was found in studies with poly- and oligo-arginine. While the effect is reduced for more hydrophobic PTDMs, it is observable even with the most hydrophobic PTDMs of our test panel. Additional experiments included dynamic light scattering and zeta potential measurements to measure size as a function of vesicle surface charge in the presence of increasing PTDM concentration and surface plasmon resonance spectroscopy to quantify binding between PTDMs and surface-bound lipid layers with varying anion content. The results from these measurements suggested that PTDM hydrophobicity, not cation-anion interactions, is the main driving force of the interaction between our PTDMs and the model membranes investigated. This suggests a model of interaction where surface association and membrane insertion are driven by PTDM hydrophobicity, while anionic lipid content serves primarily to "pin" the PTDM to the membrane surface and limit insertion. PMID:27182683

  13. Alternative mRNA Splicing Generates Two Distinct ADAM12 Prodomain Variants

    PubMed Central

    Duhachek-Muggy, Sara; Li, Hui; Qi, Yue; Zolkiewska, Anna

    2013-01-01

    Human ADAM12, transcript variant 1 (later on referred to as Var-1b), present in publicly available databases contains the sequence 5′-GTAATTCTG-3′ at the nucleotide positions 340–348 of the coding region, at the 3′ end of exon 4. The translation product of this variant, ADAM12-Lb, includes the three amino acid motif 114VIL116 in the prodomain. This motif is not conserved in ADAM12 from different species and is not present in other human ADAMs. Currently, it is not clear whether a shorter variant, Var-1a, encoding the protein version without the 114VIL116 motif, ADAM12-La, is expressed in human. In this work, we have established that human mammary epithelial cells and breast cancer cells express both Var-1a and Var-1b transcripts. Importantly, the proteolytic processing and intracellular trafficking of the corresponding ADAM12-La and ADAM12-Lb proteins are different. While ADAM12-La is cleaved and trafficked to the cell surface in a manner similar to ADAM12 in other species, ADAM12-Lb is retained in the ER and is not proteolytically processed. Furthermore, the relative abundance of ADAM12-La and ADAM12-Lb proteins detected in several breast cancer cell lines varies significantly. We conclude that the canonical form of transmembrane ADAM12 is represented by Var-1a/ADAM12-La, rather than Var-1b/ADAM12-Lb currently featured in major sequence databases. PMID:24116070

  14. Characterization of Mammalian ADAM2 and Its Absence from Human Sperm

    PubMed Central

    Choi, Heejin; Jin, Sora; Kwon, Jun Tae; Kim, Jihye; Jeong, Juri; Kim, Jaehwan; Jeon, Suyeon; Park, Zee Yong; Jung, Kang-Jin; Park, Kwangsung; Cho, Chunghee

    2016-01-01

    The members of the ADAM (a disintegrin and metalloprotease) family are membrane-anchored multi-domain proteins that play prominent roles in male reproduction. ADAM2, which was one of the first identified ADAMs, is the best studied ADAM in reproduction. In the male germ cells of mice, ADAM2 and other ADAMs form complexes that contribute to sperm-sperm adhesion, sperm-egg interactions, and the migration of sperm in the female reproductive tract. Here, we generated specific antibodies against mouse and human ADAM2, and investigated various features of ADAM2 in mice, monkeys and humans. We found that the cytoplasmic domain of ADAM2 might enable the differential association of this protein with other ADAMs in mice. Western blot analysis with the anti-human ADAM2 antibodies showed that ADAM2 is present in the testis and sperm of monkeys. Monkey ADAM2 was found to associate with chaperone proteins in testis. In humans, we identified ADAM2 as a 100-kDa protein in the testis, but failed to detect it in sperm. This is surprising given the results in mice and monkeys, but it is consistent with the failure of ADAM2 identification in the previous proteomic analyses of human sperm. These findings suggest that the reproductive functions of ADAM2 differ between humans and mice. Our protein analysis showed the presence of potential ADAM2 complexes involving yet-unknown proteins in human testis. Taken together, our results provide new information regarding the characteristics of ADAM2 in mammalian species, including humans. PMID:27341348

  15. Regional expression of ADAM19 during chicken embryonic development.

    PubMed

    Yan, Xin; Lin, Juntang; Markus, Annett; Rolfs, Arndt; Luo, Jiankai

    2011-04-01

    ADAM19 (also named meltrin β) is a member of the ADAM (a disintegrin and metalloprotease) family of metalloproteases and is involved in morphogenesis and tissue formation during embryonic development. In the present study, chicken ADAM19 is cloned by reverse transcription-polymerase chain reaction and identified by sequencing. Its expression patterns in different parts of the developing chicken embryo are investigated by Western blot analysis and immunohistochemistry. Results show that ADAM19 protein is widely expressed in chicken embryos. It is detectable in the central nervous system, including the brain, spinal cord, cochlea, and retina. Furthermore, ADAM19 protein is also found in other tissues and organs such as digestive organs, the thymus, the lung bud, the dorsal aorta, the kidney, the gonad, muscles, and in the feather buds. All these data suggest that ADAM19 plays an important role in the embryonic development of chicken. PMID:21492148

  16. Versatile convergent synthesis of a three peptide loop containing protein mimic of whooping cough pertactin by successive Cu(I)-catalyzed azide alkyne cycloaddition on an orthogonal alkyne functionalized TAC-scaffold.

    PubMed

    Werkhoven, Paul R; van de Langemheen, Helmus; van der Wal, Steffen; Kruijtzer, John A W; Liskamp, Rob M J

    2014-04-01

    Synthetic mimics of discontinuous epitopes may have a wide range of potential applications, including synthetic vaccines and inhibition of protein-protein interactions. However, synthetic access to these relatively complex peptide molecular constructs is limited. This paper describes a versatile convergent strategy for the construction of protein mimics presenting three different cyclic peptides. Using an orthogonal alkyne protection strategy, peptide loops were introduced successively onto a triazacyclophane scaffold via Cu(I)-catalyzed azide alkyne cycloaddition. This method provides rapid access to protein mimics requiring different peptide segments for their interaction and activity. PMID:24599619

  17. Ansel Adams: early works

    NASA Astrophysics Data System (ADS)

    Throckmorton, Jodi

    2010-02-01

    Ansel Adams (1902-1984), photographer, musician, naturalist, explorer, critic, and teacher, was a giant in the field of landscape photography. In his images of the unspoiled Western landscape, he strove to capture the sublime: the transcendentalist concept that nature can generate the experience of awe for the viewer. Many viewers are familiar with the heroic, high-contrast prints on high-gloss paper that Adams made to order beginning in the 1970s; much less well known are the intimate prints that the artist crafted earlier in his career. This exhibition focuses on these masterful small prints from the 1920s into the 1950s. During this time period, Adams's printing style changed dramatically. The painterly, soft-focus, warm-toned style of the Parmelian Prints of the High Sierras from the 1920s evolved into the sharp-focus style of the f/64 school of photography that Adams co-founded in the 1930s with Edward Weston and Imogen Cunningham. After World War II, Adams opted for a cooler, higher-contrast look for his prints. Throughout the various styles in which he chose to work, Adams explored the power of nature and succeeded in establishing landscape photography as a legitimate form of modern art.

  18. LGI1-associated epilepsy through altered ADAM23-dependent neuronal morphology

    PubMed Central

    Owuor, Katherine; Harel, Noam Y.; Englot, Dario C.; Hisama, Fuki; Blumenfeld, Hal; Strittmatter, Stephen M.

    2009-01-01

    Most epilepsy genes encode ion channels, but the LGI1 gene responsible for Autosomal Dominant Partial Epilepsy with Auditory Features produces a secreted protein. LGI1 is suggested to regulate PSD-95 via ADAM22. However, no unbiased screen of LGI1 action has been conducted. Here, we searched for brain genes supporting high affinity LGI-1 binding. ADAM23 was the only LGI1 interactor identified. The related proteins, ADAM22 and ADAM11, but not ADAM12, bind LGI1. Neither ADAM23 nor ADAM11, nor some forms of ADAM22, contain PDZ-interacting sequences, suggesting PSD-95-independent mechanisms in ADPEAF. Because ADAMs modulate integrins, we examined LGI1 effect on neurite outgrowth. LGI1 increases outgrowth from wild type but not ADAM23-/- neurons. Furthermore, CA1 pyramidal neurons of ADAM23-/- hippocampi have reduced dendritic arborization. ADAM23-/- mice exhibit spontaneous seizures, while ADAM23+/- mice have decreased seizure thresholds. Thus, LGI1 binding to ADAM23 is necessary to correctly pattern neuronal morphology and altered anatomical patterning contributes to ADPEAF. PMID:19796686

  19. Optimal Hydrophobicity in Ring-Opening Metathesis Polymerization-Based Protein Mimics Required for siRNA Internalization.

    PubMed

    deRonde, Brittany M; Posey, Nicholas D; Otter, Ronja; Caffrey, Leah M; Minter, Lisa M; Tew, Gregory N

    2016-06-13

    Exploring the role of polymer structure for the internalization of biologically relevant cargo, specifically siRNA, is of critical importance to the development of improved delivery reagents. Herein, we report guanidinium-rich protein transduction domain mimics (PTDMs) based on a ring-opening metathesis polymerization scaffold containing tunable hydrophobic moieties that promote siRNA internalization. Structure-activity relationships using Jurkat T cells and HeLa cells were explored to determine how the length of the hydrophobic block and the hydrophobic side chain compositions of these PTDMs impacted siRNA internalization. To explore the hydrophobic block length, two different series of diblock copolymers were synthesized: one series with symmetric block lengths and one with asymmetric block lengths. At similar cationic block lengths, asymmetric and symmetric PTDMs promoted siRNA internalization in the same percentages of the cell population regardless of the hydrophobic block length; however, with 20 repeat units of cationic charge, the asymmetric block length had greater siRNA internalization, highlighting the nontrivial relationships between hydrophobicity and overall cationic charge. To further probe how the hydrophobic side chains impacted siRNA internalization, an additional series of asymmetric PTDMs was synthesized that featured a fixed hydrophobic block length of five repeat units that contained either dimethyl (dMe), methyl phenyl (MePh), or diphenyl (dPh) side chains and varied cationic block lengths. This series was further expanded to incorporate hydrophobic blocks consisting of diethyl (dEt), diisobutyl (diBu), and dicyclohexyl (dCy) based repeat units to better define the hydrophobic window for which our PTDMs had optimal activity. High-performance liquid chromatography retention times quantified the relative hydrophobicities of the noncationic building blocks. PTDMs containing the MePh, diBu, and dPh hydrophobic blocks were shown to have superior

  20. The Cytoplasmic Domain of A Disintegrin and Metalloproteinase 10 (ADAM10) Regulates Its Constitutive Activity but Is Dispensable for Stimulated ADAM10-dependent Shedding*

    PubMed Central

    Maretzky, Thorsten; Evers, Astrid; Le Gall, Sylvain; Alabi, Rolake O.; Speck, Nancy; Reiss, Karina; Blobel, Carl P.

    2015-01-01

    The membrane-anchored metalloproteinase a disintegrin and metalloprotease 10 (ADAM10) is required for shedding of membrane proteins such as EGF, betacellulin, the amyloid precursor protein, and CD23 from cells. ADAM10 is constitutively active and can be rapidly and post-translationally enhanced by several stimuli, yet little is known about the underlying mechanism. Here, we use ADAM10-deficient cells transfected with wild type or mutant ADAM10 to address the role of its cytoplasmic and transmembrane domain in regulating ADAM10-dependent protein ectodomain shedding. We report that the cytoplasmic domain of ADAM10 negatively regulates its constitutive activity through an ER retention motif but is dispensable for its stimulated activity. However, chimeras with the extracellular domain of ADAM10 and the transmembrane domain of ADAM17 with or without the cytoplasmic domain of ADAM17 show reduced stimulated shedding of the ADAM10 substrate betacellulin, whereas the ionomycin-stimulated shedding of the ADAM17 substrates CD62-L and TGFα is not affected. Moreover, we show that influx of extracellular calcium activates ADAM10 but is not essential for its activation by APMA and BzATP. Finally, the rapid stimulation of ADAM10 is not significantly affected by incubation with proprotein convertase inhibitors for up to 8 h, arguing against a major role of increased prodomain removal in the rapid stimulation of ADAM10. Thus, the cytoplasmic domain of ADAM10 negatively influences constitutive shedding through an ER retention motif, whereas the cytoplasmic domain and prodomain processing are not required for the rapid activation of ADAM10-dependent shedding events. PMID:25605720

  1. High-Affinity Small-Molecule Inhibitors of the Menin-Mixed Lineage Leukemia (MLL) Interaction Closely Mimic a Natural Protein-Protein Interaction

    SciTech Connect

    He, Shihan; Senter, Timothy J.; Pollock, Jonathan; Han, Changho; Upadhyay, Sunil Kumar; Purohit, Trupta; Gogliotti, Rocco D.; Lindsley, Craig W.; Cierpicki, Tomasz; Stauffer, Shaun R.; Grembecka, Jolanta

    2014-10-02

    The protein–protein interaction (PPI) between menin and mixed lineage leukemia (MLL) plays a critical role in acute leukemias, and inhibition of this interaction represents a new potential therapeutic strategy for MLL leukemias. We report development of a novel class of small-molecule inhibitors of the menin–MLL interaction, the hydroxy- and aminomethylpiperidine compounds, which originated from HTS of ~288000 small molecules. We determined menin–inhibitor co-crystal structures and found that these compounds closely mimic all key interactions of MLL with menin. Extensive crystallography studies combined with structure-based design were applied for optimization of these compounds, resulting in MIV-6R, which inhibits the menin–MLL interaction with IC50 = 56 nM. Treatment with MIV-6 demonstrated strong and selective effects in MLL leukemia cells, validating specific mechanism of action. Our studies provide novel and attractive scaffold as a new potential therapeutic approach for MLL leukemias and demonstrate an example of PPI amenable to inhibition by small molecules.

  2. Enzyme Mimics: Advances and Applications.

    PubMed

    Kuah, Evelyn; Toh, Seraphina; Yee, Jessica; Ma, Qian; Gao, Zhiqiang

    2016-06-13

    Enzyme mimics or artificial enzymes are a class of catalysts that have been actively pursued for decades and have heralded much interest as potentially viable alternatives to natural enzymes. Aside from having catalytic activities similar to their natural counterparts, enzyme mimics have the desired advantages of tunable structures and catalytic efficiencies, excellent tolerance to experimental conditions, lower cost, and purely synthetic routes to their preparation. Although still in the midst of development, impressive advances have already been made. Enzyme mimics have shown immense potential in the catalysis of a wide range of chemical and biological reactions, the development of chemical and biological sensing and anti-biofouling systems, and the production of pharmaceuticals and clean fuels. This Review concerns the development of various types of enzyme mimics, namely polymeric and dendrimeric, supramolecular, nanoparticulate and proteinic enzyme mimics, with an emphasis on their synthesis, catalytic properties and technical applications. It provides an introduction to enzyme mimics and a comprehensive summary of the advances and current standings of their applications, and seeks to inspire researchers to perfect the design and synthesis of enzyme mimics and to tailor their functionality for a much wider range of applications. PMID:27062126

  3. A Substrate Mimic Allows High-Throughput Assay of the FabA Protein and Consequently the Identification of a Novel Inhibitor of Pseudomonas aeruginosa FabA.

    PubMed

    Moynié, Lucile; Hope, Anthony G; Finzel, Kara; Schmidberger, Jason; Leckie, Stuart M; Schneider, Gunter; Burkart, Michael D; Smith, Andrew D; Gray, David W; Naismith, James H

    2016-01-16

    Eukaryotes and prokaryotes possess fatty acid synthase (FAS) biosynthetic pathways that comprise iterative chain elongation, reduction, and dehydration reactions. The bacterial FASII pathway differs significantly from human FAS pathways and is a long-standing target for antibiotic development against Gram-negative bacteria due to differences from the human FAS, and several existing antibacterial agents are known to inhibit FASII enzymes. N-Acetylcysteamine (NAC) fatty acid thioesters have been used as mimics of the natural acyl carrier protein pathway intermediates to assay FASII enzymes, and we now report an assay of FabV from Pseudomonas aeruginosa using (E)-2-decenoyl-NAC. In addition, we have converted an existing UV absorbance assay for FabA, the bifunctional dehydration/epimerization enzyme and key target in the FASII pathway, into a high-throughput enzyme coupled fluorescence assay that has been employed to screen a library of diverse small molecules. With this approach, N-(4-chlorobenzyl)-3-(2-furyl)-1H-1,2,4-triazol-5-amine (N42FTA) was found to competitively inhibit (pIC50=5.7±0.2) the processing of 3-hydroxydecanoyl-NAC by P. aeruginosa FabA. N42FTA was shown to be potent in blocking crosslinking of Escherichia coli acyl carrier protein and FabA, a direct mimic of the biological process. The co-complex structure of N42FTA with P. aeruginosa FabA protein rationalises affinity and suggests future design opportunities. Employing NAC fatty acid mimics to develop further high-throughput assays for individual enzymes in the FASII pathway should aid in the discovery of new antimicrobials. PMID:26562505

  4. A Substrate Mimic Allows High-Throughput Assay of the FabA Protein and Consequently the Identification of a Novel Inhibitor of Pseudomonas aeruginosa FabA

    PubMed Central

    Moynié, Lucile; Hope, Anthony G.; Finzel, Kara; Schmidberger, Jason; Leckie, Stuart M.; Schneider, Gunter; Burkart, Michael D.; Smith, Andrew D.; Gray, David W.; Naismith, James H.

    2016-01-01

    Eukaryotes and prokaryotes possess fatty acid synthase (FAS) biosynthetic pathways that comprise iterative chain elongation, reduction, and dehydration reactions. The bacterial FASII pathway differs significantly from human FAS pathways and is a long-standing target for antibiotic development against Gram-negative bacteria due to differences from the human FAS, and several existing antibacterial agents are known to inhibit FASII enzymes. N-Acetylcysteamine (NAC) fatty acid thioesters have been used as mimics of the natural acyl carrier protein pathway intermediates to assay FASII enzymes, and we now report an assay of FabV from Pseudomonas aeruginosa using (E)-2-decenoyl-NAC. In addition, we have converted an existing UV absorbance assay for FabA, the bifunctional dehydration/epimerization enzyme and key target in the FASII pathway, into a high-throughput enzyme coupled fluorescence assay that has been employed to screen a library of diverse small molecules. With this approach, N-(4-chlorobenzyl)-3-(2-furyl)-1H-1,2,4-triazol-5-amine (N42FTA) was found to competitively inhibit (pIC50 = 5.7 ± 0.2) the processing of 3-hydroxydecanoyl-NAC by P. aeruginosa FabA. N42FTA was shown to be potent in blocking crosslinking of Escherichia coli acyl carrier protein and FabA, a direct mimic of the biological process. The co-complex structure of N42FTA with P. aeruginosa FabA protein rationalises affinity and suggests future design opportunities. Employing NAC fatty acid mimics to develop further high-throughput assays for individual enzymes in the FASII pathway should aid in the discovery of new antimicrobials. PMID:26562505

  5. Was Adam a Real Person?

    ERIC Educational Resources Information Center

    Lamoureux, Denis O.

    2011-01-01

    Belief in the historicity of Adam has been held firmly throughout the history of the church. In the light of modern biblical criticism and the evolutionary sciences, some conservative Christians are now questioning whether or not Adam was a real person. This paper argues that the existence of Adam in the opening chapters of scripture reflects an…

  6. All about Adam.

    ERIC Educational Resources Information Center

    Bradley, Ann

    1992-01-01

    Rochester Teachers Association President Adam Urbanski is kingpin of a new breed of union leaders who want to be partners, not adversaries, in the school improvement crusade. Despite his good intentions, many people in his hometown are disgruntled with him. The article describes his work over the past five years. (SM)

  7. The Adams Family

    ERIC Educational Resources Information Center

    Douven, Igor; Verbrugge, Sara

    2010-01-01

    According to Adams's Thesis, the acceptability of an indicative conditional sentence goes by the conditional probability of its consequent given its antecedent. We test, for the first time, whether this thesis is descriptively correct and show that it is not; in particular, we show that it yields the wrong predictions for people's judgments of the…

  8. Addressing the Glycine-Rich Loop of Protein Kinases by a Multi-Facetted Interaction Network: Inhibition of PKA and a PKB Mimic.

    PubMed

    Lauber, Birgit S; Hardegger, Leo A; Asraful, Alam K; Lund, Bjarte A; Dumele, Oliver; Harder, Michael; Kuhn, Bernd; Engh, Richard A; Diederich, François

    2016-01-01

    Protein kinases continue to be hot targets in drug discovery research, as they are involved in many essential cellular processes and their deregulation can lead to a variety of diseases. A series of 32 enantiomerically pure inhibitors was synthesized and tested towards protein kinase A (PKA) and protein kinase B mimic PKAB3 (PKA triple mutant). The ligands bind to the hinge region, ribose pocket, and glycine-rich loop at the ATP site. Biological assays showed high potency against PKA, with Ki values in the low nanomolar range. The investigation demonstrates the significance of targeting the often neglected glycine-rich loop for gaining high binding potency. X-ray co-crystal structures revealed a multi-facetted network of ligand-loop interactions for the tightest binders, involving orthogonal dipolar contacts, sulfur and other dispersive contacts, amide-π stacking, and H-bonding to organofluorine, besides efficient water replacement. The network was analyzed in a computational approach. PMID:26578105

  9. Structural Characterization of the Ectodomain of a Disintegrin and Metalloproteinase-22 (ADAM22), a Neural Adhesion Receptor Instead of Metalloproteinase INSIGHTS ON ADAM FUNCTION

    SciTech Connect

    Liu, Heli; Shim, Ann H.R.; He, Xiaolin

    2009-12-01

    ADAMs (adisintegrin and metalloproteinases) are a family of multidomain transmembrane glycoproteins with diverse roles in physiology and diseases, with several members being drug targets for cancer and inflammation therapies. The spatial organization of the ADAM extracellular segment and its influence on the function of ADAMs have been unclear. Although most members of the ADAM family are active zinc metalloproteinases, 8 of 21 ADAMs lack functional metalloproteinase domains and are implicated in protein-protein interactions instead of membrane protein ectodomain shedding. One of such non-proteinase ADAMs, ADAM22, acts as a receptor on the surface of the postsynaptic neuron to regulate synaptic signal transmission. The crystal structure of the full ectodomain of mature human ADAM22 shows that it is a compact four-leaf clover with the metalloproteinase-like domain held in the concave face of a rigid module formed by the disintegrin, cysteine-rich, and epidermal growth factor-like domains. The loss of metalloproteinase activity is ensured by the absence of critical catalytic residues, the filling of the substrate groove, and the steric hindrance by the cysteine-rich domain. The structure, combined with calorimetric experiments, suggests distinct roles of three putative calcium ions bound to ADAM22, with one in the metalloproteinase-like domain being regulatory and two in the disintegrin domain being structural. The metalloproteinase-like domain contacts the rest of ADAM22 with discontinuous, hydrophilic, and poorly complemented interactions, suggesting the possibility of modular movement of ADAM22 and other ADAMs. The ADAM22 structure provides a framework for understanding how different ADAMs exert their adhesive function and shedding activities.

  10. Connective tissue growth factor is a substrate of ADAM28

    SciTech Connect

    Mochizuki, Satsuki; Tanaka, Rena; Shimoda, Masayuki; Onuma, Junko; Fujii, Yutaka; Jinno, Hiromitsu; Okada, Yasunori

    2010-11-26

    Research highlights: {yields} The hyper-variable region in the cysteine-rich domain of ADAM28 binds to C-terminal domain of CTGF. {yields} ADAM28 cleaves CTGF alone and CTGF in the CTGF/VEGF{sub 165} complex. {yields} CTGF digestion by ADAM28 releases biologically active VEGF{sub 165} from the complex. {yields} ADAM28, CTGF and VEGF{sub 165} are commonly co-expressed by carcinoma cells in human breast carcinoma tissues. {yields} These suggest that ADAM28 promotes VEGF{sub 165}-induced angiogenesis in the breast carcinomas by selective CTGF digestion in the CTGF/VEGF{sub 165} complex. -- Abstract: ADAM28, a member of the ADAM (a disintegrin and metalloproteinase) gene family, is over-expressed by carcinoma cells and the expression correlates with carcinoma cell proliferation and progression in human lung and breast carcinomas. However, information about substrates of ADAM28 is limited. We screened interacting molecules of ADAM28 in human lung cDNA library by yeast two-hybrid system and identified connective tissue growth factor (CTGF). Binding of CTGF to proADAM28 was demonstrated by yeast two-hybrid assay and protein binding assay. ADAM28 cleaved CTGF in dose- and time-dependent manners at the Ala{sup 181}-Tyr{sup 182} and Asp{sup 191}-Pro{sup 192} bonds in the hinge region of the molecule. ADAM28 selectively digested CTGF in the complex of CTGF and vascular endothelial growth factor{sub 165} (VEGF{sub 165}), releasing biologically active VEGF{sub 165} from the complex. RT-PCR and immunohistochemical analyses demonstrated that ADAM28, CTGF and VEGF are commonly co-expressed in the breast carcinoma tissues. These data provide the first evidence that CTGF is a novel substrate of ADAM28 and suggest that ADAM28 may promote VEGF{sub 165}-induced angiogenesis in the breast carcinomas by the CTGF digestion in the CTGF/VEGF{sub 165} complex.

  11. Epstein-Barr virus latent membrane protein 2A is a B-cell receptor mimic and essential for B-cell survival

    PubMed Central

    Mancao, Christoph

    2007-01-01

    Many cells latently infected with Epstein-Barr virus (EBV), including certain virus-associated tumors, express latent membrane protein 2A (LMP2A), suggesting an important role for this protein in viral latency and oncogenesis. LMP2A mimics B-cell receptor signaling but can also act as a decoy receptor blocking B-cell receptor (BCR) activation. Studies of peripheral B cells have not resolved this apparent contradiction because LMP2A seems to be dispensable for EBV-induced transformation of these B cells in vitro. We show here that LMP2A is essential for growth transformation of germinal center B cells, which do not express the genuine BCR because of deleterious somatic hypermutations in their immunoglobulin genes. BCR-positive (BCR+) and BCR-negative (BCR−) B cells are readily transformed with a recombinant EBV encoding a conditional, floxed LMP2A allele, but the survival and continued proliferation of both BCR+ and BCR− B cells is strictly dependent on LMP2A. These findings indicate that LMP2A has potent, distinct antiapoptotic and/or transforming characteristics and point to its role as an indispensable BCR mimic in certain B cells from which human B-cell tumors such as Hodgkin lymphoma originate. PMID:17682125

  12. ADAM17 mediates OSCC development in an orthotopic murine model

    PubMed Central

    2014-01-01

    Background ADAM17 is one of the main sheddases of the cells and it is responsible for the cleavage and the release of ectodomains of important signaling molecules, such as EGFR ligands. Despite the known crosstalk between ADAM17 and EGFR, which has been considered a promising targeted therapy in oral squamous cell carcinoma (OSCC), the role of ADAM17 in OSCC development is not clear. Method In this study the effect of overexpressing ADAM17 in cell migration, viability, adhesion and proliferation was comprehensively appraised in vitro. In addition, the tumor size, tumor proliferative activity, tumor collagenase activity and MS-based proteomics of tumor tissues have been evaluated by injecting tumorigenic squamous carcinoma cells (SCC-9) overexpressing ADAM17 in immunodeficient mice. Results The proteomic analysis has effectively identified a total of 2,194 proteins in control and tumor tissues. Among these, 110 proteins have been down-regulated and 90 have been up-regulated in tumor tissues. Biological network analysis has uncovered that overexpression of ADAM17 regulates Erk pathway in OSCC and further indicates proteins regulated by the overexpression of ADAM17 in the respective pathway. These results are also supported by the evidences of higher viability, migration, adhesion and proliferation in SCC-9 or A431 cells in vitro along with the increase of tumor size and proliferative activity and higher tissue collagenase activity as an outcome of ADAM17 overexpression. Conclusion These findings contribute to understand the role of ADAM17 in oral cancer development and as a potential therapeutic target in oral cancer. In addition, our study also provides the basis for the development of novel and refined OSCC-targeting approaches. PMID:24495306

  13. TspanC8 tetraspanins differentially regulate the cleavage of ADAM10 substrates, Notch activation and ADAM10 membrane compartmentalization.

    PubMed

    Jouannet, Stéphanie; Saint-Pol, Julien; Fernandez, Laurent; Nguyen, Viet; Charrin, Stéphanie; Boucheix, Claude; Brou, Christel; Milhiet, Pierre-Emmanuel; Rubinstein, Eric

    2016-05-01

    The metalloprotease ADAM10 mediates the shedding of the ectodomain of various cell membrane proteins, including APP, the precursor of the amyloid peptide Aβ, and Notch receptors following ligand binding. ADAM10 associates with the members of an evolutionary conserved subgroup of tetraspanins, referred to as TspanC8, which regulate its exit from the endoplasmic reticulum. Here we show that 4 of these TspanC8 (Tspan5, Tspan14, Tspan15 and Tspan33) which positively regulate ADAM10 surface expression levels differentially impact ADAM10-dependent Notch activation and the cleavage of several ADAM10 substrates, including APP, N-cadherin and CD44. Sucrose gradient fractionation, single molecule tracking and quantitative mass-spectrometry analysis of the repertoire of molecules co-immunoprecipitated with Tspan5, Tspan15 and ADAM10 show that these two tetraspanins differentially regulate ADAM10 membrane compartmentalization. These data represent a unique example where several tetraspanins differentially regulate the function of a common partner protein through a distinct membrane compartmentalization. PMID:26686862

  14. Human and Murine Interleukin 23 Receptors Are Novel Substrates for A Disintegrin and Metalloproteases ADAM10 and ADAM17.

    PubMed

    Franke, Manuel; Schröder, Jutta; Monhasery, Niloufar; Ackfeld, Theresa; Hummel, Thorben M; Rabe, Björn; Garbers, Christoph; Becker-Pauly, Christoph; Floss, Doreen M; Scheller, Jürgen

    2016-05-13

    IL-23 (interleukin 23) regulates immune responses against pathogens and plays a major role in the differentiation and maintenance of TH17 cells and the development of autoimmune diseases and cancer. The IL-23 receptor (IL-23R) complex consists of the unique IL-23R and the common IL-12 receptor β1 (IL-12Rβ1). Differential splicing generates antagonistic soluble IL-23R (sIL-23R) variants, which might limit IL-23-mediated immune responses. Here, ectodomain shedding of human and murine IL-23R was identified as an alternative pathway for the generation of sIL-23R. Importantly, proteolytically released sIL-23R has IL-23 binding activity. Shedding of IL-23R was induced by stimulation with the phorbol ester phorbol 12-myristate 13-acetate (PMA), but not by ionomycin. PMA-induced shedding was abrogated by an ADAM (A disintegrin and metalloprotease) 10 and 17 selective inhibitor, but not by an ADAM10 selective inhibitor. ADAM17-deficient but not ADAM10-deficient HEK293 cells failed to shed IL-23R after PMA stimulation, demonstrating that ADAM17 but not ADAM10 cleaves the IL-23R. Constitutive shedding was, however, inhibited by an ADAM10 selective inhibitor. Using deletions and specific amino acid residue exchanges, we identified critical determinants of ectodomain shedding within the stalk region of the IL-23R. Finally, interaction studies identified domains 1 and 3 of the IL-23R as the main ADAM17 binding sites. In summary, we describe human and murine IL-23R as novel targets for protein ectodomain shedding by ADAM10 and ADAM17. PMID:26961870

  15. Myxoma Virus Immunomodulatory Protein M156R is a Structural Mimic of Eukaryotic Translation Initiation Factor eIF2 alpha

    SciTech Connect

    Ramelot, Theresa A.; Cort, John R.; Yee, Adelinda; Liu, Furong; Goshe, Michael B.; Edwards, Aled M.; Smith, Richard D.; Arrowsmith, Cheryl H.; Dever, Thomas E.; Kennedy, Michael A.

    2002-10-04

    M156R, the product of the myxoma virus M156R open reading frame, is a protein of unknown function. However, several homologs of M156R from other viruses are immunomodulatory proteins that bind to interferon-induced protein kinase PKR and inhibit phosphorylation of the eukaryotic translation initiation factor eIF2a. In this study, we have determined the nuclear magnetic resonance (NMR) structure of M156R, the first structure of a myxoma virus protein. The fold consists of a five-stranded antiparallel b-barrel with two of the strands connected by a long loop and a short a-helix. The similarity between M156R and the predicted S1 motif structure of eIF2a suggests that the viral homologs are pseudosubstrate inhibitors of PKR that mimic eIF2a in order to compete for binding to PKR. A homology modeled structure of the well studied vaccinia virus K3L was generated based on alignment with M156R. Residues important for binding to PKR are conserved residues on the surface of the b-barrel and in the mobile loop, identifying the putative PKR recognition motif.

  16. Peptide-oligonucleotide conjugates as nanoscale building blocks for assembly of an artificial three-helix protein mimic

    NASA Astrophysics Data System (ADS)

    Lou, Chenguang; Martos-Maldonado, Manuel C.; Madsen, Charlotte S.; Thomsen, Rasmus P.; Midtgaard, Søren Roi; Christensen, Niels Johan; Kjems, Jørgen; Thulstrup, Peter W.; Wengel, Jesper; Jensen, Knud J.

    2016-07-01

    Peptide-based structures can be designed to yield artificial proteins with specific folding patterns and functions. Template-based assembly of peptide units is one design option, but the use of two orthogonal self-assembly principles, oligonucleotide triple helix and a coiled coil protein domain formation have never been realized for de novo protein design. Here, we show the applicability of peptide-oligonucleotide conjugates for self-assembly of higher-ordered protein-like structures. The resulting nano-assemblies were characterized by ultraviolet-melting, gel electrophoresis, circular dichroism (CD) spectroscopy, small-angle X-ray scattering and transmission electron microscopy. These studies revealed the formation of the desired triple helix and coiled coil domains at low concentrations, while a dimer of trimers was dominating at high concentration. CD spectroscopy showed an extraordinarily high degree of α-helicity for the peptide moieties in the assemblies. The results validate the use of orthogonal self-assembly principles as a paradigm for de novo protein design.

  17. Peptide-oligonucleotide conjugates as nanoscale building blocks for assembly of an artificial three-helix protein mimic.

    PubMed

    Lou, Chenguang; Martos-Maldonado, Manuel C; Madsen, Charlotte S; Thomsen, Rasmus P; Midtgaard, Søren Roi; Christensen, Niels Johan; Kjems, Jørgen; Thulstrup, Peter W; Wengel, Jesper; Jensen, Knud J

    2016-01-01

    Peptide-based structures can be designed to yield artificial proteins with specific folding patterns and functions. Template-based assembly of peptide units is one design option, but the use of two orthogonal self-assembly principles, oligonucleotide triple helix and a coiled coil protein domain formation have never been realized for de novo protein design. Here, we show the applicability of peptide-oligonucleotide conjugates for self-assembly of higher-ordered protein-like structures. The resulting nano-assemblies were characterized by ultraviolet-melting, gel electrophoresis, circular dichroism (CD) spectroscopy, small-angle X-ray scattering and transmission electron microscopy. These studies revealed the formation of the desired triple helix and coiled coil domains at low concentrations, while a dimer of trimers was dominating at high concentration. CD spectroscopy showed an extraordinarily high degree of α-helicity for the peptide moieties in the assemblies. The results validate the use of orthogonal self-assembly principles as a paradigm for de novo protein design. PMID:27464951

  18. Peptide–oligonucleotide conjugates as nanoscale building blocks for assembly of an artificial three-helix protein mimic

    PubMed Central

    Lou, Chenguang; Martos-Maldonado, Manuel C.; Madsen, Charlotte S.; Thomsen, Rasmus P.; Midtgaard, Søren Roi; Christensen, Niels Johan; Kjems, Jørgen; Thulstrup, Peter W.; Wengel, Jesper; Jensen, Knud J.

    2016-01-01

    Peptide-based structures can be designed to yield artificial proteins with specific folding patterns and functions. Template-based assembly of peptide units is one design option, but the use of two orthogonal self-assembly principles, oligonucleotide triple helix and a coiled coil protein domain formation have never been realized for de novo protein design. Here, we show the applicability of peptide–oligonucleotide conjugates for self-assembly of higher-ordered protein-like structures. The resulting nano-assemblies were characterized by ultraviolet-melting, gel electrophoresis, circular dichroism (CD) spectroscopy, small-angle X-ray scattering and transmission electron microscopy. These studies revealed the formation of the desired triple helix and coiled coil domains at low concentrations, while a dimer of trimers was dominating at high concentration. CD spectroscopy showed an extraordinarily high degree of α-helicity for the peptide moieties in the assemblies. The results validate the use of orthogonal self-assembly principles as a paradigm for de novo protein design. PMID:27464951

  19. Toward Functional Carboxylate-Bridged Diiron Protein Mimics: Achieving Structural Stability and Conformational Flexibility Using a Macrocylic Ligand Framework

    PubMed Central

    Do, Loi H.; Lippard, Stephen J.

    2011-01-01

    A dinucleating macrocycle, H2PIM, containing phenoxylimine metal-binding units has been prepared. Reaction of H2PIM with [Fe2(Mes)4] (Mes = 2,4,6-trimethylphenyl) and sterically hindered carboxylic acids, Ph3CCO2H or ArTolCO2H (2,6-bis(p-tolyl)benzoic acid), afforded complexes [Fe2(PIM)(Ph3CCO2)2] (1) and [Fe2(PIM)(ArTolCO2)2] (2), respectively. X-ray diffraction studies revealed that these diiron(II) complexes closely mimic the active site structures of the hydroxylase components of bacterial multi-component monooxygenases (BMMs), particularly the syn disposition of the nitrogen donor atoms and the bridging μ-η1η2 and μ-η1η1 modes of the carboxylate ligands at the diiron(II) centers. Cyclic voltammograms of 1 and 2 displayed quasi-reversible redox couples at +16 and +108 mV vs. ferrocene/ferrocenium, respectively. Treatment of 2 with silver perchlorate afforded a silver(I)/iron(III) heterodimetallic complex, [Fe2(μ-OH)2(ClO4)2(PIM)(ArTolCO2)Ag] (3), which was structurally and spectroscopically characterized. Complexes 1 and 2 both react rapidly with dioxygen. Oxygenation of 1 afforded a (μ-hydroxo)diiron(III) complex [Fe2(μ-OH)(PIM)(Ph3CCO2)3] (4), a hexa(μ-hydroxo)tetrairon(III) complex [Fe4(μ-OH)6(PIM)2(Ph3CCO2)2] (5), and an unidentified iron(III) species. Oxygenation of 2 exclusively formed di(carboxylato)diiron(III) compounds, a testimony to the role of the macrocylic ligand in preserving the dinuclear iron center under oxidizing conditions. X-ray crystallographic and 57Fe Mössbauer spectroscopic investigations indicated that 2 reacts with dioxygen to give a mixture of (μ-oxo)diiron(III) [Fe2(μ-O)(PIM)(ArTolCO2)2] (6) and di(μ-hydroxo)diiron(III) [Fe2(μ-OH)2(PIM)(ArTolCO2)2] (7) units in the same crystal lattice. Compounds 6 and 7 spontaneously convert to a tetrairon(III) complex, [Fe4(μ-OH)6(PIM)2(ArTolCO2)2] (8), when treated with excess H2O. PMID:21682286

  20. Essential role of eIF5-mimic protein in animal development is linked to control of ATF4 expression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Translational control of ATF4 through upstream ORFs (uORFs) plays an important role in eukaryotic gene regulation. While ATF4 translation is typically induced by inhibitory phosphorylation of eIF2, ATF4 translation can be also induced by expression of a new translational inhibitor protein, eIF5-mimi...

  1. Designed protein mimics of the Ebola virus glycoprotein GP2 α-helical bundle: Stability and pH effects

    PubMed Central

    Harrison, Joseph S; Higgins, Chelsea D; Chandran, Kartik; Lai, Jonathan R

    2011-01-01

    Ebola virus (EboV) belongs to the Filoviridae family of viruses that causes severe and fatal hemhorragic fever. Infection by EboV involves fusion between the virus and host cell membranes mediated by the envelope glycoprotein GP2 of the virus. Similar to the envelope glycoproteins of other viruses, the central feature of the GP2 ectodomain postfusion structure is a six-helix bundle formed by the protein's N- and C-heptad repeat regions (NHR and CHR, respectively). Folding of this six-helix bundle provides the energetic driving force for membrane fusion; in other viruses, designed agents that disrupt formation of the six-helix bundle act as potent fusion inhibitors. To interrogate determinants of EboV GP2-mediated membrane fusion, we designed model proteins that consist of the NHR and CHR segments linked by short protein linkers. Circular dichroism and gel filtration studies indicate that these proteins adopt stable α-helical folds consistent with design. Thermal denaturation indicated that the GP2 six-helix bundle is highly stable at pH 5.3 (melting temperature, Tm, of 86.8 ± 2.0°C and van't Hoff enthalpy, ΔHvH, of −28.2 ± 1.0 kcal/mol) and comparable in stability to other viral membrane fusion six-helix bundles. We found that the stability of our designed α-helical bundle proteins was dependent on buffering conditions with increasing stability at lower pH. Small pH differences (5.3–6.1) had dramatic effects (ΔTm = 37°C) suggesting a mechanism for conformational control that is dependent on environmental pH. These results suggest a role for low pH in stabilizing six-helix bundle formation during the process of GP2-mediated viral membrane fusion. PMID:21739501

  2. Response to Comment on "Crystal structures of translocator protein (TSPO) and mutant mimic of a human polymorphism".

    PubMed

    Li, Fei; Liu, Jian; Zheng, Yi; Garavito, R Michael; Ferguson-Miller, Shelagh

    2015-10-30

    Wang comments that the diffraction data for the structure of the A139T mutant of translocator protein TSPO from Rhodobacter sphaeroides should be used to 1.65 instead of 1.8 angstroms and that the density interpreted as porphyrin and monoolein is better fitted as polyethylene glycol. Although different practices of data processing exist, in this case they do not substantially influence the final map. Additional data are presented supporting the fit of a porphyrin and monooleins. PMID:26516277

  3. Cloning and characterization of ADAM28: evidence for autocatalytic pro-domain removal and for cell surface localization of mature ADAM28.

    PubMed Central

    Howard, L; Maciewicz, R A; Blobel, C P

    2000-01-01

    The metalloprotease disintegrins are a family of membrane-anchored glycoproteins with diverse functions in fertilization, myoblast fusion, neurogenesis and protein ectodomain shedding. Here we report a cDNA sequence, encoding a metalloprotease disintegrin, termed ADAM28 ('a disintegrin and metalloprotease 28'), which was cloned from mouse lung. From protein sequence comparisons, ADAM28 is more closely related to snake venom metalloproteases (SVMPs) than to other ADAMs, and hence may cleave similar substrates to SVMPs, perhaps including components of the extracellular matrix. Northern blot analysis of selected mouse tissues revealed that ADAM28 is expressed highly and in alternatively spliced forms in the epididymis, suggesting a possible role in sperm maturation, and at lower levels in lung. The intracellular maturation of ADAM28 expressed in COS-7 cells resembles that of other ADAMs, in that ADAM28 is made as a precursor and processed to a mature form in a late Golgi compartment of the secretory pathway. Most or all of the mature, and thus presumably catalytically active, form of ADAM28 in COS-7 cells is accessible to cell surface trypsinization, suggesting that ADAM28 functions mainly on the cell surface. A mutation converting the catalytic-site glutamate residue into alanine abolishes pro-domain removal, even though this mutant form of ADAM28 can be transported to the cell surface in a manner similar to the wild-type protein. This suggests that pro-domain removal and maturation of ADAM28 may be, at least in part, autocatalytic. This is in contrast with several other ADAMs, for which furin-like proprotein convertases are involved in pro-domain removal, and in which a glutamate-to-alanine mutation in the catalytic site does not alter pro-domain removal. PMID:10794709

  4. New Mathematical Dimensions: Adam's Story

    ERIC Educational Resources Information Center

    Manizade, Agida

    2009-01-01

    Adam, an 11th grader, was identified as gifted and accepted into a two week summer enrichment program. He signed up for "Geometry with Flash Programming." He had no prior programming experience but had a strong and healthy self-image as mathematics student. Although Adam had a positive attitude toward mathematics and saw himself as a successful…

  5. ADAM8 in squamous cell carcinoma of the head and neck: a retrospective study

    PubMed Central

    2012-01-01

    Background A disintegrin and metalloproteinase (ADAMs) have been associated with multiple malignancies. ADAMs are involved in cell fusion, cell migration, membrane protein shedding and proteolysis. ADAM8 has been found to be overexpressed in squamous cell carcinomas of the lung. A new study showed that ADAM8 is significantly overexpressed in metastasis of squamous cell carcinomas of the head and neck (HNSCC). Methods We determined ADAM8 levels in the serum of 79 HNSCC patients at the time of diagnosis, in 35 patients 3 months after treatment and in 10 patients 1 year after therapy and compared the results to the sera of 31 healthy volunteers. We also constructed tissue microarrays to detect ADAM8 immunohistochemically in 100 patients. The results were correlated with the survival data of the patients to determine the diagnostic and prognostic value. Results The data demonstrated that patients with high ADAM8 expression in the tumor have worse survival rates. We found that high ADAM8 serum levels correlated with high ADAM8 expression in tumor samples. Soluble ADAM8 levels did not show any prognostic or diagnostic properties. Conclusion In summary ADAM8 expression is a prognostic factor for survival of patients with head and neck squamous cell carcinoma. PMID:22369429

  6. Simultaneous recognition of HIV-1 TAR RNA bulge and loop sequences by cyclic peptide mimics of Tat protein

    SciTech Connect

    Davidson, Amy; Leeper, Thomas C.; Athanassiou, Zafiria; Patora-Komisarska, Krystyna; Karn, Jonathan; Robinson, John A.; Varani, Gabriele

    2009-07-21

    The interaction of the HIV-1 transactivator protein Tat with its transactivation response (TAR) RNA is an essential step in viral replication and therefore an attractive target for developing antivirals with new mechanisms of action. Numerous compounds that bind to the 3-nt bulge responsible for binding Tat have been identified in the past, but none of these molecules had sufficient potency to warrant pharmaceutical development. We have discovered conformationally-constrained cyclic peptide mimetics of Tat that are specific nM inhibitors of the Tat-TAR interaction by using a structure-based approach. The lead peptides are nearly as active as the antiviral drug nevirapine against a variety of clinical isolates in human lymphocytes. The NMR structure of a peptide–RNA complex reveals that these molecules interfere with the recruitment to TAR of both Tat and the essential cellular cofactor transcription elongation factor-b (P-TEFb) by binding simultaneously at the RNA bulge and apical loop, forming an unusually deep pocket. This structure illustrates additional principles in RNA recognition: RNA-binding molecules can achieve specificity by interacting simultaneously with multiple secondary structure elements and by inducing the formation of deep binding pockets in their targets. It also provides insight into the P-TEFb binding site and a rational basis for optimizing the promising antiviral activity observed for these cyclic peptides.

  7. Endoplasmic reticulum stress-independent activation of unfolded protein response kinases by a small molecule ATP-mimic.

    PubMed

    Mendez, Aaron S; Alfaro, Jennifer; Morales-Soto, Marisol A; Dar, Arvin C; McCullagh, Emma; Gotthardt, Katja; Li, Han; Acosta-Alvear, Diego; Sidrauski, Carmela; Korennykh, Alexei V; Bernales, Sebastian; Shokat, Kevan M; Walter, Peter

    2015-01-01

    Two ER membrane-resident transmembrane kinases, IRE1 and PERK, function as stress sensors in the unfolded protein response. IRE1 also has an endoribonuclease activity, which initiates a non-conventional mRNA splicing reaction, while PERK phosphorylates eIF2α. We engineered a potent small molecule, IPA, that binds to IRE1's ATP-binding pocket and predisposes the kinase domain to oligomerization, activating its RNase. IPA also inhibits PERK but, paradoxically, activates it at low concentrations, resulting in a bell-shaped activation profile. We reconstituted IPA-activation of PERK-mediated eIF2α phosphorylation from purified components. We estimate that under conditions of maximal activation less than 15% of PERK molecules in the reaction are occupied by IPA. We propose that IPA binding biases the PERK kinase towards its active conformation, which trans-activates apo-PERK molecules. The mechanism by which partial occupancy with an inhibitor can activate kinases may be wide-spread and carries major implications for design and therapeutic application of kinase inhibitors. PMID:25986605

  8. A unique capsular polysaccharide structure from the psychrophilic marine bacterium Colwellia psychrerythraea 34H that mimics antifreeze (glyco)proteins.

    PubMed

    Carillo, Sara; Casillo, Angela; Pieretti, Giuseppina; Parrilli, Ermenegilda; Sannino, Filomena; Bayer-Giraldi, Maddalena; Cosconati, Sandro; Novellino, Ettore; Ewert, Marcela; Deming, Jody W; Lanzetta, Rosa; Marino, Gennaro; Parrilli, Michelangelo; Randazzo, Antonio; Tutino, Maria L; Corsaro, M Michela

    2015-01-14

    The low temperatures of polar regions and high-altitude environments, especially icy habitats, present challenges for many microorganisms. Their ability to live under subfreezing conditions implies the production of compounds conferring cryotolerance. Colwellia psychrerythraea 34H, a γ-proteobacterium isolated from subzero Arctic marine sediments, provides a model for the study of life in cold environments. We report here the identification and detailed molecular primary and secondary structures of capsular polysaccharide from C. psychrerythraea 34H cells. The polymer was isolated in the water layer when cells were extracted by phenol/water and characterized by one- and two-dimensional NMR spectroscopy together with chemical analysis. Molecular mechanics and dynamics calculations were also performed. The polysaccharide consists of a tetrasaccharidic repeating unit containing two amino sugars and two uronic acids bearing threonine as substituent. The structural features of this unique polysaccharide resemble those present in antifreeze proteins and glycoproteins. These results suggest a possible correlation between the capsule structure and the ability of C. psychrerythraea to colonize subfreezing marine environments. PMID:25525681

  9. Endoplasmic reticulum stress-independent activation of unfolded protein response kinases by a small molecule ATP-mimic

    PubMed Central

    Mendez, Aaron S; Alfaro, Jennifer; Morales-Soto, Marisol A; Dar, Arvin C; McCullagh, Emma; Gotthardt, Katja; Li, Han; Acosta-Alvear, Diego; Sidrauski, Carmela; Korennykh, Alexei V; Bernales, Sebastian; Shokat, Kevan M; Walter, Peter

    2015-01-01

    Two ER membrane-resident transmembrane kinases, IRE1 and PERK, function as stress sensors in the unfolded protein response. IRE1 also has an endoribonuclease activity, which initiates a non-conventional mRNA splicing reaction, while PERK phosphorylates eIF2α. We engineered a potent small molecule, IPA, that binds to IRE1's ATP-binding pocket and predisposes the kinase domain to oligomerization, activating its RNase. IPA also inhibits PERK but, paradoxically, activates it at low concentrations, resulting in a bell-shaped activation profile. We reconstituted IPA-activation of PERK-mediated eIF2α phosphorylation from purified components. We estimate that under conditions of maximal activation less than 15% of PERK molecules in the reaction are occupied by IPA. We propose that IPA binding biases the PERK kinase towards its active conformation, which trans-activates apo-PERK molecules. The mechanism by which partial occupancy with an inhibitor can activate kinases may be wide-spread and carries major implications for design and therapeutic application of kinase inhibitors. DOI: http://dx.doi.org/10.7554/eLife.05434.001 PMID:25986605

  10. Parkinson’s Protein α-Synuclein Binds Efficiently and with a Novel Conformation to Two Natural Membrane Mimics

    PubMed Central

    Kumar, Pravin; Segers-Nolten, Ine M. J.; Schilderink, Nathalie; Subramaniam, Vinod; Huber, Martina

    2015-01-01

    Binding of human α-Synuclein, a protein associated with Parkinson’s disease, to natural membranes is thought to be crucial in relation to its pathological and physiological function. Here the binding of αS to small unilamellar vesicles mimicking the inner mitochondrial and the neuronal plasma membrane is studied in situ by continuous wave and pulsed electron paramagnetic resonance. Local binding information of αS spin labeled by MTSL at positions 56 and 69 respectively shows that also helix 2 (residues 50–100) binds firmly to both membranes. By double electron-electron resonance (DEER) on the mutant spin labeled at positions 27 and 56 (αS 27/56) a new conformation on the membrane is found with a distance of 3.6 nm/ 3.7 nm between residues 27 and 56. In view of the low negative charge density of these membranes, the strong interaction is surprising, emphasizing that function and pathology of αS could involve synaptic vesicles and mitochondria. PMID:26588454

  11. ADAM17 Promotes Motility, Invasion, and Sprouting of Lymphatic Endothelial Cells.

    PubMed

    Mężyk-Kopeć, Renata; Wyroba, Barbara; Stalińska, Krystyna; Próchnicki, Tomasz; Wiatrowska, Karolina; Kilarski, Witold W; Swartz, Melody A; Bereta, Joanna

    2015-01-01

    Tumor-associated lymphatic vessels actively participate in tumor progression and dissemination. ADAM17, a sheddase for numerous growth factors, cytokines, receptors, and cell adhesion molecules, is believed to promote tumor development, facilitating both tumor cell proliferation and migration, as well as tumor angiogenesis. In this work we addressed the issue of whether ADAM17 may also promote tumor lymphangiogenesis. First, we found that ADAM17 is important for the migratory potential of immortalized human dermal lymphatic endothelial cells (LEC). When ADAM17 was stably silenced in LEC, their proliferation was not affected, but: (i) single-cell motility, (ii) cell migration through a 3D Matrigel/collagen type I matrix, and (iii) their ability to form sprouts in a 3D matrix were significantly diminished. The differences in the cell motility between ADAM17-proficient and ADAM17-silenced cells were eliminated by inhibitors of EGFR and HER2, indicating that ADAM17-mediated shedding of growth factors accounts for LEC migratory potential. Interestingly, ADAM17 depletion affected the integrin surface expression/functionality in LEC. ADAM17-silenced cells adhered to plastic, type I collagen, and fibronectin faster than their ADAM17-proficient counterparts. The difference in adhesion to fibronectin was abolished by a cyclic RGD peptide, emphasizing the involvement of integrins in the process. Using a soluble receptor array, we identified BIG-H3 among several candidate proteins involved in the phenotypic and behavioral changes of LEC upon ADAM17 silencing. In additional assays, we confirmed the increased expression of BIG-H3, as well as TGFβ2 in ADAM17-silenced LEC. The antilymphangiogenic effects of ADAM17 silencing in lymphatic endothelial cells suggest further relevance of ADAM17 as a potential target in cancer therapy. PMID:26176220

  12. Adam8 Limits the Development of Allergic Airway Inflammation in Mice

    PubMed Central

    Knolle, Martin D.; Nakajima, Takahiro; Hergrueter, Anja; Gupta, Kushagra; Polverino, Francesca; Craig, Vanessa J.; Fyfe, Susanne E.; Zahid, Muhammad; Permaul, Perdita; Cernadas, Manuela; Montano, Gilbert; Tesfaigzi, Yohannes; Sholl, Lynette; Kobzik, Lester; Israel, Elliot; Owen, Caroline A.

    2013-01-01

    To determine whether a disintegrin and a metalloproteinase-8 (Adam8) regulates allergic airway inflammation (AAI) and airway hyper-responsiveness (AHR), we compared AAI and AHR in wild type (WT) versus Adam8−/− mice in different genetic backgrounds sensitized and challenged with ovalbumin (OVA) or house dust mite protein extract (HDM). OVA- and HDM-treated Adam8−/− mice had higher lung leukocyte counts, more airway mucus metaplasia, greater lung levels of some TH2 cytokines, and higher methacholine-induced increases in central airway resistance than allergen-treated WT mice. Studies of OVA-treated Adam8 bone marrow chimeric mice confirmed that leukocyte-derived Adam8 predominantly mediated Adam8’s anti-inflammatory activities in murine airways. Airway eosinophils and macrophages both expressed Adam8 in WT mice with AAI. Adam8 limited AAI and AHR in mice by reducing leukocyte survival because: 1) Adam8−/− mice with AAI had fewer apoptotic eosinophils and macrophages in their airways than WT mice with AAI; and 2) Adam8−/− macrophages and eosinophils had reduced rates of apoptosis compared with WT leukocytes when the intrinsic (but not the extrinsic) apoptosis pathway was triggered in the cells in vitro. ADAM8 was robustly expressed by airway granulocytes in lung sections from human asthma patients but, surprisingly, airway macrophages had less ADAM8 staining than airway eosinophils. Thus, ADAM8 has anti-inflammatory activities during AAI in mice by activating the intrinsic apoptosis pathway in myeloid leukocytes. Strategies that increase ADAM8 levels in myeloid leukocytes may have therapeutic efficacy in asthma. PMID:23670189

  13. Twin Attributes of Tyrosyl-tRNA Synthetase of Leishmania donovani: A HOUSEKEEPING PROTEIN TRANSLATION ENZYME AND A MIMIC OF HOST CHEMOKINE.

    PubMed

    Anand, Sneha; Madhubala, Rentala

    2016-08-19

    Aminoacyl-tRNA synthetases (aaRSs) are housekeeping enzymes essential for protein synthesis. Apart from their parent aminoacylation activity, several aaRSs perform non-canonical functions in diverse biological processes. The present study explores the twin attributes of Leishmania tyrosyl-tRNA synthetase (LdTyrRS) namely, aminoacylation, and as a mimic of host CXC chemokine. Leishmania donovani is a protozoan parasite. Its genome encodes a single copy of tyrosyl-tRNA synthetase. We first tested the canonical aminoacylation role of LdTyrRS. The recombinant protein was expressed, and its kinetic parameters were determined by aminoacylation assay. To study the physiological role of LdTyrRS in Leishmania, gene deletion mutations were attempted via targeted gene replacement. The heterozygous mutants showed slower growth kinetics and exhibited attenuated virulence. LdTyrRS appears to be an essential gene as the chromosomal null mutants did not survive. Our data also highlights the non-canonical function of L. donovani tyrosyl-tRNA synthetase. We show that LdTyrRS protein is present in the cytoplasm and exits from the parasite cytoplasm into the extracellular medium. The released LdTyrRS functions as a neutrophil chemoattractant. We further show that LdTyrRS specifically binds to host macrophages with its ELR (Glu-Leu-Arg) peptide motif. The ELR-CXCR2 receptor interaction mediates this binding. This interaction triggers enhanced secretion of the proinflammatory cytokines TNF-α and IL-6 by host macrophages. Our data indicates a possible immunomodulating role of LdTyrRS in Leishmania infection. This study provides a platform to explore LdTyrRS as a potential target for drug development. PMID:27382051

  14. Systematic substrate identification indicates a central role for the metalloprotease ADAM10 in axon targeting and synapse function

    PubMed Central

    Kuhn, Peer-Hendrik; Colombo, Alessio Vittorio; Schusser, Benjamin; Dreymueller, Daniela; Wetzel, Sebastian; Schepers, Ute; Herber, Julia; Ludwig, Andreas; Kremmer, Elisabeth; Montag, Dirk; Müller, Ulrike; Schweizer, Michaela; Saftig, Paul; Bräse, Stefan; Lichtenthaler, Stefan F

    2016-01-01

    Metzincin metalloproteases have major roles in intercellular communication by modulating the function of membrane proteins. One of the proteases is the a-disintegrin-and-metalloprotease 10 (ADAM10) which acts as alpha-secretase of the Alzheimer's disease amyloid precursor protein. ADAM10 is also required for neuronal network functions in murine brain, but neuronal ADAM10 substrates are only partly known. With a proteomic analysis of Adam10-deficient neurons we identified 91, mostly novel ADAM10 substrate candidates, making ADAM10 a major protease for membrane proteins in the nervous system. Several novel substrates, including the neuronal cell adhesion protein NrCAM, are involved in brain development. Indeed, we detected mistargeted axons in the olfactory bulb of conditional ADAM10-/- mice, which correlate with reduced cleavage of NrCAM, NCAM and other ADAM10 substrates. In summary, the novel ADAM10 substrates provide a molecular basis for neuronal network dysfunctions in conditional ADAM10-/- mice and demonstrate a fundamental function of ADAM10 in the brain. DOI: http://dx.doi.org/10.7554/eLife.12748.001 PMID:26802628

  15. High-Affinity Small-Molecule Inhibitors of the Menin-Mixed Lineage Leukemia (MLL) Interaction Closely Mimic a Natural Protein–Protein Interaction

    PubMed Central

    2015-01-01

    The protein–protein interaction (PPI) between menin and mixed lineage leukemia (MLL) plays a critical role in acute leukemias, and inhibition of this interaction represents a new potential therapeutic strategy for MLL leukemias. We report development of a novel class of small-molecule inhibitors of the menin–MLL interaction, the hydroxy- and aminomethylpiperidine compounds, which originated from HTS of ∼288000 small molecules. We determined menin–inhibitor co-crystal structures and found that these compounds closely mimic all key interactions of MLL with menin. Extensive crystallography studies combined with structure-based design were applied for optimization of these compounds, resulting in MIV-6R, which inhibits the menin–MLL interaction with IC50 = 56 nM. Treatment with MIV-6 demonstrated strong and selective effects in MLL leukemia cells, validating specific mechanism of action. Our studies provide novel and attractive scaffold as a new potential therapeutic approach for MLL leukemias and demonstrate an example of PPI amenable to inhibition by small molecules. PMID:24472025

  16. ADAM10 as a target for anti-cancer therapy.

    PubMed

    Moss, Marcia L; Stoeck, Alexander; Yan, Wenbo; Dempsey, Peter J

    2008-02-01

    There is a great unmet medical need in the area of cancer treatment. A potential therapeutic target for intervention in cancer is ADAM10. ADAM10 is a disintegrin-metalloproteinase that processes membrane bound proteins from the cell surface to yield soluble forms. Pharmaceutical companies are actively seeking out inhibitors of ADAM10 for treatments in cancer as the enzyme is known to release the ErbB receptor, HER2/ErbB2 from the cell membrane, an event that is necessary for HER2 positive tumor cells to proliferate. ADAM10 is also capable of processing betacellulin indicating that an inhibitor could be used against EGFR/ErbB1 and/or HER4/ErbB4 receptor positive tumor cells that are betacellulin-dependent. ADAM10 is the principle sheddase for several other molecules associated with cancer proliferation, differentiation, adhesion and migration such as Notch, E-cadherin, CD44 and L1 adhesion molecule indicating that targeting ADAM10 with specific inhibitors could be beneficial. PMID:18289051

  17. Evolution of Vertebrate Adam Genes; Duplication of Testicular Adams from Ancient Adam9/9-like Loci

    PubMed Central

    Wei, Shuo

    2015-01-01

    Members of the disintegrin metalloproteinase (ADAM) family have important functions in regulating cell-cell and cell-matrix interactions as well as cell signaling. There are two major types of ADAMs: the somatic ADAMs (sADAMs) that have a significant presence in somatic tissues, and the testicular ADAMs (tADAMs) that are expressed predominantly in the testis. Genes encoding tADAMs can be further divided into two groups: group I (intronless) and group II (intron-containing). To date, tAdams have only been reported in placental mammals, and their evolutionary origin and relationship to sAdams remain largely unknown. Using phylogenetic and syntenic tools, we analyzed the Adam genes in various vertebrates ranging from fishes to placental mammals. Our analyses reveal duplication and loss of some sAdams in certain vertebrate species. In particular, there exists an Adam9-like gene in non-mammalian vertebrates but not mammals. We also identified putative group I and group II tAdams in all amniote species that have been examined. These tAdam homologues are more closely related to Adams 9 and 9-like than to other sAdams. In all amniote species examined, group II tAdams lie in close vicinity to Adam9 and hence likely arose from tandem duplication, whereas group I tAdams likely originated through retroposition because of their lack of introns. Clusters of multiple group I tAdams are also common, suggesting tandem duplication after retroposition. Therefore, Adam9/9-like and some of the derived tAdam loci are likely preferred targets for tandem duplication and/or retroposition. Consistent with this hypothesis, we identified a young retroposed gene that duplicated recently from Adam9 in the opossum. As a result of gene duplication, some tAdams were pseudogenized in certain species, whereas others acquired new expression patterns and functions. The rapid duplication of Adam genes has a major contribution to the diversity of ADAMs in various vertebrate species. PMID:26308360

  18. iRhoms 1 and 2 are essential upstream regulators of ADAM17-dependent EGFR signaling

    PubMed Central

    Li, Xue; Maretzky, Thorsten; Weskamp, Gisela; Monette, Sébastien; Qing, Xiaoping; Issuree, Priya Darshinee A.; Crawford, Howard C.; McIlwain, David R.; Mak, Tak W.; Salmon, Jane E.; Blobel, Carl P.

    2015-01-01

    The metalloproteinase ADAM17 (a disintegrin and metalloprotease 17) controls EGF receptor (EGFR) signaling by liberating EGFR ligands from their membrane anchor. Consequently, a patient lacking ADAM17 has skin and intestinal barrier defects that are likely caused by lack of EGFR signaling, and Adam17−/− mice die perinatally with open eyes, like Egfr−/− mice. A hallmark feature of ADAM17-dependent EGFR ligand shedding is that it can be rapidly and posttranslationally activated in a manner that requires its transmembrane domain but not its cytoplasmic domain. This suggests that ADAM17 is regulated by other integral membrane proteins, although much remains to be learned about the underlying mechanism. Recently, inactive Rhomboid 2 (iRhom2), which has seven transmembrane domains, emerged as a molecule that controls the maturation and function of ADAM17 in myeloid cells. However, iRhom2−/− mice appear normal, raising questions about how ADAM17 is regulated in other tissues. Here we report that iRhom1/2−/− double knockout mice resemble Adam17−/− and Egfr−/− mice in that they die perinatally with open eyes, misshapen heart valves, and growth plate defects. Mechanistically, we show lack of mature ADAM17 and strongly reduced EGFR phosphorylation in iRhom1/2−/− tissues. Finally, we demonstrate that iRhom1 is not essential for mouse development but regulates ADAM17 maturation in the brain, except in microglia, where ADAM17 is controlled by iRhom2. These results provide genetic, cell biological, and biochemical evidence that a principal function of iRhoms1/2 during mouse development is to regulate ADAM17-dependent EGFR signaling, suggesting that iRhoms1/2 could emerge as novel targets for treatment of ADAM17/EGFR-dependent pathologies. PMID:25918388

  19. Adam Smith and dependency.

    PubMed

    Ozler, Sule

    2012-06-01

    The focus of this paper is the works and life of Adam Smith, who is widely recognized as the father and founder of contemporary economics. Latent content analysis is applied to his seminal text in economics, An Inquiry into the Nature and Causes of the Wealth of Nations (1776). The results reveal that Smith considers dependence on others a problem and sees the solution to this problem in impersonalized interdependence. In addition, his views on social dependency and personal dependency, reflected in his Lectures on Jurisprudence (1963) and The Theory of Moral Sentiments (1759), are analyzed. This analysis suggests a central tension between dependence and independence in Smith's writings. The personal dependency patterns he exhibited in his life, which also suggest a tension between dependence and independence, are identified through a reading of his biographies. Based on insights from psychoanalytic literature, this paper proposes that developing the ideas in the Wealth of Nations was part of Smith's creative solution to this tension. In particular, his solution to one individual's dependence on another was through a system of impersonalized interdependence. In other words, Smith defended against his personal dependence through his economic theorizing. PMID:22712591

  20. ADAM10 Is Involved in Cell Junction Assembly in Early Porcine Embryo Development

    PubMed Central

    Kwon, Jeongwoo; Jeong, Sung-min; Choi, Inchul; Kim, Nam-Hyung

    2016-01-01

    ADAM10 (A Disintegrin and Metalloprotease domain-containing protein 10) is a cell surface protein with a unique structure possessing both potential adhesion and protease domains. However, the role of ADAM10 in preimplantation stage embryos is not clear. In this study, we examined the expression patterns and functional roles of ADAM10 in porcine parthenotes during preimplantation development. The transcription level of ADAM10 dramatically increased from the morula stage onward. Immunostaining revealed that ADAM10 was present in both the nucleus and cytoplasm in early cleavage stage embryos, and localized to the apical region of the outer cells in morula and blastocyst embryos. Knockdown (KD) of ADAM10 using double strand RNA did not alter preimplantation embryo development until morula stage, but resulted in significantly reduced development to blastocyst stage. Moreover, the KD blastocyst showed a decrease in gene expression of adherens and tight junction (AJ/TJ), and an increase in trophectoderm TJ permeability by disrupting TJ assembly. Treatment with an ADAM10 specific chemical inhibitor, GI254023X, at the morula stage also inhibited blastocyst development and led to disruption of TJ assembly. An in situ proximity ligation assay demonstrated direct interaction of ADAM10 with coxsackie virus and adenovirus receptor (CXADR), supporting the involvement of ADAM10 in TJ assembly. In conclusion, our findings strongly suggest that ADADM10 is important for blastocyst formation rather than compaction, particularly for TJ assembly and stabilization in preimplantation porcine parthenogenetic development. PMID:27043020

  1. ADAM10 Is Involved in Cell Junction Assembly in Early Porcine Embryo Development.

    PubMed

    Kwon, Jeongwoo; Jeong, Sung-min; Choi, Inchul; Kim, Nam-Hyung

    2016-01-01

    ADAM10 (A Disintegrin and Metalloprotease domain-containing protein 10) is a cell surface protein with a unique structure possessing both potential adhesion and protease domains. However, the role of ADAM10 in preimplantation stage embryos is not clear. In this study, we examined the expression patterns and functional roles of ADAM10 in porcine parthenotes during preimplantation development. The transcription level of ADAM10 dramatically increased from the morula stage onward. Immunostaining revealed that ADAM10 was present in both the nucleus and cytoplasm in early cleavage stage embryos, and localized to the apical region of the outer cells in morula and blastocyst embryos. Knockdown (KD) of ADAM10 using double strand RNA did not alter preimplantation embryo development until morula stage, but resulted in significantly reduced development to blastocyst stage. Moreover, the KD blastocyst showed a decrease in gene expression of adherens and tight junction (AJ/TJ), and an increase in trophectoderm TJ permeability by disrupting TJ assembly. Treatment with an ADAM10 specific chemical inhibitor, GI254023X, at the morula stage also inhibited blastocyst development and led to disruption of TJ assembly. An in situ proximity ligation assay demonstrated direct interaction of ADAM10 with coxsackie virus and adenovirus receptor (CXADR), supporting the involvement of ADAM10 in TJ assembly. In conclusion, our findings strongly suggest that ADADM10 is important for blastocyst formation rather than compaction, particularly for TJ assembly and stabilization in preimplantation porcine parthenogenetic development. PMID:27043020

  2. Metalloproteinases ADAM12 and MMP-14 are associated with cavernous sinus invasion in pituitary adenomas.

    PubMed

    Wang, Junwen; Voellger, Benjamin; Benzel, Julia; Schlomann, Uwe; Nimsky, Christopher; Bartsch, Jörg W; Carl, Barbara

    2016-09-15

    Invasion of tumor cells critically depends on cell-cell or cell-extracellular matrix interactions. Enzymes capable of modulating these interactions belong to the proteinase families of ADAM (a disintegrin and metalloprotease) and MMP (matrix metalloprotease) proteins. Our objective is to examine their expression levels and evaluate the relationship between expression levels and cavernous sinus invasion in pituitary adenomas. Tissue samples from 35 patients with pituitary adenomas were analyzed. Quantitative real-time polymerase chain reaction (qPCR) was employed to assess mRNA expression levels for ADAM and MMP genes. Protein levels were examined using immunohistochemistry and Western Blot. Correlation analyses between expression levels and clinical parameters were performed. By silencing ADAM12 and MMP-14 with siRNA in a mouse pituitary adenoma cell line (TtT/GF), their cellular effects were investigated. In our study, nine women and 26 men were included, with a mean age of 53.1 years (range 15-84 years) at the time of surgery. There were 19 cases with cavernous sinus invasion. The proteins ADAM12 and MMP-14 were significantly up-regulated in invasive adenomas compared to noninvasive adenomas. Both human isoforms of ADAM12 (ADAM12L and ADAM12s) were involved in tumor invasion; moreover, ADAM12L was found to correlate positively with Ki-67 proliferation index in pituitary adenomas. In TtT/GF pituitary adenoma cells, silencing of ADAM12 and MMP-14 significantly inhibited cell invasion and migration, respectively, whereas only silencing of ADAM12 suppressed cell proliferation. We conclude that ADAM12 and MMP-14 are associated with cavernous sinus invasion in pituitary adenomas, which qualifies these proteins in diagnosis and therapy. PMID:27144841

  3. The membrane protein PrsS mimics σS in protecting Staphylococcus aureus against cell wall-targeting antibiotics and DNA-damaging agents

    PubMed Central

    Krute, Christina N.; Bell-Temin, Harris; Miller, Halie K.; Rivera, Frances E.; Weiss, Andy; Stevens, Stanley M.

    2015-01-01

    Staphylococcus aureus possesses a lone extracytoplasmic function (ECF) sigma factor, σS. In Bacillus subtilis, the ECF sigma factor, σW, is activated through a proteolytic cascade that begins with cleavage of the RsiW anti-sigma factor by a site-1 protease (S1P), PrsW. We have identified a PrsW homologue in S. aureus (termed PrsS) and explored its role in σS regulation. Herein, we demonstrate that although a cognate σS anti-sigma factor currently remains elusive, prsS phenocopies sigS in a wealth of regards. Specifically, prsS expression mimics the upregulation observed for sigS in response to DNA-damaging agents, cell wall-targeting antibiotics and during ex vivo growth in human serum and murine macrophages. prsS mutants also display the same sensitivities of sigS mutants to the DNA-damaging agents methyl methane sulfonate (MMS) and hydrogen peroxide, and the cell wall-targeting antibiotics ampicillin, bacitracin and penicillin-G. These phenotypes appear to be explained by alterations in abundance of proteins involved in drug resistance (Pbp2a, FemB, HmrA) and the response to DNA damage (BmrA, Hpt, Tag). Our findings seem to be mediated by putative proteolytic activity of PrsS, as site-directed mutagenesis of predicted catalytic residues fails to rescue the sensitivity of the mutant to H2O2 and MMS. Finally, a role for PrsS in S. aureus virulence was identified using human and murine models of infection. Collectively, our data indicate that PrsS and σS function in a similar manner, and perhaps mediate virulence and resistance to DNA damage and cell wall-targeting antibiotics, via a common pathway. PMID:25741016

  4. The ADAM environment and transputers

    NASA Technical Reports Server (NTRS)

    Kelly, B. D.; Stewart, J. M.; Mcnally, B. V.

    1992-01-01

    The ADAM environment is both used for data analysis by Starlink and for data acquisition by the UK-involved observatories in Australia, Hawaii, and the Canary Islands. ADAM was originally hosted under VAX/VMS but is now at an advanced stage of a Unix port. ADAM comprises a parameter system, hierarchical data system, noticeboard system, error handling system, and other components. Originally a multi-tasking single processor environment, it has been enhanced to a multiprocessor environment using local or wide area networking. The Royal Observatory Edinburgh is producing a transputer version of the ADAM kernel to allow instruments which make use of transputers for data acquisition/control to integrate more closely with the ADAM software running at the telescopes. Communication into the transputer system is based on Ethernet carrying TCP/IP, which eases development toward a network of mixed VMS/Unix/transputer Telescope systems. The transputer system is being applied to instruments under development for the UKIRT and JCMT telescopes.

  5. ADAM12-deficient zebrafish exhibit retardation in body growth at the juvenile stage without developmental defects.

    PubMed

    Tokumasu, Yudai; Iida, Atsuo; Wang, Zi; Ansai, Satoshi; Kinoshita, Masato; Sehara-Fujisawa, Atsuko

    2016-05-01

    ADAM (a disintegrin and metalloprotease) constitutes a family of multi-domain proteins that are involved in development, homeostasis, and disease. ADAM12 plays important roles in myogenesis and adipogenesis in mice; however, the precise physiological mechanisms are not known, and the function of this gene in other vertebrates has not been examined. In this study, we used a simple model vertebrate, the zebrafish, to investigate the functions of ADAM12 during development. Zebrafish adam12 is conserved with those of mammals in the synteny and the amino-acid sequence. We examined adam12 expression in zebrafish embryos by whole mount in situ hybridization and the promoter activity of the adam12 upstream sequence. We found that adam12 is strongly expressed in the cardiovascular system, erythroid progenitors, brain, and jaw cartilage during zebrafish development, and adam12-knockout zebrafish exhibited reduced body size in the juvenile stage without apparent morphological defects. Taken together, these results suggest that adam12 plays a significant role in the regulation of body growth during juvenile stage in zebrafish, although the precise molecular mechanisms await further study. PMID:27185351

  6. Franklin-Adams, John (1843-1912)

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    English businessman and amateur astronomer; compiled the Franklin-Adams Photographic Atlas of Star Positions (1913). The Franklin-Adams camera was a 25 cm aperture, 10 degree field telescope, later re-erected in Johannesburg....

  7. Identification of Novel Interaction between ADAM17 (a Disintegrin and Metalloprotease 17) and Thioredoxin-1*

    PubMed Central

    Aragão, Annelize Z. B.; Nogueira, Maria Luiza C.; Granato, Daniela C.; Simabuco, Fernando M.; Honorato, Rodrigo V.; Hoffman, Zaira; Yokoo, Sami; Laurindo, Francisco R. M.; Squina, Fabio M.; Zeri, Ana Carolina M.; Oliveira, Paulo S. L.; Sherman, Nicholas E.; Paes Leme, Adriana F.

    2012-01-01

    ADAM17, which is also known as TNFα-converting enzyme, is the major sheddase for the EGF receptor ligands and is considered to be one of the main proteases responsible for the ectodomain shedding of surface proteins. How a membrane-anchored proteinase with an extracellular catalytic domain can be activated by inside-out regulation is not completely understood. We characterized thioredoxin-1 (Trx-1) as a partner of the ADAM17 cytoplasmic domain that could be involved in the regulation of ADAM17 activity. We induced the overexpression of the ADAM17 cytoplasmic domain in HEK293 cells, and ligands able to bind this domain were identified by MS after protein immunoprecipitation. Trx-1 was also validated as a ligand of the ADAM17 cytoplasmic domain and full-length ADAM17 recombinant proteins by immunoblotting, immunolocalization, and solid phase binding assay. In addition, using nuclear magnetic resonance, it was shown in vitro that the titration of the ADAM17 cytoplasmic domain promotes changes in the conformation of Trx-1. The MS analysis of the cross-linked complexes showed cross-linking between the two proteins by lysine residues. To further evaluate the functional role of Trx-1, we used a heparin-binding EGF shedding cell model and observed that the overexpression of Trx-1 in HEK293 cells could decrease the activity of ADAM17, activated by either phorbol 12-myristate 13-acetate or EGF. This study identifies Trx-1 as a novel interaction partner of the ADAM17 cytoplasmic domain and suggests that Trx-1 is a potential candidate that could be involved in ADAM17 activity regulation. PMID:23105116

  8. MT5-MMP, ADAM-10, and N-Cadherin Act in Concert To Facilitate Synapse Reorganization after Traumatic Brain Injury

    PubMed Central

    Warren, Kelly M.; Reeves, Thomas M.

    2012-01-01

    Abstract Matrix metalloproteinases (MMPs) influence synaptic recovery following traumatic brain injury (TBI). Membrane type 5-matrix metalloproteinase (MT5-MMP) and a distintegrin and metalloproteinase-10 (ADAM-10) are membrane-bound MMPs that cleave N-cadherin, a protein critical to synapse stabilization. This study examined protein and mRNA expression of MT5-MMP, ADAM-10, and N-cadherin after TBI, contrasting adaptive and maladaptive synaptogenesis. The effect of MMP inhibition on MT5-MMP, ADAM-10, and N-cadherin was assessed during maladaptive plasticity and correlated with synaptic function. Rats were subjected to adaptive unilateral entorhinal cortical lesion (UEC) or maladaptive fluid percussion TBI+bilateral entorhinal cortical lesion (TBI+BEC). Hippocampal MT5-MMP and ADAM-10 protein was significantly elevated 2 and 7 days post-injury. At 15 days after UEC, each MMP returned to control level, while TBI+BEC ADAM-10 remained elevated. At 2 and 7 days, N-cadherin protein was below control. By the 15-day synapse stabilization phase, UEC N-cadherin rose above control, a shift not seen for TBI+BEC. At 7 days, increased TBI+BEC ADAM-10 transcript correlated with protein elevation. UEC ADAM-10 mRNA did not change, and no differences in MT5-MMP or N-cadherin mRNA were detected. Confocal imaging showed MT5-MMP, ADAM-10, and N-cadherin localization within reactive astrocytes. MMP inhibition attenuated ADAM-10 protein 15 days after TBI+BEC and increased N-cadherin. This inhibition partially restored long-term potentiation induction, but did not affect paired-pulse facilitation. Our results confirm time- and injury-dependent expression of MT5-MMP, ADAM-10, and N-cadherin during reactive synaptogenesis. Persistent ADAM-10 expression was correlated with attenuated N-cadherin level and reduced functional recovery. MMP inhibition shifted ADAM-10 and N-cadherin toward adaptive expression and improved synaptic function. PMID:22489706

  9. Cell surface annexins regulate ADAM-mediated ectodomain shedding of proamphiregulin

    PubMed Central

    Nakayama, Hironao; Fukuda, Shinji; Inoue, Hirofumi; Nishida-Fukuda, Hisayo; Shirakata, Yuji; Hashimoto, Koji; Higashiyama, Shigeki

    2012-01-01

    A disintegrin and metalloproteinase (ADAM) is a family of enzymes involved in ectodomain shedding of various membrane proteins. However, the molecular mechanism underlying substrate recognition by ADAMs remains unknown. In this study, we successfully captured and analyzed cell surface transient assemblies between the transmembrane amphiregulin precursor (proAREG) and ADAM17 during an early shedding phase, which enabled the identification of cell surface annexins as components of their shedding complex. Annexin family members annexin A2 (ANXA2), A8, and A9 interacted with proAREG and ADAM17 on the cell surface. Shedding of proAREG was increased when ANXA2 was knocked down but decreased with ANXA8 and A9 knockdown, because of enhanced and impaired association with ADAM17, respectively. Knockdown of ANXA2 and A8 in primary keratinocytes altered wound-induced cell migration and ultraviolet B–induced phosphorylation of epidermal growth factor receptor (EGFR), suggesting that annexins play an essential role in the ADAM-mediated ectodomain shedding of EGFR ligands. On the basis of these data, we propose that annexins on the cell surface function as “shedding platform” proteins to determine the substrate selectivity of ADAM17, with possible therapeutic potential in ADAM-related diseases. PMID:22438584

  10. The shedding activity of ADAM17 is sequestered in lipid rafts

    SciTech Connect

    Tellier, Edwige; Canault, Matthias; Rebsomen, Laure; Bonardo, Bernadette; Juhan-Vague, Irene; Nalbone, Gilles; Peiretti, Franck . E-mail: Franck.Peiretti@medecine.univ-mrs.fr

    2006-12-10

    The tumor necrosis factor-alpha (TNF) converting enzyme (ADAM17) is a metalloprotease-disintegrin responsible for the cleavage of several biologically active transmembrane proteins. However, the substrate specificity of ADAM17 and the regulation of its shedding activity are still poorly understood. Here, we report that during its transport through the Golgi apparatus, ADAM17 is included in cholesterol-rich membrane microdomains (lipid rafts) where its prodomain is cleaved by furin. Consequently, ADAM17 shedding activity is sequestered in lipid rafts, which is confirmed by the fact that metalloproteinase inhibition increases the proportion of ADAM17 substrates (TNF and its receptors TNFR1 and TNFR2) in lipid rafts. Membrane cholesterol depletion increases the ADAM17-dependent shedding of these substrates demonstrating the importance of lipid rafts in the control of this process. Furthermore, ADAM17 substrates are present in different proportions in lipid rafts, suggesting that the entry of each of these substrates in these particular membrane microdomains is specifically regulated. Our data support the idea that one of the mechanisms regulating ADAM17 substrate cleavage involves protein partitioning in lipid rafts.

  11. ADAM33 gene silencing by promoter hypermethylation as a molecular marker in breast invasive lobular carcinoma

    PubMed Central

    2009-01-01

    Background ADAM33 protein is a member of the family of transmembrane glycoproteins composed of multidomains. ADAM family members have different activities, such as proteolysis and adhesion, making them good candidates to mediate the extracellular matrix remodelling and changes in cellular adhesion that characterise certain pathologies and cancer development. It was reported that one family member, ADAM23, is down-regulated by promoter hypermethylation. This seems to correlate with tumour progression and metastasis in breast cancer. In this study, we explored the involvement of ADAM33, another ADAM family member, in breast cancer. Methods First, we analysed ADAM33 expression in breast tumour cell lines by RT-PCR and western blotting. We also used 5-aza-2'-deoxycytidine (5azadCR) treatment and DNA bisulphite sequencing to study the promoter methylation of ADAM33 in breast tumour cell lines. We evaluated ADAM33 methylation in primary tumour samples by methylation specific PCR (MSP). Finally, ADAM33 promoter hypermethylation was correlated with clinicopathological data using the chi-square test and Fisher's exact test. Results The expression analysis of ADAM33 in breast tumour cell lines by RT-PCR revealed gene silencing in 65% of tumour cell lines. The corresponding lack of ADAM33 protein was confirmed by western blotting. We also used 5-aza-2'-deoxycytidine (5-aza-dCR) demethylation and bisulphite sequencing methodologies to confirm that gene silencing is due to ADAM33 promoter hypermethylation. Using MSP, we detected ADAM33 promoter hypermethylation in 40% of primary breast tumour samples. The correlation between methylation pattern and patient's clinicopathological data was not significantly associated with histological grade; tumour stage (TNM); tumour size; ER, PR or ERBB2 status; lymph node status; metastasis or recurrence. Methylation frequency in invasive lobular carcinoma (ILC) was 76.2% compared with 25.5% in invasive ductal carcinoma (IDC), and this

  12. Children's Literature. Adams State College.

    ERIC Educational Resources Information Center

    Myers, Susan L.

    This is one of a series of eight Teacher Education Modules developed by Adams State College Teacher Corps Program. The dual purpose of these modules is stated as follows: trying to understand children and their needs and becoming familiar with and developing criteria for evaluating children's literature. The objectives of the modules, which are…

  13. John Couch Adams, the astronomer.

    NASA Astrophysics Data System (ADS)

    Foster, N.

    1989-03-01

    The planet Neptune was discovered more than 140 years ago. The circumstances of the discovery gave rise to great controversy, and very nearly led to an international incident between Britain and France, but this was only one of John Couch Adams' many contributions to astronomical science.

  14. TspanC8 Tetraspanins and A Disintegrin and Metalloprotease 10 (ADAM10) Interact via Their Extracellular Regions

    PubMed Central

    Noy, Peter J.; Yang, Jing; Reyat, Jasmeet S.; Matthews, Alexandra L.; Charlton, Alice E.; Furmston, Joanna; Rogers, David A.; Rainger, G. Ed; Tomlinson, Michael G.

    2016-01-01

    A disintegrin and metalloprotease 10 (ADAM10) is a ubiquitously expressed transmembrane metalloprotease that cleaves the extracellular regions from its transmembrane substrates. ADAM10 is essential for embryonic development and is implicated in cancer, Alzheimer, and inflammatory diseases. The tetraspanins are a superfamily of 33 four-transmembrane proteins in mammals, of which the TspanC8 subgroup (Tspan5, 10, 14, 15, 17, and 33) promote ADAM10 intracellular trafficking and enzymatic maturation. However, the interaction between TspanC8s and ADAM10 has only been demonstrated in overexpression systems and the interaction mechanism remains undefined. To address these issues, an antibody was developed to Tspan14, which was used to show co-immunoprecipitation of Tspan14 with ADAM10 in primary human cells. Chimeric Tspan14 constructs demonstrated that the large extracellular loop of Tspan14 mediated its co-immunoprecipitation with ADAM10, and promoted ADAM10 maturation and trafficking to the cell surface. Chimeric ADAM10 constructs showed that membrane-proximal stalk, cysteine-rich, and disintegrin domains of ADAM10 mediated its co-immunoprecipitation with Tspan14 and other TspanC8s. This TspanC8-interacting region was required for ADAM10 exit from the endoplasmic reticulum. Truncated ADAM10 constructs revealed differential TspanC8 binding requirements for the stalk, cysteine-rich, and disintegrin domains. Moreover, Tspan15was the only TspanC8 to promote cleavage of the ADAM10 substrate N-cadherin, whereas Tspan14 was unique in reducing cleavage of the platelet collagen receptor GPVI. These findings suggest that ADAM10 may adopt distinct conformations in complex with different TspanC8s, which could impact on substrate selectivity. Furthermore, this study identifies regions of TspanC8s and ADAM10 for potential interaction-disrupting therapeutic targeting. PMID:26668317

  15. Towards "bionic" proteins: replacement of continuous sequences from HIF-1α with proteomimetics to create functional p300 binding HIF-1α mimics.

    PubMed

    Burslem, George M; Kyle, Hannah F; Breeze, Alexander L; Edwards, Thomas A; Nelson, Adam; Warriner, Stuart L; Wilson, Andrew J

    2016-04-01

    Using the HIF-1α transcription factor as a model, this manuscript illustrates how an extended sequence of α-amino acids in a polypeptide can be replaced with a non-natural topographical mimic of an α-helix comprised from an aromatic oligoamide. The resultant hybrid is capable of reproducing the molecular recognition profile of the p300 binding sequence of HIF-1α from which it is derived. PMID:27009828

  16. ADAM30 Downregulates APP-Linked Defects Through Cathepsin D Activation in Alzheimer's Disease.

    PubMed

    Letronne, Florent; Laumet, Geoffroy; Ayral, Anne-Marie; Chapuis, Julien; Demiautte, Florie; Laga, Mathias; Vandenberghe, Michel E; Malmanche, Nicolas; Leroux, Florence; Eysert, Fanny; Sottejeau, Yoann; Chami, Linda; Flaig, Amandine; Bauer, Charlotte; Dourlen, Pierre; Lesaffre, Marie; Delay, Charlotte; Huot, Ludovic; Dumont, Julie; Werkmeister, Elisabeth; Lafont, Franck; Mendes, Tiago; Hansmannel, Franck; Dermaut, Bart; Deprez, Benoit; Hérard, Anne-Sophie; Dhenain, Marc; Souedet, Nicolas; Pasquier, Florence; Tulasne, David; Berr, Claudine; Hauw, Jean-Jacques; Lemoine, Yves; Amouyel, Philippe; Mann, David; Déprez, Rebecca; Checler, Frédéric; Hot, David; Delzescaux, Thierry; Gevaert, Kris; Lambert, Jean-Charles

    2016-07-01

    Although several ADAMs (A disintegrin-like and metalloproteases) have been shown to contribute to the amyloid precursor protein (APP) metabolism, the full spectrum of metalloproteases involved in this metabolism remains to be established. Transcriptomic analyses centred on metalloprotease genes unraveled a 50% decrease in ADAM30 expression that inversely correlates with amyloid load in Alzheimer's disease brains. Accordingly, in vitro down- or up-regulation of ADAM30 expression triggered an increase/decrease in Aβ peptides levels whereas expression of a biologically inactive ADAM30 (ADAM30(mut)) did not affect Aβ secretion. Proteomics/cell-based experiments showed that ADAM30-dependent regulation of APP metabolism required both cathepsin D (CTSD) activation and APP sorting to lysosomes. Accordingly, in Alzheimer-like transgenic mice, neuronal ADAM30 over-expression lowered Aβ42 secretion in neuron primary cultures, soluble Aβ42 and amyloid plaque load levels in the brain and concomitantly enhanced CTSD activity and finally rescued long term potentiation alterations. Our data thus indicate that lowering ADAM30 expression may favor Aβ production, thereby contributing to Alzheimer's disease development. PMID:27333034

  17. Aberrant ADAM10 expression correlates with osteosarcoma progression

    PubMed Central

    2014-01-01

    Background Osteosarcoma is the most common type of bone cancer and is notorious for its rapid progression. The Notch signaling pathway has recently been shown to be involved in osteosarcoma. As a major sheddase of Notch receptors, ADAM10 has been implicated in many types of cancers, but its role in osteosarcoma has not been investigated. Previous studies have shown that the expression of CD31 was significantly elevated in metastatic osteosarcoma; however, its expression in nonmetastatic groups is not known. In addition, the mysterious multinucleated giant cell in giant cell-rich osteosarcoma was previously regarded as an osteoclast-like cell, but its exact identity is unclear. Method Tissue chip samples from 40 cases of nonmetastatic osteosarcoma were stained for cytoplasmic ADAM10, activated Notch1 and CD31. Osteoclasts in tumor sections were also stained for tartrate-resistant acid phosphatase (TRAP). Results Immunofluorescence staining revealed that ADAM10 expression significantly increased with the progression of osteosarcoma as well as in osteoblastic osteosarcoma, whereas the expression of the Notch intracellular domain (NICD) and CD31 was not significantly altered between different pathological stages. In addition, multinucleated giant cells in giant cell-rich osteosarcoma were also found to coexpress CD31, ADAM10 and NICD, but were negative for TRAP staining. Conclusions Our results highlight the importance of ADAM10 in the progression of osteosarcoma and suggest that the protein might be a potential therapeutic target in osteosarcoma treatment. This study also demonstrates that the multinucleated giant cell is an angiogenic tumor cell, rather than an osteoclast, and involves ADAM10/Notch1 signaling activation. PMID:24548763

  18. SAP97-mediated ADAM10 trafficking from Golgi outposts depends on PKC phosphorylation

    PubMed Central

    Saraceno, C; Marcello, E; Di Marino, D; Borroni, B; Claeysen, S; Perroy, J; Padovani, A; Tramontano, A; Gardoni, F; Di Luca, M

    2014-01-01

    A disintegrin and metalloproteinase 10 (ADAM10) is the major α-secretase that catalyzes the amyloid precursor protein (APP) ectodomain shedding in the brain and prevents amyloid formation. Its activity depends on correct intracellular trafficking and on synaptic membrane insertion. Here, we describe that in hippocampal neurons the synapse-associated protein-97 (SAP97), an excitatory synapse scaffolding element, governs ADAM10 trafficking from dendritic Golgi outposts to synaptic membranes. This process is mediated by a previously uncharacterized protein kinase C phosphosite in SAP97 SRC homology 3 domain that modulates SAP97 association with ADAM10. Such mechanism is essential for ADAM10 trafficking from the Golgi outposts to the synapse, but does not affect ADAM10 transport from the endoplasmic reticulum. Notably, this process is altered in Alzheimer's disease brains. These results help in understanding the mechanism responsible for the modulation of ADAM10 intracellular path, and can constitute an innovative therapeutic strategy to finely tune ADAM10 shedding activity towards APP. PMID:25429624

  19. ADAM12 is a prognostic factor associated with an aggressive molecular subtype of high-grade serous ovarian carcinoma.

    PubMed

    Cheon, Dong-Joo; Li, Andrew J; Beach, Jessica A; Walts, Ann E; Tran, Hang; Lester, Jenny; Karlan, Beth Y; Orsulic, Sandra

    2015-07-01

    ADAM metallopeptidase domain 12 (ADAM12) is a promising biomarker because of its low expression in normal tissues and high expression in a variety of human cancers. However, ADAM12 levels in ovarian cancer have not been well characterized. We previously identified ADAM12 as one of the signature genes associated with poor survival in high-grade serous ovarian carcinoma (HGSOC). Here, we sought to determine if high levels of the ADAM12 protein and/or messenger RNA (mRNA) are associated with clinical variables in HGSOC. We show that high protein levels of ADAM12 in banked preoperative sera are associated with shorter progression-free and overall survival. Tumor levels of ADAM12 mRNA were also associated with shorter progression-free and overall survival as well as with lymphatic and vascular invasion, and residual tumor volume following cytoreductive surgery. The majority of genes co-expressed with ADAM12 in HGSOC were transforming growth factor (TGF)β signaling targets that function in collagen remodeling and cell-matrix adhesion. In tumor sections, the ADAM12 protein and mRNA were expressed in epithelial cancer cells and surrounding stromal cells. In vitro data showed that ADAM12 mRNA levels can be increased by TGFβ signaling and direct contact between epithelial and stromal cells. High tumor levels of ADAM12 mRNA were characteristic of the mesenchymal/desmoplastic molecular subtype of HGSOC, which is known to have the poorest prognosis. Thus, ADAM12 may be a useful biomarker of aggressive ovarian cancer for which standard treatment is not effective. PMID:25926422

  20. A Disintegrin and Metalloprotease (ADAM): Historical Overview of Their Functions.

    PubMed

    Giebeler, Nives; Zigrino, Paola

    2016-04-01

    Since the discovery of the first disintegrin protein from snake venom and the following identification of a mammalian membrane-anchored metalloprotease-disintegrin implicated in fertilization, almost three decades of studies have identified additional members of these families and several biochemical mechanisms regulating their expression and activity in the cell. Most importantly, new in vivo functions have been recognized for these proteins including cell partitioning during development, modulation of inflammatory reactions, and development of cancers. In this review, we will overview the a disintegrin and metalloprotease (ADAM) family of proteases highlighting some of the major research achievements in the analysis of ADAMs' function that have underscored the importance of these proteins in physiological and pathological processes over the years. PMID:27120619

  1. ADAMS: AIRLAB data management system user's guide

    NASA Technical Reports Server (NTRS)

    Conrad, C. L.; Ingogly, W. F.; Lauterbach, L. A.

    1986-01-01

    The AIRLAB Data Management System (ADAMS) is an online environment that supports research at NASA's AIRLAB. ADAMS provides an easy to use interactive interface that eases the task of documenting and managing information about experiments and improves communication among project members. Data managed by ADAMS includes information about experiments, data sets produced, software and hardware available in AIRLAB as well as that used in a particular experiment, and an on-line engineer's notebook. The User's Guide provides an overview of the ADAMS system as well as details of the operations available within ADAMS. A tutorial section takes the user step-by-step through a typical ADAMS session. ADAMS runs under the VAX/VMS operating system and uses the ORACLE database management system and DEC/FMS (the Forms Management System). ADAMS can be run from any VAX connected via DECnet to the ORACLE host VAX. The ADAMS system is designed for simplicity, so interactions within the underlying data management system and communications network are hidden from the user.

  2. Xenopus ADAM19 is involved in neural, neural crest and muscle development

    PubMed Central

    Neuner, Russell; Cousin, Hélène; McCusker, Catherine; Coyne, Michael; Alfandari, Dominique

    2009-01-01

    ADAM19 is a member of the meltrin subfamily of ADAM metalloproteases. In Xenopus, ADAM19 is present as a maternal transcript. Zygotic expression starts during gastrulation and is apparent in the dorsal blastopore lip. ADAM19 expression through neurulation and tailbud formation becomes enriched in dorsal structures such as the neural tube, the notochord and the somites. Using morpholino knock-down, we show that a reduction of ADAM19 protein in gastrula stage embryos results in a decrease of Brachyury expression in the notochord concomitant with an increase in the dorsal markers, Goosecoid and Chordin. These changes in gene expression are accompanied by a decrease in phosphorylated AKT, a downstream target of the EGF signaling pathway, and occur while the blastopore closes at the same rate as the control embryos. During neurulation and tailbud formation, ADAM19 knock-down induces a reduction of the neural markers N-tubulin and NRP1 but not Sox2. In the somitic mesoderm, the expression of MLC is also decreased while MyoD is not. ADAM19 knockdown also reduces neural crest markers prior to cell migration. Neural crest induction is also decreased in embryos treated with an EGF receptor inhibitor suggesting that this pathway is necessary for neural crest cell induction. Using targeted knockdown of ADAM19 we show that the reduction of neural and neural crest markers is cell autonomous and that the migration if the cranial neural crest is perturbed. We further show that ADAM19 protein reduction affects somite organization, reduces 12–101 expression and perturbs fibronectin localization at the intersomitic boundary. PMID:19027850

  3. Erbb2 up-regulation of ADAM12 expression accelerates skin cancer progression.

    PubMed

    Rao, Velidi H; Vogel, Kristen; Yanagida, Jodi K; Marwaha, Nitin; Kandel, Amrit; Trempus, Carol; Repertinger, Susan K; Hansen, Laura A

    2015-10-01

    Solar ultraviolet (UV) radiation can cause severe damage to the skin and is the primary cause of most skin cancer. UV radiation causes DNA damage leading to mutations and also activates the Erbb2/HER2 receptor through indirect mechanisms involving reactive oxygen species. We hypothesized that Erbb2 activation accelerates the malignant progression of UV-induced skin cancer. Following the induction of benign squamous papillomas by UV exposure of v-ras(Ha) transgenic Tg.AC mice, mice were treated topically with the Erbb2 inhibitor AG825 and tumor progression monitored. AG825 treatment reduced tumor volume, increased tumor regression, and delayed the development of malignant squamous cell carcinoma (SCC). Progression to malignancy was associated with increased Erbb2 and ADAM12 (A Disintegin And Metalloproteinase 12) transcripts and protein, while inhibition of Erbb2 blocked the increase in ADAM12 message upon malignant progression. Similarly, human SCC and SCC cell lines had increased ADAM12 protein and transcripts when compared to normal controls. To determine whether Erbb2 up-regulation of ADAM12 contributed to malignant progression of skin cancer, Erbb2 expression was modulated in cultured SCC cells using forced over-expression or siRNA targeting, demonstrating up-regulation of ADAM12 by Erbb2. Furthermore, ADAM12 transfection or siRNA targeting revealed that ADAM12 increased both the migration and invasion of cutaneous SCC cells. Collectively, these results suggest Erbb2 up-regulation of ADAM12 as a novel mechanism contributing to the malignant progression of UV-induced skin cancer. Inhibition of Erbb2/HER2 reduced tumor burden, increased tumor regression, and delayed the progression of benign skin tumors to malignant SCC in UV-exposed mice. Inhibition of Erbb2 suppressed the increase in metalloproteinase ADAM12 expression in skin tumors, which in turn increased migration and tumor cell invasiveness. PMID:24798404

  4. Adam receives Fred Whipple Award

    NASA Astrophysics Data System (ADS)

    McCord, Thomas B.; Adams, John B.

    John B. Adams was presented with the Fred Whipple Award at the AGU Fall Meeting in December in San Francisco, California. The award, established in 1989 by the Planetary Sciences Section, is presented to an individual who makes an outstanding contribution to the field of planetary science.In the beginning, scientists including Galileo studied the solar system by staring through a tube with glass elements called a telescope. This panchromatic instrument demonstrated existence and motion of objects and revealed features such as craters and clouds. However, it required approximately another 400 years to develop the physics and technology necessary to determine remotely the composition of these objects.

  5. ADAM10-Notch signaling governs the recruitment of ovarian pregranulosa cells and controls folliculogenesis in mice.

    PubMed

    Feng, Lizhao; Wang, Yijing; Cai, Han; Sun, Guanghong; Niu, Wanbao; Xin, Qiliang; Tang, Xiaofang; Zhang, Jiawei; Wang, Chao; Zhang, Hua; Xia, Guoliang

    2016-06-01

    Ovarian follicles are the basic functional units of female reproduction in the mammalian ovary. We show here that the protein a disintegrin and metalloproteinase domain 10 (ADAM10), a cell surface sheddase, plays an indispensable role in controlling primordial follicle formation by regulating the recruitment of follicle supporting cells in mice. We demonstrate that suppressing ADAM10 in vitro or deletion of Adam10 in vivo disrupts germline cyst breakdown and primordial follicle formation. Using a cell lineage tracing approach, we show that ADAM10 governs the recruitment of ovarian follicle cells by regulating the differentiation and proliferation of LGR5-positive follicle supporting progenitor cells. By detecting the development of FOXL2-positive pregranulosa cells, we found that inhibiting ADAM10 reduced the number of FOXL2-positive cells in perinatal ovaries. Furthermore, inhibiting ADAM10 suppressed the activation of Notch signaling, and blocking Notch signaling also disrupted the recruitment of follicle progenitor cells. Taken together, these results show that ADAM10-Notch signaling in ovarian somatic cells governs the primordial follicle formation by controlling the development of ovarian pregranulosa cells. The proper recruitment of ovarian follicle supporting cells is essential for establishment of the ovarian reserve in mice. PMID:27084580

  6. Activation of peroxisome proliferator-activated receptor α stimulates ADAM10-mediated proteolysis of APP.

    PubMed

    Corbett, Grant T; Gonzalez, Frank J; Pahan, Kalipada

    2015-07-01

    Amyloid precursor protein (APP) derivative β-amyloid (Aβ) plays an important role in the pathogenesis of Alzheimer's disease (AD). Sequential proteolysis of APP by β-secretase and γ-secretase generates Aβ. Conversely, the α-secretase "a disintegrin and metalloproteinase" 10 (ADAM10) cleaves APP within the eventual Aβ sequence and precludes Aβ generation. Therefore, up-regulation of ADAM10 represents a plausible therapeutic strategy to combat overproduction of neurotoxic Aβ. Peroxisome proliferator-activated receptor α (PPARα) is a transcription factor that regulates genes involved in fatty acid metabolism. Here, we determined that the Adam10 promoter harbors PPAR response elements; that knockdown of PPARα, but not PPARβ or PPARγ, decreases the expression of Adam10; and that lentiviral overexpression of PPARα restored ADAM10 expression in Ppara(-/-) neurons. Gemfibrozil, an agonist of PPARα, induced the recruitment of PPARα:retinoid x receptor α, but not PPARγ coactivator 1α (PGC1α), to the Adam10 promoter in wild-type mouse hippocampal neurons and shifted APP processing toward the α-secretase, as determined by augmented soluble APPα and decreased Aβ production. Accordingly, Ppara(-/-) mice displayed elevated SDS-stable, endogenous Aβ and Aβ1-42 relative to wild-type littermates, whereas 5XFAD mice null for PPARα (5X/α(-/-)) exhibited greater cerebral Aβ load relative to 5XFAD littermates. These results identify PPARα as an important factor regulating neuronal ADAM10 expression and, thus, α-secretase proteolysis of APP. PMID:26080426

  7. ADAM17 Controls Endochondral Ossification by Regulating Terminal Differentiation of Chondrocytes

    PubMed Central

    Hall, Katherine C.; Hill, Daniel; Otero, Miguel; Plumb, Darren A.; Froemel, Dara; Dragomir, Cecilia L.; Maretzky, Thorsten; Boskey, Adele; Crawford, Howard C.; Selleri, Licia; Goldring, Mary B.

    2013-01-01

    Endochondral ossification is a highly regulated process that relies on properly orchestrated cell-cell interactions in the developing growth plate. This study is focused on understanding the role of a crucial regulator of cell-cell interactions, the membrane-anchored metalloproteinase ADAM17, in endochondral ossification. ADAM17 releases growth factors, cytokines, and other membrane proteins from cells and is essential for epidermal growth factor receptor (EGFR) signaling and for processing tumor necrosis factor alpha. Here, we report that mice lacking ADAM17 in chondrocytes (A17ΔCh) have a significantly expanded zone of hypertrophic chondrocytes in the growth plate and retarded growth of long bones. This abnormality is caused by an accumulation of the most terminally differentiated type of chondrocytes that produces a calcified matrix. Inactivation of ADAM17 in osteoclasts or endothelial cells does not affect the zone of hypertrophic chondrocytes, suggesting that the main role of ADAM17 in the growth plate is in chondrocytes. This notion is further supported by in vitro experiments showing enhanced hypertrophic differentiation of primary chondrocytes lacking Adam17. The enlarged zone of hypertrophic chondrocytes in A17ΔCh mice resembles that described in mice with mutant EGFR signaling or lack of its ligand transforming growth factor α (TGFα), suggesting that ADAM17 regulates terminal differentiation of chondrocytes during endochondral ossification by activating the TGFα/EGFR signaling axis. PMID:23732913

  8. Fendiline inhibits proliferation and invasion of pancreatic cancer cells by interfering with ADAM10 activation and β-catenin signaling

    PubMed Central

    Woods, Neha; Trevino, Jose; Coppola, Domenico; Chellappan, Srikumar; Yang, Shengyu; Padmanabhan, Jaya

    2015-01-01

    ADAM10 (A Disintegrin and Metalloprotease Domain 10) affects the pathophysiology of various cancers, and we had shown that inhibition of ADAM10 sensitizes pancreatic cancer cells to gemcitabine. ADAM10 is activated in response to calcium influx, and here we examined if calcium channel blockers (CCB) would impede ADAM10 activation and affect biology of pancreatic cancer cells. We find that the CCB, fendiline, significantly reduces proliferation, migration, invasion, and anchorage independent growth of pancreatic cancer cells. This was associated with ADAM10 inhibition and its localization at the actin-rich membrane protrusions. Further, fendiline-treated cells formed cadherin-catenin positive tight adherens junctions and elicited defective protein trafficking and recycling. Furthermore, the expression of β-catenin target genes, cyclinD1, c-Myc and CD44, were significantly decreased, suggesting that fendiline might prevent cell proliferation and migration by inhibiting ADAM10 function, cadherin proteolysis and stabilization of cadherin-catenin interaction at the plasma membrane. This will subsequently diminish β-catenin intracellular signaling and repress TCF/LEF target gene expression. Supporting this notion, RNAi-directed downregulation of ADAM10 in cancer cells decreased the expression of cyclinD1, c-Myc and CD44. Furthermore, analysis of human pancreatic tumor tissue microarrays and lysates showed elevated levels of ADAM10, suggesting that aberrant activation of ADAM10 plays a fundamental role in growth and metastasis of PDACs and inhibiting this pathway might be a viable strategy to combat PDACs. PMID:26440150

  9. Expression of a disintegrin and metalloprotease (ADAM and ADAMTS) enzymes in human non-small-cell lung carcinomas (NSCLC)

    PubMed Central

    Rocks, N; Paulissen, G; Quesada Calvo, F; Polette, M; Gueders, M; Munaut, C; Foidart, J-M; Noel, A; Birembaut, P; Cataldo, D

    2006-01-01

    A Disintegrin and Metalloprotease (ADAM) are transmembrane proteases displaying multiple functions. ADAM with ThromboSpondin-like motifs (ADAMTS) are secreted proteases characterised by thrombospondin (TS) motifs in their C-terminal domain. The aim of this work was to evaluate the expression pattern of ADAMs and ADAMTS in non small cell lung carcinomas (NSCLC) and to investigate the possible correlation between their expression and cancer progression. Reverse transcriptase–polymerase chain reaction (RT–PCR), Western blot and immunohistochemical analyses were performed on NSCLC samples and corresponding nondiseased tissue fragments. Among the ADAMs evaluated (ADAM-8, -9, -10, -12, -15, -17, ADAMTS-1, TS-2 and TS-12), a modulation of ADAM-12 and ADAMTS-1 mRNA expression was observed. Amounts of ADAM-12 mRNA transcripts were increased in tumour tissues as compared to the corresponding controls. In sharp contrast, ADAMTS-1 mRNA levels were significantly lower in tumour tissues when compared to corresponding nondiseased lung. These results were corroborated at the protein level by Western blot and immunohistochemistry. A positive correlation was observed between the mRNA levels of ADAM-12 and those of two vascular endothelial growth factor (VEGF)-A isoforms (VEGF-A165 and VEGF-A121). Taken together, these results providing evidence for an overexpression of ADAM-12 and a lower expression of ADAMTS-1 in non-small-cell lung cancer suggest that these proteases play different functions in cancer progression. PMID:16495931

  10. Metalloprotease-disintegrin ADAM 12 binds to the SH3 domain of Src and activates Src tyrosine kinase in C2C12 cells.

    PubMed Central

    Kang, Q; Cao, Y; Zolkiewska, A

    2000-01-01

    ADAM 12, a member of the ADAM (protein containing a disintegrin and metalloprotease) family of metalloprotease-disintegrins, has been implicated in the differentiation and fusion of skeletal myoblasts, and its expression is dramatically up-regulated in many cancer cells. While the extracellular portion of ADAM 12 contains an active metalloprotease and a cell-adhesion domain, the function of the cytoplasmic portion is much less clear. In this paper, we show that the cytoplasmic tail of ADAM 12 mediates interactions with the non-receptor protein tyrosine kinase Src. The interaction is direct, specific, and involves the N-terminal proline-rich region in the cytoplasmic tail of ADAM 12 and the Src homology 3 (SH3) domain of Src. ADAM 12 and Src co-immunoprecipitate from transfected C2C12 cells, suggesting that the two proteins form a complex in vivo. Co-expression of Src and ADAM 12, but not ADAM 9, in C2C12 cells results in activation of the recombinant Src. Moreover, endogenous ADAM 12 associates with and activates endogenous Src in differentiating C2C12 cells. These results indicate that ADAM 12 may mediate adhesion-induced signalling during myoblast differentiation. PMID:11104699

  11. iRhom2 controls the substrate selectivity of stimulated ADAM17-dependent ectodomain shedding

    PubMed Central

    Maretzky, Thorsten; McIlwain, David R.; Issuree, Priya Darshinee A.; Li, Xue; Malapeira, Jordi; Amin, Sadaf; Lang, Philipp A.; Mak, Tak W.; Blobel, Carl P.

    2013-01-01

    Protein ectodomain shedding by ADAM17 (a disintegrin and metalloprotease 17), a principal regulator of EGF-receptor signaling and TNFα release, is rapidly and posttranslationally activated by a variety of signaling pathways, and yet little is known about the underlying mechanism. Here, we report that inactive rhomboid protein 2 (iRhom2), recently identified as essential for the maturation of ADAM17 in hematopoietic cells, is crucial for the rapid activation of the shedding of some, but not all substrates of ADAM17. Mature ADAM17 is present in mouse embryonic fibroblasts (mEFs) lacking iRhom2, and yet ADAM17 is unable to support stimulated shedding of several of its substrates, including heparin-binding EGF and Kit ligand 2 in this context. Stimulated shedding of other ADAM17 substrates, such as TGFα, is not affected in iRhom2−/− mEFs but can be strongly reduced by treating iRhom2−/− mEFs with siRNA against iRhom1. Activation of heparin-binding EGF or Kit ligand 2 shedding by ADAM17 in iRhom2−/− mEFs can be rescued by wild-type iRhom2 but not by iRhom2 lacking its N-terminal cytoplasmic domain. The requirement for the cytoplasmic domain of iRhom2 for stimulated shedding by ADAM17 may help explain why the cytoplasmic domain of ADAM17 is not required for stimulated shedding. The functional relevance of iRhom2 in regulating shedding of EGF receptor (EGFR) ligands is established by a lack of lysophasphatidic acid/ADAM17/EGFR-dependent crosstalk with ERK1/2 in iRhom2−/− mEFs, and a significant reduction of FGF7/ADAM17/EGFR-stimulated migration of iRhom2−/− keratinocytes. Taken together, these findings uncover functions for iRhom2 in the regulation of EGFR signaling and in controlling the activation and substrate selectivity of ADAM17-dependent shedding events. PMID:23801765

  12. Amyotrophic lateral sclerosis mimic syndromes

    PubMed Central

    Ghasemi, Majid

    2016-01-01

    Amyotrophic lateral sclerosis (ALS) misdiagnosis has many broad implications for the patient and the neurologist. Potentially curative treatments exist for certain ALS mimic syndromes, but delay in starting these therapies may have an unfavorable effect on outcome. Hence, it is important to exclude similar conditions. In this review, we discuss some of the important mimics of ALS. PMID:27326363

  13. Asteroid shape modelling with ADAM

    NASA Astrophysics Data System (ADS)

    Viikinkoski, Matti; Kaasalainen, Mikko; Durech, Josef

    2015-08-01

    Technological advancements have made it possible to obtain highly detailed images of asteroids, yet 3-D shape reconstruction remains a challenge. Shape inversion is an ill-posed inverse problem as systematic errors, shadowing effects due to non-convex features, and the limitations of the imaging systems render the direct inversion impossible. Moreover, the coverage of one observation session alone is seldom sufficient for 3-D reconstruction, necessitating a method for the integration of widely different, complementary data sources into a coherent shape solution.We present a new 3-D shape reconstruction method for asteroid models. ADAM, an acronym for all-data asteroid modelling, is a general procedure for combining disk-resolved observational data into a shape model. ADAM handles all disk-resolved data in a uniform manner via 2-D Fourier Transform. Almost all disk-resolved data sources are supported: adaptive optics and other images, range-Doppler radar data, and thermal infrared interferometry.As case studies, we examine the shape of (41) Daphne using the adaptive optics images and photometry, and create a model of the asteroid 2000 ET70 from the range-Doppler radar images. Finally, we combine ALMA science verification data, adaptive optics images, occultations, and lightcurve data to study the shape of the large main-belt asteroid (3) Juno.

  14. Marguerite Arnet Residence, exterior window detail, looking north. Adam ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Marguerite Arnet Residence, exterior window detail, looking north. - Adam & Bessie Arnet Homestead, Marguerite Arnet Residence, 560 feet northeast of Adam & Bessie Arnet Residence, Model, Las Animas County, CO

  15. Marguerite Arnet Residence, exterior door detail, looking north. Adam ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Marguerite Arnet Residence, exterior door detail, looking north. - Adam & Bessie Arnet Homestead, Marguerite Arnet Residence, 560 feet northeast of Adam & Bessie Arnet Residence, Model, Las Animas County, CO

  16. ADAM12-directed ectodomain shedding of E-cadherin potentiates trophoblast fusion.

    PubMed

    Aghababaei, M; Hogg, K; Perdu, S; Robinson, W P; Beristain, A G

    2015-12-01

    Trophoblasts, placental cells of epithelial lineage, undergo extensive differentiation to form the cellular components of the placenta. Trophoblast progenitor cell differentiation into the multinucleated syncytiotrophoblast is a key developmental process required for placental function, where defects in syncytiotrophoblast formation and turnover associate with placental pathologies and link to poor pregnancy outcomes. The cellular and molecular processes governing syncytiotrophoblast formation are poorly understood, but require the activation of pathways that direct cell fusion. The protease, A Disintegrin and Metalloproteinase 12 (ADAM12), controls cell fusion in myoblasts and is highly expressed in the placenta localizing to multiple trophoblast populations. However, the importance of ADAM12 in regulating trophoblast fusion is unknown. Here, we describe a function for ADAM12 in regulating trophoblast fusion. Using two distinct trophoblast models of cell fusion, we show that ADAM12 is dynamically upregulated and is under the transcriptional control of protein kinase A. siRNA-directed loss of ADAM12 impedes spontaneous fusion of primary cytotrophoblasts, whereas overexpression of the secreted variant, ADAM12S, potentiates cell fusion in the Bewo trophoblast cell line. Mechanistically, both ectopic and endogenous levels of ADAM12 were shown to control trophoblast fusion through E-cadherin ectodomain shedding and remodeling of intercellular boundaries. This study describes a novel role for ADAM12 in placental development, specifically highlighting its importance in controlling the differentiation of villous cytotrophoblasts into multinucleated cellular structures. Moreover, this work identifies E-cadherin as a novel ADAM12 substrate, and highlights the significance that cell adhesion molecule ectodomain shedding has in normal development. PMID:25909890

  17. Recombinant disintegrin domain of ADAM15 inhibits the proliferation and migration of Bel-7402 cells

    SciTech Connect

    Hou, Y.; Chu, M.; Du, F.F.; Lei, J.Y.; Chen, Y.; Zhu, R.Y.; Gong, X.H.; Ma, X.; Jin, J.

    2013-06-14

    Highlights: •rhddADAM15 inhibited the proliferation and migration of Bel-7402 cells. •rhddADAM15 inhibited growth and metastasis of Bel-7402 cells in zebrafish xenograft. •rhddADAM15 induced apoptosis in Bel-7402 cells and somatic cells of zebrafish. •Cell-cycle in Bel-7402 cells showed a partial G{sub 2}/S arrest. •Activity of caspases 8, 9 and 3 was increased in rhddADAM15-treated Bel-7402 cells. -- Abstract: ADAM15 (A Disintegrin And Metalloproteinase 15), a transmembrane protein containing seven domains, interacts with some integrins via its disintegrin domain and overexpresses in many solid tumors. In this study, the effect of the recombinant human disintegrin domain (rhddADAM15) on the proliferation and migration of Bel-7402 cells was evaluated in vitro and in vivo in zebrafish xenografts. rhddADAM15 (4 μM) severely inhibited the proliferation and migration of Bel-7402 cells, inducing a partial G{sub 2}/S arrest and morphological nucleus changes of apoptosis. Moreover, the activity of caspases 8, 9 and 3 in Bel-7402 cells was increased. In addition, the zebrafish was used as a model for apoptosis-induction and tumor-xenograft. rhddADAM15 (1 pM) inhibited the growth and metastasis of Bel-7402 cell xenografts in zebrafish and a lower concentration (0.1 pM) induced severe apoptosis in the somatic cells of zebrafish. In conclusion, our data identified rhddADAM15 as a potent inhibitor of tumor growth and metastasis, making it a promising tool for use in anticancer treatment.

  18. Antimicrobial activities of squalamine mimics.

    PubMed

    Kikuchi, K; Bernard, E M; Sadownik, A; Regen, S L; Armstrong, D

    1997-07-01

    We investigated the antimicrobial properties of compounds with structural features that were designed to mimic those of squalamine, an antibiotic isolated from the stomach of the dogfish shark. The mimics, like squalamine, are sterol-polyamine conjugates. Unlike squalamine, the mimics were simple to prepare, at high yield, from readily available starting materials. Several squalamine mimics showed activity against gram-negative rods, gram-positive cocci including methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus faecium, and fungi. Some had little or no hemolytic activity. The hydrophobicity of the sterol backbone and the length and the cationic charge of the side chains appeared to be critical determinants of activity. One of the squalamine mimics, SM-7, was bactericidal against Escherichia coli, Pseudomonas aeruginosa, and S. aureus; its activity was decreased by divalent or monovalent cations and by bovine serum albumin. Subinhibitory concentrations of SM-7 markedly enhanced the antimicrobial activity of rifampin against gram-negative rods. These results suggest that the compounds may disrupt an outer membrane of gram-negative rods. Squalamine mimics are a new class of broad-spectrum antimicrobial agents. The antagonism of their activity by serum and albumin and their hemolytic properties may limit their use as systemic agents. The squalamine mimics, because of their potencies, broad spectra of antimicrobial activity, and potential for systemic toxicity, appear to be good candidates for development as topical antimicrobial agents. PMID:9210661

  19. A disintegrin and metalloproteinase 12 (ADAM12) localizes to invasive trophoblast, promotes cell invasion and directs column outgrowth in early placental development.

    PubMed

    Aghababaei, M; Perdu, S; Irvine, K; Beristain, A G

    2014-03-01

    During pregnancy, stromal- and vascular-remodeling trophoblasts serve critical roles in directing placental development acquiring pro-invasive characteristics. The A Disintegrin and Metalloproteinase (ADAM) family of multifunctional proteins direct cellular processes across multiple organ systems via their intrinsic catalytic, cell adhesive and intracellular signaling properties. ADAM12, existing as two distinct splice variants (ADAM12L and ADAM12S), is highly expressed in the human placenta and promotes cell migration and invasion in several tumor cell lines; however, its role in trophoblast biology is unknown. In this study, ADAM12 was localized to anchoring trophoblast columns in first trimester placentas and to highly invasive extracellular matrix-degrading trophoblasts in placental villous explants. The importance of ADAM12 in directing trophoblast invasion was tested using loss-of and gain-of-function strategies, where siRNA-directed knockdown of ADAM12 inhibited trophoblast cell invasion while over-expression promoted migration and invasion in two trophoblastic cell models. In placental villous explant cultures, siRNA-directed loss of ADAM12 significantly dampened trophoblast column outgrowth. Additionally, we provide functional evidence for the ADAM12S variant in promoting trophoblast invasion and column outgrowth through a mechanism requiring its catalytic activity. This is the first study to assign a function for ADAM12 in trophoblast biology, where ADAM12 may play a central role regulating the behavior of invasive trophoblast subsets in early pregnancy. This study also underlines the importance of ADAM12L and ADAM12S in directing cell motility in normal developmental processes outside of cancer, specifically highlighting a potentially important function of ADAM12S in directing early placental development. PMID:24243624

  20. Mutations in Sensor 1 and Walker B in the Bovine Papillomavirus E1 Initiator Protein Mimic the Nucleotide-Bound State▿

    PubMed Central

    Liu, Xiaofei; Stenlund, Arne

    2010-01-01

    Viral replication initiator proteins are multifunctional proteins that utilize ATP binding and hydrolysis by their AAA+ modules for multiple functions in the replication of their viral genomes. These proteins are therefore of particular interest for understanding how AAA+ proteins carry out multiple ATP driven functions. We have performed a comprehensive mutational analysis of the residues involved in ATP binding and hydrolysis in the papillomavirus E1 initiator protein based on the recent structural data. Ten of the eleven residues that were targeted were defective for ATP hydrolysis, and seven of these were also defective for ATP binding. The three mutants that could still bind nucleotide represent the Walker B motif (D478 and D479) and Sensor 1 (N523), three residues that are in close proximity to each other and generally are considered to be involved in ATP hydrolysis. Surprisingly, however, two of these mutants, D478A and N523A, mimicked the nucleotide bound state and were capable of binding DNA in the absence of nucleotide. However, these mutants could not form the E1 double trimer in the absence of nucleotide, demonstrating that there are two qualitatively different consequences of ATP binding by E1, one that can be mimicked by D478A and N523A and one which cannot. PMID:19939914

  1. DNA vaccination of mice with a plasmid encoding Puumala hantavirus nucleocapsid protein mimics the B-cell response induced by virus infection.

    PubMed

    Koletzki, D; Schirmbeck, R; Lundkvist, A; Meisel, H; Krüger, D H; Ulrich, R

    2001-11-17

    Inoculation of naked DNA has been applied for the development of prophylactic and therapeutic vaccines against different viral infections. To study the humoral immune response induced by DNA vaccination we cloned the entire nucleocapsid protein-encoding sequence of the Puumala hantavirus strain Vranica/Hällnäs into the CMV promoter-driven expression unit of the plasmid pcDNA3, generating pcDNA3-VR1. A single dose injection of 50 microg of plasmid DNA into each M. tibialis anterior of BALB/c mice induced a high-titered antibody response against the nucleocapsid protein as documented 6 and 11 weeks after immunisation. PEPSCAN analysis of a serum pool of the pcDNA3-VR1-vaccinated animals revealed antibodies reacting with epitopes covering the whole nucleocapsid protein. The epitope-specificity of the immune response induced by DNA vaccination seems to reflect the antibody response in experimentally virus-infected bank voles (the natural host of the Puumala virus) and humans. The data suggest that DNA vaccination could be used for the identification of highly immunogenic epitopes in viral proteins. PMID:11035190

  2. ADAM13 function is required in the 3 dimensional context of the embryo during cranial neural crest cell migration in Xenopus laevis

    PubMed Central

    Cousin, Hélène; Abbruzzese, Genevieve; McCusker, Catherine; Alfandari, Dominique

    2012-01-01

    The cranial neural crest (CNC) is a population of cells that arises from the lateral part of the developing brain, migrates ventrally and coordinates the entire craniofacial development of vertebrates. Many molecules are involved in CNC migration including the transmembrane metalloproteases ADAM13 and 19. We have previously shown that these ADAMs cleave a number of extracellular proteins and modify the transcription of a number of genes, and that both of these activities are important for cell migration. Here we show that the knock down of ADAM13 inhibits CNC migration in vivo but not in vitro, indicating that ADAM13 function is required in the 3-dimentional context of the embryo. We further show that the migration of CNC that do not express ADAM13 and ADAM19 can be rescued in vivo by co-grafting wild type CNC. Furthermore, the migration of CNC lacking ADAM13 can be rescued by mechanically separating the CNC from the surrounding ectoderm and mesoderm. Finally, we show that ADAM13 function is autonomous to CNC tissue, as the migration of morphant CNC can only be rescued by ADAM13 expression in the CNC and not the surrounding tissues. Together our results suggest that ADAM13 changes CNC interaction with the extracellular environment and that this change is necessary for their migration in vivo. PMID:22683825

  3. Lrig2 Negatively Regulates Ectodomain Shedding of Axon Guidance Receptors by ADAM Proteases.

    PubMed

    van Erp, Susan; van den Heuvel, Dianne M A; Fujita, Yuki; Robinson, Ross A; Hellemons, Anita J C G M; Adolfs, Youri; Van Battum, Eljo Y; Blokhuis, Anna M; Kuijpers, Marijn; Demmers, Jeroen A A; Hedman, Håkan; Hoogenraad, Casper C; Siebold, Christian; Yamashita, Toshihide; Pasterkamp, R Jeroen

    2015-12-01

    Many guidance receptors are proteolytically cleaved by membrane-associated metalloproteases of the ADAM family, leading to the shedding of their ectodomains. Ectodomain shedding is crucial for receptor signaling and function, but how this process is controlled in neurons remains poorly understood. Here, we show that the transmembrane protein Lrig2 negatively regulates ADAM-mediated guidance receptor proteolysis in neurons. Lrig2 binds Neogenin, a receptor for repulsive guidance molecules (RGMs), and prevents premature Neogenin shedding by ADAM17 (TACE). RGMa reduces Lrig2-Neogenin interactions, providing ADAM17 access to Neogenin and allowing this protease to induce ectodomain shedding. Regulation of ADAM17-mediated Neogenin cleavage by Lrig2 is required for neurite growth inhibition by RGMa in vitro and for cortical neuron migration in vivo. Furthermore, knockdown of Lrig2 significantly improves CNS axon regeneration. Together, our data identify a unique ligand-gated mechanism to control receptor shedding by ADAMs and reveal functions for Lrigs in neuron migration and regenerative failure. PMID:26651291

  4. In silico investigation of ADAM12 effect on TGF-β receptors trafficking

    PubMed Central

    Gruel, Jérémy; LeBorgne, Michel; LeMeur, Nolwenn; Théret, Nathalie

    2009-01-01

    Background The transforming growth factor beta is known to have pleiotropic effects, including differentiation, proliferation and apoptosis. However the underlying mechanisms remain poorly understood. The regulation and effect of TGF-β signaling is complex and highly depends on specific protein context. In liver, we have recently showed that the disintegrin and metalloproteinase ADAM12 interacts with TGF-β receptors and modulates their trafficking among membranes, a crucial point in TGF-β signaling and development of fibrosis. The present study aims to better understand how ADAM12 impacts on TGF-β receptors trafficking and TGF-β signaling. Findings We extracted qualitative biological observations from experimental data and defined a family of models producing a behavior compatible with the presence of ADAM12. We computationally explored the properties of this family of models which allowed us to make novel predictions. We predict that ADAM12 increases TGF-β receptors internalization rate between the cell surface and the endosomal membrane. It also appears that ADAM12 modifies TGF-β signaling shape favoring a permanent response by removing the transient component observed under physiological conditions. Conclusion In this work, confronting differential models with qualitative biological observations, we obtained predictions giving new insights into the role of ADAM12 in TGF-β signaling and hepatic fibrosis process. PMID:19778441

  5. Cleavage Site Localization Differentially Controls Interleukin-6 Receptor Proteolysis by ADAM10 and ADAM17

    PubMed Central

    Riethmueller, Steffen; Ehlers, Johanna C.; Lokau, Juliane; Düsterhöft, Stefan; Knittler, Katharina; Dombrowsky, Gregor; Grötzinger, Joachim; Rabe, Björn; Rose-John, Stefan; Garbers, Christoph

    2016-01-01

    Limited proteolysis of the Interleukin-6 Receptor (IL-6R) leads to the release of the IL-6R ectodomain. Binding of the cytokine IL-6 to the soluble IL-6R (sIL-6R) results in an agonistic IL-6/sIL-6R complex, which activates cells via gp130 irrespective of whether the cells express the IL-6R itself. This signaling pathway has been termed trans-signaling and is thought to mainly account for the pro-inflammatory properties of IL-6. A Disintegrin And Metalloprotease 10 (ADAM10) and ADAM17 are the major proteases that cleave the IL-6R. We have previously shown that deletion of a ten amino acid long stretch within the stalk region including the cleavage site prevents ADAM17-mediated cleavage, whereas the receptor retained its full biological activity. In the present study, we show that deletion of a triple serine (3S) motif (Ser-359 to Ser-361) adjacent to the cleavage site is sufficient to prevent IL-6R cleavage by ADAM17, but not ADAM10. We find that the impaired shedding is caused by the reduced distance between the cleavage site and the plasma membrane. Positioning of the cleavage site in greater distance towards the plasma membrane abrogates ADAM17-mediated shedding and reveals a novel cleavage site of ADAM10. Our findings underline functional differences in IL-6R proteolysis by ADAM10 and ADAM17. PMID:27151651

  6. John Quincy Adams's rhetorical crusade for astronomy.

    PubMed

    Portolano, M

    2000-09-01

    Astronomy thrived in Europe during the early nineteenth century, but in the United States a utilitarian mind-set opposed it. John Quincy Adams's oratory in support of American astronomical discovery reached its peak during congressional debate over the Smithsonian Institution (1838-1846). During this debate Adams countered proposals to found a university with plans for an observatory. His addresses to congressional and public audiences about observatories and astronomy were intended to foster interest in the science and encourage the growing astronomical community in America. Although the U.S. Naval Observatory in Washington, D.C., was established before the Smithsonian debate ended, many considered Adams its political father. Adams composed his speeches on astronomy in a systematic manner, following neoclassical principles of rhetoric that he had taught at Harvard University. His speeches both in and outside of Congress show evidence of the rhetorical principles he conscientiously used in the service of astronomy. PMID:11143785

  7. ADAM-mediated amphiregulin shedding and EGFR transactivation

    PubMed Central

    Kasina, S.; Scherle, P. A.; Hall, C. L.; Macoska, J. A.

    2011-01-01

    Introduction The ectodomain shedding of epidermal growth factor receptor (EGFR) ligands, such as amphiregulin (AREG), by ADAMs (A Disintegrin And Metalloproteases) can be stimulated by G protein-coupled receptor (GPCR) agonists. Interactions between the CXCR4 GPCR and the CXCL12 chemokine have been shown to mediate gene transcription and cellular proliferation in non-transformed and transformed prostate epithelial cells, as well as motility/invasiveness in transformed cells. Objectives In this report, we investigated the ability of CXCL12 to stimulate amphiregulin ectodomain shedding in non-transformed and transformed prostate epithelial cells that respond proliferatively to sub-nanomolar levels of CXCL12 and amphiregulin. Materials and Methods Non-transformed N15C6 and transformed PC3 prostate epithelial cells were assessed for amphiregulin shedding, ADAM activation, Src phosphorylation and EGFR activation using ELISA, immunoblot, and immunoprecipitation techniques, and for proliferation using cell counting after stimulation with CXCL12 or vehicle. Results The results of these studies identify CXCL12 as a novel inducer of amphiregulin ectodomain shedding and show that both basal and CXCL12-mediated amphiregulin shedding are ADAM10- and Src kinase-dependent in non-transformed N15C6 cells. In contrast, amphiregulin shedding is not amplified subsequent to stimulation with exogenous CXCL12, and is not reduced subsequent to metalloprotease- or Src kinase-inhibition, in highly aggressive PC3 prostate cancer cells. These data also show that CXCL12-mediated cellular proliferation requires EGFR transactivation in a Src-and ADAM-dependent manner in non-transformed prostate epithelial cells. However, these same mechanisms are dysfunctional in highly transformed prostate cancer cells, which secrete amphiregulin in an autocrine manner that cannot be repressed through metalloprotease- or Src kinase inhibition. Conclusion These findings show that non-transformed and transformed

  8. Methionine sustituted polyamides are RNAse mimics that inhibit translation.

    PubMed

    Kumar, Rohtash; Garneau, Philippe; Nguyen, Nhi; William Lown, J; Pelletier, Jerry

    2004-04-01

    RNAse mimics are small molecules that can cleave RNA in a fashion similar to ribonucleases. These compounds would be very useful as gene specific reagents if their activities could be regulated and targeted. We demonstrate here that polyamides with methionine substituents show enhanced RNA cleavage activity relative to other polyamides. Conjugation of these compounds to aminoglycosides produced RNAse mimics that are capable of inhibiting eukaryotic protein synthesis. As a new class of compounds capable of interacting with nucleic acids, these novel aminoglycoside-polyamides constitute promising scaffolds for the construction of nuclease mimics with biological activity. PMID:15203891

  9. The retinoic acid receptor agonist Am80 increases hippocampal ADAM10 in aged SAMP8 mice.

    PubMed

    Kitaoka, Kazuyoshi; Shimizu, Noriyuki; Ono, Koji; Chikahisa, Sachiko; Nakagomi, Madoka; Shudo, Koichi; Ishimura, Kazunori; Séi, Hiroyoshi; Yoshizaki, Kazuo

    2013-09-01

    The retinoic acid (RA, a vitamin A metabolite) receptor (RAR) is a transcription factor. Vitamin A/RA administration improves the Alzheimer's disease (AD)- and age-related attenuation of memory/learning in mouse models. Recently, a disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) was identified as a key molecule in RA-mediated anti-AD mechanisms. We investigated the effect of chronic administration of the RAR agonist Am80 (tamibarotene) on ADAM10 expression in senescence-accelerated mice (SAMP8). Moreover, we estimated changes in the expression of the amyloid precursor protein (APP), amyloid beta (Aβ), and hairy/enhancer of split (Hes), which are mediated by ADAM10. Spatial working memory and the levels of a hippocampal proliferation marker (Ki67) were also assessed in these mice. ADAM10 mRNA and protein expression was significantly reduced in the hippocampus of 13-month-old SAMP8 mice; their expression improved significantly after Am80 administration. Further, after Am80 administration, the expression levels of Hes5 and Ki67 were restored and the deterioration of working memory was suppressed, whereas APP and Aβ levels remained unchanged. Our results suggest that Am80 administration effectively improves dementia by activating the hippocampal ADAM10-Notch-Hes5 proliferative pathway. PMID:23624141

  10. ADAM17-siRNA inhibits MCF-7 breast cancer through EGFR-PI3K-AKT activation.

    PubMed

    Meng, Xiangchao; Hu, Baoshan; Hossain, Mohammad Monir; Chen, Guofu; Sun, Ying; Zhang, Xuepeng

    2016-08-01

    A disintegrin and metalloproteinase-17 (ADAM17) can cut and release a wide variety of epidermal growth factor receptor (EGFR) ligands to promote survival, invasion and proliferation of cancer cell, and therefore, is considered to be a potential therapeutic target for cancer. The main goal of the present study was to observe the effects of ADAM17 small interfering RNA (ADAM17-siRNA) on human MCF-7 breast cancer and investigate its activation pathway. In vitro, MCF-7 cells were divided into ADAM17-siRNA groups, nonsense siRNA groups, AG1478 (selective EGFR blocker) groups, LY294002 [phosphatidylinositol 3-kinase (PI3K) phosphorylation inhibitor] groups, PD0325901 [mitogen extracellular kinase (MEK) inhibitor] groups and control groups. In vivo, MCF-7 cells were implanted subcutaneously into nude mice and then these mice were randomly divided into ADAM17-siRNA groups, vector groups and control groups. Our data showed that compared with the control groups, ADAM17-siRNA, AG1478 and LY294002 could inhibit the migration and proliferation of MCF-7 cells, but PD0325901 and nonsense siRNA did not show this effect. Except that specific ADAM17-siRNA could inhibit the expression of ADAM17 mRNA, others did not change it. Western blot analysis further confirmed that EGFR-PI3K-AKT signaling pathway is involved in ADAM17-siRNA inhibiting migration and proliferation of MCF-7 cells. Similarly to the former, the growth of MCF-7 breast cancer in nude mice was significantly inhibited by ADAM17-siRNA. Compared with the control group and the vector group, the tumor volume was smaller in the ADAM17-siRNA group, the tissues developed large areas of necrosis, immunohistochemistry showed low expressions of ADAM17 and Ki-67 and western blot analysis proved that the expression of ADAM17 protein in the tissue was also reduced. The present study suggests that ADAM17-siRNA inhibits MCF-7 breast cancer and is activated through the EGFR-PI3K-AKT signaling pathway. PMID:27221510

  11. Expression of ADAM15 in rheumatoid synovium: up-regulation by vascular endothelial growth factor and possible implications for angiogenesis

    PubMed Central

    Komiya, Koichiro; Enomoto, Hiroyuki; Inoki, Isao; Okazaki, Satoko; Fujita, Yoshinari; Ikeda, Eiji; Ohuchi, Eiko; Matsumoto, Hideo; Toyama, Yoshiaki; Okada, Yasunori

    2005-01-01

    ADAMs (a disintegrin and metalloproteinases) comprise a new gene family of metalloproteinases, and may play roles in cell-cell interaction, cell migration, signal transduction, shedding of membrane-anchored proteins and degradation of extracellular matrix. We screened the mRNA expression of 10 different ADAMs with a putative metalloproteinase motif in synovial tissues from patients with rheumatoid arthritis (RA) or osteoarthritis (OA). Reverse transcription PCR and real-time quantitative PCR analyses indicated that among the ADAMs, ADAM15 mRNA was more frequently expressed in the RA samples and its expression level was significantly 3.8-fold higher in RA than in OA (p < 0.01). In situ hybridization, immunohistochemistry and immunoblotting demonstrated that ADAM15 is expressed in active and precursor forms in the synovial lining cells, endothelial cells of blood vessels and macrophage-like cells in the sublining layer of RA synovium. There was a direct correlation between ADAM15 mRNA expression levels and vascular density in the synovial tissues (r = 0.907, p < 0.001; n = 20). ADAM15 was constitutively expressed in RA synovial fibroblasts and human umbilical vein endothelial cells (HUVECs), and the expression level was increased in HUVECs by treatment with vascular endothelial growth factor (VEGF)165. On the other hand, ADAM15 expression in RA synovial fibroblasts was enhanced with VEGF165 only if vascular endothelial growth factor receptor (VEGFR)-2 expression was induced by treatment with tumor necrosis factor-α, and the expression was blocked with SU1498, a specific inhibitor of VEGFR-2. These data demonstrate that ADAM15 is overexpressed in RA synovium and its expression is up-regulated by the action of VEGF165 through VEGFR-2, and suggest the possibility that ADAM15 is involved in angiogenesis in RA synovium. PMID:16277668

  12. PKC Activation Counteracts ADAM10 Deficit in HuD-Silenced Neuroblastoma Cells.

    PubMed

    Marchesi, Nicoletta; Amadio, Marialaura; Colombrita, Claudia; Govoni, Stefano; Ratti, Antonia; Pascale, Alessia

    2016-09-01

    Neuronal ELAV/Hu (nELAV) are RNA-binding proteins that mainly regulate gene expression by increasing the stability and/or translation rate of target mRNAs bearing ARE (adenine and uracil-rich elements) sequences. Among nELAV target transcripts there is ADAM10, an α-secretase involved in the non-amyloidogenic processing of the amyloid-β protein precursor (AβPP) which leads to the production of the neuroprotective sAβPPα peptide. The aim of this study was to evaluate if nELAV depletion affects ADAM10 expression in human SH-SY5Y neuroblastoma cells. We also studied the effects of Bryostatin-1, a molecule able to activate nELAV protein cascade. The specific HuD/nELAV gene silencing decreased both nELAV and ADAM10 protein contents; similar results were obtained by Aβ40 treatment in wild-type SH-SY5Y cells. In HuD-silenced cells, the exposure to Bryostatin-1 counteracted both nELAV and ADAM10 proteins downregulation, by restoring nELAV/ADAM10 basal levels. We also found that sAβPPα release, which seemed not to be compromised by Aβ40 challenge or HuD-silencing, was favored by Bryostatin-1. Overall, these findings strongly suggest that a deficiency in nELAV content negatively affects ADAM10 expression and may play a role in neurodegenerative diseases, which may benefit by molecules activating ELAV cascade. PMID:27472877

  13. Profiling Hepatic microRNAs in Zebrafish: Fluoxetine Exposure Mimics a Fasting Response That Targets AMP-Activated Protein Kinase (AMPK)

    PubMed Central

    Craig, Paul M.; Trudeau, Vance L.; Moon, Thomas W.

    2014-01-01

    This study examined the similarities in microRNA profiles between fasted and fluoxetine (FLX) exposed zebrafish and downstream target transcripts and biological pathways. Using a custom designed microarray targeting 270 zebrafish miRNAs, we identified 9 differentially expressed miRNAs targeting transcripts in biological pathways associated with anabolic metabolism, such as adipogenesis, cholesterol biosynthesis, triacylglycerol synthesis, and insulin signaling. Exposure of female zebrafish to 540 ng/L FLX, an environmentally relevant concentration and a known metabolic repressor, increased specific miRNAs indicating greater inhibition of these pathways in spite of continued feeding. Further examination revealed two specific miRNAs, dre-let-7d and dre-miR-140-5p, were predicted in silico to bind to a primary regulator of metabolism, adenosine monophosphate-activated protein kinase (AMPK), and more specifically the two isoforms of the catalytic subunit, AMPKα1 and α2, respectively. Real-time analysis of the relative transcript abundance of the α1 and α2 mRNAs indicated a significant inverse relationship between specific miRNA and target transcript. This suggests that AMPK-related pathways may be compromised during FLX exposure as a result of increased miRNA abundance. The mechanism by which FLX regulates miRNA abundance is unknown but may be direct at the liver. The serotonin transporter, slc6a4, is the target of FLX and other selective serotonin reuptake inhibitors (SSRI) and it was found to be expressed in the liver, although treatment did not alter expression of this transporter. Exposure to FLX disrupts key hepatic metabolic pathways, which may be indicative of reduced overall fitness and these effects may be linked to specific miRNA abundance. This has important implications for the heath of fish because concentrations of SSRIs in aquatic ecosystems are continually increasing. PMID:24751937

  14. Channel Catfish (Ictalurus punctatus Rafinesque, 1818) CD156a (ADAM Metallopeptidase Domain 8): cDNA Clone, Characterization and Expression in Tissues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    CD156a, also known as a disintegrin and metalloprotease domain 8 (ADAM-8), is a type 1 transmembrane glycoprotein of the ADAM family. This protein plays important roles in immune and other physiological functions. In this communication, the channel catfish CD156a cDNA was characterized and its exp...

  15. A Conversation with Adam Heller.

    PubMed

    Heller, Adam; Cairns, Elton J

    2015-01-01

    Adam Heller, Ernest Cockrell Sr. Chair in Engineering Emeritus of the John J. McKetta Department of Chemical Engineering at The University of Texas at Austin, recalls his childhood in the Holocaust and his contributions to science and technology that earned him the US National Medal of Technology and Innovation in a conversation with Elton J. Cairns, Professor of Chemical and Biomolecular Engineering at the University of California, Berkeley. Dr. Heller, born in 1933, describes the enslavement of his father by Hungarians in 1942; the confiscation of his family's home, business, and all its belongings in 1944; and his incarceration in a brick factory with 18,000 Jews who were shipped by the Hungarians to be gassed by Germans in Auschwitz. Dr. Heller and his immediate family survived the Holocaust and arrived in Israel in 1945. He studied under Ernst David Bergmann at the Hebrew University, and then worked at Bell Laboratories and GTE Laboratories, where he headed Bell Lab's Electronic Materials Research Department. At GTE Laboratories, he built in 1966 the first neodymium liquid lasers and in 1973 with Jim Auborn conceived and engineered the lithium thionyl chloride battery, one of the first to be manufactured lithium batteries, which is still in use. After joining the faculty of engineering of The University of Texas at Austin, he cofounded with his son Ephraim Heller TheraSense, now a major part of Abbott Diabetes Care, which produced a microcoulometer that made the monitoring of glucose painless by accurately measuring the blood glucose concentration in 300 nL of blood. He also describes the electrical wiring of enzymes, the basis for Abbott's state-of-the-art continuous glucose monitoring system. He discusses his perspective of reducing the risk of catastrophic global warming in a wealth-accumulating, more-energy-consuming world and provides advice for students entering careers in science or engineering. PMID:26247288

  16. The disintegrin domain of ADAM9: a ligand for multiple β1 renal integrins

    PubMed Central

    2004-01-01

    Renal tubular epithelial cells in all nephron segments express a distinct member of the metalloprotease-disintegrin family, ADAM9 (a disintegrin and metalloprotease 9), in a punctate basolateral distribution co-localized to the β1 integrin chain [Mahimkar, Baricos, Visaya, Pollock and Lovett (2000) J. Am. Soc. Nephrol. 11, 595–603]. Discrete segments of the nephron express several defined β1 integrins, suggesting that ADAM9 interacts with multiple renal integrins and thereby regulates epithelial cell–matrix interactions. Intact ADAM9 and a series of deletion constructs sequentially lacking the metalloprotease domain and the disintegrin domain were assembled as chimaeras with a C-terminal GFP (green fluorescent protein) tag. Stable expression of the ADAM9/GFP protein on the surface of HEK-293 cells (human embryonic kidney 293 cells) significantly decreased adhesion to types I and IV collagen, vitronectin and laminin, but had little effect on adhesion to fibronectin. Expression of the disintegrin/cysteine-rich/GFP construct yielded a similar, but more marked pattern of decreased adhesion. Expression of the cysteine-rich/GFP construct had no effect on adhesion, indicating that the disintegrin domain was responsible for the competitive inhibition of cell–matrix binding. To define the specific renal tubular β1 integrins interacting with the ADAM9 disintegrin domain, a recombinant GST (glutathione S-transferase)-disintegrin protein was used as a substrate in adhesion assays in the presence or absence of specific integrin-blocking antibodies. Inclusion of antibodies to α1, α3, α6, αv and β1 blocked adhesion of HEK-293 cells to GST-disintegrin protein. Immobilized GST-disintegrin domain perfused with renal cortical lysates specifically recovered the α3, α6, αv and β1 integrin chains by Western analysis. It is concluded that ADAM9 is a polyvalent ligand, through its disintegrin domain, for multiple renal integrins of the β1 class. PMID:15361064

  17. ADAM: automated data management for research datasets

    PubMed Central

    Woodbridge, Mark; Tomlinson, Christopher D.; Butcher, Sarah A.

    2013-01-01

    Existing repositories for experimental datasets typically capture snapshots of data acquired using a single experimental technique and often require manual population and continual curation. We present a storage system for heterogeneous research data that performs dynamic automated indexing to provide powerful search, discovery and collaboration features without the restrictions of a structured repository. ADAM is able to index many commonly used file formats generated by laboratory assays and therefore offers specific advantages to the experimental biology community. However, it is not domain specific and can promote sharing and re-use of working data across scientific disciplines. Availability and implementation: ADAM is implemented using Java and supported on Linux. It is open source under the GNU General Public License v3.0. Installation instructions, binary code, a demo system and virtual machine image and are available at http://www.imperial.ac.uk/bioinfsupport/resources/software/adam. Contact: m.woodbridge@imperial.ac.uk PMID:23109181

  18. The Cysteine-Rich Domain of Human Adam 12 Supports Cell Adhesion through Syndecans and Triggers Signaling Events That Lead to β1 Integrin–Dependent Cell Spreading

    PubMed Central

    Iba, Kousuke; Albrechtsen, Reidar; Gilpin, Brent; Fröhlich, Camilla; Loechel, Frosty; Zolkiewska, Anna; Ishiguro, Kazuhiro; Kojima, Tetsuhito; Liu, Wei; Langford, J. Kevin; Sanderson, Ralph D.; Brakebusch, Cord; Fässler, Reinhard; Wewer, Ulla M.

    2000-01-01

    The ADAMs (a disintegrin and metalloprotease) family of proteins is involved in a variety of cellular interactions, including cell adhesion and ecto- domain shedding. Here we show that ADAM 12 binds to cell surface syndecans. Three forms of recombinant ADAM 12 were used in these experiments: the cys-teine-rich domain made in Escherichia coli (rADAM 12-cys), the disintegrin-like and cysteine-rich domain made in insect cells (rADAM 12-DC), and full-length human ADAM 12-S tagged with green fluorescent protein made in mammalian cells (rADAM 12-GFP). Mesenchymal cells specifically and in a dose-dependent manner attach to ADAM 12 via members of the syndecan family. After binding to syndecans, mesenchymal cells spread and form focal adhesions and actin stress fibers. Integrin β1 was responsible for cell spreading because function-blocking monoclonal antibodies completely inhibited cell spreading, and chondroblasts lacking β1 integrin attached but did not spread. These data suggest that mesenchymal cells use syndecans as the initial receptor for the ADAM 12 cysteine-rich domain–mediated cell adhesion, and then the β1 integrin to induce cell spreading. Interestingly, carcinoma cells attached but did not spread on ADAM 12. However, spreading could be efficiently induced by the addition of either 1 mM Mn2+ or the β1 integrin–activating monoclonal antibody 12G10, suggesting that in these carcinoma cells, the ADAM 12–syndecan complex fails to modulate the function of β1 integrin. PMID:10831617

  19. Src plays a key role in ADAM28 expression in v-src-transformed epithelial cells and human carcinoma cells.

    PubMed

    Abe, Hitoshi; Mochizuki, Satsuki; Ohara, Kentaro; Ueno, Mari; Ochiai, Hiroki; Kitagawa, Yuko; Hino, Okio; Sato, Hiroshi; Okada, Yasunori

    2013-11-01

    ADAM28, a disintegrin and metalloproteinase 28, is overexpressed by carcinoma cells with direct correlations with carcinoma cell proliferation and progression in human lung and breast carcinomas. However, the molecular mechanisms of ADAM28 gene expression in carcinoma cells remain elusive. Herein, we investigated the expression of ADAM28 in Madin-Darby canine kidney epithelial cells transformed by oncogenes, including v-src, LMP1, ErbB2, Ha-Ras, and c-Fos, and found that v-src transformants selectively induce ADAM28. Implantation of the v-src transformants showed a progressively growing tumor, which was significantly suppressed by local injections of anti-ADAM28 antibody. ADAM28 expression in v-src transformants was partially inhibited by treatment with inhibitors to Src kinase, mitogen-activated protein kinase kinase (MEK), phosphatidylinositol 3-kinase (PI3K), or mammalian target of rapamycin, and abrogated by v-Src kinase inhibitor, radicicol, or a mixture of MEK and PI3K inhibitors. Human carcinoma cell lines of the lung, breast, ovary, kidney, and colon showed ADAM28 expression, which was correlated with phosphorylation of c-Src and suppressed by the inhibitors in a similar way to v-src transformants. IHC of the human tumor tissues demonstrated co-expression of ADAM28 and phosphorylated Src in neoplastic cells of the breast, lung, and colon carcinomas and some adenomas of the colon, but not in nonneoplastic colon mucosa. Our data provide, to the best of our knowledge, the first evidence that Src is an inducer of ADAM28 gene expression through the MEK/extracellular signal-regulated kinase and PI3K/mammalian target of rapamycin pathways. PMID:24007880

  20. Mimics of pancreatic ductal adenocarcinoma

    PubMed Central

    Kaza, Ravi K.; Azar, Shadi F.; Ruma, Julie A.; Francis, Isaac R.

    2013-01-01

    Abstract Several uncommon primary pancreatic tumors, inflammatory conditions, metastasis to the pancreas and peripancreatic masses can mimic the appearance of pancreatic ductal adenocarcinoma (PDA). Differentiation between these lesions and PDA can be challenging, due to the overlap in imaging features; however, familiarity with their typical imaging features and clinical presentation may be helpful in their differentiation, as in some cases, invasive diagnostic tests or unnecessary surgery can be avoided. The different pathologies that can mimic PDA include inflammatory conditions such as the various forms of pancreatitis (chronic-focal mass-forming, autoimmune and groove pancreatitis), pancreatic neuroendocrine tumors, solid pseudopapillary tumors, metastasis (solid non-lymphomatous and hematologic), congenital variants (annular pancreas), as well as peripancreatic lesions (accessory spleen, adrenal masses, duodenal masses, lymph nodes and vascular lesions), and certain rare pancreatic tumors (e.g., acinar cell tumors, solid serous tumors, hamartoma and solitary fibrous tumors). The clinical presentation and imaging features of the most commonly encountered mimics of PDA are discussed in this presentation with representative illustrations. PMID:24060833

  1. A Disintegrin and Metalloprotease (ADAM): Historical Overview of Their Functions

    PubMed Central

    Giebeler, Nives; Zigrino, Paola

    2016-01-01

    Since the discovery of the first disintegrin protein from snake venom and the following identification of a mammalian membrane-anchored metalloprotease-disintegrin implicated in fertilization, almost three decades of studies have identified additional members of these families and several biochemical mechanisms regulating their expression and activity in the cell. Most importantly, new in vivo functions have been recognized for these proteins including cell partitioning during development, modulation of inflammatory reactions, and development of cancers. In this review, we will overview the a disintegrin and metalloprotease (ADAM) family of proteases highlighting some of the major research achievements in the analysis of ADAMs’ function that have underscored the importance of these proteins in physiological and pathological processes over the years. PMID:27120619

  2. Women in History--Abigail Adams: Life, Accomplishments, and Ideas

    ERIC Educational Resources Information Center

    Kenan, Sharon K.

    2008-01-01

    This article profiles the life, accomplishments, and ideas of Abigail Adams. Born in 1944, Adams lacked a formal education, but she more than made up for that shortcoming with her love of reading, especially literature, and her interests in politics and events surrounding the young colonies. Adams was supportive of the advancement of women. She…

  3. Adam Smith and the Rhetoric of Style.

    ERIC Educational Resources Information Center

    Moran, Michael G.

    Historians of rhetoric have generally accepted the view that Adam Smith rejected the principles of classical rhetoric. However, while there can be no doubt that Smith greatly truncated the five classical arts of rhetoric (invention, arrangement, style, memory, and delivery) by reducing his concerns largely to style and arrangement, he did not…

  4. Adam Smith, Religion, and Tuition Tax Credits.

    ERIC Educational Resources Information Center

    Alexander, Kern

    1983-01-01

    Examines tuition tax credit programs in framework of Adam Smith's ideas on the economic impact of established churches. Finds that tuition tax credits would amount to state expenditures to relieve the financial burden of parochial school parents and would allow churches to invest commercially to maintain their charitable functions. (JW)

  5. Paraprofessional of the Year 2009: Tina Adams

    ERIC Educational Resources Information Center

    Berry, John N., III

    2009-01-01

    There is no doubt among the staff and managers at North Carolina State University (NCSU) Libraries, Raleigh, that advanced library technician Tina Adams deserves to be the winner of the "Library Journal's "Paraprofessional of the Year Award for 2009." "Certainly this library has never seen anyone like her before, not in my nine years on staff,"…

  6. ADAM "sequence" part II: hypothesis and speculation.

    PubMed

    Opitz, John M; Johnson, Dennis R; Gilbert-Barness, Enid F

    2015-03-01

    Noted for centuries in humans, a relatively hairless mammal [e.g., Hallero, 1766; Hohl, 1828 in Klunker, 2003], the so-called amniotic deformities, adhesions, mutilations (ADAM) sequence remains causally and pathogenetically incognito. In 1930 Streeter stated " apodictically" that no evidence has been found that intra-uterine amputation is due to amniotic bands or adhesions …" and that his 16 cases provided (histological) evidence for a "germinal origin." He concluded that an amniotic cord was "not an adhesion or inflammatory product but … an anomalous developmental structure and present from the outset." In survivors the "traces" of damaged limb-buds "reveal the scars of poor germ-plasm." In 1958, Willis, in dismissing the amniotic origin of the ADAM defects (or "Streeter" or "Simonart" bands) quoted Keith [1940] to the effect that "(a)mniotic adhesions … are always produced by … the fetus – as a result of dysplasia in foetal tissues. They are the result, not the cause, of foetal malformations." Streeter [1930] mentions a potential familial case (56-year-old man and his mother), not controlled by photographs or other records and concluded "that the (ADAM) deformity is not easily transmissible," but "due to the constitution of the germ-plasm." Torpin [1968] concluded, as apodictically as Streeter and Willis, that "… proof of amnion rupture without damage to the chorionic sac is no longer "in question." Considering Torpin's decades-long study of the ADAM phenomenon and review of 494 references (missing many) it is surprising that he does not discuss the relationship between the apparent ADAM defects and other, internal anomalies that maybe present in an affected fetus or infant not evidently caused by the amniotic disruptions, adhesions or mutilations, unless his mind was made up. Our review of these internal and other presumed primary malformations in ADAM is ongoing. However, on a preliminary basis, it seems likely to us that: (1) there is an increased

  7. Engineering hydrogels as extracellular matrix mimics

    PubMed Central

    Geckil, Hikmet; Xu, Feng; Zhang, Xiaohui; Moon, SangJun

    2010-01-01

    Extracellular matrix (ECM) is a complex cellular environment consisting of proteins, proteoglycans, and other soluble molecules. ECM provides structural support to mammalian cells and a regulatory milieu with a variety of important cell functions, including assembling cells into various tissues and organs, regulating growth and cell–cell communication. Developing a tailored in vitro cell culture environment that mimics the intricate and organized nanoscale meshwork of native ECM is desirable. Recent studies have shown the potential of hydrogels to mimic native ECM. Such an engineered native-like ECM is more likely to provide cells with rational cues for diagnostic and therapeutic studies. The research for novel biomaterials has led to an extension of the scope and techniques used to fabricate biomimetic hydrogel scaffolds for tissue engineering and regenerative medicine applications. In this article, we detail the progress of the current state-of-the-art engineering methods to create cell-encapsulating hydrogel tissue constructs as well as their applications in in vitro models in biomedicine. PMID:20394538

  8. Illnesses of the brain in John Quincy Adams.

    PubMed

    Paulson, George

    2004-12-01

    John Quincy Adams, the sixth and perhaps most scholarly American president, served courageously despite familial essential tremor, depression, and cerebrovascular disease. His cousin Samuel Adams and his father John Adams also had essential tremor, which the later called "quiveration". Alcoholism and depression affected several members of J.Q. Adams's family. Following his own time as president, J.Q. Adams returned to duty as the congressman who most assiduously fought slavery, a fight he continued even after he had suffered a major left hemispheric stroke. His fatal collapse in Congress, protesting the Mexican War, is legendary among the final illnesses of American statesmen. PMID:15545105

  9. ADAM10 Cell Surface Expression but Not Activity Is Critical for Staphylococcus aureus α-Hemolysin-Mediated Activation of the NLRP3 Inflammasome in Human Monocytes

    PubMed Central

    Ezekwe, Ejiofor A.D.; Weng, Chengyu; Duncan, Joseph A.

    2016-01-01

    The Staphylococcus aureus toxin, α-hemolysin, is an important and well-studied virulence factor in staphylococcal infection. It is a soluble monomeric protein that, once secreted by the bacterium, forms a heptameric pore in the membrane of a broad range of host cell types. Hemolysin was recently discovered to bind and activate a disintegrin and metalloprotease 10 (ADAM10). In epithelial and endothelial cells, ADAM10 activation is required for the toxin’s activity against these cells. In host monocytic cells, α-hemolysin activates the nucleotide-binding domain and leucine-rich repeat containing gene family, pyrin domain containing 3 (NLRP3) inflammasome leading to production of pro-inflammatory cytokines and cell death. We now show that ADAM10 is critical for α-hemolysin-mediated activation of the NLRP3 inflammasome in human monocytes as siRNA knockdown or chemical blockade of ADAM10-α-hemolysin interaction leads to diminished inflammasome activation and cell death by reducing the available ADAM10 on the cell surface. Unlike epithelial cell and endothelial cell damage, which requires α-hemolysin induced ADAM10 activation, ADAM10 protease activity was not required for NLRP3 inflammasome activation. This work confirms the importance of ADAM10 in immune activation by α-hemolysin, but indicates that host cell signal induction by the toxin is different between host cell types. PMID:27043625

  10. Torsion of epiploic appendage mimic acute appendicitis.

    PubMed

    Pogorelić, Zenon; Stipić, Radoslav; Druzijanić, Nikica; Perko, Zdravko; Grandić, Leo; Vilović, Katarina; Mrklić, Ivana; Jurić, Ivo; Boschi, Vladimir; Bekavac, Josip

    2011-12-01

    Epiploic appendagitis is a rare cause of focal abdominal pain which, depending on its localisation, can mimic a variety of abdominal diseases. We report a case of 36-year-old woman who presented with a classic signs of acute appendicitis. On examination, the obese, afebrile, and had very strong right iliac fossa tenderness and guarding. The white cell count was 12.82 x 10(9)/L, and C reactive protein count was 15.13MG/DL. She underwent emergency laparoscopic procedure after the acute appendicitis diagnosis has been established. Laparoscopic exploration of the abdominal cavity showed vermiform, no inflamed, appendix and necrotic appendix epiploica of the caecum. The treatment consisted of typical laparoscopic appendectomy and laparoscopic resection of the necrotic appendix epiploica. The patient made rapid recovery and was discharged from the hospital on second day after the operation. Histological investigation of the appendix epiploica revealed gangrenous epiploic appendage. PMID:22397276

  11. ADAM8 is selectively up-regulated in endothelial cells and is associated with angiogenesis after spinal cord injury in adult mice.

    PubMed

    Mahoney, Edward T; Benton, Richard L; Maddie, Melissa A; Whittemore, Scott R; Hagg, Theo

    2009-01-10

    Endothelial cell (EC) loss and subsequent angiogenesis occur over the first week after spinal cord injury (SCI). To identify molecular mechanisms that could be targeted with intravenous (i.v.) treatments, we determined whether transmembrane "a disintegrin and metalloprotease" (ADAM) proteins are expressed in ECs of the injured spinal cord. ADAMs bind to integrins, which are important for EC survival and angiogenesis. Female adult C57Bl/6 mice with a spinal cord contusion had progressively more ADAM8 (CD156) immunostaining in blood vessels and individual ECs between 1 and 28 days following injury. Uninjured spinal cords had little ADAM8 staining. The increase in ADAM8 mRNA and protein was confirmed in spinal cord lysates, and ADAM8 mRNA was present in FACS-enriched ECs. ADAM8 colocalized extensively and exclusively with the EC marker PECAM and also with i.v.-injected lectins. Intravenous isolectin B4 (IB4) labels a subpopulation of blood vessels at and within the injury epicenter 3-7 days after injury, coincident with angiogenesis. Both ADAM8 and the proliferation marker Ki-67 were present in IB4-positive microvessels. ADAM8-positive proliferating cells were seen at the leading end of IB4-positive blood vessels. Angiogenesis was confirmed by BrdU incorporation, binding of i.v.-injected nucleolin antibodies, and MT1-MMP immunostaining in a subset of blood vessels. These data suggest that ADAM8 is vascular selective and plays a role in proliferation and/or migration of ECs during angiogenesis following SCI. PMID:19003792

  12. IL-1β and ADAM17 are central regulators of β-defensin expression in Candida esophagitis.

    PubMed

    Pahl, Rene; Brunke, Gabriele; Steubesand, Nadine; Schubert, Sabine; Böttner, Martina; Wedel, Thilo; Jürgensen, Christian; Hampe, Jochen; Schäfer, Heiner; Zeissig, Sebastian; Schreiber, Stefan; Rosenstiel, Philip; Reiss, Karina; Arlt, Alexander

    2011-04-01

    Candida albicans resides on epithelial surfaces as part of the physiological microflora. However, under certain conditions, it may cause life-threatening infections, including Candida sepsis. We have recently shown that human β-defensins (hBDs) hBD-2 and hBD-3 are upregulated in Candida esophagitis and that this antifungal host response is distinctly regulated by NF-κB and MAPK/activator protein-1 (AP-1) pathways. Here, we show that C. albicans induces hBD-2 through an autocrine IL-1β loop and that activation of the epidermal growth factor receptor (EGFR) by endogenous transforming growth factor-α (TGF-α) is a crucial event in the induction of hBD-3. To further dissect upstream signaling events, we investigated expression of the central sheddases for EGFR ligands ADAM10 and ADAM17 in the healthy and infected esophagus. Next, we used pharmaceutical inhibitors and small-interfering RNA-mediated knock down of ADAM10 and ADAM17 to reveal that ADAM17-induced shedding of TGF-α is a crucial step in the induction of hBD-3 expression in response to Candida infection. In conclusion, we describe for the first time an autocrine IL-1β loop responsible for the induction of hBD-2 expression and an ADAM17-TGF-α-EGFR-MAPK/AP-1 pathway leading to hBD-3 upregulation in the course of a Candida infection of the esophagus. PMID:21233274

  13. ADAM: An Axisymmetric Duct Aeroacoustic Modeling system

    NASA Astrophysics Data System (ADS)

    Abrahamson, A. L.

    1983-01-01

    An interconnected system of computer programs for analyzing the propagation and attenuation of sound in aeroengine ducts containing realistic compressible subsonic mean flows, ADAM was developed primarily for research directed towards the reduction of noise emitted from turbofan aircraft engines. The two basic components are a streamtube curvature program for determination of the mean flow, and a finite element code for solution of the acoustic propagation problem. The system, which has been specifically tailored for ease of use, is presently installed at NASA Langley Reseach Center on a Control Data Cyber 175 Computer under the NOS Operating system employing a Tektronix terminal for interactive graphics. The scope and organization of the ADAM system is described. A users guide, examples of input data, and results for selected cases are included.

  14. Targeting autocrine HB-EGF signaling with specific ADAM12 inhibition using recombinant ADAM12 prodomain

    NASA Astrophysics Data System (ADS)

    Miller, Miles A.; Moss, Marcia L.; Powell, Gary; Petrovich, Robert; Edwards, Lori; Meyer, Aaron S.; Griffith, Linda G.; Lauffenburger, Douglas A.

    2015-10-01

    Dysregulation of ErbB-family signaling underlies numerous pathologies and has been therapeutically targeted through inhibiting ErbB-receptors themselves or their cognate ligands. For the latter, “decoy” antibodies have been developed to sequester ligands including heparin-binding epidermal growth factor (HB-EGF); however, demonstrating sufficient efficacy has been difficult. Here, we hypothesized that this strategy depends on properties such as ligand-receptor binding affinity, which varies widely across the known ErbB-family ligands. Guided by computational modeling, we found that high-affinity ligands such as HB-EGF are more difficult to target with decoy antibodies compared to low-affinity ligands such as amphiregulin (AREG). To address this issue, we developed an alternative method for inhibiting HB-EGF activity by targeting its cleavage from the cell surface. In a model of the invasive disease endometriosis, we identified A Disintegrin and Metalloproteinase 12 (ADAM12) as a protease implicated in HB-EGF shedding. We designed a specific inhibitor of ADAM12 based on its recombinant prodomain (PA12), which selectively inhibits ADAM12 but not ADAM10 or ADAM17. In endometriotic cells, PA12 significantly reduced HB-EGF shedding and resultant cellular migration. Overall, specific inhibition of ligand shedding represents a possible alternative to decoy antibodies, especially for ligands such as HB-EGF that exhibit high binding affinity and localized signaling.

  15. Iterative Mechanism Solutions with Scenario and ADAMS

    NASA Technical Reports Server (NTRS)

    Rhoades, Daren

    2006-01-01

    This slide presentation reviews the use of iterative solutions using Scenario for Motion (UG NX 2 Motion) to assist in designing the Mars Science Laboratory (MSL). The MSL will have very unique design requirements, and in order to meet these requirements the system must have the ability to design for static stability, simulate mechanism kinematics, simulate dynamic behaviour and be capable of reconfiguration, and iterations as designed. The legacy process used on the Mars Exploration rovers worked, but it was cumbersome using multiple tools, limited configuration control, with manual process and communication, and multiple steps. The aim is to develop a mechanism that would reduce turn around time, and make more reiterations possible, to improve the quality and quantity of data, and to enhance configuration control. Currently for NX Scenario for Motion uses are in the articulation studies, the simulations of traverse motions,and subsystem simulations. The design of the Rover landing model requires accurate results, flexible elements, such as beams, and the use of the full ADAMS solver has been used. In order to achieve this, when required, there has been a direct translation from Scenario to ADAMS, with additional data in ascii format. The process that has been designed to move from Scenario to ADAMS is reviewed.

  16. ADAM28 is expressed by epithelial cells in human normal tissues and protects from C1q-induced cell death.

    PubMed

    Miyamae, Yuka; Mochizuki, Satsuki; Shimoda, Masayuki; Ohara, Kentaro; Abe, Hitoshi; Yamashita, Shuji; Kazuno, Saiko; Ohtsuka, Takashi; Ochiai, Hiroki; Kitagawa, Yuko; Okada, Yasunori

    2016-05-01

    ADAM28 (disintegrin and metalloproteinase 28), which was originally reported to be lymphocyte-specific, is over-expressed by carcinoma cells and plays a key role in cell proliferation and progression in human lung and breast carcinomas. We studied ADAM28 expression in human normal tissues and examined its biological function. By using antibodies specific to ADAM28, ADAM28 was immunolocalized mainly to epithelial cells in several tissues, including epididymis, bronchus and stomach, whereas lymphocytes in lymph nodes and spleen were negligibly immunostained. RT-PCR, immunoblotting and ELISA analyses confirmed the expression in these tissues, and low or negligible expression by lymphocytes was found in the lymph node and spleen. C1q was identified as a candidate ADAM28-binding protein from a human lung cDNA library by yeast two-hybrid system, and specific binding was demonstrated by binding assays, immunoprecipitation and surface plasmon resonance. C1q treatment of normal bronchial epithelial BEAS-2B and NHBE cells, both of which showed low-level expression of ADAM28, caused apoptosis through activation of p38 and caspase-3, and cell death with autophagy through accumulation of LC3-II and autophagosomes, respectively. C1q-induced cell death was attenuated by treatment of the cells with antibodies against the C1q receptor gC1qR/p33 or cC1qR/calreticulin. Treatment of C1q with recombinant ADAM28 prior to addition to culture media reduced C1q-induced cell death, and knockdown of ADAM28 using siRNAs increased cell death. These data demonstrate that ADAM28 is expressed by epithelial cells of several normal organs, and suggest that ADAM28 plays a role in cell survival by suppression of C1q-induced cytotoxicity in bronchial epithelial cells. PMID:26918856

  17. The sheddase ADAM10 is a potent modulator of prion disease

    PubMed Central

    Altmeppen, Hermann C; Prox, Johannes; Krasemann, Susanne; Puig, Berta; Kruszewski, Katharina; Dohler, Frank; Bernreuther, Christian; Hoxha, Ana; Linsenmeier, Luise; Sikorska, Beata; Liberski, Pawel P; Bartsch, Udo; Saftig, Paul; Glatzel, Markus

    2015-01-01

    The prion protein (PrPC) is highly expressed in the nervous system and critically involved in prion diseases where it misfolds into pathogenic PrPSc. Moreover, it has been suggested as a receptor mediating neurotoxicity in common neurodegenerative proteinopathies such as Alzheimer's disease. PrPC is shed at the plasma membrane by the metalloprotease ADAM10, yet the impact of this on prion disease remains enigmatic. Employing conditional knockout mice, we show that depletion of ADAM10 in forebrain neurons leads to posttranslational increase of PrPC levels. Upon prion infection of these mice, clinical, biochemical, and morphological data reveal that lack of ADAM10 significantly reduces incubation times and increases PrPSc formation. In contrast, spatiotemporal analysis indicates that absence of shedding impairs spread of prion pathology. Our data support a dual role for ADAM10-mediated shedding and highlight the role of proteolytic processing in prion disease. DOI: http://dx.doi.org/10.7554/eLife.04260.001 PMID:25654651

  18. ADAM12 and PAPP-A: Candidate regulators of trophoblast invasion and first trimester markers of healthy trophoblasts.

    PubMed

    Christians, Julian K; Beristain, Alexander G

    2016-03-01

    Proper placental development and function is crucial for a healthy pregnancy, and there has been substantial research to identify markers of placental dysfunction for the early detection of pregnancy complications. Low first-trimester levels of a disintegrin and metalloproteinase 12 (ADAM12) and pregnancy-associated plasma protein-A (PAPP-A) have been consistently associated with the subsequent development of preeclampsia and fetal growth restriction. These molecules are both metalloproteinases secreted by the placenta that cleave insulin-like growth factor binding proteins (IGFBPs), although ADAM12 also has numerous other substrates. Recent work has identified ADAM12, and particularly its shorter variant, ADAM12S, as a regulator of the migration and invasion of trophoblasts into the lining of the uterus, a critical step in normal placental development. While the mechanisms underlying this regulation are not yet clear, they may involve the liberation of heparin-binding EGF-like growth factor (HB-EGF) and/or IGFs from IGFBPs. In contrast, there has been relatively little functional work examining PAPP-A or the IGFBP substrates of ADAM12 and PAPP-A. Understanding the functions of these markers and the mechanisms underlying their association with disease could improve screening strategies and enable the development of new therapeutic interventions. PMID:26417939

  19. Once a Batesian mimic, not always a Batesian mimic: mimic reverts back to ancestral phenotype when the model is absent

    PubMed Central

    Prudic, Kathleen L; Oliver, Jeffrey C

    2008-01-01

    Batesian mimics gain protection from predation through the evolution of physical similarities to a model species that possesses anti-predator defences. This protection should not be effective in the absence of the model since the predator does not identify the mimic as potentially dangerous and both the model and the mimic are highly conspicuous. Thus, Batesian mimics should probably encounter strong predation pressure outside the geographical range of the model species. There are several documented examples of Batesian mimics occurring in locations without their models, but the evolutionary responses remain largely unidentified. A mimetic species has four alternative evolutionary responses to the loss of model presence. If predation is weak, it could maintain its mimetic signal. If predation is intense, it is widely presumed the mimic will go extinct. However, the mimic could also evolve a new colour pattern to mimic another model species or it could revert back to its ancestral, less conspicuous phenotype. We used molecular phylogenetic approaches to reconstruct and test the evolution of mimicry in the North American admiral butterflies (Limenitis: Nymphalidae). We confirmed that the more cryptic white-banded form is the ancestral phenotype of North American admiral butterflies. However, one species, Limenitis arthemis, evolved the black pipevine swallowtail mimetic form but later reverted to the white-banded more cryptic ancestral form. This character reversion is strongly correlated with the geographical absence of the model species and its host plant, but not the host plant distribution of L. arthemis. Our results support the prediction that a Batesian mimic does not persist in locations without its model, but it does not go extinct either. The mimic can revert back to its ancestral, less conspicuous form and persist. PMID:18285285

  20. From Adam Swift to Adam Smith: How the "Invisible Hand" Overcomes Middle Class Hypocrisy

    ERIC Educational Resources Information Center

    Tooley, James

    2007-01-01

    This paper challenges Richard Pring's suggestion that parents using private education may be undermining the desire for social justice and equality, using recent arguments of Adam Swift as a springboard. Swift's position on the banning of private schools, which uses a Rawlsian "veil of ignorance" argument, is explored, and it is suggested that, if…

  1. Cognitive impairments may mimic delusions.

    PubMed

    Eterović, Marija; Kozarić-Kovačić, Dragica

    2015-12-01

    Delusions are often recognized as key to the concept of psychosis. What is delusion is one of the basic questions of psychopathology. The common denominator of definitions of delusions is the divergence between the strong conviction in the delusional belief and superior evidences to the contrary which are continually ignored. An implicit, sustainably unspoken assumption is that the person with delusional belief has cognitive capacities to process the (counter-)arguments relevant to their delusion. However, individual's cognitive capacities are not being emphasized when delusions are evaluated. Moreover, the impact of cognitive decline on formation of delusions is neglected, both in theory and practice. We elaborate that cognitive deficits may facilitate, oppose, or mimic delusions. We focus on the last, which can lead to diagnosing as delusion what could be explained by cognitive decline and better called pseudo-delusion. The risk is significant when cognition is impaired, as in demented people; an issue which has not yet been debated. True delusions are incompatible with person's cognitive capacities, i.e., if we take into account person's cognitive status, we still cannot understand how the person holds the strange belief with an extraordinary conviction. Pseudo-delusions would be beliefs, thoughts or judgments that at first seem delusional (they are false, subculturally atypical beliefs that are strongly maintained in the face of counterargument), but lose the essence of delusions after we take cognitive impairment into account. Pseudo-delusions could actually be explained or understood by person's cognitive impairments, they "fit into" them. The reported reality-based contents of delusions in the elderly, poor response to antipsychotics and lack of association with early or family history of psychiatric disorders could in part be accounted for by the bias of misdiagnosing the cognitive impairment as the delusion. Not recognizing that the cognitive impairment

  2. Genetic variants of Adam17 differentially regulate TGFβ signaling to modify vascular pathology in mice and humans

    PubMed Central

    Kawasaki, Kyoko; Freimuth, Julia; Meyer, Dominique S.; Lee, Marie M.; Tochimoto-Okamoto, Akiko; Benzinou, Michael; Clermont, Frederic F.; Wu, Gloria; Roy, Ritu; Letteboer, Tom G. W.; Ploos van Amstel, Johannes Kristian; Giraud, Sophie; Dupuis-Girod, Sophie; Lesca, Gaeten; Westermann, Cornelius J. J.; Coffey, Robert J.; Akhurst, Rosemary J.

    2014-01-01

    Outcome of TGFβ1 signaling is context dependent and differs between individuals due to germ-line genetic variation. To explore innate genetic variants that determine differential outcome of reduced TGFβ1 signaling, we dissected the modifier locus Tgfbm3, on mouse chromosome 12. On a NIH/OlaHsd genetic background, the Tgfbm3bC57 haplotype suppresses prenatal lethality of Tgfb1−/− embryos and enhances nuclear accumulation of mothers against decapentaplegic homolog 2 (Smad2) in embryonic cells. Amino acid polymorphisms within a disintegrin and metalloprotease 17 (Adam17) can account, at least in part, for this Tgfbm3b effect. ADAM17 is known to down-regulate Smad2 signaling by shedding the extracellular domain of TGFβRI, and we show that the C57 variant is hypomorphic for down-regulation of Smad2/3-driven transcription. Genetic variation at Tgfbm3 or pharmacological inhibition of ADAM17, modulates postnatal circulating endothelial progenitor cell (CEPC) numbers via effects on TGFβRI activity. Because CEPC numbers correlate with angiogenic potential, this suggests that variant Adam17 is an innate modifier of adult angiogenesis, acting through TGFβR1. To determine whether human ADAM17 is also polymorphic and interacts with TGFβ signaling in human vascular disease, we investigated hereditary hemorrhagic telangiectasia (HHT), which is caused by mutations in TGFβ/bone morphogenetic protein receptor genes, ENG, encoding endoglin (HHT1), or ACVRL1 encoding ALK1 (HHT2), and considered a disease of excessive abnormal angiogenesis. HHT manifests highly variable incidence and severity of clinical features, ranging from small mucocutaneous telangiectases to life-threatening visceral and cerebral arteriovenous malformations (AVMs). We show that ADAM17 SNPs associate with the presence of pulmonary AVM in HHT1 but not HHT2, indicating genetic variation in ADAM17 can potentiate a TGFβ-regulated vascular disease. PMID:24812125

  3. Gene-specific cell labeling using MiMIC transposons

    PubMed Central

    Gnerer, Joshua P.; Venken, Koen J. T.; Dierick, Herman A.

    2015-01-01

    Binary expression systems such as GAL4/UAS, LexA/LexAop and QF/QUAS have greatly enhanced the power of Drosophila as a model organism by allowing spatio-temporal manipulation of gene function as well as cell and neural circuit function. Tissue-specific expression of these heterologous transcription factors relies on random transposon integration near enhancers or promoters that drive the binary transcription factor embedded in the transposon. Alternatively, gene-specific promoter elements are directly fused to the binary factor within the transposon followed by random or site-specific integration. However, such insertions do not consistently recapitulate endogenous expression. We used Minos-Mediated Integration Cassette (MiMIC) transposons to convert host loci into reliable gene-specific binary effectors. MiMIC transposons allow recombinase-mediated cassette exchange to modify the transposon content. We developed novel exchange cassettes to convert coding intronic MiMIC insertions into gene-specific binary factor protein-traps. In addition, we expanded the set of binary factor exchange cassettes available for non-coding intronic MiMIC insertions. We show that binary factor conversions of different insertions in the same locus have indistinguishable expression patterns, suggesting that they reliably reflect endogenous gene expression. We show the efficacy and broad applicability of these new tools by dissecting the cellular expression patterns of the Drosophila serotonin receptor gene family. PMID:25712101

  4. "Adam of the Road" by Elizabeth Janet Gray. Literature Unit.

    ERIC Educational Resources Information Center

    Robbins, Mari Lu

    Intended as an aid to classroom teachers, this 48-page handbook presents a literature unit based on the children's book, "Adam of the Road" by Elizabeth Janet Gray. It begins with sample lesson plans, pre-reading activities, author information, a book summary, and vocabulary lists and suggested vocabulary activities. Next, chapters of "Adam of the…

  5. ADAM8 as a drug target in Pancreatic Cancer

    PubMed Central

    Schlomann, Uwe; Koller, Garrit; Conrad, Catharina; Ferdous, Taheera; Golfi, Panagiota; Garcia, Adolfo Molejon; Höfling, Sabrina; Parsons, Maddy; Costa, Patricia; Soper, Robin; Bossard, Maud; Hagemann, Thorsten; Roshani, Rozita; Sewald, Norbert; Ketchem, Randal R.; Moss, Marcia L.; Rasmussen, Fred H.; Miller, Miles A.; Lauffenburger, Douglas A.; Tuveson, David A.; Nimsky, Christopher; Bartsch, Jörg W.

    2016-01-01

    Pancreatic ductal adenocarcinoma (PDAC) has a grim prognosis with less than 5% survivors after 5 years. High expression levels of ADAM8, a metalloprotease-disintegrin, are correlated with poor clinical outcome. We show that ADAM8 expression is associated with increased migration and invasiveness of PDAC cells caused by activation of ERK 1/2 and higher MMP activities. For biological function, ADAM8 requires multimerisation and associates with β1-integrin on the cell surface. A peptidomimetic ADAM8 inhibitor, BK-1361, designed by structural modelling of the disintegrin domain, prevents ADAM8 multimerisation. In PDAC cells, BK-1361 affects ADAM8 function leading to reduced invasiveness, and less ERK 1/2 and MMP activation. BK-1361 application in mice decreased tumour burden and metastasis of implanted pancreatic tumour cells and provides improved metrics of clinical symptoms and survival in a KrasG12D-driven mouse model of PDAC. Thus, our data integrate ADAM8 in pancreatic cancer signalling and validate ADAM8 as a target for PDAC therapy. PMID:25629724

  6. The Failed Educations of John Stuart Mill and Henry Adams.

    ERIC Educational Resources Information Center

    Crossley, Robert

    1979-01-01

    Analyzes and contrasts Mill's "Autobiography" and Adams'"The Education of Henry Adams" in order to present two approaches to the nature of education and of failure. Maintains that their perspectives may serve as catalysts and cautions for contemporary theories of education and its utility and relevance. (CAM)

  7. SOX10 mutations mimic isolated hearing loss.

    PubMed

    Pingault, V; Faubert, E; Baral, V; Gherbi, S; Loundon, N; Couloigner, V; Denoyelle, F; Noël-Pétroff, N; Ducou Le Pointe, H; Elmaleh-Bergès, M; Bondurand, N; Marlin, S

    2015-10-01

    Ninety genes have been identified to date that are involved in non-syndromic hearing loss, and more than 300 different forms of syndromic hearing impairment have been described. Mutations in SOX10, one of the genes contributing to syndromic hearing loss, induce a large range of phenotypes, including several subtypes of Waardenburg syndrome and Kallmann syndrome with deafness. In addition, rare mutations have been identified in patients with isolated signs of these diseases. We used the recent characterization of temporal bone imaging aspects in patients with SOX10 mutations to identify possible patients with isolated hearing loss due to SOX10 mutation. We selected 21 patients with isolated deafness and temporal bone morphological defects for mutational screening. We identified two SOX10 mutations and found that both resulted in a non-functional protein in vitro. Re-evaluation of the two affected patients showed that both had previously undiagnosed olfactory defects. Diagnosis of anosmia or hyposmia in young children is challenging, and particularly in the absence of magnetic resonance imaging (MRI), SOX10 mutations can mimic non-syndromic hearing impairment. MRI should complete temporal bones computed tomographic scan in the management of congenital deafness as it can detect brain anomalies, cochlear nerve defects, and olfactory bulb malformation in addition to inner ear malformations. PMID:25256313

  8. ADAM8 in asthma. Friend or foe to airway inflammation?

    PubMed

    Chen, Jun; Jiang, Xuemei; Duan, Yiyuan; Long, Jiaoyue; Bartsch, Jörg W; Deng, Linhong

    2013-12-01

    Airway inflammation has been suggested as the pathological basis in asthma pathogenesis. Recruitment of leukocytes from the vasculature into airway sites is essential for induction of airway inflammation, a process thought to be mediated by a disintegrin and metalloprotease 8 (ADAM8). However, there is an apparent controversy about whether ADAM8 helps or hampers transmigration of leukocytes through endothelium in airway inflammation of asthma. This review outlines the current contradictory concepts concerning the role of ADAM8 in airway inflammation, particularly focusing on the recruitment of leukocytes during asthma, and attempts to bridge the existing experimental data on the basis of the functional analysis of different domains of ADAM8 and their endogenous processing in vivo. We suggest a possible hypothesis for the specific mechanism by which ADAM8 regulates the transmigration of leukocytes to explain the disparity existing in current studies, and we also raise some questions that require future investigations. PMID:23837412

  9. Targeting ADAM-mediated ligand cleavage to inhibit HER3 and EGFR pathways in non-small cell lung cancer

    PubMed Central

    Zhou, Bin-Bing S.; Peyton, Michael; He, Biao; Liu, Changnian; Girard, Luc; Caudler, Eian; Lo, Yvonne; Baribaud, Frederic; Mikami, Iwao; Reguart, Noemi; Yang, Gengjie; Li, Yanlong; Yao, Wenqing; Vaddi, Kris; Gazdar, Adi F.; Friedman, Steven M.; Jablons, David M.; Newton, Robert C.; Fridman, Jordan S.; Minna, John D.; Scherle, Peggy A.

    2015-01-01

    Summary We describe here the existence of a heregulin-HER3 autocrine loop, and the contribution of heregulin-dependent, HER2-mediated HER3 activation to gefitinib insensitivity in non-small cell lung cancer (NSCLC). ADAM17 protein, a major ErbB ligand sheddase, is upregulated in NSCLC and is required not only for heregulin-dependent HER3 signaling, but also for EGFR ligand-dependent signaling in NSCLC cell lines. A selective ADAM inhibitor, INCB3619, prevents the processing and activation of multiple ErbB ligands, including heregulin. In addition, INCB3619 inhibits gefitinib-resistant HER3 signaling and enhances gefitinib inhibition of EGFR signaling in NSCLC. These results show that ADAM inhibition affects multiple ErbB pathways in NSCLC and thus offers an excellent opportunity for pharmacological intervention, either alone or in combination with other drugs. PMID:16843264

  10. Fibronectin fragments and the cleaving enzyme ADAM-8 in the degenerative human intervertebral disc

    PubMed Central

    Ruel, Nancy; Markova, Dessislava Z.; Adams, Sherrill L.; Scanzello, Carla; Cs-Szabo, Gabriella; Gerard, David; Shi, Peng; Anderson, D. Greg; Zack, Marc; An, Howard S.; Chen, Di; Zhang, Yejia

    2014-01-01

    Study Design The presence fibronectin fragments (FN-fs) and the cleaving enzyme, A disintegrin and metalloproteinase domain-containing protein (ADAM)-8 were examined in human intervertebral disc (IVD) tissue in vitro. Objective To investigate the presence and pathophysiological concentration of FN-fs and their cleaving enzyme, ADAM-8, in the human IVD tissue. Summary of Background Data The 29kDa FN-f has been shown to result in extracellular matrix loss in rabbit IVDs. However, the concentration of this biologically active fragment in the degenerative human IVD tissue has previously not been determined. Further, it is critical to identify the enzyme(s) responsible for FN cleavage in the IVD. Methods Human degenerative IVD tissues were removed during spinal surgery. A normal appearing young adult and an infant human cadaveric sample were obtained as controls. Soluble proteins were extracted, and analyzed by Western blotting utilizing antibodies specific for the human FN neoepitope VRAA271. A purified 29 kDa FN-f was used to allow estimation of the concentration of FN-fs in the tissues. ADAM-8, a FN-cleaving enzyme, was analyzed by Western blotting and immunostaining. Results All adult IVD tissues contain many FN-f species, but these species were absent from the infant disc tissue. Moderately degenerative discs contained the highest amount of FN-fs; the concentration was estimated to be in the nanomolar range per gram of tissue. ADAM-8, known to cleave FN resulting in the VRAA271 neoepitope, was present in the human disc. ADAM-8 primarily localized in the pericellular matrix of the nucleus pulposus (NP) tissue, as determined by immunostaining. Conclusion This is the first report that N-terminal FN-fs are consistently present in IVD tissues from adult subjects. The pathophysiological concentration of these fragments is estimated to be at nanomolar range per gram of IVD tissue. Further, ADAM-8, known to cleave FN, is present at the pericellular matrix of disc cells

  11. EphrinB2 affects apical constriction in Xenopus embryos and is regulated by ADAM10 and flotillin-1

    NASA Astrophysics Data System (ADS)

    Ji, Yon Ju; Hwang, Yoo-Seok; Mood, Kathleen; Cho, Hee-Jun; Lee, Hyun-Shik; Winterbottom, Emily; Cousin, Hélène; Daar, Ira O.

    2014-03-01

    The Eph/ephrin signalling pathways have a critical function in cell adhesion and repulsion, and thus play key roles in various morphogenetic events during development. Here we show that a decrease in ephrinB2 protein causes neural tube closure defects during Xenopus laevis embryogenesis. Such a decrease in ephrinB2 protein levels is observed on the loss of flotillin-1 scaffold protein, a newly identified ephrinB2-binding partner. This dramatic decline in ephrinB2 protein levels on the absence of flotillin-1 expression is specific, and is partly the result of an increased susceptibility to cleavage by the metalloprotease ADAM10. These findings indicate that flotillin-1 regulates ephrinB2 protein levels through ADAM10, and is required for appropriate neural tube morphogenesis in the Xenopus embryo.

  12. Enzyme mimics: Halogen and chalcogen team up

    NASA Astrophysics Data System (ADS)

    Metrangolo, Pierangelo; Resnati, Giuseppe

    2012-06-01

    The behaviour of di-selenol enzyme mimics indicates that a halogen bond between selenium and iodine, and a chalcogen interaction between the two selenium atoms, play an important role in the activation of thyroid hormones.

  13. Luhmann Receives 2007 John Adam Fleming Medal

    NASA Astrophysics Data System (ADS)

    Russell, Christopher T.; Luhmann, Janet G.

    2008-02-01

    This year's John Adam Fleming medalist quickly established a reputation as an innovative and productive scientist with a broad range of interests. She made early and seminal contributions to aeronomy, cosmic rays, and magnetospheric and planetary physics. She contributed importantly to the understanding of the interaction of the solar wind with the atmosphere and magnetic fields of Mercury, Venus, Earth, and Mars. She has examined the behavior of planetary rings, the interaction of interstellar neutrals with heliospheric plasmas, as well as the interaction of planetary neutrals with the heliosphere. She has led in the study of the interaction of the moon Titan with the Saturn magnetosphere, and most recently she developed a vigorous solar physics effort, leading the implementation of the IMPACT particle and field package on the twin STEREO mission, now entering its second year of successful operation.

  14. John Adams and CERN: Personal Recollections

    NASA Astrophysics Data System (ADS)

    Brianti, G.; Plane, D. E.

    2014-02-01

    By any standards, John Adams had a most remarkable career. He was involved in three important, emerging technologies, radar, particle accelerators and controlled fusion, and had an outstanding impact on the last two. Without a university education, he attained hierarchical positions of the highest level in prestigious national and international organizations. This article covers the CERN part of his career, by offering some personal insights into the different facets of his contributions to major accelerator projects, from the first strong-focusing synchrotron, the PS, to the SPS and its conversion to a proton--antiproton collider. In particular, it outlines his abilities as a leader of an international collaboration, which has served as an example for international initiatives in other disciplines.

  15. Histone mimics: digging down under

    PubMed Central

    LIN, Yiwei; ZHOU, Binhua P.

    2014-01-01

    Epigenetic deregulation is intimately associated with the development of human diseases. Intensive studies are currently underway to clarify the mechanism for the sake of achieving ideal diagnostic and therapeutic goals. It has been demonstrated that enzymes with histone-modifying activities can also target non-histone proteins, with the underlying mechanism remaining obscure. In this review, we focus on a novel histone mimicry strategy that may be wildly adapted during the non-histone substrate recognition process. Its potential clinical implications are also discussed. PMID:24966873

  16. Tetraspanin CD9 modulates ADAM17-mediated shedding of LR11 in leukocytes.

    PubMed

    Tsukamoto, Shokichi; Takeuchi, Masahiro; Kawaguchi, Takeharu; Togasaki, Emi; Yamazaki, Atsuko; Sugita, Yasumasa; Muto, Tomoya; Sakai, Shio; Takeda, Yusuke; Ohwada, Chikako; Sakaida, Emiko; Shimizu, Naomi; Nishii, Keigo; Jiang, Meizi; Yokote, Koutaro; Bujo, Hideaki; Nakaseko, Chiaki

    2014-01-01

    LR11, also known as SorLA or SORL1, is a type-I membrane protein from which a large extracellular part, soluble LR11 (sLR11), is released by proteolytic shedding on cleavage with a disintegrin and metalloproteinase 17 (ADAM17). A shedding mechanism is presumed to have a key role in the functions of LR11, but the evidence for this has not yet been demonstrated. Tetraspanin CD9 has been recently shown to regulate the ADAM17-mediated shedding of tumor necrosis factor-α and intercellular adhesion molecule-1 on the cell surface. Here, we investigated the role of CD9 on the shedding of LR11 in leukocytes. LR11 was not expressed in THP-1 monocytes, but it was expressed and released in phorbol 12-myristate 13-acetate (PMA)-induced THP-1 macrophages (PMA/THP-1). Confocal microscopy showed colocalization of LR11 and CD9 proteins on the cell surface of PMA/THP-1. Ectopic neo-expression of CD9 in CCRF-SB cells, which are LR11-positive and CD9-negative, reduced the amount of sLR11 released from the cells. In contrast, incubation of LR11-transfected THP-1 cells with neutralizing anti-CD9 monoclonal antibodies increased the amount of sLR11 released from the cells. Likewise, the PMA-stimulated release of sLR11 increased in THP-1 cells transfected with CD9-targeted shRNAs, which was negated by treatment with the metalloproteinase inhibitor GM6001. These results suggest that the tetraspanin CD9 modulates the ADAM17-mediated shedding of LR11 in various leukemia cell lines and that the association between LR11 and CD9 on the cell surface has an important role in the ADAM17-mediated shedding mechanism. PMID:24699135

  17. INSULIN INDUCED EPIDERMAL GROWTH FACTOR ACTIVATION IN VASCULAR SMOOTH MUSCLE CELLS IS ADAM-DEPENDENT

    PubMed Central

    Roztocil, Elisa; Nicholl, Suzanne M.; Davies, Mark G.

    2008-01-01

    Background With the rise in metabolic syndrome, understanding the role of insulin signaling within the cells of vasculature has become more important but yet remains poorly defined. The study examines the role of insulin actions on a pivotal cross-talk receptor, Epidermal Growth Factor Receptor (EGFR). EGFR is transactivated by both G-protein-coupled receptors and receptor linked tyrosine kinases and is key to many of their responses. Objective To determine the pathway of EGFR transactivation by insulin in human coronary smooth muscle cells (VSMC) Methods VSMC were cultured in vitro. Assays of EGFR phosphorylation were examined in response to insulin in the presence and absence of the plasmin inhibitors (e-aminocaproic acid and aprotinin) matrix metalloprotease (MMP) inhibitor GM6001, the ADAM (A Disintegrin And Metalloproteinase Domain) inhibitors TAPI-0 and TAPI-1, Heparin binding epidermal growth factor (HB-EGF) inhibitor, CRM197, HB-EGF inhibitory antibodies, EGF inhibitory antibodies and the EGFR inhibitor AG1478. Results Insulin induced time-dependent EGFR phosphorylation, which was inhibited by AG1478 in a concentration dependent manner. Application of the plasmin inhibitors did not block the response. EGFR phosphorylation by insulin was blocked by inhibition of MMP activity and the ligand HB-EGF. The presence of the ADAM inhibitors, TAPI-0 and TAPI-1 significantly decreased EGFR activation. EGFR phosphorylation by EGF was not interrupted by inhibition of plasmin, MMPs TAPIs, or HB-EGF. Direct blockade of the EGFR prevented activation by both insulin and EGF. Conclusion Insulin can induce transactivation of EGFR by an ADAM-mediated, HB-EGF dependent process. This is the first description of crosstalk via ADAM between insulin and EGFR in vascular SMC. Targeting a pivotal cross-talk receptor such as EGFR, which can be transactivated by both G-protein-coupled receptors and receptor tyrosine kinases is an attractive molecular target. PMID:18656632

  18. Dysregulated ADAM10-Mediated Processing of APP during a Critical Time Window Leads to Synaptic Deficits in Fragile X Syndrome.

    PubMed

    Pasciuto, Emanuela; Ahmed, Tariq; Wahle, Tina; Gardoni, Fabrizio; D'Andrea, Laura; Pacini, Laura; Jacquemont, Sébastien; Tassone, Flora; Balschun, Detlef; Dotti, Carlos G; Callaerts-Vegh, Zsuzsanna; D'Hooge, Rudi; Müller, Ulrike C; Di Luca, Monica; De Strooper, Bart; Bagni, Claudia

    2015-07-15

    The Fragile X mental retardation protein (FMRP) regulates neuronal RNA metabolism, and its absence or mutations leads to the Fragile X syndrome (FXS). The β-amyloid precursor protein (APP) is involved in Alzheimer's disease, plays a role in synapse formation, and is upregulated in intellectual disabilities. Here, we show that during mouse synaptogenesis and in human FXS fibroblasts, a dual dysregulation of APP and the α-secretase ADAM10 leads to the production of an excess of soluble APPα (sAPPα). In FXS, sAPPα signals through the metabotropic receptor that, activating the MAP kinase pathway, leads to synaptic and behavioral deficits. Modulation of ADAM10 activity in FXS reduces sAPPα levels, restoring translational control, synaptic morphology, and behavioral plasticity. Thus, proper control of ADAM10-mediated APP processing during a specific developmental postnatal stage is crucial for healthy spine formation and function(s). Downregulation of ADAM10 activity at synapses may be an effective strategy for ameliorating FXS phenotypes. PMID:26182420

  19. ADAM9 Expression Is Associate with Glioma Tumor Grade and Histological Type, and Acts as a Prognostic Factor in Lower-Grade Gliomas.

    PubMed

    Fan, Xing; Wang, Yongheng; Zhang, Chuanbao; Liu, Li; Yang, Sen; Wang, Yinyan; Liu, Xing; Qian, Zenghui; Fang, Shengyu; Qiao, Hui; Jiang, Tao

    2016-01-01

    The A disintegrin and metalloproteinase 9 (ADAM9) protein has been suggested to promote carcinoma invasion and appears to be overexpressed in various human cancers. However, its role has rarely been investigated in gliomas and, thus, in the current study we have evaluated ADAM9 expression in gliomas and examined the relevance of its expression in the prognosis of glioma patients. Clinical characteristics, RNA sequence data, and the case follow-ups were reviewed for 303 patients who had histological, confirmed gliomas. The ADAM9 expression between lower-grade glioma (LGG) and glioblastoma (GBM) patients was compared and its association with progression-free survival (PFS) and overall survival (OS) was assessed to evaluate its prognostic value. Our data suggested that GBM patients had significantly higher expression of ADAM9 in comparison to LGG patients (p < 0.001, t-test). In addition, among the LGG patients, aggressive astrocytic tumors displayed significantly higher ADAM9 expression than oligodendroglial tumors (p < 0.001, t-test). Moreover, high ADAM9 expression also correlated with poor clinical outcome (p < 0.001 and p < 0.001, log-rank test, for PFS and OS, respectively) in LGG patients. Further, multivariate analysis suggested ADAM9 expression to be an independent marker of poor survival (p = 0.002 and p = 0.003, for PFS and OS, respectively). These results suggest that ADAM9 mRNA expression is associated with tumor grade and histological type in gliomas and can serve as an independent prognostic factor, specifically in LGG patients. PMID:27571068

  20. A Photoisomerizing Rhodopsin Mimic Observed at Atomic Resolution.

    PubMed

    Nosrati, Meisam; Berbasova, Tetyana; Vasileiou, Chrysoula; Borhan, Babak; Geiger, James H

    2016-07-20

    The members of the rhodopsin family of proteins are involved in many essential light-dependent processes in biology. Specific photoisomerization of the protein-bound retinylidene PSB at a specified wavelength range of light is at the heart of all of these systems. Nonetheless, it has been difficult to reproduce in an engineered system. We have developed rhodopsin mimics, using intracellular lipid binding protein family members as scaffolds, to study fundamental aspects of protein/chromophore interactions. Herein we describe a system that specifically isomerizes the retinylidene protonated Schiff base both thermally and photochemically. This isomerization has been characterized at atomic resolution by quantitatively interconverting the isomers in the crystal both thermally and photochemically. This event is accompanied by a large pKa change of the imine similar to the pKa changes observed in bacteriorhodopsin and visual opsins during isomerization. PMID:27310917

  1. Human NOTCH2 Is Resistant to Ligand-independent Activation by Metalloprotease Adam17*

    PubMed Central

    Habets, Roger A. J.; Groot, Arjan J.; Yahyanejad, Sanaz; Tiyanont, Kittichoat; Blacklow, Stephen C.; Vooijs, Marc

    2015-01-01

    Cell surface receptors of the NOTCH family of proteins are activated by ligand induced intramembrane proteolysis. Unfolding of the extracellular negative regulatory region (NRR), enabling successive proteolysis by the enzymes Adam10 and γ-secretase, is rate-limiting in NOTCH activation. Mutations in the NOTCH1 NRR are associated with ligand-independent activation and frequently found in human T-cell malignancies. In mammals four NOTCH receptors and five Delta/Jagged ligands exist, but mutations in the NRR are only rarely reported for receptors other than NOTCH1. Using biochemical and functional assays, we compared the molecular mechanisms of ligand-independent signaling in NOTCH1 and the highly related NOTCH2 receptor. Both murine Notch1 and Notch2 require the metalloprotease protease Adam17, but not Adam10 during ligand-independent activation. Interestingly, the human NOTCH2 receptor is resistant to ligand-independent activation compared with its human homologs or murine orthologs. Taken together, our data reveal subtle but functionally important differences for the NRR among NOTCH paralogs and homologs. PMID:25918160

  2. Endostatin and irradiation modifies the activity of ADAM10 and neprilysin in breast cancer cells.

    PubMed

    Aydemir, Esra Arslan; Şimşek, Ece; Korcum, Aylin Fidan; Fişkin, Kayahan

    2016-09-01

    Angiogenesis, the formation of new blood vessels, is regarded as a key cancer cell property. Endostatin (ES) is a potential antiangiogenic agent and it may be useful when implemented in combination with other cancer therapeutic strategies. The present study investigated the in vitro effects of ES, radiotherapy (RT) or combination therapy (ES + RT) on two important proteases, a disintegrin and metalloproteinase domain‑containing protein 10 (ADAM10) and neprilysin (NEP) in 4T1 mouse breast cancer cells and the more metastatic phenotype of 4THMpc breast cancer cells. 4T1 and 4THMpc cells were treated with recombinant murine ES (4 µg/ml) alone, RT (45 Gy) alone or with ES + RT. ADAM10 enzyme activity was determined using a tumor necrosis factor‑α converting enzyme (α‑secretase) activity assay kit, and NEP enzyme activity was measured with a fluorometric assay based on the generation of free dansyl‑D‑Ala‑Gly from N-dansyl-Ala-Gly-D-nitro-Phe-Gly, the substrate of NEP. Western blotting analysis was performed to determine whether the altered enzyme activity levels of the two cell lines occurred due to changes in expression level. These data indicate that ES independently potentiates the activity of ADAM10 and NEP enzymes in 4T1 and 4THMpc breast cancer cells. PMID:27430992

  3. An evolutionary recent neuroepithelial cell adhesion function of huntingtin implicates ADAM10-Ncadherin.

    PubMed

    Lo Sardo, Valentina; Zuccato, Chiara; Gaudenzi, Germano; Vitali, Barbara; Ramos, Catarina; Tartari, Marzia; Myre, Michael A; Walker, James A; Pistocchi, Anna; Conti, Luciano; Valenza, Marta; Drung, Binia; Schmidt, Boris; Gusella, James; Zeitlin, Scott; Cotelli, Franco; Cattaneo, Elena

    2012-05-01

    The Huntington's disease gene product, huntingtin, is indispensable for neural tube formation, but its role is obscure. We studied neurulation in htt-null embryonic stem cells and htt-morpholino zebrafish embryos and found a previously unknown, evolutionarily recent function for this ancient protein. We found that htt was essential for homotypic interactions between neuroepithelial cells; it permitted neurulation and rosette formation by regulating metalloprotease ADAM10 activity and Ncadherin cleavage. This function was embedded in the N terminus of htt and was phenocopied by treatment of htt knockdown zebrafish with an ADAM10 inhibitor. Notably, in htt-null cells, reversion of the rosetteless phenotype occurred only with expression of evolutionarily recent htt heterologues from deuterostome organisms. Conversely, all of the heterologues that we tested, including htt from Drosophila melanogaster and Dictyostelium discoideum, exhibited anti-apoptotic activity. Thus, anti-apoptosis may have been one of htt’s ancestral function(s), but, in deuterostomes, htt evolved to acquire a unique regulatory activity for controlling neural adhesion via ADAM10-Ncadherin, with implications for brain evolution and development. PMID:22466506

  4. iRHOM2-dependent regulation of ADAM17 in cutaneous disease and epidermal barrier function.

    PubMed

    Brooke, Matthew A; Etheridge, Sarah L; Kaplan, Nihal; Simpson, Charlotte; O'Toole, Edel A; Ishida-Yamamoto, Akemi; Marches, Olivier; Getsios, Spiro; Kelsell, David P

    2014-08-01

    iRHOM2 is a highly conserved, catalytically inactive member of the Rhomboid family, which has recently been shown to regulate the maturation of the multi-substrate ectodomain sheddase enzyme ADAM17 (TACE) in macrophages. Dominant iRHOM2 mutations are the cause of the inherited cutaneous and oesophageal cancer-susceptibility syndrome tylosis with oesophageal cancer (TOC), suggesting a role for this protein in epithelial cells. Here, using tissues derived from TOC patients, we demonstrate that TOC-associated mutations in iRHOM2 cause an increase in the maturation and activity of ADAM17 in epidermal keratinocytes, resulting in significantly upregulated shedding of ADAM17 substrates, including EGF-family growth factors and pro-inflammatory cytokines. This activity is accompanied by increased EGFR activity, increased desmosome processing and the presence of immature epidermal desmosomes, upregulated epidermal transglutaminase activity and heightened resistance to Staphylococcal infection in TOC keratinocytes. Many of these features are consistent with the presence of a constitutive wound-healing-like phenotype in TOC epidermis, which may shed light on a novel pathway in skin repair, regeneration and inflammation. PMID:24643277

  5. 7. Historic American Buildings Survey, C. C. Adams, Photographer August ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Historic American Buildings Survey, C. C. Adams, Photographer August 1931, SEED PACKING ROOM, Gift of New York State Department of Education. - Shaker North Family Washhouse (first), Shaker Road, New Lebanon, Columbia County, NY

  6. Antibacterial Peptidomimetics: Polymeric Synthetic Mimics of Antimicrobial Peptides

    NASA Astrophysics Data System (ADS)

    Lienkamp, Karen; Madkour, Ahmad E.; Tew, Gregory N.

    Polymer-based peptidomimetics, or proteinomimetics, are a relatively young and dynamic field of research. The ability to successfully mimic the biochemical activity of antimicrobial peptides (AMPs) has been demonstrated by several groups. This has been accomplished by careful tuning of the molecule's hydrophobicity and charge density. At the same time, many important questions remain to be answered, including the role of backbone rigidity, details of membrane insertion, and the role of curvature in the self-assemblies between these novel peptidemimetics and phospholipids. As the biological properties of polymeric synthetic mimics of AMPs (SMAMPs) result from the interplay of many parameters, it is not yet possible to predict the exact properties of such molecules from their mere chemical structure. However, as demonstrated here, the effect of certain design features such as charge and hydrophobicity on the properties across a polymer series is understood. Compared to the mechanistic specifics that are known about the interactions of AMPs or small antibacterial molecules with membranes and cells, relatively little is known concerning the interaction of polymeric SMAMPs with membranes. Beyond SMAMPs, numerous opportunities exist and protein transduction domain mimics are an active area of research in the Tew laboratory. These two examples, one quite new and the other studied for almost a decade, demonstrate that it is possible to teach synthetic polymers to behave like peptides, despite their lack of sequence specificity and secondary structure.

  7. The Wnt receptor Frizzled-4 modulates ADAM13 metalloprotease activity

    PubMed Central

    Abbruzzese, Genevieve; Gorny, Anne-Kathrin; Kaufmann, Lilian T.; Cousin, Hélène; Kleino, Iivari; Steinbeisser, Herbert; Alfandari, Dominique

    2015-01-01

    ABSTRACT Cranial neural crest (CNC) cells are a transient population of stem cells that originate at the border of the neural plate and the epidermis, and migrate ventrally to contribute to most of the facial structures including bones, cartilage, muscles and ganglia. ADAM13 is a cell surface metalloprotease that is essential for CNC cell migration. Here, we show in Xenopus laevis embryos that the Wnt receptor Fz4 binds to the cysteine-rich domain of ADAM13 and negatively regulates its proteolytic activity in vivo. Gain of Fz4 function inhibits CNC cell migration and can be rescued by gain of ADAM13 function. Loss of Fz4 function also inhibits CNC cell migration and induces a reduction of mature ADAM13, together with an increase in the ADAM13 cytoplasmic fragment that is known to translocate into the nucleus to regulate gene expression. We propose that Fz4 associates with ADAM13 during its transport to the plasma membrane to regulate its proteolytic activity. PMID:25616895

  8. SOX10 expression distinguishes desmoplastic melanoma from its histologic mimics.

    PubMed

    Palla, Beth; Su, Albert; Binder, Scott; Dry, Sarah

    2013-07-01

    Desmoplastic melanoma (DM) presents diagnostic challenges due to histologic mimics and limited immunohistochemical staining. Although S100 usually stains DM, other melanoma markers (HMB-45 and Melan-A) are often negative. Dermal/subcutaneous mimics of DM [spindle cell/poorly differentiated squamous cell carcinoma, atypical fibroxanthoma (AFX), and sarcoma] show negative or unreliable immunohistochemical staining. Recently, SOX10 expression has been shown to be a sensitive and specific marker of DM. However, there are no published studies comparing the sensitivity and specificity of SOX10 for DM compared with its most common histologic mimics of the dermis/subcutis. We examined 76 cases, including DM (n = 15), spindle cell/poorly differentiated carcinoma (n = 18), AFX (n = 13), sarcoma with spindled morphology (n = 20), and malignant peripheral nerve sheath tumor (MPNST) (n = 10). Most (75%, 15/20) of sarcomas were centered in the dermis/subcutis and included sarcoma not otherwise specified, DFSP with sarcomatous transformation and myxofibrosarcoma. SOX10 was diffusely positive in 100% (15/15) of DMs and showed focal staining in 30% (3/10) of MPNSTs. All other tumors were negative for SOX10 [0% (0/18) of carcinomas, 0% (0/13) of AFXs, 0% (0/20) of sarcomas]. In conclusion, SOX10 is a highly useful marker to confirm the diagnosis of DM. In our study, SOX10 showed 100% sensitivity for DM and SOX10 was negative in all histologic mimics of the dermis/subcutis, including spindle cell carcinoma, AFX and sarcomas. Similar to S-100 protein, some MPNSTs show scattered positivity but did not show diffuse positivity seen in DM. PMID:23291581

  9. Adam Politzer-Father of Modern Otology.

    PubMed

    Dhungat, J V Pai; Gore, Geeta

    2015-09-01

    Adam Politzer (1835-1920) was born in Alberti near the city of Budapest in Hungary. He studied medicine at the University of Vienna and obtained his Doctorate degree in 1859. Some of his teachers belonged to the famous second "Vienna School" such as Joseph Skoda, Karl Rokitansky, Von Hebra, Josef Hyrtil, Johann Von Oppolzer and famous physiologist Carl Ludwig -who took special interest in him and was influential in his subsequent career. Politzer showed unusual interest in diseases of the ear and started to work in Carl Ludwig's laboratory. His interest at that time was mainly the physics of the auditory system. He studied the innervations of the intrinsic muscles of the ear There he was the first to demonstrate that the innervations of the tensor tympani muscle was by trigeminal nerve and that of the stapedial muscle was by facial nerve. He studied the air movement in the Eustachian tube and variation of air pressure in the tympanic cavity by connecting two manometers- one placed in the external auditory canal meatus, and another in the pharynx. He showed valve near the opening into the middle ear which controls the process. It is usually closed to keep the bacteria and other things away from the mouth and nose. PMID:27608882

  10. Synthetic protocells to mimic and test cell function.

    PubMed

    Xu, Jian; Sigworth, Fred J; LaVan, David A

    2010-01-01

    Synthetic protocells provide a new means to probe, mimic and deconstruct cell behavior; they are a powerful tool to quantify cell behavior and a useful platform to explore nanomedicine. Protocells are not simple particles; they mimic cell design and typically consist of a stabilized lipid bilayer with membrane proteins. With a finite number of well characterized components, protocells can be designed to maximize useful outputs. Energy conversion in cells is an intriguing output; many natural cells convert transmembrane ion gradients into electricity by membrane-protein regulated ion transport. Here, a synthetic cell system comprising two droplets separated by a lipid bilayer is described that functions as a biological battery. The factors that affect its electrogenic performance are explained and predicted by coupling equations of the electrodes, transport proteins and membrane behavior. We show that the output of such biological batteries can reach an energy density of 6.9 x 10(6) J m(-3), which is approximately 5% of the volumetric energy density of a lead-acid battery. The configuration with maximum power density has an energy conversion efficiency of 10%. PMID:20217710

  11. Synthetic Protocells to Mimic and Test Cell Function

    PubMed Central

    Xu, Jian; Sigworth, Fred J.

    2010-01-01

    Synthetic protocells provide a new means to probe, mimic and deconstruct cell behavior; they are a powerful tool to quantify cell behavior and a useful platform to explore nanomedicine. Protocells are not simple particles; they mimic cell design and typically consist of a stabilized lipid bilayer with membrane proteins. With a finite number of well characterized components, protocells can be designed to maximize useful outputs. Energy conversion in cells is an intriguing output; many natural cells convert transmembrane ion gradients into electricity by membrane-protein regulated ion transport. Here, a synthetic cell system comprising two droplets separated by a lipid bilayer is described that functions as a biological battery. The factors that affect its electrogenic performance are explained and predicted by coupling equations of the electrodes, transport proteins and membrane behavior. We show that the output of such biological batteries can reach an energy density of 6.9 × 106 J·m−3 which is ≈ 5 % of the volumetric energy density of a lead-acid battery. The configuration with maximum power density has an energy conversion efficiency of 10 %. PMID:20217710

  12. MIMIC Methods for Assessing Differential Item Functioning in Polytomous Items

    ERIC Educational Resources Information Center

    Wang, Wen-Chung; Shih, Ching-Lin

    2010-01-01

    Three multiple indicators-multiple causes (MIMIC) methods, namely, the standard MIMIC method (M-ST), the MIMIC method with scale purification (M-SP), and the MIMIC method with a pure anchor (M-PA), were developed to assess differential item functioning (DIF) in polytomous items. In a series of simulations, it appeared that all three methods…

  13. Tough Ceramic Mimics Mother of Pearl

    SciTech Connect

    Ritchie, Robert

    2009-01-01

    Berkeley Lab scientists have mimicked the structure of mother of pearl to create what may well be the toughest ceramic ever produced. http://newscenter.lbl.gov/press-releases/2008/12/05/scientists-create-tough-ceramic-that-mimics-mother-of-pearl/

  14. Functional symptoms in neurology: mimics and chameleons.

    PubMed

    Stone, Jon; Reuber, Markus; Carson, Alan

    2013-04-01

    The mimics and chameleons of functional symptoms in neurology could be a whole textbook of neurology. Nevertheless, there are some recurring themes when things go wrong, notably diagnostic bias introduced by the presence or absence of psychiatric comorbidity or life events, neurological diseases that look 'weird' and lack of appreciation of the more unusual features of functional symptoms themselves. PMID:23468561

  15. Tough Ceramic Mimics Mother of Pearl

    ScienceCinema

    Ritchie, Robert

    2013-05-29

    Berkeley Lab scientists have mimicked the structure of mother of pearl to create what may well be the toughest ceramic ever produced. http://newscenter.lbl.gov/press-releases/2008/12/05/scientists-create-tough-ceramic-that-mimics-mother-of-pearl/

  16. A bivariate genome-wide association study identifies ADAM12 as a novel susceptibility gene for Kashin-Beck disease

    PubMed Central

    Hao, Jingcan; Wang, Wenyu; Wen, Yan; Xiao, Xiao; He, Awen; Guo, Xiong; Yang, Tielin; Liu, Xiaogang; Shen, Hui; Chen, Xiangding; Tian, Qing; Deng, Hong-Wen; Zhang, Feng

    2016-01-01

    Kashin-Beck disease (KBD) is a chronic osteoarthropathy, which manifests as joint deformities and growth retardation. Only a few genetic studies of growth retardation associated with the KBD have been carried out by now. In this study, we conducted a two-stage bivariate genome-wide association study (BGWAS) of the KBD using joint deformities and body height as study phenotypes, totally involving 2,417 study subjects. Articular cartilage specimens from 8 subjects were collected for immunohistochemistry. In the BGWAS, ADAM12 gene achieved the most significant association (rs1278300 p-value = 9.25 × 10−9) with the KBD. Replication study observed significant association signal at rs1278300 (p-value = 0.007) and rs1710287 (p-value = 0.002) of ADAM12 after Bonferroni correction. Immunohistochemistry revealed significantly decreased expression level of ADAM12 protein in the KBD articular cartilage (average positive chondrocyte rate = 47.59 ± 7.79%) compared to healthy articular cartilage (average positive chondrocyte rate = 64.73 ± 5.05%). Our results suggest that ADAM12 gene is a novel susceptibility gene underlying both joint destruction and growth retardation of the KBD. PMID:27545300

  17. Hybrid mimics and hybrid vigor in Arabidopsis

    PubMed Central

    Wang, Li; Greaves, Ian K.; Groszmann, Michael; Wu, Li Min; Dennis, Elizabeth S.; Peacock, W. James

    2015-01-01

    F1 hybrids can outperform their parents in yield and vegetative biomass, features of hybrid vigor that form the basis of the hybrid seed industry. The yield advantage of the F1 is lost in the F2 and subsequent generations. In Arabidopsis, from F2 plants that have a F1-like phenotype, we have by recurrent selection produced pure breeding F5/F6 lines, hybrid mimics, in which the characteristics of the F1 hybrid are stabilized. These hybrid mimic lines, like the F1 hybrid, have larger leaves than the parent plant, and the leaves have increased photosynthetic cell numbers, and in some lines, increased size of cells, suggesting an increased supply of photosynthate. A comparison of the differentially expressed genes in the F1 hybrid with those of eight hybrid mimic lines identified metabolic pathways altered in both; these pathways include down-regulation of defense response pathways and altered abiotic response pathways. F6 hybrid mimic lines are mostly homozygous at each locus in the genome and yet retain the large F1-like phenotype. Many alleles in the F6 plants, when they are homozygous, have expression levels different to the level in the parent. We consider this altered expression to be a consequence of transregulation of genes from one parent by genes from the other parent. Transregulation could also arise from epigenetic modifications in the F1. The pure breeding hybrid mimics have been valuable in probing the mechanisms of hybrid vigor and may also prove to be useful hybrid vigor equivalents in agriculture. PMID:26283378

  18. Taking Charge: Walter Sydney Adams and the Mount Wilson Observatory

    NASA Astrophysics Data System (ADS)

    Brashear, R.

    2004-12-01

    The growing preeminence of American observational astronomy in the first half of the 20th century is a well-known story and much credit is given to George Ellery Hale and his skill as an observatory-building entrepreneur. But a key figure who has yet to be discussed in great detail is Walter Sydney Adams (1876-1956), Hale's Assistant Director at Mount Wilson Observatory. Due to Hale's illnesses, Adams was Acting Director for much of Hale's tenure, and he became the second Director of Mount Wilson from 1923 to 1946. Behind his New England reserve Adams was instrumental in the growth of Mount Wilson and thus American astronomy in general. Adams was hand-picked by Hale to take charge of stellar spectroscopy work at Yerkes and Mount Wilson and the younger astronomer showed tremendous loyalty to Hale and Hale's vision throughout his career. As Adams assumed the leadership role at Mount Wilson he concentrated on making the observatory a place where researchers worked with great freedom but maintain a high level of cooperation. This paper will concentrate on Adams's early years and look at his growing relationship with Hale and how he came to be the central figure in the early history of Mount Wilson as both a solar and stellar observatory. His education, his years at Dartmouth and Yerkes (including his unfortunate encounter with epsilon Leonis), and his formative years on Mount Wilson are all important in learning how he shaped the direction of Mount Wilson and the development of American astronomy in the first half of the 20th century. This latter history cannot be complete until we bring Adams into better focus.

  19. Reliability evaluation of I-123 ADAM SPECT imaging using SPM software and AAL ROI methods

    NASA Astrophysics Data System (ADS)

    Yang, Bang-Hung; Tsai, Sung-Yi; Wang, Shyh-Jen; Su, Tung-Ping; Chou, Yuan-Hwa; Chen, Chia-Chieh; Chen, Jyh-Cheng

    2011-08-01

    The level of serotonin was regulated by serotonin transporter (SERT), which is a decisive protein in regulation of serotonin neurotransmission system. Many psychiatric disorders and therapies were also related to concentration of cerebral serotonin. I-123 ADAM was the novel radiopharmaceutical to image SERT in brain. The aim of this study was to measure reliability of SERT densities of healthy volunteers by automated anatomical labeling (AAL) method. Furthermore, we also used statistic parametric mapping (SPM) on a voxel by voxel analysis to find difference of cortex between test and retest of I-123 ADAM single photon emission computed tomography (SPECT) images.Twenty-one healthy volunteers were scanned twice with SPECT at 4 h after intravenous administration of 185 MBq of 123I-ADAM. The image matrix size was 128×128 and pixel size was 3.9 mm. All images were obtained through filtered back-projection (FBP) reconstruction algorithm. Region of interest (ROI) definition was performed based on the AAL brain template in PMOD version 2.95 software package. ROI demarcations were placed on midbrain, pons, striatum, and cerebellum. All images were spatially normalized to the SPECT MNI (Montreal Neurological Institute) templates supplied with SPM2. And each image was transformed into standard stereotactic space, which was matched to the Talairach and Tournoux atlas. Then differences across scans were statistically estimated on a voxel by voxel analysis using paired t-test (population main effect: 2 cond's, 1 scan/cond.), which was applied to compare concentration of SERT between the test and retest cerebral scans.The average of specific uptake ratio (SUR: target/cerebellum-1) of 123I-ADAM binding to SERT in midbrain was 1.78±0.27, pons was 1.21±0.53, and striatum was 0.79±0.13. The cronbach's α of intra-class correlation coefficient (ICC) was 0.92. Besides, there was also no significant statistical finding in cerebral area using SPM2 analysis. This finding might help us

  20. Inverse regulation of the ADAM-family members, decysin and MADDAM/ADAM19 during monocyte differentiation

    PubMed Central

    Fritsche, Jana; Müller, Alexandra; Hausmann, Martin; Rogler, Gerhard; Andreesen, Reinhard; Kreutz, Marina

    2003-01-01

    Two members of the ADAM (a disintegrin and metalloprotease)-family, MADDAM and decysin, were described as dendritic cell (DC) maturation markers. We are interested in monocyte differentiation and investigated in particular the expression pattern of both genes during the differentiation of human monocytes into DC and macrophages (MAC). Both genes are weakly expressed in freshly isolated monocytes. In immature DC decysin mRNA was absent, even after induction of the terminal differentiation of DC by CD40L or tumour necrosis factor-α (TNF-α). Only in DC maturated by lipopolysaccharide (LPS) strong signals of decysin mRNA were detected. However, MADDAM mRNA was expressed in immature DC and the expression was markedly increased after induction of the terminal DC differentiation by various stimuli. In contrast, MAC showed a high constitutive decysin mRNA expression, but expressed no MADDAM mRNA. On protein level similar results of MADDAM expression were obtained. Stimulation of MAC by LPS did not induce MADDAM mRNA expression, while decysin mRNA expression was strongly increased. Further investigations revealed that the well-known inducer of MAC differentiation, 1α,25-dihydroxyvitamin D3 up-regulated decysin mRNA expression during the differentiation of primary monocytes and myelomonocytic THP-1 cells into MAC. In vivo decysin mRNA expression was only detected in human colon, but not in other tissues we examined. Accordingly, isolated intestinal MAC expressed decysin mRNA. In conclusion, decysin and MADDAM mRNA expression were regulated in an opposite way during monocyte differentiation: MADDAM mRNA and protein was mainly detected in DC, whereas decysin mRNA expression was mainly found in MAC. Therefore only MADDAM, but not decysin is a suitable marker for human monocyte-derived DC. PMID:14632642

  1. Phosphatidylserine exposure is required for ADAM17 sheddase function

    PubMed Central

    Sommer, Anselm; Kordowski, Felix; Büch, Joscha; Maretzky, Thorsten; Evers, Astrid; Andrä, Jörg; Düsterhöft, Stefan; Michalek, Matthias; Lorenzen, Inken; Somasundaram, Prasath; Tholey, Andreas; Sönnichsen, Frank D.; Kunzelmann, Karl; Heinbockel, Lena; Nehls, Christian; Gutsmann, Thomas; Grötzinger, Joachim; Bhakdi, Sucharit; Reiss, Karina

    2016-01-01

    ADAM17, a prominent member of the ‘Disintegrin and Metalloproteinase' (ADAM) family, controls vital cellular functions through cleavage of transmembrane substrates. Here we present evidence that surface exposure of phosphatidylserine (PS) is pivotal for ADAM17 to exert sheddase activity. PS exposure is tightly coupled to substrate shedding provoked by diverse ADAM17 activators. PS dependency is demonstrated in the following: (a) in Raji cells undergoing apoptosis; (b) in mutant PSA-3 cells with manipulatable PS content; and (c) in Scott syndrome lymphocytes genetically defunct in their capacity to externalize PS in response to intracellular Ca2+ elevation. Soluble phosphorylserine but not phosphorylcholine inhibits substrate cleavage. The isolated membrane proximal domain (MPD) of ADAM17 binds to PS but not to phosphatidylcholine liposomes. A cationic PS-binding motif is identified in this domain, replacement of which abrogates liposome-binding and renders the protease incapable of cleaving its substrates in cells. We speculate that surface-exposed PS directs the protease to its targets where it then executes its shedding function. PMID:27161080

  2. Phosphatidylserine exposure is required for ADAM17 sheddase function.

    PubMed

    Sommer, Anselm; Kordowski, Felix; Büch, Joscha; Maretzky, Thorsten; Evers, Astrid; Andrä, Jörg; Düsterhöft, Stefan; Michalek, Matthias; Lorenzen, Inken; Somasundaram, Prasath; Tholey, Andreas; Sönnichsen, Frank D; Kunzelmann, Karl; Heinbockel, Lena; Nehls, Christian; Gutsmann, Thomas; Grötzinger, Joachim; Bhakdi, Sucharit; Reiss, Karina

    2016-01-01

    ADAM17, a prominent member of the 'Disintegrin and Metalloproteinase' (ADAM) family, controls vital cellular functions through cleavage of transmembrane substrates. Here we present evidence that surface exposure of phosphatidylserine (PS) is pivotal for ADAM17 to exert sheddase activity. PS exposure is tightly coupled to substrate shedding provoked by diverse ADAM17 activators. PS dependency is demonstrated in the following: (a) in Raji cells undergoing apoptosis; (b) in mutant PSA-3 cells with manipulatable PS content; and (c) in Scott syndrome lymphocytes genetically defunct in their capacity to externalize PS in response to intracellular Ca(2+) elevation. Soluble phosphorylserine but not phosphorylcholine inhibits substrate cleavage. The isolated membrane proximal domain (MPD) of ADAM17 binds to PS but not to phosphatidylcholine liposomes. A cationic PS-binding motif is identified in this domain, replacement of which abrogates liposome-binding and renders the protease incapable of cleaving its substrates in cells. We speculate that surface-exposed PS directs the protease to its targets where it then executes its shedding function. PMID:27161080

  3. Reproducing Natural Spider Silks' Copolymer Behavior in Synthetic Silk Mimics

    SciTech Connect

    An, Bo; Jenkins, Janelle E; Sampath, Sujatha; Holland, Gregory P; Hinman, Mike; Yarger, Jeffery L; Lewis, Randolph

    2012-10-30

    Dragline silk from orb-weaving spiders is a copolymer of two large proteins, major ampullate spidroin 1 (MaSp1) and 2 (MaSp2). The ratio of these proteins is known to have a large variation across different species of orb-weaving spiders. NMR results from gland material of two different species of spiders, N. clavipes and A. aurantia, indicates that MaSp1 proteins are more easily formed into β-sheet nanostructures, while MaSp2 proteins form random coil and helical structures. To test if this behavior of natural silk proteins could be reproduced by recombinantly produced spider silk mimic protein, recombinant MaSp1/MaSp2 mixed fibers as well as chimeric silk fibers from MaSp1 and MaSp2 sequences in a single protein were produced based on the variable ratio and conserved motifs of MaSp1 and MaSp2 in native silk fiber. Mechanical properties, solid-state NMR, and XRD results of tested synthetic fibers indicate the differing roles of MaSp1 and MaSp2 in the fiber and verify the importance of postspin stretching treatment in helping the fiber to form the proper spatial structure.

  4. Reproducing Natural Spider Silks’ Copolymer Behavior in Synthetic Silk Mimics

    PubMed Central

    An, Bo; Jenkins, Janelle E.; Sampath, Sujatha; Holland, Gregory P.; Hinman, Mike; Yarger, Jeffery L.; Lewis, Randolph

    2012-01-01

    Dragline silk from orb-weaving spiders is a copolymer of two large proteins, major ampullate spidroin 1 (MaSp1) and 2 (MaSp2). The ratio of these proteins is known to have a large variation across different species of orb-weaving spiders. NMR results from gland material of two different species of spiders, N. clavipes and A. aurantia, indicates that MaSp1 proteins are more easily formed into β-sheet nanostructures, while MaSp2 proteins form random coil and helical structures. To test if this behavior of natural silk proteins could be reproduced by recombinantly produced spider silk mimic protein, recombinant MaSp1/MaSp2 mixed fibers as well as chimeric silk fibers from MaSp1 and MaSp2 sequences in a single protein were produced based on the variable ratio and conserved motifs of MaSp1 and MaSp2 in native silk fiber. Mechanical properties, solid-state NMR, and XRD results of tested synthetic fibers indicate the differing roles of MaSp1 and MaSp2 in the fiber and verify the importance of postspin stretching treatment in helping the fiber to form the proper spatial structure. PMID:23110450

  5. Environmental mimics of chemical warfare agents.

    PubMed

    Claborn, David M

    2004-12-01

    There are several natural and artificial factors that mimic the effects of chemical warfare agents, thereby causing unwarranted alarm and confusion on the battlefield. Symptoms associated with chemical warfare include paralysis, muscle tremors, heavy salivation, severe burns, blistering, and corrosive skin injuries among others. Similar symptoms can be produced from a variety of environmental sources, artificial and natural. This article reviews several published and unpublished examples of environmental factors that produce syndromes similar to those caused by these agents. Examples of such mimics include pesticides, blistering exudates from insects and plants, various types of bites, and naturally occurring diseases. The potential for confusion caused by these factors is discussed and means of discriminating between warfare agents and naturally occurring events are identified. Recommendations for the use of this information and for needed research are also discussed. PMID:15646185

  6. Fluorescent sensors for organophosphorus nerve agent mimics.

    PubMed

    Dale, Trevor J; Rebek, Julius

    2006-04-12

    We present a small molecule sensor that provides an optical response to the presence of an organophosphorus (OP)-containing nerve agent mimic. The design contains three key features: a primary alcohol, a tertiary amine in close proximity to the alcohol, and a fluorescent group used as the optical readout. In the sensor's rest state, the lone pair of electrons of the basic amine quenches the fluorescence of the nearby fluorophore through photoinduced electron transfer (PET). Exposure to an OP nerve agent mimic triggers phosphorylation of the primary alcohol followed rapidly by an intramolecular substitution reaction as the amine displaces the created phosphate. The quaternized ammonium salt produced by this cyclization reaction no longer possesses a lone pair of electrons, and a fluorescence readout is observed as the nonradiative PET quenching pathway of the fluorophore is shut down. PMID:16594648

  7. Mimics and chameleons in motor neurone disease

    PubMed Central

    Turner, Martin R; Talbot, Kevin

    2013-01-01

    The progression of motor neurone disease (MND) is currently irreversible, and the grave implications of diagnosis naturally fuels concern among neurologists over missing a potential mimic disorder. There is no diagnostic test for MND but in reality there are few plausible mimics in routine clinical practice. In the presence of a progressive pure motor disorder, signs such as florid fasciculations, bilateral tongue wasting, the ‘split hand’, head drop, emotionality, and cognitive or behavioural impairment carry high positive predictive value. MND is clinically heterogeneous, however, with some important chameleon-like presentations and considerable variation in clinical course. Lack of confidence about the scope of such variation, or an approach to diagnosis emphasising investigations over clinical common sense, has the potential to exacerbate diagnostic delay in MND and impede timely planning of the care which is essential to maximising quality of life. PMID:23616620

  8. Abnormalities in Expression of Structural, Barrier, and Differentiation Related Proteins and Chondroitin Sulfate in the Urothelium of Cats with Feline Interstitial Cystitis Mimic Those Seen in Human Interstitial Cystitis

    PubMed Central

    Hauser, Paul J.; VanGordon, Samuel B.; Seavey, Jonathan; Sofinowski, Troy M.; Ramadan, Mohammad; Abdullah, Shivon; Buffington, C. A. Tony; Hurst, Robert E.

    2015-01-01

    Purpose The urothelium of cats diagnosed with feline interstitial cystitis (FIC) was analyzed to determine if abnormalities in protein expression patterns could be detected, and whether the pattern of expression was similar to that observed in human Interstitial Cystitis/Bladder Pain Syndrome (IC) patients. The proteins that were analyzed are involved in cell adhesion, barrier function, comprise the glycosaminoglycan (GAG) layer, or are markers of differentiation. Methods Formalin-fixed biopsies from 8 cats with FIC and 7 healthy controls were labeled using immunohistochemistry and scored using a modified version of a system previously used for human samples. Cluster analysis was performed to investigate relationships between the markers and samples. Results The results showed that 89% of the FIC bladders displayed abnormal protein expression and chondroitin sulfate (CS) patterns, whereas only 27% of the normal tissues exhibited slight abnormalities. Abnormalities were found in most of the FIC samples, biglycan (87.5%), CS (100%), decorin (100%), E-cadherin (100%), keratin-20 (K20, 100%), uroplakin (50%), ZO-1 (87.5%). In the FIC bladders, about 75% of the CS, biglycan, and decorin samples displayed absence of luminal staining or no staining. Results from the cluster analysis revealed that the FIC and normal samples fell into two clearly separate groups, demonstrating that the urothelium of cats with FIC is altered from normal. Conclusions FIC produces similar changes in luminal GAG and several proteins as is seen in human patients, suggesting some commonality in mechanism and supporting the use of FIC as a model for human IC. PMID:25636658

  9. The Adam language: Ada extended with support for multiway activities

    NASA Technical Reports Server (NTRS)

    Charlesworth, Arthur

    1993-01-01

    The Adam language is an extension of Ada that supports multiway activities, which are cooperative activities involving two or more processes. This support is provided by three new constructs: diva procedures, meet statements, and multiway accept statements. Diva procedures are recursive generic procedures having a particular restrictive syntax that facilitates translation for parallel computers. Meet statements and multiway accept statements provide two ways to express a multiway rendezvous, which is an n-way rendezvous generalizing Ada's 2-way rendezvous. While meet statements tend to have simpler rules than multiway accept statements, the latter approach is a more straightforward extension of Ada. The only nonnull statements permitted within meet statements and multiway accept statements are calls on instantiated diva procedures. A call on an instantiated diva procedure is also permitted outside a multiway rendezvous; thus sequential Adam programs using diva procedures can be written. Adam programs are translated into Ada programs appropriate for use on parallel computers.

  10. Bottom-up Construction of a Primordial Carboxysome Mimic.

    PubMed

    Frey, Raphael; Mantri, Shiksha; Rocca, Marco; Hilvert, Donald

    2016-08-17

    We have constructed a synthetic mimic of the carboxysome, a cyanobacterial carbon-fixing organelle. Using an electrostatic tagging system, we coencapsulated the two key carboxysomal enzymes, ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) and carbonic anhydrase (CA), in an engineered protein cage based on lumazine synthase. A statistically significant kinetic effect of coencapsulated CA on RuBisCO activity was not observed under ambient or oxygen saturated conditions, suggesting that enzyme proximity alone may not be the key determinant in carboxysome function. The capsid shell protected the enzyme from proteolytic damage, a factor that could have provided early cyanobacteria with an evolutionary benefit. Our strategy to coencapsulate different proteins can easily be extended to other sequentially acting enzymes and lays down principles for developing artificial organelles to control biosynthetic pathways in vivo. PMID:27479274

  11. Cupric yersiniabactin is a virulence-associated superoxide dismutase mimic.

    PubMed

    Chaturvedi, Kaveri S; Hung, Chia S; Giblin, Daryl E; Urushidani, Saki; Austin, Anthony M; Dinauer, Mary C; Henderson, Jeffrey P

    2014-02-21

    Many Gram-negative bacteria interact with extracellular metal ions by expressing one or more siderophore types. Among these, the virulence-associated siderophore yersiniabactin (Ybt) is an avid copper chelator, forming stable cupric (Cu(II)-Ybt) complexes that are detectable in infected patients. Here we show that Ybt-expressing E. coli are protected from intracellular killing within copper-replete phagocytic cells. This survival advantage is highly dependent upon the phagocyte respiratory burst, during which superoxide is generated by the NADPH oxidase complex. Chemical fractionation links this phenotype to a previously unappreciated superoxide dismutase (SOD)-like activity of Cu(II)-Ybt. Unlike previously described synthetic copper-salicylate (Cu(II)-SA) SOD mimics, the salicylate-based natural product Cu(II)-Ybt retains catalytic activity at physiologically plausible protein concentrations. These results reveal a new virulence-associated adaptation based upon spontaneous assembly of a non-protein catalyst. PMID:24283977

  12. Cupric Yersiniabactin Is a Virulence-Associated Superoxide Dismutase Mimic

    PubMed Central

    2013-01-01

    Many Gram-negative bacteria interact with extracellular metal ions by expressing one or more siderophore types. Among these, the virulence-associated siderophore yersiniabactin (Ybt) is an avid copper chelator, forming stable cupric (Cu(II)-Ybt) complexes that are detectable in infected patients. Here we show that Ybt-expressing E. coli are protected from intracellular killing within copper-replete phagocytic cells. This survival advantage is highly dependent upon the phagocyte respiratory burst, during which superoxide is generated by the NADPH oxidase complex. Chemical fractionation links this phenotype to a previously unappreciated superoxide dismutase (SOD)-like activity of Cu(II)-Ybt. Unlike previously described synthetic copper-salicylate (Cu(II)-SA) SOD mimics, the salicylate-based natural product Cu(II)-Ybt retains catalytic activity at physiologically plausible protein concentrations. These results reveal a new virulence-associated adaptation based upon spontaneous assembly of a non-protein catalyst. PMID:24283977

  13. Shedding of klotho by ADAMs in the kidney.

    PubMed

    van Loon, Ellen P M; Pulskens, Wilco P; van der Hagen, Eline A E; Lavrijsen, Marla; Vervloet, Marc G; van Goor, Harry; Bindels, René J M; Hoenderop, Joost G J

    2015-08-15

    The anti-aging gene klotho plays an important role in Ca(2+) and phosphate homeostasis. Membrane-bound klotho is an essential coreceptor for fibroblast growth factor-23 and can be cleaved by proteases, including a disintegrin and metalloproteinase (ADAM)10 and ADAM17. Cleavage of klotho occurs at a site directly above the plasma membrane (α-cut) or between the KL1 and KL2 domain (β-cut), resulting in soluble full-length klotho or KL1 and KL2 fragments, respectively. The aim of the present study was to gain insights into the mechanisms behind klotho cleavage processes in the kidney. Klotho shedding was demonstrated using a Madin-Darby canine kidney cell line stably expressing klotho and human embryonic kidney-293 cells transiently transfected with klotho. Here, we report klotho expression on both the basolateral and apical membrane, with a higher abundance of klotho at the apical membrane and in the apical media. mRNA expression of ADAM17 and klotho were enriched in mouse distal convoluted and connecting tubules. In vitro ADAM/matrix metalloproteinase inhibition by TNF484 resulted in a concentration-dependent inhibition of the α-cut, with a less specific effect on β-cut shedding. In vivo TNF484 treatment in wild-type mice did not change urinary klotho levels. However, ADAM/matrix metalloproteinase inhibition did increase renal and duodenal mRNA expression of phosphate transporters, whereas serum phosphate levels were significantly decreased. In conclusion, our data show that renal cells preferentially secrete klotho to the apical side and suggest that ADAMs are responsible for α-cut cleavage. PMID:26155844

  14. DNA mimicry by proteins.

    PubMed

    Dryden, D T F; Tock, M R

    2006-04-01

    It has been discovered recently, via structural and biophysical analyses, that proteins can mimic DNA structures in order to inhibit proteins that would normally bind to DNA. Mimicry of the phosphate backbone of DNA, the hydrogen-bonding properties of the nucleotide bases and the bending and twisting of the DNA double helix are all present in the mimics discovered to date. These mimics target a range of proteins and enzymes such as DNA restriction enzymes, DNA repair enzymes, DNA gyrase and nucleosomal and nucleoid-associated proteins. The unusual properties of these protein DNA mimics may provide a foundation for the design of targeted inhibitors of DNA-binding proteins. PMID:16545103

  15. In vitro glutathione peroxidase mimicry of ebselen is linked to its oxidation of critical thiols on key cerebral suphydryl proteins - A novel component of its GPx-mimic antioxidant mechanism emerging from its thiol-modulated toxicology and pharmacology.

    PubMed

    Kade, I J; Balogun, B D; Rocha, J B T

    2013-10-25

    The antioxidant mechanism of ebselen in rats brain is largely linked with its glutathione peroxidase (GPx) rather than its peroxiredoxin mimicry ability. However, the precise molecular dynamics between the GPx-mimicry of ebselen and thiol utilization is yet to be fully clarified and thus still open. Herein, we investigated the influence of dithiothreitol (DTT) on the antioxidant action of ebselen against oxidant-induced cerebral lipid peroxidation and deoxyribose degradation. Furthermore, the critical inhibitory concentrations of ebselen on the activities of sulphydryl enzymes such as cerebral sodium pump, δ-aminolevulinic acid dehydratase (δ-ALAD) and lactate dehydrogenase (LDH) were also investigated. We observe that ebselen (at ≥42 μM) markedly inhibited lipid peroxidation in the presence and absence of DTT, whereas it inhibited deoxyribose degradation only in the presence of DTT. Furthermore, under in vitro conditions, ebselen inhibited the thiol containing enzymes; cerebral sodium pump (at ≥40 μM), δ-ALAD (≥10 μM) and LDH (≥1 μM) which were either prevented or reversed by DTT. However, the inhibition of the activities of these sulphydryl proteins in diabetic animals was prevented by ebselen. Summarily, it is apparent that the effective in vitro inhibitory doses of ebselen on the activity of the sulphydryl proteins are far less than its antioxidant doses. In addition, the presence of DTT is evidently a critical requirement for ebselen to effect its antioxidant action against deoxyribose degeradation and not lipid peroxidation. Consequently, we conclude that ebselen possibly utilizes available thiols on sulphydryl proteins to effect its GPx mimicry antioxidant action against lipid peroxidation in rat brain homogenate. PMID:23933410

  16. Photograph of photogrammetric plate LCHABSGS11IL1124S06R. SOUTH (ADAMS STREET) ELEVATION, UPPER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photograph of photogrammetric plate LC-HABS-GS11-IL-1124-S06R. SOUTH (ADAMS STREET) ELEVATION, UPPER LEVEL, INCLINED 30; Upper right section of elevation - Phelps-Dodge-Palmer Building, 200 West Adams Street, Chicago, Cook County, IL

  17. Photograph of photogrammetric plate LCHABSGS11IL1124S02R. SOUTH (ADAMS STREET) ELEVATION, GROUND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photograph of photogrammetric plate LC-HABS-GS11-IL-1124-S02R. SOUTH (ADAMS STREET) ELEVATION, GROUND LEVEL Lower right section of elevation - Phelps-Dodge-Palmer Building, 200 West Adams Street, Chicago, Cook County, IL

  18. Photograph of photogrammetric plate LCHABSGS11IL1124S04R. SOUTH (ADAMS STREET) ELEVATION, UPPER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photograph of photogrammetric plate LC-HABS-GS11-IL-1124-S04R. SOUTH (ADAMS STREET) ELEVATION, UPPER LEVEL Middle right section of elevation - Phelps-Dodge-Palmer Building, 200 West Adams Street, Chicago, Cook County, IL

  19. Photograph of photogrammetric plate LCHABSGS11IL1124S05R. SOUTH (ADAMS STREET) ELEVATION, UPPER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photograph of photogrammetric plate LC-HABS-GS11-IL-1124-S05R. SOUTH (ADAMS STREET) ELEVATION, UPPER LEVEL, INCLINED 30; Upper left section of elevation - Phelps-Dodge-Palmer Building, 200 West Adams Street, Chicago, Cook County, IL

  20. Photograph of photogrammetric plate LCHABSGS11IL1124S01R. SOUTH (ADAMS STREET) ELEVATION, GROUND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photograph of photogrammetric plate LC-HABS-GS11-IL-1124-S01R. SOUTH (ADAMS STREET) ELEVATION, GROUND LEVEL Lower left section of elevation - Phelps-Dodge-Palmer Building, 200 West Adams Street, Chicago, Cook County, IL

  1. Critical role of the disintegrin metalloprotease ADAM17 for intestinal inflammation and regeneration in mice

    PubMed Central

    Chalaris, Athena; Adam, Nina; Sina, Christian; Rosenstiel, Philip; Lehmann-Koch, Judith; Schirmacher, Peter; Hartmann, Dieter; Cichy, Joanna; Gavrilova, Olga; Schreiber, Stefan; Jostock, Thomas; Matthews, Vance; Häsler, Robert; Becker, Christoph; Neurath, Markus F.; Reiß, Karina; Saftig, Paul

    2010-01-01

    The protease a disintegrin and metalloprotease (ADAM) 17 cleaves tumor necrosis factor (TNF), L-selectin, and epidermal growth factor receptor (EGF-R) ligands from the plasma membrane. ADAM17 is expressed in most tissues and is up-regulated during inflammation and cancer. ADAM17-deficient mice are not viable. Conditional ADAM17 knockout models demonstrated proinflammatory activities of ADAM17 in septic shock via shedding of TNF. We used a novel gene targeting strategy to generate mice with dramatically reduced ADAM17 levels in all tissues. The resulting mice called ADAM17ex/ex were viable, showed compromised shedding of ADAM17 substrates from the cell surface, and developed eye, heart, and skin defects as a consequence of impaired EGF-R signaling caused by failure of shedding of EGF-R ligands. Unexpectedly, although the intestine of unchallenged homozygous ADAM17ex/ex mice was normal, ADAM17ex/ex mice showed substantially increased susceptibility to inflammation in dextran sulfate sodium colitis. This was a result of impaired shedding of EGF-R ligands resulting in failure to phosphorylate STAT3 via the EGF-R and, consequently, in defective regeneration of epithelial cells and breakdown of the intestinal barrier. Besides regulating the systemic availability of the proinflammatory cytokine TNF, our results demonstrate that ADAM17 is needed for vital regenerative activities during the immune response. Thus, our mouse model will help investigate ADAM17 as a potential drug target. PMID:20603312

  2. cAMP-specific phosphodiesterase HSPDE4D3 mutants which mimic activation and changes in rolipram inhibition triggered by protein kinase A phosphorylation of Ser-54: generation of a molecular model.

    PubMed Central

    Hoffmann, R; Wilkinson, I R; McCallum, J F; Engels, P; Houslay, M D

    1998-01-01

    Ser-13 and Ser-54 were shown to provide the sole sites for the protein kinase A (PKA)-mediated phosphorylation of the human cAMP-specific phosphodiesterase isoform HSPDE4D3. The ability of PKA to phosphorylate and activate HSPDE4D3 was mimicked by replacing Ser-54 with either of the negatively charged amino acids, aspartate or glutamate, within the consensus motif of RRES54. The PDE4 selective inhibitor rolipram ¿4-[3-(cyclopentoxy)-4-methoxyphenyl]-2-pyrrolidone¿ inhibited both PKA-phosphorylated HSPDE4D3 and the Ser-54-->Asp mutant, with an IC50 value that was approximately 8-fold lower than that seen for the non-PKA-phosphorylated enzyme. Lower IC50 values for inhibition by rolipram were seen for a wide range of non-activated residue 54 mutants, except for those which had side-chains able to serve as hydrogen-bond donors, namely the Ser-54-->Thr, Ser-54-->Tyr and Ser-54-->Cys mutants. The Glu-53-->Ala mutant exhibited an activity comparable with that of the PKA phosphorylated native enzyme and the Ser-54-->Asp mutant but, in contrast to the native enzyme, was insensitive to activation by PKA, despite being more rapidly phosphorylated by this protein kinase. The activated Glu-53-->Ala mutant exhibited a sensitivity to inhibition by rolipram which was unchanged from that of the native enzyme. The double mutant, Arg-51-->Ala/Arg-52-->Ala, showed no change in either enzyme activity or rolipram inhibition from the native enzyme and was incapable of providing a substrate for PKA phosphorylation at Ser-54. No difference in inhibition by dipyridamole was seen for the native enzyme and the Ser-54-->Asp and Ser-54-->Ala mutants. A model is proposed which envisages that phosphorylation by PKA triggers at least two distinct conformational changes in HSPDE4D3; one of these gives rise to enzyme activation and another enhances sensitivity to inhibition by rolipram. Activation of HSPDE4D3 by PKA-mediated phosphorylation is suggested to involve disruption of an ion

  3. Oxidoreductase mimic activity of natural pyrrhotite

    NASA Astrophysics Data System (ADS)

    Ibáñez de Aldecoa, A. L.; Velasco, F.; Menor-Salván, C.

    2012-09-01

    The theory of the chemo-autotrophic origin of life, also called the "iron-sulfur world hypothesis", proposes that the system FeS/FeS2 present in the primitive Earth crust gave the reductive power necessary to conduct the first protometabolic redox reactions. Some experimental studies demonstrated the redox activity of the FeS/SH2 system, but none of them used natural FeS. Here, we show that the iron sulfide mineral pyrrhotite is able to mimic the redox activity of the enzyme lactate dehydrogenase, which reversibly reduces the pyruvate in lactate, under prebiotic conditions with pyrite formation.

  4. WEISER RIVER STUDY, ADAMS AND WASHINGTON COUNTIES, IDAHO, 1979

    EPA Science Inventory

    During the 1979 water year, a water quality study was conducted on the Weiser and Little Weiser Rivers (17050124) in Washington and Adams Counties, Idaho. The study was completed to obtain background information on effluent limitations for the cities of Cambridge and Council and...

  5. Adam Smith and the Teaching of English Literature.

    ERIC Educational Resources Information Center

    Court, Franklin E.

    1985-01-01

    Adam Smith used selections from English literature in his classroom during the eighteenth century because he believed that vernacular literature could provide a ready context for the teaching of ideological, social, and moral lessons. He believed that higher education should prepare students for the real business of the real world. (RM)

  6. Adam Smith and the Moral Economy of the Classroom System.

    ERIC Educational Resources Information Center

    Hamilton, D.

    1980-01-01

    Traces the development of mass schooling to its origins in 19th-century Glasgow. Its importance as an intellectual and economic center enabled Glasgow to invent a solution to the problem of urban schooling, while the association of scholars like Adam Smith with Glasgow University made Scottish educational theories acceptable around the world. (DB)

  7. 3. Aerial view southeast, State Route 92 bottom left, Adams ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Aerial view southeast, State Route 92 bottom left, Adams Dam Road center, Brandywine Creek State Park and J. Chandler Farm in center left, duck pond bottom right and reservoir bottom left. - Winterthur Farms, Intersection State Routes 92 & 100, Intersection State Routes 92 & 100, Winterthur, New Castle County, DE

  8. 4. Aerial view southwest, Adams Dam Road bottom left, State ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Aerial view southwest, Adams Dam Road bottom left, State Route 100 center, back gates to Winterthur and Wilmington Country Club upper center, duck pond and reservoir bottom right and center, and State Route 92 center bottom. - Winterthur Farms, Intersection State Routes 92 & 100, Intersection State Routes 92 & 100, Winterthur, New Castle County, DE

  9. 5. Aerial view west, Adams Dam Road bottom center, State ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Aerial view west, Adams Dam Road bottom center, State Route 100 center, duck pond and reservoir center, State Route 100 center right, State Route 92 below center right, Brandywine Creek State Park center bottom. - Winterthur Farms, Intersection State Routes 92 & 100, Intersection State Routes 92 & 100, Winterthur, New Castle County, DE

  10. The ADaptation and Anticipation Model (ADAM) of sensorimotor synchronization

    PubMed Central

    van der Steen, M. C. (Marieke); Keller, Peter E.

    2013-01-01

    A constantly changing environment requires precise yet flexible timing of movements. Sensorimotor synchronization (SMS)—the temporal coordination of an action with events in a predictable external rhythm—is a fundamental human skill that contributes to optimal sensory-motor control in daily life. A large body of research related to SMS has focused on adaptive error correction mechanisms that support the synchronization of periodic movements (e.g., finger taps) with events in regular pacing sequences. The results of recent studies additionally highlight the importance of anticipatory mechanisms that support temporal prediction in the context of SMS with sequences that contain tempo changes. To investigate the role of adaptation and anticipatory mechanisms in SMS we introduce ADAM: an ADaptation and Anticipation Model. ADAM combines reactive error correction processes (adaptation) with predictive temporal extrapolation processes (anticipation) inspired by the computational neuroscience concept of internal models. The combination of simulations and experimental manipulations based on ADAM creates a novel and promising approach for exploring adaptation and anticipation in SMS. The current paper describes the conceptual basis and architecture of ADAM. PMID:23772211