Science.gov

Sample records for adapted fish chionodraco

  1. Laser microdissection-based analysis of the Y sex chromosome of the Antarctic fish Chionodraco hamatus (Notothenioidei, Channichthyidae)

    PubMed Central

    Cocca, Ennio; Petraccioli, Agnese; Morescalchi, Maria Alessandra; Odierna, Gaetano; Capriglione, Teresa

    2015-01-01

    Abstract Microdissection, DOP-PCR amplification and microcloning were used to study the large Y chromosome of Chionodraco hamatus, an Antarctic fish belonging to the Notothenioidei, the dominant component of the Southern Ocean fauna. The species has evolved a multiple sex chromosome system with digametic males showing an X1YX2 karyotype and females an X1X1X2X2 karyotype. Fluorescence in situ hybridization, performed with a painting probe made from microdissected Y chromosomes, allowed a deeper insight on the chromosomal rearrangement, which underpinned the fusion event that generated the Y. Then, we used a DNA library established by microdissection and microcloning of the whole Y chromosome of Chionodraco hamatus for searching sex-linked sequences. One clone provided preliminary information on the presence on the Y chromosome of the CHD1 gene homologue, which is sex-linked in birds but in no other vertebrates. Several clones from the Y-chromosome mini-library contained microsatellites and transposable elements, one of which mapped to the q arm putative fusion region of the Y chromosome. The findings confirm that interspersed repetitive sequences might have fostered chromosome rearrangements and the emergence of the Y chromosome in Chionodraco hamatus. Detection of the CHD1 gene in the Y sex-determining region could be a classical example of convergent evolution in action. PMID:25893071

  2. Protein cold adaptation strategy via a unique seven-amino acid domain in the icefish (Chionodraco hamatus) PEPT1 transporter.

    PubMed

    Rizzello, Antonia; Romano, Alessandro; Kottra, Gabor; Acierno, Raffaele; Storelli, Carlo; Verri, Tiziano; Daniel, Hannelore; Maffia, Michele

    2013-04-23

    Adaptation of organisms to extreme environments requires proteins to work at thermodynamically unfavorable conditions. To adapt to subzero temperatures, proteins increase the flexibility of parts of, or even the whole, 3D structure to compensate for the lower thermal kinetic energy available at low temperatures. This may be achieved through single-site amino acid substitutions in regions of the protein that undergo large movements during the catalytic cycle, such as in enzymes or transporter proteins. Other strategies of cold adaptation involving changes in the primary amino acid sequence have not been documented yet. In Antarctic icefish (Chionodraco hamatus) peptide transporter 1 (PEPT1), the first transporter cloned from a vertebrate living at subzero temperatures, we came upon a unique principle of cold adaptation. A de novo domain composed of one to six repeats of seven amino acids (VDMSRKS), placed as an extra stretch in the cytosolic COOH-terminal region, contributed per se to cold adaptation. VDMSRKS was in a protein region uninvolved in transport activity and, notably, when transferred to the COOH terminus of a warm-adapted (rabbit) PEPT1, it conferred cold adaptation to the receiving protein. Overall, we provide a paradigm for protein cold adaptation that relies on insertion of a unique domain that confers greater affinity and maximal transport rates at low temperatures. Due to its ability to transfer a thermal trait, the VDMSRKS domain represents a useful tool for future cell biology or biotechnological applications. PMID:23569229

  3. Protein cold adaptation strategy via a unique seven-amino acid domain in the icefish (Chionodraco hamatus) PEPT1 transporter

    PubMed Central

    Rizzello, Antonia; Romano, Alessandro; Kottra, Gabor; Acierno, Raffaele; Storelli, Carlo; Verri, Tiziano; Daniel, Hannelore; Maffia, Michele

    2013-01-01

    Adaptation of organisms to extreme environments requires proteins to work at thermodynamically unfavorable conditions. To adapt to subzero temperatures, proteins increase the flexibility of parts of, or even the whole, 3D structure to compensate for the lower thermal kinetic energy available at low temperatures. This may be achieved through single-site amino acid substitutions in regions of the protein that undergo large movements during the catalytic cycle, such as in enzymes or transporter proteins. Other strategies of cold adaptation involving changes in the primary amino acid sequence have not been documented yet. In Antarctic icefish (Chionodraco hamatus) peptide transporter 1 (PEPT1), the first transporter cloned from a vertebrate living at subzero temperatures, we came upon a unique principle of cold adaptation. A de novo domain composed of one to six repeats of seven amino acids (VDMSRKS), placed as an extra stretch in the cytosolic COOH-terminal region, contributed per se to cold adaptation. VDMSRKS was in a protein region uninvolved in transport activity and, notably, when transferred to the COOH terminus of a warm-adapted (rabbit) PEPT1, it conferred cold adaptation to the receiving protein. Overall, we provide a paradigm for protein cold adaptation that relies on insertion of a unique domain that confers greater affinity and maximal transport rates at low temperatures. Due to its ability to transfer a thermal trait, the VDMSRKS domain represents a useful tool for future cell biology or biotechnological applications. PMID:23569229

  4. Anion and sulfonamide inhibition studies of an α-carbonic anhydrase from the Antarctic hemoglobinless fish Chionodraco hamatus.

    PubMed

    Cincinelli, Alessandra; Martellini, Tania; Vullo, Daniela; Supuran, Claudiu T

    2015-12-01

    An α-carbonic anhydrase (CA, EC 4.2.1.1) has been purified from the Antarctic hemoglobinless fish Chionodraco hamatus (icefish). The new enzyme, denominated ChaCA, has a good catalytic activity for the physiologic CO2 hydration to bicarbonate reaction, similar to that of the low activity human isoform hCA I, with a kcat of 5.3×10(5) s(-1), and a kcat/Km of 3.7×10(7) M(-1) s(-1). The enzyme was inhibited in the submillimolar range by most inorganic anions (cyanate, thiocyanate, cyanide, bicarbonate, halides), whereas sulfamide, sulfamate, phenylboronic/phenylarsonic acids were micromolar inhibitors, with KIs in the range of 9-77 μM. Many clinically used drugs, such as acetazolamide, methazolamide, dorzolamide, brinzolamide, topiramate and benzolamide were low nanomolar inhibitors, with KIs in the range of 39.1-77.6 nM. As the physiology of CO2/bicarbonate transport or the Root effect in this Antarctic fish are poorly understood at this moment, such inhibition data may give a more detailed insight in the role that CAs play in these phenomena, by the use of inhibitors described here as physiologic tools. PMID:26525863

  5. Morphological and biochemical analyses of otoliths of the ice-fish Chionodraco hamatus confirm a common origin with red-blooded species

    PubMed Central

    Motta, Chiara Maria; Avallone, Bice; Balassone, Giuseppina; Balsamo, Giuseppe; Fascio, Umberto; Simoniello, Palma; Tammaro, Stefania; Marmo, Francesco

    2009-01-01

    The morphology and composition of the three otoliths of the Antarctic ice-fish Chionodraco hamatus were studied by scanning electron microscopy and X-ray diffraction. The composition of the sagitta, lapillus and asteriscus protein matrices was also analysed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis, western blots and confocal laser scanning microscopy to reveal the presence of and to localize the calcium-binding proteins calmodulin, calbindin and S-100. Morphological results indicated that the otoliths in this ice-fish were similar to those of Trematomus bernacchii, a red-blooded Antarctic species [B. Avallone et al. (2003) J. Submicrosc. Cytol. Pathol.35, 69–76], but rather different from those of other teleosts. These two Antarctic species possessed a completely vateritic asteriscus, whereas their sagitta and lapillus were made mostly of aragonite. Parallel analysis of protein patterns in C. hamatus and T. bernacchii revealed that the sagitta significantly differed from the lapillus and asteriscus in both species. The sagitta did not contain the S-100 protein and showed calmodulin and calbindin located in discontinuous or incremental zones, respectively. These results demonstrate that the otoliths of C. hamatus and T. bernacchii share more resemblances than differences and support the idea of a common origin of these species. PMID:19166478

  6. Morphological and biochemical analyses of otoliths of the ice-fish Chionodraco hamatus confirm a common origin with red-blooded species.

    PubMed

    Motta, Chiara Maria; Avallone, Bice; Balassone, Giuseppina; Balsamo, Giuseppe; Fascio, Umberto; Simoniello, Palma; Tammaro, Stefania; Marmo, Francesco

    2009-01-01

    The morphology and composition of the three otoliths of the Antarctic ice-fish Chionodraco hamatus were studied by scanning electron microscopy and X-ray diffraction. The composition of the sagitta, lapillus and asteriscus protein matrices was also analysed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis, western blots and confocal laser scanning microscopy to reveal the presence of and to localize the calcium-binding proteins calmodulin, calbindin and S-100. Morphological results indicated that the otoliths in this ice-fish were similar to those of Trematomus bernacchii, a red-blooded Antarctic species [B. Avallone et al. (2003) J. Submicrosc. Cytol. Pathol. 35, 69-76], but rather different from those of other teleosts. These two Antarctic species possessed a completely vateritic asteriscus, whereas their sagitta and lapillus were made mostly of aragonite. Parallel analysis of protein patterns in C. hamatus and T. bernacchii revealed that the sagitta significantly differed from the lapillus and asteriscus in both species. The sagitta did not contain the S-100 protein and showed calmodulin and calbindin located in discontinuous or incremental zones, respectively. These results demonstrate that the otoliths of C. hamatus and T. bernacchii share more resemblances than differences and support the idea of a common origin of these species. PMID:19166478

  7. A New APEH Cluster with Antioxidant Functions in the Antarctic Hemoglobinless Icefish Chionodraco hamatus

    PubMed Central

    Palmieri, Gianna; Balestrieri, Marco; Facchiano, Angelo; Rossi, Mosè; Palumbo, Stefania; Monti, Giuseppe; Cocca, Ennio

    2015-01-01

    Acylpeptide hydrolase (APEH) is a ubiquitous cytosolic protease that plays an important role in the detoxification of oxidised proteins. In this work, to further explore the physiological role of this enzyme, two apeh cDNAs were isolated from the Chionodraco hamatus icefish, which lives in the highly oxygenated Antarctic marine environment. The encoded proteins (APEH-1Ch and APEH-2Ch) were characterised in comparison with the uniquely expressed isoform from the temperate fish Dicentrarchus labrax (APEH-1Dl) and the two APEHs from the red-blooded Antarctic fish Trematomus bernacchii (APEH-1Tb and APEH-2Tb). Homology modelling and kinetic characterisation of the APEH isoforms provided new insights into their structure/function properties. APEH-2 isoforms were the only ones capable of hydrolysing oxidised proteins, with APEH-2Ch being more efficient than APEH-2Tb at this specific function. Therefore, this ability of APEH-2 isoforms is the result of an evolutionary adaptation due to the pressure of a richly oxygenated environment. The lack of expression of APEH-2 in the tissues of the temperate fish used as the controls further supported this hypothesis. In addition, analysis of gene expression showed a significant discrepancy between the levels of transcripts and those of proteins, especially for apeh-2 genes, which suggests the presence of post-transcriptional regulation mechanisms, triggered by cold-induced oxidative stress, that produce high basal levels of APEH-2 mRNA as a reserve that is ready to use in case of the accumulation of oxidised proteins. PMID:25946123

  8. A New APEH Cluster with Antioxidant Functions in the Antarctic Hemoglobinless Icefish Chionodraco hamatus.

    PubMed

    Riccio, Alessia; Gogliettino, Marta; Palmieri, Gianna; Balestrieri, Marco; Facchiano, Angelo; Rossi, Mosè; Palumbo, Stefania; Monti, Giuseppe; Cocca, Ennio

    2015-01-01

    Acylpeptide hydrolase (APEH) is a ubiquitous cytosolic protease that plays an important role in the detoxification of oxidised proteins. In this work, to further explore the physiological role of this enzyme, two apeh cDNAs were isolated from the Chionodraco hamatus icefish, which lives in the highly oxygenated Antarctic marine environment. The encoded proteins (APEH-1(Ch) and APEH-2(Ch)) were characterised in comparison with the uniquely expressed isoform from the temperate fish Dicentrarchus labrax (APEH-1Dl) and the two APEHs from the red-blooded Antarctic fish Trematomus bernacchii (APEH-1(Tb) and APEH-2(Tb)). Homology modelling and kinetic characterisation of the APEH isoforms provided new insights into their structure/function properties. APEH-2 isoforms were the only ones capable of hydrolysing oxidised proteins, with APEH-2(Ch) being more efficient than APEH-2(Tb) at this specific function. Therefore, this ability of APEH-2 isoforms is the result of an evolutionary adaptation due to the pressure of a richly oxygenated environment. The lack of expression of APEH-2 in the tissues of the temperate fish used as the controls further supported this hypothesis. In addition, analysis of gene expression showed a significant discrepancy between the levels of transcripts and those of proteins, especially for apeh-2 genes, which suggests the presence of post-transcriptional regulation mechanisms, triggered by cold-induced oxidative stress, that produce high basal levels of APEH-2 mRNA as a reserve that is ready to use in case of the accumulation of oxidised proteins. PMID:25946123

  9. In Situ Gene Mapping of Two Genes Supports Independent Evolution of Sex Chromosomes in Cold-Adapted Antarctic Fish

    PubMed Central

    Ghigliotti, Laura; Cheng, C.-H. Christina; Bonillo, Céline; Coutanceau, Jean-Pierre; Pisano, Eva

    2013-01-01

    Two genes, that is, 5S ribosomal sequences and antifreeze glycoprotein (AFGP) genes, were mapped onto chromosomes of eight Antarctic notothenioid fish possessing a X1X1X2X2/X1X2Y sex chromosome system, namely, Chionodraco hamatus and Pagetopsis macropterus (family Channichthyidae), Trematomus hansoni, T. newnesi, T. nicolai, T. lepidorhinus, and Pagothenia borchgrevinki (family Nototheniidae), and Artedidraco skottsbergi (family Artedidraconidae). Through fluorescence in situ hybridization (FISH), we uncovered distinct differences in the gene content of the Y chromosomes in the eight species, with C. hamatus and P. macropterus standing out among others in bearing 5S rDNA and AFGP sequences on their Y chromosomes, respectively. Both genes were absent from the Y chromosomes of any analyzed species. The distinct patterns of Y and non-Y chromosome association of the 5S rDNA and AFGP genes in species representing different Antarctic fish families support an independent origin of the sex heterochromosomes in notothenioids with interesting implications for the evolutionary/adaptational history of these fishes living in a cold-stable environment. PMID:23509694

  10. Adaptive myelination from fish to man.

    PubMed

    Baraban, Marion; Mensch, Sigrid; Lyons, David A

    2016-06-15

    Myelinated axons with nodes of Ranvier are an evolutionary elaboration common to essentially all jawed vertebrates. Myelin made by Schwann cells in our peripheral nervous system and oligodendrocytes in our central nervous system has been long known to facilitate rapid energy efficient nerve impulse propagation. However, it is now also clear, particularly in the central nervous system, that myelin is not a simple static insulator but that it is dynamically regulated throughout development and life. New myelin sheaths can be made by newly differentiating oligodendrocytes, and mature myelin sheaths can be stimulated to grow again in the adult. Furthermore, numerous studies in models from fish to man indicate that neuronal activity can affect distinct stages of oligodendrocyte development and the process of myelination itself. This begs questions as to how these effects of activity are mediated at a cellular and molecular level and whether activity-driven adaptive myelination is a feature common to all myelinated axons, or indeed all oligodendrocytes, or is specific to cells or circuits with particular functions. Here we review the recent literature on this topic, elaborate on the key outstanding questions in the field, and look forward to future studies that incorporate investigations in systems from fish to man that will provide further insight into this fundamental aspect of nervous system plasticity. This article is part of a Special Issue entitled SI: Myelin Evolution. PMID:26498877

  11. Parasite Communities of Icefish (Chionodraco hamatus) in the Ross Sea (Antarctica): Influence of the Host Sex on the Helminth Infracommunity Structure

    PubMed Central

    Santoro, Mario; Mattiucci, Simonetta; Cipriani, Paolo; Bellisario, Bruno; Romanelli, Francesco; Cimmaruta, Roberta; Nascetti, Giuseppe

    2014-01-01

    Parasite communities of Chionodraco hamatus were investigated from Terra Nova Bay (Ross Sea, Antarctica) during host spawning time. Special attention was given to helminth infracommunities and effect of host sex on its structure. A total of 21 taxa including 5 ecto-parasites and 16 endo-parasites were identified. The number of ecto and endo-parasite species per individual host ranged from 1 to 3 and 3 to 10, respectively, while the mean numbers of parasite specimens per individual host were 4.7 and 1309.7, respectively. The rich abundance of infection suggests a rich concentration of helminth intermediate/paratenic hosts in the coastal waters of Terra Nova Bay. Chionodraco hamatus serves as a definitive host for 10 helminth taxa, while it acts as an intermediate/paratenic host for 6 helminth taxa. Larvae of 6 helminth taxa for which C. hamatus serves as intermediate/paratenic host represented 98.7% of all specimens found. Of these, the tetraphyllidean and diphyllobothridean cestodes and the nematode Contracaecum osculatum s.l. were the most prevalent and abundant. ‘Larval’ infracommunities had significantly higher species richness, total abundance and diversity than ‘adult’ infracommunities, suggesting the important role of C. hamatus in supporting the life cycles of those parasites in the study area as a paratenic/intermediate host. Significant differences in the pattern of helminth infracommunities of larval forms between male and female fish were found. These differences could be caused by physiological, and most probably by behavioral differences between sexes suggesting that sex is an important factor influencing parasite burden in C. hamatus during reproductive season. PMID:24558440

  12. Adapting to Regional Enforcement: Fishing Down the Governance Index

    PubMed Central

    Österblom, Henrik; Sumaila, U. Rashid; Bodin, Örjan; Hentati Sundberg, Jonas; Press, Anthony J.

    2010-01-01

    Background Illegal, Unreported and Unregulated (IUU) fishing is a problem for marine resource managers, leading to depletion of fish stocks and negative impacts on marine ecosystems. These problems are particularly evident in regions with weak governance. Countries responsible for sustainable natural resource management in the Southern Ocean have actively worked to reduce IUU fishing in the region over a period of 15 years, leading to a sequence of three distinct peaks of IUU fishing. Methodology/Principal Findings We reviewed existing public records relating to IUU fishing in the Southern Ocean between 1995–2009 and related this information to the governance capacity of flag states responsible for IUU vessels. IUU operators used a number of methods to adapt to enforcement actions, resulting in reduced risks of detection, apprehension and sanctioning. They changed fishing locations, vessel names and flag states, and ports for offloading IUU catches. There was a significant decrease in the proportion of IUU vessels flagged to CCAMLR countries, and a significant decrease in the average governance index of flag states. Despite a decreasing trend of IUU fishing, further actions are hampered by the regional scope of CCAMLR and the governance capacity of responsible states. Conclusions/Significance This is the first study of long-term change in the modus operandi of IUU fishing operators, illustrating that IUU operators can adapt to enforcement actions and that such dynamics may lead to new problems elsewhere, where countries have a limited capacity. This outsourcing of problems may have similarities to natural resource extraction in other sectors and in other regions. IUU fishing is the result of a number of factors, and effectively addressing this major challenge to sustainable marine resource extraction will likely require a stronger focus on governance. Highly mobile resource extractors with substantial funds are able to adapt to changing regulations by exploiting

  13. Molecular adaptations in Antarctic fish and bacteria

    NASA Astrophysics Data System (ADS)

    Russo, Roberta; Riccio, Alessia; di Prisco, Guido; Verde, Cinzia; Giordano, Daniela

    2010-08-01

    Marine organisms, living in the cold waters of the Southern Ocean, are exposed to high oxygen concentrations. Cold-adapted organisms have developed networks of defence mechanisms to protect themselves against oxidative stress. The dominant suborder Notothenioidei of the Southern Ocean is one of the most interesting models, within vertebrates, to study the evolutionary biological responses to extreme environment. Within bacteria, the psychrophilic Antarctic bacterium Pseudoalteromonas haloplanktis TAC125 gives the opportunity to explore the cellular strategies adopted in vivo by cold-adapted microorganisms to cope with cold and high oxygen concentration. Understanding the molecular mechanisms underlying how a range of Antarctic organisms have responded to climate change in the past will enable predictions as to how they and other species will adapt to global climate change, in terms of physiological function, distribution patterns and ecosystem balance.

  14. Exploring novel hormones essential for seawater adaptation in teleost fish.

    PubMed

    Takei, Yoshio

    2008-05-15

    Marine fish are dehydrated in hyperosmotic seawater (SW), but maintain water balance by drinking surrounding SW if they are capable of excreting the excess ions, particularly Na(+) and Cl(-), absorbed with water by the intestine. An integrative approach is essential for understanding the mechanisms for SW adaptation, in which hormones play pivotal roles. Comparative genomic analyses have shown that hormones that have Na(+)-extruding and vasodepressor properties are greatly diversified in teleost fish. Physiological studies at molecular to organismal levels have revealed that these diversified hormones are much more potent and efficacious in teleost fish than in mammals and are important for survival in SW and for maintenance of low arterial pressure in a gravity-free aquatic environment. This is typified by the natriuretic peptide (NP) family, which is diversified into seven members (ANP, BNP, VNP and CNP1, 2, 3 and 4) and exerts potent hyponatremic and vasodepressor actions in marine fish. Another example is the guanylin family, which consists of three paralogs (guanylin, uroguanylin and renoguanylin), and stimulates Cl(-) secretion into the intestinal lumen and activates the absorptive-type Na-K-2Cl cotransporter by local luminocrine actions. The most recent addition is the adrenomedullin (AM) family, which has five members (AM1, 2, 3, 4 and 5), with AM2 and AM5 showing the most potent or efficacious vasodepressor and osmoregulatory effects among known hormones in teleost fish. Accumulating evidence strongly indicates that members of these diversified hormone families play essential roles in SW adaptation in teleost fish. In this short review, the author has attempted to propose a novel approach for identification of new hormones that are important for SW adaptation using comparative genomic and functional studies. The author has also suggested potential hormone families that are diversified in teleost fish and appear to be involved in SW adaptation through their

  15. 76 FR 30193 - National Fish, Wildlife, and Plants Climate Adaptation Strategy; Notice of Intent: Request for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-24

    ... Fish and Wildlife Service National Fish, Wildlife, and Plants Climate Adaptation Strategy; Notice of... National Fish, Wildlife, and Plants Climate Adaptation Strategy (Strategy). The Strategy will provide a... to the Office of the Science Advisor, Attn: National Fish, Wildlife, and Plants Climate...

  16. Changes in adaptive capacity of Kenyan fishing communities

    NASA Astrophysics Data System (ADS)

    Cinner, Joshua E.; Huchery, Cindy; Hicks, Christina C.; Daw, Tim M.; Marshall, Nadine; Wamukota, Andrew; Allison, Edward H.

    2015-09-01

    Coastal communities are particularly at risk from the impacts of a changing climate. Building the capacity of coastal communities to cope with and recover from a changing environment is a critical means to reducing their vulnerability. Yet, few studies have quantitatively examined adaptive capacity in such communities. Here, we build on an emerging body of research examining adaptive capacity in natural resource-dependent communities in two important ways. We examine how nine indicators of adaptive capacity vary: among segments of Kenyan fishing communities; and over time. Socially disaggregated analyses found that the young, those who had migrated, and those who do not participate in decision-making seemed least prepared for adapting to change in these resource-dependent communities. These results highlight the most vulnerable segments of society when it comes to preparing for and adapting to change in resource-dependent communities. Comparisons through time showed that aspects of adaptive capacity seemed to have increased between 2008 and 2012 owing to higher observed community infrastructure and perceived availability of credit.

  17. 77 FR 2996 - National Fish, Wildlife, and Plants Climate Adaptation Strategy

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-20

    ... the Strategy in a May 24, 2011, notice of intent in the Federal Register (76 FR 30193). After we... Fish and Wildlife Service National Fish, Wildlife, and Plants Climate Adaptation Strategy AGENCY: Fish..., Wildlife, and Plants Climate Adaptation Strategy (Strategy). The purpose of the Strategy will be to...

  18. Transcriptome analysis of the plateau fish (Triplophysa dalaica): Implications for adaptation to hypoxia in fishes.

    PubMed

    Wang, Ying; Yang, Liandong; Wu, Bo; Song, Zhaobin; He, Shunping

    2015-07-10

    Triplophysa dalaica, endemic species of Qinghai-Tibetan Plateau, is informative for understanding the genetic basis of adaptation to hypoxic conditions of high altitude habitats. Here, a comprehensive gene repertoire for this plateau fish was generated using the Illumina deep paired-end high-throughput sequencing technology. De novo assembly yielded 145, 256 unigenes with an average length of 1632 bp. Blast searches against GenBank non-redundant database annotated 74,594 (51.4%) unigenes encoding for 30,047 gene descriptions in T. dalaica. Functional annotation and classification of assembled sequences were performed using Gene Ontology (GO), clusters of euKaryotic Orthologous Groups (KOG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. After comparison with other fish transcriptomes, including silver carp (Hypophthalmichthys molitrix) and mud loach (Misgurnus anguillicaudatus), 2621 high-quality orthologous gene alignments were constructed among these species. 61 (2.3%) of the genes were identified as having undergone positive selection in the T. dalaica lineage. Within the positively selected genes, 13 genes were involved in hypoxia response, of which 11 were listed in HypoxiaDB. Furthermore, duplicated hif-α (hif-1αA/B and hif-2αA/B), EGLN1 and PPARA candidate genes involved in adaptation to hypoxia were identified in T. dalaica transcriptome. Branch-site model in PAML validated that hif-1αB and hif-2αA genes have undergone positive selection in T.dalaica. Finally, 37,501 simple sequence repeats (SSRs) and 19,497 high-quality single nucleotide polymorphisms (SNPs) were identified in T. dalaica. The identified SSR and SNP markers will facilitate the genetic structure, population geography and ecological studies of Triplophysa fishes. PMID:25869933

  19. Life style and biochemical adaptation in Antarctic fishes

    NASA Astrophysics Data System (ADS)

    di Prisco, Guido

    2000-12-01

    Respiration and metabolism are under investigation in Antarctic fish, in an effort to understand the interplay between ecology and biochemical and physiological processes. Fish of the dominant suborder Notothenioidei are red-blooded, except Channichthyidae (the most phyletically derived family), whose genomes retain transcriptionally inactive DNA sequences closely related to the α-globin gene of red-blooded notothenioids and have lost the β-globin locus. Our structure/function studies on 38 of the 80 red-blooded species are aimed at correlating sequence, multiplicity and oxygen binding with ecological constraints and at obtaining phylogenetic information on evolution. For comparative purposes, this work has been extended to non-Antarctic notothenioids. All sluggish bottom dwellers have a single major hemoglobin (Hb) and often a minor, functionally similar one. Three species of the family Nototheniidae have different life styles. They have uniquely specialised oxygen-transport systems, adjusted to the mode of life of each species. Artedidraconidae have a single Hb, lacking oxygen-binding cooperativity, similar to the ancestral hemoproteins of primitive organisms. The amino acid sequences are currently used in the molecular modelling approach. The study of several enzymes with key roles in metabolism (e.g. glucose-6-phosphate dehydrogenase, L-glutamate dehydrogenase, phosphorylase b, carbonic anhydrase) indicate that some aspects of the molecular structure (e.g. molecular mass, number of subunits, amino acid sequence, temperature of irreversible heat inactivation) have been conserved during development of cold adaptation. However, high catalytic efficiency, possibly due to subtle molecular changes, is observed at low temperature.

  20. Adaptation to coastal hazards: the livelihood struggles of a fishing community in Kerala, India.

    PubMed

    Santha, Sunil D

    2015-01-01

    This case study examines the coastal hazard adaptation strategies of a fishing community in a village in Kerala, India. It shows that formal adaptation strategies are highly techno-centric, costly, and do not take into account the vulnerabilities of the fishing community. Instead, they have contributed to ecological, livelihood, and knowledge uncertainties. The adaptation strategies of the fishing community are a response to these uncertainties. However, they may not lead to the fishing community's recovery from its vulnerability contexts. This case study is primarily qualitative in nature. Data were collected through in-depth interviews. Insights reveal that when actors with diverse values, interests, knowledge, and power evolve or design their respective adaptation strategies, the resulting interface often aggravates existing uncertainties associated with hazards. Furthermore, the study demonstrates that local discourses on coastal hazards are livelihood-centric and socially constructed within the struggle of the fishing community to access resources and to acquire the right to development. PMID:25230704

  1. The genomic substrate for adaptive radiation in African cichlid fish

    PubMed Central

    Malinsky, Milan; Keller, Irene; Fan, Shaohua; Simakov, Oleg; Ng, Alvin Y.; Lim, Zhi Wei; Bezault, Etienne; Turner-Maier, Jason; Johnson, Jeremy; Alcazar, Rosa; Noh, Hyun Ji; Russell, Pamela; Aken, Bronwen; Alföldi, Jessica; Amemiya, Chris; Azzouzi, Naoual; Baroiller, Jean-François; Barloy-Hubler, Frederique; Berlin, Aaron; Bloomquist, Ryan; Carleton, Karen L.; Conte, Matthew A.; D'Cotta, Helena; Eshel, Orly; Gaffney, Leslie; Galibert, Francis; Gante, Hugo F.; Gnerre, Sante; Greuter, Lucie; Guyon, Richard; Haddad, Natalie S.; Haerty, Wilfried; Harris, Rayna M.; Hofmann, Hans A.; Hourlier, Thibaut; Hulata, Gideon; Jaffe, David B.; Lara, Marcia; Lee, Alison P.; MacCallum, Iain; Mwaiko, Salome; Nikaido, Masato; Nishihara, Hidenori; Ozouf-Costaz, Catherine; Penman, David J.; Przybylski, Dariusz; Rakotomanga, Michaelle; Renn, Suzy C. P.; Ribeiro, Filipe J.; Ron, Micha; Salzburger, Walter; Sanchez-Pulido, Luis; Santos, M. Emilia; Searle, Steve; Sharpe, Ted; Swofford, Ross; Tan, Frederick J.; Williams, Louise; Young, Sarah; Yin, Shuangye; Okada, Norihiro; Kocher, Thomas D.; Miska, Eric A.; Lander, Eric S.; Venkatesh, Byrappa; Fernald, Russell D.; Meyer, Axel; Ponting, Chris P.; Streelman, J. Todd; Lindblad-Toh, Kerstin; Seehausen, Ole; Di Palma, Federica

    2015-01-01

    Cichlid fishes are famous for large, diverse and replicated adaptive radiations in the Great Lakes of East Africa. To understand the molecular mechanisms underlying cichlid phenotypic diversity, we sequenced the genomes and transcriptomes of five lineages of African cichlids: the Nile tilapia (Oreochromis niloticus), an ancestral lineage with low diversity; and four members of the East African lineage: Neolamprologus brichardi/pulcher (older radiation, Lake Tanganyika), Metriaclima zebra (recent radiation, Lake Malawi), Pundamilia nyererei (very recent radiation, Lake Victoria), and Astatotilapia burtoni (riverine species around Lake Tanganyika). We found an excess of gene duplications in the East African lineage compared to tilapia and other teleosts, an abundance of non-coding element divergence, accelerated coding sequence evolution, expression divergence associated with transposable element insertions, and regulation by novel microRNAs. In addition, we analysed sequence data from sixty individuals representing six closely related species from Lake Victoria, and show genome-wide diversifying selection on coding and regulatory variants, some of which were recruited from ancient polymorphisms. We conclude that a number of molecular mechanisms shaped East African cichlid genomes, and that amassing of standing variation during periods of relaxed purifying selection may have been important in facilitating subsequent evolutionary diversification. PMID:25186727

  2. Selection for Adaptation to Dietary Shifts: Towards Sustainable Breeding of Carnivorous Fish

    PubMed Central

    Le Boucher, Richard; Dupont-Nivet, Mathilde; Vandeputte, Marc; Kerneïs, Thierry; Goardon, Lionel; Labbé, Laurent; Chatain, Béatrice; Bothaire, Marie Josée; Larroquet, Laurence; Médale, Françoise; Quillet, Edwige

    2012-01-01

    Genetic adaptation to dietary environments is a key process in the evolution of natural populations and is of great interest in animal breeding. In fish farming, the use of fish meal and fish oil has been widely challenged, leading to the rapidly increasing use of plant-based products in feed. However, high substitution rates impair fish health and growth in carnivorous species. We demonstrated that survival rate, mean body weight and biomass can be improved in rainbow trout (Oncorhynchus mykiss) after a single generation of selection for the ability to adapt to a totally plant-based diet (15.1%, 35.3% and 54.4%, respectively). Individual variability in the ability to adapt to major diet changes can be effectively used to promote fish welfare and a more sustainable aquaculture. PMID:23028667

  3. GENETIC ADAPTATION TO CHRONIC CONTAMINANT EXPOSURE BY A SMALL ESTUARINE FISH

    EPA Science Inventory

    Investigations of the non-migratory fish species Fundulus heteroclitus indigenous to a highly chemically contaminated site is providing novel insights into stressor costs and adaptive strategies. Specifically, we are studying an abundant and persistent population of F. heterocli...

  4. 78 FR 19514 - National Fish, Wildlife, and Plants Climate Adaptation Strategy

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-01

    ... May 24, 2011, notice of intent in the Federal Register (76 FR 30193). After this initial input was... 20, 2012 (77 FR 2996), for a 45-day public comment period. Comments received during the public... Fish and Wildlife Service National Fish, Wildlife, and Plants Climate Adaptation Strategy AGENCY:...

  5. The adaptation of biological membranes to temperature and pressure: fish from the deep and cold.

    PubMed

    Cossins, A R; Macdonald, A G

    1989-02-01

    The homeostatic regulation of bilayer order is a property of functional importance. Arguably, it is best studied in those organisms which experience and must overcome disturbances in bilayer order which may be imposed by variations in temperature of hydrostatic pressure. This article reviews our recent work on the adaptations of order in brain membranes of those fish which acclimate to seasonal changes in temperature or which have evolved in extreme thermal or abyssal habitats. The effects of temperature and pressure upon hydrocarbon order and phase state are reviewed to indicate the magnitude of the disturbances experienced by animals in their environments over the seasonal or evolutionary timescale. Acclimation of fish to altered temperature leads to a partial correction of order, while comparison of fish from extreme cold environments with those from temperate or tropical waters reveals a more complete adaptation. Fish from the deep sea also display adaptations of bilayer order which largely overcome the ordering effects of pressure. PMID:2651424

  6. Fisheries-induced neutral and adaptive evolution in exploited fish populations and consequences for their adaptive potential

    PubMed Central

    Marty, Lise; Dieckmann, Ulf; Ernande, Bruno

    2015-01-01

    Fishing may induce neutral and adaptive evolution affecting life-history traits, and molecular evidence has shown that neutral genetic diversity has declined in some exploited populations. Here, we theoretically study the interplay between neutral and adaptive evolution caused by fishing. An individual-based eco-genetic model is devised that includes neutral and functional loci in a realistic ecological setting. In line with theoretical expectations, we find that fishing induces evolution towards slow growth, early maturation at small size and higher reproductive investment. We show, first, that the choice of genetic model (based on either quantitative genetics or gametic inheritance) influences the evolutionary recovery of traits after fishing ceases. Second, we analyse the influence of three factors possibly involved in the lack of evolutionary recovery: the strength of selection, the effect of genetic drift and the loss of adaptive potential. We find that evolutionary recovery is hampered by an association of weak selection differentials with reduced additive genetic variances. Third, the contribution of fisheries-induced selection to the erosion of functional genetic diversity clearly dominates that of genetic drift only for the traits related to maturation. Together, our results highlight the importance of taking into account population genetic variability in predictions of eco-evolutionary dynamics. PMID:25667602

  7. Adaptive capacity of fishing communities at marine protected areas: a case study from the Colombian Pacific.

    PubMed

    Moreno-Sánchez, Rocío del Pilar; Maldonado, Jorge Higinio

    2013-12-01

    Departing from a theoretical methodology, we estimate empirically an index of adaptive capacity (IAC) of a fishing community to the establishment of marine protected areas (MPAs). We carried out household surveys, designed to obtain information for indicators and sub-indicators, and calculated the IAC. Moreover, we performed a sensitivity analysis to check for robustness of the results. Our findings show that, despite being located between two MPAs, the fishing community of Bazán in the Colombian Pacific is highly vulnerable and that the socioeconomic dimension of the IAC constitutes the most binding dimension for building adaptive capacity. Bazán is characterized by extreme poverty, high dependence on resources, and lack of basic public infrastructure. Notwithstanding, social capital and local awareness about ecological conditions may act as enhancers of adaptive capacity. The establishment of MPAs should consider the development of strategies to confer adaptive capacity to local communities highly dependent on resource extraction. PMID:24213997

  8. Complementary effect of natural and sexual selection against immigrants maintains differentiation between locally adapted fish

    NASA Astrophysics Data System (ADS)

    Plath, Martin; Riesch, Rüdiger; Oranth, Alexandra; Dzienko, Justina; Karau, Nora; Schießl, Angela; Stadler, Stefan; Wigh, Adriana; Zimmer, Claudia; Arias-Rodriguez, Lenin; Schlupp, Ingo; Tobler, Michael

    2010-08-01

    Adaptation to ecologically heterogeneous environments can drive speciation. But what mechanisms maintain reproductive isolation among locally adapted populations? Using poeciliid fishes in a system with naturally occurring toxic hydrogen sulfide, we show that (a) fish from non-sulfidic sites ( Poecilia mexicana) show high mortality (95 %) after 24 h when exposed to the toxicant, while locally adapted fish from sulfidic sites ( Poecilia sulphuraria) experience low mortality (13 %) when transferred to non-sulfidic water. (b) Mate choice tests revealed that P. mexicana females exhibit a preference for conspecific males in non-sulfidic water, but not in sulfidic water, whereas P. sulphuraria females never showed a preference. Increased costs of mate choice in sulfidic, hypoxic water, and the lack of selection for reinforcement due to the low survival of P. mexicana may explain the absence of a preference in P. sulphuraria females. Taken together, our study may be the first to demonstrate independent—but complementary—effects of natural and sexual selection against immigrants maintaining differentiation between locally adapted fish populations.

  9. Ockham's razor gone blunt: coenzyme Q adaptation and redox balance in tropical reef fishes

    PubMed Central

    Gagliano, Monica; Dunlap, Walter C.; de Nys, Rocky; Depczynski, Martial

    2009-01-01

    The ubiquitous coenzyme Q (CoQ) is a powerful antioxidant defence against cellular oxidative damage. In fishes, differences in the isoprenoid length of CoQ and its associated antioxidant efficacy have been proposed as an adaptation to different thermal environments. Here, we examine this broad contention by a comparison of the CoQ composition and its redox status in a range of coral reef fishes. Contrary to expectations, most species possessed CoQ8 and their hepatic redox balance was mostly found in the reduced form. These elevated concentrations of the ubiquinol antioxidant are indicative of a high level of protection required against oxidative stress. We propose that, in contrast to the current paradigm, CoQ variation in coral reef fishes is not a generalized adaptation to thermal conditions, but reflects species-specific ecological habits and physiological constraints associated with oxygen demand. PMID:19324638

  10. Crater lake habitat predicts morphological diversity in adaptive radiations of cichlid fishes.

    PubMed

    Recknagel, Hans; Elmer, Kathryn R; Meyer, Axel

    2014-07-01

    Adaptive radiations provide an excellent opportunity for studying the correlates and causes for the origin of biodiversity. In these radiations, species diversity may be influenced by either the ecological and physical environment, intrinsic lineage effects, or both. Disentangling the relative contributions of these factors in generating biodiversity remains a major challenge in understanding why a lineage does or does not radiate. Here, we examined morphological variation in body shape for replicate flocks of Nicaraguan Midas cichlid fishes and tested its association with biological and physical characteristics of their crater lakes. We found that variability of body elongation, an adaptive trait in freshwater fishes, is mainly predicted by average lake depth (N = 6, P < 0.001, R(2) = 0.96). Other factors considered, including lake age, surface area, littoral zone area, number of co-occurring fish species, and genetic diversity of the Midas flock, did not significantly predict morphological variability. We also showed that lakes with a larger littoral zone have on average higher bodied Midas cichlids, indicating that Midas cichlid flocks are locally adapted to their crater lake habitats. In conclusion, we found that a lake's habitat predicts the magnitude and the diversity of body elongation in repeated cichlid adaptive radiations. PMID:24660780

  11. The Adaptive Radiation of Cichlid Fish in Lake Tanganyika: A Morphological Perspective

    PubMed Central

    Takahashi, Tetsumi; Koblmüller, Stephan

    2011-01-01

    Lake Tanganyika is the oldest of the Great Ancient Lakes in the East Africa. This lake harbours about 250 species of cichlid fish, which are highly diverse in terms of morphology, behaviour, and ecology. Lake Tanganyika's cichlid diversity has evolved through explosive speciation and is treated as a textbook example of adaptive radiation, the rapid differentiation of a single ancestor into an array of species that differ in traits used to exploit their environments and resources. To elucidate the processes and mechanisms underlying the rapid speciation and adaptive radiation of Lake Tanganyika's cichlid species assemblage it is important to integrate evidence from several lines of research. Great efforts have been, are, and certainly will be taken to solve the mystery of how so many cichlid species evolved in so little time. In the present review, we summarize morphological studies that relate to the adaptive radiation of Lake Tanganyika's cichlids and highlight their importance for understanding the process of adaptive radiation. PMID:21716857

  12. Lake morphometry and resource polymorphism determine niche segregation between cool- and cold-water-adapted fish.

    PubMed

    Hayden, Brian; Harrod, Chris; Kahilaineni, Kimmo K

    2014-02-01

    Climate change is increasing ambient temperatures in Arctic and subarctic regions, facilitating latitudinal range expansions of freshwater fishes adapted to warmer water temperatures. The relative roles of resource availability and interspecific interactions between resident and invading species in determining the outcomes of such expansions has not been adequately evaluated. Ecological interactions between a cool-water adapted fish, the perch (Perca fluviatilis), and the cold-water adapted European whitefish (Coregonus lavaretus), were studied in both shallow and deep lakes with fish communities dominated by (1) monomorphic whitefish, (2) monomorphic whitefish and perch, and (3) polymorphic whitefish and perch. A combination of stomach content, stable-isotope, and invertebrate prey availability data were used to identify resource use and niche overlap among perch, the trophic generalist large sparsely rakered (LSR) whitefish morph, and the pelagic specialist densely rakered (DR) whitefish morph in 10 subarctic lakes at the contemporary distribution limit of perch in northern Scandinavia. Perch utilized its putative preferred littoral niche in all lakes. LSR whitefish utilized both littoral and pelagic resources in monomorphic whitefish-dominated lakes. When found in sympatry with perch, LSR whitefish exclusively utilized pelagic prey in deep lakes, but displayed niche overlap with perch in shallow littoral lakes. DR whitefish was a specialist zooplanktivore, relegating LSR whitefish from pelagic habitats, leading to an increase in niche overlap between LSR whitefish and perch in deep lakes. Our results highlight how resource availability (lake depth and fish community) governs ecological interactions between native and invading species, leading to different outcomes even at the same latitudes. These findings suggest that lake morphometry and fish community structure data should be included in bioclimate envelope-based models of species distribution shifts

  13. Genetic linkage of distinct adaptive traits in sympatrically speciating crater lake cichlid fish.

    PubMed

    Fruciano, Carmelo; Franchini, Paolo; Kovacova, Viera; Elmer, Kathryn R; Henning, Frederico; Meyer, Axel

    2016-01-01

    Our understanding of how biological diversity arises is limited, especially in the case of speciation in the face of gene flow. Here we investigate the genomic basis of adaptive traits, focusing on a sympatrically diverging species pair of crater lake cichlid fishes. We identify the main quantitative trait loci (QTL) for two eco-morphological traits: body shape and pharyngeal jaw morphology. These traits diverge in parallel between benthic and limnetic species in the repeated adaptive radiations of this and other fish lineages. Remarkably, a single chromosomal region contains the highest effect size QTL for both traits. Transcriptomic data show that the QTL regions contain genes putatively under selection. Independent population genomic data corroborate QTL regions as areas of high differentiation between the sympatric sister species. Our results provide empirical support for current theoretical models that emphasize the importance of genetic linkage and pleiotropy in facilitating rapid divergence in sympatry. PMID:27597183

  14. A Demonstration of Nesting in Two Antarctic Icefish (Genus Chionodraco) Using a Fin Dimorphism Analysis and Ex Situ Videos

    PubMed Central

    Ferrando, Sara; Castellano, Laura; Gallus, Lorenzo; Ghigliotti, Laura; Masini, Maria Angela; Pisano, Eva; Vacchi, Marino

    2014-01-01

    Visual observations and videos of Chionodraco hamatus icefish at the “Acquario di Genova” and histological analyses of congeneric species C. hamatus and C. rastrospinosus adults sampled in the field provided new anatomical and behavioral information on the reproductive biology of these white blooded species that are endemic to the High-Antarctic region. During the reproductive season, mature males of both species, which are different from females and immature males, display fleshy, club-like knob modifications of their anal fin that consisted of a much thicker epithelium. Histology indicated that the knobs were without any specialized glandular or sensorial organization, thus suggesting a mechanical and/or ornamental role of the modified anal fin. In addition, the occurrence of necrotic regions at the base of the thickened epithelium and the detachment of the knobs in post-spawning C. hamatus males indicated the temporary nature of the knobs. The role of these structures was confirmed as mechanical and was clarified using visual observations and videos of the behavior of two C. hamatus during a reproductive event that occurred in an exhibit tank at the “Acquario di Genova”. The reproductive process included pre-spawning activity, preparation of the nest, egg guarding and successfully ended with egg hatching. When the spawning event approached, the male prepared the nest. The nest was constructed on an accurately selected bottom surface, which was flattened and maintained free from sand or debris by a combination of radial body movements and continuous anal fin sweeping, thus demonstrating the important mechanical/abrasive function of the anal fin knobs. The present data are the first records of active nesting in icefish and clarify the meaning of dimorphic temporary structures, whose function would have been difficult to obtain in the field. PMID:24598889

  15. A demonstration of nesting in two antarctic icefish (genus Chionodraco) using a fin dimorphism analysis and ex situ videos.

    PubMed

    Ferrando, Sara; Castellano, Laura; Gallus, Lorenzo; Ghigliotti, Laura; Masini, Maria Angela; Pisano, Eva; Vacchi, Marino

    2014-01-01

    Visual observations and videos of Chionodraco hamatus icefish at the "Acquario di Genova" and histological analyses of congeneric species C. hamatus and C. rastrospinosus adults sampled in the field provided new anatomical and behavioral information on the reproductive biology of these white blooded species that are endemic to the High-Antarctic region. During the reproductive season, mature males of both species, which are different from females and immature males, display fleshy, club-like knob modifications of their anal fin that consisted of a much thicker epithelium. Histology indicated that the knobs were without any specialized glandular or sensorial organization, thus suggesting a mechanical and/or ornamental role of the modified anal fin. In addition, the occurrence of necrotic regions at the base of the thickened epithelium and the detachment of the knobs in post-spawning C. hamatus males indicated the temporary nature of the knobs. The role of these structures was confirmed as mechanical and was clarified using visual observations and videos of the behavior of two C. hamatus during a reproductive event that occurred in an exhibit tank at the "Acquario di Genova". The reproductive process included pre-spawning activity, preparation of the nest, egg guarding and successfully ended with egg hatching. When the spawning event approached, the male prepared the nest. The nest was constructed on an accurately selected bottom surface, which was flattened and maintained free from sand or debris by a combination of radial body movements and continuous anal fin sweeping, thus demonstrating the important mechanical/abrasive function of the anal fin knobs. The present data are the first records of active nesting in icefish and clarify the meaning of dimorphic temporary structures, whose function would have been difficult to obtain in the field. PMID:24598889

  16. The Genome of Spironucleus salmonicida Highlights a Fish Pathogen Adapted to Fluctuating Environments

    PubMed Central

    Xu, Feifei; Jerlström-Hultqvist, Jon; Einarsson, Elin; Ástvaldsson, Ásgeir; Svärd, Staffan G.; Andersson, Jan O.

    2014-01-01

    Spironucleus salmonicida causes systemic infections in salmonid fish. It belongs to the group diplomonads, binucleated heterotrophic flagellates adapted to micro-aerobic environments. Recently we identified energy-producing hydrogenosomes in S. salmonicida. Here we present a genome analysis of the fish parasite with a focus on the comparison to the more studied diplomonad Giardia intestinalis. We annotated 8067 protein coding genes in the ∼12.9 Mbp S. salmonicida genome. Unlike G. intestinalis, promoter-like motifs were found upstream of genes which are correlated with gene expression, suggesting a more elaborate transcriptional regulation. S. salmonicida can utilise more carbohydrates as energy sources, has an extended amino acid and sulfur metabolism, and more enzymes involved in scavenging of reactive oxygen species compared to G. intestinalis. Both genomes have large families of cysteine-rich membrane proteins. A cluster analysis indicated large divergence of these families in the two diplomonads. Nevertheless, one of S. salmonicida cysteine-rich proteins was localised to the plasma membrane similar to G. intestinalis variant-surface proteins. We identified S. salmonicida homologs to cyst wall proteins and showed that one of these is functional when expressed in Giardia. This suggests that the fish parasite is transmitted as a cyst between hosts. The extended metabolic repertoire and more extensive gene regulation compared to G. intestinalis suggest that the fish parasite is more adapted to cope with environmental fluctuations. Our genome analyses indicate that S. salmonicida is a well-adapted pathogen that can colonize different sites in the host. PMID:24516394

  17. Testing the stages model in the adaptive radiation of cichlid fishes in East African Lake Tanganyika.

    PubMed

    Muschick, Moritz; Nosil, Patrik; Roesti, Marius; Dittmann, Marie Theres; Harmon, Luke; Salzburger, Walter

    2014-11-22

    Adaptive radiation (AR) is a key process in the origin of organismal diversity. However, the evolution of trait disparity in connection with ecological specialization is still poorly understood. Available models for vertebrate ARs predict that diversification occurs in the form of temporal stages driven by different selective forces. Here, we investigate the AR of cichlid fishes in East African Lake Tanganyika and use macroevolutionary model fitting to evaluate whether diversification happened in temporal stages. Six trait complexes, for which we also provide evidence of their adaptiveness, are analysed with comparative methods: body shape, pharyngeal jaw shape, gill raker traits, gut length, brain weight and body coloration. Overall, we do not find strong evidence for the 'stages model' of AR. However, our results suggest that trophic traits diversify earlier than traits implicated in macrohabitat adaptation and that sexual communication traits (i.e. coloration) diversify late in the radiation. PMID:25274371

  18. Testing the stages model in the adaptive radiation of cichlid fishes in East African Lake Tanganyika

    PubMed Central

    Muschick, Moritz; Nosil, Patrik; Roesti, Marius; Dittmann, Marie Theres; Harmon, Luke; Salzburger, Walter

    2014-01-01

    Adaptive radiation (AR) is a key process in the origin of organismal diversity. However, the evolution of trait disparity in connection with ecological specialization is still poorly understood. Available models for vertebrate ARs predict that diversification occurs in the form of temporal stages driven by different selective forces. Here, we investigate the AR of cichlid fishes in East African Lake Tanganyika and use macroevolutionary model fitting to evaluate whether diversification happened in temporal stages. Six trait complexes, for which we also provide evidence of their adaptiveness, are analysed with comparative methods: body shape, pharyngeal jaw shape, gill raker traits, gut length, brain weight and body coloration. Overall, we do not find strong evidence for the ‘stages model’ of AR. However, our results suggest that trophic traits diversify earlier than traits implicated in macrohabitat adaptation and that sexual communication traits (i.e. coloration) diversify late in the radiation. PMID:25274371

  19. Adaptive phenotypic plasticity in the Midas cichlid fish pharyngeal jaw and its relevance in adaptive radiation

    PubMed Central

    2011-01-01

    Background Phenotypic evolution and its role in the diversification of organisms is a central topic in evolutionary biology. A neglected factor during the modern evolutionary synthesis, adaptive phenotypic plasticity, more recently attracted the attention of many evolutionary biologists and is now recognized as an important ingredient in both population persistence and diversification. The traits and directions in which an ancestral source population displays phenotypic plasticity might partly determine the trajectories in morphospace, which are accessible for an adaptive radiation, starting from the colonization of a novel environment. In the case of repeated colonizations of similar environments from the same source population this "flexible stem" hypothesis predicts similar phenotypes to arise in repeated subsequent radiations. The Midas Cichlid (Amphilophus spp.) in Nicaragua has radiated in parallel in several crater-lakes seeded by populations originating from the Nicaraguan Great Lakes. Here, we tested phenotypic plasticity in the pharyngeal jaw of Midas Cichlids. The pharyngeal jaw apparatus of cichlids, a second set of jaws functionally decoupled from the oral ones, is known to mediate ecological specialization and often differs strongly between sister-species. Results We performed a common garden experiment raising three groups of Midas cichlids on food differing in hardness and calcium content. Analyzing the lower pharyngeal jaw-bones we find significant differences between diet groups qualitatively resembling the differences found between specialized species. Observed differences in pharyngeal jaw expression between groups were attributable to the diet's mechanical resistance, whereas surplus calcium in the diet was not found to be of importance. Conclusions The pharyngeal jaw apparatus of Midas Cichlids can be expressed plastically if stimulated mechanically during feeding. Since this trait is commonly differentiated - among other traits - between

  20. Detection of Anthropogenic Particles in Fish Stomachs: An Isolation Method Adapted to Identification by Raman Spectroscopy.

    PubMed

    Collard, France; Gilbert, Bernard; Eppe, Gauthier; Parmentier, Eric; Das, Krishna

    2015-10-01

    Microplastic particles (MP) contaminate oceans and affect marine organisms in several ways. Ingestion combined with food intake is generally reported. However, data interpretation often is circumvented by the difficulty to separate MP from bulk samples. Visual examination often is used as one or the only step to sort these particles. However, color, size, and shape are insufficient and often unreliable criteria. We present an extraction method based on hypochlorite digestion and isolation of MP from the membrane by sonication. The protocol is especially well adapted to a subsequent analysis by Raman spectroscopy. The method avoids fluorescence problems, allowing better identification of anthropogenic particles (AP) from stomach contents of fish by Raman spectroscopy. It was developed with commercial samples of microplastics and cotton along with stomach contents from three different Clupeiformes fishes: Clupea harengus, Sardina pilchardus, and Engraulis encrasicolus. The optimized digestion and isolation protocol showed no visible impact on microplastics and cotton particles while the Raman spectroscopic spectrum allowed the precise identification of microplastics and textile fibers. Thirty-five particles were isolated from nine fish stomach contents. Raman analysis has confirmed 11 microplastics and 13 fibers mainly made of cellulose or lignin. Some particles were not completely identified but contained artificial dyes. The novel approach developed in this manuscript should help to assess the presence, quantity, and composition of AP in planktivorous fish stomachs. PMID:26289815

  1. Polyphyletic origins of schizothoracine fish (Cyprinidae, Osteichthyes) and adaptive evolution in their mitochondrial genomes.

    PubMed

    Yonezawa, Takahiro; Hasegawa, Masami; Zhong, Yang

    2014-01-01

    The schizothoracine fish, also called snow trout, are members of the Cyprinidae, and are the most diversified teleost fish in the Qinghai-Tibetan Plateau (QTP). Clarifying the evolutionary history of the schizothoracine fish is therefore important for better understanding the biodiversity of the QTP. Although morphological and molecular phylogenetic studies have supported the monophyly of the Schizothoracinae, a recent molecular phylogenetic study based on the mitochondrial genome questioned the monophyly of this taxon. However, the phylogenetic analysis of that study was on the basis of only three schizothoracine species, and the support values were low. In this report, we inferred the phylogenetic tree on the basis of mitochondrial genome data including 21 schizothoracine species and five closely related species, and the polyphyletic origins of the Schizothoracinae were strongly supported. The tree further suggests that the Schizothoracinae consists of two clades, namely the "morphologically specialized clade" and the "morphologically primitive clade", and that these two clades migrated independently of each other to the QTP and adapted to high altitude. We also detected in their mitochondrial genomes strong signals of positive selection, which probably represent evidence of high-altitude adaptation. In the case of the morphologically specialized clade, positive selection mainly occurred during the Late Paleocene to the Early Oligocene. Its migration also seems to have occurred in the Early Eocene, and this timing is consistent with the drastic uplifting of the QTP. On the other hand, positive selection in the morphologically primitive clade has mainly occurred since the Late Miocene. Because its members are thought to have migrated to the QTP recently, it is possible that they are now undergoing high-altitude adaptation. PMID:25747043

  2. Diversity and disparity through time in the adaptive radiation of Antarctic notothenioid fishes

    PubMed Central

    Colombo, M; Damerau, M; Hanel, R; Salzburger, W; Matschiner, M

    2015-01-01

    According to theory, adaptive radiation is triggered by ecological opportunity that can arise through the colonization of new habitats, the extinction of antagonists or the origin of key innovations. In the course of an adaptive radiation, diversification and morphological evolution are expected to slow down after an initial phase of rapid adaptation to vacant ecological niches, followed by speciation. Such ‘early bursts’ of diversification are thought to occur because niche space becomes increasingly filled over time. The diversification of Antarctic notothenioid fishes into over 120 species has become one of the prime examples of adaptive radiation in the marine realm and has likely been triggered by an evolutionary key innovation in the form of the emergence of antifreeze glycoproteins. Here, we test, using a novel time-calibrated phylogeny of 49 species and five traits that characterize notothenioid body size and shape as well as buoyancy adaptations and habitat preferences, whether the notothenioid adaptive radiation is compatible with an early burst scenario. Extensive Bayesian model comparison shows that phylogenetic age estimates are highly dependent on model choice and that models with unlinked gene trees are generally better supported and result in younger age estimates. We find strong evidence for elevated diversification rates in Antarctic notothenioids compared to outgroups, yet no sign of rate heterogeneity in the course of the radiation, except that the notothenioid family Artedidraconidae appears to show secondarily elevated diversification rates. We further observe an early burst in trophic morphology, suggesting that the notothenioid radiation proceeds in stages similar to other prominent examples of adaptive radiation. PMID:25495187

  3. Diversity and disparity through time in the adaptive radiation of Antarctic notothenioid fishes.

    PubMed

    Colombo, M; Damerau, M; Hanel, R; Salzburger, W; Matschiner, M

    2015-02-01

    According to theory, adaptive radiation is triggered by ecological opportunity that can arise through the colonization of new habitats, the extinction of antagonists or the origin of key innovations. In the course of an adaptive radiation, diversification and morphological evolution are expected to slow down after an initial phase of rapid adaptation to vacant ecological niches, followed by speciation. Such 'early bursts' of diversification are thought to occur because niche space becomes increasingly filled over time. The diversification of Antarctic notothenioid fishes into over 120 species has become one of the prime examples of adaptive radiation in the marine realm and has likely been triggered by an evolutionary key innovation in the form of the emergence of antifreeze glycoproteins. Here, we test, using a novel time-calibrated phylogeny of 49 species and five traits that characterize notothenioid body size and shape as well as buoyancy adaptations and habitat preferences, whether the notothenioid adaptive radiation is compatible with an early burst scenario. Extensive Bayesian model comparison shows that phylogenetic age estimates are highly dependent on model choice and that models with unlinked gene trees are generally better supported and result in younger age estimates. We find strong evidence for elevated diversification rates in Antarctic notothenioids compared to outgroups, yet no sign of rate heterogeneity in the course of the radiation, except that the notothenioid family Artedidraconidae appears to show secondarily elevated diversification rates. We further observe an early burst in trophic morphology, suggesting that the notothenioid radiation proceeds in stages similar to other prominent examples of adaptive radiation. PMID:25495187

  4. Mudskipper genomes provide insights into the terrestrial adaptation of amphibious fishes.

    PubMed

    You, Xinxin; Bian, Chao; Zan, Qijie; Xu, Xun; Liu, Xin; Chen, Jieming; Wang, Jintu; Qiu, Ying; Li, Wujiao; Zhang, Xinhui; Sun, Ying; Chen, Shixi; Hong, Wanshu; Li, Yuxiang; Cheng, Shifeng; Fan, Guangyi; Shi, Chengcheng; Liang, Jie; Tom Tang, Y; Yang, Chengye; Ruan, Zhiqiang; Bai, Jie; Peng, Chao; Mu, Qian; Lu, Jun; Fan, Mingjun; Yang, Shuang; Huang, Zhiyong; Jiang, Xuanting; Fang, Xiaodong; Zhang, Guojie; Zhang, Yong; Polgar, Gianluca; Yu, Hui; Li, Jia; Liu, Zhongjian; Zhang, Guoqiang; Ravi, Vydianathan; Coon, Steven L; Wang, Jian; Yang, Huanming; Venkatesh, Byrappa; Wang, Jun; Shi, Qiong

    2014-01-01

    Mudskippers are amphibious fishes that have developed morphological and physiological adaptations to match their unique lifestyles. Here we perform whole-genome sequencing of four representative mudskippers to elucidate the molecular mechanisms underlying these adaptations. We discover an expansion of innate immune system genes in the mudskippers that may provide defence against terrestrial pathogens. Several genes of the ammonia excretion pathway in the gills have experienced positive selection, suggesting their important roles in mudskippers' tolerance to environmental ammonia. Some vision-related genes are differentially lost or mutated, illustrating genomic changes associated with aerial vision. Transcriptomic analyses of mudskippers exposed to air highlight regulatory pathways that are up- or down-regulated in response to hypoxia. The present study provides a valuable resource for understanding the molecular mechanisms underlying water-to-land transition of vertebrates. PMID:25463417

  5. Mudskipper genomes provide insights into the terrestrial adaptation of amphibious fishes

    PubMed Central

    You, Xinxin; Bian, Chao; Zan, Qijie; Xu, Xun; Liu, Xin; Chen, Jieming; Wang, Jintu; Qiu, Ying; Li, Wujiao; Zhang, Xinhui; Sun, Ying; Chen, Shixi; Hong, Wanshu; Li, Yuxiang; Cheng, Shifeng; Fan, Guangyi; Shi, Chengcheng; Liang, Jie; Tom Tang, Y.; Yang, Chengye; Ruan, Zhiqiang; Bai, Jie; Peng, Chao; Mu, Qian; Lu, Jun; Fan, Mingjun; Yang, Shuang; Huang, Zhiyong; Jiang, Xuanting; Fang, Xiaodong; Zhang, Guojie; Zhang, Yong; Polgar, Gianluca; Yu, Hui; Li, Jia; Liu, Zhongjian; Zhang, Guoqiang; Ravi, Vydianathan; Coon, Steven L.; Wang, Jian; Yang, Huanming; Venkatesh, Byrappa; Wang, Jun; Shi, Qiong

    2014-01-01

    Mudskippers are amphibious fishes that have developed morphological and physiological adaptations to match their unique lifestyles. Here we perform whole-genome sequencing of four representative mudskippers to elucidate the molecular mechanisms underlying these adaptations. We discover an expansion of innate immune system genes in the mudskippers that may provide defence against terrestrial pathogens. Several genes of the ammonia excretion pathway in the gills have experienced positive selection, suggesting their important roles in mudskippers’ tolerance to environmental ammonia. Some vision-related genes are differentially lost or mutated, illustrating genomic changes associated with aerial vision. Transcriptomic analyses of mudskippers exposed to air highlight regulatory pathways that are up- or down-regulated in response to hypoxia. The present study provides a valuable resource for understanding the molecular mechanisms underlying water-to-land transition of vertebrates. PMID:25463417

  6. Population genomics of local adaptation versus speciation in coral reef fishes (Hypoplectrus spp, Serranidae).

    PubMed

    Picq, Sophie; McMillan, W Owen; Puebla, Oscar

    2016-04-01

    Are the population genomic patterns underlying local adaptation and the early stages of speciation similar? Addressing this question requires a system in which (i) local adaptation and the early stages of speciation can be clearly identified and distinguished, (ii) the amount of genetic divergence driven by the two processes is similar, and (iii) comparisons can be repeated both taxonomically (for local adaptation) and geographically (for speciation). Here, we report just such a situation in the hamlets (Hypoplectrus spp), brightly colored reef fishes from the wider Caribbean. Close to 100,000 SNPs genotyped in 126 individuals from three sympatric species sampled in three repeated populations provide genome-wide levels of divergence that are comparable among allopatric populations (F st estimate = 0.0042) and sympatric species (F st estimate = 0.0038). Population genetic, clustering, and phylogenetic analyses reveal very similar patterns for local adaptation and speciation, with a large fraction of the genome undifferentiated (F st estimate ≈ 0), a very small proportion of F st outlier loci (0.05-0.07%), and remarkably few repeated outliers (1-3). Nevertheless, different loci appear to be involved in the two processes in Hypoplectrus, with only 7% of the most differentiated SNPs and outliers shared between populations and species comparisons. In particular, a tropomyosin (Tpm4) and a previously identified hox (HoxCa) locus emerge as candidate loci (repeated outliers) for local adaptation and speciation, respectively. We conclude that marine populations may be locally adapted notwithstanding shallow levels of genetic divergence, and that from a population genomic perspective, this process does not appear to differ fundamentally from the early stages of speciation. PMID:27099711

  7. The Genome of the Myxosporean Thelohanellus kitauei Shows Adaptations to Nutrient Acquisition within Its Fish Host

    PubMed Central

    Zhou, Zhigang; Huo, Fengmin; Miao, Wei; Ran, Chao; Liu, Yuchun; Zhang, Jinyong; Feng, Jinmei; Wang, Meng; Wang, Min; Wang, Lei; Yao, Bin

    2014-01-01

    Members of Myxozoa, a parasitic metazoan taxon, have considerable detrimental effects on fish hosts and also have been associated with human food-borne illness. Little is known about their biology and metabolism. Analysis of the genome of Thelohanellus kitauei and comparative analysis with genomes of its two free-living cnidarian relatives revealed that T. kitauei has adapted to parasitism, as indicated by the streamlined metabolic repertoire and the tendency toward anabolism rather than catabolism. Thelohanellus kitauei mainly secretes proteases and protease inhibitors for nutrient digestion (parasite invasion), and depends on endocytosis (mainly low-density lipoprotein receptors-mediated type) and secondary carriers for nutrient absorption. Absence of both classic and complementary anaerobic pathways and gluconeogenesis, the lack of de novo synthesis and reduced activity in hydrolysis of fatty acids, amino acids, and nucleotides indicated that T. kitauei in this vertebrate host–parasite system has adapted to inhabit a physiological environment extremely rich in both oxygen and nutrients (especially glucose), which is consistent with its preferred parasitic site, that is, the host gut submucosa. Taking advantage of the genomic and transcriptomic information, 23 potential nutrition-related T. kitauei-specific chemotherapeutic targets were identified. This first genome sequence of a myxozoan will facilitate development of potential therapeutics for efficient control of myxozoan parasites and ultimately prevent myxozoan-induced fish-borne illnesses in humans. PMID:25381665

  8. Neurovestibular adaptation in the utricular otolith in fish to hypergravity exposure and re-adaptation to 1G

    NASA Astrophysics Data System (ADS)

    Boyle, R.; Popova, Ye.; Varelas, J.; Mofrad, A.

    The inner ear utricular organ senses the sum of inertial force due to head translation and head tilt relative to the gravitational vertical. A change in gravitational force has a profound effect on how an organism maintains equilibrium, and the neural response might involve the peripheral otolith receptors, the brain or both. If the influence of G leads to adaptation and subsequent re-adaptation processes in otolith function upon return to 1G, then this raises fundamental questions: does the transfer from 1G to 3G impart the opposite effects on changes of synaptic structure and gravitational sensitivity seen following G exposure? Do the effects accompanying transfer from the 3G to the 1G conditions resemble in part (as an analog) the transfer from 1G to the G? The use of well-controlled hyper-G experiments allows us to address these questions. Adult fish were placed in groups and exposed to 3G for 1, 2, 3, 4, 5, 8, 16, 24, and 32 days. Re-adaptation to 1G was studied in 3G exposure (4-and 16-day) following 1-8 day of recovery. Typically ∼60 afferents are well characterized in each fish. Directional sensitivity of each afferent defined as the vector with the magnitude measured in unit gain (imp/s/g) is determined. It allows us to consider the diagram of directional sensitivity of the whole macula. For quantitative estimates of the change of afferent sensitivity in hyper-G experiments two functions have been introduced: probability function (maximum sensitivity of each afferent is plotted as a percentage of population sensitivity whose values is less than the individual sensitivity) and the frequency function (or probability density function-PDF) of the population of afferents on the gain. These functions enable us to extract additional information about the details of evolution of gain-afferent distribution. Results to date show a biphasic pattern in reaction to 3G exposures: an initial sensitivity up-regulation (3-and 4-day) followed by a significant decrease

  9. Adaptive divergence between lake and stream populations of an East African cichlid fish.

    PubMed

    Theis, Anya; Ronco, Fabrizia; Indermaur, Adrian; Salzburger, Walter; Egger, Bernd

    2014-11-01

    Divergent natural selection acting in different habitats may build up barriers to gene flow and initiate speciation. This speciation continuum can range from weak or no divergence to strong genetic differentiation between populations. Here, we focus on the early phases of adaptive divergence in the East African cichlid fish Astatotilapia burtoni, which occurs in both Lake Tanganyika (LT) and inflowing rivers. We first assessed the population structure and morphological differences in A. burtoni from southern LT. We then focused on four lake-stream systems and quantified body shape, ecologically relevant traits (gill raker and lower pharyngeal jaw) as well as stomach contents. Our study revealed the presence of several divergent lake-stream populations that rest at different stages of the speciation continuum, but show the same morphological and ecological trajectories along the lake-stream gradient. Lake fish have higher bodies, a more superior mouth position, longer gill rakers and more slender pharyngeal jaws, and they show a plant/algae and zooplankton-biased diet, whereas stream fish feed more on snails, insects and plant seeds. A test for reproductive isolation between closely related lake and stream populations did not detect population-assortative mating. Analyses of F1 offspring reared under common garden conditions indicate that the detected differences in body shape and gill raker length do not constitute pure plastic responses to different environmental conditions, but also have a genetic basis. Taken together, the A. burtoni lake-stream system constitutes a new model to study the factors that enhance and constrain progress towards speciation in cichlid fishes. PMID:25256664

  10. Tracking adaptive evolution in the structure, function and molecular phylogeny of haemoglobin in non-Antarctic notothenioid fish species

    NASA Astrophysics Data System (ADS)

    Verde, Cinzia; Parisi, Elio; di Prisco, Guido

    2006-04-01

    With the notable exception of Antarctic icefishes, haemoglobin (Hb) is present in all vertebrates. In polar fish, Hb evolution has included adaptations with implications at the biochemical, physiological and molecular levels. Cold adaptation has been shown to be also linked to small changes in primary structure and post-translational modifications in proteins, including hydrophobic remodelling and increased flexibility. A wealth of knowledge is available on the oxygen-transport system of fish inhabiting Antarctic waters, but very little is known on the structure and function of Hb of non-Antarctic notothenioid fishes. The comparison of the biochemical and physiological adaptations between cold-adapted and non-cold-adapted species is a powerful tool to understand whether (and to what extent) extreme environments require specific adaptations or simply select for phenotypically different life styles. This study focuses on structure, function and molecular phylogeny of Hb in Antarctic and non-Antarctic notothenioid fishes. The rationale is to use the primary structure of Hb as tool of choice to gain insight into the pathways of the evolution history of α and β globins of notothenioids and also as a basis for reconstructing the phylogenetic relationships among Antarctic and non-Antarctic species.

  11. The interaction of sexually and naturally selected traits in the adaptive radiations of cichlid fishes.

    PubMed

    Salzburger, Walter

    2009-01-01

    The question of how genetic variation translates into organismal diversity has puzzled biologists for decades. Despite recent advances in evolutionary and developmental genetics, the mechanisms that underlie adaptation, diversification and evolutionary innovation remain largely unknown. The exceptionally diverse species flocks of cichlid fishes are textbook examples of adaptive radiation and explosive speciation and emerge as powerful model systems to study the genetic basis of animal diversification. East Africa's hundreds of endemic cichlid species are akin to a natural mutagenesis screen and differ greatly not only in ecologically relevant (hence naturally selected) characters such as mouth morphology and body shape, but also in sexually selected traits such as coloration. One of the most fascinating aspects of cichlid evolution is the frequent occurrence of evolutionary parallelisms, which has led to the question whether selection alone is sufficient to produce these parallel morphologies, or whether a developmental or genetic bias has influenced the direction of diversification. Here, I review fitness-relevant traits that could be responsible for the cichlids' evolutionary success and assess whether these were shaped by sexual or natural selection. I then focus on the interaction and the relative importance of sexual vs. natural selection in cichlid evolution. Finally, I discuss what is currently known about the genes underlying the morphogenesis of adaptively relevant traits and highlight the importance of the forthcoming cichlid genomes in the quest of the genetic basis of diversification in this group. PMID:18992003

  12. Whole genome sequencing of turbot (Scophthalmus maximus; Pleuronectiformes): a fish adapted to demersal life.

    PubMed

    Figueras, Antonio; Robledo, Diego; Corvelo, André; Hermida, Miguel; Pereiro, Patricia; Rubiolo, Juan A; Gómez-Garrido, Jèssica; Carreté, Laia; Bello, Xabier; Gut, Marta; Gut, Ivo Glynne; Marcet-Houben, Marina; Forn-Cuní, Gabriel; Galán, Beatriz; García, José Luis; Abal-Fabeiro, José Luis; Pardo, Belen G; Taboada, Xoana; Fernández, Carlos; Vlasova, Anna; Hermoso-Pulido, Antonio; Guigó, Roderic; Álvarez-Dios, José Antonio; Gómez-Tato, Antonio; Viñas, Ana; Maside, Xulio; Gabaldón, Toni; Novoa, Beatriz; Bouza, Carmen; Alioto, Tyler; Martínez, Paulino

    2016-06-01

    The turbot is a flatfish (Pleuronectiformes) with increasing commercial value, which has prompted active genomic research aimed at more efficient selection. Here we present the sequence and annotation of the turbot genome, which represents a milestone for both boosting breeding programmes and ascertaining the origin and diversification of flatfish. We compare the turbot genome with model fish genomes to investigate teleost chromosome evolution. We observe a conserved macrosyntenic pattern within Percomorpha and identify large syntenic blocks within the turbot genome related to the teleost genome duplication. We identify gene family expansions and positive selection of genes associated with vision and metabolism of membrane lipids, which suggests adaptation to demersal lifestyle and to cold temperatures, respectively. Our data indicate a quick evolution and diversification of flatfish to adapt to benthic life and provide clues for understanding their controversial origin. Moreover, we investigate the genomic architecture of growth, sex determination and disease resistance, key traits for understanding local adaptation and boosting turbot production, by mapping candidate genes and previously reported quantitative trait loci. The genomic architecture of these productive traits has allowed the identification of candidate genes and enriched pathways that may represent useful information for future marker-assisted selection in turbot. PMID:26951068

  13. Whole genome sequencing of turbot (Scophthalmus maximus; Pleuronectiformes): a fish adapted to demersal life

    PubMed Central

    Figueras, Antonio; Robledo, Diego; Corvelo, André; Hermida, Miguel; Pereiro, Patricia; Rubiolo, Juan A.; Gómez-Garrido, Jèssica; Carreté, Laia; Bello, Xabier; Gut, Marta; Gut, Ivo Glynne; Marcet-Houben, Marina; Forn-Cuní, Gabriel; Galán, Beatriz; García, José Luis; Abal-Fabeiro, José Luis; Pardo, Belen G.; Taboada, Xoana; Fernández, Carlos; Vlasova, Anna; Hermoso-Pulido, Antonio; Guigó, Roderic; Álvarez-Dios, José Antonio; Gómez-Tato, Antonio; Viñas, Ana; Maside, Xulio; Gabaldón, Toni; Novoa, Beatriz; Bouza, Carmen; Alioto, Tyler; Martínez, Paulino

    2016-01-01

    The turbot is a flatfish (Pleuronectiformes) with increasing commercial value, which has prompted active genomic research aimed at more efficient selection. Here we present the sequence and annotation of the turbot genome, which represents a milestone for both boosting breeding programmes and ascertaining the origin and diversification of flatfish. We compare the turbot genome with model fish genomes to investigate teleost chromosome evolution. We observe a conserved macrosyntenic pattern within Percomorpha and identify large syntenic blocks within the turbot genome related to the teleost genome duplication. We identify gene family expansions and positive selection of genes associated with vision and metabolism of membrane lipids, which suggests adaptation to demersal lifestyle and to cold temperatures, respectively. Our data indicate a quick evolution and diversification of flatfish to adapt to benthic life and provide clues for understanding their controversial origin. Moreover, we investigate the genomic architecture of growth, sex determination and disease resistance, key traits for understanding local adaptation and boosting turbot production, by mapping candidate genes and previously reported quantitative trait loci. The genomic architecture of these productive traits has allowed the identification of candidate genes and enriched pathways that may represent useful information for future marker-assisted selection in turbot. PMID:26951068

  14. Comprehensive Transcriptome Analysis of Six Catfish Species from an Altitude Gradient Reveals Adaptive Evolution in Tibetan Fishes

    PubMed Central

    Ma, Xiuhui; Dai, Wei; Kang, Jingliang; Yang, Liandong; He, Shunping

    2015-01-01

    Glyptosternoid fishes (Siluriformes), one of the three broad fish lineages (the two other are schizothoracines and Triplophysa), have a limited distribution in the rivers in the Tibetan Plateau and peripheral regions. To investigate the genetic mechanisms underlying adaptation to the Tibetan Plateau in several fish species from gradient altitudes, a total of 20,659,183–37,166,756 sequence reads from six species of catfish were generated by Illumina sequencing, resulting in six assemblies. Analysis of the 1,656 orthologs among the six assembled catfish unigene sets provided consistent evidence for genome-wide accelerated evolution in the three glyptosternoid lineages living at high altitudes. A large number of genes refer to functional categories related to hypoxia and energy metabolism exhibited rapid evolution in the glyptosternoid lineages relative to yellowhead catfish living in plains areas. Genes showing signatures of rapid evolution and positive selection in the glyptosternoid lineages were also enriched in functions associated with energy metabolism and hypoxia. Our analyses provide novel insights into highland adaptation in fishes and can serve as a foundation for future studies aiming to identify candidate genes underlying the genetic basis of adaptation in Tibetan fishes. PMID:26564948

  15. Adaption of egg and larvae sampling techniques for lake sturgeon and broadcast spawning fishes in a deep river

    USGS Publications Warehouse

    Roseman, Edward F.; Kennedy, Gregory W.; Craig, Jaquelyn; Boase, James; Soper, Karen

    2011-01-01

    In this report we describe how we adapted two techniques for sampling lake sturgeon (Acipenser fulvescens) and other fish early life history stages to meet our research needs in the Detroit River, a deep, flowing Great Lakes connecting channel. First, we developed a buoy-less method for sampling fish eggs and spawning activity using egg mats deployed on the river bottom. The buoy-less method allowed us to fish gear in areas frequented by boaters and recreational anglers, thus eliminating surface obstructions that interfered with recreational and boating activities. The buoy-less method also reduced gear loss due to drift when masses of floating aquatic vegetation would accumulate on buoys and lines, increasing the drag on the gear and pulling it downstream. Second, we adapted a D-frame drift net system formerly employed in shallow streams to assess larval lake sturgeon dispersal for use in the deeper (>8 m) Detroit River using an anchor and buoy system.

  16. Antarctic Notothenioid Fishes: Genomic Resources and Strategies for Analyzing an Adaptive Radiation

    PubMed Central

    Detrich, H. W.; Amemiya, Chris T.

    2010-01-01

    The perciform suborder Notothenoidei provides a compelling opportunity to study the adaptive radiation of a marine species-flock in the cold Southern Ocean that surrounds Antarctica. To facilitate genome-level studies of the diversification of these fishes, we present estimates of the genome sizes of 11 Antarctic species and describe the production of high-quality bacterial artificial chromosome (BAC) libraries for two, the red-blooded notothen Notothenia coriiceps and the white-blooded icefish Chaenocephalus aceratus. Our results indicate that evolution of phylogenetically derived notothenioid families (e.g., the crown group Channichthyidae [icefishes]), was accompanied by genome expansion. Six species from the basal family Nototheniidae had C-values between 0.98 and 1.20 pg, a range that is consistent with the genome sizes of proposed outgroups (e.g., percids) of the notothenioid suborder. In contrast, four icefishes had C-values in the range 1.66–1.83 pg. The BAC libraries VMRC-19 (N. coriiceps) and VMRC-21 (C. aceratus) comprise 12× and 10× coverage of the respective genomes and have average insert sizes of 138 and 168 kb. Paired BAC-end reads representing ∼0.1% of each genome showed that the repetitive element landscapes of the two genomes (13.4% of the N. coriiceps genome and 14.5% for C. aceratus) were similar. The availability of these high-quality and well-characterized BAC libraries sets the stage for targeted genomic analyses of the unusual anatomical and physiological adaptations of the notothenioids, some of which mimic human diseases. Here we consider the evolution of secondary pelagicism by various taxa of the group and illustrate the utility of Antarctic icefishes as an evolutionary-mutant model of human osteopenia (low-mineral density of bones). PMID:21082069

  17. Evaluating Adaptive Divergence Between Migratory and Nonmigratory Ecotypes of a Salmonid Fish, Oncorhynchus mykiss

    PubMed Central

    Hale, Matthew C.; Thrower, Frank P.; Berntson, Ewann A.; Miller, Michael R.; Nichols, Krista M.

    2013-01-01

    Next-generation sequencing and the application of population genomic and association approaches have made it possible to detect selection and unravel the genetic basis to variable phenotypic traits. The use of these two approaches in parallel is especially attractive in nonmodel organisms that lack a sequenced and annotated genome, but only works well when population structure is not confounded with the phenotype of interest. Herein, we use population genomics in a nonmodel fish species, rainbow trout (Oncorhynchus mykiss), to better understand adaptive divergence between migratory and nonmigratory ecotypes and to further our understanding about the genetic basis of migration. Restriction site-associated DNA (RAD) tag sequencing was used to identify single-nucleotide polymorphisms (SNPs) in migrant and resident O. mykiss from two systems, one in Alaska and the other in Oregon. A total of 7920 and 6755 SNPs met filtering criteria in the Alaska and Oregon data sets, respectively. Population genetic tests determined that 1423 SNPs were candidates for selection when loci were compared between resident and migrant samples. Previous linkage mapping studies that used RAD DNA tag SNPs were available to determine the position of 1990 markers. Several significant SNPs are located in genome regions that contain quantitative trait loci for migratory-related traits, reinforcing the importance of these regions in the genetic basis of migration/residency. Annotation of genome regions linked to significant SNPs revealed genes involved in processes known to be important in migration (such as osmoregulatory function). This study adds to our growing knowledge on adaptive divergence between migratory and nonmigratory ecotypes of this species; across studies, this complex trait appears to be controlled by many loci of small effect, with some in common, but many loci not shared between populations studied. PMID:23797103

  18. Osmoregulatory adaptations of freshwater air-breathing snakehead fish (Channa striata) after exposure to brackish water.

    PubMed

    Nakkrasae, La-iad; Wisetdee, Khanitha; Charoenphandhu, Narattaphol

    2015-07-01

    NaCl-rich rock salt dissolved in natural water source leads to salinity fluctuation that profoundly affects freshwater ecosystem and aquatic fauna. The snakehead (Channa striata) can live in saline water, but the osmoregulatory mechanisms underlying this ability remain unclear. Herein, we found that exposure to salinities ≥ 10‰ NaCl markedly elevated plasma cortisol and glucose levels, and caused muscle dehydration. In a study of time-dependent response after being transferred from fresh water (0‰ NaCl, FW) to salt-dissolved brackish water (10‰ NaCl, SW), FW-SW, cortisol increased rapidly along with elevations of plasma glucose and lactate. Interestingly, plasma cortisol returned to baseline after prolonged exposure, followed by a second peak that probably enhanced the branchial Na(+)/K(+)-ATPase activity. Under SW-FW condition, Na(+)/K(+)-ATPase activity was not altered as compared to SW-adapted fish. In conclusion, salinity change, especially FW-SW, induced a stress response and hence cortisol release in C. striata, which might increase plasma glucose and lactate to energize the branchial Na(+)/K(+)-ATPase. PMID:25899744

  19. Neuro- and sensoriphysiological Adaptations to Microgravity using Fish as Model System

    NASA Astrophysics Data System (ADS)

    Anken, R.

    The phylogenetic development of all organisms took place under constant gravity conditions, against which they achieved specific countermeasures for compensation and adaptation. On this background, it is still an open question to which extent altered gravity such as hyper- or microgravity (centrifuge/spaceflight) affects the normal individual development, either on the systemic level of the whole organism or on the level of individual organs or even single cells. The present review provides information on this topic, focusing on the effects of altered gravity on developing fish as model systems even for higher vertebrates including humans, with special emphasis on the effect of altered gravity on behaviour and particularly on the developing brain and vestibular system. Overall, the results speak in favour of the following concept: Short-term altered gravity (˜ 1 day) can induce transient sensorimotor disorders (kinetoses) due to malfunctions of the inner ear, originating from asymmetric otoliths. The regain of normal postural control is likely due to a reweighing of sensory inputs. During long-term altered gravity (several days and more), complex adptations on the level of the central and peripheral vestibular system occur. This work was financially supported by the German Aerospace Center (DLR) e.V. (FKZ: 50 WB 9997).

  20. A unique mode of tissue oxygenation and the adaptive radiation of teleost fishes.

    PubMed

    Randall, D J; Rummer, J L; Wilson, J M; Wang, S; Brauner, C J

    2014-04-15

    for CO2 hydration/dehydration. Finally, RBC organophosphates (e.g. NTP) could be reduced during hypoxia to further increase Hb-O2 affinity without compromising tissue O2 delivery because high-affinity Hbs could still adequately deliver O2 to the tissues via Bohr/Root shifts. We suggest that the evolution of this unique mode of tissue O2 transfer evolved in the Triassic/Jurassic Period, when O2 levels were low, ultimately giving rise to the most extensive adaptive radiation of extant vertebrates, the teleost fishes. PMID:24744420

  1. Adaptive responses to osmotic stress in kidney-derived cell lines from Scatophagus argus, a euryhaline fish.

    PubMed

    Gui, Lang; Zhang, Peipei; Liang, Xuemei; Su, Maoliang; Wu, Di; Zhang, Junbin

    2016-06-01

    The euryhaline fish, the spotted scat (Scatophagus argus), is exceptional for its ability to tolerate rapid fluctuations in salinity. To better understand fish osmoregulation and enable more precise analyses of specific features of adaptive responses to the osmotic stress in fish, a S. argus kidney-derived cell line (SK) was developed and subcultured for more than 70 passages. The cells were mostly fibroblast-like, with a normal diploid karyotype (2n=48). A low-osmolarity-adapted SK cell line (SK-la) was induced by growth in a hypotonic solution (150 mOsm). Effects of different osmotic stresses (150, 300 and 450 mOsm) on cell growth, cell morphology, cell volume changes and cell damage in SK, SK-la and CIK (a kidney-derived cell line from freshwater grass carp) cells were studied. These were compared by use of microscopic observation, flow cytometry and a Na-K-ATPase (NKA) assay. SK cells became smaller and grew rapidly in response to hypotonic stress (150 mOsm), and exhibited no visible morphological changes in response to hypertonic stress (450 mOsm). SK-la grew well by moderate hypertonicity (300 mOsm) but depressed in severe hypertonicity (450 mOsm), the number of unhealthy SK-la cells rose as osmolarity increased. In contrast, CIK cells became unhealthy with anisotonic challenge. The NKA activities of SK and CIK cells were assayed after exposure to anisotonic conditions, and rapid decreases were detected immediately except SK cells which were not affected in hypotonicity. Unlike in SK and CIK, an increase following a down-regulation of NKA activity was observed in SK-la cells upon moderate hypertonic stress. These results suggested that SK and SK-la cells had stronger osmoregulatory capacity than CIK cells, and provided new insights on the osmosensing and osmotic adaption in euryhaline fish kidney. PMID:26911257

  2. Adaption of egg and larvae sampling techniques for lake sturgeon and broadcast spawning fishes in a deep river

    USGS Publications Warehouse

    Roseman, E.F.; Boase, J.; Kennedy, G.; Craig, J.; Soper, K.

    2011-01-01

    In this report we describe how we adapted two techniques for sampling lake sturgeon (Acipenser fulvescens) and other fish early life history stages to meet our research needs in the Detroit River, a deep, flowing Great Lakes connecting channel. First, we developed a buoy-less method for sampling fish eggs and spawning activity using egg mats deployed on the river bottom. The buoy-less method allowed us to fish gear in areas frequented by boaters and recreational anglers, thus eliminating surface obstructions that interfered with recreational and boating activities. The buoy-less method also reduced gear loss due to drift when masses of floating aquatic vegetation would accumulate on buoys and lines, increasing the drag on the gear and pulling it downstream. Second, we adapted a D-frame drift net system formerly employed in shallow streams to assess larval lake sturgeon dispersal for use in the deeper (>8m) Detroit River using an anchor and buoy system. ?? 2011 Blackwell Verlag, Berlin.

  3. PREDICTING THE OCCURRANCE OF ADAPTATION TO DIOXINLIKE COMPOUNDS IN POPULATIONS OF THE ESTUARINE FISH FUNDULUS HETEROCLITUS

    EPA Science Inventory

    A population of the non-migratory estuarine fish species Fundulus heteroclitus (mummichog) indigenous to a polychlorinated biphenyl (PCB)-contaminated Superfund site (New Bedford Harbor, NBH, MA, USA) demonstrates an inherited tolerance to local, dioxin-like contaminants (DLCs). ...

  4. Genome Sequencing of the Perciform Fish Larimichthys crocea Provides Insights into Molecular and Genetic Mechanisms of Stress Adaptation

    PubMed Central

    Shi, Qiong; Zhu, Lv-Yun; Li, Ting; Ding, Yang; Nie, Li; Li, Qiuhua; Dong, Wei-ren; Jiang, Liang; Sun, Bing; Zhang, XinHui; Li, Mingyu; Zhang, Hai-Qi; Xie, ShangBo; Zhu, YaBing; Jiang, XuanTing; Wang, Xianhui; Mu, Pengfei; Chen, Wei; Yue, Zhen; Wang, Zhuo; Wang, Jun; Shao, Jian-Zhong; Chen, Xinhua

    2015-01-01

    The large yellow croaker Larimichthys crocea (L. crocea) is one of the most economically important marine fish in China and East Asian countries. It also exhibits peculiar behavioral and physiological characteristics, especially sensitive to various environmental stresses, such as hypoxia and air exposure. These traits may render L. crocea a good model for investigating the response mechanisms to environmental stress. To understand the molecular and genetic mechanisms underlying the adaptation and response of L. crocea to environmental stress, we sequenced and assembled the genome of L. crocea using a bacterial artificial chromosome and whole-genome shotgun hierarchical strategy. The final genome assembly was 679 Mb, with a contig N50 of 63.11 kb and a scaffold N50 of 1.03 Mb, containing 25,401 protein-coding genes. Gene families underlying adaptive behaviours, such as vision-related crystallins, olfactory receptors, and auditory sense-related genes, were significantly expanded in the genome of L. crocea relative to those of other vertebrates. Transcriptome analyses of the hypoxia-exposed L. crocea brain revealed new aspects of neuro-endocrine-immune/metabolism regulatory networks that may help the fish to avoid cerebral inflammatory injury and maintain energy balance under hypoxia. Proteomics data demonstrate that skin mucus of the air-exposed L. crocea had a complex composition, with an unexpectedly high number of proteins (3,209), suggesting its multiple protective mechanisms involved in antioxidant functions, oxygen transport, immune defence, and osmotic and ionic regulation. Our results reveal the molecular and genetic basis of fish adaptation and response to hypoxia and air exposure. The data generated by this study will provide valuable resources for the genetic improvement of stress resistance and yield potential in L. crocea. PMID:25835551

  5. Unique evolutionary trajectories in repeated adaptation to hydrogen sulphide-toxic habitats of a neotropical fish (Poecilia mexicana).

    PubMed

    Pfenninger, Markus; Patel, Simit; Arias-Rodriguez, Lenin; Feldmeyer, Barbara; Riesch, Rüdiger; Plath, Martin

    2015-11-01

    Replicated ecological gradients are prime systems to study processes of molecular evolution underlying ecological divergence. Here, we investigated the repeated adaptation of the neotropical fish Poecilia mexicana to habitats containing toxic hydrogen sulphide (H2 S) and compared two population pairs of sulphide-adapted and ancestral fish by sequencing population pools of >200 individuals (Pool-Seq). We inferred the evolutionary processes shaping divergence and tested the hypothesis of increase of parallelism from SNPs to molecular pathways. Coalescence analyses showed that the divergence occurred in the face of substantial bidirectional gene flow. Population divergence involved many short, widely dispersed regions across the genome. Analyses of allele frequency spectra suggest that differentiation at most loci was driven by divergent selection, followed by a selection-mediated reduction of gene flow. Reconstructing allelic state changes suggested that selection acted mainly upon de novo mutations in the sulphide-adapted populations. Using a corrected Jaccard index to quantify parallel evolution, we found a negligible proportion of statistically significant parallel evolution of Jcorr  = 0.0032 at the level of SNPs, divergent genome regions (Jcorr  = 0.0061) and genes therein (Jcorr  = 0.0091). At the level of metabolic pathways, the overlap was Jcorr  = 0.2545, indicating increasing parallelism with increasing level of biological integration. The majority of pathways contained positively selected genes in both sulphide populations. Hence, adaptation to sulphidic habitats necessitated adjustments throughout the genome. The largely unique evolutionary trajectories may be explained by a high proportion of de novo mutations driving the divergence. Our findings favour Gould's view that evolution is often the unrepeatable result of stochastic events with highly contingent effects. PMID:26405850

  6. Population Structure and Adaptive Divergence in a High Gene Flow Marine Fish: The Small Yellow Croaker (Larimichthys polyactis)

    PubMed Central

    Xue, Dong-Xiu; Gao, Tian-Xiang; Liu, Jin-Xian

    2016-01-01

    The spatial distribution of genetic diversity has been long considered as a key component of policy development for management and conservation of marine fishes. However, unraveling the population genetic structure of migratory fish species is challenging due to high potential for gene flow. Despite the shallow population differentiation revealed by putatively neutral loci, the higher genetic differentiation with panels of putatively adaptive loci could provide greater resolution for stock identification. Here, patterns of population differentiation of small yellow croaker (Larimichthys polyactis) were investigated by genotyping 15 highly polymorphic microsatellites in 337 individuals of 15 geographic populations collected from both spawning and overwintering grounds. Outlier analyses indicated that the locus Lpol03 might be under directional selection, which showed a strong homology with Grid2 gene encoding the glutamate receptor δ2 protein (GluRδ2). Based on Lpol03, two distinct clusters were identified by both STRUCTURE and PCoA analyses, suggesting that there were two overwintering aggregations of L. polyactis. A novel migration pattern was suggested for L. polyactis, which was inconsistent with results of previous studies based on historical fishing yield statistics. These results provided new perspectives on the population genetic structure and migratory routes of L. polyactis, which could have significant implications for sustainable management and utilization of this important fishery resource. PMID:27100462

  7. Population Structure and Adaptive Divergence in a High Gene Flow Marine Fish: The Small Yellow Croaker (Larimichthys polyactis).

    PubMed

    Liu, Bing-Jian; Zhang, Bai-Dong; Xue, Dong-Xiu; Gao, Tian-Xiang; Liu, Jin-Xian

    2016-01-01

    The spatial distribution of genetic diversity has been long considered as a key component of policy development for management and conservation of marine fishes. However, unraveling the population genetic structure of migratory fish species is challenging due to high potential for gene flow. Despite the shallow population differentiation revealed by putatively neutral loci, the higher genetic differentiation with panels of putatively adaptive loci could provide greater resolution for stock identification. Here, patterns of population differentiation of small yellow croaker (Larimichthys polyactis) were investigated by genotyping 15 highly polymorphic microsatellites in 337 individuals of 15 geographic populations collected from both spawning and overwintering grounds. Outlier analyses indicated that the locus Lpol03 might be under directional selection, which showed a strong homology with Grid2 gene encoding the glutamate receptor δ2 protein (GluRδ2). Based on Lpol03, two distinct clusters were identified by both STRUCTURE and PCoA analyses, suggesting that there were two overwintering aggregations of L. polyactis. A novel migration pattern was suggested for L. polyactis, which was inconsistent with results of previous studies based on historical fishing yield statistics. These results provided new perspectives on the population genetic structure and migratory routes of L. polyactis, which could have significant implications for sustainable management and utilization of this important fishery resource. PMID:27100462

  8. [Adaptive increase of serotonergic system activity in tissues of half-migratory and migratory fish at increased water salinity].

    PubMed

    2013-01-01

    The article deals with studies of the serotoninergic system activity in different tissues of half-migratory fish--the Caspian roach (Rutilus rutilus caspicus) and carpbream (Abramis brama orientalis)--and migratory fish--shemaya (Chalcalburnus chalcoides) caught in fresh and brackish waters, as well as in the common carp (Cyprinus carpio L.) tissues under effect of brackish water in model experiments. Using indirect solid-phase ELISA-test, the serotoninergic system activity was evaluated by measuring in the tissues of the studied fish the serotonin-modulated anticonsolidation protein (SMAP) which is in linear relationship with serotonin level. There was found a significant elevation of the SMAP levels in the brain of the Caspian roach, carpbream, shemaya, and the common carp under effect of increased water sainity. The revealed increase of the SMAP content in brains of the Caspian roach, carpbream, shemaya, and the common carp under action of increased water salinity reflects the corresponding elevated activity of the serotoninergic system and indicates involvement of adaptive readjustments in the animals' body. PMID:25509051

  9. [Adaptive increase of serotonergic system activity in tissues of half-migratory and migratory fish at increased water salinity].

    PubMed

    Mustafaev, N J; Mekhtiev, A A

    2013-01-01

    The article deals with studies of the serotoninergic system activity in different tissues of half-migratory fish--the Caspian roach (Rutilus rutilus caspicus) and carpbream (Abramis brama orientalis)--and migratory fish--shemaya (Chalcalburnus chalcoides) caught in fresh and brackish waters, as well as in the common carp (Cyprinus carpio L.) tissues under effect of brackish water in model experiments. Using indirect solid-phase ELISA-test, the serotoninergic system activity was evaluated by measuring in the tissues of the studied fish the serotonin-modulated anticonsolidation protein (SMAP) which is in linear relationship with serotonin level. There was found a significant elevation of the SMAP levels in the brain of the Caspian roach, carpbream, shemaya, and the common carp under effect of increased water sainity. The revealed increase of the SMAP content in brains of the Caspian roach, carpbream, shemaya, and the common carp under action of increased water salinity reflects the corresponding elevated activity of the serotoninergic system and indicates involvement of adaptive readjustments in the animals' body. PMID:25490850

  10. Evolutionary Origin of the Scombridae (Tunas and Mackerels): Members of a Paleogene Adaptive Radiation with 14 Other Pelagic Fish Families

    PubMed Central

    Miya, Masaki; Friedman, Matt; Satoh, Takashi P.; Takeshima, Hirohiko; Sado, Tetsuya; Iwasaki, Wataru; Yamanoue, Yusuke; Nakatani, Masanori; Mabuchi, Kohji; Inoue, Jun G.; Poulsen, Jan Yde; Fukunaga, Tsukasa; Sato, Yukuto; Nishida, Mutsumi

    2013-01-01

    Uncertainties surrounding the evolutionary origin of the epipelagic fish family Scombridae (tunas and mackerels) are symptomatic of the difficulties in resolving suprafamilial relationships within Percomorpha, a hyperdiverse teleost radiation that contains approximately 17,000 species placed in 13 ill-defined orders and 269 families. Here we find that scombrids share a common ancestry with 14 families based on (i) bioinformatic analyses using partial mitochondrial and nuclear gene sequences from all percomorphs deposited in GenBank (10,733 sequences) and (ii) subsequent mitogenomic analysis based on 57 species from those targeted 15 families and 67 outgroup taxa. Morphological heterogeneity among these 15 families is so extraordinary that they have been placed in six different perciform suborders. However, members of the 15 families are either coastal or oceanic pelagic in their ecology with diverse modes of life, suggesting that they represent a previously undetected adaptive radiation in the pelagic realm. Time-calibrated phylogenies imply that scombrids originated from a deep-ocean ancestor and began to radiate after the end-Cretaceous when large predatory epipelagic fishes were selective victims of the Cretaceous-Paleogene mass extinction. We name this clade of open-ocean fishes containing Scombridae “Pelagia” in reference to the common habitat preference that links the 15 families. PMID:24023883

  11. Patterns of lake occupancy by fish indicate different adaptations to life in a harsh Arctic environment

    USGS Publications Warehouse

    Haynes, Trevor B.; Rosenberger, Amanda E.; Lindberg, Mark S.; Whitman, Matthew; Schmutz, Joel A.

    2014-01-01

    Based on these patterns, we propose an overall model of primary controls on the distribution of fish on the Arctic Coastal Plain of Alaska. Harsh conditions, including lake freezing, limit occupancy in winter through extinction events while lake occupancy in spring and summer is driven by directional migration (large-bodied species) and undirected dispersal (small-bodied species).

  12. 75 FR 57240 - Atlantic Highly Migratory Species; 2011 Commercial Fishing Season and Adaptive Management...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-20

    ...This proposed rule would establish opening dates and adjust quotas for the 2011 fishing season for sandbar sharks, non-sandbar large coastal sharks (LCS), small coastal sharks (SCS), and pelagic sharks. Quotas will be adjusted based on the framework established in Amendment 2 to the 2006 Consolidated Highly Migratory Species Fishery Management Plan, which requires adjustments for any over-......

  13. Adaptation of the macular vestibuloocular reflex to altered gravitational conditions in a fish ( Oreochromis mossambicus)

    NASA Astrophysics Data System (ADS)

    Horn, E.; Sebastian, C.

    Young fish ( Oreochromis mossambicus) were exposed to microgravity (μg) for 9 to 10 days, or to hypergravity (hg) for 9 days. For several weeks after termination of μg and hg, the roll-induced static vestibuloocular reflex (rVOR) was recorded. In stage 11/12-fish, the rVOR amplitude (angle between the maximal up and down movement of an eye during a complete 360° lateral roll) of μg-animals increased significantly by 25% compared to 1g-controls during the first post-flight week but decreased to the control level during the second post-flight week. Microgravity had no effect in stage 14/16 fish on the rVOR amplitude. After 3g-exposure, the rVOR amplitude was significantly reduced for both groups compared to their 1g-controls. Readaptation to 1g-condition was completed during the second post-3g week. We postulate a critical period during which the development of the macular vestibuloocular reflex depends on gravitational input, and which is limited by the first appearence of the rVOR. At this period of early development, exposure to microgravity sensitizes the vestibular system while hypergravity desensitizes it.

  14. Science questions for implementing climate refugia for cold-water fish as an adaptation strateby

    EPA Science Inventory

    Managing climate refugia has been proposed as a potential adaptation strategy that may be useful for protecting the biotic integrity of watersheds under a changing climate. Paleo-ecological evidence suggests that refugia allowed species to persist through prior periods of climate...

  15. Assisted protein folding at low temperature: evolutionary adaptation of the Antarctic fish chaperonin CCT and its client proteins

    PubMed Central

    Cuellar, Jorge; Yébenes, Hugo; Parker, Sandra K.; Carranza, Gerardo; Serna, Marina; Valpuesta, José María; Zabala, Juan Carlos; Detrich, H. William

    2014-01-01

    ABSTRACT Eukaryotic ectotherms of the Southern Ocean face energetic challenges to protein folding assisted by the cytosolic chaperonin CCT. We hypothesize that CCT and its client proteins (CPs) have co-evolved molecular adaptations that facilitate CCT–CP interaction and the ATP-driven folding cycle at low temperature. To test this hypothesis, we compared the functional and structural properties of CCT–CP systems from testis tissues of an Antarctic fish, Gobionotothen gibberifrons (Lönnberg) (habitat/body T = −1.9 to +2°C), and of the cow (body T = 37°C). We examined the temperature dependence of the binding of denatured CPs (β-actin, β-tubulin) by fish and bovine CCTs, both in homologous and heterologous combinations and at temperatures between −4°C and 20°C, in a buffer conducive to binding of the denatured CP to the open conformation of CCT. In homologous combination, the percentage of G. gibberifrons CCT bound to CP declined linearly with increasing temperature, whereas the converse was true for bovine CCT. Binding of CCT to heterologous CPs was low, irrespective of temperature. When reactions were supplemented with ATP, G. gibberifrons CCT catalyzed the folding and release of actin at 2°C. The ATPase activity of apo-CCT from G. gibberifrons at 4°C was ∼2.5-fold greater than that of apo-bovine CCT, whereas equivalent activities were observed at 20°C. Based on these results, we conclude that the catalytic folding cycle of CCT from Antarctic fishes is partially compensated at their habitat temperature, probably by means of enhanced CP-binding affinity and increased flexibility of the CCT subunits. PMID:24659247

  16. Evolution of opercle shape in cichlid fishes from Lake Tanganyika - adaptive trait interactions in extant and extinct species flocks

    PubMed Central

    Wilson, Laura A. B.; Colombo, Marco; Sánchez-Villagra, Marcelo R.; Salzburger, Walter

    2015-01-01

    Phenotype-environment correlations and the evolution of trait interactions in adaptive radiations have been widely studied to gain insight into the dynamics underpinning rapid species diversification. In this study we explore the phenotype-environment correlation and evolution of operculum shape in cichlid fishes using an outline-based geometric morphometric approach combined with stable isotope indicators of macrohabitat and trophic niche. We then apply our method to a sample of extinct saurichthyid fishes, a highly diverse and near globally distributed group of actinopterygians occurring throughout the Triassic, to assess the utility of extant data to inform our understanding of ecomorphological evolution in extinct species flocks. A series of comparative methods were used to analyze shape data for 54 extant species of cichlids (N = 416), and 6 extinct species of saurichthyids (N = 44). Results provide evidence for a relationship between operculum shape and feeding ecology, a concentration in shape evolution towards present along with evidence for convergence in form, and significant correlation between the major axes of shape change and measures of gut length and body elongation. The operculum is one of few features that can be compared in extant and extinct groups, enabling reconstruction of phenotype-environment interactions and modes of evolutionary diversification in deep time. PMID:26584885

  17. Evolution of opercle shape in cichlid fishes from Lake Tanganyika - adaptive trait interactions in extant and extinct species flocks.

    PubMed

    Wilson, Laura A B; Colombo, Marco; Sánchez-Villagra, Marcelo R; Salzburger, Walter

    2015-01-01

    Phenotype-environment correlations and the evolution of trait interactions in adaptive radiations have been widely studied to gain insight into the dynamics underpinning rapid species diversification. In this study we explore the phenotype-environment correlation and evolution of operculum shape in cichlid fishes using an outline-based geometric morphometric approach combined with stable isotope indicators of macrohabitat and trophic niche. We then apply our method to a sample of extinct saurichthyid fishes, a highly diverse and near globally distributed group of actinopterygians occurring throughout the Triassic, to assess the utility of extant data to inform our understanding of ecomorphological evolution in extinct species flocks. A series of comparative methods were used to analyze shape data for 54 extant species of cichlids (N = 416), and 6 extinct species of saurichthyids (N = 44). Results provide evidence for a relationship between operculum shape and feeding ecology, a concentration in shape evolution towards present along with evidence for convergence in form, and significant correlation between the major axes of shape change and measures of gut length and body elongation. The operculum is one of few features that can be compared in extant and extinct groups, enabling reconstruction of phenotype-environment interactions and modes of evolutionary diversification in deep time. PMID:26584885

  18. Toxic hydrogen sulfide and dark caves: life-history adaptations in a livebearing fish (Poecilia mexicana, Poeciliidae).

    PubMed

    Riesch, Rüdiger; Plath, Martin; Schlupp, Ingo

    2010-05-01

    Life-history traits are very sensitive to extreme environmental conditions, because resources that need to be invested in somatic maintenance cannot be invested in reproduction. Here we examined female life-history traits in the Mexican livebearing fish Poecilia mexicana from a variety of benign surface habitats, a creek with naturally occurring toxic hydrogen sulfide (H2S), a sulfidic cave, and a non-sulfidic cave. Previous studies revealed pronounced genetic and morphological divergence over very small geographic scales in this system despite the absence of physical barriers, suggesting that local adaptation to different combinations of two selection factors, toxicity (H2S) and darkness, is accompanied by very low rates of gene flow. Hence, we investigated life-history divergence between these populations in response to the selective pressures of darkness and/or toxicity. Our main results show that toxicity and darkness both select for (or impose constraints on) the same female trait dynamics: reduced fecundity and increased offspring size. Since reduced fecundity in the sulfur cave population was previously shown to be heritable, we discuss how divergent life-history evolution may promote further ecological divergence: for example, reduced fecundity and increased offspring autonomy are clearly beneficial in extreme environments, but fish with these traits are outcompeted in benign habitats. PMID:20503881

  19. Genomics of adaptation and speciation in cichlid fishes: recent advances and analyses in African and Neotropical lineages

    PubMed Central

    Fan, Shaohua; Elmer, Kathryn R.; Meyer, Axel

    2012-01-01

    Cichlid fishes are remarkably phenotypically diverse and species-rich. Therefore, they provide an exciting opportunity for the study of the genetics of adaptation and speciation by natural and sexual selection. Here, we review advances in the genomics and transcriptomics of cichlids, particularly regarding ecologically relevant differences in body shape, trophic apparatus, coloration and patterning, and sex determination. Research conducted so far has focused almost exclusively on African cichlids. To analyse genomic diversity and selection in a Neotropical radiation, we conducted a comparative transcriptomic analysis between sympatric, ecologically divergent crater-lake Midas cichlids (Lake Xiloá Amphilophus amarillo and Amphilophus sagittae). We pyrosequenced (Roche 454) expressed sequence tag (EST) libraries and generated more than 178 000 000 ESTs and identified nine ESTs under positive selection between these sister species (Ka/Ks > 1). None of these ESTs were found to be under selection in African cichlids. Of 11 candidate genes for ecomorphological differentiation in African cichlids, none showed signs of selection between A. amarillo and A. sagittae. Although more population-level studies are now needed to thoroughly document patterns of divergence during speciation of cichlids, available information so far suggests that adaptive phenotypic diversification in Neotropical and African cichlids may be evolving through non-parallel genetic bases. PMID:22201168

  20. Information as Adaptation to a Changing Climate: Managing the Intersection of Forests, Fish, Fire, and Water Resources on Public Lands

    NASA Astrophysics Data System (ADS)

    Luce, C.; Morgan, P.; Dwire, K. A.; Isaak, D.; Holden, Z. A.; Rieman, B.

    2013-12-01

    Climate change is altering the wildlands of the west, principally through changes in the water cycle. In many places there is and will be less water than there once was, and such water as there is will runoff from mountain snowpacks earlier each year. A drier climate in the western U.S. will promote a greater role of fire and other mortality events for many forests. Consequently, how managers prepare for and respond to events such as fire, or large scale insect outbreaks is becoming more important as the climate changes. Sometimes, these events punctuate gradual changes to ecosystems, and sometimes they generate stepwise changes in ecosystems, making it clear that climate vulnerability assessments should account for disturbance in their calculus. We describe a framework of how fire and climate change work together to affect forest and fish communities. Learning how to adapt will come from testing, probing, and pushing that framework to discover the most robust strategies to increased disturbance risks. The western U.S. defies generalizations, and much learning must necessarily be local in implication. We argue that successful adaptation does not simply constitute setting forest and stream communities on the appropriate path, rather it requires teaching wildland resource managers how to learn quickly and respond insightfully as the events associated climate change unfold.

  1. The interruption of thyroid and interrenal and the inter-hormonal interference in fish: does it promote physiologic adaptation or maladaptation?

    PubMed

    Peter, Valsa S; Peter, M C Subhash

    2011-12-01

    Endocrines, the chief components of chemical centers which produce hormones in tune with intrinsic and extrinsic clues, create a chemical bridge between the organism and the environment. In fishes also hormones integrate and modulate many physiologic functions and its synthesis, release, biological actions and metabolic clearance are well regulated. Consequently, thyroid hormones (THs) and cortisol, the products of thyroid and interrenal axes, have been identified for their common integrative actions on metabolic and osmotic functions in fish. On the other hand, many anthropogenic chemical substances, popularly known as endocrine disrupting chemicals, have been shown to disrupt the hormone-receptor signaling pathways in a number fish species. These chemicals which are known for their ability to induce endocrine disruption particularly on thyroid and interrenals can cause malfunction or maladaptation of many vital processes which are involved in the development, growth and reproduction in fish. On the contrary, evidence is presented that the endocrine interrupting agents (EIAs) can cause interruption of thyroid and interrenals, resulting in physiologic compensatory mechanisms which can be adaptive, though such hormonal interactions are less recognized in fishes. The EIAs of physical, chemical and biological origins can specifically interrupt and modify the hormonal interactions between THs and cortisol, resulting in specific patterns of inter-hormonal interference. The physiologic analysis of these inter-hormonal interruptions during acclimation and post-acclimation to intrinsic or extrinsic EIAs reveals that combinations of anti-hormonal, pro-hormonal or stati-hormonal interference may help the fish to fine-tune their metabolic and osmotic performances as part of physiologic adaptation. This novel hypothesis on the phenomenon of inter-hormonal interference and its consequent physiologic interference during thyroid and interrenal interruption thus forms the basis of

  2. The adaptation of a reflex response to the ongoing phase of locomotion in fish.

    PubMed

    Grillner, S; Rossignol, S; Wallén, P

    1977-10-24

    The reflex response to stimulation of the tail fin has been studied in the swimming fish, by bilateral electromyographical (EMG) recordings in several segments along the body. The response varies with the phase of swimming. When the muscles on one side (segment) are active, a large response will occur on this side but no response on the contralateral side at the same level. When the other side becomes active an identical stimulus will cause an activation of this side but no response on the previously active side. When the movements were filmed a powerful mechanical effect was demonstrated with an augmentation of the ongoing movement, that would result in an instantaneous increase in speed. The stimulus causes in addition a shortening of the duration of the swimming cycle and its components. Most of the results were obtained on spinal dogfish, which also exhibits spontaneous locomotion after a spinal transection. Mainly electrical bipolar stimulation of the tail fin was used. Identical stimuli applied in different phases on an ongoing movement, thus give a reflex response that changes dramatically with the phase of the movement. This phase dependent reflex reversal is functionally meaningful; it is fast and due to spinal mechanisms. PMID:590408

  3. Introgressive Hybridization and the Evolution of Lake-Adapted Catostomid Fishes.

    PubMed

    Dowling, Thomas E; Markle, Douglas F; Tranah, Greg J; Carson, Evan W; Wagman, David W; May, Bernard P

    2016-01-01

    Hybridization has been identified as a significant factor in the evolution of plants as groups of interbreeding species retain their phenotypic integrity despite gene exchange among forms. Recent studies have identified similar interactions in animals; however, the role of hybridization in the evolution of animals has been contested. Here we examine patterns of gene flow among four species of catostomid fishes from the Klamath and Rogue rivers using molecular and morphological traits. Catostomus rimiculus from the Rogue and Klamath basins represent a monophyletic group for nuclear and morphological traits; however, the Klamath form shares mtDNA lineages with other Klamath Basin species (C. snyderi, Chasmistes brevirostris, Deltistes luxatus). Within other Klamath Basin taxa, D. luxatus was largely fixed for alternate nuclear alleles relative to C. rimiculus, while Ch. brevirostris and C. snyderi exhibited a mixture of these alleles. Deltistes luxatus was the only Klamath Basin species that exhibited consistent covariation of nuclear and mitochondrial traits and was the primary source of mismatched mtDNA in Ch. brevirostris and C. snyderi, suggesting asymmetrical introgression into the latter species. In Upper Klamath Lake, D. luxatus spawning was more likely to overlap spatially and temporally with C. snyderi and Ch. brevirostris than either of those two with each other. The latter two species could not be distinguished with any molecular markers but were morphologically diagnosable in Upper Klamath Lake, where they were largely spatially and temporally segregated during spawning. We examine parallel evolution and syngameon hypotheses and conclude that observed patterns are most easily explained by introgressive hybridization among Klamath Basin catostomids. PMID:26959681

  4. Introgressive Hybridization and the Evolution of Lake-Adapted Catostomid Fishes

    PubMed Central

    Dowling, Thomas E.; Markle, Douglas F.; Tranah, Greg J.; Carson, Evan W.; Wagman, David W.; May, Bernard P.

    2016-01-01

    Hybridization has been identified as a significant factor in the evolution of plants as groups of interbreeding species retain their phenotypic integrity despite gene exchange among forms. Recent studies have identified similar interactions in animals; however, the role of hybridization in the evolution of animals has been contested. Here we examine patterns of gene flow among four species of catostomid fishes from the Klamath and Rogue rivers using molecular and morphological traits. Catostomus rimiculus from the Rogue and Klamath basins represent a monophyletic group for nuclear and morphological traits; however, the Klamath form shares mtDNA lineages with other Klamath Basin species (C. snyderi, Chasmistes brevirostris, Deltistes luxatus). Within other Klamath Basin taxa, D. luxatus was largely fixed for alternate nuclear alleles relative to C. rimiculus, while Ch. brevirostris and C. snyderi exhibited a mixture of these alleles. Deltistes luxatus was the only Klamath Basin species that exhibited consistent covariation of nuclear and mitochondrial traits and was the primary source of mismatched mtDNA in Ch. brevirostris and C. snyderi, suggesting asymmetrical introgression into the latter species. In Upper Klamath Lake, D. luxatus spawning was more likely to overlap spatially and temporally with C. snyderi and Ch. brevirostris than either of those two with each other. The latter two species could not be distinguished with any molecular markers but were morphologically diagnosable in Upper Klamath Lake, where they were largely spatially and temporally segregated during spawning. We examine parallel evolution and syngameon hypotheses and conclude that observed patterns are most easily explained by introgressive hybridization among Klamath Basin catostomids. PMID:26959681

  5. Adaptation.

    PubMed

    Broom, Donald M

    2006-01-01

    The term adaptation is used in biology in three different ways. It may refer to changes which occur at the cell and organ level, or at the individual level, or at the level of gene action and evolutionary processes. Adaptation by cells, especially nerve cells helps in: communication within the body, the distinguishing of stimuli, the avoidance of overload and the conservation of energy. The time course and complexity of these mechanisms varies. Adaptive characters of organisms, including adaptive behaviours, increase fitness so this adaptation is evolutionary. The major part of this paper concerns adaptation by individuals and its relationships to welfare. In complex animals, feed forward control is widely used. Individuals predict problems and adapt by acting before the environmental effect is substantial. Much of adaptation involves brain control and animals have a set of needs, located in the brain and acting largely via motivational mechanisms, to regulate life. Needs may be for resources but are also for actions and stimuli which are part of the mechanism which has evolved to obtain the resources. Hence pigs do not just need food but need to be able to carry out actions like rooting in earth or manipulating materials which are part of foraging behaviour. The welfare of an individual is its state as regards its attempts to cope with its environment. This state includes various adaptive mechanisms including feelings and those which cope with disease. The part of welfare which is concerned with coping with pathology is health. Disease, which implies some significant effect of pathology, always results in poor welfare. Welfare varies over a range from very good, when adaptation is effective and there are feelings of pleasure or contentment, to very poor. A key point concerning the concept of individual adaptation in relation to welfare is that welfare may be good or poor while adaptation is occurring. Some adaptation is very easy and energetically cheap and

  6. Adaptive response to starvation in the fish pathogen Flavobacterium columnare: cell viability and ultrastructural changes

    PubMed Central

    2012-01-01

    experiments shown that starved cells were avirulent for a fish host model. Conclusions Specific morphological and ultrastructural changes allowed F. columnare cells to remain viable under adverse conditions. Those changes were reversed by the addition of nutrients. This bacterium can survive in water without nutrients for extended periods of time although long-term starvation appears to decrease cell fitness and resulted in loss of virulence. PMID:23163917

  7. Genome Sequence of the Fish Pathogen Yersinia ruckeri SC09 Provides Insights into Niche Adaptation and Pathogenic Mechanism.

    PubMed

    Liu, Tao; Wang, Kai-Yu; Wang, Jun; Chen, De-Fang; Huang, Xiao-Li; Ouyang, Ping; Geng, Yi; He, Yang; Zhou, Yi; Min, Jie

    2016-01-01

    Yersinia ruckeri is the etiologic agent of enteric red mouth disease (ERM), a severe fish disease prevailing in worldwide aquaculture industries. Here we report for the first time the complete genome of Y. ruckeri (Yersinia ruckeri) SC09, a highly virulent strain isolated from Ictalurus punctatus with severe septicemia. SC09 possesses a single chromosome of 3,923,491 base pairs, which contains 3651 predicted protein coding sequences (CDS), 19 rRNA genes, and 79 tRNA genes. Among the CDS, we have identified a Ysa locus containing genes encoding all the components of a type III secretion system (T3SS). Comparative analysis suggest that SC09-Ysa share extensive similarity in sequence, gene content, and gene arrangement with Salmonella enterica pathogenicity island 1 (SPI1) and chromosome-encoded T3SS from Yersinia enterocolitica biotype 1B. Furthermore, phylogenetic analysis shown that SC09-Ysa and SPI1-T3SS belong on the same branch of the phylogenetic tree. These results suggest that SC09-Ysa and SPI1-T3SS appear to mediate biological function to adapt to specific hosts with a similar niche, and both of them are likely to facilitate the development of an intracellular niche. In addition, our analysis also indicated that a substantial part of the SC09 genome might contribute to adaption in the intestinal microenvironment, including a number of proteins associated with aerobic or anaerobic respiration, signal transduction, and various stress reactions. Genomic analysis of the bacterium offered insights into the pathogenic mechanism associated with intracellular infection and intestinal survivability, which constitutes an important first step in understanding the pathogenesis of Y. ruckeri. PMID:27089334

  8. H2S exposure elicits differential expression of candidate genes in fish adapted to sulfidic and non-sulfidic environments.

    PubMed

    Tobler, Michael; Henpita, Chathurika; Bassett, Brandon; Kelley, Joanna L; Shaw, Jennifer H

    2014-09-01

    Disentangling the effects of plasticity, genetic variation, and their interactions on organismal responses to environmental stressors is a key objective in ecological physiology. We quantified the expression of five candidate genes in response to hydrogen sulfide (H2S) exposure in fish (Poecilia mexicana, Poeciliidae) from a naturally sulfide-rich environment as well as an ancestral, non-sulfidic population to test for constitutive and environmentally dependent population differences in gene expression patterns. Common garden raised individuals that had never encountered environmental H2S during their lifetime were subjected to short or long term H2S exposure treatments or respective non-sulfidic controls. The expression of genes involved in responses to H2S toxicity (cytochrome c oxidase, vascular endothelial growth factor, and cytochrome P450-2J6), H2S detoxification (sulfide:quinone oxidoreductase), and endogenous H2S production (cystathionine γ lyase) was determined in both gill and liver tissues by real time PCR. The results indicated complex changes in expression patterns that--depending on the gene--not only differed between organs and populations, but also on the type of H2S exposure. Populations differences, both constitutive and H2S exposure dependent (i.e., plastic), in gene expression were particularly evident for sulfide:quinone oxidoreductase, vascular endothelial growth factor, and to a lesser degree for cytochrome P450-2J6. Our study uncovered putatively adaptive modifications in gene regulation that parallel previously documented adaptive changes in phenotypic traits. PMID:24813672

  9. Genome Sequence of the Fish Pathogen Yersinia ruckeri SC09 Provides Insights into Niche Adaptation and Pathogenic Mechanism

    PubMed Central

    Liu, Tao; Wang, Kai-Yu; Wang, Jun; Chen, De-Fang; Huang, Xiao-Li; Ouyang, Ping; Geng, Yi; He, Yang; Zhou, Yi; Min, Jie

    2016-01-01

    Yersinia ruckeri is the etiologic agent of enteric red mouth disease (ERM), a severe fish disease prevailing in worldwide aquaculture industries. Here we report for the first time the complete genome of Y. ruckeri (Yersinia ruckeri) SC09, a highly virulent strain isolated from Ictalurus punctatus with severe septicemia. SC09 possesses a single chromosome of 3,923,491 base pairs, which contains 3651 predicted protein coding sequences (CDS), 19 rRNA genes, and 79 tRNA genes. Among the CDS, we have identified a Ysa locus containing genes encoding all the components of a type III secretion system (T3SS). Comparative analysis suggest that SC09-Ysa share extensive similarity in sequence, gene content, and gene arrangement with Salmonella enterica pathogenicity island 1 (SPI1) and chromosome-encoded T3SS from Yersinia enterocolitica biotype 1B. Furthermore, phylogenetic analysis shown that SC09-Ysa and SPI1-T3SS belong on the same branch of the phylogenetic tree. These results suggest that SC09-Ysa and SPI1-T3SS appear to mediate biological function to adapt to specific hosts with a similar niche, and both of them are likely to facilitate the development of an intracellular niche. In addition, our analysis also indicated that a substantial part of the SC09 genome might contribute to adaption in the intestinal microenvironment, including a number of proteins associated with aerobic or anaerobic respiration, signal transduction, and various stress reactions. Genomic analysis of the bacterium offered insights into the pathogenic mechanism associated with intracellular infection and intestinal survivability, which constitutes an important first step in understanding the pathogenesis of Y. ruckeri. PMID:27089334

  10. Leap of faith: voluntary emersion behaviour and physiological adaptations to aerial exposure in a non-aestivating freshwater fish in response to aquatic hypoxia.

    PubMed

    Urbina, Mauricio A; Forster, Malcolm E; Glover, Chris N

    2011-05-01

    Lowland stream fauna in areas of intensive agriculture are increasingly under threat from anthropogenic activities leading to eutrophication and subsequent hypoxia. Survival of hypoxic episodes depends upon a combination of behavioural and physiological adaptations. Responses of inanga (Galaxias maculatus: Galaxiidae) to aquatic hypoxia were investigated in the laboratory. Contrary to expectation inanga did not display behaviour that might reduce energy expenditure during oxygen limitation, with swimming activity slightly, but significantly elevated relative to normoxia. Instead, as dissolved oxygen concentrations decreased, the fish moved higher in the water column, increased their swimming speed and exhibited aquatic surface respiration. Physiological changes such as enhanced opercular frequency were also noted. As hypoxia deepened inanga started to leap out of the water, emersing themselves on a floating platform. Once emersed, fish exhibited an enhanced oxygen consumption rate compared to hypoxic fish. Thus inanga appear better adapted to escape hypoxia (a behavioural adaptation) rather than tolerate it (physiological adaptation). The emersion strategy used for inanga in response to severe hypoxia is in agreement with their ability to take up more oxygen from the air than from hypoxic water and therefore may justify the potentially increased risks of desiccation and predation associated with leaving the water. PMID:21316378

  11. Transcriptional Changes Caused by Bisphenol A in Oryzias javanicus, a Fish Species Highly Adaptable to Environmental Salinity

    PubMed Central

    Woo, Seonock; Denis, Vianney; Yum, Seungshic

    2014-01-01

    The Javanese medaka, Oryzias javanicus, is a fish highly adaptable to various environmental salinities. Here, we investigated the effects of the environmental pollutant bisphenol A (BPA; an endocrine disrupting chemical) on gene expression levels in this species acclimated to different salinities. Using cDNA microarrays, we detected the induction of differential expression of genes by BPA, and compared the transcriptional changes caused by chemical exposure at different salinities. There were marked transcriptional changes induced by BPA between treatments. While 533 genes were induced by a factor of more than two when O. javanicus was exposed to BPA in seawater, only 215 genes were induced in freshwater. Among those genes, only 78 were shared and changed significantly their expression in both seawater and freshwater. Those genes were mainly involved in cellular processes and signaling pathway. We then categorized by functional group genes specifically induced by BPA exposure in seawater or freshwater. Gene expression changes were further confirmed in O. javanicus exposed to various concentrations of BPA, using quantitative real-time reverse transcription PCR based on primer sets for 28 selected genes. PMID:24534842

  12. Explaining bathymetric diversity patterns in marine benthic invertebrates and demersal fishes: physiological contributions to adaptation of life at depth

    PubMed Central

    Brown, Alastair; Thatje, Sven

    2014-01-01

    Bathymetric biodiversity patterns of marine benthic invertebrates and demersal fishes have been identified in the extant fauna of the deep continental margins. Depth zonation is widespread and evident through a transition between shelf and slope fauna from the shelf break to 1000 m, and a transition between slope and abyssal fauna from 2000 to 3000 m; these transitions are characterised by high species turnover. A unimodal pattern of diversity with depth peaks between 1000 and 3000 m, despite the relatively low area represented by these depths. Zonation is thought to result from the colonisation of the deep sea by shallow-water organisms following multiple mass extinction events throughout the Phanerozoic. The effects of low temperature and high pressure act across hierarchical levels of biological organisation and appear sufficient to limit the distributions of such shallow-water species. Hydrostatic pressures of bathyal depths have consistently been identified experimentally as the maximum tolerated by shallow-water and upper bathyal benthic invertebrates at in situ temperatures, and adaptation appears required for passage to deeper water in both benthic invertebrates and demersal fishes. Together, this suggests that a hyperbaric and thermal physiological bottleneck at bathyal depths contributes to bathymetric zonation. The peak of the unimodal diversity–depth pattern typically occurs at these depths even though the area represented by these depths is relatively low. Although it is recognised that, over long evolutionary time scales, shallow-water diversity patterns are driven by speciation, little consideration has been given to the potential implications for species distribution patterns with depth. Molecular and morphological evidence indicates that cool bathyal waters are the primary site of adaptive radiation in the deep sea, and we hypothesise that bathymetric variation in speciation rates could drive the unimodal diversity–depth pattern over time

  13. Explaining bathymetric diversity patterns in marine benthic invertebrates and demersal fishes: physiological contributions to adaptation of life at depth.

    PubMed

    Brown, Alastair; Thatje, Sven

    2014-05-01

    Bathymetric biodiversity patterns of marine benthic invertebrates and demersal fishes have been identified in the extant fauna of the deep continental margins. Depth zonation is widespread and evident through a transition between shelf and slope fauna from the shelf break to 1000 m, and a transition between slope and abyssal fauna from 2000 to 3000 m; these transitions are characterised by high species turnover. A unimodal pattern of diversity with depth peaks between 1000 and 3000 m, despite the relatively low area represented by these depths. Zonation is thought to result from the colonisation of the deep sea by shallow-water organisms following multiple mass extinction events throughout the Phanerozoic. The effects of low temperature and high pressure act across hierarchical levels of biological organisation and appear sufficient to limit the distributions of such shallow-water species. Hydrostatic pressures of bathyal depths have consistently been identified experimentally as the maximum tolerated by shallow-water and upper bathyal benthic invertebrates at in situ temperatures, and adaptation appears required for passage to deeper water in both benthic invertebrates and demersal fishes. Together, this suggests that a hyperbaric and thermal physiological bottleneck at bathyal depths contributes to bathymetric zonation. The peak of the unimodal diversity-depth pattern typically occurs at these depths even though the area represented by these depths is relatively low. Although it is recognised that, over long evolutionary time scales, shallow-water diversity patterns are driven by speciation, little consideration has been given to the potential implications for species distribution patterns with depth. Molecular and morphological evidence indicates that cool bathyal waters are the primary site of adaptive radiation in the deep sea, and we hypothesise that bathymetric variation in speciation rates could drive the unimodal diversity-depth pattern over time. Thermal

  14. Native Prairie Adaptive Management: a multi region adaptive approach to invasive plant management on Fish and Wildlife Service owned native prairies

    USGS Publications Warehouse

    Gannon, Jill J.; Shaffer, Terry L.; Moore, Clinton T.

    2013-01-01

    Much of the native prairie managed by the U.S. Fish and Wildlife Service (FWS) in the Prairie Pothole Region (PPR) of the northern Great Plains is extensively invaded by the introduced cool-season grasses, smooth brome (Bromus inermis) and Kentucky bluegrass (Poa pratensis). Management to suppress these invasive plants has had poor to inconsistent success. The central challenge to managers is selecting appropriate management actions in the face of biological and environmental uncertainties. In partnership with the FWS, the U.S. Geological Survey (USGS) developed an adaptive decision support framework to assist managers in selecting management actions under uncertainty and maximizing learning from management outcomes. This joint partnership is known as the Native Prairie Adaptive Management (NPAM) initiative. The NPAM decision framework is built around practical constraints faced by FWS refuge managers and includes identification of the management objective and strategies, analysis of uncertainty and construction of competing decision models, monitoring, and mechanisms for model feedback and decision selection. Nineteen FWS field stations, spanning four states of the PPR, have participated in the initiative. These FWS cooperators share a common management objective, available management strategies, and biological uncertainties. Though the scope is broad, the initiative interfaces with individual land managers who provide site-specific information and receive updated decision guidance that incorporates understanding gained from the collective experience of all cooperators. We describe the technical components of this approach, how the components integrate and inform each other, how data feedback from individual cooperators serves to reduce uncertainty across the whole region, and how a successful adaptive management project is coordinated and maintained on a large scale. During an initial scoping workshop, FWS cooperators developed a consensus management objective

  15. Adapt

    NASA Astrophysics Data System (ADS)

    Bargatze, L. F.

    2015-12-01

    Active Data Archive Product Tracking (ADAPT) is a collection of software routines that permits one to generate XML metadata files to describe and register data products in support of the NASA Heliophysics Virtual Observatory VxO effort. ADAPT is also a philosophy. The ADAPT concept is to use any and all available metadata associated with scientific data to produce XML metadata descriptions in a consistent, uniform, and organized fashion to provide blanket access to the full complement of data stored on a targeted data server. In this poster, we present an application of ADAPT to describe all of the data products that are stored by using the Common Data File (CDF) format served out by the CDAWEB and SPDF data servers hosted at the NASA Goddard Space Flight Center. These data servers are the primary repositories for NASA Heliophysics data. For this purpose, the ADAPT routines have been used to generate data resource descriptions by using an XML schema named Space Physics Archive, Search, and Extract (SPASE). SPASE is the designated standard for documenting Heliophysics data products, as adopted by the Heliophysics Data and Model Consortium. The set of SPASE XML resource descriptions produced by ADAPT includes high-level descriptions of numerical data products, display data products, or catalogs and also includes low-level "Granule" descriptions. A SPASE Granule is effectively a universal access metadata resource; a Granule associates an individual data file (e.g. a CDF file) with a "parent" high-level data resource description, assigns a resource identifier to the file, and lists the corresponding assess URL(s). The CDAWEB and SPDF file systems were queried to provide the input required by the ADAPT software to create an initial set of SPASE metadata resource descriptions. Then, the CDAWEB and SPDF data repositories were queried subsequently on a nightly basis and the CDF file lists were checked for any changes such as the occurrence of new, modified, or deleted

  16. COST AND BENEFITS OF ALTERED BENZO(A)PYRENE METABOLISM IN A PCB-ADAPTED FISH POPULATION

    EPA Science Inventory

    We examined populations of an estuarine fish species (Fundulus heteroclitus) resident to a highly contaminated site and a reference site for their ability to metabolize an important environmental pollutant. In previous work, we characterized the fish population resident to this h...

  17. EFFECTS OF DIOXIN-LIKE COMPOUND CONTAMINATION ON AN ESTUARINE FISH SPECIES: ADAPTIVE CHANGES AT SPECIFIC GENETIC LOCI

    EPA Science Inventory

    Fish from a highly PCB-contaminated Superfund site (New Bedford, Massachusetts, USA) that show genetically-based tolerance to DLCs (Nacci, D. et al. 1999. Mar.Biol.134: 9-17) also have altered MHC Class II antigen-binding receptor profiles compared to a population of fish from a ...

  18. Genome Sequence of the Versatile Fish Pathogen Edwardsiella tarda Provides Insights into its Adaptation to Broad Host Ranges and Intracellular Niches

    PubMed Central

    Xiao, Jingfan; Wu, Haizhen; Wang, Xin; Lv, Yuanzhi; Xu, Lili; Zheng, Huajun; Wang, Shengyue; Zhao, Guoping; Liu, Qin; Zhang, Yuanxing

    2009-01-01

    Background Edwardsiella tarda is the etiologic agent of edwardsiellosis, a devastating fish disease prevailing in worldwide aquaculture industries. Here we describe the complete genome of E. tarda, EIB202, a highly virulent and multi-drug resistant isolate in China. Methodology/Principal Findings E. tarda EIB202 possesses a single chromosome of 3,760,463 base pairs containing 3,486 predicted protein coding sequences, 8 ribosomal rRNA operons, and 95 tRNA genes, and a 43,703 bp conjugative plasmid harboring multi-drug resistant determinants and encoding type IV A secretion system components. We identified a full spectrum of genetic properties related to its genome plasticity such as repeated sequences, insertion sequences, phage-like proteins, integrases, recombinases and genomic islands. In addition, analysis also indicated that a substantial proportion of the E. tarda genome might be devoted to the growth and survival under diverse conditions including intracellular niches, with a large number of aerobic or anaerobic respiration-associated proteins, signal transduction proteins as well as proteins involved in various stress adaptations. A pool of genes for secretion systems, pili formation, nonfimbrial adhesions, invasions and hemagglutinins, chondroitinases, hemolysins, iron scavenging systems as well as the incomplete flagellar biogenesis might feature its surface structures and pathogenesis in a fish body. Conclusion/Significance Genomic analysis of the bacterium offered insights into the phylogeny, metabolism, drug-resistance, stress adaptation, and virulence characteristics of this versatile pathogen, which constitutes an important first step in understanding the pathogenesis of E. tarda to facilitate construction of a practical effective vaccine used for combating fish edwardsiellosis. PMID:19865481

  19. Spatial distribution of pelagic fish off Adélie and George V Land, East Antarctica in the austral summer 2008

    NASA Astrophysics Data System (ADS)

    Moteki, Masato; Koubbi, Philippe; Pruvost, Patrice; Tavernier, Eric; Hulley, Percy-Alexander

    2011-08-01

    Pelagic fish assemblages and community structure were examined along longitudinal and meridian transects off Adélie and George V Land, East Antarctica, in the austral summer 2008. Fish were sampled with an RMT 8 net principally from six discrete depth layers (0-50-100-200-500-1000-2000 m) in the oceanic zone and from three depth layers (0-50-100-200 m) over the continental shelf zone. A total of 20,281 individuals from 27 species were collected. Pleuragramma antarcticum was the most dominant species by number (18,710 inds), followed by Chionodraco hamatus (768), Trematomus newnesi (375), Cyclothone microdon (101), Electrona antarctica (92), Bathylagus antarcticus (51) and Notolepis coatsi (54). Cluster analysis revealed that the fish community was clearly divided at the Antarctic Slope Front into separate oceanic and shelf assemblages, being dominated by mesopelagic fish and notothenioids, respectively. The Southern Boundary of Antarctic Circumpolar Current likely restricted a more northern distribution of notothenioids in the upper 200 m. Mesopelagic fish dominated the large biomass below 500 m and notothenioids dominated that in the upper 100 m. It is considered that mesopelagic fish in the oceanic zone would unlikely be eaten by seabirds because no distinctive diel vertical migration to the surface layer was observed. In the neritic zone, notothenioids ( C. hamatus, T. newnesi and P. antarcticum) possibly play an important role as prey items for flying seabirds, penguins and other notothenioids fish especially in the shallow depth stratum (0-100 m).

  20. Neurophysiological study on visuo-vestibular control of posture and movement in fish during adaptation to weightlessness

    NASA Technical Reports Server (NTRS)

    Mori, Shigeo

    1993-01-01

    We can stand upright and walk smoothly without paying any particular attention to it. This is because we have established in ourselves an integration center that controls our body subconsciously in response to input from eyes, muscles, joints, foot soles, and also from the gravity sensor in the inner ear (the otolith organ). It has been shown that the cerebellum plays an important role for the establishment of the integration center and that the control pattern is comparable to that of a highly sophisticated computer system. The programming for the control, however, may well be acquired for the 1-g ground condition and does not cover the 0-g in space. Although each of the above organs function as it does on the ground, the signal pattern sent to the center must be different under 0-g and, in addition, complementary signals from the otolith organ are missing, leading to confusion in the integration center and causing a variety of symptoms similar to those of car-sickness or sea-sickness. After exposure to microgravity an immediate process of re-programming will begin and be completed in 2-4 days. There is strong supporting evidence for this sensory conflict theory as an explanation for space motion sickness (SMS) episodes. Fish were selected as test organisms for this investigation because they swim around freely in three dimensions and have well-developed organs for vision and gravity detection. They also have an innate nature to orient their back toward a light source. Actually, on the ground, the fish tilts its vertical axis toward the light when illuminated laterally, and the tilt angle is a function of the intensity of light and the magnitude of gravity, while its posture is completely light-dependent in the low-gravity environment produced by aircraft parabolic flight or when the otolith organs are removed. This implies that fish posture is entirely under visual and otolithic control. In this case, the cerebellum will also contribute to the control. In the

  1. Less can be more: loss of MHC functional diversity can reflect adaptation to novel conditions during fish invasions

    PubMed Central

    Monzón-Argüello, Catalina; Garcia de Leaniz, Carlos; Gajardo, Gonzalo; Consuegra, Sofia

    2013-01-01

    The ability of invasive species to adapt to novel conditions depends on population size and environmental mismatch, but also on genetic variation. Away from their native range, invasive species confronted with novel selective pressures may display different levels of neutral versus functional genetic variation. However, the majority of invasion studies have only examined genetic variation at neutral markers, which may reveal little about how invaders adapt to novel environments. Salmonids are good model systems to examine adaptation to novel pressures because they have been translocated all over the world and represent major threats to freshwater biodiversity in the Southern Hemisphere, where they have become invasive. We examined patterns of genetic differentiation at seven putatively neutral (microsatellites) loci and one immune-related major histocompatibility complex (MHC class II-β) locus among introduced rainbow trout living in captivity (farmed) or under natural conditions (naturalized) in Chilean Patagonia. A significant positive association was found between differentiation at neutral and functional markers, highlighting the role of neutral evolutionary forces in shaping genetic variation at immune-related genes in salmonids. However, functional (MHC) genetic diversity (but not microsatellite diversity) decreased with time spent in the wild since introduction, suggesting that there was selection against alleles associated with captive rearing of donor populations that do not provide an advantage in the wild. Thus, although high genetic diversity may initially enhance fitness in translocated populations, it does not necessarily reflect invasion success, as adaptation to novel conditions may result in rapid loss of functional MHC diversity. PMID:24223274

  2. Individual Behavioral Adaptability to Diminished G-Forces and Calcium Uptake of Inner ear Otoliths in Fish. A Sounding Rocket Experiment (TX 48)

    NASA Astrophysics Data System (ADS)

    Knie, Miriam; Shcherbakov, Denis; Hilbig, Reinhard

    2013-02-01

    In the course of the TEXUS 45 experiment we were able to show that the time-course of a habituation to diminished gravity depends on the respective G-level HQM (high quality microgravity, 10-4g) vs. LQM (low quality microgravity, 10-2g) and on the symmetric morphology of the gravity sensing components of the inner ear. An individually different regulation of inner ear otolith calcification plays a role in this process. With this study, the results of the TEXUS 45 flight were validated for another g-level (9x10-4g). In the course of the behavioural investigations we were able to show that most fish could adapt to these μg condition. Fish experiencing permanently 9x10-4g during the whole flight exhibit less kinetotic movements and from this we conclude, that they might use this minimal g-force for orientation. Furthermore these behavioural data were correlated with the morphology of otoliths (Lapilli and Sagittae).

  3. Science to support adaptive habitat management: Overton Bottoms North Unit, Big Muddy National Fish and Wildlife Refuge, Missouri [Volumes 1-6

    USGS Publications Warehouse

    Jacobson, Robert B.

    2006-01-01

    Extensive efforts are underway along the Lower Missouri River to rehabilitate ecosystem functions in the channel and flood plain. Considerable uncertainty inevitably accompanies ecosystem restoration efforts, indicating the benefits of an adaptive management approach in which management actions are treated as experiments, and results provide information to feed back into the management process. The Overton Bottoms North Unit of the Big Muddy National Fish and Wildlife Refuge is a part of the Missouri River Fish and Wildlife Habitat Mitigation Project. The dominant management action at the Overton Bottoms North Unit has been excavation of a side-channel chute to increase hydrologic connectivity and to enhance shallow, slow current-velocity habitat. The side-channel chute also promises to increase hydrologic gradients, and may serve to alter patterns of wetland inundation and vegetation community growth in undesired ways. The U.S. Geological Survey's Central Region Integrated Studies Program (CRISP) undertook interdisciplinary research at the Overton Bottoms North Unit in 2003 to address key areas of scientific uncertainty that were highly relevant to ongoing adaptive management of the site, and to the design of similar rehabilitation projects on the Lower Missouri River. This volume presents chapters documenting the surficial geologic, topographic, surface-water, and ground-water framework of the Overton Bottoms North Unit. Retrospective analysis of vegetation community trends over the last 10 years is used to evaluate vegetation responses to reconnection of the Overton Bottoms North Unit to the river channel. Quasi-experimental analysis of cottonwood growth rate variation along hydrologic gradients is used to evaluate sensitivity of terrestrial vegetation to development of aquatic habitats. The integrated, landscape-specific understanding derived from these studies illustrates the value of scientific information in design and management of rehabilitation projects.

  4. An adaptive approach to invasive plant management on U.S. Fish and Wildlife Service-owned native prairies in the Prairie Pothole Region: decision support under uncertainity

    USGS Publications Warehouse

    Gannon, Jill J.; Moore, Clinton T.; Shaffer, Terry L.; Flanders-Wanner, Bridgette

    2011-01-01

    Much of the native prairie managed by the U.S. Fish and Wildlife Service (Service) in the Prairie Pothole Region (PPR) is extensively invaded by the introduced cool-season grasses smooth brome (Bromus inermis) and Kentucky bluegrass (Poa pratensis). The central challenge to managers is selecting appropriate management actions in the face of biological and environmental uncertainties. We describe the technical components of a USGS management project, and explain how the components integrate and inform each other, how data feedback from individual cooperators serves to reduce uncertainty across the whole region, and how a successful adaptive management project is coordinated and maintained on a large scale. In partnership with the Service, the U.S. Geological Survey is developing an adaptive decision support framework to assist managers in selecting management actions under uncertainty and maximizing learning from management outcomes. The framework is built around practical constraints faced by refuge managers and includes identification of the management objective and strategies, analysis of uncertainty and construction of competing decision models, monitoring, and mechanisms for model feedback and decision selection. Nineteen Service field stations, spanning four states of the PPR, are participating in the project. They share a common management objective, available management strategies, and biological uncertainties. While the scope is broad, the project interfaces with individual land managers who provide refuge-specific information and receive updated decision guidance that incorporates understanding gained from the collective experience of all cooperators.

  5. Species-specific differences in adaptive phenotypic plasticity in an ecologically relevant trophic trait: hypertrophic lips in Midas cichlid fishes.

    PubMed

    Machado-Schiaffino, Gonzalo; Henning, Frederico; Meyer, Axel

    2014-07-01

    The spectacular species richness of cichlids and their diversity in morphology, coloration, and behavior have made them an ideal model for the study of speciation and adaptive evolution. Hypertrophic lips evolved repeatedly and independently in African and Neotropical cichlid radiations. Cichlids with hypertrophic lips forage predominantly in rocky crevices and it has been hypothesized that mechanical stress caused by friction could result in larger lips through phenotypic plasticity. To test the influence of the environment on the size and development of lips, we conducted a series of breeding and feeding experiments on Midas cichlids. Full-sibs of Amphilophus labiatus (thick-lipped) and Amphilophus citrinellus (thin-lipped) each were split into a control group which was fed food from the water column and a treatment group whose food was fixed to substrates. We found strong evidence for phenotypic plasticity on lip area in the thick-lipped species, but not in the thin-lipped species. Intermediate phenotypic values were observed in hybrids from thick- and thin-lipped species reared under "control" conditions. Thus, both a genetic, but also a phenotypic plastic component is involved in the development of hypertrophic lips in Neotropical cichlids. Moreover, species-specific adaptive phenotypic plasticity was found, suggesting that plasticity is selected for in recent thick-lipped species. PMID:24475874

  6. Heritability and adaptive significance of the number of egg-dummies in the cichlid fish Astatotilapia burtoni

    PubMed Central

    Lehtonen, Topi K.; Meyer, Axel

    2011-01-01

    Cichlid fishes are a textbook example of rapid speciation and exuberant diversity—this applies especially to haplochromines, a lineage with approximately 1800 species. Haplochromine males uniquely possess oval, bright spots on their anal fin, called ‘egg-spots’ or ‘egg-dummies’. These are presumed to be an evolutionary key innovation that contributed to the tribe's evolutionary success. Egg-spots have been proposed to mimic the ova of the mouthbrooding females of the corresponding species, contribute to fertilization success and even facilitate species recognition. Interestingly, egg-spot number varies extensively not only between species, but also within some populations. This high degree of intraspecific variation may appear to be counterintuitive since selection might be expected to act to stabilize traits that are correlated with fitness measures. We addressed this ‘paradox’ experimentally, and found that in the haplochromine cichlid Astatotilapia burtoni, the number of egg-spots was related to male age, body condition and dominance status. Intriguingly, the egg-spot number also had a high heritable component (narrow sense heritability of 0.5). These results suggest that the function of egg-spots might have less to do with fertilization success or species recognition, but rather relate to mate choice and/or male–male competition, helping to explain the high variability in this important trait. PMID:21208958

  7. Development of an adaptive monitoring framework for long-term programs: An example using indicators of fish health.

    PubMed

    Arciszewski, Tim J; Munkittrick, Kelly R

    2015-10-01

    Detecting unwanted changes associated with localized human activities in aquatic ecosystems requires defining the value of an indicator expected at a site in the absence of development. Ideally, adequate and comparable baseline data will be collected at an exposure location before that development, but this is rarely done. Instead, comparisons are made using various designs to overcome the inadequate or missing baseline data. Commonly these comparisons are done over short periods, using information from local reference sites to estimate variability expected at the exposed site. Results of these truncated designs are often evaluated using p values that may have little bearing on ecologically relevant changes. To remedy the reliance of studies on small datasets collected at reference sites, other designs emphasize regional analyses, but these may be insensitive to site-specific changes. Some designs also may forego discussing the consequences of detecting any differences. A new monitoring framework has been proposed to use existing solutions, simplify analysis, and focus on the detection of meaningful changes. It is illustrated here by using data on fish health from a large-scale, long-term program in the Moose River basin in northern Ontario. This framework advocates interpretation of data at multiple scales: within-site, locally, and regionally. The primary focus is on estimating a range from a probability distribution of historical data collected at a specific location where 95% of future observations are predicted to occur. Changes at the exposed site are also compared with historical and contemporary expectations from proximate and regional reference sites. Critical effect sizes also can be derived from regional reference data to evaluate the magnitude of differences observed between any 2 sites. Any unexpected changes inform future monitoring decisions provided by a priori guidance. Adoption of this framework extends the utility of monitoring programs in which

  8. Fish Allergy

    MedlinePlus

    ... Story" 5 Things to Know About Zika & Pregnancy Fish Allergy KidsHealth > For Parents > Fish Allergy Print A ... From Home en español Alergia al pescado About Fish Allergy A fish allergy is not exactly the ...

  9. Parasitic infection by larval helminths in Antarctic fishes: pathological changes and impact on the host body condition index.

    PubMed

    Santoro, Mario; Mattiucci, Simonetta; Work, Thierry; Cimmaruta, Roberta; Nardi, Valentina; Cipriani, Paolo; Bellisario, Bruno; Nascetti, Giuseppe

    2013-07-22

    We examined pathological changes and relationship between body condition index (BCI) and parasitic infection in 5 species of fish, including 42 icefish Chionodraco hamatus (Channichtyidae), 2 dragonfish Cygnodraco mawsoni (Bathydraconidae), 30 emerald rock cod Trematomus bernacchii, 46 striped rock cod T. hansoni and 9 dusty rock cod T. newnesi (Nototheniidae) from the Ross Sea, Antarctica. All parasites were identified by a combination of morphology and mtDNA cytochrome-oxidase-2 sequence (mtDNA cox2) analysis, except Contracaecum osculatum s.l., for which only the latter was used. Five larval taxa were associated with pathological changes including 2 sibling species (D and E) of the C. osculatum species complex and 3 cestodes including plerocercoids of a diphyllobothridean, and 2 tetraphyllidean forms including cercoids with monolocular and bilocular bothridia. The most heavily infected hosts were C. hamatus and C. mawsoni, with C. hamatus most often infected by C. osculatum sp. D and sp. E and diphyllobothrideans, while C. mawsoni was most often infected with tetraphyllidean forms. Histologically, all fish showed varying severity of chronic inflammation associated with larval forms of helminths. Diphyllobothrideans and C. osculatum spp. were located in gastric muscularis or liver and were associated with necrosis and mild to marked fibrosis. Moderate multifocal rectal mucosal chronic inflammation was associated with attached tetraphyllidean scolices. C. hamatus showed a strong negative correlation between BCI and parasite burden. PMID:23872857

  10. Parasitic infection by larval helminths in Antarctic fishes: pathological changes and impact on the host body condition index

    USGS Publications Warehouse

    Santoro, Mario; Mattiucci, Simonetta; Work, Thierry; Cimmaruta, Roberta; Nardi, Valentina; Cipriani, Paolo; Bellisario, Bruno; Nascetti, Giuseppe

    2013-01-01

    We examined pathological changes and relationship between body condition index (BCI) and parasitic infection in 5 species of fish, including 42 icefish Chionodraco hamatus (Channichtyidae), 2 dragonfish Cygnodraco mawsoni (Bathydraconidae), 30 emerald rock cod Trematomus bernacchii, 46 striped rock cod T. hansoni and 9 dusty rock cod T. newnesi (Nototheniidae) from the Ross Sea, Antarctica. All parasites were identified by a combination of morphology and mtDNA cytochrome-oxidase-2 sequence (mtDNA cox2) analysis, except Contracaecum osculatum s.l., for which only the latter was used. Five larval taxa were associated with pathological changes including 2 sibling species (D and E) of the C. osculatum species complex and 3 cestodes including plerocercoids of a diphyllobothridean, and 2 tetraphyllidean forms including cercoids with monolocular and bilocular bothridia. The most heavily infected hosts were C. hamatus and C. mawsoni, with C. hamatus most often infected by C. osculatum sp. D and sp. E and diphyllobothrideans, while C. mawsoni was most often infected with tetraphyllidean forms. Histologically, all fish showed varying severity of chronic inflammation associated with larval forms of helminths. Diphyllobothrideans and C. osculatum spp. were located in gastric muscularis or liver and were associated with necrosis and mild to marked fibrosis. Moderate multifocal rectal mucosal chronic inflammation was associated with attached tetraphyllidean scolices. C. hamatus showed a strong negative correlation between BCI and parasite burden.

  11. One Fish Two Fish.

    ERIC Educational Resources Information Center

    Hoffman, Michele

    1998-01-01

    This activity explains fisheries resource management to seven-year olds. First-grade students learn concepts such as offspring viability, life expectancy, and distribution of species, which help to determine when, where, and how people fish and the importance of fishing responsibly. Lists materials, procedures, and extensions. (SJR)

  12. Fish Hearing.

    ERIC Educational Resources Information Center

    Blaxter, J. H. S.

    1980-01-01

    Provides related information about hearing in fish, including the sensory stimulus of sound in the underwater environment, mechanoreceptors in fish, pressure perception and the swimbladder, specializations in sound conduction peculiar to certain fish families. Includes numerous figures. (CS)

  13. City Fishing.

    ERIC Educational Resources Information Center

    Lange, Robert E.

    1979-01-01

    A program of supplying opportunities for fishing at locations within and near urban areas was developed. This effort included stocking, management of bodies of water for fishing, and presentation of fishing clinics for urban fishermen. (RE)

  14. Transgenic Fish

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fish into which foreign DNA is artificially introduced and integrated into their genome are called transgenic fish. Since the development of the first transgenic fish in 1985, techniques to produce transgenic fish have improved tremendously, resulting in the production of genetically modified (GM) ...

  15. Significant effects of fishing gear selectivity on fish life history

    NASA Astrophysics Data System (ADS)

    Liang, Zhenlin; Sun, Peng; Yan, Wei; Huang, Liuyi; Tang, Yanli

    2014-06-01

    Over the past few decades, extreme changes have occurred in the characters of exploited fish populations. The majority of these changes have affected the growth traits of fish life history, which include a smaller size-at-age, an earlier age-at-maturation and among others. Currently, the causes of these life history traits changes still require systematic analyses and empirical studies. The explanations that have been cited are merely expressed in terms of fish phenotypic adaptation. It has been claimed that the original traits of fish can be recovered once the intensity of exploitation of the fish is controlled. Sustained environmental and fishing pressure will change the life history traits of most fish species, so the fish individual's traits are still in small size-at-age and at earlier age-at-maturation in exploited fish populations. In this paper, we expressed our view of points that fishing gear has imposed selectivity on fish populations and individuals as various other environmental factors have done and such changes are unrecoverable. According to the existing tend of exploited fish individual's life history traits, we suggested further researches in this field and provided better methods of fishery management and thereby fishery resources protection than those available early.

  16. 76 FR 70751 - Trinity Adaptive Management Working Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-15

    ... Fish and Wildlife Service Trinity Adaptive Management Working Group AGENCY: Fish and Wildlife Service, Interior. ACTION: Notice of meeting. SUMMARY: The Trinity Adaptive Management Working Group (TAMWG) affords stakeholders the opportunity to give policy, management, and technical input concerning Trinity...

  17. 77 FR 74203 - Trinity Adaptive Management Working Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-13

    ... Fish and Wildlife Service Trinity Adaptive Management Working Group AGENCY: Fish and Wildlife Service, Interior. ACTION: Notice of meeting. SUMMARY: The Trinity Adaptive Management Working Group (TAMWG) affords stakeholders the opportunity to give policy, management, and technical input concerning Trinity...

  18. 76 FR 34248 - Trinity Adaptive Management Working Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-13

    ... Fish and Wildlife Service Trinity Adaptive Management Working Group AGENCY: Fish and Wildlife Service, Interior. ACTION: Notice of meeting. SUMMARY: The Trinity Adaptive Management Working Group (TAMWG) affords stakeholders the opportunity to give policy, management, and technical input concerning Trinity...

  19. 77 FR 10766 - Trinity Adaptive Management Working Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-23

    ... Fish and Wildlife Service Trinity Adaptive Management Working Group AGENCY: Fish and Wildlife Service, Interior. ACTION: Notice of meeting. SUMMARY: The Trinity Adaptive Management Working Group (TAMWG) affords stakeholders the opportunity to give policy, management, and technical input concerning Trinity...

  20. 75 FR 17158 - Trinity Adaptive Management Working Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-05

    ... Fish and Wildlife Service Trinity Adaptive Management Working Group AGENCY: Fish and Wildlife Service, Interior. ACTION: Notice of meeting. SUMMARY: The Trinity Adaptive Management Working Group (TAMWG) affords stakeholders the opportunity to give policy, management, and technical input concerning Trinity...

  1. 75 FR 10501 - Trinity Adaptive Management Working Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-08

    ... Fish and Wildlife Service Trinity Adaptive Management Working Group AGENCY: Fish and Wildlife Service, Interior. ACTION: Notice of meeting. SUMMARY: The Trinity Adaptive Management Working Group (TAMWG) affords stakeholders the opportunity to give policy, management, and technical input concerning Trinity...

  2. 77 FR 45370 - Trinity Adaptive Management Working Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-31

    ... Fish and Wildlife Service Trinity Adaptive Management Working Group AGENCY: Fish and Wildlife Service, Interior. ACTION: Notice of meeting. SUMMARY: The Trinity Adaptive Management Working Group (TAMWG) affords stakeholders the opportunity to give policy, management, and technical input concerning Trinity...

  3. 76 FR 23621 - Trinity Adaptive Management Working Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-27

    ... Fish and Wildlife Service Trinity Adaptive Management Working Group AGENCY: Fish and Wildlife Service, Interior. ACTION: Notice of meeting. SUMMARY: The Trinity Adaptive Management Working Group (TAMWG) affords stakeholders the opportunity to give policy, management, and technical input concerning Trinity...

  4. 76 FR 52345 - Trinity Adaptive Management Working Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-22

    ... Fish and Wildlife Service Trinity Adaptive Management Working Group AGENCY: Fish and Wildlife Service, Interior. ACTION: Notice of meeting. SUMMARY: The Trinity Adaptive Management Working Group (TAMWG) affords stakeholders the opportunity to give policy, management, and technical input concerning Trinity...

  5. 77 FR 30314 - Trinity Adaptive Management Working Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-22

    ... Fish and Wildlife Service Trinity Adaptive Management Working Group AGENCY: Fish and Wildlife Service, Interior. ACTION: Notice of meeting. SUMMARY: The Trinity Adaptive Management Working Group (TAMWG) affords stakeholders the opportunity to give policy, management, and technical input concerning Trinity...

  6. 75 FR 70947 - Trinity Adaptive Management Working Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-19

    ... Fish and Wildlife Service Trinity Adaptive Management Working Group AGENCY: Fish and Wildlife Service, Interior. ACTION: Notice of meeting. SUMMARY: The Trinity Adaptive Management Working Group (TAMWG) affords stakeholders the opportunity to give policy, management, and technical input concerning Trinity...

  7. 77 FR 50155 - Trinity Adaptive Management Working Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-20

    ... Fish and Wildlife Service Trinity Adaptive Management Working Group AGENCY: Fish and Wildlife Service, Interior. ACTION: Notice of meeting. SUMMARY: The Trinity Adaptive Management Working Group (TAMWG) affords stakeholders the opportunity to give policy, management, and technical input concerning Trinity...

  8. 75 FR 51284 - Trinity Adaptive Management Working Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-19

    ... Fish and Wildlife Service Trinity Adaptive Management Working Group AGENCY: Fish and Wildlife Service, Interior. ACTION: Notice of meeting. SUMMARY: The Trinity Adaptive Management Working Group (TAMWG) affords stakeholders the opportunity to give policy, management, and technical input concerning Trinity...

  9. 76 FR 14044 - Trinity Adaptive Management Working Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-15

    ... Fish and Wildlife Service Trinity Adaptive Management Working Group AGENCY: Fish and Wildlife Service, Interior. ACTION: Notice of meeting. SUMMARY: The Trinity Adaptive Management Working Group (TAMWG) affords stakeholders the opportunity to give policy, management, and technical input concerning Trinity...

  10. 75 FR 27814 - Trinity Adaptive Management Working Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-18

    ... Fish and Wildlife Service Trinity Adaptive Management Working Group AGENCY: Fish and Wildlife Service, Interior. ACTION: Notice of meeting. SUMMARY: The Trinity Adaptive Management Working Group (TAMWG) affords stakeholders the opportunity to give policy, management, and technical input concerning Trinity...

  11. Hydrodynamics of fossil fishes

    PubMed Central

    Fletcher, Thomas; Altringham, John; Peakall, Jeffrey; Wignall, Paul; Dorrell, Robert

    2014-01-01

    From their earliest origins, fishes have developed a suite of adaptations for locomotion in water, which determine performance and ultimately fitness. Even without data from behaviour, soft tissue and extant relatives, it is possible to infer a wealth of palaeobiological and palaeoecological information. As in extant species, aspects of gross morphology such as streamlining, fin position and tail type are optimized even in the earliest fishes, indicating similar life strategies have been present throughout their evolutionary history. As hydrodynamical studies become more sophisticated, increasingly complex fluid movement can be modelled, including vortex formation and boundary layer control. Drag-reducing riblets ornamenting the scales of fast-moving sharks have been subjected to particularly intense research, but this has not been extended to extinct forms. Riblets are a convergent adaptation seen in many Palaeozoic fishes, and probably served a similar hydrodynamic purpose. Conversely, structures which appear to increase skin friction may act as turbulisors, reducing overall drag while serving a protective function. Here, we examine the diverse adaptions that contribute to drag reduction in modern fishes and review the few attempts to elucidate the hydrodynamics of extinct forms. PMID:24943377

  12. Hydrodynamics of fossil fishes.

    PubMed

    Fletcher, Thomas; Altringham, John; Peakall, Jeffrey; Wignall, Paul; Dorrell, Robert

    2014-08-01

    From their earliest origins, fishes have developed a suite of adaptations for locomotion in water, which determine performance and ultimately fitness. Even without data from behaviour, soft tissue and extant relatives, it is possible to infer a wealth of palaeobiological and palaeoecological information. As in extant species, aspects of gross morphology such as streamlining, fin position and tail type are optimized even in the earliest fishes, indicating similar life strategies have been present throughout their evolutionary history. As hydrodynamical studies become more sophisticated, increasingly complex fluid movement can be modelled, including vortex formation and boundary layer control. Drag-reducing riblets ornamenting the scales of fast-moving sharks have been subjected to particularly intense research, but this has not been extended to extinct forms. Riblets are a convergent adaptation seen in many Palaeozoic fishes, and probably served a similar hydrodynamic purpose. Conversely, structures which appear to increase skin friction may act as turbulisors, reducing overall drag while serving a protective function. Here, we examine the diverse adaptions that contribute to drag reduction in modern fishes and review the few attempts to elucidate the hydrodynamics of extinct forms. PMID:24943377

  13. Fish Dishes.

    ERIC Educational Resources Information Center

    Derby, Marie

    2003-01-01

    Describes an art project that was inspired by Greek pottery, specifically dishes shaped as fish. Explains that fourth-grade students drew a fish shape that was later used to create their clay version of the fish. Discusses how the students examined the pottery to make decisions about color and design. (CMK)

  14. Use and usability of experimental monitoring data and temperature modeling to inform adaptive management of the Colorado River's thermal regime for native fish conservation below Glen Canyon Dam

    NASA Astrophysics Data System (ADS)

    Melis, T. S.

    2014-12-01

    Seasonal thermal variability of the Colorado River in Grand Canyon was severely decreased by closure of Glen Canyon Dam and filling of Lake Powell reservoir that was achieved in 1980. From 1973 to 2002, downstream summer river temperatures at Lees Ferry were about 18°C below pre-dam conditions, and limited juvenile native fish growth and survival. A large-scale flow experiment to improve the river's thermal regime for spawning and rearing habitat of endangered native humpback chub and other native fish in eastern Grand Canyon was conducted in Water Year 2000. Monitoring revealed warming, but well below the 16-18°C optimum for chub 124 km below the dam near the Little Colorado River confluence, and no measurable chub population increase in Grand Canyon. Fall-timed stable flow experiments to improve shoreline chub nursery habitat (2008-12) were also inconclusive relative to juvenile chub growth and recruitment. Field studies also showed that daytime warming of shoreline habitats used by fish under steady flows is limited by high daily exchange rates with main channel water. Monthly averaged and higher resolution temperature models have also been developed and used to support more recent experimental management planning. Temperature simulations have been useful for screening dam release scenarios under varied reservoir storage conditions with and without use of previously proposed but never constructed multilevel intake structures on the dam's hydroelectric units. Most importantly, modeling revealed the geophysical limits on downstream warming under existing water management and dam operating policies. Hourly unsteady flow simulations in 2006 predicted equivalent levels of average downstream river warming under either fluctuating or steady flows for a given monthly release volume. River warming observed since 2002, has resulted from reduced Lake Powell storage resulting from drier upper basin hydrology. In support of new environmental compliance on dam operations

  15. Developing predictive approaches to characterize adaptive responses of the reproductive endocrine axis to aromatase inhibition: I. Data generation in a small fish model

    EPA Science Inventory

    Adaptive or compensatory responses to chemical exposure can significantly influence in vivo concentration-duration-response relationships. The aim of this study was to provide data to support development of a computational dynamic model of the hypothalamic-pituitary-gonadal axis ...

  16. Fish detection and classification system

    NASA Astrophysics Data System (ADS)

    Tidd, Richard A.; Wilder, Joseph

    2001-01-01

    Marine biologists traditionally determine the presence and quantities of different types of fish by dragging nets across the bottom, and examining their contents. This method, although accurate, kills the collected fish, damages their habitat, and consumes large quantities of resources. This paper presents an alternative, a machine vision system capable of determining the presence of fish species. Illumination presents a unique problem in this environment, and the design of an effective illumination system is discussed. The related issues of object orientation and measurement are also discussed and resolved. Capturing images of fish in murky water also presents challenges. An adaptive thresholding technique is required to appropriately segment the fish from the background in these images. Mode detection, and histogram analysis are useful tools in determining these localized thresholds. It is anticipated that this system, created in conjunction with the Rutgers Institute for Marine and Coastal Science, will effectively classify fish in the estuarine environment.

  17. Genomics of Adaptation to Multiple Concurrent Stresses: Insights from Comparative Transcriptomics of a Cichlid Fish from One of Earth's Most Extreme Environments, the Hypersaline Soda Lake Magadi in Kenya, East Africa.

    PubMed

    Kavembe, Geraldine D; Franchini, Paolo; Irisarri, Iker; Machado-Schiaffino, Gonzalo; Meyer, Axel

    2015-10-01

    The Magadi tilapia (Alcolapia grahami) is a cichlid fish that inhabits one of the Earth's most extreme aquatic environments, with high pH (~10), salinity (~60% of seawater), high temperatures (~40 °C), and fluctuating oxygen regimes. The Magadi tilapia evolved several unique behavioral, physiological, and anatomical adaptations, some of which are constituent and thus retained in freshwater conditions. We conducted a transcriptomic analysis on A. grahami to study the evolutionary basis of tolerance to multiple stressors. To identify the adaptive regulatory changes associated with stress responses, we massively sequenced gill transcriptomes (RNAseq) from wild and freshwater-acclimated specimens of A. grahami. As a control, corresponding transcriptome data from Oreochromis leucostictus, a closely related freshwater species, were generated. We found expression differences in a large number of genes with known functions related to osmoregulation, energy metabolism, ion transport, and chemical detoxification. Over-representation of metabolism-related gene ontology terms in wild individuals compared to laboratory-acclimated specimens suggested that freshwater conditions greatly decrease the metabolic requirements of this species. Twenty-five genes with diverse physiological functions related to responses to water stress showed signs of divergent natural selection between the Magadi tilapia and its freshwater relative, which shared a most recent common ancestor only about four million years ago. The complete set of genes responsible for urea excretion was identified in the gill transcriptome of A. grahami, making it the only fish species to have a functional ornithine-urea cycle pathway in the gills--a major innovation for increasing nitrogenous waste efficiency. PMID:26345661

  18. Detecting molecular adaptation at individual codons in the glycoprotein gene of the geographically diversified infectious hematopoietic necrosis virus, a fish rhabdovirus.

    PubMed

    Padhi, Abinash; Verghese, Bindhu

    2008-03-01

    Salmonid fishes, the principal hosts of the infectious hematopoietic necrosis virus (IHNV), are a candidate species for aquaculture in many countries. IHNV causes an acute disease resulting in severe economic loss in salmonid fish farming. Previous phylogenetic analyses revealed the existence of multiple genogroups of this virus throughout the geographical range of its host. Here, we report the importance of natural selection in shaping the evolution of certain codons at the surface glycoprotein (G-protein) gene of this virus. Maximum likelihood (ML)-based codon substitution analyses revealed that approximately 2.8% of the codons for the entire G-protein are shown to have higher nonsynonymous substitution per nonsynonymous site (dn) than the synonymous substitutions per synonymous site (ds) (dn/ds=omega>4.335). Thus, the data suggest that positive selection (omega>1) is the major driving force in the evolution of certain codons. However, majority of these positively selected sites cannot be mapped to the regions of antigenic determinants of IHNV. Based on the reports of previous studies, epitopes with positively selected sites are immunodominant and viruses can escape from immune responses by producing antigenic variation at positively selected sites, therefore, vaccines directed against these neutralizing epitopes of IHNV that consist of no positively selected sites will be more effective. Some of the positively selected sites showed radical change in amino acids with respect to their charge and polarity; however, it is unclear how these changes affect the fitness of the virus. PMID:18178282

  19. Fish flavor.

    PubMed

    Kawai, T

    1996-02-01

    This article reviews features of flavor in three groups of fishes and summarizes them as follows: (1) fresh saltwater fish are nearly odorless because they contain a small quantity of volatiles; (2 freshwater fish give off pyrrolidine and earthy-odor compounds, which are responsible for their maturity and surrounding water pollution, and (3) euryhaline fish exhibit a variety of unsaturated carbonyls and alcohols derived from enzymatic and nonenzymatic oxidation of polyunsaturated fatty acids (PAs). These features are discussed, as are the effects of different enzymatic activities on PA oxidation and the effects of pH on mechanisms of formation of the volatiles. The monotonous volatile constitution of saltwater fish is likely caused by an unknown antioxidation system restraining the fish from oxidizing. The variety of constitution of euryhaline fish, especially that of anadromous fish under spawning conditions, could result from the loss of that system. The thermal environments of heated foods are also reviewed. The basic environment of fish, which allows the formation of flavor compounds, is discussed to confirm the volatiles found in unheated fish. PMID:8744606

  20. Fish Rhabdoviruses

    USGS Publications Warehouse

    Kurath, G.; Winton, J.

    2008-01-01

    Many important viral pathogens of fish are members of the family Rhabdoviridae. The viruses in this large group cause significant losses in populations of wild fish as well as among fish reared in aquaculture. Fish rhabdoviruses often have a wide host and geographic range, and infect aquatic animals in both freshwater and seawater. The fish rhabdoviruses comprise a diverse collection of isolates that can be placed in one of two quite different groups: isolates that are members of the established genusNovirhabdovirus, and those that are most similar to members of the genus Vesiculovirus. Because the diseases caused by fish rhabdoviruses are important to aquaculture, diagnostic methods for their detection and identification are well established. In addition to regulations designed to reduce the spread of fish viruses, a significant body of research has addressed methods for the control or prevention of diseases caused by fish rhabdoviruses, including vaccination. The number of reported fish rhabdoviruses continues to grow as a result of the expansion of aquaculture, the increase in global trade, the development of improved diagnostic methods, and heightened surveillance activities. Fish rhabdoviruses serve as useful components of model systems to study vertebrate virus disease, epidemiology, and immunology.

  1. Immunity to fish rhabdoviruses

    USGS Publications Warehouse

    Purcell, Maureen K.; Laing, Kerry J.; Winton, James R.

    2012-01-01

    Members of the family Rhabdoviridae are single-stranded RNA viruses and globally important pathogens of wild and cultured fish and thus relatively well studied in their respective hosts or other model systems. Here, we review the protective immune mechanisms that fish mount in response to rhabdovirus infections. Teleost fish possess the principal components of innate and adaptive immunity found in other vertebrates. Neutralizing antibodies are critical for long-term protection from fish rhabdoviruses, but several studies also indicate a role for cell-mediated immunity. Survival of acute rhabdoviral infection is also dependent on innate immunity, particularly the interferon (IFN) system that is rapidly induced in response to infection. Paradoxically, rhabdoviruses are sensitive to the effects of IFN but virulent rhabdoviruses can continue to replicate owing to the abilities of the matrix (M) protein to mediate host-cell shutoff and the non-virion (NV) protein to subvert programmed cell death and suppress functional IFN. While many basic features of the fish immune response to rhabdovirus infections are becoming better understood, much less is known about how factors in the environment affect the ecology of rhabdovirus infections in natural populations of aquatic animals.

  2. Immunity to Fish Rhabdoviruses

    PubMed Central

    Purcell, Maureen K.; Laing, Kerry J.; Winton, James R.

    2012-01-01

    Members of the family Rhabdoviridae are single-stranded RNA viruses and globally important pathogens of wild and cultured fish and thus relatively well studied in their respective hosts or other model systems. Here, we review the protective immune mechanisms that fish mount in response to rhabdovirus infections. Teleost fish possess the principal components of innate and adaptive immunity found in other vertebrates. Neutralizing antibodies are critical for long-term protection from fish rhabdoviruses, but several studies also indicate a role for cell-mediated immunity. Survival of acute rhabdoviral infection is also dependent on innate immunity, particularly the interferon (IFN) system that is rapidly induced in response to infection. Paradoxically, rhabdoviruses are sensitive to the effects of IFN but virulent rhabdoviruses can continue to replicate owing to the abilities of the matrix (M) protein to mediate host-cell shutoff and the non‑virion (NV) protein to subvert programmed cell death and suppress functional IFN. While many basic features of the fish immune response to rhabdovirus infections are becoming better understood, much less is known about how factors in the environment affect the ecology of rhabdovirus infections in natural populations of aquatic animals. PMID:22355456

  3. Competing risks and the development of adaptive management plans for water resources: Field reconnaissance investigation of risks to fishes and other aquatic biota exposed to endocrine disrupting chemicals (edcs) in lake mead, Nevada USA

    USGS Publications Warehouse

    Linder, G.; Little, E.E.

    2009-01-01

    The analysis and characterization of competing risks for water resources rely on a wide spectrum of tools to evaluate hazards and risks associated with their management. For example, waters of the lower Colorado River stored in reservoirs such as Lake Mead present a wide range of competing risks related to water quantity and water quality. These risks are often interdependent and complicated by competing uses of source waters for sustaining biological resources and for supporting a range of agricultural, municipal, recreational, and industrial uses. USGS is currently conducting a series of interdisciplinary case-studies on water quality of Lake Mead and its source waters. In this case-study we examine selected constituents potentially entering the Lake Mead system, particularly endocrine disrupting chemicals (EDCs). Worldwide, a number of environmental EDCs have been identified that affect reproduction, development, and adaptive behaviors in a wide range of organisms. Many EDCs are minimally affected by current treatment technologies and occur in treated sewage effluents. Several EDCs have been detected in Lake Mead, and several substances have been identified that are of concern because of potential impacts to the aquatic biota, including the sport fishery of Lake Mead and endangered razorback suckers (Xyrauchen texanus) that occur in the Colorado River system. For example, altered biomarkers relevant to reproduction and thyroid function in fishes have been observed and may be predictive of impaired metabolism and development. Few studies, however, have addressed whether such EDC-induced responses observed in the field have an ecologically significant effect on the reproductive success of fishes. To identify potential linkages between EDCs and species of management concern, the risk analysis and characterization in this reconnaissance study focused on effects (and attendant uncertainties) that might be expressed by exposed populations. In addition, risk reduction

  4. Texture Fish

    ERIC Educational Resources Information Center

    Stone, Julie

    2007-01-01

    In an effort to provide an opportunity for her first graders to explore texture through an engaging subject, the author developed a three-part lesson that features fish in a mixed-media artwork: (1) Exploring Textured Paint; (2) Creating the Fish; and (3) Role Playing. In this lesson, students effectively explore texture through painting, drawing,…

  5. Parsing parallel evolution: ecological divergence and differential gene expression in the adaptive radiations of thick-lipped Midas cichlid fishes from Nicaragua.

    PubMed

    Manousaki, Tereza; Hull, Pincelli M; Kusche, Henrik; Machado-Schiaffino, Gonzalo; Franchini, Paolo; Harrod, Chris; Elmer, Kathryn R; Meyer, Axel

    2013-02-01

    The study of parallel evolution facilitates the discovery of common rules of diversification. Here, we examine the repeated evolution of thick lips in Midas cichlid fishes (the Amphilophus citrinellus species complex)-from two Great Lakes and two crater lakes in Nicaragua-to assess whether similar changes in ecology, phenotypic trophic traits and gene expression accompany parallel trait evolution. Using next-generation sequencing technology, we characterize transcriptome-wide differential gene expression in the lips of wild-caught sympatric thick- and thin-lipped cichlids from all four instances of repeated thick-lip evolution. Six genes (apolipoprotein D, myelin-associated glycoprotein precursor, four-and-a-half LIM domain protein 2, calpain-9, GTPase IMAP family member 8-like and one hypothetical protein) are significantly underexpressed in the thick-lipped morph across all four lakes. However, other aspects of lips' gene expression in sympatric morphs differ in a lake-specific pattern, including the magnitude of differentially expressed genes (97-510). Generally, fewer genes are differentially expressed among morphs in the younger crater lakes than in those from the older Great Lakes. Body shape, lower pharyngeal jaw size and shape, and stable isotopes (δ(13)C and δ(15)N) differ between all sympatric morphs, with the greatest differentiation in the Great Lake Nicaragua. Some ecological traits evolve in parallel (those related to foraging ecology; e.g. lip size, body and head shape) but others, somewhat surprisingly, do not (those related to diet and food processing; e.g. jaw size and shape, stable isotopes). Taken together, this case of parallelism among thick- and thin-lipped cichlids shows a mosaic pattern of parallel and nonparallel evolution. PMID:23057963

  6. Impact of Sea Level Rise on Mangrove Ecosystem and its Dependent Fishing Communities in the Coastal Regions of Cauvery Delta: A Message for Policy Planners to Frame Suitable Antcipatory Adaptation Strategies

    NASA Astrophysics Data System (ADS)

    Amsad Ibrahim Khan, S. K.; Ramachandran, A.; Kandasamy, P.; Selvam, V.; Shanmugam, P.

    2014-12-01

    Coastal adaptation to sea-level rise (SLR) in the deltaic region is a multidimensional and complex process requiring informed decisions based on predicted impact and vulnerability assessment of SLR. Elevation plays a key role in determining the impact and vulnerability of coastal land areas to inundation from SLR. Highly accurate mapping of the elevation of the landscape is essential to identify low-lying coastal deltaic regions with valuable ecosystem like mangroves and its dependent human communities that are potentially at risk of inundation. It is difficult for policy planners and decision makers to identify suitable adaptation strategies without having information on the predicted impact and degree of vulnerability of coastal systems to SLR. Importantly, modeling and mapping will provide valuable input to climate change adaptation planning (NOAA 2010). Unfortunately, the comprehensive range of information that is typically required is seldom available and rarely in the possession of decision makers responsible for management of the deltaic and coastal zone (O'Regan, 1996). The present study seeks to provide insights on predicted impact of climate change induced SLR on mangrove ecosystem and its dependent human communities of Pichavaram mangroves, located at the Vellar-Coleroon estuarine region on the banks of Cauvery delta, Tamil Nadu, India. Based on real-time on-ground elevation measurement by DGPS (Differential Global Positioning System) survey and by using GIS portals, the study has identified about 597 ha of mangroves (one third of total mangrove regions) and about 9 fishing hamlets with 12,000 and more of human population that directly depends on this mangrove ecosystem for their livelihood are under threat of inundation to the predicted impact of 0.5m SLR. The present study is intended to showcase a method by providing reliable scientific information on predicted impact of SLR on mangroves and its dependent human communities to policy planner for

  7. Age estimates for an adaptive lake fish radiation, its mitochondrial introgression, and an unexpected sister group: Sailfin silversides of the Malili Lakes system in Sulawesi

    PubMed Central

    2014-01-01

    Background The Malili Lakes system in central Sulawesi (Indonesia) is a hotspot of freshwater biodiversity in the Wallacea, characterized by endemic species flocks like the sailfin silversides (Teleostei: Atherinomorpha: Telmatherinidae) radiation. Phylogenetic reconstructions of these freshwater fishes have previously revealed two Lake Matano Telmatherina lineages (sharpfins and roundfins) forming an ancient monophyletic group, which is however masked by introgressive hybridization of sharpfins with riverine populations. The present study uses mitochondrial data, newly included taxa, and different external calibration points, to estimate the age of speciation and hybridization processes, and to test for phylogeographic relationships between Kalyptatherina from ancient islands off New Guinea, Marosatherina from SW Sulawesi, and the Malili Lakes flock. Results Contrary to previous expectations, Kalyptatherina is the closest relative to the Malili Lakes Telmatherinidae, and Marosatherina is the sister to this clade. Palaeogeographic reconstructions of Sulawesi suggest that the closer relationship of the Malili Lakes radiation to Kalyptatherina might be explained by a 'terrane-rafting’ scenario, while proto-Marosatherina might have colonized Sulawesi by marine dispersal. The most plausible analysis conducted here implies an age of c. 1.9 My for the onset of divergence between the two major clades endemic to Lake Matano. Diversification within both lineages is apparently considerably more recent (c. 1.0 My); stream haplotypes present in the sharpfins are of even more recent origin (c. 0.4 My). Conclusions Sulawesi’s Telmatherinidae have most likely originated in the Sahul Shelf area, have possibly reached the island by both, marine dispersal and island/terrane-rafting, and have colonized the Malili Lakes system from rivers. Estimates for the split between the epibenthic sharpfins and the predominantly pelagic to benthopelagic roundfins in Lake Matano widely

  8. One Fish, Two Fish, Redfish, You Fish!

    ERIC Educational Resources Information Center

    White, Katherine; Timmons, Maryellen; Medders, Paul

    2011-01-01

    The recreational fishing activity presented in this article provides a hands-on, problem-based experience for students; it unites biology, math, economics, environmental policy, and population dynamics concepts. In addition, the activity allows students to shape environmental policy in a realistic setting and evaluate their peers' work. By…

  9. Fishing Forecasts

    NASA Technical Reports Server (NTRS)

    1988-01-01

    ROFFS stands for Roffer's Ocean Fishing Forecasting Service, Inc. Roffer combines satellite and computer technology with oceanographic information from several sources to produce frequently updated charts sometimes as often as 30 times a day showing clues to the location of marlin, sailfish, tuna, swordfish and a variety of other types. Also provides customized forecasts for racing boats and the shipping industry along with seasonal forecasts that allow the marine industry to formulate fishing strategies based on foreknowledge of the arrival and departure times of different fish. Roffs service exemplifies the potential for benefits to marine industries from satellite observations. Most notable results are reduced search time and substantial fuel savings.

  10. The Genome of the Self-Fertilizing Mangrove Rivulus Fish, Kryptolebias marmoratus: A Model for Studying Phenotypic Plasticity and Adaptations to Extreme Environments.

    PubMed

    Kelley, Joanna L; Yee, Muh-Ching; Brown, Anthony P; Richardson, Rhea R; Tatarenkov, Andrey; Lee, Clarence C; Harkins, Timothy T; Bustamante, Carlos D; Earley, Ryan L

    2016-01-01

    The mangrove rivulus (Kryptolebias marmoratus) is one of two preferentially self-fertilizing hermaphroditic vertebrates. This mode of reproduction makes mangrove rivulus an important model for evolutionary and biomedical studies because long periods of self-fertilization result in naturally homozygous genotypes that can produce isogenic lineages without significant limitations associated with inbreeding depression. Over 400 isogenic lineages currently held in laboratories across the globe show considerable among-lineage variation in physiology, behavior, and life history traits that is maintained under common garden conditions. Temperature mediates the development of primary males and also sex change between hermaphrodites and secondary males, which makes the system ideal for the study of sex determination and sexual plasticity. Mangrove rivulus also exhibit remarkable adaptations to living in extreme environments, and the system has great promise to shed light on the evolution of terrestrial locomotion, aerial respiration, and broad tolerances to hypoxia, salinity, temperature, and environmental pollutants. Genome assembly of the mangrove rivulus allows the study of genes and gene families associated with the traits described above. Here we present a de novo assembled reference genome for the mangrove rivulus, with an approximately 900 Mb genome, including 27,328 annotated, predicted, protein-coding genes. Moreover, we are able to place more than 50% of the assembled genome onto a recently published linkage map. The genome provides an important addition to the linkage map and transcriptomic tools recently developed for this species that together provide critical resources for epigenetic, transcriptomic, and proteomic analyses. Moreover, the genome will serve as the foundation for addressing key questions in behavior, physiology, toxicology, and evolutionary biology. PMID:27324916

  11. The Genome of the Self-Fertilizing Mangrove Rivulus Fish, Kryptolebias marmoratus: A Model for Studying Phenotypic Plasticity and Adaptations to Extreme Environments

    PubMed Central

    Kelley, Joanna L.; Yee, Muh-Ching; Brown, Anthony P.; Richardson, Rhea R.; Tatarenkov, Andrey; Lee, Clarence C.; Harkins, Timothy T.; Bustamante, Carlos D.; Earley, Ryan L.

    2016-01-01

    The mangrove rivulus (Kryptolebias marmoratus) is one of two preferentially self-fertilizing hermaphroditic vertebrates. This mode of reproduction makes mangrove rivulus an important model for evolutionary and biomedical studies because long periods of self-fertilization result in naturally homozygous genotypes that can produce isogenic lineages without significant limitations associated with inbreeding depression. Over 400 isogenic lineages currently held in laboratories across the globe show considerable among-lineage variation in physiology, behavior, and life history traits that is maintained under common garden conditions. Temperature mediates the development of primary males and also sex change between hermaphrodites and secondary males, which makes the system ideal for the study of sex determination and sexual plasticity. Mangrove rivulus also exhibit remarkable adaptations to living in extreme environments, and the system has great promise to shed light on the evolution of terrestrial locomotion, aerial respiration, and broad tolerances to hypoxia, salinity, temperature, and environmental pollutants. Genome assembly of the mangrove rivulus allows the study of genes and gene families associated with the traits described above. Here we present a de novo assembled reference genome for the mangrove rivulus, with an approximately 900 Mb genome, including 27,328 annotated, predicted, protein-coding genes. Moreover, we are able to place more than 50% of the assembled genome onto a recently published linkage map. The genome provides an important addition to the linkage map and transcriptomic tools recently developed for this species that together provide critical resources for epigenetic, transcriptomic, and proteomic analyses. Moreover, the genome will serve as the foundation for addressing key questions in behavior, physiology, toxicology, and evolutionary biology. PMID:27324916

  12. Temporal stability of parasite distribution and genetic variability values of Contracaecum osculatum sp. D and C. osculatum sp. E (Nematoda: Anisakidae) from fish of the Ross Sea (Antarctica)

    PubMed Central

    Mattiucci, Simonetta; Cipriani, Paolo; Paoletti, Michela; Nardi, Valentina; Santoro, Mario; Bellisario, Bruno; Nascetti, Giuseppe

    2015-01-01

    The Ross Sea, Eastern Antarctica, is considered a “pristine ecosystem” and a biodiversity “hotspot” scarcely impacted by humans. The sibling species Contracaecum osculatum sp. D and C. osculatum sp. E are anisakid parasites embedded in the natural Antarctic marine ecosystem. Aims of this study were to: identify the larvae of C. osculatum (s.l.) recovered in fish hosts during the XXVII Italian Expedition to Antarctica (2011–2012); perform a comparative analysis of the contemporary parasitic load and genetic variability estimates of C. osculatum sp. D and C. osculatum sp. E with respect to samples collected during the expedition of 1993–1994; to provide ecological data on these parasites. 200 fish specimens (Chionodraco hamatus, Trematomus bernacchii, Trematomus hansoni, Trematomus newnesi) were analysed for Contracaecum sp. larvae, identified at species level by allozyme diagnostic markers and sequences analysis of the mtDNA cox2 gene. Statistically significant differences were found between the occurrence of C. osculatum sp. D and C. osculatum sp. E in different fish species. C. osculatum sp. E was more prevalent in T. bernacchii; while, a higher percentage of C. osculatum sp. D occurred in Ch. hamatus and T. hansoni. The two species also showed differences in the host infection site: C. osculatum sp. D showed higher percentage of infection in the fish liver. High genetic variability values at both nuclear and mitochondrial level were found in the two species in both sampling periods. The parasitic infection levels by C. osculatum sp. D and sp. E and their estimates of genetic variability showed no statistically significant variation over a temporal scale (2012 versus 1994). This suggests that the low habitat disturbance of the Antarctic region permits the maintenance of stable ecosystem trophic webs, which contributes to the maintenance of a large populations of anisakid nematodes with high genetic variability. PMID:26767164

  13. Fish Facts

    MedlinePlus

    ... not eat any fish because they worry about mercury in seafood. Mercury is a metal that, at high levels, can ... many types of seafood have little or no mercury at all. So your risk of mercury exposure ...

  14. Designer Fish.

    ERIC Educational Resources Information Center

    Hall, William R., Jr.

    1990-01-01

    Described is an activity in which students are asked to design a fish that would survive in a natural system. A project to computerize the activity is discussed. The development of this artificial intelligence software is detailed. (CW)

  15. Fish Allergy

    MedlinePlus

    ... specific fish used on the label. Read all product labels carefully before purchasing and consuming any item. Ingredients ... Getting Started Newly Diagnosed Emergency Care Plan Food Labels Mislabeled Products Tips for Managing Food Allergies Resources For... Most ...

  16. 76 FR 27998 - Public Meeting of the Steering Committee for the National Fish, Wildlife and Plants Climate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-13

    ... the National Fish, Wildlife and Plants Climate Adaptation Strategy AGENCY: National Marine Fisheries...: The Steering Committee for the National Fish, Wildlife, and Plants Climate Adaptation Strategy will be... information on the National Fish, Wildlife, and Plants Climate Adaptation Strategy can be found at...

  17. Gone Fishing.

    ERIC Educational Resources Information Center

    Olson-Demme, Hillary; Kisiel, Jim

    2003-01-01

    Presents a hands-on activity in which students create a model of an ocean ecosystem to gain an understanding of how humans can alter biodiversity through their actions. Uses differing levels of fishing technology to explore the concepts of sustainability and overfishing. (Author/SOE)

  18. Commercial Fishing.

    ERIC Educational Resources Information Center

    Florida State Dept. of Education, Tallahassee. Div. of Vocational Education.

    This document is a curriculum framework for a program in commercial fishing to be taught in Florida secondary and postsecondary institutions. This outline covers the major concepts/content of the program, which is designed to prepare students for employment in occupations with titles such as net fishers, pot fishers, line fishers, shrimp boat…

  19. Climate adaptation strategy for natural resources released

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2013-04-01

    The National Fish, Wildlife, and Plants Climate Adaptation Strategy, released on 26 March by the Obama administration, calls for a series of measures to help public and private decision makers better address the effects of climate change on living natural resources. The measures include conserving habitat to support healthy fish, wildlife, and plant populations and ecosystem functions; managing species and habitats to protect ecosystem functions and provide sustainable commercial, subsistence, recreational, and cultural use; increasing knowledge and information about effects on and responses of fish, wildlife, and plants; and reducing nonclimate stressors to help fish, wildlife, plants, and ecosystems adapt.

  20. Fish Tales

    SciTech Connect

    McLerran, L.

    2010-07-06

    This talk is about fishing and the friendships that have resulted in its pursuit. It is also about theoretical physics, and the relationship of imagination and fantasy to the establishment of ideas about nature. Fishermen, like theoretical physicists, are well known for their inventive imaginations. Perhaps neither are as clever as sailors, who conceived of the mermaid. If one doubts the power of this fantasy, one should remember the ghosts of the many sailors who drowned pursuing these young nymphs. An extraordinary painting by J. Waterhouse is shown as Fig. 1. The enchantment of a mermaid must reflect an extraordinary excess of imagination on the part of the sailor, perhaps together with an impractical turn of mind. A consummated relationship with a mermaid is after all, by its very nature a fantasy incapable of realization. To a theoretical physicist, she is symbolic of many ideas we develop. There are many truths known to fisherman in which one might also find parallels to the goals of scientists: (1) A fish is the only animal that keeps growing after its death; (2) Nothing makes a fish bigger than almost being caught; (3) ''...of all the liars among mankind, the fisherman is the most trustworthy.'' (William Sherwood Fox, in Silken Lines and Silver Hooks); and (4) Men and fish are alike. They both get into trouble when they open their mouths. These quotes may be interpreted as reflecting skepticism regarding the honesty of fisherman, and probably do not reflect adequate admiration for a creative imagination. Is it fair to criticize a person for believing a falsehood that he or she sincerely believes to be true? The fisherman simultaneously invents the lie, and believes in it himself. The parallel with theoretical physics is perhaps only approximate, although we physicists may invent stories that we come to believe, on some rare occasions our ideas actually correspond to a more or less true descriptions of nature. These minor philosophical differences are not

  1. Does Masking Matter? Shipping Noise and Fish Vocalizations.

    PubMed

    Neenan, Sarah T V; Piper, Rayner; White, Paul R; Kemp, Paul; Leighton, Timothy G; Shaw, Peter J

    2016-01-01

    Shipping creates large near-field background noises at levels similar to or higher than fish vocalizations and in the same critical bandwidths. This noise has the potential to "mask" biologically important signals and prevent fish from hearing them; any interference with the detection and recognition of sounds may impact fish survival. The Lombard effect, whereby vocalizations are altered to reduce or exclude masking effects, is an adaptation that has been observed in mammals and birds. Research is needed to establish whether the Lombard effect occurs in fish to gain a better understanding of the implications of noise pollution on fish populations. PMID:26611028

  2. Fishing amplifies forage fish population collapses

    PubMed Central

    Essington, Timothy E.; Moriarty, Pamela E.; Froehlich, Halley E.; Hodgson, Emma E.; Koehn, Laura E.; Oken, Kiva L.; Siple, Margaret C.; Stawitz, Christine C.

    2015-01-01

    Forage fish support the largest fisheries in the world but also play key roles in marine food webs by transferring energy from plankton to upper trophic-level predators, such as large fish, seabirds, and marine mammals. Fishing can, thereby, have far reaching consequences on marine food webs unless safeguards are in place to avoid depleting forage fish to dangerously low levels, where dependent predators are most vulnerable. However, disentangling the contributions of fishing vs. natural processes on population dynamics has been difficult because of the sensitivity of these stocks to environmental conditions. Here, we overcome this difficulty by collating population time series for forage fish populations that account for nearly two-thirds of global catch of forage fish to identify the fingerprint of fisheries on their population dynamics. Forage fish population collapses shared a set of common and unique characteristics: high fishing pressure for several years before collapse, a sharp drop in natural population productivity, and a lagged response to reduce fishing pressure. Lagged response to natural productivity declines can sharply amplify the magnitude of naturally occurring population fluctuations. Finally, we show that the magnitude and frequency of collapses are greater than expected from natural productivity characteristics and therefore, likely attributed to fishing. The durations of collapses, however, were not different from those expected based on natural productivity shifts. A risk-based management scheme that reduces fishing when populations become scarce would protect forage fish and their predators from collapse with little effect on long-term average catches. PMID:25848018

  3. Fishing amplifies forage fish population collapses.

    PubMed

    Essington, Timothy E; Moriarty, Pamela E; Froehlich, Halley E; Hodgson, Emma E; Koehn, Laura E; Oken, Kiva L; Siple, Margaret C; Stawitz, Christine C

    2015-05-26

    Forage fish support the largest fisheries in the world but also play key roles in marine food webs by transferring energy from plankton to upper trophic-level predators, such as large fish, seabirds, and marine mammals. Fishing can, thereby, have far reaching consequences on marine food webs unless safeguards are in place to avoid depleting forage fish to dangerously low levels, where dependent predators are most vulnerable. However, disentangling the contributions of fishing vs. natural processes on population dynamics has been difficult because of the sensitivity of these stocks to environmental conditions. Here, we overcome this difficulty by collating population time series for forage fish populations that account for nearly two-thirds of global catch of forage fish to identify the fingerprint of fisheries on their population dynamics. Forage fish population collapses shared a set of common and unique characteristics: high fishing pressure for several years before collapse, a sharp drop in natural population productivity, and a lagged response to reduce fishing pressure. Lagged response to natural productivity declines can sharply amplify the magnitude of naturally occurring population fluctuations. Finally, we show that the magnitude and frequency of collapses are greater than expected from natural productivity characteristics and therefore, likely attributed to fishing. The durations of collapses, however, were not different from those expected based on natural productivity shifts. A risk-based management scheme that reduces fishing when populations become scarce would protect forage fish and their predators from collapse with little effect on long-term average catches. PMID:25848018

  4. Fish tapeworm infection

    MedlinePlus

    Fish tapeworm infection is an intestinal infection with the tapeworm parasite found in fish. ... The fish tapeworm ( Diphyllobothrium latum ) is the largest parasite that infects humans. Humans become infected when they eat raw ...

  5. Got a Sick Fish?

    MedlinePlus

    ... Welfare Veterinary Careers Public Health Got a sick fish? Fish with disease can show a variety of signs. If you notice your pet fish having any unusual disease signs, contact your veterinarian ...

  6. Fish Manoeuvres and Morphology

    NASA Astrophysics Data System (ADS)

    Singh, Kiran; Pedley, Timothy

    2008-11-01

    The extraordinary manoeuvrability observed in many fish is attributed to their inherent flexibility, which might be enhanced by the use of appendages like fins. The aim of this work is to understand the role of morphological adaptations, such as body shape and deployment of median fins, on manoeuvrability and internal body dynamics. The 3d vortex lattice numerical method was employed to analyse the hydrodynamics for arbitrary body planforms of infinitesimal thickness. The internal structure of the body due to the combined skeletal system and soft tissue, is represented as an active Euler-Bernoulli beam, in which the time-dependent bending moment distribution is calculated from body inertia and the hydrodynamic pressure difference across the body. C-turns are the manoeuvre of choice for this work and the response for three different species of fish are examined. Angelfish(Pterophyllum eimekei), pike (Esox sp) and tuna (Thunnus albacares) were chosen for their differences in body profile, median fin use and manoeuvrability. Net direction change and bending moment response to prescribed backbone flexure are calculated and used to interpret the influence of body profile on manoeuvrability and muscle work done. Internal stresses may be computed from anatomical data on muscle fibre distribution and recruitment. To the future, it is intended to extend this work to other typical manoeuvres, such as fast starts for which muscle activation patterns have been measured quite widely.

  7. Consumer beliefs regarding farmed versus wild fish.

    PubMed

    Claret, Anna; Guerrero, Luis; Ginés, Rafael; Grau, Amàlia; Hernández, M Dolores; Aguirre, Enaitz; Peleteiro, José Benito; Fernández-Pato, Carlos; Rodríguez-Rodríguez, Carmen

    2014-08-01

    Aquaculture is a food-producing activity, alternative to traditional extractive fishing, which still acts as a reference for most consumers. The main objective of the present paper was to study which consumer beliefs, regarding farmed versus wild fish, hinder the potential development of the aquaculture sector. To achieve this purpose the study was organized into two complementary steps: a qualitative approach (focus groups) aimed at assessing consumer perception about wild and farmed fish and to identify the salient beliefs that differentiate them; and a quantitative approach (survey by means of a questionnaire) to validate the results obtained in the focus group discussions over a representative sample of participants (n = 919). Results showed that participants perceive clear differences between farmed and wild fish. Although no significant differences between both kinds of fish were detected on safety, in general farmed fish was perceived to be less affected by marine pollution, heavy metals and parasites. In the contrary, wild fish was considered to have healthier feeding, to contain fewer antibiotics and to be fresher, healthier, less handled and more natural. Beliefs related to quality were in favour of wild fish, while those related to availability and price were in favour of farmed fish. Significant differences were observed in the perception of both kinds of fish depending on the consumers' objective knowledge about fish, on the level of education, age and gender and on the three segments of consumers identified: "Traditional/Conservative", "Connoisseur", "Open to aquaculture". The results provided could play an important role when planning and designing efficient marketing strategies for promoting farmed fish by adapting the information provided to the perception of each segment of consumers identified by the present study. PMID:24709486

  8. Microencapsulation of Fish Oil

    NASA Astrophysics Data System (ADS)

    Beindorff, Christiaan M.; Zuidam, Nicolaas Jan

    For those fortunate to live near rivers, lakes and the sea, fish has been part of their diet for many centuries, and trade in dried fish has a long history. The important fishing industry developed when fishermen started to fish over wider areas of the seas and when improvements in freezing facilities allowed storage at sea, and subsequent distribution to urban consumers. For many, fresh fish and fried fish are now a part of their standard diet.

  9. Fish mycobacteriosis (Tuberculosis)

    USGS Publications Warehouse

    Parisot, T.J.; Wood, J.W.

    1959-01-01

    The etiologic agent for the bacterial disease, "fish tuberculosis" (more correctly "mycobacteriosis"), was first observed in carp in 189& from a pond in France. Subsequently similar agents have been isolated from or observed in fish in fresh water, salt water, and brackish water, in fish in aquaria, hatcheries, and natural habitat~ (wild populations of fish). The disease has been recognized as an important infection among hatchery reared salmonid fishes on the West Coast of the United States, and in aquarium fishes such as the neon tetra, the Siamese fighting fish, and in salt water fish held in zoological displays.

  10. Cultured fish: integrative biology and management of domestication and interactions with wild fish.

    PubMed

    Lorenzen, Kai; Beveridge, Malcolm C M; Mangel, Marc

    2012-08-01

    Fish aquaculture for commodity production, fisheries enhancement and conservation is expanding rapidly, with many cultured species undergoing inadvertent or controlled domestication. Cultured fish are frequently released, accidentally and deliberately, into natural environments where they may survive well and impact on wild fish populations through ecological, genetic, and technical interactions. Impacts of fish released accidentally or for fisheries enhancement tend to be negative for the wild populations involved, particularly where wild populations are small, and/or highly adapted to local conditions, and/or declining. Captive breeding and supplementation can play a positive role in restoring threatened populations, but the biology of threatened populations and the potential of culture approaches for conserving them remain poorly understood. Approaches to the management of domestication and cultured-wild fish interactions are often ad hoc, fragmented and poorly informed by current science. We develop an integrative biological framework for understanding and managing domestication and cultured-wild fish interactions. The framework sets out how management practices in culture and for cultured fish in natural environments affect domestication processes, interactions between cultured and wild fish, and outcomes in terms of commodity production, fisheries yield, and conservation. We also develop a typology of management systems (specific combinations of management practices in culture and in natural environments) that are likely to provide positive outcomes for particular management objectives and situations. We close by setting out avenues for further research that will simultaneously improve fish domestication and management of cultured-wild fish interactions and provide key insights into fundamental biology. PMID:22221879

  11. Overview of fish immune system and infectious diseases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A brief overview of the fish immune system and the emerging or re-emerging bacterial, viral, parasitic and fungal diseases considered to currently have a negative impact on aquaculture is presented. The fish immune system has evolved with both innate (natural resistance) and adaptive (acquired) immu...

  12. Cardiovascular control in Antarctic fish

    NASA Astrophysics Data System (ADS)

    Egginton, Stuart; Campbell, Hamish; Davison, William

    2006-04-01

    The capacity for synthesis and plasma levels of stress hormones in species with a range of activity patterns suggest that depressed catecholamine synthesis is typical of notothenioid fishes regardless of life style, although they are able to release extensive stores under conditions of extreme trauma. Cortisol does not appear to be an important primary stress hormone in these species. In general, vascular reactivity shows a modest α and β adrenergic tonus, but with greater potency for cholinergic and serotonergic vasoconstrictor agonists, although a dominance of vasodilatation over vasoconstriction is observed in one species. Vasomotor control mechanisms appear to be primarily a consequence of evolutionary lineage rather than low environmental temperature, but the pattern may be modified according to functional demand. These and other data confirm the cardiovascular system is dominated by cholinergic control: the heart apparently lacks adrenergic innervation, but receives inhibitory parasympathetic input that regulates heart rate (HR) by setting a resting vagal tonus. Oxygen consumption (MO 2) determined at rest and varied via specific dynamic action, in intact fish and fish that had undergone bilateral sectioning of the vagus nerve, show that HR is a good predictor of MO 2, and that the major influence on HR is the degree of vagal tone—these fish work by removing the brake rather than applying the accelerator. However, whether these traits actually represent adaptation to the Antarctic environment or merely represent ancestral characteristics and their relative phylogenetic position is at present unclear.

  13. Adaptive Management

    EPA Science Inventory

    Adaptive management is an approach to natural resource management that emphasizes learning through management where knowledge is incomplete, and when, despite inherent uncertainty, managers and policymakers must act. Unlike a traditional trial and error approach, adaptive managem...

  14. 78 FR 70500 - Atlantic Highly Migratory Species; 2014 Atlantic Shark Commercial Fishing Seasons

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-26

    ...This final rule establishes opening dates and adjusts quotas for the 2014 fishing season for the Atlantic commercial shark fisheries. The quota adjustments are based on over- and/or underharvests experienced during 2013 and previous fishing seasons. In addition, NMFS establishes season opening dates based on adaptive management measures to provide, to the extent practicable, fishing......

  15. Protective immunity in fish against protozoan diseases.

    PubMed

    Woo, P T K

    2007-09-01

    The demand for and costs of producing land-based animal protein continues to escalate as the world population increases. Fish is an excellent protein, but the catch-fishery is stagnant or in decline. Intensive cage culture of fish is a viable option especially in countries with lakes/rivers and/or a long coastline; however, disease outbreaks will likely occur more frequently with cage culture. Hence protective strategies are needed, and one approach is to exploit the piscine immune system. This discussion highlights immunity (innate/natural and adaptive/acquired) in fish against three pathogenic protozoa (Amyloodinium ocellatum, Ichthyophthirius multifiliis and Cryptobia salmositica). Histone-like proteins in the mucus and skin of naturally resistant fish kill trophonts of A. ocellatum, and also may cause abnormal development of tomonts. Breeding of Cryptobia-resistant brook charrs is possible as resistance is controlled by a dominant Mendelian locus, and the parasite is lysed via the Alternative Pathway of Complement Activation. Production of transgenic Cryptobia-tolerant salmon is an option. Recovered fish are protected from the three diseases (acquired immunity). Live I. multifiliis theronts injected intraperitoneally into fish elicit protection. Also, a recombinant immoblizing-antigen vaccine against ichthyophthirosis has been developed but further evaluations are necessary. The live Cryptobia vaccine protects salmonids from infections while the DNA-vaccine stimulates production of antibodies to neutralize the disease causing factor (metalloprotease) in cryptobiosis; hence infected fish recover more rapidly. PMID:18410078

  16. Fish Surgery: Presurgical Preparation and Common Surgical Procedures.

    PubMed

    Sladky, Kurt K; Clarke, Elsburgh O

    2016-01-01

    Fish surgical procedures are commonplace in aquaria, zoos, laboratory facilities, and pet clinical practice. To incorporate fish surgery into a clinical setting, an understanding of anatomic differences between mammals and fish, bath anesthetics, and recirculating anesthesia techniques must be developed; a system or different size systems to accommodate anesthesia and surgery of particular species of concern at an institution or practice constructed; and familiar mammalian surgical principles applied with some adaptations. Common surgical procedures in fish include coeliotomy for intracoelomic mass removal, reproductive procedures, gastrointestinal foreign body removal, radiotransmitter placement, and integumentary mass excision. PMID:26611924

  17. Effects of fire on fish populations: Landscape perspectives on persistance of native fishes and nonnative fish invasions

    USGS Publications Warehouse

    Dunham, J.B.; Young, M.; Gresswell, Robert E.; Rieman, B.

    2003-01-01

    Our limited understanding of the short and long-term effects of fire on fish contributes to considerable uncertainty in assessments of the risks and benefits of fire management alternatives. A primary concern among the many potential effects of fire is the effects of fire and fire management on persistence of native fish populations. Limited evidence suggests vulnerability of fish to fire is contingent upon the quality of affected habitats, the amount and distribution of habitat (habitat fragmentation), and habitat specificity of the species in question. Species with narrow habitat requirements in highly degraded and fragmented systems are likely to be most vulnerable to fire and fire-related disturbance. In addition to effects of fire on native fish, there are growing concerns about the effects of fire on nonnative fish invasions. The role of fire in facilitating invasions by nonnative fishes is unknown, but experience with other species suggests some forms of disturbance associated with fire may facilitate invasion. Management efforts to promote persistence of fishes in fire-prone landscapes can take the form of four basic alternatives: (1) pre-fire management; (2) post-fire management; (3) managing fire itself (e.g. fire fighting); and (4) monitoring and adaptive management. Among these alternatives, pre-fire management is likely to be most effective. Effective pre-fire management activities will address factors that may render fish populations more vulnerable to the effects of fire (e.g. habitat degradation, fragmentation, and nonnative species). Post-fire management is also potentially important, but suffers from being a reactive approach that may not address threats in time to avert them. Managing fire itself can be important in some contexts, but negative consequences for fish populations are possible (e.g. toxicity of fire fighting chemicals to fish). Monitoring and adaptive management can provide important new information for evaluating alternatives, but

  18. Scorpion fish sting

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/002849.htm Scorpion fish sting To use the sharing features on this page, please enable JavaScript. Scorpion fish are members of the family Scorpaenidae, which includes ...

  19. Poisoning - fish and shellfish

    MedlinePlus

    Fish poisoning; Dinoflagellate poisoning; Seafood contamination; Paralytic shellfish poisoning; Ciguatera poisoning ... algae and algae-like organisms called dinoflagellates. Small fish that eat the algae become contaminated. If larger ...

  20. Cortisol coregulation in fish.

    PubMed

    Fürtbauer, Ines; Heistermann, Michael

    2016-01-01

    Cortisol coregulation, which is the up- or down-regulation of partners' physiological stress responses, has been described for individuals with strong attachment bonds, e.g. parents and their children, and romantic relationship partners. Research into moderating effects on cortisol coregulation suggests stronger covariation among distressed partners. Whether cortisol coregulation is unique to humans or can also be found in other species that share universal features of the vertebrate stress response remains unexplored. Using a repeated measures approach and non-invasive waterborne hormone analysis, we test the hypothesis that dyads of three-spined stickleback fish (Gasterosteus aculeatus) coregulate their cortisol levels in shared environments. Dyadic cortisol levels were unrelated when cohabiting (home tank), but significantly covaried when sharing a more stressful (as indicated by higher cortisol levels) environment (open field). Time-lag analysis further revealed that open field cortisol levels were predicted by partner's cortisol levels prior to the shared experience. To our knowledge, this study provides the first evidence for coregulatory processes on cortisol responses in a non-human animal that lacks strong bonds and social attachment relationships, suggesting a shared evolutionary origin of cortisol coregulation in vertebrates. From an adaptive perspective, cortisol coregulation may serve to reduce risk in challenging, potentially threatening situations. PMID:27458063

  1. Cortisol coregulation in fish

    PubMed Central

    Fürtbauer, Ines; Heistermann, Michael

    2016-01-01

    Cortisol coregulation, which is the up- or down-regulation of partners’ physiological stress responses, has been described for individuals with strong attachment bonds, e.g. parents and their children, and romantic relationship partners. Research into moderating effects on cortisol coregulation suggests stronger covariation among distressed partners. Whether cortisol coregulation is unique to humans or can also be found in other species that share universal features of the vertebrate stress response remains unexplored. Using a repeated measures approach and non-invasive waterborne hormone analysis, we test the hypothesis that dyads of three-spined stickleback fish (Gasterosteus aculeatus) coregulate their cortisol levels in shared environments. Dyadic cortisol levels were unrelated when cohabiting (home tank), but significantly covaried when sharing a more stressful (as indicated by higher cortisol levels) environment (open field). Time-lag analysis further revealed that open field cortisol levels were predicted by partner’s cortisol levels prior to the shared experience. To our knowledge, this study provides the first evidence for coregulatory processes on cortisol responses in a non-human animal that lacks strong bonds and social attachment relationships, suggesting a shared evolutionary origin of cortisol coregulation in vertebrates. From an adaptive perspective, cortisol coregulation may serve to reduce risk in challenging, potentially threatening situations. PMID:27458063

  2. Adaptive SPECT

    PubMed Central

    Barrett, Harrison H.; Furenlid, Lars R.; Freed, Melanie; Hesterman, Jacob Y.; Kupinski, Matthew A.; Clarkson, Eric; Whitaker, Meredith K.

    2008-01-01

    Adaptive imaging systems alter their data-acquisition configuration or protocol in response to the image information received. An adaptive pinhole single-photon emission computed tomography (SPECT) system might acquire an initial scout image to obtain preliminary information about the radiotracer distribution and then adjust the configuration or sizes of the pinholes, the magnifications, or the projection angles in order to improve performance. This paper briefly describes two small-animal SPECT systems that allow this flexibility and then presents a framework for evaluating adaptive systems in general, and adaptive SPECT systems in particular. The evaluation is in terms of the performance of linear observers on detection or estimation tasks. Expressions are derived for the ideal linear (Hotelling) observer and the ideal linear (Wiener) estimator with adaptive imaging. Detailed expressions for the performance figures of merit are given, and possible adaptation rules are discussed. PMID:18541485

  3. 49 CFR 173.218 - Fish meal or fish scrap.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Fish meal or fish scrap. 173.218 Section 173.218... Fish meal or fish scrap. (a) Except as provided in Column (7) of the HMT in § 172.101 of this subchapter, fish meal or fish scrap, containing at least 6%, but not more than 12% water, is authorized...

  4. 49 CFR 173.218 - Fish meal or fish scrap.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Fish meal or fish scrap. 173.218 Section 173.218... Fish meal or fish scrap. (a) Except as provided in Column (7) of the HMT in § 172.101 of this subchapter, fish meal or fish scrap, containing at least 6%, but not more than 12% water, is authorized...

  5. 49 CFR 173.218 - Fish meal or fish scrap.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Fish meal or fish scrap. 173.218 Section 173.218... Fish meal or fish scrap. (a) Except as provided in Column (7) of the HMT in § 172.101 of this subchapter, fish meal or fish scrap, containing at least 6%, but not more than 12% water, is authorized...

  6. 49 CFR 173.218 - Fish meal or fish scrap.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Fish meal or fish scrap. 173.218 Section 173.218... Fish meal or fish scrap. (a) Except as provided in Column (7) of the HMT in § 172.101 of this subchapter, fish meal or fish scrap, containing at least 6%, but not more than 12% water, is authorized...

  7. 46 CFR 148.265 - Fish meal or fish scrap.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Fish meal or fish scrap. 148.265 Section 148.265... MATERIALS THAT REQUIRE SPECIAL HANDLING Special Requirements for Certain Materials § 148.265 Fish meal or fish scrap. (a) This part does not apply to fish meal or fish scrap that contains less than 5...

  8. 49 CFR 173.218 - Fish meal or fish scrap.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Fish meal or fish scrap. 173.218 Section 173.218... Fish meal or fish scrap. (a) Except as provided in Column (7) of the HMT in § 172.101 of this subchapter, fish meal or fish scrap, containing at least 6%, but not more than 12% water, is authorized...

  9. 46 CFR 148.265 - Fish meal or fish scrap.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Fish meal or fish scrap. 148.265 Section 148.265... MATERIALS THAT REQUIRE SPECIAL HANDLING Special Requirements for Certain Materials § 148.265 Fish meal or fish scrap. (a) This part does not apply to fish meal or fish scrap that contains less than 5...

  10. 46 CFR 148.265 - Fish meal or fish scrap.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Fish meal or fish scrap. 148.265 Section 148.265... MATERIALS THAT REQUIRE SPECIAL HANDLING Special Requirements for Certain Materials § 148.265 Fish meal or fish scrap. (a) This part does not apply to fish meal or fish scrap that contains less than 5...

  11. 46 CFR 148.265 - Fish meal or fish scrap.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Fish meal or fish scrap. 148.265 Section 148.265... MATERIALS THAT REQUIRE SPECIAL HANDLING Special Requirements for Certain Materials § 148.265 Fish meal or fish scrap. (a) This part does not apply to fish meal or fish scrap that contains less than 5...

  12. Poisoning - fish and shellfish

    MedlinePlus

    ... contaminated waters. Scombroid poisoning usually occurs from large, dark meat fish such as tuna, mackerel, mahi mahi, and albacore. Because this poison develops after a fish is caught and dies, it does not matter where the fish is caught. The main factor ...

  13. Fish Health Management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For commercial success, a recirculating aquaculture operation must maintain fish at densities far greater than normally found in nature. At the same time, the producer must maintain an environment that supports good fish health. This chapter discusses various aspects of fish health management, inclu...

  14. Investigation of gliding flight by flying fish

    NASA Astrophysics Data System (ADS)

    Park, Hyungmin; Jeon, Woo-Pyung; Choi, Haecheon

    2006-11-01

    The most successful flight capability of fish is observed in the flying fish. Furthermore, despite the difference between two medium (air and water), the flying fish is well evolved to have an excellent gliding performance as well as fast swimming capability. In this study, flying fish's morphological adaptation to gliding flight is experimentally investigated using dry-mounted darkedged-wing flying fish, Cypselurus Hiraii. Specifically, we examine the effects of the pectoral and pelvic fins on the aerodynamic performance considering (i) both pectoral and pelvic fins, (ii) pectoral fins only, and (iii) body only with both fins folded. Varying the attack angle, we measure the lift, drag and pitching moment at the free-stream velocity of 12m/s for each case. Case (i) has higher lift-to-drag ratio (i.e. longer gliding distance) and more enhanced longitudinal static stability than case (ii). However, the lift coefficient is smaller for case (i) than for case (ii), indicating that the pelvic fins are not so beneficial for wing loading. The gliding performance of flying fish is compared with those of other fliers and is found to be similar to those of insects such as the butterfly and fruitfly.

  15. Fish under exercise.

    PubMed

    Palstra, Arjan P; Planas, Josep V

    2011-06-01

    Improved knowledge on the swimming physiology of fish and its application to fisheries science and aquaculture (i.e., farming a fitter fish) is currently needed in the face of global environmental changes, high fishing pressures, increased aquaculture production as well as increased concern on fish well-being. Here, we review existing data on teleost fish that indicate that sustained exercise at optimal speeds enhances muscle growth and has consequences for flesh quality. Potential added benefits of sustained exercise may be delay of ovarian development and stimulation of immune status. Exercise could represent a natural, noninvasive, and economical approach to improve growth, flesh quality as well as welfare of aquacultured fish: a FitFish for a healthy consumer. All these issues are important for setting directions for policy decisions and future studies in this area. For this purpose, the FitFish workshop on the Swimming Physiology of Fish ( http://www.ub.edu/fitfish2010 ) was organized to bring together a multidisciplinary group of scientists using exercise models, industrial partners, and policy makers. Sixteen international experts from Europe, North America, and Japan were invited to present their work and view on migration of fishes in their natural environment, beneficial effects of exercise, and applications for sustainable aquaculture. Eighty-eight participants from 19 different countries contributed through a poster session and round table discussion. Eight papers from invited speakers at the workshop have been contributed to this special issue on The Swimming Physiology of Fish. PMID:21611721

  16. Fish allergy: in review.

    PubMed

    Sharp, Michael F; Lopata, Andreas L

    2014-06-01

    Globally, the rising consumption of fish and its derivatives, due to its nutritional value and divergence of international cuisines, has led to an increase in reports of adverse reactions to fish. Reactions to fish are not only mediated by the immune system causing allergies, but are often caused by various toxins and parasites including ciguatera and Anisakis. Allergic reactions to fish can be serious and life threatening and children usually do not outgrow this type of food allergy. The route of exposure is not only restricted to ingestion but include manual handling and inhalation of cooking vapors in the domestic and occupational environment. Prevalence rates of self-reported fish allergy range from 0.2 to 2.29 % in the general population, but can reach up to 8 % among fish processing workers. Fish allergy seems to vary with geographical eating habits, type of fish processing, and fish species exposure. The major fish allergen characterized is parvalbumin in addition to several less well-known allergens. This contemporary review discusses interesting and new findings in the area of fish allergy including demographics, novel allergens identified, immunological mechanisms of sensitization, and innovative approaches in diagnosing and managing this life-long disease. PMID:23440653

  17. Fish community results

    SciTech Connect

    Hickman, G.D.; Scott, E.M. Jr.; Brown, A.M.

    1991-05-01

    The Tennessee Valley Authority (TVA) operates 9 reservoirs on the Tennessee River and 37 reservoirs on its tributaries. TVA is committed to maintaining the health of aquatic resources created when the reservoir system was built. To that end, TVA in cooperation with Valley states, operates a water resource monitoring program that includes physical, chemical, and biological data collection components. Biological monitoring will target the following selected elements within three zones of the reservoir (inflow, transition, and forebay): Sediment/Water-column Acute Toxicity Screening, Benthic macroinvertebrates, and Fish. Reservoir fisheries monitoring is divided into the following activities: Fish Biomass, Fish Tissue Contamination, Fish Community Monitoring, and Fish Health Assessment. This report presents the results of fish community monitoring and fish health assessments.

  18. Comparative Pathogenomics of Bacteria Causing Infectious Diseases in Fish

    PubMed Central

    Sudheesh, Ponnerassery S.; Al-Ghabshi, Aliya; Al-Mazrooei, Nashwa; Al-Habsi, Saoud

    2012-01-01

    Fish living in the wild as well as reared in the aquaculture facilities are susceptible to infectious diseases caused by a phylogenetically diverse collection of bacterial pathogens. Control and treatment options using vaccines and drugs are either inadequate, inefficient, or impracticable. The classical approach in studying fish bacterial pathogens has been looking at individual or few virulence factors. Recently, genome sequencing of a number of bacterial fish pathogens has tremendously increased our understanding of the biology, host adaptation, and virulence factors of these important pathogens. This paper attempts to compile the scattered literature on genome sequence information of fish pathogenic bacteria published and available to date. The genome sequencing has uncovered several complex adaptive evolutionary strategies mediated by horizontal gene transfer, insertion sequence elements, mutations and prophage sequences operating in fish pathogens, and how their genomes evolved from generalist environmental strains to highly virulent obligatory pathogens. In addition, the comparative genomics has allowed the identification of unique pathogen-specific gene clusters. The paper focuses on the comparative analysis of the virulogenomes of important fish bacterial pathogens, and the genes involved in their evolutionary adaptation to different ecological niches. The paper also proposes some new directions on finding novel vaccine and chemotherapeutic targets in the genomes of bacterial pathogens of fish. PMID:22675651

  19. Eating fish for two

    PubMed Central

    Strain, JJ

    2014-01-01

    Summary This article is based on the British Nutrition Foundation’s Annual Lecture, which focused on maternal fish consumption and the effects of methylmercury (MeHg) on fetal development, with respect to current guidance and policy on fish consumption during pregnancy. Fish makes a valuable contribution to nutrient intakes across the globe and is the primary protein source for many individuals, particularly those in the developing world. Populations with a high fish consumption, such as in the Republic of the Seychelles, have a greater exposure to MeHg, which is present in varying amounts in all fish. Methylmercury is a toxic pollutant, which is known to impair neurodevelopment. The dose of MeHg from fish consumption, however, needed to impair neurodevelopment is unknown. Current UK and US guidance on fish consumption during pregnancy tend to focus more on avoiding risks rather than highlighting the benefits which can be obtained from eating fish. Such recommendations have been mainly based on data arising from epidemiological studies in the Faroe Islands, where methylmercury exposure was largely from pilot whale consumption. Although small adverse effects on child development have been reported in data from the Faroe Islands, data from the on-going Seychelles Child Development Studies have shown no adverse effects of prenatal methlymercury exposure from high maternal fish consumption (9–12 meals containing fish per week) on developmental outcomes. Instead these data suggest that nutrients, including long chain polyunsaturated fatty acids (LC-PUFAs), provided by fish may offer a beneficial effect and attenuate or modify any effects of MeHg on developmental outcomes. Recent expert consultations have concluded that the health benefits of fish consumption outweigh the risks posed by MeHg exposure and have argued the need for improved education and guidance to highlight the importance of consuming nutrients, including LC-PUFAs, from fish for optimal child

  20. Gene evolution and gene expression after whole genome duplication in fish: the PhyloFish database.

    PubMed

    Pasquier, Jeremy; Cabau, Cédric; Nguyen, Thaovi; Jouanno, Elodie; Severac, Dany; Braasch, Ingo; Journot, Laurent; Pontarotti, Pierre; Klopp, Christophe; Postlethwait, John H; Guiguen, Yann; Bobe, Julien

    2016-01-01

    With more than 30,000 species, ray-finned fish represent approximately half of vertebrates. The evolution of ray-finned fish was impacted by several whole genome duplication (WGD) events including a teleost-specific WGD event (TGD) that occurred at the root of the teleost lineage about 350 million years ago (Mya) and more recent WGD events in salmonids, carps, suckers and others. In plants and animals, WGD events are associated with adaptive radiations and evolutionary innovations. WGD-spurred innovation may be especially relevant in the case of teleost fish, which colonized a wide diversity of habitats on earth, including many extreme environments. Fish biodiversity, the use of fish models for human medicine and ecological studies, and the importance of fish in human nutrition, fuel an important need for the characterization of gene expression repertoires and corresponding evolutionary histories of ray-finned fish genes. To this aim, we performed transcriptome analyses and developed the PhyloFish database to provide (i) de novo assembled gene repertoires in 23 different ray-finned fish species including two holosteans (i.e. a group that diverged from teleosts before TGD) and 21 teleosts (including six salmonids), and (ii) gene expression levels in ten different tissues and organs (and embryos for many) in the same species. This resource was generated using a common deep RNA sequencing protocol to obtain the most exhaustive gene repertoire possible in each species that allows between-species comparisons to study the evolution of gene expression in different lineages. The PhyloFish database described here can be accessed and searched using RNAbrowse, a simple and efficient solution to give access to RNA-seq de novo assembled transcripts. PMID:27189481

  1. Fish elevator and method of elevating fish

    DOEpatents

    Truebe, Jonathan; Drooker, Michael S.

    1984-01-01

    A means and method for transporting fish from a lower body of water to a higher body of water. The means comprises a tubular lock with a gated entrance below the level of the lower body of water through which fish may enter the lock and a discharge passage above the level of the upper body of water. The fish raising means in the lock is a crowder pulled upward by a surface float as water from the upper body of water gravitationally flows into the closed lock filling it to the level of the upper body. Water is then pumped into the lock to raise the level to the discharge passage. The crowder is then caused to float upward the remaining distance through the water to the level of the discharge passage by the introduction of air into a pocket on the underside of the crowder. The fish are then automatically discharged from the lock into the discharge passage by the out of water position of the crowder. The movement of the fish into the discharge passage is aided by the continuous overflow of water still being pumped into the lock. A pipe may be connected to the discharge passage to deliver the fish to a selected location in the upper body of water.

  2. Immunostimulants in fish diets

    USGS Publications Warehouse

    Gannam, A.L.; Schrock, R.M.

    1999-01-01

    Various immunostimulants and their methods of application in fish culture are examined in this review. Important variables such as life stage and innate disease resistance of the fish; immunostimulant used, its structure and mode of action; and the fish's environment are discussed. Conflicting results have been published about the efficacy of immunostimulants in fish diets. Some researchers have had positive responses demonstrated as increased fish survival, others have not. Generally, immunostimulants enhance individual components of the non-specific immune response but that does not always translate into increased fish survival. In addition, immunostimulants fed at too high a dose or for too long can be immunosuppressive. [Article copies available for a fee from The Haworth Document Delivery Service: 1-800-342-9678. E-mail address: getinfo@haworthpressinc.com ].

  3. Amphibious fishes: evolution and phenotypic plasticity.

    PubMed

    Wright, Patricia A; Turko, Andy J

    2016-08-01

    Amphibious fishes spend part of their life in terrestrial habitats. The ability to tolerate life on land has evolved independently many times, with more than 200 extant species of amphibious fishes spanning 17 orders now reported. Many adaptations for life out of water have been described in the literature, and adaptive phenotypic plasticity may play an equally important role in promoting favourable matches between the terrestrial habitat and behavioural, physiological, biochemical and morphological characteristics. Amphibious fishes living at the interface of two very different environments must respond to issues relating to buoyancy/gravity, hydration/desiccation, low/high O2 availability, low/high CO2 accumulation and high/low NH3 solubility each time they traverse the air-water interface. Here, we review the literature for examples of plastic traits associated with the response to each of these challenges. Because there is evidence that phenotypic plasticity can facilitate the evolution of fixed traits in general, we summarize the types of investigations needed to more fully determine whether plasticity in extant amphibious fishes can provide indications of the strategies used during the evolution of terrestriality in tetrapods. PMID:27489213

  4. Fish and wildlife surveillance

    SciTech Connect

    Poston, T.M.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the monitoring of radioactive contaminants in fish and wildlife species that inhabit the Colombia River and Hanford Site. Wildlife have access to areas of the Site containing radioactive contamination, and fish can be exposed to contamination in spring water entering the river along the shoreline. Therefore, samples are collected at various locations annually, generally during the hunting or fishing season, for selected species.

  5. Fish-allergic patients may be able to eat fish.

    PubMed

    Mourad, Ahmad A; Bahna, Sami L

    2015-03-01

    Reported fish allergy prevalence varies widely, with an estimated prevalence of 0.2% in the general population. Sensitization to fish can occur by ingestion, skin contact or inhalation. The manifestations can be IgE or non-IgE mediated. Several fish allergens have been identified, with parvalbumins being the major allergen in various species. Allergenicity varies among fish species and is affected by processing or preparation methods. Adverse reactions after eating fish are often claimed to be 'allergy' but could be a reaction to hidden food allergen, fish parasite, fish toxins or histamine in spoiled fish. Identifying such causes would allow free consumption of fish. Correct diagnosis of fish allergy, including the specific species, might provide the patient with safe alternatives. Patients have been generally advised for strict universal avoidance of fish. However, testing with various fish species or preparations might identify one or more forms that can be tolerated. PMID:25666551

  6. Copepods and fishes in the Brazilian Amazon

    NASA Astrophysics Data System (ADS)

    Thatcher, Vernon E.

    1998-06-01

    The Amazon basin comprises the largest river ecosystem in the world (7 million km 2) with annual high and low water peaks and a constant temperature near 29°C. Some 2000 fish species and 40 species of free-living copepods are known to occur in Amazonia. The free-living forms serve as food for most larval fishes and some adults, but they also transmit several parasites including representatives of the nematode family Camallanidae. About three dozen species of parasitic copepods have been described from the Brazilian Amazon. Females of Amazonian parasitic copepods are found on skin, gill filaments, gill rakers or within the nasal fossae. Parasitic copepods are found on fishes that are from a few millimeters long up to those over 2 m in length and they are usually quite host specific. All have body pigmentation in different patterns and colors (frequently blues, such as cerulean, cobalt, spectrum, smalt or campanula). It is suggested that the coloration serves to attract specific host fish. Copepods have evolved adaptations for attachment and feeding, especially in the second antennae and endopods. Examples of progenesis, phoresis and commensalism are shown. Some species produce pathology such as a tourniquet effect, hyperplasia, blood loss and anemia, and can kill fishes by limiting their respiration.

  7. RNA FISH, DNA FISH and Chromosome Painting of Chicken Oocytes.

    PubMed

    Guioli, Silvana; Lovell-Badge, Robin

    2016-01-01

    Fluorescence in situ hybridization (FISH) is a molecular cytogenetic technique. It identifies the location of DNA loci and RNAs, including nascent RNAs in the process of being transcribed, within individual cells. Great advances in fluorescent dye technology and technique sensitivity, combined with developments in light microscopy and imaging software have made it widely accessible and have expanded the range of applications in basic research as well as in diagnostics. Being able to perform RNA hybridization, DNA hybridization, and protein immunofluorescence consecutively on the same sample is an invaluable tool to study RNA expression in relation to their gene loci and to map RNA and DNA in relation to nuclear or cellular structures. This has contributed to enormous progress in understanding basal mechanisms of male and female meiosis in different animal model systems. In this chapter we describe in detail the protocols for FISH based techniques applied to study gene expression dynamics and nuclear architecture of chicken oocytes during meiotic prophase I. These techniques can be easily performed in any molecular and cell biology laboratory and be adapted to different systems and to different phases of gametogenesis. PMID:27557582

  8. Functional nasal morphology of chimaerid fishes.

    PubMed

    Howard, Lauren E; Holmes, William M; Ferrando, Sara; Maclaine, James S; Kelsh, Robert N; Ramsey, Andrew; Abel, Richard L; Cox, Jonathan P L

    2013-09-01

    Holocephalans (chimaeras) are a group of marine fishes comprising three families: the Callorhinchidae (callorhinchid fishes), the Rhinochimaeridae (rhinochimaerid fishes) and the Chimaeridae (chimaerid fishes). We have used X-ray microcomputed tomography and magnetic resonance imaging to characterise in detail the nasal anatomy of three species of chimaerid fishes: Chimaera monstrosa, C. phantasma and Hydrolagus colliei. We have shown that the nasal chamber of these three species is linked to the external environment by an incurrent channel and to the oral cavity by an excurrent channel via an oral groove. A protrusion of variable morphology is present on the medial wall of the incurrent channel in all three species, but is absent in members of the two other holocephalan families that we inspected. A third nasal channel, the lateral channel, functionally connects the incurrent nostril to the oral cavity, by-passing the nasal chamber. From anatomical reconstructions, we have proposed a model for the circulation of water, and therefore the transport of odorant, in the chimaerid nasal region. In this model, water could flow through the nasal region via the nasal chamber or the lateral channel. In either case, the direction of flow could be reversed. Circulation through the entire nasal region is likely to be driven primarily by the respiratory pump. We have identified several anatomical features that may segregate, distribute, facilitate and regulate flow in the nasal region and have considered the consequences of flow reversal. The non-sensory cilia lining the olfactory sensory channels appear to be mucus-propelling, suggesting that these cilia have a common protective role in cartilaginous fishes (sharks, rays and chimaeras). The nasal region of chimaerid fishes shows at least two adaptations to a benthic lifestyle, and suggests good olfactory sensitivity, with secondary folding enhancing the hypothetical flat sensory surface area by up to 70%. PMID:23630172

  9. An Amazing Fish Story.

    ERIC Educational Resources Information Center

    Null, Elisabeth Higgins

    2001-01-01

    Caught up in the entrepreneurial thrill of launching a new industry, high-school students in an economically distressed fishing village in Maine are playing a vital research-and-development role in partnership with their community. The result is a sophisticated aquaculture center for raising several species of fish in a laboratory setting. (MLH)

  10. Folkbiology of Freshwater Fish

    ERIC Educational Resources Information Center

    Medin, Douglas L.; Ross, Norbert O.; Atran, Scott; Cox, Douglas; Coley, John; Proffitt, Julia B.; Blok, Sergey

    2006-01-01

    Cross-cultural comparisons of categorization often confound cultural factors with expertise. This paper reports four experiments on the conceptual behavior of Native American and majority-culture fish experts. The two groups live in the same general area and engage in essentially the same set of fishing-related behaviors. Nonetheless, cultural…

  11. The Big Fish

    ERIC Educational Resources Information Center

    DeLisle, Rebecca; Hargis, Jace

    2005-01-01

    The Killer Whale, Shamu jumps through hoops and splashes tourists in hopes for the big fish, not because of passion, desire or simply the enjoyment of doing so. What would happen if those fish were obsolete? Would this killer whale be able to find the passion to continue to entertain people? Or would Shamu find other exciting activities to do…

  12. Fish Vaccines in Aquaculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vaccination is a proven, cost-effective method to prevent infectious diseases in animals. Current fish vaccines can be categorized as killed fish vaccines or modified live vaccines. The major advantage of live vaccine is their ability to stimulate both cell-mediated and humoral immune responses for ...

  13. Summer Fish Camp.

    ERIC Educational Resources Information Center

    Remick, Dennis; Pulu, Tupou L.

    The booklet presents a description and illustrates, with photographs, the Eskimo lifestyle and the kinds of activities that occur at a summer fish camp on the Yukon River. Eleven suggested activities are listed for the teacher to present when using the booklet. Activities include studying the map of Alaska; tracing the life cycle of the fish;…

  14. PARASITES OF FISH

    EPA Science Inventory

    The intent of this chapter is to describe the parasites of importance to fishes maintained and used in laboratory settings. In contrast to the frist edition, the focus will be only on those parasites that pose a serious threat to or are common in fishes held in these confined en...

  15. Stress in Fish

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stress in fish involves a condition disruptive of physiological homeostasis that occurs in response to unfavorable external influences and is capable of adversely affecting fish. Any stimulus that provokes stress responses is known as a stressor, disrupting a stable condition and causing a response....

  16. Small-Boat Noise Impacts Natural Settlement Behavior of Coral Reef Fish Larvae.

    PubMed

    Simpson, Stephen D; Radford, Andrew N; Holles, Sophie; Ferarri, Maud C O; Chivers, Douglas P; McCormick, Mark I; Meekan, Mark G

    2016-01-01

    After a pelagic larval phase, settlement-stage coral reef fish must locate a suitable reef habitat for juvenile life. Reef noise, produced by resident fish and invertebrates, provides an important cue for orientation and habitat selection during this process, which must often occur in environments impacted by anthropogenic noise. We adapted an established field-based protocol to test whether recorded boat noise influenced the settlement behavior of reef fish. Fewer fish settled to patch reefs broadcasting boat + reef noise compared with reef noise alone. This study suggests that boat noise, now a common feature of many reefs, can compromise critical settlement behavior of reef fishes. PMID:26611066

  17. Adaptive Development

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The goal of this research is to develop and demonstrate innovative adaptive seal technologies that can lead to dramatic improvements in engine performance, life, range, and emissions, and enhance operability for next generation gas turbine engines. This work is concentrated on the development of self-adaptive clearance control systems for gas turbine engines. Researchers have targeted the high-pressure turbine (HPT) blade tip seal location for following reasons: Current active clearance control (ACC) systems (e.g., thermal case-cooling schemes) cannot respond to blade tip clearance changes due to mechanical, thermal, and aerodynamic loads. As such they are prone to wear due to the required tight running clearances during operation. Blade tip seal wear (increased clearances) reduces engine efficiency, performance, and service life. Adaptive sealing technology research has inherent impact on all envisioned 21st century propulsion systems (e.g. distributed vectored, hybrid and electric drive propulsion concepts).

  18. Beyond the zebrafish: diverse fish species for modeling human disease

    PubMed Central

    Schartl, Manfred

    2014-01-01

    ABSTRACT In recent years, zebrafish, and to a lesser extent medaka, have become widely used small animal models for human diseases. These organisms have convincingly demonstrated the usefulness of fish for improving our understanding of the molecular and cellular mechanisms leading to pathological conditions, and for the development of new diagnostic and therapeutic tools. Despite the usefulness of zebrafish and medaka in the investigation of a wide spectrum of traits, there is evidence to suggest that other fish species could be better suited for more targeted questions. With the emergence of new, improved sequencing technologies that enable genomic resources to be generated with increasing efficiency and speed, the potential of non-mainstream fish species as disease models can now be explored. A key feature of these fish species is that the pathological condition that they model is often related to specific evolutionary adaptations. By exploring these adaptations, new disease-causing and disease-modifier genes might be identified; thus, diverse fish species could be exploited to better understand the complexity of disease processes. In addition, non-mainstream fish models could allow us to study the impact of environmental factors, as well as genetic variation, on complex disease phenotypes. This Review will discuss the opportunities that such fish models offer for current and future biomedical research. PMID:24271780

  19. Antimicrobial Peptides from Fish

    PubMed Central

    Masso-Silva, Jorge A.; Diamond, Gill

    2014-01-01

    Antimicrobial peptides (AMPs) are found widely distributed through Nature, and participate in the innate host defense of each species. Fish are a great source of these peptides, as they express all of the major classes of AMPs, including defensins, cathelicidins, hepcidins, histone-derived peptides, and a fish-specific class of the cecropin family, called piscidins. As with other species, the fish peptides exhibit broad-spectrum antimicrobial activity, killing both fish and human pathogens. They are also immunomodulatory, and their genes are highly responsive to microbes and innate immuno-stimulatory molecules. Recent research has demonstrated that some of the unique properties of fish peptides, including their ability to act even in very high salt concentrations, make them good potential targets for development as therapeutic antimicrobials. Further, the stimulation of their gene expression by exogenous factors could be useful in preventing pathogenic microbes in aquaculture. PMID:24594555

  20. Cryopreservation of Fish Sperm

    NASA Astrophysics Data System (ADS)

    Kurokura, Hisashi

    Present status of research activities in cryopreservation of fish gamete in aquaculture field was introduced. More than 59 fish species have been reported in the research histories and nearly half of them were studied during recent 10 years. This means that the research activities are increasing, though commercial profit have not obtained yet. Fish species of which sperm can successfully cryopreserved is still limited comparing to numerous species in telost. One of the major obstacle for improvement of the technique is existence of wide specie specific variance in the freezing tolerance of fish sperm. The varianc can possibly be explaind thorugh the informations obtained by the studies in comparative spermatology, which is recently activated field in fish biology.

  1. Cooperative search and rescue with artificial fishes based on fish-swarm algorithm for underwater wireless sensor networks.

    PubMed

    Zhao, Wei; Tang, Zhenmin; Yang, Yuwang; Wang, Lei; Lan, Shaohua

    2014-01-01

    This paper presents a searching control approach for cooperating mobile sensor networks. We use a density function to represent the frequency of distress signals issued by victims. The mobile nodes' moving in mission space is similar to the behaviors of fish-swarm in water. So, we take the mobile node as artificial fish node and define its operations by a probabilistic model over a limited range. A fish-swarm based algorithm is designed requiring local information at each fish node and maximizing the joint detection probabilities of distress signals. Optimization of formation is also considered for the searching control approach and is optimized by fish-swarm algorithm. Simulation results include two schemes: preset route and random walks, and it is showed that the control scheme has adaptive and effective properties. PMID:24741341

  2. Cooperative Search and Rescue with Artificial Fishes Based on Fish-Swarm Algorithm for Underwater Wireless Sensor Networks

    PubMed Central

    Zhao, Wei; Tang, Zhenmin; Yang, Yuwang; Wang, Lei; Lan, Shaohua

    2014-01-01

    This paper presents a searching control approach for cooperating mobile sensor networks. We use a density function to represent the frequency of distress signals issued by victims. The mobile nodes' moving in mission space is similar to the behaviors of fish-swarm in water. So, we take the mobile node as artificial fish node and define its operations by a probabilistic model over a limited range. A fish-swarm based algorithm is designed requiring local information at each fish node and maximizing the joint detection probabilities of distress signals. Optimization of formation is also considered for the searching control approach and is optimized by fish-swarm algorithm. Simulation results include two schemes: preset route and random walks, and it is showed that the control scheme has adaptive and effective properties. PMID:24741341

  3. Guidelines for use of fishes in research

    USGS Publications Warehouse

    Use of Fishes in Research Committee (joint committee of the American Fisheries Society, the American Institute of Fishery Research Biologists, and the American Society of Ichthyologists and Herpetologists)

    2014-01-01

    The 2004 and 2014 Guidelines were developed to provide a structure that advances appropriate attention toward valid experimental designs and procedures with aquatic animals while ensuring humane treatment of the experimental subjects. At a practical level, the Guidelines are intended to provide general recommendations on field and laboratory endeavors, such as sampling, holding, and handling fishes; to offer information on administrative matters, including regulations and permits; and to address typical ethical concerns, such as perceptions of pain or discomfort experienced by experimental subjects. These Guidelines must be recognized as guidelines. They are not intended to provide detailed instructions but rather to alert investigators to a broad array of topics and concerns to consider prior to initiating study. At a comprehensive level, the principles upon which these Guidelines are based are broadly applicable, and many of the described practices and approaches can be adapted to situations involving other aquatic animal species and conditions. Understanding the differences between fishes and other vertebrates, especially mammals, is critically important to conducting scientifically sound research with fishes. Disparities in life histories and mortality rates in fishes versus other vertebrates are critical in designing sustainable sampling levels in fish populations. The UFR Committee points out that (1) compared to mammalian populations, adult populations of many fish species persist despite very high natural mortality rates in juvenile stages by virtue of the fact that most species lay thousands or tens of thousands of eggs; (2) because of these mortality patterns, research on fishes, especially field research or research on early life stages, can involve, and often requires, much larger numbers of research subjects than does research on mammals; and (3) the animal handling and husbandry requirements for fishes are fundamentally different from those for

  4. The Mucosal Immune System of Teleost Fish

    PubMed Central

    Salinas, Irene

    2015-01-01

    Teleost fish possess an adaptive immune system associated with each of their mucosal body surfaces. Evidence obtained from mucosal vaccination and mucosal infection studies reveal that adaptive immune responses take place at the different mucosal surfaces of teleost. The main mucosa-associated lymphoid tissues (MALT) of teleosts are the gut-associated lymphoid tissue (GALT), skin-associated lymphoid tissue (SALT), the gill-associated lymphoid tissue (GIALT) and the recently discovered nasopharynx-associated lymphoid tissue (NALT). Teleost MALT includes diffuse B cells and T cells with specific phenotypes different from their systemic counterparts that have co-evolved to defend the microbe-rich mucosal environment. Both B and T cells respond to mucosal infection or vaccination. Specific antibody responses can be measured in the gills, gut and skin mucosal secretions of teleost fish following mucosal infection or vaccination. Rainbow trout studies have shown that IgT antibodies and IgT+ B cells are the predominant B cell subset in all MALT and respond in a compartmentalized manner to mucosal infection. Our current knowledge on adaptive immunity in teleosts is limited compared to the mammalian literature. New research tools and in vivo models are currently being developed in order to help reveal the great intricacy of teleost mucosal adaptive immunity and help improve mucosal vaccination protocols for use in aquaculture. PMID:26274978

  5. Fish: Section 4.8 in Climate change and the Olympic Coast National Marine Sanctuary: Interpreting potential futures.

    USGS Publications Warehouse

    Rubin, Steve P.

    2013-01-01

    Response of benthic fish in the OCNMS to future increases in hypoxia will likely be similar to those for fish off the central Oregon coast where hypoxia developed each summer starting in 2002. Abundance and condition of fish will decline in hypoxic areas. Fish will move inshore seeking higher oxygen concentrations. Species adapted to low oxygen environments, for example Dover sole, will be less affected.

  6. Molecular and structural composition of phospholipid membranes in livers of marine and freshwater fish in relation to temperature.

    PubMed Central

    Dey, I; Buda, C; Wiik, T; Halver, J E; Farkas, T

    1993-01-01

    The compositions and physical states of the liver phospholipids of marine and freshwater fish adapted to relatively constant but radically different temperatures were investigated. Fish adapted to low temperature (5-10 degrees C) accumulated more unsaturated fatty acids than those in a warm (25-27 degrees C) environment. There were no measurable differences in the gross fatty acid compositions of the total liver phospholipids from identical thermal environments. Docosahexaenoic acid (22:6) did not seem to participate in the process of adaptation. Cold adaptation was coincidental with oleic acid (18:1) accumulation, preferentially in the phosphatidylethanolamine. Determination of the molecular species composition of phosphatidylethanolamine revealed a 2- to 3-fold and 10-fold increase in the level of 18:1/22:6 and 18:1/20:5 species, respectively. ESR spectroscopy revealed a 7-10% compensation in the ordering state of native phospholipids with temperature. Combination of 16:0/22:6 phosphatidylcholine with phosphatidylethanolamines of cold-adapted marine fish showed a drastic fluidization near the C-2 segment of the bilayer, but not in the deeper regions. An appropriate combination (75:25) of phosphatidylcholines from warmth-adapted marine fish with phosphatidylethanolamines from cold-adapted marine fish mimicked a 100% adaptational efficacy in the C-2 segment as compared with the phosphatidylethanolamines of warmth-adapted marine fish. A specific role of 18:1/22:6 phosphatidylethanolamine in controlling membrane structure and physical state with thermal adaptation is proposed. PMID:8356045

  7. Evolutionary responses of innate Immunity to adaptive immunity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Innate immunity is present in all metazoans, whereas the evolutionarily more novel adaptive immunity is limited to jawed fishes and their descendants (gnathostomes). We observe that the organisms that possess adaptive immunity lack diversity in their innate pattern recognition receptors (PRRs), rais...

  8. Adapting Animals.

    ERIC Educational Resources Information Center

    Wedman, John; Wedman, Judy

    1985-01-01

    The "Animals" program found on the Apple II and IIe system master disk can be adapted for use in the mathematics classroom. Instructions for making the necessary changes and suggestions for using it in lessons related to geometric shapes are provided. (JN)

  9. Adaptive homeostasis.

    PubMed

    Davies, Kelvin J A

    2016-06-01

    Homeostasis is a central pillar of modern Physiology. The term homeostasis was invented by Walter Bradford Cannon in an attempt to extend and codify the principle of 'milieu intérieur,' or a constant interior bodily environment, that had previously been postulated by Claude Bernard. Clearly, 'milieu intérieur' and homeostasis have served us well for over a century. Nevertheless, research on signal transduction systems that regulate gene expression, or that cause biochemical alterations to existing enzymes, in response to external and internal stimuli, makes it clear that biological systems are continuously making short-term adaptations both to set-points, and to the range of 'normal' capacity. These transient adaptations typically occur in response to relatively mild changes in conditions, to programs of exercise training, or to sub-toxic, non-damaging levels of chemical agents; thus, the terms hormesis, heterostasis, and allostasis are not accurate descriptors. Therefore, an operational adjustment to our understanding of homeostasis suggests that the modified term, Adaptive Homeostasis, may be useful especially in studies of stress, toxicology, disease, and aging. Adaptive Homeostasis may be defined as follows: 'The transient expansion or contraction of the homeostatic range in response to exposure to sub-toxic, non-damaging, signaling molecules or events, or the removal or cessation of such molecules or events.' PMID:27112802

  10. Adaptive Thresholds

    SciTech Connect

    Bremer, P. -T.

    2014-08-26

    ADAPT is a topological analysis code that allow to compute local threshold, in particular relevance based thresholds for features defined in scalar fields. The initial target application is vortex detection but the software is more generally applicable to all threshold based feature definitions.

  11. CHARACTERIZING POPULATIONS OF THE ESTUARINE FISH FUNDULUS HETEROCLITUS INDIGENOUS TO SITES WITH DIFFERING ENVIRONMENTAL QUALITY

    EPA Science Inventory

    Populations of the non-migratory estuarine fish Fundulus heteroclitus were collected from New Bedford Harbor and distant clean sites to investigate whether indigenous populations have adapted genetically to the harbor's contamination. New Bedford Harbor, a major port in southe...

  12. Natriuretic peptides in fish physiology.

    PubMed

    Loretz, C A; Pollina, C

    2000-02-01

    Natriuretic peptides exist in the fishes as a family of structurally-related isohormones including atrial natriuretic peptide (ANP), C-type natriuretic peptide (CNP) and ventricular natriuretic peptide (VNP); to date, brain natriuretic peptide (or B-type natriuretic peptide, BNP) has not been definitively identified in the fishes. Based on nucleotide and amino acid sequence similarity, the natriuretic peptide family of isohormones may have evolved from a neuromodulatory, CNP-like brain peptide. The primary sites of synthesis for the circulating hormones are the heart and brain; additional extracardiac and extracranial sites, including the intestine, synthesize and release natriuretic peptides locally for paracrine regulation of various physiological functions. Membrane-bound, guanylyl cyclase-coupled natriuretic peptide receptors (A- and B-types) are generally implicated in mediating natriuretic peptide effects via the production of cyclic GMP as the intracellular messenger. C- and D-type natriuretic peptide receptors lacking the guanylyl cyclase domain may influence target cell function through G(i) protein-coupled inhibition of membrane adenylyl cyclase activity, and they likely also act as clearance receptors for circulating hormone. In the few systems examined using homologous or piscine reagents, differential receptor binding and tissue responsiveness to specific natriuretic peptide isohormones is demonstrated. Similar to their acute physiological effects in mammals, natriuretic peptides are vasorelaxant in all fishes examined. In contrast to mammals, where natriuretic peptides act through natriuresis and diuresis to bring about long-term reductions in blood volume and blood pressure, in fishes the primary action appears to be the extrusion of excess salt at the gills and rectal gland, and the limiting of drinking-coupled salt uptake by the alimentary system. In teleosts, both hypernatremia and hypervolemia are effective stimuli for cardiac secretion of

  13. Early detection of non-native fishes using fish larvae

    EPA Science Inventory

    Our objective was to evaluate the use of fish larvae for early detection of non-native fishes, comparing traditional and molecular taxonomy approaches to investigate potential efficiencies. Fish larvae present an interesting opportunity for non-native fish early detection. First,...

  14. Which Fish Should I Eat? Perspectives Influencing Fish Consumption Choices

    PubMed Central

    Choi, Anna L.; Karagas, Margaret R.; Mariën, Koenraad; Rheinberger, Christoph M.; Schoeny, Rita; Sunderland, Elsie; Korrick, Susan

    2012-01-01

    Background: Diverse perspectives have influenced fish consumption choices. Objectives: We summarized the issue of fish consumption choice from toxicological, nutritional, ecological, and economic points of view; identified areas of overlap and disagreement among these viewpoints; and reviewed effects of previous fish consumption advisories. Methods: We reviewed published scientific literature, public health guidelines, and advisories related to fish consumption, focusing on advisories targeted at U.S. populations. However, our conclusions apply to groups having similar fish consumption patterns. Discussion: There are many possible combinations of matters related to fish consumption, but few, if any, fish consumption patterns optimize all domains. Fish provides a rich source of protein and other nutrients, but because of contamination by methylmercury and other toxicants, higher fish intake often leads to greater toxicant exposure. Furthermore, stocks of wild fish are not adequate to meet the nutrient demands of the growing world population, and fish consumption choices also have a broad economic impact on the fishing industry. Most guidance does not account for ecological and economic impacts of different fish consumption choices. Conclusion: Despite the relative lack of information integrating the health, ecological, and economic impacts of different fish choices, clear and simple guidance is necessary to effect desired changes. Thus, more comprehensive advice can be developed to describe the multiple impacts of fish consumption. In addition, policy and fishery management inter-ventions will be necessary to ensure long-term availability of fish as an important source of human nutrition. PMID:22534056

  15. Cold adaptation in marine organisms.

    PubMed

    Johnston, I A

    1990-01-30

    Animals from polar seas exhibit numerous so called resistance adaptations that serve to maintain homeostasis at low temperature and prevent lethal freezing injury. Specialization to temperatures at or below 0 degrees C is associated with an inability to survive at temperatures above 3-8 degrees C. Polar fish synthesize various types of glycoproteins or peptides to lower the freezing point of most extracellular fluid compartments in a non-colligative manner. Antifreeze production is seasonal in boreal species and is often initiated by environmental cues other than low temperature, particularly short day lengths. Most of the adaptations that enable intertidal invertebrates to survive freezing are associated with their ability to withstand ariel exposure. Unique adaptations for freezing avoidance include the synthesis of low molecular mass ice-nucleating proteins that control and induce extracellular ice-formation. Marine poikilotherms also exhibit a range of capacity adaptations that increase the rate of some physiological processes so as to partially compensate for the effects of low temperature. However, the rate of embryonic development in a diverse range of marine organisms shows no evidence of temperature compensation. This results in a significant lengthening of the time from fertilization to hatching in polar, relative to temperate, species. Some aspects of the physiology of polar marine species, such as low metabolic and slow growth rates, probably result from a combination of low temperature and other factors such as the highly seasonal nature of food supplies. Although neuromuscular function shows a partial capacity adaptation in Antarctic fish, maximum swimming speeds are lower than for temperate and tropical species, particularly for early stages in the life history. PMID:1969650

  16. Defining, assessing and promoting the welfare of farmed fish.

    PubMed

    Huntingford, F A; Kadri, S

    2014-04-01

    As currently practised, the culture of fish for food potentially raises concerns about the welfare of farmed fish, and this is a topic that has received considerable attention. As vertebrates, fish share a number of features with the birds and mammals that are more commonly farmed, so many welfare principles derived from consideration of these groups may also be applied to fish. However, fish have a long, separate evolutionary history and are also adapted to a very different, aquatic environment. For these reasons, they have a number of special features that are relevant to how welfare is defined, assessed and promoted and these are discussed. The various methods that are available to researchers for identifying and assessing good and bad welfare in fish are considered, including assessment of physical health and physiological, behavioural and genomic status. The subset of practical welfare indicators that can be used on working farms is also reviewed. Various aspects of intensive aquaculture that can potentially compromise fish welfare are outlined, as are some strategies available for mitigating such adverse effects. Finally, the paper ends by looking briefly to the future, identifying likely changes in aquaculture practices and how these might affect the welfare of farmed fish. PMID:25000796

  17. Evolution and consequences of endothermy in fishes.

    PubMed

    Dickson, Kathryn A; Graham, Jeffrey B

    2004-01-01

    Regional endothermy, the conservation of metabolic heat by vascular countercurrent heat exchangers to elevate the temperature of the slow-twitch locomotor muscle, eyes and brain, or viscera, has evolved independently among several fish lineages, including lamnid sharks, billfishes, and tunas. All are large, active, pelagic species with high energy demands that undertake long-distance migrations and move vertically within the water column, thereby encountering a range of water temperatures. After summarizing the occurrence of endothermy among fishes, the evidence for two hypothesized advantages of endothermy in fishes, thermal niche expansion and enhancement of aerobic swimming performance, is analyzed using phylogenetic comparisons between endothermic fishes and their ectothermic relatives. Thermal niche expansion is supported by mapping endothermic characters onto phylogenies and by combining information about the thermal niche of extant species, the fossil record, and paleoceanographic conditions during the time that endothermic fishes radiated. However, it is difficult to show that endothermy was required for niche expansion, and adaptations other than endothermy are necessary for repeated diving below the thermocline. Although the convergent evolution of the ability to elevate slow-twitch, oxidative locomotor muscle temperatures suggests a selective advantage for that trait, comparisons of tunas and their ectothermic sister species (mackerels and bonitos) provide no direct support of the hypothesis that endothermy results in increased aerobic swimming speeds, slow-oxidative muscle power, or energetic efficiency. Endothermy is associated with higher standard metabolic rates, which may result from high aerobic capacities required by these high-performance fishes to conduct many aerobic activities simultaneously. A high standard metabolic rate indicates that the benefits of endothermy may be offset by significant energetic costs. PMID:15674772

  18. The early stress responses in fish larvae.

    PubMed

    Pederzoli, Aurora; Mola, Lucrezia

    2016-05-01

    During the life cycle of fish the larval stages are the most interesting and variable. Teleost larvae undergo a daily increase in adaptability and many organs differentiate and become active. These processes are concerted and require an early neuro-immune-endocrine integration. In larvae communication among the nervous, endocrine and immune systems utilizes several known signal molecule families which could be different from those of the adult fish. The immune-neuroendocrine system was studied in several fish species, among which in particular the sea bass (Dicentrarchus labrax), that is a species of great commercial interest, very important in aquaculture and thus highly studied. Indeed the immune system of this species is the best known among marine teleosts. In this review the data on main signal molecules of stress carried out on larvae of fish are considered and discussed. For sea bass active roles in the early immunological responses of some well-known molecules involved in the stress, such as ACTH, nitric oxide, CRF, HSP-70 and cortisol have been proposed. These molecules and/or their receptors are biologically active mainly in the gut before complete differentiation of gut-associated lymphoid tissue (GALT), probably acting in an autocrine/paracrine way. An intriguing idea emerges from all results of these researches; the molecules involved in stress responses, expressed in the adult cells of the hypothalamic-pituitary axis, during the larval life of fish are present in several other localizations, where they perform probably the same role. It may be hypothesized that the functions performed by hypothalamic-pituitary system are particularly important for the survival of the larva and therefore they comprises several other localizations of body. Indeed the larval stages of fish are very crucial phases that include many physiological changes and several possible stress both internal and environmental. PMID:26968620

  19. Connector adapter

    NASA Technical Reports Server (NTRS)

    Hacker, Scott C. (Inventor); Dean, Richard J. (Inventor); Burge, Scott W. (Inventor); Dartez, Toby W. (Inventor)

    2007-01-01

    An adapter for installing a connector to a terminal post, wherein the connector is attached to a cable, is presented. In an embodiment, the adapter is comprised of an elongated collet member having a longitudinal axis comprised of a first collet member end, a second collet member end, an outer collet member surface, and an inner collet member surface. The inner collet member surface at the first collet member end is used to engage the connector. The outer collet member surface at the first collet member end is tapered for a predetermined first length at a predetermined taper angle. The collet includes a longitudinal slot that extends along the longitudinal axis initiating at the first collet member end for a predetermined second length. The first collet member end is formed of a predetermined number of sections segregated by a predetermined number of channels and the longitudinal slot.

  20. Adaptive sampler

    DOEpatents

    Watson, Bobby L.; Aeby, Ian

    1982-01-01

    An adaptive data compression device for compressing data having variable frequency content, including a plurality of digital filters for analyzing the content of the data over a plurality of frequency regions, a memory, and a control logic circuit for generating a variable rate memory clock corresponding to the analyzed frequency content of the data in the frequency region and for clocking the data into the memory in response to the variable rate memory clock.

  1. Adaptive sampler

    DOEpatents

    Watson, B.L.; Aeby, I.

    1980-08-26

    An adaptive data compression device for compressing data is described. The device has a frequency content, including a plurality of digital filters for analyzing the content of the data over a plurality of frequency regions, a memory, and a control logic circuit for generating a variable rate memory clock corresponding to the analyzed frequency content of the data in the frequency region and for clocking the data into the memory in response to the variable rate memory clock.

  2. Dehydrofreezing of Fish I

    NASA Astrophysics Data System (ADS)

    Kozima, Tsuneo

    Recently, new method of removing water from perishable food were developed using dehydration sheet with material having high osmotic pressure and absorbent polymer. Dehydration sheet consist of mixture of sugar dehydrolysate and absorbent polymer covered with sem-permeable membrane, and can remove water in liquid state by contact with perishable food. Dehydration rate of fish using with dehydration sheet varied depending on species, their shape, and ambient temperature etc. Fish were dehydrated with dehydration sheet at low temperature as 0 - 5 C and frozen in cold storage room. Dehydrofrozen fish were kept it's high quality and freshness after thawing, ATPase activity of fish muscle was kept at high level after dehydrofreezing in the case of cod and alaska pollack, and flesh color of farming salmon was kept after thawing.

  3. Fishing for Seeds.

    ERIC Educational Resources Information Center

    Science and Children, 2001

    2001-01-01

    Describes a method to collect seeds that are dispersed from weeds while avoiding some outdoor hazards such as rough terrain or animals. Describes a plan for creating a weed fishing pole and includes a materials list. (SAH)

  4. FISH KILLS, NORTH CAROLINA

    EPA Science Inventory

    Data related to fish kills in North Carolina are collected and stored in tables on the Web at the North Carolina Department of Environment and Natural Resources. http://www.esb.enr.state.nc.us/Fishkill/fishkill00.htm

  5. Ciguatera Fish Poisoning

    MedlinePlus

    ... By Syndrome Life Cycle Impacts Human Health Wildlife Ecosystems Socioeconomic Freshwater Regions Distribution - U.S. Distribution - World Maps ... Paralytic Shellfish Poisoning Cyanobacteria Medical Community ... Fish Poisoning Causative organisms: Gambierdiscus ...

  6. Adaptive antennas

    NASA Astrophysics Data System (ADS)

    Barton, P.

    1987-04-01

    The basic principles of adaptive antennas are outlined in terms of the Wiener-Hopf expression for maximizing signal to noise ratio in an arbitrary noise environment; the analogy with generalized matched filter theory provides a useful aid to understanding. For many applications, there is insufficient information to achieve the above solution and thus non-optimum constrained null steering algorithms are also described, together with a summary of methods for preventing wanted signals being nulled by the adaptive system. The three generic approaches to adaptive weight control are discussed; correlation steepest descent, weight perturbation and direct solutions based on sample matrix conversion. The tradeoffs between hardware complexity and performance in terms of null depth and convergence rate are outlined. The sidelobe cancellor technique is described. Performance variation with jammer power and angular distribution is summarized and the key performance limitations identified. The configuration and performance characteristics of both multiple beam and phase scan array antennas are covered, with a brief discussion of performance factors.

  7. Where is the rudder of a fish?: the mechanism of swimming and control of self-propelled fish school

    NASA Astrophysics Data System (ADS)

    Wu, Chuijie; Wang, Liang

    2010-03-01

    Numerical simulation and control of self-propelled swimming of two- and three-dimensional biomimetic fish school in a viscous flow are investigated. With a parallel computational fluid dynamics package for the two- and three-dimensional moving boundary problem, which combines the adaptive multi-grid finite volume method and the methods of immersed boundary and volume of fluid, it is found that due to the interactions of vortices in the wakes, without proper control, a fish school swim with a given flapping rule can not keep the fixed shape of a queue. In order to understand the secret of fish swimming, a new feedback control strategy of fish motion is proposed for the first time, i.e., the locomotion speed is adjusted by the flapping frequency of the caudal, and the direction of swimming is controlled by the swinging of the head of a fish. Results show that with this feedback control strategy, a fish school can keep the good order of a queue in cruising, turning or swimming around circles. This new control strategy, which separates the speed control and direction control, is important in the construction of biomimetic robot fish, with which it greatly simplifies the control devices of a biomimetic robot fish.

  8. T Cells in Fish

    PubMed Central

    Nakanishi, Teruyuki; Shibasaki, Yasuhiro; Matsuura, Yuta

    2015-01-01

    Cartilaginous and bony fish are the most primitive vertebrates with a thymus, and possess T cells equivalent to those in mammals. There are a number of studies in fish demonstrating that the thymus is the essential organ for development of T lymphocytes from early thymocyte progenitors to functionally competent T cells. A high number of T cells in the intestine and gills has been reported in several fish species. Involvement of CD4+ and CD8α+ T cells in allograft rejection and graft-versus-host reaction (GVHR) has been demonstrated using monoclonal antibodies. Conservation of CD4+ helper T cell functions among teleost fishes has been suggested in a number studies employing mixed leukocyte culture (MLC) and hapten/carrier effect. Alloantigen- and virus-specific cytotoxicity has also been demonstrated in ginbuna and rainbow trout. Furthermore, the important role of cell-mediated immunity rather than humoral immunity has been reported in the protection against intracellular bacterial infection. Recently, the direct antibacterial activity of CD8α+, CD4+ T-cells and sIgM+ cells in fish has been reported. In this review, we summarize the recent progress in T cell research focusing on the tissue distribution and function of fish T cells. PMID:26426066

  9. Fish is Fish: the use of experimental model species to reveal causes of skeletal diversity in evolution and disease

    PubMed Central

    Harris, M. P.; Henke, K.; Hawkins, M. B.; Witten, P. E.

    2014-01-01

    Summary Fishes are wonderfully diverse. This variety is a result of the ability of ray-finned fishes to adapt to a wide range of environments, and has made them more specious than the rest of vertebrates combined. With such diversity it is easy to dismiss comparisons between distantly related fishes in efforts to understand the biology of a particular fish species. However, shared ancestry and the conservation of developmental mechanisms, morphological features and physiology provide the ability to use comparative analyses between different organisms to understand mechanisms of development and physiology. The use of species that are amenable to experimental investigation provides tools to approach questions that would not be feasible in other ‘non-model’ organisms. For example, the use of small teleost fishes such as zebrafish and medaka has been powerful for analysis of gene function and mechanisms of disease in humans, including skeletal diseases. However, use of these fish to aid in understanding variation and disease in other fishes has been largely unexplored. This is especially evident in aquaculture research. Here we highlight the utility of these small laboratory fishes to study genetic and developmental factors that underlie skeletal malformations that occur under farming conditions. We highlight several areas in which model species can serve as a resource for identifying the causes of variation in economically important fish species as well as to assess strategies to alleviate the expression of the variant phenotypes in farmed fish. We focus on genetic causes of skeletal deformities in the zebrafish and medaka that closely resemble phenotypes observed both in farmed as well as natural populations of fishes. PMID:25221374

  10. Parallel speciation in Astyanax cave fish (Teleostei) in Northern Mexico.

    PubMed

    Strecker, Ulrike; Hausdorf, Bernhard; Wilkens, Horst

    2012-01-01

    We investigated differentiation processes in the Neotropical fish Astyanax that represents a model system for examining adaptation to caves, including regressive evolution. In particular, we analyzed microsatellite and mitochondrial data of seven cave and seven surface populations from Mexico to test whether the evolution of the cave fish represents a case of parallel evolution. Our data revealed that Astyanax invaded northern Mexico across the Trans-Mexican Volcanic Belt at least three times and that populations of all three invasions adapted to subterranean habitats. Significant differentiation was found between the cave and surface populations. We did not observe gene flow between the strongly eye and pigment reduced old cave populations (Sabinos, Tinaja, Pachon) and the surface fish, even when syntopically occurring like in Yerbaniz cave. Little gene flow, if any, was found between cave populations, which are variable in eye and pigmentation (Micos, Chica, Caballo Moro caves), and surface fish. This suggests that the variability is due to their more recent origin rather than to hybridization. Finally, admixture of the young Chica cave fish population with nuclear markers from older cave fish demonstrates that gene flow between populations that independently colonized caves occurs. Thus, all criteria of parallel speciation are fulfilled. Moreover, the microsatellite data provide evidence that two co-occurring groups with small sunken eyes and externally visible eyes, respectively, differentiated within the partly lightened Caballo Moro karst window cave and might represent an example for incipient sympatric speciation. PMID:21963344