Sample records for adapted perturbation theory

  1. Intermolecular symmetry-adapted perturbation theory study of large organic complexes.

    PubMed

    Heßelmann, Andreas; Korona, Tatiana

    2014-09-07

    Binding energies for the complexes of the S12L database by Grimme [Chem. Eur. J. 18, 9955 (2012)] were calculated using intermolecular symmetry-adapted perturbation theory combined with a density-functional theory description of the interacting molecules. The individual interaction energy decompositions revealed no particular change in the stabilisation pattern as compared to smaller dimer systems at equilibrium structures. This demonstrates that, to some extent, the qualitative description of the interaction of small dimer systems may be extrapolated to larger systems, a method that is widely used in force-fields in which the total interaction energy is decomposed into atom-atom contributions. A comparison of the binding energies with accurate experimental reference values from Grimme, the latter including thermodynamic corrections from semiempirical calculations, has shown a fairly good agreement to within the error range of the reference binding energies.

  2. Adaptation to sensory-motor reflex perturbations is blind to the source of errors.

    PubMed

    Hudson, Todd E; Landy, Michael S

    2012-01-06

    In the study of visual-motor control, perhaps the most familiar findings involve adaptation to externally imposed movement errors. Theories of visual-motor adaptation based on optimal information processing suppose that the nervous system identifies the sources of errors to effect the most efficient adaptive response. We report two experiments using a novel perturbation based on stimulating a visually induced reflex in the reaching arm. Unlike adaptation to an external force, our method induces a perturbing reflex within the motor system itself, i.e., perturbing forces are self-generated. This novel method allows a test of the theory that error source information is used to generate an optimal adaptive response. If the self-generated source of the visually induced reflex perturbation is identified, the optimal response will be via reflex gain control. If the source is not identified, a compensatory force should be generated to counteract the reflex. Gain control is the optimal response to reflex perturbation, both because energy cost and movement errors are minimized. Energy is conserved because neither reflex-induced nor compensatory forces are generated. Precision is maximized because endpoint variance is proportional to force production. We find evidence against source-identified adaptation in both experiments, suggesting that sensory-motor information processing is not always optimal.

  3. Intramolecular symmetry-adapted perturbation theory with a single-determinant wavefunction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pastorczak, Ewa; Prlj, Antonio; Corminboeuf, Clémence, E-mail: clemence.corminboeuf@epfl.ch

    2015-12-14

    We introduce an intramolecular energy decomposition scheme for analyzing non-covalent interactions within molecules in the spirit of symmetry-adapted perturbation theory (SAPT). The proposed intra-SAPT approach is based upon the Chemical Hamiltonian of Mayer [Int. J. Quantum Chem. 23(2), 341–363 (1983)] and the recently introduced zeroth-order wavefunction [J. F. Gonthier and C. Corminboeuf, J. Chem. Phys. 140(15), 154107 (2014)]. The scheme decomposes the interaction energy between weakly bound fragments located within the same molecule into physically meaningful components, i.e., electrostatic-exchange, induction, and dispersion. Here, we discuss the key steps of the approach and demonstrate that a single-determinant wavefunction can already delivermore » a detailed and insightful description of a wide range of intramolecular non-covalent phenomena such as hydrogen bonds, dihydrogen contacts, and π − π stacking interactions. Intra-SAPT is also used to shed the light on competing intra- and intermolecular interactions.« less

  4. Symmetry-adapted perturbation theory interaction energy decomposition for some noble gas complexes

    NASA Astrophysics Data System (ADS)

    Cukras, Janusz; Sadlej, Joanna

    2008-06-01

    This Letter contains a study of the interaction energy in HArF⋯N 2 and HArF⋯P 2 complexes. Symmetry-adapted perturbation theory (SAPT) has been applied to analyze the electrostatic, induction, dispersion and exchange contributions to the total interaction energy. The interaction energy has also been obtained by supermolecular method at the MP2, MP4, CCSD, CCSD(T) levels. The interaction energy for the studied complexes results from a partial cancelation of large attractive electrostatic, induction, dispersion terms by a strong repulsive exchange contribution. The induction and dispersion effects proved to be crucial in establishing the preference for the colinear HArF⋯N 2 and HArF⋯P 2 structures and shift direction of νHAr stretching vibrations.

  5. Perturbation theory from automorphic forms

    NASA Astrophysics Data System (ADS)

    Lambert, Neil; West, Peter

    2010-05-01

    Using our previous construction of Eisenstein-like automorphic forms we derive formulae for the perturbative and non-perturbative parts for any group and representation. The result is written in terms of the weights of the representation and the derivation is largely group theoretical. Specialising to the E n+1 groups relevant to type II string theory and the representation associated with node n + 1 of the E n+1 Dynkin diagram we explicitly find the perturbative part in terms of String Theory variables, such as the string coupling g d and volume V n . For dimensions seven and higher we find that the perturbation theory involves only two terms. In six dimensions we construct the SO(5, 5) automorphic form using the vector representation. Although these automorphic forms are generally compatible with String Theory, the one relevant to R 4 involves terms with g d -6 and so is problematic. We then study a constrained SO(5, 5) automorphic form, obtained by summing over null vectors, and compute its perturbative part. We find that it is consistent with String Theory and makes precise predictions for the perturbative results. We also study the unconstrained automorphic forms for E 6 in the 27 representation and E 7 in the 133 representation, giving their perturbative part and commenting on their role in String Theory.

  6. Applications of Cosmological Perturbation Theory

    NASA Astrophysics Data System (ADS)

    Christopherson, Adam J.

    2011-06-01

    Cosmological perturbation theory is crucial for our understanding of the universe. The linear theory has been well understood for some time, however developing and applying the theory beyond linear order is currently at the forefront of research in theoretical cosmology. This thesis studies the applications of perturbation theory to cosmology and, specifically, to the early universe. Starting with some background material introducing the well-tested 'standard model' of cosmology, we move on to develop the formalism for perturbation theory up to second order giving evolution equations for all types of scalar, vector and tensor perturbations, both in gauge dependent and gauge invariant form. We then move on to the main result of the thesis, showing that, at second order in perturbation theory, vorticity is sourced by a coupling term quadratic in energy density and entropy perturbations. This source term implies a qualitative difference to linear order. Thus, while at linear order vorticity decays with the expansion of the universe, the same is not true at higher orders. This will have important implications on future measurements of the polarisation of the Cosmic Microwave Background, and could give rise to the generation of a primordial seed magnetic field. Having derived this qualitative result, we then estimate the scale dependence and magnitude of the vorticity power spectrum, finding, for simple power law inputs a small, blue spectrum. The final part of this thesis concerns higher order perturbation theory, deriving, for the first time, the metric tensor, gauge transformation rules and governing equations for fully general third order perturbations. We close with a discussion of natural extensions to this work and other possible ideas for off-shooting projects in this continually growing field.

  7. Machine Learning Intermolecular Potentials for 1,3,5-Triamino-2,4,6-trinitrobenzene (TATB) Using Symmetry-Adapted Perturbation Theory

    DTIC Science & Technology

    2018-04-25

    unlimited. NOTICES Disclaimers The findings in this report are not to be construed as an official Department of the Army position unless so...this report, intermolecular potentials for 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) are developed using machine learning techniques. Three...potentials based on support vector regression, kernel ridge regression, and a neural network are fit using symmetry-adapted perturbation theory. The

  8. Perturbation theory in light-cone quantization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langnau, A.

    1992-01-01

    A thorough investigation of light-cone properties which are characteristic for higher dimensions is very important. The easiest way of addressing these issues is by analyzing the perturbative structure of light-cone field theories first. Perturbative studies cannot be substituted for an analysis of problems related to a nonperturbative approach. However, in order to lay down groundwork for upcoming nonperturbative studies, it is indispensable to validate the renormalization methods at the perturbative level, i.e., to gain control over the perturbative treatment first. A clear understanding of divergences in perturbation theory, as well as their numerical treatment, is a necessary first step towardsmore » formulating such a program. The first objective of this dissertation is to clarify this issue, at least in second and fourth-order in perturbation theory. The work in this dissertation can provide guidance for the choice of counterterms in Discrete Light-Cone Quantization or the Tamm-Dancoff approach. A second objective of this work is the study of light-cone perturbation theory as a competitive tool for conducting perturbative Feynman diagram calculations. Feynman perturbation theory has become the most practical tool for computing cross sections in high energy physics and other physical properties of field theory. Although this standard covariant method has been applied to a great range of problems, computations beyond one-loop corrections are very difficult. Because of the algebraic complexity of the Feynman calculations in higher-order perturbation theory, it is desirable to automatize Feynman diagram calculations so that algebraic manipulation programs can carry out almost the entire calculation. This thesis presents a step in this direction. The technique we are elaborating on here is known as light-cone perturbation theory.« less

  9. Adaptive Modeling Procedure Selection by Data Perturbation.

    PubMed

    Zhang, Yongli; Shen, Xiaotong

    2015-10-01

    Many procedures have been developed to deal with the high-dimensional problem that is emerging in various business and economics areas. To evaluate and compare these procedures, modeling uncertainty caused by model selection and parameter estimation has to be assessed and integrated into a modeling process. To do this, a data perturbation method estimates the modeling uncertainty inherited in a selection process by perturbing the data. Critical to data perturbation is the size of perturbation, as the perturbed data should resemble the original dataset. To account for the modeling uncertainty, we derive the optimal size of perturbation, which adapts to the data, the model space, and other relevant factors in the context of linear regression. On this basis, we develop an adaptive data-perturbation method that, unlike its nonadaptive counterpart, performs well in different situations. This leads to a data-adaptive model selection method. Both theoretical and numerical analysis suggest that the data-adaptive model selection method adapts to distinct situations in that it yields consistent model selection and optimal prediction, without knowing which situation exists a priori. The proposed method is applied to real data from the commodity market and outperforms its competitors in terms of price forecasting accuracy.

  10. A spin-adapted size-extensive state-specific multi-reference perturbation theory. I. Formal developments

    NASA Astrophysics Data System (ADS)

    Mao, Shuneng; Cheng, Lan; Liu, Wenjian; Mukherjee, Debashis

    2012-01-01

    We present in this paper a comprehensive formulation of a spin-adapted size-extensive state-specific multi-reference second-order perturbation theory (SA-SSMRPT2) as a tool for applications to molecular states of arbitrary complexity and generality. The perturbative theory emerges in the development as a result of a physically appealing quasi-linearization of a rigorously size-extensive state-specific multi-reference coupled cluster (SSMRCC) formalism [U. S. Mahapatra, B. Datta, and D. Mukherjee, J. Chem. Phys. 110, 6171 (1999), 10.1063/1.478523]. The formulation is intruder-free as long as the state-energy is energetically well-separated from the virtual functions. SA-SSMRPT2 works with a complete active space (CAS), and treats each of the model space functions on the same footing. This thus has the twin advantages of being capable of handling varying degrees of quasi-degeneracy and of ensuring size-extensivity. This strategy is attractive in terms of the applicability to bigger systems. A very desirable property of the parent SSMRCC theory is the explicit maintenance of size-extensivity under a variety of approximations of the working equations. We show how to generate both the Rayleigh-Schrödinger (RS) and the Brillouin-Wigner (BW) versions of SA-SSMRPT2. Unlike the traditional naive formulations, both the RS and the BW variants are manifestly size-extensive and both share the avoidance of intruders in the same manner as the parent SSMRCC. We discuss the various features of the RS as well as the BW version using several partitioning strategies of the hamiltonian. Unlike the other CAS based MRPTs, the SA-SSMRPT2 is intrinsically flexible in the sense that it is constructed in a manner that it can relax the coefficients of the reference function, or keep the coefficients frozen if we so desire. We delineate the issues pertaining to the spin-adaptation of the working equations of the SA-SSMRPT2, starting from SSMRCC, which would allow us to incorporate essentially

  11. Non-perturbative theory of dispersion interactions

    NASA Astrophysics Data System (ADS)

    Boström, M.; Thiyam, P.; Persson, C.; Parsons, D. F.; Buhmann, S. Y.; Brevik, I.; Sernelius, Bo E.

    2015-03-01

    Some open questions exist with fluctuation-induced forces between extended dipoles. Conventional intuition derives from large-separation perturbative approximations to dispersion force theory. Here, we present a full non-perturbative theory. In addition, we discuss how one can take into account finite dipole size corrections. It is of fundamental value to investigate the limits of validity of the perturbative dispersion force theory.

  12. Extended multi-configuration quasi-degenerate perturbation theory: the new approach to multi-state multi-reference perturbation theory.

    PubMed

    Granovsky, Alexander A

    2011-06-07

    The distinctive desirable features, both mathematically and physically meaningful, for all partially contracted multi-state multi-reference perturbation theories (MS-MR-PT) are explicitly formulated. The original approach to MS-MR-PT theory, called extended multi-configuration quasi-degenerate perturbation theory (XMCQDPT), having most, if not all, of the desirable properties is introduced. The new method is applied at the second order of perturbation theory (XMCQDPT2) to the 1(1)A(')-2(1)A(') conical intersection in allene molecule, the avoided crossing in LiF molecule, and the 1(1)A(1) to 2(1)A(1) electronic transition in cis-1,3-butadiene. The new theory has several advantages compared to those of well-established approaches, such as second order multi-configuration quasi-degenerate perturbation theory and multi-state-second order complete active space perturbation theory. The analysis of the prevalent approaches to the MS-MR-PT theory performed within the framework of the XMCQDPT theory unveils the origin of their common inherent problems. We describe the efficient implementation strategy that makes XMCQDPT2 an especially useful general-purpose tool in the high-level modeling of small to large molecular systems. © 2011 American Institute of Physics

  13. Two-body perturbation theory versus first order perturbation theory: A comparison based on the square-well fluid.

    PubMed

    Mercier Franco, Luís Fernando; Castier, Marcelo; Economou, Ioannis G

    2017-12-07

    We show that the Zwanzig first-order perturbation theory can be obtained directly from a truncated Taylor series expansion of a two-body perturbation theory and that such truncation provides a more accurate prediction of thermodynamic properties than the full two-body perturbation theory. This unexpected result is explained by the quality of the resulting approximation for the fluid radial distribution function. We prove that the first-order and the two-body perturbation theories are based on different approximations for the fluid radial distribution function. To illustrate the calculations, the square-well fluid is adopted. We develop an analytical expression for the two-body perturbed Helmholtz free energy for the square-well fluid. The equation of state obtained using such an expression is compared to the equation of state obtained from the first-order approximation. The vapor-liquid coexistence curve and the supercritical compressibility factor of a square-well fluid are calculated using both equations of state and compared to Monte Carlo simulation data. Finally, we show that the approximation for the fluid radial distribution function given by the first-order perturbation theory provides closer values to the ones calculated via Monte Carlo simulations. This explains why such theory gives a better description of the fluid thermodynamic behavior.

  14. First-order symmetry-adapted perturbation theory for multiplet splittings.

    PubMed

    Patkowski, Konrad; Żuchowski, Piotr S; Smith, Daniel G A

    2018-04-28

    We present a symmetry-adapted perturbation theory (SAPT) for the interaction of two high-spin open-shell molecules (described by their restricted open-shell Hartree-Fock determinants) resulting in low-spin states of the complex. The previously available SAPT formalisms, except for some system-specific studies for few-electron complexes, were restricted to the high-spin state of the interacting system. Thus, the new approach provides, for the first time, a SAPT-based estimate of the splittings between different spin states of the complex. We have derived and implemented the lowest-order SAPT term responsible for these splittings, that is, the first-order exchange energy. We show that within the so-called S 2 approximation commonly used in SAPT (neglecting effects that vanish as fourth or higher powers of intermolecular overlap integrals), the first-order exchange energies for all multiplets are linear combinations of two matrix elements: a diagonal exchange term that determines the spin-averaged effect and a spin-flip term responsible for the splittings between the states. The numerical factors in this linear combination are determined solely by the Clebsch-Gordan coefficients: accordingly, the S 2 approximation implies a Heisenberg Hamiltonian picture with a single coupling strength parameter determining all the splittings. The new approach is cast into both molecular-orbital and atomic-orbital expressions: the latter enable an efficient density-fitted implementation. We test the newly developed formalism on several open-shell complexes ranging from diatomic systems (Li⋯H, Mn⋯Mn, …) to the phenalenyl dimer.

  15. First-order symmetry-adapted perturbation theory for multiplet splittings

    NASA Astrophysics Data System (ADS)

    Patkowski, Konrad; Żuchowski, Piotr S.; Smith, Daniel G. A.

    2018-04-01

    We present a symmetry-adapted perturbation theory (SAPT) for the interaction of two high-spin open-shell molecules (described by their restricted open-shell Hartree-Fock determinants) resulting in low-spin states of the complex. The previously available SAPT formalisms, except for some system-specific studies for few-electron complexes, were restricted to the high-spin state of the interacting system. Thus, the new approach provides, for the first time, a SAPT-based estimate of the splittings between different spin states of the complex. We have derived and implemented the lowest-order SAPT term responsible for these splittings, that is, the first-order exchange energy. We show that within the so-called S2 approximation commonly used in SAPT (neglecting effects that vanish as fourth or higher powers of intermolecular overlap integrals), the first-order exchange energies for all multiplets are linear combinations of two matrix elements: a diagonal exchange term that determines the spin-averaged effect and a spin-flip term responsible for the splittings between the states. The numerical factors in this linear combination are determined solely by the Clebsch-Gordan coefficients: accordingly, the S2 approximation implies a Heisenberg Hamiltonian picture with a single coupling strength parameter determining all the splittings. The new approach is cast into both molecular-orbital and atomic-orbital expressions: the latter enable an efficient density-fitted implementation. We test the newly developed formalism on several open-shell complexes ranging from diatomic systems (Li⋯H, Mn⋯Mn, …) to the phenalenyl dimer.

  16. Unitary group adapted state specific multireference perturbation theory: Formulation and pilot applications.

    PubMed

    Sen, Avijit; Sen, Sangita; Samanta, Pradipta Kumar; Mukherjee, Debashis

    2015-04-05

    We present here a comprehensive account of the formulation and pilot applications of the second-order perturbative analogue of the recently proposed unitary group adapted state-specific multireference coupled cluster theory (UGA-SSMRCC), which we call as the UGA-SSMRPT2. We also discuss the essential similarities and differences between the UGA-SSMRPT2 and the allied SA-SSMRPT2. Our theory, like its parent UGA-SSMRCC formalism, is size-extensive. However, because of the noninvariance of the theory with respect to the transformation among the active orbitals, it requires the use of localized orbitals to ensure size-consistency. We have demonstrated the performance of the formalism with a set of pilot applications, exploring (a) the accuracy of the potential energy surface (PES) of a set of small prototypical difficult molecules in their various low-lying states, using natural, pseudocanonical and localized orbitals and compared the respective nonparallelity errors (NPE) and the mean average deviations (MAD) vis-a-vis the full CI results with the same basis; (b) the efficacy of localized active orbitals to ensure and demonstrate manifest size-consistency with respect to fragmentation. We found that natural orbitals lead to the best overall PES, as evidenced by the NPE and MAD values. The MRMP2 results for individual states and of the MCQDPT2 for multiple states displaying avoided curve crossings are uniformly poorer as compared with the UGA-SSMRPT2 results. The striking aspect of the size-consistency check is the complete insensitivity of the sum of fragment energies with given fragment spin-multiplicities, which are obtained as the asymptotic limit of super-molecules with different coupled spins. © 2015 Wiley Periodicals, Inc.

  17. Non-perturbative String Theory from Water Waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iyer, Ramakrishnan; Johnson, Clifford V.; /Southern California U.

    2012-06-14

    We use a combination of a 't Hooft limit and numerical methods to find non-perturbative solutions of exactly solvable string theories, showing that perturbative solutions in different asymptotic regimes are connected by smooth interpolating functions. Our earlier perturbative work showed that a large class of minimal string theories arise as special limits of a Painleve IV hierarchy of string equations that can be derived by a similarity reduction of the dispersive water wave hierarchy of differential equations. The hierarchy of string equations contains new perturbative solutions, some of which were conjectured to be the type IIA and IIB string theoriesmore » coupled to (4, 4k ? 2) superconformal minimal models of type (A, D). Our present paper shows that these new theories have smooth non-perturbative extensions. We also find evidence for putative new string theories that were not apparent in the perturbative analysis.« less

  18. Cosmological perturbation theory in 1+1 dimensions

    NASA Astrophysics Data System (ADS)

    McQuinn, Matthew; White, Martin

    2016-01-01

    Many recent studies have highlighted certain failures of the standard Eulerian-space cosmological perturbation theory (SPT). Its problems include (1) not capturing large-scale bulk flows [leading to an Script O( 1) error in the 1-loop SPT prediction for the baryon acoustic peak in the correlation function], (2) assuming that the Universe behaves as a pressureless, inviscid fluid, and (3) treating fluctuations on scales that are non-perturbative as if they were. Recent studies have highlighted the successes of perturbation theory in Lagrangian space or theories that solve equations for the effective dynamics of smoothed fields. Both approaches mitigate some or all of the aforementioned issues with SPT. We discuss these physical developments by specializing to the simplified 1D case of gravitationally interacting sheets, which allows us to substantially reduces the analytic overhead and still (as we show) maintain many of the same behaviors as in 3D. In 1D, linear-order Lagrangian perturbation theory ("the Zeldovich approximation") is exact up to shell crossing, and we prove that nth-order Eulerian perturbation theory converges to the Zeldovich approximation as narrow ∞. In no 1D cosmology that we consider (including a CDM-like case and power-law models) do these theories describe accurately the matter power spectrum on any mildly nonlinear scale. We find that theories based on effective equations are much more successful at describing the dynamics. Finally, we discuss many topics that have recently appeared in the perturbation theory literature such as beat coupling, the shift and smearing of the baryon acoustic oscillation feature, and the advantages of Fourier versus configuration space. Our simplified 1D case serves as an intuitive review of these perturbation theory results.

  19. Coupling-parameter expansion in thermodynamic perturbation theory.

    PubMed

    Ramana, A Sai Venkata; Menon, S V G

    2013-02-01

    An approach to the coupling-parameter expansion in the liquid state theory of simple fluids is presented by combining the ideas of thermodynamic perturbation theory and integral equation theories. This hybrid scheme avoids the problems of the latter in the two phase region. A method to compute the perturbation series to any arbitrary order is developed and applied to square well fluids. Apart from the Helmholtz free energy, the method also gives the radial distribution function and the direct correlation function of the perturbed system. The theory is applied for square well fluids of variable ranges and compared with simulation data. While the convergence of perturbation series and the overall performance of the theory is good, improvements are needed for potentials with shorter ranges. Possible directions for further developments in the coupling-parameter expansion are indicated.

  20. Breakdown of the single-exchange approximation in third-order symmetry-adapted perturbation theory.

    PubMed

    Lao, Ka Un; Herbert, John M

    2012-03-22

    We report third-order symmetry-adapted perturbation theory (SAPT) calculations for several dimers whose intermolecular interactions are dominated by induction. We demonstrate that the single-exchange approximation (SEA) employed to derive the third-order exchange-induction correction (E(exch-ind)((30))) fails to quench the attractive nature of the third-order induction (E(ind)((30))), leading to one-dimensional potential curves that become attractive rather than repulsive at short intermolecular separations. A scaling equation for (E(exch-ind)((30))), based on an exact formula for the first-order exchange correction, is introduced to approximate exchange effects beyond the SEA, and qualitatively correct potential energy curves that include third-order induction are thereby obtained. For induction-dominated systems, our results indicate that a "hybrid" SAPT approach, in which a dimer Hartree-Fock calculation is performed in order to obtain a correction for higher-order induction, is necessary not only to obtain quantitative binding energies but also to obtain qualitatively correct potential energy surfaces. These results underscore the need to develop higher-order exchange-induction formulas that go beyond the SEA. © 2012 American Chemical Society

  1. A general theory of linear cosmological perturbations: bimetric theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lagos, Macarena; Ferreira, Pedro G., E-mail: m.lagos13@imperial.ac.uk, E-mail: p.ferreira1@physics.ox.ac.uk

    2017-01-01

    We implement the method developed in [1] to construct the most general parametrised action for linear cosmological perturbations of bimetric theories of gravity. Specifically, we consider perturbations around a homogeneous and isotropic background, and identify the complete form of the action invariant under diffeomorphism transformations, as well as the number of free parameters characterising this cosmological class of theories. We discuss, in detail, the case without derivative interactions, and compare our results with those found in massive bigravity.

  2. Staggered heavy baryon chiral perturbation theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bailey, Jon A.

    2008-03-01

    Although taste violations significantly affect the results of staggered calculations of pseudoscalar and heavy-light mesonic quantities, those entering staggered calculations of baryonic quantities have not been quantified. Here I develop staggered chiral perturbation theory in the light-quark baryon sector by mapping the Symanzik action into heavy baryon chiral perturbation theory. For 2+1 dynamical quark flavors, the masses of flavor-symmetric nucleons are calculated to third order in partially quenched and fully dynamical staggered chiral perturbation theory. To this order the expansion includes the leading chiral logarithms, which come from loops with virtual decuplet-like states, as well as terms of O(m{sub {pi}}{supmore » 3}), which come from loops with virtual octet-like states. Taste violations enter through the meson propagators in loops and tree-level terms of O(a{sup 2}). The pattern of taste symmetry breaking and the resulting degeneracies and mixings are discussed in detail. The resulting chiral forms are appropriate to lattice results obtained with operators already in use and could be used to study the restoration of taste symmetry in the continuum limit. I assume that the fourth root of the fermion determinant can be incorporated in staggered chiral perturbation theory using the replica method.« less

  3. Perturbative Aspects of Low-Dimensional Quantum Field Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wardaya, Asep Y.; Theoretical Physics Laboratory, Theoretical High Energy Physics and Instrumentation Research Group, FMIPA, Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132; Zen, Freddy P.

    We investigate the low-dimensional applications of Quantum Field Theory (QFT), namely Chern-Simons-Witten Theory (CSWT) and Affine Toda Field Theory (ATFT) in 3- and 2- dimensions. We discuss the perturbative aspects of both theories and compare the results to the exact solutions obtained nonperturbatively. For the three dimensions CSWT case, the perturbative term agree with the nonperturbative polynomial invariants up to third order of the coupling constant 1/k. In the two dimensions ATFT, we investigate the perturbative aspect of S-matrices for A{sub 1}{sup (1)} case in eighth order of the coupling constant {beta}.

  4. Hard sphere perturbation theory of dense fluids with singular perturbation

    NASA Astrophysics Data System (ADS)

    Mon, K. K.

    2000-02-01

    Hard sphere perturbation theories (HSPT) played a significant role in the fundamental understanding of fluids and continues to be a popular method in a wide range of applications. The possibility of difficulty with singular perturbation for some classical soft core model fluids appears to have been overlooked or ignored in the literature. We address this issue in this short note and show by analysis that a region of phase space has been neglected in the standard application of HSPT involving singular perturbation.

  5. Non-hard sphere thermodynamic perturbation theory.

    PubMed

    Zhou, Shiqi

    2011-08-21

    A non-hard sphere (HS) perturbation scheme, recently advanced by the present author, is elaborated for several technical matters, which are key mathematical details for implementation of the non-HS perturbation scheme in a coupling parameter expansion (CPE) thermodynamic perturbation framework. NVT-Monte Carlo simulation is carried out for a generalized Lennard-Jones (LJ) 2n-n potential to obtain routine thermodynamic quantities such as excess internal energy, pressure, excess chemical potential, excess Helmholtz free energy, and excess constant volume heat capacity. Then, these new simulation data, and available simulation data in literatures about a hard core attractive Yukawa fluid and a Sutherland fluid, are used to test the non-HS CPE 3rd-order thermodynamic perturbation theory (TPT) and give a comparison between the non-HS CPE 3rd-order TPT and other theoretical approaches. It is indicated that the non-HS CPE 3rd-order TPT is superior to other traditional TPT such as van der Waals/HS (vdW/HS), perturbation theory 2 (PT2)/HS, and vdW/Yukawa (vdW/Y) theory or analytical equation of state such as mean spherical approximation (MSA)-equation of state and is at least comparable to several currently the most accurate Ornstein-Zernike integral equation theories. It is discovered that three technical issues, i.e., opening up new bridge function approximation for the reference potential, choosing proper reference potential, and/or using proper thermodynamic route for calculation of f(ex-ref), chiefly decide the quality of the non-HS CPE TPT. Considering that the non-HS perturbation scheme applies for a wide variety of model fluids, and its implementation in the CPE thermodynamic perturbation framework is amenable to high-order truncation, the non-HS CPE 3rd-order or higher order TPT will be more promising once the above-mentioned three technological advances are established. © 2011 American Institute of Physics

  6. Divergence of perturbation theory in large scale structures

    NASA Astrophysics Data System (ADS)

    Pajer, Enrico; van der Woude, Drian

    2018-05-01

    We make progress towards an analytical understanding of the regime of validity of perturbation theory for large scale structures and the nature of some non-perturbative corrections. We restrict ourselves to 1D gravitational collapse, for which exact solutions before shell crossing are known. We review the convergence of perturbation theory for the power spectrum, recently proven by McQuinn and White [1], and extend it to non-Gaussian initial conditions and the bispectrum. In contrast, we prove that perturbation theory diverges for the real space two-point correlation function and for the probability density function (PDF) of the density averaged in cells and all the cumulants derived from it. We attribute these divergences to the statistical averaging intrinsic to cosmological observables, which, even on very large and "perturbative" scales, gives non-vanishing weight to all extreme fluctuations. Finally, we discuss some general properties of non-perturbative effects in real space and Fourier space.

  7. New Approaches and Applications for Monte Carlo Perturbation Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aufiero, Manuele; Bidaud, Adrien; Kotlyar, Dan

    2017-02-01

    This paper presents some of the recent and new advancements in the extension of Monte Carlo Perturbation Theory methodologies and application. In particular, the discussed problems involve Brunup calculation, perturbation calculation based on continuous energy functions, and Monte Carlo Perturbation Theory in loosely coupled systems.

  8. Perturbative Quantum Gauge Theories on Manifolds with Boundary

    NASA Astrophysics Data System (ADS)

    Cattaneo, Alberto S.; Mnev, Pavel; Reshetikhin, Nicolai

    2018-01-01

    This paper introduces a general perturbative quantization scheme for gauge theories on manifolds with boundary, compatible with cutting and gluing, in the cohomological symplectic (BV-BFV) formalism. Explicit examples, like abelian BF theory and its perturbations, including nontopological ones, are presented.

  9. Correlations in polymer blends: Simulations, perturbation theory, and coarse-grained theory

    NASA Astrophysics Data System (ADS)

    Chung, Jun Kyung

    A thermodynamic perturbation theory of symmetric polymer blends is developed that properly accounts for the correlation in the spatial arrangement of monomers. By expanding the free energy of mixing in powers of a small parameter alpha which controls the incompatibility of two monomer species, we show that the perturbation theory has the form of the original Flory-Huggins theory, to first order in alpha. However, the lattice coordination number in the original theory is replaced by an effective coordination number. A random walk model for the effective coordination number is found to describe Monte Carlo simulation data very well. We also propose a way to estimate Flory-Huggins chi parameter by extrapolating the perturbation theory to the limit of a hypothetical system of infinitely long chains. The first order perturbation theory yields an accurate estimation of chi to first order in alpha. Going to second order, however, turns out to be more involved and an unambiguous determination of the coefficient of alpha2 term is not possible at the moment. Lastly, we test the predictions of a renormalized one-loop theory of fluctuations using two coarse-grained models of symmetric polymer blends at the critical composition. It is found that the theory accurately describes the correlation effect for relatively small values of chiN. In addition, the universality assumption of coarse-grained models is examined and we find results that are supportive of it.

  10. Exploration of zeroth-order wavefunctions and energies as a first step toward intramolecular symmetry-adapted perturbation theory

    NASA Astrophysics Data System (ADS)

    Gonthier, Jérôme F.; Corminboeuf, Clémence

    2014-04-01

    Non-covalent interactions occur between and within all molecules and have a profound impact on structural and electronic phenomena in chemistry, biology, and material science. Understanding the nature of inter- and intramolecular interactions is essential not only for establishing the relation between structure and properties, but also for facilitating the rational design of molecules with targeted properties. These objectives have motivated the development of theoretical schemes decomposing intermolecular interactions into physically meaningful terms. Among the various existing energy decomposition schemes, Symmetry-Adapted Perturbation Theory (SAPT) is one of the most successful as it naturally decomposes the interaction energy into physical and intuitive terms. Unfortunately, analogous approaches for intramolecular energies are theoretically highly challenging and virtually nonexistent. Here, we introduce a zeroth-order wavefunction and energy, which represent the first step toward the development of an intramolecular variant of the SAPT formalism. The proposed energy expression is based on the Chemical Hamiltonian Approach (CHA), which relies upon an asymmetric interpretation of the electronic integrals. The orbitals are optimized with a non-hermitian Fock matrix based on two variants: one using orbitals strictly localized on individual fragments and the other using canonical (delocalized) orbitals. The zeroth-order wavefunction and energy expression are validated on a series of prototypical systems. The computed intramolecular interaction energies demonstrate that our approach combining the CHA with strictly localized orbitals achieves reasonable interaction energies and basis set dependence in addition to producing intuitive energy trends. Our zeroth-order wavefunction is the primary step fundamental to the derivation of any perturbation theory correction, which has the potential to truly transform our understanding and quantification of non

  11. Exploration of zeroth-order wavefunctions and energies as a first step toward intramolecular symmetry-adapted perturbation theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonthier, Jérôme F.; Corminboeuf, Clémence, E-mail: clemence.corminboeuf@epfl.ch

    2014-04-21

    Non-covalent interactions occur between and within all molecules and have a profound impact on structural and electronic phenomena in chemistry, biology, and material science. Understanding the nature of inter- and intramolecular interactions is essential not only for establishing the relation between structure and properties, but also for facilitating the rational design of molecules with targeted properties. These objectives have motivated the development of theoretical schemes decomposing intermolecular interactions into physically meaningful terms. Among the various existing energy decomposition schemes, Symmetry-Adapted Perturbation Theory (SAPT) is one of the most successful as it naturally decomposes the interaction energy into physical and intuitivemore » terms. Unfortunately, analogous approaches for intramolecular energies are theoretically highly challenging and virtually nonexistent. Here, we introduce a zeroth-order wavefunction and energy, which represent the first step toward the development of an intramolecular variant of the SAPT formalism. The proposed energy expression is based on the Chemical Hamiltonian Approach (CHA), which relies upon an asymmetric interpretation of the electronic integrals. The orbitals are optimized with a non-hermitian Fock matrix based on two variants: one using orbitals strictly localized on individual fragments and the other using canonical (delocalized) orbitals. The zeroth-order wavefunction and energy expression are validated on a series of prototypical systems. The computed intramolecular interaction energies demonstrate that our approach combining the CHA with strictly localized orbitals achieves reasonable interaction energies and basis set dependence in addition to producing intuitive energy trends. Our zeroth-order wavefunction is the primary step fundamental to the derivation of any perturbation theory correction, which has the potential to truly transform our understanding and quantification of non

  12. Quasi-degenerate perturbation theory using matrix product states

    NASA Astrophysics Data System (ADS)

    Sharma, Sandeep; Jeanmairet, Guillaume; Alavi, Ali

    2016-01-01

    In this work, we generalize the recently proposed matrix product state perturbation theory (MPSPT) for calculating energies of excited states using quasi-degenerate (QD) perturbation theory. Our formulation uses the Kirtman-Certain-Hirschfelder canonical Van Vleck perturbation theory, which gives Hermitian effective Hamiltonians at each order, and also allows one to make use of Wigner's 2n + 1 rule. Further, our formulation satisfies Granovsky's requirement of model space invariance which is important for obtaining smooth potential energy curves. Thus, when we use MPSPT with the Dyall Hamiltonian, we obtain a model space invariant version of quasi-degenerate n-electron valence state perturbation theory (NEVPT), a property that the usual formulation of QD-NEVPT2 based on a multipartitioning technique lacked. We use our method on the benchmark problems of bond breaking of LiF which shows ionic to covalent curve crossing and the twist around the double bond of ethylene where significant valence-Rydberg mixing occurs in the excited states. In accordance with our previous work, we find that multi-reference linearized coupled cluster theory is more accurate than other multi-reference theories of similar cost.

  13. Basics of QCD perturbation theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soper, D.E.

    1997-06-01

    This is an introduction to the use of QCD perturbation theory, emphasizing generic features of the theory that enable one to separate short-time and long-time effects. The author also covers some important classes of applications: electron-positron annihilation to hadrons, deeply inelastic scattering, and hard processes in hadron-hadron collisions. 31 refs., 38 figs.

  14. Adaptation of reach-to-grasp movement in response to force perturbations.

    PubMed

    Rand, M K; Shimansky, Y; Stelmach, G E; Bloedel, J R

    2004-01-01

    This study examined how reach-to-grasp movements are modified during adaptation to external force perturbations applied on the arm during reach. Specifically, we examined whether the organization of these movements was dependent upon the condition under which the perturbation was applied. In response to an auditory signal, all subjects were asked to reach for a vertical dowel, grasp it between the index finger and thumb, and lift it a short distance off the table. The subjects were instructed to do the task as fast as possible. The perturbation was an elastic load acting on the wrist at an angle of 105 deg lateral to the reaching direction. The condition was modified by changing the predictability with which the perturbation was applied in a given trial. After recording unperturbed control trials, perturbations were applied first on successive trials (predictable perturbations) and then were applied randomly (unpredictable perturbations). In the early predictable perturbation trials, reach path length became longer and reaching duration increased. As more predictable perturbations were applied, the reach path length gradually decreased and became similar to that of control trials. Reaching duration also decreased gradually as the subjects adapted by exerting force against the perturbation. In addition, the amplitude of peak grip aperture during arm transport initially increased in response to repeated perturbations. During the course of learning, it reached its maximum and thereafter slightly decreased. However, it did not return to the normal level. The subjects also adapted to the unpredictable perturbations through changes in both arm transport and grasping components, indicating that they can compensate even when the occurrence of the perturbation cannot be predicted during the inter-trial interval. Throughout random perturbation trials, large grip aperture values were observed, suggesting that a conservative aperture level is set regardless of whether the

  15. Perturbation schedule does not alter retention of a locomotor adaptation across days.

    PubMed

    Hussain, Sara J; Morton, Susanne M

    2014-06-15

    Motor adaptation in response to gradual vs. abrupt perturbation schedules may involve different neural mechanisms, potentially leading to different levels of motor memory. However, no study has investigated whether perturbation schedules alter memory of a locomotor adaptation across days. We measured adaptation and retention (memory) of altered interlimb symmetry during walking in two groups of participants over 2 days. On day 1, participants adapted to either a single, large perturbation (abrupt schedule) or a series of small perturbations that increased in size over time (gradual schedule). Retention was examined on day 2. On day 1, initial swing time and foot placement symmetry error sizes differed between groups but overall adaptation magnitudes were similar. On day 2, participants in both groups showed similar retention, readaptation, and aftereffect sizes, although there were some trends for improved memory in the abrupt group. These results conflict with previous data but are consistent with newer studies reporting no behavioral differences following adaptation using abrupt vs. gradual schedules. Although memory levels were very similar between groups, we cannot rule out the possibility that the neural mechanisms underlying this memory storage differ. Overall, it appears that adaptation of locomotor patterns via abrupt and gradual perturbation schedules produces similar expression of locomotor memories across days. Copyright © 2014 the American Physiological Society.

  16. Perturbative Quantum Gravity and its Relation to Gauge Theory.

    PubMed

    Bern, Zvi

    2002-01-01

    In this review we describe a non-trivial relationship between perturbative gauge theory and gravity scattering amplitudes. At the semi-classical or tree-level, the scattering amplitudes of gravity theories in flat space can be expressed as a sum of products of well defined pieces of gauge theory amplitudes. These relationships were first discovered by Kawai, Lewellen, and Tye in the context of string theory, but hold more generally. In particular, they hold for standard Einstein gravity. A method based on D -dimensional unitarity can then be used to systematically construct all quantum loop corrections order-by-order in perturbation theory using as input the gravity tree amplitudes expressed in terms of gauge theory ones. More generally, the unitarity method provides a means for perturbatively quantizing massless gravity theories without the usual formal apparatus associated with the quantization of constrained systems. As one application, this method was used to demonstrate that maximally supersymmetric gravity is less divergent in the ultraviolet than previously thought.

  17. Influence of Lumbar Muscle Fatigue on Trunk Adaptations during Sudden External Perturbations

    PubMed Central

    Abboud, Jacques; Nougarou, François; Lardon, Arnaud; Dugas, Claude; Descarreaux, Martin

    2016-01-01

    Introduction: When the spine is subjected to perturbations, neuromuscular responses such as reflex muscle contractions contribute to the overall balance control and spinal stabilization mechanisms. These responses are influenced by muscle fatigue, which has been shown to trigger changes in muscle recruitment patterns. Neuromuscular adaptations, e.g., attenuation of reflex activation and/or postural oscillations following repeated unexpected external perturbations, have also been described. However, the characterization of these adaptations still remains unclear. Using high-density electromyography (EMG) may help understand how the nervous system chooses to deal with an unknown perturbation in different physiological and/or mechanical perturbation environments. Aim: To characterize trunk neuromuscular adaptations following repeated sudden external perturbations after a back muscle fatigue task using high-density EMG. Methods: Twenty-five healthy participants experienced a series of 15 sudden external perturbations before and after back muscle fatigue. Erector spinae muscle activity was recorded using high-density EMG. Trunk kinematics during perturbation trials were collected using a 3-D motion analysis system. A two-way repeated measure ANOVA was conducted to assess: (1) the adaptation effect across trials; (2) the fatigue effect; and (3) the interaction effect (fatigue × adaptation) for the baseline activity, the reflex latency, the reflex peak and trunk kinematic variables (flexion angle, velocity and time to peak velocity). Muscle activity spatial distribution before and following the fatigue task was also compared using t-tests for dependent samples. Results: An attenuation of muscle reflex peak was observed across perturbation trials before the fatigue task, but not after. The spatial distribution of muscle activity was significantly higher before the fatigue task compared to post-fatigue trials. Baseline activity showed a trend to higher values after muscle

  18. Metric Theories of Gravity: Perturbations and Conservation Laws

    NASA Astrophysics Data System (ADS)

    Petrov, Alexander N.; Kopeikin, Sergei M.; Lompay, Robert R.; Tekin, Bayram

    2017-04-01

    By focusing on the mostly used variational methods, this monograph aspires to give a unified description and comparison of various ways of constructing conserved quantities for perturbations and to study symmetries in general relativity and modified theories of gravity. The main emphasis lies on the field-theoretical covariant formulation of perturbations, the canonical Noether approach and the Belinfante procedure of symmetrisation. The general formalism is applied to build the gauge-invariant cosmological perturbation theory, conserved currents and superpotentials to describe physically important solutions of gravity theories. Meticulous attention is given to the construction of conserved quantities in asymptotically-flat spacetimes as well as in asymptotically constant curvature spacetimes such as the Anti-de Sitter space. Significant part of the book can be used in graduate courses on conservation laws in general relativity.

  19. Perturbation theory for water with an associating reference fluid

    NASA Astrophysics Data System (ADS)

    Marshall, Bennett D.

    2017-11-01

    The theoretical description of the thermodynamics of water is challenged by the structural transition towards tetrahedral symmetry at ambient conditions. As perturbation theories typically assume a spherically symmetric reference fluid, they are incapable of accurately describing the liquid properties of water at ambient conditions. In this paper we address this problem by introducing the concept of an associated reference perturbation theory (APT). In APT we treat the reference fluid as an associating hard sphere fluid which transitions to tetrahedral symmetry in the fully hydrogen bonded limit. We calculate this transition in a theoretically self-consistent manner without appealing to molecular simulations. This associated reference provides the reference fluid for a second order Barker-Henderson perturbative treatment of the long-range attractions. We demonstrate that this approach gives a significantly improved description of water as compared to standard perturbation theories.

  20. Using the theory of small perturbations in performance calculations of the RBMK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isaev, N.V.; Druzhinin, V.E.; Pogosbekyan, L.R.

    The theory of small perturbations in reactor physics is discussed and applied to two-dimensional calculations of the RBMK. The classical theory of small perturbations implies considerable errors in calculations because the perturbations cannot be considered small. The modified theory of small perturbations presented here can be used in atomic power stations for determining reactivity effects and reloading rates of channels in reactors and also for assessing the reactivity storage in control rods.

  1. Perturbation theory for cosmologies with nonlinear structure

    NASA Astrophysics Data System (ADS)

    Goldberg, Sophia R.; Gallagher, Christopher S.; Clifton, Timothy

    2017-11-01

    The next generation of cosmological surveys will operate over unprecedented scales, and will therefore provide exciting new opportunities for testing general relativity. The standard method for modelling the structures that these surveys will observe is to use cosmological perturbation theory for linear structures on horizon-sized scales, and Newtonian gravity for nonlinear structures on much smaller scales. We propose a two-parameter formalism that generalizes this approach, thereby allowing interactions between large and small scales to be studied in a self-consistent and well-defined way. This uses both post-Newtonian gravity and cosmological perturbation theory, and can be used to model realistic cosmological scenarios including matter, radiation and a cosmological constant. We find that the resulting field equations can be written as a hierarchical set of perturbation equations. At leading-order, these equations allow us to recover a standard set of Friedmann equations, as well as a Newton-Poisson equation for the inhomogeneous part of the Newtonian energy density in an expanding background. For the perturbations in the large-scale cosmology, however, we find that the field equations are sourced by both nonlinear and mode-mixing terms, due to the existence of small-scale structures. These extra terms should be expected to give rise to new gravitational effects, through the mixing of gravitational modes on small and large scales—effects that are beyond the scope of standard linear cosmological perturbation theory. We expect our formalism to be useful for accurately modeling gravitational physics in universes that contain nonlinear structures, and for investigating the effects of nonlinear gravity in the era of ultra-large-scale surveys.

  2. Statistics of Smoothed Cosmic Fields in Perturbation Theory. I. Formulation and Useful Formulae in Second-Order Perturbation Theory

    NASA Astrophysics Data System (ADS)

    Matsubara, Takahiko

    2003-02-01

    We formulate a general method for perturbative evaluations of statistics of smoothed cosmic fields and provide useful formulae for application of the perturbation theory to various statistics. This formalism is an extensive generalization of the method used by Matsubara, who derived a weakly nonlinear formula of the genus statistic in a three-dimensional density field. After describing the general method, we apply the formalism to a series of statistics, including genus statistics, level-crossing statistics, Minkowski functionals, and a density extrema statistic, regardless of the dimensions in which each statistic is defined. The relation between the Minkowski functionals and other geometrical statistics is clarified. These statistics can be applied to several cosmic fields, including three-dimensional density field, three-dimensional velocity field, two-dimensional projected density field, and so forth. The results are detailed for second-order theory of the formalism. The effect of the bias is discussed. The statistics of smoothed cosmic fields as functions of rescaled threshold by volume fraction are discussed in the framework of second-order perturbation theory. In CDM-like models, their functional deviations from linear predictions plotted against the rescaled threshold are generally much smaller than that plotted against the direct threshold. There is still a slight meatball shift against rescaled threshold, which is characterized by asymmetry in depths of troughs in the genus curve. A theory-motivated asymmetry factor in the genus curve is proposed.

  3. τ hadronic spectral function moments in a nonpower QCD perturbation theory

    NASA Astrophysics Data System (ADS)

    Abbas, Gauhar; Ananthanarayan, B.; Caprini, I.; Fischer, J.

    2016-04-01

    The moments of the hadronic spectral functions are of interest for the extraction of the strong coupling and other QCD parameters from the hadronic decays of the τ lepton. We consider the perturbative behavior of these moments in the framework of a QCD nonpower perturbation theory, defined by the technique of series acceleration by conformal mappings, which simultaneously implements renormalization-group summation and has a tame large-order behavior. Two recently proposed models of the Adler function are employed to generate the higher order coefficients of the perturbation series and to predict the exact values of the moments, required for testing the properties of the perturbative expansions. We show that the contour-improved nonpower perturbation theories and the renormalization-group-summed nonpower perturbation theories have very good convergence properties for a large class of moments of the so-called ;reference model;, including moments that are poorly described by the standard expansions.

  4. Perturbation Theory of Massive Yang-Mills Fields

    DOE R&D Accomplishments Database

    Veltman, M.

    1968-08-01

    Perturbation theory of massive Yang-Mills fields is investigated with the help of the Bell-Treiman transformation. Diagrams containing one closed loop are shown to be convergent if there are more than four external vector boson lines. The investigation presented does not exclude the possibility that the theory is renormalizable.

  5. Excitation energies from Görling-Levy perturbation theory along the range-separated adiabatic connection

    NASA Astrophysics Data System (ADS)

    Rebolini, Elisa; Teale, Andrew M.; Helgaker, Trygve; Savin, Andreas; Toulouse, Julien

    2018-06-01

    A Görling-Levy (GL)-based perturbation theory along the range-separated adiabatic connection is assessed for the calculation of electronic excitation energies. In comparison with the Rayleigh-Schrödinger (RS)-based perturbation theory this GL-based perturbation theory keeps the ground-state density constant at each order and thus gives the correct ionisation energy at each order. Excitation energies up to first order in the perturbation have been calculated numerically for the helium and beryllium atoms and the hydrogen molecule without introducing any density-functional approximations. In comparison with the RS-based perturbation theory, the present GL-based perturbation theory gives much more accurate excitation energies for Rydberg states but similar excitation energies for valence states.

  6. Do kinematic metrics of walking balance adapt to perturbed optical flow?

    PubMed

    Thompson, Jessica D; Franz, Jason R

    2017-08-01

    Visual (i.e., optical flow) perturbations can be used to study balance control and balance deficits. However, it remains unclear whether walking balance control adapts to such perturbations over time. Our purpose was to investigate the propensity for visuomotor adaptation in walking balance control using prolonged exposure to optical flow perturbations. Ten subjects (age: 25.4±3.8years) walked on a treadmill while watching a speed-matched virtual hallway with and without continuous mediolateral optical flow perturbations of three different amplitudes. Each of three perturbation trials consisted of 8min of prolonged exposure followed by 1min of unperturbed walking. Using 3D motion capture, we analyzed changes in foot placement kinematics and mediolateral sacrum motion. At their onset, perturbations elicited wider and shorter steps, alluding to a more cautious, general anticipatory balance control strategy. As perturbations continued, foot placement tended toward values seen during unperturbed walking while step width variability and mediolateral sacrum motion concurrently increased. Our findings suggest that subjects progressively shifted from a general anticipatory balance control strategy to a reactive, task-specific strategy using step-to-step adjustments. Prolonged exposure to optical flow perturbations may have clinical utility to reinforce reactive, task-specific balance control through training. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Disassociation between primary motor cortical activity and movement kinematics during adaptation to reach perturbations.

    PubMed

    Cai, X; Shimansky, Y P; Weber, D J; He, Jiping

    2004-01-01

    The relationship between movement kinematics and motor cortical activity was studied in monkeys performing a center-out reaching task during their adaptation to force perturbations applied to the wrist. The main feature of adaptive changes in movement kinematics was anticipatory deviation of hand paths in the direction opposite to that of the upcoming perturbation. We identified a group of neurons in the dorsal lateral portion of the primary motor cortex where a gradual buildup of spike activity immediately preceding the actual (in perturbation trials) or the "would-be" (in unperturbed/catch trials) perturbation onset was observed. These neurons were actively involved in the adaptation process, which was evident from the gradual increase in the amplitude of their movement-related modulation of spike activity from virtual zero and development of certain directional tuning pattern (DTP). However, the day-to-day dynamics of the kinematics adaptation was dramatically different from that of the neuronal activity. Hence, the adaptive modification of the motor cortical activity is more likely to reflect the development of the internal model of the perturbation dynamics, rather than motor instructions determining the adaptive behavior.

  8. Perturbative computation in a generalized quantum field theory

    NASA Astrophysics Data System (ADS)

    Bezerra, V. B.; Curado, E. M.; Rego-Monteiro, M. A.

    2002-10-01

    We consider a quantum field theory that creates at any point of the space-time particles described by a q-deformed Heisenberg algebra which is interpreted as a phenomenological quantum theory describing the scattering of spin-0 composed particles. We discuss the generalization of Wick's expansion for this case and we compute perturbatively the scattering 1+2-->1'+2' to second order in the coupling constant. The result we find shows that the structure of a composed particle, described here phenomenologically by the deformed algebraic structure, can modify in a simple but nontrivial way the perturbation expansion for the process under consideration.

  9. Investigation of a Diagnostic for Perturbation Theory: Comparison to the T(sub 1) Diagnostic of Coupled-Cluster Theory

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Head-Gordon, Martin; Rendell, Alistair P.; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    A diagnostic for perturbation theory calculations, S(sub 2), is defined and numerical results are compared to the established T(sub 1) diagnostic from coupled-cluster theory. S(sub 2) is the lowest order non-zero contribution to a perturbation expansion of T(sub 1). S(sub 2) is a reasonable estimate of the importance of non-dynamical electron correlation, although not as reliable as T(sub 1). S(sub 2) values less than or equal to 0.012 suggest that low orders of perturbation theory should yield reasonable results; S(sub 2) values between 0.012-0.015 suggest that caution is required in interpreting results from low orders of perturbation theory; S(sub 2) values greater than or equal to 0.015 indicate that low orders of perturbation theory are not reliable for accurate results. Although not required mathematically, S(sub 2) is always less than T(sub 1) for the examples studied here.

  10. Perturbation theory of dispersion-managed fiber solitons

    NASA Astrophysics Data System (ADS)

    Ferreira, Mário F. S.; Sousa, Mayra H.

    2007-05-01

    A variational approach with an arbitrary ansatz is used to derive the governing equations for the characteristic parameters of dispersion-managed solitons. The Gaussian pulses are considered as a particular case. Moreover, the adiabatic evolution equations of the dispersion-managed pulse parameters under perturbations are derived, considering an arbitrary pulse profile. The theory is applied to the case of Gaussian pulses under different types of perturbations, such as the amplifier noise, nonlinear interaction between pulses, and polarization-mode dispersion.

  11. An improved thermodynamic perturbation theory for Mercedes-Benz water

    NASA Astrophysics Data System (ADS)

    Urbic, T.; Vlachy, V.; Kalyuzhnyi, Yu. V.; Dill, K. A.

    2007-11-01

    We previously applied Wertheim's thermodynamic perturbation theory for associative fluids to the simple Mercedes-Benz model of water. We found that the theory reproduced well the physical properties of hot water, but was less successful in capturing the more structured hydrogen bonding that occurs in cold water. Here, we propose an improved version of the thermodynamic perturbation theory in which the effective density of the reference system is calculated self-consistently. The new theory is a significant improvement, giving good agreement with Monte Carlo simulations of the model, and predicting key anomalies of cold water, such as minima in the molar volume and large heat capacity, in addition to giving good agreement with the isothermal compressibility and thermal expansion coefficient.

  12. An improved thermodynamic perturbation theory for Mercedes-Benz water.

    PubMed

    Urbic, T; Vlachy, V; Kalyuzhnyi, Yu V; Dill, K A

    2007-11-07

    We previously applied Wertheim's thermodynamic perturbation theory for associative fluids to the simple Mercedes-Benz model of water. We found that the theory reproduced well the physical properties of hot water, but was less successful in capturing the more structured hydrogen bonding that occurs in cold water. Here, we propose an improved version of the thermodynamic perturbation theory in which the effective density of the reference system is calculated self-consistently. The new theory is a significant improvement, giving good agreement with Monte Carlo simulations of the model, and predicting key anomalies of cold water, such as minima in the molar volume and large heat capacity, in addition to giving good agreement with the isothermal compressibility and thermal expansion coefficient.

  13. Aspects of perturbation theory in quantum mechanics: The BenderWuMATHEMATICA® package

    NASA Astrophysics Data System (ADS)

    Sulejmanpasic, Tin; Ünsal, Mithat

    2018-07-01

    We discuss a general setup which allows the study of the perturbation theory of an arbitrary, locally harmonic 1D quantum mechanical potential as well as its multi-variable (many-body) generalization. The latter may form a prototype for regularized quantum field theory. We first generalize the method of Bender-Wu,and derive exact recursion relations which allow the determination of the perturbative wave-function and energy corrections to an arbitrary order, at least in principle. For 1D systems, we implement these equations in an easy to use MATHEMATICA® package we call BenderWu. Our package enables quick home-computer computation of high orders of perturbation theory (about 100 orders in 10-30 s, and 250 orders in 1-2 h) and enables practical study of a large class of problems in Quantum Mechanics. We have two hopes concerning the BenderWu package. One is that due to resurgence, large amount of non-perturbative information, such as non-perturbative energies and wave-functions (e.g. WKB wave functions), can in principle be extracted from the perturbative data. We also hope that the package may be used as a teaching tool, providing an effective bridge between perturbation theory and non-perturbative physics in textbooks. Finally, we show that for the multi-variable case, the recursion relation acquires a geometric character, and has a structure which allows parallelization to computer clusters.

  14. Morse homotopy and Chern-Simons perturbation theory

    NASA Astrophysics Data System (ADS)

    Fukaya, Kenji

    1996-11-01

    We define and invariant of a three manifold equipped with a flat bundle with vanishing homology. The construction is based on Morse theory using several Morse functions simultaneously and is regarded as a higher loop analogue of various product operations in algebraic topology. There is a heuristic argument that this invariant is related to perturbative Chern-Simons Gauge theory by Axelrod-Singer, etc. There is also a theorem which gives a relation of the construction to open string theory on the cotangent bundle.

  15. Revisiting Boundary Perturbation Theory for Inhomogeneous Transport Problems

    DOE PAGES

    Favorite, Jeffrey A.; Gonzalez, Esteban

    2017-03-10

    Adjoint-based first-order perturbation theory is applied again to boundary perturbation problems. Rahnema developed a perturbation estimate that gives an accurate first-order approximation of a flux or reaction rate within a radioactive system when the boundary is perturbed. When the response of interest is the flux or leakage current on the boundary, the Roussopoulos perturbation estimate has long been used. The Rahnema and Roussopoulos estimates differ in one term. Our paper shows that the Rahnema and Roussopoulos estimates can be derived consistently, using different responses, from a single variational functional (due to Gheorghiu and Rahnema), resolving any apparent contradiction. In analyticmore » test problems, Rahnema’s estimate and the Roussopoulos estimate produce exact first derivatives of the response of interest when appropriately applied. We also present a realistic, nonanalytic test problem.« less

  16. A general theory of linear cosmological perturbations: scalar-tensor and vector-tensor theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lagos, Macarena; Baker, Tessa; Ferreira, Pedro G.

    We present a method for parametrizing linear cosmological perturbations of theories of gravity, around homogeneous and isotropic backgrounds. The method is sufficiently general and systematic that it can be applied to theories with any degrees of freedom (DoFs) and arbitrary gauge symmetries. In this paper, we focus on scalar-tensor and vector-tensor theories, invariant under linear coordinate transformations. In the case of scalar-tensor theories, we use our framework to recover the simple parametrizations of linearized Horndeski and ''Beyond Horndeski'' theories, and also find higher-derivative corrections. In the case of vector-tensor theories, we first construct the most general quadratic action for perturbationsmore » that leads to second-order equations of motion, which propagates two scalar DoFs. Then we specialize to the case in which the vector field is time-like (à la Einstein-Aether gravity), where the theory only propagates one scalar DoF. As a result, we identify the complete forms of the quadratic actions for perturbations, and the number of free parameters that need to be defined, to cosmologically characterize these two broad classes of theories.« less

  17. Perturbation theory for arbitrary coupling strength?

    NASA Astrophysics Data System (ADS)

    Mahapatra, Bimal P.; Pradhan, Noubihary

    2018-03-01

    We present a new formulation of perturbation theory for quantum systems, designated here as: “mean field perturbation theory” (MFPT), which is free from power-series-expansion in any physical parameter, including the coupling strength. Its application is thereby extended to deal with interactions of arbitrary strength and to compute system-properties having non-analytic dependence on the coupling, thus overcoming the primary limitations of the “standard formulation of perturbation theory” (SFPT). MFPT is defined by developing perturbation about a chosen input Hamiltonian, which is exactly solvable but which acquires the nonlinearity and the analytic structure (in the coupling strength) of the original interaction through a self-consistent, feedback mechanism. We demonstrate Borel-summability of MFPT for the case of the quartic- and sextic-anharmonic oscillators and the quartic double-well oscillator (QDWO) by obtaining uniformly accurate results for the ground state of the above systems for arbitrary physical values of the coupling strength. The results obtained for the QDWO may be of particular significance since “renormalon”-free, unambiguous results are achieved for its spectrum in contrast to the well-known failure of SFPT in this case.

  18. Perturbation-iteration theory for analyzing microwave striplines

    NASA Technical Reports Server (NTRS)

    Kretch, B. E.

    1985-01-01

    A perturbation-iteration technique is presented for determining the propagation constant and characteristic impedance of an unshielded microstrip transmission line. The method converges to the correct solution with a few iterations at each frequency and is equivalent to a full wave analysis. The perturbation-iteration method gives a direct solution for the propagation constant without having to find the roots of a transcendental dispersion equation. The theory is presented in detail along with numerical results for the effective dielectric constant and characteristic impedance for a wide range of substrate dielectric constants, stripline dimensions, and frequencies.

  19. Discrete sudden perturbation theory for inelastic scattering. I. Quantum and semiclassical treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cross, R.J.

    1985-12-01

    A double perturbation theory is constructed to treat rotationally and vibrationally inelastic scattering. It uses both the elastic scattering from the spherically averaged potential and the infinite-order sudden (IOS) approximation as the unperturbed solutions. First, a standard perturbation expansion is done to express the radial wave functions in terms of the elastic wave functions. The resulting coupled equations are transformed to the discrete-variable representation where the IOS equations are diagonal. Then, the IOS solutions are removed from the equations which are solved by an exponential perturbation approximation. The results for Ar+N/sub 2/ are very much more accurate than the IOSmore » and somewhat more accurate than a straight first-order exponential perturbation theory. The theory is then converted into a semiclassical, time-dependent form by using the WKB approximation. The result is an integral of the potential times a slowly oscillating factor over the classical trajectory. A method of interpolating the result is given so that the calculation is done at the average velocity for a given transition. With this procedure, the semiclassical version of the theory is more accurate than the quantum version and very much faster. Calculations on Ar+N/sub 2/ show the theory to be much more accurate than the infinite-order sudden (IOS) approximation and the exponential time-dependent perturbation theory.« less

  20. Pair production processes and flavor in gauge-invariant perturbation theory

    NASA Astrophysics Data System (ADS)

    Egger, Larissa; Maas, Axel; Sondenheimer, René

    2017-12-01

    Gauge-invariant perturbation theory is an extension of ordinary perturbation theory which describes strictly gauge-invariant states in theories with a Brout-Englert-Higgs effect. Such gauge-invariant states are composite operators which have necessarily only global quantum numbers. As a consequence, flavor is exchanged for custodial quantum numbers in the Standard Model, recreating the fermion spectrum in the process. Here, we study the implications of such a description, possibly also for the generation structure of the Standard Model. In particular, this implies that scattering processes are essentially bound-state-bound-state interactions, and require a suitable description. We analyze the implications for the pair-production process e+e-→f¯f at a linear collider to leading order. We show how ordinary perturbation theory is recovered as the leading contribution. Using a PDF-type language, we also assess the impact of sub-leading contributions. To lowest order, we find that the result is mainly influenced by how large the contribution of the Higgs at large x is. This gives an interesting, possibly experimentally testable, scenario for the formal field theory underlying the electroweak sector of the Standard Model.

  1. Large-scale structure in brane-induced gravity. I. Perturbation theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scoccimarro, Roman

    2009-11-15

    We study the growth of subhorizon perturbations in brane-induced gravity using perturbation theory. We solve for the linear evolution of perturbations taking advantage of the symmetry under gauge transformations along the extra-dimension to decouple the bulk equations in the quasistatic approximation, which we argue may be a better approximation at large scales than thought before. We then study the nonlinearities in the bulk and brane equations, concentrating on the workings of the Vainshtein mechanism by which the theory becomes general relativity (GR) at small scales. We show that at the level of the power spectrum, to a good approximation, themore » effect of nonlinearities in the modified gravity sector may be absorbed into a renormalization of the gravitational constant. Since the relation between the lensing potential and density perturbations is entirely unaffected by the extra physics in these theories, the modified gravity can be described in this approximation by a single function, an effective gravitational constant for nonrelativistic motion that depends on space and time. We develop a resummation scheme to calculate it, and provide predictions for the nonlinear power spectrum. At the level of the large-scale bispectrum, the leading order corrections are obtained by standard perturbation theory techniques, and show that the suppression of the brane-bending mode leads to characteristic signatures in the non-Gaussianity generated by gravity, generic to models that become GR at small scales through second-derivative interactions. We compare the predictions in this work to numerical simulations in a companion paper.« less

  2. Density matrix perturbation theory for magneto-optical response of periodic insulators

    NASA Astrophysics Data System (ADS)

    Lebedeva, Irina; Tokatly, Ilya; Rubio, Angel

    2015-03-01

    Density matrix perturbation theory offers an ideal theoretical framework for the description of response of solids to arbitrary electromagnetic fields. In particular, it allows to consider perturbations introduced by uniform electric and magnetic fields under periodic boundary conditions, though the corresponding potentials break the translational invariance of the Hamiltonian. We have implemented the density matrix perturbation theory in the open-source Octopus code on the basis of the efficient Sternheimer approach. The procedures for responses of different order to electromagnetic fields, including electric polarizability, orbital magnetic susceptibility and magneto-optical response, have been developed and tested by comparison with the results for finite systems and for wavefunction-based perturbation theory, which is already available in the code. Additional analysis of the orbital magneto-optical response is performed on the basis of analytical models. Symmetry limitations to observation of the magneto-optical response are discussed. The financial support from the Marie Curie Fellowship PIIF-GA-2012-326435 (RespSpatDisp) is gratefully acknowledged.

  3. Nonperturbative Quantum Physics from Low-Order Perturbation Theory.

    PubMed

    Mera, Héctor; Pedersen, Thomas G; Nikolić, Branislav K

    2015-10-02

    The Stark effect in hydrogen and the cubic anharmonic oscillator furnish examples of quantum systems where the perturbation results in a certain ionization probability by tunneling processes. Accordingly, the perturbed ground-state energy is shifted and broadened, thus acquiring an imaginary part which is considered to be a paradigm of nonperturbative behavior. Here we demonstrate how the low order coefficients of a divergent perturbation series can be used to obtain excellent approximations to both real and imaginary parts of the perturbed ground state eigenenergy. The key is to use analytic continuation functions with a built-in singularity structure within the complex plane of the coupling constant, which is tailored by means of Bender-Wu dispersion relations. In the examples discussed the analytic continuation functions are Gauss hypergeometric functions, which take as input fourth order perturbation theory and return excellent approximations to the complex perturbed eigenvalue. These functions are Borel consistent and dramatically outperform widely used Padé and Borel-Padé approaches, even for rather large values of the coupling constant.

  4. Casimir-Lifshitz interaction between dielectrics of arbitrary geometry: A dielectric contrast perturbation theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golestanian, Ramin

    2009-07-15

    The general theory of electromagnetic-fluctuation-induced interactions in dielectric bodies as formulated by Dzyaloshinskii, Lifshitz, and Pitaevskii is rewritten as a perturbation theory in terms of the spatial contrast in (imaginary) frequency dependent dielectric function. The formulation can be used to calculate the Casimir-Lifshitz forces for dielectric objects of arbitrary geometry, as a perturbative expansion in the dielectric contrast, and could thus complement the existing theories that use perturbation in geometrical features. We find that expansion in dielectric contrast recasts the resulting Lifshitz energy into a sum of the different many-body contributions. The limit of validity and convergence properties of themore » perturbation theory is discussed using the example of parallel semi-infinite objects for which the exact result is known.« less

  5. Adapting SAFT-γ perturbation theory to site-based molecular dynamics simulation. II. Confined fluids and vapor-liquid interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghobadi, Ahmadreza F.; Elliott, J. Richard, E-mail: elliot1@uakron.edu

    2014-07-14

    In this work, a new classical density functional theory is developed for group-contribution equations of state (EOS). Details of implementation are demonstrated for the recently-developed SAFT-γ WCA EOS and selective applications are studied for confined fluids and vapor-liquid interfaces. The acronym WCA (Weeks-Chandler-Andersen) refers to the characterization of the reference part of the third-order thermodynamic perturbation theory applied in formulating the EOS. SAFT-γ refers to the particular form of “statistical associating fluid theory” that is applied to the fused-sphere, heteronuclear, united-atom molecular models of interest. For the monomer term, the modified fundamental measure theory is extended to WCA-spheres. A newmore » chain functional is also introduced for fused and soft heteronuclear chains. The attractive interactions are taken into account by considering the structure of the fluid, thus elevating the theory beyond the mean field approximation. The fluctuations of energy are also included via a non-local third-order perturbation theory. The theory includes resolution of the density profiles of individual groups such as CH{sub 2} and CH{sub 3} and satisfies stoichiometric constraints for the density profiles. New molecular simulations are conducted to demonstrate the accuracy of each Helmholtz free energy contribution in reproducing the microstructure of inhomogeneous systems at the united-atom level of coarse graining. At each stage, comparisons are made to assess where the present theory stands relative to the current state of the art for studying inhomogeneous fluids. Overall, it is shown that the characteristic features of real molecular fluids are captured both qualitatively and quantitatively. For example, the average pore density deviates ∼2% from simulation data for attractive pentadecane in a 2-nm slit pore. Another example is the surface tension of ethane/heptane mixture, which deviates ∼1% from simulation data while the

  6. The two and three-loop matter bispectrum in perturbation theories

    NASA Astrophysics Data System (ADS)

    Lazanu, Andrei; Liguori, Michele

    2018-04-01

    We evaluate for the first time the dark matter bispectrum of large-scale structure at two loops in the Standard Perturbation Theory and at three loops in the Renormalised Perturbation Theory (MPTBREEZE formalism), removing in each case the leading divergences in the integrals in order to make them infrared-safe. We show that the Standard Perturbation Theory at two loops can be employed to model the matter bispectrum further into the quasi-nonlinear regime compared to the one loop, up to kmax ~ 0.1 h/Mpc at z = 0, but without reaching a high level of accuracy. In the case of the MPTBREEZE method, we show that its bispectra decay at smaller and smaller scales with increasing loop order, but with smaller improvements decreases with loop order. At three loops, this model predicts the bispectrum accurately up to scales kmax ~ 0.17 h/Mpc at z = 0 and kmax ~ 0.24 h/Mpc at z = 1.

  7. Algebraic perturbation theory for dense liquids with discrete potentials

    NASA Astrophysics Data System (ADS)

    Adib, Artur B.

    2007-06-01

    A simple theory for the leading-order correction g1(r) to the structure of a hard-sphere liquid with discrete (e.g., square-well) potential perturbations is proposed. The theory makes use of a general approximation that effectively eliminates four-particle correlations from g1(r) with good accuracy at high densities. For the particular case of discrete perturbations, the remaining three-particle correlations can be modeled with a simple volume-exclusion argument, resulting in an algebraic and surprisingly accurate expression for g1(r) . The structure of a discrete “core-softened” model for liquids with anomalous thermodynamic properties is reproduced as an application.

  8. Driven similarity renormalization group: Third-order multireference perturbation theory.

    PubMed

    Li, Chenyang; Evangelista, Francesco A

    2017-03-28

    A third-order multireference perturbation theory based on the driven similarity renormalization group (DSRG-MRPT3) approach is presented. The DSRG-MRPT3 method has several appealing features: (a) it is intruder free, (b) it is size consistent, (c) it leads to a non-iterative algorithm with O(N 6 ) scaling, and (d) it includes reference relaxation effects. The DSRG-MRPT3 scheme is benchmarked on the potential energy curves of F 2 , H 2 O 2 , C 2 H 6 , and N 2 along the F-F, O-O, C-C, and N-N bond dissociation coordinates, respectively. The nonparallelism errors of DSRG-MRPT3 are consistent with those of complete active space third-order perturbation theory and multireference configuration interaction with singles and doubles and show significant improvements over those obtained from DSRG second-order multireference perturbation theory. Our efficient implementation of the DSRG-MRPT3 based on factorized electron repulsion integrals enables studies of medium-sized open-shell organic compounds. This point is demonstrated with computations of the singlet-triplet splitting (Δ ST =E T -E S ) of 9,10-anthracyne. At the DSRG-MRPT3 level of theory, our best estimate of the adiabatic Δ ST is 3.9 kcal mol -1 , a value that is within 0.1 kcal mol -1 from multireference coupled cluster results.

  9. NLO perturbativity bounds on quartic couplings in renormalizable theories with Φ 4 -like scalar sectors

    DOE PAGES

    Murphy, Christopher W.

    2017-08-17

    The apparent breakdown of unitarity in low order perturbation theory is often is used to place bounds on the parameters of a theory. In this work we give an algorithm for approximately computing the next-to-leading order (NLO) perturbativity bounds on the quartic couplings of a renormalizable theory whose scalar sector is Φ 4 -like. And by this we mean theories where either there are no cubic scalar interactions, or the cubic couplings are related to the quartic couplings through spontaneous symmetry breaking. Furthermore, the quantity that tests where perturbation theory breaks down itself can be written as a perturbative series,more » and having the NLO terms allows one to test how well the series converges. We also present a simple example to illustrate the effect of considering these bounds at different orders in perturbation theory. For example, there is a noticeable difference in the viable parameter when the square of the NLO piece is included versus when it is not.« less

  10. ADAPTATION AND GENERALIZATION TO OPPOSING PERTURBATIONS IN WALKING

    PubMed Central

    Bhatt, T.; Wang, T.-Y.; Yang, F.; Pai, Y.-C.

    2013-01-01

    Little is known on how the CNS would select its movement options when a person faces a novel or recurring perturbation of two opposing types (slip or trip) while walking. The purposes of this study were (1) to determine whether young adults’ adaptation to repeated slips would interfere with their recovery from a novel trip, and (2) to investigate the generalized strategies after they were exposed to a mixed training with both types of perturbation. Thirty-two young adults were assigned to either the training group, which first underwent repeated-slip training before encountering a novel, unannounced trip while walking, or to the control group, which only experienced the same novel, unannounced trip. The former group would then experience a mix of repeated trips and slips. The results indicated that prior adaptation to slips had only limited interference during the initial phase of trip recovery. In fact, the prior repeated-slip exposure had primed their reaction, which mitigated any error resulting from early interference. As a result, they did not have to take a longer compensatory step for trip recovery than did the controls. After the mixed training, subjects were able to converge effectively the motion state of their center of mass (in its position and velocity space) to a stable and generalized “middle ground” steady-state. Such movement strategies not only further strengthened their robust reactive control of stability, but also reduced the CNS’ overall reliance on accurate context prediction and on feedback correction of perturbation-induced movement error. PMID:23603517

  11. Effective gravitational couplings for cosmological perturbations in generalized Proca theories

    NASA Astrophysics Data System (ADS)

    De Felice, Antonio; Heisenberg, Lavinia; Kase, Ryotaro; Mukohyama, Shinji; Tsujikawa, Shinji; Zhang, Ying-li

    2016-08-01

    We consider the finite interactions of the generalized Proca theory including the sixth-order Lagrangian and derive the full linear perturbation equations of motion on the flat Friedmann-Lemaître-Robertson-Walker background in the presence of a matter perfect fluid. By construction, the propagating degrees of freedom (besides the matter perfect fluid) are two transverse vector perturbations, one longitudinal scalar, and two tensor polarizations. The Lagrangians associated with intrinsic vector modes neither affect the background equations of motion nor the second-order action of tensor perturbations, but they do give rise to nontrivial modifications to the no-ghost condition of vector perturbations and to the propagation speeds of vector and scalar perturbations. We derive the effective gravitational coupling Geff with matter density perturbations under a quasistatic approximation on scales deep inside the sound horizon. We find that the existence of intrinsic vector modes allows a possibility for reducing Geff. In fact, within the parameter space, Geff can be even smaller than the Newton gravitational constant G at the late cosmological epoch, with a peculiar phantom dark energy equation of state (without ghosts). The modifications to the slip parameter η and the evolution of the growth rate f σ8 are discussed as well. Thus, dark energy models in the framework of generalized Proca theories can be observationally distinguished from the Λ CDM model according to both cosmic growth and expansion history. Furthermore, we study the evolution of vector perturbations and show that outside the vector sound horizon the perturbations are nearly frozen and start to decay with oscillations after the horizon entry.

  12. A study of perturbations in scalar-tensor theory using 1 + 3 covariant approach

    NASA Astrophysics Data System (ADS)

    Ntahompagaze, Joseph; Abebe, Amare; Mbonye, Manasse

    This work discusses scalar-tensor theories of gravity, with a focus on the Brans-Dicke sub-class, and one that also takes note of the latter’s equivalence with f(R) gravitation theories. A 1 + 3 covariant formalism is used in this case to discuss covariant perturbations on a background Friedmann-Laimaître-Robertson-Walker (FLRW) spacetime. Linear perturbation equations are developed based on gauge-invariant gradient variables. Both scalar and harmonic decompositions are applied to obtain second-order equations. These equations can then be used for further analysis of the behavior of the perturbation quantities in such a scalar-tensor theory of gravitation. Energy density perturbations are studied for two systems, namely for a scalar fluid-radiation system and for a scalar fluid-dust system, for Rn models. For the matter-dominated era, it is shown that the dust energy density perturbations grow exponentially, a result which agrees with those already existing in the literatures. In the radiation-dominated era, it is found that the behavior of the radiation energy-density perturbations is oscillatory, with growing amplitudes for n > 1, and with decaying amplitudes for 0 < n < 1. This is a new result.

  13. Hard sphere perturbation theory for fluids with soft-repulsive-core potentials

    NASA Astrophysics Data System (ADS)

    Ben-Amotz, Dor; Stell, George

    2004-03-01

    The thermodynamic properties of fluids with very soft repulsive-core potentials, resembling those of some liquid metals, are predicted with unprecedented accuracy using a new first-order thermodynamic perturbation theory. This theory is an extension of Mansoori-Canfield/Rasaiah-Stell (MCRS) perturbation theory, obtained by including a configuration integral correction recently identified by Mon, who evaluated it by computer simulation. In this work we derive an analytic expression for Mon's correction in terms of the radial distribution function of the soft-core fluid, g0(r), approximated using Lado's self-consistent extension of Weeks-Chandler-Andersen (WCA) theory. Comparisons with WCA and MCRS predictions show that our new extended-MCRS theory outperforms other first-order theories when applied to fluids with very soft inverse-power potentials (n⩽6), and predicts free energies that are within 0.3kT of simulation results up to the fluid freezing point.

  14. SMD-based numerical stochastic perturbation theory

    NASA Astrophysics Data System (ADS)

    Dalla Brida, Mattia; Lüscher, Martin

    2017-05-01

    The viability of a variant of numerical stochastic perturbation theory, where the Langevin equation is replaced by the SMD algorithm, is examined. In particular, the convergence of the process to a unique stationary state is rigorously established and the use of higher-order symplectic integration schemes is shown to be highly profitable in this context. For illustration, the gradient-flow coupling in finite volume with Schrödinger functional boundary conditions is computed to two-loop (i.e. NNL) order in the SU(3) gauge theory. The scaling behaviour of the algorithm turns out to be rather favourable in this case, which allows the computations to be driven close to the continuum limit.

  15. Advanced Small Perturbation Potential Flow Theory for Unsteady Aerodynamic and Aeroelastic Analyses

    NASA Technical Reports Server (NTRS)

    Batina, John T.

    2005-01-01

    An advanced small perturbation (ASP) potential flow theory has been developed to improve upon the classical transonic small perturbation (TSP) theories that have been used in various computer codes. These computer codes are typically used for unsteady aerodynamic and aeroelastic analyses in the nonlinear transonic flight regime. The codes exploit the simplicity of stationary Cartesian meshes with the movement or deformation of the configuration under consideration incorporated into the solution algorithm through a planar surface boundary condition. The new ASP theory was developed methodically by first determining the essential elements required to produce full-potential-like solutions with a small perturbation approach on the requisite Cartesian grid. This level of accuracy required a higher-order streamwise mass flux and a mass conserving surface boundary condition. The ASP theory was further developed by determining the essential elements required to produce results that agreed well with Euler solutions. This level of accuracy required mass conserving entropy and vorticity effects, and second-order terms in the trailing wake boundary condition. Finally, an integral boundary layer procedure, applicable to both attached and shock-induced separated flows, was incorporated for viscous effects. The resulting ASP potential flow theory, including entropy, vorticity, and viscous effects, is shown to be mathematically more appropriate and computationally more accurate than the classical TSP theories. The formulaic details of the ASP theory are described fully and the improvements are demonstrated through careful comparisons with accepted alternative results and experimental data. The new theory has been used as the basis for a new computer code called ASP3D (Advanced Small Perturbation - 3D), which also is briefly described with representative results.

  16. Changes in Purkinje cell simple spike encoding of reach kinematics during adaption to a mechanical perturbation.

    PubMed

    Hewitt, Angela L; Popa, Laurentiu S; Ebner, Timothy J

    2015-01-21

    The cerebellum is essential in motor learning. At the cellular level, changes occur in both the simple spike and complex spike firing of Purkinje cells. Because simple spike discharge reflects the main output of the cerebellar cortex, changes in simple spike firing likely reflect the contribution of the cerebellum to the adapted behavior. Therefore, we investigated in Rhesus monkeys how the representation of arm kinematics in Purkinje cell simple spike discharge changed during adaptation to mechanical perturbations of reach movements. Monkeys rapidly adapted to a novel assistive or resistive perturbation along the direction of the reach. Adaptation consisted of matching the amplitude and timing of the perturbation to minimize its effect on the reach. In a majority of Purkinje cells, simple spike firing recorded before and during adaptation demonstrated significant changes in position, velocity, and acceleration sensitivity. The timing of the simple spike representations change within individual cells, including shifts in predictive versus feedback signals. At the population level, feedback-based encoding of position increases early in learning and velocity decreases. Both timing changes reverse later in learning. The complex spike discharge was only weakly modulated by the perturbations, demonstrating that the changes in simple spike firing can be independent of climbing fiber input. In summary, we observed extensive alterations in individual Purkinje cell encoding of reach kinematics, although the movements were nearly identical in the baseline and adapted states. Therefore, adaption to mechanical perturbation of a reaching movement is accompanied by widespread modifications in the simple spike encoding. Copyright © 2015 the authors 0270-6474/15/351106-19$15.00/0.

  17. Changes in Purkinje Cell Simple Spike Encoding of Reach Kinematics during Adaption to a Mechanical Perturbation

    PubMed Central

    Hewitt, Angela L.; Popa, Laurentiu S.

    2015-01-01

    The cerebellum is essential in motor learning. At the cellular level, changes occur in both the simple spike and complex spike firing of Purkinje cells. Because simple spike discharge reflects the main output of the cerebellar cortex, changes in simple spike firing likely reflect the contribution of the cerebellum to the adapted behavior. Therefore, we investigated in Rhesus monkeys how the representation of arm kinematics in Purkinje cell simple spike discharge changed during adaptation to mechanical perturbations of reach movements. Monkeys rapidly adapted to a novel assistive or resistive perturbation along the direction of the reach. Adaptation consisted of matching the amplitude and timing of the perturbation to minimize its effect on the reach. In a majority of Purkinje cells, simple spike firing recorded before and during adaptation demonstrated significant changes in position, velocity, and acceleration sensitivity. The timing of the simple spike representations change within individual cells, including shifts in predictive versus feedback signals. At the population level, feedback-based encoding of position increases early in learning and velocity decreases. Both timing changes reverse later in learning. The complex spike discharge was only weakly modulated by the perturbations, demonstrating that the changes in simple spike firing can be independent of climbing fiber input. In summary, we observed extensive alterations in individual Purkinje cell encoding of reach kinematics, although the movements were nearly identical in the baseline and adapted states. Therefore, adaption to mechanical perturbation of a reaching movement is accompanied by widespread modifications in the simple spike encoding. PMID:25609626

  18. Multireference second order perturbation theory with a simplified treatment of dynamical correlation.

    PubMed

    Xu, Enhua; Zhao, Dongbo; Li, Shuhua

    2015-10-13

    A multireference second order perturbation theory based on a complete active space configuration interaction (CASCI) function or density matrix renormalized group (DMRG) function has been proposed. This method may be considered as an approximation to the CAS/A approach with the same reference, in which the dynamical correlation is simplified with blocked correlated second order perturbation theory based on the generalized valence bond (GVB) reference (GVB-BCPT2). This method, denoted as CASCI-BCPT2/GVB or DMRG-BCPT2/GVB, is size consistent and has a similar computational cost as the conventional second order perturbation theory (MP2). We have applied it to investigate a number of problems of chemical interest. These problems include bond-breaking potential energy surfaces in four molecules, the spectroscopic constants of six diatomic molecules, the reaction barrier for the automerization of cyclobutadiene, and the energy difference between the monocyclic and bicyclic forms of 2,6-pyridyne. Our test applications demonstrate that CASCI-BCPT2/GVB can provide comparable results with CASPT2 (second order perturbation theory based on the complete active space self-consistent-field wave function) for systems under study. Furthermore, the DMRG-BCPT2/GVB method is applicable to treat strongly correlated systems with large active spaces, which are beyond the capability of CASPT2.

  19. Hard-thermal-loop perturbation theory to two loops

    NASA Astrophysics Data System (ADS)

    Andersen, Jens O.; Braaten, Eric; Petitgirard, Emmanuel; Strickland, Michael

    2002-10-01

    We calculate the pressure for pure-glue QCD at high temperature to two-loop order using hard-thermal-loop (HTL) perturbation theory. At this order, all the ultraviolet divergences can be absorbed into renormalizations of the vacuum energy density and the HTL mass parameter. We determine the HTL mass parameter by a variational prescription. The resulting predictions for the pressure fail to agree with results from lattice gauge theory at temperatures for which they are available.

  20. Spectral and scattering theory for Schrödinger operators on perturbed topological crystals

    NASA Astrophysics Data System (ADS)

    Parra, D.; Richard, S.

    In this paper, we investigate the spectral and the scattering theory of Schrödinger operators acting on perturbed periodic discrete graphs. The perturbations considered are of two types: either a multiplication operator by a short-range or a long-range function, or a short-range type modification of the measure defined on the vertices and on the edges of the graph. Mourre theory is used for describing the nature of the spectrum of the underlying operators. For short-range perturbations, existence and asymptotic completeness of local wave operators are also proved.

  1. Spatial assignment of symmetry adapted perturbation theory interaction energy components: The atomic SAPT partition

    NASA Astrophysics Data System (ADS)

    Parrish, Robert M.; Sherrill, C. David

    2014-07-01

    We develop a physically-motivated assignment of symmetry adapted perturbation theory for intermolecular interactions (SAPT) into atom-pairwise contributions (the A-SAPT partition). The basic precept of A-SAPT is that the many-body interaction energy components are computed normally under the formalism of SAPT, following which a spatially-localized two-body quasiparticle interaction is extracted from the many-body interaction terms. For electrostatics and induction source terms, the relevant quasiparticles are atoms, which are obtained in this work through the iterative stockholder analysis (ISA) procedure. For the exchange, induction response, and dispersion terms, the relevant quasiparticles are local occupied orbitals, which are obtained in this work through the Pipek-Mezey procedure. The local orbital atomic charges obtained from ISA additionally allow the terms involving local orbitals to be assigned in an atom-pairwise manner. Further summation over the atoms of one or the other monomer allows for a chemically intuitive visualization of the contribution of each atom and interaction component to the overall noncovalent interaction strength. Herein, we present the intuitive development and mathematical form for A-SAPT applied in the SAPT0 approximation (the A-SAPT0 partition). We also provide an efficient series of algorithms for the computation of the A-SAPT0 partition with essentially the same computational cost as the corresponding SAPT0 decomposition. We probe the sensitivity of the A-SAPT0 partition to the ISA grid and convergence parameter, orbital localization metric, and induction coupling treatment, and recommend a set of practical choices which closes the definition of the A-SAPT0 partition. We demonstrate the utility and computational tractability of the A-SAPT0 partition in the context of side-on cation-π interactions and the intercalation of DNA by proflavine. A-SAPT0 clearly shows the key processes in these complicated noncovalent interactions, in

  2. Spatial assignment of symmetry adapted perturbation theory interaction energy components: The atomic SAPT partition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parrish, Robert M.; Sherrill, C. David, E-mail: sherrill@gatech.edu

    2014-07-28

    We develop a physically-motivated assignment of symmetry adapted perturbation theory for intermolecular interactions (SAPT) into atom-pairwise contributions (the A-SAPT partition). The basic precept of A-SAPT is that the many-body interaction energy components are computed normally under the formalism of SAPT, following which a spatially-localized two-body quasiparticle interaction is extracted from the many-body interaction terms. For electrostatics and induction source terms, the relevant quasiparticles are atoms, which are obtained in this work through the iterative stockholder analysis (ISA) procedure. For the exchange, induction response, and dispersion terms, the relevant quasiparticles are local occupied orbitals, which are obtained in this work throughmore » the Pipek-Mezey procedure. The local orbital atomic charges obtained from ISA additionally allow the terms involving local orbitals to be assigned in an atom-pairwise manner. Further summation over the atoms of one or the other monomer allows for a chemically intuitive visualization of the contribution of each atom and interaction component to the overall noncovalent interaction strength. Herein, we present the intuitive development and mathematical form for A-SAPT applied in the SAPT0 approximation (the A-SAPT0 partition). We also provide an efficient series of algorithms for the computation of the A-SAPT0 partition with essentially the same computational cost as the corresponding SAPT0 decomposition. We probe the sensitivity of the A-SAPT0 partition to the ISA grid and convergence parameter, orbital localization metric, and induction coupling treatment, and recommend a set of practical choices which closes the definition of the A-SAPT0 partition. We demonstrate the utility and computational tractability of the A-SAPT0 partition in the context of side-on cation-π interactions and the intercalation of DNA by proflavine. A-SAPT0 clearly shows the key processes in these complicated noncovalent

  3. Multi-Level Adaptive Techniques (MLAT) for singular-perturbation problems

    NASA Technical Reports Server (NTRS)

    Brandt, A.

    1978-01-01

    The multilevel (multigrid) adaptive technique, a general strategy of solving continuous problems by cycling between coarser and finer levels of discretization is described. It provides very fast general solvers, together with adaptive, nearly optimal discretization schemes. In the process, boundary layers are automatically either resolved or skipped, depending on a control function which expresses the computational goal. The global error decreases exponentially as a function of the overall computational work, in a uniform rate independent of the magnitude of the singular-perturbation terms. The key is high-order uniformly stable difference equations, and uniformly smoothing relaxation schemes.

  4. How to make thermodynamic perturbation theory to be suitable for low temperature?

    NASA Astrophysics Data System (ADS)

    Zhou, Shiqi

    2009-02-01

    Low temperature unsuitability is a problem plaguing thermodynamic perturbation theory (TPT) for years. Present investigation indicates that the low temperature predicament can be overcome by employing as reference system a nonhard sphere potential which incorporates one part of the attractive ingredient in a potential function of interest. In combination with a recently proposed TPT [S. Zhou, J. Chem. Phys. 125, 144518 (2006)] based on a λ expansion (λ being coupling parameter), the new perturbation strategy is employed to predict for several model potentials. It is shown that the new perturbation strategy can very accurately predict various thermodynamic properties even if the potential range is extremely short and hence the temperature of interest is very low and current theoretical formalisms seriously deteriorate or critically fail to predict even the existence of the critical point. Extensive comparison with existing liquid state theories and available computer simulation data discloses a superiority of the present TPT to two Ornstein-Zernike-type integral equation theories, i.e., hierarchical reference theory and self-consistent Ornstein-Zernike approximation.

  5. Keldysh meets Lindblad: Correlated Gain and Loss in Higher Order Perturbation Theory

    NASA Astrophysics Data System (ADS)

    Stace, Tom; Mueller, Clemens

    Motivated by correlated decay processes driving gain, loss and lasing in driven artificial quantum systems, we develop a theoretical technique using Keldysh diagrammatic perturbation theory to derive a Lindblad master equation that goes beyond the usual second order perturbation theory. We demonstrate the method on the driven dissipative Rabi model, including terms up to fourth order in the interaction between the qubit and both the resonator and environment. This results in a large class of Lindblad dissipators and associated rates which go beyond the terms that have previously been proposed to describe similar systems. All of the additional terms contribute to the system behaviour at the same order of perturbation theory. We then apply these results to analyse the phonon-assisted steady-state gain of a microwave field driving a double quantum-dot in a resonator. We show that resonator gain and loss are substantially affected by dephasing- assisted dissipative processes in the quantum-dot system. These additional processes, which go beyond recently proposed polaronic theories, are in good quantitative agreement with experimental observations.

  6. How to make thermodynamic perturbation theory to be suitable for low temperature?

    PubMed

    Zhou, Shiqi

    2009-02-07

    Low temperature unsuitability is a problem plaguing thermodynamic perturbation theory (TPT) for years. Present investigation indicates that the low temperature predicament can be overcome by employing as reference system a nonhard sphere potential which incorporates one part of the attractive ingredient in a potential function of interest. In combination with a recently proposed TPT [S. Zhou, J. Chem. Phys. 125, 144518 (2006)] based on a lambda expansion (lambda being coupling parameter), the new perturbation strategy is employed to predict for several model potentials. It is shown that the new perturbation strategy can very accurately predict various thermodynamic properties even if the potential range is extremely short and hence the temperature of interest is very low and current theoretical formalisms seriously deteriorate or critically fail to predict even the existence of the critical point. Extensive comparison with existing liquid state theories and available computer simulation data discloses a superiority of the present TPT to two Ornstein-Zernike-type integral equation theories, i.e., hierarchical reference theory and self-consistent Ornstein-Zernike approximation.

  7. Development of New Open-Shell Perturbation and Coupled-Cluster Theories Based on Symmetric Spin Orbitals

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Arnold, James O. (Technical Monitor)

    1994-01-01

    A new spin orbital basis is employed in the development of efficient open-shell coupled-cluster and perturbation theories that are based on a restricted Hartree-Fock (RHF) reference function. The spin orbital basis differs from the standard one in the spin functions that are associated with the singly occupied spatial orbital. The occupied orbital (in the spin orbital basis) is assigned the delta(+) = 1/square root of 2(alpha+Beta) spin function while the unoccupied orbital is assigned the delta(-) = 1/square root of 2(alpha-Beta) spin function. The doubly occupied and unoccupied orbitals (in the reference function) are assigned the standard alpha and Beta spin functions. The coupled-cluster and perturbation theory wave functions based on this set of "symmetric spin orbitals" exhibit much more symmetry than those based on the standard spin orbital basis. This, together with interacting space arguments, leads to a dramatic reduction in the computational cost for both coupled-cluster and perturbation theory. Additionally, perturbation theory based on "symmetric spin orbitals" obeys Brillouin's theorem provided that spin and spatial excitations are both considered. Other properties of the coupled-cluster and perturbation theory wave functions and models will be discussed.

  8. Smeared quasidistributions in perturbation theory

    NASA Astrophysics Data System (ADS)

    Monahan, Christopher

    2018-03-01

    Quasi- and pseudodistributions provide a new approach to determining parton distribution functions from first principles' calculations of QCD. Here, I calculate the flavor nonsinglet unpolarized quasidistribution at one loop in perturbation theory, using the gradient flow to remove ultraviolet divergences. I demonstrate that, as expected, the gradient flow does not change the infrared structure of the quasidistribution at one loop and use the results to match the smeared matrix elements to those in the MS ¯ scheme. This matching calculation is required to relate numerical results obtained from nonperturbative lattice QCD computations to light-front parton distribution functions extracted from global analyses of experimental data.

  9. A critical evaluation of perturbation theories by Monte Carlo simulation of the first four perturbation terms in a Helmholtz energy expansion for the Lennard-Jones fluid

    NASA Astrophysics Data System (ADS)

    van Westen, Thijs; Gross, Joachim

    2017-07-01

    The Helmholtz energy of a fluid interacting by a Lennard-Jones pair potential is expanded in a perturbation series. Both the methods of Barker-Henderson (BH) and of Weeks-Chandler-Andersen (WCA) are evaluated for the division of the intermolecular potential into reference and perturbation parts. The first four perturbation terms are evaluated for various densities and temperatures (in the ranges ρ*=0 -1.5 and T*=0.5 -12 ) using Monte Carlo simulations in the canonical ensemble. The simulation results are used to test several approximate theoretical methods for describing perturbation terms or for developing an approximate infinite order perturbation series. Additionally, the simulations serve as a basis for developing fully analytical third order BH and WCA perturbation theories. The development of analytical theories allows (1) a careful comparison between the BH and WCA formalisms, and (2) a systematic examination of the effect of higher-order perturbation terms on calculated thermodynamic properties of fluids. Properties included in the comparison are supercritical thermodynamic properties (pressure, internal energy, and chemical potential), vapor-liquid phase equilibria, second virial coefficients, and heat capacities. For all properties studied, we find a systematically improved description upon using a higher-order perturbation theory. A result of particular relevance is that a third order perturbation theory is capable of providing a quantitative description of second virial coefficients to temperatures as low as the triple-point of the Lennard-Jones fluid. We find no reason to prefer the WCA formalism over the BH formalism.

  10. Interplay between tetrel and triel bonds in RC6H4CN⋯MF3CN⋯BX3 complexes: A combined symmetry-adapted perturbation theory, Møller-Plesset, and quantum theory of atoms-in-molecules study.

    PubMed

    Yourdkhani, Sirous; Korona, Tatiana; Hadipour, Nasser L

    2015-12-15

    Intermolecular ternary complexes composed of: (1) the centrally placed trifluoroacetonitrile or its higher analogs with central carbon exchanged by silicon or germanium (M = C, Si, Ge), (2) the benzonitrile molecule or its para derivatives on one side, and (3) the boron trifluoride of trichloride molecule (X = F, Cl) on the opposite side as well as the corresponding intermolecular tetrel- and triel-bonded binary complexes, were investigated by symmetry-adapted perturbation theory (SAPT) and the supermolecular Møller-Plesset method (MP2) at the complete basis set limit for optimized geometries. A character of interactions was studied by quantum theory of atoms-in-molecules (QTAIM). A comparison of interaction energies and QTAIM bond descriptors for dimers and trimers reveals that tetrel and triel bonds increase in their strength if present together in the trimer. For the triel-bonded complex, this growth leads to a change of the bond character from closed-shell to partly covalent for Si or Ge tetrel atoms, so the resulting bonding scheme corresponds to a preliminary stage of the SN2 reaction. Limitations of the Lewis theory of acids and bases were shown by its failure in predicting the stability order of the triel complexes. The necessity of including interaction energy terms beyond the electrostatic component for an elucidation of the nature of σ- and π-holes was presented by a SAPT energy decomposition and by a study of differences in monomer electrostatic potentials obtained either from isolated monomer densities, or from densities resulting from a perturbation with the effective field of another monomer. © 2015 Wiley Periodicals, Inc.

  11. Formation tracker design of multiple mobile robots with wheel perturbations: adaptive output-feedback approach

    NASA Astrophysics Data System (ADS)

    Yoo, Sung Jin

    2016-11-01

    This paper presents a theoretical design approach for output-feedback formation tracking of multiple mobile robots under wheel perturbations. It is assumed that these perturbations are unknown and the linear and angular velocities of the robots are unmeasurable. First, adaptive state observers for estimating unmeasurable velocities of the robots are developed under the robots' kinematics and dynamics including wheel perturbation effects. Then, we derive a virtual-structure-based formation tracker scheme according to the observer dynamic surface design procedure. The main difficulty of the output-feedback control design is to manage the coupling problems between unmeasurable velocities and unknown wheel perturbation effects. These problems are avoided by using the adaptive technique and the function approximation property based on fuzzy logic systems. From the Lyapunov stability analysis, it is shown that point tracking errors of each robot and synchronisation errors for the desired formation converge to an adjustable neighbourhood of the origin, while all signals in the controlled closed-loop system are semiglobally uniformly ultimately bounded.

  12. Theoretical investigation of cyromazine tautomerism using density functional theory and Møller–Plesset perturbation theory methods

    USDA-ARS?s Scientific Manuscript database

    A computational chemistry analysis of six unique tautomers of cyromazine, a pesticide used for fly control, was performed with density functional theory (DFT) and canonical second order Møller–Plesset perturbation theory (MP2) methods to gain insight into the contributions of molecular structure to ...

  13. Formation of model-free motor memories during motor adaptation depends on perturbation schedule

    PubMed Central

    Lefèvre, Philippe

    2015-01-01

    Motor adaptation to an external perturbation relies on several mechanisms such as model-based, model-free, strategic, or repetition-dependent learning. Depending on the experimental conditions, each of these mechanisms has more or less weight in the final adaptation state. Here we focused on the conditions that lead to the formation of a model-free motor memory (Huang VS, Haith AM, Mazzoni P, Krakauer JW. Neuron 70: 787–801, 2011), i.e., a memory that does not depend on an internal model or on the size or direction of the errors experienced during the learning. The formation of such model-free motor memory was hypothesized to depend on the schedule of the perturbation (Orban de Xivry JJ, Ahmadi-Pajouh MA, Harran MD, Salimpour Y, Shadmehr R. J Neurophysiol 109: 124–136, 2013). Here we built on this observation by directly testing the nature of the motor memory after abrupt or gradual introduction of a visuomotor rotation, in an experimental paradigm where the presence of model-free motor memory can be identified (Huang VS, Haith AM, Mazzoni P, Krakauer JW. Neuron 70: 787–801, 2011). We found that relearning was faster after abrupt than gradual perturbation, which suggests that model-free learning is reduced during gradual adaptation to a visuomotor rotation. In addition, the presence of savings after abrupt introduction of the perturbation but gradual extinction of the motor memory suggests that unexpected errors are necessary to induce a model-free motor memory. Overall, these data support the hypothesis that different perturbation schedules do not lead to a more or less stabilized motor memory but to distinct motor memories with different attributes and neural representations. PMID:25673736

  14. Adaptive strategies of remote systems operators exposed to perturbed camera-viewing conditions

    NASA Technical Reports Server (NTRS)

    Stuart, Mark A.; Manahan, Meera K.; Bierschwale, John M.; Sampaio, Carlos E.; Legendre, A. J.

    1991-01-01

    This report describes a preliminary investigation of the use of perturbed visual feedback during the performance of simulated space-based remote manipulation tasks. The primary objective of this NASA evaluation was to determine to what extent operators exhibit adaptive strategies which allow them to perform these specific types of remote manipulation tasks more efficiently while exposed to perturbed visual feedback. A secondary objective of this evaluation was to establish a set of preliminary guidelines for enhancing remote manipulation performance and reducing the adverse effects. These objectives were accomplished by studying the remote manipulator performance of test subjects exposed to various perturbed camera-viewing conditions while performing a simulated space-based remote manipulation task. Statistical analysis of performance and subjective data revealed that remote manipulation performance was adversely affected by the use of perturbed visual feedback and performance tended to improve with successive trials in most perturbed viewing conditions.

  15. Adiabatic perturbation theory of electronic stopping in insulators

    DOE PAGES

    Horsfield, Andrew P.; Lim, Anthony; Foulkes, W. M. C.; ...

    2016-06-02

    A model able to explain the complicated structure of electronic stopping at low velocities in insulating materials is presented. It is shown to be in good agreement with results obtained from time-dependent density-functional theory for the stopping of a channeling Si atom in a Si crystal. If we define the repeat frequency f=v/λ, where λ is the periodic repeat length of the crystal along the direction the channeling atom is traveling, and v is the velocity of the channeling atom, we find that electrons experience a perturbing force that varies in time at integer multiples l of f. This enablesmore » electronic excitations at low atom velocity, but their contributions diminish rapidly with increasing values of l. The expressions for stopping power are derived using adiabatic perturbation theory for many-electron systems, and they are then specialized to the case of independent electrons. Lastly, a simple model for the nonadiabatic matrix elements is described, along with the procedure for determining its parameters.« less

  16. Healthy imperfect dark matter from effective theory of mimetic cosmological perturbations

    NASA Astrophysics Data System (ADS)

    Hirano, Shin'ichi; Nishi, Sakine; Kobayashi, Tsutomu

    2017-07-01

    We study the stability of a recently proposed model of scalar-field matter called mimetic dark matter or imperfect dark matter. It has been known that mimetic matter with higher derivative terms suffers from gradient instabilities in scalar perturbations. To seek for an instability-free extension of imperfect dark matter, we develop an effective theory of cosmological perturbations subject to the constraint on the scalar field's kinetic term. This is done by using the unifying framework of general scalar-tensor theories based on the ADM formalism. We demonstrate that it is indeed possible to construct a model of imperfect dark matter which is free from ghost and gradient instabilities. As a side remark, we also show that mimetic F(Script R) theory is plagued with the Ostrogradsky instability.

  17. Determination of the QCD Λ Parameter and the Accuracy of Perturbation Theory at High Energies.

    PubMed

    Dalla Brida, Mattia; Fritzsch, Patrick; Korzec, Tomasz; Ramos, Alberto; Sint, Stefan; Sommer, Rainer

    2016-10-28

    We discuss the determination of the strong coupling α_{MS[over ¯]}(m_{Z}) or, equivalently, the QCD Λ parameter. Its determination requires the use of perturbation theory in α_{s}(μ) in some scheme s and at some energy scale μ. The higher the scale μ, the more accurate perturbation theory becomes, owing to asymptotic freedom. As one step in our computation of the Λ parameter in three-flavor QCD, we perform lattice computations in a scheme that allows us to nonperturbatively reach very high energies, corresponding to α_{s}=0.1 and below. We find that (continuum) perturbation theory is very accurate there, yielding a 3% error in the Λ parameter, while data around α_{s}≈0.2 are clearly insufficient to quote such a precision. It is important to realize that these findings are expected to be generic, as our scheme has advantageous properties regarding the applicability of perturbation theory.

  18. Perturbative quantum field theory in the framework of the fermionic projector

    NASA Astrophysics Data System (ADS)

    Finster, Felix

    2014-04-01

    We give a microscopic derivation of perturbative quantum field theory, taking causal fermion systems and the framework of the fermionic projector as the starting point. The resulting quantum field theory agrees with standard quantum field theory on the tree level and reproduces all bosonic loop diagrams. The fermion loops are described in a different formalism in which no ultraviolet divergences occur.

  19. Borel Summability of Perturbative Series in 4D N=2 and 5D N=1 Supersymmetric Theories.

    PubMed

    Honda, Masazumi

    2016-05-27

    We study weak coupling perturbative series in 4D N=2 and 5D N=1 supersymmetric gauge theories with Lagrangians. We prove that the perturbative series of these theories in the zero-instanton sector are Borel summable for various observables. Our result for the 4D N=2 case supports an expectation from a recent proposal on a semiclassical realization of infrared renormalons in QCD-like theories, where the semiclassical solution does not exist in N=2 theories and the perturbative series are unambiguous, namely, Borel summable. We also prove that the perturbative series in an arbitrary number of instanton sectors are Borel summable for a wide class of theories. It turns out that exact results can be obtained by summing over the Borel resummations with every instanton number.

  20. Formation of model-free motor memories during motor adaptation depends on perturbation schedule.

    PubMed

    Orban de Xivry, Jean-Jacques; Lefèvre, Philippe

    2015-04-01

    Motor adaptation to an external perturbation relies on several mechanisms such as model-based, model-free, strategic, or repetition-dependent learning. Depending on the experimental conditions, each of these mechanisms has more or less weight in the final adaptation state. Here we focused on the conditions that lead to the formation of a model-free motor memory (Huang VS, Haith AM, Mazzoni P, Krakauer JW. Neuron 70: 787-801, 2011), i.e., a memory that does not depend on an internal model or on the size or direction of the errors experienced during the learning. The formation of such model-free motor memory was hypothesized to depend on the schedule of the perturbation (Orban de Xivry JJ, Ahmadi-Pajouh MA, Harran MD, Salimpour Y, Shadmehr R. J Neurophysiol 109: 124-136, 2013). Here we built on this observation by directly testing the nature of the motor memory after abrupt or gradual introduction of a visuomotor rotation, in an experimental paradigm where the presence of model-free motor memory can be identified (Huang VS, Haith AM, Mazzoni P, Krakauer JW. Neuron 70: 787-801, 2011). We found that relearning was faster after abrupt than gradual perturbation, which suggests that model-free learning is reduced during gradual adaptation to a visuomotor rotation. In addition, the presence of savings after abrupt introduction of the perturbation but gradual extinction of the motor memory suggests that unexpected errors are necessary to induce a model-free motor memory. Overall, these data support the hypothesis that different perturbation schedules do not lead to a more or less stabilized motor memory but to distinct motor memories with different attributes and neural representations. Copyright © 2015 the American Physiological Society.

  1. Driven similarity renormalization group: Third-order multireference perturbation theory

    DOE PAGES

    Li, Chenyang; Evangelista, Francesco A.

    2017-03-28

    Here, a third-order multireference perturbation theory based on the driven similarity renormalization group (DSRG-MRPT3) approach is presented. The DSRG-MRPT3 method has several appealing features: (a) it is intruder free, (b) it is size consistent, (c) it leads to a non-iterative algorithm with O(N 6) scaling, and (d) it includes reference relaxation effects. The DSRG-MRPT3 scheme is benchmarked on the potential energy curves of F 2, H 2O 2, C 2H 6, and N 2 along the F–F, O–O, C–C, and N–N bond dissociation coordinates, respectively. The nonparallelism errors of DSRG-MRPT3 are consistent with those of complete active space third-order perturbationmore » theory and multireference configuration interaction with singles and doubles and show significant improvements over those obtained from DSRG second-order multireference perturbation theory. Our efficient implementation of the DSRG-MRPT3 based on factorized electron repulsion integrals enables studies of medium-sized open-shell organic compounds. This point is demonstrated with computations of the singlet-triplet splitting (Δ ST = E T–E S) of 9,10-anthracyne. At the DSRG-MRPT3 level of theory, our best estimate of the adiabatic Δ ST is 3.9 kcal mol –1, a value that is within 0.1 kcal mol –1 from multireference coupled cluster results.« less

  2. Driven similarity renormalization group: Third-order multireference perturbation theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Chenyang; Evangelista, Francesco A.

    Here, a third-order multireference perturbation theory based on the driven similarity renormalization group (DSRG-MRPT3) approach is presented. The DSRG-MRPT3 method has several appealing features: (a) it is intruder free, (b) it is size consistent, (c) it leads to a non-iterative algorithm with O(N 6) scaling, and (d) it includes reference relaxation effects. The DSRG-MRPT3 scheme is benchmarked on the potential energy curves of F 2, H 2O 2, C 2H 6, and N 2 along the F–F, O–O, C–C, and N–N bond dissociation coordinates, respectively. The nonparallelism errors of DSRG-MRPT3 are consistent with those of complete active space third-order perturbationmore » theory and multireference configuration interaction with singles and doubles and show significant improvements over those obtained from DSRG second-order multireference perturbation theory. Our efficient implementation of the DSRG-MRPT3 based on factorized electron repulsion integrals enables studies of medium-sized open-shell organic compounds. This point is demonstrated with computations of the singlet-triplet splitting (Δ ST = E T–E S) of 9,10-anthracyne. At the DSRG-MRPT3 level of theory, our best estimate of the adiabatic Δ ST is 3.9 kcal mol –1, a value that is within 0.1 kcal mol –1 from multireference coupled cluster results.« less

  3. Apparently noninvariant terms of nonlinear sigma models in lattice perturbation theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harada, Koji; Hattori, Nozomu; Kubo, Hirofumi

    2009-03-15

    Apparently noninvariant terms (ANTs) that appear in loop diagrams for nonlinear sigma models are revisited in lattice perturbation theory. The calculations have been done mostly with dimensional regularization so far. In order to establish that the existence of ANTs is independent of the regularization scheme, and of the potential ambiguities in the definition of the Jacobian of the change of integration variables from group elements to 'pion' fields, we employ lattice regularization, in which everything (including the Jacobian) is well defined. We show explicitly that lattice perturbation theory produces ANTs in the four-point functions of the pion fields at one-loopmore » and the Jacobian does not play an important role in generating ANTs.« less

  4. Alien calculus and non perturbative effects in Quantum Field Theory

    NASA Astrophysics Data System (ADS)

    Bellon, Marc P.

    2016-12-01

    In many domains of physics, methods for dealing with non-perturbative aspects are required. Here, I want to argue that a good approach for this is to work on the Borel transforms of the quantities of interest, the singularities of which give non-perturbative contributions. These singularities in many cases can be largely determined by using the alien calculus developed by Jean Écalle. My main example will be the two point function of a massless theory given as a solution of a renormalization group equation.

  5. Time-sliced perturbation theory for large scale structure I: general formalism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blas, Diego; Garny, Mathias; Sibiryakov, Sergey

    2016-07-01

    We present a new analytic approach to describe large scale structure formation in the mildly non-linear regime. The central object of the method is the time-dependent probability distribution function generating correlators of the cosmological observables at a given moment of time. Expanding the distribution function around the Gaussian weight we formulate a perturbative technique to calculate non-linear corrections to cosmological correlators, similar to the diagrammatic expansion in a three-dimensional Euclidean quantum field theory, with time playing the role of an external parameter. For the physically relevant case of cold dark matter in an Einstein-de Sitter universe, the time evolution ofmore » the distribution function can be found exactly and is encapsulated by a time-dependent coupling constant controlling the perturbative expansion. We show that all building blocks of the expansion are free from spurious infrared enhanced contributions that plague the standard cosmological perturbation theory. This paves the way towards the systematic resummation of infrared effects in large scale structure formation. We also argue that the approach proposed here provides a natural framework to account for the influence of short-scale dynamics on larger scales along the lines of effective field theory.« less

  6. The application of the thermodynamic perturbation theory to study the hydrophobic hydration.

    PubMed

    Mohoric, Tomaz; Urbic, Tomaz; Hribar-Lee, Barbara

    2013-07-14

    The thermodynamic perturbation theory was tested against newly obtained Monte Carlo computer simulations to describe the major features of the hydrophobic effect in a simple 3D-Mercedes-Benz water model: the temperature and hydrophobe size dependence on entropy, enthalpy, and free energy of transfer of a simple hydrophobic solute into water. An excellent agreement was obtained between the theoretical and simulation results. Further, the thermodynamic perturbation theory qualitatively correctly (with respect to the experimental data) describes the solvation thermodynamics under conditions where the simulation results are difficult to obtain with good enough accuracy, e.g., at high pressures.

  7. The application of the thermodynamic perturbation theory to study the hydrophobic hydration

    PubMed Central

    Mohorič, Tomaž; Urbic, Tomaz; Hribar-Lee, Barbara

    2013-01-01

    The thermodynamic perturbation theory was tested against newly obtained Monte Carlo computer simulations to describe the major features of the hydrophobic effect in a simple 3D-Mercedes-Benz water model: the temperature and hydrophobe size dependence on entropy, enthalpy, and free energy of transfer of a simple hydrophobic solute into water. An excellent agreement was obtained between the theoretical and simulation results. Further, the thermodynamic perturbation theory qualitatively correctly (with respect to the experimental data) describes the solvation thermodynamics under conditions where the simulation results are difficult to obtain with good enough accuracy, e.g., at high pressures. PMID:23862923

  8. The application of the thermodynamic perturbation theory to study the hydrophobic hydration

    NASA Astrophysics Data System (ADS)

    Mohorič, Tomaž; Urbic, Tomaz; Hribar-Lee, Barbara

    2013-07-01

    The thermodynamic perturbation theory was tested against newly obtained Monte Carlo computer simulations to describe the major features of the hydrophobic effect in a simple 3D-Mercedes-Benz water model: the temperature and hydrophobe size dependence on entropy, enthalpy, and free energy of transfer of a simple hydrophobic solute into water. An excellent agreement was obtained between the theoretical and simulation results. Further, the thermodynamic perturbation theory qualitatively correctly (with respect to the experimental data) describes the solvation thermodynamics under conditions where the simulation results are difficult to obtain with good enough accuracy, e.g., at high pressures.

  9. Near-threshold NN→dπ reaction in chiral perturbation theory

    NASA Astrophysics Data System (ADS)

    Gårdestig, A.; Phillips, D. R.; Elster, Ch.

    2006-02-01

    The near-threshold np→dπ0 cross section is calculated in chiral perturbation theory to next-to-leading order in the expansion parameter √(Mmπ)/Λχ. At this order irreducible pion loops contribute to the relevant pion-production operator. Although their contribution to this operator is finite, considering initial- and final-state distortions produces a linear divergence in its matrix elements. We renormalize this divergence by introducing a counterterm, whose value we choose to reproduce the threshold np→dπ0 cross section measured at TRIUMF. The energy dependence of this cross section is then predicted in chiral perturbation theory, being determined by the production of p-wave pions, and also by energy dependence in the amplitude for the production of s-wave pions. With an appropriate choice of the counterterm, the chiral prediction for this energy dependence converges well.

  10. Staggered chiral perturbation theory in the two-flavor case

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du Xining

    2010-07-01

    I study two-flavor staggered chiral perturbation theory in the light pseudoscalar sector. The pion mass and decay constant are calculated through next-to-leading order in the partially-quenched case. In the limit where the strange quark mass is large compared to the light quark masses and the taste splittings, I show that the SU(2) staggered chiral theory emerges from the SU(3) staggered chiral theory, as expected. Explicit relations between SU(2) and SU(3) low energy constants and taste-violating parameters are given. The results are useful for SU(2) chiral fits to asqtad data and allow one to incorporate effects from varying strange quark masses.

  11. Constrained Perturbation Regularization Approach for Signal Estimation Using Random Matrix Theory

    NASA Astrophysics Data System (ADS)

    Suliman, Mohamed; Ballal, Tarig; Kammoun, Abla; Al-Naffouri, Tareq Y.

    2016-12-01

    In this supplementary appendix we provide proofs and additional extensive simulations that complement the analysis of the main paper (constrained perturbation regularization approach for signal estimation using random matrix theory).

  12. Inner Space Perturbation Theory in Matrix Product States: Replacing Expensive Iterative Diagonalization.

    PubMed

    Ren, Jiajun; Yi, Yuanping; Shuai, Zhigang

    2016-10-11

    We propose an inner space perturbation theory (isPT) to replace the expensive iterative diagonalization in the standard density matrix renormalization group theory (DMRG). The retained reduced density matrix eigenstates are partitioned into the active and secondary space. The first-order wave function and the second- and third-order energies are easily computed by using one step Davidson iteration. Our formulation has several advantages including (i) keeping a balance between the efficiency and accuracy, (ii) capturing more entanglement with the same amount of computational time, (iii) recovery of the standard DMRG when all the basis states belong to the active space. Numerical examples for the polyacenes and periacene show that the efficiency gain is considerable and the accuracy loss due to the perturbation treatment is very small, when half of the total basis states belong to the active space. Moreover, the perturbation calculations converge in all our numerical examples.

  13. A new probability distribution model of turbulent irradiance based on Born perturbation theory

    NASA Astrophysics Data System (ADS)

    Wang, Hongxing; Liu, Min; Hu, Hao; Wang, Qian; Liu, Xiguo

    2010-10-01

    The subject of the PDF (Probability Density Function) of the irradiance fluctuations in a turbulent atmosphere is still unsettled. Theory reliably describes the behavior in the weak turbulence regime, but theoretical description in the strong and whole turbulence regimes are still controversial. Based on Born perturbation theory, the physical manifestations and correlations of three typical PDF models (Rice-Nakagami, exponential-Bessel and negative-exponential distribution) were theoretically analyzed. It is shown that these models can be derived by separately making circular-Gaussian, strong-turbulence and strong-turbulence-circular-Gaussian approximations in Born perturbation theory, which denies the viewpoint that the Rice-Nakagami model is only applicable in the extremely weak turbulence regime and provides theoretical arguments for choosing rational models in practical applications. In addition, a common shortcoming of the three models is that they are all approximations. A new model, called the Maclaurin-spread distribution, is proposed without any approximation except for assuming the correlation coefficient to be zero. So, it is considered that the new model can exactly reflect the Born perturbation theory. Simulated results prove the accuracy of this new model.

  14. Spontaneous emission and atomic line shift in causal perturbation theory

    NASA Astrophysics Data System (ADS)

    Marzlin, Karl-Peter; Fitzgerald, Bryce

    2018-04-01

    We derive a spontaneous emission rate and line shift for two-level atoms coupled to the radiation field using causal perturbation theory. In this approach, employing the theory of distribution splitting prevents the occurrence of divergent integrals. Our method confirms the result for an atomic decay rate but suggests that the cutoff frequency for the atomic line shift is determined by the atomic mass, rather than the Bohr radius or electron mass.

  15. Baryon chiral perturbation theory extended beyond the low-energy region.

    PubMed

    Epelbaum, E; Gegelia, J; Meißner, Ulf-G; Yao, De-Liang

    We consider an extension of the one-nucleon sector of baryon chiral perturbation theory beyond the low-energy region. The applicability of this approach for higher energies is restricted to small scattering angles, i.e. the kinematical region, where the quark structure of hadrons cannot be resolved. The main idea is to re-arrange the low-energy effective Lagrangian according to a new power counting and to exploit the freedom of the choice of the renormalization condition for loop diagrams. We generalize the extended on-mass-shell scheme for the one-nucleon sector of baryon chiral perturbation theory by choosing a sliding scale, that is, we expand the physical amplitudes around kinematical points beyond the threshold. This requires the introduction of complex-valued renormalized coupling constants, which can be either extracted from experimental data, or calculated using the renormalization group evolution of coupling constants fixed in threshold region.

  16. Monte Carlo Perturbation Theory Estimates of Sensitivities to System Dimensions

    DOE PAGES

    Burke, Timothy P.; Kiedrowski, Brian C.

    2017-12-11

    Here, Monte Carlo methods are developed using adjoint-based perturbation theory and the differential operator method to compute the sensitivities of the k-eigenvalue, linear functions of the flux (reaction rates), and bilinear functions of the forward and adjoint flux (kinetics parameters) to system dimensions for uniform expansions or contractions. The calculation of sensitivities to system dimensions requires computing scattering and fission sources at material interfaces using collisions occurring at the interface—which is a set of events with infinitesimal probability. Kernel density estimators are used to estimate the source at interfaces using collisions occurring near the interface. The methods for computing sensitivitiesmore » of linear and bilinear ratios are derived using the differential operator method and adjoint-based perturbation theory and are shown to be equivalent to methods previously developed using a collision history–based approach. The methods for determining sensitivities to system dimensions are tested on a series of fast, intermediate, and thermal critical benchmarks as well as a pressurized water reactor benchmark problem with iterated fission probability used for adjoint-weighting. The estimators are shown to agree within 5% and 3σ of reference solutions obtained using direct perturbations with central differences for the majority of test problems.« less

  17. Adaptive Wing Camber Optimization: A Periodic Perturbation Approach

    NASA Technical Reports Server (NTRS)

    Espana, Martin; Gilyard, Glenn

    1994-01-01

    Available redundancy among aircraft control surfaces allows for effective wing camber modifications. As shown in the past, this fact can be used to improve aircraft performance. To date, however, algorithm developments for in-flight camber optimization have been limited. This paper presents a perturbational approach for cruise optimization through in-flight camber adaptation. The method uses, as a performance index, an indirect measurement of the instantaneous net thrust. As such, the actual performance improvement comes from the integrated effects of airframe and engine. The algorithm, whose design and robustness properties are discussed, is demonstrated on the NASA Dryden B-720 flight simulator.

  18. General theories of linear gravitational perturbations to a Schwarzschild black hole

    NASA Astrophysics Data System (ADS)

    Tattersall, Oliver J.; Ferreira, Pedro G.; Lagos, Macarena

    2018-02-01

    We use the covariant formulation proposed by Tattersall, Lagos, and Ferreira [Phys. Rev. D 96, 064011 (2017), 10.1103/PhysRevD.96.064011] to analyze the structure of linear perturbations about a spherically symmetric background in different families of gravity theories, and hence study how quasinormal modes of perturbed black holes may be affected by modifications to general relativity. We restrict ourselves to single-tensor, scalar-tensor and vector-tensor diffeomorphism-invariant gravity models in a Schwarzschild black hole background. We show explicitly the full covariant form of the quadratic actions in such cases, which allow us to then analyze odd parity (axial) and even parity (polar) perturbations simultaneously in a straightforward manner.

  19. Novel Hybrid Adaptive Controller for Manipulation in Complex Perturbation Environments

    PubMed Central

    Smith, Alex M. C.; Yang, Chenguang; Ma, Hongbin; Culverhouse, Phil; Cangelosi, Angelo; Burdet, Etienne

    2015-01-01

    In this paper we present a hybrid control scheme, combining the advantages of task-space and joint-space control. The controller is based on a human-like adaptive design, which minimises both control effort and tracking error. Our novel hybrid adaptive controller has been tested in extensive simulations, in a scenario where a Baxter robot manipulator is affected by external disturbances in the form of interaction with the environment and tool-like end-effector perturbations. The results demonstrated improved performance in the hybrid controller over both of its component parts. In addition, we introduce a novel method for online adaptation of learning parameters, using the fuzzy control formalism to utilise expert knowledge from the experimenter. This mechanism of meta-learning induces further improvement in performance and avoids the need for tuning through trial testing. PMID:26029916

  20. Validation and application of auxiliary density perturbation theory and non-iterative approximation to coupled-perturbed Kohn-Sham approach for calculation of dipole-quadrupole polarizability

    NASA Astrophysics Data System (ADS)

    Shedge, Sapana V.; Pal, Sourav; Köster, Andreas M.

    2011-07-01

    Recently, two non-iterative approaches have been proposed to calculate response properties within density functional theory (DFT). These approaches are auxiliary density perturbation theory (ADPT) and the non-iterative approach to the coupled-perturbed Kohn-Sham (NIA-CPKS) method. Though both methods are non-iterative, they use different techniques to obtain the perturbed Kohn-Sham matrix. In this Letter, for the first time, both of these two independent methods have been used for the calculation of dipole-quadrupole polarizabilities. To validate these methods, three tetrahedral molecules viz., P4,CH4 and adamantane (C10H16) have been used as examples. The comparison with MP2 and CCSD proves the reliability of the methodology.

  1. An integral-factorized implementation of the driven similarity renormalization group second-order multireference perturbation theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hannon, Kevin P.; Li, Chenyang; Evangelista, Francesco A., E-mail: francesco.evangelista@emory.edu

    2016-05-28

    We report an efficient implementation of a second-order multireference perturbation theory based on the driven similarity renormalization group (DSRG-MRPT2) [C. Li and F. A. Evangelista, J. Chem. Theory Comput. 11, 2097 (2015)]. Our implementation employs factorized two-electron integrals to avoid storage of large four-index intermediates. It also exploits the block structure of the reference density matrices to reduce the computational cost to that of second-order Møller–Plesset perturbation theory. Our new DSRG-MRPT2 implementation is benchmarked on ten naphthyne isomers using basis sets up to quintuple-ζ quality. We find that the singlet-triplet splittings (Δ{sub ST}) of the naphthyne isomers strongly depend onmore » the equilibrium structures. For a consistent set of geometries, the Δ{sub ST} values predicted by the DSRG-MRPT2 are in good agreements with those computed by the reduced multireference coupled cluster theory with singles, doubles, and perturbative triples.« less

  2. A hybrid perturbation Galerkin technique with applications to slender body theory

    NASA Technical Reports Server (NTRS)

    Geer, James F.; Andersen, Carl M.

    1989-01-01

    A two-step hybrid perturbation-Galerkin method to solve a variety of applied mathematics problems which involve a small parameter is presented. The method consists of: (1) the use of a regular or singular perturbation method to determine the asymptotic expansion of the solution in terms of the small parameter; (2) construction of an approximate solution in the form of a sum of the perturbation coefficient functions multiplied by (unknown) amplitudes (gauge functions); and (3) the use of the classical Bubnov-Galerkin method to determine these amplitudes. This hybrid method has the potential of overcoming some of the drawbacks of the perturbation method and the Bubnov-Galerkin method when they are applied by themselves, while combining some of the good features of both. The proposed method is applied to some singular perturbation problems in slender body theory. The results obtained from the hybrid method are compared with approximate solutions obtained by other methods, and the degree of applicability of the hybrid method to broader problem areas is discussed.

  3. A hybrid perturbation Galerkin technique with applications to slender body theory

    NASA Technical Reports Server (NTRS)

    Geer, James F.; Andersen, Carl M.

    1987-01-01

    A two step hybrid perturbation-Galerkin method to solve a variety of applied mathematics problems which involve a small parameter is presented. The method consists of: (1) the use of a regular or singular perturbation method to determine the asymptotic expansion of the solution in terms of the small parameter; (2) construction of an approximate solution in the form of a sum of the perturbation coefficient functions multiplied by (unknown) amplitudes (gauge functions); and (3) the use of the classical Bubnov-Galerkin method to determine these amplitudes. This hybrid method has the potential of overcoming some of the drawbacks of the perturbation method and the Bubnov-Galerkin method when they are applied by themselves, while combining some of the good features of both. The proposed method is applied to some singular perturbation problems in slender body theory. The results obtained from the hybrid method are compared with approximate solutions obtained by other methods, and the degree of applicability of the hybrid method to broader problem areas is discussed.

  4. Nonperturbative calculations in the framework of variational perturbation theory in QCD

    NASA Astrophysics Data System (ADS)

    Solovtsova, O. P.

    2017-07-01

    We discuss applications of the method based on the variational perturbation theory to perform calculations down to the lowest energy scale. The variational series is different from the conventional perturbative expansion and can be used to go beyond the weak-coupling regime. We apply this method to investigate the Borel representation of the light Adler function constructed from the τ data and to determine the residual condensates. It is shown that within the method suggested the optimal values of these lower dimension condensates are close to zero.

  5. The QCD matter; perturbation and lattice gauge theory

    NASA Astrophysics Data System (ADS)

    Saini, Abhilasha; Bhardwaj, Sudhir; Keswani, Bright

    2018-05-01

    In this review we are watching towards the probes of quark gluon plasma which provides the unique option to create such nuclear stuff at controlled laboratory conditions. The observables from hadronic and leptonic residues provide the required information. The other tool is the detailed rapidity and momentum spectra of hadrons. Here the information regarding the de-confined phase transition and chiral symmetry restoration is mentioned; also the perturbation and lattice gauge theory is described in short.

  6. The semi-classical expansion and resurgence in gauge theories: new perturbative, instanton, bion, and renormalon effects

    DOE PAGES

    Argyres, Philip C.; Uensal, Mithat

    2012-08-10

    We study the dynamics of four dimensional gauge theories with adjoint fermions for all gauge groups, both in perturbation theory and non-perturbatively, by using circle compactification with periodic boundary conditions for the fermions. There are new gauge phenomena. We show that, to all orders in perturbation theory, many gauge groups are Higgsed by the gauge holonomy around the circle to a product of both abelian and nonabelian gauge group factors. Non-perturbatively there are monopole-instantons with fermion zero modes and two types of monopole-anti-monopole molecules, called bions. One type are magnetic bions which carry net magnetic charge and induce a massmore » gap for gauge fluctuations. Another type are neutral bions which are magnetically neutral, and their understanding requires a generalization of multi-instanton techniques in quantum mechanics — which we refer to as the Bogomolny-Zinn-Justin (BZJ) prescription — to compactified field theory. The BZJ prescription applied to bion-anti-bion topological molecules predicts a singularity on the positive real axis of the Borel plane (i.e., a divergence from summing large orders in peturbation theory) which is of order N times closer to the origin than the leading 4-d BPST instanton-anti-instanton singularity, where N is the rank of the gauge group. The position of the bion-anti-bion singularity is thus qualitatively similar to that of the 4-d IR renormalon singularity, and we conjecture that they are continuously related as the compactification radius is changed. By making use of transseries and Écalle’s resurgence theory we argue that a non-perturbative continuum definition of a class of field theories which admit semi-classical expansions may be possible.« less

  7. Optimal Control Modification for Robust Adaptation of Singularly Perturbed Systems with Slow Actuators

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.; Ishihara, Abraham; Stepanyan, Vahram; Boskovic, Jovan

    2009-01-01

    Recently a new optimal control modification has been introduced that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. This modification is based on an optimal control formulation to minimize the L2 norm of the tracking error. The optimal control modification adaptive law results in a stable adaptation in the presence of a large adaptive gain. This study examines the optimal control modification adaptive law in the context of a system with a time scale separation resulting from a fast plant with a slow actuator. A singular perturbation analysis is performed to derive a modification to the adaptive law by transforming the original system into a reduced-order system in slow time. The model matching conditions in the transformed time coordinate results in increase in the feedback gain and modification of the adaptive law.

  8. Breakdown of String Perturbation Theory for Many External Particles.

    PubMed

    Ghosh, Sudip; Raju, Suvrat

    2017-03-31

    We consider massless string scattering amplitudes in a limit where the number of external particles becomes very large, while the energy of each particle remains small. Using the growth of the volume of the relevant moduli space, and by means of independent numerical evidence, we argue that string perturbation theory breaks down in this limit. We discuss some remarkable implications for the information paradox.

  9. Similarity-transformed perturbation theory on top of truncated local coupled cluster solutions: Theory and applications to intermolecular interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azar, Richard Julian, E-mail: julianazar2323@berkeley.edu; Head-Gordon, Martin, E-mail: mhg@cchem.berkeley.edu

    2015-05-28

    Your correspondents develop and apply fully nonorthogonal, local-reference perturbation theories describing non-covalent interactions. Our formulations are based on a Löwdin partitioning of the similarity-transformed Hamiltonian into a zeroth-order intramonomer piece (taking local CCSD solutions as its zeroth-order eigenfunction) plus a first-order piece coupling the fragments. If considerations are limited to a single molecule, the proposed intermolecular similarity-transformed perturbation theory represents a frozen-orbital variant of the “(2)”-type theories shown to be competitive with CCSD(T) and of similar cost if all terms are retained. Different restrictions on the zeroth- and first-order amplitudes are explored in the context of large-computation tractability and elucidationmore » of non-local effects in the space of singles and doubles. To accurately approximate CCSD intermolecular interaction energies, a quadratically growing number of variables must be included at zeroth-order.« less

  10. An automated integration-free path-integral method based on Kleinert's variational perturbation theory

    NASA Astrophysics Data System (ADS)

    Wong, Kin-Yiu; Gao, Jiali

    2007-12-01

    Based on Kleinert's variational perturbation (KP) theory [Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets, 3rd ed. (World Scientific, Singapore, 2004)], we present an analytic path-integral approach for computing the effective centroid potential. The approach enables the KP theory to be applied to any realistic systems beyond the first-order perturbation (i.e., the original Feynman-Kleinert [Phys. Rev. A 34, 5080 (1986)] variational method). Accurate values are obtained for several systems in which exact quantum results are known. Furthermore, the computed kinetic isotope effects for a series of proton transfer reactions, in which the potential energy surfaces are evaluated by density-functional theory, are in good accordance with experiments. We hope that our method could be used by non-path-integral experts or experimentalists as a "black box" for any given system.

  11. Testing higher-order Lagrangian perturbation theory against numerical simulation. 1: Pancake models

    NASA Technical Reports Server (NTRS)

    Buchert, T.; Melott, A. L.; Weiss, A. G.

    1993-01-01

    We present results showing an improvement of the accuracy of perturbation theory as applied to cosmological structure formation for a useful range of quasi-linear scales. The Lagrangian theory of gravitational instability of an Einstein-de Sitter dust cosmogony investigated and solved up to the third order is compared with numerical simulations. In this paper we study the dynamics of pancake models as a first step. In previous work the accuracy of several analytical approximations for the modeling of large-scale structure in the mildly non-linear regime was analyzed in the same way, allowing for direct comparison of the accuracy of various approximations. In particular, the Zel'dovich approximation (hereafter ZA) as a subclass of the first-order Lagrangian perturbation solutions was found to provide an excellent approximation to the density field in the mildly non-linear regime (i.e. up to a linear r.m.s. density contrast of sigma is approximately 2). The performance of ZA in hierarchical clustering models can be greatly improved by truncating the initial power spectrum (smoothing the initial data). We here explore whether this approximation can be further improved with higher-order corrections in the displacement mapping from homogeneity. We study a single pancake model (truncated power-spectrum with power-spectrum with power-index n = -1) using cross-correlation statistics employed in previous work. We found that for all statistical methods used the higher-order corrections improve the results obtained for the first-order solution up to the stage when sigma (linear theory) is approximately 1. While this improvement can be seen for all spatial scales, later stages retain this feature only above a certain scale which is increasing with time. However, third-order is not much improvement over second-order at any stage. The total breakdown of the perturbation approach is observed at the stage, where sigma (linear theory) is approximately 2, which corresponds to the

  12. Higher order alchemical derivatives from coupled perturbed self-consistent field theory.

    PubMed

    Lesiuk, Michał; Balawender, Robert; Zachara, Janusz

    2012-01-21

    We present an analytical approach to treat higher order derivatives of Hartree-Fock (HF) and Kohn-Sham (KS) density functional theory energy in the Born-Oppenheimer approximation with respect to the nuclear charge distribution (so-called alchemical derivatives). Modified coupled perturbed self-consistent field theory is used to calculate molecular systems response to the applied perturbation. Working equations for the second and the third derivatives of HF/KS energy are derived. Similarly, analytical forms of the first and second derivatives of orbital energies are reported. The second derivative of Kohn-Sham energy and up to the third derivative of Hartree-Fock energy with respect to the nuclear charge distribution were calculated. Some issues of practical calculations, in particular the dependence of the basis set and Becke weighting functions on the perturbation, are considered. For selected series of isoelectronic molecules values of available alchemical derivatives were computed and Taylor series expansion was used to predict energies of the "surrounding" molecules. Predicted values of energies are in unexpectedly good agreement with the ones computed using HF/KS methods. Presented method allows one to predict orbital energies with the error less than 1% or even smaller for valence orbitals. © 2012 American Institute of Physics

  13. Adiabaticity and gravity theory independent conservation laws for cosmological perturbations

    NASA Astrophysics Data System (ADS)

    Romano, Antonio Enea; Mooij, Sander; Sasaki, Misao

    2016-04-01

    We carefully study the implications of adiabaticity for the behavior of cosmological perturbations. There are essentially three similar but different definitions of non-adiabaticity: one is appropriate for a thermodynamic fluid δPnad, another is for a general matter field δPc,nad, and the last one is valid only on superhorizon scales. The first two definitions coincide if cs2 = cw2 where cs is the propagation speed of the perturbation, while cw2 = P ˙ / ρ ˙ . Assuming the adiabaticity in the general sense, δPc,nad = 0, we derive a relation between the lapse function in the comoving slicing Ac and δPnad valid for arbitrary matter field in any theory of gravity, by using only momentum conservation. The relation implies that as long as cs ≠cw, the uniform density, comoving and the proper-time slicings coincide approximately for any gravity theory and for any matter field if δPnad = 0 approximately. In the case of general relativity this gives the equivalence between the comoving curvature perturbation Rc and the uniform density curvature perturbation ζ on superhorizon scales, and their conservation. This is realized on superhorizon scales in standard slow-roll inflation. We then consider an example in which cw =cs, where δPnad = δPc,nad = 0 exactly, but the equivalence between Rc and ζ no longer holds. Namely we consider the so-called ultra slow-roll inflation. In this case both Rc and ζ are not conserved. In particular, as for ζ, we find that it is crucial to take into account the next-to-leading order term in ζ's spatial gradient expansion to show its non-conservation, even on superhorizon scales. This is an example of the fact that adiabaticity (in the thermodynamic sense) is not always enough to ensure the conservation of Rc or ζ.

  14. Communication: Extended multi-state complete active space second-order perturbation theory: Energy and nuclear gradients

    NASA Astrophysics Data System (ADS)

    Shiozaki, Toru; Győrffy, Werner; Celani, Paolo; Werner, Hans-Joachim

    2011-08-01

    The extended multireference quasi-degenerate perturbation theory, proposed by Granovsky [J. Chem. Phys. 134, 214113 (2011)], is combined with internally contracted multi-state complete active space second-order perturbation theory (XMS-CASPT2). The first-order wavefunction is expanded in terms of the union of internally contracted basis functions generated from all the reference functions, which guarantees invariance of the theory with respect to unitary rotations of the reference functions. The method yields improved potentials in the vicinity of avoided crossings and conical intersections. The theory for computing nuclear energy gradients for MS-CASPT2 and XMS-CASPT2 is also presented and the first implementation of these gradient methods is reported. A number of illustrative applications of the new methods are presented.

  15. New Methods in Non-Perturbative QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unsal, Mithat

    2017-01-31

    In this work, we investigate the properties of quantum chromodynamics (QCD), by using newly developing mathematics and physics formalisms. Almost all of the mass in the visible universe emerges from a quantum chromodynamics (QCD), which has a completely negligible microscopic mass content. An intimately related issue in QCD is the quark confinement problem. Answers to non-perturbative questions in QCD remained largely elusive despite much effort over the years. It is also believed that the usual perturbation theory is inadequate to address these kinds of problems. Perturbation theory gives a divergent asymptotic series (even when the theory is properly renormalized), andmore » there are non-perturbative phenomena which never appear at any order in perturbation theory. Recently, a fascinating bridge between perturbation theory and non-perturbative effects has been found: a formalism called resurgence theory in mathematics tells us that perturbative data and non-perturbative data are intimately related. Translating this to the language of quantum field theory, it turns out that non-perturbative information is present in a coded form in perturbation theory and it can be decoded. We take advantage of this feature, which is particularly useful to understand some unresolved mysteries of QCD from first principles. In particular, we use: a) Circle compactifications which provide a semi-classical window to study confinement and mass gap problems, and calculable prototypes of the deconfinement phase transition; b) Resurgence theory and transseries which provide a unified framework for perturbative and non-perturbative expansion; c) Analytic continuation of path integrals and Lefschetz thimbles which may be useful to address sign problem in QCD at finite density.« less

  16. Coupled-cluster and explicitly correlated perturbation-theory calculations of the uracil anion.

    PubMed

    Bachorz, Rafał A; Klopper, Wim; Gutowski, Maciej

    2007-02-28

    A valence-type anion of the canonical tautomer of uracil has been characterized using explicitly correlated second-order Moller-Plesset perturbation theory (RI-MP2-R12) in conjunction with conventional coupled-cluster theory with single, double, and perturbative triple excitations. At this level of electron-correlation treatment and after inclusion of a zero-point vibrational energy correction, determined in the harmonic approximation at the RI-MP2 level of theory, the valence anion is adiabatically stable with respect to the neutral molecule by 40 meV. The anion is characterized by a vertical detachment energy of 0.60 eV. To obtain accurate estimates of the vertical and adiabatic electron binding energies, a scheme was applied in which electronic energy contributions from various levels of theory were added, each of them extrapolated to the corresponding basis-set limit. The MP2 basis-set limits were also evaluated using an explicitly correlated approach, and the results of these calculations are in agreement with the extrapolated values. A remarkable feature of the valence anionic state is that the adiabatic electron binding energy is positive but smaller than the adiabatic electron binding energy of the dipole-bound state.

  17. Spatially covariant theories of gravity: disformal transformation, cosmological perturbations and the Einstein frame

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujita, Tomohiro; Gao, Xian; Yokoyama, Jun'ichi, E-mail: tomofuji@stanford.edu, E-mail: gao@th.phys.titech.ac.jp, E-mail: yokoyama@resceu.s.u-tokyo.ac.jp

    We investigate the cosmological background evolution and perturbations in a general class of spatially covariant theories of gravity, which propagates two tensor modes and one scalar mode. We show that the structure of the theory is preserved under the disformal transformation. We also evaluate the primordial spectra for both the gravitational waves and the curvature perturbation, which are invariant under the disformal transformation. Due to the existence of higher spatial derivatives, the quadratic Lagrangian for the tensor modes itself cannot be transformed to the form in the Einstein frame. Nevertheless, there exists a one-parameter family of frames in which themore » spectrum of the gravitational waves takes the standard form in the Einstein frame.« less

  18. Chiral perturbation theory and nucleon-pion-state contaminations in lattice QCD

    NASA Astrophysics Data System (ADS)

    Bär, Oliver

    2017-05-01

    Multiparticle states with additional pions are expected to be a non-negligible source of excited-state contamination in lattice simulations at the physical point. It is shown that baryon chiral perturbation theory can be employed to calculate the contamination due to two-particle nucleon-pion-states in various nucleon observables. Leading order results are presented for the nucleon axial, tensor and scalar charge and three Mellin moments of parton distribution functions (quark momentum fraction, helicity and transversity moment). Taking into account phenomenological results for the charges and moments the impact of the nucleon-pion-states on lattice estimates for these observables can be estimated. The nucleon-pion-state contribution results in an overestimation of all charges and moments obtained with the plateau method. The overestimation is at the 5-10% level for source-sink separations of about 2 fm. The source-sink separations accessible in contemporary lattice simulations are found to be too small for chiral perturbation theory to be directly applicable.

  19. Magnetic exchange couplings from noncollinear perturbation theory: dinuclear CuII complexes.

    PubMed

    Phillips, Jordan J; Peralta, Juan E

    2014-08-07

    To benchmark the performance of a new method based on noncollinear coupled-perturbed density functional theory [J. Chem. Phys. 138, 174115 (2013)], we calculate the magnetic exchange couplings in a series of triply bridged ferromagnetic dinuclear Cu(II) complexes that have been recently synthesized [Phys. Chem. Chem. Phys. 15, 1966 (2013)]. We find that for any basis-set the couplings from our noncollinear coupled-perturbed methodology are practically identical to those of spin-projected energy-differences when a hybrid density functional approximation is employed. This demonstrates that our methodology properly recovers a Heisenberg description for these systems, and is robust in its predictive power of magnetic couplings. Furthermore, this indicates that the failure of density functional theory to capture the subtle variation of the exchange couplings in these complexes is not simply an artifact of broken-symmetry methods, but rather a fundamental weakness of current approximate density functionals for the description of magnetic couplings.

  20. Driven similarity renormalization group for excited states: A state-averaged perturbation theory

    NASA Astrophysics Data System (ADS)

    Li, Chenyang; Evangelista, Francesco A.

    2018-03-01

    The multireference driven similarity renormalization group (MRDSRG) approach [C. Li and F. A. Evangelista, J. Chem. Theory Comput. 11, 2097 (2015)] is generalized to treat quasi-degenerate electronic excited states. The new scheme, termed state-averaged (SA) MRDSRG, is a state-universal approach that considers an ensemble of quasi-degenerate states on an equal footing. Using the SA-MRDSRG framework, we implement second- (SA-DSRG-PT2) and third-order (SA-DSRG-PT3) perturbation theories. These perturbation theories can treat a manifold of near-degenerate states at the cost of a single state-specific computation. At the same time, they have several desirable properties: (1) they are intruder-free and size-extensive, (2) their energy expressions can be evaluated non-iteratively and require at most the three-body density cumulant of the reference states, and (3) the reference states are allowed to relax in the presence of dynamical correlation effects. Numerical benchmarks on the potential energy surfaces of lithium fluoride, ammonia, and the penta-2,4-dieniminium cation reveal that the SA-DSRG-PT2 method yields results with accuracy similar to that of other second-order quasi-degenerate perturbation theories. The SA-DSRG-PT3 results are instead consistent with those from multireference configuration interaction with singles and doubles (MRCISD). Finally, we compute the vertical excitation energies of (E,E)-1,3,5,7-octatetraene. The ordering of the lowest three states is predicted to be 2 1Ag-<1 1Bu+<1 1Bu- by both SA-DSRG-PT2 and SA-DSRG-PT3, in accordance with MRCISD plus Davidson correction.

  1. How to resum perturbative series in 3d N =2 Chern-Simons matter theories

    NASA Astrophysics Data System (ADS)

    Honda, Masazumi

    2016-07-01

    Continuing the work of Honda [Phys. Rev. Lett. 116, 211601 (2016)], we study the perturbative series in general 3d N =2 supersymmetric Chern-Simons matter theory with U (1 )R symmetry, which is given by a power series expansion of inverse Chern-Simons levels. We find that the perturbative series is usually non-Borel summable along a positive real axis for various observables. Alternatively, we prove that the perturbative series is always Borel summable along a negative (positive) imaginary axis for positive (negative) Chern-Simons levels. It turns out that the Borel resummations along this direction are the same as the exact results and, therefore, are correct ways of resumming the perturbative series.

  2. Raman Optical Activity Spectra from Density Functional Perturbation Theory and Density-Functional-Theory-Based Molecular Dynamics.

    PubMed

    Luber, Sandra

    2017-03-14

    We describe the calculation of Raman optical activity (ROA) tensors from density functional perturbation theory, which has been implemented into the CP2K software package. Using the mixed Gaussian and plane waves method, ROA spectra are evaluated in the double-harmonic approximation. Moreover, an approach for the calculation of ROA spectra by means of density functional theory-based molecular dynamics is derived and used to obtain an ROA spectrum via time correlation functions, which paves the way for the calculation of ROA spectra taking into account anharmonicities and dynamic effects at ambient conditions.

  3. A Novel Respiratory Motion Perturbation Model Adaptable to Patient Breathing Irregularities

    PubMed Central

    Yuan, Amy; Wei, Jie; Gaebler, Carl P.; Huang, Hailiang; Olek, Devin; Li, Guang

    2016-01-01

    Purpose To develop a physical, adaptive motion perturbation model to predict tumor motion using feedback from dynamic measurement of breathing conditions to compensate for breathing irregularities. Methods and Materials A novel respiratory motion perturbation (RMP) model was developed to predict tumor motion variations caused by breathing irregularities. This model contained 2 terms: the initial tumor motion trajectory, measured from 4-dimensional computed tomography (4DCT) images, and motion perturbation, calculated from breathing variations in tidal volume (TV) and breathing pattern (BP). The motion perturbation was derived from the patient-specific anatomy, tumor-specific location, and time-dependent breathing variations. Ten patients were studied, and 2 amplitude-binned 4DCT images for each patient were acquired within 2 weeks. The motion trajectories of 40 corresponding bifurcation points in both 4DCT images of each patient were obtained using deformable image registration. An in-house 4D data processing toolbox was developed to calculate the TV and BP as functions of the breathing phase. The motion was predicted from the simulation 4DCT scan to the treatment 4DCT scan, and vice versa, resulting in 800 predictions. For comparison, noncorrected motion differences and the predictions from a published 5-dimensional model were used. Results The average motion range in the superoinferior direction was 9.4 ± 4.4 mm, the average ΔTV ranged from 10 to 248 mm3 (−26% to 61%), and the ΔBP ranged from 0 to 0.2 (−71% to 333%) between the 2 4DCT scans. The mean noncorrected motion difference was 2.0 ± 2.8 mm between 2 4DCT motion trajectories. After applying the RMP model, the mean motion difference was reduced significantly to 1.2 ± 1.8 mm (P = .0018), a 40% improvement, similar to the 1.2 ± 1.8 mm (P = .72) predicted with the 5-dimensional model. Conclusions A novel physical RMP model was developed with an average accuracy of 1.2 ± 1.8 mm for interfraction

  4. Second-Order Perturbation Theory for Generalized Active Space Self-Consistent-Field Wave Functions.

    PubMed

    Ma, Dongxia; Li Manni, Giovanni; Olsen, Jeppe; Gagliardi, Laura

    2016-07-12

    A multireference second-order perturbation theory approach based on the generalized active space self-consistent-field (GASSCF) wave function is presented. Compared with the complete active space (CAS) and restricted active space (RAS) wave functions, GAS wave functions are more flexible and can employ larger active spaces and/or different truncations of the configuration interaction expansion. With GASSCF, one can explore chemical systems that are not affordable with either CASSCF or RASSCF. Perturbation theory to second order on top of GAS wave functions (GASPT2) has been implemented to recover the remaining electron correlation. The method has been benchmarked by computing the chromium dimer ground-state potential energy curve. These calculations show that GASPT2 gives results similar to CASPT2 even with a configuration interaction expansion much smaller than the corresponding CAS expansion.

  5. Large-scale structure perturbation theory without losing stream crossing

    NASA Astrophysics Data System (ADS)

    McDonald, Patrick; Vlah, Zvonimir

    2018-01-01

    We suggest an approach to perturbative calculations of large-scale clustering in the Universe that includes from the start the stream crossing (multiple velocities for mass elements at a single position) that is lost in traditional calculations. Starting from a functional integral over displacement, the perturbative series expansion is in deviations from (truncated) Zel'dovich evolution, with terms that can be computed exactly even for stream-crossed displacements. We evaluate the one-loop formulas for displacement and density power spectra numerically in 1D, finding dramatic improvement in agreement with N-body simulations compared to the Zel'dovich power spectrum (which is exact in 1D up to stream crossing). Beyond 1D, our approach could represent an improvement over previous expansions even aside from the inclusion of stream crossing, but we have not investigated this numerically. In the process we show how to achieve effective-theory-like regulation of small-scale fluctuations without free parameters.

  6. 'Constraint consistency' at all orders in cosmological perturbation theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nandi, Debottam; Shankaranarayanan, S., E-mail: debottam@iisertvm.ac.in, E-mail: shanki@iisertvm.ac.in

    2015-08-01

    We study the equivalence of two—order-by-order Einstein's equation and Reduced action—approaches to cosmological perturbation theory at all orders for different models of inflation. We point out a crucial consistency check which we refer to as 'Constraint consistency' condition that needs to be satisfied in order for the two approaches to lead to identical single variable equation of motion. The method we propose here is quick and efficient to check the consistency for any model including modified gravity models. Our analysis points out an important feature which is crucial for inflationary model building i.e., all 'constraint' inconsistent models have higher ordermore » Ostrogradsky's instabilities but the reverse is not true. In other words, one can have models with constraint Lapse function and Shift vector, though it may have Ostrogradsky's instabilities. We also obtain single variable equation for non-canonical scalar field in the limit of power-law inflation for the second-order perturbed variables.« less

  7. Large-scale structure perturbation theory without losing stream crossing

    DOE PAGES

    McDonald, Patrick; Vlah, Zvonimir

    2018-01-10

    Here, we suggest an approach to perturbative calculations of large-scale clustering in the Universe that includes from the start the stream crossing (multiple velocities for mass elements at a single position) that is lost in traditional calculations. Starting from a functional integral over displacement, the perturbative series expansion is in deviations from (truncated) Zel’dovich evolution, with terms that can be computed exactly even for stream-crossed displacements. We evaluate the one-loop formulas for displacement and density power spectra numerically in 1D, finding dramatic improvement in agreement with N-body simulations compared to the Zel’dovich power spectrum (which is exact in 1D upmore » to stream crossing). Beyond 1D, our approach could represent an improvement over previous expansions even aside from the inclusion of stream crossing, but we have not investigated this numerically. In the process we show how to achieve effective-theory-like regulation of small-scale fluctuations without free parameters.« less

  8. Large-scale structure perturbation theory without losing stream crossing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDonald, Patrick; Vlah, Zvonimir

    Here, we suggest an approach to perturbative calculations of large-scale clustering in the Universe that includes from the start the stream crossing (multiple velocities for mass elements at a single position) that is lost in traditional calculations. Starting from a functional integral over displacement, the perturbative series expansion is in deviations from (truncated) Zel’dovich evolution, with terms that can be computed exactly even for stream-crossed displacements. We evaluate the one-loop formulas for displacement and density power spectra numerically in 1D, finding dramatic improvement in agreement with N-body simulations compared to the Zel’dovich power spectrum (which is exact in 1D upmore » to stream crossing). Beyond 1D, our approach could represent an improvement over previous expansions even aside from the inclusion of stream crossing, but we have not investigated this numerically. In the process we show how to achieve effective-theory-like regulation of small-scale fluctuations without free parameters.« less

  9. The multi-reference retaining the excitation degree perturbation theory: A size-consistent, unitary invariant, and rapidly convergent wavefunction based ab initio approach

    NASA Astrophysics Data System (ADS)

    Fink, Reinhold F.

    2009-02-01

    The retaining the excitation degree (RE) partitioning [R.F. Fink, Chem. Phys. Lett. 428 (2006) 461(20 September)] is reformulated and applied to multi-reference cases with complete active space (CAS) reference wave functions. The generalised van Vleck perturbation theory is employed to set up the perturbation equations. It is demonstrated that this leads to a consistent and well defined theory which fulfils all important criteria of a generally applicable ab initio method: The theory is proven numerically and analytically to be size-consistent and invariant with respect to unitary orbital transformations within the inactive, active and virtual orbital spaces. In contrast to most previously proposed multi-reference perturbation theories the necessary condition for a proper perturbation theory to fulfil the zeroth order perturbation equation is exactly satisfied with the RE partitioning itself without additional projectors on configurational spaces. The theory is applied to several excited states of the benchmark systems CH2 , SiH2 , and NH2 , as well as to the lowest states of the carbon, nitrogen and oxygen atoms. In all cases comparisons are made with full configuration interaction results. The multi-reference (MR)-RE method is shown to provide very rapidly converging perturbation series. Energy differences between states of similar configurations converge even faster.

  10. δ M formalism: a new approach to cosmological perturbation theory in anisotropic inflation

    NASA Astrophysics Data System (ADS)

    Talebian-Ashkezari, A.; Ahmadi, N.; Abolhasani, A. A.

    2018-03-01

    We study the evolution of the metric perturbations in a Bianchi background in the long-wavelength limit. By applying the gradient expansion to the equations of motion we exhibit a generalized "Separate Universe" approach to the cosmological perturbation theory. Having found this consistent separate universe picture, we introduce the δ M formalism for calculating the evolution of the linear tensor perturbations in anisotropic inflation models in almost the same way that the so-called δ N formula is applied to the super-horizon dynamics of the curvature perturbations. Similar to her twin formula, δ N, this new method can substantially reduce the amount of calculations related to the evolution of tensor modes. However, it is not as general as δ N it is a "perturbative" formula and solves the shear only to linear order. In other words, it is restricted to weak shear limit.

  11. Application of hard sphere perturbation theory for thermodynamics of model liquid metals

    NASA Astrophysics Data System (ADS)

    Mon, K. K.

    2001-06-01

    Hard sphere perturbation theory (HSPT) has contributed toward the fundamental understanding of dense fluids for over 30 years. In recent decades, other techniques have been more popular. In this paper, we argue for the revival of hard sphere perturbation theory for the study of thermodynamics of dense liquid in general, and in liquid metal in particular. The weakness of HSPT is now well understood, and can be easily overcome by using a simple convenient Monte Carlo method to calculate the intrinsic error of HSPT free energy density. To demonstrate this approach, we consider models of liquid aluminum and sodium. We obtain the intrinsic error of HSPT with the Monte Carlo method. HSPT is shown to provide a lower free energy upper bound than one-component plasma (OCP) for alkali metals and polyvalent metals. We are thus able to provide insight into the long standing observation that a OCP is a better reference system than a HS for alkali metals.

  12. Orbitally invariant internally contracted multireference unitary coupled cluster theory and its perturbative approximation: theory and test calculations of second order approximation.

    PubMed

    Chen, Zhenhua; Hoffmann, Mark R

    2012-07-07

    A unitary wave operator, exp (G), G(+) = -G, is considered to transform a multiconfigurational reference wave function Φ to the potentially exact, within basis set limit, wave function Ψ = exp (G)Φ. To obtain a useful approximation, the Hausdorff expansion of the similarity transformed effective Hamiltonian, exp (-G)Hexp (G), is truncated at second order and the excitation manifold is limited; an additional separate perturbation approximation can also be made. In the perturbation approximation, which we refer to as multireference unitary second-order perturbation theory (MRUPT2), the Hamiltonian operator in the highest order commutator is approximated by a Mo̸ller-Plesset-type one-body zero-order Hamiltonian. If a complete active space self-consistent field wave function is used as reference, then the energy is invariant under orbital rotations within the inactive, active, and virtual orbital subspaces for both the second-order unitary coupled cluster method and its perturbative approximation. Furthermore, the redundancies of the excitation operators are addressed in a novel way, which is potentially more efficient compared to the usual full diagonalization of the metric of the excited configurations. Despite the loss of rigorous size-extensivity possibly due to the use of a variational approach rather than a projective one in the solution of the amplitudes, test calculations show that the size-extensivity errors are very small. Compared to other internally contracted multireference perturbation theories, MRUPT2 only needs reduced density matrices up to three-body even with a non-complete active space reference wave function when two-body excitations within the active orbital subspace are involved in the wave operator, exp (G). Both the coupled cluster and perturbation theory variants are amenable to large, incomplete model spaces. Applications to some widely studied model systems that can be problematic because of geometry dependent quasidegeneracy, H4, P4

  13. Stringy horizons and generalized FZZ duality in perturbation theory

    NASA Astrophysics Data System (ADS)

    Giribet, Gaston

    2017-02-01

    We study scattering amplitudes in two-dimensional string theory on a black hole bakground. We start with a simple derivation of the Fateev-Zamolodchikov-Zamolodchikov (FZZ) duality, which associates correlation functions of the sine-Liouville integrable model on the Riemann sphere to tree-level string amplitudes on the Euclidean two-dimensional black hole. This derivation of FZZ duality is based on perturbation theory, and it relies on a trick originally due to Fateev, which involves duality relations between different Selberg type integrals. This enables us to rewrite the correlation functions of sine-Liouville theory in terms of a special set of correlators in the gauged Wess-Zumino-Witten (WZW) theory, and use this to perform further consistency checks of the recently conjectured Generalized FZZ (GFZZ) duality. In particular, we prove that n-point correlation functions in sine-Liouville theory involving n - 2 winding modes actually coincide with the correlation functions in the SL(2,R)/U(1) gauged WZW model that include n - 2 oscillator operators of the type described by Giveon, Itzhaki and Kutasov in reference [1]. This proves the GFZZ duality for the case of tree level maximally winding violating n-point amplitudes with arbitrary n. We also comment on the connection between GFZZ and other marginal deformations previously considered in the literature.

  14. SIMP model at NNLO in chiral perturbation theory

    NASA Astrophysics Data System (ADS)

    Hansen, Martin; Langæble, Kasper; Sannino, Francesco

    2015-10-01

    We investigate the phenomenological viability of a recently proposed class of composite dark matter models where the relic density is determined by 3 →2 number-changing processes in the dark sector. Here the pions of the strongly interacting field theory constitute the dark matter particles. By performing a consistent next-to-leading- and next-to-next-to-leading-order chiral perturbative investigation we demonstrate that the leading-order analysis cannot be used to draw conclusions about the viability of the model. We further show that higher-order corrections substantially increase the tension with phenomenological constraints challenging the viability of the simplest realization of the strongly interacting massive particle paradigm.

  15. Flexoelectricity from density-functional perturbation theory

    NASA Astrophysics Data System (ADS)

    Stengel, Massimiliano

    2013-11-01

    We derive the complete flexoelectric tensor, including electronic and lattice-mediated effects, of an arbitrary insulator in terms of the microscopic linear response of the crystal to atomic displacements. The basic ingredient, which can be readily calculated from first principles in the framework of density-functional perturbation theory, is the quantum-mechanical probability current response to a long-wavelength acoustic phonon. Its second-order Taylor expansion in the wave vector q around the Γ (q=0) point in the Brillouin zone naturally yields the flexoelectric tensor. At order one in q we recover Martin's theory of piezoelectricity [Martin, Phys. Rev. B 5, 1607 (1972)], thus providing an alternative derivation thereof. To put our derivations on firm theoretical grounds, we perform a thorough analysis of the nonanalytic behavior of the dynamical matrix and other response functions in a vicinity of Γ. Based on this analysis, we find that there is an ambiguity in the specification of the “zero macroscopic field” condition in the flexoelectric case; such arbitrariness can be related to an analytic band-structure term, in close analogy to the theory of deformation potentials. As a by-product, we derive a rigorous generalization of the Cochran-Cowley formula [Cochran and Cowley, J. Phys. Chem. Solids 23, 447 (1962)] to higher orders in q. This can be of great utility in building reliable atomistic models of electromechanical phenomena, as well as for improving the accuracy of the calculation of phonon dispersion curves. Finally, we discuss the physical interpretation of the various contributions to the flexoelectric response, either in the static or dynamic regime, and we relate our findings to earlier theoretical works on the subject.

  16. On post-inflation validity of perturbation theory in Horndeski scalar-tensor models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Germani, Cristiano; Kudryashova, Nina; Watanabe, Yuki, E-mail: germani@icc.ub.edu, E-mail: nina.kudryashova@campus.lmu.de, E-mail: yuki.watanabe@nat.gunma-ct.ac.jp

    By using the newtonian gauge, we re-confirm that, as in the minimal case, the re-scaled Mukhanov-Sasaki variable is conserved leading to a constraint equation for the Newtonian potential. However, conversely to the minimal case, in Horndeski theories, the super-horizon Newtonian potential can potentially grow to very large values after inflation exit. If that happens, inflationary predictability is lost during the oscillating period. When this does not happen, the perturbations generated during inflation can be standardly related to the CMB, if the theory chosen is minimal at low energies. As a concrete example, we analytically and numerically discuss the new Higgsmore » inflationary case. There, the Inflaton is the Higgs boson that is non-minimally kinetically coupled to gravity. During the high-energy part of the post-inflationary oscillations, the system is anisotropic and the Newtonian potential is largely amplified. Thanks to the smallness of today's amplitude of curvature perturbations, however, the system stays in the linear regime, so that inflationary predictions are not lost. At low energies, when the system relaxes to the minimal case, the anisotropies disappear and the Newtonian potential converges to a constant value. We show that the constant value to which the Newtonian potential converges is related to the frozen part of curvature perturbations during inflation, precisely like in the minimal case.« less

  17. Potential Energy Surface of the Chromium Dimer Re-re-revisited with Multiconfigurational Perturbation Theory.

    PubMed

    Vancoillie, Steven; Malmqvist, Per Åke; Veryazov, Valera

    2016-04-12

    The chromium dimer has long been a benchmark molecule to evaluate the performance of different computational methods ranging from density functional theory to wave function methods. Among the latter, multiconfigurational perturbation theory was shown to be able to reproduce the potential energy surface of the chromium dimer accurately. However, for modest active space sizes, it was later shown that different definitions of the zeroth-order Hamiltonian have a large impact on the results. In this work, we revisit the system for the third time with multiconfigurational perturbation theory, now in order to increase the active space of the reference wave function. This reduces the impact of the choice of zeroth-order Hamiltonian and improves the shape of the potential energy surface significantly. We conclude by comparing our results of the dissocation energy and vibrational spectrum to those obtained from several highly accurate multiconfigurational methods and experiment. For a meaningful comparison, we used the extrapolation to the complete basis set for all methods involved.

  18. Bound states in the continuum on periodic structures: perturbation theory and robustness.

    PubMed

    Yuan, Lijun; Lu, Ya Yan

    2017-11-01

    On periodic structures, a bound state in the continuum (BIC) is a standing or propagating Bloch wave with a frequency in the radiation continuum. Some BICs (e.g., antisymmetric standing waves) are symmetry protected, since they have incompatible symmetry with outgoing waves in the radiation channels. The propagating BICs do not have this symmetry mismatch, but they still crucially depend on the symmetry of the structure. In this Letter, a perturbation theory is developed for propagating BICs on two-dimensional periodic structures. The Letter shows that these BICs are robust against structural perturbations that preserve the symmetry, indicating that these BICs, in fact, are implicitly protected by symmetry.

  19. Deriving Lindblad master equations with Keldysh diagrams: Correlated gain and loss in higher order perturbation theory

    NASA Astrophysics Data System (ADS)

    Müller, Clemens; Stace, Thomas M.

    2017-01-01

    Motivated by correlated decay processes producing gain, loss, and lasing in driven semiconductor quantum dots [Phys. Rev. Lett. 113, 036801 (2014), 10.1103/PhysRevLett.113.036801; Science 347, 285 (2015), 10.1126/science.aaa2501; Phys. Rev. Lett. 114, 196802 (2015), 10.1103/PhysRevLett.114.196802], we develop a theoretical technique by using Keldysh diagrammatic perturbation theory to derive a Lindblad master equation that goes beyond the usual second-order perturbation theory. We demonstrate the method on the driven dissipative Rabi model, including terms up to fourth order in the interaction between the qubit and both the resonator and environment. This results in a large class of Lindblad dissipators and associated rates which go beyond the terms that have previously been proposed to describe similar systems. All of the additional terms contribute to the system behavior at the same order of perturbation theory. We then apply these results to analyze the phonon-assisted steady-state gain of a microwave field driving a double quantum dot in a resonator. We show that resonator gain and loss are substantially affected by dephasing-assisted dissipative processes in the quantum-dot system. These additional processes, which go beyond recently proposed polaronic theories, are in good quantitative agreement with experimental observations.

  20. Emergent "Quantum" Theory in Complex Adaptive Systems.

    PubMed

    Minic, Djordje; Pajevic, Sinisa

    2016-04-30

    Motivated by the question of stability, in this letter we argue that an effective quantum-like theory can emerge in complex adaptive systems. In the concrete example of stochastic Lotka-Volterra dynamics, the relevant effective "Planck constant" associated with such emergent "quantum" theory has the dimensions of the square of the unit of time. Such an emergent quantum-like theory has inherently non-classical stability as well as coherent properties that are not, in principle, endangered by thermal fluctuations and therefore might be of crucial importance in complex adaptive systems.

  1. A Novel Respiratory Motion Perturbation Model Adaptable to Patient Breathing Irregularities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Amy; Wei, Jie; Gaebler, Carl P.

    Purpose: To develop a physical, adaptive motion perturbation model to predict tumor motion using feedback from dynamic measurement of breathing conditions to compensate for breathing irregularities. Methods and Materials: A novel respiratory motion perturbation (RMP) model was developed to predict tumor motion variations caused by breathing irregularities. This model contained 2 terms: the initial tumor motion trajectory, measured from 4-dimensional computed tomography (4DCT) images, and motion perturbation, calculated from breathing variations in tidal volume (TV) and breathing pattern (BP). The motion perturbation was derived from the patient-specific anatomy, tumor-specific location, and time-dependent breathing variations. Ten patients were studied, and 2more » amplitude-binned 4DCT images for each patient were acquired within 2 weeks. The motion trajectories of 40 corresponding bifurcation points in both 4DCT images of each patient were obtained using deformable image registration. An in-house 4D data processing toolbox was developed to calculate the TV and BP as functions of the breathing phase. The motion was predicted from the simulation 4DCT scan to the treatment 4DCT scan, and vice versa, resulting in 800 predictions. For comparison, noncorrected motion differences and the predictions from a published 5-dimensional model were used. Results: The average motion range in the superoinferior direction was 9.4 ± 4.4 mm, the average ΔTV ranged from 10 to 248 mm{sup 3} (−26% to 61%), and the ΔBP ranged from 0 to 0.2 (−71% to 333%) between the 2 4DCT scans. The mean noncorrected motion difference was 2.0 ± 2.8 mm between 2 4DCT motion trajectories. After applying the RMP model, the mean motion difference was reduced significantly to 1.2 ± 1.8 mm (P=.0018), a 40% improvement, similar to the 1.2 ± 1.8 mm (P=.72) predicted with the 5-dimensional model. Conclusions: A novel physical RMP model was developed with an average accuracy of 1.2 ± 1

  2. Analytic representation of FK/Fπ in two loop chiral perturbation theory

    NASA Astrophysics Data System (ADS)

    Ananthanarayan, B.; Bijnens, Johan; Friot, Samuel; Ghosh, Shayan

    2018-05-01

    We present an analytic representation of FK/Fπ as calculated in three-flavor two-loop chiral perturbation theory, which involves expressing three mass scale sunsets in terms of Kampé de Fériet series. We demonstrate how approximations may be made to obtain relatively compact analytic representations. An illustrative set of fits using lattice data is also presented, which shows good agreement with existing fits.

  3. Plantar tactile perturbations enhance transfer of split-belt locomotor adaptation

    PubMed Central

    Mukherjee, Mukul; Eikema, Diderik Jan A.; Chien, Jung Hung; Myers, Sara A.; Scott-Pandorf, Melissa; Bloomberg, Jacob J.; Stergiou, Nicholas

    2015-01-01

    Patterns of human locomotion are highly adaptive and flexible, and depend on the environmental context. Locomotor adaptation requires the use of multisensory information to perceive altered environmental dynamics and generate an appropriate movement pattern. In this study, we investigated the use of multisensory information during locomotor learning. Proprioceptive perturbations were induced by vibrating tactors, placed bilaterally over the plantar surfaces. Under these altered sensory conditions, participants were asked to perform a split-belt locomotor task representative of motor learning. Twenty healthy young participants were separated into two groups: no-tactors (NT) and tactors (TC). All participants performed an overground walking trial, followed by treadmill walking including 18 minutes of split-belt adaptation and an overground trial to determine transfer effects. Interlimb coordination was quantified by symmetry indices and analyzed using mixed repeated measures ANOVAs. Both groups adapted to the locomotor task, indicated by significant reductions in gait symmetry during the split-belt task. No significant group differences in spatiotemporal and kinetic parameters were observed on the treadmill. However, significant groups differences were observed overground. Step and swing time asymmetries learned on the split belt treadmill, were retained and decayed more slowly overground in the TC group whereas in NT, asymmetries were rapidly lost. These results suggest that tactile stimulation contributed to increased lower limb proprioceptive gain. High proprioceptive gain allows for more persistent overground after-effects, at the cost of reduced adaptability. Such persistence may be utilized in populations displaying pathologic asymmetric gait by retraining a more symmetric pattern. PMID:26169104

  4. Plantar tactile perturbations enhance transfer of split-belt locomotor adaptation.

    PubMed

    Mukherjee, Mukul; Eikema, Diderik Jan A; Chien, Jung Hung; Myers, Sara A; Scott-Pandorf, Melissa; Bloomberg, Jacob J; Stergiou, Nicholas

    2015-10-01

    Patterns of human locomotion are highly adaptive and flexible and depend on the environmental context. Locomotor adaptation requires the use of multisensory information to perceive altered environmental dynamics and generate an appropriate movement pattern. In this study, we investigated the use of multisensory information during locomotor learning. Proprioceptive perturbations were induced by vibrating tactors, placed bilaterally over the plantar surfaces. Under these altered sensory conditions, participants were asked to perform a split-belt locomotor task representative of motor learning. Twenty healthy young participants were separated into two groups: no-tactors (NT) and tactors (TC). All participants performed an overground walking trial, followed by treadmill walking including 18 min of split-belt adaptation and an overground trial to determine transfer effects. Interlimb coordination was quantified by symmetry indices and analyzed using mixed repeated-measures ANOVAs. Both groups adapted to the locomotor task, indicated by significant reductions in gait symmetry during the split-belt task. No significant group differences in spatiotemporal and kinetic parameters were observed on the treadmill. However, significant group differences were observed overground. Step and swing time asymmetries learned on the split-belt treadmill were retained and decayed more slowly overground in the TC group whereas in NT, asymmetries were rapidly lost. These results suggest that tactile stimulation contributed to increased lower limb proprioceptive gain. High proprioceptive gain allows for more persistent overground after effects, at the cost of reduced adaptability. Such persistence may be utilized in populations displaying pathologic asymmetric gait by retraining a more symmetric pattern.

  5. Matching Pion-Nucleon Roy-Steiner Equations to Chiral Perturbation Theory.

    PubMed

    Hoferichter, Martin; Ruiz de Elvira, Jacobo; Kubis, Bastian; Meissner, Ulf-G

    2015-11-06

    We match the results for the subthreshold parameters of pion-nucleon scattering obtained from a solution of Roy-Steiner equations to chiral perturbation theory up to next-to-next-to-next-to-leading order, to extract the pertinent low-energy constants including a comprehensive analysis of systematic uncertainties and correlations. We study the convergence of the chiral series by investigating the chiral expansion of threshold parameters up to the same order and discuss the role of the Δ(1232) resonance in this context. Results for the low-energy constants are also presented in the counting scheme usually applied in chiral nuclear effective field theory, where they serve as crucial input to determine the long-range part of the nucleon-nucleon potential as well as three-nucleon forces.

  6. Matching Pion-Nucleon Roy-Steiner Equations to Chiral Perturbation Theory

    NASA Astrophysics Data System (ADS)

    Hoferichter, Martin; Ruiz de Elvira, Jacobo; Kubis, Bastian; Meißner, Ulf-G.

    2015-11-01

    We match the results for the subthreshold parameters of pion-nucleon scattering obtained from a solution of Roy-Steiner equations to chiral perturbation theory up to next-to-next-to-next-to-leading order, to extract the pertinent low-energy constants including a comprehensive analysis of systematic uncertainties and correlations. We study the convergence of the chiral series by investigating the chiral expansion of threshold parameters up to the same order and discuss the role of the Δ (1232 ) resonance in this context. Results for the low-energy constants are also presented in the counting scheme usually applied in chiral nuclear effective field theory, where they serve as crucial input to determine the long-range part of the nucleon-nucleon potential as well as three-nucleon forces.

  7. A second order thermodynamic perturbation theory for hydrogen bond cooperativity in water

    NASA Astrophysics Data System (ADS)

    Marshall, Bennett D.

    2017-05-01

    It has been extensively demonstrated through first principles quantum mechanics calculations that water exhibits strong hydrogen bond cooperativity. Equations of state developed from statistical mechanics typically assume pairwise additivity, meaning they cannot account for these 3-body and higher cooperative effects. In this paper, we extend a second order thermodynamic perturbation theory to correct for hydrogen bond cooperativity in 4 site water. We demonstrate that the theory predicts hydrogen bonding structure consistent spectroscopy, neutron diffraction, and molecular simulation data. Finally, we implement the approach into a general equation of state for water.

  8. Kato expansion in quantum canonical perturbation theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikolaev, Andrey, E-mail: Andrey.Nikolaev@rdtex.ru

    2016-06-15

    This work establishes a connection between canonical perturbation series in quantum mechanics and a Kato expansion for the resolvent of the Liouville superoperator. Our approach leads to an explicit expression for a generator of a block-diagonalizing Dyson’s ordered exponential in arbitrary perturbation order. Unitary intertwining of perturbed and unperturbed averaging superprojectors allows for a description of ambiguities in the generator and block-diagonalized Hamiltonian. We compare the efficiency of the corresponding computational algorithm with the efficiencies of the Van Vleck and Magnus methods for high perturbative orders.

  9. Shielding application of perturbation theory to determine changes in neutron and gamma doses due to changes in shield layers

    NASA Technical Reports Server (NTRS)

    Fieno, D.

    1972-01-01

    Perturbation theory formulas were derived and applied to determine changes in neutron and gamma-ray doses due to changes in various radiation shield layers for fixed sources. For a given source and detector position, the perturbation method enables dose derivatives with respect to density, or equivalently thickness, for every layer to be determined from one forward and one inhomogeneous adjoint calculation. A direct determination without the perturbation approach would require two forward calculations to evaluate the dose derivative due to a change in a single layer. Hence, the perturbation method for obtaining dose derivatives requires fewer computations for design studies of multilayer shields. For an illustrative problem, a comparison was made of the fractional change in the dose per unit change in the thickness of each shield layer in a two-layer spherical configuration as calculated by perturbation theory and by successive direct calculations; excellent agreement was obtained between the two methods.

  10. Spin-component-scaled Møller-Plesset (SCS-MP) perturbation theory: a generalization of the MP approach with improved properties.

    PubMed

    Fink, Reinhold F

    2010-11-07

    A rigorous perturbation theory is proposed, which has the same second order energy as the spin-component-scaled Møller-Plesset second order (SCS-MP2) method of Grimme [J. Chem. Phys. 118, 9095 (2003)]. This upgrades SCS-MP2 to a systematically improvable, true wave-function-based method. The perturbation theory is defined by an unperturbed Hamiltonian, Ĥ(0), that contains the ordinary Fock operator and spin operators Ŝ(2) that act either on the occupied or the virtual orbital spaces. Two choices for Ĥ(0) are discussed and the importance of a spin-pure Ĥ((0)) is underlined. Like the SCS-MP2 approach, the theory contains two parameters (c(os) and c(ss)) that scale the opposite-spin and the same-spin contributions to the second order perturbation energy. It is shown that these parameters can be determined from theoretical considerations by a Feenberg scaling approach or a fit of the wave functions from the perturbation theory to the exact one from a full configuration interaction calculation. The parameters c(os)=1.15 and c(ss)=0.75 are found to be optimal for a reasonable test set of molecules. The meaning of these parameters and the consequences following from a well defined improved MP method are discussed.

  11. General theory for multiple input-output perturbations in complex molecular systems. 1. Linear QSPR electronegativity models in physical, organic, and medicinal chemistry.

    PubMed

    González-Díaz, Humberto; Arrasate, Sonia; Gómez-SanJuan, Asier; Sotomayor, Nuria; Lete, Esther; Besada-Porto, Lina; Ruso, Juan M

    2013-01-01

    In general perturbation methods starts with a known exact solution of a problem and add "small" variation terms in order to approach to a solution for a related problem without known exact solution. Perturbation theory has been widely used in almost all areas of science. Bhor's quantum model, Heisenberg's matrix mechanincs, Feyman diagrams, and Poincare's chaos model or "butterfly effect" in complex systems are examples of perturbation theories. On the other hand, the study of Quantitative Structure-Property Relationships (QSPR) in molecular complex systems is an ideal area for the application of perturbation theory. There are several problems with exact experimental solutions (new chemical reactions, physicochemical properties, drug activity and distribution, metabolic networks, etc.) in public databases like CHEMBL. However, in all these cases, we have an even larger list of related problems without known solutions. We need to know the change in all these properties after a perturbation of initial boundary conditions. It means, when we test large sets of similar, but different, compounds and/or chemical reactions under the slightly different conditions (temperature, time, solvents, enzymes, assays, protein targets, tissues, partition systems, organisms, etc.). However, to the best of our knowledge, there is no QSPR general-purpose perturbation theory to solve this problem. In this work, firstly we review general aspects and applications of both perturbation theory and QSPR models. Secondly, we formulate a general-purpose perturbation theory for multiple-boundary QSPR problems. Last, we develop three new QSPR-Perturbation theory models. The first model classify correctly >100,000 pairs of intra-molecular carbolithiations with 75-95% of Accuracy (Ac), Sensitivity (Sn), and Specificity (Sp). The model predicts probabilities of variations in the yield and enantiomeric excess of reactions due to at least one perturbation in boundary conditions (solvent, temperature

  12. An analytic approach to sunset diagrams in chiral perturbation theory: Theory and practice

    NASA Astrophysics Data System (ADS)

    Ananthanarayan, B.; Bijnens, Johan; Ghosh, Shayan; Hebbar, Aditya

    2016-12-01

    We demonstrate the use of several code implementations of the Mellin-Barnes method available in the public domain to derive analytic expressions for the sunset diagrams that arise in the two-loop contribution to the pion mass and decay constant in three-flavoured chiral perturbation theory. We also provide results for all possible two mass configurations of the sunset integral, and derive a new one-dimensional integral representation for the one mass sunset integral with arbitrary external momentum. Thoroughly annotated Mathematica notebooks are provided as ancillary files in the Electronic Supplementary Material to this paper, which may serve as pedagogical supplements to the methods described in this paper.

  13. New Results in {mathcal {N}}=2 N = 2 Theories from Non-perturbative String

    NASA Astrophysics Data System (ADS)

    Bonelli, Giulio; Grassi, Alba; Tanzini, Alessandro

    2018-03-01

    We describe the magnetic phase of SU(N) $\\mathcal{N}=2$ Super Yang-Mills theories in the self-dual Omega background in terms of a new class of multi-cut matrix models. These arise from a non-perturbative completion of topological strings in the dual four dimensional limit which engineers the gauge theory in the strongly coupled magnetic frame. The corresponding spectral determinants provide natural candidates for the tau functions of isomonodromy problems for flat spectral connections associated to the Seiberg-Witten geometry.

  14. Sum rules for zeros and intersections of Bessel functions from quantum mechanical perturbation theory

    NASA Astrophysics Data System (ADS)

    Pedersen, Thomas Garm

    2018-07-01

    Bessel functions play an important role for quantum states in spherical and cylindrical geometries. In cases of perfect confinement, the energy of Schrödinger and massless Dirac fermions is determined by the zeros and intersections of Bessel functions, respectively. In an external electric field, standard perturbation theory therefore expresses the polarizability as a sum over these zeros or intersections. Both non-relativistic and relativistic polarizabilities can be calculated analytically, however. Hence, by equating analytical expressions to perturbation expansions, several sum rules for the zeros and intersections of Bessel functions emerge.

  15. Thermodynamics of technetium: Reconciling theory and experiment using density functional perturbation analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weck, Philippe F.; Kim, Eunja

    The structure, lattice dynamics and thermodynamic properties of bulk technetium were investigated within the framework of density functional theory. The phonon density of states spectrum computed with density functional perturbation theory closely matches inelastic coherent neutron scattering measurements. The thermal properties of technetium were derived from phonon frequencies calculated within the quasi-harmonic approximation (QHA), which introduces a volume dependence of phonon frequencies as a part of the anharmonic effect. As a result, the predicted thermal expansion and isobaric heat capacity of technetium are in excellent agreement with available experimental data for temperatures up to ~1600 K.

  16. Thermodynamics of technetium: Reconciling theory and experiment using density functional perturbation analysis

    DOE PAGES

    Weck, Philippe F.; Kim, Eunja

    2015-06-11

    The structure, lattice dynamics and thermodynamic properties of bulk technetium were investigated within the framework of density functional theory. The phonon density of states spectrum computed with density functional perturbation theory closely matches inelastic coherent neutron scattering measurements. The thermal properties of technetium were derived from phonon frequencies calculated within the quasi-harmonic approximation (QHA), which introduces a volume dependence of phonon frequencies as a part of the anharmonic effect. As a result, the predicted thermal expansion and isobaric heat capacity of technetium are in excellent agreement with available experimental data for temperatures up to ~1600 K.

  17. Characterizing representational learning: A combined simulation and tutorial on perturbation theory

    NASA Astrophysics Data System (ADS)

    Kohnle, Antje; Passante, Gina

    2017-12-01

    Analyzing, constructing, and translating between graphical, pictorial, and mathematical representations of physics ideas and reasoning flexibly through them ("representational competence") is a key characteristic of expertise in physics but is a challenge for learners to develop. Interactive computer simulations and University of Washington style tutorials both have affordances to support representational learning. This article describes work to characterize students' spontaneous use of representations before and after working with a combined simulation and tutorial on first-order energy corrections in the context of quantum-mechanical time-independent perturbation theory. Data were collected from two institutions using pre-, mid-, and post-tests to assess short- and long-term gains. A representational competence level framework was adapted to devise level descriptors for the assessment items. The results indicate an increase in the number of representations used by students and the consistency between them following the combined simulation tutorial. The distributions of representational competence levels suggest a shift from perceptual to semantic use of representations based on their underlying meaning. In terms of activity design, this study illustrates the need to support students in making sense of the representations shown in a simulation and in learning to choose the most appropriate representation for a given task. In terms of characterizing representational abilities, this study illustrates the usefulness of a framework focusing on perceptual, syntactic, and semantic use of representations.

  18. Reference interaction site model and optimized perturbation theories of colloidal dumbbells with increasing anisotropy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munaò, Gianmarco, E-mail: gmunao@unime.it; Costa, Dino; Caccamo, Carlo

    We investigate thermodynamic properties of anisotropic colloidal dumbbells in the frameworks provided by the Reference Interaction Site Model (RISM) theory and an Optimized Perturbation Theory (OPT), this latter based on a fourth-order high-temperature perturbative expansion of the free energy, recently generalized to molecular fluids. Our model is constituted by two identical tangent hard spheres surrounded by square-well attractions with same widths and progressively different depths. Gas-liquid coexistence curves are obtained by predicting pressures, free energies, and chemical potentials. In comparison with previous simulation results, RISM and OPT agree in reproducing the progressive reduction of the gas-liquid phase separation as themore » anisotropy of the interaction potential becomes more pronounced; in particular, the RISM theory provides reasonable predictions for all coexistence curves, bar the strong anisotropy regime, whereas OPT performs generally less well. Both theories predict a linear dependence of the critical temperature on the interaction strength, reproducing in this way the mean-field behavior observed in simulations; the critical density—that drastically drops as the anisotropy increases—turns to be less accurate. Our results appear as a robust benchmark for further theoretical studies, in support to the simulation approach, of self-assembly in model colloidal systems.« less

  19. Staggered chiral perturbation theory at next-to-leading order

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharpe, Stephen R.; Van de Water, Ruth S.

    2005-06-01

    We study taste and Euclidean rotational symmetry violation for staggered fermions at nonzero lattice spacing using staggered chiral perturbation theory. We extend the staggered chiral Lagrangian to O(a{sup 2}p{sup 2}), O(a{sup 4}), and O(a{sup 2}m), the orders necessary for a full next-to-leading order calculation of pseudo-Goldstone boson masses and decay constants including analytic terms. We then calculate a number of SO(4) taste-breaking quantities, which involve only a small subset of these next-to-leading order operators. We predict relationships between SO(4) taste-breaking splittings in masses, pseudoscalar decay constants, and dispersion relations. We also find predictions for a few quantities that are notmore » SO(4) breaking. All these results hold also for theories in which the fourth root of the fermionic determinant is taken to reduce the number of quark tastes; testing them will therefore provide evidence for or against the validity of this trick.« less

  20. Motor adaptation to Coriolis force perturbations of reaching movements: endpoint but not trajectory adaptation transfers to the nonexposed arm

    NASA Technical Reports Server (NTRS)

    Dizio, P.; Lackner, J. R.

    1995-01-01

    1. Reaching movements made in a rotating room generate Coriolis forces that are directly proportional to the cross product of the room's angular velocity and the arm's linear velocity. Such Coriolis forces are inertial forces not involving mechanical contact with the arm. 2. We measured the trajectories of arm movements made in darkness to a visual target that was extinguished at the onset of each reach. Prerotation subjects pointed with both the right and left arms in alternating sets of eight movements. During rotation at 10 rpm, the subjects reached only with the right arm. Postrotation, the subjects pointed with the left and right arms, starting with the left, in alternating sets of eight movements. 3. The initial perrotary reaching movements of the right arm were highly deviated both in movement path and endpoint relative to the prerotation reaches of the right arm. With additional movements, subjects rapidly regained straight movement paths and accurate endpoints despite the absence of visual or tactile feedback about reaching accuracy. The initial postrotation reaches of the left arm followed straight paths to the wrong endpoint. The initial postrotation reaches of the right arm had paths with mirror image curvature to the initial perrotation reaches of the right arm but went to the correct endpoint. 4. These observations are inconsistent with current equilibrium point models of movement control. Such theories predict accurate reaches under our experimental conditions. Our observations further show independent implementation of movement and posture, as evidenced by transfer of endpoint adaptation to the nonexposed arm without transfer of path adaptation. Endpoint control may occur at a relatively central stage that represents general constraints such as gravitoinertial force background or egocentric direction relative to both arms, and control of path may occur at a more peripheral stage that represents moments of inertia and muscle dynamics unique to each

  1. Perturbative test of exact vacuum expectation values of local fields in affine Toda theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahn, Changrim; Baseilhac, P.; Kim, Chanju

    Vacuum expectation values of local fields for all dual pairs of nonsimply laced affine Toda field theories recently proposed are checked against perturbative analysis. The computations based on Feynman diagram expansion are performed up to the two-loop level. We obtain, good agreement.

  2. Pion-nucleon scattering in covariant baryon chiral perturbation theory with explicit Delta resonances

    NASA Astrophysics Data System (ADS)

    Yao, De-Liang; Siemens, D.; Bernard, V.; Epelbaum, E.; Gasparyan, A. M.; Gegelia, J.; Krebs, H.; Meißner, Ulf-G.

    2016-05-01

    We present the results of a third order calculation of the pion-nucleon scattering amplitude in a chiral effective field theory with pions, nucleons and delta resonances as explicit degrees of freedom. We work in a manifestly Lorentz invariant formulation of baryon chiral perturbation theory using dimensional regularization and the extended on-mass-shell renormalization scheme. In the delta resonance sector, the on mass-shell renormalization is realized as a complex-mass scheme. By fitting the low-energy constants of the effective Lagrangian to the S- and P -partial waves a satisfactory description of the phase shifts from the analysis of the Roy-Steiner equations is obtained. We predict the phase shifts for the D and F waves and compare them with the results of the analysis of the George Washington University group. The threshold parameters are calculated both in the delta-less and delta-full cases. Based on the determined low-energy constants, we discuss the pion-nucleon sigma term. Additionally, in order to determine the strangeness content of the nucleon, we calculate the octet baryon masses in the presence of decuplet resonances up to next-to-next-to-leading order in SU(3) baryon chiral perturbation theory. The octet baryon sigma terms are predicted as a byproduct of this calculation.

  3. Resonant Perturbation Theory of Decoherence and Relaxation of Quantum Bits

    DOE PAGES

    Merkli, M.; Berman, G. P.; Sigal, I. M.

    2010-01-01

    We describe our recenmore » t results on the resonant perturbation theory of decoherence and relaxation for quantum systems with many qubits. The approach represents a rigorous analysis of the phenomenon of decoherence and relaxation for general N -level systems coupled to reservoirs of bosonic fields. We derive a representation of the reduced dynamics valid for all times t ≥ 0 and for small but fixed interaction strength. Our approach does not involve master equation approximations and applies to a wide variety of systems which are not explicitly solvable.« less

  4. Perturbation theory of nuclear matter with a microscopic effective interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benhar, Omar; Lovato, Alessandro

    Here, an updated and improved version of the effective interaction based on the Argonne-Urbana nuclear Hamiltonian, derived using the formalism of correlated basis functions and the cluster expansion technique, is employed to obtain a number of properties of cold nuclear matter at arbitrary neutron excess within the formalism of many-body perturbation theory. The numerical results, including the ground-state energy per nucleon, the symmetry energy, the pressure, the compressibility, and the single-particle spectrum, are discussed in the context of the available empirical information, obtained from measured nuclear properties and heavy-ion collisions.

  5. Perturbation theory of nuclear matter with a microscopic effective interaction

    DOE PAGES

    Benhar, Omar; Lovato, Alessandro

    2017-11-01

    Here, an updated and improved version of the effective interaction based on the Argonne-Urbana nuclear Hamiltonian, derived using the formalism of correlated basis functions and the cluster expansion technique, is employed to obtain a number of properties of cold nuclear matter at arbitrary neutron excess within the formalism of many-body perturbation theory. The numerical results, including the ground-state energy per nucleon, the symmetry energy, the pressure, the compressibility, and the single-particle spectrum, are discussed in the context of the available empirical information, obtained from measured nuclear properties and heavy-ion collisions.

  6. A shielding application of perturbation theory to determine changes in neutron and gamma doses due to changes in shield layers

    NASA Technical Reports Server (NTRS)

    Fieno, D.

    1972-01-01

    The perturbation theory for fixed sources was applied to radiation shielding problems to determine changes in neutron and gamma ray doses due to changes in various shield layers. For a given source and detector position the perturbation method enables dose derivatives due to all layer changes to be determined from one forward and one inhomogeneous adjoint calculation. The direct approach requires two forward calculations for the derivative due to a single layer change. Hence, the perturbation method for obtaining dose derivatives permits an appreciable savings in computation for a multilayered shield. For an illustrative problem, a comparison was made of the fractional change in the dose per unit change in the thickness of each shield layer as calculated by perturbation theory and by successive direct calculations; excellent agreement was obtained between the two methods.

  7. Developing effective electronic-only coupled-cluster and Møller-Plesset perturbation theories for the muonic molecules.

    PubMed

    Goli, Mohammad; Shahbazian, Shant

    2018-06-20

    Recently we have proposed an effective Hartree-Fock (EHF) theory for the electrons of the muonic molecules that is formally equivalent to the HF theory within the context of the nuclear-electronic orbital theory [Phys. Chem. Chem. Phys., 2018, 20, 4466]. In the present report we extend the muon-specific effective electronic structure theory beyond the EHF level by introducing the effective second order Møller-Plesset perturbation theory (EMP2) and the effective coupled-cluster theory at single and double excitation levels (ECCSD) as well as an improved version including perturbative triple excitations (ECCSD(T)). These theories incorporate electron-electron correlation into the effective paradigm and through their computational implementation, a diverse set of small muonic species is considered as a benchmark at these post-EHF levels. A comparative computational study on this set demonstrates that the muonic bond length is in general non-negligibly longer than corresponding hydrogenic analogs. Next, the developed post-EHF theories are applied for the muoniated N-heterocyclic carbene/silylene/germylene and the muoniated triazolium cation revealing the relative stability of the sticking sites of the muon in each species. The computational results, in line with previously reported experimental data demonstrate that the muon generally prefers to attach to the divalent atom with carbeneic nature. A detailed comparison of these muonic adducts with the corresponding hydrogenic adducts reveals subtle differences that have already been overlooked.

  8. Disformal invariance of curvature perturbation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Motohashi, Hayato; White, Jonathan, E-mail: motohashi@kicp.uchicago.edu, E-mail: jwhite@post.kek.jp

    2016-02-01

    We show that under a general disformal transformation the linear comoving curvature perturbation is not identically invariant, but is invariant on superhorizon scales for any theory that is disformally related to Horndeski's theory. The difference between disformally related curvature perturbations is found to be given in terms of the comoving density perturbation associated with a single canonical scalar field. In General Relativity it is well-known that this quantity vanishes on superhorizon scales through the Poisson equation that is obtained on combining the Hamiltonian and momentum constraints, and we confirm that a similar result holds for any theory that is disformallymore » related to Horndeski's scalar-tensor theory so long as the invertibility condition for the disformal transformation is satisfied. We also consider the curvature perturbation at full nonlinear order in the unitary gauge, and find that it is invariant under a general disformal transformation if we assume that an attractor regime has been reached. Finally, we also discuss the counting of degrees of freedom in theories disformally related to Horndeski's.« less

  9. Emergent “Quantum” Theory in Complex Adaptive Systems

    PubMed Central

    Minic, Djordje; Pajevic, Sinisa

    2017-01-01

    Motivated by the question of stability, in this letter we argue that an effective quantum-like theory can emerge in complex adaptive systems. In the concrete example of stochastic Lotka-Volterra dynamics, the relevant effective “Planck constant” associated with such emergent “quantum” theory has the dimensions of the square of the unit of time. Such an emergent quantum-like theory has inherently non-classical stability as well as coherent properties that are not, in principle, endangered by thermal fluctuations and therefore might be of crucial importance in complex adaptive systems. PMID:28890591

  10. Large-scale symmetry-adapted perturbation theory computations via density fitting and Laplace transformation techniques: investigating the fundamental forces of DNA-intercalator interactions.

    PubMed

    Hohenstein, Edward G; Parrish, Robert M; Sherrill, C David; Turney, Justin M; Schaefer, Henry F

    2011-11-07

    Symmetry-adapted perturbation theory (SAPT) provides a means of probing the fundamental nature of intermolecular interactions. Low-orders of SAPT (here, SAPT0) are especially attractive since they provide qualitative (sometimes quantitative) results while remaining tractable for large systems. The application of density fitting and Laplace transformation techniques to SAPT0 can significantly reduce the expense associated with these computations and make even larger systems accessible. We present new factorizations of the SAPT0 equations with density-fitted two-electron integrals and the first application of Laplace transformations of energy denominators to SAPT. The improved scalability of the DF-SAPT0 implementation allows it to be applied to systems with more than 200 atoms and 2800 basis functions. The Laplace-transformed energy denominators are compared to analogous partial Cholesky decompositions of the energy denominator tensor. Application of our new DF-SAPT0 program to the intercalation of DNA by proflavine has allowed us to determine the nature of the proflavine-DNA interaction. Overall, the proflavine-DNA interaction contains important contributions from both electrostatics and dispersion. The energetics of the intercalator interaction are are dominated by the stacking interactions (two-thirds of the total), but contain important contributions from the intercalator-backbone interactions. It is hypothesized that the geometry of the complex will be determined by the interactions of the intercalator with the backbone, because by shifting toward one side of the backbone, the intercalator can form two long hydrogen-bonding type interactions. The long-range interactions between the intercalator and the next-nearest base pairs appear to be negligible, justifying the use of truncated DNA models in computational studies of intercalation interaction energies.

  11. Large-scale symmetry-adapted perturbation theory computations via density fitting and Laplace transformation techniques: Investigating the fundamental forces of DNA-intercalator interactions

    NASA Astrophysics Data System (ADS)

    Hohenstein, Edward G.; Parrish, Robert M.; Sherrill, C. David; Turney, Justin M.; Schaefer, Henry F.

    2011-11-01

    Symmetry-adapted perturbation theory (SAPT) provides a means of probing the fundamental nature of intermolecular interactions. Low-orders of SAPT (here, SAPT0) are especially attractive since they provide qualitative (sometimes quantitative) results while remaining tractable for large systems. The application of density fitting and Laplace transformation techniques to SAPT0 can significantly reduce the expense associated with these computations and make even larger systems accessible. We present new factorizations of the SAPT0 equations with density-fitted two-electron integrals and the first application of Laplace transformations of energy denominators to SAPT. The improved scalability of the DF-SAPT0 implementation allows it to be applied to systems with more than 200 atoms and 2800 basis functions. The Laplace-transformed energy denominators are compared to analogous partial Cholesky decompositions of the energy denominator tensor. Application of our new DF-SAPT0 program to the intercalation of DNA by proflavine has allowed us to determine the nature of the proflavine-DNA interaction. Overall, the proflavine-DNA interaction contains important contributions from both electrostatics and dispersion. The energetics of the intercalator interaction are are dominated by the stacking interactions (two-thirds of the total), but contain important contributions from the intercalator-backbone interactions. It is hypothesized that the geometry of the complex will be determined by the interactions of the intercalator with the backbone, because by shifting toward one side of the backbone, the intercalator can form two long hydrogen-bonding type interactions. The long-range interactions between the intercalator and the next-nearest base pairs appear to be negligible, justifying the use of truncated DNA models in computational studies of intercalation interaction energies.

  12. Finite density two color chiral perturbation theory revisited

    NASA Astrophysics Data System (ADS)

    Adhikari, Prabal; Beleznay, Soma B.; Mannarelli, Massimo

    2018-06-01

    We revisit two-color, two-flavor chiral perturbation theory at finite isospin and baryon density. We investigate the phase diagram obtained varying the isospin and the baryon chemical potentials, focusing on the phase transition occurring when the two chemical potentials are equal and exceed the pion mass (which is degenerate with the diquark mass). In this case, there is a change in the order parameter of the theory that does not lend itself to the standard picture of first order transitions. We explore this phase transition both within a Ginzburg-Landau framework valid in a limited parameter space and then by inspecting the full chiral Lagrangian in all the accessible parameter space. Across the phase transition between the two broken phases the order parameter becomes an SU(2) doublet, with the ground state fixing the expectation value of the sum of the magnitude squared of the pion and the diquark fields. Furthermore, we find that the Lagrangian at equal chemical potentials is invariant under global SU(2) transformations and construct the effective Lagrangian of the three Goldstone degrees of freedom by integrating out the radial fluctuations.

  13. Adiabatic perturbation theory for atoms and molecules in the low-frequency regime

    NASA Astrophysics Data System (ADS)

    Martiskainen, Hanna; Moiseyev, Nimrod

    2017-12-01

    There is an increasing interest in the photoinduced dynamics in the low frequency, ω, regime. The multiphoton absorptions by molecules in strong laser fields depend on the polarization of the laser and on the molecular structure. The unique properties of the interaction of atoms and molecules with lasers in the low-frequency regime imply new concepts and directions in strong-field light-matter interactions. Here we represent a perturbational approach for the calculations of the quasi-energy spectrum in the low-frequency regime, which avoids the construction of the Floquet operator with extremely large number of Floquet channels. The zero-order Hamiltonian in our perturbational approach is the adiabatic Hamiltonian where the atoms/molecules are exposed to a dc electric field rather than to ac-field. This is in the spirit of the first step in the Corkum three-step model. The second-order perturbation correction terms are obtained when i ℏ ω ∂/∂ τ serves as a perturbation and τ is a dimensionless variable. The second-order adiabatic perturbation scheme is found to be an excellent approach for calculating the ac-field Floquet solutions in our test case studies of a simple one-dimensional time-periodic model Hamiltonian. It is straightforward to implement the perturbation approach presented here for calculating atomic and molecular energy shifts (positions) due to the interaction with low-frequency ac-fields using high-level electronic structure methods. This is enabled since standard quantum chemistry packages allow the calculations of atomic and molecular energy shifts due to the interaction with dc-fields. In addition to the shift of the energy positions, the energy widths (inverse lifetimes) can be obtained at the same level of theory. These energy shifts are functions of the laser parameters (low frequency, intensity, and polarization).

  14. Analytic energy gradients for the orbital-optimized third-order Møller-Plesset perturbation theory

    NASA Astrophysics Data System (ADS)

    Bozkaya, Uǧur

    2013-09-01

    Analytic energy gradients for the orbital-optimized third-order Møller-Plesset perturbation theory (OMP3) [U. Bozkaya, J. Chem. Phys. 135, 224103 (2011)], 10.1063/1.3665134 are presented. The OMP3 method is applied to problematic chemical systems with challenging electronic structures. The performance of the OMP3 method is compared with those of canonical second-order Møller-Plesset perturbation theory (MP2), third-order Møller-Plesset perturbation theory (MP3), coupled-cluster singles and doubles (CCSD), and coupled-cluster singles and doubles with perturbative triples [CCSD(T)] for investigating equilibrium geometries, vibrational frequencies, and open-shell reaction energies. For bond lengths, the performance of OMP3 is in between those of MP3 and CCSD. For harmonic vibrational frequencies, the OMP3 method significantly eliminates the singularities arising from the abnormal response contributions observed for MP3 in case of symmetry-breaking problems, and provides noticeably improved vibrational frequencies for open-shell molecules. For open-shell reaction energies, OMP3 exhibits a better performance than MP3 and CCSD as in case of barrier heights and radical stabilization energies. As discussed in previous studies, the OMP3 method is several times faster than CCSD in energy computations. Further, in analytic gradient computations for the CCSD method one needs to solve λ-amplitude equations, however for OMP3 one does not since λ _{ab}^{ij(1)} = t_{ij}^{ab(1)} and λ _{ab}^{ij(2)} = t_{ij}^{ab(2)}. Additionally, one needs to solve orbital Z-vector equations for CCSD, but for OMP3 orbital response contributions are zero owing to the stationary property of OMP3. Overall, for analytic gradient computations the OMP3 method is several times less expensive than CCSD (roughly ˜4-6 times). Considering the balance of computational cost and accuracy we conclude that the OMP3 method emerges as a very useful tool for the study of electronically challenging chemical

  15. Analytic energy gradients for the orbital-optimized third-order Møller-Plesset perturbation theory.

    PubMed

    Bozkaya, Uğur

    2013-09-14

    Analytic energy gradients for the orbital-optimized third-order Møller-Plesset perturbation theory (OMP3) [U. Bozkaya, J. Chem. Phys. 135, 224103 (2011)] are presented. The OMP3 method is applied to problematic chemical systems with challenging electronic structures. The performance of the OMP3 method is compared with those of canonical second-order Møller-Plesset perturbation theory (MP2), third-order Møller-Plesset perturbation theory (MP3), coupled-cluster singles and doubles (CCSD), and coupled-cluster singles and doubles with perturbative triples [CCSD(T)] for investigating equilibrium geometries, vibrational frequencies, and open-shell reaction energies. For bond lengths, the performance of OMP3 is in between those of MP3 and CCSD. For harmonic vibrational frequencies, the OMP3 method significantly eliminates the singularities arising from the abnormal response contributions observed for MP3 in case of symmetry-breaking problems, and provides noticeably improved vibrational frequencies for open-shell molecules. For open-shell reaction energies, OMP3 exhibits a better performance than MP3 and CCSD as in case of barrier heights and radical stabilization energies. As discussed in previous studies, the OMP3 method is several times faster than CCSD in energy computations. Further, in analytic gradient computations for the CCSD method one needs to solve λ-amplitude equations, however for OMP3 one does not since λ(ab)(ij(1))=t(ij)(ab(1)) and λ(ab)(ij(2))=t(ij)(ab(2)). Additionally, one needs to solve orbital Z-vector equations for CCSD, but for OMP3 orbital response contributions are zero owing to the stationary property of OMP3. Overall, for analytic gradient computations the OMP3 method is several times less expensive than CCSD (roughly ~4-6 times). Considering the balance of computational cost and accuracy we conclude that the OMP3 method emerges as a very useful tool for the study of electronically challenging chemical systems.

  16. Integral equation and thermodynamic perturbation theory for a two-dimensional model of dimerising fluid

    PubMed Central

    Urbic, Tomaz

    2016-01-01

    In this paper we applied an analytical theory for the two dimensional dimerising fluid. We applied Wertheims thermodynamic perturbation theory (TPT) and integral equation theory (IET) for associative liquids to the dimerising model with arbitrary position of dimerising points from center of the particles. The theory was used to study thermodynamical and structural properties. To check the accuracy of the theories we compared theoretical results with corresponding results obtained by Monte Carlo computer simulations. The theories are accurate for the different positions of patches of the model at all values of the temperature and density studied. IET correctly predicts the pair correlation function of the model. Both TPT and IET are in good agreement with the Monte Carlo values of the energy, pressure, chemical potential, compressibility and ratios of free and bonded particles. PMID:28529396

  17. Hyperextended Cosmological Perturbation Theory: Predicting Nonlinear Clustering Amplitudes

    NASA Astrophysics Data System (ADS)

    Scoccimarro, Román; Frieman, Joshua A.

    1999-07-01

    We consider the long-standing problem of predicting the hierarchical clustering amplitudes Sp in the strongly nonlinear regime of gravitational evolution. N-body results for the nonlinear evolution of the bispectrum (the Fourier transform of the three-point density correlation function) suggest a physically motivated Ansatz that yields the strongly nonlinear behavior of the skewness, S3, starting from leading-order perturbation theory. When generalized to higher order (p>3) polyspectra or correlation functions, this Ansatz leads to a good description of nonlinear amplitudes in the strongly nonlinear regime for both scale-free and cold dark matter models. Furthermore, these results allow us to provide a general fitting formula for the nonlinear evolution of the bispectrum that interpolates between the weakly and strongly nonlinear regimes, analogous to previous expressions for the power spectrum.

  18. Permeability Sensitivity Functions and Rapid Simulation of Hydraulic-Testing Measurements Using Perturbation Theory

    NASA Astrophysics Data System (ADS)

    Escobar Gómez, J. D.; Torres-Verdín, C.

    2018-03-01

    Single-well pressure-diffusion simulators enable improved quantitative understanding of hydraulic-testing measurements in the presence of arbitrary spatial variations of rock properties. Simulators of this type implement robust numerical algorithms which are often computationally expensive, thereby making the solution of the forward modeling problem onerous and inefficient. We introduce a time-domain perturbation theory for anisotropic permeable media to efficiently and accurately approximate the transient pressure response of spatially complex aquifers. Although theoretically valid for any spatially dependent rock/fluid property, our single-phase flow study emphasizes arbitrary spatial variations of permeability and anisotropy, which constitute key objectives of hydraulic-testing operations. Contrary to time-honored techniques, the perturbation method invokes pressure-flow deconvolution to compute the background medium's permeability sensitivity function (PSF) with a single numerical simulation run. Subsequently, the first-order term of the perturbed solution is obtained by solving an integral equation that weighs the spatial variations of permeability with the spatial-dependent and time-dependent PSF. Finally, discrete convolution transforms the constant-flow approximation to arbitrary multirate conditions. Multidimensional numerical simulation studies for a wide range of single-well field conditions indicate that perturbed solutions can be computed in less than a few CPU seconds with relative errors in pressure of <5%, corresponding to perturbations in background permeability of up to two orders of magnitude. Our work confirms that the proposed joint perturbation-convolution (JPC) method is an efficient alternative to analytical and numerical solutions for accurate modeling of pressure-diffusion phenomena induced by Neumann or Dirichlet boundary conditions.

  19. Stochastic many-body perturbation theory for anharmonic molecular vibrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hermes, Matthew R.; Hirata, So, E-mail: sohirata@illinois.edu; CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012

    2014-08-28

    A new quantum Monte Carlo (QMC) method for anharmonic vibrational zero-point energies and transition frequencies is developed, which combines the diagrammatic vibrational many-body perturbation theory based on the Dyson equation with Monte Carlo integration. The infinite sums of the diagrammatic and thus size-consistent first- and second-order anharmonic corrections to the energy and self-energy are expressed as sums of a few m- or 2m-dimensional integrals of wave functions and a potential energy surface (PES) (m is the vibrational degrees of freedom). Each of these integrals is computed as the integrand (including the value of the PES) divided by the value ofmore » a judiciously chosen weight function evaluated on demand at geometries distributed randomly but according to the weight function via the Metropolis algorithm. In this way, the method completely avoids cumbersome evaluation and storage of high-order force constants necessary in the original formulation of the vibrational perturbation theory; it furthermore allows even higher-order force constants essentially up to an infinite order to be taken into account in a scalable, memory-efficient algorithm. The diagrammatic contributions to the frequency-dependent self-energies that are stochastically evaluated at discrete frequencies can be reliably interpolated, allowing the self-consistent solutions to the Dyson equation to be obtained. This method, therefore, can compute directly and stochastically the transition frequencies of fundamentals and overtones as well as their relative intensities as pole strengths, without fixed-node errors that plague some QMC. It is shown that, for an identical PES, the new method reproduces the correct deterministic values of the energies and frequencies within a few cm{sup −1} and pole strengths within a few thousandths. With the values of a PES evaluated on the fly at random geometries, the new method captures a noticeably greater proportion of anharmonic effects.« less

  20. Twisting perturbed parafermions

    NASA Astrophysics Data System (ADS)

    Belitsky, A. V.

    2017-07-01

    The near-collinear expansion of scattering amplitudes in maximally supersymmetric Yang-Mills theory at strong coupling is governed by the dynamics of stings propagating on the five sphere. The pentagon transitions in the operator product expansion which systematize the series get reformulated in terms of matrix elements of branch-point twist operators in the two-dimensional O(6) nonlinear sigma model. The facts that the latter is an asymptotically free field theory and that there exists no local realization of twist fields prevents one from explicit calculation of their scaling dimensions and operator product expansion coefficients. This complication is bypassed making use of the equivalence of the sigma model to the infinite-level limit of WZNW models perturbed by current-current interactions, such that one can use conformal symmetry and conformal perturbation theory for systematic calculations. Presently, to set up the formalism, we consider the O(3) sigma model which is reformulated as perturbed parafermions.

  1. Cosmological Perturbation Theory and the Spherical Collapse model - I. Gaussian initial conditions

    NASA Astrophysics Data System (ADS)

    Fosalba, Pablo; Gaztanaga, Enrique

    1998-12-01

    We present a simple and intuitive approximation for solving the perturbation theory (PT) of small cosmic fluctuations. We consider only the spherically symmetric or monopole contribution to the PT integrals, which yields the exact result for tree-graphs (i.e. at leading order). We find that the non-linear evolution in Lagrangian space is then given by a simple local transformation over the initial conditions, although it is not local in Euler space. This transformation is found to be described by the spherical collapse (SC) dynamics, as it is the exact solution in the shearless (and therefore local) approximation in Lagrangian space. Taking advantage of this property, it is straightforward to derive the one-point cumulants, xi_J, for both the unsmoothed and smoothed density fields to arbitrary order in the perturbative regime. To leading-order this reproduces, and provides us with a simple explanation for, the exact results obtained by Bernardeau. We then show that the SC model leads to accurate estimates for the next corrective terms when compared with the results derived in the exact perturbation theory making use of the loop calculations. The agreement is within a few per cent for the hierarchical ratios S_J=xi_J/xi^J-1_2. We compare our analytic results with N-body simulations, which turn out to be in very good agreement up to scales where sigma~1. A similar treatment is presented to estimate higher order corrections in the Zel'dovich approximation. These results represent a powerful and readily usable tool to produce analytical predictions that describe the gravitational clustering of large-scale structure in the weakly non-linear regime.

  2. Conceptual change and preschoolers' theory of mind: evidence from load-force adaptation.

    PubMed

    Sabbagh, Mark A; Hopkins, Sydney F R; Benson, Jeannette E; Flanagan, J Randall

    2010-01-01

    Prominent theories of preschoolers' theory of mind development have included a central role for changing or adapting existing conceptual structures in response to experiences. Because of the relatively protracted timetable of theory of mind development, it has been difficult to test this assumption about the role of adaptation directly. To gain evidence that cognitive adaptation is particularly important for theory of mind development, we sought to determine whether individual differences in cognitive adaptation in a non-social domain predicted preschoolers' theory of mind development. Twenty-five preschoolers were tested on batteries of theory of mind tasks, executive functioning tasks, and on their ability to adapt their lifting behavior to smoothly lift an unexpectedly heavy object. Results showed that children who adapted their lifting behavior more rapidly performed better on theory of mind tasks than those who adapted more slowly. These findings held up when age and performance on the executive functioning battery were statistically controlled. Although preliminary, we argue that this relation is attributable to individual differences in children's domain general abilities to efficiently change existing conceptual structures in response to experience. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Stochastic multi-reference perturbation theory with application to the linearized coupled cluster method

    NASA Astrophysics Data System (ADS)

    Jeanmairet, Guillaume; Sharma, Sandeep; Alavi, Ali

    2017-01-01

    In this article we report a stochastic evaluation of the recently proposed multireference linearized coupled cluster theory [S. Sharma and A. Alavi, J. Chem. Phys. 143, 102815 (2015)]. In this method, both the zeroth-order and first-order wavefunctions are sampled stochastically by propagating simultaneously two populations of signed walkers. The sampling of the zeroth-order wavefunction follows a set of stochastic processes identical to the one used in the full configuration interaction quantum Monte Carlo (FCIQMC) method. To sample the first-order wavefunction, the usual FCIQMC algorithm is augmented with a source term that spawns walkers in the sampled first-order wavefunction from the zeroth-order wavefunction. The second-order energy is also computed stochastically but requires no additional overhead outside of the added cost of sampling the first-order wavefunction. This fully stochastic method opens up the possibility of simultaneously treating large active spaces to account for static correlation and recovering the dynamical correlation using perturbation theory. The method is used to study a few benchmark systems including the carbon dimer and aromatic molecules. We have computed the singlet-triplet gaps of benzene and m-xylylene. For m-xylylene, which has proved difficult for standard complete active space self consistent field theory with perturbative correction, we find the singlet-triplet gap to be in good agreement with the experimental values.

  4. Implementation of an Improved Adaptive Testing Theory

    ERIC Educational Resources Information Center

    Al-A'ali, Mansoor

    2007-01-01

    Computer adaptive testing is the study of scoring tests and questions based on assumptions concerning the mathematical relationship between examinees' ability and the examinees' responses. Adaptive student tests, which are based on item response theory (IRT), have many advantages over conventional tests. We use the least square method, a…

  5. Kaon B-parameter in mixed action chiral perturbation theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aubin, C.; Laiho, Jack; Water, Ruth S. van de

    2007-02-01

    We calculate the kaon B-parameter, B{sub K}, in chiral perturbation theory for a partially quenched, mixed-action theory with Ginsparg-Wilson valence quarks and staggered sea quarks. We find that the resulting expression is similar to that in the continuum, and in fact has only two additional unknown parameters. At 1-loop order, taste-symmetry violations in the staggered sea sector only contribute to flavor-disconnected diagrams by generating an O(a{sup 2}) shift to the masses of taste-singlet sea-sea mesons. Lattice discretization errors also give rise to an analytic term which shifts the tree-level value of B{sub K} by an amount of O(a{sup 2}). Thismore » term, however, is not strictly due to taste breaking, and is therefore also present in the expression for B{sub K} for pure Ginsparg-Wilson lattice fermions. We also present a numerical study of the mixed B{sub K} expression in order to demonstrate that both discretization errors and finite volume effects are small and under control on the MILC improved staggered lattices.« less

  6. Cosmological perturbations in antigravity

    NASA Astrophysics Data System (ADS)

    Oltean, Marius; Brandenberger, Robert

    2014-10-01

    We compute the evolution of cosmological perturbations in a recently proposed Weyl-symmetric theory of two scalar fields with oppositely signed conformal couplings to Einstein gravity. It is motivated from the minimal conformal extension of the standard model, such that one of these scalar fields is the Higgs while the other is a new particle, the dilaton, introduced to make the Higgs mass conformally symmetric. At the background level, the theory admits novel geodesically complete cyclic cosmological solutions characterized by a brief period of repulsive gravity, or "antigravity," during each successive transition from a big crunch to a big bang. For simplicity, we consider scalar perturbations in the absence of anisotropies, with potential set to zero and without any radiation. We show that despite the necessarily wrong-signed kinetic term of the dilaton in the full action, these perturbations are neither ghostlike nor tachyonic in the limit of strongly repulsive gravity. On this basis, we argue—pending a future analysis of vector and tensor perturbations—that, with respect to perturbative stability, the cosmological solutions of this theory are viable.

  7. Many-body perturbation theory using the density-functional concept: beyond the GW approximation.

    PubMed

    Bruneval, Fabien; Sottile, Francesco; Olevano, Valerio; Del Sole, Rodolfo; Reining, Lucia

    2005-05-13

    We propose an alternative formulation of many-body perturbation theory that uses the density-functional concept. Instead of the usual four-point integral equation for the polarizability, we obtain a two-point one, which leads to excellent optical absorption and energy-loss spectra. The corresponding three-point vertex function and self-energy are then simply calculated via an integration, for any level of approximation. Moreover, we show the direct impact of this formulation on the time-dependent density-functional theory. Numerical results for the band gap of bulk silicon and solid argon illustrate corrections beyond the GW approximation for the self-energy.

  8. Cluster perturbation theory for calculation of electronic properties of ensembles of metal nanoclusters

    NASA Astrophysics Data System (ADS)

    Zhumagulov, Yaroslav V.; Krasavin, Andrey V.; Kashurnikov, Vladimir A.

    2018-05-01

    The method is developed for calculation of electronic properties of an ensemble of metal nanoclusters with the use of cluster perturbation theory. This method is applied to the system of gold nanoclusters. The Greens function of single nanocluster is obtained by ab initio calculations within the framework of the density functional theory, and then is used in Dyson equation to group nanoclusters together and to compute the Greens function as well as the electron density of states of the whole ensemble. The transition from insulator state of a single nanocluster to metallic state of bulk gold is observed.

  9. Orbital theory in terms of KS elements with luni-solar perturbations

    NASA Astrophysics Data System (ADS)

    Sellamuthu, Harishkumar; Sharma, Ram

    2016-07-01

    Precise orbit computation of Earth orbiting satellites is essential for efficient mission planning of planetary exploration, navigation and satellite geodesy. The third-body perturbations of the Sun and the Moon predominantly affect the satellite motion in the high altitude and elliptical orbits, where the effect of atmospheric drag is negligible. The physics of the luni-solar gravity effect on Earth satellites have been studied extensively over the years. The combined luni-solar gravitational attraction will induce a cumulative effect on the dynamics of satellite orbits, which mainly oscillates the perigee altitude. Though accurate orbital parameters are computed by numerical integration with respect to complex force models, analytical theories are highly valued for the manifold of solutions restricted to relatively simple force models. During close approach, the classical equations of motion in celestial mechanics are almost singular and they are unstable for long-term orbit propagation. A new singularity-free analytical theory in terms of KS (Kustaanheimo and Stiefel) regular elements with respect to luni-solar perturbation is developed. These equations are regular everywhere and eccentric anomaly is the independent variable. Plataforma Solar de Almería (PSA) algorithm and a Fourier series algorithm are used to compute the accurate positions of the Sun and the Moon, respectively. Numerical studies are carried out for wide range of initial parameters and the analytical solutions are found to be satisfactory when compared with numerically integrated values. The symmetrical nature of the equations allows only two of the nine equations to be solved for computing the state vectors and the time. Only a change in the initial conditions is required to solve the other equations. This theory will find multiple applications including on-board software packages and for mission analysis purposes.

  10. Black hole perturbations in vector-tensor theories: the odd-mode analysis

    NASA Astrophysics Data System (ADS)

    Kase, Ryotaro; Minamitsuji, Masato; Tsujikawa, Shinji; Zhang, Ying-li

    2018-02-01

    In generalized Proca theories with vector-field derivative couplings, a bunch of hairy black hole solutions have been derived on a static and spherically symmetric background. In this paper, we formulate the odd-parity black hole perturbations in generalized Proca theories by expanding the corresponding action up to second order and investigate whether or not black holes with vector hair suffer ghost or Laplacian instabilities. We show that the models with cubic couplings G3(X), where X=‑AμAμ/2 with a vector field Aμ, do not provide any additional stability condition as in General Relativity. On the other hand, the exact charged stealth Schwarzschild solution with a nonvanishing longitudinal vector component A1, which originates from the coupling to the Einstein tensor GμνAμ Aν equivalent to the quartic coupling G4(X) containing a linear function of X, is unstable in the vicinity of the event horizon. The same instability problem also persists for hairy black holes arising from general quartic power-law couplings G4(X) ⊃ β4 Xn with the nonvanishing A1, while the other branch with A1=0 can be consistent with conditions for the absence of ghost and Laplacian instabilities. We also discuss the case of other exact and numerical black hole solutions associated with intrinsic vector-field derivative couplings and show that there exists a wide range of parameter spaces in which the solutions suffer neither ghost nor Laplacian instabilities against odd-parity perturbations.

  11. Analytic-continuation approach to the resummation of divergent series in Rayleigh-Schrödinger perturbation theory

    NASA Astrophysics Data System (ADS)

    Mihálka, Zsuzsanna É.; Surján, Péter R.

    2017-12-01

    The method of analytic continuation is applied to estimate eigenvalues of linear operators from finite order results of perturbation theory even in cases when the latter is divergent. Given a finite number of terms E(k ),k =1 ,2 ,⋯M resulting from a Rayleigh-Schrödinger perturbation calculation, scaling these numbers by μk (μ being the perturbation parameter) we form the sum E (μ ) =∑kμkE(k ) for small μ values for which the finite series is convergent to a certain numerical accuracy. Extrapolating the function E (μ ) to μ =1 yields an estimation of the exact solution of the problem. For divergent series, this procedure may serve as resummation tool provided the perturbation problem has a nonzero radius of convergence. As illustrations, we treat the anharmonic (quartic) oscillator and an example from the many-electron correlation problem.

  12. Self-consistent-field perturbation theory for the Schröautdinger equation

    NASA Astrophysics Data System (ADS)

    Goodson, David Z.

    1997-06-01

    A method is developed for using large-order perturbation theory to solve the systems of coupled differential equations that result from the variational solution of the Schröautdinger equation with wave functions of product form. This is a noniterative, computationally efficient way to solve self-consistent-field (SCF) equations. Possible applications include electronic structure calculations using products of functions of collective coordinates that include electron correlation, vibrational SCF calculations for coupled anharmonic oscillators with selective coupling of normal modes, and ab initio calculations of molecular vibration spectra without the Born-Oppenheimer approximation.

  13. Nonsingular cosmology with a scale-invariant spectrum of cosmological perturbations from Lee-Wick theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai Yifu; Qiu Taotao; Brandenberger, Robert

    2009-07-15

    We study the cosmology of a Lee-Wick type scalar field theory. First, we consider homogeneous and isotropic background solutions and find that they are nonsingular, leading to cosmological bounces. Next, we analyze the spectrum of cosmological perturbations which result from this model. Unless either the potential of the Lee-Wick theory or the initial conditions are finely tuned, it is impossible to obtain background solutions which have a sufficiently long period of inflation after the bounce. More interestingly, however, we find that in the generic noninflationary bouncing cosmology, perturbations created from quantum vacuum fluctuations in the contracting phase have the correctmore » form to lead to a scale-invariant spectrum of metric inhomogeneities in the expanding phase. Since the background is nonsingular, the evolution of the fluctuations is defined unambiguously through the bounce. We also analyze the evolution of fluctuations which emerge from thermal initial conditions in the contracting phase. The spectrum of gravitational waves stemming from quantum vacuum fluctuations in the contracting phase is also scale-invariant, and the tensor to scalar ratio is not suppressed.« less

  14. Second-order perturbation theory with a density matrix renormalization group self-consistent field reference function: theory and application to the study of chromium dimer.

    PubMed

    Kurashige, Yuki; Yanai, Takeshi

    2011-09-07

    We present a second-order perturbation theory based on a density matrix renormalization group self-consistent field (DMRG-SCF) reference function. The method reproduces the solution of the complete active space with second-order perturbation theory (CASPT2) when the DMRG reference function is represented by a sufficiently large number of renormalized many-body basis, thereby being named DMRG-CASPT2 method. The DMRG-SCF is able to describe non-dynamical correlation with large active space that is insurmountable to the conventional CASSCF method, while the second-order perturbation theory provides an efficient description of dynamical correlation effects. The capability of our implementation is demonstrated for an application to the potential energy curve of the chromium dimer, which is one of the most demanding multireference systems that require best electronic structure treatment for non-dynamical and dynamical correlation as well as large basis sets. The DMRG-CASPT2/cc-pwCV5Z calculations were performed with a large (3d double-shell) active space consisting of 28 orbitals. Our approach using large-size DMRG reference addressed the problems of why the dissociation energy is largely overestimated by CASPT2 with the small active space consisting of 12 orbitals (3d4s), and also is oversensitive to the choice of the zeroth-order Hamiltonian. © 2011 American Institute of Physics

  15. Realization of non-holonomic constraints and singular perturbation theory for plane dumbbells

    NASA Astrophysics Data System (ADS)

    Koshkin, Sergiy; Jovanovic, Vojin

    2017-10-01

    We study the dynamics of pairs of connected masses in the plane, when nonholonomic (knife-edge) constraints are realized by forces of viscous friction, in particular its relation to constrained dynamics, and its approximation by the method of matching asymptotics of singular perturbation theory when the mass to friction ratio is taken as the small parameter. It turns out that long term behaviors of the frictional and constrained systems may differ dramatically no matter how small the perturbation is, and when this happens is not determined by any transparent feature of the equations of motion. The choice of effective time scales for matching asymptotics is also subtle and non-obvious, and secular terms appearing in them can not be dealt with by the classical methods. Our analysis is based on comparison to analytic solutions, and we present a reduction procedure for plane dumbbells that leads to them in some cases.

  16. Direct perturbation theory for the dark soliton solution to the nonlinear Schroedinger equation with normal dispersion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu Jialu; Yang Chunnuan; Cai Hao

    2007-04-15

    After finding the basic solutions of the linearized nonlinear Schroedinger equation by the method of separation of variables, the perturbation theory for the dark soliton solution is constructed by linear Green's function theory. In application to the self-induced Raman scattering, the adiabatic corrections to the soliton's parameters are obtained and the remaining correction term is given as a pure integral with respect to the continuous spectral parameter.

  17. Numerical-analytic implementation of the higher-order canonical Van Vleck perturbation theory for the interpretation of medium-sized molecule vibrational spectra.

    PubMed

    Krasnoshchekov, Sergey V; Isayeva, Elena V; Stepanov, Nikolay F

    2012-04-12

    Anharmonic vibrational states of semirigid polyatomic molecules are often studied using the second-order vibrational perturbation theory (VPT2). For efficient higher-order analysis, an approach based on the canonical Van Vleck perturbation theory (CVPT), the Watson Hamiltonian and operators of creation and annihilation of vibrational quanta is employed. This method allows analysis of the convergence of perturbation theory and solves a number of theoretical problems of VPT2, e.g., yields anharmonic constants y(ijk), z(ijkl), and allows the reliable evaluation of vibrational IR and Raman anharmonic intensities in the presence of resonances. Darling-Dennison and higher-order resonance coupling coefficients can be reliably evaluated as well. The method is illustrated on classic molecules: water and formaldehyde. A number of theoretical conclusions results, including the necessity of using sextic force field in the fourth order (CVPT4) and the nearly vanishing CVPT4 contributions for bending and wagging modes. The coefficients of perturbative Dunham-type Hamiltonians in high-orders of CVPT are found to conform to the rules of equality at different orders as earlier proven analytically for diatomic molecules. The method can serve as a good substitution of the more traditional VPT2.

  18. Enzymatic Kinetic Isotope Effects from Path-Integral Free Energy Perturbation Theory.

    PubMed

    Gao, J

    2016-01-01

    Path-integral free energy perturbation (PI-FEP) theory is presented to directly determine the ratio of quantum mechanical partition functions of different isotopologs in a single simulation. Furthermore, a double averaging strategy is used to carry out the practical simulation, separating the quantum mechanical path integral exactly into two separate calculations, one corresponding to a classical molecular dynamics simulation of the centroid coordinates, and another involving free-particle path-integral sampling over the classical, centroid positions. An integrated centroid path-integral free energy perturbation and umbrella sampling (PI-FEP/UM, or simply, PI-FEP) method along with bisection sampling was summarized, which provides an accurate and fast convergent method for computing kinetic isotope effects for chemical reactions in solution and in enzymes. The PI-FEP method is illustrated by a number of applications, to highlight the computational precision and accuracy, the rule of geometrical mean in kinetic isotope effects, enhanced nuclear quantum effects in enzyme catalysis, and protein dynamics on temperature dependence of kinetic isotope effects. © 2016 Elsevier Inc. All rights reserved.

  19. Size consistent formulations of the perturb-then-diagonalize Møller-Plesset perturbation theory correction to non-orthogonal configuration interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yost, Shane R.; Head-Gordon, Martin, E-mail: mhg@cchem.berkeley.edu; Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720

    2016-08-07

    In this paper we introduce two size consistent forms of the non-orthogonal configuration interaction with second-order Møller-Plesset perturbation theory method, NOCI-MP2. We show that the original NOCI-MP2 formulation [S. R. Yost, T. Kowalczyk, and T. VanVoorh, J. Chem. Phys. 193, 174104 (2013)], which is a perturb-then-diagonalize multi-reference method, is not size consistent. We also show that this causes significant errors in large systems like the linear acenes. By contrast, the size consistent versions of the method give satisfactory results for singlet and triplet excited states when compared to other multi-reference methods that include dynamic correlation. For NOCI-MP2 however, the numbermore » of required determinants to yield similar levels of accuracy is significantly smaller. These results show the promise of the NOCI-MP2 method, though work still needs to be done in creating a more consistent black-box approach to computing the determinants that comprise the many-electron NOCI basis.« less

  20. Many-body perturbation theory and non-perturbative approaches: screened interaction as the key ingredient

    NASA Astrophysics Data System (ADS)

    Tarantino, Walter; Mendoza, Bernardo S.; Romaniello, Pina; Berger, J. A.; Reining, Lucia

    2018-04-01

    Many-body perturbation theory is often formulated in terms of an expansion in the dressed instead of the bare Green’s function, and in the screened instead of the bare Coulomb interaction. However, screening can be calculated on different levels of approximation, and it is important to define what is the most appropriate choice. We explore this question by studying a zero-dimensional model (so called ‘one-point model’) that retains the structure of the full equations. We study both linear and non-linear response approximations to the screening. We find that an expansion in terms of the screening in the random phase approximation is the most promising way for an application in real systems. Moreover, by making use of the nonperturbative features of the Kadanoff-Baym equation for the one-body Green’s function, we obtain an approximate solution in our model that is very promising, although its applicability to real systems has still to be explored.

  1. Projector Augmented-Wave formulation of response to strain and electric field perturbation within the density-functional perturbation theory

    NASA Astrophysics Data System (ADS)

    Martin, Alexandre; Torrent, Marc; Caracas, Razvan

    2015-03-01

    A formulation of the response of a system to strain and electric field perturbations in the pseudopotential-based density functional perturbation theory (DFPT) has been proposed by D.R Hamman and co-workers. It uses an elegant formalism based on the expression of DFT total energy in reduced coordinates, the key quantity being the metric tensor and its first and second derivatives. We propose to extend this formulation to the Projector Augmented-Wave approach (PAW). In this context, we express the full elastic tensor including the clamped-atom tensor, the atomic-relaxation contributions (internal stresses) and the response to electric field change (piezoelectric tensor and effective charges). With this we are able to compute the elastic tensor for all materials (metals and insulators) within a fully analytical formulation. The comparison with finite differences calculations on simple systems shows an excellent agreement. This formalism has been implemented in the plane-wave based DFT ABINIT code. We apply it to the computation of elastic properties and seismic-wave velocities of iron with impurity elements. By analogy with the materials contained in meteorites, tested impurities are light elements (H, O, C, S, Si).

  2. Dual chain perturbation theory: A new equation of state for polyatomic molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, Bennett D., E-mail: bennett.d.marshall@exxonmobil.com

    In the development of equations of state for polyatomic molecules, thermodynamic perturbation theory (TPT) is widely used to calculate the change in free energy due to chain formation. TPT is a simplification of a more general and exact multi-density cluster expansion for associating fluids. In TPT, all contributions to the cluster expansion which contain chain–chain interactions are neglected. That is, all inter-chain interactions are treated at the reference fluid level. This allows for the summation of the cluster theory in terms of reference system correlation functions only. The resulting theory has been shown to be accurate and has been widelymore » employed as the basis of many engineering equations of state. While highly successful, TPT has many handicaps which result from the neglect of chain–chain contributions. The subject of this document is to move beyond the limitations of TPT and include chain–chain contributions to the equation of state.« less

  3. Hadronic Lorentz violation in chiral perturbation theory including the coupling to external fields

    NASA Astrophysics Data System (ADS)

    Kamand, Rasha; Altschul, Brett; Schindler, Matthias R.

    2018-05-01

    If any violation of Lorentz symmetry exists in the hadron sector, its ultimate origins must lie at the quark level. We continue the analysis of how the theories at these two levels are connected, using chiral perturbation theory. Considering a 2-flavor quark theory, with dimension-4 operators that break Lorentz symmetry, we derive a low-energy theory of pions and nucleons that is invariant under local chiral transformations and includes the coupling to external fields. The pure meson and baryon sectors, as well as the couplings between them and the couplings to external electromagnetic and weak gauge fields, contain forms of Lorentz violation which depend on linear combinations of quark-level coefficients. In particular, at leading order the electromagnetic couplings depend on the very same combinations as appear in the free particle propagators. This means that observations of electromagnetic processes involving hadrons—such as vacuum Cerenkov radiation, which may be allowed in Lorentz-violating theories—can only reliably constrain certain particular combinations of quark coefficients.

  4. Slater-type geminals in explicitly-correlated perturbation theory: application to n-alkanols and analysis of errors and basis-set requirements.

    PubMed

    Höfener, Sebastian; Bischoff, Florian A; Glöss, Andreas; Klopper, Wim

    2008-06-21

    In the recent years, Slater-type geminals (STGs) have been used with great success to expand the first-order wave function in an explicitly-correlated perturbation theory. The present work reports on this theory's implementation in the framework of the Turbomole suite of programs. A formalism is presented for evaluating all of the necessary molecular two-electron integrals by means of the Obara-Saika recurrence relations, which can be applied when the STG is expressed as a linear combination of a small number (n) of Gaussians (STG-nG geminal basis). In the Turbomole implementation of the theory, density fitting is employed and a complementary auxiliary basis set (CABS) is used for the resolution-of-the-identity (RI) approximation of explicitly-correlated theory. By virtue of this RI approximation, the calculation of molecular three- and four-electron integrals is avoided. An approximation is invoked to avoid the two-electron integrals over the commutator between the operators of kinetic energy and the STG. This approximation consists of computing commutators between matrices in place of operators. Integrals over commutators between operators would have occurred if the theory had been formulated and implemented as proposed originally. The new implementation in Turbomole was tested by performing a series of calculations on rotational conformers of the alkanols n-propanol through n-pentanol. Basis-set requirements concerning the orbital basis, the auxiliary basis set for density fitting and the CABS were investigated. Furthermore, various (constrained) optimizations of the amplitudes of the explicitly-correlated double excitations were studied. These amplitudes can be optimized in orbital-variant and orbital-invariant manners, or they can be kept fixed at the values governed by the rational generator approach, that is, by the electron cusp conditions. Electron-correlation effects beyond the level of second-order perturbation theory were accounted for by conventional

  5. Development and Application of Single-Referenced Perturbation and Coupled-Cluster Theories for Excited Electronic States

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Langhoff, Stephen R. (Technical Monitor)

    1997-01-01

    Recent work on the development of single-reference perturbation theories for the study of excited electronic states will be discussed. The utility of these methods will be demonstrated by comparison to linear-response coupled-cluster excitation energies. Results for some halogen molecules of interest in stratospheric chemistry will be presented.

  6. Using Perturbation Theory to Reduce Noise in Diffusion Tensor Fields

    PubMed Central

    Bansal, Ravi; Staib, Lawrence H.; Xu, Dongrong; Laine, Andrew F.; Liu, Jun; Peterson, Bradley S.

    2009-01-01

    We propose the use of Perturbation theory to reduce noise in Diffusion Tensor (DT) fields. Diffusion Tensor Imaging (DTI) encodes the diffusion of water molecules along different spatial directions in a positive-definite, 3 × 3 symmetric tensor. Eigenvectors and eigenvalues of DTs allow the in vivo visualization and quantitative analysis of white matter fiber bundles across the brain. The validity and reliability of these analyses are limited, however, by the low spatial resolution and low Signal-to-Noise Ratio (SNR) in DTI datasets. Our procedures can be applied to improve the validity and reliability of these quantitative analyses by reducing noise in the tensor fields. We model a tensor field as a three-dimensional Markov Random Field and then compute the likelihood and the prior terms of this model using Perturbation theory. The prior term constrains the tensor field to be smooth, whereas the likelihood term constrains the smoothed tensor field to be similar to the original field. Thus, the proposed method generates a smoothed field that is close in structure to the original tensor field. We evaluate the performance of our method both visually and quantitatively using synthetic and real-world datasets. We quantitatively assess the performance of our method by computing the SNR for eigenvalues and the coherence measures for eigenvectors of DTs across tensor fields. In addition, we quantitatively compare the performance of our procedures with the performance of one method that uses a Riemannian distance to compute the similarity between two tensors, and with another method that reduces noise in tensor fields by anisotropically filtering the diffusion weighted images that are used to estimate diffusion tensors. These experiments demonstrate that our method significantly increases the coherence of the eigenvectors and the SNR of the eigenvalues, while simultaneously preserving the fine structure and boundaries between homogeneous regions, in the smoothed tensor

  7. Application of perturbation theory to lattice calculations based on method of cyclic characteristics

    NASA Astrophysics Data System (ADS)

    Assawaroongruengchot, Monchai

    Perturbation theory is a technique used for the estimation of changes in performance functionals, such as linear reaction rate ratio and eigenvalue affected by small variations in reactor core compositions. Here the algorithm of perturbation theory is developed for the multigroup integral neutron transport problems in 2D fuel assemblies with isotropic scattering. The integral transport equation is used in the perturbative formulation because it represents the interconnecting neutronic systems of the lattice assemblies via the tracking lines. When the integral neutron transport equation is used in the formulation, one needs to solve the resulting integral transport equations for the flux importance and generalized flux importance functions. The relationship between the generalized flux importance and generalized source importance functions is defined in order to transform the generalized flux importance transport equations into the integro-differential equations for the generalized adjoints. Next we develop the adjoint and generalized adjoint transport solution algorithms based on the method of cyclic characteristics (MOCC) in DRAGON code. In the MOCC method, the adjoint characteristics equations associated with a cyclic tracking line are formulated in such a way that a closed form for the adjoint angular function can be obtained. The MOCC method then requires only one cycle of scanning over the cyclic tracking lines in each spatial iteration. We also show that the source importance function by CP method is mathematically equivalent to the adjoint function by MOCC method. In order to speed up the MOCC solution algorithm, a group-reduction and group-splitting techniques based on the structure of the adjoint scattering matrix are implemented. A combined forward flux/adjoint function iteration scheme, based on the group-splitting technique and the common use of a large number of variables storing tracking-line data and exponential values, is proposed to reduce the

  8. Hard sphere perturbation theory for thermodynamics of soft-sphere model liquid

    NASA Astrophysics Data System (ADS)

    Mon, K. K.

    2001-09-01

    It is a long-standing consensus in the literature that hard sphere perturbation theory (HSPT) is not accurate for dense soft sphere model liquids, interacting with repulsive r-n pair potentials for small n. In this paper, we show that if the intrinsic error of HSPT for soft sphere model liquids is accounted for, then this is not completely true. We present results for n=4, 6, 9, 12 which indicate that, even first order variational HSPT can provide free energy upper bounds to within a few percent at densities near freezing when corrected for the intrinsic error of the HSPT.

  9. Adaptation in a rotating artificial gravity environment

    NASA Technical Reports Server (NTRS)

    Lackner, J. R.; DiZio, P.

    1998-01-01

    The centripetal force generated by a rotating space vehicle is a potential source of artificial gravity. Minimizing the cost of such a vehicle dictates using the smallest radius and highest rotation rate possible, but head movements made at high rotation rates generate disorienting, nauseogenic cross-coupled semicircular canal stimulation. Early studies suggested 3 or 4 rpm as the highest rate at which humans could adapt to this vestibular stimulus. These studies neglected the concomitant Coriolis force actions on the head/neck system. We assessed non-vestibular Coriolis effects by measuring arm and leg movements made in the center of a rotating room turning at 10 rpm and found that movement endpoints and trajectories are initially deviated; however, subjects readily adapt with 10-20 additional movements, even without seeing their errors. Equilibrium point theories of motor control errantly predict that Coriolis forces will not cause movement endpoint errors so that subjects will not have to adapt their reaching movements during rotation. Adaptation of movement trajectory acquired during Coriolis force perturbations of one arm transfers to the unexposed arm but there is no intermanual transfer of endpoint adaptation indicating that neuromotor representations of movement endpoint and trajectory are separable and can adapt independently, also contradictory to equilibrium point theories. Touching a surface at the end of reaching movements is required for complete endpoint adaptation in darkness but trajectory adapts completely with or without terminal contact. We have also made the first kinematic measurements of unconstrained head movements during rotation, these movements show rapid adaptation to Coriolis force perturbations. Our results point to methods for achieving full compensation for rotation up to 10 rpm. Copyright 1998 Published by Elsevier Science B.V.

  10. Adaptation in a rotating artificial gravity environment.

    PubMed

    Lackner, J R; DiZio, P

    1998-11-01

    The centripetal force generated by a rotating space vehicle is a potential source of artificial gravity. Minimizing the cost of such a vehicle dictates using the smallest radius and highest rotation rate possible, but head movements made at high rotation rates generate disorienting, nauseogenic cross-coupled semicircular canal stimulation. Early studies suggested 3 or 4 rpm as the highest rate at which humans could adapt to this vestibular stimulus. These studies neglected the concomitant Coriolis force actions on the head/neck system. We assessed non-vestibular Coriolis effects by measuring arm and leg movements made in the center of a rotating room turning at 10 rpm and found that movement endpoints and trajectories are initially deviated; however, subjects readily adapt with 10-20 additional movements, even without seeing their errors. Equilibrium point theories of motor control errantly predict that Coriolis forces will not cause movement endpoint errors so that subjects will not have to adapt their reaching movements during rotation. Adaptation of movement trajectory acquired during Coriolis force perturbations of one arm transfers to the unexposed arm but there is no intermanual transfer of endpoint adaptation indicating that neuromotor representations of movement endpoint and trajectory are separable and can adapt independently, also contradictory to equilibrium point theories. Touching a surface at the end of reaching movements is required for complete endpoint adaptation in darkness but trajectory adapts completely with or without terminal contact. We have also made the first kinematic measurements of unconstrained head movements during rotation, these movements show rapid adaptation to Coriolis force perturbations. Our results point to methods for achieving full compensation for rotation up to 10 rpm. Copyright 1998 Published by Elsevier Science B.V.

  11. Congenitally blind individuals rapidly adapt to coriolis force perturbations of their reaching movements

    NASA Technical Reports Server (NTRS)

    DiZio, P.; Lackner, J. R.

    2000-01-01

    Reaching movements made to visual targets in a rotating room are initially deviated in path and endpoint in the direction of transient Coriolis forces generated by the motion of the arm relative to the rotating environment. With additional reaches, movements become progressively straighter and more accurate. Such adaptation can occur even in the absence of visual feedback about movement progression or terminus. Here we examined whether congenitally blind and sighted subjects without visual feedback would demonstrate adaptation to Coriolis forces when they pointed to a haptically specified target location. Subjects were tested pre-, per-, and postrotation at 10 rpm counterclockwise. Reaching to straight ahead targets prerotation, both groups exhibited slightly curved paths. Per-rotation, both groups showed large initial deviations of movement path and curvature but within 12 reaches on average had returned to prerotation curvature levels and endpoints. Postrotation, both groups showed mirror image patterns of curvature and endpoint to the per-rotation pattern. The groups did not differ significantly on any of the performance measures. These results provide compelling evidence that motor adaptation to Coriolis perturbations can be achieved on the basis of proprioceptive, somatosensory, and motor information in the complete absence of visual experience.

  12. Universality of fast quenches from the conformal perturbation theory

    NASA Astrophysics Data System (ADS)

    Dymarsky, Anatoly; Smolkin, Michael

    2018-01-01

    We consider global quantum quenches, a protocol when a continuous field theoretic system in the ground state is driven by a homogeneous time-dependent external interaction. When the typical inverse time scale of the interaction is much larger than all relevant scales except for the UV-cutoff the system's response exhibits universal scaling behavior. We provide both qualitative and quantitative explanations of this universality and argue that physics of the response during and shortly after the quench is governed by the conformal perturbation theory around the UV fixed point. We proceed to calculate the response of one and two-point correlation functions confirming and generalizing universal scalings found previously. Finally, we discuss late time behavior after the quench and argue that all local quantities will equilibrate to their thermal values specified by an excess energy acquired by the system during the quench.

  13. Specific temperature-induced perturbations of secondary mRNA structures are associated with the cold-adapted temperature-sensitive phenotype of influenza A virus.

    PubMed

    Chursov, Andrey; Kopetzky, Sebastian J; Leshchiner, Ignaty; Kondofersky, Ivan; Theis, Fabian J; Frishman, Dmitrij; Shneider, Alexander

    2012-10-01

    For decades, cold-adapted, temperature-sensitive (ca/ts) strains of influenza A virus have been used as live attenuated vaccines. Due to their great public health importance it is crucial to understand the molecular mechanism(s) of cold adaptation and temperature sensitivity that are currently unknown. For instance, secondary RNA structures play important roles in influenza biology. Thus, we hypothesized that a relatively minor change in temperature (32-39°C) can lead to perturbations in influenza RNA structures and, that these structural perturbations may be different for mRNAs of the wild type (wt) and ca/ts strains. To test this hypothesis, we developed a novel in silico method that enables assessing whether two related RNA molecules would undergo (dis)similar structural perturbations upon temperature change. The proposed method allows identifying those areas within an RNA chain where dissimilarities of RNA secondary structures at two different temperatures are particularly pronounced, without knowing particular RNA shapes at either temperature. We identified such areas in the NS2, PA, PB2 and NP mRNAs. However, these areas are not identical for the wt and ca/ts mutants. Differences in temperature-induced structural changes of wt and ca/ts mRNA structures may constitute a yet unappreciated molecular mechanism of the cold adaptation/temperature sensitivity phenomena.

  14. FAST-PT: a novel algorithm to calculate convolution integrals in cosmological perturbation theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McEwen, Joseph E.; Fang, Xiao; Hirata, Christopher M.

    2016-09-01

    We present a novel algorithm, FAST-PT, for performing convolution or mode-coupling integrals that appear in nonlinear cosmological perturbation theory. The algorithm uses several properties of gravitational structure formation—the locality of the dark matter equations and the scale invariance of the problem—as well as Fast Fourier Transforms to describe the input power spectrum as a superposition of power laws. This yields extremely fast performance, enabling mode-coupling integral computations fast enough to embed in Monte Carlo Markov Chain parameter estimation. We describe the algorithm and demonstrate its application to calculating nonlinear corrections to the matter power spectrum, including one-loop standard perturbation theorymore » and the renormalization group approach. We also describe our public code (in Python) to implement this algorithm. The code, along with a user manual and example implementations, is available at https://github.com/JoeMcEwen/FAST-PT.« less

  15. Building a Middle-Range Theory of Adaptive Spirituality.

    PubMed

    Dobratz, Marjorie C

    2016-04-01

    The purpose of this article is to describe a Roy adaptation model based- research abstraction, the findings of which were synthesized into a middle-range theory (MRT) of adaptive spirituality. The published literature yielded 21 empirical studies that investigated religion/spirituality. Quantitative results supported the influence of spirituality on quality of life, psychosocial adjustment, well-being, adaptive coping, and the self-concept mode. Qualitative findings showed the importance of spiritual expressions, values, and beliefs in adapting to chronic illness, bereavement, death, and other life transitions. These findings were abstracted into six theoretical statements, a conceptual definition of adaptive spirituality, and three hypotheses for future testing. © The Author(s) 2016.

  16. High-throughput density-functional perturbation theory phonons for inorganic materials

    NASA Astrophysics Data System (ADS)

    Petretto, Guido; Dwaraknath, Shyam; P. C. Miranda, Henrique; Winston, Donald; Giantomassi, Matteo; van Setten, Michiel J.; Gonze, Xavier; Persson, Kristin A.; Hautier, Geoffroy; Rignanese, Gian-Marco

    2018-05-01

    The knowledge of the vibrational properties of a material is of key importance to understand physical phenomena such as thermal conductivity, superconductivity, and ferroelectricity among others. However, detailed experimental phonon spectra are available only for a limited number of materials, which hinders the large-scale analysis of vibrational properties and their derived quantities. In this work, we perform ab initio calculations of the full phonon dispersion and vibrational density of states for 1521 semiconductor compounds in the harmonic approximation based on density functional perturbation theory. The data is collected along with derived dielectric and thermodynamic properties. We present the procedure used to obtain the results, the details of the provided database and a validation based on the comparison with experimental data.

  17. Perturbation theory for fractional Brownian motion in presence of absorbing boundaries.

    PubMed

    Wiese, Kay Jörg; Majumdar, Satya N; Rosso, Alberto

    2011-06-01

    Fractional Brownian motion is a Gaussian process x(t) with zero mean and two-time correlations (x(t(1))x(t(2)))=D(t(1)(2H)+t(2)(2H)-|t(1)-t(2)|(2H)), where H, with 0perturbation theory around this limit, setting H=1/2+ε, to calculate the scaling function R(+)(y) to first order in ε. We find that R(+)(y) behaves as R(+)(y)~y(ϕ) as y→0 (near the absorbing boundary), while R(+)(y)~y(γ)exp(-y(2)/2) as y→∞, with ϕ=1-4ε+O(ε(2)) and γ=1-2ε+O(ε(2)). Our ε-expansion result confirms the scaling relation ϕ=(1-H)/H proposed in Zoia, Rosso, and Majumdar [Phys. Rev. Lett. 102, 120602 (2009)]. We verify our findings via numerical simulations for H=2/3. The tools developed here are versatile, powerful, and adaptable to different situations.

  18. A Closed-loop Brain Computer Interface to a Virtual Reality Avatar: Gait Adaptation to Visual Kinematic Perturbations

    PubMed Central

    Luu, Trieu Phat; He, Yongtian; Brown, Samuel; Nakagome, Sho; Contreras-Vidal, Jose L.

    2016-01-01

    The control of human bipedal locomotion is of great interest to the field of lower-body brain computer interfaces (BCIs) for rehabilitation of gait. While the feasibility of a closed-loop BCI system for the control of a lower body exoskeleton has been recently shown, multi-day closed-loop neural decoding of human gait in a virtual reality (BCI-VR) environment has yet to be demonstrated. In this study, we propose a real-time closed-loop BCI that decodes lower limb joint angles from scalp electroencephalography (EEG) during treadmill walking to control the walking movements of a virtual avatar. Moreover, virtual kinematic perturbations resulting in asymmetric walking gait patterns of the avatar were also introduced to investigate gait adaptation using the closed-loop BCI-VR system over a period of eight days. Our results demonstrate the feasibility of using a closed-loop BCI to learn to control a walking avatar under normal and altered visuomotor perturbations, which involved cortical adaptations. These findings have implications for the development of BCI-VR systems for gait rehabilitation after stroke and for understanding cortical plasticity induced by a closed-loop BCI system. PMID:27713915

  19. Theory of cosmological perturbations with cuscuton

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boruah, Supranta S.; Kim, Hyung J.; Geshnizjani, Ghazal, E-mail: ssarmabo@uwaterloo.ca, E-mail: h268kim@uwaterloo.ca, E-mail: ggeshniz@uwaterloo.ca

    2017-07-01

    This paper presents the first derivation of the quadratic action for curvature perturbations, ζ, within the framework of cuscuton gravity. We study the scalar cosmological perturbations sourced by a canonical single scalar field in the presence of cuscuton field. We identify ζ as comoving curvature with respect to the source field and we show that it retains its conservation characteristic on super horizon scales. The result provides an explicit proof that cuscuton modification of gravity around Friedmann-Lemaitre-Robertson-Walker (FLRW) metric is ghost free. We also investigate the potential development of other instabilities in cuscuton models. We find that in a largemore » class of these models, there is no generic instability problem. However, depending on the details of slow-roll parameters, specific models may display gradient instabilities.« less

  20. Perturbation Theory for Scattering from Multilayers with Randomly Rough Fractal Interfaces: Remote Sensing Applications.

    PubMed

    Imperatore, Pasquale; Iodice, Antonio; Riccio, Daniele

    2017-12-27

    A general, approximate perturbation method, able to provide closed-form expressions of scattering from a layered structure with an arbitrary number of rough interfaces, has been recently developed. Such a method provides a unique tool for the characterization of radar response patterns of natural rough multilayers. In order to show that, here, for the first time in a journal paper, we describe the application of the developed perturbation theory to fractal interfaces; we then employ the perturbative method solution to analyze the scattering from real-world layered structures of practical interest in remote sensing applications. We focus on the dependence of normalized radar cross section on geometrical and physical properties of the considered scenarios, and we choose two classes of natural stratifications: wet paleosoil covered by a low-loss dry sand layer and a sea-ice layer above water with dry snow cover. Results are in accordance with the experimental evidence available in the literature for the low-loss dry sand layer, and they may provide useful indications about the actual ability of remote sensing instruments to perform sub-surface sensing for different sensor and scene parameters.

  1. Perturbation Theory for Scattering from Multilayers with Randomly Rough Fractal Interfaces: Remote Sensing Applications

    PubMed Central

    2017-01-01

    A general, approximate perturbation method, able to provide closed-form expressions of scattering from a layered structure with an arbitrary number of rough interfaces, has been recently developed. Such a method provides a unique tool for the characterization of radar response patterns of natural rough multilayers. In order to show that, here, for the first time in a journal paper, we describe the application of the developed perturbation theory to fractal interfaces; we then employ the perturbative method solution to analyze the scattering from real-world layered structures of practical interest in remote sensing applications. We focus on the dependence of normalized radar cross section on geometrical and physical properties of the considered scenarios, and we choose two classes of natural stratifications: wet paleosoil covered by a low-loss dry sand layer and a sea-ice layer above water with dry snow cover. Results are in accordance with the experimental evidence available in the literature for the low-loss dry sand layer, and they may provide useful indications about the actual ability of remote sensing instruments to perform sub-surface sensing for different sensor and scene parameters. PMID:29280979

  2. Nuclear magnetic resonance spin-spin coupling constants from coupled perturbed density functional theory

    NASA Astrophysics Data System (ADS)

    Sychrovský, Vladimír; Gräfenstein, Jürgen; Cremer, Dieter

    2000-09-01

    For the first time, a complete implementation of coupled perturbed density functional theory (CPDFT) for the calculation of NMR spin-spin coupling constants (SSCCs) with pure and hybrid DFT is presented. By applying this method to several hydrides, hydrocarbons, and molecules with multiple bonds, the performance of DFT for the calculation of SSCCs is analyzed in dependence of the XC functional used. The importance of electron correlation effects is demonstrated and it is shown that the hybrid functional B3LYP leads to the best accuracy of calculated SSCCs. Also, CPDFT is compared with sum-over-states (SOS) DFT where it turns out that the former method is superior to the latter because it explicitly considers the dependence of the Kohn-Sham operator on the perturbed orbitals in DFT when calculating SSCCs. The four different coupling mechanisms contributing to the SSCC are discussed in connection with the electronic structure of the molecule.

  3. The Kaon B-parameter in mixed action chiral perturbation theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aubin, C.; /Columbia U.; Laiho, Jack

    2006-09-01

    We calculate the kaon B-parameter, B{sub K}, in chiral perturbation theory for a partially quenched, mixed action theory with Ginsparg-Wilson valence quarks and staggered sea quarks. We find that the resulting expression is similar to that in the continuum, and in fact has only two additional unknown parameters. At one-loop order, taste-symmetry violations in the staggered sea sector only contribute to flavor-disconnected diagrams by generating an {Omicron}(a{sup 2}) shift to the masses of taste-singlet sea-sea mesons. Lattice discretization errors also give rise to an analytic term which shifts the tree-level value of B{sub K} by an amount of {Omicron}(a{sup 2}).more » This term, however, is not strictly due to taste-breaking, and is therefore also present in the expression for B{sub K} for pure G-W lattice fermions. We also present a numerical study of the mixed B{sub K} expression in order to demonstrate that both discretization errors and finite volume effects are small and under control on the MILC improved staggered lattices.« less

  4. Eco-evolutionary feedbacks, adaptive dynamics and evolutionary rescue theory

    PubMed Central

    Ferriere, Regis; Legendre, Stéphane

    2013-01-01

    Adaptive dynamics theory has been devised to account for feedbacks between ecological and evolutionary processes. Doing so opens new dimensions to and raises new challenges about evolutionary rescue. Adaptive dynamics theory predicts that successive trait substitutions driven by eco-evolutionary feedbacks can gradually erode population size or growth rate, thus potentially raising the extinction risk. Even a single trait substitution can suffice to degrade population viability drastically at once and cause ‘evolutionary suicide’. In a changing environment, a population may track a viable evolutionary attractor that leads to evolutionary suicide, a phenomenon called ‘evolutionary trapping’. Evolutionary trapping and suicide are commonly observed in adaptive dynamics models in which the smooth variation of traits causes catastrophic changes in ecological state. In the face of trapping and suicide, evolutionary rescue requires that the population overcome evolutionary threats generated by the adaptive process itself. Evolutionary repellors play an important role in determining how variation in environmental conditions correlates with the occurrence of evolutionary trapping and suicide, and what evolutionary pathways rescue may follow. In contrast with standard predictions of evolutionary rescue theory, low genetic variation may attenuate the threat of evolutionary suicide and small population sizes may facilitate escape from evolutionary traps. PMID:23209163

  5. A general theory of linear cosmological perturbations: stability conditions, the quasistatic limit and dynamics

    NASA Astrophysics Data System (ADS)

    Lagos, Macarena; Bellini, Emilio; Noller, Johannes; Ferreira, Pedro G.; Baker, Tessa

    2018-03-01

    We analyse cosmological perturbations around a homogeneous and isotropic background for scalar-tensor, vector-tensor and bimetric theories of gravity. Building on previous results, we propose a unified view of the effective parameters of all these theories. Based on this structure, we explore the viable space of parameters for each family of models by imposing the absence of ghosts and gradient instabilities. We then focus on the quasistatic regime and confirm that all these theories can be approximated by the phenomenological two-parameter model described by an effective Newton's constant and the gravitational slip. Within the quasistatic regime we pinpoint signatures which can distinguish between the broad classes of models (scalar-tensor, vector-tensor or bimetric). Finally, we present the equations of motion for our unified approach in such a way that they can be implemented in Einstein-Boltzmann solvers.

  6. Confinement with Perturbation Theory, After All?

    NASA Astrophysics Data System (ADS)

    Hoyer, Paul

    2015-09-01

    I call attention to the possibility that QCD bound states (hadrons) could be derived using rigorous Hamiltonian, perturbative methods. Solving Gauss' law for A 0 with a non-vanishing boundary condition at spatial infinity gives an linear potential for color singlet and qqq states. These states are Poincaré and gauge covariant and thus can serve as initial states of a perturbative expansion, replacing the conventional free in and out states. The coupling freezes at , allowing reasonable convergence. The bound states have a sea of pairs, while transverse gluons contribute only at . Pair creation in the linear A 0 potential leads to string breaking and hadron loop corrections. These corrections give finite widths to excited states, as required by unitarity. Several of these features have been verified analytically in D = 1 + 1 dimensions, and some in D = 3 + 1.

  7. Lattice dynamics calculations based on density-functional perturbation theory in real space

    NASA Astrophysics Data System (ADS)

    Shang, Honghui; Carbogno, Christian; Rinke, Patrick; Scheffler, Matthias

    2017-06-01

    A real-space formalism for density-functional perturbation theory (DFPT) is derived and applied for the computation of harmonic vibrational properties in molecules and solids. The practical implementation using numeric atom-centered orbitals as basis functions is demonstrated exemplarily for the all-electron Fritz Haber Institute ab initio molecular simulations (FHI-aims) package. The convergence of the calculations with respect to numerical parameters is carefully investigated and a systematic comparison with finite-difference approaches is performed both for finite (molecules) and extended (periodic) systems. Finally, the scaling tests and scalability tests on massively parallel computer systems demonstrate the computational efficiency.

  8. Second-Order Moller-Plesset Perturbation Theory for Molecular Dirac-Hartree-Fock Wave Functions

    NASA Technical Reports Server (NTRS)

    Dyall, Kenneth G.; Arnold, James O. (Technical Monitor)

    1994-01-01

    Moller-Plesset perturbation theory is developed to second order for a selection of Kramers restricted Dirac-Hartree-Fock closed and open-shell reference wave functions. The open-shell wave functions considered are limited to those with no more than two electrons in open shells, but include the case of a two-configuration SCF reference. Denominator shifts are included in the style of Davidson's OPT2 method. An implementation which uses unordered integrals with labels is presented, and results are given for a few test cases.

  9. Direct perturbation theory for the dark soliton solution to the nonlinear Schrödinger equation with normal dispersion.

    PubMed

    Yu, Jia-Lu; Yang, Chun-Nuan; Cai, Hao; Huang, Nian-Ning

    2007-04-01

    After finding the basic solutions of the linearized nonlinear Schrödinger equation by the method of separation of variables, the perturbation theory for the dark soliton solution is constructed by linear Green's function theory. In application to the self-induced Raman scattering, the adiabatic corrections to the soliton's parameters are obtained and the remaining correction term is given as a pure integral with respect to the continuous spectral parameter.

  10. Adaptive Core Simulation Employing Discrete Inverse Theory - Part I: Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdel-Khalik, Hany S.; Turinsky, Paul J.

    2005-07-15

    Use of adaptive simulation is intended to improve the fidelity and robustness of important core attribute predictions such as core power distribution, thermal margins, and core reactivity. Adaptive simulation utilizes a selected set of past and current reactor measurements of reactor observables, i.e., in-core instrumentation readings, to adapt the simulation in a meaningful way. A meaningful adaption will result in high-fidelity and robust adapted core simulator models. To perform adaption, we propose an inverse theory approach in which the multitudes of input data to core simulators, i.e., reactor physics and thermal-hydraulic data, are to be adjusted to improve agreement withmore » measured observables while keeping core simulator models unadapted. At first glance, devising such adaption for typical core simulators with millions of input and observables data would spawn not only several prohibitive challenges but also numerous disparaging concerns. The challenges include the computational burdens of the sensitivity-type calculations required to construct Jacobian operators for the core simulator models. Also, the computational burdens of the uncertainty-type calculations required to estimate the uncertainty information of core simulator input data present a demanding challenge. The concerns however are mainly related to the reliability of the adjusted input data. The methodologies of adaptive simulation are well established in the literature of data adjustment. We adopt the same general framework for data adjustment; however, we refrain from solving the fundamental adjustment equations in a conventional manner. We demonstrate the use of our so-called Efficient Subspace Methods (ESMs) to overcome the computational and storage burdens associated with the core adaption problem. We illustrate the successful use of ESM-based adaptive techniques for a typical boiling water reactor core simulator adaption problem.« less

  11. Predicting Bond Dissociation Energies of Transition-Metal Compounds by Multiconfiguration Pair-Density Functional Theory and Second-Order Perturbation Theory Based on Correlated Participating Orbitals and Separated Pairs.

    PubMed

    Bao, Junwei Lucas; Odoh, Samuel O; Gagliardi, Laura; Truhlar, Donald G

    2017-02-14

    We study the performance of multiconfiguration pair-density functional theory (MC-PDFT) and multireference perturbation theory for the computation of the bond dissociation energies in 12 transition-metal-containing diatomic molecules and three small transition-metal-containing polyatomic molecules and in two transition-metal dimers. The first step is a multiconfiguration self-consistent-field calculation, for which two choices must be made: (i) the active space and (ii) its partition into subspaces, if the generalized active space formulation is used. In the present work, the active space is chosen systematically by using three correlated-participating-orbitals (CPO) schemes, and the partition is chosen by using the separated-pair (SP) approximation. Our calculations show that MC-PDFT generally has similar accuracy to CASPT2, and the active-space dependence of MC-PDFT is not very great for transition-metal-ligand bond dissociation energies. We also find that the SP approximation works very well, and in particular SP with the fully translated BLYP functional SP-ftBLYP is more accurate than CASPT2. SP greatly reduces the number of configuration state functions relative to CASSCF. For the cases of FeO and NiO with extended-CPO active space, for which complete active space calculations are unaffordable, SP calculations are not only affordable but also of satisfactory accuracy. All of the MC-PDFT results are significantly better than the corresponding results with broken-symmetry spin-unrestricted Kohn-Sham density functional theory. Finally we test a perturbation theory method based on the SP reference and find that it performs slightly worse than CASPT2 calculations, and for most cases of the nominal-CPO active space, the approximate SP perturbation theory calculations are less accurate than the much less expensive SP-PDFT calculations.

  12. Ab initio many-body perturbation theory and no-core shell model

    NASA Astrophysics Data System (ADS)

    Hu, B. S.; Wu, Q.; Xu, F. R.

    2017-10-01

    In many-body perturbation theory (MBPT) we always introduce a parameter N shell to measure the maximal allowed major harmonic-oscillator (HO) shells for the single-particle basis, while the no-core shell model (NCSM) uses N maxℏΩ HO excitation truncation above the lowest HO configuration for the many-body basis. It is worth comparing the two different methods. Starting from “bare” and Okubo-Lee-Suzuki renormalized modern nucleon-nucleon interactions, NNLOopt and JISP16, we show that MBPT within Hartree-Fock bases is in reasonable agreement with NCSM within harmonic oscillator bases for 4He and 16O in “close” model space. In addition, we compare the results using “bare” force with the Okubo-Lee-Suzuki renormalized force. Supported by National Key Basic Research Program of China (2013CB834402), National Natural Science Foundation of China (11235001, 11320101004, 11575007) and the CUSTIPEN (China-U.S. Theory Institute for Physics with Exotic Nuclei) funded by the U.S. Department of Energy, Office of Science (DE-SC0009971)

  13. Current distribution in a three-dimensional IC analyzed by a perturbation method. Part 1: A simple steady state theory

    NASA Technical Reports Server (NTRS)

    Edmonds, Larry D.

    1987-01-01

    The steady state current distribution in a three dimensional integrated circuit is presented. A device physics approach, based on a perturbation method rather than an equivalent lumped circuit approach, is used. The perturbation method allows the various currents to be expressed in terms of elementary solutions which are solutions to very simple boundary value problems. A Simple Steady State Theory is the subtitle because the most obvious limitation of the present version of the analysis is that all depletion region boundary surfaces are treated as equipotential surfaces. This may be an adequate approximation in some applications but it is an obvious weakness in the theory when applied to latched states. Examples that illustrate the use of these analytical methods are not given because they will be presented in detail in the future.

  14. Soliton Perturbation Theory for Dispersion-Managed Optical Fibers

    NASA Astrophysics Data System (ADS)

    Kohl, Russell; Milovic, Daniela; Zerrad, Essaid; Biswas, Anjan

    This paper studies the propagation of solitons through optical fibers with dispersion management. The adiabatic variation of the soliton parameters, due to the presence of perturbation terms, is obtained. The dynamics is studied for the case of polarization-preserving fibers, while the types of pulses that are considered here are Gaussian, super-Gaussian and supersech. The perturbation terms that are taken into consideration are both local and nonlocal.

  15. Bosonic Loop Diagrams as Perturbative Solutions of the Classical Field Equations in ϕ4-Theory

    NASA Astrophysics Data System (ADS)

    Finster, Felix; Tolksdorf, Jürgen

    2012-05-01

    Solutions of the classical ϕ4-theory in Minkowski space-time are analyzed in a perturbation expansion in the nonlinearity. Using the language of Feynman diagrams, the solution of the Cauchy problem is expressed in terms of tree diagrams which involve the retarded Green's function and have one outgoing leg. In order to obtain general tree diagrams, we set up a "classical measurement process" in which a virtual observer of a scattering experiment modifies the field and detects suitable energy differences. By adding a classical stochastic background field, we even obtain all loop diagrams. The expansions are compared with the standard Feynman diagrams of the corresponding quantum field theory.

  16. Probing the electronic structure of liquid water with many-body perturbation theory

    NASA Astrophysics Data System (ADS)

    Pham, Tuan Anh; Zhang, Cui; Schwegler, Eric; Galli, Giulia

    2014-03-01

    We present a first-principles investigation of the electronic structure of liquid water based on many-body perturbation theory (MBPT), within the G0W0 approximation. The liquid quasiparticle band gap and the position of its valence band maximum and conduction band minimum with respect to vacuum were computed and it is shown that the use of MBPT is crucial to obtain results that are in good agreement with experiment. We found that the level of theory chosen to generate molecular dynamics trajectories may substantially affect the electronic structure of the liquid, in particular, the relative position of its band edges and redox potentials. Our results represent an essential step in establishing a predictive framework for computing the relative position of water redox potentials and the band edges of semiconductors and insulators. Work supported by DOE/BES (Grant No. DE-SC0008938). Work at LLNL was performed under Contract DE-AC52-07NA27344.

  17. A proposed adaptive step size perturbation and observation maximum power point tracking algorithm based on photovoltaic system modeling

    NASA Astrophysics Data System (ADS)

    Huang, Yu

    Solar energy becomes one of the major alternative renewable energy options for its huge abundance and accessibility. Due to the intermittent nature, the high demand of Maximum Power Point Tracking (MPPT) techniques exists when a Photovoltaic (PV) system is used to extract energy from the sunlight. This thesis proposed an advanced Perturbation and Observation (P&O) algorithm aiming for relatively practical circumstances. Firstly, a practical PV system model is studied with determining the series and shunt resistances which are neglected in some research. Moreover, in this proposed algorithm, the duty ratio of a boost DC-DC converter is the object of the perturbation deploying input impedance conversion to achieve working voltage adjustment. Based on the control strategy, the adaptive duty ratio step size P&O algorithm is proposed with major modifications made for sharp insolation change as well as low insolation scenarios. Matlab/Simulink simulation for PV model, boost converter control strategy and various MPPT process is conducted step by step. The proposed adaptive P&O algorithm is validated by the simulation results and detail analysis of sharp insolation changes, low insolation condition and continuous insolation variation.

  18. Variational Perturbation Treatment of the Confined Hydrogen Atom

    ERIC Educational Resources Information Center

    Montgomery, H. E., Jr.

    2011-01-01

    The Schrodinger equation for the ground state of a hydrogen atom confined at the centre of an impenetrable cavity is treated using variational perturbation theory. Energies calculated from variational perturbation theory are comparable in accuracy to the results from a direct numerical solution. The goal of this exercise is to introduce the…

  19. Future planning and evaluation for automated adaptive minehunting: a roadmap for mine countermeasures theory modernization

    NASA Astrophysics Data System (ADS)

    Garcia, Gregory A.; Wettergren, Thomas A.

    2012-06-01

    This paper presents a discussion of U.S. naval mine countermeasures (MCM) theory modernization in light of advances in the areas of autonomy, tactics, and sensor processing. The unifying theme spanning these research areas concerns the capability for in situ adaptation of processing algorithms, plans, and vehicle behaviors enabled through run-time situation assessment and performance estimation. Independently, each of these technology developments impact the MCM Measures of Effectiveness1 [MOE(s)] of time and risk by improving one or more associated Measures of Performance2 [MOP(s)]; the contribution of this paper is to outline an integrated strategy for realizing the cumulative benefits of these technology enablers to the United States Navy's minehunting capability. An introduction to the MCM problem is provided to frame the importance of the foundational research and the ramifications of the proposed strategy on the MIW community. We then include an overview of current and future adaptive capability research in the aforementioned areas, highlighting a departure from the existing rigid assumption-based approaches while identifying anticipated technology acceptance issues. Consequently, the paper describes an incremental strategy for transitioning from the current minehunting paradigm where tactical decision aids rely on a priori intelligence and there is little to no in situ adaptation or feedback to a future vision where unmanned systems3, equipped with a representation of the commander's intent, are afforded the authority and ability to adapt to environmental perturbations with minimal human-in-the-loop supervision. The discussion concludes with an articulation of the science and technology issues which the MCM research community must continue to address.

  20. Thermodynamic perturbation theory for fused sphere hard chain fluids using nonadditive interactions

    NASA Astrophysics Data System (ADS)

    Abu-Sharkh, Basel F.; Sunaidi, Abdallah; Hamad, Esam Z.

    2004-03-01

    A model is developed for the equation of state of fused chains based on Wertheim thermodynamic perturbation theory and nonadditive size interactions. The model also assumes that the structure (represented by the radial distribution function) of the fused chain fluid is the same as that of the touching hard sphere chain fluid. The model is completely based on spherical additive and nonadditive size interactions. The model has the advantage of offering good agreement with simulation data while at the same time being independent of fitted parameters. The model is most accurate for short chains, small values of Δ (slightly fused spheres) and at intermediate (liquidlike) densities.

  1. Determination of partial molar volumes from free energy perturbation theory.

    PubMed

    Vilseck, Jonah Z; Tirado-Rives, Julian; Jorgensen, William L

    2015-04-07

    Partial molar volume is an important thermodynamic property that gives insights into molecular size and intermolecular interactions in solution. Theoretical frameworks for determining the partial molar volume (V°) of a solvated molecule generally apply Scaled Particle Theory or Kirkwood-Buff theory. With the current abilities to perform long molecular dynamics and Monte Carlo simulations, more direct methods are gaining popularity, such as computing V° directly as the difference in computed volume from two simulations, one with a solute present and another without. Thermodynamically, V° can also be determined as the pressure derivative of the free energy of solvation in the limit of infinite dilution. Both approaches are considered herein with the use of free energy perturbation (FEP) calculations to compute the necessary free energies of solvation at elevated pressures. Absolute and relative partial molar volumes are computed for benzene and benzene derivatives using the OPLS-AA force field. The mean unsigned error for all molecules is 2.8 cm(3) mol(-1). The present methodology should find use in many contexts such as the development and testing of force fields for use in computer simulations of organic and biomolecular systems, as a complement to related experimental studies, and to develop a deeper understanding of solute-solvent interactions.

  2. Adaptive control for a class of nonlinear complex dynamical systems with uncertain complex parameters and perturbations.

    PubMed

    Liu, Jian; Liu, Kexin; Liu, Shutang

    2017-01-01

    In this paper, adaptive control is extended from real space to complex space, resulting in a new control scheme for a class of n-dimensional time-dependent strict-feedback complex-variable chaotic (hyperchaotic) systems (CVCSs) in the presence of uncertain complex parameters and perturbations, which has not been previously reported in the literature. In detail, we have developed a unified framework for designing the adaptive complex scalar controller to ensure this type of CVCSs asymptotically stable and for selecting complex update laws to estimate unknown complex parameters. In particular, combining Lyapunov functions dependent on complex-valued vectors and back-stepping technique, sufficient criteria on stabilization of CVCSs are derived in the sense of Wirtinger calculus in complex space. Finally, numerical simulation is presented to validate our theoretical results.

  3. Adaptive control for a class of nonlinear complex dynamical systems with uncertain complex parameters and perturbations

    PubMed Central

    Liu, Jian; Liu, Kexin; Liu, Shutang

    2017-01-01

    In this paper, adaptive control is extended from real space to complex space, resulting in a new control scheme for a class of n-dimensional time-dependent strict-feedback complex-variable chaotic (hyperchaotic) systems (CVCSs) in the presence of uncertain complex parameters and perturbations, which has not been previously reported in the literature. In detail, we have developed a unified framework for designing the adaptive complex scalar controller to ensure this type of CVCSs asymptotically stable and for selecting complex update laws to estimate unknown complex parameters. In particular, combining Lyapunov functions dependent on complex-valued vectors and back-stepping technique, sufficient criteria on stabilization of CVCSs are derived in the sense of Wirtinger calculus in complex space. Finally, numerical simulation is presented to validate our theoretical results. PMID:28467431

  4. Application of functional analysis to perturbation theory of differential equations. [nonlinear perturbation of the harmonic oscillator

    NASA Technical Reports Server (NTRS)

    Bogdan, V. M.; Bond, V. B.

    1980-01-01

    The deviation of the solution of the differential equation y' = f(t, y), y(O) = y sub O from the solution of the perturbed system z' = f(t, z) + g(t, z), z(O) = z sub O was investigated for the case where f and g are continuous functions on I x R sup n into R sup n, where I = (o, a) or I = (o, infinity). These functions are assumed to satisfy the Lipschitz condition in the variable z. The space Lip(I) of all such functions with suitable norms forms a Banach space. By introducing a suitable norm in the space of continuous functions C(I), introducing the problem can be reduced to an equivalent problem in terminology of operators in such spaces. A theorem on existence and uniqueness of the solution is presented by means of Banach space technique. Norm estimates on the rate of growth of such solutions are found. As a consequence, estimates of deviation of a solution due to perturbation are obtained. Continuity of the solution on the initial data and on the perturbation is established. A nonlinear perturbation of the harmonic oscillator is considered a perturbation of equations of the restricted three body problem linearized at libration point.

  5. Growth of matter perturbation in quintessence cosmology

    NASA Astrophysics Data System (ADS)

    Mulki, Fargiza A. M.; Wulandari, Hesti R. T.

    2017-01-01

    Big bang theory states that universe emerged from singularity with very high temperature and density, then expands homogeneously and isotropically. This theory gives rise standard cosmological principle which declares that universe is homogeneous and isotropic on large scales. However, universe is not perfectly homogeneous and isotropic on small scales. There exist structures starting from clusters, galaxies even to stars and planetary system scales. Cosmological perturbation theory is a fundamental theory that explains the origin of structures. According to this theory, the structures can be regarded as small perturbations in the early universe, which evolves as the universe expands. In addition to the problem of inhomogeneities of the universe, observations of supernovae Ia suggest that our universe is being accelerated. Various models of dark energy have been proposed to explain cosmic acceleration, one of them is cosmological constant. Because of several problems arise from cosmological constant, the alternative models have been proposed, one of these models is quintessence. We reconstruct growth of structure model following quintessence scenario at several epochs of the universe, which is specified by the effective equation of state parameters for each stage. Discussion begins with the dynamics of quintessence, in which exponential potential is analytically derived, which leads to various conditions of the universe. We then focus on scaling and quintessence dominated solutions. Subsequently, we review the basics of cosmological perturbation theory and derive formulas to investigate how matter perturbation evolves with time in subhorizon scales which leads to structure formation, and also analyze the influence of quintessence to the structure formation. From analytical exploration, we obtain the growth rate of matter perturbation and the existence of quintessence as a dark energy that slows down the growth of structure formation of the universe.

  6. Adaptive capacity of geographical clusters: Complexity science and network theory approach

    NASA Astrophysics Data System (ADS)

    Albino, Vito; Carbonara, Nunzia; Giannoccaro, Ilaria

    This paper deals with the adaptive capacity of geographical clusters (GCs), that is a relevant topic in the literature. To address this topic, GC is considered as a complex adaptive system (CAS). Three theoretical propositions concerning the GC adaptive capacity are formulated by using complexity theory. First, we identify three main properties of CAS s that affect the adaptive capacity, namely the interconnectivity, the heterogeneity, and the level of control, and define how the value of these properties influence the adaptive capacity. Then, we associate these properties with specific GC characteristics so obtaining the key conditions of GCs that give them the adaptive capacity so assuring their competitive advantage. To test these theoretical propositions, a case study on two real GCs is carried out. The considered GCs are modeled as networks where firms are nodes and inter-firms relationships are links. Heterogeneity, interconnectivity, and level of control are considered as network properties and thus measured by using the methods of the network theory.

  7. Locally adapted fish populations maintain small-scale genetic differentiation despite perturbation by a catastrophic flood event

    PubMed Central

    2010-01-01

    Background Local adaptation to divergent environmental conditions can promote population genetic differentiation even in the absence of geographic barriers and hence, lead to speciation. Perturbations by catastrophic events, however, can distort such parapatric ecological speciation processes. Here, we asked whether an exceptionally strong flood led to homogenization of gene pools among locally adapted populations of the Atlantic molly (Poecilia mexicana, Poeciliidae) in the Cueva del Azufre system in southern Mexico, where two strong environmental selection factors (darkness within caves and/or presence of toxic H2S in sulfidic springs) drive the diversification of P. mexicana. Nine nuclear microsatellites as well as heritable female life history traits (both as a proxy for quantitative genetics and for trait divergence) were used as markers to compare genetic differentiation, genetic diversity, and especially population mixing (immigration and emigration) before and after the flood. Results Habitat type (i.e., non-sulfidic surface, sulfidic surface, or sulfidic cave), but not geographic distance was the major predictor of genetic differentiation. Before and after the flood, each habitat type harbored a genetically distinct population. Only a weak signal of individual dislocation among ecologically divergent habitat types was uncovered (with the exception of slightly increased dislocation from the Cueva del Azufre into the sulfidic creek, El Azufre). By contrast, several lines of evidence are indicative of increased flood-induced dislocation within the same habitat type, e.g., between different cave chambers of the Cueva del Azufre. Conclusions The virtual absence of individual dislocation among ecologically different habitat types indicates strong natural selection against migrants. Thus, our current study exemplifies that ecological speciation in this and other systems, in which extreme environmental factors drive speciation, may be little affected by temporary

  8. Locally adapted fish populations maintain small-scale genetic differentiation despite perturbation by a catastrophic flood event.

    PubMed

    Plath, Martin; Hermann, Bernd; Schröder, Christiane; Riesch, Rüdiger; Tobler, Michael; García de León, Francisco J; Schlupp, Ingo; Tiedemann, Ralph

    2010-08-23

    Local adaptation to divergent environmental conditions can promote population genetic differentiation even in the absence of geographic barriers and hence, lead to speciation. Perturbations by catastrophic events, however, can distort such parapatric ecological speciation processes. Here, we asked whether an exceptionally strong flood led to homogenization of gene pools among locally adapted populations of the Atlantic molly (Poecilia mexicana, Poeciliidae) in the Cueva del Azufre system in southern Mexico, where two strong environmental selection factors (darkness within caves and/or presence of toxic H2S in sulfidic springs) drive the diversification of P. mexicana. Nine nuclear microsatellites as well as heritable female life history traits (both as a proxy for quantitative genetics and for trait divergence) were used as markers to compare genetic differentiation, genetic diversity, and especially population mixing (immigration and emigration) before and after the flood. Habitat type (i.e., non-sulfidic surface, sulfidic surface, or sulfidic cave), but not geographic distance was the major predictor of genetic differentiation. Before and after the flood, each habitat type harbored a genetically distinct population. Only a weak signal of individual dislocation among ecologically divergent habitat types was uncovered (with the exception of slightly increased dislocation from the Cueva del Azufre into the sulfidic creek, El Azufre). By contrast, several lines of evidence are indicative of increased flood-induced dislocation within the same habitat type, e.g., between different cave chambers of the Cueva del Azufre. The virtual absence of individual dislocation among ecologically different habitat types indicates strong natural selection against migrants. Thus, our current study exemplifies that ecological speciation in this and other systems, in which extreme environmental factors drive speciation, may be little affected by temporary perturbations, as adaptations

  9. Nonlinear adaptive networks: A little theory, a few applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, R.D.; Qian, S.; Barnes, C.W.

    1990-01-01

    We present the theory of nonlinear adaptive networks and discuss a few applications. In particular, we review the theory of feedforward backpropagation networks. We than present the theory of the Connectionist Normalized Linear Spline network in both its feedforward and iterated modes. Also, we briefly discuss the theory of stochastic cellular automata. We then discuss applications to chaotic time series tidal prediction in Venice Lagoon, sonar transient detection, control of nonlinear processes, balancing a double inverted pendulum and design advice for free electron lasers. 26 refs., 23 figs.

  10. Reliable prediction of three-body intermolecular interactions using dispersion-corrected second-order Møller-Plesset perturbation theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Yuanhang; Beran, Gregory J. O., E-mail: gregory.beran@ucr.edu

    2015-07-28

    Three-body and higher intermolecular interactions can play an important role in molecular condensed phases. Recent benchmark calculations found problematic behavior for many widely used density functional approximations in treating 3-body intermolecular interactions. Here, we demonstrate that the combination of second-order Møller-Plesset (MP2) perturbation theory plus short-range damped Axilrod-Teller-Muto (ATM) dispersion accurately describes 3-body interactions with reasonable computational cost. The empirical damping function used in the ATM dispersion term compensates both for the absence of higher-order dispersion contributions beyond the triple-dipole ATM term and non-additive short-range exchange terms which arise in third-order perturbation theory and beyond. Empirical damping enables this simplemore » model to out-perform a non-expanded coupled Kohn-Sham dispersion correction for 3-body intermolecular dispersion. The MP2 plus ATM dispersion model approaches the accuracy of O(N{sup 6}) methods like MP2.5 or even spin-component-scaled coupled cluster models for 3-body intermolecular interactions with only O(N{sup 5}) computational cost.« less

  11. Baryon chiral perturbation theory combined with the 1 /Nc expansion in SU(3): Framework

    NASA Astrophysics Data System (ADS)

    Fernando, I. P.; Goity, J. L.

    2018-03-01

    Baryon chiral perturbation theory combined with the 1 /Nc expansion is implemented for three flavors. Baryon masses, vector charges and axial vector couplings are studied to one-loop and organized according to the ξ -expansion, in which the 1 /Nc and the low-energy power countings are linked according to 1 /Nc=O (ξ )=O (p ). The renormalization to O (ξ3) necessary for the mentioned observables is provided, along with applications to the baryon masses and axial couplings as obtained in lattice QCD calculations.

  12. Cosmological perturbation theory using the FFTLog: formalism and connection to QFT loop integrals

    NASA Astrophysics Data System (ADS)

    Simonović, Marko; Baldauf, Tobias; Zaldarriaga, Matias; Carrasco, John Joseph; Kollmeier, Juna A.

    2018-04-01

    We present a new method for calculating loops in cosmological perturbation theory. This method is based on approximating a ΛCDM-like cosmology as a finite sum of complex power-law universes. The decomposition is naturally achieved using an FFTLog algorithm. For power-law cosmologies, all loop integrals are formally equivalent to loop integrals of massless quantum field theory. These integrals have analytic solutions in terms of generalized hypergeometric functions. We provide explicit formulae for the one-loop and the two-loop power spectrum and the one-loop bispectrum. A chief advantage of our approach is that the difficult part of the calculation is cosmology independent, need be done only once, and can be recycled for any relevant predictions. Evaluation of standard loop diagrams then boils down to a simple matrix multiplication. We demonstrate the promise of this method for applications to higher multiplicity/loop correlation functions.

  13. Elastic pion-nucleon scattering in chiral perturbation theory: A fresh look

    NASA Astrophysics Data System (ADS)

    Siemens, D.; Bernard, V.; Epelbaum, E.; Gasparyan, A.; Krebs, H.; Meißner, Ulf-G.

    2016-07-01

    Elastic pion-nucleon scattering is analyzed in the framework of chiral perturbation theory up to fourth order within the heavy-baryon expansion and a covariant approach based on an extended on-mass-shell renormalization scheme. We discuss in detail the renormalization of the various low-energy constants and provide explicit expressions for the relevant β functions and the finite subtractions of the power-counting breaking terms within the covariant formulation. To estimate the theoretical uncertainty from the truncation of the chiral expansion, we employ an approach which has been successfully applied in the most recent analysis of the nuclear forces. This allows us to reliably extract the relevant low-energy constants from the available scattering data at low energy. The obtained results provide clear evidence that the breakdown scale of the chiral expansion for this reaction is related to the Δ resonance. The explicit inclusion of the leading contributions of the Δ isobar is demonstrated to substantially increase the range of applicability of the effective field theory. The resulting predictions for the phase shifts are in an excellent agreement with the predictions from the recent Roy-Steiner-equation analysis of pion-nucleon scattering.

  14. Physical results from 2+1 flavor domain wall QCD and SU(2) chiral perturbation theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allton, C.; Antonio, D. J.; Boyle, P. A.

    2008-12-01

    We have simulated QCD using 2+1 flavors of domain wall quarks and the Iwasaki gauge action on a (2.74 fm){sup 3} volume with an inverse lattice scale of a{sup -1}=1.729(28) GeV. The up and down (light) quarks are degenerate in our calculations and we have used four values for the ratio of light quark masses to the strange (heavy) quark mass in our simulations: 0.217, 0.350, 0.617, and 0.884. We have measured pseudoscalar meson masses and decay constants, the kaon bag parameter B{sub K}, and vector meson couplings. We have used SU(2) chiral perturbation theory, which assumes only the upmore » and down quark masses are small, and SU(3) chiral perturbation theory to extrapolate to the physical values for the light quark masses. While next-to-leading order formulas from both approaches fit our data for light quarks, we find the higher-order corrections for SU(3) very large, making such fits unreliable. We also find that SU(3) does not fit our data when the quark masses are near the physical strange quark mass. Thus, we rely on SU(2) chiral perturbation theory for accurate results. We use the masses of the {omega} baryon, and the {pi} and K mesons to set the lattice scale and determine the quark masses. We then find f{sub {pi}}=124.1(3.6){sub stat}(6.9){sub syst} MeV, f{sub K}=149.6(3.6){sub stat}(6.3){sub syst} MeV, and f{sub K}/f{sub {pi}}=1.205(0.018){sub stat}(0.062){sub syst}. Using nonperturbative renormalization to relate lattice regularized quark masses to regularization independent momentum scheme masses, and perturbation theory to relate these to MS, we find m{sub ud}{sup MS}(2 GeV)=3.72(0.16){sub stat}(0.33){sub ren}(0.18){sub syst} MeV, m{sub s}{sup MS}(2 GeV)=107.3(4.4){sub stat}(9.7){sub ren}(4.9){sub syst} MeV, and m-tilde{sub ud} ratio m-tilde{sub s}=1 ratio 28.8(0.4){sub stat}(1.6){sub syst}. For the kaon bag parameter, we find B{sub K}{sup MS}(2 GeV)=0.524(0.010){sub stat}(0.013){sub ren}(0.025){sub syst}. Finally, for the ratios of the couplings of

  15. Feynman perturbation expansion for the price of coupon bond options and swaptions in quantum finance. I. Theory

    NASA Astrophysics Data System (ADS)

    Baaquie, Belal E.

    2007-01-01

    European options on coupon bonds are studied in a quantum field theory model of forward interest rates. Swaptions are briefly reviewed. An approximation scheme for the coupon bond option price is developed based on the fact that the volatility of the forward interest rates is a small quantity. The field theory for the forward interest rates is Gaussian, but when the payoff function for the coupon bond option is included it makes the field theory nonlocal and nonlinear. A perturbation expansion using Feynman diagrams gives a closed form approximation for the price of coupon bond option. A special case of the approximate bond option is shown to yield the industry standard one-factor HJM formula with exponential volatility.

  16. Feynman perturbation expansion for the price of coupon bond options and swaptions in quantum finance. I. Theory.

    PubMed

    Baaquie, Belal E

    2007-01-01

    European options on coupon bonds are studied in a quantum field theory model of forward interest rates. Swaptions are briefly reviewed. An approximation scheme for the coupon bond option price is developed based on the fact that the volatility of the forward interest rates is a small quantity. The field theory for the forward interest rates is Gaussian, but when the payoff function for the coupon bond option is included it makes the field theory nonlocal and nonlinear. A perturbation expansion using Feynman diagrams gives a closed form approximation for the price of coupon bond option. A special case of the approximate bond option is shown to yield the industry standard one-factor HJM formula with exponential volatility.

  17. Bond breaking and bond formation: how electron correlation is captured in many-body perturbation theory and density-functional theory.

    PubMed

    Caruso, Fabio; Rohr, Daniel R; Hellgren, Maria; Ren, Xinguo; Rinke, Patrick; Rubio, Angel; Scheffler, Matthias

    2013-04-05

    For the paradigmatic case of H(2) dissociation, we compare state-of-the-art many-body perturbation theory in the GW approximation and density-functional theory in the exact-exchange plus random-phase approximation (RPA) for the correlation energy. For an unbiased comparison and to prevent spurious starting point effects, both approaches are iterated to full self-consistency (i.e., sc-RPA and sc-GW). The exchange-correlation diagrams in both approaches are topologically identical, but in sc-RPA they are evaluated with noninteracting and in sc-GW with interacting Green functions. This has a profound consequence for the dissociation region, where sc-RPA is superior to sc-GW. We argue that for a given diagrammatic expansion, sc-RPA outperforms sc-GW when it comes to bond breaking. We attribute this to the difference in the correlation energy rather than the treatment of the kinetic energy.

  18. A study of the application of singular perturbation theory. [development of a real time algorithm for optimal three dimensional aircraft maneuvers

    NASA Technical Reports Server (NTRS)

    Mehra, R. K.; Washburn, R. B.; Sajan, S.; Carroll, J. V.

    1979-01-01

    A hierarchical real time algorithm for optimal three dimensional control of aircraft is described. Systematic methods are developed for real time computation of nonlinear feedback controls by means of singular perturbation theory. The results are applied to a six state, three control variable, point mass model of an F-4 aircraft. Nonlinear feedback laws are presented for computing the optimal control of throttle, bank angle, and angle of attack. Real Time capability is assessed on a TI 9900 microcomputer. The breakdown of the singular perturbation approximation near the terminal point is examined Continuation methods are examined to obtain exact optimal trajectories starting from the singular perturbation solutions.

  19. On bifurcation delay: An alternative approach using Geometric Singular Perturbation Theory

    NASA Astrophysics Data System (ADS)

    Hsu, Ting-Hao

    2017-02-01

    To explain the phenomenon of bifurcation delay, which occurs in planar systems of the form x ˙ = ɛf (x , z , ɛ), z ˙ = g (x , z , ɛ) z, where f (x , 0 , 0) > 0 and g (x , 0 , 0) changes sign at least once on the x-axis, we use the Exchange Lemma in Geometric Singular Perturbation Theory to track the limiting behavior of the solutions. Using the trick of extending dimension to overcome the degeneracy at the turning point, we show that the limiting attracting and repulsion points are given by the well-known entry-exit function, and the minimum of z on the trajectory is of order exp ⁡ (- 1 / ɛ). Also we prove smoothness of the return map up to arbitrary finite order in ɛ.

  20. Phase behaviour of the symmetric binary mixture from thermodynamic perturbation theory.

    PubMed

    Dorsaz, N; Foffi, G

    2010-03-17

    We study the phase behaviour of symmetric binary mixtures of hard core Yukawa (HCY) particles via thermodynamic perturbation theory (TPT). We show that all the topologies of phase diagram reported for the symmetric binary mixtures are correctly reproduced within the TPT approach. In a second step we use the capability of TPT to be straightforwardly extended to mixtures that are nonsymmetric in size. Starting from mixtures that belong to the different topologies of symmetric binary mixtures we investigate the effect on the phase behaviour when an asymmetry in the diameters of the two components is introduced. Interestingly, when the energy of interaction between unlike particles is weaker than the interaction between like particles, the propensity for the solution to demix is found to increase strongly with size asymmetry.

  1. The time-resolved photoelectron spectrum of toluene using a perturbation theory approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richings, Gareth W.; Worth, Graham A., E-mail: g.a.worth@bham.ac.uk

    A theoretical study of the intra-molecular vibrational-energy redistribution of toluene using time-resolved photo-electron spectra calculated using nuclear quantum dynamics and a simple, two-mode model is presented. Calculations have been carried out using the multi-configuration time-dependent Hartree method, using three levels of approximation for the calculation of the spectra. The first is a full quantum dynamics simulation with a discretisation of the continuum wavefunction of the ejected electron, whilst the second uses first-order perturbation theory to calculate the wavefunction of the ion. Both methods rely on the explicit inclusion of both the pump and probe laser pulses. The third method includesmore » only the pump pulse and generates the photo-electron spectrum by projection of the pumped wavepacket onto the ion potential energy surface, followed by evaluation of the Fourier transform of the autocorrelation function of the subsequently propagated wavepacket. The calculations performed have been used to study the periodic population flow between the 6a and 10b16b modes in the S{sub 1} excited state, and compared to recent experimental data. We obtain results in excellent agreement with the experiment and note the efficiency of the perturbation method.« less

  2. Computerized Adaptive Test (CAT) Applications and Item Response Theory Models for Polytomous Items

    ERIC Educational Resources Information Center

    Aybek, Eren Can; Demirtasli, R. Nukhet

    2017-01-01

    This article aims to provide a theoretical framework for computerized adaptive tests (CAT) and item response theory models for polytomous items. Besides that, it aims to introduce the simulation and live CAT software to the related researchers. Computerized adaptive test algorithm, assumptions of item response theory models, nominal response…

  3. Analysis of a renormalization group method and normal form theory for perturbed ordinary differential equations

    NASA Astrophysics Data System (ADS)

    DeVille, R. E. Lee; Harkin, Anthony; Holzer, Matt; Josić, Krešimir; Kaper, Tasso J.

    2008-06-01

    For singular perturbation problems, the renormalization group (RG) method of Chen, Goldenfeld, and Oono [Phys. Rev. E. 49 (1994) 4502-4511] has been shown to be an effective general approach for deriving reduced or amplitude equations that govern the long time dynamics of the system. It has been applied to a variety of problems traditionally analyzed using disparate methods, including the method of multiple scales, boundary layer theory, the WKBJ method, the Poincaré-Lindstedt method, the method of averaging, and others. In this article, we show how the RG method may be used to generate normal forms for large classes of ordinary differential equations. First, we apply the RG method to systems with autonomous perturbations, and we show that the reduced or amplitude equations generated by the RG method are equivalent to the classical Poincaré-Birkhoff normal forms for these systems up to and including terms of O(ɛ2), where ɛ is the perturbation parameter. This analysis establishes our approach and generalizes to higher order. Second, we apply the RG method to systems with nonautonomous perturbations, and we show that the reduced or amplitude equations so generated constitute time-asymptotic normal forms, which are based on KBM averages. Moreover, for both classes of problems, we show that the main coordinate changes are equivalent, up to translations between the spaces in which they are defined. In this manner, our results show that the RG method offers a new approach for deriving normal forms for nonautonomous systems, and it offers advantages since one can typically more readily identify resonant terms from naive perturbation expansions than from the nonautonomous vector fields themselves. Finally, we establish how well the solution to the RG equations approximates the solution of the original equations on time scales of O(1/ɛ).

  4. Questions regarding the predictive value of one evolved complex adaptive system for a second: exemplified by the SOD1 mouse.

    PubMed

    Greek, Ray; Hansen, Lawrence A

    2013-11-01

    We surveyed the scientific literature regarding amyotrophic lateral sclerosis, the SOD1 mouse model, complex adaptive systems, evolution, drug development, animal models, and philosophy of science in an attempt to analyze the SOD1 mouse model of amyotrophic lateral sclerosis in the context of evolved complex adaptive systems. Humans and animals are examples of evolved complex adaptive systems. It is difficult to predict the outcome from perturbations to such systems because of the characteristics of complex systems. Modeling even one complex adaptive system in order to predict outcomes from perturbations is difficult. Predicting outcomes to one evolved complex adaptive system based on outcomes from a second, especially when the perturbation occurs at higher levels of organization, is even more problematic. Using animal models to predict human outcomes to perturbations such as disease and drugs should have a very low predictive value. We present empirical evidence confirming this and suggest a theory to explain this phenomenon. We analyze the SOD1 mouse model of amyotrophic lateral sclerosis in order to illustrate this position. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. molgw 1: Many-body perturbation theory software for atoms, molecules, and clusters

    DOE PAGES

    Bruneval, Fabien; Rangel, Tonatiuh; Hamed, Samia M.; ...

    2016-07-12

    Here, we summarize the MOLGW code that implements density-functional theory and many-body perturbation theory in a Gaussian basis set. The code is dedicated to the calculation of the many-body self-energy within the GW approximation and the solution of the Bethe–Salpeter equation. These two types of calculations allow the user to evaluate physical quantities that can be compared to spectroscopic experiments. Quasiparticle energies, obtained through the calculation of the GW self-energy, can be compared to photoemission or transport experiments, and neutral excitation energies and oscillator strengths, obtained via solution of the Bethe–Salpeter equation, are measurable by optical absorption. The implementation choicesmore » outlined here have aimed at the accuracy and robustness of calculated quantities with respect to measurements. Furthermore, the algorithms implemented in MOLGW allow users to consider molecules or clusters containing up to 100 atoms with rather accurate basis sets, and to choose whether or not to apply the resolution-of-the-identity approximation. Finally, we demonstrate the parallelization efficacy of the MOLGW code over several hundreds of processors.« less

  6. Sum-over-states density functional perturbation theory: Prediction of reliable 13C, 15N, and 17O nuclear magnetic resonance chemical shifts

    NASA Astrophysics Data System (ADS)

    Olsson, Lars; Cremer, Dieter

    1996-11-01

    Sum-over-states density functional perturbation theory (SOS-DFPT) has been used to calculate 13C, 15N, and 17O NMR chemical shifts of 20 molecules, for which accurate experimental gas-phase values are available. Compared to Hartree-Fock (HF), SOS-DFPT leads to improved chemical shift values and approaches the degree of accuracy obtained with second order Møller-Plesset perturbation theory (MP2). This is particularly true in the case of 15N chemical shifts where SOS-DFPT performs even better than MP2. Additional improvements of SOS-DFPT chemical shifts can be obtained by empirically correcting diamagnetic and paramagnetic contributions to compensate for deficiencies which are typical of DFT.

  7. Analytical energy gradients for explicitly correlated wave functions. I. Explicitly correlated second-order Møller-Plesset perturbation theory

    NASA Astrophysics Data System (ADS)

    Győrffy, Werner; Knizia, Gerald; Werner, Hans-Joachim

    2017-12-01

    We present the theory and algorithms for computing analytical energy gradients for explicitly correlated second-order Møller-Plesset perturbation theory (MP2-F12). The main difficulty in F12 gradient theory arises from the large number of two-electron integrals for which effective two-body density matrices and integral derivatives need to be calculated. For efficiency, the density fitting approximation is used for evaluating all two-electron integrals and their derivatives. The accuracies of various previously proposed MP2-F12 approximations [3C, 3C(HY1), 3*C(HY1), and 3*A] are demonstrated by computing equilibrium geometries for a set of molecules containing first- and second-row elements, using double-ζ to quintuple-ζ basis sets. Generally, the convergence of the bond lengths and angles with respect to the basis set size is strongly improved by the F12 treatment, and augmented triple-ζ basis sets are sufficient to closely approach the basis set limit. The results obtained with the different approximations differ only very slightly. This paper is the first step towards analytical gradients for coupled-cluster singles and doubles with perturbative treatment of triple excitations, which will be presented in the second part of this series.

  8. Double power series method for approximating cosmological perturbations

    NASA Astrophysics Data System (ADS)

    Wren, Andrew J.; Malik, Karim A.

    2017-04-01

    We introduce a double power series method for finding approximate analytical solutions for systems of differential equations commonly found in cosmological perturbation theory. The method was set out, in a noncosmological context, by Feshchenko, Shkil' and Nikolenko (FSN) in 1966, and is applicable to cases where perturbations are on subhorizon scales. The FSN method is essentially an extension of the well known Wentzel-Kramers-Brillouin (WKB) method for finding approximate analytical solutions for ordinary differential equations. The FSN method we use is applicable well beyond perturbation theory to solve systems of ordinary differential equations, linear in the derivatives, that also depend on a small parameter, which here we take to be related to the inverse wave-number. We use the FSN method to find new approximate oscillating solutions in linear order cosmological perturbation theory for a flat radiation-matter universe. Together with this model's well-known growing and decaying Mészáros solutions, these oscillating modes provide a complete set of subhorizon approximations for the metric potential, radiation and matter perturbations. Comparison with numerical solutions of the perturbation equations shows that our approximations can be made accurate to within a typical error of 1%, or better. We also set out a heuristic method for error estimation. A Mathematica notebook which implements the double power series method is made available online.

  9. Generalized polarizabilities of the nucleon in baryon chiral perturbation theory

    NASA Astrophysics Data System (ADS)

    Lensky, Vadim; Pascalutsa, Vladimir; Vanderhaeghen, Marc

    2017-02-01

    The nucleon generalized polarizabilities (GPs), probed in virtual Compton scattering (VCS), describe the spatial distribution of the polarization density in a nucleon. They are accessed experimentally via the process of electron-proton bremsstrahlung (ep→ epγ ) at electron-beam facilities, such as MIT-Bates, CEBAF (Jefferson Lab), and MAMI (Mainz). We present the calculation of the nucleon GPs and VCS observables at next-to-leading order in baryon chiral perturbation theory (Bχ PT), and confront the results with the empirical information. At this order our results are predictions, in the sense that all the parameters are well known from elsewhere. Within the relatively large uncertainties of our calculation we find good agreement with the experimental observations of VCS and the empirical extractions of the GPs. We find large discrepancies with previous chiral calculations - all done in heavy-baryon χ PT (HBχ PT) - and discuss the differences between Bχ PT and HBχ PT responsible for these discrepancies.

  10. A Systematic Approach for Computing Zero-Point Energy, Quantum Partition Function, and Tunneling Effect Based on Kleinert's Variational Perturbation Theory.

    PubMed

    Wong, Kin-Yiu; Gao, Jiali

    2008-09-09

    In this paper, we describe an automated integration-free path-integral (AIF-PI) method, based on Kleinert's variational perturbation (KP) theory, to treat internuclear quantum-statistical effects in molecular systems. We have developed an analytical method to obtain the centroid potential as a function of the variational parameter in the KP theory, which avoids numerical difficulties in path-integral Monte Carlo or molecular dynamics simulations, especially at the limit of zero-temperature. Consequently, the variational calculations using the KP theory can be efficiently carried out beyond the first order, i.e., the Giachetti-Tognetti-Feynman-Kleinert variational approach, for realistic chemical applications. By making use of the approximation of independent instantaneous normal modes (INM), the AIF-PI method can readily be applied to many-body systems. Previously, we have shown that in the INM approximation, the AIF-PI method is accurate for computing the quantum partition function of a water molecule (3 degrees of freedom) and the quantum correction factor for the collinear H(3) reaction rate (2 degrees of freedom). In this work, the accuracy and properties of the KP theory are further investigated by using the first three order perturbations on an asymmetric double-well potential, the bond vibrations of H(2), HF, and HCl represented by the Morse potential, and a proton-transfer barrier modeled by the Eckart potential. The zero-point energy, quantum partition function, and tunneling factor for these systems have been determined and are found to be in excellent agreement with the exact quantum results. Using our new analytical results at the zero-temperature limit, we show that the minimum value of the computed centroid potential in the KP theory is in excellent agreement with the ground state energy (zero-point energy) and the position of the centroid potential minimum is the expectation value of particle position in wave mechanics. The fast convergent property

  11. Ion distributions, exclusion coefficients, and separation factors of electrolytes in a charged cylindrical nanopore: a partially perturbative density functional theory study.

    PubMed

    Peng, Bo; Yu, Yang-Xin

    2009-10-07

    The structural and thermodynamic properties for charge symmetric and asymmetric electrolytes as well as mixed electrolyte system inside a charged cylindrical nanopore are investigated using a partially perturbative density functional theory. The electrolytes are treated in the restricted primitive model and the internal surface of the cylindrical nanopore is considered to have a uniform charge density. The proposed theory is directly applicable to the arbitrary mixed electrolyte solution containing ions with the equal diameter and different valences. Large amount of simulation data for ion density distributions, separation factors, and exclusion coefficients are used to determine the range of validity of the partially perturbative density functional theory for monovalent and multivalent counterion systems. The proposed theory is found to be in good agreement with the simulations for both mono- and multivalent counterion systems. In contrast, the classical Poisson-Boltzmann equation only provides reasonable descriptions of monovalent counterion system at low bulk density, and is qualitatively and quantitatively wrong in the prediction for the multivalent counterion systems due to its neglect of the strong interionic correlations in these systems. The proposed density functional theory has also been applied to an electrolyte absorbed into a pore that is a model of the filter of a physiological calcium channel.

  12. Perturbative tests for a large-N reduced model of {N} = {4} super Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Ishiki, Goro; Shimasaki, Shinji; Tsuchiya, Asato

    2011-11-01

    We study a non-perturbative formulation of {N} = {4} super Yang-Mills theory (SYM) on R × S 3 in the planar limit proposed in arXiv:0807.2352. This formulation is based on the large- N reduction, and the theory can be described as a particular large- N limit of the plane wave matrix model (PWMM), which is obtained by dimensionally reducing the original theory over S 3. In this paper, we perform some tests for this proposal. We construct an operator in the PWMM that corresponds to the Wilson loop in SYM in the continuum limit and calculate the vacuum expectation value of the operator for the case of the circular contour. We find that our result indeed agrees with the well-known result first obtained by Erickson, Semenoff and Zarembo. We also compute the beta function at the 1-loop level based on this formulation and see that it is indeed vanishing.

  13. A Generalized Perturbation Theory Solver In Rattlesnake Based On PETSc With Application To TREAT Steady State Uncertainty Quantification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schunert, Sebastian; Wang, Congjian; Wang, Yaqi

    Rattlesnake and MAMMOTH are the designated TREAT analysis tools currently being developed at the Idaho National Laboratory. Concurrent with development of the multi-physics, multi-scale capabilities, sensitivity analysis and uncertainty quantification (SA/UQ) capabilities are required for predicitive modeling of the TREAT reactor. For steady-state SA/UQ, that is essential for setting initial conditions for the transients, generalized perturbation theory (GPT) will be used. This work describes the implementation of a PETSc based solver for the generalized adjoint equations that constitute a inhomogeneous, rank deficient problem. The standard approach is to use an outer iteration strategy with repeated removal of the fundamental modemore » contamination. The described GPT algorithm directly solves the GPT equations without the need of an outer iteration procedure by using Krylov subspaces that are orthogonal to the operator’s nullspace. Three test problems are solved and provide sufficient verification for the Rattlesnake’s GPT capability. We conclude with a preliminary example evaluating the impact of the Boron distribution in the TREAT reactor using perturbation theory.« less

  14. Adaptive Core Simulation Employing Discrete Inverse Theory - Part II: Numerical Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdel-Khalik, Hany S.; Turinsky, Paul J.

    2005-07-15

    Use of adaptive simulation is intended to improve the fidelity and robustness of important core attribute predictions such as core power distribution, thermal margins, and core reactivity. Adaptive simulation utilizes a selected set of past and current reactor measurements of reactor observables, i.e., in-core instrumentation readings, to adapt the simulation in a meaningful way. The companion paper, ''Adaptive Core Simulation Employing Discrete Inverse Theory - Part I: Theory,'' describes in detail the theoretical background of the proposed adaptive techniques. This paper, Part II, demonstrates several computational experiments conducted to assess the fidelity and robustness of the proposed techniques. The intentmore » is to check the ability of the adapted core simulator model to predict future core observables that are not included in the adaption or core observables that are recorded at core conditions that differ from those at which adaption is completed. Also, this paper demonstrates successful utilization of an efficient sensitivity analysis approach to calculate the sensitivity information required to perform the adaption for millions of input core parameters. Finally, this paper illustrates a useful application for adaptive simulation - reducing the inconsistencies between two different core simulator code systems, where the multitudes of input data to one code are adjusted to enhance the agreement between both codes for important core attributes, i.e., core reactivity and power distribution. Also demonstrated is the robustness of such an application.« less

  15. Adaptive management of natural resources: theory, concepts, and management institutions.

    Treesearch

    George H. Stankey; Roger N. Clark; Bernard T. Bormann

    2005-01-01

    This report reviews the extensive and growing literature on the concept and application of adaptive management. Adaptive management is a central element of the Northwest Forest Plan and there is a need for an informed understanding of the key theories, concepts, and frameworks upon which it is founded. Literature from a diverse range of fields including social learning...

  16. Multi-hadron-state contamination in nucleon observables from chiral perturbation theory

    NASA Astrophysics Data System (ADS)

    Bär, Oliver

    2018-03-01

    Multi-particle states with additional pions are expected to be a non-negligible source of the excited-state contamination in lattice simulations at the physical point. It is shown that baryon chiral perturbation theory (ChPT) can be employed to calculate the contamination due to two-particle nucleon-pion states in various nucleon observables. Results to leading order are presented for the nucleon axial, tensor and scalar charge and three Mellin moments of parton distribution functions: the average quark momentum fraction, the helicity and the transversity moment. Taking into account experimental and phenomenological results for the charges and moments the impact of the nucleon-pionstates on lattice estimates for these observables can be estimated. The nucleon-pion-state contribution leads to an overestimation of all charges and moments obtained with the plateau method. The overestimation is at the 5-10% level for source-sink separations of about 2 fm. Existing lattice data is not in conflict with the ChPT predictions, but the comparison suggests that significantly larger source-sink separations are needed to compute the charges and moments with few-percent precision. Talk given at the 35th International Symposium on Lattice Field Theory, 18 - 24 June 2017, Granada, Spain.

  17. Novel strategies in feedforward adaptation to a position-dependent perturbation.

    PubMed

    Hinder, Mark R; Milner, Theodore E

    2005-08-01

    To investigate the control mechanisms used in adapting to position-dependent forces, subjects performed 150 horizontal reaching movements over 25 cm in the presence of a position-dependent parabolic force field (PF). The PF acted only over the first 10 cm of the movement. On every fifth trial, a virtual mechanical guide (double wall) constrained subjects to move along a straight-line path between the start and target positions. Its purpose was to register lateral force to track formation of an internal model of the force field, and to look for evidence of possible alternative adaptive strategies. The force field produced a force to the right, which initially caused subjects to deviate in that direction. They reacted by producing deviations to the left, "into" the force field, as early as the second trial. Further adaptation resulted in rapid exponential reduction of kinematic error in the latter portion of the movement, where the greatest perturbation to the handpath was initially observed, whereas there was little modification of the handpath in the region where the PF was active. Significant force directed to counteract the PF was measured on the first guided trial, and was modified during the first half of the learning set. The total force impulse in the region of the PF increased throughout the learning trials, but it always remained less than that produced by the PF. The force profile did not resemble a mirror image of the PF in that it tended to be more trapezoidal than parabolic in shape. As in previous studies of force-field adaptation, we found that changes in muscle activation involved a general increase in the activity of all muscles, which increased arm stiffness, and selectively-greater increases in the activation of muscles which counteracted the PF. With training, activation was exponentially reduced, albeit more slowly than kinematic error. Progressive changes in kinematics and EMG occurred predominantly in the region of the workspace beyond the

  18. Perturbative and Ab-Initio Calculations of Electrical Susceptibilities of Atoms

    NASA Astrophysics Data System (ADS)

    Spott, Andrew

    Perturbative nonlinear optics consists of many powerful predictive theoretical methods, including the perturbative series of observables related to the interaction of light with matter. The light intensity limits of such series have been studied in the past for highly nonlinear processes such as above threshold ionization and high harmonic generation. A more recent debate focuses on the limits of applicability of perturbation theory for the nonlinear electrical susceptibility and the nonlinear index of refraction of atoms, which are important parameters to study, for example, for filamentation of laser pulses in nonlinear media. In this thesis we analyze theoretical predictions for the electrical susceptibility of atoms for the transition from the perturbative to the nonperturbative intensity regime. To this end, we apply a numerical basis state method that allows us to perform respective calculations in the framework of perturbation theory as well as using ab-initio methods. The results let us identify the intensity at which the application of perturbation theory breaks down. Furthermore, we provide an analysis of the nonlinear susceptibility as a function of time during the interaction with the laser pulse and find that theoretical predictions are in good agreement with recent experimental data.

  19. Capturing the superorganism: a formal theory of group adaptation.

    PubMed

    Gardner, A; Grafen, A

    2009-04-01

    Adaptation is conventionally regarded as occurring at the level of the individual organism. However, in recent years there has been a revival of interest in the possibility for group adaptations and superorganisms. Here, we provide the first formal theory of group adaptation. In particular: (1) we clarify the distinction between group selection and group adaptation, framing the former in terms of gene frequency change and the latter in terms of optimization; (2) we capture the superorganism in the form of a 'group as maximizing agent' analogy that links an optimization program to a model of a group-structured population; (3) we demonstrate that between-group selection can lead to group adaptation, but only in rather special circumstances; (4) we provide formal support for the view that between-group selection is the best definition for 'group selection'; and (5) we reveal that mechanisms of conflict resolution such as policing cannot be regarded as group adaptations.

  20. Global Melnikov Theory in Hamiltonian Systems with General Time-Dependent Perturbations

    NASA Astrophysics Data System (ADS)

    Gidea, Marian; de la Llave, Rafael

    2018-04-01

    We consider a mechanical system consisting of n-penduli and a d-degree-of-freedom rotator. The phase space of the rotator defines a normally hyperbolic invariant manifold Λ _0 . We apply a time-dependent perturbation, which is not assumed to be either Hamiltonian, or periodic, or quasi-periodic, as we allow for rather general time dependence. The strength of the perturbation is given by a parameter ɛ \\in R . For all |ɛ | sufficiently small, the augmented flow—obtained by making the time into a new variable—has a normally hyperbolic locally invariant manifold \\tilde{Λ }_ɛ . For ɛ =0 , \\tilde{Λ }_0=Λ _0× R . We define a Melnikov-type vector, which gives the first-order expansion of the displacement of the stable and unstable manifolds of \\tilde{Λ }_0 under the perturbation. We provide an explicit formula for the Melnikov vector in terms of convergent improper integrals of the perturbation along homoclinic orbits of the unperturbed system. We show that if the perturbation satisfies some explicit non-degeneracy conditions, then the stable and unstable manifolds of \\tilde{Λ }_ɛ , W^s(\\tilde{Λ }_ɛ ) and W^u(\\tilde{Λ }_ɛ ) , respectively, intersect along a transverse homoclinic manifold, and, moreover, the splitting of W^s(\\tilde{Λ }_ɛ ) and W^u(\\tilde{Λ }_ɛ ) can be explicitly computed, up to the first order, in terms of the Melnikov-type vector. This implies that the excursions along some homoclinic trajectories yield a non-trivial increase of order O(ɛ ) in the action variables of the rotator, for all sufficiently small perturbations. The formulas that we obtain are independent of the unperturbed motions in Λ _0 , and give, at the same time, the effects on periodic, quasi-periodic, or general-type orbits. When the perturbation is Hamiltonian, we express the effects of the perturbation, up to the first order, in terms of a Melnikov potential. In addition, if the perturbation is periodic, we obtain that the non-degeneracy conditions on

  1. A unified perturbation expansion for surface scattering

    NASA Technical Reports Server (NTRS)

    Rodriguez, Ernesto; Kim, Yunjin

    1992-01-01

    Starting with the extinction theorem, a perturbation expansion which, to first and second orders, converges over a wider domain than the small perturbation expansion and the momentum transfer expansion is presented. It is shown that, in the appropriate limits, both of these theories, as well as the two-scale expansion, are recovered. There is no adjustable parameter, such as a spectral split, in the theory. This theory is applied to random rough surfaces and derive analytic expressions for the coherent field and the bistatic cross section. Finally, a numerical test of the theory against method of moments results for Gaussian random rough surfaces with a power law spectrum is given. These results show that the expansion is ramarkably accurate over a large range of surface heights and slopes for both horizontal and vertical polarization.

  2. Statistics of cosmic density profiles from perturbation theory

    NASA Astrophysics Data System (ADS)

    Bernardeau, Francis; Pichon, Christophe; Codis, Sandrine

    2014-11-01

    The joint probability distribution function (PDF) of the density within multiple concentric spherical cells is considered. It is shown how its cumulant generating function can be obtained at tree order in perturbation theory as the Legendre transform of a function directly built in terms of the initial moments. In the context of the upcoming generation of large-scale structure surveys, it is conjectured that this result correctly models such a function for finite values of the variance. Detailed consequences of this assumption are explored. In particular the corresponding one-cell density probability distribution at finite variance is computed for realistic power spectra, taking into account its scale variation. It is found to be in agreement with Λ -cold dark matter simulations at the few percent level for a wide range of density values and parameters. Related explicit analytic expansions at the low and high density tails are given. The conditional (at fixed density) and marginal probability of the slope—the density difference between adjacent cells—and its fluctuations is also computed from the two-cell joint PDF; it also compares very well to simulations. It is emphasized that this could prove useful when studying the statistical properties of voids as it can serve as a statistical indicator to test gravity models and/or probe key cosmological parameters.

  3. Detection of network attacks based on adaptive resonance theory

    NASA Astrophysics Data System (ADS)

    Bukhanov, D. G.; Polyakov, V. M.

    2018-05-01

    The paper considers an approach to intrusion detection systems using a neural network of adaptive resonant theory. It suggests the structure of an intrusion detection system consisting of two types of program modules. The first module manages connections of user applications by preventing the undesirable ones. The second analyzes the incoming network traffic parameters to check potential network attacks. After attack detection, it notifies the required stations using a secure transmission channel. The paper describes the experiment on the detection and recognition of network attacks using the test selection. It also compares the obtained results with similar experiments carried out by other authors. It gives findings and conclusions on the sufficiency of the proposed approach. The obtained information confirms the sufficiency of applying the neural networks of adaptive resonant theory to analyze network traffic within the intrusion detection system.

  4. Block correlated second order perturbation theory with a generalized valence bond reference function.

    PubMed

    Xu, Enhua; Li, Shuhua

    2013-11-07

    The block correlated second-order perturbation theory with a generalized valence bond (GVB) reference (GVB-BCPT2) is proposed. In this approach, each geminal in the GVB reference is considered as a "multi-orbital" block (a subset of spin orbitals), and each occupied or virtual spin orbital is also taken as a single block. The zeroth-order Hamiltonian is set to be the summation of the individual Hamiltonians of all blocks (with explicit two-electron operators within each geminal) so that the GVB reference function and all excited configuration functions are its eigenfunctions. The GVB-BCPT2 energy can be directly obtained without iteration, just like the second order Mo̸ller-Plesset perturbation method (MP2), both of which are size consistent. We have applied this GVB-BCPT2 method to investigate the equilibrium distances and spectroscopic constants of 7 diatomic molecules, conformational energy differences of 8 small molecules, and bond-breaking potential energy profiles in 3 systems. GVB-BCPT2 is demonstrated to have noticeably better performance than MP2 for systems with significant multi-reference character, and provide reasonably accurate results for some systems with large active spaces, which are beyond the capability of all CASSCF-based methods.

  5. Computing singularities of perturbation series

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kvaal, Simen; Jarlebring, Elias; Michiels, Wim

    2011-03-15

    Many properties of current ab initio approaches to the quantum many-body problem, both perturbational and otherwise, are related to the singularity structure of the Rayleigh-Schroedinger perturbation series. A numerical procedure is presented that in principle computes the complete set of singularities, including the dominant singularity which limits the radius of convergence. The method approximates the singularities as eigenvalues of a certain generalized eigenvalue equation which is solved using iterative techniques. It relies on computation of the action of the Hamiltonian matrix on a vector and does not rely on the terms in the perturbation series. The method can be usefulmore » for studying perturbation series of typical systems of moderate size, for fundamental development of resummation schemes, and for understanding the structure of singularities for typical systems. Some illustrative model problems are studied, including a helium-like model with {delta}-function interactions for which Moeller-Plesset perturbation theory is considered and the radius of convergence found.« less

  6. Perturbation-theory analysis of ionization by a chirped few-cycle attosecond pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pronin, E. A.; Starace, Anthony F.; Peng Liangyou

    2011-07-15

    The angular distribution of electrons ionized from an atom by a chirped few-cycle attosecond pulse is analyzed using perturbation theory (PT), keeping terms in the transition amplitude up to second order in the pulse electric field. The dependence of the asymmetry in the ionized electron distributions on both the chirp and the carrier-envelope phase (CEP) of the pulse are explained using a simple analytical formula that approximates the exact PT result. This approximate formula (in which the chirp dependence is explicit) reproduces reasonably well the chirp-dependent oscillations of the electron angular distribution asymmetries found numerically by Peng et al. [Phys.more » Rev. A 80, 013407 (2009)]. It can also be used to determine the chirp rate of the attosecond pulse from the measured electron angular distribution asymmetry.« less

  7. GNSS-derived Geocenter Coordinates Viewed by Perturbation Theory

    NASA Astrophysics Data System (ADS)

    Meindl, Michael; Beutler, Gerhard; Thaller, Daniela; Dach, Rolf; Jäggi, Adrian; Rothacher, Markus

    2013-04-01

    Time series of geocenter coordinates were determined with data of the two global navigation satellite systems (GNSS) GPS and GLONASS. The data was recorded in the years 2008-2011 by a global network of 92 combined GPS/GLONASS receivers. Two types of solutions were generated for each system, one including the estimation of geocenter coordinates and one without these parameters. A fair agreement for GPS and GLONASS estimates was found in the x- and y-coordinate series of the geocenter. Artifacts do, however, clearly show up in the z-coordinate. Large periodic variations in the GLONASS geocenter z-coordinates of about 40 cm peak-to-peak are related to the maximum elevation angles of the Sun above/below the orbital planes of the satellite system. A detailed analysis revealed that these artifacts are almost uniquely governed by the differences of the estimates of direct solar radiation pressure (SRP) in the two solution series (with and without geocenter estimation). This effect can be explained by first-order perturbation theory of celestial mechanics. The relation between the geocenter z-coordinate and the corresponding SRP parameters will be presented. Our theory is applicable to all satellite observing techniques. In addition to GNSS, we applied it to satellite laser ranging (SLR) solutions based on LAGEOS observations. The correlation between geocenter and SRP parameters is not a critical issue for SLR, because these parameters do not have to be estimated. This basic difference between SLR and GNSS analyses explains why SLR is an excellent tool to determine geodetic datum parameters like the geocenter coordinates. The correlation between orbit parameters and the z-component of the geocenter is not limited to a particular orbit model, e.g., that of CODE. The issue should be studied for alternative (e.g., box-wing) models: As soon as non-zero mean values (over one revolution) of the out-of-plane force component exist, one has to expect biased geocenter estimates. The

  8. Middle-Range Theory: Coping and Adaptation with Active Aging.

    PubMed

    Salazar-Barajas, Martha Elba; Salazar-González, Bertha Cecilia; Gallegos-Cabriales, Esther Carlota

    2017-10-01

    Various disciplines focus on a multiplicity of aspects of aging: lifestyles, personal biological factors, psychological conditions, health conditions, physical environment, and social and economic factors. The aforementioned are all related to the determinants of active aging. The aim is to describe the development of a middle-range theory based on coping and adaptation with active aging. Concepts and relationships derived from Roy's model of adaptation are included. The proposed concepts are hope, health habits, coping with aging, social relations, and active aging.

  9. Perturbation theory for BAO reconstructed fields: One-loop results in the real-space matter density field

    NASA Astrophysics Data System (ADS)

    Hikage, Chiaki; Koyama, Kazuya; Heavens, Alan

    2017-08-01

    We compute the power spectrum at one-loop order in standard perturbation theory for the matter density field to which a standard Lagrangian baryonic acoustic oscillation (BAO) reconstruction technique is applied. The BAO reconstruction method corrects the bulk motion associated with the gravitational evolution using the inverse Zel'dovich approximation (ZA) for the smoothed density field. We find that the overall amplitude of one-loop contributions in the matter power spectrum substantially decreases after reconstruction. The reconstructed power spectrum thereby approaches the initial linear spectrum when the smoothed density field is close enough to linear, i.e., the smoothing scale Rs≳10 h-1 Mpc . On smaller Rs, however, the deviation from the linear spectrum becomes significant on large scales (k ≲Rs-1 ) due to the nonlinearity in the smoothed density field, and the reconstruction is inaccurate. Compared with N-body simulations, we show that the reconstructed power spectrum at one-loop order agrees with simulations better than the unreconstructed power spectrum. We also calculate the tree-level bispectrum in standard perturbation theory to investigate non-Gaussianity in the reconstructed matter density field. We show that the amplitude of the bispectrum significantly decreases for small k after reconstruction and that the tree-level bispectrum agrees well with N-body results in the weakly nonlinear regime.

  10. Prosodic Adaptations to Pitch Perturbation in Running Speech

    ERIC Educational Resources Information Center

    Patel, Rupal; Niziolek, Caroline; Reilly, Kevin; Guenther, Frank H.

    2011-01-01

    Purpose: A feedback perturbation paradigm was used to investigate whether prosodic cues are controlled independently or in an integrated fashion during sentence production. Method: Twenty-one healthy speakers of American English were asked to produce sentences with emphatic stress while receiving real-time auditory feedback of their productions.…

  11. Perturbation theory and numerical modelling of weakly and moderately nonlinear incompressible Richtmyer-Meshkov instability

    NASA Astrophysics Data System (ADS)

    Herrmann, M.; Velikovich, A. L.; Abarzhi, S. I.

    2014-10-01

    A study of incompressible two-dimensional Richtmyer-Meshkov instability by means of high-order Eulerian perturbation theory and numerical simulations is reported. Nonlinear corrections to Richtmyer's impulsive formula for the bubble and spike growth rates have been calculated analytically for arbitrary Atwood number and an explicit formula has been obtained for it in the Boussinesq limit. Conditions for early-time acceleration and deceleration of the bubble and the spike have been derived. In our simulations we have solved 2D unsteady Navier-Stokes equations for immiscible incompressible fluids using the finite volume fractional step flow solver NGA developed by, coupled to the level set based interface solver LIT,. The impact of small amounts of viscosity and surface tension on the RMI flow dynamics is studied numerically. Simulation results are compared to the theory to demonstrate successful code verification and highlight the influence of the theory's ideal inviscid flow assumption. Theoretical time histories of the interface curvature at the bubble and spike tip and the profiles of vertical and horizontal velocities have been favorably compared to simulation results, which converge to the theoretical predictions as the Reynolds and Weber numbers are increased. Work supported by the US DOE/NNSA.

  12. Probing the toxicity of nanoparticles: a unified in silico machine learning model based on perturbation theory.

    PubMed

    Concu, Riccardo; Kleandrova, Valeria V; Speck-Planche, Alejandro; Cordeiro, M Natália D S

    2017-09-01

    Nanoparticles (NPs) are part of our daily life, having a wide range of applications in engineering, physics, chemistry, and biomedicine. However, there are serious concerns regarding the harmful effects that NPs can cause to the different biological systems and their ecosystems. Toxicity testing is an essential step for assessing the potential risks of the NPs, but the experimental assays are often very expensive and usually too slow to flag the number of NPs that may cause adverse effects. In silico models centered on quantitative structure-activity/toxicity relationships (QSAR/QSTR) are alternative tools that have become valuable supports to risk assessment, rationalizing the search for safer NPs. In this work, we develop a unified QSTR-perturbation model based on artificial neural networks, aimed at simultaneously predicting general toxicity profiles of NPs under diverse experimental conditions. The model is derived from 54,371 NP-NP pair cases generated by applying the perturbation theory to a set of 260 unique NPs, and showed an accuracy higher than 97% in both training and validation sets. Physicochemical interpretation of the different descriptors in the model are additionally provided. The QSTR-perturbation model is then employed to predict the toxic effects of several NPs not included in the original dataset. The theoretical results obtained for this independent set are strongly consistent with the experimental evidence found in the literature, suggesting that the present QSTR-perturbation model can be viewed as a promising and reliable computational tool for probing the toxicity of NPs.

  13. On the role of the frozen surface approximation in small wave-height perturbation theory for moving surfaces

    NASA Astrophysics Data System (ADS)

    Keiffer, Richard; Novarini, Jorge; Scharstein, Robert

    2002-11-01

    In the standard development of the small wave-height approximation (SWHA) perturbation theory for scattering from moving rough surfaces [e.g., E. Y. Harper and F. M. Labianca, J. Acoust. Soc. Am. 58, 349-364 (1975)] the necessity for any sort of frozen surface approximation is avoided by the replacement of the rough boundary by a flat (and static) boundary. In this paper, this seemingly fortuitous byproduct of the small wave-height approximation is examined and found to fail to fully agree with an analysis based on the kinematics of the problem. Specifically, the first-order correction term from standard perturbation approach predicts a scattered amplitude that depends on the source frequency, whereas the kinematics of the problem point to a scattered amplitude that depends on the scattered frequency. It is shown that a perturbation approach in which an explicit frozen surface approximation is made before the SWHA is invoked predicts (first-order) scattered amplitudes that are in agreement with the kinematic analysis. [Work supported by ONR/NRL (PE 61153N-32) and by grants of computer time DoD HPC Shared Resource Center at Stennis Space Center, MS.

  14. Using Item Response Theory and Adaptive Testing in Online Career Assessment

    ERIC Educational Resources Information Center

    Betz, Nancy E.; Turner, Brandon M.

    2011-01-01

    The present article describes the potential utility of item response theory (IRT) and adaptive testing for scale evaluation and for web-based career assessment. The article describes the principles of both IRT and adaptive testing and then illustrates these with reference to data analyses and simulation studies of the Career Confidence Inventory…

  15. On the chain length dependence of local correlations in polymer melts and a perturbation theory of symmetric polymer blends.

    PubMed

    Morse, David C; Chung, Jun Kyung

    2009-06-14

    The self-consistent field (SCF) approach to the thermodynamics of dense polymer liquids is based on the idea that short-range correlations in a polymer liquid are almost independent of how monomers are connected into polymers over larger scales. Some limits of this idea are explored in the context of a perturbation theory for symmetric polymer blends. We consider mixtures of two structurally identical polymers, A and B, in which the AB monomer pair interaction differs slightly from the AA and BB interactions by an amount proportional to a parameter alpha. An expansion of the free energy to first order in alpha yields an excess free energy of mixing per monomer of the form alphaz(N)phi(A)phi(B) in both lattice and continuum models, where z(N) is a measure of the number of intermolecular near neighbors per monomer in a one-component (alpha=0) reference liquid with chains of length N. The quantity z(N) decreases slightly with increasing N because the concentration of intramolecular near neighbors is slightly higher for longer chains, creating a slightly deeper intermolecular correlation hole. We predict that z(N)=z(infinity)[1+betaN(-1/2)], where N is an invariant degree of polymerization and beta=(6/pi)(3/2) is a universal coefficient. This and related predictions about the slight N dependence of local correlations are confirmed by comparison to simulations of a continuum bead-spring model and to published lattice Monte Carlo simulations. We show that a renormalized one-loop theory for blends correctly describes this N dependence of local liquid structure. We also propose a way to estimate the effective interaction parameter appropriate for comparisons of simulation data to SCF theory and to coarse-grained theories of corrections to SCF theory, which is based on an extrapolation of perturbation theory to the limit N-->infinity.

  16. Density perturbations in general modified gravitational theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Felice, Antonio; Tsujikawa, Shinji; Mukohyama, Shinji

    2010-07-15

    We derive the equations of linear cosmological perturbations for the general Lagrangian density f(R,{phi},X)/2+L{sub c}, where R is a Ricci scalar, {phi} is a scalar field, and X=-{partial_derivative}{sup {mu}{phi}{partial_derivative}}{sub {mu}{phi}/}2 is a field kinetic energy. We take into account a nonlinear self-interaction term L{sub c}={xi}({phi}) {open_square}{phi}({partial_derivative}{sup {mu}{phi}{partial_derivative}}{sub {mu}{phi}}) recently studied in the context of ''Galileon'' cosmology, which keeps the field equations at second order. Taking into account a scalar-field mass explicitly, the equations of matter density perturbations and gravitational potentials are obtained under a quasistatic approximation on subhorizon scales. We also derive conditions for the avoidance of ghosts and Laplacianmore » instabilities associated with propagation speeds. Our analysis includes most of modified gravity models of dark energy proposed in literature; and thus it is convenient to test the viability of such models from both theoretical and observational points of view.« less

  17. Improved perturbation method for gadolinia worth calculation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiang, R.T.; Congdon, S.P.

    1986-01-01

    Gadolinia is utilized in light water power reactors as burnable poison for reserving excess reactivity. Good gadolinia worth estimation is useful for evaluating fuel bundle designs, core operating strategies, and fuel cycle economics. The authors have developed an improved perturbation method based on exact perturbation theory for gadolinia worth calculations in fuel bundles. The method predicts much more accurate gadolinia worth than the first-order perturbation method (commonly used to estimate nuclide worths) for bundles containing fresh or partly burned gadolinia.

  18. Perturbative tests for a large-N reduced model of mathcal{N} = {4} super Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Ishiki, Goro; Shimasaki, Shinji; Tsuchiya, Asato

    2012-02-01

    We study a non-perturbative formulation of mathcal{N} = {4} super Yang-Mills theory (SYM) on R × S 3 in the planar limit proposed in arXiv:0807.2352. This formulation is based on the large- N reduction, and the theory can be described as a particular large- N limit of the plane wave matrix model (PWMM), which is obtained by dimensionally reducing the original theory over S 3. In this paper, we perform some tests for this proposal. We construct an operator in the PWMM that corresponds to the Wilson loop in SYM in the continuum limit and calculate the vacuum expectation value of the operator for the case of the circular contour. We find that our result indeed agrees with the well-known result first obtained by Erickson, Semenoff and Zarembo. We also compute the beta function at the 1-loop level based on this formulation and see that it is indeed vanishing.

  19. On the divergences of inflationary superhorizon perturbations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enqvist, K; Nurmi, S; Podolsky, D

    2008-04-15

    We discuss the infrared divergences that appear to plague cosmological perturbation theory. We show that, within the stochastic framework, they are regulated by eternal inflation so that the theory predicts finite fluctuations. Using the {Delta}N formalism to one loop, we demonstrate that the infrared modes can be absorbed into additive constants and the coefficients of the diagrammatic expansion for the connected parts of two-and three-point functions of the curvature perturbation. As a result, the use of any infrared cutoff below the scale of eternal inflation is permitted, provided that the background fields are appropriately redefined. The natural choice for themore » infrared cutoff would, of course, be the present horizon; other choices manifest themselves in the running of the correlators. We also demonstrate that it is possible to define observables that are renormalization-group-invariant. As an example, we derive a non-perturbative, infrared finite and renormalization point-independent relation between the two-point correlators of the curvature perturbation for the case of the free single field.« less

  20. Stationary waves on nonlinear quantum graphs. II. Application of canonical perturbation theory in basic graph structures.

    PubMed

    Gnutzmann, Sven; Waltner, Daniel

    2016-12-01

    We consider exact and asymptotic solutions of the stationary cubic nonlinear Schrödinger equation on metric graphs. We focus on some basic example graphs. The asymptotic solutions are obtained using the canonical perturbation formalism developed in our earlier paper [S. Gnutzmann and D. Waltner, Phys. Rev. E 93, 032204 (2016)2470-004510.1103/PhysRevE.93.032204]. For closed example graphs (interval, ring, star graph, tadpole graph), we calculate spectral curves and show how the description of spectra reduces to known characteristic functions of linear quantum graphs in the low-intensity limit. Analogously for open examples, we show how nonlinear scattering of stationary waves arises and how it reduces to known linear scattering amplitudes at low intensities. In the short-wavelength asymptotics we discuss how genuine nonlinear effects may be described using the leading order of canonical perturbation theory: bifurcation of spectral curves (and the corresponding solutions) in closed graphs and multistability in open graphs.

  1. Møller-Plesset perturbation theory gradient in the generalized hybrid orbital quantum mechanical and molecular mechanical method

    NASA Astrophysics Data System (ADS)

    Jung, Jaewoon; Sugita, Yuji; Ten-no, S.

    2010-02-01

    An analytic gradient expression is formulated and implemented for the second-order Møller-Plesset perturbation theory (MP2) based on the generalized hybrid orbital QM/MM method. The method enables us to obtain an accurate geometry at a reasonable computational cost. The performance of the method is assessed for various isomers of alanine dipepetide. We also compare the optimized structures of fumaramide-derived [2]rotaxane and cAMP-dependent protein kinase with experiment.

  2. Perturbation theory in the catalytic rate constant of the Henri-Michaelis-Menten enzymatic reaction.

    PubMed

    Bakalis, Evangelos; Kosmas, Marios; Papamichael, Emmanouel M

    2012-11-01

    The Henry-Michaelis-Menten (HMM) mechanism of enzymatic reaction is studied by means of perturbation theory in the reaction rate constant k (2) of product formation. We present analytical solutions that provide the concentrations of the enzyme (E), the substrate (S), as well as those of the enzyme-substrate complex (C), and the product (P) as functions of time. For k (2) small compared to k (-1), we properly describe the entire enzymatic activity from the beginning of the reaction up to longer times without imposing extra conditions on the initial concentrations E ( o ) and S ( o ), which can be comparable or much different.

  3. Cosmological perturbation theory for baryons and dark matter: One-loop corrections in the renormalized perturbation theory framework

    NASA Astrophysics Data System (ADS)

    Somogyi, Gábor; Smith, Robert E.

    2010-01-01

    We generalize the renormalized perturbation theory (RPT) formalism of Crocce and Scoccimarro [M. Crocce and R. Scoccimarro, Phys. Rev. DPRVDAQ1550-7998 73, 063519 (2006)10.1103/PhysRevD.73.063519] to deal with multiple fluids in the Universe and here we present the complete calculations up to the one-loop level in the RPT. We apply this approach to the problem of following the nonlinear evolution of baryon and cold dark matter (CDM) perturbations, evolving from the distinct sets of initial conditions, from the high redshift post-recombination Universe right through to the present day. In current theoretical and numerical models of structure formation, it is standard practice to treat baryons and CDM as an effective single matter fluid—the so-called dark matter only modeling. In this approximation, one uses a weighed sum of late-time baryon and CDM transfer functions to set initial mass fluctuations. In this paper we explore whether this approach can be employed for high precision modeling of structure formation. We show that, even if we only follow the linear evolution, there is a large-scale scale-dependent bias between baryons and CDM for the currently favored WMAP5 ΛCDM model. This time evolving bias is significant (>1%) until the present day, when it is driven towards unity through gravitational relaxation processes. Using the RPT formalism we test this approximation in the nonlinear regime. We show that the nonlinear CDM power spectrum in the two-component fluid differs from that obtained from an effective mean-mass one-component fluid by ˜3% on scales of order k˜0.05hMpc-1 at z=10, and by ˜0.5% at z=0. However, for the case of the nonlinear evolution of the baryons the situation is worse and we find that the power spectrum is suppressed, relative to the total matter, by ˜15% on scales k˜0.05hMpc-1 at z=10, and by ˜3%-5% at z=0. Importantly, besides the suppression of the spectrum, the baryonic acoustic oscillation (BAO) features are amplified for

  4. Approaching the basis set limit for DFT calculations using an environment-adapted minimal basis with perturbation theory: Formulation, proof of concept, and a pilot implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, Yuezhi; Horn, Paul R.; Mardirossian, Narbe

    2016-07-28

    Recently developed density functionals have good accuracy for both thermochemistry (TC) and non-covalent interactions (NC) if very large atomic orbital basis sets are used. To approach the basis set limit with potentially lower computational cost, a new self-consistent field (SCF) scheme is presented that employs minimal adaptive basis (MAB) functions. The MAB functions are optimized on each atomic site by minimizing a surrogate function. High accuracy is obtained by applying a perturbative correction (PC) to the MAB calculation, similar to dual basis approaches. Compared to exact SCF results, using this MAB-SCF (PC) approach with the same large target basis set producesmore » <0.15 kcal/mol root-mean-square deviations for most of the tested TC datasets, and <0.1 kcal/mol for most of the NC datasets. The performance of density functionals near the basis set limit can be even better reproduced. With further improvement to its implementation, MAB-SCF (PC) is a promising lower-cost substitute for conventional large-basis calculations as a method to approach the basis set limit of modern density functionals.« less

  5. The 1/ N Expansion of Tensor Models Beyond Perturbation Theory

    NASA Astrophysics Data System (ADS)

    Gurau, Razvan

    2014-09-01

    We analyze in full mathematical rigor the most general quartically perturbed invariant probability measure for a random tensor. Using a version of the Loop Vertex Expansion (which we call the mixed expansion) we show that the cumulants write as explicit series in 1/ N plus bounded rest terms. The mixed expansion recasts the problem of determining the subleading corrections in 1/ N into a simple combinatorial problem of counting trees decorated by a finite number of loop edges. As an aside, we use the mixed expansion to show that the (divergent) perturbative expansion of the tensor models is Borel summable and to prove that the cumulants respect an uniform scaling bound. In particular the quartically perturbed measures fall, in the N→ ∞ limit, in the universality class of Gaussian tensor models.

  6. Baryon chiral perturbation theory combined with the 1 / N c expansion in SU(3): Framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernando, I. P.; Goity, J. L.

    Baryon Chiral Perturbation Theory combined with themore » $$1/N_c$$ expansion is implemented for three flavors. Here, Baryon masses, vector charges and axial vector couplings are studied to one-loop and organized according to the $$\\xi$$-expansion, in which the $$1/N_c$$ and the low energy power countings are linked according to $$1/N_c={\\cal{O}}(\\xi)={\\cal{O}}(p)$$. The renormalization to $${\\cal{O}}(\\xi^3)$$ necessary for the mentioned observables is provided, along with applications to the baryon masses and axial couplings as obtained in lattice QCD calculations.« less

  7. Baryon chiral perturbation theory combined with the 1 / N c expansion in SU(3): Framework

    DOE PAGES

    Fernando, I. P.; Goity, J. L.

    2018-03-14

    Baryon Chiral Perturbation Theory combined with themore » $$1/N_c$$ expansion is implemented for three flavors. Here, Baryon masses, vector charges and axial vector couplings are studied to one-loop and organized according to the $$\\xi$$-expansion, in which the $$1/N_c$$ and the low energy power countings are linked according to $$1/N_c={\\cal{O}}(\\xi)={\\cal{O}}(p)$$. The renormalization to $${\\cal{O}}(\\xi^3)$$ necessary for the mentioned observables is provided, along with applications to the baryon masses and axial couplings as obtained in lattice QCD calculations.« less

  8. Electronic structures of rutile (011)(2 × 1) surfaces: A many-body perturbation theory study.

    PubMed

    Liu, Guokui; Chen, Tingwei; Liu, Xiaobiao; Jin, Fan; Yuan, Shiling; Ma, Yuchen

    2017-03-28

    Using the GW method within many-body perturbation theory, we investigate the electronic properties of the rutile (011) surfaces with different reconstruction patterns. We find that keeping the Ti:O ratio on the reconstructedsurface to 1:2 enlarges the bandgap of the rutile (011) surface to ca. 4.0 eV. Increasing the content of O atoms in the surface can turn rutile into a semi-metal. For some surfaces, it is important to apply self-consistent GW calculation to get the correct charge distributions for the frontier orbitals, which are relevant to the photocatalytic behavior of TiO 2 .

  9. A Theory of Secondary Teachers' Adaptations When Implementing a Reading Intervention Program

    ERIC Educational Resources Information Center

    Leko, Melinda M.; Roberts, Carly A.; Pek, Yvonne

    2015-01-01

    This study examined the causes and consequences of secondary teachers' adaptations when implementing a research-based reading intervention program. Interview, observation, and artifact data were collected on five middle school intervention teachers, leading to a grounded theory composed of the core component, reconciliation through adaptation, and…

  10. Vibrational quasi-degenerate perturbation theory with optimized coordinates: Applications to ethylene and trans-1,3-butadiene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yagi, Kiyoshi, E-mail: kiyoshi.yagi@riken.jp; Otaki, Hiroki

    A perturbative extension to optimized coordinate vibrational self-consistent field (oc-VSCF) is proposed based on the quasi-degenerate perturbation theory (QDPT). A scheme to construct the degenerate space (P space) is developed, which incorporates degenerate configurations and alleviates the divergence of perturbative expansion due to localized coordinates in oc-VSCF (e.g., local O–H stretching modes of water). An efficient configuration selection scheme is also implemented, which screens out the Hamiltonian matrix element between the P space configuration (p) and the complementary Q space configuration (q) based on a difference in their quantum numbers (λ{sub pq} = ∑{sub s}|p{sub s} − q{sub s}|). Itmore » is demonstrated that the second-order vibrational QDPT based on optimized coordinates (oc-VQDPT2) smoothly converges with respect to the order of the mode coupling, and outperforms the conventional one based on normal coordinates. Furthermore, an improved, fast algorithm is developed for optimizing the coordinates. First, the minimization of the VSCF energy is conducted in a restricted parameter space, in which only a portion of pairs of coordinates is selectively transformed. A rational index is devised for this purpose, which identifies the important coordinate pairs to mix from others that may remain unchanged based on the magnitude of harmonic coupling induced by the transformation. Second, a cubic force field (CFF) is employed in place of a quartic force field, which bypasses intensive procedures that arise due to the presence of the fourth-order force constants. It is found that oc-VSCF based on CFF together with the pair selection scheme yields the coordinates similar in character to the conventional ones such that the final vibrational energy is affected very little while gaining an order of magnitude acceleration. The proposed method is applied to ethylene and trans-1,3-butadiene. An accurate, multi-resolution potential, which combines the MP2

  11. Vibrational quasi-degenerate perturbation theory with optimized coordinates: applications to ethylene and trans-1,3-butadiene.

    PubMed

    Yagi, Kiyoshi; Otaki, Hiroki

    2014-02-28

    A perturbative extension to optimized coordinate vibrational self-consistent field (oc-VSCF) is proposed based on the quasi-degenerate perturbation theory (QDPT). A scheme to construct the degenerate space (P space) is developed, which incorporates degenerate configurations and alleviates the divergence of perturbative expansion due to localized coordinates in oc-VSCF (e.g., local O-H stretching modes of water). An efficient configuration selection scheme is also implemented, which screens out the Hamiltonian matrix element between the P space configuration (p) and the complementary Q space configuration (q) based on a difference in their quantum numbers (λpq = ∑s|ps - qs|). It is demonstrated that the second-order vibrational QDPT based on optimized coordinates (oc-VQDPT2) smoothly converges with respect to the order of the mode coupling, and outperforms the conventional one based on normal coordinates. Furthermore, an improved, fast algorithm is developed for optimizing the coordinates. First, the minimization of the VSCF energy is conducted in a restricted parameter space, in which only a portion of pairs of coordinates is selectively transformed. A rational index is devised for this purpose, which identifies the important coordinate pairs to mix from others that may remain unchanged based on the magnitude of harmonic coupling induced by the transformation. Second, a cubic force field (CFF) is employed in place of a quartic force field, which bypasses intensive procedures that arise due to the presence of the fourth-order force constants. It is found that oc-VSCF based on CFF together with the pair selection scheme yields the coordinates similar in character to the conventional ones such that the final vibrational energy is affected very little while gaining an order of magnitude acceleration. The proposed method is applied to ethylene and trans-1,3-butadiene. An accurate, multi-resolution potential, which combines the MP2 and coupled-cluster with singles

  12. Perturbative search for dead-end CFTs

    DOE PAGES

    Nakayama, Yu

    2015-05-08

    To explore the possibility of self-organized criticality, we look for CFTs without any relevant scalar deformations (a.k.a. dead-end CFTs) within power-counting renormalizable quantum field theories with a weakly coupled Lagrangian description. In three dimensions, the only candidates are pure (Abelian) gauge theories, which may be further deformed by Chern-Simons terms. In four dimensions, we show that there are infinitely many non-trivial candidates based on chiral gauge theories. Using the three-loop beta functions, we compute the gap of scaling dimensions above the marginal value, and it can be as small as O(10 –5) and robust against the perturbative corrections. These classesmore » of candidates are very weakly coupled and our perturbative conclusion seems difficult to refute. Furthermore, the hypothesis that non-trivial dead-end CFTs do not exist is likely to be false in four dimensions.« less

  13. Perturbative search for dead-end CFTs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakayama, Yu

    To explore the possibility of self-organized criticality, we look for CFTs without any relevant scalar deformations (a.k.a. dead-end CFTs) within power-counting renormalizable quantum field theories with a weakly coupled Lagrangian description. In three dimensions, the only candidates are pure (Abelian) gauge theories, which may be further deformed by Chern-Simons terms. In four dimensions, we show that there are infinitely many non-trivial candidates based on chiral gauge theories. Using the three-loop beta functions, we compute the gap of scaling dimensions above the marginal value, and it can be as small as O(10 –5) and robust against the perturbative corrections. These classesmore » of candidates are very weakly coupled and our perturbative conclusion seems difficult to refute. Furthermore, the hypothesis that non-trivial dead-end CFTs do not exist is likely to be false in four dimensions.« less

  14. Adaptation of postural responses during different standing perturbation conditions in individuals with incomplete spinal cord injury.

    PubMed

    Thigpen, Mary T; Cauraugh, James; Creel, Gwen; Day, Kristin; Flynn, Sheryl; Fritz, Stacy; Frost, Shirley; Respess, Robert; Gardner-Smith, Portia; Brack, Mia; Behrman, Andrea

    2009-01-01

    Incomplete spinal cord injury (ISCI) frequently disrupts afferent and efferent neural pathways underlying co-requisite voluntary and involuntary muscle activation required for functional standing and walking. To understand involuntary postural control mechanisms necessary for standing, we compared eight individuals with ISCI to eight controls with no impairment. The aim of this study was to investigate anticipatory and reactive balance responses in individuals with ISCI. The ability to adapt to changes in balance conditions was assessed by monitoring automatic postural responses (APRs) during a series of expected and unexpected changes in perturbation direction (backward translation versus toes-up rotation). Both groups were able to modulate appropriately within one or two trials following an unexpected change in condition. Onset times of anterior tibialis and medial gastrocnemius (MG) were significantly slower in the ISCI group during expected and unexpected conditions. These findings demonstrate that persons with mild to moderate lower extremity sensorimotor deficits are able to generate and adapt APRs to a rapid and unexpected contextual change during a simple standing balance task.

  15. Analytic first derivatives for a spin-adapted open-shell coupled cluster theory: Evaluation of first-order electrical properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Datta, Dipayan, E-mail: datta@uni-mainz.de; Gauss, Jürgen, E-mail: gauss@uni-mainz.de

    2014-09-14

    An analytic scheme is presented for the evaluation of first derivatives of the energy for a unitary group based spin-adapted coupled cluster (CC) theory, namely, the combinatoric open-shell CC (COSCC) approach within the singles and doubles approximation. The widely used Lagrange multiplier approach is employed for the derivation of an analytical expression for the first derivative of the energy, which in combination with the well-established density-matrix formulation, is used for the computation of first-order electrical properties. Derivations of the spin-adapted lambda equations for determining the Lagrange multipliers and the expressions for the spin-free effective density matrices for the COSCC approachmore » are presented. Orbital-relaxation effects due to the electric-field perturbation are treated via the Z-vector technique. We present calculations of the dipole moments for a number of doublet radicals in their ground states using restricted open-shell Hartree-Fock (ROHF) and quasi-restricted HF (QRHF) orbitals in order to demonstrate the applicability of our analytic scheme for computing energy derivatives. We also report calculations of the chlorine electric-field gradients and nuclear quadrupole-coupling constants for the CCl, CH{sub 2}Cl, ClO{sub 2}, and SiCl radicals.« less

  16. Finite volume for three-flavour Partially Quenched Chiral Perturbation Theory through NNLO in the meson sector

    NASA Astrophysics Data System (ADS)

    Bijnens, Johan; Rössler, Thomas

    2015-11-01

    We present a calculation of the finite volume corrections to meson masses and decay constants in three flavour Partially Quenched Chiral Perturbation Theory (PQChPT) through two-loop order in the chiral expansion for the flavour-charged (or off-diagonal) pseudoscalar mesons. The analytical results are obtained for three sea quark flavours with one, two or three different masses. We reproduce the known infinite volume results and the finite volume results in the unquenched case. The calculation has been performed using the supersymmetric formulation of PQChPT as well as with a quark flow technique.

  17. Gravitoinertial force background level affects adaptation to coriolis force perturbations of reaching movements

    NASA Technical Reports Server (NTRS)

    Lackner, J. R.; Dizio, P.

    1998-01-01

    We evaluated the combined effects on reaching movements of the transient, movement-dependent Coriolis forces and the static centrifugal forces generated in a rotating environment. Specifically, we assessed the effects of comparable Coriolis force perturbations in different static force backgrounds. Two groups of subjects made reaching movements toward a just-extinguished visual target before rotation began, during 10 rpm counterclockwise rotation, and after rotation ceased. One group was seated on the axis of rotation, the other 2.23 m away. The resultant of gravity and centrifugal force on the hand was 1.0 g for the on-center group during 10 rpm rotation, and 1.031 g for the off-center group because of the 0.25 g centrifugal force present. For both groups, rightward Coriolis forces, approximately 0.2 g peak, were generated during voluntary arm movements. The endpoints and paths of the initial per-rotation movements were deviated rightward for both groups by comparable amounts. Within 10 subsequent reaches, the on-center group regained baseline accuracy and straight-line paths; however, even after 40 movements the off-center group had not resumed baseline endpoint accuracy. Mirror-image aftereffects occurred when rotation stopped. These findings demonstrate that manual control is disrupted by transient Coriolis force perturbations and that adaptation can occur even in the absence of visual feedback. An increase, even a small one, in background force level above normal gravity does not affect the size of the reaching errors induced by Coriolis forces nor does it affect the rate of reacquiring straight reaching paths; however, it does hinder restoration of reaching accuracy.

  18. Cosmological perturbation and matter power spectrum in bimetric massive gravity

    NASA Astrophysics Data System (ADS)

    Geng, Chao-Qiang; Lee, Chung-Chi; Zhang, Kaituo

    2018-04-01

    We discuss the linear perturbation equations with the synchronous gauge in a minimal scenario of the bimetric massive gravity theory. We find that the matter density perturbation and matter power spectrum are suppressed. We also examine the ghost and stability problems and show that the allowed deviation of this gravitational theory from the cosmological constant is constrained to be smaller than O(10-2) by the large scale structure observational data.

  19. BRST quantization of cosmological perturbations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armendariz-Picon, Cristian; Şengör, Gizem

    2016-11-08

    BRST quantization is an elegant and powerful method to quantize theories with local symmetries. In this article we study the Hamiltonian BRST quantization of cosmological perturbations in a universe dominated by a scalar field, along with the closely related quantization method of Dirac. We describe how both formalisms apply to perturbations in a time-dependent background, and how expectation values of gauge-invariant operators can be calculated in the in-in formalism. Our analysis focuses mostly on the free theory. By appropriate canonical transformations we simplify and diagonalize the free Hamiltonian. BRST quantization in derivative gauges allows us to dramatically simplify the structuremore » of the propagators, whereas Dirac quantization, which amounts to quantization in synchronous gauge, dispenses with the need to introduce ghosts and preserves the locality of the gauge-fixed action.« less

  20. Effect of the nonlocal exchange on the performance of the orbital-dependent correlation functionals from second-order perturbation theory.

    PubMed

    Schweigert, Igor V; Bartlett, Rodney J

    2008-09-28

    Adding a fraction of the nonlocal exchange operator to the local orbital-dependent exchange potential improves the many-body perturbation expansion based on the Kohn-Sham determinant. The effect of such a hybrid scheme on the performance of the orbital-dependent correlation functional from the second-order perturbation theory (PT2H) is investigated numerically. A small fraction of the nonlocal exchange is often sufficient to ensure the existence of the self-consistent solution for the PT2H potential. In the He and Be atoms, including 37% of the nonlocal exchange leads to the correlation energies and electronic densities that are very close to the exact ones. In molecules, varying the fraction of the nonlocal exchange may result in the PT2H energy closely reproducing the CCSD(T) value; however such a fraction depends on the system and does not always result in an accurate electronic density. We also numerically verify that the "semicanonical" perturbation series includes most of the beneficial effects of the nonlocal exchange without sacrificing the locality of the exchange potential.

  1. Tau hadronic spectral function moments: perturbative expansion and αs extractions

    NASA Astrophysics Data System (ADS)

    Boito, D.

    2016-04-01

    In the extraction of αs from hadronic τ decays different moments of the spectral functions have been used. Furthermore, the two mainstream renormalization group improvement (RGI) frameworks, namely Fixed Order Perturbation Theory (FOPT) and Contour Improved Perturbation Theory (CIPT), lead to conflicting values of αs. In order to improve the strategy used in αs determinations, we have performed a systematic study of the perturbative behaviour of these spectral moments in the context of FOPT and CIPT. Higher order coefficients of the perturbative series, yet unknown, were modelled using available knowledge of the renormalon content of the QCD Adler function. We conclude that within these RGI frameworks some of the moments often employed in αs extractions should be avoided due to their poor perturbative behaviour. Finally, under reasonable assumptions about higher orders, we conclude that FOPT is the preferred method to perform the renormalization group improvement of the perturbative series.

  2. Anomaly-free cosmological perturbations in effective canonical quantum gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrau, Aurelien; Bojowald, Martin; Kagan, Mikhail

    2015-05-01

    This article lays out a complete framework for an effective theory of cosmological perturbations with corrections from canonical quantum gravity. Since several examples exist for quantum-gravity effects that change the structure of space-time, the classical perturbative treatment must be rethought carefully. The present discussion provides a unified picture of several previous works, together with new treatments of higher-order perturbations and the specification of initial states.

  3. Studying the Perturbed Wess-Zumino-Novikov-Witten SU(2) k Theory Using the Truncated Conformal Spectrum Approach

    DOE PAGES

    Konik, R. M.; Palmai, T.; Takacs, G.; ...

    2015-08-24

    We study the SU(2) k Wess-Zumino-Novikov-Witten (WZNW) theory perturbed by the trace of the primary field in the adjoint representation, a theory governing the low-energy behaviour of a class of strongly correlated electronic systems. While the model is non-integrable, its dynamics can be investigated using the numerical technique of the truncated conformal spectrum approach combined with numerical and analytical renormalization groups (TCSA+RG). The numerical results so obtained provide support for a semiclassical analysis valid at k » 1. Namely, we find that the low energy behavior is sensitive to the sign of the coupling constant, λ. Moreover for λ >more » 0 this behavior depends on whether k is even or odd. With k even, we find definitive evidence that the model at low energies is equivalent to the massive O(3) sigma model. For k odd, the numerical evidence is more equivocal, but we find indications that the low energy effective theory is critical.« less

  4. Development of the Lunar and Solar Perturbations in the Motion of an Artificial Satellite

    NASA Technical Reports Server (NTRS)

    Musen, P.; Bailie, A.; Upton, E.

    1961-01-01

    Problems relating to the influence of lunar and solar perturbations on the motion of artificial satellites are analyzed by an extension of Cayley's development of the perturbative function in the lunar theory. In addition, the results are modified for incorporation into the Hansen-type theory used by the NASA Space Computing Center. The theory is applied to the orbits of the Vanguard I and Explorer VI satellites, and the results of detailed computations for these satellites are given together with a physical description of the perturbations in terms of resonance effects.

  5. Multiconfiguration Pair-Density Functional Theory Predicts Spin-State Ordering in Iron Complexes with the Same Accuracy as Complete Active Space Second-Order Perturbation Theory at a Significantly Reduced Computational Cost.

    PubMed

    Wilbraham, Liam; Verma, Pragya; Truhlar, Donald G; Gagliardi, Laura; Ciofini, Ilaria

    2017-05-04

    The spin-state orderings in nine Fe(II) and Fe(III) complexes with ligands of diverse ligand-field strength were investigated with multiconfiguration pair-density functional theory (MC-PDFT). The performance of this method was compared to that of complete active space second-order perturbation theory (CASPT2) and Kohn-Sham density functional theory. We also investigated the dependence of CASPT2 and MC-PDFT results on the size of the active-space. MC-PDFT reproduces the CASPT2 spin-state ordering, the dependence on the ligand field strength, and the dependence on active space at a computational cost that is significantly reduced as compared to CASPT2.

  6. Cosmological perturbations in mimetic Horndeski gravity

    NASA Astrophysics Data System (ADS)

    Arroja, Frederico; Bartolo, Nicola; Karmakar, Purnendu; Matarrese, Sabino

    2016-04-01

    We study linear scalar perturbations around a flat FLRW background in mimetic Horndeski gravity. In the absence of matter, we show that the Newtonian potential satisfies a second-order differential equation with no spatial derivatives. This implies that the sound speed for scalar perturbations is exactly zero on this background. We also show that in mimetic G3 theories the sound speed is equally zero. We obtain the equation of motion for the comoving curvature perturbation (first order differential equation) and solve it to find that the comoving curvature perturbation is constant on all scales in mimetic Horndeski gravity. We find solutions for the Newtonian potential evolution equation in two simple models. Finally we show that the sound speed is zero on all backgrounds and therefore the system does not have any wave-like scalar degrees of freedom.

  7. Polyakov loop correlator in perturbation theory

    DOE PAGES

    Berwein, Matthias; Brambilla, Nora; Petreczky, Péter; ...

    2017-07-25

    We study the Polyakov loop correlator in the weak coupling expansion and show how the perturbative series re-exponentiates into singlet and adjoint contributions. We calculate the order g 7 correction to the Polyakov loop correlator in the short distance limit. We show how the singlet and adjoint free energies arising from the re-exponentiation formula of the Polyakov loop correlator are related to the gauge invariant singlet and octet free energies that can be defined in pNRQCD, namely we find that the two definitions agree at leading order in the multipole expansion, but differ at first order in the quark-antiquark distance.

  8. Polyakov loop correlator in perturbation theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berwein, Matthias; Brambilla, Nora; Petreczky, Péter

    We study the Polyakov loop correlator in the weak coupling expansion and show how the perturbative series re-exponentiates into singlet and adjoint contributions. We calculate the order g 7 correction to the Polyakov loop correlator in the short distance limit. We show how the singlet and adjoint free energies arising from the re-exponentiation formula of the Polyakov loop correlator are related to the gauge invariant singlet and octet free energies that can be defined in pNRQCD, namely we find that the two definitions agree at leading order in the multipole expansion, but differ at first order in the quark-antiquark distance.

  9. Causality violations in Lovelock theories

    NASA Astrophysics Data System (ADS)

    Brustein, Ram; Sherf, Yotam

    2018-04-01

    Higher-derivative gravity theories, such as Lovelock theories, generalize Einstein's general relativity (GR). Modifications to GR are expected when curvatures are near Planckian and appear in string theory or supergravity. But can such theories describe gravity on length scales much larger than the Planck cutoff length scale? Here we find causality constraints on Lovelock theories that arise from the requirement that the equations of motion (EOM) of perturbations be hyperbolic. We find a general expression for the "effective metric" in field space when Lovelock theories are perturbed around some symmetric background solution. In particular, we calculate explicitly the effective metric for a general Lovelock theory perturbed around cosmological Friedman-Robertson-Walker backgrounds and for some specific cases when perturbed around Schwarzschild-like solutions. For the EOM to be hyperbolic, the effective metric needs to be Lorentzian. We find that, unlike for GR, the effective metric is generically not Lorentzian when the Lovelock modifications are significant. So, we conclude that Lovelock theories can only be considered as perturbative extensions of GR and not as truly modified theories of gravity. We compare our results to those in the literature and find that they agree with and reproduce the results of previous studies.

  10. On optimizing the treatment of exchange perturbations.

    NASA Technical Reports Server (NTRS)

    Hirschfelder, J. O.; Chipman, D. M.

    1972-01-01

    Most theories of exchange perturbations would give the exact energy and wave function if carried out to an infinite order. However, the different methods give different values for the second-order energy, and different values for E(1), the expectation value of the Hamiltonian corresponding to the zeroth- plus first-order wave function. In the presented paper, it is shown that the zeroth- plus first-order wave function obtained by optimizing the basic equation which is used in most exchange perturbation treatments is the exact wave function for the perturbation system and E(1) is the exact energy.

  11. Multicritical scalar theories with higher-derivative kinetic terms: A perturbative RG approach with the ɛ -expansion

    NASA Astrophysics Data System (ADS)

    Safari, M.; Vacca, G. P.

    2018-02-01

    We employ perturbative renormalization group and ɛ -expansion to study multicritical single-scalar field theories with higher derivative kinetic terms of the form ϕ (-□)kϕ . We focus on those with a Z2-symmetric critical point which are characterized by an upper critical dimension dc=2 n k /(n -1 ) accumulating at even integers. We distinguish two types of theories depending on whether or not the numbers k and n -1 are relatively prime. When they are, the critical theory involves a marginal powerlike interaction ϕ2 n and the deformations admit a derivative expansion that at leading order involves only the potential. In this case we present the beta functional of the potential and use this to calculate some anomalous dimensions and operator product expansion coefficients. These confirm some conformal field theory data obtained using conformal-block techniques, while giving new results. In the second case where k and n -1 have a common divisor, the theories show a much richer structure induced by the presence of marginal derivative operators at criticality. We study the case k =2 with odd values of n , which fall in the second class, and calculate the functional flows and spectrum. These theories have a phase diagram characterized at leading order in ɛ by four fixed points which apart from the Gaussian UV fixed point include an IR fixed point with a purely derivative interaction.

  12. Perturbative Normal Form Theory for the 2D Random-Field Ising Model

    NASA Astrophysics Data System (ADS)

    Hayden, Lorien; Raju, Archishman; Sethna, James

    Bifurcation theory is important to explain scaling in many systems. For the equilibrium random-field Ising model (RFIM) in 2D, the exponentially diverging correlation length can be derived directly from the RG flows which form a pitchfork bifurcation: dw/dl = -ɛ/2 w +w3 (Bray and Moore 1985). Our perturbative normal form theory (PNFT) predicts a term w5 to be critical in describing the behavior - it cannot be removed through an analytic change of coordinates. The new form of the correlation length produced has been observed to occur in leading order without explanation (Meinke and Middleton 2005). Performing simulations of the non-equilibrium RFIM on a Voronoi lattice uncovers a transcritical bifurcation of the form dw/dl = -ɛ/2 w +w2 + Bw3 . The RG flows determined by PNFT in this case lead directly to a form for the appropriate invariant scaling combination: s exp (- 1 / σνw) (1/w + B) C + B / σν . Using this scaling combination yields a collapse which was not possible to achieve using standard methods such as Widom scaling arguments. Further, the scaling extends over a decade in the magnitude of the disorder and explains behavior down to avalanche sizes of three, the edge of complexity. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No . DGE-1144153 and a Cornell Fellowship.

  13. Multi-Target Mining of Alzheimer Disease Proteome with Hansch's QSBR-Perturbation Theory and Experimental-Theoretic Study of New Thiophene Isosters of Rasagiline.

    PubMed

    Abeijon, Paula; Garcia-Mera, Xerardo; Caamano, Olga; Yanez, Matilde; Lopez-Castro, Edgar; Romero-Duran, Francisco J; Gonzalez-Diaz, Humberto

    2017-01-01

    Hansch's model is a classic approach to Quantitative Structure-Binding Relationships (QSBR) problems in Pharmacology and Medicinal Chemistry. Hansch QSAR equations are used as input parameters of electronic structure and lipophilicity. In this work, we perform a review on Hansch's analysis. We also developed a new type of PT-QSBR Hansch's model based on Perturbation Theory (PT) and QSBR approach for a large number of drugs reported in CheMBL. The targets are proteins expressed by the Hippocampus region of the brain of Alzheimer Disease (AD) patients. The model predicted correctly 49312 out of 53783 negative perturbations (Specificity = 91.7%) and 16197 out of 21245 positive perturbations (Sensitivity = 76.2%) in training series. The model also predicted correctly 49312/53783 (91.7%) and 16197/21245 (76.2%) negative or positive perturbations in external validation series. We applied our model in theoretical-experimental studies of organic synthesis, pharmacological assay, and prediction of unmeasured results for a series of compounds similar to Rasagiline (compound of reference) with potential neuroprotection effect. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Ultra-sensitive pressure dependence of bandgap of rutile-GeO2 revealed by many body perturbation theory.

    PubMed

    Samanta, Atanu; Jain, Manish; Singh, Abhishek K

    2015-08-14

    The reported values of bandgap of rutile GeO2 calculated by the standard density functional theory within local-density approximation (LDA)/generalized gradient approximation (GGA) show a wide variation (∼2 eV), whose origin remains unresolved. Here, we investigate the reasons for this variation by studying the electronic structure of rutile-GeO2 using many-body perturbation theory within the GW framework. The bandgap as well as valence bandwidth at Γ-point of rutile phase shows a strong dependence on volume change, which is independent of bandgap underestimation problem of LDA/GGA. This strong dependence originates from a change in hybridization among O-p and Ge-(s and p) orbitals. Furthermore, the parabolic nature of first conduction band along X-Γ-M direction changes towards a linear dispersion with volume expansion.

  15. The effective χ parameter in polarizable polymeric systems: One-loop perturbation theory and field-theoretic simulations.

    PubMed

    Grzetic, Douglas J; Delaney, Kris T; Fredrickson, Glenn H

    2018-05-28

    We derive the effective Flory-Huggins parameter in polarizable polymeric systems, within a recently introduced polarizable field theory framework. The incorporation of bead polarizabilities in the model self-consistently embeds dielectric response, as well as van der Waals interactions. The latter generate a χ parameter (denoted χ̃) between any two species with polarizability contrast. Using one-loop perturbation theory, we compute corrections to the structure factor Sk and the dielectric function ϵ^(k) for a polarizable binary homopolymer blend in the one-phase region of the phase diagram. The electrostatic corrections to S(k) can be entirely accounted for by a renormalization of the excluded volume parameter B into three van der Waals-corrected parameters B AA , B AB , and B BB , which then determine χ̃. The one-loop theory not only enables the quantitative prediction of χ̃ but also provides useful insight into the dependence of χ̃ on the electrostatic environment (for example, its sensitivity to electrostatic screening). The unapproximated polarizable field theory is amenable to direct simulation via complex Langevin sampling, which we employ here to test the validity of the one-loop results. From simulations of S(k) and ϵ^(k) for a system of polarizable homopolymers, we find that the one-loop theory is best suited to high concentrations, where it performs very well. Finally, we measure χ̃N in simulations of a polarizable diblock copolymer melt and obtain excellent agreement with the one-loop theory. These constitute the first fully fluctuating simulations conducted within the polarizable field theory framework.

  16. The effective χ parameter in polarizable polymeric systems: One-loop perturbation theory and field-theoretic simulations

    NASA Astrophysics Data System (ADS)

    Grzetic, Douglas J.; Delaney, Kris T.; Fredrickson, Glenn H.

    2018-05-01

    We derive the effective Flory-Huggins parameter in polarizable polymeric systems, within a recently introduced polarizable field theory framework. The incorporation of bead polarizabilities in the model self-consistently embeds dielectric response, as well as van der Waals interactions. The latter generate a χ parameter (denoted χ ˜ ) between any two species with polarizability contrast. Using one-loop perturbation theory, we compute corrections to the structure factor S (k ) and the dielectric function ɛ ^ (k ) for a polarizable binary homopolymer blend in the one-phase region of the phase diagram. The electrostatic corrections to S(k) can be entirely accounted for by a renormalization of the excluded volume parameter B into three van der Waals-corrected parameters BAA, BAB, and BBB, which then determine χ ˜ . The one-loop theory not only enables the quantitative prediction of χ ˜ but also provides useful insight into the dependence of χ ˜ on the electrostatic environment (for example, its sensitivity to electrostatic screening). The unapproximated polarizable field theory is amenable to direct simulation via complex Langevin sampling, which we employ here to test the validity of the one-loop results. From simulations of S(k) and ɛ ^ (k ) for a system of polarizable homopolymers, we find that the one-loop theory is best suited to high concentrations, where it performs very well. Finally, we measure χ ˜ N in simulations of a polarizable diblock copolymer melt and obtain excellent agreement with the one-loop theory. These constitute the first fully fluctuating simulations conducted within the polarizable field theory framework.

  17. Cognition and balance control: does processing of explicit contextual cues of impending perturbations modulate automatic postural responses?

    PubMed

    Coelho, Daniel Boari; Teixeira, Luis Augusto

    2017-08-01

    Processing of predictive contextual cues of an impending perturbation is thought to induce adaptive postural responses. Cueing in previous research has been provided through repeated perturbations with a constant foreperiod. This experimental strategy confounds explicit predictive cueing with adaptation and non-specific properties of temporal cueing. Two experiments were performed to assess those factors separately. To perturb upright balance, the base of support was suddenly displaced backwards in three amplitudes: 5, 10 and 15 cm. In Experiment 1, we tested the effect of cueing the amplitude of the impending postural perturbation by means of visual signals, and the effect of adaptation to repeated exposures by comparing block versus random sequences of perturbation. In Experiment 2, we evaluated separately the effects of cueing the characteristics of an impending balance perturbation and cueing the timing of perturbation onset. Results from Experiment 1 showed that the block sequence of perturbations led to increased stability of automatic postural responses, and modulation of magnitude and onset latency of muscular responses. Results from Experiment 2 showed that only the condition cueing timing of platform translation onset led to increased balance stability and modulation of onset latency of muscular responses. Conversely, cueing platform displacement amplitude failed to induce any effects on automatic postural responses in both experiments. Our findings support the interpretation of improved postural responses via optimized sensorimotor processes, at the same time that cast doubt on the notion that cognitive processing of explicit contextual cues advancing the magnitude of an impending perturbation can preset adaptive postural responses.

  18. Perturbation Theory of Spin-Triplet Superconductivity for Sr 2RuO 4

    NASA Astrophysics Data System (ADS)

    Nomura, Takuji; Yamada, Kosaku

    2000-11-01

    We discuss the possibility of spin-triplet superconductivity within the third order perturbation theory with respect to on-site Coulomb repulsion U. Critical temperature T c for spin-triplet pairing state is calculated in a single-band two-dimensional Hubbard modeland relatively high T c is obtained for moderately large U. The present situation considered here is particularly intended for the main branch γ in Sr2RuO4. According to the calculation, third order vertex correction terms, which are not direct contribution from spin fluctuation, are important, while the bare susceptibility χ0(q) need not always have a prominent peak at q=0 for the spin-triplet pairing state. The picture that strong ferromagnetic spin fluctuations mainly induce the spin-triplet superconductivity in Sr2RuO4 may not be appropriate, and such momentum dependence of renormalized effective interaction between quasi-particles as is not sufficiently taken into accountin spin fluctuation mediated interaction is essential for realizing the spin-triplet pairing.

  19. Quantum geometry of resurgent perturbative/nonperturbative relations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basar, Gokce; Dunne, Gerald V.; Unsal, Mithat

    For a wide variety of quantum potentials, including the textbook ‘instanton’ examples of the periodic cosine and symmetric double-well potentials, the perturbative data coming from fluctuations about the vacuum saddle encodes all non-perturbative data in all higher non-perturbative sectors. Here we unify these examples in geometric terms, arguing that the all-orders quantum action determines the all-orders quantum dual action for quantum spectral problems associated with a classical genus one elliptic curve. Furthermore, for a special class of genus one potentials this relation is particularly simple: this class includes the cubic oscillator, symmetric double-well, symmetric degenerate triple-well, and periodic cosine potential.more » These are related to the Chebyshev potentials, which are in turn related to certain N = 2 supersymmetric quantum field theories, to mirror maps for hypersurfaces in projective spaces, and also to topological c = 3 Landau-Ginzburg models and ‘special geometry’. These systems inherit a natural modular structure corresponding to Ramanujan’s theory of elliptic functions in alternative bases, which is especially important for the quantization. Insights from supersymmetric quantum field theory suggest similar structures for more complicated potentials, corresponding to higher genus. Lastly, our approach is very elementary, using basic classical geometry combined with all-orders WKB.« less

  20. Quantum geometry of resurgent perturbative/nonperturbative relations

    DOE PAGES

    Basar, Gokce; Dunne, Gerald V.; Unsal, Mithat

    2017-05-16

    For a wide variety of quantum potentials, including the textbook ‘instanton’ examples of the periodic cosine and symmetric double-well potentials, the perturbative data coming from fluctuations about the vacuum saddle encodes all non-perturbative data in all higher non-perturbative sectors. Here we unify these examples in geometric terms, arguing that the all-orders quantum action determines the all-orders quantum dual action for quantum spectral problems associated with a classical genus one elliptic curve. Furthermore, for a special class of genus one potentials this relation is particularly simple: this class includes the cubic oscillator, symmetric double-well, symmetric degenerate triple-well, and periodic cosine potential.more » These are related to the Chebyshev potentials, which are in turn related to certain N = 2 supersymmetric quantum field theories, to mirror maps for hypersurfaces in projective spaces, and also to topological c = 3 Landau-Ginzburg models and ‘special geometry’. These systems inherit a natural modular structure corresponding to Ramanujan’s theory of elliptic functions in alternative bases, which is especially important for the quantization. Insights from supersymmetric quantum field theory suggest similar structures for more complicated potentials, corresponding to higher genus. Lastly, our approach is very elementary, using basic classical geometry combined with all-orders WKB.« less

  1. Quantum geometry of resurgent perturbative/nonperturbative relations

    NASA Astrophysics Data System (ADS)

    Basar, Gökçe; Dunne, Gerald V.; Ünsal, Mithat

    2017-05-01

    For a wide variety of quantum potentials, including the textbook `instanton' examples of the periodic cosine and symmetric double-well potentials, the perturbative data coming from fluctuations about the vacuum saddle encodes all non-perturbative data in all higher non-perturbative sectors. Here we unify these examples in geometric terms, arguing that the all-orders quantum action determines the all-orders quantum dual action for quantum spectral problems associated with a classical genus one elliptic curve. Furthermore, for a special class of genus one potentials this relation is particularly simple: this class includes the cubic oscillator, symmetric double-well, symmetric degenerate triple-well, and periodic cosine potential. These are related to the Chebyshev potentials, which are in turn related to certain \\mathcal{N} = 2 supersymmetric quantum field theories, to mirror maps for hypersurfaces in projective spaces, and also to topological c = 3 Landau-Ginzburg models and `special geometry'. These systems inherit a natural modular structure corresponding to Ramanujan's theory of elliptic functions in alternative bases, which is especially important for the quantization. Insights from supersymmetric quantum field theory suggest similar structures for more complicated potentials, corresponding to higher genus. Our approach is very elementary, using basic classical geometry combined with all-orders WKB.

  2. Degenerate R-S perturbation theory

    NASA Technical Reports Server (NTRS)

    Hirschfelder, J. O.; Certain, P. R.

    1973-01-01

    A concise, systematic procedure is given for determining the Rayleigh-Schrodinger energies and wave functions of degenerate states to arbitrarily high orders even when the degeneracies of the various states are resolved in arbitrary orders. The procedure is expressed in terms of an iterative cycle in which the energy through the (2n+1)st order is expressed in terms of the partially determined wave function through the n-th order. Both a direct and an operator derivation are given. The two approaches are equivalent and can be transcribed into each other. The direct approach deals with the wave functions (without the use of formal operators) and has the advantage that it resembles the usual treatment of nondegenerate perturbations and maintains close contact with the basic physics. In the operator approach, the wave functions are expressed in terms of infinite order operators which are determined by the successive resolution of the space of the zeroth order functions.

  3. Adaptive modeling, identification, and control of dynamic structural systems. I. Theory

    USGS Publications Warehouse

    Safak, Erdal

    1989-01-01

    A concise review of the theory of adaptive modeling, identification, and control of dynamic structural systems based on discrete-time recordings is presented. Adaptive methods have four major advantages over the classical methods: (1) Removal of the noise from the signal is done over the whole frequency band; (2) time-varying characteristics of systems can be tracked; (3) systems with unknown characteristics can be controlled; and (4) a small segment of the data is needed during the computations. Included in the paper are the discrete-time representation of single-input single-output (SISO) systems, models for SISO systems with noise, the concept of stochastic approximation, recursive prediction error method (RPEM) for system identification, and the adaptive control. Guidelines for model selection and model validation and the computational aspects of the method are also discussed in the paper. The present paper is the first of two companion papers. The theory given in the paper is limited to that which is necessary to follow the examples for applications in structural dynamics presented in the second paper.

  4. Spatio-temporal evolution of perturbations in ensembles initialized by bred, Lyapunov and singular vectors

    NASA Astrophysics Data System (ADS)

    Pazó, Diego; Rodríguez, Miguel A.; López, Juan M.

    2010-01-01

    We study the evolution of finite perturbations in the Lorenz `96 model, a meteorological toy model of the atmosphere. The initial perturbations are chosen to be aligned along different dynamic vectors: bred, Lyapunov, and singular vectors. Using a particular vector determines not only the amplification rate of the perturbation but also the spatial structure of the perturbation and its stability under the evolution of the flow. The evolution of perturbations is systematically studied by means of the so-called mean-variance of logarithms diagram that provides in a very compact way the basic information to analyse the spatial structure. We discuss the corresponding advantages of using those different vectors for preparing initial perturbations to be used in ensemble prediction systems, focusing on key properties: dynamic adaptation to the flow, robustness, equivalence between members of the ensemble, etc. Among all the vectors considered here, the so-called characteristic Lyapunov vectors are possibly optimal, in the sense that they are both perfectly adapted to the flow and extremely robust.

  5. Can the second order multireference perturbation theory be considered a reliable tool to study mixed-valence compounds?

    PubMed

    Pastore, Mariachiara; Helal, Wissam; Evangelisti, Stefano; Leininger, Thierry; Malrieu, Jean-Paul; Maynau, Daniel; Angeli, Celestino; Cimiraglia, Renzo

    2008-05-07

    In this paper, the problem of the calculation of the electronic structure of mixed-valence compounds is addressed in the frame of multireference perturbation theory (MRPT). Using a simple mixed-valence compound (the 5,5(') (4H,4H('))-spirobi[ciclopenta[c]pyrrole] 2,2('),6,6(') tetrahydro cation), and the n-electron valence state perturbation theory (NEVPT2) and CASPT2 approaches, it is shown that the ground state (GS) energy curve presents an unphysical "well" for nuclear coordinates close to the symmetric case, where a maximum is expected. For NEVPT, the correct shape of the energy curve is retrieved by applying the MPRT at the (computationally expensive) third order. This behavior is rationalized using a simple model (the ionized GS of two weakly interacting identical systems, each neutral system being described by two electrons in two orbitals), showing that the unphysical well is due to the canonical orbital energies which at the symmetric (delocalized) conformation lead to a sudden modification of the denominators in the perturbation expansion. In this model, the bias introduced in the second order correction to the energy is almost entirely removed going to the third order. With the results of the model in mind, one can predict that all MRPT methods in which the zero order Hamiltonian is based on canonical orbital energies are prone to present unreasonable energy profiles close to the symmetric situation. However, the model allows a strategy to be devised which can give a correct behavior even at the second order, by simply averaging the orbital energies of the two charge-localized electronic states. Such a strategy is adopted in a NEVPT2 scheme obtaining a good agreement with the third order results based on the canonical orbital energies. The answer to the question reported in the title (is this theoretical approach a reliable tool for a correct description of these systems?) is therefore positive, but care must be exercised, either in defining the orbital

  6. TECRA: C2 Application of Adaptive Automation Theory

    DTIC Science & Technology

    2010-03-01

    1 TECRA: C2 Application of Adaptive Automation Theory Ewart J. de Visser 1,2 , Melanie LeGoullon 1 , Don Horvath 1 , Gershon Weltman 1 , Amos...Solutions, Inc. 1001 19th St. N Suite 1500 Arlington, VA 22209 910-200-8596 edevisser@percsolutions.com 2 George Mason University 4400 University...to the RVT. Method Twelve students from George Mason University (4 Males and 8 Females) participated in this study and were compensated with

  7. Development and Standardization of the Diagnostic Adaptive Behavior Scale: Application of Item Response Theory to the Assessment of Adaptive Behavior

    ERIC Educational Resources Information Center

    Tassé, Marc J.; Schalock, Robert L.; Thissen, David; Balboni, Giulia; Bersani, Henry, Jr.; Borthwick-Duffy, Sharon A.; Spreat, Scott; Widaman, Keith F.; Zhang, Dalun; Navas, Patricia

    2016-01-01

    The Diagnostic Adaptive Behavior Scale (DABS) was developed using item response theory (IRT) methods and was constructed to provide the most precise and valid adaptive behavior information at or near the cutoff point of making a decision regarding a diagnosis of intellectual disability. The DABS initial item pool consisted of 260 items. Using IRT…

  8. Trial-to-trial adaptation in control of arm reaching and standing posture

    PubMed Central

    Pienciak-Siewert, Alison; Horan, Dylan P.

    2016-01-01

    Classical theories of motor learning hypothesize that adaptation is driven by sensorimotor error; this is supported by studies of arm and eye movements that have shown that trial-to-trial adaptation increases with error. Studies of postural control have shown that anticipatory postural adjustments increase with the magnitude of a perturbation. However, differences in adaptation have been observed between the two modalities, possibly due to either the inherent instability or sensory uncertainty in standing posture. Therefore, we hypothesized that trial-to-trial adaptation in posture should be driven by error, similar to what is observed in arm reaching, but the nature of the relationship between error and adaptation may differ. Here we investigated trial-to-trial adaptation of arm reaching and postural control concurrently; subjects made reaching movements in a novel dynamic environment of varying strengths, while standing and holding the handle of a force-generating robotic arm. We found that error and adaptation increased with perturbation strength in both arm and posture. Furthermore, in both modalities, adaptation showed a significant correlation with error magnitude. Our results indicate that adaptation scales proportionally with error in the arm and near proportionally in posture. In posture only, adaptation was not sensitive to small error sizes, which were similar in size to errors experienced in unperturbed baseline movements due to inherent variability. This finding may be explained as an effect of uncertainty about the source of small errors. Our findings suggest that in rehabilitation, postural error size should be considered relative to the magnitude of inherent movement variability. PMID:27683888

  9. Trial-to-trial adaptation in control of arm reaching and standing posture.

    PubMed

    Pienciak-Siewert, Alison; Horan, Dylan P; Ahmed, Alaa A

    2016-12-01

    Classical theories of motor learning hypothesize that adaptation is driven by sensorimotor error; this is supported by studies of arm and eye movements that have shown that trial-to-trial adaptation increases with error. Studies of postural control have shown that anticipatory postural adjustments increase with the magnitude of a perturbation. However, differences in adaptation have been observed between the two modalities, possibly due to either the inherent instability or sensory uncertainty in standing posture. Therefore, we hypothesized that trial-to-trial adaptation in posture should be driven by error, similar to what is observed in arm reaching, but the nature of the relationship between error and adaptation may differ. Here we investigated trial-to-trial adaptation of arm reaching and postural control concurrently; subjects made reaching movements in a novel dynamic environment of varying strengths, while standing and holding the handle of a force-generating robotic arm. We found that error and adaptation increased with perturbation strength in both arm and posture. Furthermore, in both modalities, adaptation showed a significant correlation with error magnitude. Our results indicate that adaptation scales proportionally with error in the arm and near proportionally in posture. In posture only, adaptation was not sensitive to small error sizes, which were similar in size to errors experienced in unperturbed baseline movements due to inherent variability. This finding may be explained as an effect of uncertainty about the source of small errors. Our findings suggest that in rehabilitation, postural error size should be considered relative to the magnitude of inherent movement variability. Copyright © 2016 the American Physiological Society.

  10. The big contradiction between the perturbation theory and the chaotic state. A detailed mathematical analysis indicates when the plasma is stable or unstable

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xaplanteris, C. L., E-mail: cxaplanteris@yahoo.com; Xaplanteris, S. C.

    2016-05-15

    In the present manuscript enough observations and interpretations of three issues of Plasma Physics are presented. The first issue is linked to the common experimental confirmation of plasma waves which appear to be repeated in a standard way while there are also cases where plasma waves change to an unstable state or even to chaotic state. The second issue is associated with a mathematical analysis of the movement of a charged particle using the perturbation theory; which could be used as a guide for new researchers on similar issues. Finally, the suitability and applicability of the perturbation theory or themore » chaotic theory is presented. Although this study could be conducted on many plasma phenomena (e.g. plasma diffusion) or plasma quantities (e.g. plasma conductivity), here it was decided this study to be conducted on plasma waves and particularly on drift waves. This was because of the significance of waves on the plasmatic state and especially their negative impact on the thermonuclear fusion, but also due to the long-time experience of the plasma laboratory of Demokritos on drift waves.« less

  11. Perturbatively deformed defects in Pöschl-Teller-driven scenarios for quantum mechanics

    NASA Astrophysics Data System (ADS)

    Bernardini, Alex E.; da Rocha, Roldão

    2016-07-01

    Pöschl-Teller-driven solutions for quantum mechanical fluctuations are triggered off by single scalar field theories obtained through a systematic perturbative procedure for generating deformed defects. The analytical properties concerning the quantum fluctuations in one-dimension, zero-mode states, first- and second-excited states, and energy density profiles are all obtained from deformed topological and non-topological structures supported by real scalar fields. Results are firstly derived from an integrated λϕ4 theory, with corresponding generalizations applied to starting λχ4 and sine-Gordon theories. By focusing our calculations on structures supported by the λϕ4 theory, the outcome of our study suggests an exact quantitative correspondence to Pöschl-Teller-driven systems. Embedded into the perturbative quantum mechanics framework, such a correspondence turns into a helpful tool for computing excited states and continuous mode solutions, as well as their associated energy spectrum, for quantum fluctuations of perturbatively deformed structures. Perturbative deformations create distinct physical scenarios in the context of exactly solvable quantum systems and may also work as an analytical support for describing novel braneworld universes embedded into a 5-dimensional gravity bulk.

  12. Three ways to solve critical ϕ4 theory on 4 ‑ 𝜖 dimensional real projective space: Perturbation, bootstrap, and Schwinger-Dyson equation

    NASA Astrophysics Data System (ADS)

    Hasegawa, Chika; Nakayama, Yu

    2018-03-01

    In this paper, we solve the two-point function of the lowest dimensional scalar operator in the critical ϕ4 theory on 4 ‑ 𝜖 dimensional real projective space in three different methods. The first is to use the conventional perturbation theory, and the second is to impose the cross-cap bootstrap equation, and the third is to solve the Schwinger-Dyson equation under the assumption of conformal invariance. We find that the three methods lead to mutually consistent results but each has its own advantage.

  13. FAPT: A Mathematica package for calculations in QCD Fractional Analytic Perturbation Theory

    NASA Astrophysics Data System (ADS)

    Bakulev, Alexander P.; Khandramai, Vyacheslav L.

    2013-01-01

    We provide here all the procedures in Mathematica which are needed for the computation of the analytic images of the strong coupling constant powers in Minkowski (A(s;nf) and Aνglob(s)) and Euclidean (A(Q2;nf) and Aνglob(Q2)) domains at arbitrary energy scales (s and Q2, correspondingly) for both schemes — with fixed number of active flavours nf=3,4,5,6 and the global one with taking into account all heavy-quark thresholds. These singularity-free couplings are inevitable elements of Analytic Perturbation Theory (APT) in QCD, proposed in [10,69,70], and its generalization — Fractional APT, suggested in [42,46,43], needed to apply the APT imperative for renormalization-group improved hadronic observables. Program summaryProgram title: FAPT Catalogue identifier: AENJ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENJ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 1985 No. of bytes in distributed program, including test data, etc.: 1895776 Distribution format: tar.gz Programming language: Mathematica. Computer: Any work-station or PC where Mathematica is running. Operating system: Windows XP, Mathematica (versions 5 and 7). Classification: 11.5. Nature of problem: The values of analytic images A(Q2) and A(s) of the QCD running coupling powers αsν(Q2) in Euclidean and Minkowski regions, correspondingly, are determined through the spectral representation in the QCD Analytic Perturbation Theory (APT). In the program FAPT we collect all relevant formulas and various procedures which allow for a convenient evaluation of A(Q2) and A(s) using numerical integrations of the relevant spectral densities. Solution method: FAPT uses Mathematica functions to calculate different spectral densities and then performs numerical integration of these spectral integrals

  14. Polarization effects on spectra of spherical core/shell nanostructures: Perturbation theory against finite difference approach

    NASA Astrophysics Data System (ADS)

    Ibral, Asmaa; Zouitine, Asmaa; Assaid, El Mahdi; El Achouby, Hicham; Feddi, El Mustapha; Dujardin, Francis

    2015-02-01

    Poisson equation is solved analytically in the case of a point charge placed anywhere in a spherical core/shell nanostructure, immersed in aqueous or organic solution or embedded in semiconducting or insulating matrix. Conduction and valence band-edge alignments between core and shell are described by finite height barriers. Influence of polarization charges induced at the surfaces where two adjacent materials meet is taken into account. Original expressions of electrostatic potential created everywhere in the space by a source point charge are derived. Expressions of self-polarization potential describing the interaction of a point charge with its own image-charge are deduced. Contributions of double dielectric constant mismatch to electron and hole ground state energies as well as nanostructure effective gap are calculated via first order perturbation theory and also by finite difference approach. Dependencies of electron, hole and gap energies against core to shell radii ratio are determined in the case of ZnS/CdSe core/shell nanostructure immersed in water or in toluene. It appears that finite difference approach is more efficient than first order perturbation method and that the effect of polarization charge may in no case be neglected as its contribution can reach a significant proportion of the value of nanostructure gap.

  15. Evolution and Adaptation of Phytoplankton Photosynthetic Pathways to perturbations of the geological carbon system

    NASA Astrophysics Data System (ADS)

    Rickaby, R. E.; Young, J. N.; Hermoso, M.; Heureux, A.; McCLelland, H.; Lee, R.; Eason Hubbard, M.

    2012-12-01

    The ocean and atmosphere carbon system has varied greatly over geological history both in response to initial evolutionary innovation, and as a driver of adaptive change. Here we establish that positive selection in Rubisco, the most abundant enzyme on the Earth responsible for all photosynthetic carbon fixation, occurred early in Earth's history, and basal to the radiation of the modern marine algal groups. Our signals of positive selection appear to be triggered by changing intracellular concentrations of carbon dioxide (CO2) due to the emergence of carbon concentrating mechanisms between 1.56 and 0.41 Ba in response to declining atmospheric CO2 . We contend that, at least in terms of carbon, phytoplankton generally were well poised to manage subsequent abrupt carbon cycle perturbations. The physiological pathways for optimising carbon acquisition across a wide range of ambient carbon dioxide concentrations had already been established and were genetically widespread across open ocean phytoplankton groups. We will further investigate some case studies from the Mesozoic and Cenozoic abrupt carbon cycle excursions using isotopic tools to probe the community photosynthetic response and demonstrate the flexibility of phytoplankton photosynthesis in the face of major perturbations. In particular, an unprecedented resolution record across the Toarcian (Early Jurassic) carbon isotope excursion in the Paris Basin reveals a selection and evolution towards a community reliant solely on diffusive carbon dioxide supply for photosynthesis at the height of the excursion at 1500-2500 ppm CO2. The continued flourishing of the phytoplankton biological pump throughout this excursion was able to remove the excess carbon injected into the water column in less than 45 kyrs.

  16. A synthesis theory for self-oscillating adaptive systems /SOAS/

    NASA Technical Reports Server (NTRS)

    Horowitz, I.; Smay, J.; Shapiro, A.

    1974-01-01

    A quantitative synthesis theory is presented for the Self-Oscillating Adaptive System (SOAS), whose nonlinear element has a static, odd character with hard saturation. The synthesis theory is based upon the quasilinear properties of the SOAS to forced inputs, which permits the extension of quantitative linear feedback theory to the SOAS. A reasonable definition of optimum design is shown to be the minimization of the limit cycle frequency. The great advantages of the SOAS is its zero sensitivity to pure gain changes. However, quasilinearity and control of the limit cycle amplitude at the system output, impose additional constraints which partially or completely cancel this advantage, depending on the numerical values of the design parameters. By means of narrow-band filtering, an additional factor is introduced which permits trade-off between filter complexity and limit cycle frequency minimization.

  17. Hamiltonian formalism for Perturbed Black Hole Spacetimes

    NASA Astrophysics Data System (ADS)

    Mihaylov, Deyan; Gair, Jonathan

    2017-01-01

    Present and future gravitational wave observations provide a new mechanism to probe the predictions of general relativity. Observations of extreme mass ratio inspirals with millihertz gravitational wave detectors such as LISA will provide exquisite constraints on the spacetime structure outside astrophysical black holes, enabling tests of the no-hair property that all general relativistic black holes are described by the Kerr metric. Previous work to understand what constraints LISA observations will be able to place has focussed on specific alternative theories of gravity, or generic deviations that preserve geodesic separability. We describe an alternative approach to this problem--a technique that employs canonical perturbations of the Hamiltonian function describing motion in the Kerr metric. We derive this new approach and demonstrate its application to the cases of a slowly rotating Kerr black hole which is viewed as a perturbation of a Schwarzschild black hole, of coupled perturbations of black holes in the second-order Chern-Simons modified gravity theory, and several more indicative scenarios. Deyan Mihaylov is funded by STFC.

  18. Simple Perturbation Example for Quantum Chemistry.

    ERIC Educational Resources Information Center

    Goodfriend, P. L.

    1985-01-01

    Presents a simple example that illustrates various aspects of the Rayleigh-Schrodinger perturbation theory. The example is a particularly good one because it is straightforward and can be compared with both the exact solution and with experimental data. (JN)

  19. A new scheme for perturbative triples correction to (0,1) sector of Fock space multi-reference coupled cluster method: theory, implementation, and examples.

    PubMed

    Dutta, Achintya Kumar; Vaval, Nayana; Pal, Sourav

    2015-01-28

    We propose a new elegant strategy to implement third order triples correction in the light of many-body perturbation theory to the Fock space multi-reference coupled cluster method for the ionization problem. The computational scaling as well as the storage requirement is of key concerns in any many-body calculations. Our proposed approach scales as N(6) does not require the storage of triples amplitudes and gives superior agreement over all the previous attempts made. This approach is capable of calculating multiple roots in a single calculation in contrast to the inclusion of perturbative triples in the equation of motion variant of the coupled cluster theory, where each root needs to be computed in a state-specific way and requires both the left and right state vectors together. The performance of the newly implemented scheme is tested by applying to methylene, boron nitride (B2N) anion, nitrogen, water, carbon monoxide, acetylene, formaldehyde, and thymine monomer, a DNA base.

  20. Nuclear Energy Gradients for Internally Contracted Complete Active Space Second-Order Perturbation Theory: Multistate Extensions.

    PubMed

    Vlaisavljevich, Bess; Shiozaki, Toru

    2016-08-09

    We report the development of the theory and computer program for analytical nuclear energy gradients for (extended) multistate complete active space perturbation theory (CASPT2) with full internal contraction. The vertical shifts are also considered in this work. This is an extension of the fully internally contracted CASPT2 nuclear gradient program recently developed for a state-specific variant by us [MacLeod and Shiozaki, J. Chem. Phys. 2015, 142, 051103]; in this extension, the so-called λ equation is solved to account for the variation of the multistate CASPT2 energies with respect to the change in the amplitudes obtained in the preceding state-specific CASPT2 calculations, and the Z vector equations are modified accordingly. The program is parallelized using the MPI3 remote memory access protocol that allows us to perform efficient one-sided communication. The optimized geometries of the ground and excited states of a copper corrole and benzophenone are presented as numerical examples. The code is publicly available under the GNU General Public License.

  1. Density functional perturbational orbital theory of spin polarization in electronic systems. II. Transition metal dimer complexes.

    PubMed

    Seo, Dong-Kyun

    2007-11-14

    We present a theoretical scheme for a semiquantitative analysis of electronic structures of magnetic transition metal dimer complexes within spin density functional theory (DFT). Based on the spin polarization perturbational orbital theory [D.-K. Seo, J. Chem. Phys. 125, 154105 (2006)], explicit spin-dependent expressions of the spin orbital energies and coefficients are derived, which allows to understand how spin orbitals form and change their energies and shapes when two magnetic sites are coupled either ferromagnetically or antiferromagnetically. Upon employment of the concept of magnetic orbitals in the active-electron approximation, a general mathematical formula is obtained for the magnetic coupling constant J from the analytical expression for the electronic energy difference between low-spin broken-symmetry and high-spin states. The origin of the potential exchange and kinetic exchange terms based on the one-electron picture is also elucidated. In addition, we provide a general account of the DFT analysis of the magnetic exchange interactions in compounds for which the active-electron approximation is not appropriate.

  2. From square-well to Janus: Improved algorithm for integral equation theory and comparison with thermodynamic perturbation theory within the Kern-Frenkel model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giacometti, Achille, E-mail: achille.giacometti@unive.it; Gögelein, Christoph, E-mail: christoph.goegelein@ds.mpg.de; Lado, Fred, E-mail: lado@ncsu.edu

    2014-03-07

    Building upon past work on the phase diagram of Janus fluids [F. Sciortino, A. Giacometti, and G. Pastore, Phys. Rev. Lett. 103, 237801 (2009)], we perform a detailed study of integral equation theory of the Kern-Frenkel potential with coverage that is tuned from the isotropic square-well fluid to the Janus limit. An improved algorithm for the reference hypernetted-chain (RHNC) equation for this problem is implemented that significantly extends the range of applicability of RHNC. Results for both structure and thermodynamics are presented and compared with numerical simulations. Unlike previous attempts, this algorithm is shown to be stable down to themore » Janus limit, thus paving the way for analyzing the frustration mechanism characteristic of the gas-liquid transition in the Janus system. The results are also compared with Barker-Henderson thermodynamic perturbation theory on the same model. We then discuss the pros and cons of both approaches within a unified treatment. On balance, RHNC integral equation theory, even with an isotropic hard-sphere reference system, is found to be a good compromise between accuracy of the results, computational effort, and uniform quality to tackle self-assembly processes in patchy colloids of complex nature. Further improvement in RHNC however clearly requires an anisotropic reference bridge function.« less

  3. Thermal conductivity and phonon transport properties of silicon using perturbation theory and the environment-dependent interatomic potential

    NASA Astrophysics Data System (ADS)

    Pascual-Gutiérrez, José A.; Murthy, Jayathi Y.; Viskanta, Raymond

    2009-09-01

    Silicon thermal conductivities are obtained from the solution of the linearized phonon Boltzmann transport equation without the use of any parameter-fitting. Perturbation theory is used to compute the strength of three-phonon and isotope scattering mechanisms. Matrix elements based on Fermi's golden rule are computed exactly without assuming either average or mode-dependent Grüeisen parameters, and with no underlying assumptions of crystal isotropy. The environment-dependent interatomic potential is employed to describe the interatomic force constants and the perturbing Hamiltonians. A detailed methodology to accurately find three-phonon processes satisfying energy- and momentum-conservation rules is also described. Bulk silicon thermal conductivity values are computed across a range of temperatures and shown to match experimental data very well. It is found that about two-thirds of the heat transport in bulk silicon may be attributed to transverse acoustic modes. Effective relaxation times and mean free paths are computed in order to provide a more complete picture of the detailed transport mechanisms and for use with carrier transport models based on the Boltzmann transport equation.

  4. Vector disformal transformation of cosmological perturbations

    NASA Astrophysics Data System (ADS)

    Papadopoulos, Vassilis; Zarei, Moslem; Firouzjahi, Hassan; Mukohyama, Shinji

    2018-03-01

    We study disformal transformations of cosmological perturbations by vector fields in theories invariant under U (1 ) gauge transformations. Three types of vector disformal transformations are considered: (i) disformal transformations by a single timelike vector; (ii) disformal transformations by a single spacelike vector; and (iii) disformal transformations by three spacelike vectors. We show that transformations of type (i) do not change either curvature perturbation or gravitational waves; that those of type (ii) do not change curvature perturbation but change gravitational waves; and that those of type (iii) change both curvature perturbation and gravitational waves. Therefore, coupling matter fields to the metric after disformal transformations of type (ii) or (iii) in principle have observable consequences. While the recent multi-messenger observation of binary neutron stars has singled out a proper disformal frame at the present epoch with a high precision, the result of the present paper may thus help distinguishing disformal frames in the early universe.

  5. Lithofacies identification using multiple adaptive resonance theory neural networks and group decision expert system

    USGS Publications Warehouse

    Chang, H.-C.; Kopaska-Merkel, D. C.; Chen, H.-C.; Rocky, Durrans S.

    2000-01-01

    Lithofacies identification supplies qualitative information about rocks. Lithofacies represent rock textures and are important components of hydrocarbon reservoir description. Traditional techniques of lithofacies identification from core data are costly and different geologists may provide different interpretations. In this paper, we present a low-cost intelligent system consisting of three adaptive resonance theory neural networks and a rule-based expert system to consistently and objectively identify lithofacies from well-log data. The input data are altered into different forms representing different perspectives of observation of lithofacies. Each form of input is processed by a different adaptive resonance theory neural network. Among these three adaptive resonance theory neural networks, one neural network processes the raw continuous data, another processes categorial data, and the third processes fuzzy-set data. Outputs from these three networks are then combined by the expert system using fuzzy inference to determine to which facies the input data should be assigned. Rules are prioritized to emphasize the importance of firing order. This new approach combines the learning ability of neural networks, the adaptability of fuzzy logic, and the expertise of geologists to infer facies of the rocks. This approach is applied to the Appleton Field, an oil field located in Escambia County, Alabama. The hybrid intelligence system predicts lithofacies identity from log data with 87.6% accuracy. This prediction is more accurate than those of single adaptive resonance theory networks, 79.3%, 68.0% and 66.0%, using raw, fuzzy-set, and categorical data, respectively, and by an error-backpropagation neural network, 57.3%. (C) 2000 Published by Elsevier Science Ltd. All rights reserved.

  6. Many-body perturbation theory for understanding optical excitations in organic molecules and solids

    NASA Astrophysics Data System (ADS)

    Sharifzadeh, Sahar

    2018-04-01

    Semiconductors composed of organic molecules are promising as components for flexible and inexpensive optoelectronic devices, with many recent studies aimed at understanding their electronic and optical properties. In particular, computational modeling of these complex materials has provided new understanding of the underlying properties which give rise to their excited-state phenomena. This article provides an overview of recent many-body perturbation theory (MBPT) studies of optical excitations within organic molecules and solids. We discuss the accuracy of MBPT within the GW/BSE approach in predicting excitation energies and absorption spectra, and assess the impact of two commonly used approximations, the DFT starting point and the Tamm–Dancoff approximation. Moreover, we summarize studies that elucidate the role of solid-state structure on the nature of excitons in organic crystals. These studies show that a rich physical understanding of organic materials can be obtained from GW/BSE.

  7. Secondary isocurvature perturbations from acoustic reheating

    NASA Astrophysics Data System (ADS)

    Ota, Atsuhisa; Yamaguchi, Masahide

    2018-06-01

    The superhorizon (iso)curvature perturbations are conserved if the following conditions are satisfied: (i) (each) non adiabatic pressure perturbation is zero, (ii) the gradient terms are ignored, that is, at the leading order of the gradient expansion (iii) (each) total energy momentum tensor is conserved. We consider the case with the violation of the last two requirements and discuss the generation of secondary isocurvature perturbations during the late time universe. Second order gradient terms are not necessarily ignored even if we are interested in the long wavelength modes because of the convolutions which may pick products of short wavelength perturbations up. We then introduce second order conserved quantities on superhorizon scales under the conditions (i) and (iii) even in the presence of the gradient terms by employing the full second order cosmological perturbation theory. We also discuss the violation of the condition (iii), that is, the energy momentum tensor is conserved for the total system but not for each component fluid. As an example, we explicitly evaluate second order heat conduction between baryons and photons due to the weak Compton scattering, which dominates during the period just before recombination. We show that such secondary effects can be recast into the isocurvature perturbations on superhorizon scales if the local type primordial non Gaussianity exists a priori.

  8. Brief Report: Translation and Adaptation of the Theory of Mind Inventory to Spanish

    ERIC Educational Resources Information Center

    Pujals, Elena; Batlle, Santiago; Camprodon, Ester; Pujals, Sílvia; Estrada, Xavier; Aceña, Marta; Petrizan, Araitz; Duñó, Lurdes; Martí, Josep; Martin, Luis Miguel; Pérez-Solá, Víctor

    2016-01-01

    The Theory of Mind Inventory is an informant measure designed to evaluate children's theory of mind competence. We describe the translation and cultural adaptation of the inventory by the following process: (1) translation from English to Spanish by two independent certified translators; (2) production of an agreed version by a multidisciplinary…

  9. Communication: electronic band gaps of semiconducting zig-zag carbon nanotubes from many-body perturbation theory calculations.

    PubMed

    Umari, P; Petrenko, O; Taioli, S; De Souza, M M

    2012-05-14

    Electronic band gaps for optically allowed transitions are calculated for a series of semiconducting single-walled zig-zag carbon nanotubes of increasing diameter within the many-body perturbation theory GW method. The dependence of the evaluated gaps with respect to tube diameters is then compared with those found from previous experimental data for optical gaps combined with theoretical estimations of exciton binding energies. We find that our GW gaps confirm the behavior inferred from experiment. The relationship between the electronic gap and the diameter extrapolated from the GW values is also in excellent agreement with a direct measurement recently performed through scanning tunneling spectroscopy.

  10. Perturbative Quantum Gravity from Gauge Theory

    NASA Astrophysics Data System (ADS)

    Carrasco, John Joseph

    In this dissertation we present the graphical techniques recently developed in the construction of multi-loop scattering amplitudes using the method of generalized unitarity. We construct the three-loop and four-loop four-point amplitudes of N = 8 supergravity using these methods and the Kawaii, Lewellen and Tye tree-level relations which map tree-level gauge theory amplitudes to tree-level gravity theory amplitudes. We conclude by extending a tree-level duality between color and kinematics, generic to gauge theories, to a loop level conjecture, allowing the easy relation between loop-level gauge and gravity kinematics. We provide non-trivial evidence for this conjecture at three-loops in the particular case of maximal supersymmetry.

  11. Spatio-temporal evolution of perturbations in ensembles initialized by bred, Lyapunov and singular vectors

    NASA Astrophysics Data System (ADS)

    Pazó, Diego; Rodríguez, Miguel A.; López, Juan M.

    2010-05-01

    We study the evolution of finite perturbations in the Lorenz ‘96 model, a meteorological toy model of the atmosphere. The initial perturbations are chosen to be aligned along different dynamic vectors: bred, Lyapunov, and singular vectors. Using a particular vector determines not only the amplification rate of the perturbation but also the spatial structure of the perturbation and its stability under the evolution of the flow. The evolution of perturbations is systematically studied by means of the so-called mean-variance of logarithms diagram that provides in a very compact way the basic information to analyse the spatial structure. We discuss the corresponding advantages of using those different vectors for preparing initial perturbations to be used in ensemble prediction systems, focusing on key properties: dynamic adaptation to the flow, robustness, equivalence between members of the ensemble, etc. Among all the vectors considered here, the so-called characteristic Lyapunov vectors are possibly optimal, in the sense that they are both perfectly adapted to the flow and extremely robust.

  12. Diagrammar in classical scalar field theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cattaruzza, E., E-mail: Enrico.Cattaruzza@gmail.com; Gozzi, E., E-mail: gozzi@ts.infn.it; INFN, Sezione di Trieste

    2011-09-15

    In this paper we analyze perturbatively a g{phi}{sup 4}classical field theory with and without temperature. In order to do that, we make use of a path-integral approach developed some time ago for classical theories. It turns out that the diagrams appearing at the classical level are many more than at the quantum level due to the presence of extra auxiliary fields in the classical formalism. We shall show that a universal supersymmetry present in the classical path-integral mentioned above is responsible for the cancelation of various diagrams. The same supersymmetry allows the introduction of super-fields and super-diagrams which considerably simplifymore » the calculations and make the classical perturbative calculations almost 'identical' formally to the quantum ones. Using the super-diagrams technique, we develop the classical perturbation theory up to third order. We conclude the paper with a perturbative check of the fluctuation-dissipation theorem. - Highlights: > We provide the Feynman diagrams of perturbation theory for a classical field theory. > We give a super-formalism which links the quantum diagrams to the classical ones. > We check perturbatively the fluctuation-dissipation theorem.« less

  13. The Laplace transformed divide-expand-consolidate resolution of the identity second-order Møller-Plesset perturbation (DEC-LT-RIMP2) theory method

    NASA Astrophysics Data System (ADS)

    Kjærgaard, Thomas

    2017-01-01

    The divide-expand-consolidate resolution of the identity second-order Møller-Plesset perturbation (DEC-RI-MP2) theory method introduced in Baudin et al. [J. Chem. Phys. 144, 054102 (2016)] is significantly improved by introducing the Laplace transform of the orbital energy denominator in order to construct the double amplitudes directly in the local basis. Furthermore, this paper introduces the auxiliary reduction procedure, which reduces the set of the auxiliary functions employed in the individual fragments. The resulting Laplace transformed divide-expand-consolidate resolution of the identity second-order Møller-Plesset perturbation method is applied to the insulin molecule where we obtain a factor 9.5 speedup compared to the DEC-RI-MP2 method.

  14. A view on coupled cluster perturbation theory using a bivariational Lagrangian formulation.

    PubMed

    Kristensen, Kasper; Eriksen, Janus J; Matthews, Devin A; Olsen, Jeppe; Jørgensen, Poul

    2016-02-14

    We consider two distinct coupled cluster (CC) perturbation series that both expand the difference between the energies of the CCSD (CC with single and double excitations) and CCSDT (CC with single, double, and triple excitations) models in orders of the Møller-Plesset fluctuation potential. We initially introduce the E-CCSD(T-n) series, in which the CCSD amplitude equations are satisfied at the expansion point, and compare it to the recently developed CCSD(T-n) series [J. J. Eriksen et al., J. Chem. Phys. 140, 064108 (2014)], in which not only the CCSD amplitude, but also the CCSD multiplier equations are satisfied at the expansion point. The computational scaling is similar for the two series, and both are term-wise size extensive with a formal convergence towards the CCSDT target energy. However, the two series are different, and the CCSD(T-n) series is found to exhibit a more rapid convergence up through the series, which we trace back to the fact that more information at the expansion point is utilized than for the E-CCSD(T-n) series. The present analysis can be generalized to any perturbation expansion representing the difference between a parent CC model and a higher-level target CC model. In general, we demonstrate that, whenever the parent parameters depend upon the perturbation operator, a perturbation expansion of the CC energy (where only parent amplitudes are used) differs from a perturbation expansion of the CC Lagrangian (where both parent amplitudes and parent multipliers are used). For the latter case, the bivariational Lagrangian formulation becomes more than a convenient mathematical tool, since it facilitates a different and faster convergent perturbation series than the simpler energy-based expansion.

  15. Development and Standardization of the Diagnostic Adaptive Behavior Scale: Application of Item Response Theory to the Assessment of Adaptive Behavior.

    PubMed

    Tassé, Marc J; Schalock, Robert L; Thissen, David; Balboni, Giulia; Bersani, Henry Hank; Borthwick-Duffy, Sharon A; Spreat, Scott; Widaman, Keith F; Zhang, Dalun; Navas, Patricia

    2016-03-01

    The Diagnostic Adaptive Behavior Scale (DABS) was developed using item response theory (IRT) methods and was constructed to provide the most precise and valid adaptive behavior information at or near the cutoff point of making a decision regarding a diagnosis of intellectual disability. The DABS initial item pool consisted of 260 items. Using IRT modeling and a nationally representative standardization sample, the item set was reduced to 75 items that provide the most precise adaptive behavior information at the cutoff area determining the presence or not of significant adaptive behavior deficits across conceptual, social, and practical skills. The standardization of the DABS is described and discussed.

  16. A Theory of Complex Adaptive Inquiring Organizations: Application to Continuous Assurance of Corporate Financial Information

    ERIC Educational Resources Information Center

    Kuhn, John R., Jr.

    2009-01-01

    Drawing upon the theories of complexity and complex adaptive systems and the Singerian Inquiring System from C. West Churchman's seminal work "The Design of Inquiring Systems" the dissertation herein develops a systems design theory for continuous auditing systems. The dissertation consists of discussion of the two foundational theories,…

  17. Large Scale Many-Body Perturbation Theory calculations: methodological developments, data collections, validation

    NASA Astrophysics Data System (ADS)

    Govoni, Marco; Galli, Giulia

    Green's function based many-body perturbation theory (MBPT) methods are well established approaches to compute quasiparticle energies and electronic lifetimes. However, their application to large systems - for instance to heterogeneous systems, nanostructured, disordered, and defective materials - has been hindered by high computational costs. We will discuss recent MBPT methodological developments leading to an efficient formulation of electron-electron and electron-phonon interactions, and that can be applied to systems with thousands of electrons. Results using a formulation that does not require the explicit calculation of virtual states, nor the storage and inversion of large dielectric matrices will be presented. We will discuss data collections obtained using the WEST code, the advantages of the algorithms used in WEST over standard techniques, and the parallel performance. Work done in collaboration with I. Hamada, R. McAvoy, P. Scherpelz, and H. Zheng. This work was supported by MICCoM, as part of the Computational Materials Sciences Program funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division and by ANL.

  18. Use of density functional theory orbitals in the GVVPT2 variant of second-order multistate multireference perturbation theory.

    PubMed

    Hoffmann, Mark R; Helgaker, Trygve

    2015-03-05

    A new variation of the second-order generalized van Vleck perturbation theory (GVVPT2) for molecular electronic structure is suggested. In contrast to the established procedure, in which CASSCF or MCSCF orbitals are first obtained and subsequently used to define a many-electron model (or reference) space, the use of an orbital space obtained from the local density approximation (LDA) variant of density functional theory is considered. Through a final, noniterative diagonalization of an average Fock matrix within orbital subspaces, quasicanonical orbitals that are otherwise indistinguishable from quasicanonical orbitals obtained from a CASSCF or MCSCF calculation are obtained. Consequently, all advantages of the GVVPT2 method are retained, including use of macroconfigurations to define incomplete active spaces and rigorous avoidance of intruder states. The suggested variant is vetted on three well-known model problems: the symmetric stretching of the O-H bonds in water, the dissociation of N2, and the stretching of ground and excited states C2 to more than twice the equilibrium bond length of the ground state. It is observed that the LDA-based GVVPT2 calculations yield good results, of comparable quality to conventional CASSCF-based calculations. This is true even for the C2 model problem, in which the orbital space for each state was defined by the LDA orbitals. These results suggest that GVVPT2 can be applied to much larger problems than previously accessible.

  19. Rhythm perturbations in acoustically paced treadmill walking after stroke.

    PubMed

    Roerdink, Melvyn; Lamoth, Claudine J C; van Kordelaar, Joost; Elich, Peter; Konijnenbelt, Manin; Kwakkel, Gert; Beek, Peter J

    2009-09-01

    In rehabilitation, acoustic rhythms are often used to improve gait after stroke. Acoustic cueing may enhance gait coordination by creating a stable coupling between heel strikes and metronome beats and provide a means to train the adaptability of gait coordination to environmental changes, as required in everyday life ambulation. To examine the stability and adaptability of auditory-motor synchronization in acoustically paced treadmill walking in stroke patients. Eleven stroke patients and 10 healthy controls walked on a treadmill at preferred speed and cadence under no metronome, single-metronome (pacing only paretic or nonparetic steps), and double-metronome (pacing both footfalls) conditions. The stability of auditory-motor synchronization was quantified by the variability of the phase relation between footfalls and beats. In a separate session, the acoustic rhythms were perturbed and adaptations to restore auditory-motor synchronization were quantified. For both groups, auditory-motor synchronization was more stable for double-metronome than single-metronome conditions, with stroke patients exhibiting an overall weaker coupling of footfalls to metronome beats than controls. The recovery characteristics following rhythm perturbations corroborated the stability findings and further revealed that stroke patients had difficulty in accelerating their steps and instead preferred a slower-step response to restore synchronization. In gait rehabilitation practice, the use of acoustic rhythms may be more effective when both footfalls are paced. In addition, rhythm perturbations during acoustically paced treadmill walking may not only be employed to evaluate the stability of auditory-motor synchronization but also have promising implications for evaluation and training of gait adaptations in neurorehabilitation practice.

  20. Generation of density perturbations by inflation in scalar-tensor gravity theories

    NASA Astrophysics Data System (ADS)

    Seshadri, T. R.

    1992-02-01

    Density perturbations arising out of the quantum fluctuations in a Brans-Dicke field in the context of extended inflation have been studied. We have used a model in which the Brans-Dicke parameter varies with time. We find that the density perturbations are large in magnitude and have a scale invariant spectrum. The origin of these is discussed and it is shown that these place further constraints on the model. Address after 15 Octobr 1991: Department of Physics and Astrophysics, University of Delhi 110 007, India.

  1. Scalar perturbations of nonsingular nonrotating black holes in conformal gravity

    NASA Astrophysics Data System (ADS)

    Toshmatov, Bobir; Bambi, Cosimo; Ahmedov, Bobomurat; Stuchlík, Zdeněk; Schee, Jan

    2017-09-01

    We study scalar and electromagnetic perturbations of a family of nonsingular nonrotating black hole spacetimes that are solutions in a large class of conformally invariant theories of gravity. The effective potential for scalar perturbations depends on the exact form of the scaling factor. Electromagnetic perturbations do not feel the scaling factor, and the corresponding quasinormal mode spectrum is the same as in the Schwarzschild metric. We find that these black hole metrics are stable under scalar and electromagnetic perturbations. Assuming that the quasinormal mode spectrum for scalar perturbations is not too different from that for gravitational perturbations, we can expect that the calculation of the quasinormal mode spectrum and the observation with gravitational wave detectors of quasinormal modes from astrophysical black holes can constrain the scaling factor and test these solutions.

  2. Cosmological perturbation theory and the spherical collapse model - II. Non-Gaussian initial conditions

    NASA Astrophysics Data System (ADS)

    Gaztanaga, Enrique; Fosalba, Pablo

    1998-12-01

    In Paper I of this series, we introduced the spherical collapse (SC) approximation in Lagrangian space as a way of estimating the cumulants xi_J of density fluctuations in cosmological perturbation theory (PT). Within this approximation, the dynamics is decoupled from the statistics of the initial conditions, so we are able to present here the cumulants for generic non-Gaussian initial conditions, which can be estimated to arbitrary order including the smoothing effects. The SC model turns out to recover the exact leading-order non-linear contributions up to terms involving non-local integrals of the J-point functions. We argue that for the hierarchical ratios S_J, these non-local terms are subdominant and tend to compensate each other. The resulting predictions show a non-trivial time evolution that can be used to discriminate between models of structure formation. We compare these analytic results with non-Gaussian N-body simulations, which turn out to be in very good agreement up to scales where sigma<~1.

  3. Cognitive Adaptation Theory and Breast Cancer Recurrence: Are There Limits?

    ERIC Educational Resources Information Center

    Tomich, Patricia L.; Helgeson, Vicki S.

    2006-01-01

    Relations of the components of cognitive adaptation theory (self-esteem, optimism, control) to quality of life and benefit finding were examined for 70 women (91% Caucasian) diagnosed with Stage I, II, or III breast cancer over 5 years ago. Half of these women experienced a recurrence within the 5 years; the other half remained disease free. Women…

  4. Four-Component Relativistic State-Specific Multireference Perturbation Theory with a Simplified Treatment of Static Correlation.

    PubMed

    Ghosh, Anirban; Sinha Ray, Suvonil; Chaudhuri, Rajat K; Chattopadhyay, Sudip

    2017-02-23

    The relativistic multireference (MR) perturbative approach is one of the most successful tools for the description of computationally demanding molecular systems of heavy elements. We present here the ground state dissociation energy surfaces, equilibrium bond lengths, harmonic frequencies, and dissociation energies of Ag 2 , Cu 2 , Au 2 , and I 2 computed using the four-component (4c) relativistic spinors based state-specific MR perturbation theory (SSMRPT) with improved virtual orbital complete active space configuration interaction (IVO-CASCI) functions. The IVO-CASCI method is a simple, robust, useful and lower cost alternative to the complete active space self-consistent field approach for treating quasidegenerate situations. The redeeming features of the resulting method, termed as 4c-IVO-SSMRPT, lies in (i) manifestly size-extensivity, (ii) exemption from intruder problems, (iii) the freedom of convenient multipartitionings of the Hamiltonian, (iv) flexibility of the relaxed and unrelaxed descriptions of the reference coefficients, and (v) manageable cost/accuracy ratio. The present method delivers accurate descriptions of dissociation processes of heavy element systems. Close agreement with reference values has been found for the calculated molecular constants indicating that our 4c-IVOSSMRPT provides a robust and economic protocol for determining the structural properties for the ground state of heavy element molecules with eloquent MR character as it treats correlation and relativity on equal footing.

  5. Heat capacity changes in RNA folding: application of perturbation theory to hammerhead ribozyme cold denaturation

    PubMed Central

    Mikulecky, Peter J.; Feig, Andrew L.

    2004-01-01

    In proteins, empirical correlations have shown that changes in heat capacity (ΔCP) scale linearly with the hydrophobic surface area buried upon folding. The influence of ΔCP on RNA folding has been widely overlooked and is poorly understood. In addition to considerations of solvent reorganization, electrostatic effects might contribute to ΔCPs of folding in polyanionic species such as RNAs. Here, we employ a perturbation method based on electrostatic theory to probe the hot and cold denaturation behavior of the hammerhead ribozyme. This treatment avoids much of the error associated with imposing two-state folding models on non-two-state systems. Ribozyme stability is perturbed across a matrix of solvent conditions by varying the concentration of NaCl and methanol co-solvent. Temperature-dependent unfolding is then monitored by circular dichroism spectroscopy. The resulting array of unfolding transitions can be used to calculate a ΔCP of folding that accurately predicts the observed cold denaturation temperature. We confirm the accuracy of the calculated ΔCP by using isothermal titration calorimetry, and also demonstrate a methanol-dependence of the ΔCP. We weigh the strengths and limitations of this method for determining ΔCP values. Finally, we discuss the data in light of the physical origins of the ΔCPs for RNA folding and consider their impact on biological function. PMID:15282329

  6. Primordial perturbations with pre-inflationary bounce

    NASA Astrophysics Data System (ADS)

    Cai, Yong; Wang, Yu-Tong; Zhao, Jin-Yun; Piao, Yun-Song

    2018-05-01

    Based on the effective field theory (EFT) of nonsingular cosmologies, we build a stable model, without the ghost and gradient instabilities, of bounce-inflation (inflation is preceded by a cosmological bounce). We perform a full simulation for the evolution of scalar perturbation, and find that the perturbation spectrum has a large-scale suppression (as expected), which is consistent with the power deficit of the cosmic microwave background (CMB) TT-spectrum at low multipoles, but unexpectedly, it also shows itself one marked lower valley. The depth of valley is relevant with the physics around the bounce scale, which is model-dependent.

  7. The correlation function for density perturbations in an expanding universe. I - Linear theory

    NASA Technical Reports Server (NTRS)

    Mcclelland, J.; Silk, J.

    1977-01-01

    The evolution of the two-point correlation function for adiabatic density perturbations in the early universe is studied. Analytical solutions are obtained for the evolution of linearized spherically symmetric adiabatic density perturbations and the two-point correlation function for these perturbations in the radiation-dominated portion of the early universe. The results are then extended to the regime after decoupling. It is found that: (1) adiabatic spherically symmetric perturbations comparable in scale with the maximum Jeans length would survive the radiation-dominated regime; (2) irregular fluctuations are smoothed out up to the scale of the maximum Jeans length in the radiation era, but regular fluctuations might survive on smaller scales; (3) in general, the only surviving structures for irregularly shaped adiabatic density perturbations of arbitrary but finite scale in the radiation regime are the size of or larger than the maximum Jeans length in that regime; (4) infinite plane waves with a wavelength smaller than the maximum Jeans length but larger than the critical dissipative damping scale could survive the radiation regime; and (5) black holes would also survive the radiation regime and might accrete sufficient mass after decoupling to nucleate the formation of galaxies.

  8. The Perturbational MO Method for Saturated Systems.

    ERIC Educational Resources Information Center

    Herndon, William C.

    1979-01-01

    Summarizes a theoretical approach using nonbonding MO's and perturbation theory to correlate properties of saturated hydrocarbons. Discussion is limited to correctly predicted using this method. Suggests calculations can be carried out quickly in organic chemistry. (Author/SA)

  9. Ultra-sensitive pressure dependence of bandgap of rutile-GeO{sub 2} revealed by many body perturbation theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samanta, Atanu; Singh, Abhishek K.; Jain, Manish

    2015-08-14

    The reported values of bandgap of rutile GeO{sub 2} calculated by the standard density functional theory within local-density approximation (LDA)/generalized gradient approximation (GGA) show a wide variation (∼2 eV), whose origin remains unresolved. Here, we investigate the reasons for this variation by studying the electronic structure of rutile-GeO{sub 2} using many-body perturbation theory within the GW framework. The bandgap as well as valence bandwidth at Γ-point of rutile phase shows a strong dependence on volume change, which is independent of bandgap underestimation problem of LDA/GGA. This strong dependence originates from a change in hybridization among O-p and Ge-(s and p)more » orbitals. Furthermore, the parabolic nature of first conduction band along X-Γ-M direction changes towards a linear dispersion with volume expansion.« less

  10. Optimal Linear Responses for Markov Chains and Stochastically Perturbed Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Antown, Fadi; Dragičević, Davor; Froyland, Gary

    2018-03-01

    The linear response of a dynamical system refers to changes to properties of the system when small external perturbations are applied. We consider the little-studied question of selecting an optimal perturbation so as to (i) maximise the linear response of the equilibrium distribution of the system, (ii) maximise the linear response of the expectation of a specified observable, and (iii) maximise the linear response of the rate of convergence of the system to the equilibrium distribution. We also consider the inhomogeneous, sequential, or time-dependent situation where the governing dynamics is not stationary and one wishes to select a sequence of small perturbations so as to maximise the overall linear response at some terminal time. We develop the theory for finite-state Markov chains, provide explicit solutions for some illustrative examples, and numerically apply our theory to stochastically perturbed dynamical systems, where the Markov chain is replaced by a matrix representation of an approximate annealed transfer operator for the random dynamical system.

  11. Vector two-point functions in finite volume using partially quenched chiral perturbation theory at two loops

    NASA Astrophysics Data System (ADS)

    Bijnens, Johan; Relefors, Johan

    2017-12-01

    We calculate vector-vector correlation functions at two loops using partially quenched chiral perturbation theory including finite volume effects and twisted boundary conditions. We present expressions for the flavor neutral cases and the flavor charged case with equal masses. Using these expressions we give an estimate for the ratio of disconnected to connected contributions for the strange part of the electromagnetic current. We give numerical examples for the effects of partial quenching, finite volume and twisting and suggest the use of different twists to check the size of finite volume effects. The main use of this work is expected to be for lattice QCD calculations of the hadronic vacuum polarization contribution to the muon anomalous magnetic moment.

  12. Poisson-Based Inference for Perturbation Models in Adaptive Spelling Training

    ERIC Educational Resources Information Center

    Baschera, Gian-Marco; Gross, Markus

    2010-01-01

    We present an inference algorithm for perturbation models based on Poisson regression. The algorithm is designed to handle unclassified input with multiple errors described by independent mal-rules. This knowledge representation provides an intelligent tutoring system with local and global information about a student, such as error classification…

  13. Quasi-Chemical PC-SAFT: An Extended Perturbed Chain-Statistical Associating Fluid Theory for Lattice-Fluid Mixtures.

    PubMed

    Parvaneh, Khalil; Shariati, Alireza

    2017-09-07

    In this study, a new modification of the perturbed chain-statistical associating fluid theory (PC-SAFT) has been proposed by incorporating the lattice fluid theory of Guggenheim as an additional term to the original PC-SAFT terms. As the proposed model has one more term than the PC-SAFT, a new mixing rule has been developed especially for the new additional term, while for the conventional terms of the PC-SAFT, the one-fluid mixing rule is used. In order to evaluate the proposed model, the vapor-liquid equilibria were estimated for binary CO 2 mixtures with 16 different ionic liquids (ILs) of the 1-alkyl-3-methylimidazolium family with various anions consisting of bis(trifluoromethylsulfonyl) imide, hexafluorophosphate, tetrafluoroborate, and trifluoromethanesulfonate. For a comprehensive comparison, three different modes (different adjustable parameters) of the proposed model were compared with the conventional PC-SAFT. Results indicate that the proposed modification of the PC-SAFT EoS is generally more reliable with respect to the conventional PC-SAFT in all the three proposed modes of vapor-liquid equilibria, giving good agreement with literature data.

  14. The Study and Design of Adaptive Learning System Based on Fuzzy Set Theory

    NASA Astrophysics Data System (ADS)

    Jia, Bing; Zhong, Shaochun; Zheng, Tianyang; Liu, Zhiyong

    Adaptive learning is an effective way to improve the learning outcomes, that is, the selection of learning content and presentation should be adapted to each learner's learning context, learning levels and learning ability. Adaptive Learning System (ALS) can provide effective support for adaptive learning. This paper proposes a new ALS based on fuzzy set theory. It can effectively estimate the learner's knowledge level by test according to learner's target. Then take the factors of learner's cognitive ability and preference into consideration to achieve self-organization and push plan of knowledge. This paper focuses on the design and implementation of domain model and user model in ALS. Experiments confirmed that the system providing adaptive content can effectively help learners to memory the content and improve their comprehension.

  15. Development of a perturbation generator for vortex stability studies

    NASA Technical Reports Server (NTRS)

    Riester, J. E.; Ash, Robert L.

    1991-01-01

    Theory predicts vortex instability when subjected to certain types of disturbances. It was desired to build a device which could introduce controlled velocity perturbations into a trailing line vortex in order to study the effects on stability. A perturbation generator was designed and manufactured which can be attached to the centerbody of an airfoil type vortex generator. Details of design tests and manufacturing of the perturbation generator are presented. The device produced controlled perturbation with frequencies in excess of 250 Hz. Preliminary testing and evaluation of the perturbation generator performance was conducted in a 4 inch cylindrical pipe. Observations of vortex shedding frequencies from a centerbody were measured. Further evaluation with the perturbation generator attached to the vortex generator in a 2 x 3 foot wind tunnel were also conducted. Hot-wire anemometry was used to confirm the perturbation generator's ability to introduce controlled frequency fluctuations. Comparison of the energy levels of the disturbances in the vortex core was made between locations 42 chord lengths and 15 chord lengths downstream.

  16. Galaxy power spectrum in redshift space: Combining perturbation theory with the halo model

    NASA Astrophysics Data System (ADS)

    Okumura, Teppei; Hand, Nick; Seljak, Uroš; Vlah, Zvonimir; Desjacques, Vincent

    2015-11-01

    Theoretical modeling of the redshift-space power spectrum of galaxies is crucially important to correctly extract cosmological information from galaxy redshift surveys. The task is complicated by the nonlinear biasing and redshift space distortion (RSD) effects, which change with halo mass, and by the wide distribution of halo masses and their occupations by galaxies. One of the main modeling challenges is the existence of satellite galaxies that have both radial distribution inside the halos and large virial velocities inside halos, a phenomenon known as the Finger-of-God (FoG) effect. We present a model for the redshift-space power spectrum of galaxies in which we decompose a given galaxy sample into central and satellite galaxies and relate different contributions to the power spectrum to 1-halo and 2-halo terms in a halo model. Our primary goal is to ensure that any parameters that we introduce have physically meaningful values, and are not just fitting parameters. For the lowest order 2-halo terms we use the previously developed RSD modeling of halos in the context of distribution function and perturbation theory approach. This term needs to be multiplied by the effect of radial distances and velocities of satellites inside the halo. To this one needs to add the 1-halo terms, which are nonperturbative. We show that the real space 1-halo terms can be modeled as almost constant, with the finite extent of the satellites inside the halo inducing a small k2R2 term over the range of scales of interest, where R is related to the size of the halo given by its halo mass. We adopt a similar model for FoG in redshift space, ensuring that FoG velocity dispersion is related to the halo mass. For FoG k2 type expansions do not work over the range of scales of interest and FoG resummation must be used instead. We test several simple damping functions to model the velocity dispersion FoG effect. Applying the formalism to mock galaxies modeled after the "CMASS" sample of the

  17. Galaxy power spectrum in redshift space: Combining perturbation theory with the halo model

    DOE PAGES

    Okumura, Teppei; Hand, Nick; Seljak, Uros; ...

    2015-11-19

    Theoretical modeling of the redshift-space power spectrum of galaxies is crucially important to correctly extract cosmological information from galaxy redshift surveys. The task is complicated by the nonlinear biasing and redshift space distortion (RSD) effects, which change with halo mass, and by the wide distribution of halo masses and their occupations by galaxies. One of the main modeling challenges is the existence of satellite galaxies that have both radial distribution inside the halos and large virial velocities inside halos, a phenomenon known as the Finger-of-God (FoG) effect. We present a model for the redshift-space power spectrum of galaxies in whichmore » we decompose a given galaxy sample into central and satellite galaxies and relate different contributions to the power spectrum to 1-halo and 2-halo terms in a halo model. Our primary goal is to ensure that any parameters that we introduce have physically meaningful values, and are not just fitting parameters. For the lowest order 2-halo terms we use the previously developed RSD modeling of halos in the context of distribution function and perturbation theory approach. This term needs to be multiplied by the effect of radial distances and velocities of satellites inside the halo. To this one needs to add the 1-halo terms, which are nonperturbative. We show that the real space 1-halo terms can be modeled as almost constant, with the finite extent of the satellites inside the halo inducing a small k 2R 2 term over the range of scales of interest, where R is related to the size of the halo given by its halo mass. Furthermore, we adopt a similar model for FoG in redshift space, ensuring that FoG velocity dispersion is related to the halo mass. For FoG k 2 type expansions do not work over the range of scales of interest and FoG resummation must be used instead. We test several simple damping functions to model the velocity dispersion FoG effect. Applying the formalism to mock galaxies modeled after the

  18. Adaptations in a hierarchical food web of southeastern Lake Michigan

    USGS Publications Warehouse

    Krause, Ann E.; Frank, Ken A.; Jones, Michael L.; Nalepa, Thomas F.; Barbiero, Richard P.; Madenjian, Charles P.; Agy, Megan; Evans, Marlene S.; Taylor, William W.; Mason, Doran M.; Léonard, Nancy J.

    2009-01-01

    Two issues in ecological network theory are: (1) how to construct an ecological network model and (2) how do entire networks (as opposed to individual species) adapt to changing conditions? We present a novel method for constructing an ecological network model for the food web of southeastern Lake Michigan (USA) and we identify changes in key system properties that are large relative to their uncertainty as this ecological network adapts from one time point to a second time point in response to multiple perturbations. To construct our food web for southeastern Lake Michigan, we followed the list of seven recommendations outlined in Cohen et al. [Cohen, J.E., et al., 1993. Improving food webs. Ecology 74, 252–258] for improving food webs. We explored two inter-related extensions of hierarchical system theory with our food web; the first one was that subsystems react to perturbations independently in the short-term and the second one was that a system's properties change at a slower rate than its subsystems’ properties. We used Shannon's equations to provide quantitative versions of the basic food web properties: number of prey, number of predators, number of feeding links, and connectance (or density). We then compared these properties between the two time-periods by developing distributions of each property for each time period that took uncertainty about the property into account. We compared these distributions, and concluded that non-overlapping distributions indicated changes in these properties that were large relative to their uncertainty. Two subsystems were identified within our food web system structure (p < 0.001). One subsystem had more non-overlapping distributions in food web properties between Time 1 and Time 2 than the other subsystem. The overall system had all overlapping distributions in food web properties between Time 1 and Time 2. These results supported both extensions of hierarchical systems theory. Interestingly, the subsystem with more

  19. Quantum mechanical/molecular mechanical/continuum style solvation model: second order Møller-Plesset perturbation theory.

    PubMed

    Thellamurege, Nandun M; Si, Dejun; Cui, Fengchao; Li, Hui

    2014-05-07

    A combined quantum mechanical/molecular mechanical/continuum (QM/MM/C) style second order Møller-Plesset perturbation theory (MP2) method that incorporates induced dipole polarizable force field and induced surface charge continuum solvation model is established. The Z-vector method is modified to include induced dipoles and induced surface charges to determine the MP2 response density matrix, which can be used to evaluate MP2 properties. In particular, analytic nuclear gradient is derived and implemented for this method. Using the Assisted Model Building with Energy Refinement induced dipole polarizable protein force field, the QM/MM/C style MP2 method is used to study the hydrogen bonding distances and strengths of the photoactive yellow protein chromopore in the wild type and the Glu46Gln mutant.

  20. Quantum mechanical/molecular mechanical/continuum style solvation model: Second order Møller-Plesset perturbation theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thellamurege, Nandun M.; Si, Dejun; Cui, Fengchao

    A combined quantum mechanical/molecular mechanical/continuum (QM/MM/C) style second order Møller-Plesset perturbation theory (MP2) method that incorporates induced dipole polarizable force field and induced surface charge continuum solvation model is established. The Z-vector method is modified to include induced dipoles and induced surface charges to determine the MP2 response density matrix, which can be used to evaluate MP2 properties. In particular, analytic nuclear gradient is derived and implemented for this method. Using the Assisted Model Building with Energy Refinement induced dipole polarizable protein force field, the QM/MM/C style MP2 method is used to study the hydrogen bonding distances and strengths ofmore » the photoactive yellow protein chromopore in the wild type and the Glu46Gln mutant.« less

  1. Geocenter coordinates estimated from GNSS data as viewed by perturbation theory

    NASA Astrophysics Data System (ADS)

    Meindl, Michael; Beutler, Gerhard; Thaller, Daniela; Dach, Rolf; Jäggi, Adrian

    2013-04-01

    Time series of geocenter coordinates were determined with data of two global navigation satellite systems (GNSSs), namely the U.S. GPS (Global Positioning System) and the Russian GLONASS (Global'naya Nawigatsionnaya Sputnikowaya Sistema). The data was recorded in the years 2008-2011 by a global network of 92 permanently observing GPS/GLONASS receivers. Two types of daily solutions were generated independently for each GNSS, one including the estimation of geocenter coordinates and one without these parameters.A fair agreement for GPS and GLONASS was found in the geocenter x- and y-coordinate series. Our tests, however, clearly reveal artifacts in the z-component determined with the GLONASS data. Large periodic excursions in the GLONASS geocenter z-coordinates of about 40 cm peak-to-peak are related to the maximum elevation angles of the Sun above/below the orbital planes of the satellite system and thus have a period of about 4 months (third of a year). A detailed analysis revealed that the artifacts are almost uniquely governed by the differences of the estimates of direct solar radiation pressure (SRP) in the two solution series (with and without geocenter estimation). A simple formula is derived, describing the relation between the geocenter z-coordinate and the corresponding parameter of the SRP. The effect can be explained by first-order perturbation theory of celestial mechanics. The theory also predicts a heavy impact on the GNSS-derived geocenter if once-per-revolution SRP parameters are estimated in the direction of the satellite's solar panel axis. Specific experiments using GPS observations revealed that this is indeed the case.Although the main focus of this article is on GNSS, the theory developed is applicable to all satellite observing techniques. We applied the theory to satellite laser ranging (SLR) solutions using LAGEOS. It turns out that the correlation between geocenter and SRP parameters is not a critical issue for the SLR solutions. The

  2. Theory of psychological adaptive modes.

    PubMed

    Lehti, Juha

    2016-05-01

    When an individual is facing a stressor and normal stress-response mechanism cannot guarantee sufficient adaptation, special emotional states, adaptive modes, are activated (for example a depressive reaction). Adaptive modes are involuntary states of mind, they are of comprehensive nature, they interfere with normal functioning, and they cannot be repressed or controlled the same way as many emotions. Their transformational nature differentiates them from other emotional states. The object of the adaptive mode is to optimize the problem-solving abilities according to the situation that has provoked the mode. Cognitions and emotions during the adaptive mode are different than in a normal mental state. These altered cognitions and emotional reactions guide the individual to use the correct coping skills in order to deal with the stressor. Successful adaptation will cause the adaptive mode to fade off since the adaptive mode is no longer necessary, and the process as a whole will lead to raised well-being. However, if the adaptation process is inadequate, then the transformation period is prolonged, and the adaptive mode will turn into a dysfunctional state. Many psychiatric disorders are such maladaptive processes. The maladaptive processes can be turned into functional ones by using adaptive skills that are used in functional adaptive processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. The habitual brain: an "adapted habit" theory of substance use disorders.

    PubMed

    Newlin, David B; Strubler, Kevin A

    2007-01-01

    Behavioral habits are essential to human and animal life. We consider the many ways that habits - which are normally adaptive - can be expressed as drug use behavior and addiction. Although habit theories of substance use disorders have been proposed (e.g., Tiffany, 1990), the behavioral science and underlying neurobiology of habit development, maintenance, and change is only now being studied. We first define "adapted habit." We then propose that the etiology of an adapted habit represents the combination of: (a) initial "capture" of a habit, (b) development of behavioral action schemata, and (c) an overlay of cognitive expectancies concerning aspects of the habit. This combination conspires to make an intractable adapted habit such as substance abuse and addiction. Many intractable habits change, including substance use disorders such as cigarette smoking. As part of a science of habits, we need a real understanding of how to change habits to avoid or minimize harm.

  4. Adaptive fuzzy controller for thermal comfort inside the air-conditioned automobile chamber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tong, L.; Yu, B.; Chen, Z.

    1999-07-01

    In order to meet the passengers' demand for thermal comfort, the adaptive fuzzy logic control design methodology is applied for the automobile airconditioner system. In accordance with the theory of air flow and heat transfer, the air temperature field inside the airconditioned automobile chamber is simulated by a set of simplified half-empirical formula. Then, instead of PMV (Predicted Mean Vote) criterion, RIV (Real Individual Vote) criterion is adopted as the base of the control for passengers' thermal comfort. The proposed controller is applied to the air temperature regulation at the individual passenger position. The control procedure is based on partitioningmore » the state space of the system into cell-groups and fuzzily quantificating the state space into these cells. When the system model has some parameter perturbation, the controller can also adjust its control parameters to compensate for the perturbation and maintain the good performance. The learning procedure shows its ideal effect in both computer simulation and experiments. The final results demonstrate the ideal performance of this adaptive fuzzy controller.« less

  5. Awareness of Sensorimotor Adaptation to Visual Rotations of Different Size

    PubMed Central

    Werner, Susen; van Aken, Bernice C.; Hulst, Thomas; Frens, Maarten A.; van der Geest, Jos N.; Strüder, Heiko K.; Donchin, Opher

    2015-01-01

    Previous studies on sensorimotor adaptation revealed no awareness of the nature of the perturbation after adaptation to an abrupt 30° rotation of visual feedback or after adaptation to gradually introduced perturbations. Whether the degree of awareness depends on the magnitude of the perturbation, though, has as yet not been tested. Instead of using questionnaires, as was often done in previous work, the present study used a process dissociation procedure to measure awareness and unawareness. A naïve, implicit group and a group of subjects using explicit strategies adapted to 20°, 40° and 60° cursor rotations in different adaptation blocks that were each followed by determination of awareness and unawareness indices. The awareness index differed between groups and increased from 20° to 60° adaptation. In contrast, there was no group difference for the unawareness index, but it also depended on the size of the rotation. Early adaptation varied between groups and correlated with awareness: The more awareness a participant had developed the more the person adapted in the beginning of the adaptation block. In addition, there was a significant group difference for savings but it did not correlate with awareness. Our findings suggest that awareness depends on perturbation size and that aware and strategic processes are differentially involved during adaptation and savings. Moreover, the use of the process dissociation procedure opens the opportunity to determine awareness and unawareness indices in future sensorimotor adaptation research. PMID:25894396

  6. Energy-momentum tensor of perturbed tachyon matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jokela, Niko; Department of Mathematics and Physics, University of Haifa at Oranim, Tivon 36006; Jaervinen, Matti

    2009-05-15

    We add an initial nonhomogeneous perturbation to an otherwise homogeneous condensing tachyon background and compute its spacetime energy-momentum tensor from world-sheet string theory. We show that in the far future the energy-momentum tensor corresponds to nonhomogeneous pressureless tachyon matter.

  7. Cosmological perturbations in the DGP braneworld: Numeric solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardoso, Antonio; Koyama, Kazuya; Silva, Fabio P.

    2008-04-15

    We solve for the behavior of cosmological perturbations in the Dvali-Gabadadze-Porrati (DGP) braneworld model using a new numerical method. Unlike some other approaches in the literature, our method uses no approximations other than linear theory and is valid on large scales. We examine the behavior of late-universe density perturbations for both the self-accelerating and normal branches of DGP cosmology. Our numerical results can form the basis of a detailed comparison between the DGP model and cosmological observations.

  8. Quantum space foam and string theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nekrasov, Nikita

    2006-11-03

    String theory is originally defined as a modification of the Feynman rules in perturbation theory. It contains gravity in its perturbative spectrum. We review some recent developments which demonstrate that nonperturbative effects of quantum gravity, such as spacetime foam, arise in string theory as well.Prepared for the proceedings of 'Albert Einstein Century Conference' , Paris July 2005.

  9. Study of the time evolution of correlation functions of the transverse Ising chain with ring frustration by perturbative theory

    NASA Astrophysics Data System (ADS)

    Zheng, Zhen-Yu; Li, Peng

    2018-04-01

    We consider the time evolution of two-point correlation function in the transverse-field Ising chain (TFIC) with ring frustration. The time-evolution procedure we investigated is equivalent to a quench process in which the system is initially prepared in a classical kink state and evolves according to the time-dependent Schrödinger equation. Within a framework of perturbative theory (PT) in the strong kink phase, the evolution of the correlation function is disclosed to demonstrate a qualitatively new behavior in contrast to the traditional case without ring frustration.

  10. Convergence properties of η → 3π decays in chiral perturbation theory

    NASA Astrophysics Data System (ADS)

    Kolesár, Marián; Novotný, Jiří

    2017-01-01

    The convergence of the decay widths and some of the Dalitz plot parameters of the decay η → 3π seems problematic in low energy QCD. In the framework of resummed chiral perturbation theory, we explore the question of compatibility of experimental data with a reasonable convergence of a carefully defined chiral series. By treating the uncertainties in the higher orders statistically, we numerically generate a large set of theoretical predictions, which are then confronted with experimental information. In the case of the decay widths, the experimental values can be reconstructed for a reasonable range of the free parameters and thus no tension is observed, in spite of what some of the traditional calculations suggest. The Dalitz plot parameters a and d can be described very well too. When the parameters b and α are concerned, we find a mild tension for the whole range of the free parameters, at less than 2σ C.L. This can be interpreted in two ways - either some of the higher order corrections are indeed unexpectedly large or there is a specific configuration of the remainders, which is, however, not completely improbable.

  11. On the reach of perturbative descriptions for dark matter displacement fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baldauf, Tobias; Zaldarriaga, Matias; Schaan, Emmanuel, E-mail: baldauf@ias.edu, E-mail: eschaan@astro.princeton.edu, E-mail: matiasz@ias.edu

    We study Lagrangian Perturbation Theory (LPT) and its regularization in the Effective Field Theory (EFT) approach. We evaluate the LPT displacement with the same phases as a corresponding N-body simulation, which allows us to compare perturbation theory to the non-linear simulation with significantly reduced cosmic variance, and provides a more stringent test than simply comparing power spectra. We reliably detect a non-vanishing leading order EFT coefficient and a stochastic displacement term, uncorrelated with the LPT terms. This stochastic term is expected in the EFT framework, and, to the best of our understanding, is not an artifact of numerical errors ormore » transients in our simulations. This term constitutes a limit to the accuracy of perturbative descriptions of the displacement field and its phases, corresponding to a 1% error on the non-linear power spectrum at k = 0.2 h{sup −1}Mpc at z = 0. Predicting the displacement power spectrum to higher accuracy or larger wavenumbers thus requires a model for the stochastic displacement.« less

  12. Testing higher-order Lagrangian perturbation theory against numerical simulations. 2: Hierarchical models

    NASA Technical Reports Server (NTRS)

    Melott, A. L.; Buchert, T.; Weib, A. G.

    1995-01-01

    We present results showing an improvement of the accuracy of perturbation theory as applied to cosmological structure formation for a useful range of scales. The Lagrangian theory of gravitational instability of Friedmann-Lemaitre cosmogonies is compared with numerical simulations. We study the dynamics of hierarchical models as a second step. In the first step we analyzed the performance of the Lagrangian schemes for pancake models, the difference being that in the latter models the initial power spectrum is truncated. This work probed the quasi-linear and weakly non-linear regimes. We here explore whether the results found for pancake models carry over to hierarchical models which are evolved deeply into the non-linear regime. We smooth the initial data by using a variety of filter types and filter scales in order to determine the optimal performance of the analytical models, as has been done for the 'Zel'dovich-approximation' - hereafter TZA - in previous work. We find that for spectra with negative power-index the second-order scheme performs considerably better than TZA in terms of statistics which probe the dynamics, and slightly better in terms of low-order statistics like the power-spectrum. However, in contrast to the results found for pancake models, where the higher-order schemes get worse than TZA at late non-linear stages and on small scales, we here find that the second-order model is as robust as TZA, retaining the improvement at later stages and on smaller scales. In view of these results we expect that the second-order truncated Lagrangian model is especially useful for the modelling of standard dark matter models such as Hot-, Cold-, and Mixed-Dark-Matter.

  13. Perturbative Power Counting, Lowest-Index Operators and Their Renormalization in Standard Model Effective Field Theory

    NASA Astrophysics Data System (ADS)

    Liao, Yi; Ma, Xiao-Dong

    2018-03-01

    We study two aspects of higher dimensional operators in standard model effective field theory. We first introduce a perturbative power counting rule for the entries in the anomalous dimension matrix of operators with equal mass dimension. The power counting is determined by the number of loops and the difference of the indices of the two operators involved, which in turn is defined by assuming that all terms in the standard model Lagrangian have an equal perturbative power. Then we show that the operators with the lowest index are unique at each mass dimension d, i.e., (H † H) d/2 for even d ≥ 4, and (LT∈ H)C(LT∈ H) T (H † H)(d-5)/2 for odd d ≥ 5. Here H, L are the Higgs and lepton doublet, and ∈, C the antisymmetric matrix of rank two and the charge conjugation matrix, respectively. The renormalization group running of these operators can be studied separately from other operators of equal mass dimension at the leading order in power counting. We compute their anomalous dimensions at one loop for general d and find that they are enhanced quadratically in d due to combinatorics. We also make connections with classification of operators in terms of their holomorphic and anti-holomorphic weights. Supported by the National Natural Science Foundation of China under Grant Nos. 11025525, 11575089, and by the CAS Center for Excellence in Particle Physics (CCEPP)

  14. Advances in adaptive control theory: Gradient- and derivative-free approaches

    NASA Astrophysics Data System (ADS)

    Yucelen, Tansel

    In this dissertation, we present new approaches to improve standard designs in adaptive control theory, and novel adaptive control architectures. We first present a novel Kalman filter based approach for approximately enforcing a linear constraint in standard adaptive control design. One application is that this leads to alternative forms for well known modification terms such as e-modification. In addition, it leads to smaller tracking errors without incurring significant oscillations in the system response and without requiring high modification gain. We derive alternative forms of e- and adaptive loop recovery (ALR-) modifications. Next, we show how to use Kalman filter optimization to derive a novel adaptation law. This results in an optimization-based time-varying adaptation gain that reduces the need for adaptation gain tuning. A second major contribution of this dissertation is the development of a novel derivative-free, delayed weight update law for adaptive control. The assumption of constant unknown ideal weights is relaxed to the existence of time-varying weights, such that fast and possibly discontinuous variation in weights are allowed. This approach is particulary advantageous for applications to systems that can undergo a sudden change in dynamics, such as might be due to reconfiguration, deployment of a payload, docking, or structural damage, and for rejection of external disturbance processes. As a third and final contribution, we develop a novel approach for extending all the methods developed in this dissertation to the case of output feedback. The approach is developed only for the case of derivative-free adaptive control, and the extension of the other approaches developed previously for the state feedback case to output feedback is left as a future research topic. The proposed approaches of this dissertation are illustrated in both simulation and flight test.

  15. Vapor-liquid equilibrium and equation of state of two-dimensional fluids from a discrete perturbation theory

    NASA Astrophysics Data System (ADS)

    Trejos, Víctor M.; Santos, Andrés; Gámez, Francisco

    2018-05-01

    The interest in the description of the properties of fluids of restricted dimensionality is growing for theoretical and practical reasons. In this work, we have firstly developed an analytical expression for the Helmholtz free energy of the two-dimensional square-well fluid in the Barker-Henderson framework. This equation of state is based on an approximate analytical radial distribution function for d-dimensional hard-sphere fluids (1 ≤ d ≤ 3) and is validated against existing and new simulation results. The so-obtained equation of state is implemented in a discrete perturbation theory able to account for general potential shapes. The prototypical Lennard-Jones and Yukawa fluids are tested in its two-dimensional version against available and new simulation data with semiquantitative agreement.

  16. Adaptive Control of a Transport Aircraft Using Differential Thrust

    NASA Technical Reports Server (NTRS)

    Stepanyan, Vahram; Krishnakumar, Kalmanje; Nguyen, Nhan

    2009-01-01

    The paper presents an adaptive control technique for a damaged large transport aircraft subject to unknown atmospheric disturbances such as wind gust or turbulence. It is assumed that the damage results in vertical tail loss with no rudder authority, which is replaced with a differential thrust input. The proposed technique uses the adaptive prediction based control design in conjunction with the time scale separation principle, based on the singular perturbation theory. The application of later is necessitated by the fact that the engine response to a throttle command is substantially slow that the angular rate dynamics of the aircraft. It is shown that this control technique guarantees the stability of the closed-loop system and the tracking of a given reference model. The simulation example shows the benefits of the approach.

  17. Protein side chain rotational isomerization: A minimum perturbation mapping study

    NASA Astrophysics Data System (ADS)

    Haydock, Christopher

    1993-05-01

    A theory of the rotational isomerization of the indole side chain of tryptophan-47 of variant-3 scorpion neurotoxin is presented. The isomerization potential energy, entropic part of the isomerization free energy, isomer probabilities, transition state theory reaction rates, and indole order parameters are calculated from a minimum perturbation mapping over tryptophan-47 χ1×χ2 torsion space. A new method for calculating the fluorescence anisotropy from molecular dynamics simulations is proposed. The method is based on an expansion that separates transition dipole orientation from chromophore dynamics. The minimum perturbation potential energy map is inverted and applied as a bias potential for a 100 ns umbrella sampling simulation. The entropic part of the isomerization free energy as calculated by minimum perturbation mapping and umbrella sampling are in fairly close agreement. Throughout, the approximation is made that two glutamine and three tyrosine side chains neighboring tryptophan-47 are truncated at the Cβ atom. Comparison with the previous combination thermodynamic perturbation and umbrella sampling study suggests that this truncated neighbor side chain approximation leads to at least a qualitatively correct theory of tryptophan-47 rotational isomerization in the wild type variant-3 scorpion neurotoxin. Analysis of van der Waals interactions in a transition state region indicates that for the simulation of barrier crossing trajectories a linear combination of three specially defined dihedral angles will be superior to a simple side chain dihedral reaction coordinate.

  18. Perturbative treatment of spin-orbit-coupling within spin-free exact two-component theory using equation-of-motion coupled-cluster methods

    NASA Astrophysics Data System (ADS)

    Cheng, Lan; Wang, Fan; Stanton, John F.; Gauss, Jürgen

    2018-01-01

    A scheme is reported for the perturbative calculation of spin-orbit coupling (SOC) within the spin-free exact two-component theory in its one-electron variant (SFX2C-1e) in combination with the equation-of-motion coupled-cluster singles and doubles method. Benchmark calculations of the spin-orbit splittings in 2Π and 2P radicals show that the accurate inclusion of scalar-relativistic effects using the SFX2C-1e scheme extends the applicability of the perturbative treatment of SOC to molecules that contain heavy elements. The contributions from relaxation of the coupled-cluster amplitudes are shown to be relatively small; significant contributions from correlating the inner-core orbitals are observed in calculations involving third-row and heavier elements. The calculation of term energies for the low-lying electronic states of the PtH radical, which serves to exemplify heavy transition-metal containing systems, further demonstrates the quality that can be achieved with the pragmatic approach presented here.

  19. Adaptive Disturbance Tracking Theory with State Estimation and State Feedback for Region II Control of Large Wind Turbines

    NASA Technical Reports Server (NTRS)

    Balas, Mark J.; Thapa Magar, Kaman S.; Frost, Susan A.

    2013-01-01

    A theory called Adaptive Disturbance Tracking Control (ADTC) is introduced and used to track the Tip Speed Ratio (TSR) of 5 MW Horizontal Axis Wind Turbine (HAWT). Since ADTC theory requires wind speed information, a wind disturbance generator model is combined with lower order plant model to estimate the wind speed as well as partial states of the wind turbine. In this paper, we present a proof of stability and convergence of ADTC theory with lower order estimator and show that the state feedback can be adaptive.

  20. Minimal string theories and integrable hierarchies

    NASA Astrophysics Data System (ADS)

    Iyer, Ramakrishnan

    Well-defined, non-perturbative formulations of the physics of string theories in specific minimal or superminimal model backgrounds can be obtained by solving matrix models in the double scaling limit. They provide us with the first examples of completely solvable string theories. Despite being relatively simple compared to higher dimensional critical string theories, they furnish non-perturbative descriptions of interesting physical phenomena such as geometrical transitions between D-branes and fluxes, tachyon condensation and holography. The physics of these theories in the minimal model backgrounds is succinctly encoded in a non-linear differential equation known as the string equation, along with an associated hierarchy of integrable partial differential equations (PDEs). The bosonic string in (2,2m-1) conformal minimal model backgrounds and the type 0A string in (2,4 m) superconformal minimal model backgrounds have the Korteweg-de Vries system, while type 0B in (2,4m) backgrounds has the Zakharov-Shabat system. The integrable PDE hierarchy governs flows between backgrounds with different m. In this thesis, we explore this interesting connection between minimal string theories and integrable hierarchies further. We uncover the remarkable role that an infinite hierarchy of non-linear differential equations plays in organizing and connecting certain minimal string theories non-perturbatively. We are able to embed the type 0A and 0B (A,A) minimal string theories into this single framework. The string theories arise as special limits of a rich system of equations underpinned by an integrable system known as the dispersive water wave hierarchy. We find that there are several other string-like limits of the system, and conjecture that some of them are type IIA and IIB (A,D) minimal string backgrounds. We explain how these and several other string-like special points arise and are connected. In some cases, the framework endows the theories with a non-perturbative

  1. Perturbative calculation of two-photon double electron ionization of helium

    NASA Astrophysics Data System (ADS)

    Ivanov, I. A.; Kheifets, A. S.

    2008-05-01

    We report the total integrated cross-section (TICS) of two-photon double ionization of helium in the photon energy range from 40 to 54 eV. We compute the TICS in the lowest order perturbation theory (LOPT) using the length and Kramers-Henneberger gauges of the electromagnetic interaction. Our findings indicate that the LOPT gives results for the TICS in agreement with our earlier non-perturbative calculations.

  2. Studies of perturbed three vortex dynamics

    NASA Astrophysics Data System (ADS)

    Blackmore, Denis; Ting, Lu; Knio, Omar

    2007-06-01

    It is well known that the dynamics of three point vortices moving in an ideal fluid in the plane can be expressed in Hamiltonian form, where the resulting equations of motion are completely integrable in the sense of Liouville and Arnold. The focus of this investigation is on the persistence of regular behavior (especially periodic motion) associated with completely integrable systems for certain (admissible) kinds of Hamiltonian perturbations of the three vortex system in a plane. After a brief survey of the dynamics of the integrable planar three vortex system, it is shown that the admissible class of perturbed systems is broad enough to include three vortices in a half plane, three coaxial slender vortex rings in three space, and "restricted" four vortex dynamics in a plane. Included are two basic categories of results for admissible perturbations: (i) general theorems for the persistence of invariant tori and periodic orbits using Kolmogorov-Arnold-Moser- and Poincaré-Birkhoff-type arguments and (ii) more specific and quantitative conclusions of a classical perturbation theory nature guaranteeing the existence of periodic orbits of the perturbed system close to cycles of the unperturbed system, which occur in abundance near centers. In addition, several numerical simulations are provided to illustrate the validity of the theorems as well as indicating their limitations as manifested by transitions to chaotic dynamics.

  3. Cosmological perturbations and noncommutative tachyon inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Daojun; Li Xinzhou

    2004-12-15

    The motivation for studying the rolling tachyon and noncommutative inflation comes from string theory. In the tachyon inflation scenario, metric perturbations are created by tachyon field fluctuations during inflation. We drive the exact mode equation for scalar perturbations of the metric and investigate the cosmological perturbations in the commutative and noncommutative inflationary spacetime driven by the tachyon field which have a Born-Infeld Lagrangian. Although at lowest order the predictions of tachyon inflation are no different than those from standard slow-roll inflation, due to the modified inflationary dynamics there exists modifications to the power spectra of fluctuations generated during inflation. Inmore » the noncommutative tachyon inflation scenario, the stringy noncommutativity of spacetime results in corrections to the primordial power spectrum that lead to a spectral index that is greater than 1 on large scales and less than 1 on small scales as the first-year results of the Wilkinson Microwave Anisotropy Probe indicate.« less

  4. Adaptation to transient postural perturbations

    NASA Technical Reports Server (NTRS)

    Andres, Robert O.

    1992-01-01

    This research was first proposed in May, 1986, to focus on some of the problems encountered in the analysis of postural responses gathered from crewmembers. The ultimate driving force behind this line of research was the desire to treat, predict, or explain 'Space Adaptation Syndrome' (SAS) and hence circumvent any adverse effects of space motion sickness on crewmember performance. The aim of this project was to develop an easily implemented analysis of the transient responses to platform translation that can be elicited with a protocol designed to force sensorimotor reorganization, utilizing statistically reliable criterion measures. This report will present: (1) a summary of the activity that took place in each of the three funded years of the project; (2) discussion of experimental results and their implications for future research; and (3) a list of presentations and publications resulting from this project.

  5. Conformers of CL-20 explosive and ab initio refinement using perturbation theory: implications to detonation mechanisms.

    PubMed

    Molt, Robert W; Bartlett, Rodney J; Watson, Thomas; Bazanté, Alexandre P

    2012-12-13

    We have identified the major conformers of CL-20 explosive, otherwise known as 2,4,6,8,10,12-hexanitrohexaazaisowurtzitane, more formally known as 2,4,6,8,10,12-hexanitrohexaazatetracyclo[5.5.0.0]-dodecane, via Monte Carlo search in conformational space through molecular mechanics and subsequent quantum mechanical refinement using perturbation theory. Our search produced enough conformers to account for all of the various forms of CL-20 found in crystals. This suggests that our methodology will be useful in studying the conformational landscape of other nitramines. The energy levels of the conformers found are all within 0.25 eV of one another based on MBPT(2)/6-311G(d,p); consequently, without further refinement from a method such as coupled cluster theory, all conformers may reasonably be populated at STP in the gas phase. We also report the harmonic vibrational frequencies of conformers, including the implications on the mechanism of detonation. In particular, we establish that the weakest N-N nitramine of CL-20 is the cyclohexane equatorial nitramine. This preliminary mapping of the conformers of CL-20 makes it possible to study the mechanism of detonation of this explosive rigorously in future work.

  6. Analytic short period lunar and solar perturbations of artificial satellites.

    NASA Technical Reports Server (NTRS)

    Fisher, D.

    1972-01-01

    The short period luni-solar theory of Kozai is generalized for arbitrary obliquity of the ecliptic and inclination of the moon's orbit to the ecliptic. Analytic first order lunar perturbations to the elements are derived. The theory is illustrated by an application to the communication satellite Intelsat 3F3.

  7. Analytic short period lunar and solar perturbations of artificial satellites

    NASA Technical Reports Server (NTRS)

    Fisher, D.

    1972-01-01

    A short period luni-solar theory was generalized for application to arbitrary obliquity of the ecliptic and inclination of the moon's orbit to the ecliptic. Analytic first order lunar perturbations to the elements were derived. The theory is illustrated by an application to the communication satellite Intelsat 3F3.

  8. The correlation function for density perturbations in an expanding universe. II - Nonlinear theory

    NASA Technical Reports Server (NTRS)

    Mcclelland, J.; Silk, J.

    1977-01-01

    A formalism is developed to find the two-point and higher-order correlation functions for a given distribution of sizes and shapes of perturbations which are randomly placed in three-dimensional space. The perturbations are described by two parameters such as central density and size, and the two-point correlation function is explicitly related to the luminosity function of groups and clusters of galaxies

  9. Multiconfiguration pair-density functional theory investigation of the electronic spectrum of MnO4.

    PubMed

    Sharma, Prachi; Truhlar, Donald G; Gagliardi, Laura

    2018-03-28

    The electronic spectrum of permanganate ions contains various highly multiconfigurational ligand-to-metal charge transfer states and is notorious for being one of the most challenging systems to be treated by quantum-chemical methods. Here we studied the lowest nine vertical excitation energies using restricted active space second-order perturbation theory (RASPT2) and multiconfiguration pair-density functional theory (MC-PDFT) to test and compare these two theories in computing such a challenging spectrum. The results are compared to literature data, including time-dependent density functional theory, completely renormalized equation-of-motion couple-cluster theory with single and double excitations, symmetry-adapted-cluster configuration interaction, and experimental spectra in the gas phase and solution. Our results show that MC-PDFT accurately predicts the spectrum at a significantly reduced cost as compared to RASPT2.

  10. Multiconfiguration pair-density functional theory investigation of the electronic spectrum of MnO4-

    NASA Astrophysics Data System (ADS)

    Sharma, Prachi; Truhlar, Donald G.; Gagliardi, Laura

    2018-03-01

    The electronic spectrum of permanganate ions contains various highly multiconfigurational ligand-to-metal charge transfer states and is notorious for being one of the most challenging systems to be treated by quantum-chemical methods. Here we studied the lowest nine vertical excitation energies using restricted active space second-order perturbation theory (RASPT2) and multiconfiguration pair-density functional theory (MC-PDFT) to test and compare these two theories in computing such a challenging spectrum. The results are compared to literature data, including time-dependent density functional theory, completely renormalized equation-of-motion couple-cluster theory with single and double excitations, symmetry-adapted-cluster configuration interaction, and experimental spectra in the gas phase and solution. Our results show that MC-PDFT accurately predicts the spectrum at a significantly reduced cost as compared to RASPT2.

  11. Nonlinear 2D arm dynamics in response to continuous and pulse-shaped force perturbations.

    PubMed

    Happee, Riender; de Vlugt, Erwin; van Vliet, Bart

    2015-01-01

    Ample evidence exists regarding the nonlinearity of the neuromuscular system but linear models are widely applied to capture postural dynamics. This study quantifies the nonlinearity of human arm postural dynamics applying 2D continuous force perturbations (0.2-40 Hz) inducing three levels of hand displacement (5, 15, 45 mm RMS) followed by force-pulse perturbations inducing large hand displacements (up to 250 mm) in a position task (PT) and a relax task (RT) recording activity of eight shoulder and elbow muscles. The continuous perturbation data were used to analyze the 2D endpoint dynamics in the frequency domain and to identify reflexive and intrinsic parameters of a linear neuromuscular shoulder-elbow model. Subsequently, it was assessed to what extent the large displacements in response to force pulses could be predicted from the 'small amplitude' linear neuromuscular model. Continuous and pulse perturbation responses with varying amplitudes disclosed highly nonlinear effects. In PT, a larger continuous perturbation induced stiffening with a factor of 1.5 attributed to task adaptation evidenced by increased co-contraction and reflexive activity. This task adaptation was even more profound in the pulse responses where reflexes and displacements were strongly affected by the presence and amplitude of preceding continuous perturbations. In RT, a larger continuous perturbation resulted in yielding with a factor of 3.8 attributed to nonlinear mechanical properties as no significant reflexive activity was found. Pulse perturbations always resulted in yielding where a model fitted to the preceding 5-mm continuous perturbations predicted only 37% of the recorded peak displacements in RT and 79% in PT. This demonstrates that linear neuromuscular models, identified using continuous perturbations with small amplitudes, strongly underestimate displacements in pulse-shaped (e.g., impact) loading conditions. The data will be used to validate neuromuscular models including

  12. Orbital-optimized third-order Møller-Plesset perturbation theory and its spin-component and spin-opposite scaled variants: Application to symmetry breaking problems

    NASA Astrophysics Data System (ADS)

    Bozkaya, Uǧur

    2011-12-01

    In this research, orbital-optimized third-order Møller-Plesset perturbation theory (OMP3) and its spin-component and spin-opposite scaled variants (SCS-OMP3 and SOS-OMP3) are introduced. Using a Lagrangian-based approach, an efficient, quadratically convergent algorithm for variational optimization of the molecular orbitals (MOs) for third-order Møller-Plesset perturbation theory (MP3) is presented. Explicit equations for response density matrices, the MO gradient, and Hessian are reported in spin-orbital form. The OMP3, SCS-OMP3, and SOS-OMP3 approaches are compared with the second-order Møller-Plesset perturbation theory (MP2), MP3, coupled-cluster doubles (CCD), optimized-doubles (OD), and coupled-cluster singles and doubles (CCSD) methods. All these methods are applied to the O4 +, O3, and seven diatomic molecules. Results demonstrate that the OMP3 and its variants provide significantly better vibrational frequencies than MP3, CCSD, and OD for the molecules where the symmetry-breaking problems are observed. For O4 +, the OMP3 prediction, 1343 cm-1, for ω6 (b3u) mode, where symmetry-breaking appears, is even better than presumably more reliable methods such as Brueckner doubles (BD), 1194 cm-1, and OD, 1193 cm-1, methods (the experimental value is 1320 cm-1). For O3, the predictions of SCS-OMP3 (1143 cm-1) and SOS-OMP3 (1165 cm-1) are remarkably better than the more robust OD method (1282 cm-1); the experimental value is 1089 cm-1. For the seven diatomics, again the SCS-OMP3 and SOS-OMP3 methods provide the lowest average errors, |Δωe| = 44 and |Δωe| = 35 cm-1, respectively, while for OD, |Δωe| = 161 cm-1and CCSD |Δωe| = 106 cm-1. Hence, the OMP3 and especially its spin-scaled variants perform much better than the MP3, CCSD, and more robust OD approaches for considered test cases. Therefore, considering both the computational cost and the reliability, SCS-OMP3 and SOS-OMP3 appear to be the best methods for the symmetry-breaking cases, based on

  13. Orbital-optimized third-order Møller-Plesset perturbation theory and its spin-component and spin-opposite scaled variants: application to symmetry breaking problems.

    PubMed

    Bozkaya, Uğur

    2011-12-14

    In this research, orbital-optimized third-order Møller-Plesset perturbation theory (OMP3) and its spin-component and spin-opposite scaled variants (SCS-OMP3 and SOS-OMP3) are introduced. Using a Lagrangian-based approach, an efficient, quadratically convergent algorithm for variational optimization of the molecular orbitals (MOs) for third-order Møller-Plesset perturbation theory (MP3) is presented. Explicit equations for response density matrices, the MO gradient, and Hessian are reported in spin-orbital form. The OMP3, SCS-OMP3, and SOS-OMP3 approaches are compared with the second-order Møller-Plesset perturbation theory (MP2), MP3, coupled-cluster doubles (CCD), optimized-doubles (OD), and coupled-cluster singles and doubles (CCSD) methods. All these methods are applied to the O(4)(+), O(3), and seven diatomic molecules. Results demonstrate that the OMP3 and its variants provide significantly better vibrational frequencies than MP3, CCSD, and OD for the molecules where the symmetry-breaking problems are observed. For O(4)(+), the OMP3 prediction, 1343 cm(-1), for ω(6) (b(3u)) mode, where symmetry-breaking appears, is even better than presumably more reliable methods such as Brueckner doubles (BD), 1194 cm(-1), and OD, 1193 cm(-1), methods (the experimental value is 1320 cm(-1)). For O(3), the predictions of SCS-OMP3 (1143 cm(-1)) and SOS-OMP3 (1165 cm(-1)) are remarkably better than the more robust OD method (1282 cm(-1)); the experimental value is 1089 cm(-1). For the seven diatomics, again the SCS-OMP3 and SOS-OMP3 methods provide the lowest average errors, ∣Δω(e)∣ = 44 and ∣Δω(e)∣ = 35 cm(-1), respectively, while for OD, ∣Δω(e)∣ = 161 cm(-1)and CCSD ∣Δω(e)∣ = 106 cm(-1). Hence, the OMP3 and especially its spin-scaled variants perform much better than the MP3, CCSD, and more robust OD approaches for considered test cases. Therefore, considering both the computational cost and the reliability, SCS-OMP3 and SOS-OMP3 appear to be the

  14. Limit cycles via higher order perturbations for some piecewise differential systems

    NASA Astrophysics Data System (ADS)

    Buzzi, Claudio A.; Lima, Maurício Firmino Silva; Torregrosa, Joan

    2018-05-01

    A classical perturbation problem is the polynomial perturbation of the harmonic oscillator, (x‧ ,y‧) =(- y + εf(x , y , ε) , x + εg(x , y , ε)) . In this paper we study the limit cycles that bifurcate from the period annulus via piecewise polynomial perturbations in two zones separated by a straight line. We prove that, for polynomial perturbations of degree n , no more than Nn - 1 limit cycles appear up to a study of order N. We also show that this upper bound is reached for orders one and two. Moreover, we study this problem in some classes of piecewise Liénard differential systems providing better upper bounds for higher order perturbation in ε, showing also when they are reached. The Poincaré-Pontryagin-Melnikov theory is the main technique used to prove all the results.

  15. Instantons in string theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahlén, Olof, E-mail: olof.ahlen@aei.mpg.de

    2015-12-17

    These proceedings from the second Caesar Lattes meeting in Rio de Janeiro 2015 are a brief introduction to how automorphic forms appear in the low energy effective action of maximally supersymmetric string theory. The explicit example of the R{sup 4}-interaction of type IIB string theory in ten dimensions is discussed. Its Fourier expansion is interpreted in terms of perturbative and non-perturbative contributions to the four graviton amplitude.

  16. Elastic pp-bar and pp scattering up to. sqrt. s = 546 GeV and the flavored perturbative Reggeon field theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dash, J.W.; Jones, S.T.

    We show that the perturbative Reggeon field theory (RFT) with flavoring corrections added reproduces the pp and pp-bar differential cross sections from Fermilab to the CERN SPS collider (Spp-bar S). This completes a long program of phenomenology which is now capable of providing a unified framework for soft hadronic scattering at current energies. Our scenario of data being influenced by finite scales at least up to ..sqrt..s = 546 GeV is compatible with the truly asymptotic limit being described by the critical RFT scaling laws.

  17. Neural control of the lips differs for young and older adults following a perturbation

    PubMed Central

    de Miranda Marzullo, Ana Carolina; Neto, Osmar Pinto; Ballard, Kirrie J.; Robin, Donald A.; Chaitow, Lauren

    2011-01-01

    Aging impairs the control of many skilled movements including speech. The purpose of this paper was to investigate whether young and older adults adapt to lower lip perturbations during speech differently. Twenty men (10 young, 26 ± 3 years of age; 10 older, 60 ± 9 years of age) were requested to repeat the word (“papa”) 300 times. In 15% of the trials, the subjects experienced a mechanical perturbation on the lower lip. Displacement and neural activation (EMG) of the upper and lower lips were evaluated. Perturbations to the lower lip caused a greater increase in the maximum displacement of the lower lip for older adults compared with young adults (34.7 ± 19% vs. 13.4 ± 17%; P = 0.017). Furthermore, young adults exhibited significantly greater 30–100 Hz normalized EMG power for the lower lip compared to the upper lip (P < 0.005). In young adults, changes from normal to perturbed trials in the 30–50 Hz frequency band of the EMG were negatively correlated to the changes from normal to perturbed trials in the lower lip maximum displacement (R2 = 0.48; P = 0.025). It is concluded that young adults adapt better to lower lip perturbations compared with older adults and that the associated neural activation strategy of the involved muscle is different for the two age groups. PMID:20852991

  18. Spatially cascading effect of perturbations in experimental meta-ecosystems.

    PubMed

    Harvey, Eric; Gounand, Isabelle; Ganesanandamoorthy, Pravin; Altermatt, Florian

    2016-09-14

    Ecosystems are linked to neighbouring ecosystems not only by dispersal, but also by the movement of subsidy. Such subsidy couplings between ecosystems have important landscape-scale implications because perturbations in one ecosystem may affect community structure and functioning in neighbouring ecosystems via increased/decreased subsidies. Here, we combine a general theoretical approach based on harvesting theory and a two-patch protist meta-ecosystem experiment to test the effect of regional perturbations on local community dynamics. We first characterized the relationship between the perturbation regime and local population demography on detritus production using a mathematical model. We then experimentally simulated a perturbation gradient affecting connected ecosystems simultaneously, thus altering cross-ecosystem subsidy exchanges. We demonstrate that the perturbation regime can interact with local population dynamics to trigger unexpected temporal variations in subsidy pulses from one ecosystem to another. High perturbation intensity initially led to the highest level of subsidy flows; however, the level of perturbation interacted with population dynamics to generate a crash in subsidy exchange over time. Both theoretical and experimental results show that a perturbation regime interacting with local community dynamics can induce a collapse in population levels for recipient ecosystems. These results call for integrative management of human-altered landscapes that takes into account regional dynamics of both species and resource flows. © 2016 The Author(s).

  19. Reactive but not predictive locomotor adaptability is impaired in young Parkinson's disease patients.

    PubMed

    Moreno Catalá, María; Woitalla, Dirk; Arampatzis, Adamantios

    2016-07-01

    Gait and balance disorders are common in Parkinson's disease (PD) and major contributors to increased falling risk. Predictive and reactive adjustments can improve recovery performance after gait perturbations. However, these mechanisms have not been investigated in young-onset PD. We aimed to investigate the effect of gait perturbations on dynamic stability control as well as predictive and reactive adaptability to repeated gait perturbations in young PD patients. Fifteen healthy controls and twenty-five young patients (48±5yrs.) walked on a walkway. By means of a covered exchangeable element, the floor surface condition was altered to induce gait perturbations. The experimental protocol included a baseline on a hard surface, an unexpected trial on a soft surface and an adaptation phase with 5 soft trials to quantify the reactive adaptation. After the first and sixth soft trials, the surface was changed to hard, to examine after-effects and, thus, predictive motor control. Dynamic stability was assessed using the 'extrapolated center of mass' concept. Patients' unperturbed walking was less stable than controls' and this persisted in the perturbed trials. Both groups demonstrated after-effects directly after the first perturbation, showing similar predictive responses. However, PD patients did not improve their reactive behavior after repeated perturbations while controls showed clear locomotor adaptation. Our data suggest that more unstable gait patterns and a less effective reactive adaptation to perturbed walking may be a disease-related characteristic in young PD patients. These deficits were related to reduced ability to increase the base of support. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Exclusive QCD processes, quark-hadron duality, and the transition to perturbative QCD

    NASA Astrophysics Data System (ADS)

    Corianò, Claudio; Li, Hsiang-nan; Savkli, Cetin

    1998-07-01

    Experiments at CEBAF will scan the intermediate-energy region of the QCD dynamics for the nucleon form factors and for Compton Scattering. These experiments will definitely clarify the role of resummed perturbation theory and of quark-hadron duality (QCD sum rules) in this regime. With this perspective in mind, we review the factorization theorem of perturbative QCD for exclusive processes at intermediate energy scales, which embodies the transverse degrees of freedom of a parton and the Sudakov resummation of the corresponding large logarithms. We concentrate on the pion and proton electromagnetic form factors and on pion Compton scattering. New ingredients, such as the evolution of the pion wave function and the complete two-loop expression of the Sudakov factor, are included. The sensitivity of our predictions to the infrared cutoff for the Sudakov evolution is discussed. We also elaborate on QCD sum rule methods for Compton Scattering, which provide an alternative description of this process. We show that, by comparing the local duality analysis to resummed perturbation theory, it is possible to describe the transition of exclusive processes to perturbative QCD.

  1. Nonlinear spherical perturbations in quintessence models of dark energy

    NASA Astrophysics Data System (ADS)

    Pratap Rajvanshi, Manvendra; Bagla, J. S.

    2018-06-01

    Observations have confirmed the accelerated expansion of the universe. The accelerated expansion can be modelled by invoking a cosmological constant or a dynamical model of dark energy. A key difference between these models is that the equation of state parameter w for dark energy differs from ‑1 in dynamical dark energy (DDE) models. Further, the equation of state parameter is not constant for a general DDE model. Such differences can be probed using the variation of scale factor with time by measuring distances. Another significant difference between the cosmological constant and DDE models is that the latter must cluster. Linear perturbation analysis indicates that perturbations in quintessence models of dark energy do not grow to have a significant amplitude at small length scales. In this paper we study the response of quintessence dark energy to non-linear perturbations in dark matter. We use a fully relativistic model for spherically symmetric perturbations. In this study we focus on thawing models. We find that in response to non-linear perturbations in dark matter, dark energy perturbations grow at a faster rate than expected in linear perturbation theory. We find that dark energy perturbation remains localised and does not diffuse out to larger scales. The dominant drivers of the evolution of dark energy perturbations are the local Hubble flow and a supression of gradients of the scalar field. We also find that the equation of state parameter w changes in response to perturbations in dark matter such that it also becomes a function of position. The variation of w in space is correlated with density contrast for matter. Variation of w and perturbations in dark energy are more pronounced in response to large scale perturbations in matter while the dependence on the amplitude of matter perturbations is much weaker.

  2. Perturbations of the Richardson number field by gravity waves

    NASA Technical Reports Server (NTRS)

    Wurtele, M. G.; Sharman, R. D.

    1985-01-01

    An analytic solution is presented for a stratified fluid of arbitrary constant Richardson number. By computer aided analysis the perturbation fields, including that of the Richardson number can be calculated. The results of the linear analytic model were compared with nonlinear simulations, leading to the following conclusions: (1) the perturbations in the Richardson number field, when small, are produced primarily by the perturbations of the shear; (2) perturbations of in the Richardson number field, even when small, are not symmetric, the increase being significantly larger than the decrease (the linear analytic solution and the nonlinear simulations both confirm this result); (3) as the perturbations grow, this asymmetry increases, but more so in the nonlinear simulations than in the linear analysis; (4) for large perturbations of the shear flow, the static stability, as represented by N2, is the dominating mechanism, becoming zero or negative, and producing convective overturning; and (5) the convectional measure of linearity in lee wave theory, NH/U, is no longer the critical parameter (it is suggested that (H/u sub 0) (du sub 0/dz) takes on this role in a shearing flow).

  3. A systematic review of gait perturbation paradigms for improving reactive stepping responses and falls risk among healthy older adults.

    PubMed

    McCrum, Christopher; Gerards, Marissa H G; Karamanidis, Kiros; Zijlstra, Wiebren; Meijer, Kenneth

    2017-01-01

    Falls are a leading cause of injury among older adults and most often occur during walking. While strength and balance training moderately improve falls risk, training reactive recovery responses following sudden perturbations during walking may be more task-specific for falls prevention. The aim of this review was to determine the variety, characteristics and effectiveness of gait perturbation paradigms that have been used for improving reactive recovery responses during walking and reducing falls among healthy older adults. A systematic search was conducted in PubMed, Web of Science, MEDLINE and CINAHL databases in December 2015, repeated in May 2016, using sets of terms relating to gait, perturbations, adaptation and training, and ageing. Inclusion criteria: studies were conducted with healthy participants of 60 years or older; repeated, unpredictable, mechanical perturbations were applied during walking; and reactive recovery responses to gait perturbations or the incidence of laboratory or daily life falls were recorded. Results were narratively synthesised. The risk of bias for each study (PEDro Scale) and the levels of evidence for each perturbation type were determined. In the nine studies that met the inclusion criteria, moveable floor platforms, ground surface compliance changes, or treadmill belt accelerations or decelerations were used to perturb the gait of older adults. Eight studies used a single session of perturbations, with two studies using multiple sessions. Eight of the studies reported improvement in the reactive recovery response to the perturbations. Four studies reported a reduction in the percentage of laboratory falls from the pre- to post-perturbation experience measurement and two studies reported a reduction in daily life falls. As well as the range of perturbation types, the magnitude and frequency of the perturbations varied between the studies. To date, a range of perturbation paradigms have been used successfully to perturb older

  4. Generating the curvature perturbation at the end of inflation in string theory.

    PubMed

    Lyth, David H; Riotto, Antonio

    2006-09-22

    In brane inflationary scenarios, the cosmological perturbations are supposed to originate from the vacuum fluctuations of the inflaton field corresponding to the position of the brane. We show that a significant, and possibly dominant, contribution to the curvature perturbation is generated at the end of inflation through the vacuum fluctuations of fields, other than the inflaton, which are light during the inflationary trajectory and become heavy at the brane-antibrane annihilation. These fields appear generically in string compactifications where the background geometry has exact or approximate isometries and parametrize the internal angular directions of the brane.

  5. Effects of molecular packing in organic crystals on singlet fission with ab initio many body perturbation theory

    NASA Astrophysics Data System (ADS)

    Haber, Jonah; Refaely-Abramson, Sivan; da Jornada, Felipe H.; Louie, Steven G.; Neaton, Jeffrey B.

    Multi-exciton generation processes, in which multiple charge carriers are generated from a single photon, are mechanisms of significant interest for achieving efficiencies beyond the Shockley-Queisser limit of conventional p-n junction solar cells. One well-studied multiexciton process is singlet fission, whereby a singlet decays into two spin-correlated triplet excitons. Here, we use a newly developed computational approach to calculate singlet-fission coupling terms and rates with an ab initio Green's function formalism based on many-body perturbation theory (MBPT) within the GW approximation and the Bethe-Salpeter equation approach. We compare results for crystalline pentacene and TIPS-pentacene and explore the effect of molecular packing on the singlet fission mechanism. This work is supported by the Department of Energy.

  6. Tensor contraction engine: Abstraction and automated parallel implementation of configuration-interaction, coupled-cluster, and many-body perturbation theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirata, So

    2003-11-20

    We develop a symbolic manipulation program and program generator (Tensor Contraction Engine or TCE) that automatically derives the working equations of a well-defined model of second-quantized many-electron theories and synthesizes efficient parallel computer programs on the basis of these equations. Provided an ansatz of a many-electron theory model, TCE performs valid contractions of creation and annihilation operators according to Wick's theorem, consolidates identical terms, and reduces the expressions into the form of multiple tensor contractions acted by permutation operators. Subsequently, it determines the binary contraction order for each multiple tensor contraction with the minimal operation and memory cost, factorizes commonmore » binary contractions (defines intermediate tensors), and identifies reusable intermediates. The resulting ordered list of binary tensor contractions, additions, and index permutations is translated into an optimized program that is combined with the NWChem and UTChem computational chemistry software packages. The programs synthesized by TCE take advantage of spin symmetry, Abelian point-group symmetry, and index permutation symmetry at every stage of calculations to minimize the number of arithmetic operations and storage requirement, adjust the peak local memory usage by index range tiling, and support parallel I/O interfaces and dynamic load balancing for parallel executions. We demonstrate the utility of TCE through automatic derivation and implementation of parallel programs for various models of configuration-interaction theory (CISD, CISDT, CISDTQ), many-body perturbation theory [MBPT(2), MBPT(3), MBPT(4)], and coupled-cluster theory (LCCD, CCD, LCCSD, CCSD, QCISD, CCSDT, and CCSDTQ).« less

  7. A general formula for Rayleigh-Schroedinger perturbation energy utilizing a power series expansion of the quantum mechanical Hamiltonian

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herbert, J.M.

    1997-02-01

    Perturbation theory has long been utilized by quantum chemists as a method for approximating solutions to the Schroedinger equation. Perturbation treatments represent a system`s energy as a power series in which each additional term further corrects the total energy; it is therefore convenient to have an explicit formula for the nth-order energy correction term. If all perturbations are collected into a single Hamiltonian operator, such a closed-form expression for the nth-order energy correction is well known; however, use of a single perturbed Hamiltonian often leads to divergent energy series, while superior convergence behavior is obtained by expanding the perturbed Hamiltonianmore » in a power series. This report presents a closed-form expression for the nth-order energy correction obtained using Rayleigh-Schroedinger perturbation theory and a power series expansion of the Hamiltonian.« less

  8. Perturbation approach for nuclear magnetic resonance solid-state quantum computation

    DOE PAGES

    Berman, G. P.; Kamenev, D. I.; Tsifrinovich, V. I.

    2003-01-01

    A dynmore » amics of a nuclear-spin quantum computer with a large number ( L = 1000 ) of qubits is considered using a perturbation approach. Small parameters are introduced and used to compute the error in an implementation of an entanglement between remote qubits, using a sequence of radio-frequency pulses. The error is computed up to the different orders of the perturbation theory and tested using exact numerical solution.« less

  9. A randomized controlled trial of culturally adapted motivational interviewing for Hispanic heavy drinkers: Theory of Adaptation and Study Protocol

    PubMed Central

    Lee, Christina S.; Colby, Suzanne M.; Magill, Molly; Almeida, Joanna; Tavares, Tonya; Rohsenow, Damaris J.

    2016-01-01

    Background The NIH Strategic Plan prioritizes health disparities research for socially disadvantaged Hispanics, to reduce the disproportionate burden of alcohol-related negative consequences compared to other racial/ethnic groups. Cultural adaptation of evidence-based treatments, such as motivational interviewing (MI), can improve access and response to alcohol treatment. However, the lack of rigorous clinical trials designed to test the efficacy and theoretical underpinnings of cultural adaptation has made proof of concept difficult. Objective The CAMI2 (Culturally Adapted Motivational Interviewing) study design and its theoretical model, is described to illustrate how MI adapted to social and cultural factors (CAMI) can be discriminated against non-adapted MI. Methods and Design CAMI2, a large, 12 month randomized prospective trial, examines the efficacy of CAMI and MI among heavy drinking Hispanics recruited from the community (n=257). Outcomes are reductions in heavy drinking days (Time Line Follow-Back) and negative consequences of drinking among Hispanics (Drinkers Inventory of Consequences). A second aim examines perceived acculturation stress as a moderator of treatment outcomes in the CAMI condition. Summary The CAMI2 study design protocol is presented and the theory of adaptation is presented. Findings from the trial described may yield important recommendations on the science of cultural adaptation and improve MI dissemination to Hispanics with alcohol risk. PMID:27565832

  10. Perturbative two- and three-loop coefficients from large β Monte Carlo

    NASA Astrophysics Data System (ADS)

    Lepage, G. P.; Mackenzie, P. B.; Shakespeare, N. H.; Trottier, H. D.

    Perturbative coefficients for Wilson loops and the static quark self-energy are extracted from Monte Carlo simulations at large β on finite volumes, where all the lattice momenta are large. The Monte Carlo results are in excellent agreement with perturbation theory through second order. New results for third order coefficients are reported. Twisted boundary conditions are used to eliminate zero modes and to suppress Z3 tunneling.

  11. Baryon mass splittings and strong CP violation in SU(3) chiral perturbation theory

    DOE PAGES

    de Vries, Jordy; Mereghetti, Emanuele; Walker-Loud, Andre P.

    2015-10-08

    We study SU(3) flavor breaking corrections to the relation between the octet baryon masses and the nucleon-meson CP-violating interactions induced by the QCD theta term. We also work within the framework of SU(3) chiral perturbation theory and work through next-to-next-to-leading order in the SU(3) chiral expansion, which is O(m 2 q). At lowest order, the CP-odd couplings induced by the QCD θ - term are determined by mass splittings of the baryon octet, the classic result of Crewther et al. We show that for each isospin-invariant CP-violating nucleon-meson interaction there exists one relation which is respected by loop corrections upmore » to the order we work, while other leading-order relations are violated. With these relations we extract a precise value of the pion-nucleon coupling g - 0 by using recent lattice QCD evaluations of the proton-neutron mass splitting. Additionally, we derive semi-precise values for CP-violating coupling constants between heavier mesons and nucleons and discuss their phenomenological impact on electric dipole moments of nucleons and nuclei.« less

  12. Baryon mass splittings and strong CP violation in SU(3) chiral perturbation theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Vries, Jordy; Mereghetti, Emanuele; Walker-Loud, Andre P.

    We study SU(3) flavor breaking corrections to the relation between the octet baryon masses and the nucleon-meson CP-violating interactions induced by the QCD theta term. We also work within the framework of SU(3) chiral perturbation theory and work through next-to-next-to-leading order in the SU(3) chiral expansion, which is O(m 2 q). At lowest order, the CP-odd couplings induced by the QCD θ - term are determined by mass splittings of the baryon octet, the classic result of Crewther et al. We show that for each isospin-invariant CP-violating nucleon-meson interaction there exists one relation which is respected by loop corrections upmore » to the order we work, while other leading-order relations are violated. With these relations we extract a precise value of the pion-nucleon coupling g - 0 by using recent lattice QCD evaluations of the proton-neutron mass splitting. Additionally, we derive semi-precise values for CP-violating coupling constants between heavier mesons and nucleons and discuss their phenomenological impact on electric dipole moments of nucleons and nuclei.« less

  13. Many-Body Perturbation Theory for Understanding Optical Excitations in Organic Molecules and Solids

    NASA Astrophysics Data System (ADS)

    Sharifzadeh, Sahar

    Organic semiconductors are promising as light-weight, flexible, and strongly absorbing materials for next-generation optoelectronics. The advancement of such technologies relies on understanding the fundamental excited-state properties of organic molecules and solids, motivating the development of accurate computational approaches for this purpose. Here, I will present first-principles many-body perturbation theory (MBPT) calculations aimed at understanding the spectroscopic properties of select organic molecules and crystalline semiconductors, and improving these properties for enhanced photovoltaic performance. We show that for both gas-phase molecules and condensed-phase crystals, MBPT within the GW/BSE approximation provides quantitative accuracy of transport gaps extracted from photoemission spectroscopy and conductance measurements, as well as with measured polarization-dependent optical absorption spectra. We discuss the implications of standard approximations within GW/BSE on accuracy of these results. Additionally, we demonstrate significant exciton binding energies and charge-transfer character in the crystalline systems, which can be controlled through solid-state morphology or change of conjugation length, suggesting a new strategy for the design of optoelectronic materials. We acknowledge NSF for financial support; NERSC and Boston University for computational resources.

  14. REVIEW: Internal models in sensorimotor integration: perspectives from adaptive control theory

    NASA Astrophysics Data System (ADS)

    Tin, Chung; Poon, Chi-Sang

    2005-09-01

    Internal models and adaptive controls are empirical and mathematical paradigms that have evolved separately to describe learning control processes in brain systems and engineering systems, respectively. This paper presents a comprehensive appraisal of the correlation between these paradigms with a view to forging a unified theoretical framework that may benefit both disciplines. It is suggested that the classic equilibrium-point theory of impedance control of arm movement is analogous to continuous gain-scheduling or high-gain adaptive control within or across movement trials, respectively, and that the recently proposed inverse internal model is akin to adaptive sliding control originally for robotic manipulator applications. Modular internal models' architecture for multiple motor tasks is a form of multi-model adaptive control. Stochastic methods, such as generalized predictive control, reinforcement learning, Bayesian learning and Hebbian feedback covariance learning, are reviewed and their possible relevance to motor control is discussed. Possible applicability of a Luenberger observer and an extended Kalman filter to state estimation problems—such as sensorimotor prediction or the resolution of vestibular sensory ambiguity—is also discussed. The important role played by vestibular system identification in postural control suggests an indirect adaptive control scheme whereby system states or parameters are explicitly estimated prior to the implementation of control. This interdisciplinary framework should facilitate the experimental elucidation of the mechanisms of internal models in sensorimotor systems and the reverse engineering of such neural mechanisms into novel brain-inspired adaptive control paradigms in future.

  15. Gastrointestinal Spatiotemporal mRNA Expression of Ghrelin vs Growth Hormone Receptor and New Growth Yield Machine Learning Model Based on Perturbation Theory.

    PubMed

    Ran, Tao; Liu, Yong; Li, Hengzhi; Tang, Shaoxun; He, Zhixiong; Munteanu, Cristian R; González-Díaz, Humberto; Tan, Zhiliang; Zhou, Chuanshe

    2016-07-27

    The management of ruminant growth yield has economic importance. The current work presents a study of the spatiotemporal dynamic expression of Ghrelin and GHR at mRNA levels throughout the gastrointestinal tract (GIT) of kid goats under housing and grazing systems. The experiments show that the feeding system and age affected the expression of either Ghrelin or GHR with different mechanisms. Furthermore, the experimental data are used to build new Machine Learning models based on the Perturbation Theory, which can predict the effects of perturbations of Ghrelin and GHR mRNA expression on the growth yield. The models consider eight longitudinal GIT segments (rumen, abomasum, duodenum, jejunum, ileum, cecum, colon and rectum), seven time points (0, 7, 14, 28, 42, 56 and 70 d) and two feeding systems (Supplemental and Grazing feeding) as perturbations from the expected values of the growth yield. The best regression model was obtained using Random Forest, with the coefficient of determination R(2) of 0.781 for the test subset. The current results indicate that the non-linear regression model can accurately predict the growth yield and the key nodes during gastrointestinal development, which is helpful to optimize the feeding management strategies in ruminant production system.

  16. Gastrointestinal Spatiotemporal mRNA Expression of Ghrelin vs Growth Hormone Receptor and New Growth Yield Machine Learning Model Based on Perturbation Theory

    PubMed Central

    Ran, Tao; Liu, Yong; Li, Hengzhi; Tang, Shaoxun; He, Zhixiong; Munteanu, Cristian R.; González-Díaz, Humberto; Tan, Zhiliang; Zhou, Chuanshe

    2016-01-01

    The management of ruminant growth yield has economic importance. The current work presents a study of the spatiotemporal dynamic expression of Ghrelin and GHR at mRNA levels throughout the gastrointestinal tract (GIT) of kid goats under housing and grazing systems. The experiments show that the feeding system and age affected the expression of either Ghrelin or GHR with different mechanisms. Furthermore, the experimental data are used to build new Machine Learning models based on the Perturbation Theory, which can predict the effects of perturbations of Ghrelin and GHR mRNA expression on the growth yield. The models consider eight longitudinal GIT segments (rumen, abomasum, duodenum, jejunum, ileum, cecum, colon and rectum), seven time points (0, 7, 14, 28, 42, 56 and 70 d) and two feeding systems (Supplemental and Grazing feeding) as perturbations from the expected values of the growth yield. The best regression model was obtained using Random Forest, with the coefficient of determination R2 of 0.781 for the test subset. The current results indicate that the non-linear regression model can accurately predict the growth yield and the key nodes during gastrointestinal development, which is helpful to optimize the feeding management strategies in ruminant production system. PMID:27460882

  17. Perturbation theory of a superconducting 0 - π impurity quantum phase transition.

    PubMed

    Žonda, M; Pokorný, V; Janiš, V; Novotný, T

    2015-03-06

    A single-level quantum dot with Coulomb repulsion attached to two superconducting leads is studied via the perturbation expansion in the interaction strength. We use the Nambu formalism and the standard many-body diagrammatic representation of the impurity Green functions to formulate the Matsubara self-consistent perturbation expansion. We show that at zero temperature second order of the expansion in its spin-symmetric version yields a nearly perfect agreement with the numerically exact calculations for the position of the 0 - π phase boundary at which the Andreev bound states reach the Fermi energy as well as for the values of single-particle quantities in the 0-phase. We present results for phase diagrams, level occupation, induced local superconducting gap, Josephson current, and energy of the Andreev bound states with the precision surpassing any (semi)analytical approaches employed thus far.

  18. Rapid neck muscle adaptation alters the head kinematics of aware and unaware subjects undergoing multiple whiplash-like perturbations.

    PubMed

    Siegmund, Gunter P; Sanderson, David J; Myers, Barry S; Inglis, J Timothy

    2003-04-01

    To examine whether habituation confounds the study of whiplash injury using human subjects, we quantified changes in the magnitude and temporal development of the neck muscle electromyogram and peak linear and angular head/torso kinematics of subjects exposed to sequential whiplash-like perturbations. Forty-four seated subjects (23F, 21M) underwent 11 consecutive forward horizontal perturbations (peak sled acceleration=1.5 g). Electromyographic (EMG) activity was recorded over the sternocleidomastoid (SCM) and cervical paraspinal (PARA) muscles with surface electrodes, and head and torso kinematics were measured using linear and angular accelerometers and a 3D motion analysis system. EMG onset occurred at reflex latencies (67-75 ms in SCM) and did not vary with repeated perturbations. EMG amplitude was significantly attenuated by the second perturbation in PARA muscles and by the third perturbation in SCM muscles. The mean decrement in EMG amplitude between the first trial and the mean of the last five trials was between 41% and 64%. Related kinematic changes ranged from a 21% increase in head extension angle to a 29% decrease in forward acceleration at the forehead, and were also significantly different by the second exposure in some variables. Although a wider range of perturbation intensities and inter-perturbation intervals need to be studied, the significant changes observed in both muscle and kinematic variables by the second perturbation indicated that habituation was a potential confounder of whiplash injury studies using repeated perturbations of human subjects.

  19. CRISPR Perturbation of Gene Expression Alters Bacterial Fitness under Stress and Reveals Underlying Epistatic Constraints.

    PubMed

    Otoupal, Peter B; Erickson, Keesha E; Escalas-Bordoy, Antoni; Chatterjee, Anushree

    2017-01-20

    The evolution of antibiotic resistance has engendered an impending global health crisis that necessitates a greater understanding of how resistance emerges. The impact of nongenetic factors and how they influence the evolution of resistance is a largely unexplored area of research. Here we present a novel application of CRISPR-Cas9 technology for investigating how gene expression governs the adaptive pathways available to bacteria during the evolution of resistance. We examine the impact of gene expression changes on bacterial adaptation by constructing a library of deactivated CRISPR-Cas9 synthetic devices to tune the expression of a set of stress-response genes in Escherichia coli. We show that artificially inducing perturbations in gene expression imparts significant synthetic control over fitness and growth during stress exposure. We present evidence that these impacts are reversible; strains with synthetically perturbed gene expression regained wild-type growth phenotypes upon stress removal, while maintaining divergent growth characteristics under stress. Furthermore, we demonstrate a prevailing trend toward negative epistatic interactions when multiple gene perturbations are combined simultaneously, thereby posing an intrinsic constraint on gene expression underlying adaptive trajectories. Together, these results emphasize how CRISPR-Cas9 can be employed to engineer gene expression changes that shape bacterial adaptation, and present a novel approach to synthetically control the evolution of antimicrobial resistance.

  20. Symmetry Beyond Perturbation Theory: Floppy Molecules and Rotation-Vibration States

    NASA Astrophysics Data System (ADS)

    Schmiedt, Hanno; Schlemmer, Stephan; Jensen, Per

    2015-06-01

    In the customary approach to the theoretical description of the nuclear motion in molecules, the molecule is seen as a near-static structure rotating in space. Vibrational motion causing small structural deformations induces a perturbative treatment of the rotation-vibration interaction, which fails in fluxional molecules, where all vibrational motions are large compared to the linear extension of the molecule. An example is protonated methane (CH_5^+). For this molecule, customary theory fails to simulate reliably even the low-energy spectrum. Within the traditional view of rotation and vibration being near-separable, rotational and vibrational wavefunctions can be symmetry classified separately in the molecular symmetry (MS) group. In the present contribution we discuss a fundamental group theoretical approach to the problem of determining the symmetries of molecular rotation-vibration states. We will show that all MS groups discussed so far are subgroups of the special orthogonal group in three dimensions SO(3) This leads to a group theoretical foundation of the technique of equivalent rotations. The MS group of protonated methane (G240) represents, to the best of our knowledge, the first example of an MS group which is not a subgroup of SO(3) (nor of O(3) nor of SU(2)). Because of this, a separate symmetry classification of vibrational and rotational wavefunctions becomes impossible in this MS group, consistent with the fact that a decoupling of vibrational and rotational motion is impossible. We want to discuss the consequences of this. In conclusion, we show that the prototypical floppy molecule CH_5^+ represents a new class of molecules, where usual group theoretical methods for determining selection rules and spectral assignments fail so that new methods have to be developed. P. Kumar and D. Marx, Physical Chemistry Chemical Physics 8, 573 (2006) Z. Jin, B. J. Braams, and J. M. Bowman, The Journal of Physical Chemistry A 110, 1569 (2006) A. S. Petit, J. E

  1. Perturbation measurement of waveguides for acoustic thermometry

    NASA Astrophysics Data System (ADS)

    Lin, H.; Feng, X. J.; Zhang, J. T.

    2013-09-01

    Acoustic thermometers normally embed small acoustic transducers in the wall bounding a gas-filled cavity resonator. At high temperature, insulators of transducers loss electrical insulation and degrade the signal-to-noise ratio. One essential solution to this technical trouble is to couple sound by acoustic waveguides between resonator and transducers. But waveguide will break the ideal acoustic surface and bring perturbations(Δf+ig) to the ideal resonance frequency. The perturbation model for waveguides was developed based on the first-order acoustic theory in this paper. The frequency shift Δf and half-width change g caused by the position, length and radius of waveguides were analyzed using this model. Six different length of waveguides (52˜1763 mm) were settled on the cylinder resonator and the perturbation (Δf+ig) were measured at T=332 K and p=250˜500 kPa. The experiment results agreed with the theoretical prediction very well.

  2. Anharmonic vibrational analysis of s-trans and s-cis conformers of acryloyl fluoride using numerical-analytic Van Vleck operator perturbation theory

    NASA Astrophysics Data System (ADS)

    Krasnoshchekov, Sergey V.; Craig, Norman C.; Koroleva, Lidiya A.; Stepanov, Nikolay F.

    2018-01-01

    A new gas-phase infrared (IR) spectrum of acryloyl fluoride (ACRF, CH2dbnd CHsbnd CFdbnd O) with a resolution of 0.1 cm- 1 in the range 4000-450 cm- 1 was measured. Theoretical ab initio molecular structures, full quartic potential energy surfaces (PES), and cubic surfaces of dipole moments and polarizability tensor components (electro-optical properties, EOP) of the s-trans and s-cis conformers of the ACRF were calculated by the second-order Møller-Plesset electronic perturbation theory with a correlation consistent Dunning triple-ζ basis set. The numerical-analytic implementation of the second-order operator canonical Van Vleck perturbation theory was employed for predicting anharmonic IR and Raman scattering (RS) spectra of ACRF. To improve the anharmonic predictions, harmonic frequencies were replaced by their counterparts evaluated with the higher-level CCSD(T)/cc-pVTZ model, to form a ;hybrid; PES. The original operator representation of the Hamiltonian is analytically reduced to a quasi-diagonal form, integrated in the harmonic oscillator basis and diagonalized to account for strong resonance couplings. Double canonical transformations of EOP expansions enabled prediction of integral intensities of both fundamental and multi-quanta transitions in IR/RS spectra. Enhanced band shape analysis reinforced the assignments. A thorough interpretation of the new IR experimental spectra and existing matrix-isolation literature data for the mixture of two conformers of ACRF was accomplished, and a number of assignments clarified.

  3. Existence and stability of limit cycles in control of anti-lock braking systems with two boundaries via perturbation theory

    NASA Astrophysics Data System (ADS)

    Köppen, Thomas; Küpper, Tassilo; Makarenkov, Oleg

    2017-05-01

    This paper presents a two-phase control logic for anti-lock braking systems (ABS). ABS are by now a standard component in every modern car, preventing the wheels from going into a lock situation where the wheels are fixed by the brake and the stopping distances are greatly prolonged. There are different approaches to such control logics. An ABS design proposed in recent literature controls the wheel's slip by creating stable limit cycles in the corresponding phase space. This design is modified via an analytical approach that is derived from perturbation theory. Simulation results document shorter braking distance compared to available tests in the literature.

  4. Perturbative two- and three-loop coefficients from large b Monte Carlo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    G.P. Lepage; P.B. Mackenzie; N.H. Shakespeare

    1999-10-18

    Perturbative coefficients for Wilson loops and the static quark self-energy are extracted from Monte Carlo simulations at large {beta} on finite volumes, where all the lattice momenta are large. The Monte Carlo results are in excellent agreement with perturbation theory through second order. New results for third order coefficients are reported. Twisted boundary conditions are used to eliminate zero modes and to suppress Z{sub 3} tunneling.

  5. Electronic and optical properties of pure and modified diamondoids studied by many-body perturbation theory and time-dependent density functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demján, Tamás; Institute for Solid State Physics and Optics, Wigner Research Center for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest; Vörös, Márton

    2014-08-14

    Diamondoids are small diamond nanoparticles (NPs) that are built up from diamond cages. Unlike usual semiconductor NPs, their atomic structure is exactly known, thus they are ideal test-beds for benchmarking quantum chemical calculations. Their usage in spintronics and bioimaging applications requires a detailed knowledge of their electronic structure and optical properties. In this paper, we apply density functional theory (DFT) based methods to understand the electronic and optical properties of a few selected pure and modified diamondoids for which accurate experimental data exist. In particular, we use many-body perturbation theory methods, in the G{sub 0}W{sub 0} and G{sub 0}W{sub 0}+BSEmore » approximations, and time-dependent DFT in the adiabatic local density approximation. We find large quasiparticle gap corrections that can exceed thrice the DFT gap. The electron-hole binding energy can be as large as 4 eV but it is considerably smaller than the GW corrections and thus G{sub 0}W{sub 0}+BSE optical gaps are about 50% larger than the Kohn-Sham (KS) DFT gaps. We find significant differences between KS time-dependent DFT and GW+BSE optical spectra on the selected diamondoids. The calculated G{sub 0}W{sub 0} quasiparticle levels agree well with the corresponding experimental vertical ionization energies. We show that nuclei dynamics in the ionization process can be significant and its contribution may reach about 0.5 eV in the adiabatic ionization energies.« less

  6. Effects of repeated walking in a perturbing environment: a 4-day locomotor learning study.

    PubMed

    Blanchette, Andreanne; Moffet, Helene; Roy, Jean-Sébastien; Bouyer, Laurent J

    2012-07-01

    Previous studies have shown that when subjects repeatedly walk in a perturbing environment, initial movement error becomes smaller, suggesting that retention of the adapted locomotor program occurred (learning). It has been proposed that the newly learned locomotor program may be stored separately from the baseline program. However, how locomotor performance evolves with repeated sessions of walking with the perturbation is not yet known. To address this question, 10 healthy subjects walked on a treadmill on 4 consecutive days. Each day, locomotor performance was measured using kinematics and surface electromyography (EMGs), before, during, and after exposure to a perturbation, produced by an elastic tubing that pulled the foot forward and up during swing, inducing a foot velocity error in the first strides. Initial movement error decreased significantly between days 1 and 2 and then remained stable. Associated changes in medial hamstring EMG activity stabilized only on day 3, however. Aftereffects were present after perturbation removal, suggesting that daily adaptation involved central command recalibration of the baseline program. Aftereffects gradually decreased across days but were still visible on day 4. Separation between the newly learned and baseline programs may take longer than suggested by the daily improvement in initial performance in the perturbing environment or may never be complete. These results therefore suggest that reaching optimal performance in a perturbing environment should not be used as the main indicator of a completed learning process, as central reorganization of the motor commands continues days after initial performance has stabilized.

  7. On the reach of perturbative methods for dark matter density fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baldauf, Tobias; Zaldarriaga, Matias; Schaan, Emmanuel, E-mail: baldauf@ias.edu, E-mail: eschaan@astro.princeton.edu, E-mail: matiasz@ias.edu

    We study the mapping from Lagrangian to Eulerian space in the context of the Effective Field Theory (EFT) of Large Scale Structure. We compute Lagrangian displacements with Lagrangian Perturbation Theory (LPT) and perform the full non-perturbative transformation from displacement to density. When expanded up to a given order, this transformation reproduces the standard Eulerian Perturbation Theory (SPT) at the same order. However, the full transformation from displacement to density also includes higher order terms. These terms explicitly resum long wavelength motions, thus making the resulting density field better correlated with the true non-linear density field. As a result, the regimemore » of validity of this approach is expected to extend that of the Eulerian EFT, and match that of the IR-resummed Eulerian EFT. This approach thus effectively enables a test of the IR-resummed EFT at the field level. We estimate the size of stochastic, non-perturbative contributions to the matter density power spectrum. We find that in our highest order calculation, at redshift z = 0 the power spectrum of the density field is reproduced with an accuracy of 1% (10%) up to k = 0.25 hMpc{sup −1} (k = 0.46 hMpc{sup −1}). We believe that the dominant source of the remaining error is the stochastic contribution. Unfortunately, on these scales the stochastic term does not yet scale as k{sup 4} as it does in the very low k regime. Thus, modeling this contribution might be challenging.« less

  8. Galilean invariant resummation schemes of cosmological perturbations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peloso, Marco; Pietroni, Massimo, E-mail: peloso@physics.umn.edu, E-mail: massimo.pietroni@unipr.it

    2017-01-01

    Many of the methods proposed so far to go beyond Standard Perturbation Theory break invariance under time-dependent boosts (denoted here as extended Galilean Invariance, or GI). This gives rise to spurious large scale effects which spoil the small scale predictions of these approximation schemes. By using consistency relations we derive fully non-perturbative constraints that GI imposes on correlation functions. We then introduce a method to quantify the amount of GI breaking of a given scheme, and to correct it by properly tailored counterterms. Finally, we formulate resummation schemes which are manifestly GI, discuss their general features, and implement them inmore » the so called Time-Flow, or TRG, equations.« less

  9. Correlations in state space can cause sub-optimal adaptation of optimal feedback control models.

    PubMed

    Aprasoff, Jonathan; Donchin, Opher

    2012-04-01

    Control of our movements is apparently facilitated by an adaptive internal model in the cerebellum. It was long thought that this internal model implemented an adaptive inverse model and generated motor commands, but recently many reject that idea in favor of a forward model hypothesis. In theory, the forward model predicts upcoming state during reaching movements so the motor cortex can generate appropriate motor commands. Recent computational models of this process rely on the optimal feedback control (OFC) framework of control theory. OFC is a powerful tool for describing motor control, it does not describe adaptation. Some assume that adaptation of the forward model alone could explain motor adaptation, but this is widely understood to be overly simplistic. However, an adaptive optimal controller is difficult to implement. A reasonable alternative is to allow forward model adaptation to 're-tune' the controller. Our simulations show that, as expected, forward model adaptation alone does not produce optimal trajectories during reaching movements perturbed by force fields. However, they also show that re-optimizing the controller from the forward model can be sub-optimal. This is because, in a system with state correlations or redundancies, accurate prediction requires different information than optimal control. We find that adding noise to the movements that matches noise found in human data is enough to overcome this problem. However, since the state space for control of real movements is far more complex than in our simple simulations, the effects of correlations on re-adaptation of the controller from the forward model cannot be overlooked.

  10. Vector and tensor contributions to the curvature perturbation at second order

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrilho, Pedro; Malik, Karim A., E-mail: p.gregoriocarrilho@qmul.ac.uk, E-mail: k.malik@qmul.ac.uk

    2016-02-01

    We derive the evolution equation for the second order curvature perturbation using standard techniques of cosmological perturbation theory. We do this for different definitions of the gauge invariant curvature perturbation, arising from different splits of the spatial metric, and compare the expressions. The results are valid at all scales and include all contributions from scalar, vector and tensor perturbations, as well as anisotropic stress, with all our results written purely in terms of gauge invariant quantities. Taking the large-scale approximation, we find that a conserved quantity exists only if, in addition to the non-adiabatic pressure, the transverse traceless part ofmore » the anisotropic stress tensor is also negligible. We also find that the version of the gauge invariant curvature perturbation which is exactly conserved is the one defined with the determinant of the spatial part of the inverse metric.« less

  11. Ab Initio study on structural, electronic, magnetic and dielectric properties of LSNO within Density Functional Perturbation Theory

    NASA Astrophysics Data System (ADS)

    Petersen, John; Bechstedt, Friedhelm; Furthmüller, Jürgen; Scolfaro, Luisa

    LSNO (La2-xSrxNiO4) is of great interest due to its colossal dielectric constant (CDC) and rich underlying physics. While being an antiferromagnetic insulator, localized holes are present in the form of stripes in the Ni-O planes which are commensurate with the inverse of the Sr concentration. The stripes are a manifestation of charge density waves with period approximately 1/x and spin density waves with period approximately 2/x. Here, the spin ground state is calculated via LSDA + U with the PAW method implemented in VASP. Crystal structure and the effective Hubbard U parameter are optimized before calculating ɛ∞ within the independent particle approximation. ɛ∞ and the full static dielectric constant (including the lattice polarizability) ɛ0 are calculated within Density Functional Perturbation Theory.

  12. Proton polarisability contribution to the Lamb shift in muonic hydrogen at fourth order in chiral perturbation theory

    NASA Astrophysics Data System (ADS)

    Birse, M. C.; McGovern, J. A.

    2012-09-01

    We calculate the amplitude T1 for forward doubly virtual Compton scattering in heavy-baryon chiral perturbation theory, to fourth order in the chiral expansion and with the leading contribution of the γ N Δ form factor. This provides a model-independent expression for the amplitude in the low-momentum region, which is the dominant one for its contribution to the Lamb shift. It allows us to significantly reduce the theoretical uncertainty in the proton polarisability contributions to the Lamb shift in muonic hydrogen. We also stress the importance of consistency between the definitions of the Born and structure parts of the amplitude. Our result leaves no room for any effect large enough to explain the discrepancy between proton charge radii as determined from muonic and normal hydrogen.

  13. Non-perturbative background field calculations

    NASA Astrophysics Data System (ADS)

    Stephens, C. R.

    1988-01-01

    New methods are developed for calculating one loop functional determinants in quantum field theory. Instead of relying on a calculation of all the eigenvalues of the small fluctuation equation, these techniques exploit the ability of the proper time formalism to reformulate an infinite dimensional field theoretic problem into a finite dimensional covariant quantum mechanical analog, thereby allowing powerful tools such as the method of Jacobi fields to be used advantageously in a field theory setting. More generally the methods developed herein should be extremely valuable when calculating quantum processes in non-constant background fields, offering a utilitarian alternative to the two standard methods of calculation—perturbation theory in the background field or taking the background field into account exactly. The formalism developed also allows for the approximate calculation of covariances of partial differential equations from a knowledge of the solutions of a homogeneous ordinary differential equation.

  14. Firestar-"D": Computerized Adaptive Testing Simulation Program for Dichotomous Item Response Theory Models

    ERIC Educational Resources Information Center

    Choi, Seung W.; Podrabsky, Tracy; McKinney, Natalie

    2012-01-01

    Computerized adaptive testing (CAT) enables efficient and flexible measurement of latent constructs. The majority of educational and cognitive measurement constructs are based on dichotomous item response theory (IRT) models. An integral part of developing various components of a CAT system is conducting simulations using both known and empirical…

  15. Does perturbative quantum chromodynamics imply a Regge singularity above unity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bishari, M.

    1982-07-15

    It is investigated whether perturbative quantum chromodynamics can have some implications on Regge behavior of deep-inelastic structure functions. The possible indirect but important role of unitarity, in constraining the theory, is pointed out.

  16. Gene Expression Network Reconstruction by Convex Feature Selection when Incorporating Genetic Perturbations

    PubMed Central

    Logsdon, Benjamin A.; Mezey, Jason

    2010-01-01

    Cellular gene expression measurements contain regulatory information that can be used to discover novel network relationships. Here, we present a new algorithm for network reconstruction powered by the adaptive lasso, a theoretically and empirically well-behaved method for selecting the regulatory features of a network. Any algorithms designed for network discovery that make use of directed probabilistic graphs require perturbations, produced by either experiments or naturally occurring genetic variation, to successfully infer unique regulatory relationships from gene expression data. Our approach makes use of appropriately selected cis-expression Quantitative Trait Loci (cis-eQTL), which provide a sufficient set of independent perturbations for maximum network resolution. We compare the performance of our network reconstruction algorithm to four other approaches: the PC-algorithm, QTLnet, the QDG algorithm, and the NEO algorithm, all of which have been used to reconstruct directed networks among phenotypes leveraging QTL. We show that the adaptive lasso can outperform these algorithms for networks of ten genes and ten cis-eQTL, and is competitive with the QDG algorithm for networks with thirty genes and thirty cis-eQTL, with rich topologies and hundreds of samples. Using this novel approach, we identify unique sets of directed relationships in Saccharomyces cerevisiae when analyzing genome-wide gene expression data for an intercross between a wild strain and a lab strain. We recover novel putative network relationships between a tyrosine biosynthesis gene (TYR1), and genes involved in endocytosis (RCY1), the spindle checkpoint (BUB2), sulfonate catabolism (JLP1), and cell-cell communication (PRM7). Our algorithm provides a synthesis of feature selection methods and graphical model theory that has the potential to reveal new directed regulatory relationships from the analysis of population level genetic and gene expression data. PMID:21152011

  17. Structural aspects of Lorentz-violating quantum field theory

    NASA Astrophysics Data System (ADS)

    Cambiaso, M.; Lehnert, R.; Potting, R.

    2018-01-01

    In the last couple of decades the Standard Model Extension has emerged as a fruitful framework to analyze the empirical and theoretical extent of the validity of cornerstones of modern particle physics, namely, of Special Relativity and of the discrete symmetries C, P and T (or some combinations of these). The Standard Model Extension allows to contrast high-precision experimental tests with posited alterations representing minute Lorentz and/or CPT violations. To date no violation of these symmetry principles has been observed in experiments, mostly prompted by the Standard-Model Extension. From the latter, bounds on the extent of departures from Lorentz and CPT symmetries can be obtained with ever increasing accuracy. These analyses have been mostly focused on tree-level processes. In this presentation I would like to comment on structural aspects of perturbative Lorentz violating quantum field theory. I will show that some insight coming from radiative corrections demands a careful reassessment of perturbation theory. Specifically I will argue that both the standard renormalization procedure as well as the Lehmann-Symanzik-Zimmermann reduction formalism need to be adapted given that the asymptotic single-particle states can receive quantum corrections from Lorentz-violating operators that are not present in the original Lagrangian.

  18. Healing in Unconsolidated Granular Earth Materials: a Mechanistic Theory

    NASA Astrophysics Data System (ADS)

    Lieou, C.; Daub, E. G.; Ecke, R. E.; Johnson, P. A.

    2017-12-01

    Abstract: Rock materials often display long-time relaxation, commonly termed aging or ``slow dynamics'', after the cessation of acoustic perturbations. In this presentation, we focus on unconsolidated rock materials and propose to explain such nonlinear relaxation through the Shear-Transformation-Zone (STZ) theory of granular media, adapted for small stresses and strains. The theory attributes the observed relaxation to the slow change of positions of constituent grains, and posits that the aging process can be described in three stages: fast recovery before some characteristic time associated with the fast nonlinear plasticity carriers, log-linear recovery of the elastic modulus at intermediate times, and gradual turnover to equilibrium steady-state behavior at long times. We demonstrate good agreement with experiments on aging in granular materials such as simulated fault gouge after an external disturbance.

  19. Quantum Information Biology: From Theory of Open Quantum Systems to Adaptive Dynamics

    NASA Astrophysics Data System (ADS)

    Asano, Masanari; Basieva, Irina; Khrennikov, Andrei; Ohya, Masanori; Tanaka, Yoshiharu; Yamato, Ichiro

    This chapter reviews quantum(-like) information biology (QIB). Here biology is treated widely as even covering cognition and its derivatives: psychology and decision making, sociology, and behavioral economics and finances. QIB provides an integrative description of information processing by bio-systems at all scales of life: from proteins and cells to cognition, ecological and social systems. Mathematically QIB is based on the theory of adaptive quantum systems (which covers also open quantum systems). Ideologically QIB is based on the quantum-like (QL) paradigm: complex bio-systems process information in accordance with the laws of quantum information and probability. This paradigm is supported by plenty of statistical bio-data collected at all bio-scales. QIB re ects the two fundamental principles: a) adaptivity; and, b) openness (bio-systems are fundamentally open). In addition, quantum adaptive dynamics provides the most generally possible mathematical representation of these principles.

  20. Hybrid normed ideal perturbations of n-tuples of operators I

    NASA Astrophysics Data System (ADS)

    Voiculescu, Dan-Virgil

    2018-06-01

    In hybrid normed ideal perturbations of n-tuples of operators, the normed ideal is allowed to vary with the component operators. We begin extending to this setting the machinery we developed for normed ideal perturbations based on the modulus of quasicentral approximation and an adaptation of our non-commutative generalization of the Weyl-von Neumann theorem. For commuting n-tuples of hermitian operators, the modulus of quasicentral approximation remains essentially the same when Cn- is replaced by a hybrid n-tuple Cp1,…- , … , Cpn- , p1-1 + ⋯ + pn-1 = 1. The proof involves singular integrals of mixed homogeneity.