Sample records for adaptive algorithm based

  1. QPSO-Based Adaptive DNA Computing Algorithm

    PubMed Central

    Karakose, Mehmet; Cigdem, Ugur

    2013-01-01

    DNA (deoxyribonucleic acid) computing that is a new computation model based on DNA molecules for information storage has been increasingly used for optimization and data analysis in recent years. However, DNA computing algorithm has some limitations in terms of convergence speed, adaptability, and effectiveness. In this paper, a new approach for improvement of DNA computing is proposed. This new approach aims to perform DNA computing algorithm with adaptive parameters towards the desired goal using quantum-behaved particle swarm optimization (QPSO). Some contributions provided by the proposed QPSO based on adaptive DNA computing algorithm are as follows: (1) parameters of population size, crossover rate, maximum number of operations, enzyme and virus mutation rate, and fitness function of DNA computing algorithm are simultaneously tuned for adaptive process, (2) adaptive algorithm is performed using QPSO algorithm for goal-driven progress, faster operation, and flexibility in data, and (3) numerical realization of DNA computing algorithm with proposed approach is implemented in system identification. Two experiments with different systems were carried out to evaluate the performance of the proposed approach with comparative results. Experimental results obtained with Matlab and FPGA demonstrate ability to provide effective optimization, considerable convergence speed, and high accuracy according to DNA computing algorithm. PMID:23935409

  2. Adaptive optics image restoration algorithm based on wavefront reconstruction and adaptive total variation method

    NASA Astrophysics Data System (ADS)

    Li, Dongming; Zhang, Lijuan; Wang, Ting; Liu, Huan; Yang, Jinhua; Chen, Guifen

    2016-11-01

    To improve the adaptive optics (AO) image's quality, we study the AO image restoration algorithm based on wavefront reconstruction technology and adaptive total variation (TV) method in this paper. Firstly, the wavefront reconstruction using Zernike polynomial is used for initial estimated for the point spread function (PSF). Then, we develop our proposed iterative solutions for AO images restoration, addressing the joint deconvolution issue. The image restoration experiments are performed to verify the image restoration effect of our proposed algorithm. The experimental results show that, compared with the RL-IBD algorithm and Wiener-IBD algorithm, we can see that GMG measures (for real AO image) from our algorithm are increased by 36.92%, and 27.44% respectively, and the computation time are decreased by 7.2%, and 3.4% respectively, and its estimation accuracy is significantly improved.

  3. CHAMP: a locally adaptive unmixing-based hyperspectral anomaly detection algorithm

    NASA Astrophysics Data System (ADS)

    Crist, Eric P.; Thelen, Brian J.; Carrara, David A.

    1998-10-01

    Anomaly detection offers a means by which to identify potentially important objects in a scene without prior knowledge of their spectral signatures. As such, this approach is less sensitive to variations in target class composition, atmospheric and illumination conditions, and sensor gain settings than would be a spectral matched filter or similar algorithm. The best existing anomaly detectors generally fall into one of two categories: those based on local Gaussian statistics, and those based on linear mixing moles. Unmixing-based approaches better represent the real distribution of data in a scene, but are typically derived and applied on a global or scene-wide basis. Locally adaptive approaches allow detection of more subtle anomalies by accommodating the spatial non-homogeneity of background classes in a typical scene, but provide a poorer representation of the true underlying background distribution. The CHAMP algorithm combines the best attributes of both approaches, applying a linear-mixing model approach in a spatially adaptive manner. The algorithm itself, and teste results on simulated and actual hyperspectral image data, are presented in this paper.

  4. An adaptive clustering algorithm for image matching based on corner feature

    NASA Astrophysics Data System (ADS)

    Wang, Zhe; Dong, Min; Mu, Xiaomin; Wang, Song

    2018-04-01

    The traditional image matching algorithm always can not balance the real-time and accuracy better, to solve the problem, an adaptive clustering algorithm for image matching based on corner feature is proposed in this paper. The method is based on the similarity of the matching pairs of vector pairs, and the adaptive clustering is performed on the matching point pairs. Harris corner detection is carried out first, the feature points of the reference image and the perceived image are extracted, and the feature points of the two images are first matched by Normalized Cross Correlation (NCC) function. Then, using the improved algorithm proposed in this paper, the matching results are clustered to reduce the ineffective operation and improve the matching speed and robustness. Finally, the Random Sample Consensus (RANSAC) algorithm is used to match the matching points after clustering. The experimental results show that the proposed algorithm can effectively eliminate the most wrong matching points while the correct matching points are retained, and improve the accuracy of RANSAC matching, reduce the computation load of whole matching process at the same time.

  5. Multi-objective Optimization Design of Gear Reducer Based on Adaptive Genetic Algorithms

    NASA Astrophysics Data System (ADS)

    Li, Rui; Chang, Tian; Wang, Jianwei; Wei, Xiaopeng; Wang, Jinming

    2008-11-01

    An adaptive Genetic Algorithm (GA) is introduced to solve the multi-objective optimized design of the reducer. Firstly, according to the structure, strength, etc. in a reducer, a multi-objective optimized model of the helical gear reducer is established. And then an adaptive GA based on a fuzzy controller is introduced, aiming at the characteristics of multi-objective, multi-parameter, multi-constraint conditions. Finally, a numerical example is illustrated to show the advantages of this approach and the effectiveness of an adaptive genetic algorithm used in optimized design of a reducer.

  6. Adjoint-Based Algorithms for Adaptation and Design Optimizations on Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Nielsen, Eric J.

    2006-01-01

    Schemes based on discrete adjoint algorithms present several exciting opportunities for significantly advancing the current state of the art in computational fluid dynamics. Such methods provide an extremely efficient means for obtaining discretely consistent sensitivity information for hundreds of design variables, opening the door to rigorous, automated design optimization of complex aerospace configuration using the Navier-Stokes equation. Moreover, the discrete adjoint formulation provides a mathematically rigorous foundation for mesh adaptation and systematic reduction of spatial discretization error. Error estimates are also an inherent by-product of an adjoint-based approach, valuable information that is virtually non-existent in today's large-scale CFD simulations. An overview of the adjoint-based algorithm work at NASA Langley Research Center is presented, with examples demonstrating the potential impact on complex computational problems related to design optimization as well as mesh adaptation.

  7. Statistical efficiency of adaptive algorithms.

    PubMed

    Widrow, Bernard; Kamenetsky, Max

    2003-01-01

    The statistical efficiency of a learning algorithm applied to the adaptation of a given set of variable weights is defined as the ratio of the quality of the converged solution to the amount of data used in training the weights. Statistical efficiency is computed by averaging over an ensemble of learning experiences. A high quality solution is very close to optimal, while a low quality solution corresponds to noisy weights and less than optimal performance. In this work, two gradient descent adaptive algorithms are compared, the LMS algorithm and the LMS/Newton algorithm. LMS is simple and practical, and is used in many applications worldwide. LMS/Newton is based on Newton's method and the LMS algorithm. LMS/Newton is optimal in the least squares sense. It maximizes the quality of its adaptive solution while minimizing the use of training data. Many least squares adaptive algorithms have been devised over the years, but no other least squares algorithm can give better performance, on average, than LMS/Newton. LMS is easily implemented, but LMS/Newton, although of great mathematical interest, cannot be implemented in most practical applications. Because of its optimality, LMS/Newton serves as a benchmark for all least squares adaptive algorithms. The performances of LMS and LMS/Newton are compared, and it is found that under many circumstances, both algorithms provide equal performance. For example, when both algorithms are tested with statistically nonstationary input signals, their average performances are equal. When adapting with stationary input signals and with random initial conditions, their respective learning times are on average equal. However, under worst-case initial conditions, the learning time of LMS can be much greater than that of LMS/Newton, and this is the principal disadvantage of the LMS algorithm. But the strong points of LMS are ease of implementation and optimal performance under important practical conditions. For these reasons, the LMS

  8. An Adaptive Reputation-Based Algorithm for Grid Virtual Organization Formation

    NASA Astrophysics Data System (ADS)

    Cui, Yongrui; Li, Mingchu; Ren, Yizhi; Sakurai, Kouichi

    A novel adaptive reputation-based virtual organization formation is proposed. It restrains the bad performers effectively based on the consideration of the global experience of the evaluator and evaluates the direct trust relation between two grid nodes accurately by consulting the previous trust value rationally. It also consults and improves the reputation evaluation process in PathTrust model by taking account of the inter-organizational trust relationship and combines it with direct and recommended trust in a weighted way, which makes the algorithm more robust against collusion attacks. Additionally, the proposed algorithm considers the perspective of the VO creator and takes required VO services as one of the most important fine-grained evaluation criterion, which makes the algorithm more suitable for constructing VOs in grid environments that include autonomous organizations. Simulation results show that our algorithm restrains the bad performers and resists against fake transaction attacks and badmouth attacks effectively. It provides a clear advantage in the design of a VO infrastructure.

  9. Adaptive cockroach swarm algorithm

    NASA Astrophysics Data System (ADS)

    Obagbuwa, Ibidun C.; Abidoye, Ademola P.

    2017-07-01

    An adaptive cockroach swarm optimization (ACSO) algorithm is proposed in this paper to strengthen the existing cockroach swarm optimization (CSO) algorithm. The ruthless component of CSO algorithm is modified by the employment of blend crossover predator-prey evolution method which helps algorithm prevent any possible population collapse, maintain population diversity and create adaptive search in each iteration. The performance of the proposed algorithm on 16 global optimization benchmark function problems was evaluated and compared with the existing CSO, cuckoo search, differential evolution, particle swarm optimization and artificial bee colony algorithms.

  10. Adaptive optics compensation of orbital angular momentum beams with a modified Gerchberg-Saxton-based phase retrieval algorithm

    NASA Astrophysics Data System (ADS)

    Chang, Huan; Yin, Xiao-li; Cui, Xiao-zhou; Zhang, Zhi-chao; Ma, Jian-xin; Wu, Guo-hua; Zhang, Li-jia; Xin, Xiang-jun

    2017-12-01

    Practical orbital angular momentum (OAM)-based free-space optical (FSO) communications commonly experience serious performance degradation and crosstalk due to atmospheric turbulence. In this paper, we propose a wave-front sensorless adaptive optics (WSAO) system with a modified Gerchberg-Saxton (GS)-based phase retrieval algorithm to correct distorted OAM beams. We use the spatial phase perturbation (SPP) GS algorithm with a distorted probe Gaussian beam as the only input. The principle and parameter selections of the algorithm are analyzed, and the performance of the algorithm is discussed. The simulation results show that the proposed adaptive optics (AO) system can significantly compensate for distorted OAM beams in single-channel or multiplexed OAM systems, which provides new insights into adaptive correction systems using OAM beams.

  11. Adaptive algorithm of magnetic heading detection

    NASA Astrophysics Data System (ADS)

    Liu, Gong-Xu; Shi, Ling-Feng

    2017-11-01

    Magnetic data obtained from a magnetic sensor usually fluctuate in a certain range, which makes it difficult to estimate the magnetic heading accurately. In fact, magnetic heading information is usually submerged in noise because of all kinds of electromagnetic interference and the diversity of the pedestrian’s motion states. In order to solve this problem, a new adaptive algorithm based on the (typically) right-angled corridors of a building or residential buildings is put forward to process heading information. First, a 3D indoor localization platform is set up based on MPU9250. Then, several groups of data are measured by changing the experimental environment and pedestrian’s motion pace. The raw data from the attached inertial measurement unit are calibrated and arranged into a time-stamped array and written to a data file. Later, the data file is imported into MATLAB for processing and analysis using the proposed adaptive algorithm. Finally, the algorithm is verified by comparison with the existing algorithm. The experimental results show that the algorithm has strong robustness and good fault tolerance, which can detect the heading information accurately and in real-time.

  12. Multiscale computations with a wavelet-adaptive algorithm

    NASA Astrophysics Data System (ADS)

    Rastigejev, Yevgenii Anatolyevich

    A wavelet-based adaptive multiresolution algorithm for the numerical solution of multiscale problems governed by partial differential equations is introduced. The main features of the method include fast algorithms for the calculation of wavelet coefficients and approximation of derivatives on nonuniform stencils. The connection between the wavelet order and the size of the stencil is established. The algorithm is based on the mathematically well established wavelet theory. This allows us to provide error estimates of the solution which are used in conjunction with an appropriate threshold criteria to adapt the collocation grid. The efficient data structures for grid representation as well as related computational algorithms to support grid rearrangement procedure are developed. The algorithm is applied to the simulation of phenomena described by Navier-Stokes equations. First, we undertake the study of the ignition and subsequent viscous detonation of a H2 : O2 : Ar mixture in a one-dimensional shock tube. Subsequently, we apply the algorithm to solve the two- and three-dimensional benchmark problem of incompressible flow in a lid-driven cavity at large Reynolds numbers. For these cases we show that solutions of comparable accuracy as the benchmarks are obtained with more than an order of magnitude reduction in degrees of freedom. The simulations show the striking ability of the algorithm to adapt to a solution having different scales at different spatial locations so as to produce accurate results at a relatively low computational cost.

  13. RZA-NLMF algorithm-based adaptive sparse sensing for realizing compressive sensing

    NASA Astrophysics Data System (ADS)

    Gui, Guan; Xu, Li; Adachi, Fumiyuki

    2014-12-01

    Nonlinear sparse sensing (NSS) techniques have been adopted for realizing compressive sensing in many applications such as radar imaging. Unlike the NSS, in this paper, we propose an adaptive sparse sensing (ASS) approach using the reweighted zero-attracting normalized least mean fourth (RZA-NLMF) algorithm which depends on several given parameters, i.e., reweighted factor, regularization parameter, and initial step size. First, based on the independent assumption, Cramer-Rao lower bound (CRLB) is derived as for the performance comparisons. In addition, reweighted factor selection method is proposed for achieving robust estimation performance. Finally, to verify the algorithm, Monte Carlo-based computer simulations are given to show that the ASS achieves much better mean square error (MSE) performance than the NSS.

  14. Research on adaptive optics image restoration algorithm based on improved joint maximum a posteriori method

    NASA Astrophysics Data System (ADS)

    Zhang, Lijuan; Li, Yang; Wang, Junnan; Liu, Ying

    2018-03-01

    In this paper, we propose a point spread function (PSF) reconstruction method and joint maximum a posteriori (JMAP) estimation method for the adaptive optics image restoration. Using the JMAP method as the basic principle, we establish the joint log likelihood function of multi-frame adaptive optics (AO) images based on the image Gaussian noise models. To begin with, combining the observed conditions and AO system characteristics, a predicted PSF model for the wavefront phase effect is developed; then, we build up iterative solution formulas of the AO image based on our proposed algorithm, addressing the implementation process of multi-frame AO images joint deconvolution method. We conduct a series of experiments on simulated and real degraded AO images to evaluate our proposed algorithm. Compared with the Wiener iterative blind deconvolution (Wiener-IBD) algorithm and Richardson-Lucy IBD algorithm, our algorithm has better restoration effects including higher peak signal-to-noise ratio ( PSNR) and Laplacian sum ( LS) value than the others. The research results have a certain application values for actual AO image restoration.

  15. Processing of fetal heart rate through non-invasive adaptive system based on recursive least squares algorithm

    NASA Astrophysics Data System (ADS)

    Fajkus, Marcel; Nedoma, Jan; Martinek, Radek; Vasinek, Vladimir

    2017-10-01

    In this article, we describe an innovative non-invasive method of Fetal Phonocardiography (fPCG) using fiber-optic sensors and adaptive algorithm for the measurement of fetal heart rate (fHR). Conventional PCG is based on a noninvasive scanning of acoustic signals by means of a microphone placed on the thorax. As for fPCG, the microphone is placed on the maternal abdomen. Our solution is based on patent pending non-invasive scanning of acoustic signals by means of a fiber-optic interferometer. Fiber-optic sensors are resistant to technical artifacts such as electromagnetic interferences (EMI), thus they can be used in situations where it is impossible to use conventional EFM methods, e.g. during Magnetic Resonance Imaging (MRI) examination or in case of delivery in water. The adaptive evaluation system is based on Recursive least squares (RLS) algorithm. Based on real measurements provided on five volunteers with their written consent, we created a simplified dynamic signal model of a distribution of heartbeat sounds (HS) through the human body. Our created model allows us to verification of the proposed adaptive system RLS algorithm. The functionality of the proposed non-invasive adaptive system was verified by objective parameters such as Sensitivity (S+) and Signal to Noise Ratio (SNR).

  16. Novel Near-Lossless Compression Algorithm for Medical Sequence Images with Adaptive Block-Based Spatial Prediction.

    PubMed

    Song, Xiaoying; Huang, Qijun; Chang, Sheng; He, Jin; Wang, Hao

    2016-12-01

    To address the low compression efficiency of lossless compression and the low image quality of general near-lossless compression, a novel near-lossless compression algorithm based on adaptive spatial prediction is proposed for medical sequence images for possible diagnostic use in this paper. The proposed method employs adaptive block size-based spatial prediction to predict blocks directly in the spatial domain and Lossless Hadamard Transform before quantization to improve the quality of reconstructed images. The block-based prediction breaks the pixel neighborhood constraint and takes full advantage of the local spatial correlations found in medical images. The adaptive block size guarantees a more rational division of images and the improved use of the local structure. The results indicate that the proposed algorithm can efficiently compress medical images and produces a better peak signal-to-noise ratio (PSNR) under the same pre-defined distortion than other near-lossless methods.

  17. Noise-shaping gradient descent-based online adaptation algorithms for digital calibration of analog circuits.

    PubMed

    Chakrabartty, Shantanu; Shaga, Ravi K; Aono, Kenji

    2013-04-01

    Analog circuits that are calibrated using digital-to-analog converters (DACs) use a digital signal processor-based algorithm for real-time adaptation and programming of system parameters. In this paper, we first show that this conventional framework for adaptation yields suboptimal calibration properties because of artifacts introduced by quantization noise. We then propose a novel online stochastic optimization algorithm called noise-shaping or ΣΔ gradient descent, which can shape the quantization noise out of the frequency regions spanning the parameter adaptation trajectories. As a result, the proposed algorithms demonstrate superior parameter search properties compared to floating-point gradient methods and better convergence properties than conventional quantized gradient-methods. In the second part of this paper, we apply the ΣΔ gradient descent algorithm to two examples of real-time digital calibration: 1) balancing and tracking of bias currents, and 2) frequency calibration of a band-pass Gm-C biquad filter biased in weak inversion. For each of these examples, the circuits have been prototyped in a 0.5-μm complementary metal-oxide-semiconductor process, and we demonstrate that the proposed algorithm is able to find the optimal solution even in the presence of spurious local minima, which are introduced by the nonlinear and non-monotonic response of calibration DACs.

  18. Adaptive protection algorithm and system

    DOEpatents

    Hedrick, Paul [Pittsburgh, PA; Toms, Helen L [Irwin, PA; Miller, Roger M [Mars, PA

    2009-04-28

    An adaptive protection algorithm and system for protecting electrical distribution systems traces the flow of power through a distribution system, assigns a value (or rank) to each circuit breaker in the system and then determines the appropriate trip set points based on the assigned rank.

  19. A General, Adaptive, Roadmap-Based Algorithm for Protein Motion Computation.

    PubMed

    Molloy, Kevin; Shehu, Amarda

    2016-03-01

    Precious information on protein function can be extracted from a detailed characterization of protein equilibrium dynamics. This remains elusive in wet and dry laboratories, as function-modulating transitions of a protein between functionally-relevant, thermodynamically-stable and meta-stable structural states often span disparate time scales. In this paper we propose a novel, robotics-inspired algorithm that circumvents time-scale challenges by drawing analogies between protein motion and robot motion. The algorithm adapts the popular roadmap-based framework in robot motion computation to handle the more complex protein conformation space and its underlying rugged energy surface. Given known structures representing stable and meta-stable states of a protein, the algorithm yields a time- and energy-prioritized list of transition paths between the structures, with each path represented as a series of conformations. The algorithm balances computational resources between a global search aimed at obtaining a global view of the network of protein conformations and their connectivity and a detailed local search focused on realizing such connections with physically-realistic models. Promising results are presented on a variety of proteins that demonstrate the general utility of the algorithm and its capability to improve the state of the art without employing system-specific insight.

  20. Multi-element array signal reconstruction with adaptive least-squares algorithms

    NASA Technical Reports Server (NTRS)

    Kumar, R.

    1992-01-01

    Two versions of the adaptive least-squares algorithm are presented for combining signals from multiple feeds placed in the focal plane of a mechanical antenna whose reflector surface is distorted due to various deformations. Coherent signal combining techniques based on the adaptive least-squares algorithm are examined for nearly optimally and adaptively combining the outputs of the feeds. The performance of the two versions is evaluated by simulations. It is demonstrated for the example considered that both of the adaptive least-squares algorithms are capable of offsetting most of the loss in the antenna gain incurred due to reflector surface deformations.

  1. A dual-adaptive support-based stereo matching algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, Yin; Zhang, Yun

    2017-07-01

    Many stereo matching algorithms use fixed color thresholds and a rigid cross skeleton to segment supports (viz., Cross method), which, however, does not work well for different images. To address this issue, this paper proposes a novel dual adaptive support (viz., DAS)-based stereo matching method, which uses both appearance and shape information of a local region to segment supports automatically, and, then, integrates the DAS-based cost aggregation with the absolute difference plus census transform cost, scanline optimization and disparity refinement to develop a stereo matching system. The performance of the DAS method is also evaluated in the Middlebury benchmark and by comparing with the Cross method. The results show that the average error for the DAS method 25.06% lower than that for the Cross method, indicating that the proposed method is more accurate, with fewer parameters and suitable for parallel computing.

  2. Flight data processing with the F-8 adaptive algorithm

    NASA Technical Reports Server (NTRS)

    Hartmann, G.; Stein, G.; Petersen, K.

    1977-01-01

    An explicit adaptive control algorithm based on maximum likelihood estimation of parameters has been designed for NASA's DFBW F-8 aircraft. To avoid iterative calculations, the algorithm uses parallel channels of Kalman filters operating at fixed locations in parameter space. This algorithm has been implemented in NASA/DFRC's Remotely Augmented Vehicle (RAV) facility. Real-time sensor outputs (rate gyro, accelerometer and surface position) are telemetered to a ground computer which sends new gain values to an on-board system. Ground test data and flight records were used to establish design values of noise statistics and to verify the ground-based adaptive software. The software and its performance evaluation based on flight data are described

  3. Algorithms for accelerated convergence of adaptive PCA.

    PubMed

    Chatterjee, C; Kang, Z; Roychowdhury, V P

    2000-01-01

    We derive and discuss new adaptive algorithms for principal component analysis (PCA) that are shown to converge faster than the traditional PCA algorithms due to Oja, Sanger, and Xu. It is well known that traditional PCA algorithms that are derived by using gradient descent on an objective function are slow to converge. Furthermore, the convergence of these algorithms depends on appropriate choices of the gain sequences. Since online applications demand faster convergence and an automatic selection of gains, we present new adaptive algorithms to solve these problems. We first present an unconstrained objective function, which can be minimized to obtain the principal components. We derive adaptive algorithms from this objective function by using: 1) gradient descent; 2) steepest descent; 3) conjugate direction; and 4) Newton-Raphson methods. Although gradient descent produces Xu's LMSER algorithm, the steepest descent, conjugate direction, and Newton-Raphson methods produce new adaptive algorithms for PCA. We also provide a discussion on the landscape of the objective function, and present a global convergence proof of the adaptive gradient descent PCA algorithm using stochastic approximation theory. Extensive experiments with stationary and nonstationary multidimensional Gaussian sequences show faster convergence of the new algorithms over the traditional gradient descent methods.We also compare the steepest descent adaptive algorithm with state-of-the-art methods on stationary and nonstationary sequences.

  4. A systematic review of gait analysis methods based on inertial sensors and adaptive algorithms.

    PubMed

    Caldas, Rafael; Mundt, Marion; Potthast, Wolfgang; Buarque de Lima Neto, Fernando; Markert, Bernd

    2017-09-01

    The conventional methods to assess human gait are either expensive or complex to be applied regularly in clinical practice. To reduce the cost and simplify the evaluation, inertial sensors and adaptive algorithms have been utilized, respectively. This paper aims to summarize studies that applied adaptive also called artificial intelligence (AI) algorithms to gait analysis based on inertial sensor data, verifying if they can support the clinical evaluation. Articles were identified through searches of the main databases, which were encompassed from 1968 to October 2016. We have identified 22 studies that met the inclusion criteria. The included papers were analyzed due to their data acquisition and processing methods with specific questionnaires. Concerning the data acquisition, the mean score is 6.1±1.62, what implies that 13 of 22 papers failed to report relevant outcomes. The quality assessment of AI algorithms presents an above-average rating (8.2±1.84). Therefore, AI algorithms seem to be able to support gait analysis based on inertial sensor data. Further research, however, is necessary to enhance and standardize the application in patients, since most of the studies used distinct methods to evaluate healthy subjects. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Adaptive convergence nonuniformity correction algorithm.

    PubMed

    Qian, Weixian; Chen, Qian; Bai, Junqi; Gu, Guohua

    2011-01-01

    Nowadays, convergence and ghosting artifacts are common problems in scene-based nonuniformity correction (NUC) algorithms. In this study, we introduce the idea of space frequency to the scene-based NUC. Then the convergence speed factor is presented, which can adaptively change the convergence speed by a change of the scene dynamic range. In fact, the convergence speed factor role is to decrease the statistical data standard deviation. The nonuniformity space relativity characteristic was summarized by plenty of experimental statistical data. The space relativity characteristic was used to correct the convergence speed factor, which can make it more stable. Finally, real and simulated infrared image sequences were applied to demonstrate the positive effect of our algorithm.

  6. A Self Adaptive Differential Evolution Algorithm for Global Optimization

    NASA Astrophysics Data System (ADS)

    Kumar, Pravesh; Pant, Millie

    This paper presents a new Differential Evolution algorithm based on hybridization of adaptive control parameters and trigonometric mutation. First we propose a self adaptive DE named ADE where choice of control parameter F and Cr is not fixed at some constant value but is taken iteratively. The proposed algorithm is further modified by applying trigonometric mutation in it and the corresponding algorithm is named as ATDE. The performance of ATDE is evaluated on the set of 8 benchmark functions and the results are compared with the classical DE algorithm in terms of average fitness function value, number of function evaluations, convergence time and success rate. The numerical result shows the competence of the proposed algorithm.

  7. Estimating Position of Mobile Robots From Omnidirectional Vision Using an Adaptive Algorithm.

    PubMed

    Li, Luyang; Liu, Yun-Hui; Wang, Kai; Fang, Mu

    2015-08-01

    This paper presents a novel and simple adaptive algorithm for estimating the position of a mobile robot with high accuracy in an unknown and unstructured environment by fusing images of an omnidirectional vision system with measurements of odometry and inertial sensors. Based on a new derivation where the omnidirectional projection can be linearly parameterized by the positions of the robot and natural feature points, we propose a novel adaptive algorithm, which is similar to the Slotine-Li algorithm in model-based adaptive control, to estimate the robot's position by using the tracked feature points in image sequence, the robot's velocity, and orientation angles measured by odometry and inertial sensors. It is proved that the adaptive algorithm leads to global exponential convergence of the position estimation errors to zero. Simulations and real-world experiments are performed to demonstrate the performance of the proposed algorithm.

  8. An improved contrast enhancement algorithm for infrared images based on adaptive double plateaus histogram equalization

    NASA Astrophysics Data System (ADS)

    Li, Shuo; Jin, Weiqi; Li, Li; Li, Yiyang

    2018-05-01

    Infrared thermal images can reflect the thermal-radiation distribution of a particular scene. However, the contrast of the infrared images is usually low. Hence, it is generally necessary to enhance the contrast of infrared images in advance to facilitate subsequent recognition and analysis. Based on the adaptive double plateaus histogram equalization, this paper presents an improved contrast enhancement algorithm for infrared thermal images. In the proposed algorithm, the normalized coefficient of variation of the histogram, which characterizes the level of contrast enhancement, is introduced as feedback information to adjust the upper and lower plateau thresholds. The experiments on actual infrared images show that compared to the three typical contrast-enhancement algorithms, the proposed algorithm has better scene adaptability and yields better contrast-enhancement results for infrared images with more dark areas or a higher dynamic range. Hence, it has high application value in contrast enhancement, dynamic range compression, and digital detail enhancement for infrared thermal images.

  9. Performance study of LMS based adaptive algorithms for unknown system identification

    NASA Astrophysics Data System (ADS)

    Javed, Shazia; Ahmad, Noor Atinah

    2014-07-01

    Adaptive filtering techniques have gained much popularity in the modeling of unknown system identification problem. These techniques can be classified as either iterative or direct. Iterative techniques include stochastic descent method and its improved versions in affine space. In this paper we present a comparative study of the least mean square (LMS) algorithm and some improved versions of LMS, more precisely the normalized LMS (NLMS), LMS-Newton, transform domain LMS (TDLMS) and affine projection algorithm (APA). The performance evaluation of these algorithms is carried out using adaptive system identification (ASI) model with random input signals, in which the unknown (measured) signal is assumed to be contaminated by output noise. Simulation results are recorded to compare the performance in terms of convergence speed, robustness, misalignment, and their sensitivity to the spectral properties of input signals. Main objective of this comparative study is to observe the effects of fast convergence rate of improved versions of LMS algorithms on their robustness and misalignment.

  10. Performance study of LMS based adaptive algorithms for unknown system identification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Javed, Shazia; Ahmad, Noor Atinah

    Adaptive filtering techniques have gained much popularity in the modeling of unknown system identification problem. These techniques can be classified as either iterative or direct. Iterative techniques include stochastic descent method and its improved versions in affine space. In this paper we present a comparative study of the least mean square (LMS) algorithm and some improved versions of LMS, more precisely the normalized LMS (NLMS), LMS-Newton, transform domain LMS (TDLMS) and affine projection algorithm (APA). The performance evaluation of these algorithms is carried out using adaptive system identification (ASI) model with random input signals, in which the unknown (measured) signalmore » is assumed to be contaminated by output noise. Simulation results are recorded to compare the performance in terms of convergence speed, robustness, misalignment, and their sensitivity to the spectral properties of input signals. Main objective of this comparative study is to observe the effects of fast convergence rate of improved versions of LMS algorithms on their robustness and misalignment.« less

  11. A hybrid skull-stripping algorithm based on adaptive balloon snake models

    NASA Astrophysics Data System (ADS)

    Liu, Hung-Ting; Sheu, Tony W. H.; Chang, Herng-Hua

    2013-02-01

    Skull-stripping is one of the most important preprocessing steps in neuroimage analysis. We proposed a hybrid algorithm based on an adaptive balloon snake model to handle this challenging task. The proposed framework consists of two stages: first, the fuzzy possibilistic c-means (FPCM) is used for voxel clustering, which provides a labeled image for the snake contour initialization. In the second stage, the contour is initialized outside the brain surface based on the FPCM result and evolves under the guidance of the balloon snake model, which drives the contour with an adaptive inward normal force to capture the boundary of the brain. The similarity indices indicate that our method outperformed the BSE and BET methods in skull-stripping the MR image volumes in the IBSR data set. Experimental results show the effectiveness of this new scheme and potential applications in a wide variety of skull-stripping applications.

  12. AMOBH: Adaptive Multiobjective Black Hole Algorithm.

    PubMed

    Wu, Chong; Wu, Tao; Fu, Kaiyuan; Zhu, Yuan; Li, Yongbo; He, Wangyong; Tang, Shengwen

    2017-01-01

    This paper proposes a new multiobjective evolutionary algorithm based on the black hole algorithm with a new individual density assessment (cell density), called "adaptive multiobjective black hole algorithm" (AMOBH). Cell density has the characteristics of low computational complexity and maintains a good balance of convergence and diversity of the Pareto front. The framework of AMOBH can be divided into three steps. Firstly, the Pareto front is mapped to a new objective space called parallel cell coordinate system. Then, to adjust the evolutionary strategies adaptively, Shannon entropy is employed to estimate the evolution status. At last, the cell density is combined with a dominance strength assessment called cell dominance to evaluate the fitness of solutions. Compared with the state-of-the-art methods SPEA-II, PESA-II, NSGA-II, and MOEA/D, experimental results show that AMOBH has a good performance in terms of convergence rate, population diversity, population convergence, subpopulation obtention of different Pareto regions, and time complexity to the latter in most cases.

  13. Genetic algorithms in adaptive fuzzy control

    NASA Technical Reports Server (NTRS)

    Karr, C. Lucas; Harper, Tony R.

    1992-01-01

    Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic algorithms (GA's) are used to augment fuzzy logic controllers (FLC's). GA's are search algorithms that rapidly locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural genetics. FLC's are rule based systems that efficiently manipulate a problem environment by modeling the 'rule-of-thumb' strategy used in human decision making. Together, GA's and FLC's possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, an analysis element to recognize changes in the problem environment, and a learning element to adjust fuzzy membership functions in response to the changes in the problem environment. Details of an overall adaptive control system are discussed. A specific computer-simulated chemical system is used to demonstrate the ideas presented.

  14. Improved Adaptive LSB Steganography Based on Chaos and Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Yu, Lifang; Zhao, Yao; Ni, Rongrong; Li, Ting

    2010-12-01

    We propose a novel steganographic method in JPEG images with high performance. Firstly, we propose improved adaptive LSB steganography, which can achieve high capacity while preserving the first-order statistics. Secondly, in order to minimize visual degradation of the stego image, we shuffle bits-order of the message based on chaos whose parameters are selected by the genetic algorithm. Shuffling message's bits-order provides us with a new way to improve the performance of steganography. Experimental results show that our method outperforms classical steganographic methods in image quality, while preserving characteristics of histogram and providing high capacity.

  15. Genetic algorithm based adaptive neural network ensemble and its application in predicting carbon flux

    USGS Publications Warehouse

    Xue, Y.; Liu, S.; Hu, Y.; Yang, J.; Chen, Q.

    2007-01-01

    To improve the accuracy in prediction, Genetic Algorithm based Adaptive Neural Network Ensemble (GA-ANNE) is presented. Intersections are allowed between different training sets based on the fuzzy clustering analysis, which ensures the diversity as well as the accuracy of individual Neural Networks (NNs). Moreover, to improve the accuracy of the adaptive weights of individual NNs, GA is used to optimize the cluster centers. Empirical results in predicting carbon flux of Duke Forest reveal that GA-ANNE can predict the carbon flux more accurately than Radial Basis Function Neural Network (RBFNN), Bagging NN ensemble, and ANNE. ?? 2007 IEEE.

  16. Fully implicit adaptive mesh refinement MHD algorithm

    NASA Astrophysics Data System (ADS)

    Philip, Bobby

    2005-10-01

    In the macroscopic simulation of plasmas, the numerical modeler is faced with the challenge of dealing with multiple time and length scales. The former results in stiffness due to the presence of very fast waves. The latter requires one to resolve the localized features that the system develops. Traditional approaches based on explicit time integration techniques and fixed meshes are not suitable for this challenge, as such approaches prevent the modeler from using realistic plasma parameters to keep the computation feasible. We propose here a novel approach, based on implicit methods and structured adaptive mesh refinement (SAMR). Our emphasis is on both accuracy and scalability with the number of degrees of freedom. To our knowledge, a scalable, fully implicit AMR algorithm has not been accomplished before for MHD. As a proof-of-principle, we focus on the reduced resistive MHD model as a basic MHD model paradigm, which is truly multiscale. The approach taken here is to adapt mature physics-based technologyootnotetextL. Chac'on et al., J. Comput. Phys. 178 (1), 15- 36 (2002) to AMR grids, and employ AMR-aware multilevel techniques (such as fast adaptive composite --FAC-- algorithms) for scalability. We will demonstrate that the concept is indeed feasible, featuring optimal scalability under grid refinement. Results of fully-implicit, dynamically-adaptive AMR simulations will be presented on a variety of problems.

  17. An improved self-adaptive ant colony algorithm based on genetic strategy for the traveling salesman problem

    NASA Astrophysics Data System (ADS)

    Wang, Pan; Zhang, Yi; Yan, Dong

    2018-05-01

    Ant Colony Algorithm (ACA) is a powerful and effective algorithm for solving the combination optimization problem. Moreover, it was successfully used in traveling salesman problem (TSP). But it is easy to prematurely converge to the non-global optimal solution and the calculation time is too long. To overcome those shortcomings, a new method is presented-An improved self-adaptive Ant Colony Algorithm based on genetic strategy. The proposed method adopts adaptive strategy to adjust the parameters dynamically. And new crossover operation and inversion operation in genetic strategy was used in this method. We also make an experiment using the well-known data in TSPLIB. The experiment results show that the performance of the proposed method is better than the basic Ant Colony Algorithm and some improved ACA in both the result and the convergence time. The numerical results obtained also show that the proposed optimization method can achieve results close to the theoretical best known solutions at present.

  18. A new interferential multispectral image compression algorithm based on adaptive classification and curve-fitting

    NASA Astrophysics Data System (ADS)

    Wang, Ke-Yan; Li, Yun-Song; Liu, Kai; Wu, Cheng-Ke

    2008-08-01

    A novel compression algorithm for interferential multispectral images based on adaptive classification and curve-fitting is proposed. The image is first partitioned adaptively into major-interference region and minor-interference region. Different approximating functions are then constructed for two kinds of regions respectively. For the major interference region, some typical interferential curves are selected to predict other curves. These typical curves are then processed by curve-fitting method. For the minor interference region, the data of each interferential curve are independently approximated. Finally the approximating errors of two regions are entropy coded. The experimental results show that, compared with JPEG2000, the proposed algorithm not only decreases the average output bit-rate by about 0.2 bit/pixel for lossless compression, but also improves the reconstructed images and reduces the spectral distortion greatly, especially at high bit-rate for lossy compression.

  19. An Adaptive Immune Genetic Algorithm for Edge Detection

    NASA Astrophysics Data System (ADS)

    Li, Ying; Bai, Bendu; Zhang, Yanning

    An adaptive immune genetic algorithm (AIGA) based on cost minimization technique method for edge detection is proposed. The proposed AIGA recommends the use of adaptive probabilities of crossover, mutation and immune operation, and a geometric annealing schedule in immune operator to realize the twin goals of maintaining diversity in the population and sustaining the fast convergence rate in solving the complex problems such as edge detection. Furthermore, AIGA can effectively exploit some prior knowledge and information of the local edge structure in the edge image to make vaccines, which results in much better local search ability of AIGA than that of the canonical genetic algorithm. Experimental results on gray-scale images show the proposed algorithm perform well in terms of quality of the final edge image, rate of convergence and robustness to noise.

  20. An SDR-Based Real-Time Testbed for GNSS Adaptive Array Anti-Jamming Algorithms Accelerated by GPU.

    PubMed

    Xu, Hailong; Cui, Xiaowei; Lu, Mingquan

    2016-03-11

    Nowadays, software-defined radio (SDR) has become a common approach to evaluate new algorithms. However, in the field of Global Navigation Satellite System (GNSS) adaptive array anti-jamming, previous work has been limited due to the high computational power demanded by adaptive algorithms, and often lack flexibility and configurability. In this paper, the design and implementation of an SDR-based real-time testbed for GNSS adaptive array anti-jamming accelerated by a Graphics Processing Unit (GPU) are documented. This testbed highlights itself as a feature-rich and extendible platform with great flexibility and configurability, as well as high computational performance. Both Space-Time Adaptive Processing (STAP) and Space-Frequency Adaptive Processing (SFAP) are implemented with a wide range of parameters. Raw data from as many as eight antenna elements can be processed in real-time in either an adaptive nulling or beamforming mode. To fully take advantage of the parallelism resource provided by the GPU, a batched method in programming is proposed. Tests and experiments are conducted to evaluate both the computational and anti-jamming performance. This platform can be used for research and prototyping, as well as a real product in certain applications.

  1. An SDR-Based Real-Time Testbed for GNSS Adaptive Array Anti-Jamming Algorithms Accelerated by GPU

    PubMed Central

    Xu, Hailong; Cui, Xiaowei; Lu, Mingquan

    2016-01-01

    Nowadays, software-defined radio (SDR) has become a common approach to evaluate new algorithms. However, in the field of Global Navigation Satellite System (GNSS) adaptive array anti-jamming, previous work has been limited due to the high computational power demanded by adaptive algorithms, and often lack flexibility and configurability. In this paper, the design and implementation of an SDR-based real-time testbed for GNSS adaptive array anti-jamming accelerated by a Graphics Processing Unit (GPU) are documented. This testbed highlights itself as a feature-rich and extendible platform with great flexibility and configurability, as well as high computational performance. Both Space-Time Adaptive Processing (STAP) and Space-Frequency Adaptive Processing (SFAP) are implemented with a wide range of parameters. Raw data from as many as eight antenna elements can be processed in real-time in either an adaptive nulling or beamforming mode. To fully take advantage of the parallelism resource provided by the GPU, a batched method in programming is proposed. Tests and experiments are conducted to evaluate both the computational and anti-jamming performance. This platform can be used for research and prototyping, as well as a real product in certain applications. PMID:26978363

  2. Optimization of IBF parameters based on adaptive tool-path algorithm

    NASA Astrophysics Data System (ADS)

    Deng, Wen Hui; Chen, Xian Hua; Jin, Hui Liang; Zhong, Bo; Hou, Jin; Li, An Qi

    2018-03-01

    As a kind of Computer Controlled Optical Surfacing(CCOS) technology. Ion Beam Figuring(IBF) has obvious advantages in the control of surface accuracy, surface roughness and subsurface damage. The superiority and characteristics of IBF in optical component processing are analyzed from the point of view of removal mechanism. For getting more effective and automatic tool path with the information of dwell time, a novel algorithm is proposed in this thesis. Based on the removal functions made through our IBF equipment and the adaptive tool-path, optimized parameters are obtained through analysis the residual error that would be created in the polishing process. A Φ600 mm plane reflector element was used to be a simulation instance. The simulation result shows that after four combinations of processing, the surface accuracy of PV (Peak Valley) value and the RMS (Root Mean Square) value was reduced to 4.81 nm and 0.495 nm from 110.22 nm and 13.998 nm respectively in the 98% aperture. The result shows that the algorithm and optimized parameters provide a good theoretical for high precision processing of IBF.

  3. Adaptive process control using fuzzy logic and genetic algorithms

    NASA Technical Reports Server (NTRS)

    Karr, C. L.

    1993-01-01

    Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic algorithms (GA's) are used to augment fuzzy logic controllers (FLC's). GA's are search algorithms that rapidly locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural genetics. FLC's are rule based systems that efficiently manipulate a problem environment by modeling the 'rule-of-thumb' strategy used in human decision making. Together, GA's and FLC's possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, and a learning element to adjust to the changes in the problem environment. Details of an overall adaptive control system are discussed. A specific laboratory acid-base pH system is used to demonstrate the ideas presented.

  4. Low complexity Reed-Solomon-based low-density parity-check design for software defined optical transmission system based on adaptive puncturing decoding algorithm

    NASA Astrophysics Data System (ADS)

    Pan, Xiaolong; Liu, Bo; Zheng, Jianglong; Tian, Qinghua

    2016-08-01

    We propose and demonstrate a low complexity Reed-Solomon-based low-density parity-check (RS-LDPC) code with adaptive puncturing decoding algorithm for elastic optical transmission system. Partial received codes and the relevant column in parity-check matrix can be punctured to reduce the calculation complexity by adaptive parity-check matrix during decoding process. The results show that the complexity of the proposed decoding algorithm is reduced by 30% compared with the regular RS-LDPC system. The optimized code rate of the RS-LDPC code can be obtained after five times iteration.

  5. Control algorithms and applications of the wavefront sensorless adaptive optics

    NASA Astrophysics Data System (ADS)

    Ma, Liang; Wang, Bin; Zhou, Yuanshen; Yang, Huizhen

    2017-10-01

    Compared with the conventional adaptive optics (AO) system, the wavefront sensorless (WFSless) AO system need not to measure the wavefront and reconstruct it. It is simpler than the conventional AO in system architecture and can be applied to the complex conditions. Based on the analysis of principle and system model of the WFSless AO system, wavefront correction methods of the WFSless AO system were divided into two categories: model-free-based and model-based control algorithms. The WFSless AO system based on model-free-based control algorithms commonly considers the performance metric as a function of the control parameters and then uses certain control algorithm to improve the performance metric. The model-based control algorithms include modal control algorithms, nonlinear control algorithms and control algorithms based on geometrical optics. Based on the brief description of above typical control algorithms, hybrid methods combining the model-free-based control algorithm with the model-based control algorithm were generalized. Additionally, characteristics of various control algorithms were compared and analyzed. We also discussed the extensive applications of WFSless AO system in free space optical communication (FSO), retinal imaging in the human eye, confocal microscope, coherent beam combination (CBC) techniques and extended objects.

  6. A New Adaptive H-Infinity Filtering Algorithm for the GPS/INS Integrated Navigation

    PubMed Central

    Jiang, Chen; Zhang, Shu-Bi; Zhang, Qiu-Zhao

    2016-01-01

    The Kalman filter is an optimal estimator with numerous applications in technology, especially in systems with Gaussian distributed noise. Moreover, the adaptive Kalman filtering algorithms, based on the Kalman filter, can control the influence of dynamic model errors. In contrast to the adaptive Kalman filtering algorithms, the H-infinity filter is able to address the interference of the stochastic model by minimization of the worst-case estimation error. In this paper, a novel adaptive H-infinity filtering algorithm, which integrates the adaptive Kalman filter and the H-infinity filter in order to perform a comprehensive filtering algorithm, is presented. In the proposed algorithm, a robust estimation method is employed to control the influence of outliers. In order to verify the proposed algorithm, experiments with real data of the Global Positioning System (GPS) and Inertial Navigation System (INS) integrated navigation, were conducted. The experimental results have shown that the proposed algorithm has multiple advantages compared to the other filtering algorithms. PMID:27999361

  7. A New Adaptive H-Infinity Filtering Algorithm for the GPS/INS Integrated Navigation.

    PubMed

    Jiang, Chen; Zhang, Shu-Bi; Zhang, Qiu-Zhao

    2016-12-19

    The Kalman filter is an optimal estimator with numerous applications in technology, especially in systems with Gaussian distributed noise. Moreover, the adaptive Kalman filtering algorithms, based on the Kalman filter, can control the influence of dynamic model errors. In contrast to the adaptive Kalman filtering algorithms, the H-infinity filter is able to address the interference of the stochastic model by minimization of the worst-case estimation error. In this paper, a novel adaptive H-infinity filtering algorithm, which integrates the adaptive Kalman filter and the H-infinity filter in order to perform a comprehensive filtering algorithm, is presented. In the proposed algorithm, a robust estimation method is employed to control the influence of outliers. In order to verify the proposed algorithm, experiments with real data of the Global Positioning System (GPS) and Inertial Navigation System (INS) integrated navigation, were conducted. The experimental results have shown that the proposed algorithm has multiple advantages compared to the other filtering algorithms.

  8. Adaptive reference update (ARU) algorithm. A stochastic search algorithm for efficient optimization of multi-drug cocktails

    PubMed Central

    2012-01-01

    Background Multi-target therapeutics has been shown to be effective for treating complex diseases, and currently, it is a common practice to combine multiple drugs to treat such diseases to optimize the therapeutic outcomes. However, considering the huge number of possible ways to mix multiple drugs at different concentrations, it is practically difficult to identify the optimal drug combination through exhaustive testing. Results In this paper, we propose a novel stochastic search algorithm, called the adaptive reference update (ARU) algorithm, that can provide an efficient and systematic way for optimizing multi-drug cocktails. The ARU algorithm iteratively updates the drug combination to improve its response, where the update is made by comparing the response of the current combination with that of a reference combination, based on which the beneficial update direction is predicted. The reference combination is continuously updated based on the drug response values observed in the past, thereby adapting to the underlying drug response function. To demonstrate the effectiveness of the proposed algorithm, we evaluated its performance based on various multi-dimensional drug functions and compared it with existing algorithms. Conclusions Simulation results show that the ARU algorithm significantly outperforms existing stochastic search algorithms, including the Gur Game algorithm. In fact, the ARU algorithm can more effectively identify potent drug combinations and it typically spends fewer iterations for finding effective combinations. Furthermore, the ARU algorithm is robust to random fluctuations and noise in the measured drug response, which makes the algorithm well-suited for practical drug optimization applications. PMID:23134742

  9. Hardware Acceleration of Adaptive Neural Algorithms.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James, Conrad D.

    As tradit ional numerical computing has faced challenges, researchers have turned towards alternative computing approaches to reduce power - per - computation metrics and improve algorithm performance. Here, we describe an approach towards non - conventional computing that strengthens the connection between machine learning and neuroscience concepts. The Hardware Acceleration of Adaptive Neural Algorithms (HAANA) project ha s develop ed neural machine learning algorithms and hardware for applications in image processing and cybersecurity. While machine learning methods are effective at extracting relevant features from many types of data, the effectiveness of these algorithms degrades when subjected to real - worldmore » conditions. Our team has generated novel neural - inspired approa ches to improve the resiliency and adaptability of machine learning algorithms. In addition, we have also designed and fabricated hardware architectures and microelectronic devices specifically tuned towards the training and inference operations of neural - inspired algorithms. Finally, our multi - scale simulation framework allows us to assess the impact of microelectronic device properties on algorithm performance.« less

  10. Adaptive Trajectory Prediction Algorithm for Climbing Flights

    NASA Technical Reports Server (NTRS)

    Schultz, Charles Alexander; Thipphavong, David P.; Erzberger, Heinz

    2012-01-01

    Aircraft climb trajectories are difficult to predict, and large errors in these predictions reduce the potential operational benefits of some advanced features for NextGen. The algorithm described in this paper improves climb trajectory prediction accuracy by adjusting trajectory predictions based on observed track data. It utilizes rate-of-climb and airspeed measurements derived from position data to dynamically adjust the aircraft weight modeled for trajectory predictions. In simulations with weight uncertainty, the algorithm is able to adapt to within 3 percent of the actual gross weight within two minutes of the initial adaptation. The root-mean-square of altitude errors for five-minute predictions was reduced by 73 percent. Conflict detection performance also improved, with a 15 percent reduction in missed alerts and a 10 percent reduction in false alerts. In a simulation with climb speed capture intent and weight uncertainty, the algorithm improved climb trajectory prediction accuracy by up to 30 percent and conflict detection performance, reducing missed and false alerts by up to 10 percent.

  11. A lane line segmentation algorithm based on adaptive threshold and connected domain theory

    NASA Astrophysics Data System (ADS)

    Feng, Hui; Xu, Guo-sheng; Han, Yi; Liu, Yang

    2018-04-01

    Before detecting cracks and repairs on road lanes, it's necessary to eliminate the influence of lane lines on the recognition result in road lane images. Aiming at the problems caused by lane lines, an image segmentation algorithm based on adaptive threshold and connected domain is proposed. First, by analyzing features like grey level distribution and the illumination of the images, the algorithm uses Hough transform to divide the images into different sections and convert them into binary images separately. It then uses the connected domain theory to amend the outcome of segmentation, remove noises and fill the interior zone of lane lines. Experiments have proved that this method could eliminate the influence of illumination and lane line abrasion, removing noises thoroughly while maintaining high segmentation precision.

  12. An improved conscan algorithm based on a Kalman filter

    NASA Technical Reports Server (NTRS)

    Eldred, D. B.

    1994-01-01

    Conscan is commonly used by DSN antennas to allow adaptive tracking of a target whose position is not precisely known. This article describes an algorithm that is based on a Kalman filter and is proposed to replace the existing fast Fourier transform based (FFT-based) algorithm for conscan. Advantages of this algorithm include better pointing accuracy, continuous update information, and accommodation of missing data. Additionally, a strategy for adaptive selection of the conscan radius is proposed. The performance of the algorithm is illustrated through computer simulations and compared to the FFT algorithm. The results show that the Kalman filter algorithm is consistently superior.

  13. Adaptive firefly algorithm: parameter analysis and its application.

    PubMed

    Cheung, Ngaam J; Ding, Xue-Ming; Shen, Hong-Bin

    2014-01-01

    As a nature-inspired search algorithm, firefly algorithm (FA) has several control parameters, which may have great effects on its performance. In this study, we investigate the parameter selection and adaptation strategies in a modified firefly algorithm - adaptive firefly algorithm (AdaFa). There are three strategies in AdaFa including (1) a distance-based light absorption coefficient; (2) a gray coefficient enhancing fireflies to share difference information from attractive ones efficiently; and (3) five different dynamic strategies for the randomization parameter. Promising selections of parameters in the strategies are analyzed to guarantee the efficient performance of AdaFa. AdaFa is validated over widely used benchmark functions, and the numerical experiments and statistical tests yield useful conclusions on the strategies and the parameter selections affecting the performance of AdaFa. When applied to the real-world problem - protein tertiary structure prediction, the results demonstrated improved variants can rebuild the tertiary structure with the average root mean square deviation less than 0.4Å and 1.5Å from the native constrains with noise free and 10% Gaussian white noise.

  14. Adaptive Firefly Algorithm: Parameter Analysis and its Application

    PubMed Central

    Shen, Hong-Bin

    2014-01-01

    As a nature-inspired search algorithm, firefly algorithm (FA) has several control parameters, which may have great effects on its performance. In this study, we investigate the parameter selection and adaptation strategies in a modified firefly algorithmadaptive firefly algorithm (AdaFa). There are three strategies in AdaFa including (1) a distance-based light absorption coefficient; (2) a gray coefficient enhancing fireflies to share difference information from attractive ones efficiently; and (3) five different dynamic strategies for the randomization parameter. Promising selections of parameters in the strategies are analyzed to guarantee the efficient performance of AdaFa. AdaFa is validated over widely used benchmark functions, and the numerical experiments and statistical tests yield useful conclusions on the strategies and the parameter selections affecting the performance of AdaFa. When applied to the real-world problem — protein tertiary structure prediction, the results demonstrated improved variants can rebuild the tertiary structure with the average root mean square deviation less than 0.4Å and 1.5Å from the native constrains with noise free and 10% Gaussian white noise. PMID:25397812

  15. Adaptive Process Control with Fuzzy Logic and Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Karr, C. L.

    1993-01-01

    Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic algorithms (GA's) are used to augment fuzzy logic controllers (FLC's). GA's are search algorithms that rapidly locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural genetics. FLC's are rule based systems that efficiently manipulate a problem environment by modeling the 'rule-of-thumb' strategy used in human decision-making. Together, GA's and FLC's possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, an analysis element to recognize changes in the problem environment, and a learning element to adjust to the changes in the problem environment. Details of an overall adaptive control system are discussed. A specific laboratory acid-base pH system is used to demonstrate the ideas presented.

  16. Testing for a slope-based decoupling algorithm in a woofer-tweeter adaptive optics system.

    PubMed

    Cheng, Tao; Liu, WenJin; Yang, KangJian; He, Xin; Yang, Ping; Xu, Bing

    2018-05-01

    It is well known that using two or more deformable mirrors (DMs) can improve the compensation ability of an adaptive optics (AO) system. However, to keep the stability of an AO system, the correlation between the multiple DMs must be suppressed during the correction. In this paper, we proposed a slope-based decoupling algorithm to simultaneous control the multiple DMs. In order to examine the validity and practicality of this algorithm, a typical woofer-tweeter (W-T) AO system was set up. For the W-T system, a theory model was simulated and the results indicated in theory that the algorithm we presented can selectively make woofer and tweeter correct different spatial frequency aberration and suppress the cross coupling between the dual DMs. At the same time, the experimental results for the W-T AO system were consistent with the results of the simulation, which demonstrated in practice that this algorithm is practical for the AO system with dual DMs.

  17. Complexity control algorithm based on adaptive mode selection for interframe coding in high efficiency video coding

    NASA Astrophysics Data System (ADS)

    Chen, Gang; Yang, Bing; Zhang, Xiaoyun; Gao, Zhiyong

    2017-07-01

    The latest high efficiency video coding (HEVC) standard significantly increases the encoding complexity for improving its coding efficiency. Due to the limited computational capability of handheld devices, complexity constrained video coding has drawn great attention in recent years. A complexity control algorithm based on adaptive mode selection is proposed for interframe coding in HEVC. Considering the direct proportionality between encoding time and computational complexity, the computational complexity is measured in terms of encoding time. First, complexity is mapped to a target in terms of prediction modes. Then, an adaptive mode selection algorithm is proposed for the mode decision process. Specifically, the optimal mode combination scheme that is chosen through offline statistics is developed at low complexity. If the complexity budget has not been used up, an adaptive mode sorting method is employed to further improve coding efficiency. The experimental results show that the proposed algorithm achieves a very large complexity control range (as low as 10%) for the HEVC encoder while maintaining good rate-distortion performance. For the lowdelayP condition, compared with the direct resource allocation method and the state-of-the-art method, an average gain of 0.63 and 0.17 dB in BDPSNR is observed for 18 sequences when the target complexity is around 40%.

  18. Smart algorithms and adaptive methods in computational fluid dynamics

    NASA Astrophysics Data System (ADS)

    Tinsley Oden, J.

    1989-05-01

    A review is presented of the use of smart algorithms which employ adaptive methods in processing large amounts of data in computational fluid dynamics (CFD). Smart algorithms use a rationally based set of criteria for automatic decision making in an attempt to produce optimal simulations of complex fluid dynamics problems. The information needed to make these decisions is not known beforehand and evolves in structure and form during the numerical solution of flow problems. Once the code makes a decision based on the available data, the structure of the data may change, and criteria may be reapplied in order to direct the analysis toward an acceptable end. Intelligent decisions are made by processing vast amounts of data that evolve unpredictably during the calculation. The basic components of adaptive methods and their application to complex problems of fluid dynamics are reviewed. The basic components of adaptive methods are: (1) data structures, that is what approaches are available for modifying data structures of an approximation so as to reduce errors; (2) error estimation, that is what techniques exist for estimating error evolution in a CFD calculation; and (3) solvers, what algorithms are available which can function in changing meshes. Numerical examples which demonstrate the viability of these approaches are presented.

  19. Classification of adaptive memetic algorithms: a comparative study.

    PubMed

    Ong, Yew-Soon; Lim, Meng-Hiot; Zhu, Ning; Wong, Kok-Wai

    2006-02-01

    Adaptation of parameters and operators represents one of the recent most important and promising areas of research in evolutionary computations; it is a form of designing self-configuring algorithms that acclimatize to suit the problem in hand. Here, our interests are on a recent breed of hybrid evolutionary algorithms typically known as adaptive memetic algorithms (MAs). One unique feature of adaptive MAs is the choice of local search methods or memes and recent studies have shown that this choice significantly affects the performances of problem searches. In this paper, we present a classification of memes adaptation in adaptive MAs on the basis of the mechanism used and the level of historical knowledge on the memes employed. Then the asymptotic convergence properties of the adaptive MAs considered are analyzed according to the classification. Subsequently, empirical studies on representatives of adaptive MAs for different type-level meme adaptations using continuous benchmark problems indicate that global-level adaptive MAs exhibit better search performances. Finally we conclude with some promising research directions in the area.

  20. Adaptively resizing populations: Algorithm, analysis, and first results

    NASA Technical Reports Server (NTRS)

    Smith, Robert E.; Smuda, Ellen

    1993-01-01

    Deciding on an appropriate population size for a given Genetic Algorithm (GA) application can often be critical to the algorithm's success. Too small, and the GA can fall victim to sampling error, affecting the efficacy of its search. Too large, and the GA wastes computational resources. Although advice exists for sizing GA populations, much of this advice involves theoretical aspects that are not accessible to the novice user. An algorithm for adaptively resizing GA populations is suggested. This algorithm is based on recent theoretical developments that relate population size to schema fitness variance. The suggested algorithm is developed theoretically, and simulated with expected value equations. The algorithm is then tested on a problem where population sizing can mislead the GA. The work presented suggests that the population sizing algorithm may be a viable way to eliminate the population sizing decision from the application of GA's.

  1. Adaptive Algorithms for Automated Processing of Document Images

    DTIC Science & Technology

    2011-01-01

    ABSTRACT Title of dissertation: ADAPTIVE ALGORITHMS FOR AUTOMATED PROCESSING OF DOCUMENT IMAGES Mudit Agrawal, Doctor of Philosophy, 2011...2011 4. TITLE AND SUBTITLE Adaptive Algorithms for Automated Processing of Document Images 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...ALGORITHMS FOR AUTOMATED PROCESSING OF DOCUMENT IMAGES by Mudit Agrawal Dissertation submitted to the Faculty of the Graduate School of the University

  2. An adaptive replacement algorithm for paged-memory computer systems.

    NASA Technical Reports Server (NTRS)

    Thorington, J. M., Jr.; Irwin, J. D.

    1972-01-01

    A general class of adaptive replacement schemes for use in paged memories is developed. One such algorithm, called SIM, is simulated using a probability model that generates memory traces, and the results of the simulation of this adaptive scheme are compared with those obtained using the best nonlookahead algorithms. A technique for implementing this type of adaptive replacement algorithm with state of the art digital hardware is also presented.

  3. A chaos wolf optimization algorithm with self-adaptive variable step-size

    NASA Astrophysics Data System (ADS)

    Zhu, Yong; Jiang, Wanlu; Kong, Xiangdong; Quan, Lingxiao; Zhang, Yongshun

    2017-10-01

    To explore the problem of parameter optimization for complex nonlinear function, a chaos wolf optimization algorithm (CWOA) with self-adaptive variable step-size was proposed. The algorithm was based on the swarm intelligence of wolf pack, which fully simulated the predation behavior and prey distribution way of wolves. It possessed three intelligent behaviors such as migration, summons and siege. And the competition rule as "winner-take-all" and the update mechanism as "survival of the fittest" were also the characteristics of the algorithm. Moreover, it combined the strategies of self-adaptive variable step-size search and chaos optimization. The CWOA was utilized in parameter optimization of twelve typical and complex nonlinear functions. And the obtained results were compared with many existing algorithms, including the classical genetic algorithm, the particle swarm optimization algorithm and the leader wolf pack search algorithm. The investigation results indicate that CWOA possess preferable optimization ability. There are advantages in optimization accuracy and convergence rate. Furthermore, it demonstrates high robustness and global searching ability.

  4. Estimating meme fitness in adaptive memetic algorithms for combinatorial problems.

    PubMed

    Smith, J E

    2012-01-01

    Among the most promising and active research areas in heuristic optimisation is the field of adaptive memetic algorithms (AMAs). These gain much of their reported robustness by adapting the probability with which each of a set of local improvement operators is applied, according to an estimate of their current value to the search process. This paper addresses the issue of how the current value should be estimated. Assuming the estimate occurs over several applications of a meme, we consider whether the extreme or mean improvements should be used, and whether this aggregation should be global, or local to some part of the solution space. To investigate these issues, we use the well-established COMA framework that coevolves the specification of a population of memes (representing different local search algorithms) alongside a population of candidate solutions to the problem at hand. Two very different memetic algorithms are considered: the first using adaptive operator pursuit to adjust the probabilities of applying a fixed set of memes, and a second which applies genetic operators to dynamically adapt and create memes and their functional definitions. For the latter, especially on combinatorial problems, credit assignment mechanisms based on historical records, or on notions of landscape locality, will have limited application, and it is necessary to estimate the value of a meme via some form of sampling. The results on a set of binary encoded combinatorial problems show that both methods are very effective, and that for some problems it is necessary to use thousands of variables in order to tease apart the differences between different reward schemes. However, for both memetic algorithms, a significant pattern emerges that reward based on mean improvement is better than that based on extreme improvement. This contradicts recent findings from adapting the parameters of operators involved in global evolutionary search. The results also show that local reward schemes

  5. Woofer-tweeter adaptive optics scanning laser ophthalmoscopic imaging based on Lagrange-multiplier damped least-squares algorithm.

    PubMed

    Zou, Weiyao; Qi, Xiaofeng; Burns, Stephen A

    2011-07-01

    We implemented a Lagrange-multiplier (LM)-based damped least-squares (DLS) control algorithm in a woofer-tweeter dual deformable-mirror (DM) adaptive optics scanning laser ophthalmoscope (AOSLO). The algorithm uses data from a single Shack-Hartmann wavefront sensor to simultaneously correct large-amplitude low-order aberrations by a woofer DM and small-amplitude higher-order aberrations by a tweeter DM. We measured the in vivo performance of high resolution retinal imaging with the dual DM AOSLO. We compared the simultaneous LM-based DLS dual DM controller with both single DM controller, and a successive dual DM controller. We evaluated performance using both wavefront (RMS) and image quality metrics including brightness and power spectrum. The simultaneous LM-based dual DM AO can consistently provide near diffraction-limited in vivo routine imaging of human retina.

  6. Adaptive twisting sliding mode algorithm for hypersonic reentry vehicle attitude control based on finite-time observer.

    PubMed

    Guo, Zongyi; Chang, Jing; Guo, Jianguo; Zhou, Jun

    2018-06-01

    This paper focuses on the adaptive twisting sliding mode control for the Hypersonic Reentry Vehicles (HRVs) attitude tracking issue. The HRV attitude tracking model is transformed into the error dynamics in matched structure, whereas an unmeasurable state is redefined by lumping the existing unmatched disturbance with the angular rate. Hence, an adaptive finite-time observer is used to estimate the unknown state. Then, an adaptive twisting algorithm is proposed for systems subject to disturbances with unknown bounds. The stability of the proposed observer-based adaptive twisting approach is guaranteed, and the case of noisy measurement is analyzed. Also, the developed control law avoids the aggressive chattering phenomenon of the existing adaptive twisting approaches because the adaptive gains decrease close to the disturbance once the trajectories reach the sliding surface. Finally, numerical simulations on the attitude control of the HRV are conducted to verify the effectiveness and benefit of the proposed approach. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Star adaptation for two-algorithms used on serial computers

    NASA Technical Reports Server (NTRS)

    Howser, L. M.; Lambiotte, J. J., Jr.

    1974-01-01

    Two representative algorithms used on a serial computer and presently executed on the Control Data Corporation 6000 computer were adapted to execute efficiently on the Control Data STAR-100 computer. Gaussian elimination for the solution of simultaneous linear equations and the Gauss-Legendre quadrature formula for the approximation of an integral are the two algorithms discussed. A description is given of how the programs were adapted for STAR and why these adaptations were necessary to obtain an efficient STAR program. Some points to consider when adapting an algorithm for STAR are discussed. Program listings of the 6000 version coded in 6000 FORTRAN, the adapted STAR version coded in 6000 FORTRAN, and the STAR version coded in STAR FORTRAN are presented in the appendices.

  8. A self-adaptive algorithm for traffic sign detection in motion image based on color and shape features

    NASA Astrophysics Data System (ADS)

    Zhang, Ka; Sheng, Yehua; Gong, Zhijun; Ye, Chun; Li, Yongqiang; Liang, Cheng

    2007-06-01

    As an important sub-system in intelligent transportation system (ITS), the detection and recognition of traffic signs from mobile images is becoming one of the hot spots in the international research field of ITS. Considering the problem of traffic sign automatic detection in motion images, a new self-adaptive algorithm for traffic sign detection based on color and shape features is proposed in this paper. Firstly, global statistical color features of different images are computed based on statistics theory. Secondly, some self-adaptive thresholds and special segmentation rules for image segmentation are designed according to these global color features. Then, for red, yellow and blue traffic signs, the color image is segmented to three binary images by these thresholds and rules. Thirdly, if the number of white pixels in the segmented binary image exceeds the filtering threshold, the binary image should be further filtered. Fourthly, the method of gray-value projection is used to confirm top, bottom, left and right boundaries for candidate regions of traffic signs in the segmented binary image. Lastly, if the shape feature of candidate region satisfies the need of real traffic sign, this candidate region is confirmed as the detected traffic sign region. The new algorithm is applied to actual motion images of natural scenes taken by a CCD camera of the mobile photogrammetry system in Nanjing at different time. The experimental results show that the algorithm is not only simple, robust and more adaptive to natural scene images, but also reliable and high-speed on real traffic sign detection.

  9. Dynamic game balancing implementation using adaptive algorithm in mobile-based Safari Indonesia game

    NASA Astrophysics Data System (ADS)

    Yuniarti, Anny; Nata Wardanie, Novita; Kuswardayan, Imam

    2018-03-01

    In developing a game there is one method that should be applied to maintain the interest of players, namely dynamic game balancing. Dynamic game balancing is a process to match a player’s playing style with the behaviour, attributes, and game environment. This study applies dynamic game balancing using adaptive algorithm in scrolling shooter game type called Safari Indonesia which developed using Unity. The game of this type is portrayed by a fighter aircraft character trying to defend itself from insistent enemy attacks. This classic game is chosen to implement adaptive algorithms because it has quite complex attributes to be developed using dynamic game balancing. Tests conducted by distributing questionnaires to a number of players indicate that this method managed to reduce frustration and increase the pleasure factor in playing.

  10. A proposed adaptive step size perturbation and observation maximum power point tracking algorithm based on photovoltaic system modeling

    NASA Astrophysics Data System (ADS)

    Huang, Yu

    Solar energy becomes one of the major alternative renewable energy options for its huge abundance and accessibility. Due to the intermittent nature, the high demand of Maximum Power Point Tracking (MPPT) techniques exists when a Photovoltaic (PV) system is used to extract energy from the sunlight. This thesis proposed an advanced Perturbation and Observation (P&O) algorithm aiming for relatively practical circumstances. Firstly, a practical PV system model is studied with determining the series and shunt resistances which are neglected in some research. Moreover, in this proposed algorithm, the duty ratio of a boost DC-DC converter is the object of the perturbation deploying input impedance conversion to achieve working voltage adjustment. Based on the control strategy, the adaptive duty ratio step size P&O algorithm is proposed with major modifications made for sharp insolation change as well as low insolation scenarios. Matlab/Simulink simulation for PV model, boost converter control strategy and various MPPT process is conducted step by step. The proposed adaptive P&O algorithm is validated by the simulation results and detail analysis of sharp insolation changes, low insolation condition and continuous insolation variation.

  11. Improving GPU-accelerated adaptive IDW interpolation algorithm using fast kNN search.

    PubMed

    Mei, Gang; Xu, Nengxiong; Xu, Liangliang

    2016-01-01

    This paper presents an efficient parallel Adaptive Inverse Distance Weighting (AIDW) interpolation algorithm on modern Graphics Processing Unit (GPU). The presented algorithm is an improvement of our previous GPU-accelerated AIDW algorithm by adopting fast k-nearest neighbors (kNN) search. In AIDW, it needs to find several nearest neighboring data points for each interpolated point to adaptively determine the power parameter; and then the desired prediction value of the interpolated point is obtained by weighted interpolating using the power parameter. In this work, we develop a fast kNN search approach based on the space-partitioning data structure, even grid, to improve the previous GPU-accelerated AIDW algorithm. The improved algorithm is composed of the stages of kNN search and weighted interpolating. To evaluate the performance of the improved algorithm, we perform five groups of experimental tests. The experimental results indicate: (1) the improved algorithm can achieve a speedup of up to 1017 over the corresponding serial algorithm; (2) the improved algorithm is at least two times faster than our previous GPU-accelerated AIDW algorithm; and (3) the utilization of fast kNN search can significantly improve the computational efficiency of the entire GPU-accelerated AIDW algorithm.

  12. General purpose graphic processing unit implementation of adaptive pulse compression algorithms

    NASA Astrophysics Data System (ADS)

    Cai, Jingxiao; Zhang, Yan

    2017-07-01

    This study introduces a practical approach to implement real-time signal processing algorithms for general surveillance radar based on NVIDIA graphical processing units (GPUs). The pulse compression algorithms are implemented using compute unified device architecture (CUDA) libraries such as CUDA basic linear algebra subroutines and CUDA fast Fourier transform library, which are adopted from open source libraries and optimized for the NVIDIA GPUs. For more advanced, adaptive processing algorithms such as adaptive pulse compression, customized kernel optimization is needed and investigated. A statistical optimization approach is developed for this purpose without needing much knowledge of the physical configurations of the kernels. It was found that the kernel optimization approach can significantly improve the performance. Benchmark performance is compared with the CPU performance in terms of processing accelerations. The proposed implementation framework can be used in various radar systems including ground-based phased array radar, airborne sense and avoid radar, and aerospace surveillance radar.

  13. A star recognition method based on the Adaptive Ant Colony algorithm for star sensors.

    PubMed

    Quan, Wei; Fang, Jiancheng

    2010-01-01

    A new star recognition method based on the Adaptive Ant Colony (AAC) algorithm has been developed to increase the star recognition speed and success rate for star sensors. This method draws circles, with the center of each one being a bright star point and the radius being a special angular distance, and uses the parallel processing ability of the AAC algorithm to calculate the angular distance of any pair of star points in the circle. The angular distance of two star points in the circle is solved as the path of the AAC algorithm, and the path optimization feature of the AAC is employed to search for the optimal (shortest) path in the circle. This optimal path is used to recognize the stellar map and enhance the recognition success rate and speed. The experimental results show that when the position error is about 50″, the identification success rate of this method is 98% while the Delaunay identification method is only 94%. The identification time of this method is up to 50 ms.

  14. Policy Gradient Adaptive Dynamic Programming for Data-Based Optimal Control.

    PubMed

    Luo, Biao; Liu, Derong; Wu, Huai-Ning; Wang, Ding; Lewis, Frank L

    2017-10-01

    The model-free optimal control problem of general discrete-time nonlinear systems is considered in this paper, and a data-based policy gradient adaptive dynamic programming (PGADP) algorithm is developed to design an adaptive optimal controller method. By using offline and online data rather than the mathematical system model, the PGADP algorithm improves control policy with a gradient descent scheme. The convergence of the PGADP algorithm is proved by demonstrating that the constructed Q -function sequence converges to the optimal Q -function. Based on the PGADP algorithm, the adaptive control method is developed with an actor-critic structure and the method of weighted residuals. Its convergence properties are analyzed, where the approximate Q -function converges to its optimum. Computer simulation results demonstrate the effectiveness of the PGADP-based adaptive control method.

  15. Adaptive Numerical Algorithms in Space Weather Modeling

    NASA Technical Reports Server (NTRS)

    Toth, Gabor; vanderHolst, Bart; Sokolov, Igor V.; DeZeeuw, Darren; Gombosi, Tamas I.; Fang, Fang; Manchester, Ward B.; Meng, Xing; Nakib, Dalal; Powell, Kenneth G.; hide

    2010-01-01

    Space weather describes the various processes in the Sun-Earth system that present danger to human health and technology. The goal of space weather forecasting is to provide an opportunity to mitigate these negative effects. Physics-based space weather modeling is characterized by disparate temporal and spatial scales as well as by different physics in different domains. A multi-physics system can be modeled by a software framework comprising of several components. Each component corresponds to a physics domain, and each component is represented by one or more numerical models. The publicly available Space Weather Modeling Framework (SWMF) can execute and couple together several components distributed over a parallel machine in a flexible and efficient manner. The framework also allows resolving disparate spatial and temporal scales with independent spatial and temporal discretizations in the various models. Several of the computationally most expensive domains of the framework are modeled by the Block-Adaptive Tree Solar wind Roe Upwind Scheme (BATS-R-US) code that can solve various forms of the magnetohydrodynamics (MHD) equations, including Hall, semi-relativistic, multi-species and multi-fluid MHD, anisotropic pressure, radiative transport and heat conduction. Modeling disparate scales within BATS-R-US is achieved by a block-adaptive mesh both in Cartesian and generalized coordinates. Most recently we have created a new core for BATS-R-US: the Block-Adaptive Tree Library (BATL) that provides a general toolkit for creating, load balancing and message passing in a 1, 2 or 3 dimensional block-adaptive grid. We describe the algorithms of BATL and demonstrate its efficiency and scaling properties for various problems. BATS-R-US uses several time-integration schemes to address multiple time-scales: explicit time stepping with fixed or local time steps, partially steady-state evolution, point-implicit, semi-implicit, explicit/implicit, and fully implicit numerical

  16. Adaptive image coding based on cubic-spline interpolation

    NASA Astrophysics Data System (ADS)

    Jiang, Jian-Xing; Hong, Shao-Hua; Lin, Tsung-Ching; Wang, Lin; Truong, Trieu-Kien

    2014-09-01

    It has been investigated that at low bit rates, downsampling prior to coding and upsampling after decoding can achieve better compression performance than standard coding algorithms, e.g., JPEG and H. 264/AVC. However, at high bit rates, the sampling-based schemes generate more distortion. Additionally, the maximum bit rate for the sampling-based scheme to outperform the standard algorithm is image-dependent. In this paper, a practical adaptive image coding algorithm based on the cubic-spline interpolation (CSI) is proposed. This proposed algorithm adaptively selects the image coding method from CSI-based modified JPEG and standard JPEG under a given target bit rate utilizing the so called ρ-domain analysis. The experimental results indicate that compared with the standard JPEG, the proposed algorithm can show better performance at low bit rates and maintain the same performance at high bit rates.

  17. Formulation and implementation of nonstationary adaptive estimation algorithm with applications to air-data reconstruction

    NASA Technical Reports Server (NTRS)

    Whitmore, S. A.

    1985-01-01

    The dynamics model and data sources used to perform air-data reconstruction are discussed, as well as the Kalman filter. The need for adaptive determination of the noise statistics of the process is indicated. The filter innovations are presented as a means of developing the adaptive criterion, which is based on the true mean and covariance of the filter innovations. A method for the numerical approximation of the mean and covariance of the filter innovations is presented. The algorithm as developed is applied to air-data reconstruction for the space shuttle, and data obtained from the third landing are presented. To verify the performance of the adaptive algorithm, the reconstruction is also performed using a constant covariance Kalman filter. The results of the reconstructions are compared, and the adaptive algorithm exhibits better performance.

  18. An improved adaptive interpolation clock recovery loop based on phase splitting algorithm for coherent optical communication system

    NASA Astrophysics Data System (ADS)

    Liu, Xuan; Liu, Bo; Zhang, Li-jia; Xin, Xiang-jun; Zhang, Qi; Wang, Yong-jun; Tian, Qing-hua; Tian, Feng; Mao, Ya-ya

    2018-01-01

    Traditional clock recovery scheme achieves timing adjustment by digital interpolation, thus recovering the sampling sequence. Based on this, an improved clock recovery architecture joint channel equalization for coherent optical communication system is presented in this paper. The loop is different from the traditional clock recovery. In order to reduce the interpolation error caused by the distortion in the frequency domain of the interpolator and to suppress the spectral mirroring generated by the sampling rate change, the proposed algorithm joint equalization, improves the original interpolator in the loop, along with adaptive filtering, and makes error compensation for the original signals according to the balanced pre-filtering signals. Then the signals are adaptive interpolated through the feedback loop. Furthermore, the phase splitting timing recovery algorithm is adopted in this paper. The time error is calculated according to the improved algorithm when there is no transition between the adjacent symbols, making calculated timing error more accurate. Meanwhile, Carrier coarse synchronization module is placed before the beginning of timing recovery to eliminate the larger frequency offset interference, which effectively adjust the sampling clock phase. In this paper, the simulation results show that the timing error is greatly reduced after the loop is changed. Based on the phase splitting algorithm, the BER and MSE are better than those in the unvaried architecture. In the fiber channel, using MQAM modulation format, after 100 km-transmission of single-mode fiber, especially when ROF(roll-off factor) values tends to 0, the algorithm shows a better clock performance under different ROFs. When SNR values are less than 8, the BER could achieve 10-2 to 10-1 magnitude. Furthermore, the proposed timing recovery is more suitable for the situation with low SNR values.

  19. Adaptive Two Dimensional RLS (Recursive Least Squares) Algorithms

    DTIC Science & Technology

    1989-03-01

    in Monterey wonderful. IX I. INTRODUCTION Adaptive algorithms have been used successfully for many years in a wide range of digital signal...SIMULATION RESULTS The 2-D FRLS algorithm was tested both on computer-generated data and on digitized images. For a baseline reference the 2-D L:rv1S...Alexander, S. T. Adaptivt Signal Processing: Theory and Applications. Springer- Verlag, New York. 1986. 7. Bellanger, Maurice G. Adaptive Digital

  20. An adaptive inverse kinematics algorithm for robot manipulators

    NASA Technical Reports Server (NTRS)

    Colbaugh, R.; Glass, K.; Seraji, H.

    1990-01-01

    An adaptive algorithm for solving the inverse kinematics problem for robot manipulators is presented. The algorithm is derived using model reference adaptive control (MRAC) theory and is computationally efficient for online applications. The scheme requires no a priori knowledge of the kinematics of the robot if Cartesian end-effector sensing is available, and it requires knowledge of only the forward kinematics if joint position sensing is used. Computer simulation results are given for the redundant seven-DOF robotics research arm, demonstrating that the proposed algorithm yields accurate joint angle trajectories for a given end-effector position/orientation trajectory.

  1. Adaptive Load-Balancing Algorithms Using Symmetric Broadcast Networks

    NASA Technical Reports Server (NTRS)

    Das, Sajal K.; Biswas, Rupak; Chancellor, Marisa K. (Technical Monitor)

    1997-01-01

    In a distributed-computing environment, it is important to ensure that the processor workloads are adequately balanced. Among numerous load-balancing algorithms, a unique approach due to Dam and Prasad defines a symmetric broadcast network (SBN) that provides a robust communication pattern among the processors in a topology-independent manner. In this paper, we propose and analyze three novel SBN-based load-balancing algorithms, and implement them on an SP2. A thorough experimental study with Poisson-distributed synthetic loads demonstrates that these algorithms are very effective in balancing system load while minimizing processor idle time. They also compare favorably with several other existing load-balancing techniques. Additional experiments performed with real data demonstrate that the SBN approach is effective in adaptive computational science and engineering applications where dynamic load balancing is extremely crucial.

  2. A kernel adaptive algorithm for quaternion-valued inputs.

    PubMed

    Paul, Thomas K; Ogunfunmi, Tokunbo

    2015-10-01

    The use of quaternion data can provide benefit in applications like robotics and image recognition, and particularly for performing transforms in 3-D space. Here, we describe a kernel adaptive algorithm for quaternions. A least mean square (LMS)-based method was used, resulting in the derivation of the quaternion kernel LMS (Quat-KLMS) algorithm. Deriving this algorithm required describing the idea of a quaternion reproducing kernel Hilbert space (RKHS), as well as kernel functions suitable with quaternions. A modified HR calculus for Hilbert spaces was used to find the gradient of cost functions defined on a quaternion RKHS. In addition, the use of widely linear (or augmented) filtering is proposed to improve performance. The benefit of the Quat-KLMS and widely linear forms in learning nonlinear transformations of quaternion data are illustrated with simulations.

  3. A parallel adaptive mesh refinement algorithm

    NASA Technical Reports Server (NTRS)

    Quirk, James J.; Hanebutte, Ulf R.

    1993-01-01

    Over recent years, Adaptive Mesh Refinement (AMR) algorithms which dynamically match the local resolution of the computational grid to the numerical solution being sought have emerged as powerful tools for solving problems that contain disparate length and time scales. In particular, several workers have demonstrated the effectiveness of employing an adaptive, block-structured hierarchical grid system for simulations of complex shock wave phenomena. Unfortunately, from the parallel algorithm developer's viewpoint, this class of scheme is quite involved; these schemes cannot be distilled down to a small kernel upon which various parallelizing strategies may be tested. However, because of their block-structured nature such schemes are inherently parallel, so all is not lost. In this paper we describe the method by which Quirk's AMR algorithm has been parallelized. This method is built upon just a few simple message passing routines and so it may be implemented across a broad class of MIMD machines. Moreover, the method of parallelization is such that the original serial code is left virtually intact, and so we are left with just a single product to support. The importance of this fact should not be underestimated given the size and complexity of the original algorithm.

  4. Fast Adapting Ensemble: A New Algorithm for Mining Data Streams with Concept Drift

    PubMed Central

    Ortíz Díaz, Agustín; Ramos-Jiménez, Gonzalo; Frías Blanco, Isvani; Caballero Mota, Yailé; Morales-Bueno, Rafael

    2015-01-01

    The treatment of large data streams in the presence of concept drifts is one of the main challenges in the field of data mining, particularly when the algorithms have to deal with concepts that disappear and then reappear. This paper presents a new algorithm, called Fast Adapting Ensemble (FAE), which adapts very quickly to both abrupt and gradual concept drifts, and has been specifically designed to deal with recurring concepts. FAE processes the learning examples in blocks of the same size, but it does not have to wait for the batch to be complete in order to adapt its base classification mechanism. FAE incorporates a drift detector to improve the handling of abrupt concept drifts and stores a set of inactive classifiers that represent old concepts, which are activated very quickly when these concepts reappear. We compare our new algorithm with various well-known learning algorithms, taking into account, common benchmark datasets. The experiments show promising results from the proposed algorithm (regarding accuracy and runtime), handling different types of concept drifts. PMID:25879051

  5. An Adaptive Tradeoff Algorithm for Multi-issue SLA Negotiation

    NASA Astrophysics Data System (ADS)

    Son, Seokho; Sim, Kwang Mong

    Since participants in a Cloud may be independent bodies, mechanisms are necessary for resolving different preferences in leasing Cloud services. Whereas there are currently mechanisms that support service-level agreement negotiation, there is little or no negotiation support for concurrent price and timeslot for Cloud service reservations. For the concurrent price and timeslot negotiation, a tradeoff algorithm to generate and evaluate a proposal which consists of price and timeslot proposal is necessary. The contribution of this work is thus to design an adaptive tradeoff algorithm for multi-issue negotiation mechanism. The tradeoff algorithm referred to as "adaptive burst mode" is especially designed to increase negotiation speed and total utility and to reduce computational load by adaptively generating concurrent set of proposals. The empirical results obtained from simulations carried out using a testbed suggest that due to the concurrent price and timeslot negotiation mechanism with adaptive tradeoff algorithm: 1) both agents achieve the best performance in terms of negotiation speed and utility; 2) the number of evaluations of each proposal is comparatively lower than previous scheme (burst-N).

  6. Properties of an adaptive feedback equalization algorithm.

    PubMed

    Engebretson, A M; French-St George, M

    1993-01-01

    This paper describes a new approach to feedback equalization for hearing aids. The method involves the use of an adaptive algorithm that estimates and tracks the characteristic of the hearing aid feedback path. The algorithm is described and the results of simulation studies and bench testing are presented.

  7. Fast parallel MR image reconstruction via B1-based, adaptive restart, iterative soft thresholding algorithms (BARISTA).

    PubMed

    Muckley, Matthew J; Noll, Douglas C; Fessler, Jeffrey A

    2015-02-01

    Sparsity-promoting regularization is useful for combining compressed sensing assumptions with parallel MRI for reducing scan time while preserving image quality. Variable splitting algorithms are the current state-of-the-art algorithms for SENSE-type MR image reconstruction with sparsity-promoting regularization. These methods are very general and have been observed to work with almost any regularizer; however, the tuning of associated convergence parameters is a commonly-cited hindrance in their adoption. Conversely, majorize-minimize algorithms based on a single Lipschitz constant have been observed to be slow in shift-variant applications such as SENSE-type MR image reconstruction since the associated Lipschitz constants are loose bounds for the shift-variant behavior. This paper bridges the gap between the Lipschitz constant and the shift-variant aspects of SENSE-type MR imaging by introducing majorizing matrices in the range of the regularizer matrix. The proposed majorize-minimize methods (called BARISTA) converge faster than state-of-the-art variable splitting algorithms when combined with momentum acceleration and adaptive momentum restarting. Furthermore, the tuning parameters associated with the proposed methods are unitless convergence tolerances that are easier to choose than the constraint penalty parameters required by variable splitting algorithms.

  8. Fast Parallel MR Image Reconstruction via B1-based, Adaptive Restart, Iterative Soft Thresholding Algorithms (BARISTA)

    PubMed Central

    Noll, Douglas C.; Fessler, Jeffrey A.

    2014-01-01

    Sparsity-promoting regularization is useful for combining compressed sensing assumptions with parallel MRI for reducing scan time while preserving image quality. Variable splitting algorithms are the current state-of-the-art algorithms for SENSE-type MR image reconstruction with sparsity-promoting regularization. These methods are very general and have been observed to work with almost any regularizer; however, the tuning of associated convergence parameters is a commonly-cited hindrance in their adoption. Conversely, majorize-minimize algorithms based on a single Lipschitz constant have been observed to be slow in shift-variant applications such as SENSE-type MR image reconstruction since the associated Lipschitz constants are loose bounds for the shift-variant behavior. This paper bridges the gap between the Lipschitz constant and the shift-variant aspects of SENSE-type MR imaging by introducing majorizing matrices in the range of the regularizer matrix. The proposed majorize-minimize methods (called BARISTA) converge faster than state-of-the-art variable splitting algorithms when combined with momentum acceleration and adaptive momentum restarting. Furthermore, the tuning parameters associated with the proposed methods are unitless convergence tolerances that are easier to choose than the constraint penalty parameters required by variable splitting algorithms. PMID:25330484

  9. An Adaptive Method for Switching between Pedestrian/Car Indoor Positioning Algorithms based on Multilayer Time Sequences

    PubMed Central

    Gu, Zhining; Guo, Wei; Li, Chaoyang; Zhu, Xinyan; Guo, Tao

    2018-01-01

    Pedestrian dead reckoning (PDR) positioning algorithms can be used to obtain a target’s location only for movement with step features and not for driving, for which the trilateral Bluetooth indoor positioning method can be used. In this study, to obtain the precise locations of different states (pedestrian/car) using the corresponding positioning algorithms, we propose an adaptive method for switching between the PDR and car indoor positioning algorithms based on multilayer time sequences (MTSs). MTSs, which consider the behavior context, comprise two main aspects: filtering of noisy data in small-scale time sequences and using a state chain to reduce the time delay of algorithm switching in large-scale time sequences. The proposed method can be expected to realize the recognition of stationary, walking, driving, or other states; switch to the correct indoor positioning algorithm; and improve the accuracy of localization compared to using a single positioning algorithm. Our experiments show that the recognition of static, walking, driving, and other states improves by 5.5%, 45.47%, 26.23%, and 21% on average, respectively, compared with convolutional neural network (CNN) method. The time delay decreases by approximately 0.5–8.5 s for the transition between states and by approximately 24 s for the entire process. PMID:29495503

  10. Adaptivity and smart algorithms for fluid-structure interaction

    NASA Technical Reports Server (NTRS)

    Oden, J. Tinsley

    1990-01-01

    This paper reviews new approaches in CFD which have the potential for significantly increasing current capabilities of modeling complex flow phenomena and of treating difficult problems in fluid-structure interaction. These approaches are based on the notions of adaptive methods and smart algorithms, which use instantaneous measures of the quality and other features of the numerical flowfields as a basis for making changes in the structure of the computational grid and of algorithms designed to function on the grid. The application of these new techniques to several problem classes are addressed, including problems with moving boundaries, fluid-structure interaction in high-speed turbine flows, flow in domains with receding boundaries, and related problems.

  11. Linear-array photoacoustic imaging using minimum variance-based delay multiply and sum adaptive beamforming algorithm

    NASA Astrophysics Data System (ADS)

    Mozaffarzadeh, Moein; Mahloojifar, Ali; Orooji, Mahdi; Kratkiewicz, Karl; Adabi, Saba; Nasiriavanaki, Mohammadreza

    2018-02-01

    In photoacoustic imaging, delay-and-sum (DAS) beamformer is a common beamforming algorithm having a simple implementation. However, it results in a poor resolution and high sidelobes. To address these challenges, a new algorithm namely delay-multiply-and-sum (DMAS) was introduced having lower sidelobes compared to DAS. To improve the resolution of DMAS, a beamformer is introduced using minimum variance (MV) adaptive beamforming combined with DMAS, so-called minimum variance-based DMAS (MVB-DMAS). It is shown that expanding the DMAS equation results in multiple terms representing a DAS algebra. It is proposed to use the MV adaptive beamformer instead of the existing DAS. MVB-DMAS is evaluated numerically and experimentally. In particular, at the depth of 45 mm MVB-DMAS results in about 31, 18, and 8 dB sidelobes reduction compared to DAS, MV, and DMAS, respectively. The quantitative results of the simulations show that MVB-DMAS leads to improvement in full-width-half-maximum about 96%, 94%, and 45% and signal-to-noise ratio about 89%, 15%, and 35% compared to DAS, DMAS, MV, respectively. In particular, at the depth of 33 mm of the experimental images, MVB-DMAS results in about 20 dB sidelobes reduction in comparison with other beamformers.

  12. Should the parameters of a BCI translation algorithm be continually adapted?

    PubMed

    McFarland, Dennis J; Sarnacki, William A; Wolpaw, Jonathan R

    2011-07-15

    People with or without motor disabilities can learn to control sensorimotor rhythms (SMRs) recorded from the scalp to move a computer cursor in one or more dimensions or can use the P300 event-related potential as a control signal to make discrete selections. Data collected from individuals using an SMR-based or P300-based BCI were evaluated offline to estimate the impact on performance of continually adapting the parameters of the translation algorithm during BCI operation. The performance of the SMR-based BCI was enhanced by adaptive updating of the feature weights or adaptive normalization of the features. In contrast, P300 performance did not benefit from either of these procedures. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Validation of elastic registration algorithms based on adaptive irregular grids for medical applications

    NASA Astrophysics Data System (ADS)

    Franz, Astrid; Carlsen, Ingwer C.; Renisch, Steffen; Wischmann, Hans-Aloys

    2006-03-01

    Elastic registration of medical images is an active field of current research. Registration algorithms have to be validated in order to show that they fulfill the requirements of a particular clinical application. Furthermore, validation strategies compare the performance of different registration algorithms and can hence judge which algorithm is best suited for a target application. In the literature, validation strategies for rigid registration algorithms have been analyzed. For a known ground truth they assess the displacement error at a few landmarks, which is not sufficient for elastic transformations described by a huge number of parameters. Hence we consider the displacement error averaged over all pixels in the whole image or in a region-of-interest of clinical relevance. Using artificially, but realistically deformed images of the application domain, we use this quality measure to analyze an elastic registration based on transformations defined on adaptive irregular grids for the following clinical applications: Magnetic Resonance (MR) images of freely moving joints for orthopedic investigations, thoracic Computed Tomography (CT) images for the detection of pulmonary embolisms, and transmission images as used for the attenuation correction and registration of independently acquired Positron Emission Tomography (PET) and CT images. The definition of a region-of-interest allows to restrict the analysis of the registration accuracy to clinically relevant image areas. The behaviour of the displacement error as a function of the number of transformation control points and their placement can be used for identifying the best strategy for the initial placement of the control points.

  14. Comparison between iterative wavefront control algorithm and direct gradient wavefront control algorithm for adaptive optics system

    NASA Astrophysics Data System (ADS)

    Cheng, Sheng-Yi; Liu, Wen-Jin; Chen, Shan-Qiu; Dong, Li-Zhi; Yang, Ping; Xu, Bing

    2015-08-01

    Among all kinds of wavefront control algorithms in adaptive optics systems, the direct gradient wavefront control algorithm is the most widespread and common method. This control algorithm obtains the actuator voltages directly from wavefront slopes through pre-measuring the relational matrix between deformable mirror actuators and Hartmann wavefront sensor with perfect real-time characteristic and stability. However, with increasing the number of sub-apertures in wavefront sensor and deformable mirror actuators of adaptive optics systems, the matrix operation in direct gradient algorithm takes too much time, which becomes a major factor influencing control effect of adaptive optics systems. In this paper we apply an iterative wavefront control algorithm to high-resolution adaptive optics systems, in which the voltages of each actuator are obtained through iteration arithmetic, which gains great advantage in calculation and storage. For AO system with thousands of actuators, the computational complexity estimate is about O(n2) ˜ O(n3) in direct gradient wavefront control algorithm, while the computational complexity estimate in iterative wavefront control algorithm is about O(n) ˜ (O(n)3/2), in which n is the number of actuators of AO system. And the more the numbers of sub-apertures and deformable mirror actuators, the more significant advantage the iterative wavefront control algorithm exhibits. Project supported by the National Key Scientific and Research Equipment Development Project of China (Grant No. ZDYZ2013-2), the National Natural Science Foundation of China (Grant No. 11173008), and the Sichuan Provincial Outstanding Youth Academic Technology Leaders Program, China (Grant No. 2012JQ0012).

  15. Real time optimization algorithm for wavefront sensorless adaptive optics OCT (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Verstraete, Hans R. G. W.; Heisler, Morgan; Ju, Myeong Jin; Wahl, Daniel J.; Bliek, Laurens; Kalkman, Jeroen; Bonora, Stefano; Sarunic, Marinko V.; Verhaegen, Michel; Jian, Yifan

    2017-02-01

    Optical Coherence Tomography (OCT) has revolutionized modern ophthalmology, providing depth resolved images of the retinal layers in a system that is suited to a clinical environment. A limitation of the performance and utilization of the OCT systems has been the lateral resolution. Through the combination of wavefront sensorless adaptive optics with dual variable optical elements, we present a compact lens based OCT system that is capable of imaging the photoreceptor mosaic. We utilized a commercially available variable focal length lens to correct for a wide range of defocus commonly found in patient eyes, and a multi-actuator adaptive lens after linearization of the hysteresis in the piezoelectric actuators for aberration correction to obtain near diffraction limited imaging at the retina. A parallel processing computational platform permitted real-time image acquisition and display. The Data-based Online Nonlinear Extremum seeker (DONE) algorithm was used for real time optimization of the wavefront sensorless adaptive optics OCT, and the performance was compared with a coordinate search algorithm. Cross sectional images of the retinal layers and en face images of the cone photoreceptor mosaic acquired in vivo from research volunteers before and after WSAO optimization are presented. Applying the DONE algorithm in vivo for wavefront sensorless AO-OCT demonstrates that the DONE algorithm succeeds in drastically improving the signal while achieving a computational time of 1 ms per iteration, making it applicable for high speed real time applications.

  16. Adaptive power allocation schemes based on IAFS algorithm for OFDM-based cognitive radio systems

    NASA Astrophysics Data System (ADS)

    Zhang, Shuying; Zhao, Xiaohui; Liang, Cong; Ding, Xu

    2017-01-01

    In cognitive radio (CR) systems, reasonable power allocation can increase transmission rate of CR users or secondary users (SUs) as much as possible and at the same time insure normal communication among primary users (PUs). This study proposes an optimal power allocation scheme for the OFDM-based CR system with one SU influenced by multiple PU interference constraints. This scheme is based on an improved artificial fish swarm (IAFS) algorithm in combination with the advantage of conventional artificial fish swarm (ASF) algorithm and particle swarm optimisation (PSO) algorithm. In performance comparison of IAFS algorithm with other intelligent algorithms by simulations, the superiority of the IAFS algorithm is illustrated; this superiority results in better performance of our proposed scheme than that of the power allocation algorithms proposed by the previous studies in the same scenario. Furthermore, our proposed scheme can obtain higher transmission data rate under the multiple PU interference constraints and the total power constraint of SU than that of the other mentioned works.

  17. Sequential Insertion Heuristic with Adaptive Bee Colony Optimisation Algorithm for Vehicle Routing Problem with Time Windows

    PubMed Central

    Jawarneh, Sana; Abdullah, Salwani

    2015-01-01

    This paper presents a bee colony optimisation (BCO) algorithm to tackle the vehicle routing problem with time window (VRPTW). The VRPTW involves recovering an ideal set of routes for a fleet of vehicles serving a defined number of customers. The BCO algorithm is a population-based algorithm that mimics the social communication patterns of honeybees in solving problems. The performance of the BCO algorithm is dependent on its parameters, so the online (self-adaptive) parameter tuning strategy is used to improve its effectiveness and robustness. Compared with the basic BCO, the adaptive BCO performs better. Diversification is crucial to the performance of the population-based algorithm, but the initial population in the BCO algorithm is generated using a greedy heuristic, which has insufficient diversification. Therefore the ways in which the sequential insertion heuristic (SIH) for the initial population drives the population toward improved solutions are examined. Experimental comparisons indicate that the proposed adaptive BCO-SIH algorithm works well across all instances and is able to obtain 11 best results in comparison with the best-known results in the literature when tested on Solomon’s 56 VRPTW 100 customer instances. Also, a statistical test shows that there is a significant difference between the results. PMID:26132158

  18. Wavefront sensorless adaptive optics OCT with the DONE algorithm for in vivo human retinal imaging [Invited].

    PubMed

    Verstraete, Hans R G W; Heisler, Morgan; Ju, Myeong Jin; Wahl, Daniel; Bliek, Laurens; Kalkman, Jeroen; Bonora, Stefano; Jian, Yifan; Verhaegen, Michel; Sarunic, Marinko V

    2017-04-01

    In this report, which is an international collaboration of OCT, adaptive optics, and control research, we demonstrate the Data-based Online Nonlinear Extremum-seeker (DONE) algorithm to guide the image based optimization for wavefront sensorless adaptive optics (WFSL-AO) OCT for in vivo human retinal imaging. The ocular aberrations were corrected using a multi-actuator adaptive lens after linearization of the hysteresis in the piezoelectric actuators. The DONE algorithm succeeded in drastically improving image quality and the OCT signal intensity, up to a factor seven, while achieving a computational time of 1 ms per iteration, making it applicable for many high speed applications. We demonstrate the correction of five aberrations using 70 iterations of the DONE algorithm performed over 2.8 s of continuous volumetric OCT acquisition. Data acquired from an imaging phantom and in vivo from human research volunteers are presented.

  19. An adaptive grid algorithm for one-dimensional nonlinear equations

    NASA Technical Reports Server (NTRS)

    Gutierrez, William E.; Hills, Richard G.

    1990-01-01

    Richards' equation, which models the flow of liquid through unsaturated porous media, is highly nonlinear and difficult to solve. Step gradients in the field variables require the use of fine grids and small time step sizes. The numerical instabilities caused by the nonlinearities often require the use of iterative methods such as Picard or Newton interation. These difficulties result in large CPU requirements in solving Richards equation. With this in mind, adaptive and multigrid methods are investigated for use with nonlinear equations such as Richards' equation. Attention is focused on one-dimensional transient problems. To investigate the use of multigrid and adaptive grid methods, a series of problems are studied. First, a multigrid program is developed and used to solve an ordinary differential equation, demonstrating the efficiency with which low and high frequency errors are smoothed out. The multigrid algorithm and an adaptive grid algorithm is used to solve one-dimensional transient partial differential equations, such as the diffusive and convective-diffusion equations. The performance of these programs are compared to that of the Gauss-Seidel and tridiagonal methods. The adaptive and multigrid schemes outperformed the Gauss-Seidel algorithm, but were not as fast as the tridiagonal method. The adaptive grid scheme solved the problems slightly faster than the multigrid method. To solve nonlinear problems, Picard iterations are introduced into the adaptive grid and tridiagonal methods. Burgers' equation is used as a test problem for the two algorithms. Both methods obtain solutions of comparable accuracy for similar time increments. For the Burgers' equation, the adaptive grid method finds the solution approximately three times faster than the tridiagonal method. Finally, both schemes are used to solve the water content formulation of the Richards' equation. For this problem, the adaptive grid method obtains a more accurate solution in fewer work units and

  20. Three-dimensional geoelectric modelling with optimal work/accuracy rate using an adaptive wavelet algorithm

    NASA Astrophysics Data System (ADS)

    Plattner, A.; Maurer, H. R.; Vorloeper, J.; Dahmen, W.

    2010-08-01

    Despite the ever-increasing power of modern computers, realistic modelling of complex 3-D earth models is still a challenging task and requires substantial computing resources. The overwhelming majority of current geophysical modelling approaches includes either finite difference or non-adaptive finite element algorithms and variants thereof. These numerical methods usually require the subsurface to be discretized with a fine mesh to accurately capture the behaviour of the physical fields. However, this may result in excessive memory consumption and computing times. A common feature of most of these algorithms is that the modelled data discretizations are independent of the model complexity, which may be wasteful when there are only minor to moderate spatial variations in the subsurface parameters. Recent developments in the theory of adaptive numerical solvers have the potential to overcome this problem. Here, we consider an adaptive wavelet-based approach that is applicable to a large range of problems, also including nonlinear problems. In comparison with earlier applications of adaptive solvers to geophysical problems we employ here a new adaptive scheme whose core ingredients arose from a rigorous analysis of the overall asymptotically optimal computational complexity, including in particular, an optimal work/accuracy rate. Our adaptive wavelet algorithm offers several attractive features: (i) for a given subsurface model, it allows the forward modelling domain to be discretized with a quasi minimal number of degrees of freedom, (ii) sparsity of the associated system matrices is guaranteed, which makes the algorithm memory efficient and (iii) the modelling accuracy scales linearly with computing time. We have implemented the adaptive wavelet algorithm for solving 3-D geoelectric problems. To test its performance, numerical experiments were conducted with a series of conductivity models exhibiting varying degrees of structural complexity. Results were compared

  1. An adaptive SVSF-SLAM algorithm to improve the success and solving the UGVs cooperation problem

    NASA Astrophysics Data System (ADS)

    Demim, Fethi; Nemra, Abdelkrim; Louadj, Kahina; Hamerlain, Mustapha; Bazoula, Abdelouahab

    2018-05-01

    This paper aims to present a Decentralised Cooperative Simultaneous Localization and Mapping (DCSLAM) solution based on 2D laser data using an Adaptive Covariance Intersection (ACI). The ACI-DCSLAM algorithm will be validated on a swarm of Unmanned Ground Vehicles (UGVs) receiving features to estimate the position and covariance of shared features before adding them to the global map. With the proposed solution, a group of (UGVs) will be able to construct a large reliable map and localise themselves within this map without any user intervention. The most popular solutions to this problem are the EKF-SLAM, Nonlinear H-infinity ? SLAM and the FAST-SLAM. The former suffers from two important problems which are the poor consistency caused by the linearization problem and the calculation of Jacobian. The second solution is the ? which is a very promising filter because it doesn't make any assumption about noise characteristics, while the latter is not suitable for real time implementation. Therefore, a new alternative solution based on the smooth variable structure filter (SVSF) is adopted. Cooperative adaptive SVSF-SLAM algorithm is proposed in this paper to solve the UGVs SLAM problem. Our main contribution consists in adapting the SVSF filter to solve the Decentralised Cooperative SLAM problem for multiple UGVs. The algorithms developed in this paper were implemented using two mobile robots Pioneer ?, equiped with 2D laser telemetry sensors. Good results are obtained by the Cooperative adaptive SVSF-SLAM algorithm compared to the Cooperative EKF/?-SLAM algorithms, especially when the noise is colored or affected by a variable bias. Simulation results confirm and show the efficiency of the proposed algorithm which is more robust, stable and adapted to real time applications.

  2. Linear-array photoacoustic imaging using minimum variance-based delay multiply and sum adaptive beamforming algorithm.

    PubMed

    Mozaffarzadeh, Moein; Mahloojifar, Ali; Orooji, Mahdi; Kratkiewicz, Karl; Adabi, Saba; Nasiriavanaki, Mohammadreza

    2018-02-01

    In photoacoustic imaging, delay-and-sum (DAS) beamformer is a common beamforming algorithm having a simple implementation. However, it results in a poor resolution and high sidelobes. To address these challenges, a new algorithm namely delay-multiply-and-sum (DMAS) was introduced having lower sidelobes compared to DAS. To improve the resolution of DMAS, a beamformer is introduced using minimum variance (MV) adaptive beamforming combined with DMAS, so-called minimum variance-based DMAS (MVB-DMAS). It is shown that expanding the DMAS equation results in multiple terms representing a DAS algebra. It is proposed to use the MV adaptive beamformer instead of the existing DAS. MVB-DMAS is evaluated numerically and experimentally. In particular, at the depth of 45 mm MVB-DMAS results in about 31, 18, and 8 dB sidelobes reduction compared to DAS, MV, and DMAS, respectively. The quantitative results of the simulations show that MVB-DMAS leads to improvement in full-width-half-maximum about 96%, 94%, and 45% and signal-to-noise ratio about 89%, 15%, and 35% compared to DAS, DMAS, MV, respectively. In particular, at the depth of 33 mm of the experimental images, MVB-DMAS results in about 20 dB sidelobes reduction in comparison with other beamformers. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  3. Entropy-based adaptive attitude estimation

    NASA Astrophysics Data System (ADS)

    Kiani, Maryam; Barzegar, Aylin; Pourtakdoust, Seid H.

    2018-03-01

    Gaussian approximation filters have increasingly been developed to enhance the accuracy of attitude estimation in space missions. The effective employment of these algorithms demands accurate knowledge of system dynamics and measurement models, as well as their noise characteristics, which are usually unavailable or unreliable. An innovation-based adaptive filtering approach has been adopted as a solution to this problem; however, it exhibits two major challenges, namely appropriate window size selection and guaranteed assurance of positive definiteness for the estimated noise covariance matrices. The current work presents two novel techniques based on relative entropy and confidence level concepts in order to address the abovementioned drawbacks. The proposed adaptation techniques are applied to two nonlinear state estimation algorithms of the extended Kalman filter and cubature Kalman filter for attitude estimation of a low earth orbit satellite equipped with three-axis magnetometers and Sun sensors. The effectiveness of the proposed adaptation scheme is demonstrated by means of comprehensive sensitivity analysis on the system and environmental parameters by using extensive independent Monte Carlo simulations.

  4. Fast algorithm of adaptive Fourier series

    NASA Astrophysics Data System (ADS)

    Gao, You; Ku, Min; Qian, Tao

    2018-05-01

    Adaptive Fourier decomposition (AFD, precisely 1-D AFD or Core-AFD) was originated for the goal of positive frequency representations of signals. It achieved the goal and at the same time offered fast decompositions of signals. There then arose several types of AFDs. AFD merged with the greedy algorithm idea, and in particular, motivated the so-called pre-orthogonal greedy algorithm (Pre-OGA) that was proven to be the most efficient greedy algorithm. The cost of the advantages of the AFD type decompositions is, however, the high computational complexity due to the involvement of maximal selections of the dictionary parameters. The present paper offers one formulation of the 1-D AFD algorithm by building the FFT algorithm into it. Accordingly, the algorithm complexity is reduced, from the original $\\mathcal{O}(M N^2)$ to $\\mathcal{O}(M N\\log_2 N)$, where $N$ denotes the number of the discretization points on the unit circle and $M$ denotes the number of points in $[0,1)$. This greatly enhances the applicability of AFD. Experiments are carried out to show the high efficiency of the proposed algorithm.

  5. Adaptive thresholding algorithm based on SAR images and wind data to segment oil spills along the northwest coast of the Iberian Peninsula.

    PubMed

    Mera, David; Cotos, José M; Varela-Pet, José; Garcia-Pineda, Oscar

    2012-10-01

    Satellite Synthetic Aperture Radar (SAR) has been established as a useful tool for detecting hydrocarbon spillage on the ocean's surface. Several surveillance applications have been developed based on this technology. Environmental variables such as wind speed should be taken into account for better SAR image segmentation. This paper presents an adaptive thresholding algorithm for detecting oil spills based on SAR data and a wind field estimation as well as its implementation as a part of a functional prototype. The algorithm was adapted to an important shipping route off the Galician coast (northwest Iberian Peninsula) and was developed on the basis of confirmed oil spills. Image testing revealed 99.93% pixel labelling accuracy. By taking advantage of multi-core processor architecture, the prototype was optimized to get a nearly 30% improvement in processing time. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Wavefront sensorless adaptive optics OCT with the DONE algorithm for in vivo human retinal imaging [Invited

    PubMed Central

    Verstraete, Hans R. G. W.; Heisler, Morgan; Ju, Myeong Jin; Wahl, Daniel; Bliek, Laurens; Kalkman, Jeroen; Bonora, Stefano; Jian, Yifan; Verhaegen, Michel; Sarunic, Marinko V.

    2017-01-01

    In this report, which is an international collaboration of OCT, adaptive optics, and control research, we demonstrate the Data-based Online Nonlinear Extremum-seeker (DONE) algorithm to guide the image based optimization for wavefront sensorless adaptive optics (WFSL-AO) OCT for in vivo human retinal imaging. The ocular aberrations were corrected using a multi-actuator adaptive lens after linearization of the hysteresis in the piezoelectric actuators. The DONE algorithm succeeded in drastically improving image quality and the OCT signal intensity, up to a factor seven, while achieving a computational time of 1 ms per iteration, making it applicable for many high speed applications. We demonstrate the correction of five aberrations using 70 iterations of the DONE algorithm performed over 2.8 s of continuous volumetric OCT acquisition. Data acquired from an imaging phantom and in vivo from human research volunteers are presented. PMID:28736670

  7. A meta-learning system based on genetic algorithms

    NASA Astrophysics Data System (ADS)

    Pellerin, Eric; Pigeon, Luc; Delisle, Sylvain

    2004-04-01

    The design of an efficient machine learning process through self-adaptation is a great challenge. The goal of meta-learning is to build a self-adaptive learning system that is constantly adapting to its specific (and dynamic) environment. To that end, the meta-learning mechanism must improve its bias dynamically by updating the current learning strategy in accordance with its available experiences or meta-knowledge. We suggest using genetic algorithms as the basis of an adaptive system. In this work, we propose a meta-learning system based on a combination of the a priori and a posteriori concepts. A priori refers to input information and knowledge available at the beginning in order to built and evolve one or more sets of parameters by exploiting the context of the system"s information. The self-learning component is based on genetic algorithms and neural Darwinism. A posteriori refers to the implicit knowledge discovered by estimation of the future states of parameters and is also applied to the finding of optimal parameters values. The in-progress research presented here suggests a framework for the discovery of knowledge that can support human experts in their intelligence information assessment tasks. The conclusion presents avenues for further research in genetic algorithms and their capability to learn to learn.

  8. Smell Detection Agent Based Optimization Algorithm

    NASA Astrophysics Data System (ADS)

    Vinod Chandra, S. S.

    2016-09-01

    In this paper, a novel nature-inspired optimization algorithm has been employed and the trained behaviour of dogs in detecting smell trails is adapted into computational agents for problem solving. The algorithm involves creation of a surface with smell trails and subsequent iteration of the agents in resolving a path. This algorithm can be applied in different computational constraints that incorporate path-based problems. Implementation of the algorithm can be treated as a shortest path problem for a variety of datasets. The simulated agents have been used to evolve the shortest path between two nodes in a graph. This algorithm is useful to solve NP-hard problems that are related to path discovery. This algorithm is also useful to solve many practical optimization problems. The extensive derivation of the algorithm can be enabled to solve shortest path problems.

  9. Lossless medical image compression using geometry-adaptive partitioning and least square-based prediction.

    PubMed

    Song, Xiaoying; Huang, Qijun; Chang, Sheng; He, Jin; Wang, Hao

    2018-06-01

    To improve the compression rates for lossless compression of medical images, an efficient algorithm, based on irregular segmentation and region-based prediction, is proposed in this paper. Considering that the first step of a region-based compression algorithm is segmentation, this paper proposes a hybrid method by combining geometry-adaptive partitioning and quadtree partitioning to achieve adaptive irregular segmentation for medical images. Then, least square (LS)-based predictors are adaptively designed for each region (regular subblock or irregular subregion). The proposed adaptive algorithm not only exploits spatial correlation between pixels but it utilizes local structure similarity, resulting in efficient compression performance. Experimental results show that the average compression performance of the proposed algorithm is 10.48, 4.86, 3.58, and 0.10% better than that of JPEG 2000, CALIC, EDP, and JPEG-LS, respectively. Graphical abstract ᅟ.

  10. G/SPLINES: A hybrid of Friedman's Multivariate Adaptive Regression Splines (MARS) algorithm with Holland's genetic algorithm

    NASA Technical Reports Server (NTRS)

    Rogers, David

    1991-01-01

    G/SPLINES are a hybrid of Friedman's Multivariable Adaptive Regression Splines (MARS) algorithm with Holland's Genetic Algorithm. In this hybrid, the incremental search is replaced by a genetic search. The G/SPLINE algorithm exhibits performance comparable to that of the MARS algorithm, requires fewer least squares computations, and allows significantly larger problems to be considered.

  11. Adaptive control and noise suppression by a variable-gain gradient algorithm

    NASA Technical Reports Server (NTRS)

    Merhav, S. J.; Mehta, R. S.

    1987-01-01

    An adaptive control system based on normalized LMS filters is investigated. The finite impulse response of the nonparametric controller is adaptively estimated using a given reference model. Specifically, the following issues are addressed: The stability of the closed loop system is analyzed and heuristically established. Next, the adaptation process is studied for piecewise constant plant parameters. It is shown that by introducing a variable-gain in the gradient algorithm, a substantial reduction in the LMS adaptation rate can be achieved. Finally, process noise at the plant output generally causes a biased estimate of the controller. By introducing a noise suppression scheme, this bias can be substantially reduced and the response of the adapted system becomes very close to that of the reference model. Extensive computer simulations validate these and demonstrate assertions that the system can rapidly adapt to random jumps in plant parameters.

  12. Adaptive Window Zero-Crossing-Based Instantaneous Frequency Estimation

    NASA Astrophysics Data System (ADS)

    Sekhar, S. Chandra; Sreenivas, TV

    2004-12-01

    We address the problem of estimating instantaneous frequency (IF) of a real-valued constant amplitude time-varying sinusoid. Estimation of polynomial IF is formulated using the zero-crossings of the signal. We propose an algorithm to estimate nonpolynomial IF by local approximation using a low-order polynomial, over a short segment of the signal. This involves the choice of window length to minimize the mean square error (MSE). The optimal window length found by directly minimizing the MSE is a function of the higher-order derivatives of the IF which are not available a priori. However, an optimum solution is formulated using an adaptive window technique based on the concept of intersection of confidence intervals. The adaptive algorithm enables minimum MSE-IF (MMSE-IF) estimation without requiring a priori information about the IF. Simulation results show that the adaptive window zero-crossing-based IF estimation method is superior to fixed window methods and is also better than adaptive spectrogram and adaptive Wigner-Ville distribution (WVD)-based IF estimators for different signal-to-noise ratio (SNR).

  13. Salient object detection: manifold-based similarity adaptation approach

    NASA Astrophysics Data System (ADS)

    Zhou, Jingbo; Ren, Yongfeng; Yan, Yunyang; Gao, Shangbing

    2014-11-01

    A saliency detection algorithm based on manifold-based similarity adaptation is proposed. The proposed algorithm is divided into three steps. First, we segment an input image into superpixels, which are represented as the nodes in a graph. Second, a new similarity measurement is used in the proposed algorithm. The weight matrix of the graph, which indicates the similarities between the nodes, uses a similarity-based method. It also captures the manifold structure of the image patches, in which the graph edges are determined in a data adaptive manner in terms of both similarity and manifold structure. Then, we use local reconstruction method as a diffusion method to obtain the saliency maps. The objective function in the proposed method is based on local reconstruction, with which estimated weights capture the manifold structure. Experiments on four bench-mark databases demonstrate the accuracy and robustness of the proposed method.

  14. An adaptive displacement estimation algorithm for improved reconstruction of thermal strain.

    PubMed

    Ding, Xuan; Dutta, Debaditya; Mahmoud, Ahmed M; Tillman, Bryan; Leers, Steven A; Kim, Kang

    2015-01-01

    Thermal strain imaging (TSI) can be used to differentiate between lipid and water-based tissues in atherosclerotic arteries. However, detecting small lipid pools in vivo requires accurate and robust displacement estimation over a wide range of displacement magnitudes. Phase-shift estimators such as Loupas' estimator and time-shift estimators such as normalized cross-correlation (NXcorr) are commonly used to track tissue displacements. However, Loupas' estimator is limited by phase-wrapping and NXcorr performs poorly when the SNR is low. In this paper, we present an adaptive displacement estimation algorithm that combines both Loupas' estimator and NXcorr. We evaluated this algorithm using computer simulations and an ex vivo human tissue sample. Using 1-D simulation studies, we showed that when the displacement magnitude induced by thermal strain was >λ/8 and the electronic system SNR was >25.5 dB, the NXcorr displacement estimate was less biased than the estimate found using Loupas' estimator. On the other hand, when the displacement magnitude was ≤λ/4 and the electronic system SNR was ≤25.5 dB, Loupas' estimator had less variance than NXcorr. We used these findings to design an adaptive displacement estimation algorithm. Computer simulations of TSI showed that the adaptive displacement estimator was less biased than either Loupas' estimator or NXcorr. Strain reconstructed from the adaptive displacement estimates improved the strain SNR by 43.7 to 350% and the spatial accuracy by 1.2 to 23.0% (P < 0.001). An ex vivo human tissue study provided results that were comparable to computer simulations. The results of this study showed that a novel displacement estimation algorithm, which combines two different displacement estimators, yielded improved displacement estimation and resulted in improved strain reconstruction.

  15. An Adaptive Displacement Estimation Algorithm for Improved Reconstruction of Thermal Strain

    PubMed Central

    Ding, Xuan; Dutta, Debaditya; Mahmoud, Ahmed M.; Tillman, Bryan; Leers, Steven A.; Kim, Kang

    2014-01-01

    Thermal strain imaging (TSI) can be used to differentiate between lipid and water-based tissues in atherosclerotic arteries. However, detecting small lipid pools in vivo requires accurate and robust displacement estimation over a wide range of displacement magnitudes. Phase-shift estimators such as Loupas’ estimator and time-shift estimators like normalized cross-correlation (NXcorr) are commonly used to track tissue displacements. However, Loupas’ estimator is limited by phase-wrapping and NXcorr performs poorly when the signal-to-noise ratio (SNR) is low. In this paper, we present an adaptive displacement estimation algorithm that combines both Loupas’ estimator and NXcorr. We evaluated this algorithm using computer simulations and an ex-vivo human tissue sample. Using 1-D simulation studies, we showed that when the displacement magnitude induced by thermal strain was >λ/8 and the electronic system SNR was >25.5 dB, the NXcorr displacement estimate was less biased than the estimate found using Loupas’ estimator. On the other hand, when the displacement magnitude was ≤λ/4 and the electronic system SNR was ≤25.5 dB, Loupas’ estimator had less variance than NXcorr. We used these findings to design an adaptive displacement estimation algorithm. Computer simulations of TSI using Field II showed that the adaptive displacement estimator was less biased than either Loupas’ estimator or NXcorr. Strain reconstructed from the adaptive displacement estimates improved the strain SNR by 43.7–350% and the spatial accuracy by 1.2–23.0% (p < 0.001). An ex-vivo human tissue study provided results that were comparable to computer simulations. The results of this study showed that a novel displacement estimation algorithm, which combines two different displacement estimators, yielded improved displacement estimation and results in improved strain reconstruction. PMID:25585398

  16. Improved adaptive genetic algorithm with sparsity constraint applied to thermal neutron CT reconstruction of two-phase flow

    NASA Astrophysics Data System (ADS)

    Yan, Mingfei; Hu, Huasi; Otake, Yoshie; Taketani, Atsushi; Wakabayashi, Yasuo; Yanagimachi, Shinzo; Wang, Sheng; Pan, Ziheng; Hu, Guang

    2018-05-01

    Thermal neutron computer tomography (CT) is a useful tool for visualizing two-phase flow due to its high imaging contrast and strong penetrability of neutrons for tube walls constructed with metallic material. A novel approach for two-phase flow CT reconstruction based on an improved adaptive genetic algorithm with sparsity constraint (IAGA-SC) is proposed in this paper. In the algorithm, the neighborhood mutation operator is used to ensure the continuity of the reconstructed object. The adaptive crossover probability P c and mutation probability P m are improved to help the adaptive genetic algorithm (AGA) achieve the global optimum. The reconstructed results for projection data, obtained from Monte Carlo simulation, indicate that the comprehensive performance of the IAGA-SC algorithm exceeds the adaptive steepest descent-projection onto convex sets (ASD-POCS) algorithm in restoring typical and complex flow regimes. It especially shows great advantages in restoring the simply connected flow regimes and the shape of object. In addition, the CT experiment for two-phase flow phantoms was conducted on the accelerator-driven neutron source to verify the performance of the developed IAGA-SC algorithm.

  17. Fully implicit adaptive mesh refinement algorithm for reduced MHD

    NASA Astrophysics Data System (ADS)

    Philip, Bobby; Pernice, Michael; Chacon, Luis

    2006-10-01

    In the macroscopic simulation of plasmas, the numerical modeler is faced with the challenge of dealing with multiple time and length scales. Traditional approaches based on explicit time integration techniques and fixed meshes are not suitable for this challenge, as such approaches prevent the modeler from using realistic plasma parameters to keep the computation feasible. We propose here a novel approach, based on implicit methods and structured adaptive mesh refinement (SAMR). Our emphasis is on both accuracy and scalability with the number of degrees of freedom. As a proof-of-principle, we focus on the reduced resistive MHD model as a basic MHD model paradigm, which is truly multiscale. The approach taken here is to adapt mature physics-based technology to AMR grids, and employ AMR-aware multilevel techniques (such as fast adaptive composite grid --FAC-- algorithms) for scalability. We demonstrate that the concept is indeed feasible, featuring near-optimal scalability under grid refinement. Results of fully-implicit, dynamically-adaptive AMR simulations in challenging dissipation regimes will be presented on a variety of problems that benefit from this capability, including tearing modes, the island coalescence instability, and the tilt mode instability. L. Chac'on et al., J. Comput. Phys. 178 (1), 15- 36 (2002) B. Philip, M. Pernice, and L. Chac'on, Lecture Notes in Computational Science and Engineering, accepted (2006)

  18. A de-noising algorithm based on wavelet threshold-exponential adaptive window width-fitting for ground electrical source airborne transient electromagnetic signal

    NASA Astrophysics Data System (ADS)

    Ji, Yanju; Li, Dongsheng; Yu, Mingmei; Wang, Yuan; Wu, Qiong; Lin, Jun

    2016-05-01

    The ground electrical source airborne transient electromagnetic system (GREATEM) on an unmanned aircraft enjoys considerable prospecting depth, lateral resolution and detection efficiency, etc. In recent years it has become an important technical means of rapid resources exploration. However, GREATEM data are extremely vulnerable to stationary white noise and non-stationary electromagnetic noise (sferics noise, aircraft engine noise and other human electromagnetic noises). These noises will cause degradation of the imaging quality for data interpretation. Based on the characteristics of the GREATEM data and major noises, we propose a de-noising algorithm utilizing wavelet threshold method and exponential adaptive window width-fitting. Firstly, the white noise is filtered in the measured data using the wavelet threshold method. Then, the data are segmented using data window whose step length is even logarithmic intervals. The data polluted by electromagnetic noise are identified within each window based on the discriminating principle of energy detection, and the attenuation characteristics of the data slope are extracted. Eventually, an exponential fitting algorithm is adopted to fit the attenuation curve of each window, and the data polluted by non-stationary electromagnetic noise are replaced with their fitting results. Thus the non-stationary electromagnetic noise can be effectively removed. The proposed algorithm is verified by the synthetic and real GREATEM signals. The results show that in GREATEM signal, stationary white noise and non-stationary electromagnetic noise can be effectively filtered using the wavelet threshold-exponential adaptive window width-fitting algorithm, which enhances the imaging quality.

  19. Prediction of cardiovascular risk in rheumatoid arthritis: performance of original and adapted SCORE algorithms.

    PubMed

    Arts, E E A; Popa, C D; Den Broeder, A A; Donders, R; Sandoo, A; Toms, T; Rollefstad, S; Ikdahl, E; Semb, A G; Kitas, G D; Van Riel, P L C M; Fransen, J

    2016-04-01

    Predictive performance of cardiovascular disease (CVD) risk calculators appears suboptimal in rheumatoid arthritis (RA). A disease-specific CVD risk algorithm may improve CVD risk prediction in RA. The objectives of this study are to adapt the Systematic COronary Risk Evaluation (SCORE) algorithm with determinants of CVD risk in RA and to assess the accuracy of CVD risk prediction calculated with the adapted SCORE algorithm. Data from the Nijmegen early RA inception cohort were used. The primary outcome was first CVD events. The SCORE algorithm was recalibrated by reweighing included traditional CVD risk factors and adapted by adding other potential predictors of CVD. Predictive performance of the recalibrated and adapted SCORE algorithms was assessed and the adapted SCORE was externally validated. Of the 1016 included patients with RA, 103 patients experienced a CVD event. Discriminatory ability was comparable across the original, recalibrated and adapted SCORE algorithms. The Hosmer-Lemeshow test results indicated that all three algorithms provided poor model fit (p<0.05) for the Nijmegen and external validation cohort. The adapted SCORE algorithm mainly improves CVD risk estimation in non-event cases and does not show a clear advantage in reclassifying patients with RA who develop CVD (event cases) into more appropriate risk groups. This study demonstrates for the first time that adaptations of the SCORE algorithm do not provide sufficient improvement in risk prediction of future CVD in RA to serve as an appropriate alternative to the original SCORE. Risk assessment using the original SCORE algorithm may underestimate CVD risk in patients with RA. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  20. Genetic algorithms with memory- and elitism-based immigrants in dynamic environments.

    PubMed

    Yang, Shengxiang

    2008-01-01

    In recent years the genetic algorithm community has shown a growing interest in studying dynamic optimization problems. Several approaches have been devised. The random immigrants and memory schemes are two major ones. The random immigrants scheme addresses dynamic environments by maintaining the population diversity while the memory scheme aims to adapt genetic algorithms quickly to new environments by reusing historical information. This paper investigates a hybrid memory and random immigrants scheme, called memory-based immigrants, and a hybrid elitism and random immigrants scheme, called elitism-based immigrants, for genetic algorithms in dynamic environments. In these schemes, the best individual from memory or the elite from the previous generation is retrieved as the base to create immigrants into the population by mutation. This way, not only can diversity be maintained but it is done more efficiently to adapt genetic algorithms to the current environment. Based on a series of systematically constructed dynamic problems, experiments are carried out to compare genetic algorithms with the memory-based and elitism-based immigrants schemes against genetic algorithms with traditional memory and random immigrants schemes and a hybrid memory and multi-population scheme. The sensitivity analysis regarding some key parameters is also carried out. Experimental results show that the memory-based and elitism-based immigrants schemes efficiently improve the performance of genetic algorithms in dynamic environments.

  1. Angular-contact ball-bearing internal load estimation algorithm using runtime adaptive relaxation

    NASA Astrophysics Data System (ADS)

    Medina, H.; Mutu, R.

    2017-07-01

    An algorithm to estimate internal loads for single-row angular contact ball bearings due to externally applied thrust loads and high-operating speeds is presented. A new runtime adaptive relaxation procedure and blending function is proposed which ensures algorithm stability whilst also reducing the number of iterations needed to reach convergence, leading to an average reduction in computation time in excess of approximately 80%. The model is validated based on a 218 angular contact bearing and shows excellent agreement compared to published results.

  2. An Adaptive ANOVA-based PCKF for High-Dimensional Nonlinear Inverse Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LI, Weixuan; Lin, Guang; Zhang, Dongxiao

    2014-02-01

    The probabilistic collocation-based Kalman filter (PCKF) is a recently developed approach for solving inverse problems. It resembles the ensemble Kalman filter (EnKF) in every aspect—except that it represents and propagates model uncertainty by polynomial chaos expansion (PCE) instead of an ensemble of model realizations. Previous studies have shown PCKF is a more efficient alternative to EnKF for many data assimilation problems. However, the accuracy and efficiency of PCKF depends on an appropriate truncation of the PCE series. Having more polynomial chaos bases in the expansion helps to capture uncertainty more accurately but increases computational cost. Bases selection is particularly importantmore » for high-dimensional stochastic problems because the number of polynomial chaos bases required to represent model uncertainty grows dramatically as the number of input parameters (random dimensions) increases. In classic PCKF algorithms, the PCE bases are pre-set based on users’ experience. Also, for sequential data assimilation problems, the bases kept in PCE expression remain unchanged in different Kalman filter loops, which could limit the accuracy and computational efficiency of classic PCKF algorithms. To address this issue, we present a new algorithm that adaptively selects PCE bases for different problems and automatically adjusts the number of bases in different Kalman filter loops. The algorithm is based on adaptive functional ANOVA (analysis of variance) decomposition, which approximates a high-dimensional function with the summation of a set of low-dimensional functions. Thus, instead of expanding the original model into PCE, we implement the PCE expansion on these low-dimensional functions, which is much less costly. We also propose a new adaptive criterion for ANOVA that is more suited for solving inverse problems. The new algorithm is tested with different examples and demonstrated great effectiveness in comparison with non-adaptive PCKF and En

  3. Teaching AI Search Algorithms in a Web-Based Educational System

    ERIC Educational Resources Information Center

    Grivokostopoulou, Foteini; Hatzilygeroudis, Ioannis

    2013-01-01

    In this paper, we present a way of teaching AI search algorithms in a web-based adaptive educational system. Teaching is based on interactive examples and exercises. Interactive examples, which use visualized animations to present AI search algorithms in a step-by-step way with explanations, are used to make learning more attractive. Practice…

  4. Adaptive phase k-means algorithm for waveform classification

    NASA Astrophysics Data System (ADS)

    Song, Chengyun; Liu, Zhining; Wang, Yaojun; Xu, Feng; Li, Xingming; Hu, Guangmin

    2018-01-01

    Waveform classification is a powerful technique for seismic facies analysis that describes the heterogeneity and compartments within a reservoir. Horizon interpretation is a critical step in waveform classification. However, the horizon often produces inconsistent waveform phase, and thus results in an unsatisfied classification. To alleviate this problem, an adaptive phase waveform classification method called the adaptive phase k-means is introduced in this paper. Our method improves the traditional k-means algorithm using an adaptive phase distance for waveform similarity measure. The proposed distance is a measure with variable phases as it moves from sample to sample along the traces. Model traces are also updated with the best phase interference in the iterative process. Therefore, our method is robust to phase variations caused by the interpretation horizon. We tested the effectiveness of our algorithm by applying it to synthetic and real data. The satisfactory results reveal that the proposed method tolerates certain waveform phase variation and is a good tool for seismic facies analysis.

  5. A Hybrid Adaptive Routing Algorithm for Event-Driven Wireless Sensor Networks

    PubMed Central

    Figueiredo, Carlos M. S.; Nakamura, Eduardo F.; Loureiro, Antonio A. F.

    2009-01-01

    Routing is a basic function in wireless sensor networks (WSNs). For these networks, routing algorithms depend on the characteristics of the applications and, consequently, there is no self-contained algorithm suitable for every case. In some scenarios, the network behavior (traffic load) may vary a lot, such as an event-driven application, favoring different algorithms at different instants. This work presents a hybrid and adaptive algorithm for routing in WSNs, called Multi-MAF, that adapts its behavior autonomously in response to the variation of network conditions. In particular, the proposed algorithm applies both reactive and proactive strategies for routing infrastructure creation, and uses an event-detection estimation model to change between the strategies and save energy. To show the advantages of the proposed approach, it is evaluated through simulations. Comparisons with independent reactive and proactive algorithms show improvements on energy consumption. PMID:22423207

  6. A hybrid adaptive routing algorithm for event-driven wireless sensor networks.

    PubMed

    Figueiredo, Carlos M S; Nakamura, Eduardo F; Loureiro, Antonio A F

    2009-01-01

    Routing is a basic function in wireless sensor networks (WSNs). For these networks, routing algorithms depend on the characteristics of the applications and, consequently, there is no self-contained algorithm suitable for every case. In some scenarios, the network behavior (traffic load) may vary a lot, such as an event-driven application, favoring different algorithms at different instants. This work presents a hybrid and adaptive algorithm for routing in WSNs, called Multi-MAF, that adapts its behavior autonomously in response to the variation of network conditions. In particular, the proposed algorithm applies both reactive and proactive strategies for routing infrastructure creation, and uses an event-detection estimation model to change between the strategies and save energy. To show the advantages of the proposed approach, it is evaluated through simulations. Comparisons with independent reactive and proactive algorithms show improvements on energy consumption.

  7. An adaptive grid algorithm for 3-D GIS landform optimization based on improved ant algorithm

    NASA Astrophysics Data System (ADS)

    Wu, Chenhan; Meng, Lingkui; Deng, Shijun

    2005-07-01

    The key technique of 3-D GIS is to realize quick and high-quality 3-D visualization, in which 3-D roaming system based on landform plays an important role. However how to increase efficiency of 3-D roaming engine and process a large amount of landform data is a key problem in 3-D landform roaming system and improper process of the problem would result in tremendous consumption of system resources. Therefore it has become the key of 3-D roaming system design that how to realize high-speed process of distributed data for landform DEM (Digital Elevation Model) and high-speed distributed modulation of various 3-D landform data resources. In the paper we improved the basic ant algorithm and designed the modulation strategy of 3-D GIS landform resources based on the improved ant algorithm. By initially hypothetic road weights σi , the change of the information factors in the original algorithm would transform from ˜τj to ∆τj+σi and the weights was decided by 3-D computative capacity of various nodes in network environment. So during the course of initial phase of task assignment, increasing the resource information factors of high task-accomplishing rate and decreasing ones of low accomplishing rate would make load accomplishing rate approach the same value as quickly as possible, then in the later process of task assignment, the load balanced ability of the system was further improved. Experimental results show by improving ant algorithm, our system not only decreases many disadvantage of the traditional ant algorithm, but also like ants looking for food effectively distributes the complicated landform algorithm to many computers to process cooperatively and gains a satisfying search result.

  8. Mouse EEG spike detection based on the adapted continuous wavelet transform

    NASA Astrophysics Data System (ADS)

    Tieng, Quang M.; Kharatishvili, Irina; Chen, Min; Reutens, David C.

    2016-04-01

    Objective. Electroencephalography (EEG) is an important tool in the diagnosis of epilepsy. Interictal spikes on EEG are used to monitor the development of epilepsy and the effects of drug therapy. EEG recordings are generally long and the data voluminous. Thus developing a sensitive and reliable automated algorithm for analyzing EEG data is necessary. Approach. A new algorithm for detecting and classifying interictal spikes in mouse EEG recordings is proposed, based on the adapted continuous wavelet transform (CWT). The construction of the adapted mother wavelet is founded on a template obtained from a sample comprising the first few minutes of an EEG data set. Main Result. The algorithm was tested with EEG data from a mouse model of epilepsy and experimental results showed that the algorithm could distinguish EEG spikes from other transient waveforms with a high degree of sensitivity and specificity. Significance. Differing from existing approaches, the proposed approach combines wavelet denoising, to isolate transient signals, with adapted CWT-based template matching, to detect true interictal spikes. Using the adapted wavelet constructed from a predefined template, the adapted CWT is calculated on small EEG segments to fit dynamical changes in the EEG recording.

  9. A parallel second-order adaptive mesh algorithm for incompressible flow in porous media.

    PubMed

    Pau, George S H; Almgren, Ann S; Bell, John B; Lijewski, Michael J

    2009-11-28

    In this paper, we present a second-order accurate adaptive algorithm for solving multi-phase, incompressible flow in porous media. We assume a multi-phase form of Darcy's law with relative permeabilities given as a function of the phase saturation. The remaining equations express conservation of mass for the fluid constituents. In this setting, the total velocity, defined to be the sum of the phase velocities, is divergence free. The basic integration method is based on a total-velocity splitting approach in which we solve a second-order elliptic pressure equation to obtain a total velocity. This total velocity is then used to recast component conservation equations as nonlinear hyperbolic equations. Our approach to adaptive refinement uses a nested hierarchy of logically rectangular grids with simultaneous refinement of the grids in both space and time. The integration algorithm on the grid hierarchy is a recursive procedure in which coarse grids are advanced in time, fine grids are advanced multiple steps to reach the same time as the coarse grids and the data at different levels are then synchronized. The single-grid algorithm is described briefly, but the emphasis here is on the time-stepping procedure for the adaptive hierarchy. Numerical examples are presented to demonstrate the algorithm's accuracy and convergence properties and to illustrate the behaviour of the method.

  10. A globally convergent MC algorithm with an adaptive learning rate.

    PubMed

    Peng, Dezhong; Yi, Zhang; Xiang, Yong; Zhang, Haixian

    2012-02-01

    This brief deals with the problem of minor component analysis (MCA). Artificial neural networks can be exploited to achieve the task of MCA. Recent research works show that convergence of neural networks based MCA algorithms can be guaranteed if the learning rates are less than certain thresholds. However, the computation of these thresholds needs information about the eigenvalues of the autocorrelation matrix of data set, which is unavailable in online extraction of minor component from input data stream. In this correspondence, we introduce an adaptive learning rate into the OJAn MCA algorithm, such that its convergence condition does not depend on any unobtainable information, and can be easily satisfied in practical applications.

  11. [Algorithm of locally adaptive region growing based on multi-template matching applied to automated detection of hemorrhages].

    PubMed

    Gao, Wei-Wei; Shen, Jian-Xin; Wang, Yu-Liang; Liang, Chun; Zuo, Jing

    2013-02-01

    In order to automatically detect hemorrhages in fundus images, and develop an automated diabetic retinopathy screening system, a novel algorithm named locally adaptive region growing based on multi-template matching was established and studied. Firstly, spectral signature of major anatomical structures in fundus was studied, so that the right channel among RGB channels could be selected for different segmentation objects. Secondly, the fundus image was preprocessed by means of HSV brightness correction and contrast limited adaptive histogram equalization (CLAHE). Then, seeds of region growing were founded out by removing optic disc and vessel from the resulting image of normalized cross-correlation (NCC) template matching on the previous preprocessed image with several templates. Finally, locally adaptive region growing segmentation was used to find out the exact contours of hemorrhages, and the automated detection of the lesions was accomplished. The approach was tested on 90 different resolution fundus images with variable color, brightness and quality. Results suggest that the approach could fast and effectively detect hemorrhages in fundus images, and it is stable and robust. As a result, the approach can meet the clinical demands.

  12. Adaptive MPC based on MIMO ARX-Laguerre model.

    PubMed

    Ben Abdelwahed, Imen; Mbarek, Abdelkader; Bouzrara, Kais

    2017-03-01

    This paper proposes a method for synthesizing an adaptive predictive controller using a reduced complexity model. This latter is given by the projection of the ARX model on Laguerre bases. The resulting model is entitled MIMO ARX-Laguerre and it is characterized by an easy recursive representation. The adaptive predictive control law is computed based on multi-step-ahead finite-element predictors, identified directly from experimental input/output data. The model is tuned in each iteration by an online identification algorithms of both model parameters and Laguerre poles. The proposed approach avoids time consuming numerical optimization algorithms associated with most common linear predictive control strategies, which makes it suitable for real-time implementation. The method is used to synthesize and test in numerical simulations adaptive predictive controllers for the CSTR process benchmark. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Modified compensation algorithm of lever-arm effect and flexural deformation for polar shipborne transfer alignment based on improved adaptive Kalman filter

    NASA Astrophysics Data System (ADS)

    Wang, Tongda; Cheng, Jianhua; Guan, Dongxue; Kang, Yingyao; Zhang, Wei

    2017-09-01

    Due to the lever-arm effect and flexural deformation in the practical application of transfer alignment (TA), the TA performance is decreased. The existing polar TA algorithm only compensates a fixed lever-arm without considering the dynamic lever-arm caused by flexural deformation; traditional non-polar TA algorithms also have some limitations. Thus, the performance of existing compensation algorithms is unsatisfactory. In this paper, a modified compensation algorithm of the lever-arm effect and flexural deformation is proposed to promote the accuracy and speed of the polar TA. On the basis of a dynamic lever-arm model and a noise compensation method for flexural deformation, polar TA equations are derived in grid frames. Based on the velocity-plus-attitude matching method, the filter models of polar TA are designed. An adaptive Kalman filter (AKF) is improved to promote the robustness and accuracy of the system, and then applied to the estimation of the misalignment angles. Simulation and experiment results have demonstrated that the modified compensation algorithm based on the improved AKF for polar TA can effectively compensate the lever-arm effect and flexural deformation, and then improve the accuracy and speed of TA in the polar region.

  14. Adaptive Cross-correlation Algorithm and Experiment of Extended Scene Shack-Hartmann Wavefront Sensing

    NASA Technical Reports Server (NTRS)

    Sidick, Erkin; Morgan, Rhonda M.; Green, Joseph J.; Ohara, Catherine M.; Redding, David C.

    2007-01-01

    We have developed a new, adaptive cross-correlation (ACC) algorithm to estimate with high accuracy the shift as large as several pixels in two extended-scene images captured by a Shack-Hartmann wavefront sensor (SH-WFS). It determines the positions of all of the extended-scene image cells relative to a reference cell using an FFT-based iterative image shifting algorithm. It works with both point-source spot images as well as extended scene images. We have also set up a testbed for extended0scene SH-WFS, and tested the ACC algorithm with the measured data of both point-source and extended-scene images. In this paper we describe our algorithm and present out experimental results.

  15. Analysis of convergence of an evolutionary algorithm with self-adaptation using a stochastic Lyapunov function.

    PubMed

    Semenov, Mikhail A; Terkel, Dmitri A

    2003-01-01

    This paper analyses the convergence of evolutionary algorithms using a technique which is based on a stochastic Lyapunov function and developed within the martingale theory. This technique is used to investigate the convergence of a simple evolutionary algorithm with self-adaptation, which contains two types of parameters: fitness parameters, belonging to the domain of the objective function; and control parameters, responsible for the variation of fitness parameters. Although both parameters mutate randomly and independently, they converge to the "optimum" due to the direct (for fitness parameters) and indirect (for control parameters) selection. We show that the convergence velocity of the evolutionary algorithm with self-adaptation is asymptotically exponential, similar to the velocity of the optimal deterministic algorithm on the class of unimodal functions. Although some martingale inequalities have not be proved analytically, they have been numerically validated with 0.999 confidence using Monte-Carlo simulations.

  16. Image segmentation algorithm based on improved PCNN

    NASA Astrophysics Data System (ADS)

    Chen, Hong; Wu, Chengdong; Yu, Xiaosheng; Wu, Jiahui

    2017-11-01

    A modified simplified Pulse Coupled Neural Network (PCNN) model is proposed in this article based on simplified PCNN. Some work have done to enrich this model, such as imposing restrictions items of the inputs, improving linking inputs and internal activity of PCNN. A self-adaptive parameter setting method of linking coefficient and threshold value decay time constant is proposed here, too. At last, we realized image segmentation algorithm for five pictures based on this proposed simplified PCNN model and PSO. Experimental results demonstrate that this image segmentation algorithm is much better than method of SPCNN and OTSU.

  17. A Self-Adaptive Fuzzy c-Means Algorithm for Determining the Optimal Number of Clusters

    PubMed Central

    Wang, Zhihao; Yi, Jing

    2016-01-01

    For the shortcoming of fuzzy c-means algorithm (FCM) needing to know the number of clusters in advance, this paper proposed a new self-adaptive method to determine the optimal number of clusters. Firstly, a density-based algorithm was put forward. The algorithm, according to the characteristics of the dataset, automatically determined the possible maximum number of clusters instead of using the empirical rule n and obtained the optimal initial cluster centroids, improving the limitation of FCM that randomly selected cluster centroids lead the convergence result to the local minimum. Secondly, this paper, by introducing a penalty function, proposed a new fuzzy clustering validity index based on fuzzy compactness and separation, which ensured that when the number of clusters verged on that of objects in the dataset, the value of clustering validity index did not monotonically decrease and was close to zero, so that the optimal number of clusters lost robustness and decision function. Then, based on these studies, a self-adaptive FCM algorithm was put forward to estimate the optimal number of clusters by the iterative trial-and-error process. At last, experiments were done on the UCI, KDD Cup 1999, and synthetic datasets, which showed that the method not only effectively determined the optimal number of clusters, but also reduced the iteration of FCM with the stable clustering result. PMID:28042291

  18. Dependence of Adaptive Cross-correlation Algorithm Performance on the Extended Scene Image Quality

    NASA Technical Reports Server (NTRS)

    Sidick, Erkin

    2008-01-01

    Recently, we reported an adaptive cross-correlation (ACC) algorithm to estimate with high accuracy the shift as large as several pixels between two extended-scene sub-images captured by a Shack-Hartmann wavefront sensor. It determines the positions of all extended-scene image cells relative to a reference cell in the same frame using an FFT-based iterative image-shifting algorithm. It works with both point-source spot images as well as extended scene images. We have demonstrated previously based on some measured images that the ACC algorithm can determine image shifts with as high an accuracy as 0.01 pixel for shifts as large 3 pixels, and yield similar results for both point source spot images and extended scene images. The shift estimate accuracy of the ACC algorithm depends on illumination level, background, and scene content in addition to the amount of the shift between two image cells. In this paper we investigate how the performance of the ACC algorithm depends on the quality and the frequency content of extended scene images captured by a Shack-Hatmann camera. We also compare the performance of the ACC algorithm with those of several other approaches, and introduce a failsafe criterion for the ACC algorithm-based extended scene Shack-Hatmann sensors.

  19. Robust Multi-Frame Adaptive Optics Image Restoration Algorithm Using Maximum Likelihood Estimation with Poisson Statistics.

    PubMed

    Li, Dongming; Sun, Changming; Yang, Jinhua; Liu, Huan; Peng, Jiaqi; Zhang, Lijuan

    2017-04-06

    An adaptive optics (AO) system provides real-time compensation for atmospheric turbulence. However, an AO image is usually of poor contrast because of the nature of the imaging process, meaning that the image contains information coming from both out-of-focus and in-focus planes of the object, which also brings about a loss in quality. In this paper, we present a robust multi-frame adaptive optics image restoration algorithm via maximum likelihood estimation. Our proposed algorithm uses a maximum likelihood method with image regularization as the basic principle, and constructs the joint log likelihood function for multi-frame AO images based on a Poisson distribution model. To begin with, a frame selection method based on image variance is applied to the observed multi-frame AO images to select images with better quality to improve the convergence of a blind deconvolution algorithm. Then, by combining the imaging conditions and the AO system properties, a point spread function estimation model is built. Finally, we develop our iterative solutions for AO image restoration addressing the joint deconvolution issue. We conduct a number of experiments to evaluate the performances of our proposed algorithm. Experimental results show that our algorithm produces accurate AO image restoration results and outperforms the current state-of-the-art blind deconvolution methods.

  20. Robust Multi-Frame Adaptive Optics Image Restoration Algorithm Using Maximum Likelihood Estimation with Poisson Statistics

    PubMed Central

    Li, Dongming; Sun, Changming; Yang, Jinhua; Liu, Huan; Peng, Jiaqi; Zhang, Lijuan

    2017-01-01

    An adaptive optics (AO) system provides real-time compensation for atmospheric turbulence. However, an AO image is usually of poor contrast because of the nature of the imaging process, meaning that the image contains information coming from both out-of-focus and in-focus planes of the object, which also brings about a loss in quality. In this paper, we present a robust multi-frame adaptive optics image restoration algorithm via maximum likelihood estimation. Our proposed algorithm uses a maximum likelihood method with image regularization as the basic principle, and constructs the joint log likelihood function for multi-frame AO images based on a Poisson distribution model. To begin with, a frame selection method based on image variance is applied to the observed multi-frame AO images to select images with better quality to improve the convergence of a blind deconvolution algorithm. Then, by combining the imaging conditions and the AO system properties, a point spread function estimation model is built. Finally, we develop our iterative solutions for AO image restoration addressing the joint deconvolution issue. We conduct a number of experiments to evaluate the performances of our proposed algorithm. Experimental results show that our algorithm produces accurate AO image restoration results and outperforms the current state-of-the-art blind deconvolution methods. PMID:28383503

  1. Forecasting ESKAPE infections through a time-varying auto-adaptive algorithm using laboratory-based surveillance data.

    PubMed

    Ballarin, Antonio; Posteraro, Brunella; Demartis, Giuseppe; Gervasi, Simona; Panzarella, Fabrizio; Torelli, Riccardo; Paroni Sterbini, Francesco; Morandotti, Grazia; Posteraro, Patrizia; Ricciardi, Walter; Gervasi Vidal, Kristian A; Sanguinetti, Maurizio

    2014-12-06

    Mathematical or statistical tools are capable to provide a valid help to improve surveillance systems for healthcare and non-healthcare-associated bacterial infections. The aim of this work is to evaluate the time-varying auto-adaptive (TVA) algorithm-based use of clinical microbiology laboratory database to forecast medically important drug-resistant bacterial infections. Using TVA algorithm, six distinct time series were modelled, each one representing the number of episodes per single 'ESKAPE' (E nterococcus faecium, S taphylococcus aureus, K lebsiella pneumoniae, A cinetobacter baumannii, P seudomonas aeruginosa and E nterobacter species) infecting pathogen, that had occurred monthly between 2002 and 2011 calendar years at the Università Cattolica del Sacro Cuore general hospital. Monthly moving averaged numbers of observed and forecasted ESKAPE infectious episodes were found to show a complete overlapping of their respective smoothed time series curves. Overall good forecast accuracy was observed, with percentages ranging from 82.14% for E. faecium infections to 90.36% for S. aureus infections. Our approach may regularly provide physicians with forecasted bacterial infection rates to alert them about the spread of antibiotic-resistant bacterial species, especially when clinical microbiological results of patients' specimens are delayed.

  2. A novel ship CFAR detection algorithm based on adaptive parameter enhancement and wake-aided detection in SAR images

    NASA Astrophysics Data System (ADS)

    Meng, Siqi; Ren, Kan; Lu, Dongming; Gu, Guohua; Chen, Qian; Lu, Guojun

    2018-03-01

    Synthetic aperture radar (SAR) is an indispensable and useful method for marine monitoring. With the increase of SAR sensors, high resolution images can be acquired and contain more target structure information, such as more spatial details etc. This paper presents a novel adaptive parameter transform (APT) domain constant false alarm rate (CFAR) to highlight targets. The whole method is based on the APT domain value. Firstly, the image is mapped to the new transform domain by the algorithm. Secondly, the false candidate target pixels are screened out by the CFAR detector to highlight the target ships. Thirdly, the ship pixels are replaced by the homogeneous sea pixels. And then, the enhanced image is processed by Niblack algorithm to obtain the wake binary image. Finally, normalized Hough transform (NHT) is used to detect wakes in the binary image, as a verification of the presence of the ships. Experiments on real SAR images validate that the proposed transform does enhance the target structure and improve the contrast of the image. The algorithm has a good performance in the ship and ship wake detection.

  3. Non-tables look-up search algorithm for efficient H.264/AVC context-based adaptive variable length coding decoding

    NASA Astrophysics Data System (ADS)

    Han, Yishi; Luo, Zhixiao; Wang, Jianhua; Min, Zhixuan; Qin, Xinyu; Sun, Yunlong

    2014-09-01

    In general, context-based adaptive variable length coding (CAVLC) decoding in H.264/AVC standard requires frequent access to the unstructured variable length coding tables (VLCTs) and significant memory accesses are consumed. Heavy memory accesses will cause high power consumption and time delays, which are serious problems for applications in portable multimedia devices. We propose a method for high-efficiency CAVLC decoding by using a program instead of all the VLCTs. The decoded codeword from VLCTs can be obtained without any table look-up and memory access. The experimental results show that the proposed algorithm achieves 100% memory access saving and 40% decoding time saving without degrading video quality. Additionally, the proposed algorithm shows a better performance compared with conventional CAVLC decoding, such as table look-up by sequential search, table look-up by binary search, Moon's method, and Kim's method.

  4. Log-linear model based behavior selection method for artificial fish swarm algorithm.

    PubMed

    Huang, Zhehuang; Chen, Yidong

    2015-01-01

    Artificial fish swarm algorithm (AFSA) is a population based optimization technique inspired by social behavior of fishes. In past several years, AFSA has been successfully applied in many research and application areas. The behavior of fishes has a crucial impact on the performance of AFSA, such as global exploration ability and convergence speed. How to construct and select behaviors of fishes are an important task. To solve these problems, an improved artificial fish swarm algorithm based on log-linear model is proposed and implemented in this paper. There are three main works. Firstly, we proposed a new behavior selection algorithm based on log-linear model which can enhance decision making ability of behavior selection. Secondly, adaptive movement behavior based on adaptive weight is presented, which can dynamically adjust according to the diversity of fishes. Finally, some new behaviors are defined and introduced into artificial fish swarm algorithm at the first time to improve global optimization capability. The experiments on high dimensional function optimization showed that the improved algorithm has more powerful global exploration ability and reasonable convergence speed compared with the standard artificial fish swarm algorithm.

  5. Log-Linear Model Based Behavior Selection Method for Artificial Fish Swarm Algorithm

    PubMed Central

    Huang, Zhehuang; Chen, Yidong

    2015-01-01

    Artificial fish swarm algorithm (AFSA) is a population based optimization technique inspired by social behavior of fishes. In past several years, AFSA has been successfully applied in many research and application areas. The behavior of fishes has a crucial impact on the performance of AFSA, such as global exploration ability and convergence speed. How to construct and select behaviors of fishes are an important task. To solve these problems, an improved artificial fish swarm algorithm based on log-linear model is proposed and implemented in this paper. There are three main works. Firstly, we proposed a new behavior selection algorithm based on log-linear model which can enhance decision making ability of behavior selection. Secondly, adaptive movement behavior based on adaptive weight is presented, which can dynamically adjust according to the diversity of fishes. Finally, some new behaviors are defined and introduced into artificial fish swarm algorithm at the first time to improve global optimization capability. The experiments on high dimensional function optimization showed that the improved algorithm has more powerful global exploration ability and reasonable convergence speed compared with the standard artificial fish swarm algorithm. PMID:25691895

  6. An adaptive enhancement algorithm for infrared video based on modified k-means clustering

    NASA Astrophysics Data System (ADS)

    Zhang, Linze; Wang, Jingqi; Wu, Wen

    2016-09-01

    In this paper, we have proposed a video enhancement algorithm to improve the output video of the infrared camera. Sometimes the video obtained by infrared camera is very dark since there is no clear target. In this case, infrared video should be divided into frame images by frame extraction, in order to carry out the image enhancement. For the first frame image, which can be divided into k sub images by using K-means clustering according to the gray interval it occupies before k sub images' histogram equalization according to the amount of information per sub image, we used a method to solve a problem that final cluster centers close to each other in some cases; and for the other frame images, their initial cluster centers can be determined by the final clustering centers of the previous ones, and the histogram equalization of each sub image will be carried out after image segmentation based on K-means clustering. The histogram equalization can make the gray value of the image to the whole gray level, and the gray level of each sub image is determined by the ratio of pixels to a frame image. Experimental results show that this algorithm can improve the contrast of infrared video where night target is not obvious which lead to a dim scene, and reduce the negative effect given by the overexposed pixels adaptively in a certain range.

  7. A parallel adaptive quantum genetic algorithm for the controllability of arbitrary networks.

    PubMed

    Li, Yuhong; Gong, Guanghong; Li, Ni

    2018-01-01

    In this paper, we propose a novel algorithm-parallel adaptive quantum genetic algorithm-which can rapidly determine the minimum control nodes of arbitrary networks with both control nodes and state nodes. The corresponding network can be fully controlled with the obtained control scheme. We transformed the network controllability issue into a combinational optimization problem based on the Popov-Belevitch-Hautus rank condition. A set of canonical networks and a list of real-world networks were experimented. Comparison results demonstrated that the algorithm was more ideal to optimize the controllability of networks, especially those larger-size networks. We demonstrated subsequently that there were links between the optimal control nodes and some network statistical characteristics. The proposed algorithm provides an effective approach to improve the controllability optimization of large networks or even extra-large networks with hundreds of thousands nodes.

  8. Detecting an atomic clock frequency anomaly using an adaptive Kalman filter algorithm

    NASA Astrophysics Data System (ADS)

    Song, Huijie; Dong, Shaowu; Wu, Wenjun; Jiang, Meng; Wang, Weixiong

    2018-06-01

    The abnormal frequencies of an atomic clock mainly include frequency jump and frequency drift jump. Atomic clock frequency anomaly detection is a key technique in time-keeping. The Kalman filter algorithm, as a linear optimal algorithm, has been widely used in real-time detection for abnormal frequency. In order to obtain an optimal state estimation, the observation model and dynamic model of the Kalman filter algorithm should satisfy Gaussian white noise conditions. The detection performance is degraded if anomalies affect the observation model or dynamic model. The idea of the adaptive Kalman filter algorithm, applied to clock frequency anomaly detection, uses the residuals given by the prediction for building ‘an adaptive factor’ the prediction state covariance matrix is real-time corrected by the adaptive factor. The results show that the model error is reduced and the detection performance is improved. The effectiveness of the algorithm is verified by the frequency jump simulation, the frequency drift jump simulation and the measured data of the atomic clock by using the chi-square test.

  9. List-Based Simulated Annealing Algorithm for Traveling Salesman Problem

    PubMed Central

    Zhan, Shi-hua; Lin, Juan; Zhang, Ze-jun

    2016-01-01

    Simulated annealing (SA) algorithm is a popular intelligent optimization algorithm which has been successfully applied in many fields. Parameters' setting is a key factor for its performance, but it is also a tedious work. To simplify parameters setting, we present a list-based simulated annealing (LBSA) algorithm to solve traveling salesman problem (TSP). LBSA algorithm uses a novel list-based cooling schedule to control the decrease of temperature. Specifically, a list of temperatures is created first, and then the maximum temperature in list is used by Metropolis acceptance criterion to decide whether to accept a candidate solution. The temperature list is adapted iteratively according to the topology of the solution space of the problem. The effectiveness and the parameter sensitivity of the list-based cooling schedule are illustrated through benchmark TSP problems. The LBSA algorithm, whose performance is robust on a wide range of parameter values, shows competitive performance compared with some other state-of-the-art algorithms. PMID:27034650

  10. List-Based Simulated Annealing Algorithm for Traveling Salesman Problem.

    PubMed

    Zhan, Shi-hua; Lin, Juan; Zhang, Ze-jun; Zhong, Yi-wen

    2016-01-01

    Simulated annealing (SA) algorithm is a popular intelligent optimization algorithm which has been successfully applied in many fields. Parameters' setting is a key factor for its performance, but it is also a tedious work. To simplify parameters setting, we present a list-based simulated annealing (LBSA) algorithm to solve traveling salesman problem (TSP). LBSA algorithm uses a novel list-based cooling schedule to control the decrease of temperature. Specifically, a list of temperatures is created first, and then the maximum temperature in list is used by Metropolis acceptance criterion to decide whether to accept a candidate solution. The temperature list is adapted iteratively according to the topology of the solution space of the problem. The effectiveness and the parameter sensitivity of the list-based cooling schedule are illustrated through benchmark TSP problems. The LBSA algorithm, whose performance is robust on a wide range of parameter values, shows competitive performance compared with some other state-of-the-art algorithms.

  11. Fast frequency acquisition via adaptive least squares algorithm

    NASA Technical Reports Server (NTRS)

    Kumar, R.

    1986-01-01

    A new least squares algorithm is proposed and investigated for fast frequency and phase acquisition of sinusoids in the presence of noise. This algorithm is a special case of more general, adaptive parameter-estimation techniques. The advantages of the algorithms are their conceptual simplicity, flexibility and applicability to general situations. For example, the frequency to be acquired can be time varying, and the noise can be nonGaussian, nonstationary and colored. As the proposed algorithm can be made recursive in the number of observations, it is not necessary to have a priori knowledge of the received signal-to-noise ratio or to specify the measurement time. This would be required for batch processing techniques, such as the fast Fourier transform (FFT). The proposed algorithm improves the frequency estimate on a recursive basis as more and more observations are obtained. When the algorithm is applied in real time, it has the extra advantage that the observations need not be stored. The algorithm also yields a real time confidence measure as to the accuracy of the estimator.

  12. Reconstruction of sparse-view X-ray computed tomography using adaptive iterative algorithms.

    PubMed

    Liu, Li; Lin, Weikai; Jin, Mingwu

    2015-01-01

    In this paper, we propose two reconstruction algorithms for sparse-view X-ray computed tomography (CT). Treating the reconstruction problems as data fidelity constrained total variation (TV) minimization, both algorithms adapt the alternate two-stage strategy: projection onto convex sets (POCS) for data fidelity and non-negativity constraints and steepest descent for TV minimization. The novelty of this work is to determine iterative parameters automatically from data, thus avoiding tedious manual parameter tuning. In TV minimization, the step sizes of steepest descent are adaptively adjusted according to the difference from POCS update in either the projection domain or the image domain, while the step size of algebraic reconstruction technique (ART) in POCS is determined based on the data noise level. In addition, projection errors are used to compare with the error bound to decide whether to perform ART so as to reduce computational costs. The performance of the proposed methods is studied and evaluated using both simulated and physical phantom data. Our methods with automatic parameter tuning achieve similar, if not better, reconstruction performance compared to a representative two-stage algorithm. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Vehicle tracking using fuzzy-based vehicle detection window with adaptive parameters

    NASA Astrophysics Data System (ADS)

    Chitsobhuk, Orachat; Kasemsiri, Watjanapong; Glomglome, Sorayut; Lapamonpinyo, Pipatphon

    2018-04-01

    In this paper, fuzzy-based vehicle tracking system is proposed. The proposed system consists of two main processes: vehicle detection and vehicle tracking. In the first process, the Gradient-based Adaptive Threshold Estimation (GATE) algorithm is adopted to provide the suitable threshold value for the sobel edge detection. The estimated threshold can be adapted to the changes of diverse illumination conditions throughout the day. This leads to greater vehicle detection performance compared to a fixed user's defined threshold. In the second process, this paper proposes the novel vehicle tracking algorithms namely Fuzzy-based Vehicle Analysis (FBA) in order to reduce the false estimation of the vehicle tracking caused by uneven edges of the large vehicles and vehicle changing lanes. The proposed FBA algorithm employs the average edge density and the Horizontal Moving Edge Detection (HMED) algorithm to alleviate those problems by adopting fuzzy rule-based algorithms to rectify the vehicle tracking. The experimental results demonstrate that the proposed system provides the high accuracy of vehicle detection about 98.22%. In addition, it also offers the low false detection rates about 3.92%.

  14. Strategies to overcome photobleaching in algorithm-based adaptive optics for nonlinear in-vivo imaging.

    PubMed

    Caroline Müllenbroich, M; McGhee, Ewan J; Wright, Amanda J; Anderson, Kurt I; Mathieson, Keith

    2014-01-01

    We have developed a nonlinear adaptive optics microscope utilizing a deformable membrane mirror (DMM) and demonstrated its use in compensating for system- and sample-induced aberrations. The optimum shape of the DMM was determined with a random search algorithm optimizing on either two photon fluorescence or second harmonic signals as merit factors. We present here several strategies to overcome photobleaching issues associated with lengthy optimization routines by adapting the search algorithm and the experimental methodology. Optimizations were performed on extrinsic fluorescent dyes, fluorescent beads loaded into organotypic tissue cultures and the intrinsic second harmonic signal of these cultures. We validate the approach of using these preoptimized mirror shapes to compile a robust look-up table that can be applied for imaging over several days and through a variety of tissues. In this way, the photon exposure to the fluorescent cells under investigation is limited to imaging. Using our look-up table approach, we show signal intensity improvement factors ranging from 1.7 to 4.1 in organotypic tissue cultures and freshly excised mouse tissue. Imaging zebrafish in vivo, we demonstrate signal improvement by a factor of 2. This methodology is easily reproducible and could be applied to many photon starved experiments, for example fluorescent life time imaging, or when photobleaching is a concern.

  15. Adaptive estimation of nonlinear parameters of a nonholonomic spherical robot using a modified fuzzy-based speed gradient algorithm

    NASA Astrophysics Data System (ADS)

    Roozegar, Mehdi; Mahjoob, Mohammad J.; Ayati, Moosa

    2017-05-01

    This paper deals with adaptive estimation of the unknown parameters and states of a pendulum-driven spherical robot (PDSR), which is a nonlinear in parameters (NLP) chaotic system with parametric uncertainties. Firstly, the mathematical model of the robot is deduced by applying the Newton-Euler methodology for a system of rigid bodies. Then, based on the speed gradient (SG) algorithm, the states and unknown parameters of the robot are estimated online for different step length gains and initial conditions. The estimated parameters are updated adaptively according to the error between estimated and true state values. Since the errors of the estimated states and parameters as well as the convergence rates depend significantly on the value of step length gain, this gain should be chosen optimally. Hence, a heuristic fuzzy logic controller is employed to adjust the gain adaptively. Simulation results indicate that the proposed approach is highly encouraging for identification of this NLP chaotic system even if the initial conditions change and the uncertainties increase; therefore, it is reliable to be implemented on a real robot.

  16. Intermediate view reconstruction using adaptive disparity search algorithm for real-time 3D processing

    NASA Astrophysics Data System (ADS)

    Bae, Kyung-hoon; Park, Changhan; Kim, Eun-soo

    2008-03-01

    In this paper, intermediate view reconstruction (IVR) using adaptive disparity search algorithm (ASDA) is for realtime 3-dimensional (3D) processing proposed. The proposed algorithm can reduce processing time of disparity estimation by selecting adaptive disparity search range. Also, the proposed algorithm can increase the quality of the 3D imaging. That is, by adaptively predicting the mutual correlation between stereo images pair using the proposed algorithm, the bandwidth of stereo input images pair can be compressed to the level of a conventional 2D image and a predicted image also can be effectively reconstructed using a reference image and disparity vectors. From some experiments, stereo sequences of 'Pot Plant' and 'IVO', it is shown that the proposed algorithm improves the PSNRs of a reconstructed image to about 4.8 dB by comparing with that of conventional algorithms, and reduces the Synthesizing time of a reconstructed image to about 7.02 sec by comparing with that of conventional algorithms.

  17. Investigation on improved infrared image detail enhancement algorithm based on adaptive histogram statistical stretching and gradient filtering

    NASA Astrophysics Data System (ADS)

    Zeng, Bangze; Zhu, Youpan; Li, Zemin; Hu, Dechao; Luo, Lin; Zhao, Deli; Huang, Juan

    2014-11-01

    Duo to infrared image with low contrast, big noise and unclear visual effect, target is very difficult to observed and identified. This paper presents an improved infrared image detail enhancement algorithm based on adaptive histogram statistical stretching and gradient filtering (AHSS-GF). Based on the fact that the human eyes are very sensitive to the edges and lines, the author proposed to extract the details and textures by using the gradient filtering. New histogram could be acquired by calculating the sum of original histogram based on fixed window. With the minimum value for cut-off point, author carried on histogram statistical stretching. After the proper weights given to the details and background, the detail-enhanced results could be acquired finally. The results indicate image contrast could be improved and the details and textures could be enhanced effectively as well.

  18. A dynamic fuzzy genetic algorithm for natural image segmentation using adaptive mean shift

    NASA Astrophysics Data System (ADS)

    Arfan Jaffar, M.

    2017-01-01

    In this paper, a colour image segmentation approach based on hybridisation of adaptive mean shift (AMS), fuzzy c-mean and genetic algorithms (GAs) is presented. Image segmentation is the perceptual faction of pixels based on some likeness measure. GA with fuzzy behaviour is adapted to maximise the fuzzy separation and minimise the global compactness among the clusters or segments in spatial fuzzy c-mean (sFCM). It adds diversity to the search process to find the global optima. A simple fusion method has been used to combine the clusters to overcome the problem of over segmentation. The results show that our technique outperforms state-of-the-art methods.

  19. Design of infrasound-detection system via adaptive LMSTDE algorithm

    NASA Technical Reports Server (NTRS)

    Khalaf, C. S.; Stoughton, J. W.

    1984-01-01

    A proposed solution to an aviation safety problem is based on passive detection of turbulent weather phenomena through their infrasonic emission. This thesis describes a system design that is adequate for detection and bearing evaluation of infrasounds. An array of four sensors, with the appropriate hardware, is used for the detection part. Bearing evaluation is based on estimates of time delays between sensor outputs. The generalized cross correlation (GCC), as the conventional time-delay estimation (TDE) method, is first reviewed. An adaptive TDE approach, using the least mean square (LMS) algorithm, is then discussed. A comparison between the two techniques is made and the advantages of the adaptive approach are listed. The behavior of the GCC, as a Roth processor, is examined for the anticipated signals. It is shown that the Roth processor has the desired effect of sharpening the peak of the correlation function. It is also shown that the LMSTDE technique is an equivalent implementation of the Roth processor in the time domain. A LMSTDE lead-lag model, with a variable stability coefficient and a convergence criterion, is designed.

  20. On an adaptive preconditioned Crank-Nicolson MCMC algorithm for infinite dimensional Bayesian inference

    NASA Astrophysics Data System (ADS)

    Hu, Zixi; Yao, Zhewei; Li, Jinglai

    2017-03-01

    Many scientific and engineering problems require to perform Bayesian inference for unknowns of infinite dimension. In such problems, many standard Markov Chain Monte Carlo (MCMC) algorithms become arbitrary slow under the mesh refinement, which is referred to as being dimension dependent. To this end, a family of dimensional independent MCMC algorithms, known as the preconditioned Crank-Nicolson (pCN) methods, were proposed to sample the infinite dimensional parameters. In this work we develop an adaptive version of the pCN algorithm, where the covariance operator of the proposal distribution is adjusted based on sampling history to improve the simulation efficiency. We show that the proposed algorithm satisfies an important ergodicity condition under some mild assumptions. Finally we provide numerical examples to demonstrate the performance of the proposed method.

  1. An improved cooperative adaptive cruise control (CACC) algorithm considering invalid communication

    NASA Astrophysics Data System (ADS)

    Wang, Pangwei; Wang, Yunpeng; Yu, Guizhen; Tang, Tieqiao

    2014-05-01

    For the Cooperative Adaptive Cruise Control (CACC) Algorithm, existing research studies mainly focus on how inter-vehicle communication can be used to develop CACC controller, the influence of the communication delays and lags of the actuators to the string stability. However, whether the string stability can be guaranteed when inter-vehicle communication is invalid partially has hardly been considered. This paper presents an improved CACC algorithm based on the sliding mode control theory and analyses the range of CACC controller parameters to maintain string stability. A dynamic model of vehicle spacing deviation in a platoon is then established, and the string stability conditions under improved CACC are analyzed. Unlike the traditional CACC algorithms, the proposed algorithm can ensure the functionality of the CACC system even if inter-vehicle communication is partially invalid. Finally, this paper establishes a platoon of five vehicles to simulate the improved CACC algorithm in MATLAB/Simulink, and the simulation results demonstrate that the improved CACC algorithm can maintain the string stability of a CACC platoon through adjusting the controller parameters and enlarging the spacing to prevent accidents. With guaranteed string stability, the proposed CACC algorithm can prevent oscillation of vehicle spacing and reduce chain collision accidents under real-world circumstances. This research proposes an improved CACC algorithm, which can guarantee the string stability when inter-vehicle communication is invalid.

  2. An adaptive scale factor based MPPT algorithm for changing solar irradiation levels in outer space

    NASA Astrophysics Data System (ADS)

    Kwan, Trevor Hocksun; Wu, Xiaofeng

    2017-03-01

    Maximum power point tracking (MPPT) techniques are popularly used for maximizing the output of solar panels by continuously tracking the maximum power point (MPP) of their P-V curves, which depend both on the panel temperature and the input insolation. Various MPPT algorithms have been studied in literature, including perturb and observe (P&O), hill climbing, incremental conductance, fuzzy logic control and neural networks. This paper presents an algorithm which improves the MPP tracking performance by adaptively scaling the DC-DC converter duty cycle. The principle of the proposed algorithm is to detect the oscillation by checking the sign (ie. direction) of the duty cycle perturbation between the current and previous time steps. If there is a difference in the signs then it is clear an oscillation is present and the DC-DC converter duty cycle perturbation is subsequently scaled down by a constant factor. By repeating this process, the steady state oscillations become negligibly small which subsequently allows for a smooth steady state MPP response. To verify the proposed MPPT algorithm, a simulation involving irradiances levels that are typically encountered in outer space is conducted. Simulation and experimental results prove that the proposed algorithm is fast and stable in comparison to not only the conventional fixed step counterparts, but also to previous variable step size algorithms.

  3. ADART: an adaptive algebraic reconstruction algorithm for discrete tomography.

    PubMed

    Maestre-Deusto, F Javier; Scavello, Giovanni; Pizarro, Joaquín; Galindo, Pedro L

    2011-08-01

    In this paper we suggest an algorithm based on the Discrete Algebraic Reconstruction Technique (DART) which is capable of computing high quality reconstructions from substantially fewer projections than required for conventional continuous tomography. Adaptive DART (ADART) goes a step further than DART on the reduction of the number of unknowns of the associated linear system achieving a significant reduction in the pixel error rate of reconstructed objects. The proposed methodology automatically adapts the border definition criterion at each iteration, resulting in a reduction of the number of pixels belonging to the border, and consequently of the number of unknowns in the general algebraic reconstruction linear system to be solved, being this reduction specially important at the final stage of the iterative process. Experimental results show that reconstruction errors are considerably reduced using ADART when compared to original DART, both in clean and noisy environments.

  4. An improved finger-vein recognition algorithm based on template matching

    NASA Astrophysics Data System (ADS)

    Liu, Yueyue; Di, Si; Jin, Jian; Huang, Daoping

    2016-10-01

    Finger-vein recognition has became the most popular biometric identify methods. The investigation on the recognition algorithms always is the key point in this field. So far, there are many applicable algorithms have been developed. However, there are still some problems in practice, such as the variance of the finger position which may lead to the image distortion and shifting; during the identification process, some matching parameters determined according to experience may also reduce the adaptability of algorithm. Focus on above mentioned problems, this paper proposes an improved finger-vein recognition algorithm based on template matching. In order to enhance the robustness of the algorithm for the image distortion, the least squares error method is adopted to correct the oblique finger. During the feature extraction, local adaptive threshold method is adopted. As regard as the matching scores, we optimized the translation preferences as well as matching distance between the input images and register images on the basis of Naoto Miura algorithm. Experimental results indicate that the proposed method can improve the robustness effectively under the finger shifting and rotation conditions.

  5. RGB-to-RGBG conversion algorithm with adaptive weighting factors based on edge detection and minimal square error.

    PubMed

    Huang, Chengqiang; Yang, Youchang; Wu, Bo; Yu, Weize

    2018-06-01

    The sub-pixel arrangement of the RGBG panel and the image with RGB format are different and the algorithm that converts RGB to RGBG is urgently needed to display an image with RGB arrangement on the RGBG panel. However, the information loss is still large although color fringing artifacts are weakened in the published papers that study this conversion. In this paper, an RGB-to-RGBG conversion algorithm with adaptive weighting factors based on edge detection and minimal square error (EDMSE) is proposed. The main points of innovation include the following: (1) the edge detection is first proposed to distinguish image details with serious color fringing artifacts and image details which are prone to be lost in the process of RGB-RGBG conversion; (2) for image details with serious color fringing artifacts, the weighting factor 0.5 is applied to weaken the color fringing artifacts; and (3) for image details that are prone to be lost in the process of RGB-RGBG conversion, a special mechanism to minimize square error is proposed. The experiment shows that the color fringing artifacts are slightly improved by EDMSE, and the values of MSE of the image processed are 19.6% and 7% smaller than those of the image processed by the direct assignment and weighting factor algorithm, respectively. The proposed algorithm is implemented on a field programmable gate array to enable the image display on the RGBG panel.

  6. A new adaptive algorithm for automated feature extraction in exponentially damped signals for health monitoring of smart structures

    NASA Astrophysics Data System (ADS)

    Qarib, Hossein; Adeli, Hojjat

    2015-12-01

    In this paper authors introduce a new adaptive signal processing technique for feature extraction and parameter estimation in noisy exponentially damped signals. The iterative 3-stage method is based on the adroit integration of the strengths of parametric and nonparametric methods such as multiple signal categorization, matrix pencil, and empirical mode decomposition algorithms. The first stage is a new adaptive filtration or noise removal scheme. The second stage is a hybrid parametric-nonparametric signal parameter estimation technique based on an output-only system identification technique. The third stage is optimization of estimated parameters using a combination of the primal-dual path-following interior point algorithm and genetic algorithm. The methodology is evaluated using a synthetic signal and a signal obtained experimentally from transverse vibrations of a steel cantilever beam. The method is successful in estimating the frequencies accurately. Further, it estimates the damping exponents. The proposed adaptive filtration method does not include any frequency domain manipulation. Consequently, the time domain signal is not affected as a result of frequency domain and inverse transformations.

  7. Adaptive Neural Network Algorithm for Power Control in Nuclear Power Plants

    NASA Astrophysics Data System (ADS)

    Masri Husam Fayiz, Al

    2017-01-01

    The aim of this paper is to design, test and evaluate a prototype of an adaptive neural network algorithm for the power controlling system of a nuclear power plant. The task of power control in nuclear reactors is one of the fundamental tasks in this field. Therefore, researches are constantly conducted to ameliorate the power reactor control process. Currently, in the Department of Automation in the National Research Nuclear University (NRNU) MEPhI, numerous studies are utilizing various methodologies of artificial intelligence (expert systems, neural networks, fuzzy systems and genetic algorithms) to enhance the performance, safety, efficiency and reliability of nuclear power plants. In particular, a study of an adaptive artificial intelligent power regulator in the control systems of nuclear power reactors is being undertaken to enhance performance and to minimize the output error of the Automatic Power Controller (APC) on the grounds of a multifunctional computer analyzer (simulator) of the Water-Water Energetic Reactor known as Vodo-Vodyanoi Energetichesky Reaktor (VVER) in Russian. In this paper, a block diagram of an adaptive reactor power controller was built on the basis of an intelligent control algorithm. When implementing intelligent neural network principles, it is possible to improve the quality and dynamic of any control system in accordance with the principles of adaptive control. It is common knowledge that an adaptive control system permits adjusting the controller’s parameters according to the transitions in the characteristics of the control object or external disturbances. In this project, it is demonstrated that the propitious options for an automatic power controller in nuclear power plants is a control system constructed on intelligent neural network algorithms.

  8. SIMULATION OF A REACTING POLLUTANT PUFF USING AN ADAPTIVE GRID ALGORITHM

    EPA Science Inventory

    A new dynamic solution adaptive grid algorithm DSAGA-PPM, has been developed for use in air quality modeling. In this paper, this algorithm is described and evaluated with a test problem. Cone-shaped distributions of various chemical species undergoing chemical reactions are rota...

  9. [Application of an Adaptive Inertia Weight Particle Swarm Algorithm in the Magnetic Resonance Bias Field Correction].

    PubMed

    Wang, Chang; Qin, Xin; Liu, Yan; Zhang, Wenchao

    2016-06-01

    An adaptive inertia weight particle swarm algorithm is proposed in this study to solve the local optimal problem with the method of traditional particle swarm optimization in the process of estimating magnetic resonance(MR)image bias field.An indicator measuring the degree of premature convergence was designed for the defect of traditional particle swarm optimization algorithm.The inertia weight was adjusted adaptively based on this indicator to ensure particle swarm to be optimized globally and to avoid it from falling into local optimum.The Legendre polynomial was used to fit bias field,the polynomial parameters were optimized globally,and finally the bias field was estimated and corrected.Compared to those with the improved entropy minimum algorithm,the entropy of corrected image was smaller and the estimated bias field was more accurate in this study.Then the corrected image was segmented and the segmentation accuracy obtained in this research was 10% higher than that with improved entropy minimum algorithm.This algorithm can be applied to the correction of MR image bias field.

  10. Using patient-specific phantoms to evaluate deformable image registration algorithms for adaptive radiation therapy

    PubMed Central

    Stanley, Nick; Glide-Hurst, Carri; Kim, Jinkoo; Adams, Jeffrey; Li, Shunshan; Wen, Ning; Chetty, Indrin J.; Zhong, Hualiang

    2014-01-01

    The quality of adaptive treatment planning depends on the accuracy of its underlying deformable image registration (DIR). The purpose of this study is to evaluate the performance of two DIR algorithms, B-spline–based deformable multipass (DMP) and deformable demons (Demons), implemented in a commercial software package. Evaluations were conducted using both computational and physical deformable phantoms. Based on a finite element method (FEM), a total of 11 computational models were developed from a set of CT images acquired from four lung and one prostate cancer patients. FEM generated displacement vector fields (DVF) were used to construct the lung and prostate image phantoms. Based on a fast-Fourier transform technique, image noise power spectrum was incorporated into the prostate image phantoms to create simulated CBCT images. The FEM-DVF served as a gold standard for verification of the two registration algorithms performed on these phantoms. The registration algorithms were also evaluated at the homologous points quantified in the CT images of a physical lung phantom. The results indicated that the mean errors of the DMP algorithm were in the range of 1.0 ~ 3.1 mm for the computational phantoms and 1.9 mm for the physical lung phantom. For the computational prostate phantoms, the corresponding mean error was 1.0–1.9 mm in the prostate, 1.9–2.4 mm in the rectum, and 1.8–2.1 mm over the entire patient body. Sinusoidal errors induced by B-spline interpolations were observed in all the displacement profiles of the DMP registrations. Regions of large displacements were observed to have more registration errors. Patient-specific FEM models have been developed to evaluate the DIR algorithms implemented in the commercial software package. It has been found that the accuracy of these algorithms is patient-dependent and related to various factors including tissue deformation magnitudes and image intensity gradients across the regions of interest. This may

  11. Analysis of adaptive algorithms for an integrated communication network

    NASA Technical Reports Server (NTRS)

    Reed, Daniel A.; Barr, Matthew; Chong-Kwon, Kim

    1985-01-01

    Techniques were examined that trade communication bandwidth for decreased transmission delays. When the network is lightly used, these schemes attempt to use additional network resources to decrease communication delays. As the network utilization rises, the schemes degrade gracefully, still providing service but with minimal use of the network. Because the schemes use a combination of circuit and packet switching, they should respond to variations in the types and amounts of network traffic. Also, a combination of circuit and packet switching to support the widely varying traffic demands imposed on an integrated network was investigated. The packet switched component is best suited to bursty traffic where some delays in delivery are acceptable. The circuit switched component is reserved for traffic that must meet real time constraints. Selected packet routing algorithms that might be used in an integrated network were simulated. An integrated traffic places widely varying workload demands on a network. Adaptive algorithms were identified, ones that respond to both the transient and evolutionary changes that arise in integrated networks. A new algorithm was developed, hybrid weighted routing, that adapts to workload changes.

  12. Advances in Patch-Based Adaptive Mesh Refinement Scalability

    DOE PAGES

    Gunney, Brian T.N.; Anderson, Robert W.

    2015-12-18

    Patch-based structured adaptive mesh refinement (SAMR) is widely used for high-resolution simu- lations. Combined with modern supercomputers, it could provide simulations of unprecedented size and resolution. A persistent challenge for this com- bination has been managing dynamically adaptive meshes on more and more MPI tasks. The dis- tributed mesh management scheme in SAMRAI has made some progress SAMR scalability, but early al- gorithms still had trouble scaling past the regime of 105 MPI tasks. This work provides two critical SAMR regridding algorithms, which are integrated into that scheme to ensure efficiency of the whole. The clustering algorithm is an extensionmore » of the tile- clustering approach, making it more flexible and efficient in both clustering and parallelism. The partitioner is a new algorithm designed to prevent the network congestion experienced by its prede- cessor. We evaluated performance using weak- and strong-scaling benchmarks designed to be difficult for dynamic adaptivity. Results show good scaling on up to 1.5M cores and 2M MPI tasks. Detailed timing diagnostics suggest scaling would continue well past that.« less

  13. Advances in Patch-Based Adaptive Mesh Refinement Scalability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gunney, Brian T.N.; Anderson, Robert W.

    Patch-based structured adaptive mesh refinement (SAMR) is widely used for high-resolution simu- lations. Combined with modern supercomputers, it could provide simulations of unprecedented size and resolution. A persistent challenge for this com- bination has been managing dynamically adaptive meshes on more and more MPI tasks. The dis- tributed mesh management scheme in SAMRAI has made some progress SAMR scalability, but early al- gorithms still had trouble scaling past the regime of 105 MPI tasks. This work provides two critical SAMR regridding algorithms, which are integrated into that scheme to ensure efficiency of the whole. The clustering algorithm is an extensionmore » of the tile- clustering approach, making it more flexible and efficient in both clustering and parallelism. The partitioner is a new algorithm designed to prevent the network congestion experienced by its prede- cessor. We evaluated performance using weak- and strong-scaling benchmarks designed to be difficult for dynamic adaptivity. Results show good scaling on up to 1.5M cores and 2M MPI tasks. Detailed timing diagnostics suggest scaling would continue well past that.« less

  14. An Adaptive Image Enhancement Technique by Combining Cuckoo Search and Particle Swarm Optimization Algorithm

    PubMed Central

    Ye, Zhiwei; Wang, Mingwei; Hu, Zhengbing; Liu, Wei

    2015-01-01

    Image enhancement is an important procedure of image processing and analysis. This paper presents a new technique using a modified measure and blending of cuckoo search and particle swarm optimization (CS-PSO) for low contrast images to enhance image adaptively. In this way, contrast enhancement is obtained by global transformation of the input intensities; it employs incomplete Beta function as the transformation function and a novel criterion for measuring image quality considering three factors which are threshold, entropy value, and gray-level probability density of the image. The enhancement process is a nonlinear optimization problem with several constraints. CS-PSO is utilized to maximize the objective fitness criterion in order to enhance the contrast and detail in an image by adapting the parameters of a novel extension to a local enhancement technique. The performance of the proposed method has been compared with other existing techniques such as linear contrast stretching, histogram equalization, and evolutionary computing based image enhancement methods like backtracking search algorithm, differential search algorithm, genetic algorithm, and particle swarm optimization in terms of processing time and image quality. Experimental results demonstrate that the proposed method is robust and adaptive and exhibits the better performance than other methods involved in the paper. PMID:25784928

  15. An adaptive image enhancement technique by combining cuckoo search and particle swarm optimization algorithm.

    PubMed

    Ye, Zhiwei; Wang, Mingwei; Hu, Zhengbing; Liu, Wei

    2015-01-01

    Image enhancement is an important procedure of image processing and analysis. This paper presents a new technique using a modified measure and blending of cuckoo search and particle swarm optimization (CS-PSO) for low contrast images to enhance image adaptively. In this way, contrast enhancement is obtained by global transformation of the input intensities; it employs incomplete Beta function as the transformation function and a novel criterion for measuring image quality considering three factors which are threshold, entropy value, and gray-level probability density of the image. The enhancement process is a nonlinear optimization problem with several constraints. CS-PSO is utilized to maximize the objective fitness criterion in order to enhance the contrast and detail in an image by adapting the parameters of a novel extension to a local enhancement technique. The performance of the proposed method has been compared with other existing techniques such as linear contrast stretching, histogram equalization, and evolutionary computing based image enhancement methods like backtracking search algorithm, differential search algorithm, genetic algorithm, and particle swarm optimization in terms of processing time and image quality. Experimental results demonstrate that the proposed method is robust and adaptive and exhibits the better performance than other methods involved in the paper.

  16. An adaptive tensor voting algorithm combined with texture spectrum

    NASA Astrophysics Data System (ADS)

    Wang, Gang; Su, Qing-tang; Lü, Gao-huan; Zhang, Xiao-feng; Liu, Yu-huan; He, An-zhi

    2015-01-01

    An adaptive tensor voting algorithm combined with texture spectrum is proposed. The image texture spectrum is used to get the adaptive scale parameter of voting field. Then the texture information modifies both the attenuation coefficient and the attenuation field so that we can use this algorithm to create more significant and correct structures in the original image according to the human visual perception. At the same time, the proposed method can improve the edge extraction quality, which includes decreasing the flocculent region efficiently and making image clear. In the experiment for extracting pavement cracks, the original pavement image is processed by the proposed method which is combined with the significant curve feature threshold procedure, and the resulted image displays the faint crack signals submerged in the complicated background efficiently and clearly.

  17. A Constrained Genetic Algorithm with Adaptively Defined Fitness Function in MRS Quantification

    NASA Astrophysics Data System (ADS)

    Papakostas, G. A.; Karras, D. A.; Mertzios, B. G.; Graveron-Demilly, D.; van Ormondt, D.

    MRS Signal quantification is a rather involved procedure and has attracted the interest of the medical engineering community, regarding the development of computationally efficient methodologies. Significant contributions based on Computational Intelligence tools, such as Neural Networks (NNs), demonstrated a good performance but not without drawbacks already discussed by the authors. On the other hand preliminary application of Genetic Algorithms (GA) has already been reported in the literature by the authors regarding the peak detection problem encountered in MRS quantification using the Voigt line shape model. This paper investigates a novel constrained genetic algorithm involving a generic and adaptively defined fitness function which extends the simple genetic algorithm methodology in case of noisy signals. The applicability of this new algorithm is scrutinized through experimentation in artificial MRS signals interleaved with noise, regarding its signal fitting capabilities. Although extensive experiments with real world MRS signals are necessary, the herein shown performance illustrates the method's potential to be established as a generic MRS metabolites quantification procedure.

  18. A new edge detection algorithm based on Canny idea

    NASA Astrophysics Data System (ADS)

    Feng, Yingke; Zhang, Jinmin; Wang, Siming

    2017-10-01

    The traditional Canny algorithm has poor self-adaptability threshold, and it is more sensitive to noise. In order to overcome these drawbacks, this paper proposed a new edge detection method based on Canny algorithm. Firstly, the media filtering and filtering based on the method of Euclidean distance are adopted to process it; secondly using the Frei-chen algorithm to calculate gradient amplitude; finally, using the Otsu algorithm to calculate partial gradient amplitude operation to get images of thresholds value, then find the average of all thresholds that had been calculated, half of the average is high threshold value, and the half of the high threshold value is low threshold value. Experiment results show that this new method can effectively suppress noise disturbance, keep the edge information, and also improve the edge detection accuracy.

  19. AdaBoost-based algorithm for network intrusion detection.

    PubMed

    Hu, Weiming; Hu, Wei; Maybank, Steve

    2008-04-01

    Network intrusion detection aims at distinguishing the attacks on the Internet from normal use of the Internet. It is an indispensable part of the information security system. Due to the variety of network behaviors and the rapid development of attack fashions, it is necessary to develop fast machine-learning-based intrusion detection algorithms with high detection rates and low false-alarm rates. In this correspondence, we propose an intrusion detection algorithm based on the AdaBoost algorithm. In the algorithm, decision stumps are used as weak classifiers. The decision rules are provided for both categorical and continuous features. By combining the weak classifiers for continuous features and the weak classifiers for categorical features into a strong classifier, the relations between these two different types of features are handled naturally, without any forced conversions between continuous and categorical features. Adaptable initial weights and a simple strategy for avoiding overfitting are adopted to improve the performance of the algorithm. Experimental results show that our algorithm has low computational complexity and error rates, as compared with algorithms of higher computational complexity, as tested on the benchmark sample data.

  20. An Energy Efficient Adaptive Sampling Algorithm in a Sensor Network for Automated Water Quality Monitoring.

    PubMed

    Shu, Tongxin; Xia, Min; Chen, Jiahong; Silva, Clarence de

    2017-11-05

    Power management is crucial in the monitoring of a remote environment, especially when long-term monitoring is needed. Renewable energy sources such as solar and wind may be harvested to sustain a monitoring system. However, without proper power management, equipment within the monitoring system may become nonfunctional and, as a consequence, the data or events captured during the monitoring process will become inaccurate as well. This paper develops and applies a novel adaptive sampling algorithm for power management in the automated monitoring of the quality of water in an extensive and remote aquatic environment. Based on the data collected on line using sensor nodes, a data-driven adaptive sampling algorithm (DDASA) is developed for improving the power efficiency while ensuring the accuracy of sampled data. The developed algorithm is evaluated using two distinct key parameters, which are dissolved oxygen (DO) and turbidity. It is found that by dynamically changing the sampling frequency, the battery lifetime can be effectively prolonged while maintaining a required level of sampling accuracy. According to the simulation results, compared to a fixed sampling rate, approximately 30.66% of the battery energy can be saved for three months of continuous water quality monitoring. Using the same dataset to compare with a traditional adaptive sampling algorithm (ASA), while achieving around the same Normalized Mean Error (NME), DDASA is superior in saving 5.31% more battery energy.

  1. An Energy Efficient Adaptive Sampling Algorithm in a Sensor Network for Automated Water Quality Monitoring

    PubMed Central

    Shu, Tongxin; Xia, Min; Chen, Jiahong; de Silva, Clarence

    2017-01-01

    Power management is crucial in the monitoring of a remote environment, especially when long-term monitoring is needed. Renewable energy sources such as solar and wind may be harvested to sustain a monitoring system. However, without proper power management, equipment within the monitoring system may become nonfunctional and, as a consequence, the data or events captured during the monitoring process will become inaccurate as well. This paper develops and applies a novel adaptive sampling algorithm for power management in the automated monitoring of the quality of water in an extensive and remote aquatic environment. Based on the data collected on line using sensor nodes, a data-driven adaptive sampling algorithm (DDASA) is developed for improving the power efficiency while ensuring the accuracy of sampled data. The developed algorithm is evaluated using two distinct key parameters, which are dissolved oxygen (DO) and turbidity. It is found that by dynamically changing the sampling frequency, the battery lifetime can be effectively prolonged while maintaining a required level of sampling accuracy. According to the simulation results, compared to a fixed sampling rate, approximately 30.66% of the battery energy can be saved for three months of continuous water quality monitoring. Using the same dataset to compare with a traditional adaptive sampling algorithm (ASA), while achieving around the same Normalized Mean Error (NME), DDASA is superior in saving 5.31% more battery energy. PMID:29113087

  2. An adaptive ANOVA-based PCKF for high-dimensional nonlinear inverse modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Weixuan, E-mail: weixuan.li@usc.edu; Lin, Guang, E-mail: guang.lin@pnnl.gov; Zhang, Dongxiao, E-mail: dxz@pku.edu.cn

    2014-02-01

    The probabilistic collocation-based Kalman filter (PCKF) is a recently developed approach for solving inverse problems. It resembles the ensemble Kalman filter (EnKF) in every aspect—except that it represents and propagates model uncertainty by polynomial chaos expansion (PCE) instead of an ensemble of model realizations. Previous studies have shown PCKF is a more efficient alternative to EnKF for many data assimilation problems. However, the accuracy and efficiency of PCKF depends on an appropriate truncation of the PCE series. Having more polynomial chaos basis functions in the expansion helps to capture uncertainty more accurately but increases computational cost. Selection of basis functionsmore » is particularly important for high-dimensional stochastic problems because the number of polynomial chaos basis functions required to represent model uncertainty grows dramatically as the number of input parameters (random dimensions) increases. In classic PCKF algorithms, the PCE basis functions are pre-set based on users' experience. Also, for sequential data assimilation problems, the basis functions kept in PCE expression remain unchanged in different Kalman filter loops, which could limit the accuracy and computational efficiency of classic PCKF algorithms. To address this issue, we present a new algorithm that adaptively selects PCE basis functions for different problems and automatically adjusts the number of basis functions in different Kalman filter loops. The algorithm is based on adaptive functional ANOVA (analysis of variance) decomposition, which approximates a high-dimensional function with the summation of a set of low-dimensional functions. Thus, instead of expanding the original model into PCE, we implement the PCE expansion on these low-dimensional functions, which is much less costly. We also propose a new adaptive criterion for ANOVA that is more suited for solving inverse problems. The new algorithm was tested with different examples and

  3. Management of Computer-Based Instruction: Design of an Adaptive Control Strategy.

    ERIC Educational Resources Information Center

    Tennyson, Robert D.; Rothen, Wolfgang

    1979-01-01

    Theoretical and research literature on learner, program, and adaptive control as forms of instructional management are critiqued in reference to the design of computer-based instruction. An adaptive control strategy using an online, iterative algorithmic model is proposed. (RAO)

  4. A Demons algorithm for image registration with locally adaptive regularization.

    PubMed

    Cahill, Nathan D; Noble, J Alison; Hawkes, David J

    2009-01-01

    Thirion's Demons is a popular algorithm for nonrigid image registration because of its linear computational complexity and ease of implementation. It approximately solves the diffusion registration problem by successively estimating force vectors that drive the deformation toward alignment and smoothing the force vectors by Gaussian convolution. In this article, we show how the Demons algorithm can be generalized to allow image-driven locally adaptive regularization in a manner that preserves both the linear complexity and ease of implementation of the original Demons algorithm. We show that the proposed algorithm exhibits lower target registration error and requires less computational effort than the original Demons algorithm on the registration of serial chest CT scans of patients with lung nodules.

  5. Adaptive swarm cluster-based dynamic multi-objective synthetic minority oversampling technique algorithm for tackling binary imbalanced datasets in biomedical data classification.

    PubMed

    Li, Jinyan; Fong, Simon; Sung, Yunsick; Cho, Kyungeun; Wong, Raymond; Wong, Kelvin K L

    2016-01-01

    An imbalanced dataset is defined as a training dataset that has imbalanced proportions of data in both interesting and uninteresting classes. Often in biomedical applications, samples from the stimulating class are rare in a population, such as medical anomalies, positive clinical tests, and particular diseases. Although the target samples in the primitive dataset are small in number, the induction of a classification model over such training data leads to poor prediction performance due to insufficient training from the minority class. In this paper, we use a novel class-balancing method named adaptive swarm cluster-based dynamic multi-objective synthetic minority oversampling technique (ASCB_DmSMOTE) to solve this imbalanced dataset problem, which is common in biomedical applications. The proposed method combines under-sampling and over-sampling into a swarm optimisation algorithm. It adaptively selects suitable parameters for the rebalancing algorithm to find the best solution. Compared with the other versions of the SMOTE algorithm, significant improvements, which include higher accuracy and credibility, are observed with ASCB_DmSMOTE. Our proposed method tactfully combines two rebalancing techniques together. It reasonably re-allocates the majority class in the details and dynamically optimises the two parameters of SMOTE to synthesise a reasonable scale of minority class for each clustered sub-imbalanced dataset. The proposed methods ultimately overcome other conventional methods and attains higher credibility with even greater accuracy of the classification model.

  6. Single neural adaptive controller and neural network identifier based on PSO algorithm for spherical actuators with 3D magnet array

    NASA Astrophysics Data System (ADS)

    Yan, Liang; Zhang, Lu; Zhu, Bo; Zhang, Jingying; Jiao, Zongxia

    2017-10-01

    Permanent magnet spherical actuator (PMSA) is a multi-variable featured and inter-axis coupled nonlinear system, which unavoidably compromises its motion control implementation. Uncertainties such as external load and friction torque of ball bearing and manufacturing errors also influence motion performance significantly. Therefore, the objective of this paper is to propose a controller based on a single neural adaptive (SNA) algorithm and a neural network (NN) identifier optimized with a particle swarm optimization (PSO) algorithm to improve the motion stability of PMSA with three-dimensional magnet arrays. The dynamic model and computed torque model are formulated for the spherical actuator, and a dynamic decoupling control algorithm is developed. By utilizing the global-optimization property of the PSO algorithm, the NN identifier is trained to avoid locally optimal solution and achieve high-precision compensations to uncertainties. The employment of the SNA controller helps to reduce the effect of compensation errors and convert the system to a stable one, even if there is difference between the compensations and uncertainties due to external disturbances. A simulation model is established, and experiments are conducted on the research prototype to validate the proposed control algorithm. The amplitude of the parameter perturbation is set to 5%, 10%, and 15%, respectively. The strong robustness of the proposed hybrid algorithm is validated by the abundant simulation data. It shows that the proposed algorithm can effectively compensate the influence of uncertainties and eliminate the effect of inter-axis couplings of the spherical actuator.

  7. A multi-block adaptive solving technique based on lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Xie, Jiahua; Li, Xiaoyue; Ma, Zhenghai; Zou, Jianfeng; Zheng, Yao

    2018-05-01

    In this paper, a CFD parallel adaptive algorithm is self-developed by combining the multi-block Lattice Boltzmann Method (LBM) with Adaptive Mesh Refinement (AMR). The mesh refinement criterion of this algorithm is based on the density, velocity and vortices of the flow field. The refined grid boundary is obtained by extending outward half a ghost cell from the coarse grid boundary, which makes the adaptive mesh more compact and the boundary treatment more convenient. Two numerical examples of the backward step flow separation and the unsteady flow around circular cylinder demonstrate the vortex structure of the cold flow field accurately and specifically.

  8. Adaptive DFT-based Interferometer Fringe Tracking

    NASA Technical Reports Server (NTRS)

    Wilson, Edward; Pedretti, Ettore; Bregman, Jesse; Mah, Robert W.; Traub, Wesley A.

    2004-01-01

    An automatic interferometer fringe tracking system has been developed, implemented, and tested at the Infrared Optical Telescope Array (IOTA) observatory at Mt. Hopkins, Arizona. The system can minimize the optical path differences (OPDs) for all three baselines of the Michelson stellar interferometer at IOTA. Based on sliding window discrete Fourier transform (DFT) calculations that were optimized for computational efficiency and robustness to atmospheric disturbances, the algorithm has also been tested extensively on off-line data. Implemented in ANSI C on the 266 MHz PowerPC processor running the VxWorks real-time operating system, the algorithm runs in approximately 2.0 milliseconds per scan (including all three interferograms), using the science camera and piezo scanners to measure and correct the OPDs. The adaptive DFT-based tracking algorithm should be applicable to other systems where there is a need to detect or track a signal with an approximately constant-frequency carrier pulse.

  9. Historical feature pattern extraction based network attack situation sensing algorithm.

    PubMed

    Zeng, Yong; Liu, Dacheng; Lei, Zhou

    2014-01-01

    The situation sequence contains a series of complicated and multivariate random trends, which are very sudden, uncertain, and difficult to recognize and describe its principle by traditional algorithms. To solve the above questions, estimating parameters of super long situation sequence is essential, but very difficult, so this paper proposes a situation prediction method based on historical feature pattern extraction (HFPE). First, HFPE algorithm seeks similar indications from the history situation sequence recorded and weighs the link intensity between occurred indication and subsequent effect. Then it calculates the probability that a certain effect reappears according to the current indication and makes a prediction after weighting. Meanwhile, HFPE method gives an evolution algorithm to derive the prediction deviation from the views of pattern and accuracy. This algorithm can continuously promote the adaptability of HFPE through gradual fine-tuning. The method preserves the rules in sequence at its best, does not need data preprocessing, and can track and adapt to the variation of situation sequence continuously.

  10. Historical Feature Pattern Extraction Based Network Attack Situation Sensing Algorithm

    PubMed Central

    Zeng, Yong; Liu, Dacheng; Lei, Zhou

    2014-01-01

    The situation sequence contains a series of complicated and multivariate random trends, which are very sudden, uncertain, and difficult to recognize and describe its principle by traditional algorithms. To solve the above questions, estimating parameters of super long situation sequence is essential, but very difficult, so this paper proposes a situation prediction method based on historical feature pattern extraction (HFPE). First, HFPE algorithm seeks similar indications from the history situation sequence recorded and weighs the link intensity between occurred indication and subsequent effect. Then it calculates the probability that a certain effect reappears according to the current indication and makes a prediction after weighting. Meanwhile, HFPE method gives an evolution algorithm to derive the prediction deviation from the views of pattern and accuracy. This algorithm can continuously promote the adaptability of HFPE through gradual fine-tuning. The method preserves the rules in sequence at its best, does not need data preprocessing, and can track and adapt to the variation of situation sequence continuously. PMID:24892054

  11. Parameter estimation for chaotic systems using a hybrid adaptive cuckoo search with simulated annealing algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng, Zheng, E-mail: 19994035@sina.com; Wang, Jun; Zhou, Bihua

    2014-03-15

    This paper introduces a novel hybrid optimization algorithm to establish the parameters of chaotic systems. In order to deal with the weaknesses of the traditional cuckoo search algorithm, the proposed adaptive cuckoo search with simulated annealing algorithm is presented, which incorporates the adaptive parameters adjusting operation and the simulated annealing operation in the cuckoo search algorithm. Normally, the parameters of the cuckoo search algorithm are kept constant that may result in decreasing the efficiency of the algorithm. For the purpose of balancing and enhancing the accuracy and convergence rate of the cuckoo search algorithm, the adaptive operation is presented tomore » tune the parameters properly. Besides, the local search capability of cuckoo search algorithm is relatively weak that may decrease the quality of optimization. So the simulated annealing operation is merged into the cuckoo search algorithm to enhance the local search ability and improve the accuracy and reliability of the results. The functionality of the proposed hybrid algorithm is investigated through the Lorenz chaotic system under the noiseless and noise condition, respectively. The numerical results demonstrate that the method can estimate parameters efficiently and accurately in the noiseless and noise condition. Finally, the results are compared with the traditional cuckoo search algorithm, genetic algorithm, and particle swarm optimization algorithm. Simulation results demonstrate the effectiveness and superior performance of the proposed algorithm.« less

  12. A graph based algorithm for adaptable dynamic airspace configuration for NextGen

    NASA Astrophysics Data System (ADS)

    Savai, Mehernaz P.

    The National Airspace System (NAS) is a complicated large-scale aviation network, consisting of many static sectors wherein each sector is controlled by one or more controllers. The main purpose of the NAS is to enable safe and prompt air travel in the U.S. However, such static configuration of sectors will not be able to handle the continued growth of air travel which is projected to be more than double the current traffic by 2025. Under the initiative of the Next Generation of Air Transportation system (NextGen), the main objective of Adaptable Dynamic Airspace Configuration (ADAC) is that the sectors should change to the changing traffic so as to reduce the controller workload variance with time while increasing the throughput. Change in the resectorization should be such that there is a minimal increase in exchange of air traffic among controllers. The benefit of a new design (improvement in workload balance, etc.) should sufficiently exceed the transition cost, in order to deserve a change. This leads to the analysis of the concept of transition workload which is the cost associated with a transition from one sectorization to another. Given two airspace configurations, a transition workload metric which considers the air traffic as well as the geometry of the airspace is proposed. A solution to reduce this transition workload is also discussed. The algorithm is specifically designed to be implemented for the Dynamic Airspace Configuration (DAC) Algorithm. A graph model which accurately represents the air route structure and air traffic in the NAS is used to formulate the airspace configuration problem. In addition, a multilevel graph partitioning algorithm is developed for Dynamic Airspace Configuration which partitions the graph model of airspace with given user defined constraints and hence provides the user more flexibility and control over various partitions. In terms of air traffic management, vertices represent airports and waypoints. Some of the major

  13. Establishing a Dynamic Self-Adaptation Learning Algorithm of the BP Neural Network and Its Applications

    NASA Astrophysics Data System (ADS)

    Li, Xiaofeng; Xiang, Suying; Zhu, Pengfei; Wu, Min

    2015-12-01

    In order to avoid the inherent deficiencies of the traditional BP neural network, such as slow convergence speed, that easily leading to local minima, poor generalization ability and difficulty in determining the network structure, the dynamic self-adaptive learning algorithm of the BP neural network is put forward to improve the function of the BP neural network. The new algorithm combines the merit of principal component analysis, particle swarm optimization, correlation analysis and self-adaptive model, hence can effectively solve the problems of selecting structural parameters, initial connection weights and thresholds and learning rates of the BP neural network. This new algorithm not only reduces the human intervention, optimizes the topological structures of BP neural networks and improves the network generalization ability, but also accelerates the convergence speed of a network, avoids trapping into local minima, and enhances network adaptation ability and prediction ability. The dynamic self-adaptive learning algorithm of the BP neural network is used to forecast the total retail sale of consumer goods of Sichuan Province, China. Empirical results indicate that the new algorithm is superior to the traditional BP network algorithm in predicting accuracy and time consumption, which shows the feasibility and effectiveness of the new algorithm.

  14. Adaptively loaded IM/DD optical OFDM based on set-partitioned QAM formats.

    PubMed

    Zhao, Jian; Chen, Lian-Kuan

    2017-04-17

    We investigate the constellation design and symbol error rate (SER) of set-partitioned (SP) quadrature amplitude modulation (QAM) formats. Based on the SER analysis, we derive the adaptive bit and power loading algorithm for SP QAM based intensity-modulation direct-detection (IM/DD) orthogonal frequency division multiplexing (OFDM). We experimentally show that the proposed system significantly outperforms the conventional adaptively-loaded IM/DD OFDM and can increase the data rate from 36 Gbit/s to 42 Gbit/s in the presence of severe dispersion-induced spectral nulls after 40-km single-mode fiber. It is also shown that the adaptive algorithm greatly enhances the tolerance to fiber nonlinearity and allows for more power budget.

  15. Error bounds of adaptive dynamic programming algorithms for solving undiscounted optimal control problems.

    PubMed

    Liu, Derong; Li, Hongliang; Wang, Ding

    2015-06-01

    In this paper, we establish error bounds of adaptive dynamic programming algorithms for solving undiscounted infinite-horizon optimal control problems of discrete-time deterministic nonlinear systems. We consider approximation errors in the update equations of both value function and control policy. We utilize a new assumption instead of the contraction assumption in discounted optimal control problems. We establish the error bounds for approximate value iteration based on a new error condition. Furthermore, we also establish the error bounds for approximate policy iteration and approximate optimistic policy iteration algorithms. It is shown that the iterative approximate value function can converge to a finite neighborhood of the optimal value function under some conditions. To implement the developed algorithms, critic and action neural networks are used to approximate the value function and control policy, respectively. Finally, a simulation example is given to demonstrate the effectiveness of the developed algorithms.

  16. Fully implicit moving mesh adaptive algorithm

    NASA Astrophysics Data System (ADS)

    Chacon, Luis

    2005-10-01

    In many problems of interest, the numerical modeler is faced with the challenge of dealing with multiple time and length scales. The former is best dealt with with fully implicit methods, which are able to step over fast frequencies to resolve the dynamical time scale of interest. The latter requires grid adaptivity for efficiency. Moving-mesh grid adaptive methods are attractive because they can be designed to minimize the numerical error for a given resolution. However, the required grid governing equations are typically very nonlinear and stiff, and of considerably difficult numerical treatment. Not surprisingly, fully coupled, implicit approaches where the grid and the physics equations are solved simultaneously are rare in the literature, and circumscribed to 1D geometries. In this study, we present a fully implicit algorithm for moving mesh methods that is feasible for multidimensional geometries. A crucial element is the development of an effective multilevel treatment of the grid equation.ootnotetextL. Chac'on, G. Lapenta, A fully implicit, nonlinear adaptive grid strategy, J. Comput. Phys., accepted (2005) We will show that such an approach is competitive vs. uniform grids both from the accuracy (due to adaptivity) and the efficiency standpoints. Results for a variety of models 1D and 2D geometries, including nonlinear diffusion, radiation-diffusion, Burgers equation, and gas dynamics will be presented.

  17. A Mixture Rasch Model-Based Computerized Adaptive Test for Latent Class Identification

    ERIC Educational Resources Information Center

    Jiao, Hong; Macready, George; Liu, Junhui; Cho, Youngmi

    2012-01-01

    This study explored a computerized adaptive test delivery algorithm for latent class identification based on the mixture Rasch model. Four item selection methods based on the Kullback-Leibler (KL) information were proposed and compared with the reversed and the adaptive KL information under simulated testing conditions. When item separation was…

  18. Impedance computed tomography using an adaptive smoothing coefficient algorithm.

    PubMed

    Suzuki, A; Uchiyama, A

    2001-01-01

    In impedance computed tomography, a fixed coefficient regularization algorithm has been frequently used to improve the ill-conditioning problem of the Newton-Raphson algorithm. However, a lot of experimental data and a long period of computation time are needed to determine a good smoothing coefficient because a good smoothing coefficient has to be manually chosen from a number of coefficients and is a constant for each iteration calculation. Thus, sometimes the fixed coefficient regularization algorithm distorts the information or fails to obtain any effect. In this paper, a new adaptive smoothing coefficient algorithm is proposed. This algorithm automatically calculates the smoothing coefficient from the eigenvalue of the ill-conditioned matrix. Therefore, the effective images can be obtained within a short computation time. Also the smoothing coefficient is automatically adjusted by the information related to the real resistivity distribution and the data collection method. In our impedance system, we have reconstructed the resistivity distributions of two phantoms using this algorithm. As a result, this algorithm only needs one-fifth the computation time compared to the fixed coefficient regularization algorithm. When compared to the fixed coefficient regularization algorithm, it shows that the image is obtained more rapidly and applicable in real-time monitoring of the blood vessel.

  19. FPGA implementation of ICA algorithm for blind signal separation and adaptive noise canceling.

    PubMed

    Kim, Chang-Min; Park, Hyung-Min; Kim, Taesu; Choi, Yoon-Kyung; Lee, Soo-Young

    2003-01-01

    An field programmable gate array (FPGA) implementation of independent component analysis (ICA) algorithm is reported for blind signal separation (BSS) and adaptive noise canceling (ANC) in real time. In order to provide enormous computing power for ICA-based algorithms with multipath reverberation, a special digital processor is designed and implemented in FPGA. The chip design fully utilizes modular concept and several chips may be put together for complex applications with a large number of noise sources. Experimental results with a fabricated test board are reported for ANC only, BSS only, and simultaneous ANC/BSS, which demonstrates successful speech enhancement in real environments in real time.

  20. Using patient‐specific phantoms to evaluate deformable image registration algorithms for adaptive radiation therapy

    PubMed Central

    Stanley, Nick; Glide‐Hurst, Carri; Kim, Jinkoo; Adams, Jeffrey; Li, Shunshan; Wen, Ning; Chetty, Indrin J

    2013-01-01

    The quality of adaptive treatment planning depends on the accuracy of its underlying deformable image registration (DIR). The purpose of this study is to evaluate the performance of two DIR algorithms, B‐spline‐based deformable multipass (DMP) and deformable demons (Demons), implemented in a commercial software package. Evaluations were conducted using both computational and physical deformable phantoms. Based on a finite element method (FEM), a total of 11 computational models were developed from a set of CT images acquired from four lung and one prostate cancer patients. FEM generated displacement vector fields (DVF) were used to construct the lung and prostate image phantoms. Based on a fast‐Fourier transform technique, image noise power spectrum was incorporated into the prostate image phantoms to create simulated CBCT images. The FEM‐DVF served as a gold standard for verification of the two registration algorithms performed on these phantoms. The registration algorithms were also evaluated at the homologous points quantified in the CT images of a physical lung phantom. The results indicated that the mean errors of the DMP algorithm were in the range of 1.0~3.1mm for the computational phantoms and 1.9 mm for the physical lung phantom. For the computational prostate phantoms, the corresponding mean error was 1.0–1.9 mm in the prostate, 1.9–2.4 mm in the rectum, and 1.8–2.1 mm over the entire patient body. Sinusoidal errors induced by B‐spline interpolations were observed in all the displacement profiles of the DMP registrations. Regions of large displacements were observed to have more registration errors. Patient‐specific FEM models have been developed to evaluate the DIR algorithms implemented in the commercial software package. It has been found that the accuracy of these algorithms is patient‐dependent and related to various factors including tissue deformation magnitudes and image intensity gradients across the regions of interest. This

  1. A New Polar Transfer Alignment Algorithm with the Aid of a Star Sensor and Based on an Adaptive Unscented Kalman Filter.

    PubMed

    Cheng, Jianhua; Wang, Tongda; Wang, Lu; Wang, Zhenmin

    2017-10-23

    Because of the harsh polar environment, the master strapdown inertial navigation system (SINS) has low accuracy and the system model information becomes abnormal. In this case, existing polar transfer alignment (TA) algorithms which use the measurement information provided by master SINS would lose their effectiveness. In this paper, a new polar TA algorithm with the aid of a star sensor and based on an adaptive unscented Kalman filter (AUKF) is proposed to deal with the problems. Since the measurement information provided by master SINS is inaccurate, the accurate information provided by the star sensor is chosen as the measurement. With the compensation of lever-arm effect and the model of star sensor, the nonlinear navigation equations are derived. Combined with the attitude matching method, the filter models for polar TA are designed. An AUKF is introduced to solve the abnormal information of system model. Then, the AUKF is used to estimate the states of TA. Results have demonstrated that the performance of the new polar TA algorithm is better than the state-of-the-art polar TA algorithms. Therefore, the new polar TA algorithm proposed in this paper is effectively to ensure and improve the accuracy of TA in the harsh polar environment.

  2. A New Polar Transfer Alignment Algorithm with the Aid of a Star Sensor and Based on an Adaptive Unscented Kalman Filter

    PubMed Central

    Cheng, Jianhua; Wang, Tongda; Wang, Lu; Wang, Zhenmin

    2017-01-01

    Because of the harsh polar environment, the master strapdown inertial navigation system (SINS) has low accuracy and the system model information becomes abnormal. In this case, existing polar transfer alignment (TA) algorithms which use the measurement information provided by master SINS would lose their effectiveness. In this paper, a new polar TA algorithm with the aid of a star sensor and based on an adaptive unscented Kalman filter (AUKF) is proposed to deal with the problems. Since the measurement information provided by master SINS is inaccurate, the accurate information provided by the star sensor is chosen as the measurement. With the compensation of lever-arm effect and the model of star sensor, the nonlinear navigation equations are derived. Combined with the attitude matching method, the filter models for polar TA are designed. An AUKF is introduced to solve the abnormal information of system model. Then, the AUKF is used to estimate the states of TA. Results have demonstrated that the performance of the new polar TA algorithm is better than the state-of-the-art polar TA algorithms. Therefore, the new polar TA algorithm proposed in this paper is effectively to ensure and improve the accuracy of TA in the harsh polar environment. PMID:29065521

  3. An adaptive bit synchronization algorithm under time-varying environment.

    NASA Technical Reports Server (NTRS)

    Chow, L. R.; Owen, H. A., Jr.; Wang, P. P.

    1973-01-01

    This paper presents an adaptive estimation algorithm for bit synchronization, assuming that the parameters of the incoming data process are time-varying. Experiment results have proved that this synchronizer is workable either judged by the amount of data required or the speed of convergence.

  4. Experiment on a three-beam adaptive array for EHF frequency-hopped signals using a fast algorithm, phase-D

    NASA Astrophysics Data System (ADS)

    Yen, J. L.; Kremer, P.; Amin, N.; Fung, J.

    1989-05-01

    The Department of National Defence (Canada) has been conducting studies into multi-beam adaptive arrays for extremely high frequency (EHF) frequency hopped signals. A three-beam 43 GHz adaptive antenna and a beam control processor is under development. An interactive software package for the operation of the array, capable of applying different control algorithms is being written. A maximum signal to jammer plus noise ratio (SJNR) was found to provide superior performance in preventing degradation of user signals in the presence of nearby jammers. A new fast algorithm using a modified conjugate gradient approach was found to be a very efficient way to implement anti-jamming arrays based on maximum SJNR criterion. The present study was intended to refine and simplify this algorithm and to implement the algorithm on an experimental array for real-time evaluation of anti-jamming performance. A three-beam adaptive array was used. A simulation package was used in the evaluation of multi-beam systems using more than three beams and different user-jammer scenarios. An attempt to further reduce the computation burden through continued analysis of maximum SJNR met with limited success. A method to acquire and track an incoming laser beam is proposed.

  5. Network congestion control algorithm based on Actor-Critic reinforcement learning model

    NASA Astrophysics Data System (ADS)

    Xu, Tao; Gong, Lina; Zhang, Wei; Li, Xuhong; Wang, Xia; Pan, Wenwen

    2018-04-01

    Aiming at the network congestion control problem, a congestion control algorithm based on Actor-Critic reinforcement learning model is designed. Through the genetic algorithm in the congestion control strategy, the network congestion problems can be better found and prevented. According to Actor-Critic reinforcement learning, the simulation experiment of network congestion control algorithm is designed. The simulation experiments verify that the AQM controller can predict the dynamic characteristics of the network system. Moreover, the learning strategy is adopted to optimize the network performance, and the dropping probability of packets is adaptively adjusted so as to improve the network performance and avoid congestion. Based on the above finding, it is concluded that the network congestion control algorithm based on Actor-Critic reinforcement learning model can effectively avoid the occurrence of TCP network congestion.

  6. Landsat ecosystem disturbance adaptive processing system (LEDAPS) algorithm description

    USGS Publications Warehouse

    Schmidt, Gail; Jenkerson, Calli B.; Masek, Jeffrey; Vermote, Eric; Gao, Feng

    2013-01-01

    The Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) software was originally developed by the National Aeronautics and Space Administration–Goddard Space Flight Center and the University of Maryland to produce top-of-atmosphere reflectance from LandsatThematic Mapper and Enhanced Thematic Mapper Plus Level 1 digital numbers and to apply atmospheric corrections to generate a surface-reflectance product.The U.S. Geological Survey (USGS) has adopted the LEDAPS algorithm for producing the Landsat Surface Reflectance Climate Data Record.This report discusses the LEDAPS algorithm, which was implemented by the USGS.

  7. Novel near-infrared spectrum analysis tool: Synergy adaptive moving window model based on immune clone algorithm.

    PubMed

    Wang, Shenghao; Zhang, Yuyan; Cao, Fuyi; Pei, Zhenying; Gao, Xuewei; Zhang, Xu; Zhao, Yong

    2018-02-13

    This paper presents a novel spectrum analysis tool named synergy adaptive moving window modeling based on immune clone algorithm (SA-MWM-ICA) considering the tedious and inconvenient labor involved in the selection of pre-processing methods and spectral variables by prior experience. In this work, immune clone algorithm is first introduced into the spectrum analysis field as a new optimization strategy, covering the shortage of the relative traditional methods. Based on the working principle of the human immune system, the performance of the quantitative model is regarded as antigen, and a special vector corresponding to the above mentioned antigen is regarded as antibody. The antibody contains a pre-processing method optimization region which is created by 11 decimal digits, and a spectrum variable optimization region which is formed by some moving windows with changeable width and position. A set of original antibodies are created by modeling with this algorithm. After calculating the affinity of these antibodies, those with high affinity will be selected to clone. The regulation for cloning is that the higher the affinity, the more copies will be. In the next step, another import operation named hyper-mutation is applied to the antibodies after cloning. Moreover, the regulation for hyper-mutation is that the lower the affinity, the more possibility will be. Several antibodies with high affinity will be created on the basis of these steps. Groups of simulated dataset, gasoline near-infrared spectra dataset, and soil near-infrared spectra dataset are employed to verify and illustrate the performance of SA-MWM-ICA. Analysis results show that the performance of the quantitative models adopted by SA-MWM-ICA are better especially for structures with relatively complex spectra than traditional models such as partial least squares (PLS), moving window PLS (MWPLS), genetic algorithm PLS (GAPLS), and pretreatment method classification and adjustable parameter changeable

  8. Enhancement of ELDA Tracker Based on CNN Features and Adaptive Model Update.

    PubMed

    Gao, Changxin; Shi, Huizhang; Yu, Jin-Gang; Sang, Nong

    2016-04-15

    Appearance representation and the observation model are the most important components in designing a robust visual tracking algorithm for video-based sensors. Additionally, the exemplar-based linear discriminant analysis (ELDA) model has shown good performance in object tracking. Based on that, we improve the ELDA tracking algorithm by deep convolutional neural network (CNN) features and adaptive model update. Deep CNN features have been successfully used in various computer vision tasks. Extracting CNN features on all of the candidate windows is time consuming. To address this problem, a two-step CNN feature extraction method is proposed by separately computing convolutional layers and fully-connected layers. Due to the strong discriminative ability of CNN features and the exemplar-based model, we update both object and background models to improve their adaptivity and to deal with the tradeoff between discriminative ability and adaptivity. An object updating method is proposed to select the "good" models (detectors), which are quite discriminative and uncorrelated to other selected models. Meanwhile, we build the background model as a Gaussian mixture model (GMM) to adapt to complex scenes, which is initialized offline and updated online. The proposed tracker is evaluated on a benchmark dataset of 50 video sequences with various challenges. It achieves the best overall performance among the compared state-of-the-art trackers, which demonstrates the effectiveness and robustness of our tracking algorithm.

  9. Enhancement of ELDA Tracker Based on CNN Features and Adaptive Model Update

    PubMed Central

    Gao, Changxin; Shi, Huizhang; Yu, Jin-Gang; Sang, Nong

    2016-01-01

    Appearance representation and the observation model are the most important components in designing a robust visual tracking algorithm for video-based sensors. Additionally, the exemplar-based linear discriminant analysis (ELDA) model has shown good performance in object tracking. Based on that, we improve the ELDA tracking algorithm by deep convolutional neural network (CNN) features and adaptive model update. Deep CNN features have been successfully used in various computer vision tasks. Extracting CNN features on all of the candidate windows is time consuming. To address this problem, a two-step CNN feature extraction method is proposed by separately computing convolutional layers and fully-connected layers. Due to the strong discriminative ability of CNN features and the exemplar-based model, we update both object and background models to improve their adaptivity and to deal with the tradeoff between discriminative ability and adaptivity. An object updating method is proposed to select the “good” models (detectors), which are quite discriminative and uncorrelated to other selected models. Meanwhile, we build the background model as a Gaussian mixture model (GMM) to adapt to complex scenes, which is initialized offline and updated online. The proposed tracker is evaluated on a benchmark dataset of 50 video sequences with various challenges. It achieves the best overall performance among the compared state-of-the-art trackers, which demonstrates the effectiveness and robustness of our tracking algorithm. PMID:27092505

  10. Vision-based algorithms for near-host object detection and multilane sensing

    NASA Astrophysics Data System (ADS)

    Kenue, Surender K.

    1995-01-01

    Vision-based sensing can be used for lane sensing, adaptive cruise control, collision warning, and driver performance monitoring functions of intelligent vehicles. Current computer vision algorithms are not robust for handling multiple vehicles in highway scenarios. Several new algorithms are proposed for multi-lane sensing, near-host object detection, vehicle cut-in situations, and specifying regions of interest for object tracking. These algorithms were tested successfully on more than 6000 images taken from real-highway scenes under different daytime lighting conditions.

  11. Wavelength-Adaptive Dehazing Using Histogram Merging-Based Classification for UAV Images

    PubMed Central

    Yoon, Inhye; Jeong, Seokhwa; Jeong, Jaeheon; Seo, Doochun; Paik, Joonki

    2015-01-01

    Since incoming light to an unmanned aerial vehicle (UAV) platform can be scattered by haze and dust in the atmosphere, the acquired image loses the original color and brightness of the subject. Enhancement of hazy images is an important task in improving the visibility of various UAV images. This paper presents a spatially-adaptive dehazing algorithm that merges color histograms with consideration of the wavelength-dependent atmospheric turbidity. Based on the wavelength-adaptive hazy image acquisition model, the proposed dehazing algorithm consists of three steps: (i) image segmentation based on geometric classes; (ii) generation of the context-adaptive transmission map; and (iii) intensity transformation for enhancing a hazy UAV image. The major contribution of the research is a novel hazy UAV image degradation model by considering the wavelength of light sources. In addition, the proposed transmission map provides a theoretical basis to differentiate visually important regions from others based on the turbidity and merged classification results. PMID:25808767

  12. Wavelength-adaptive dehazing using histogram merging-based classification for UAV images.

    PubMed

    Yoon, Inhye; Jeong, Seokhwa; Jeong, Jaeheon; Seo, Doochun; Paik, Joonki

    2015-03-19

    Since incoming light to an unmanned aerial vehicle (UAV) platform can be scattered by haze and dust in the atmosphere, the acquired image loses the original color and brightness of the subject. Enhancement of hazy images is an important task in improving the visibility of various UAV images. This paper presents a spatially-adaptive dehazing algorithm that merges color histograms with consideration of the wavelength-dependent atmospheric turbidity. Based on the wavelength-adaptive hazy image acquisition model, the proposed dehazing algorithm consists of three steps: (i) image segmentation based on geometric classes; (ii) generation of the context-adaptive transmission map; and (iii) intensity transformation for enhancing a hazy UAV image. The major contribution of the research is a novel hazy UAV image degradation model by considering the wavelength of light sources. In addition, the proposed transmission map provides a theoretical basis to differentiate visually important regions from others based on the turbidity and merged classification results.

  13. Study on a low complexity adaptive modulation algorithm in OFDM-ROF system with sub-carrier grouping technology

    NASA Astrophysics Data System (ADS)

    Liu, Chong-xin; Liu, Bo; Zhang, Li-jia; Xin, Xiang-jun; Tian, Qing-hua; Tian, Feng; Wang, Yong-jun; Rao, Lan; Mao, Yaya; Li, Deng-ao

    2018-01-01

    During the last decade, the orthogonal frequency division multiplexing radio-over-fiber (OFDM-ROF) system with adaptive modulation technology is of great interest due to its capability of raising the spectral efficiency dramatically, reducing the effects of fiber link or wireless channel, and improving the communication quality. In this study, according to theoretical analysis of nonlinear distortion and frequency selective fading on the transmitted signal, a low-complexity adaptive modulation algorithm is proposed in combination with sub-carrier grouping technology. This algorithm achieves the optimal performance of the system by calculating the average combined signal-to-noise ratio of each group and dynamically adjusting the origination modulation format according to the preset threshold and user's requirements. At the same time, this algorithm takes the sub-carrier group as the smallest unit in the initial bit allocation and the subsequent bit adjustment. So, the algorithm complexity is only 1 /M (M is the number of sub-carriers in each group) of Fischer algorithm, which is much smaller than many classic adaptive modulation algorithms, such as Hughes-Hartogs algorithm, Chow algorithm, and is in line with the development direction of green and high speed communication. Simulation results show that the performance of OFDM-ROF system with the improved algorithm is much better than those without adaptive modulation, and the BER of the former achieves 10e1 to 10e2 times lower than the latter when SNR values gets larger. We can obtain that this low complexity adaptive modulation algorithm is extremely useful for the OFDM-ROF system.

  14. Accelerated gradient-based free form deformable registration for online adaptive radiotherapy

    NASA Astrophysics Data System (ADS)

    Yu, Gang; Liang, Yueqiang; Yang, Guanyu; Shu, Huazhong; Li, Baosheng; Yin, Yong; Li, Dengwang

    2015-04-01

    The registration of planning fan-beam computed tomography (FBCT) and daily cone-beam CT (CBCT) is a crucial step in adaptive radiation therapy. The current intensity-based registration algorithms, such as Demons, may fail when they are used to register FBCT and CBCT, because the CT numbers in CBCT cannot exactly correspond to the electron densities. In this paper, we investigated the effects of CBCT intensity inaccuracy on the registration accuracy and developed an accurate gradient-based free form deformation algorithm (GFFD). GFFD distinguishes itself from other free form deformable registration algorithms by (a) measuring the similarity using the 3D gradient vector fields to avoid the effect of inconsistent intensities between the two modalities; (b) accommodating image sampling anisotropy using the local polynomial approximation-intersection of confidence intervals (LPA-ICI) algorithm to ensure a smooth and continuous displacement field; and (c) introducing a ‘bi-directional’ force along with an adaptive force strength adjustment to accelerate the convergence process. It is expected that such a strategy can decrease the effect of the inconsistent intensities between the two modalities, thus improving the registration accuracy and robustness. Moreover, for clinical application, the algorithm was implemented by graphics processing units (GPU) through OpenCL framework. The registration time of the GFFD algorithm for each set of CT data ranges from 8 to 13 s. The applications of on-line adaptive image-guided radiation therapy, including auto-propagation of contours, aperture-optimization and dose volume histogram (DVH) in the course of radiation therapy were also studied by in-house-developed software.

  15. Adaptive Sampling-Based Information Collection for Wireless Body Area Networks.

    PubMed

    Xu, Xiaobin; Zhao, Fang; Wang, Wendong; Tian, Hui

    2016-08-31

    To collect important health information, WBAN applications typically sense data at a high frequency. However, limited by the quality of wireless link, the uploading of sensed data has an upper frequency. To reduce upload frequency, most of the existing WBAN data collection approaches collect data with a tolerable error. These approaches can guarantee precision of the collected data, but they are not able to ensure that the upload frequency is within the upper frequency. Some traditional sampling based approaches can control upload frequency directly, however, they usually have a high loss of information. Since the core task of WBAN applications is to collect health information, this paper aims to collect optimized information under the limitation of upload frequency. The importance of sensed data is defined according to information theory for the first time. Information-aware adaptive sampling is proposed to collect uniformly distributed data. Then we propose Adaptive Sampling-based Information Collection (ASIC) which consists of two algorithms. An adaptive sampling probability algorithm is proposed to compute sampling probabilities of different sensed values. A multiple uniform sampling algorithm provides uniform samplings for values in different intervals. Experiments based on a real dataset show that the proposed approach has higher performance in terms of data coverage and information quantity. The parameter analysis shows the optimized parameter settings and the discussion shows the underlying reason of high performance in the proposed approach.

  16. An adaptive importance sampling algorithm for Bayesian inversion with multimodal distributions

    DOE PAGES

    Li, Weixuan; Lin, Guang

    2015-03-21

    Parametric uncertainties are encountered in the simulations of many physical systems, and may be reduced by an inverse modeling procedure that calibrates the simulation results to observations on the real system being simulated. Following Bayes’ rule, a general approach for inverse modeling problems is to sample from the posterior distribution of the uncertain model parameters given the observations. However, the large number of repetitive forward simulations required in the sampling process could pose a prohibitive computational burden. This difficulty is particularly challenging when the posterior is multimodal. We present in this paper an adaptive importance sampling algorithm to tackle thesemore » challenges. Two essential ingredients of the algorithm are: 1) a Gaussian mixture (GM) model adaptively constructed as the proposal distribution to approximate the possibly multimodal target posterior, and 2) a mixture of polynomial chaos (PC) expansions, built according to the GM proposal, as a surrogate model to alleviate the computational burden caused by computational-demanding forward model evaluations. In three illustrative examples, the proposed adaptive importance sampling algorithm demonstrates its capabilities of automatically finding a GM proposal with an appropriate number of modes for the specific problem under study, and obtaining a sample accurately and efficiently representing the posterior with limited number of forward simulations.« less

  17. An adaptive importance sampling algorithm for Bayesian inversion with multimodal distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Weixuan; Lin, Guang, E-mail: guanglin@purdue.edu

    2015-08-01

    Parametric uncertainties are encountered in the simulations of many physical systems, and may be reduced by an inverse modeling procedure that calibrates the simulation results to observations on the real system being simulated. Following Bayes' rule, a general approach for inverse modeling problems is to sample from the posterior distribution of the uncertain model parameters given the observations. However, the large number of repetitive forward simulations required in the sampling process could pose a prohibitive computational burden. This difficulty is particularly challenging when the posterior is multimodal. We present in this paper an adaptive importance sampling algorithm to tackle thesemore » challenges. Two essential ingredients of the algorithm are: 1) a Gaussian mixture (GM) model adaptively constructed as the proposal distribution to approximate the possibly multimodal target posterior, and 2) a mixture of polynomial chaos (PC) expansions, built according to the GM proposal, as a surrogate model to alleviate the computational burden caused by computational-demanding forward model evaluations. In three illustrative examples, the proposed adaptive importance sampling algorithm demonstrates its capabilities of automatically finding a GM proposal with an appropriate number of modes for the specific problem under study, and obtaining a sample accurately and efficiently representing the posterior with limited number of forward simulations.« less

  18. Robust fundamental frequency estimation in sustained vowels: Detailed algorithmic comparisons and information fusion with adaptive Kalman filtering

    PubMed Central

    Tsanas, Athanasios; Zañartu, Matías; Little, Max A.; Fox, Cynthia; Ramig, Lorraine O.; Clifford, Gari D.

    2014-01-01

    There has been consistent interest among speech signal processing researchers in the accurate estimation of the fundamental frequency (F0) of speech signals. This study examines ten F0 estimation algorithms (some well-established and some proposed more recently) to determine which of these algorithms is, on average, better able to estimate F0 in the sustained vowel /a/. Moreover, a robust method for adaptively weighting the estimates of individual F0 estimation algorithms based on quality and performance measures is proposed, using an adaptive Kalman filter (KF) framework. The accuracy of the algorithms is validated using (a) a database of 117 synthetic realistic phonations obtained using a sophisticated physiological model of speech production and (b) a database of 65 recordings of human phonations where the glottal cycles are calculated from electroglottograph signals. On average, the sawtooth waveform inspired pitch estimator and the nearly defect-free algorithms provided the best individual F0 estimates, and the proposed KF approach resulted in a ∼16% improvement in accuracy over the best single F0 estimation algorithm. These findings may be useful in speech signal processing applications where sustained vowels are used to assess vocal quality, when very accurate F0 estimation is required. PMID:24815269

  19. EEG/ERP adaptive noise canceller design with controlled search space (CSS) approach in cuckoo and other optimization algorithms.

    PubMed

    Ahirwal, M K; Kumar, Anil; Singh, G K

    2013-01-01

    This paper explores the migration of adaptive filtering with swarm intelligence/evolutionary techniques employed in the field of electroencephalogram/event-related potential noise cancellation or extraction. A new approach is proposed in the form of controlled search space to stabilize the randomness of swarm intelligence techniques especially for the EEG signal. Swarm-based algorithms such as Particles Swarm Optimization, Artificial Bee Colony, and Cuckoo Optimization Algorithm with their variants are implemented to design optimized adaptive noise canceler. The proposed controlled search space technique is tested on each of the swarm intelligence techniques and is found to be more accurate and powerful. Adaptive noise canceler with traditional algorithms such as least-mean-square, normalized least-mean-square, and recursive least-mean-square algorithms are also implemented to compare the results. ERP signals such as simulated visual evoked potential, real visual evoked potential, and real sensorimotor evoked potential are used, due to their physiological importance in various EEG studies. Average computational time and shape measures of evolutionary techniques are observed 8.21E-01 sec and 1.73E-01, respectively. Though, traditional algorithms take negligible time consumption, but are unable to offer good shape preservation of ERP, noticed as average computational time and shape measure difference, 1.41E-02 sec and 2.60E+00, respectively.

  20. An object-oriented and quadrilateral-mesh based solution adaptive algorithm for compressible multi-fluid flows

    NASA Astrophysics Data System (ADS)

    Zheng, H. W.; Shu, C.; Chew, Y. T.

    2008-07-01

    In this paper, an object-oriented and quadrilateral-mesh based solution adaptive algorithm for the simulation of compressible multi-fluid flows is presented. The HLLC scheme (Harten, Lax and van Leer approximate Riemann solver with the Contact wave restored) is extended to adaptively solve the compressible multi-fluid flows under complex geometry on unstructured mesh. It is also extended to the second-order of accuracy by using MUSCL extrapolation. The node, edge and cell are arranged in such an object-oriented manner that each of them inherits from a basic object. A home-made double link list is designed to manage these objects so that the inserting of new objects and removing of the existing objects (nodes, edges and cells) are independent of the number of objects and only of the complexity of O( 1). In addition, the cells with different levels are further stored in different lists. This avoids the recursive calculation of solution of mother (non-leaf) cells. Thus, high efficiency is obtained due to these features. Besides, as compared to other cell-edge adaptive methods, the separation of nodes would reduce the memory requirement of redundant nodes, especially in the cases where the level number is large or the space dimension is three. Five two-dimensional examples are used to examine its performance. These examples include vortex evolution problem, interface only problem under structured mesh and unstructured mesh, bubble explosion under the water, bubble-shock interaction, and shock-interface interaction inside the cylindrical vessel. Numerical results indicate that there is no oscillation of pressure and velocity across the interface and it is feasible to apply it to solve compressible multi-fluid flows with large density ratio (1000) and strong shock wave (the pressure ratio is 10,000) interaction with the interface.

  1. Learning-based traffic signal control algorithms with neighborhood information sharing: An application for sustainable mobility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aziz, H. M. Abdul; Zhu, Feng; Ukkusuri, Satish V.

    Here, this research applies R-Markov Average Reward Technique based reinforcement learning (RL) algorithm, namely RMART, for vehicular signal control problem leveraging information sharing among signal controllers in connected vehicle environment. We implemented the algorithm in a network of 18 signalized intersections and compare the performance of RMART with fixed, adaptive, and variants of the RL schemes. Results show significant improvement in system performance for RMART algorithm with information sharing over both traditional fixed signal timing plans and real time adaptive control schemes. Additionally, the comparison with reinforcement learning algorithms including Q learning and SARSA indicate that RMART performs better atmore » higher congestion levels. Further, a multi-reward structure is proposed that dynamically adjusts the reward function with varying congestion states at the intersection. Finally, the results from test networks show significant reduction in emissions (CO, CO 2, NO x, VOC, PM 10) when RL algorithms are implemented compared to fixed signal timings and adaptive schemes.« less

  2. A family of variable step-size affine projection adaptive filter algorithms using statistics of channel impulse response

    NASA Astrophysics Data System (ADS)

    Shams Esfand Abadi, Mohammad; AbbasZadeh Arani, Seyed Ali Asghar

    2011-12-01

    This paper extends the recently introduced variable step-size (VSS) approach to the family of adaptive filter algorithms. This method uses prior knowledge of the channel impulse response statistic. Accordingly, optimal step-size vector is obtained by minimizing the mean-square deviation (MSD). The presented algorithms are the VSS affine projection algorithm (VSS-APA), the VSS selective partial update NLMS (VSS-SPU-NLMS), the VSS-SPU-APA, and the VSS selective regressor APA (VSS-SR-APA). In VSS-SPU adaptive algorithms the filter coefficients are partially updated which reduce the computational complexity. In VSS-SR-APA, the optimal selection of input regressors is performed during the adaptation. The presented algorithms have good convergence speed, low steady state mean square error (MSE), and low computational complexity features. We demonstrate the good performance of the proposed algorithms through several simulations in system identification scenario.

  3. Adaptive DFT-Based Interferometer Fringe Tracking

    NASA Astrophysics Data System (ADS)

    Wilson, Edward; Pedretti, Ettore; Bregman, Jesse; Mah, Robert W.; Traub, Wesley A.

    An automatic interferometer fringe tracking system has been developed, implemented, and tested at the Infrared Optical Telescope Array (IOTA) Observatory at Mount Hopkins, Arizona. The system can minimize the optical path differences (OPDs) for all three baselines of the Michelson stellar interferometer at IOTA. Based on sliding window discrete Fourier-transform (DFT) calculations that were optimized for computational efficiency and robustness to atmospheric disturbances, the algorithm has also been tested extensively on offline data. Implemented in ANSI C on the 266 MHz PowerPC processor running the VxWorks real-time operating system, the algorithm runs in approximately 2.0 milliseconds per scan (including all three interferograms), using the science camera and piezo scanners to measure and correct the OPDs. The adaptive DFT-based tracking algorithm should be applicable to other systems where there is a need to detect or track a signal with an approximately constant-frequency carrier pulse. One example of such an application might be to the field of thin-film measurement by ellipsometry, using a broadband light source and a Fourier-transform spectrometer to detect the resulting fringe patterns.

  4. Inversion for Refractivity Parameters Using a Dynamic Adaptive Cuckoo Search with Crossover Operator Algorithm

    PubMed Central

    Zhang, Zhihua; Sheng, Zheng; Shi, Hanqing; Fan, Zhiqiang

    2016-01-01

    Using the RFC technique to estimate refractivity parameters is a complex nonlinear optimization problem. In this paper, an improved cuckoo search (CS) algorithm is proposed to deal with this problem. To enhance the performance of the CS algorithm, a parameter dynamic adaptive operation and crossover operation were integrated into the standard CS (DACS-CO). Rechenberg's 1/5 criteria combined with learning factor were used to control the parameter dynamic adaptive adjusting process. The crossover operation of genetic algorithm was utilized to guarantee the population diversity. The new hybrid algorithm has better local search ability and contributes to superior performance. To verify the ability of the DACS-CO algorithm to estimate atmospheric refractivity parameters, the simulation data and real radar clutter data are both implemented. The numerical experiments demonstrate that the DACS-CO algorithm can provide an effective method for near-real-time estimation of the atmospheric refractivity profile from radar clutter. PMID:27212938

  5. Image-classification-based global dimming algorithm for LED backlights in LCDs

    NASA Astrophysics Data System (ADS)

    Qibin, Feng; Huijie, He; Dong, Han; Lei, Zhang; Guoqiang, Lv

    2015-07-01

    Backlight dimming can help LCDs reduce power consumption and improve CR. With fixed parameters, dimming algorithm cannot achieve satisfied effects for all kinds of images. The paper introduces an image-classification-based global dimming algorithm. The proposed classification method especially for backlight dimming is based on luminance and CR of input images. The parameters for backlight dimming level and pixel compensation are adaptive with image classifications. The simulation results show that the classification based dimming algorithm presents 86.13% power reduction improvement compared with dimming without classification, with almost same display quality. The prototype is developed. There are no perceived distortions when playing videos. The practical average power reduction of the prototype TV is 18.72%, compared with common TV without dimming.

  6. Experiment on a three-beam adaptive array for EHF frequency-hopped signals using a fast algorithm, phase E

    NASA Astrophysics Data System (ADS)

    Yen, J. L.; Kremer, P.; Fung, J.

    1990-05-01

    The Department of National Defence (Canada) has been conducting studies into multi-beam adaptive arrays for extremely high frequency (EHF) frequency hopped signals. A three-beam 43 GHz adaptive antenna and a beam control processor is under development. An interactive software package for the operation of the array, capable of applying different control algorithms is being written. A maximum signal to jammer plus noise ratio (SJNR) has been found to provide superior performance in preventing degradation of user signals in the presence of nearby jammers. A new fast algorithm using a modified conjugate gradient approach has been found to be a very efficient way to implement anti-jamming arrays based on maximum SJNR criterion. The present study was intended to refine and simplify this algorithm and to implement the algorithm on an experimental array for real-time evaluation of anti-jamming performance. A three-beam adaptive array was used. A simulation package was used in the evaluation of multi-beam systems using more than three beams and different user-jammer scenarios. An attempt to further reduce the computation burden through further analysis of maximum SJNR met with limited success. The investigation of a new angle detector for spatial tracking in heterodyne laser space communications was completed.

  7. A photoacoustic imaging reconstruction method based on directional total variation with adaptive directivity.

    PubMed

    Wang, Jin; Zhang, Chen; Wang, Yuanyuan

    2017-05-30

    In photoacoustic tomography (PAT), total variation (TV) based iteration algorithm is reported to have a good performance in PAT image reconstruction. However, classical TV based algorithm fails to preserve the edges and texture details of the image because it is not sensitive to the direction of the image. Therefore, it is of great significance to develop a new PAT reconstruction algorithm to effectively solve the drawback of TV. In this paper, a directional total variation with adaptive directivity (DDTV) model-based PAT image reconstruction algorithm, which weightedly sums the image gradients based on the spatially varying directivity pattern of the image is proposed to overcome the shortcomings of TV. The orientation field of the image is adaptively estimated through a gradient-based approach. The image gradients are weighted at every pixel based on both its anisotropic direction and another parameter, which evaluates the estimated orientation field reliability. An efficient algorithm is derived to solve the iteration problem associated with DDTV and possessing directivity of the image adaptively updated for each iteration step. Several texture images with various directivity patterns are chosen as the phantoms for the numerical simulations. The 180-, 90- and 30-view circular scans are conducted. Results obtained show that the DDTV-based PAT reconstructed algorithm outperforms the filtered back-projection method (FBP) and TV algorithms in the quality of reconstructed images with the peak signal-to-noise rations (PSNR) exceeding those of TV and FBP by about 10 and 18 dB, respectively, for all cases. The Shepp-Logan phantom is studied with further discussion of multimode scanning, convergence speed, robustness and universality aspects. In-vitro experiments are performed for both the sparse-view circular scanning and linear scanning. The results further prove the effectiveness of the DDTV, which shows better results than that of the TV with sharper image edges and

  8. Genetic algorithms

    NASA Technical Reports Server (NTRS)

    Wang, Lui; Bayer, Steven E.

    1991-01-01

    Genetic algorithms are mathematical, highly parallel, adaptive search procedures (i.e., problem solving methods) based loosely on the processes of natural genetics and Darwinian survival of the fittest. Basic genetic algorithms concepts are introduced, genetic algorithm applications are introduced, and results are presented from a project to develop a software tool that will enable the widespread use of genetic algorithm technology.

  9. SIMULATION OF DISPERSION OF A POWER PLANT PLUME USING AN ADAPTIVE GRID ALGORITHM

    EPA Science Inventory

    A new dynamic adaptive grid algorithm has been developed for use in air quality modeling. This algorithm uses a higher order numerical scheme?the piecewise parabolic method (PPM)?for computing advective solution fields; a weight function capable of promoting grid node clustering ...

  10. An environment-adaptive management algorithm for hearing-support devices incorporating listening situation and noise type classifiers.

    PubMed

    Yook, Sunhyun; Nam, Kyoung Won; Kim, Heepyung; Hong, Sung Hwa; Jang, Dong Pyo; Kim, In Young

    2015-04-01

    In order to provide more consistent sound intelligibility for the hearing-impaired person, regardless of environment, it is necessary to adjust the setting of the hearing-support (HS) device to accommodate various environmental circumstances. In this study, a fully automatic HS device management algorithm that can adapt to various environmental situations is proposed; it is composed of a listening-situation classifier, a noise-type classifier, an adaptive noise-reduction algorithm, and a management algorithm that can selectively turn on/off one or more of the three basic algorithms-beamforming, noise-reduction, and feedback cancellation-and can also adjust internal gains and parameters of the wide-dynamic-range compression (WDRC) and noise-reduction (NR) algorithms in accordance with variations in environmental situations. Experimental results demonstrated that the implemented algorithms can classify both listening situation and ambient noise type situations with high accuracies (92.8-96.4% and 90.9-99.4%, respectively), and the gains and parameters of the WDRC and NR algorithms were successfully adjusted according to variations in environmental situation. The average values of signal-to-noise ratio (SNR), frequency-weighted segmental SNR, Perceptual Evaluation of Speech Quality, and mean opinion test scores of 10 normal-hearing volunteers of the adaptive multiband spectral subtraction (MBSS) algorithm were improved by 1.74 dB, 2.11 dB, 0.49, and 0.68, respectively, compared to the conventional fixed-parameter MBSS algorithm. These results indicate that the proposed environment-adaptive management algorithm can be applied to HS devices to improve sound intelligibility for hearing-impaired individuals in various acoustic environments. Copyright © 2014 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  11. Surgical wound segmentation based on adaptive threshold edge detection and genetic algorithm

    NASA Astrophysics Data System (ADS)

    Shih, Hsueh-Fu; Ho, Te-Wei; Hsu, Jui-Tse; Chang, Chun-Che; Lai, Feipei; Wu, Jin-Ming

    2017-02-01

    Postsurgical wound care has a great impact on patients' prognosis. It often takes few days, even few weeks, for the wound to stabilize, which incurs a great cost of health care and nursing resources. To assess the wound condition and diagnosis, it is important to segment out the wound region for further analysis. However, the scenario of this strategy often consists of complicated background and noise. In this study, we propose a wound segmentation algorithm based on Canny edge detector and genetic algorithm with an unsupervised evaluation function. The results were evaluated by the 112 clinical images, and 94.3% of images were correctly segmented. The judgment was based on the evaluation of experimented medical doctors. This capability to extract complete wound regions, makes it possible to conduct further image analysis such as intelligent recovery evaluation and automatic infection requirements.

  12. An adaptive DPCM algorithm for predicting contours in NTSC composite video signals

    NASA Astrophysics Data System (ADS)

    Cox, N. R.

    An adaptive DPCM algorithm is proposed for encoding digitized National Television Systems Committee (NTSC) color video signals. This algorithm essentially predicts picture contours in the composite signal without resorting to component separation. The contour parameters (slope thresholds) are optimized using four 'typical' television frames that have been sampled at three times the color subcarrier frequency. Three variations of the basic predictor are simulated and compared quantitatively with three non-adaptive predictors of similar complexity. By incorporating a dual-word-length coder and buffer memory, high quality color pictures can be encoded at 4.0 bits/pel or 42.95 Mbit/s. The effect of channel error propagation is also investigated.

  13. A review of classification algorithms for EEG-based brain–computer interfaces: a 10 year update

    NASA Astrophysics Data System (ADS)

    Lotte, F.; Bougrain, L.; Cichocki, A.; Clerc, M.; Congedo, M.; Rakotomamonjy, A.; Yger, F.

    2018-06-01

    Objective. Most current electroencephalography (EEG)-based brain–computer interfaces (BCIs) are based on machine learning algorithms. There is a large diversity of classifier types that are used in this field, as described in our 2007 review paper. Now, approximately ten years after this review publication, many new algorithms have been developed and tested to classify EEG signals in BCIs. The time is therefore ripe for an updated review of EEG classification algorithms for BCIs. Approach. We surveyed the BCI and machine learning literature from 2007 to 2017 to identify the new classification approaches that have been investigated to design BCIs. We synthesize these studies in order to present such algorithms, to report how they were used for BCIs, what were the outcomes, and to identify their pros and cons. Main results. We found that the recently designed classification algorithms for EEG-based BCIs can be divided into four main categories: adaptive classifiers, matrix and tensor classifiers, transfer learning and deep learning, plus a few other miscellaneous classifiers. Among these, adaptive classifiers were demonstrated to be generally superior to static ones, even with unsupervised adaptation. Transfer learning can also prove useful although the benefits of transfer learning remain unpredictable. Riemannian geometry-based methods have reached state-of-the-art performances on multiple BCI problems and deserve to be explored more thoroughly, along with tensor-based methods. Shrinkage linear discriminant analysis and random forests also appear particularly useful for small training samples settings. On the other hand, deep learning methods have not yet shown convincing improvement over state-of-the-art BCI methods. Significance. This paper provides a comprehensive overview of the modern classification algorithms used in EEG-based BCIs, presents the principles of these methods and guidelines on when and how to use them. It also identifies a number of challenges

  14. Unsupervised Cryo-EM Data Clustering through Adaptively Constrained K-Means Algorithm.

    PubMed

    Xu, Yaofang; Wu, Jiayi; Yin, Chang-Cheng; Mao, Youdong

    2016-01-01

    In single-particle cryo-electron microscopy (cryo-EM), K-means clustering algorithm is widely used in unsupervised 2D classification of projection images of biological macromolecules. 3D ab initio reconstruction requires accurate unsupervised classification in order to separate molecular projections of distinct orientations. Due to background noise in single-particle images and uncertainty of molecular orientations, traditional K-means clustering algorithm may classify images into wrong classes and produce classes with a large variation in membership. Overcoming these limitations requires further development on clustering algorithms for cryo-EM data analysis. We propose a novel unsupervised data clustering method building upon the traditional K-means algorithm. By introducing an adaptive constraint term in the objective function, our algorithm not only avoids a large variation in class sizes but also produces more accurate data clustering. Applications of this approach to both simulated and experimental cryo-EM data demonstrate that our algorithm is a significantly improved alterative to the traditional K-means algorithm in single-particle cryo-EM analysis.

  15. Efficiently sampling conformations and pathways using the concurrent adaptive sampling (CAS) algorithm

    NASA Astrophysics Data System (ADS)

    Ahn, Surl-Hee; Grate, Jay W.; Darve, Eric F.

    2017-08-01

    Molecular dynamics simulations are useful in obtaining thermodynamic and kinetic properties of bio-molecules, but they are limited by the time scale barrier. That is, we may not obtain properties' efficiently because we need to run microseconds or longer simulations using femtosecond time steps. To overcome this time scale barrier, we can use the weighted ensemble (WE) method, a powerful enhanced sampling method that efficiently samples thermodynamic and kinetic properties. However, the WE method requires an appropriate partitioning of phase space into discrete macrostates, which can be problematic when we have a high-dimensional collective space or when little is known a priori about the molecular system. Hence, we developed a new WE-based method, called the "Concurrent Adaptive Sampling (CAS) algorithm," to tackle these issues. The CAS algorithm is not constrained to use only one or two collective variables, unlike most reaction coordinate-dependent methods. Instead, it can use a large number of collective variables and adaptive macrostates to enhance the sampling in the high-dimensional space. This is especially useful for systems in which we do not know what the right reaction coordinates are, in which case we can use many collective variables to sample conformations and pathways. In addition, a clustering technique based on the committor function is used to accelerate sampling the slowest process in the molecular system. In this paper, we introduce the new method and show results from two-dimensional models and bio-molecules, specifically penta-alanine and a triazine trimer.

  16. Self-adaptive predictor-corrector algorithm for static nonlinear structural analysis

    NASA Technical Reports Server (NTRS)

    Padovan, J.

    1981-01-01

    A multiphase selfadaptive predictor corrector type algorithm was developed. This algorithm enables the solution of highly nonlinear structural responses including kinematic, kinetic and material effects as well as pro/post buckling behavior. The strategy involves three main phases: (1) the use of a warpable hyperelliptic constraint surface which serves to upperbound dependent iterate excursions during successive incremental Newton Ramphson (INR) type iterations; (20 uses an energy constraint to scale the generation of successive iterates so as to maintain the appropriate form of local convergence behavior; (3) the use of quality of convergence checks which enable various self adaptive modifications of the algorithmic structure when necessary. The restructuring is achieved by tightening various conditioning parameters as well as switch to different algorithmic levels to improve the convergence process. The capabilities of the procedure to handle various types of static nonlinear structural behavior are illustrated.

  17. Adaptive Sampling-Based Information Collection for Wireless Body Area Networks

    PubMed Central

    Xu, Xiaobin; Zhao, Fang; Wang, Wendong; Tian, Hui

    2016-01-01

    To collect important health information, WBAN applications typically sense data at a high frequency. However, limited by the quality of wireless link, the uploading of sensed data has an upper frequency. To reduce upload frequency, most of the existing WBAN data collection approaches collect data with a tolerable error. These approaches can guarantee precision of the collected data, but they are not able to ensure that the upload frequency is within the upper frequency. Some traditional sampling based approaches can control upload frequency directly, however, they usually have a high loss of information. Since the core task of WBAN applications is to collect health information, this paper aims to collect optimized information under the limitation of upload frequency. The importance of sensed data is defined according to information theory for the first time. Information-aware adaptive sampling is proposed to collect uniformly distributed data. Then we propose Adaptive Sampling-based Information Collection (ASIC) which consists of two algorithms. An adaptive sampling probability algorithm is proposed to compute sampling probabilities of different sensed values. A multiple uniform sampling algorithm provides uniform samplings for values in different intervals. Experiments based on a real dataset show that the proposed approach has higher performance in terms of data coverage and information quantity. The parameter analysis shows the optimized parameter settings and the discussion shows the underlying reason of high performance in the proposed approach. PMID:27589758

  18. A Weight-Adaptive Laplacian Embedding for Graph-Based Clustering.

    PubMed

    Cheng, De; Nie, Feiping; Sun, Jiande; Gong, Yihong

    2017-07-01

    Graph-based clustering methods perform clustering on a fixed input data graph. Thus such clustering results are sensitive to the particular graph construction. If this initial construction is of low quality, the resulting clustering may also be of low quality. We address this drawback by allowing the data graph itself to be adaptively adjusted in the clustering procedure. In particular, our proposed weight adaptive Laplacian (WAL) method learns a new data similarity matrix that can adaptively adjust the initial graph according to the similarity weight in the input data graph. We develop three versions of these methods based on the L2-norm, fuzzy entropy regularizer, and another exponential-based weight strategy, that yield three new graph-based clustering objectives. We derive optimization algorithms to solve these objectives. Experimental results on synthetic data sets and real-world benchmark data sets exhibit the effectiveness of these new graph-based clustering methods.

  19. Incrementing data quality of multi-frequency echograms using the Adaptive Wiener Filter (AWF) denoising algorithm

    NASA Astrophysics Data System (ADS)

    Peña, M.

    2016-10-01

    Achieving acceptable signal-to-noise ratio (SNR) can be difficult when working in sparsely populated waters and/or when species have low scattering such as fluid filled animals. The increasing use of higher frequencies and the study of deeper depths in fisheries acoustics, as well as the use of commercial vessels, is raising the need to employ good denoising algorithms. The use of a lower Sv threshold to remove noise or unwanted targets is not suitable in many cases and increases the relative background noise component in the echogram, demanding more effectiveness from denoising algorithms. The Adaptive Wiener Filter (AWF) denoising algorithm is presented in this study. The technique is based on the AWF commonly used in digital photography and video enhancement. The algorithm firstly increments the quality of the data with a variance-dependent smoothing, before estimating the noise level as the envelope of the Sv minima. The AWF denoising algorithm outperforms existing algorithms in the presence of gaussian, speckle and salt & pepper noise, although impulse noise needs to be previously removed. Cleaned echograms present homogenous echotraces with outlined edges.

  20. An adaptive algorithm for the detection of microcalcifications in simulated low-dose mammography.

    PubMed

    Treiber, O; Wanninger, F; Führ, H; Panzer, W; Regulla, D; Winkler, G

    2003-02-21

    This paper uses the task of microcalcification detection as a benchmark problem to assess the potential for dose reduction in x-ray mammography. We present the results of a newly developed algorithm for detection of microcalcifications as a case study for a typical commercial film-screen system (Kodak Min-R 2000/2190). The first part of the paper deals with the simulation of dose reduction for film-screen mammography based on a physical model of the imaging process. Use of a more sensitive film-screen system is expected to result in additional smoothing of the image. We introduce two different models of that behaviour, called moderate and strong smoothing. We then present an adaptive, model-based microcalcification detection algorithm. Comparing detection results with ground-truth images obtained under the supervision of an expert radiologist allows us to establish the soundness of the detection algorithm. We measure the performance on the dose-reduced images in order to assess the loss of information due to dose reduction. It turns out that the smoothing behaviour has a strong influence on detection rates. For moderate smoothing. a dose reduction by 25% has no serious influence on the detection results. whereas a dose reduction by 50% already entails a marked deterioration of the performance. Strong smoothing generally leads to an unacceptable loss of image quality. The test results emphasize the impact of the more sensitive film-screen system and its characteristics on the problem of assessing the potential for dose reduction in film-screen mammography. The general approach presented in the paper can be adapted to fully digital mammography.

  1. An adaptive algorithm for the detection of microcalcifications in simulated low-dose mammography

    NASA Astrophysics Data System (ADS)

    Treiber, O.; Wanninger, F.; Führ, H.; Panzer, W.; Regulla, D.; Winkler, G.

    2003-02-01

    This paper uses the task of microcalcification detection as a benchmark problem to assess the potential for dose reduction in x-ray mammography. We present the results of a newly developed algorithm for detection of microcalcifications as a case study for a typical commercial film-screen system (Kodak Min-R 2000/2190). The first part of the paper deals with the simulation of dose reduction for film-screen mammography based on a physical model of the imaging process. Use of a more sensitive film-screen system is expected to result in additional smoothing of the image. We introduce two different models of that behaviour, called moderate and strong smoothing. We then present an adaptive, model-based microcalcification detection algorithm. Comparing detection results with ground-truth images obtained under the supervision of an expert radiologist allows us to establish the soundness of the detection algorithm. We measure the performance on the dose-reduced images in order to assess the loss of information due to dose reduction. It turns out that the smoothing behaviour has a strong influence on detection rates. For moderate smoothing, a dose reduction by 25% has no serious influence on the detection results, whereas a dose reduction by 50% already entails a marked deterioration of the performance. Strong smoothing generally leads to an unacceptable loss of image quality. The test results emphasize the impact of the more sensitive film-screen system and its characteristics on the problem of assessing the potential for dose reduction in film-screen mammography. The general approach presented in the paper can be adapted to fully digital mammography.

  2. Adaptive mechanism-based congestion control for networked systems

    NASA Astrophysics Data System (ADS)

    Liu, Zhi; Zhang, Yun; Chen, C. L. Philip

    2013-03-01

    In order to assure the communication quality in network systems with heavy traffic and limited bandwidth, a new ATRED (adaptive thresholds random early detection) congestion control algorithm is proposed for the congestion avoidance and resource management of network systems. Different to the traditional AQM (active queue management) algorithms, the control parameters of ATRED are not configured statically, but dynamically adjusted by the adaptive mechanism. By integrating with the adaptive strategy, ATRED alleviates the tuning difficulty of RED (random early detection) and shows a better control on the queue management, and achieve a more robust performance than RED under varying network conditions. Furthermore, a dynamic transmission control protocol-AQM control system using ATRED controller is introduced for the systematic analysis. It is proved that the stability of the network system can be guaranteed when the adaptive mechanism is finely designed. Simulation studies show the proposed ATRED algorithm achieves a good performance in varying network environments, which is superior to the RED and Gentle-RED algorithm, and providing more reliable service under varying network conditions.

  3. Sinusoidal synthesis based adaptive tracking for rotating machinery fault detection

    NASA Astrophysics Data System (ADS)

    Li, Gang; McDonald, Geoff L.; Zhao, Qing

    2017-01-01

    This paper presents a novel Sinusoidal Synthesis Based Adaptive Tracking (SSBAT) technique for vibration-based rotating machinery fault detection. The proposed SSBAT algorithm is an adaptive time series technique that makes use of both frequency and time domain information of vibration signals. Such information is incorporated in a time varying dynamic model. Signal tracking is then realized by applying adaptive sinusoidal synthesis to the vibration signal. A modified Least-Squares (LS) method is adopted to estimate the model parameters. In addition to tracking, the proposed vibration synthesis model is mainly used as a linear time-varying predictor. The health condition of the rotating machine is monitored by checking the residual between the predicted and measured signal. The SSBAT method takes advantage of the sinusoidal nature of vibration signals and transfers the nonlinear problem into a linear adaptive problem in the time domain based on a state-space realization. It has low computation burden and does not need a priori knowledge of the machine under the no-fault condition which makes the algorithm ideal for on-line fault detection. The method is validated using both numerical simulation and practical application data. Meanwhile, the fault detection results are compared with the commonly adopted autoregressive (AR) and autoregressive Minimum Entropy Deconvolution (ARMED) method to verify the feasibility and performance of the SSBAT method.

  4. A joint tracking method for NSCC based on WLS algorithm

    NASA Astrophysics Data System (ADS)

    Luo, Ruidan; Xu, Ying; Yuan, Hong

    2017-12-01

    Navigation signal based on compound carrier (NSCC), has the flexible multi-carrier scheme and various scheme parameters configuration, which enables it to possess significant efficiency of navigation augmentation in terms of spectral efficiency, tracking accuracy, multipath mitigation capability and anti-jamming reduction compared with legacy navigation signals. Meanwhile, the typical scheme characteristics can provide auxiliary information for signal synchronism algorithm design. This paper, based on the characteristics of NSCC, proposed a kind of joint tracking method utilizing Weighted Least Square (WLS) algorithm. In this method, the LS algorithm is employed to jointly estimate each sub-carrier frequency shift with the frequency-Doppler linear relationship, by utilizing the known sub-carrier frequency. Besides, the weighting matrix is set adaptively according to the sub-carrier power to ensure the estimation accuracy. Both the theory analysis and simulation results illustrate that the tracking accuracy and sensitivity of this method outperforms the single-carrier algorithm with lower SNR.

  5. A new algorithm for grid-based hydrologic analysis by incorporating stormwater infrastructure

    NASA Astrophysics Data System (ADS)

    Choi, Yosoon; Yi, Huiuk; Park, Hyeong-Dong

    2011-08-01

    We developed a new algorithm, the Adaptive Stormwater Infrastructure (ASI) algorithm, to incorporate ancillary data sets related to stormwater infrastructure into the grid-based hydrologic analysis. The algorithm simultaneously considers the effects of the surface stormwater collector network (e.g., diversions, roadside ditches, and canals) and underground stormwater conveyance systems (e.g., waterway tunnels, collector pipes, and culverts). The surface drainage flows controlled by the surface runoff collector network are superimposed onto the flow directions derived from a DEM. After examining the connections between inlets and outfalls in the underground stormwater conveyance system, the flow accumulation and delineation of watersheds are calculated based on recursive computations. Application of the algorithm to the Sangdong tailings dam in Korea revealed superior performance to that of a conventional D8 single-flow algorithm in terms of providing reasonable hydrologic information on watersheds with stormwater infrastructure.

  6. Optimal Design of Passive Power Filters Based on Pseudo-parallel Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Li, Pei; Li, Hongbo; Gao, Nannan; Niu, Lin; Guo, Liangfeng; Pei, Ying; Zhang, Yanyan; Xu, Minmin; Chen, Kerui

    2017-05-01

    The economic costs together with filter efficiency are taken as targets to optimize the parameter of passive filter. Furthermore, the method of combining pseudo-parallel genetic algorithm with adaptive genetic algorithm is adopted in this paper. In the early stages pseudo-parallel genetic algorithm is introduced to increase the population diversity, and adaptive genetic algorithm is used in the late stages to reduce the workload. At the same time, the migration rate of pseudo-parallel genetic algorithm is improved to change with population diversity adaptively. Simulation results show that the filter designed by the proposed method has better filtering effect with lower economic cost, and can be used in engineering.

  7. Scene-based nonuniformity correction with reduced ghosting using a gated LMS algorithm.

    PubMed

    Hardie, Russell C; Baxley, Frank; Brys, Brandon; Hytla, Patrick

    2009-08-17

    In this paper, we present a scene-based nouniformity correction (NUC) method using a modified adaptive least mean square (LMS) algorithm with a novel gating operation on the updates. The gating is designed to significantly reduce ghosting artifacts produced by many scene-based NUC algorithms by halting updates when temporal variation is lacking. We define the algorithm and present a number of experimental results to demonstrate the efficacy of the proposed method in comparison to several previously published methods including other LMS and constant statistics based methods. The experimental results include simulated imagery and a real infrared image sequence. We show that the proposed method significantly reduces ghosting artifacts, but has a slightly longer convergence time. (c) 2009 Optical Society of America

  8. A Fiber Bragg Grating Interrogation System with Self-Adaption Threshold Peak Detection Algorithm.

    PubMed

    Zhang, Weifang; Li, Yingwu; Jin, Bo; Ren, Feifei; Wang, Hongxun; Dai, Wei

    2018-04-08

    A Fiber Bragg Grating (FBG) interrogation system with a self-adaption threshold peak detection algorithm is proposed and experimentally demonstrated in this study. This system is composed of a field programmable gate array (FPGA) and advanced RISC machine (ARM) platform, tunable Fabry-Perot (F-P) filter and optical switch. To improve system resolution, the F-P filter was employed. As this filter is non-linear, this causes the shifting of central wavelengths with the deviation compensated by the parts of the circuit. Time-division multiplexing (TDM) of FBG sensors is achieved by an optical switch, with the system able to realize the combination of 256 FBG sensors. The wavelength scanning speed of 800 Hz can be achieved by a FPGA+ARM platform. In addition, a peak detection algorithm based on a self-adaption threshold is designed and the peak recognition rate is 100%. Experiments with different temperatures were conducted to demonstrate the effectiveness of the system. Four FBG sensors were examined in the thermal chamber without stress. When the temperature changed from 0 °C to 100 °C, the degree of linearity between central wavelengths and temperature was about 0.999 with the temperature sensitivity being 10 pm/°C. The static interrogation precision was able to reach 0.5 pm. Through the comparison of different peak detection algorithms and interrogation approaches, the system was verified to have an optimum comprehensive performance in terms of precision, capacity and speed.

  9. A Fiber Bragg Grating Interrogation System with Self-Adaption Threshold Peak Detection Algorithm

    PubMed Central

    Zhang, Weifang; Li, Yingwu; Jin, Bo; Ren, Feifei

    2018-01-01

    A Fiber Bragg Grating (FBG) interrogation system with a self-adaption threshold peak detection algorithm is proposed and experimentally demonstrated in this study. This system is composed of a field programmable gate array (FPGA) and advanced RISC machine (ARM) platform, tunable Fabry–Perot (F–P) filter and optical switch. To improve system resolution, the F–P filter was employed. As this filter is non-linear, this causes the shifting of central wavelengths with the deviation compensated by the parts of the circuit. Time-division multiplexing (TDM) of FBG sensors is achieved by an optical switch, with the system able to realize the combination of 256 FBG sensors. The wavelength scanning speed of 800 Hz can be achieved by a FPGA+ARM platform. In addition, a peak detection algorithm based on a self-adaption threshold is designed and the peak recognition rate is 100%. Experiments with different temperatures were conducted to demonstrate the effectiveness of the system. Four FBG sensors were examined in the thermal chamber without stress. When the temperature changed from 0 °C to 100 °C, the degree of linearity between central wavelengths and temperature was about 0.999 with the temperature sensitivity being 10 pm/°C. The static interrogation precision was able to reach 0.5 pm. Through the comparison of different peak detection algorithms and interrogation approaches, the system was verified to have an optimum comprehensive performance in terms of precision, capacity and speed. PMID:29642507

  10. Implementation of a rapid correction algorithm for adaptive optics using a plenoptic sensor

    NASA Astrophysics Data System (ADS)

    Ko, Jonathan; Wu, Chensheng; Davis, Christopher C.

    2016-09-01

    Adaptive optics relies on the accuracy and speed of a wavefront sensor in order to provide quick corrections to distortions in the optical system. In weaker cases of atmospheric turbulence often encountered in astronomical fields, a traditional Shack-Hartmann sensor has proved to be very effective. However, in cases of stronger atmospheric turbulence often encountered near the surface of the Earth, atmospheric turbulence no longer solely causes small tilts in the wavefront. Instead, lasers passing through strong or "deep" atmospheric turbulence encounter beam breakup, which results in interference effects and discontinuities in the incoming wavefront. In these situations, a Shack-Hartmann sensor can no longer effectively determine the shape of the incoming wavefront. We propose a wavefront reconstruction and correction algorithm based around the plenoptic sensor. The plenoptic sensor's design allows it to match and exceed the wavefront sensing capabilities of a Shack-Hartmann sensor for our application. Novel wavefront reconstruction algorithms can take advantage of the plenoptic sensor to provide a rapid wavefront reconstruction necessary for real time turbulence. To test the integrity of the plenoptic sensor and its reconstruction algorithms, we use artificially generated turbulence in a lab scale environment to simulate the structure and speed of outdoor atmospheric turbulence. By analyzing the performance of our system with and without the closed-loop plenoptic sensor adaptive optics system, we can show that the plenoptic sensor is effective in mitigating real time lab generated atmospheric turbulence.

  11. Adaptive DFT-Based Interferometer Fringe Tracking

    NASA Astrophysics Data System (ADS)

    Wilson, Edward; Pedretti, Ettore; Bregman, Jesse; Mah, Robert W.; Traub, Wesley A.

    2005-12-01

    An automatic interferometer fringe tracking system has been developed, implemented, and tested at the Infrared Optical Telescope Array (IOTA) Observatory at Mount Hopkins, Arizona. The system can minimize the optical path differences (OPDs) for all three baselines of the Michelson stellar interferometer at IOTA. Based on sliding window discrete Fourier-transform (DFT) calculations that were optimized for computational efficiency and robustness to atmospheric disturbances, the algorithm has also been tested extensively on offline data. Implemented in ANSI C on the 266 MHz PowerPC processor running the VxWorks real-time operating system, the algorithm runs in approximately [InlineEquation not available: see fulltext.] milliseconds per scan (including all three interferograms), using the science camera and piezo scanners to measure and correct the OPDs. The adaptive DFT-based tracking algorithm should be applicable to other systems where there is a need to detect or track a signal with an approximately constant-frequency carrier pulse. One example of such an application might be to the field of thin-film measurement by ellipsometry, using a broadband light source and a Fourier-transform spectrometer to detect the resulting fringe patterns.

  12. Performance evaluation of GPU parallelization, space-time adaptive algorithms, and their combination for simulating cardiac electrophysiology.

    PubMed

    Sachetto Oliveira, Rafael; Martins Rocha, Bernardo; Burgarelli, Denise; Meira, Wagner; Constantinides, Christakis; Weber Dos Santos, Rodrigo

    2018-02-01

    The use of computer models as a tool for the study and understanding of the complex phenomena of cardiac electrophysiology has attained increased importance nowadays. At the same time, the increased complexity of the biophysical processes translates into complex computational and mathematical models. To speed up cardiac simulations and to allow more precise and realistic uses, 2 different techniques have been traditionally exploited: parallel computing and sophisticated numerical methods. In this work, we combine a modern parallel computing technique based on multicore and graphics processing units (GPUs) and a sophisticated numerical method based on a new space-time adaptive algorithm. We evaluate each technique alone and in different combinations: multicore and GPU, multicore and GPU and space adaptivity, multicore and GPU and space adaptivity and time adaptivity. All the techniques and combinations were evaluated under different scenarios: 3D simulations on slabs, 3D simulations on a ventricular mouse mesh, ie, complex geometry, sinus-rhythm, and arrhythmic conditions. Our results suggest that multicore and GPU accelerate the simulations by an approximate factor of 33×, whereas the speedups attained by the space-time adaptive algorithms were approximately 48. Nevertheless, by combining all the techniques, we obtained speedups that ranged between 165 and 498. The tested methods were able to reduce the execution time of a simulation by more than 498× for a complex cellular model in a slab geometry and by 165× in a realistic heart geometry simulating spiral waves. The proposed methods will allow faster and more realistic simulations in a feasible time with no significant loss of accuracy. Copyright © 2017 John Wiley & Sons, Ltd.

  13. Fully implicit moving mesh adaptive algorithm

    NASA Astrophysics Data System (ADS)

    Serazio, C.; Chacon, L.; Lapenta, G.

    2006-10-01

    In many problems of interest, the numerical modeler is faced with the challenge of dealing with multiple time and length scales. The former is best dealt with with fully implicit methods, which are able to step over fast frequencies to resolve the dynamical time scale of interest. The latter requires grid adaptivity for efficiency. Moving-mesh grid adaptive methods are attractive because they can be designed to minimize the numerical error for a given resolution. However, the required grid governing equations are typically very nonlinear and stiff, and of considerably difficult numerical treatment. Not surprisingly, fully coupled, implicit approaches where the grid and the physics equations are solved simultaneously are rare in the literature, and circumscribed to 1D geometries. In this study, we present a fully implicit algorithm for moving mesh methods that is feasible for multidimensional geometries. Crucial elements are the development of an effective multilevel treatment of the grid equation, and a robust, rigorous error estimator. For the latter, we explore the effectiveness of a coarse grid correction error estimator, which faithfully reproduces spatial truncation errors for conservative equations. We will show that the moving mesh approach is competitive vs. uniform grids both in accuracy (due to adaptivity) and efficiency. Results for a variety of models 1D and 2D geometries will be presented. L. Chac'on, G. Lapenta, J. Comput. Phys., 212 (2), 703 (2006) G. Lapenta, L. Chac'on, J. Comput. Phys., accepted (2006)

  14. A novel adaptive, real-time algorithm to detect gait events from wearable sensors.

    PubMed

    Chia Bejarano, Noelia; Ambrosini, Emilia; Pedrocchi, Alessandra; Ferrigno, Giancarlo; Monticone, Marco; Ferrante, Simona

    2015-05-01

    A real-time, adaptive algorithm based on two inertial and magnetic sensors placed on the shanks was developed for gait-event detection. For each leg, the algorithm detected the Initial Contact (IC), as the minimum of the flexion/extension angle, and the End Contact (EC) and the Mid-Swing (MS), as minimum and maximum of the angular velocity, respectively. The algorithm consisted of calibration, real-time detection, and step-by-step update. Data collected from 22 healthy subjects (21 to 85 years) walking at three self-selected speeds were used to validate the algorithm against the GaitRite system. Comparable levels of accuracy and significantly lower detection delays were achieved with respect to other published methods. The algorithm robustness was tested on ten healthy subjects performing sudden speed changes and on ten stroke subjects (43 to 89 years). For healthy subjects, F1-scores of 1 and mean detection delays lower than 14 ms were obtained. For stroke subjects, F1-scores of 0.998 and 0.944 were obtained for IC and EC, respectively, with mean detection delays always below 31 ms. The algorithm accurately detected gait events in real time from a heterogeneous dataset of gait patterns and paves the way for the design of closed-loop controllers for customized gait trainings and/or assistive devices.

  15. Identification of robust adaptation gene regulatory network parameters using an improved particle swarm optimization algorithm.

    PubMed

    Huang, X N; Ren, H P

    2016-05-13

    Robust adaptation is a critical ability of gene regulatory network (GRN) to survive in a fluctuating environment, which represents the system responding to an input stimulus rapidly and then returning to its pre-stimulus steady state timely. In this paper, the GRN is modeled using the Michaelis-Menten rate equations, which are highly nonlinear differential equations containing 12 undetermined parameters. The robust adaption is quantitatively described by two conflicting indices. To identify the parameter sets in order to confer the GRNs with robust adaptation is a multi-variable, multi-objective, and multi-peak optimization problem, which is difficult to acquire satisfactory solutions especially high-quality solutions. A new best-neighbor particle swarm optimization algorithm is proposed to implement this task. The proposed algorithm employs a Latin hypercube sampling method to generate the initial population. The particle crossover operation and elitist preservation strategy are also used in the proposed algorithm. The simulation results revealed that the proposed algorithm could identify multiple solutions in one time running. Moreover, it demonstrated a superior performance as compared to the previous methods in the sense of detecting more high-quality solutions within an acceptable time. The proposed methodology, owing to its universality and simplicity, is useful for providing the guidance to design GRN with superior robust adaptation.

  16. Sparse Adaptive Iteratively-Weighted Thresholding Algorithm (SAITA) for Lp-Regularization Using the Multiple Sub-Dictionary Representation

    PubMed Central

    Zhang, Jie; Fan, Shangang; Xiong, Jian; Cheng, Xiefeng; Sari, Hikmet; Adachi, Fumiyuki

    2017-01-01

    Both L1/2 and L2/3 are two typical non-convex regularizations of Lp (0algorithms. To further exploit the sparse structure of signal and image, this paper adopts multiple dictionary sparse transform strategies for the two typical cases p∈{1/2, 2/3} based on an iterative Lp thresholding algorithm and then proposes a sparse adaptive iterative-weighted Lp thresholding algorithm (SAITA). Moreover, a simple yet effective regularization parameter is proposed to weight each sub-dictionary-based Lp regularizer. Simulation results have shown that the proposed SAITA not only performs better than the corresponding L1 algorithms but can also obtain a better recovery performance and achieve faster convergence than the conventional single-dictionary sparse transform-based Lp case. Moreover, we conduct some applications about sparse image recovery and obtain good results by comparison with relative work. PMID:29244777

  17. Sparse Adaptive Iteratively-Weighted Thresholding Algorithm (SAITA) for Lp-Regularization Using the Multiple Sub-Dictionary Representation.

    PubMed

    Li, Yunyi; Zhang, Jie; Fan, Shangang; Yang, Jie; Xiong, Jian; Cheng, Xiefeng; Sari, Hikmet; Adachi, Fumiyuki; Gui, Guan

    2017-12-15

    Both L 1/2 and L 2/3 are two typical non-convex regularizations of L p (0algorithms. To further exploit the sparse structure of signal and image, this paper adopts multiple dictionary sparse transform strategies for the two typical cases p∈{1/2, 2/3} based on an iterative Lp thresholding algorithm and then proposes a sparse adaptive iterative-weighted L p thresholding algorithm (SAITA). Moreover, a simple yet effective regularization parameter is proposed to weight each sub-dictionary-based L p regularizer. Simulation results have shown that the proposed SAITA not only performs better than the corresponding L₁ algorithms but can also obtain a better recovery performance and achieve faster convergence than the conventional single-dictionary sparse transform-based L p case. Moreover, we conduct some applications about sparse image recovery and obtain good results by comparison with relative work.

  18. Unsupervised Cryo-EM Data Clustering through Adaptively Constrained K-Means Algorithm

    PubMed Central

    Xu, Yaofang; Wu, Jiayi; Yin, Chang-Cheng; Mao, Youdong

    2016-01-01

    In single-particle cryo-electron microscopy (cryo-EM), K-means clustering algorithm is widely used in unsupervised 2D classification of projection images of biological macromolecules. 3D ab initio reconstruction requires accurate unsupervised classification in order to separate molecular projections of distinct orientations. Due to background noise in single-particle images and uncertainty of molecular orientations, traditional K-means clustering algorithm may classify images into wrong classes and produce classes with a large variation in membership. Overcoming these limitations requires further development on clustering algorithms for cryo-EM data analysis. We propose a novel unsupervised data clustering method building upon the traditional K-means algorithm. By introducing an adaptive constraint term in the objective function, our algorithm not only avoids a large variation in class sizes but also produces more accurate data clustering. Applications of this approach to both simulated and experimental cryo-EM data demonstrate that our algorithm is a significantly improved alterative to the traditional K-means algorithm in single-particle cryo-EM analysis. PMID:27959895

  19. Visual saliency-based fast intracoding algorithm for high efficiency video coding

    NASA Astrophysics Data System (ADS)

    Zhou, Xin; Shi, Guangming; Zhou, Wei; Duan, Zhemin

    2017-01-01

    Intraprediction has been significantly improved in high efficiency video coding over H.264/AVC with quad-tree-based coding unit (CU) structure from size 64×64 to 8×8 and more prediction modes. However, these techniques cause a dramatic increase in computational complexity. An intracoding algorithm is proposed that consists of perceptual fast CU size decision algorithm and fast intraprediction mode decision algorithm. First, based on the visual saliency detection, an adaptive and fast CU size decision method is proposed to alleviate intraencoding complexity. Furthermore, a fast intraprediction mode decision algorithm with step halving rough mode decision method and early modes pruning algorithm is presented to selectively check the potential modes and effectively reduce the complexity of computation. Experimental results show that our proposed fast method reduces the computational complexity of the current HM to about 57% in encoding time with only 0.37% increases in BD rate. Meanwhile, the proposed fast algorithm has reasonable peak signal-to-noise ratio losses and nearly the same subjective perceptual quality.

  20. A novel image retrieval algorithm based on PHOG and LSH

    NASA Astrophysics Data System (ADS)

    Wu, Hongliang; Wu, Weimin; Peng, Jiajin; Zhang, Junyuan

    2017-08-01

    PHOG can describe the local shape of the image and its relationship between the spaces. The using of PHOG algorithm to extract image features in image recognition and retrieval and other aspects have achieved good results. In recent years, locality sensitive hashing (LSH) algorithm has been superior to large-scale data in solving near-nearest neighbor problems compared with traditional algorithms. This paper presents a novel image retrieval algorithm based on PHOG and LSH. First, we use PHOG to extract the feature vector of the image, then use L different LSH hash table to reduce the dimension of PHOG texture to index values and map to different bucket, and finally extract the corresponding value of the image in the bucket for second image retrieval using Manhattan distance. This algorithm can adapt to the massive image retrieval, which ensures the high accuracy of the image retrieval and reduces the time complexity of the retrieval. This algorithm is of great significance.

  1. An Adaptive Deghosting Method in Neural Network-Based Infrared Detectors Nonuniformity Correction.

    PubMed

    Li, Yiyang; Jin, Weiqi; Zhu, Jin; Zhang, Xu; Li, Shuo

    2018-01-13

    The problems of the neural network-based nonuniformity correction algorithm for infrared focal plane arrays mainly concern slow convergence speed and ghosting artifacts. In general, the more stringent the inhibition of ghosting, the slower the convergence speed. The factors that affect these two problems are the estimated desired image and the learning rate. In this paper, we propose a learning rate rule that combines adaptive threshold edge detection and a temporal gate. Through the noise estimation algorithm, the adaptive spatial threshold is related to the residual nonuniformity noise in the corrected image. The proposed learning rate is used to effectively and stably suppress ghosting artifacts without slowing down the convergence speed. The performance of the proposed technique was thoroughly studied with infrared image sequences with both simulated nonuniformity and real nonuniformity. The results show that the deghosting performance of the proposed method is superior to that of other neural network-based nonuniformity correction algorithms and that the convergence speed is equivalent to the tested deghosting methods.

  2. A High Fuel Consumption Efficiency Management Scheme for PHEVs Using an Adaptive Genetic Algorithm

    PubMed Central

    Lee, Wah Ching; Tsang, Kim Fung; Chi, Hao Ran; Hung, Faan Hei; Wu, Chung Kit; Chui, Kwok Tai; Lau, Wing Hong; Leung, Yat Wah

    2015-01-01

    A high fuel efficiency management scheme for plug-in hybrid electric vehicles (PHEVs) has been developed. In order to achieve fuel consumption reduction, an adaptive genetic algorithm scheme has been designed to adaptively manage the energy resource usage. The objective function of the genetic algorithm is implemented by designing a fuzzy logic controller which closely monitors and resembles the driving conditions and environment of PHEVs, thus trading off between petrol versus electricity for optimal driving efficiency. Comparison between calculated results and publicized data shows that the achieved efficiency of the fuzzified genetic algorithm is better by 10% than existing schemes. The developed scheme, if fully adopted, would help reduce over 600 tons of CO2 emissions worldwide every day. PMID:25587974

  3. Memory-efficient table look-up optimized algorithm for context-based adaptive variable length decoding in H.264/advanced video coding

    NASA Astrophysics Data System (ADS)

    Wang, Jianhua; Cheng, Lianglun; Wang, Tao; Peng, Xiaodong

    2016-03-01

    Table look-up operation plays a very important role during the decoding processing of context-based adaptive variable length decoding (CAVLD) in H.264/advanced video coding (AVC). However, frequent table look-up operation can result in big table memory access, and then lead to high table power consumption. Aiming to solve the problem of big table memory access of current methods, and then reduce high power consumption, a memory-efficient table look-up optimized algorithm is presented for CAVLD. The contribution of this paper lies that index search technology is introduced to reduce big memory access for table look-up, and then reduce high table power consumption. Specifically, in our schemes, we use index search technology to reduce memory access by reducing the searching and matching operations for code_word on the basis of taking advantage of the internal relationship among length of zero in code_prefix, value of code_suffix and code_lengh, thus saving the power consumption of table look-up. The experimental results show that our proposed table look-up algorithm based on index search can lower about 60% memory access consumption compared with table look-up by sequential search scheme, and then save much power consumption for CAVLD in H.264/AVC.

  4. An Adaptive Cultural Algorithm with Improved Quantum-behaved Particle Swarm Optimization for Sonar Image Detection.

    PubMed

    Wang, Xingmei; Hao, Wenqian; Li, Qiming

    2017-12-18

    This paper proposes an adaptive cultural algorithm with improved quantum-behaved particle swarm optimization (ACA-IQPSO) to detect the underwater sonar image. In the population space, to improve searching ability of particles, iterative times and the fitness value of particles are regarded as factors to adaptively adjust the contraction-expansion coefficient of the quantum-behaved particle swarm optimization algorithm (QPSO). The improved quantum-behaved particle swarm optimization algorithm (IQPSO) can make particles adjust their behaviours according to their quality. In the belief space, a new update strategy is adopted to update cultural individuals according to the idea of the update strategy in shuffled frog leaping algorithm (SFLA). Moreover, to enhance the utilization of information in the population space and belief space, accept function and influence function are redesigned in the new communication protocol. The experimental results show that ACA-IQPSO can obtain good clustering centres according to the grey distribution information of underwater sonar images, and accurately complete underwater objects detection. Compared with other algorithms, the proposed ACA-IQPSO has good effectiveness, excellent adaptability, a powerful searching ability and high convergence efficiency. Meanwhile, the experimental results of the benchmark functions can further demonstrate that the proposed ACA-IQPSO has better searching ability, convergence efficiency and stability.

  5. Adaptive Reception for Underwater Communications

    DTIC Science & Technology

    2011-06-01

    Experimental results prove the effectiveness of the receiver. 14. SUBJECT TERMS Underwater acoustic communications, adaptive algorithms , Kalman filter...the update algorithm design and the value of the spatial diversity are addressed. In this research, an adaptive multichannel equalizer made up of a...for the time-varying nature of the channel is to use an Adaptive Decision Feedback Equalizer based on either the RLS or LMS algorithm . Although this

  6. An adaptive multi-level simulation algorithm for stochastic biological systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lester, C., E-mail: lesterc@maths.ox.ac.uk; Giles, M. B.; Baker, R. E.

    2015-01-14

    Discrete-state, continuous-time Markov models are widely used in the modeling of biochemical reaction networks. Their complexity often precludes analytic solution, and we rely on stochastic simulation algorithms (SSA) to estimate system statistics. The Gillespie algorithm is exact, but computationally costly as it simulates every single reaction. As such, approximate stochastic simulation algorithms such as the tau-leap algorithm are often used. Potentially computationally more efficient, the system statistics generated suffer from significant bias unless tau is relatively small, in which case the computational time can be comparable to that of the Gillespie algorithm. The multi-level method [Anderson and Higham, “Multi-level Montemore » Carlo for continuous time Markov chains, with applications in biochemical kinetics,” SIAM Multiscale Model. Simul. 10(1), 146–179 (2012)] tackles this problem. A base estimator is computed using many (cheap) sample paths at low accuracy. The bias inherent in this estimator is then reduced using a number of corrections. Each correction term is estimated using a collection of paired sample paths where one path of each pair is generated at a higher accuracy compared to the other (and so more expensive). By sharing random variables between these paired paths, the variance of each correction estimator can be reduced. This renders the multi-level method very efficient as only a relatively small number of paired paths are required to calculate each correction term. In the original multi-level method, each sample path is simulated using the tau-leap algorithm with a fixed value of τ. This approach can result in poor performance when the reaction activity of a system changes substantially over the timescale of interest. By introducing a novel adaptive time-stepping approach where τ is chosen according to the stochastic behaviour of each sample path, we extend the applicability of the multi-level method to such cases. We

  7. A Large-Scale Multi-Hop Localization Algorithm Based on Regularized Extreme Learning for Wireless Networks.

    PubMed

    Zheng, Wei; Yan, Xiaoyong; Zhao, Wei; Qian, Chengshan

    2017-12-20

    A novel large-scale multi-hop localization algorithm based on regularized extreme learning is proposed in this paper. The large-scale multi-hop localization problem is formulated as a learning problem. Unlike other similar localization algorithms, the proposed algorithm overcomes the shortcoming of the traditional algorithms which are only applicable to an isotropic network, therefore has a strong adaptability to the complex deployment environment. The proposed algorithm is composed of three stages: data acquisition, modeling and location estimation. In data acquisition stage, the training information between nodes of the given network is collected. In modeling stage, the model among the hop-counts and the physical distances between nodes is constructed using regularized extreme learning. In location estimation stage, each node finds its specific location in a distributed manner. Theoretical analysis and several experiments show that the proposed algorithm can adapt to the different topological environments with low computational cost. Furthermore, high accuracy can be achieved by this method without setting complex parameters.

  8. An Adaptive Numeric Predictor-corrector Guidance Algorithm for Atmospheric Entry Vehicles. M.S. Thesis - MIT, Cambridge

    NASA Technical Reports Server (NTRS)

    Spratlin, Kenneth Milton

    1987-01-01

    An adaptive numeric predictor-corrector guidance is developed for atmospheric entry vehicles which utilize lift to achieve maximum footprint capability. Applicability of the guidance design to vehicles with a wide range of performance capabilities is desired so as to reduce the need for algorithm redesign with each new vehicle. Adaptability is desired to minimize mission-specific analysis and planning. The guidance algorithm motivation and design are presented. Performance is assessed for application of the algorithm to the NASA Entry Research Vehicle (ERV). The dispersions the guidance must be designed to handle are presented. The achievable operational footprint for expected worst-case dispersions is presented. The algorithm performs excellently for the expected dispersions and captures most of the achievable footprint.

  9. Semantic Edge Based Disparity Estimation Using Adaptive Dynamic Programming for Binocular Sensors

    PubMed Central

    Zhu, Dongchen; Li, Jiamao; Wang, Xianshun; Peng, Jingquan; Shi, Wenjun; Zhang, Xiaolin

    2018-01-01

    Disparity calculation is crucial for binocular sensor ranging. The disparity estimation based on edges is an important branch in the research of sparse stereo matching and plays an important role in visual navigation. In this paper, we propose a robust sparse stereo matching method based on the semantic edges. Some simple matching costs are used first, and then a novel adaptive dynamic programming algorithm is proposed to obtain optimal solutions. This algorithm makes use of the disparity or semantic consistency constraint between the stereo images to adaptively search parameters, which can improve the robustness of our method. The proposed method is compared quantitatively and qualitatively with the traditional dynamic programming method, some dense stereo matching methods, and the advanced edge-based method respectively. Experiments show that our method can provide superior performance on the above comparison. PMID:29614028

  10. Semantic Edge Based Disparity Estimation Using Adaptive Dynamic Programming for Binocular Sensors.

    PubMed

    Zhu, Dongchen; Li, Jiamao; Wang, Xianshun; Peng, Jingquan; Shi, Wenjun; Zhang, Xiaolin

    2018-04-03

    Disparity calculation is crucial for binocular sensor ranging. The disparity estimation based on edges is an important branch in the research of sparse stereo matching and plays an important role in visual navigation. In this paper, we propose a robust sparse stereo matching method based on the semantic edges. Some simple matching costs are used first, and then a novel adaptive dynamic programming algorithm is proposed to obtain optimal solutions. This algorithm makes use of the disparity or semantic consistency constraint between the stereo images to adaptively search parameters, which can improve the robustness of our method. The proposed method is compared quantitatively and qualitatively with the traditional dynamic programming method, some dense stereo matching methods, and the advanced edge-based method respectively. Experiments show that our method can provide superior performance on the above comparison.

  11. [A spatial adaptive algorithm for endmember extraction on multispectral remote sensing image].

    PubMed

    Zhu, Chang-Ming; Luo, Jian-Cheng; Shen, Zhan-Feng; Li, Jun-Li; Hu, Xiao-Dong

    2011-10-01

    Due to the problem that the convex cone analysis (CCA) method can only extract limited endmember in multispectral imagery, this paper proposed a new endmember extraction method by spatial adaptive spectral feature analysis in multispectral remote sensing image based on spatial clustering and imagery slice. Firstly, in order to remove spatial and spectral redundancies, the principal component analysis (PCA) algorithm was used for lowering the dimensions of the multispectral data. Secondly, iterative self-organizing data analysis technology algorithm (ISODATA) was used for image cluster through the similarity of the pixel spectral. And then, through clustering post process and litter clusters combination, we divided the whole image data into several blocks (tiles). Lastly, according to the complexity of image blocks' landscape and the feature of the scatter diagrams analysis, the authors can determine the number of endmembers. Then using hourglass algorithm extracts endmembers. Through the endmember extraction experiment on TM multispectral imagery, the experiment result showed that the method can extract endmember spectra form multispectral imagery effectively. What's more, the method resolved the problem of the amount of endmember limitation and improved accuracy of the endmember extraction. The method has provided a new way for multispectral image endmember extraction.

  12. Robustness of continuous-time adaptive control algorithms in the presence of unmodeled dynamics

    NASA Technical Reports Server (NTRS)

    Rohrs, C. E.; Valavani, L.; Athans, M.; Stein, G.

    1985-01-01

    This paper examines the robustness properties of existing adaptive control algorithms to unmodeled plant high-frequency dynamics and unmeasurable output disturbances. It is demonstrated that there exist two infinite-gain operators in the nonlinear dynamic system which determines the time-evolution of output and parameter errors. The pragmatic implications of the existence of such infinite-gain operators is that: (1) sinusoidal reference inputs at specific frequencies and/or (2) sinusoidal output disturbances at any frequency (including dc), can cause the loop gain to increase without bound, thereby exciting the unmodeled high-frequency dynamics, and yielding an unstable control system. Hence, it is concluded that existing adaptive control algorithms as they are presented in the literature referenced in this paper, cannot be used with confidence in practical designs where the plant contains unmodeled dynamics because instability is likely to result. Further understanding is required to ascertain how the currently implemented adaptive systems differ from the theoretical systems studied here and how further theoretical development can improve the robustness of adaptive controllers.

  13. Robust Adaptive Modified Newton Algorithm for Generalized Eigendecomposition and Its Application

    NASA Astrophysics Data System (ADS)

    Yang, Jian; Yang, Feng; Xi, Hong-Sheng; Guo, Wei; Sheng, Yanmin

    2007-12-01

    We propose a robust adaptive algorithm for generalized eigendecomposition problems that arise in modern signal processing applications. To that extent, the generalized eigendecomposition problem is reinterpreted as an unconstrained nonlinear optimization problem. Starting from the proposed cost function and making use of an approximation of the Hessian matrix, a robust modified Newton algorithm is derived. A rigorous analysis of its convergence properties is presented by using stochastic approximation theory. We also apply this theory to solve the signal reception problem of multicarrier DS-CDMA to illustrate its practical application. The simulation results show that the proposed algorithm has fast convergence and excellent tracking capability, which are important in a practical time-varying communication environment.

  14. Estimation of key parameters in adaptive neuron model according to firing patterns based on improved particle swarm optimization algorithm

    NASA Astrophysics Data System (ADS)

    Yuan, Chunhua; Wang, Jiang; Yi, Guosheng

    2017-03-01

    Estimation of ion channel parameters is crucial to spike initiation of neurons. The biophysical neuron models have numerous ion channel parameters, but only a few of them play key roles in the firing patterns of the models. So we choose three parameters featuring the adaptation in the Ermentrout neuron model to be estimated. However, the traditional particle swarm optimization (PSO) algorithm is still easy to fall into local optimum and has the premature convergence phenomenon in the study of some problems. In this paper, we propose an improved method that uses a concave function and dynamic logistic chaotic mapping mixed to adjust the inertia weights of the fitness value, effectively improve the global convergence ability of the algorithm. The perfect predicting firing trajectories of the rebuilt model using the estimated parameters prove that only estimating a few important ion channel parameters can establish the model well and the proposed algorithm is effective. Estimations using two classic PSO algorithms are also compared to the improved PSO to verify that the algorithm proposed in this paper can avoid local optimum and quickly converge to the optimal value. The results provide important theoretical foundations for building biologically realistic neuron models.

  15. Adaptive Swarm Balancing Algorithms for rare-event prediction in imbalanced healthcare data

    PubMed Central

    Wong, Raymond K.; Mohammed, Sabah; Fiaidhi, Jinan; Sung, Yunsick

    2017-01-01

    Clinical data analysis and forecasting have made substantial contributions to disease control, prevention and detection. However, such data usually suffer from highly imbalanced samples in class distributions. In this paper, we aim to formulate effective methods to rebalance binary imbalanced dataset, where the positive samples take up only the minority. We investigate two different meta-heuristic algorithms, particle swarm optimization and bat algorithm, and apply them to empower the effects of synthetic minority over-sampling technique (SMOTE) for pre-processing the datasets. One approach is to process the full dataset as a whole. The other is to split up the dataset and adaptively process it one segment at a time. The experimental results reported in this paper reveal that the performance improvements obtained by the former methods are not scalable to larger data scales. The latter methods, which we call Adaptive Swarm Balancing Algorithms, lead to significant efficiency and effectiveness improvements on large datasets while the first method is invalid. We also find it more consistent with the practice of the typical large imbalanced medical datasets. We further use the meta-heuristic algorithms to optimize two key parameters of SMOTE. The proposed methods lead to more credible performances of the classifier, and shortening the run time compared to brute-force method. PMID:28753613

  16. An adaptive, object oriented strategy for base calling in DNA sequence analysis.

    PubMed Central

    Giddings, M C; Brumley, R L; Haker, M; Smith, L M

    1993-01-01

    An algorithm has been developed for the determination of nucleotide sequence from data produced in fluorescence-based automated DNA sequencing instruments employing the four-color strategy. This algorithm takes advantage of object oriented programming techniques for modularity and extensibility. The algorithm is adaptive in that data sets from a wide variety of instruments and sequencing conditions can be used with good results. Confidence values are provided on the base calls as an estimate of accuracy. The algorithm iteratively employs confidence determinations from several different modules, each of which examines a different feature of the data for accurate peak identification. Modules within this system can be added or removed for increased performance or for application to a different task. In comparisons with commercial software, the algorithm performed well. Images PMID:8233787

  17. Analysis of Online DBA Algorithm with Adaptive Sleep Cycle in WDM EPON

    NASA Astrophysics Data System (ADS)

    Pajčin, Bojan; Matavulj, Petar; Radivojević, Mirjana

    2018-05-01

    In order to manage Quality of Service (QoS) and energy efficiency in the optical access network, an online Dynamic Bandwidth Allocation (DBA) algorithm with adaptive sleep cycle is presented. This DBA algorithm has the ability to allocate an additional bandwidth to the end user within a single sleep cycle whose duration changes depending on the current buffers occupancy. The purpose of this DBA algorithm is to tune the duration of the sleep cycle depending on the network load in order to provide service to the end user without violating strict QoS requests in all network operating conditions.

  18. Cross counter-based adaptive assembly scheme in optical burst switching networks

    NASA Astrophysics Data System (ADS)

    Zhu, Zhi-jun; Dong, Wen; Le, Zi-chun; Chen, Wan-jun; Sun, Xingshu

    2009-11-01

    A novel adaptive assembly algorithm called Cross-counter Balance Adaptive Assembly Period (CBAAP) is proposed in this paper. The major difference between CBAAP and other adaptive assembly algorithms is that the threshold of CBAAP can be dynamically adjusted according to the cross counter and step length value. In terms of assembly period and the burst loss probability, we compare the performance of CBAAP with those of three typical algorithms FAP (Fixed Assembly Period), FBL (Fixed Burst Length) and MBMAP (Min-Burst length-Max-Assembly-Period) in the simulation part. The simulation results demonstrate the effectiveness of our algorithm.

  19. Text grouping in patent analysis using adaptive K-means clustering algorithm

    NASA Astrophysics Data System (ADS)

    Shanie, Tiara; Suprijadi, Jadi; Zulhanif

    2017-03-01

    Patents are one of the Intellectual Property. Analyzing patent is one requirement in knowing well the development of technology in each country and in the world now. This study uses the patent document coming from the Espacenet server about Green Tea. Patent documents related to the technology in the field of tea is still widespread, so it will be difficult for users to information retrieval (IR). Therefore, it is necessary efforts to categorize documents in a specific group of related terms contained therein. This study uses titles patent text data with the proposed Green Tea in Statistical Text Mining methods consists of two phases: data preparation and data analysis stage. The data preparation phase uses Text Mining methods and data analysis stage is done by statistics. Statistical analysis in this study using a cluster analysis algorithm, the Adaptive K-Means Clustering Algorithm. Results from this study showed that based on the maximum value Silhouette, generate 87 clusters associated fifteen terms therein that can be utilized in the process of information retrieval needs.

  20. Adaptive density trajectory cluster based on time and space distance

    NASA Astrophysics Data System (ADS)

    Liu, Fagui; Zhang, Zhijie

    2017-10-01

    There are some hotspot problems remaining in trajectory cluster for discovering mobile behavior regularity, such as the computation of distance between sub trajectories, the setting of parameter values in cluster algorithm and the uncertainty/boundary problem of data set. As a result, based on the time and space, this paper tries to define the calculation method of distance between sub trajectories. The significance of distance calculation for sub trajectories is to clearly reveal the differences in moving trajectories and to promote the accuracy of cluster algorithm. Besides, a novel adaptive density trajectory cluster algorithm is proposed, in which cluster radius is computed through using the density of data distribution. In addition, cluster centers and number are selected by a certain strategy automatically, and uncertainty/boundary problem of data set is solved by designed weighted rough c-means. Experimental results demonstrate that the proposed algorithm can perform the fuzzy trajectory cluster effectively on the basis of the time and space distance, and obtain the optimal cluster centers and rich cluster results information adaptably for excavating the features of mobile behavior in mobile and sociology network.

  1. Texture orientation-based algorithm for detecting infrared maritime targets.

    PubMed

    Wang, Bin; Dong, Lili; Zhao, Ming; Wu, Houde; Xu, Wenhai

    2015-05-20

    Infrared maritime target detection is a key technology for maritime target searching systems. However, in infrared maritime images (IMIs) taken under complicated sea conditions, background clutters, such as ocean waves, clouds or sea fog, usually have high intensity that can easily overwhelm the brightness of real targets, which is difficult for traditional target detection algorithms to deal with. To mitigate this problem, this paper proposes a novel target detection algorithm based on texture orientation. This algorithm first extracts suspected targets by analyzing the intersubband correlation between horizontal and vertical wavelet subbands of the original IMI on the first scale. Then the self-adaptive wavelet threshold denoising and local singularity analysis of the original IMI is combined to remove false alarms further. Experiments show that compared with traditional algorithms, this algorithm can suppress background clutter much better and realize better single-frame detection for infrared maritime targets. Besides, in order to guarantee accurate target extraction further, the pipeline-filtering algorithm is adopted to eliminate residual false alarms. The high practical value and applicability of this proposed strategy is backed strongly by experimental data acquired under different environmental conditions.

  2. An Adaptive Evolutionary Algorithm for Traveling Salesman Problem with Precedence Constraints

    PubMed Central

    Sung, Jinmo; Jeong, Bongju

    2014-01-01

    Traveling sales man problem with precedence constraints is one of the most notorious problems in terms of the efficiency of its solution approach, even though it has very wide range of industrial applications. We propose a new evolutionary algorithm to efficiently obtain good solutions by improving the search process. Our genetic operators guarantee the feasibility of solutions over the generations of population, which significantly improves the computational efficiency even when it is combined with our flexible adaptive searching strategy. The efficiency of the algorithm is investigated by computational experiments. PMID:24701158

  3. An adaptive evolutionary algorithm for traveling salesman problem with precedence constraints.

    PubMed

    Sung, Jinmo; Jeong, Bongju

    2014-01-01

    Traveling sales man problem with precedence constraints is one of the most notorious problems in terms of the efficiency of its solution approach, even though it has very wide range of industrial applications. We propose a new evolutionary algorithm to efficiently obtain good solutions by improving the search process. Our genetic operators guarantee the feasibility of solutions over the generations of population, which significantly improves the computational efficiency even when it is combined with our flexible adaptive searching strategy. The efficiency of the algorithm is investigated by computational experiments.

  4. Adaptive Fault Detection on Liquid Propulsion Systems with Virtual Sensors: Algorithms and Architectures

    NASA Technical Reports Server (NTRS)

    Matthews, Bryan L.; Srivastava, Ashok N.

    2010-01-01

    Prior to the launch of STS-119 NASA had completed a study of an issue in the flow control valve (FCV) in the Main Propulsion System of the Space Shuttle using an adaptive learning method known as Virtual Sensors. Virtual Sensors are a class of algorithms that estimate the value of a time series given other potentially nonlinearly correlated sensor readings. In the case presented here, the Virtual Sensors algorithm is based on an ensemble learning approach and takes sensor readings and control signals as input to estimate the pressure in a subsystem of the Main Propulsion System. Our results indicate that this method can detect faults in the FCV at the time when they occur. We use the standard deviation of the predictions of the ensemble as a measure of uncertainty in the estimate. This uncertainty estimate was crucial to understanding the nature and magnitude of transient characteristics during startup of the engine. This paper overviews the Virtual Sensors algorithm and discusses results on a comprehensive set of Shuttle missions and also discusses the architecture necessary for deploying such algorithms in a real-time, closed-loop system or a human-in-the-loop monitoring system. These results were presented at a Flight Readiness Review of the Space Shuttle in early 2009.

  5. An FPGA-based DS-CDMA multiuser demodulator employing adaptive multistage parallel interference cancellation

    NASA Astrophysics Data System (ADS)

    Li, Xinhua; Song, Zhenyu; Zhan, Yongjie; Wu, Qiongzhi

    2009-12-01

    Since the system capacity is severely limited, reducing the multiple access interfere (MAI) is necessary in the multiuser direct-sequence code division multiple access (DS-CDMA) system which is used in the telecommunication terminals data-transferred link system. In this paper, we adopt an adaptive multistage parallel interference cancellation structure in the demodulator based on the least mean square (LMS) algorithm to eliminate the MAI on the basis of overviewing various of multiuser dectection schemes. Neither a training sequence nor a pilot signal is needed in the proposed scheme, and its implementation complexity can be greatly reduced by a LMS approximate algorithm. The algorithm and its FPGA implementation is then derived. Simulation results of the proposed adaptive PIC can outperform some of the existing interference cancellation methods in AWGN channels. The hardware setup of mutiuser demodulator is described, and the experimental results based on it demonstrate that the simulation results shows large performance gains over the conventional single-user demodulator.

  6. SIMULATION OF DISPERSION OF A POWER PLANT PLUME USING AN ADAPTIVE GRID ALGORITHM. (R827028)

    EPA Science Inventory

    A new dynamic adaptive grid algorithm has been developed for use in air quality modeling. This algorithm uses a higher order numerical scheme––the piecewise parabolic method (PPM)––for computing advective solution fields; a weight function capable o...

  7. Advanced Dynamically Adaptive Algorithms for Stochastic Simulations on Extreme Scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiu, Dongbin

    2017-03-03

    The focus of the project is the development of mathematical methods and high-performance computational tools for stochastic simulations, with a particular emphasis on computations on extreme scales. The core of the project revolves around the design of highly efficient and scalable numerical algorithms that can adaptively and accurately, in high dimensional spaces, resolve stochastic problems with limited smoothness, even containing discontinuities.

  8. An adaptive guidance algorithm for an aerodynamically assisted orbital plane change maneuver. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Blissit, J. A.

    1986-01-01

    Using analysis results from the post trajectory optimization program, an adaptive guidance algorithm is developed to compensate for density, aerodynamic and thrust perturbations during an atmospheric orbital plane change maneuver. The maneuver offers increased mission flexibility along with potential fuel savings for future reentry vehicles. Although designed to guide a proposed NASA Entry Research Vehicle, the algorithm is sufficiently generic for a range of future entry vehicles. The plane change analysis provides insight suggesting a straight-forward algorithm based on an optimized nominal command profile. Bank angle, angle of attack, and engine thrust level, ignition and cutoff times are modulated to adjust the vehicle's trajectory to achieve the desired end-conditions. A performance evaluation of the scheme demonstrates a capability to guide to within 0.05 degrees of the desired plane change and five nautical miles of the desired apogee altitude while maintaining heating constraints. The algorithm is tested under off-nominal conditions of + or -30% density biases, two density profile models, + or -15% aerodynamic uncertainty, and a 33% thrust loss and for various combinations of these conditions.

  9. A Linked List-Based Algorithm for Blob Detection on Embedded Vision-Based Sensors

    PubMed Central

    Acevedo-Avila, Ricardo; Gonzalez-Mendoza, Miguel; Garcia-Garcia, Andres

    2016-01-01

    Blob detection is a common task in vision-based applications. Most existing algorithms are aimed at execution on general purpose computers; while very few can be adapted to the computing restrictions present in embedded platforms. This paper focuses on the design of an algorithm capable of real-time blob detection that minimizes system memory consumption. The proposed algorithm detects objects in one image scan; it is based on a linked-list data structure tree used to label blobs depending on their shape and node information. An example application showing the results of a blob detection co-processor has been built on a low-powered field programmable gate array hardware as a step towards developing a smart video surveillance system. The detection method is intended for general purpose application. As such, several test cases focused on character recognition are also examined. The results obtained present a fair trade-off between accuracy and memory requirements; and prove the validity of the proposed approach for real-time implementation on resource-constrained computing platforms. PMID:27240382

  10. A Linked List-Based Algorithm for Blob Detection on Embedded Vision-Based Sensors.

    PubMed

    Acevedo-Avila, Ricardo; Gonzalez-Mendoza, Miguel; Garcia-Garcia, Andres

    2016-05-28

    Blob detection is a common task in vision-based applications. Most existing algorithms are aimed at execution on general purpose computers; while very few can be adapted to the computing restrictions present in embedded platforms. This paper focuses on the design of an algorithm capable of real-time blob detection that minimizes system memory consumption. The proposed algorithm detects objects in one image scan; it is based on a linked-list data structure tree used to label blobs depending on their shape and node information. An example application showing the results of a blob detection co-processor has been built on a low-powered field programmable gate array hardware as a step towards developing a smart video surveillance system. The detection method is intended for general purpose application. As such, several test cases focused on character recognition are also examined. The results obtained present a fair trade-off between accuracy and memory requirements; and prove the validity of the proposed approach for real-time implementation on resource-constrained computing platforms.

  11. Adaptive nonlocal means filtering based on local noise level for CT denoising

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhoubo; Trzasko, Joshua D.; Lake, David S.

    2014-01-15

    Purpose: To develop and evaluate an image-domain noise reduction method based on a modified nonlocal means (NLM) algorithm that is adaptive to local noise level of CT images and to implement this method in a time frame consistent with clinical workflow. Methods: A computationally efficient technique for local noise estimation directly from CT images was developed. A forward projection, based on a 2D fan-beam approximation, was used to generate the projection data, with a noise model incorporating the effects of the bowtie filter and automatic exposure control. The noise propagation from projection data to images was analytically derived. The analyticalmore » noise map was validated using repeated scans of a phantom. A 3D NLM denoising algorithm was modified to adapt its denoising strength locally based on this noise map. The performance of this adaptive NLM filter was evaluated in phantom studies in terms of in-plane and cross-plane high-contrast spatial resolution, noise power spectrum (NPS), subjective low-contrast spatial resolution using the American College of Radiology (ACR) accreditation phantom, and objective low-contrast spatial resolution using a channelized Hotelling model observer (CHO). Graphical processing units (GPU) implementation of this noise map calculation and the adaptive NLM filtering were developed to meet demands of clinical workflow. Adaptive NLM was piloted on lower dose scans in clinical practice. Results: The local noise level estimation matches the noise distribution determined from multiple repetitive scans of a phantom, demonstrated by small variations in the ratio map between the analytical noise map and the one calculated from repeated scans. The phantom studies demonstrated that the adaptive NLM filter can reduce noise substantially without degrading the high-contrast spatial resolution, as illustrated by modulation transfer function and slice sensitivity profile results. The NPS results show that adaptive NLM denoising preserves

  12. An Adaptive Deghosting Method in Neural Network-Based Infrared Detectors Nonuniformity Correction

    PubMed Central

    Li, Yiyang; Jin, Weiqi; Zhu, Jin; Zhang, Xu; Li, Shuo

    2018-01-01

    The problems of the neural network-based nonuniformity correction algorithm for infrared focal plane arrays mainly concern slow convergence speed and ghosting artifacts. In general, the more stringent the inhibition of ghosting, the slower the convergence speed. The factors that affect these two problems are the estimated desired image and the learning rate. In this paper, we propose a learning rate rule that combines adaptive threshold edge detection and a temporal gate. Through the noise estimation algorithm, the adaptive spatial threshold is related to the residual nonuniformity noise in the corrected image. The proposed learning rate is used to effectively and stably suppress ghosting artifacts without slowing down the convergence speed. The performance of the proposed technique was thoroughly studied with infrared image sequences with both simulated nonuniformity and real nonuniformity. The results show that the deghosting performance of the proposed method is superior to that of other neural network-based nonuniformity correction algorithms and that the convergence speed is equivalent to the tested deghosting methods. PMID:29342857

  13. Adaptive regularization network based neural modeling paradigm for nonlinear adaptive estimation of cerebral evoked potentials.

    PubMed

    Zhang, Jian-Hua; Böhme, Johann F

    2007-11-01

    In this paper we report an adaptive regularization network (ARN) approach to realizing fast blind separation of cerebral evoked potentials (EPs) from background electroencephalogram (EEG) activity with no need to make any explicit assumption on the statistical (or deterministic) signal model. The ARNs are proposed to construct nonlinear EEG and EP signal models. A novel adaptive regularization training (ART) algorithm is proposed to improve the generalization performance of the ARN. Two adaptive neural modeling methods based on the ARN are developed and their implementation and performance analysis are also presented. The computer experiments using simulated and measured visual evoked potential (VEP) data have shown that the proposed ARN modeling paradigm yields computationally efficient and more accurate VEP signal estimation owing to its intrinsic model-free and nonlinear processing characteristics.

  14. EMD self-adaptive selecting relevant modes algorithm for FBG spectrum signal

    NASA Astrophysics Data System (ADS)

    Chen, Yong; Wu, Chun-ting; Liu, Huan-lin

    2017-07-01

    Noise may reduce the demodulation accuracy of fiber Bragg grating (FBG) sensing signal so as to affect the quality of sensing detection. Thus, the recovery of a signal from observed noisy data is necessary. In this paper, a precise self-adaptive algorithm of selecting relevant modes is proposed to remove the noise of signal. Empirical mode decomposition (EMD) is first used to decompose a signal into a set of modes. The pseudo modes cancellation is introduced to identify and eliminate false modes, and then the Mutual Information (MI) of partial modes is calculated. MI is used to estimate the critical point of high and low frequency components. Simulation results show that the proposed algorithm estimates the critical point more accurately than the traditional algorithms for FBG spectral signal. While, compared to the similar algorithms, the signal noise ratio of the signal can be improved more than 10 dB after processing by the proposed algorithm, and correlation coefficient can be increased by 0.5, so it demonstrates better de-noising effect.

  15. Experimental Evaluation of a Braille-Reading-Inspired Finger Motion Adaptive Algorithm.

    PubMed

    Ulusoy, Melda; Sipahi, Rifat

    2016-01-01

    Braille reading is a complex process involving intricate finger-motion patterns and finger-rubbing actions across Braille letters for the stimulation of appropriate nerves. Although Braille reading is performed by smoothly moving the finger from left-to-right, research shows that even fluent reading requires right-to-left movements of the finger, known as "reversal". Reversals are crucial as they not only enhance stimulation of nerves for correctly reading the letters, but they also show one to re-read the letters that were missed in the first pass. Moreover, it is known that reversals can be performed as often as in every sentence and can start at any location in a sentence. Here, we report experimental results on the feasibility of an algorithm that can render a machine to automatically adapt to reversal gestures of one's finger. Through Braille-reading-analogous tasks, the algorithm is tested with thirty sighted subjects that volunteered in the study. We find that the finger motion adaptive algorithm (FMAA) is useful in achieving cooperation between human finger and the machine. In the presence of FMAA, subjects' performance metrics associated with the tasks have significantly improved as supported by statistical analysis. In light of these encouraging results, preliminary experiments are carried out with five blind subjects with the aim to put the algorithm to test. Results obtained from carefully designed experiments showed that subjects' Braille reading accuracy in the presence of FMAA was more favorable then when FMAA was turned off. Utilization of FMAA in future generation Braille reading devices thus holds strong promise.

  16. Experimental Evaluation of a Braille-Reading-Inspired Finger Motion Adaptive Algorithm

    PubMed Central

    2016-01-01

    Braille reading is a complex process involving intricate finger-motion patterns and finger-rubbing actions across Braille letters for the stimulation of appropriate nerves. Although Braille reading is performed by smoothly moving the finger from left-to-right, research shows that even fluent reading requires right-to-left movements of the finger, known as “reversal”. Reversals are crucial as they not only enhance stimulation of nerves for correctly reading the letters, but they also show one to re-read the letters that were missed in the first pass. Moreover, it is known that reversals can be performed as often as in every sentence and can start at any location in a sentence. Here, we report experimental results on the feasibility of an algorithm that can render a machine to automatically adapt to reversal gestures of one’s finger. Through Braille-reading-analogous tasks, the algorithm is tested with thirty sighted subjects that volunteered in the study. We find that the finger motion adaptive algorithm (FMAA) is useful in achieving cooperation between human finger and the machine. In the presence of FMAA, subjects’ performance metrics associated with the tasks have significantly improved as supported by statistical analysis. In light of these encouraging results, preliminary experiments are carried out with five blind subjects with the aim to put the algorithm to test. Results obtained from carefully designed experiments showed that subjects’ Braille reading accuracy in the presence of FMAA was more favorable then when FMAA was turned off. Utilization of FMAA in future generation Braille reading devices thus holds strong promise. PMID:26849058

  17. Interval data clustering using self-organizing maps based on adaptive Mahalanobis distances.

    PubMed

    Hajjar, Chantal; Hamdan, Hani

    2013-10-01

    The self-organizing map is a kind of artificial neural network used to map high dimensional data into a low dimensional space. This paper presents a self-organizing map for interval-valued data based on adaptive Mahalanobis distances in order to do clustering of interval data with topology preservation. Two methods based on the batch training algorithm for the self-organizing maps are proposed. The first method uses a common Mahalanobis distance for all clusters. In the second method, the algorithm starts with a common Mahalanobis distance per cluster and then switches to use a different distance per cluster. This process allows a more adapted clustering for the given data set. The performances of the proposed methods are compared and discussed using artificial and real interval data sets. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. An implicit adaptation algorithm for a linear model reference control system

    NASA Technical Reports Server (NTRS)

    Mabius, L.; Kaufman, H.

    1975-01-01

    This paper presents a stable implicit adaptation algorithm for model reference control. The constraints for stability are found using Lyapunov's second method and do not depend on perfect model following between the system and the reference model. Methods are proposed for satisfying these constraints without estimating the parameters on which the constraints depend.

  19. A wavelet-based adaptive fusion algorithm of infrared polarization imaging

    NASA Astrophysics Data System (ADS)

    Yang, Wei; Gu, Guohua; Chen, Qian; Zeng, Haifang

    2011-08-01

    The purpose of infrared polarization image is to highlight man-made target from a complex natural background. For the infrared polarization images can significantly distinguish target from background with different features, this paper presents a wavelet-based infrared polarization image fusion algorithm. The method is mainly for image processing of high-frequency signal portion, as for the low frequency signal, the original weighted average method has been applied. High-frequency part is processed as follows: first, the source image of the high frequency information has been extracted by way of wavelet transform, then signal strength of 3*3 window area has been calculated, making the regional signal intensity ration of source image as a matching measurement. Extraction method and decision mode of the details are determined by the decision making module. Image fusion effect is closely related to the setting threshold of decision making module. Compared to the commonly used experiment way, quadratic interpolation optimization algorithm is proposed in this paper to obtain threshold. Set the endpoints and midpoint of the threshold searching interval as initial interpolation nodes, and compute the minimum quadratic interpolation function. The best threshold can be obtained by comparing the minimum quadratic interpolation function. A series of image quality evaluation results show this method has got improvement in fusion effect; moreover, it is not only effective for some individual image, but also for a large number of images.

  20. Development and evaluation of a data-adaptive alerting algorithm for univariate temporal biosurveillance data.

    PubMed

    Elbert, Yevgeniy; Burkom, Howard S

    2009-11-20

    This paper discusses further advances in making robust predictions with the Holt-Winters forecasts for a variety of syndromic time series behaviors and introduces a control-chart detection approach based on these forecasts. Using three collections of time series data, we compare biosurveillance alerting methods with quantified measures of forecast agreement, signal sensitivity, and time-to-detect. The study presents practical rules for initialization and parameterization of biosurveillance time series. Several outbreak scenarios are used for detection comparison. We derive an alerting algorithm from forecasts using Holt-Winters-generalized smoothing for prospective application to daily syndromic time series. The derived algorithm is compared with simple control-chart adaptations and to more computationally intensive regression modeling methods. The comparisons are conducted on background data from both authentic and simulated data streams. Both types of background data include time series that vary widely by both mean value and cyclic or seasonal behavior. Plausible, simulated signals are added to the background data for detection performance testing at signal strengths calculated to be neither too easy nor too hard to separate the compared methods. Results show that both the sensitivity and the timeliness of the Holt-Winters-based algorithm proved to be comparable or superior to that of the more traditional prediction methods used for syndromic surveillance.

  1. Fuzzy Neural Network-Based Interacting Multiple Model for Multi-Node Target Tracking Algorithm

    PubMed Central

    Sun, Baoliang; Jiang, Chunlan; Li, Ming

    2016-01-01

    An interacting multiple model for multi-node target tracking algorithm was proposed based on a fuzzy neural network (FNN) to solve the multi-node target tracking problem of wireless sensor networks (WSNs). Measured error variance was adaptively adjusted during the multiple model interacting output stage using the difference between the theoretical and estimated values of the measured error covariance matrix. The FNN fusion system was established during multi-node fusion to integrate with the target state estimated data from different nodes and consequently obtain network target state estimation. The feasibility of the algorithm was verified based on a network of nine detection nodes. Experimental results indicated that the proposed algorithm could trace the maneuvering target effectively under sensor failure and unknown system measurement errors. The proposed algorithm exhibited great practicability in the multi-node target tracking of WSNs. PMID:27809271

  2. Path Planning Algorithms for the Adaptive Sensor Fleet

    NASA Technical Reports Server (NTRS)

    Stoneking, Eric; Hosler, Jeff

    2005-01-01

    The Adaptive Sensor Fleet (ASF) is a general purpose fleet management and planning system being developed by NASA in coordination with NOAA. The current mission of ASF is to provide the capability for autonomous cooperative survey and sampling of dynamic oceanographic phenomena such as current systems and algae blooms. Each ASF vessel is a software model that represents a real world platform that carries a variety of sensors. The OASIS platform will provide the first physical vessel, outfitted with the systems and payloads necessary to execute the oceanographic observations described in this paper. The ASF architecture is being designed for extensibility to accommodate heterogenous fleet elements, and is not limited to using the OASIS platform to acquire data. This paper describes the path planning algorithms developed for the acquisition phase of a typical ASF task. Given a polygonal target region to be surveyed, the region is subdivided according to the number of vessels in the fleet. The subdivision algorithm seeks a solution in which all subregions have equal area and minimum mean radius. Once the subregions are defined, a dynamic programming method is used to find a minimum-time path for each vessel from its initial position to its assigned region. This path plan includes the effects of water currents as well as avoidance of known obstacles. A fleet-level planning algorithm then shuffles the individual vessel assignments to find the overall solution which puts all vessels in their assigned regions in the minimum time. This shuffle algorithm may be described as a process of elimination on the sorted list of permutations of a cost matrix. All these path planning algorithms are facilitated by discretizing the region of interest onto a hexagonal tiling.

  3. Band-pass filtering algorithms for adaptive control of compressor pre-stall modes in aircraft gas-turbine engine

    NASA Astrophysics Data System (ADS)

    Kuznetsova, T. A.

    2018-05-01

    The methods for increasing gas-turbine aircraft engines' (GTE) adaptive properties to interference based on empowerment of automatic control systems (ACS) are analyzed. The flow pulsation in suction and a discharge line of the compressor, which may cause the stall, are considered as the interference. The algorithmic solution to the problem of GTE pre-stall modes’ control adapted to stability boundary is proposed. The aim of the study is to develop the band-pass filtering algorithms to provide the detection functions of the compressor pre-stall modes for ACS GTE. The characteristic feature of pre-stall effect is the increase of pressure pulsation amplitude over the impeller at the multiples of the rotor’ frequencies. The used method is based on a band-pass filter combining low-pass and high-pass digital filters. The impulse response of the high-pass filter is determined through a known low-pass filter impulse response by spectral inversion. The resulting transfer function of the second order band-pass filter (BPF) corresponds to a stable system. The two circuit implementations of BPF are synthesized. Designed band-pass filtering algorithms were tested in MATLAB environment. Comparative analysis of amplitude-frequency response of proposed implementation allows choosing the BPF scheme providing the best quality of filtration. The BPF reaction to the periodic sinusoidal signal, simulating the experimentally obtained pressure pulsation function in the pre-stall mode, was considered. The results of model experiment demonstrated the effectiveness of applying band-pass filtering algorithms as part of ACS to identify the pre-stall mode of the compressor for detection of pressure fluctuations’ peaks, characterizing the compressor’s approach to the stability boundary.

  4. Testing of Lagrange multiplier damped least-squares control algorithm for woofer-tweeter adaptive optics

    PubMed Central

    Zou, Weiyao; Burns, Stephen A.

    2012-01-01

    A Lagrange multiplier-based damped least-squares control algorithm for woofer-tweeter (W-T) dual deformable-mirror (DM) adaptive optics (AO) is tested with a breadboard system. We show that the algorithm can complementarily command the two DMs to correct wavefront aberrations within a single optimization process: the woofer DM correcting the high-stroke, low-order aberrations, and the tweeter DM correcting the low-stroke, high-order aberrations. The optimal damping factor for a DM is found to be the median of the eigenvalue spectrum of the influence matrix of that DM. Wavefront control accuracy is maximized with the optimized control parameters. For the breadboard system, the residual wavefront error can be controlled to the precision of 0.03 μm in root mean square. The W-T dual-DM AO has applications in both ophthalmology and astronomy. PMID:22441462

  5. [Optimization of the parameters of microcirculatory structural adaptation model based on improved quantum-behaved particle swarm optimization algorithm].

    PubMed

    Pan, Qing; Yao, Jialiang; Wang, Ruofan; Cao, Ping; Ning, Gangmin; Fang, Luping

    2017-08-01

    The vessels in the microcirculation keep adjusting their structure to meet the functional requirements of the different tissues. A previously developed theoretical model can reproduce the process of vascular structural adaptation to help the study of the microcirculatory physiology. However, until now, such model lacks the appropriate methods for its parameter settings with subsequent limitation of further applications. This study proposed an improved quantum-behaved particle swarm optimization (QPSO) algorithm for setting the parameter values in this model. The optimization was performed on a real mesenteric microvascular network of rat. The results showed that the improved QPSO was superior to the standard particle swarm optimization, the standard QPSO and the previously reported Downhill algorithm. We conclude that the improved QPSO leads to a better agreement between mathematical simulation and animal experiment, rendering the model more reliable in future physiological studies.

  6. A comparative evaluation of adaptive noise cancellation algorithms for minimizing motion artifacts in a forehead-mounted wearable pulse oximeter.

    PubMed

    Comtois, Gary; Mendelson, Yitzhak; Ramuka, Piyush

    2007-01-01

    Wearable physiological monitoring using a pulse oximeter would enable field medics to monitor multiple injuries simultaneously, thereby prioritizing medical intervention when resources are limited. However, a primary factor limiting the accuracy of pulse oximetry is poor signal-to-noise ratio since photoplethysmographic (PPG) signals, from which arterial oxygen saturation (SpO2) and heart rate (HR) measurements are derived, are compromised by movement artifacts. This study was undertaken to quantify SpO2 and HR errors induced by certain motion artifacts utilizing accelerometry-based adaptive noise cancellation (ANC). Since the fingers are generally more vulnerable to motion artifacts, measurements were performed using a custom forehead-mounted wearable pulse oximeter developed for real-time remote physiological monitoring and triage applications. This study revealed that processing motion-corrupted PPG signals by least mean squares (LMS) and recursive least squares (RLS) algorithms can be effective to reduce SpO2 and HR errors during jogging, but the degree of improvement depends on filter order. Although both algorithms produced similar improvements, implementing the adaptive LMS algorithm is advantageous since it requires significantly less operations.

  7. Frequent statistics of link-layer bit stream data based on AC-IM algorithm

    NASA Astrophysics Data System (ADS)

    Cao, Chenghong; Lei, Yingke; Xu, Yiming

    2017-08-01

    At present, there are many relevant researches on data processing using classical pattern matching and its improved algorithm, but few researches on statistical data of link-layer bit stream. This paper adopts a frequent statistical method of link-layer bit stream data based on AC-IM algorithm for classical multi-pattern matching algorithms such as AC algorithm has high computational complexity, low efficiency and it cannot be applied to binary bit stream data. The method's maximum jump distance of the mode tree is length of the shortest mode string plus 3 in case of no missing? In this paper, theoretical analysis is made on the principle of algorithm construction firstly, and then the experimental results show that the algorithm can adapt to the binary bit stream data environment and extract the frequent sequence more accurately, the effect is obvious. Meanwhile, comparing with the classical AC algorithm and other improved algorithms, AC-IM algorithm has a greater maximum jump distance and less time-consuming.

  8. Application of based on improved wavelet algorithm in fiber temperature sensor

    NASA Astrophysics Data System (ADS)

    Qi, Hui; Tang, Wenjuan

    2018-03-01

    It is crucial point that accurate temperature in distributed optical fiber temperature sensor. In order to solve the problem of temperature measurement error due to weak Raman scattering signal and strong noise in system, a new based on improved wavelet algorithm is presented. On the basis of the traditional modulus maxima wavelet algorithm, signal correlation is considered to improve the ability to capture signals and noise, meanwhile, combined with wavelet decomposition scale adaptive method to eliminate signal loss or noise not filtered due to mismatch scale. Superiority of algorithm filtering is compared with others by Matlab. At last, the 3km distributed optical fiber temperature sensing system is used for verification. Experimental results show that accuracy of temperature generally increased by 0.5233.

  9. Local Competition-Based Superpixel Segmentation Algorithm in Remote Sensing

    PubMed Central

    Liu, Jiayin; Tang, Zhenmin; Cui, Ying; Wu, Guoxing

    2017-01-01

    Remote sensing technologies have been widely applied in urban environments’ monitoring, synthesis and modeling. Incorporating spatial information in perceptually coherent regions, superpixel-based approaches can effectively eliminate the “salt and pepper” phenomenon which is common in pixel-wise approaches. Compared with fixed-size windows, superpixels have adaptive sizes and shapes for different spatial structures. Moreover, superpixel-based algorithms can significantly improve computational efficiency owing to the greatly reduced number of image primitives. Hence, the superpixel algorithm, as a preprocessing technique, is more and more popularly used in remote sensing and many other fields. In this paper, we propose a superpixel segmentation algorithm called Superpixel Segmentation with Local Competition (SSLC), which utilizes a local competition mechanism to construct energy terms and label pixels. The local competition mechanism leads to energy terms locality and relativity, and thus, the proposed algorithm is less sensitive to the diversity of image content and scene layout. Consequently, SSLC could achieve consistent performance in different image regions. In addition, the Probability Density Function (PDF), which is estimated by Kernel Density Estimation (KDE) with the Gaussian kernel, is introduced to describe the color distribution of superpixels as a more sophisticated and accurate measure. To reduce computational complexity, a boundary optimization framework is introduced to only handle boundary pixels instead of the whole image. We conduct experiments to benchmark the proposed algorithm with the other state-of-the-art ones on the Berkeley Segmentation Dataset (BSD) and remote sensing images. Results demonstrate that the SSLC algorithm yields the best overall performance, while the computation time-efficiency is still competitive. PMID:28604641

  10. Local Competition-Based Superpixel Segmentation Algorithm in Remote Sensing.

    PubMed

    Liu, Jiayin; Tang, Zhenmin; Cui, Ying; Wu, Guoxing

    2017-06-12

    Remote sensing technologies have been widely applied in urban environments' monitoring, synthesis and modeling. Incorporating spatial information in perceptually coherent regions, superpixel-based approaches can effectively eliminate the "salt and pepper" phenomenon which is common in pixel-wise approaches. Compared with fixed-size windows, superpixels have adaptive sizes and shapes for different spatial structures. Moreover, superpixel-based algorithms can significantly improve computational efficiency owing to the greatly reduced number of image primitives. Hence, the superpixel algorithm, as a preprocessing technique, is more and more popularly used in remote sensing and many other fields. In this paper, we propose a superpixel segmentation algorithm called Superpixel Segmentation with Local Competition (SSLC), which utilizes a local competition mechanism to construct energy terms and label pixels. The local competition mechanism leads to energy terms locality and relativity, and thus, the proposed algorithm is less sensitive to the diversity of image content and scene layout. Consequently, SSLC could achieve consistent performance in different image regions. In addition, the Probability Density Function (PDF), which is estimated by Kernel Density Estimation (KDE) with the Gaussian kernel, is introduced to describe the color distribution of superpixels as a more sophisticated and accurate measure. To reduce computational complexity, a boundary optimization framework is introduced to only handle boundary pixels instead of the whole image. We conduct experiments to benchmark the proposed algorithm with the other state-of-the-art ones on the Berkeley Segmentation Dataset (BSD) and remote sensing images. Results demonstrate that the SSLC algorithm yields the best overall performance, while the computation time-efficiency is still competitive.

  11. Competitive Swarm Optimizer Based Gateway Deployment Algorithm in Cyber-Physical Systems

    PubMed Central

    Huang, Shuqiang; Tao, Ming

    2017-01-01

    Wireless sensor network topology optimization is a highly important issue, and topology control through node selection can improve the efficiency of data forwarding, while saving energy and prolonging lifetime of the network. To address the problem of connecting a wireless sensor network to the Internet in cyber-physical systems, here we propose a geometric gateway deployment based on a competitive swarm optimizer algorithm. The particle swarm optimization (PSO) algorithm has a continuous search feature in the solution space, which makes it suitable for finding the geometric center of gateway deployment; however, its search mechanism is limited to the individual optimum (pbest) and the population optimum (gbest); thus, it easily falls into local optima. In order to improve the particle search mechanism and enhance the search efficiency of the algorithm, we introduce a new competitive swarm optimizer (CSO) algorithm. The CSO search algorithm is based on an inter-particle competition mechanism and can effectively avoid trapping of the population falling into a local optimum. With the improvement of an adaptive opposition-based search and its ability to dynamically parameter adjustments, this algorithm can maintain the diversity of the entire swarm to solve geometric K-center gateway deployment problems. The simulation results show that this CSO algorithm has a good global explorative ability as well as convergence speed and can improve the network quality of service (QoS) level of cyber-physical systems by obtaining a minimum network coverage radius. We also find that the CSO algorithm is more stable, robust and effective in solving the problem of geometric gateway deployment as compared to the PSO or Kmedoids algorithms. PMID:28117735

  12. Competitive Swarm Optimizer Based Gateway Deployment Algorithm in Cyber-Physical Systems.

    PubMed

    Huang, Shuqiang; Tao, Ming

    2017-01-22

    Wireless sensor network topology optimization is a highly important issue, and topology control through node selection can improve the efficiency of data forwarding, while saving energy and prolonging lifetime of the network. To address the problem of connecting a wireless sensor network to the Internet in cyber-physical systems, here we propose a geometric gateway deployment based on a competitive swarm optimizer algorithm. The particle swarm optimization (PSO) algorithm has a continuous search feature in the solution space, which makes it suitable for finding the geometric center of gateway deployment; however, its search mechanism is limited to the individual optimum (pbest) and the population optimum (gbest); thus, it easily falls into local optima. In order to improve the particle search mechanism and enhance the search efficiency of the algorithm, we introduce a new competitive swarm optimizer (CSO) algorithm. The CSO search algorithm is based on an inter-particle competition mechanism and can effectively avoid trapping of the population falling into a local optimum. With the improvement of an adaptive opposition-based search and its ability to dynamically parameter adjustments, this algorithm can maintain the diversity of the entire swarm to solve geometric K -center gateway deployment problems. The simulation results show that this CSO algorithm has a good global explorative ability as well as convergence speed and can improve the network quality of service (QoS) level of cyber-physical systems by obtaining a minimum network coverage radius. We also find that the CSO algorithm is more stable, robust and effective in solving the problem of geometric gateway deployment as compared to the PSO or Kmedoids algorithms.

  13. The new approach for infrared target tracking based on the particle filter algorithm

    NASA Astrophysics Data System (ADS)

    Sun, Hang; Han, Hong-xia

    2011-08-01

    Target tracking on the complex background in the infrared image sequence is hot research field. It provides the important basis in some fields such as video monitoring, precision, and video compression human-computer interaction. As a typical algorithms in the target tracking framework based on filtering and data connection, the particle filter with non-parameter estimation characteristic have ability to deal with nonlinear and non-Gaussian problems so it were widely used. There are various forms of density in the particle filter algorithm to make it valid when target occlusion occurred or recover tracking back from failure in track procedure, but in order to capture the change of the state space, it need a certain amount of particles to ensure samples is enough, and this number will increase in accompany with dimension and increase exponentially, this led to the increased amount of calculation is presented. In this paper particle filter algorithm and the Mean shift will be combined. Aiming at deficiencies of the classic mean shift Tracking algorithm easily trapped into local minima and Unable to get global optimal under the complex background. From these two perspectives that "adaptive multiple information fusion" and "with particle filter framework combining", we expand the classic Mean Shift tracking framework .Based on the previous perspective, we proposed an improved Mean Shift infrared target tracking algorithm based on multiple information fusion. In the analysis of the infrared characteristics of target basis, Algorithm firstly extracted target gray and edge character and Proposed to guide the above two characteristics by the moving of the target information thus we can get new sports guide grayscale characteristics and motion guide border feature. Then proposes a new adaptive fusion mechanism, used these two new information adaptive to integrate into the Mean Shift tracking framework. Finally we designed a kind of automatic target model updating strategy

  14. A Controlled Study of the Effectiveness of an Adaptive Closed-Loop Algorithm to Minimize Corticosteroid-Induced Stress Hyperglycemia in Type 1 Diabetes

    PubMed Central

    Youssef, Joseph El; Castle, Jessica R; Branigan, Deborah L; Massoud, Ryan G; Breen, Matthew E; Jacobs, Peter G; Bequette, B Wayne; Ward, W Kenneth

    2011-01-01

    To be effective in type 1 diabetes, algorithms must be able to limit hyperglycemic excursions resulting from medical and emotional stress. We tested an algorithm that estimates insulin sensitivity at regular intervals and continually adjusts gain factors of a fading memory proportional-derivative (FMPD) algorithm. In order to assess whether the algorithm could appropriately adapt and limit the degree of hyperglycemia, we administered oral hydrocortisone repeatedly to create insulin resistance. We compared this indirect adaptive proportional-derivative (APD) algorithm to the FMPD algorithm, which used fixed gain parameters. Each subject with type 1 diabetes (n = 14) was studied on two occasions, each for 33 h. The APD algorithm consistently identified a fall in insulin sensitivity after hydrocortisone. The gain factors and insulin infusion rates were appropriately increased, leading to satisfactory glycemic control after adaptation (premeal glucose on day 2, 148 ± 6 mg/dl). After sufficient time was allowed for adaptation, the late postprandial glucose increment was significantly lower than when measured shortly after the onset of the steroid effect. In addition, during the controlled comparison, glycemia was significantly lower with the APD algorithm than with the FMPD algorithm. No increase in hypoglycemic frequency was found in the APD-only arm. An afferent system of duplicate amperometric sensors demonstrated a high degree of accuracy; the mean absolute relative difference of the sensor used to control the algorithm was 9.6 ± 0.5%. We conclude that an adaptive algorithm that frequently estimates insulin sensitivity and adjusts gain factors is capable of minimizing corticosteroid-induced stress hyperglycemia. PMID:22226248

  15. An Adaptive Cross-Correlation Algorithm for Extended-Scene Shack-Hartmann Wavefront Sensing

    NASA Technical Reports Server (NTRS)

    Sidick, Erkin; Green, Joseph J.; Ohara, Catherine M.; Redding, David C.

    2007-01-01

    This viewgraph presentation reviews the Adaptive Cross-Correlation (ACC) Algorithm for extended scene-Shack Hartmann wavefront (WF) sensing. A Shack-Hartmann sensor places a lenslet array at a plane conjugate to the WF error source. Each sub-aperture lenslet samples the WF in the corresponding patch of the WF. A description of the ACC algorithm is included. The ACC has several benefits; amongst them are: ACC requires only about 4 image-shifting iterations to achieve 0.01 pixel accuracy and ACC is insensitive to both background light and noise much more robust than centroiding,

  16. Wireless rake-receiver using adaptive filter with a family of partial update algorithms in noise cancellation applications

    NASA Astrophysics Data System (ADS)

    Fayadh, Rashid A.; Malek, F.; Fadhil, Hilal A.; Aldhaibani, Jaafar A.; Salman, M. K.; Abdullah, Farah Salwani

    2015-05-01

    For high data rate propagation in wireless ultra-wideband (UWB) communication systems, the inter-symbol interference (ISI), multiple-access interference (MAI), and multiple-users interference (MUI) are influencing the performance of the wireless systems. In this paper, the rake-receiver was presented with the spread signal by direct sequence spread spectrum (DS-SS) technique. The adaptive rake-receiver structure was shown with adjusting the receiver tap weights using least mean squares (LMS), normalized least mean squares (NLMS), and affine projection algorithms (APA) to support the weak signals by noise cancellation and mitigate the interferences. To minimize the data convergence speed and to reduce the computational complexity by the previous algorithms, a well-known approach of partial-updates (PU) adaptive filters were employed with algorithms, such as sequential-partial, periodic-partial, M-max-partial, and selective-partial updates (SPU) in the proposed system. The simulation results of bit error rate (BER) versus signal-to-noise ratio (SNR) are illustrated to show the performance of partial-update algorithms that have nearly comparable performance with the full update adaptive filters. Furthermore, the SPU-partial has closed performance to the full-NLMS and full-APA while the M-max-partial has closed performance to the full-LMS updates algorithms.

  17. Adaptive control of Parkinson's state based on a nonlinear computational model with unknown parameters.

    PubMed

    Su, Fei; Wang, Jiang; Deng, Bin; Wei, Xi-Le; Chen, Ying-Yuan; Liu, Chen; Li, Hui-Yan

    2015-02-01

    The objective here is to explore the use of adaptive input-output feedback linearization method to achieve an improved deep brain stimulation (DBS) algorithm for closed-loop control of Parkinson's state. The control law is based on a highly nonlinear computational model of Parkinson's disease (PD) with unknown parameters. The restoration of thalamic relay reliability is formulated as the desired outcome of the adaptive control methodology, and the DBS waveform is the control input. The control input is adjusted in real time according to estimates of unknown parameters as well as the feedback signal. Simulation results show that the proposed adaptive control algorithm succeeds in restoring the relay reliability of the thalamus, and at the same time achieves accurate estimation of unknown parameters. Our findings point to the potential value of adaptive control approach that could be used to regulate DBS waveform in more effective treatment of PD.

  18. Self-tuning control algorithm design for vehicle adaptive cruise control system through real-time estimation of vehicle parameters and road grade

    NASA Astrophysics Data System (ADS)

    Marzbanrad, Javad; Tahbaz-zadeh Moghaddam, Iman

    2016-09-01

    The main purpose of this paper is to design a self-tuning control algorithm for an adaptive cruise control (ACC) system that can adapt its behaviour to variations of vehicle dynamics and uncertain road grade. To this aim, short-time linear quadratic form (STLQF) estimation technique is developed so as to track simultaneously the trend of the time-varying parameters of vehicle longitudinal dynamics with a small delay. These parameters are vehicle mass, road grade and aerodynamic drag-area coefficient. Next, the values of estimated parameters are used to tune the throttle and brake control inputs and to regulate the throttle/brake switching logic that governs the throttle and brake switching. The performance of the designed STLQF-based self-tuning control (STLQF-STC) algorithm for ACC system is compared with the conventional method based on fixed control structure regarding the speed/distance tracking control modes. Simulation results show that the proposed control algorithm improves the performance of throttle and brake controllers, providing more comfort while travelling, enhancing driving safety and giving a satisfactory performance in the presence of different payloads and road grade variations.

  19. Improved neural network based scene-adaptive nonuniformity correction method for infrared focal plane arrays.

    PubMed

    Lai, Rui; Yang, Yin-tang; Zhou, Duan; Li, Yue-jin

    2008-08-20

    An improved scene-adaptive nonuniformity correction (NUC) algorithm for infrared focal plane arrays (IRFPAs) is proposed. This method simultaneously estimates the infrared detectors' parameters and eliminates the nonuniformity causing fixed pattern noise (FPN) by using a neural network (NN) approach. In the learning process of neuron parameter estimation, the traditional LMS algorithm is substituted with the newly presented variable step size (VSS) normalized least-mean square (NLMS) based adaptive filtering algorithm, which yields faster convergence, smaller misadjustment, and lower computational cost. In addition, a new NN structure is designed to estimate the desired target value, which promotes the calibration precision considerably. The proposed NUC method reaches high correction performance, which is validated by the experimental results quantitatively tested with a simulative testing sequence and a real infrared image sequence.

  20. Ensembles of satellite aerosol retrievals based on three AATSR algorithms within aerosol_cci

    NASA Astrophysics Data System (ADS)

    Kosmale, Miriam; Popp, Thomas

    2016-04-01

    Ensemble techniques are widely used in the modelling community, combining different modelling results in order to reduce uncertainties. This approach could be also adapted to satellite measurements. Aerosol_cci is an ESA funded project, where most of the European aerosol retrieval groups work together. The different algorithms are homogenized as far as it makes sense, but remain essentially different. Datasets are compared with ground based measurements and between each other. Three AATSR algorithms (Swansea university aerosol retrieval, ADV aerosol retrieval by FMI and Oxford aerosol retrieval ORAC) provide within this project 17 year global aerosol records. Each of these algorithms provides also uncertainty information on pixel level. Within the presented work, an ensembles of the three AATSR algorithms is performed. The advantage over each single algorithm is the higher spatial coverage due to more measurement pixels per gridbox. A validation to ground based AERONET measurements shows still a good correlation of the ensemble, compared to the single algorithms. Annual mean maps show the global aerosol distribution, based on a combination of the three aerosol algorithms. In addition, pixel level uncertainties of each algorithm are used for weighting the contributions, in order to reduce the uncertainty of the ensemble. Results of different versions of the ensembles for aerosol optical depth will be presented and discussed. The results are validated against ground based AERONET measurements. A higher spatial coverage on daily basis allows better results in annual mean maps. The benefit of using pixel level uncertainties is analysed.

  1. Adaptive Load-Balancing Algorithms using Symmetric Broadcast Networks

    NASA Technical Reports Server (NTRS)

    Das, Sajal K.; Harvey, Daniel J.; Biswas, Rupak; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    In a distributed computing environment, it is important to ensure that the processor workloads are adequately balanced, Among numerous load-balancing algorithms, a unique approach due to Das and Prasad defines a symmetric broadcast network (SBN) that provides a robust communication pattern among the processors in a topology-independent manner. In this paper, we propose and analyze three efficient SBN-based dynamic load-balancing algorithms, and implement them on an SGI Origin2000. A thorough experimental study with Poisson distributed synthetic loads demonstrates that our algorithms are effective in balancing system load. By optimizing completion time and idle time, the proposed algorithms are shown to compare favorably with several existing approaches.

  2. Testing of Lagrange multiplier damped least-squares control algorithm for woofer-tweeter adaptive optics.

    PubMed

    Zou, Weiyao; Burns, Stephen A

    2012-03-20

    A Lagrange multiplier-based damped least-squares control algorithm for woofer-tweeter (W-T) dual deformable-mirror (DM) adaptive optics (AO) is tested with a breadboard system. We show that the algorithm can complementarily command the two DMs to correct wavefront aberrations within a single optimization process: the woofer DM correcting the high-stroke, low-order aberrations, and the tweeter DM correcting the low-stroke, high-order aberrations. The optimal damping factor for a DM is found to be the median of the eigenvalue spectrum of the influence matrix of that DM. Wavefront control accuracy is maximized with the optimized control parameters. For the breadboard system, the residual wavefront error can be controlled to the precision of 0.03 μm in root mean square. The W-T dual-DM AO has applications in both ophthalmology and astronomy. © 2012 Optical Society of America

  3. STAR adaptation of QR algorithm. [program for solving over-determined systems of linear equations

    NASA Technical Reports Server (NTRS)

    Shah, S. N.

    1981-01-01

    The QR algorithm used on a serial computer and executed on the Control Data Corporation 6000 Computer was adapted to execute efficiently on the Control Data STAR-100 computer. How the scalar program was adapted for the STAR-100 and why these adaptations yielded an efficient STAR program is described. Program listings of the old scalar version and the vectorized SL/1 version are presented in the appendices. Execution times for the two versions applied to the same system of linear equations, are compared.

  4. An Efficient Moving Target Detection Algorithm Based on Sparsity-Aware Spectrum Estimation

    PubMed Central

    Shen, Mingwei; Wang, Jie; Wu, Di; Zhu, Daiyin

    2014-01-01

    In this paper, an efficient direct data domain space-time adaptive processing (STAP) algorithm for moving targets detection is proposed, which is achieved based on the distinct spectrum features of clutter and target signals in the angle-Doppler domain. To reduce the computational complexity, the high-resolution angle-Doppler spectrum is obtained by finding the sparsest coefficients in the angle domain using the reduced-dimension data within each Doppler bin. Moreover, we will then present a knowledge-aided block-size detection algorithm that can discriminate between the moving targets and the clutter based on the extracted spectrum features. The feasibility and effectiveness of the proposed method are validated through both numerical simulations and raw data processing results. PMID:25222035

  5. Multichannel Speech Enhancement Based on Generalized Gamma Prior Distribution with Its Online Adaptive Estimation

    NASA Astrophysics Data System (ADS)

    Dat, Tran Huy; Takeda, Kazuya; Itakura, Fumitada

    We present a multichannel speech enhancement method based on MAP speech spectral magnitude estimation using a generalized gamma model of speech prior distribution, where the model parameters are adapted from actual noisy speech in a frame-by-frame manner. The utilization of a more general prior distribution with its online adaptive estimation is shown to be effective for speech spectral estimation in noisy environments. Furthermore, the multi-channel information in terms of cross-channel statistics are shown to be useful to better adapt the prior distribution parameters to the actual observation, resulting in better performance of speech enhancement algorithm. We tested the proposed algorithm in an in-car speech database and obtained significant improvements of the speech recognition performance, particularly under non-stationary noise conditions such as music, air-conditioner and open window.

  6. Iterative reconstruction methods in atmospheric tomography: FEWHA, Kaczmarz and Gradient-based algorithm

    NASA Astrophysics Data System (ADS)

    Ramlau, R.; Saxenhuber, D.; Yudytskiy, M.

    2014-07-01

    The problem of atmospheric tomography arises in ground-based telescope imaging with adaptive optics (AO), where one aims to compensate in real-time for the rapidly changing optical distortions in the atmosphere. Many of these systems depend on a sufficient reconstruction of the turbulence profiles in order to obtain a good correction. Due to steadily growing telescope sizes, there is a strong increase in the computational load for atmospheric reconstruction with current methods, first and foremost the MVM. In this paper we present and compare three novel iterative reconstruction methods. The first iterative approach is the Finite Element- Wavelet Hybrid Algorithm (FEWHA), which combines wavelet-based techniques and conjugate gradient schemes to efficiently and accurately tackle the problem of atmospheric reconstruction. The method is extremely fast, highly flexible and yields superior quality. Another novel iterative reconstruction algorithm is the three step approach which decouples the problem in the reconstruction of the incoming wavefronts, the reconstruction of the turbulent layers (atmospheric tomography) and the computation of the best mirror correction (fitting step). For the atmospheric tomography problem within the three step approach, the Kaczmarz algorithm and the Gradient-based method have been developed. We present a detailed comparison of our reconstructors both in terms of quality and speed performance in the context of a Multi-Object Adaptive Optics (MOAO) system for the E-ELT setting on OCTOPUS, the ESO end-to-end simulation tool.

  7. A Risk-based Model Predictive Control Approach to Adaptive Interventions in Behavioral Health

    PubMed Central

    Zafra-Cabeza, Ascensión; Rivera, Daniel E.; Collins, Linda M.; Ridao, Miguel A.; Camacho, Eduardo F.

    2010-01-01

    This paper examines how control engineering and risk management techniques can be applied in the field of behavioral health through their use in the design and implementation of adaptive behavioral interventions. Adaptive interventions are gaining increasing acceptance as a means to improve prevention and treatment of chronic, relapsing disorders, such as abuse of alcohol, tobacco, and other drugs, mental illness, and obesity. A risk-based Model Predictive Control (MPC) algorithm is developed for a hypothetical intervention inspired by Fast Track, a real-life program whose long-term goal is the prevention of conduct disorders in at-risk children. The MPC-based algorithm decides on the appropriate frequency of counselor home visits, mentoring sessions, and the availability of after-school recreation activities by relying on a model that includes identifiable risks, their costs, and the cost/benefit assessment of mitigating actions. MPC is particularly suited for the problem because of its constraint-handling capabilities, and its ability to scale to interventions involving multiple tailoring variables. By systematically accounting for risks and adapting treatment components over time, an MPC approach as described in this paper can increase intervention effectiveness and adherence while reducing waste, resulting in advantages over conventional fixed treatment. A series of simulations are conducted under varying conditions to demonstrate the effectiveness of the algorithm. PMID:21643450

  8. Ripple FPN reduced algorithm based on temporal high-pass filter and hardware implementation

    NASA Astrophysics Data System (ADS)

    Li, Yiyang; Li, Shuo; Zhang, Zhipeng; Jin, Weiqi; Wu, Lei; Jin, Minglei

    2016-11-01

    Cooled infrared detector arrays always suffer from undesired Ripple Fixed-Pattern Noise (FPN) when observe the scene of sky. The Ripple Fixed-Pattern Noise seriously affect the imaging quality of thermal imager, especially for small target detection and tracking. It is hard to eliminate the FPN by the Calibration based techniques and the current scene-based nonuniformity algorithms. In this paper, we present a modified space low-pass and temporal high-pass nonuniformity correction algorithm using adaptive time domain threshold (THP&GM). The threshold is designed to significantly reduce ghosting artifacts. We test the algorithm on real infrared in comparison to several previously published methods. This algorithm not only can effectively correct common FPN such as Stripe, but also has obviously advantage compared with the current methods in terms of detail protection and convergence speed, especially for Ripple FPN correction. Furthermore, we display our architecture with a prototype built on a Xilinx Virtex-5 XC5VLX50T field-programmable gate array (FPGA). The hardware implementation of the algorithm based on FPGA has two advantages: (1) low resources consumption, and (2) small hardware delay (less than 20 lines). The hardware has been successfully applied in actual system.

  9. A comparison of two adaptive algorithms for the control of active engine mounts

    NASA Astrophysics Data System (ADS)

    Hillis, A. J.; Harrison, A. J. L.; Stoten, D. P.

    2005-08-01

    This paper describes work conducted in order to control automotive active engine mounts, consisting of a conventional passive mount and an internal electromagnetic actuator. Active engine mounts seek to cancel the oscillatory forces generated by the rotation of out-of-balance masses within the engine. The actuator generates a force dependent on a control signal from an algorithm implemented with a real-time DSP. The filtered-x least-mean-square (FXLMS) adaptive filter is used as a benchmark for comparison with a new implementation of the error-driven minimal controller synthesis (Er-MCSI) adaptive controller. Both algorithms are applied to an active mount fitted to a saloon car equipped with a four-cylinder turbo-diesel engine, and have no a priori knowledge of the system dynamics. The steady-state and transient performance of the two algorithms are compared and the relative merits of the two approaches are discussed. The Er-MCSI strategy offers significant computational advantages as it requires no cancellation path modelling. The Er-MCSI controller is found to perform in a fashion similar to the FXLMS filter—typically reducing chassis vibration by 50-90% under normal driving conditions.

  10. Signal Quality Improvement Algorithms for MEMS Gyroscope-Based Human Motion Analysis Systems: A Systematic Review.

    PubMed

    Du, Jiaying; Gerdtman, Christer; Lindén, Maria

    2018-04-06

    Motion sensors such as MEMS gyroscopes and accelerometers are characterized by a small size, light weight, high sensitivity, and low cost. They are used in an increasing number of applications. However, they are easily influenced by environmental effects such as temperature change, shock, and vibration. Thus, signal processing is essential for minimizing errors and improving signal quality and system stability. The aim of this work is to investigate and present a systematic review of different signal error reduction algorithms that are used for MEMS gyroscope-based motion analysis systems for human motion analysis or have the potential to be used in this area. A systematic search was performed with the search engines/databases of the ACM Digital Library, IEEE Xplore, PubMed, and Scopus. Sixteen papers that focus on MEMS gyroscope-related signal processing and were published in journals or conference proceedings in the past 10 years were found and fully reviewed. Seventeen algorithms were categorized into four main groups: Kalman-filter-based algorithms, adaptive-based algorithms, simple filter algorithms, and compensation-based algorithms. The algorithms were analyzed and presented along with their characteristics such as advantages, disadvantages, and time limitations. A user guide to the most suitable signal processing algorithms within this area is presented.

  11. Signal Quality Improvement Algorithms for MEMS Gyroscope-Based Human Motion Analysis Systems: A Systematic Review

    PubMed Central

    Gerdtman, Christer

    2018-01-01

    Motion sensors such as MEMS gyroscopes and accelerometers are characterized by a small size, light weight, high sensitivity, and low cost. They are used in an increasing number of applications. However, they are easily influenced by environmental effects such as temperature change, shock, and vibration. Thus, signal processing is essential for minimizing errors and improving signal quality and system stability. The aim of this work is to investigate and present a systematic review of different signal error reduction algorithms that are used for MEMS gyroscope-based motion analysis systems for human motion analysis or have the potential to be used in this area. A systematic search was performed with the search engines/databases of the ACM Digital Library, IEEE Xplore, PubMed, and Scopus. Sixteen papers that focus on MEMS gyroscope-related signal processing and were published in journals or conference proceedings in the past 10 years were found and fully reviewed. Seventeen algorithms were categorized into four main groups: Kalman-filter-based algorithms, adaptive-based algorithms, simple filter algorithms, and compensation-based algorithms. The algorithms were analyzed and presented along with their characteristics such as advantages, disadvantages, and time limitations. A user guide to the most suitable signal processing algorithms within this area is presented. PMID:29642412

  12. A Modified Active Appearance Model Based on an Adaptive Artificial Bee Colony

    PubMed Central

    Othman, Zulaiha Ali

    2014-01-01

    Active appearance model (AAM) is one of the most popular model-based approaches that have been extensively used to extract features by highly accurate modeling of human faces under various physical and environmental circumstances. However, in such active appearance model, fitting the model with original image is a challenging task. State of the art shows that optimization method is applicable to resolve this problem. However, another common problem is applying optimization. Hence, in this paper we propose an AAM based face recognition technique, which is capable of resolving the fitting problem of AAM by introducing a new adaptive ABC algorithm. The adaptation increases the efficiency of fitting as against the conventional ABC algorithm. We have used three datasets: CASIA dataset, property 2.5D face dataset, and UBIRIS v1 images dataset in our experiments. The results have revealed that the proposed face recognition technique has performed effectively, in terms of accuracy of face recognition. PMID:25165748

  13. A modified active appearance model based on an adaptive artificial bee colony.

    PubMed

    Abdulameer, Mohammed Hasan; Sheikh Abdullah, Siti Norul Huda; Othman, Zulaiha Ali

    2014-01-01

    Active appearance model (AAM) is one of the most popular model-based approaches that have been extensively used to extract features by highly accurate modeling of human faces under various physical and environmental circumstances. However, in such active appearance model, fitting the model with original image is a challenging task. State of the art shows that optimization method is applicable to resolve this problem. However, another common problem is applying optimization. Hence, in this paper we propose an AAM based face recognition technique, which is capable of resolving the fitting problem of AAM by introducing a new adaptive ABC algorithm. The adaptation increases the efficiency of fitting as against the conventional ABC algorithm. We have used three datasets: CASIA dataset, property 2.5D face dataset, and UBIRIS v1 images dataset in our experiments. The results have revealed that the proposed face recognition technique has performed effectively, in terms of accuracy of face recognition.

  14. An arrhythmia classification algorithm using a dedicated wavelet adapted to different subjects.

    PubMed

    Kim, Jinkwon; Min, Se Dong; Lee, Myoungho

    2011-06-27

    Numerous studies have been conducted regarding a heartbeat classification algorithm over the past several decades. However, many algorithms have also been studied to acquire robust performance, as biosignals have a large amount of variation among individuals. Various methods have been proposed to reduce the differences coming from personal characteristics, but these expand the differences caused by arrhythmia. In this paper, an arrhythmia classification algorithm using a dedicated wavelet adapted to individual subjects is proposed. We reduced the performance variation using dedicated wavelets, as in the ECG morphologies of the subjects. The proposed algorithm utilizes morphological filtering and a continuous wavelet transform with a dedicated wavelet. A principal component analysis and linear discriminant analysis were utilized to compress the morphological data transformed by the dedicated wavelets. An extreme learning machine was used as a classifier in the proposed algorithm. A performance evaluation was conducted with the MIT-BIH arrhythmia database. The results showed a high sensitivity of 97.51%, specificity of 85.07%, accuracy of 97.94%, and a positive predictive value of 97.26%. The proposed algorithm achieves better accuracy than other state-of-the-art algorithms with no intrasubject between the training and evaluation datasets. And it significantly reduces the amount of intervention needed by physicians.

  15. An arrhythmia classification algorithm using a dedicated wavelet adapted to different subjects

    PubMed Central

    2011-01-01

    Background Numerous studies have been conducted regarding a heartbeat classification algorithm over the past several decades. However, many algorithms have also been studied to acquire robust performance, as biosignals have a large amount of variation among individuals. Various methods have been proposed to reduce the differences coming from personal characteristics, but these expand the differences caused by arrhythmia. Methods In this paper, an arrhythmia classification algorithm using a dedicated wavelet adapted to individual subjects is proposed. We reduced the performance variation using dedicated wavelets, as in the ECG morphologies of the subjects. The proposed algorithm utilizes morphological filtering and a continuous wavelet transform with a dedicated wavelet. A principal component analysis and linear discriminant analysis were utilized to compress the morphological data transformed by the dedicated wavelets. An extreme learning machine was used as a classifier in the proposed algorithm. Results A performance evaluation was conducted with the MIT-BIH arrhythmia database. The results showed a high sensitivity of 97.51%, specificity of 85.07%, accuracy of 97.94%, and a positive predictive value of 97.26%. Conclusions The proposed algorithm achieves better accuracy than other state-of-the-art algorithms with no intrasubject between the training and evaluation datasets. And it significantly reduces the amount of intervention needed by physicians. PMID:21707989

  16. Ridge-branch-based blood vessel detection algorithm for multimodal retinal images

    NASA Astrophysics Data System (ADS)

    Li, Y.; Hutchings, N.; Knighton, R. W.; Gregori, G.; Lujan, B. J.; Flanagan, J. G.

    2009-02-01

    Automatic detection of retinal blood vessels is important to medical diagnoses and imaging. With the development of imaging technologies, various modals of retinal images are available. Few of currently published algorithms are applied to multimodal retinal images. Besides, the performance of algorithms with pathologies is expected to be improved. The purpose of this paper is to propose an automatic Ridge-Branch-Based (RBB) detection algorithm of blood vessel centerlines and blood vessels for multimodal retinal images (color fundus photographs, fluorescein angiograms, fundus autofluorescence images, SLO fundus images and OCT fundus images, for example). Ridges, which can be considered as centerlines of vessel-like patterns, are first extracted. The method uses the connective branching information of image ridges: if ridge pixels are connected, they are more likely to be in the same class, vessel ridge pixels or non-vessel ridge pixels. Thanks to the good distinguishing ability of the designed "Segment-Based Ridge Features", the classifier and its parameters can be easily adapted to multimodal retinal images without ground truth training. We present thorough experimental results on SLO images, color fundus photograph database and other multimodal retinal images, as well as comparison between other published algorithms. Results showed that the RBB algorithm achieved a good performance.

  17. Scene-based nonuniformity correction algorithm based on interframe registration.

    PubMed

    Zuo, Chao; Chen, Qian; Gu, Guohua; Sui, Xiubao

    2011-06-01

    In this paper, we present a simple and effective scene-based nonuniformity correction (NUC) method for infrared focal plane arrays based on interframe registration. This method estimates the global translation between two adjacent frames and minimizes the mean square error between the two properly registered images to make any two detectors with the same scene produce the same output value. In this way, the accumulation of the registration error can be avoided and the NUC can be achieved. The advantages of the proposed algorithm lie in its low computational complexity and storage requirements and ability to capture temporal drifts in the nonuniformity parameters. The performance of the proposed technique is thoroughly studied with infrared image sequences with simulated nonuniformity and infrared imagery with real nonuniformity. It shows a significantly fast and reliable fixed-pattern noise reduction and obtains an effective frame-by-frame adaptive estimation of each detector's gain and offset.

  18. A Robust Step Detection Algorithm and Walking Distance Estimation Based on Daily Wrist Activity Recognition Using a Smart Band.

    PubMed

    Trong Bui, Duong; Nguyen, Nhan Duc; Jeong, Gu-Min

    2018-06-25

    Human activity recognition and pedestrian dead reckoning are an interesting field because of their importance utilities in daily life healthcare. Currently, these fields are facing many challenges, one of which is the lack of a robust algorithm with high performance. This paper proposes a new method to implement a robust step detection and adaptive distance estimation algorithm based on the classification of five daily wrist activities during walking at various speeds using a smart band. The key idea is that the non-parametric adaptive distance estimator is performed after two activity classifiers and a robust step detector. In this study, two classifiers perform two phases of recognizing five wrist activities during walking. Then, a robust step detection algorithm, which is integrated with an adaptive threshold, peak and valley correction algorithm, is applied to the classified activities to detect the walking steps. In addition, the misclassification activities are fed back to the previous layer. Finally, three adaptive distance estimators, which are based on a non-parametric model of the average walking speed, calculate the length of each strike. The experimental results show that the average classification accuracy is about 99%, and the accuracy of the step detection is 98.7%. The error of the estimated distance is 2.2⁻4.2% depending on the type of wrist activities.

  19. Performance Evaluation of Multichannel Adaptive Algorithms for Local Active Noise Control

    NASA Astrophysics Data System (ADS)

    DE DIEGO, M.; GONZALEZ, A.

    2001-07-01

    This paper deals with the development of a multichannel active noise control (ANC) system inside an enclosed space. The purpose is to design a real practical system which works well in local ANC applications. Moreover, the algorithm implemented in the adaptive controller should be robust, of low computational complexity and it should manage to generate a uniform useful-size zone of quite in order to allow the head motion of a person seated on a seat inside a car. Experiments were carried out under semi-anechoic and listening room conditions to verify the successful implementation of the multichannel system. The developed prototype consists of an array of up to four microphones used as error sensors mounted on the headrest of a seat place inside the enclosure. One loudspeaker was used as single primary source and two secondary sources were placed facing the seat. The aim of this multichannel system is to reduce the sound pressure levels in an area around the error sensors, following a local control strategy. When using this technique, the cancellation points are not only the error sensor positions but an area around them, which is measured by using a monitoring microphone. Different multichannel adaptive algorithms for ANC have been analyzed and their performance verified. Multiple error algorithms are used in order to cancel out different types of primary noise (engine noise and random noise) with several configurations (up to four channels system). As an alternative to the multiple error LMS algorithm (multichannel version of the filtered-X LMS algorithm, MELMS), the least maximum mean squares (LMMS) and the scanning error-LMS algorithm have been developed in this work in order to reduce computational complexity and achieve a more uniform residual field. The ANC algorithms were programmed on a digital signal processing board equipped with a TMS320C40 floating point DSP processor. Measurements concerning real-time experiments on local noise reduction in two

  20. A contourlet transform based algorithm for real-time video encoding

    NASA Astrophysics Data System (ADS)

    Katsigiannis, Stamos; Papaioannou, Georgios; Maroulis, Dimitris

    2012-06-01

    In recent years, real-time video communication over the internet has been widely utilized for applications like video conferencing. Streaming live video over heterogeneous IP networks, including wireless networks, requires video coding algorithms that can support various levels of quality in order to adapt to the network end-to-end bandwidth and transmitter/receiver resources. In this work, a scalable video coding and compression algorithm based on the Contourlet Transform is proposed. The algorithm allows for multiple levels of detail, without re-encoding the video frames, by just dropping the encoded information referring to higher resolution than needed. Compression is achieved by means of lossy and lossless methods, as well as variable bit rate encoding schemes. Furthermore, due to the transformation utilized, it does not suffer from blocking artifacts that occur with many widely adopted compression algorithms. Another highly advantageous characteristic of the algorithm is the suppression of noise induced by low-quality sensors usually encountered in web-cameras, due to the manipulation of the transform coefficients at the compression stage. The proposed algorithm is designed to introduce minimal coding delay, thus achieving real-time performance. Performance is enhanced by utilizing the vast computational capabilities of modern GPUs, providing satisfactory encoding and decoding times at relatively low cost. These characteristics make this method suitable for applications like video-conferencing that demand real-time performance, along with the highest visual quality possible for each user. Through the presented performance and quality evaluation of the algorithm, experimental results show that the proposed algorithm achieves better or comparable visual quality relative to other compression and encoding methods tested, while maintaining a satisfactory compression ratio. Especially at low bitrates, it provides more human-eye friendly images compared to

  1. Improvements to the ShipIR/NTCS adaptive track gate algorithm and 3D flare particle model

    NASA Astrophysics Data System (ADS)

    Ramaswamy, Srinivasan; Vaitekunas, David A.; Gunter, Willem H.; February, Faith J.

    2017-05-01

    A key component in any image-based tracking system is the adaptive tracking algorithm used to segment the image into potential targets, rank-and-select the best candidate target, and gate the selected target to further improve tracker performance. Similarly, a key component in any soft-kill response to an incoming guided missile is the flare/chaff decoy used to distract or seduce the seeker homing system away from the naval platform. This paper describes the recent improvements to the naval threat countermeasure simulator (NTCS) of the NATO-standard ship signature model (ShipIR). Efforts to analyse and match the 3D flare particle model against actual IR measurements of the Chemring TALOS IR round resulted in further refinement of the 3D flare particle distribution. The changes in the flare model characteristics were significant enough to require an overhaul to the adaptive track gate (ATG) algorithm in the way it detects the presence of flare decoys and reacquires the target after flare separation. A series of test scenarios are used to demonstrate the impact of the new flare and ATG on IR tactics simulation.

  2. Update on the non-prewhitening model observer in computed tomography for the assessment of the adaptive statistical and model-based iterative reconstruction algorithms

    NASA Astrophysics Data System (ADS)

    Ott, Julien G.; Becce, Fabio; Monnin, Pascal; Schmidt, Sabine; Bochud, François O.; Verdun, Francis R.

    2014-08-01

    The state of the art to describe image quality in medical imaging is to assess the performance of an observer conducting a task of clinical interest. This can be done by using a model observer leading to a figure of merit such as the signal-to-noise ratio (SNR). Using the non-prewhitening (NPW) model observer, we objectively characterised the evolution of its figure of merit in various acquisition conditions. The NPW model observer usually requires the use of the modulation transfer function (MTF) as well as noise power spectra. However, although the computation of the MTF poses no problem when dealing with the traditional filtered back-projection (FBP) algorithm, this is not the case when using iterative reconstruction (IR) algorithms, such as adaptive statistical iterative reconstruction (ASIR) or model-based iterative reconstruction (MBIR). Given that the target transfer function (TTF) had already shown it could accurately express the system resolution even with non-linear algorithms, we decided to tune the NPW model observer, replacing the standard MTF by the TTF. It was estimated using a custom-made phantom containing cylindrical inserts surrounded by water. The contrast differences between the inserts and water were plotted for each acquisition condition. Then, mathematical transformations were performed leading to the TTF. As expected, the first results showed a dependency of the image contrast and noise levels on the TTF for both ASIR and MBIR. Moreover, FBP also proved to be dependent of the contrast and noise when using the lung kernel. Those results were then introduced in the NPW model observer. We observed an enhancement of SNR every time we switched from FBP to ASIR to MBIR. IR algorithms greatly improve image quality, especially in low-dose conditions. Based on our results, the use of MBIR could lead to further dose reduction in several clinical applications.

  3. Adaptive Baseline Enhances EM-Based Policy Search: Validation in a View-Based Positioning Task of a Smartphone Balancer

    PubMed Central

    Wang, Jiexin; Uchibe, Eiji; Doya, Kenji

    2017-01-01

    EM-based policy search methods estimate a lower bound of the expected return from the histories of episodes and iteratively update the policy parameters using the maximum of a lower bound of expected return, which makes gradient calculation and learning rate tuning unnecessary. Previous algorithms like Policy learning by Weighting Exploration with the Returns, Fitness Expectation Maximization, and EM-based Policy Hyperparameter Exploration implemented the mechanisms to discard useless low-return episodes either implicitly or using a fixed baseline determined by the experimenter. In this paper, we propose an adaptive baseline method to discard worse samples from the reward history and examine different baselines, including the mean, and multiples of SDs from the mean. The simulation results of benchmark tasks of pendulum swing up and cart-pole balancing, and standing up and balancing of a two-wheeled smartphone robot showed improved performances. We further implemented the adaptive baseline with mean in our two-wheeled smartphone robot hardware to test its performance in the standing up and balancing task, and a view-based approaching task. Our results showed that with adaptive baseline, the method outperformed the previous algorithms and achieved faster, and more precise behaviors at a higher successful rate. PMID:28167910

  4. Embedded assessment algorithms within home-based cognitive computer game exercises for elders.

    PubMed

    Jimison, Holly; Pavel, Misha

    2006-01-01

    With the recent consumer interest in computer-based activities designed to improve cognitive performance, there is a growing need for scientific assessment algorithms to validate the potential contributions of cognitive exercises. In this paper, we present a novel methodology for incorporating dynamic cognitive assessment algorithms within computer games designed to enhance cognitive performance. We describe how this approach works for variety of computer applications and describe cognitive monitoring results for one of the computer game exercises. The real-time cognitive assessments also provide a control signal for adapting the difficulty of the game exercises and providing tailored help for elders of varying abilities.

  5. A localization algorithm of adaptively determining the ROI of the reference circle in image

    NASA Astrophysics Data System (ADS)

    Xu, Zeen; Zhang, Jun; Zhang, Daimeng; Liu, Xiaomao; Tian, Jinwen

    2018-03-01

    Aiming at solving the problem of accurately positioning the detection probes underwater, this paper proposed a method based on computer vision which can effectively solve this problem. The theory of this method is that: First, because the shape information of the heat tube is similar to a circle in the image, we can find a circle which physical location is well known in the image, we set this circle as the reference circle. Second, we calculate the pixel offset between the reference circle and the probes in the picture, and adjust the steering gear through the offset. As a result, we can accurately measure the physical distance between the probes and the under test heat tubes, then we can know the precise location of the probes underwater. However, how to choose reference circle in image is a difficult problem. In this paper, we propose an algorithm that can adaptively confirm the area of reference circle. In this area, there will be only one circle, and the circle is the reference circle. The test results show that the accuracy of the algorithm of extracting the reference circle in the whole picture without using ROI (region of interest) of the reference circle is only 58.76% and the proposed algorithm is 95.88%. The experimental results indicate that the proposed algorithm can effectively improve the efficiency of the tubes detection.

  6. Research of maneuvering target prediction and tracking technology based on IMM algorithm

    NASA Astrophysics Data System (ADS)

    Cao, Zheng; Mao, Yao; Deng, Chao; Liu, Qiong; Chen, Jing

    2016-09-01

    Maneuvering target prediction and tracking technology is widely used in both military and civilian applications, the study of those technologies is all along the hotspot and difficulty. In the Electro-Optical acquisition-tracking-pointing system (ATP), the primary traditional maneuvering targets are ballistic target, large aircraft and other big targets. Those targets have the features of fast velocity and a strong regular trajectory and Kalman Filtering and polynomial fitting have good effects when they are used to track those targets. In recent years, the small unmanned aerial vehicles developed rapidly for they are small, nimble and simple operation. The small unmanned aerial vehicles have strong maneuverability in the observation system of ATP although they are close-in, slow and small targets. Moreover, those vehicles are under the manual operation, therefore, the acceleration of them changes greatly and they move erratically. So the prediction and tracking precision is low when traditional algorithms are used to track the maneuvering fly of those targets, such as speeding up, turning, climbing and so on. The interacting multiple model algorithm (IMM) use multiple models to match target real movement trajectory, there are interactions between each model. The IMM algorithm can switch model based on a Markov chain to adapt to the change of target movement trajectory, so it is suitable to solve the prediction and tracking problems of the small unmanned aerial vehicles because of the better adaptability of irregular movement. This paper has set up model set of constant velocity model (CV), constant acceleration model (CA), constant turning model (CT) and current statistical model. And the results of simulating and analyzing the real movement trajectory data of the small unmanned aerial vehicles show that the prediction and tracking technology based on the interacting multiple model algorithm can get relatively lower tracking error and improve tracking precision

  7. Fast adaptive diamond search algorithm for block-matching motion estimation using spatial correlation

    NASA Astrophysics Data System (ADS)

    Park, Sang-Gon; Jeong, Dong-Seok

    2000-12-01

    In this paper, we propose a fast adaptive diamond search algorithm (FADS) for block matching motion estimation. Many fast motion estimation algorithms reduce the computational complexity by the UESA (Unimodal Error Surface Assumption) where the matching error monotonically increases as the search moves away from the global minimum point. Recently, many fast BMAs (Block Matching Algorithms) make use of the fact that global minimum points in real world video sequences are centered at the position of zero motion. But these BMAs, especially in large motion, are easily trapped into the local minima and result in poor matching accuracy. So, we propose a new motion estimation algorithm using the spatial correlation among the neighboring blocks. We move the search origin according to the motion vectors of the spatially neighboring blocks and their MAEs (Mean Absolute Errors). The computer simulation shows that the proposed algorithm has almost the same computational complexity with DS (Diamond Search), but enhances PSNR. Moreover, the proposed algorithm gives almost the same PSNR as that of FS (Full Search), even for the large motion with half the computational load.

  8. Fuzzy-Based Hybrid Control Algorithm for the Stabilization of a Tri-Rotor UAV.

    PubMed

    Ali, Zain Anwar; Wang, Daobo; Aamir, Muhammad

    2016-05-09

    In this paper, a new and novel mathematical fuzzy hybrid scheme is proposed for the stabilization of a tri-rotor unmanned aerial vehicle (UAV). The fuzzy hybrid scheme consists of a fuzzy logic controller, regulation pole-placement tracking (RST) controller with model reference adaptive control (MRAC), in which adaptive gains of the RST controller are being fine-tuned by a fuzzy logic controller. Brushless direct current (BLDC) motors are installed in the triangular frame of the tri-rotor UAV, which helps maintain control on its motion and different altitude and attitude changes, similar to rotorcrafts. MRAC-based MIT rule is proposed for system stability. Moreover, the proposed hybrid controller with nonlinear flight dynamics is shown in the presence of translational and rotational velocity components. The performance of the proposed algorithm is demonstrated via MATLAB simulations, in which the proposed fuzzy hybrid controller is compared with the existing adaptive RST controller. It shows that our proposed algorithm has better transient performance with zero steady-state error, and fast convergence towards stability.

  9. Fuzzy-Based Hybrid Control Algorithm for the Stabilization of a Tri-Rotor UAV

    PubMed Central

    Ali, Zain Anwar; Wang, Daobo; Aamir, Muhammad

    2016-01-01

    In this paper, a new and novel mathematical fuzzy hybrid scheme is proposed for the stabilization of a tri-rotor unmanned aerial vehicle (UAV). The fuzzy hybrid scheme consists of a fuzzy logic controller, regulation pole-placement tracking (RST) controller with model reference adaptive control (MRAC), in which adaptive gains of the RST controller are being fine-tuned by a fuzzy logic controller. Brushless direct current (BLDC) motors are installed in the triangular frame of the tri-rotor UAV, which helps maintain control on its motion and different altitude and attitude changes, similar to rotorcrafts. MRAC-based MIT rule is proposed for system stability. Moreover, the proposed hybrid controller with nonlinear flight dynamics is shown in the presence of translational and rotational velocity components. The performance of the proposed algorithm is demonstrated via MATLAB simulations, in which the proposed fuzzy hybrid controller is compared with the existing adaptive RST controller. It shows that our proposed algorithm has better transient performance with zero steady-state error, and fast convergence towards stability. PMID:27171084

  10. Adaptive control based on retrospective cost optimization

    NASA Technical Reports Server (NTRS)

    Bernstein, Dennis S. (Inventor); Santillo, Mario A. (Inventor)

    2012-01-01

    A discrete-time adaptive control law for stabilization, command following, and disturbance rejection that is effective for systems that are unstable, MIMO, and/or nonminimum phase. The adaptive control algorithm includes guidelines concerning the modeling information needed for implementation. This information includes the relative degree, the first nonzero Markov parameter, and the nonminimum-phase zeros. Except when the plant has nonminimum-phase zeros whose absolute value is less than the plant's spectral radius, the required zero information can be approximated by a sufficient number of Markov parameters. No additional information about the poles or zeros need be known. Numerical examples are presented to illustrate the algorithm's effectiveness in handling systems with errors in the required modeling data, unknown latency, sensor noise, and saturation.

  11. Demonstration of the use of ADAPT to derive predictive maintenance algorithms for the KSC central heat plant

    NASA Technical Reports Server (NTRS)

    Hunter, H. E.

    1972-01-01

    The Avco Data Analysis and Prediction Techniques (ADAPT) were employed to determine laws capable of detecting failures in a heat plant up to three days in advance of the occurrence of the failure. The projected performance of algorithms yielded a detection probability of 90% with false alarm rates of the order of 1 per year for a sample rate of 1 per day with each detection, followed by 3 hourly samplings. This performance was verified on 173 independent test cases. The program also demonstrated diagnostic algorithms and the ability to predict the time of failure to approximately plus or minus 8 hours up to three days in advance of the failure. The ADAPT programs produce simple algorithms which have a unique possibility of a relatively low cost updating procedure. The algorithms were implemented on general purpose computers at Kennedy Space Flight Center and tested against current data.

  12. Massively parallel algorithms for real-time wavefront control of a dense adaptive optics system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fijany, A.; Milman, M.; Redding, D.

    1994-12-31

    In this paper massively parallel algorithms and architectures for real-time wavefront control of a dense adaptive optic system (SELENE) are presented. The authors have already shown that the computation of a near optimal control algorithm for SELENE can be reduced to the solution of a discrete Poisson equation on a regular domain. Although, this represents an optimal computation, due the large size of the system and the high sampling rate requirement, the implementation of this control algorithm poses a computationally challenging problem since it demands a sustained computational throughput of the order of 10 GFlops. They develop a novel algorithm,more » designated as Fast Invariant Imbedding algorithm, which offers a massive degree of parallelism with simple communication and synchronization requirements. Due to these features, this algorithm is significantly more efficient than other Fast Poisson Solvers for implementation on massively parallel architectures. The authors also discuss two massively parallel, algorithmically specialized, architectures for low-cost and optimal implementation of the Fast Invariant Imbedding algorithm.« less

  13. Flight Testing of the Space Launch System (SLS) Adaptive Augmenting Control (AAC) Algorithm on an F/A-18

    NASA Technical Reports Server (NTRS)

    Dennehy, Cornelius J.; VanZwieten, Tannen S.; Hanson, Curtis E.; Wall, John H.; Miller, Chris J.; Gilligan, Eric T.; Orr, Jeb S.

    2014-01-01

    The Marshall Space Flight Center (MSFC) Flight Mechanics and Analysis Division developed an adaptive augmenting control (AAC) algorithm for launch vehicles that improves robustness and performance on an as-needed basis by adapting a classical control algorithm to unexpected environments or variations in vehicle dynamics. This was baselined as part of the Space Launch System (SLS) flight control system. The NASA Engineering and Safety Center (NESC) was asked to partner with the SLS Program and the Space Technology Mission Directorate (STMD) Game Changing Development Program (GCDP) to flight test the AAC algorithm on a manned aircraft that can achieve a high level of dynamic similarity to a launch vehicle and raise the technology readiness of the algorithm early in the program. This document reports the outcome of the NESC assessment.

  14. Motion Cueing Algorithm Development: Initial Investigation and Redesign of the Algorithms

    NASA Technical Reports Server (NTRS)

    Telban, Robert J.; Wu, Weimin; Cardullo, Frank M.; Houck, Jacob A. (Technical Monitor)

    2000-01-01

    In this project four motion cueing algorithms were initially investigated. The classical algorithm generated results with large distortion and delay and low magnitude. The NASA adaptive algorithm proved to be well tuned with satisfactory performance, while the UTIAS adaptive algorithm produced less desirable results. Modifications were made to the adaptive algorithms to reduce the magnitude of undesirable spikes. The optimal algorithm was found to have the potential for improved performance with further redesign. The center of simulator rotation was redefined. More terms were added to the cost function to enable more tuning flexibility. A new design approach using a Fortran/Matlab/Simulink setup was employed. A new semicircular canals model was incorporated in the algorithm. With these changes results show the optimal algorithm has some advantages over the NASA adaptive algorithm. Two general problems observed in the initial investigation required solutions. A nonlinear gain algorithm was developed that scales the aircraft inputs by a third-order polynomial, maximizing the motion cues while remaining within the operational limits of the motion system. A braking algorithm was developed to bring the simulator to a full stop at its motion limit and later release the brake to follow the cueing algorithm output.

  15. Optimization of the p-xylene oxidation process by a multi-objective differential evolution algorithm with adaptive parameters co-derived with the population-based incremental learning algorithm

    NASA Astrophysics Data System (ADS)

    Guo, Zhan; Yan, Xuefeng

    2018-04-01

    Different operating conditions of p-xylene oxidation have different influences on the product, purified terephthalic acid. It is necessary to obtain the optimal combination of reaction conditions to ensure the quality of the products, cut down on consumption and increase revenues. A multi-objective differential evolution (MODE) algorithm co-evolved with the population-based incremental learning (PBIL) algorithm, called PBMODE, is proposed. The PBMODE algorithm was designed as a co-evolutionary system. Each individual has its own parameter individual, which is co-evolved by PBIL. PBIL uses statistical analysis to build a model based on the corresponding symbiotic individuals of the superior original individuals during the main evolutionary process. The results of simulations and statistical analysis indicate that the overall performance of the PBMODE algorithm is better than that of the compared algorithms and it can be used to optimize the operating conditions of the p-xylene oxidation process effectively and efficiently.

  16. A Differential Evolution-Based Routing Algorithm for Environmental Monitoring Wireless Sensor Networks

    PubMed Central

    Li, Xiaofang; Xu, Lizhong; Wang, Huibin; Song, Jie; Yang, Simon X.

    2010-01-01

    The traditional Low Energy Adaptive Cluster Hierarchy (LEACH) routing protocol is a clustering-based protocol. The uneven selection of cluster heads results in premature death of cluster heads and premature blind nodes inside the clusters, thus reducing the overall lifetime of the network. With a full consideration of information on energy and distance distribution of neighboring nodes inside the clusters, this paper proposes a new routing algorithm based on differential evolution (DE) to improve the LEACH routing protocol. To meet the requirements of monitoring applications in outdoor environments such as the meteorological, hydrological and wetland ecological environments, the proposed algorithm uses the simple and fast search features of DE to optimize the multi-objective selection of cluster heads and prevent blind nodes for improved energy efficiency and system stability. Simulation results show that the proposed new LEACH routing algorithm has better performance, effectively extends the working lifetime of the system, and improves the quality of the wireless sensor networks. PMID:22219670

  17. Research on Palmprint Identification Method Based on Quantum Algorithms

    PubMed Central

    Zhang, Zhanzhan

    2014-01-01

    Quantum image recognition is a technology by using quantum algorithm to process the image information. It can obtain better effect than classical algorithm. In this paper, four different quantum algorithms are used in the three stages of palmprint recognition. First, quantum adaptive median filtering algorithm is presented in palmprint filtering processing. Quantum filtering algorithm can get a better filtering result than classical algorithm through the comparison. Next, quantum Fourier transform (QFT) is used to extract pattern features by only one operation due to quantum parallelism. The proposed algorithm exhibits an exponential speed-up compared with discrete Fourier transform in the feature extraction. Finally, quantum set operations and Grover algorithm are used in palmprint matching. According to the experimental results, quantum algorithm only needs to apply square of N operations to find out the target palmprint, but the traditional method needs N times of calculation. At the same time, the matching accuracy of quantum algorithm is almost 100%. PMID:25105165

  18. Layer-oriented multigrid wavefront reconstruction algorithms for multi-conjugate adaptive optics

    NASA Astrophysics Data System (ADS)

    Gilles, Luc; Ellerbroek, Brent L.; Vogel, Curtis R.

    2003-02-01

    Multi-conjugate adaptive optics (MCAO) systems with 104-105 degrees of freedom have been proposed for future giant telescopes. Using standard matrix methods to compute, optimize, and implement wavefront control algorithms for these systems is impractical, since the number of calculations required to compute and apply the reconstruction matrix scales respectively with the cube and the square of the number of AO degrees of freedom. In this paper, we develop an iterative sparse matrix implementation of minimum variance wavefront reconstruction for telescope diameters up to 32m with more than 104 actuators. The basic approach is the preconditioned conjugate gradient method, using a multigrid preconditioner incorporating a layer-oriented (block) symmetric Gauss-Seidel iterative smoothing operator. We present open-loop numerical simulation results to illustrate algorithm convergence.

  19. A parallel row-based algorithm with error control for standard-cell replacement on a hypercube multiprocessor

    NASA Technical Reports Server (NTRS)

    Sargent, Jeff Scott

    1988-01-01

    A new row-based parallel algorithm for standard-cell placement targeted for execution on a hypercube multiprocessor is presented. Key features of this implementation include a dynamic simulated-annealing schedule, row-partitioning of the VLSI chip image, and two novel new approaches to controlling error in parallel cell-placement algorithms; Heuristic Cell-Coloring and Adaptive (Parallel Move) Sequence Control. Heuristic Cell-Coloring identifies sets of noninteracting cells that can be moved repeatedly, and in parallel, with no buildup of error in the placement cost. Adaptive Sequence Control allows multiple parallel cell moves to take place between global cell-position updates. This feedback mechanism is based on an error bound derived analytically from the traditional annealing move-acceptance profile. Placement results are presented for real industry circuits and the performance is summarized of an implementation on the Intel iPSC/2 Hypercube. The runtime of this algorithm is 5 to 16 times faster than a previous program developed for the Hypercube, while producing equivalent quality placement. An integrated place and route program for the Intel iPSC/2 Hypercube is currently being developed.

  20. Clustering of tethered satellite system simulation data by an adaptive neuro-fuzzy algorithm

    NASA Technical Reports Server (NTRS)

    Mitra, Sunanda; Pemmaraju, Surya

    1992-01-01

    Recent developments in neuro-fuzzy systems indicate that the concepts of adaptive pattern recognition, when used to identify appropriate control actions corresponding to clusters of patterns representing system states in dynamic nonlinear control systems, may result in innovative designs. A modular, unsupervised neural network architecture, in which fuzzy learning rules have been embedded is used for on-line identification of similar states. The architecture and control rules involved in Adaptive Fuzzy Leader Clustering (AFLC) allow this system to be incorporated in control systems for identification of system states corresponding to specific control actions. We have used this algorithm to cluster the simulation data of Tethered Satellite System (TSS) to estimate the range of delta voltages necessary to maintain the desired length rate of the tether. The AFLC algorithm is capable of on-line estimation of the appropriate control voltages from the corresponding length error and length rate error without a priori knowledge of their membership functions and familarity with the behavior of the Tethered Satellite System.

  1. Development of gradient descent adaptive algorithms to remove common mode artifact for improvement of cardiovascular signal quality.

    PubMed

    Ciaccio, Edward J; Micheli-Tzanakou, Evangelia

    2007-07-01

    Common-mode noise degrades cardiovascular signal quality and diminishes measurement accuracy. Filtering to remove noise components in the frequency domain often distorts the signal. Two adaptive noise canceling (ANC) algorithms were tested to adjust weighted reference signals for optimal subtraction from a primary signal. Update of weight w was based upon the gradient term of the steepest descent equation: [see text], where the error epsilon is the difference between primary and weighted reference signals. nabla was estimated from Deltaepsilon(2) and Deltaw without using a variable Deltaw in the denominator which can cause instability. The Parallel Comparison (PC) algorithm computed Deltaepsilon(2) using fixed finite differences +/- Deltaw in parallel during each discrete time k. The ALOPEX algorithm computed Deltaepsilon(2)x Deltaw from time k to k + 1 to estimate nabla, with a random number added to account for Deltaepsilon(2) . Deltaw--> 0 near the optimal weighting. Using simulated data, both algorithms stably converged to the optimal weighting within 50-2000 discrete sample points k even with a SNR = 1:8 and weights which were initialized far from the optimal. Using a sharply pulsatile cardiac electrogram signal with added noise so that the SNR = 1:5, both algorithms exhibited stable convergence within 100 ms (100 sample points). Fourier spectral analysis revealed minimal distortion when comparing the signal without added noise to the ANC restored signal. ANC algorithms based upon difference calculations can rapidly and stably converge to the optimal weighting in simulated and real cardiovascular data. Signal quality is restored with minimal distortion, increasing the accuracy of biophysical measurement.

  2. Wavelet-based Adaptive Mesh Refinement Method for Global Atmospheric Chemical Transport Modeling

    NASA Astrophysics Data System (ADS)

    Rastigejev, Y.

    2011-12-01

    Numerical modeling of global atmospheric chemical transport presents enormous computational difficulties, associated with simulating a wide range of time and spatial scales. The described difficulties are exacerbated by the fact that hundreds of chemical species and thousands of chemical reactions typically are used for chemical kinetic mechanism description. These computational requirements very often forces researches to use relatively crude quasi-uniform numerical grids with inadequate spatial resolution that introduces significant numerical diffusion into the system. It was shown that this spurious diffusion significantly distorts the pollutant mixing and transport dynamics for typically used grid resolution. The described numerical difficulties have to be systematically addressed considering that the demand for fast, high-resolution chemical transport models will be exacerbated over the next decade by the need to interpret satellite observations of tropospheric ozone and related species. In this study we offer dynamically adaptive multilevel Wavelet-based Adaptive Mesh Refinement (WAMR) method for numerical modeling of atmospheric chemical evolution equations. The adaptive mesh refinement is performed by adding and removing finer levels of resolution in the locations of fine scale development and in the locations of smooth solution behavior accordingly. The algorithm is based on the mathematically well established wavelet theory. This allows us to provide error estimates of the solution that are used in conjunction with an appropriate threshold criteria to adapt the non-uniform grid. Other essential features of the numerical algorithm include: an efficient wavelet spatial discretization that allows to minimize the number of degrees of freedom for a prescribed accuracy, a fast algorithm for computing wavelet amplitudes, and efficient and accurate derivative approximations on an irregular grid. The method has been tested for a variety of benchmark problems

  3. A fast and precise indoor localization algorithm based on an online sequential extreme learning machine.

    PubMed

    Zou, Han; Lu, Xiaoxuan; Jiang, Hao; Xie, Lihua

    2015-01-15

    Nowadays, developing indoor positioning systems (IPSs) has become an attractive research topic due to the increasing demands on location-based service (LBS) in indoor environments. WiFi technology has been studied and explored to provide indoor positioning service for years in view of the wide deployment and availability of existing WiFi infrastructures in indoor environments. A large body of WiFi-based IPSs adopt fingerprinting approaches for localization. However, these IPSs suffer from two major problems: the intensive costs of manpower and time for offline site survey and the inflexibility to environmental dynamics. In this paper, we propose an indoor localization algorithm based on an online sequential extreme learning machine (OS-ELM) to address the above problems accordingly. The fast learning speed of OS-ELM can reduce the time and manpower costs for the offline site survey. Meanwhile, its online sequential learning ability enables the proposed localization algorithm to adapt in a timely manner to environmental dynamics. Experiments under specific environmental changes, such as variations of occupancy distribution and events of opening or closing of doors, are conducted to evaluate the performance of OS-ELM. The simulation and experimental results show that the proposed localization algorithm can provide higher localization accuracy than traditional approaches, due to its fast adaptation to various environmental dynamics.

  4. An Evolutionary Algorithm for Fast Intensity Based Image Matching Between Optical and SAR Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Fischer, Peter; Schuegraf, Philipp; Merkle, Nina; Storch, Tobias

    2018-04-01

    This paper presents a hybrid evolutionary algorithm for fast intensity based matching between satellite imagery from SAR and very high-resolution (VHR) optical sensor systems. The precise and accurate co-registration of image time series and images of different sensors is a key task in multi-sensor image processing scenarios. The necessary preprocessing step of image matching and tie-point detection is divided into a search problem and a similarity measurement. Within this paper we evaluate the use of an evolutionary search strategy for establishing the spatial correspondence between satellite imagery of optical and radar sensors. The aim of the proposed algorithm is to decrease the computational costs during the search process by formulating the search as an optimization problem. Based upon the canonical evolutionary algorithm, the proposed algorithm is adapted for SAR/optical imagery intensity based matching. Extensions are drawn using techniques like hybridization (e.g. local search) and others to lower the number of objective function calls and refine the result. The algorithm significantely decreases the computational costs whilst finding the optimal solution in a reliable way.

  5. An Adaptive and Time-Efficient ECG R-Peak Detection Algorithm.

    PubMed

    Qin, Qin; Li, Jianqing; Yue, Yinggao; Liu, Chengyu

    2017-01-01

    R-peak detection is crucial in electrocardiogram (ECG) signal analysis. This study proposed an adaptive and time-efficient R-peak detection algorithm for ECG processing. First, wavelet multiresolution analysis was applied to enhance the ECG signal representation. Then, ECG was mirrored to convert large negative R-peaks to positive ones. After that, local maximums were calculated by the first-order forward differential approach and were truncated by the amplitude and time interval thresholds to locate the R-peaks. The algorithm performances, including detection accuracy and time consumption, were tested on the MIT-BIH arrhythmia database and the QT database. Experimental results showed that the proposed algorithm achieved mean sensitivity of 99.39%, positive predictivity of 99.49%, and accuracy of 98.89% on the MIT-BIH arrhythmia database and 99.83%, 99.90%, and 99.73%, respectively, on the QT database. By processing one ECG record, the mean time consumptions were 0.872 s and 0.763 s for the MIT-BIH arrhythmia database and QT database, respectively, yielding 30.6% and 32.9% of time reduction compared to the traditional Pan-Tompkins method.

  6. An Adaptive and Time-Efficient ECG R-Peak Detection Algorithm

    PubMed Central

    Qin, Qin

    2017-01-01

    R-peak detection is crucial in electrocardiogram (ECG) signal analysis. This study proposed an adaptive and time-efficient R-peak detection algorithm for ECG processing. First, wavelet multiresolution analysis was applied to enhance the ECG signal representation. Then, ECG was mirrored to convert large negative R-peaks to positive ones. After that, local maximums were calculated by the first-order forward differential approach and were truncated by the amplitude and time interval thresholds to locate the R-peaks. The algorithm performances, including detection accuracy and time consumption, were tested on the MIT-BIH arrhythmia database and the QT database. Experimental results showed that the proposed algorithm achieved mean sensitivity of 99.39%, positive predictivity of 99.49%, and accuracy of 98.89% on the MIT-BIH arrhythmia database and 99.83%, 99.90%, and 99.73%, respectively, on the QT database. By processing one ECG record, the mean time consumptions were 0.872 s and 0.763 s for the MIT-BIH arrhythmia database and QT database, respectively, yielding 30.6% and 32.9% of time reduction compared to the traditional Pan-Tompkins method. PMID:29104745

  7. Improved relocatable over-the-horizon radar detection and tracking using the maximum likelihood adaptive neural system algorithm

    NASA Astrophysics Data System (ADS)

    Perlovsky, Leonid I.; Webb, Virgil H.; Bradley, Scott R.; Hansen, Christopher A.

    1998-07-01

    An advanced detection and tracking system is being developed for the U.S. Navy's Relocatable Over-the-Horizon Radar (ROTHR) to provide improved tracking performance against small aircraft typically used in drug-smuggling activities. The development is based on the Maximum Likelihood Adaptive Neural System (MLANS), a model-based neural network that combines advantages of neural network and model-based algorithmic approaches. The objective of the MLANS tracker development effort is to address user requirements for increased detection and tracking capability in clutter and improved track position, heading, and speed accuracy. The MLANS tracker is expected to outperform other approaches to detection and tracking for the following reasons. It incorporates adaptive internal models of target return signals, target tracks and maneuvers, and clutter signals, which leads to concurrent clutter suppression, detection, and tracking (track-before-detect). It is not combinatorial and thus does not require any thresholding or peak picking and can track in low signal-to-noise conditions. It incorporates superresolution spectrum estimation techniques exceeding the performance of conventional maximum likelihood and maximum entropy methods. The unique spectrum estimation method is based on the Einsteinian interpretation of the ROTHR received energy spectrum as a probability density of signal frequency. The MLANS neural architecture and learning mechanism are founded on spectrum models and maximization of the "Einsteinian" likelihood, allowing knowledge of the physical behavior of both targets and clutter to be injected into the tracker algorithms. The paper describes the addressed requirements and expected improvements, theoretical foundations, engineering methodology, and results of the development effort to date.

  8. Economic Load Dispatch Using Adaptive Social Acceleration Constant Based Particle Swarm Optimization

    NASA Astrophysics Data System (ADS)

    Jain, N. K.; Nangia, Uma; Jain, Jyoti

    2018-04-01

    In this paper, an Adaptive Social Acceleration Constant based Particle Swarm Optimization (ASACPSO) has been developed which uses the best value of social acceleration constant (Csg). Three formulations of Csg have been used to search for the best value of Csg. These three formulations led to the development of three algorithms-ALDPSO, AELDPSO-I and AELDPSO-II which were implemented for Economic Load Dispatch of IEEE 5 bus, 14 bus and 30 bus systems. The best value of Csg was selected based on the minimum number of Kounts i.e. number of function evaluations required to minimize the function. This value of Csg was directly used in basic PSO algorithm which led to the development of ASACPSO algorithm. ASACPSO was found to converge faster and give more accurate results compared to BPSO for IEEE 5, 14 and 30 bus systems.

  9. Adaptive Residual Interpolation for Color and Multispectral Image Demosaicking.

    PubMed

    Monno, Yusuke; Kiku, Daisuke; Tanaka, Masayuki; Okutomi, Masatoshi

    2017-12-01

    Color image demosaicking for the Bayer color filter array is an essential image processing operation for acquiring high-quality color images. Recently, residual interpolation (RI)-based algorithms have demonstrated superior demosaicking performance over conventional color difference interpolation-based algorithms. In this paper, we propose adaptive residual interpolation (ARI) that improves existing RI-based algorithms by adaptively combining two RI-based algorithms and selecting a suitable iteration number at each pixel. These are performed based on a unified criterion that evaluates the validity of an RI-based algorithm. Experimental comparisons using standard color image datasets demonstrate that ARI can improve existing RI-based algorithms by more than 0.6 dB in the color peak signal-to-noise ratio and can outperform state-of-the-art algorithms based on training images. We further extend ARI for a multispectral filter array, in which more than three spectral bands are arrayed, and demonstrate that ARI can achieve state-of-the-art performance also for the task of multispectral image demosaicking.

  10. An optimized digital watermarking algorithm in wavelet domain based on differential evolution for color image.

    PubMed

    Cui, Xinchun; Niu, Yuying; Zheng, Xiangwei; Han, Yingshuai

    2018-01-01

    In this paper, a new color watermarking algorithm based on differential evolution is proposed. A color host image is first converted from RGB space to YIQ space, which is more suitable for the human visual system. Then, apply three-level discrete wavelet transformation to luminance component Y and generate four different frequency sub-bands. After that, perform singular value decomposition on these sub-bands. In the watermark embedding process, apply discrete wavelet transformation to a watermark image after the scrambling encryption processing. Our new algorithm uses differential evolution algorithm with adaptive optimization to choose the right scaling factors. Experimental results show that the proposed algorithm has a better performance in terms of invisibility and robustness.

  11. Ancient village fire escape path planning based on improved ant colony algorithm

    NASA Astrophysics Data System (ADS)

    Xia, Wei; Cao, Kang; Hu, QianChuan

    2017-06-01

    The roadways are narrow and perplexing in ancient villages, it brings challenges and difficulties for people to choose route to escape when a fire occurs. In this paper, a fire escape path planning method based on ant colony algorithm is presented according to the problem. The factors in the fire environment which influence the escape speed is introduced to improve the heuristic function of the algorithm, optimal transfer strategy, and adjustment pheromone volatile factor to improve pheromone update strategy adaptively, improve its dynamic search ability and search speed. Through simulation, the dynamic adjustment of the optimal escape path is obtained, and the method is proved to be feasible.

  12. Accelerating adaptive inverse distance weighting interpolation algorithm on a graphics processing unit

    PubMed Central

    Xu, Liangliang; Xu, Nengxiong

    2017-01-01

    This paper focuses on designing and implementing parallel adaptive inverse distance weighting (AIDW) interpolation algorithms by using the graphics processing unit (GPU). The AIDW is an improved version of the standard IDW, which can adaptively determine the power parameter according to the data points’ spatial distribution pattern and achieve more accurate predictions than those predicted by IDW. In this paper, we first present two versions of the GPU-accelerated AIDW, i.e. the naive version without profiting from the shared memory and the tiled version taking advantage of the shared memory. We also implement the naive version and the tiled version using two data layouts, structure of arrays and array of aligned structures, on both single and double precision. We then evaluate the performance of parallel AIDW by comparing it with its corresponding serial algorithm on three different machines equipped with the GPUs GT730M, M5000 and K40c. The experimental results indicate that: (i) there is no significant difference in the computational efficiency when different data layouts are employed; (ii) the tiled version is always slightly faster than the naive version; and (iii) on single precision the achieved speed-up can be up to 763 (on the GPU M5000), while on double precision the obtained highest speed-up is 197 (on the GPU K40c). To benefit the community, all source code and testing data related to the presented parallel AIDW algorithm are publicly available. PMID:28989754

  13. Accelerating adaptive inverse distance weighting interpolation algorithm on a graphics processing unit.

    PubMed

    Mei, Gang; Xu, Liangliang; Xu, Nengxiong

    2017-09-01

    This paper focuses on designing and implementing parallel adaptive inverse distance weighting (AIDW) interpolation algorithms by using the graphics processing unit (GPU). The AIDW is an improved version of the standard IDW, which can adaptively determine the power parameter according to the data points' spatial distribution pattern and achieve more accurate predictions than those predicted by IDW. In this paper, we first present two versions of the GPU-accelerated AIDW, i.e. the naive version without profiting from the shared memory and the tiled version taking advantage of the shared memory. We also implement the naive version and the tiled version using two data layouts, structure of arrays and array of aligned structures, on both single and double precision. We then evaluate the performance of parallel AIDW by comparing it with its corresponding serial algorithm on three different machines equipped with the GPUs GT730M, M5000 and K40c. The experimental results indicate that: (i) there is no significant difference in the computational efficiency when different data layouts are employed; (ii) the tiled version is always slightly faster than the naive version; and (iii) on single precision the achieved speed-up can be up to 763 (on the GPU M5000), while on double precision the obtained highest speed-up is 197 (on the GPU K40c). To benefit the community, all source code and testing data related to the presented parallel AIDW algorithm are publicly available.

  14. A Phonocardiographic-Based Fiber-Optic Sensor and Adaptive Filtering System for Noninvasive Continuous Fetal Heart Rate Monitoring.

    PubMed

    Martinek, Radek; Nedoma, Jan; Fajkus, Marcel; Kahankova, Radana; Konecny, Jaromir; Janku, Petr; Kepak, Stanislav; Bilik, Petr; Nazeran, Homer

    2017-04-18

    This paper focuses on the design, realization, and verification of a novel phonocardiographic- based fiber-optic sensor and adaptive signal processing system for noninvasive continuous fetal heart rate (fHR) monitoring. Our proposed system utilizes two Mach-Zehnder interferometeric sensors. Based on the analysis of real measurement data, we developed a simplified dynamic model for the generation and distribution of heart sounds throughout the human body. Building on this signal model, we then designed, implemented, and verified our adaptive signal processing system by implementing two stochastic gradient-based algorithms: the Least Mean Square Algorithm (LMS), and the Normalized Least Mean Square (NLMS) Algorithm. With this system we were able to extract the fHR information from high quality fetal phonocardiograms (fPCGs), filtered from abdominal maternal phonocardiograms (mPCGs) by performing fPCG signal peak detection. Common signal processing methods such as linear filtering, signal subtraction, and others could not be used for this purpose as fPCG and mPCG signals share overlapping frequency spectra. The performance of the adaptive system was evaluated by using both qualitative (gynecological studies) and quantitative measures such as: Signal-to-Noise Ratio-SNR, Root Mean Square Error-RMSE, Sensitivity-S+, and Positive Predictive Value-PPV.

  15. A Phonocardiographic-Based Fiber-Optic Sensor and Adaptive Filtering System for Noninvasive Continuous Fetal Heart Rate Monitoring

    PubMed Central

    Martinek, Radek; Nedoma, Jan; Fajkus, Marcel; Kahankova, Radana; Konecny, Jaromir; Janku, Petr; Kepak, Stanislav; Bilik, Petr; Nazeran, Homer

    2017-01-01

    This paper focuses on the design, realization, and verification of a novel phonocardiographic- based fiber-optic sensor and adaptive signal processing system for noninvasive continuous fetal heart rate (fHR) monitoring. Our proposed system utilizes two Mach-Zehnder interferometeric sensors. Based on the analysis of real measurement data, we developed a simplified dynamic model for the generation and distribution of heart sounds throughout the human body. Building on this signal model, we then designed, implemented, and verified our adaptive signal processing system by implementing two stochastic gradient-based algorithms: the Least Mean Square Algorithm (LMS), and the Normalized Least Mean Square (NLMS) Algorithm. With this system we were able to extract the fHR information from high quality fetal phonocardiograms (fPCGs), filtered from abdominal maternal phonocardiograms (mPCGs) by performing fPCG signal peak detection. Common signal processing methods such as linear filtering, signal subtraction, and others could not be used for this purpose as fPCG and mPCG signals share overlapping frequency spectra. The performance of the adaptive system was evaluated by using both qualitative (gynecological studies) and quantitative measures such as: Signal-to-Noise Ratio—SNR, Root Mean Square Error—RMSE, Sensitivity—S+, and Positive Predictive Value—PPV. PMID:28420215

  16. Genetic Algorithm-Guided, Adaptive Model Order Reduction of Flexible Aircrafts

    NASA Technical Reports Server (NTRS)

    Zhu, Jin; Wang, Yi; Pant, Kapil; Suh, Peter; Brenner, Martin J.

    2017-01-01

    This paper presents a methodology for automated model order reduction (MOR) of flexible aircrafts to construct linear parameter-varying (LPV) reduced order models (ROM) for aeroservoelasticity (ASE) analysis and control synthesis in broad flight parameter space. The novelty includes utilization of genetic algorithms (GAs) to automatically determine the states for reduction while minimizing the trial-and-error process and heuristics requirement to perform MOR; balanced truncation for unstable systems to achieve locally optimal realization of the full model; congruence transformation for "weak" fulfillment of state consistency across the entire flight parameter space; and ROM interpolation based on adaptive grid refinement to generate a globally functional LPV ASE ROM. The methodology is applied to the X-56A MUTT model currently being tested at NASA/AFRC for flutter suppression and gust load alleviation. Our studies indicate that X-56A ROM with less than one-seventh the number of states relative to the original model is able to accurately predict system response among all input-output channels for pitch, roll, and ASE control at various flight conditions. The GA-guided approach exceeds manual and empirical state selection in terms of efficiency and accuracy. The adaptive refinement allows selective addition of the grid points in the parameter space where flight dynamics varies dramatically to enhance interpolation accuracy without over-burdening controller synthesis and onboard memory efforts downstream. The present MOR framework can be used by control engineers for robust ASE controller synthesis and novel vehicle design.

  17. The architecture of adaptive neural network based on a fuzzy inference system for implementing intelligent control in photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Gimazov, R.; Shidlovskiy, S.

    2018-05-01

    In this paper, we consider the architecture of the algorithm for extreme regulation in the photovoltaic system. An algorithm based on an adaptive neural network with fuzzy inference is proposed. The implementation of such an algorithm not only allows solving a number of problems in existing algorithms for extreme power regulation of photovoltaic systems, but also creates a reserve for the creation of a universal control system for a photovoltaic system.

  18. A junction-tree based learning algorithm to optimize network wide traffic control: A coordinated multi-agent framework

    DOE PAGES

    Zhu, Feng; Aziz, H. M. Abdul; Qian, Xinwu; ...

    2015-01-31

    Our study develops a novel reinforcement learning algorithm for the challenging coordinated signal control problem. Traffic signals are modeled as intelligent agents interacting with the stochastic traffic environment. The model is built on the framework of coordinated reinforcement learning. The Junction Tree Algorithm (JTA) based reinforcement learning is proposed to obtain an exact inference of the best joint actions for all the coordinated intersections. Moreover, the algorithm is implemented and tested with a network containing 18 signalized intersections in VISSIM. Finally, our results show that the JTA based algorithm outperforms independent learning (Q-learning), real-time adaptive learning, and fixed timing plansmore » in terms of average delay, number of stops, and vehicular emissions at the network level.« less

  19. A cost-effective line-based light-balancing technique using adaptive processing.

    PubMed

    Hsia, Shih-Chang; Chen, Ming-Huei; Chen, Yu-Min

    2006-09-01

    The camera imaging system has been widely used; however, the displaying image appears to have an unequal light distribution. This paper presents novel light-balancing techniques to compensate uneven illumination based on adaptive signal processing. For text image processing, first, we estimate the background level and then process each pixel with nonuniform gain. This algorithm can balance the light distribution while keeping a high contrast in the image. For graph image processing, the adaptive section control using piecewise nonlinear gain is proposed to equalize the histogram. Simulations show that the performance of light balance is better than the other methods. Moreover, we employ line-based processing to efficiently reduce the memory requirement and the computational cost to make it applicable in real-time systems.

  20. A Region Tracking-Based Vehicle Detection Algorithm in Nighttime Traffic Scenes

    PubMed Central

    Wang, Jianqiang; Sun, Xiaoyan; Guo, Junbin

    2013-01-01

    The preceding vehicles detection technique in nighttime traffic scenes is an important part of the advanced driver assistance system (ADAS). This paper proposes a region tracking-based vehicle detection algorithm via the image processing technique. First, the brightness of the taillights during nighttime is used as the typical feature, and we use the existing global detection algorithm to detect and pair the taillights. When the vehicle is detected, a time series analysis model is introduced to predict vehicle positions and the possible region (PR) of the vehicle in the next frame. Then, the vehicle is only detected in the PR. This could reduce the detection time and avoid the false pairing between the bright spots in the PR and the bright spots out of the PR. Additionally, we present a thresholds updating method to make the thresholds adaptive. Finally, experimental studies are provided to demonstrate the application and substantiate the superiority of the proposed algorithm. The results show that the proposed algorithm can simultaneously reduce both the false negative detection rate and the false positive detection rate.

  1. Wavelet-based adaptive thresholding method for image segmentation

    NASA Astrophysics Data System (ADS)

    Chen, Zikuan; Tao, Yang; Chen, Xin; Griffis, Carl

    2001-05-01

    A nonuniform background distribution may cause a global thresholding method to fail to segment objects. One solution is using a local thresholding method that adapts to local surroundings. In this paper, we propose a novel local thresholding method for image segmentation, using multiscale threshold functions obtained by wavelet synthesis with weighted detail coefficients. In particular, the coarse-to- fine synthesis with attenuated detail coefficients produces a threshold function corresponding to a high-frequency- reduced signal. This wavelet-based local thresholding method adapts to both local size and local surroundings, and its implementation can take advantage of the fast wavelet algorithm. We applied this technique to physical contaminant detection for poultry meat inspection using x-ray imaging. Experiments showed that inclusion objects in deboned poultry could be extracted at multiple resolutions despite their irregular sizes and uneven backgrounds.

  2. Adaptive Fourier decomposition based ECG denoising.

    PubMed

    Wang, Ze; Wan, Feng; Wong, Chi Man; Zhang, Liming

    2016-10-01

    A novel ECG denoising method is proposed based on the adaptive Fourier decomposition (AFD). The AFD decomposes a signal according to its energy distribution, thereby making this algorithm suitable for separating pure ECG signal and noise with overlapping frequency ranges but different energy distributions. A stop criterion for the iterative decomposition process in the AFD is calculated on the basis of the estimated signal-to-noise ratio (SNR) of the noisy signal. The proposed AFD-based method is validated by the synthetic ECG signal using an ECG model and also real ECG signals from the MIT-BIH Arrhythmia Database both with additive Gaussian white noise. Simulation results of the proposed method show better performance on the denoising and the QRS detection in comparing with major ECG denoising schemes based on the wavelet transform, the Stockwell transform, the empirical mode decomposition, and the ensemble empirical mode decomposition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Phase-Based Adaptive Estimation of Magnitude-Squared Coherence Between Turbofan Internal Sensors and Far-Field Microphone Signals

    NASA Technical Reports Server (NTRS)

    Miles, Jeffrey Hilton

    2015-01-01

    A cross-power spectrum phase based adaptive technique is discussed which iteratively determines the time delay between two digitized signals that are coherent. The adaptive delay algorithm belongs to a class of algorithms that identifies a minimum of a pattern matching function. The algorithm uses a gradient technique to find the value of the adaptive delay that minimizes a cost function based in part on the slope of a linear function that fits the measured cross power spectrum phase and in part on the standard error of the curve fit. This procedure is applied to data from a Honeywell TECH977 static-engine test. Data was obtained using a combustor probe, two turbine exit probes, and far-field microphones. Signals from this instrumentation are used estimate the post-combustion residence time in the combustor. Comparison with previous studies of the post-combustion residence time validates this approach. In addition, the procedure removes the bias due to misalignment of signals in the calculation of coherence which is a first step in applying array processing methods to the magnitude squared coherence data. The procedure also provides an estimate of the cross-spectrum phase-offset.

  4. Adaptive Constrained Optimal Control Design for Data-Based Nonlinear Discrete-Time Systems With Critic-Only Structure.

    PubMed

    Luo, Biao; Liu, Derong; Wu, Huai-Ning

    2018-06-01

    Reinforcement learning has proved to be a powerful tool to solve optimal control problems over the past few years. However, the data-based constrained optimal control problem of nonaffine nonlinear discrete-time systems has rarely been studied yet. To solve this problem, an adaptive optimal control approach is developed by using the value iteration-based Q-learning (VIQL) with the critic-only structure. Most of the existing constrained control methods require the use of a certain performance index and only suit for linear or affine nonlinear systems, which is unreasonable in practice. To overcome this problem, the system transformation is first introduced with the general performance index. Then, the constrained optimal control problem is converted to an unconstrained optimal control problem. By introducing the action-state value function, i.e., Q-function, the VIQL algorithm is proposed to learn the optimal Q-function of the data-based unconstrained optimal control problem. The convergence results of the VIQL algorithm are established with an easy-to-realize initial condition . To implement the VIQL algorithm, the critic-only structure is developed, where only one neural network is required to approximate the Q-function. The converged Q-function obtained from the critic-only VIQL method is employed to design the adaptive constrained optimal controller based on the gradient descent scheme. Finally, the effectiveness of the developed adaptive control method is tested on three examples with computer simulation.

  5. Certification Considerations for Adaptive Systems

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, Siddhartha; Cofer, Darren; Musliner, David J.; Mueller, Joseph; Engstrom, Eric

    2015-01-01

    Advanced capabilities planned for the next generation of aircraft, including those that will operate within the Next Generation Air Transportation System (NextGen), will necessarily include complex new algorithms and non-traditional software elements. These aircraft will likely incorporate adaptive control algorithms that will provide enhanced safety, autonomy, and robustness during adverse conditions. Unmanned aircraft will operate alongside manned aircraft in the National Airspace (NAS), with intelligent software performing the high-level decision-making functions normally performed by human pilots. Even human-piloted aircraft will necessarily include more autonomy. However, there are serious barriers to the deployment of new capabilities, especially for those based upon software including adaptive control (AC) and artificial intelligence (AI) algorithms. Current civil aviation certification processes are based on the idea that the correct behavior of a system must be completely specified and verified prior to operation. This report by Rockwell Collins and SIFT documents our comprehensive study of the state of the art in intelligent and adaptive algorithms for the civil aviation domain, categorizing the approaches used and identifying gaps and challenges associated with certification of each approach.

  6. Adaptive multi-view clustering based on nonnegative matrix factorization and pairwise co-regularization

    NASA Astrophysics Data System (ADS)

    Zhang, Tianzhen; Wang, Xiumei; Gao, Xinbo

    2018-04-01

    Nowadays, several datasets are demonstrated by multi-view, which usually include shared and complementary information. Multi-view clustering methods integrate the information of multi-view to obtain better clustering results. Nonnegative matrix factorization has become an essential and popular tool in clustering methods because of its interpretation. However, existing nonnegative matrix factorization based multi-view clustering algorithms do not consider the disagreement between views and neglects the fact that different views will have different contributions to the data distribution. In this paper, we propose a new multi-view clustering method, named adaptive multi-view clustering based on nonnegative matrix factorization and pairwise co-regularization. The proposed algorithm can obtain the parts-based representation of multi-view data by nonnegative matrix factorization. Then, pairwise co-regularization is used to measure the disagreement between views. There is only one parameter to auto learning the weight values according to the contribution of each view to data distribution. Experimental results show that the proposed algorithm outperforms several state-of-the-arts algorithms for multi-view clustering.

  7. Finite element analysis and genetic algorithm optimization design for the actuator placement on a large adaptive structure

    NASA Astrophysics Data System (ADS)

    Sheng, Lizeng

    The dissertation focuses on one of the major research needs in the area of adaptive/intelligent/smart structures, the development and application of finite element analysis and genetic algorithms for optimal design of large-scale adaptive structures. We first review some basic concepts in finite element method and genetic algorithms, along with the research on smart structures. Then we propose a solution methodology for solving a critical problem in the design of a next generation of large-scale adaptive structures---optimal placements of a large number of actuators to control thermal deformations. After briefly reviewing the three most frequently used general approaches to derive a finite element formulation, the dissertation presents techniques associated with general shell finite element analysis using flat triangular laminated composite elements. The element used here has three nodes and eighteen degrees of freedom and is obtained by combining a triangular membrane element and a triangular plate bending element. The element includes the coupling effect between membrane deformation and bending deformation. The membrane element is derived from the linear strain triangular element using Cook's transformation. The discrete Kirchhoff triangular (DKT) element is used as the plate bending element. For completeness, a complete derivation of the DKT is presented. Geometrically nonlinear finite element formulation is derived for the analysis of adaptive structures under the combined thermal and electrical loads. Next, we solve the optimization problems of placing a large number of piezoelectric actuators to control thermal distortions in a large mirror in the presence of four different thermal loads. We then extend this to a multi-objective optimization problem of determining only one set of piezoelectric actuator locations that can be used to control the deformation in the same mirror under the action of any one of the four thermal loads. A series of genetic algorithms

  8. Active control of impulsive noise with symmetric α-stable distribution based on an improved step-size normalized adaptive algorithm

    NASA Astrophysics Data System (ADS)

    Zhou, Yali; Zhang, Qizhi; Yin, Yixin

    2015-05-01

    In this paper, active control of impulsive noise with symmetric α-stable (SαS) distribution is studied. A general step-size normalized filtered-x Least Mean Square (FxLMS) algorithm is developed based on the analysis of existing algorithms, and the Gaussian distribution function is used to normalize the step size. Compared with existing algorithms, the proposed algorithm needs neither the parameter selection and thresholds estimation nor the process of cost function selection and complex gradient computation. Computer simulations have been carried out to suggest that the proposed algorithm is effective for attenuating SαS impulsive noise, and then the proposed algorithm has been implemented in an experimental ANC system. Experimental results show that the proposed scheme has good performance for SαS impulsive noise attenuation.

  9. Two novel motion-based algorithms for surveillance video analysis on embedded platforms

    NASA Astrophysics Data System (ADS)

    Vijverberg, Julien A.; Loomans, Marijn J. H.; Koeleman, Cornelis J.; de With, Peter H. N.

    2010-05-01

    This paper proposes two novel motion-vector based techniques for target detection and target tracking in surveillance videos. The algorithms are designed to operate on a resource-constrained device, such as a surveillance camera, and to reuse the motion vectors generated by the video encoder. The first novel algorithm for target detection uses motion vectors to construct a consistent motion mask, which is combined with a simple background segmentation technique to obtain a segmentation mask. The second proposed algorithm aims at multi-target tracking and uses motion vectors to assign blocks to targets employing five features. The weights of these features are adapted based on the interaction between targets. These algorithms are combined in one complete analysis application. The performance of this application for target detection has been evaluated for the i-LIDS sterile zone dataset and achieves an F1-score of 0.40-0.69. The performance of the analysis algorithm for multi-target tracking has been evaluated using the CAVIAR dataset and achieves an MOTP of around 9.7 and MOTA of 0.17-0.25. On a selection of targets in videos from other datasets, the achieved MOTP and MOTA are 8.8-10.5 and 0.32-0.49 respectively. The execution time on a PC-based platform is 36 ms. This includes the 20 ms for generating motion vectors, which are also required by the video encoder.

  10. Application of neural based estimation algorithm for gait phases of above knee prosthesis.

    PubMed

    Tileylioğlu, E; Yilmaz, A

    2015-01-01

    In this study, two gait phase estimation methods which utilize a rule based quantization and an artificial neural network model respectively are developed and applied for the microcontroller based semi-active knee prosthesis in order to respond user demands and adapt environmental conditions. In this context, an experimental environment in which gait data collected synchronously from both inertial and image based measurement systems has been set up. The inertial measurement system that incorporates MEM accelerometers and gyroscopes is used to perform direct motion measurement through the microcontroller, while the image based measurement system is employed for producing the verification data and assessing the success of the prosthesis. Embedded algorithms dynamically normalize the input data prior to gait phase estimation. The real time analyses of two methods revealed that embedded ANN based approach performs slightly better in comparison with the rule based algorithm and has advantage of being easily-scalable, thus able to accommodate additional input parameters considering the microcontroller constraints.

  11. SU-D-BRB-05: Quantum Learning for Knowledge-Based Response-Adaptive Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El Naqa, I; Ten, R

    Purpose: There is tremendous excitement in radiotherapy about applying data-driven methods to develop personalized clinical decisions for real-time response-based adaptation. However, classical statistical learning methods lack in terms of efficiency and ability to predict outcomes under conditions of uncertainty and incomplete information. Therefore, we are investigating physics-inspired machine learning approaches by utilizing quantum principles for developing a robust framework to dynamically adapt treatments to individual patient’s characteristics and optimize outcomes. Methods: We studied 88 liver SBRT patients with 35 on non-adaptive and 53 on adaptive protocols. Adaptation was based on liver function using a split-course of 3+2 fractions with amore » month break. The radiotherapy environment was modeled as a Markov decision process (MDP) of baseline and one month into treatment states. The patient environment was modeled by a 5-variable state represented by patient’s clinical and dosimetric covariates. For comparison of classical and quantum learning methods, decision-making to adapt at one month was considered. The MDP objective was defined by the complication-free tumor control (P{sup +}=TCPx(1-NTCP)). A simple regression model represented state-action mapping. Single bit in classical MDP and a qubit of 2-superimposed states in quantum MDP represented the decision actions. Classical decision selection was done using reinforcement Q-learning and quantum searching was performed using Grover’s algorithm, which applies uniform superposition over possible states and yields quadratic speed-up. Results: Classical/quantum MDPs suggested adaptation (probability amplitude ≥0.5) 79% of the time for splitcourses and 100% for continuous-courses. However, the classical MDP had an average adaptation probability of 0.5±0.22 while the quantum algorithm reached 0.76±0.28. In cases where adaptation failed, classical MDP yielded 0.31±0.26 average amplitude while

  12. An improved CS-LSSVM algorithm-based fault pattern recognition of ship power equipments.

    PubMed

    Yang, Yifei; Tan, Minjia; Dai, Yuewei

    2017-01-01

    A ship power equipments' fault monitoring signal usually provides few samples and the data's feature is non-linear in practical situation. This paper adopts the method of the least squares support vector machine (LSSVM) to deal with the problem of fault pattern identification in the case of small sample data. Meanwhile, in order to avoid involving a local extremum and poor convergence precision which are induced by optimizing the kernel function parameter and penalty factor of LSSVM, an improved Cuckoo Search (CS) algorithm is proposed for the purpose of parameter optimization. Based on the dynamic adaptive strategy, the newly proposed algorithm improves the recognition probability and the searching step length, which can effectively solve the problems of slow searching speed and low calculation accuracy of the CS algorithm. A benchmark example demonstrates that the CS-LSSVM algorithm can accurately and effectively identify the fault pattern types of ship power equipments.

  13. A tuning algorithm for model predictive controllers based on genetic algorithms and fuzzy decision making.

    PubMed

    van der Lee, J H; Svrcek, W Y; Young, B R

    2008-01-01

    Model Predictive Control is a valuable tool for the process control engineer in a wide variety of applications. Because of this the structure of an MPC can vary dramatically from application to application. There have been a number of works dedicated to MPC tuning for specific cases. Since MPCs can differ significantly, this means that these tuning methods become inapplicable and a trial and error tuning approach must be used. This can be quite time consuming and can result in non-optimum tuning. In an attempt to resolve this, a generalized automated tuning algorithm for MPCs was developed. This approach is numerically based and combines a genetic algorithm with multi-objective fuzzy decision-making. The key advantages to this approach are that genetic algorithms are not problem specific and only need to be adapted to account for the number and ranges of tuning parameters for a given MPC. As well, multi-objective fuzzy decision-making can handle qualitative statements of what optimum control is, in addition to being able to use multiple inputs to determine tuning parameters that best match the desired results. This is particularly useful for multi-input, multi-output (MIMO) cases where the definition of "optimum" control is subject to the opinion of the control engineer tuning the system. A case study will be presented in order to illustrate the use of the tuning algorithm. This will include how different definitions of "optimum" control can arise, and how they are accounted for in the multi-objective decision making algorithm. The resulting tuning parameters from each of the definition sets will be compared, and in doing so show that the tuning parameters vary in order to meet each definition of optimum control, thus showing the generalized automated tuning algorithm approach for tuning MPCs is feasible.

  14. Cerebellar-inspired algorithm for adaptive control of nonlinear dielectric elastomer-based artificial muscle

    PubMed Central

    Assaf, Tareq; Rossiter, Jonathan M.; Porrill, John

    2016-01-01

    Electroactive polymer actuators are important for soft robotics, but can be difficult to control because of compliance, creep and nonlinearities. Because biological control mechanisms have evolved to deal with such problems, we investigated whether a control scheme based on the cerebellum would be useful for controlling a nonlinear dielectric elastomer actuator, a class of artificial muscle. The cerebellum was represented by the adaptive filter model, and acted in parallel with a brainstem, an approximate inverse plant model. The recurrent connections between the two allowed for direct use of sensory error to adjust motor commands. Accurate tracking of a displacement command in the actuator's nonlinear range was achieved by either semi-linear basis functions in the cerebellar model or semi-linear functions in the brainstem corresponding to recruitment in biological muscle. In addition, allowing transfer of training between cerebellum and brainstem as has been observed in the vestibulo-ocular reflex prevented the steady increase in cerebellar output otherwise required to deal with creep. The extensibility and relative simplicity of the cerebellar-based adaptive-inverse control scheme suggests that it is a plausible candidate for controlling this type of actuator. Moreover, its performance highlights important features of biological control, particularly nonlinear basis functions, recruitment and transfer of training. PMID:27655667

  15. A comparative study of breast cancer diagnosis based on neural network ensemble via improved training algorithms.

    PubMed

    Azami, Hamed; Escudero, Javier

    2015-08-01

    Breast cancer is one of the most common types of cancer in women all over the world. Early diagnosis of this kind of cancer can significantly increase the chances of long-term survival. Since diagnosis of breast cancer is a complex problem, neural network (NN) approaches have been used as a promising solution. Considering the low speed of the back-propagation (BP) algorithm to train a feed-forward NN, we consider a number of improved NN trainings for the Wisconsin breast cancer dataset: BP with momentum, BP with adaptive learning rate, BP with adaptive learning rate and momentum, Polak-Ribikre conjugate gradient algorithm (CGA), Fletcher-Reeves CGA, Powell-Beale CGA, scaled CGA, resilient BP (RBP), one-step secant and quasi-Newton methods. An NN ensemble, which is a learning paradigm to combine a number of NN outputs, is used to improve the accuracy of the classification task. Results demonstrate that NN ensemble-based classification methods have better performance than NN-based algorithms. The highest overall average accuracy is 97.68% obtained by NN ensemble trained by RBP for 50%-50% training-test evaluation method.

  16. An adaptive optimal control for smart structures based on the subspace tracking identification technique

    NASA Astrophysics Data System (ADS)

    Ripamonti, Francesco; Resta, Ferruccio; Borroni, Massimo; Cazzulani, Gabriele

    2014-04-01

    A new method for the real-time identification of mechanical system modal parameters is used in order to design different adaptive control logics aiming to reduce the vibrations in a carbon fiber plate smart structure. It is instrumented with three piezoelectric actuators, three accelerometers and three strain gauges. The real-time identification is based on a recursive subspace tracking algorithm whose outputs are elaborated by an ARMA model. A statistical approach is finally applied to choose the modal parameter correct values. These are given in input to model-based control logics such as a gain scheduling and an adaptive LQR control.

  17. A nonvoxel-based dose convolution/superposition algorithm optimized for scalable GPU architectures.

    PubMed

    Neylon, J; Sheng, K; Yu, V; Chen, Q; Low, D A; Kupelian, P; Santhanam, A

    2014-10-01

    Real-time adaptive planning and treatment has been infeasible due in part to its high computational complexity. There have been many recent efforts to utilize graphics processing units (GPUs) to accelerate the computational performance and dose accuracy in radiation therapy. Data structure and memory access patterns are the key GPU factors that determine the computational performance and accuracy. In this paper, the authors present a nonvoxel-based (NVB) approach to maximize computational and memory access efficiency and throughput on the GPU. The proposed algorithm employs a ray-tracing mechanism to restructure the 3D data sets computed from the CT anatomy into a nonvoxel-based framework. In a process that takes only a few milliseconds of computing time, the algorithm restructured the data sets by ray-tracing through precalculated CT volumes to realign the coordinate system along the convolution direction, as defined by zenithal and azimuthal angles. During the ray-tracing step, the data were resampled according to radial sampling and parallel ray-spacing parameters making the algorithm independent of the original CT resolution. The nonvoxel-based algorithm presented in this paper also demonstrated a trade-off in computational performance and dose accuracy for different coordinate system configurations. In order to find the best balance between the computed speedup and the accuracy, the authors employed an exhaustive parameter search on all sampling parameters that defined the coordinate system configuration: zenithal, azimuthal, and radial sampling of the convolution algorithm, as well as the parallel ray spacing during ray tracing. The angular sampling parameters were varied between 4 and 48 discrete angles, while both radial sampling and parallel ray spacing were varied from 0.5 to 10 mm. The gamma distribution analysis method (γ) was used to compare the dose distributions using 2% and 2 mm dose difference and distance-to-agreement criteria, respectively

  18. A nonvoxel-based dose convolution/superposition algorithm optimized for scalable GPU architectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neylon, J., E-mail: jneylon@mednet.ucla.edu; Sheng, K.; Yu, V.

    Purpose: Real-time adaptive planning and treatment has been infeasible due in part to its high computational complexity. There have been many recent efforts to utilize graphics processing units (GPUs) to accelerate the computational performance and dose accuracy in radiation therapy. Data structure and memory access patterns are the key GPU factors that determine the computational performance and accuracy. In this paper, the authors present a nonvoxel-based (NVB) approach to maximize computational and memory access efficiency and throughput on the GPU. Methods: The proposed algorithm employs a ray-tracing mechanism to restructure the 3D data sets computed from the CT anatomy intomore » a nonvoxel-based framework. In a process that takes only a few milliseconds of computing time, the algorithm restructured the data sets by ray-tracing through precalculated CT volumes to realign the coordinate system along the convolution direction, as defined by zenithal and azimuthal angles. During the ray-tracing step, the data were resampled according to radial sampling and parallel ray-spacing parameters making the algorithm independent of the original CT resolution. The nonvoxel-based algorithm presented in this paper also demonstrated a trade-off in computational performance and dose accuracy for different coordinate system configurations. In order to find the best balance between the computed speedup and the accuracy, the authors employed an exhaustive parameter search on all sampling parameters that defined the coordinate system configuration: zenithal, azimuthal, and radial sampling of the convolution algorithm, as well as the parallel ray spacing during ray tracing. The angular sampling parameters were varied between 4 and 48 discrete angles, while both radial sampling and parallel ray spacing were varied from 0.5 to 10 mm. The gamma distribution analysis method (γ) was used to compare the dose distributions using 2% and 2 mm dose difference and distance

  19. Modified artificial fish school algorithm for free space optical communication with sensor-less adaptive optics system

    NASA Astrophysics Data System (ADS)

    Cao, Jingtai; Zhao, Xiaohui; Li, Zhaokun; Liu, Wei; Gu, Haijun

    2017-11-01

    The performance of free space optical (FSO) communication system is limited by atmospheric turbulent extremely. Adaptive optics (AO) is the significant method to overcome the atmosphere disturbance. Especially, for the strong scintillation effect, the sensor-less AO system plays a major role for compensation. In this paper, a modified artificial fish school (MAFS) algorithm is proposed to compensate the aberrations in the sensor-less AO system. Both the static and dynamic aberrations compensations are analyzed and the performance of FSO communication before and after aberrations compensations is compared. In addition, MAFS algorithm is compared with artificial fish school (AFS) algorithm, stochastic parallel gradient descent (SPGD) algorithm and simulated annealing (SA) algorithm. It is shown that the MAFS algorithm has a higher convergence speed than SPGD algorithm and SA algorithm, and reaches the better convergence value than AFS algorithm, SPGD algorithm and SA algorithm. The sensor-less AO system with MAFS algorithm effectively increases the coupling efficiency at the receiving terminal with fewer numbers of iterations. In conclusion, the MAFS algorithm has great significance for sensor-less AO system to compensate atmospheric turbulence in FSO communication system.

  20. An Optical Flow-Based Full Reference Video Quality Assessment Algorithm.

    PubMed

    K, Manasa; Channappayya, Sumohana S

    2016-06-01

    We present a simple yet effective optical flow-based full-reference video quality assessment (FR-VQA) algorithm for assessing the perceptual quality of natural videos. Our algorithm is based on the premise that local optical flow statistics are affected by distortions and the deviation from pristine flow statistics is proportional to the amount of distortion. We characterize the local flow statistics using the mean, the standard deviation, the coefficient of variation (CV), and the minimum eigenvalue ( λ min ) of the local flow patches. Temporal distortion is estimated as the change in the CV of the distorted flow with respect to the reference flow, and the correlation between λ min of the reference and of the distorted patches. We rely on the robust multi-scale structural similarity index for spatial quality estimation. The computed temporal and spatial distortions, thus, are then pooled using a perceptually motivated heuristic to generate a spatio-temporal quality score. The proposed method is shown to be competitive with the state-of-the-art when evaluated on the LIVE SD database, the EPFL Polimi SD database, and the LIVE Mobile HD database. The distortions considered in these databases include those due to compression, packet-loss, wireless channel errors, and rate-adaptation. Our algorithm is flexible enough to allow for any robust FR spatial distortion metric for spatial distortion estimation. In addition, the proposed method is not only parameter-free but also independent of the choice of the optical flow algorithm. Finally, we show that the replacement of the optical flow vectors in our proposed method with the much coarser block motion vectors also results in an acceptable FR-VQA algorithm. Our algorithm is called the flow similarity index.

  1. An algorithm of adaptive scale object tracking in occlusion

    NASA Astrophysics Data System (ADS)

    Zhao, Congmei

    2017-05-01

    Although the correlation filter-based trackers achieve the competitive results both on accuracy and robustness, there are still some problems in handling scale variations, object occlusion, fast motions and so on. In this paper, a multi-scale kernel correlation filter algorithm based on random fern detector was proposed. The tracking task was decomposed into the target scale estimation and the translation estimation. At the same time, the Color Names features and HOG features were fused in response level to further improve the overall tracking performance of the algorithm. In addition, an online random fern classifier was trained to re-obtain the target after the target was lost. By comparing with some algorithms such as KCF, DSST, TLD, MIL, CT and CSK, experimental results show that the proposed approach could estimate the object state accurately and handle the object occlusion effectively.

  2. Evolutionary pattern search algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, W.E.

    1995-09-19

    This paper defines a class of evolutionary algorithms called evolutionary pattern search algorithms (EPSAs) and analyzes their convergence properties. This class of algorithms is closely related to evolutionary programming, evolutionary strategie and real-coded genetic algorithms. EPSAs are self-adapting systems that modify the step size of the mutation operator in response to the success of previous optimization steps. The rule used to adapt the step size can be used to provide a stationary point convergence theory for EPSAs on any continuous function. This convergence theory is based on an extension of the convergence theory for generalized pattern search methods. An experimentalmore » analysis of the performance of EPSAs demonstrates that these algorithms can perform a level of global search that is comparable to that of canonical EAs. We also describe a stopping rule for EPSAs, which reliably terminated near stationary points in our experiments. This is the first stopping rule for any class of EAs that can terminate at a given distance from stationary points.« less

  3. Head-to-head comparison of adaptive statistical and model-based iterative reconstruction algorithms for submillisievert coronary CT angiography.

    PubMed

    Benz, Dominik C; Fuchs, Tobias A; Gräni, Christoph; Studer Bruengger, Annina A; Clerc, Olivier F; Mikulicic, Fran; Messerli, Michael; Stehli, Julia; Possner, Mathias; Pazhenkottil, Aju P; Gaemperli, Oliver; Kaufmann, Philipp A; Buechel, Ronny R

    2018-02-01

    Iterative reconstruction (IR) algorithms allow for a significant reduction in radiation dose of coronary computed tomography angiography (CCTA). We performed a head-to-head comparison of adaptive statistical IR (ASiR) and model-based IR (MBIR) algorithms to assess their impact on quantitative image parameters and diagnostic accuracy for submillisievert CCTA. CCTA datasets of 91 patients were reconstructed using filtered back projection (FBP), increasing contributions of ASiR (20, 40, 60, 80, and 100%), and MBIR. Signal and noise were measured in the aortic root to calculate signal-to-noise ratio (SNR). In a subgroup of 36 patients, diagnostic accuracy of ASiR 40%, ASiR 100%, and MBIR for diagnosis of coronary artery disease (CAD) was compared with invasive coronary angiography. Median radiation dose was 0.21 mSv for CCTA. While increasing levels of ASiR gradually reduced image noise compared with FBP (up to - 48%, P < 0.001), MBIR provided largest noise reduction (-79% compared with FBP) outperforming ASiR (-59% compared with ASiR 100%; P < 0.001). Increased noise and lower SNR with ASiR 40% and ASiR 100% resulted in substantially lower diagnostic accuracy to detect CAD as diagnosed by invasive coronary angiography compared with MBIR: sensitivity and specificity were 100 and 37%, 100 and 57%, and 100 and 74% for ASiR 40%, ASiR 100%, and MBIR, respectively. MBIR offers substantial noise reduction with increased SNR, paving the way for implementation of submillisievert CCTA protocols in clinical routine. In contrast, inferior noise reduction by ASiR negatively affects diagnostic accuracy of submillisievert CCTA for CAD detection. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.

  4. A study on directional resistivity logging-while-drilling based on self-adaptive hp-FEM

    NASA Astrophysics Data System (ADS)

    Liu, Dejun; Li, Hui; Zhang, Yingying; Zhu, Gengxue; Ai, Qinghui

    2014-12-01

    Numerical simulation of resistivity logging-while-drilling (LWD) tool response provides guidance for designing novel logging instruments and interpreting real-time logging data. In this paper, based on self-adaptive hp-finite element method (hp-FEM) algorithm, we analyze LWD tool response against model parameters and briefly illustrate geosteering capabilities of directional resistivity LWD. Numerical simulation results indicate that the change of source spacing is of obvious influence on the investigation depth and detecting precision of resistivity LWD tool; the change of frequency can improve the resolution of low-resistivity formation and high-resistivity formation. The simulation results also indicate that the self-adaptive hp-FEM algorithm has good convergence speed and calculation accuracy to guide the geologic steering drilling and it is suitable to simulate the response of resistivity LWD tools.

  5. Exoskeleton control for lower-extremity assistance based on adaptive frequency oscillators: adaptation of muscle activation and movement frequency.

    PubMed

    Aguirre-Ollinger, Gabriel

    2015-01-01

    In this article, we analyze a novel strategy for assisting the lower extremities based on adaptive frequency oscillators. Our aim is to use the control algorithm presented here as a building block for the control of powered lower-limb exoskeletons. The algorithm assists cyclic movements of the human extremities by synchronizing actuator torques with the estimated net torque exerted by the muscles. Synchronization is produced by a nonlinear dynamical system combining an adaptive frequency oscillator with a form of adaptive Fourier analysis. The system extracts, in real time, the fundamental frequency component of the net muscle torque acting on a specific joint. Said component, nearly sinusoidal in shape, is the basis for the assistive torque waveform delivered by the exoskeleton. The action of the exoskeleton can be interpreted as a virtual reduction in the mechanical impedance of the leg. We studied the ability of human subjects to adapt their muscle activation to the assistive torque. Ten subjects swung their extended leg while coupled to a stationary hip joint exoskeleton. The experiment yielded a significant decrease, with respect to unassisted movement, of the activation levels of an agonist/antagonist pair of muscles controlling the hip joint's motion, which suggests the exoskeleton control has potential for assisting human gait. A moderate increase in swing frequency was observed as well. We theorize that the increase in frequency can be explained by the impedance model of the assisted leg. Per this model, subjects adjust their swing frequency in order to control the amount of reduction in net muscle torque. © IMechE 2015.

  6. Research on AHP decision algorithms based on BP algorithm

    NASA Astrophysics Data System (ADS)

    Ma, Ning; Guan, Jianhe

    2017-10-01

    Decision making is the thinking activity that people choose or judge, and scientific decision-making has always been a hot issue in the field of research. Analytic Hierarchy Process (AHP) is a simple and practical multi-criteria and multi-objective decision-making method that combines quantitative and qualitative and can show and calculate the subjective judgment in digital form. In the process of decision analysis using AHP method, the rationality of the two-dimensional judgment matrix has a great influence on the decision result. However, in dealing with the real problem, the judgment matrix produced by the two-dimensional comparison is often inconsistent, that is, it does not meet the consistency requirements. BP neural network algorithm is an adaptive nonlinear dynamic system. It has powerful collective computing ability and learning ability. It can perfect the data by constantly modifying the weights and thresholds of the network to achieve the goal of minimizing the mean square error. In this paper, the BP algorithm is used to deal with the consistency of the two-dimensional judgment matrix of the AHP.

  7. Spatially Common Sparsity Based Adaptive Channel Estimation and Feedback for FDD Massive MIMO

    NASA Astrophysics Data System (ADS)

    Gao, Zhen; Dai, Linglong; Wang, Zhaocheng; Chen, Sheng

    2015-12-01

    This paper proposes a spatially common sparsity based adaptive channel estimation and feedback scheme for frequency division duplex based massive multi-input multi-output (MIMO) systems, which adapts training overhead and pilot design to reliably estimate and feed back the downlink channel state information (CSI) with significantly reduced overhead. Specifically, a non-orthogonal downlink pilot design is first proposed, which is very different from standard orthogonal pilots. By exploiting the spatially common sparsity of massive MIMO channels, a compressive sensing (CS) based adaptive CSI acquisition scheme is proposed, where the consumed time slot overhead only adaptively depends on the sparsity level of the channels. Additionally, a distributed sparsity adaptive matching pursuit algorithm is proposed to jointly estimate the channels of multiple subcarriers. Furthermore, by exploiting the temporal channel correlation, a closed-loop channel tracking scheme is provided, which adaptively designs the non-orthogonal pilot according to the previous channel estimation to achieve an enhanced CSI acquisition. Finally, we generalize the results of the multiple-measurement-vectors case in CS and derive the Cramer-Rao lower bound of the proposed scheme, which enlightens us to design the non-orthogonal pilot signals for the improved performance. Simulation results demonstrate that the proposed scheme outperforms its counterparts, and it is capable of approaching the performance bound.

  8. Stochastic parallel gradient descent based adaptive optics used for a high contrast imaging coronagraph

    NASA Astrophysics Data System (ADS)

    Dong, Bing; Ren, De-Qing; Zhang, Xi

    2011-08-01

    An adaptive optics (AO) system based on a stochastic parallel gradient descent (SPGD) algorithm is proposed to reduce the speckle noises in the optical system of a stellar coronagraph in order to further improve the contrast. The principle of the SPGD algorithm is described briefly and a metric suitable for point source imaging optimization is given. The feasibility and good performance of the SPGD algorithm is demonstrated by an experimental system featured with a 140-actuator deformable mirror and a Hartmann-Shark wavefront sensor. Then the SPGD based AO is applied to a liquid crystal array (LCA) based coronagraph to improve the contrast. The LCA can modulate the incoming light to generate a pupil apodization mask of any pattern. A circular stepped pattern is used in our preliminary experiment and the image contrast shows improvement from 10-3 to 10-4.5 at an angular distance of 2λ/D after being corrected by SPGD based AO.

  9. A new adaptive self-tuning Fourier coefficients algorithm for periodic torque ripple minimization in permanent magnet synchronous motors (PMSM).

    PubMed

    Gómez-Espinosa, Alfonso; Hernández-Guzmán, Víctor M; Bandala-Sánchez, Manuel; Jiménez-Hernández, Hugo; Rivas-Araiza, Edgar A; Rodríguez-Reséndiz, Juvenal; Herrera-Ruíz, Gilberto

    2013-03-19

    A New Adaptive Self-Tuning Fourier Coefficients Algorithm for Periodic Torque Ripple Minimization in Permanent Magnet Synchronous Motors (PMSM) Torque ripple occurs in Permanent Magnet Synchronous Motors (PMSMs) due to the non-sinusoidal flux density distribution around the air-gap and variable magnetic reluctance of the air-gap due to the stator slots distribution. These torque ripples change periodically with rotor position and are apparent as speed variations, which degrade the PMSM drive performance, particularly at low speeds, because of low inertial filtering. In this paper, a new self-tuning algorithm is developed for determining the Fourier Series Controller coefficients with the aim of reducing the torque ripple in a PMSM, thus allowing for a smoother operation. This algorithm adjusts the controller parameters based on the component's harmonic distortion in time domain of the compensation signal. Experimental evaluation is performed on a DSP-controlled PMSM evaluation platform. Test results obtained validate the effectiveness of the proposed self-tuning algorithm, with the Fourier series expansion scheme, in reducing the torque ripple.

  10. Multi-source feature extraction and target recognition in wireless sensor networks based on adaptive distributed wavelet compression algorithms

    NASA Astrophysics Data System (ADS)

    Hortos, William S.

    2008-04-01

    Proposed distributed wavelet-based algorithms are a means to compress sensor data received at the nodes forming a wireless sensor network (WSN) by exchanging information between neighboring sensor nodes. Local collaboration among nodes compacts the measurements, yielding a reduced fused set with equivalent information at far fewer nodes. Nodes may be equipped with multiple sensor types, each capable of sensing distinct phenomena: thermal, humidity, chemical, voltage, or image signals with low or no frequency content as well as audio, seismic or video signals within defined frequency ranges. Compression of the multi-source data through wavelet-based methods, distributed at active nodes, reduces downstream processing and storage requirements along the paths to sink nodes; it also enables noise suppression and more energy-efficient query routing within the WSN. Targets are first detected by the multiple sensors; then wavelet compression and data fusion are applied to the target returns, followed by feature extraction from the reduced data; feature data are input to target recognition/classification routines; targets are tracked during their sojourns through the area monitored by the WSN. Algorithms to perform these tasks are implemented in a distributed manner, based on a partition of the WSN into clusters of nodes. In this work, a scheme of collaborative processing is applied for hierarchical data aggregation and decorrelation, based on the sensor data itself and any redundant information, enabled by a distributed, in-cluster wavelet transform with lifting that allows multiple levels of resolution. The wavelet-based compression algorithm significantly decreases RF bandwidth and other resource use in target processing tasks. Following wavelet compression, features are extracted. The objective of feature extraction is to maximize the probabilities of correct target classification based on multi-source sensor measurements, while minimizing the resource expenditures at

  11. Capillary Electrophoresis Sensitivity Enhancement Based on Adaptive Moving Average Method.

    PubMed

    Drevinskas, Tomas; Telksnys, Laimutis; Maruška, Audrius; Gorbatsova, Jelena; Kaljurand, Mihkel

    2018-06-05

    In the present work, we demonstrate a novel approach to improve the sensitivity of the "out of lab" portable capillary electrophoretic measurements. Nowadays, many signal enhancement methods are (i) underused (nonoptimal), (ii) overused (distorts the data), or (iii) inapplicable in field-portable instrumentation because of a lack of computational power. The described innovative migration velocity-adaptive moving average method uses an optimal averaging window size and can be easily implemented with a microcontroller. The contactless conductivity detection was used as a model for the development of a signal processing method and the demonstration of its impact on the sensitivity. The frequency characteristics of the recorded electropherograms and peaks were clarified. Higher electrophoretic mobility analytes exhibit higher-frequency peaks, whereas lower electrophoretic mobility analytes exhibit lower-frequency peaks. On the basis of the obtained data, a migration velocity-adaptive moving average algorithm was created, adapted, and programmed into capillary electrophoresis data-processing software. Employing the developed algorithm, each data point is processed depending on a certain migration time of the analyte. Because of the implemented migration velocity-adaptive moving average method, the signal-to-noise ratio improved up to 11 times for sampling frequency of 4.6 Hz and up to 22 times for sampling frequency of 25 Hz. This paper could potentially be used as a methodological guideline for the development of new smoothing algorithms that require adaptive conditions in capillary electrophoresis and other separation methods.

  12. Knowledge-based tracking algorithm

    NASA Astrophysics Data System (ADS)

    Corbeil, Allan F.; Hawkins, Linda J.; Gilgallon, Paul F.

    1990-10-01

    This paper describes the Knowledge-Based Tracking (KBT) algorithm for which a real-time flight test demonstration was recently conducted at Rome Air Development Center (RADC). In KBT processing, the radar signal in each resolution cell is thresholded at a lower than normal setting to detect low RCS targets. This lower threshold produces a larger than normal false alarm rate. Therefore, additional signal processing including spectral filtering, CFAR and knowledge-based acceptance testing are performed to eliminate some of the false alarms. TSC's knowledge-based Track-Before-Detect (TBD) algorithm is then applied to the data from each azimuth sector to detect target tracks. In this algorithm, tentative track templates are formed for each threshold crossing and knowledge-based association rules are applied to the range, Doppler, and azimuth measurements from successive scans. Lastly, an M-association out of N-scan rule is used to declare a detection. This scan-to-scan integration enhances the probability of target detection while maintaining an acceptably low output false alarm rate. For a real-time demonstration of the KBT algorithm, the L-band radar in the Surveillance Laboratory (SL) at RADC was used to illuminate a small Cessna 310 test aircraft. The received radar signal wa digitized and processed by a ST-100 Array Processor and VAX computer network in the lab. The ST-100 performed all of the radar signal processing functions, including Moving Target Indicator (MTI) pulse cancelling, FFT Doppler filtering, and CFAR detection. The VAX computers performed the remaining range-Doppler clustering, beamsplitting and TBD processing functions. The KBT algorithm provided a 9.5 dB improvement relative to single scan performance with a nominal real time delay of less than one second between illumination and display.

  13. Control allocation-based adaptive control for greenhouse climate

    NASA Astrophysics Data System (ADS)

    Su, Yuanping; Xu, Lihong; Goodman, Erik D.

    2018-04-01

    This paper presents an adaptive approach to greenhouse climate control, as part of an integrated control and management system for greenhouse production. In this approach, an adaptive control algorithm is first derived to guarantee the asymptotic convergence of the closed system with uncertainty, then using that control algorithm, a controller is designed to satisfy the demands for heat and mass fluxes to maintain inside temperature, humidity and CO2 concentration at their desired values. Instead of applying the original adaptive control inputs directly, second, a control allocation technique is applied to distribute the demands of the heat and mass fluxes to the actuators by minimising tracking errors and energy consumption. To find an energy-saving solution, both single-objective optimisation (SOO) and multiobjective optimisation (MOO) in the control allocation structure are considered. The advantage of the proposed approach is that it does not require any a priori knowledge of the uncertainty bounds, and the simulation results illustrate the effectiveness of the proposed control scheme. It also indicates that MOO saves more energy in the control process.

  14. Investigation of FPGA-Based Real-Time Adaptive Digital Pulse Shaping for High-Count-Rate Applications

    NASA Astrophysics Data System (ADS)

    Saxena, Shefali; Hawari, Ayman I.

    2017-07-01

    Digital signal processing techniques have been widely used in radiation spectrometry to provide improved stability and performance with compact physical size over the traditional analog signal processing. In this paper, field-programmable gate array (FPGA)-based adaptive digital pulse shaping techniques are investigated for real-time signal processing. National Instruments (NI) NI 5761 14-bit, 250-MS/s adaptor module is used for digitizing high-purity germanium (HPGe) detector's preamplifier pulses. Digital pulse processing algorithms are implemented on the NI PXIe-7975R reconfigurable FPGA (Kintex-7) using the LabVIEW FPGA module. Based on the time separation between successive input pulses, the adaptive shaping algorithm selects the optimum shaping parameters (rise time and flattop time of trapezoid-shaping filter) for each incoming signal. A digital Sallen-Key low-pass filter is implemented to enhance signal-to-noise ratio and reduce baseline drifting in trapezoid shaping. A recursive trapezoid-shaping filter algorithm is employed for pole-zero compensation of exponentially decayed (with two-decay constants) preamplifier pulses of an HPGe detector. It allows extraction of pulse height information at the beginning of each pulse, thereby reducing the pulse pileup and increasing throughput. The algorithms for RC-CR2 timing filter, baseline restoration, pile-up rejection, and pulse height determination are digitally implemented for radiation spectroscopy. Traditionally, at high-count-rate conditions, a shorter shaping time is preferred to achieve high throughput, which deteriorates energy resolution. In this paper, experimental results are presented for varying count-rate and pulse shaping conditions. Using adaptive shaping, increased throughput is accepted while preserving the energy resolution observed using the longer shaping times.

  15. A novel clinical decision support system using improved adaptive genetic algorithm for the assessment of fetal well-being.

    PubMed

    Ravindran, Sindhu; Jambek, Asral Bahari; Muthusamy, Hariharan; Neoh, Siew-Chin

    2015-01-01

    A novel clinical decision support system is proposed in this paper for evaluating the fetal well-being from the cardiotocogram (CTG) dataset through an Improved Adaptive Genetic Algorithm (IAGA) and Extreme Learning Machine (ELM). IAGA employs a new scaling technique (called sigma scaling) to avoid premature convergence and applies adaptive crossover and mutation techniques with masking concepts to enhance population diversity. Also, this search algorithm utilizes three different fitness functions (two single objective fitness functions and multi-objective fitness function) to assess its performance. The classification results unfold that promising classification accuracy of 94% is obtained with an optimal feature subset using IAGA. Also, the classification results are compared with those of other Feature Reduction techniques to substantiate its exhaustive search towards the global optimum. Besides, five other benchmark datasets are used to gauge the strength of the proposed IAGA algorithm.

  16. The method for froth floatation condition recognition based on adaptive feature weighted

    NASA Astrophysics Data System (ADS)

    Wang, Jieran; Zhang, Jun; Tian, Jinwen; Zhang, Daimeng; Liu, Xiaomao

    2018-03-01

    The fusion of foam characteristics can play a complementary role in expressing the content of foam image. The weight of foam characteristics is the key to make full use of the relationship between the different features. In this paper, an Adaptive Feature Weighted Method For Froth Floatation Condition Recognition is proposed. Foam features without and with weights are both classified by using support vector machine (SVM).The classification accuracy and optimal equaling algorithm under the each ore grade are regarded as the result of the adaptive feature weighting algorithm. At the same time the effectiveness of adaptive weighted method is demonstrated.

  17. Adaptive Residual Interpolation for Color and Multispectral Image Demosaicking †

    PubMed Central

    Kiku, Daisuke; Okutomi, Masatoshi

    2017-01-01

    Color image demosaicking for the Bayer color filter array is an essential image processing operation for acquiring high-quality color images. Recently, residual interpolation (RI)-based algorithms have demonstrated superior demosaicking performance over conventional color difference interpolation-based algorithms. In this paper, we propose adaptive residual interpolation (ARI) that improves existing RI-based algorithms by adaptively combining two RI-based algorithms and selecting a suitable iteration number at each pixel. These are performed based on a unified criterion that evaluates the validity of an RI-based algorithm. Experimental comparisons using standard color image datasets demonstrate that ARI can improve existing RI-based algorithms by more than 0.6 dB in the color peak signal-to-noise ratio and can outperform state-of-the-art algorithms based on training images. We further extend ARI for a multispectral filter array, in which more than three spectral bands are arrayed, and demonstrate that ARI can achieve state-of-the-art performance also for the task of multispectral image demosaicking. PMID:29194407

  18. Pupil-segmentation-based adaptive optics for microscopy

    NASA Astrophysics Data System (ADS)

    Ji, Na; Milkie, Daniel E.; Betzig, Eric

    2011-03-01

    Inhomogeneous optical properties of biological samples make it difficult to obtain diffraction-limited resolution in depth. Correcting the sample-induced optical aberrations needs adaptive optics (AO). However, the direct wavefront-sensing approach commonly used in astronomy is not suitable for most biological samples due to their strong scattering of light. We developed an image-based AO approach that is insensitive to sample scattering. By comparing images of the sample taken with different segments of the pupil illuminated, local tilt in the wavefront is measured from image shift. The aberrated wavefront is then obtained either by measuring the local phase directly using interference or with phase reconstruction algorithms similar to those used in astronomical AO. We implemented this pupil-segmentation-based approach in a two-photon fluorescence microscope and demonstrated that diffraction-limited resolution can be recovered from nonbiological and biological samples.

  19. A Fast and Precise Indoor Localization Algorithm Based on an Online Sequential Extreme Learning Machine †

    PubMed Central

    Zou, Han; Lu, Xiaoxuan; Jiang, Hao; Xie, Lihua

    2015-01-01

    Nowadays, developing indoor positioning systems (IPSs) has become an attractive research topic due to the increasing demands on location-based service (LBS) in indoor environments. WiFi technology has been studied and explored to provide indoor positioning service for years in view of the wide deployment and availability of existing WiFi infrastructures in indoor environments. A large body of WiFi-based IPSs adopt fingerprinting approaches for localization. However, these IPSs suffer from two major problems: the intensive costs of manpower and time for offline site survey and the inflexibility to environmental dynamics. In this paper, we propose an indoor localization algorithm based on an online sequential extreme learning machine (OS-ELM) to address the above problems accordingly. The fast learning speed of OS-ELM can reduce the time and manpower costs for the offline site survey. Meanwhile, its online sequential learning ability enables the proposed localization algorithm to adapt in a timely manner to environmental dynamics. Experiments under specific environmental changes, such as variations of occupancy distribution and events of opening or closing of doors, are conducted to evaluate the performance of OS-ELM. The simulation and experimental results show that the proposed localization algorithm can provide higher localization accuracy than traditional approaches, due to its fast adaptation to various environmental dynamics. PMID:25599427

  20. An image segmentation method based on fuzzy C-means clustering and Cuckoo search algorithm

    NASA Astrophysics Data System (ADS)

    Wang, Mingwei; Wan, Youchuan; Gao, Xianjun; Ye, Zhiwei; Chen, Maolin

    2018-04-01

    Image segmentation is a significant step in image analysis and machine vision. Many approaches have been presented in this topic; among them, fuzzy C-means (FCM) clustering is one of the most widely used methods for its high efficiency and ambiguity of images. However, the success of FCM could not be guaranteed because it easily traps into local optimal solution. Cuckoo search (CS) is a novel evolutionary algorithm, which has been tested on some optimization problems and proved to be high-efficiency. Therefore, a new segmentation technique using FCM and blending of CS algorithm is put forward in the paper. Further, the proposed method has been measured on several images and compared with other existing FCM techniques such as genetic algorithm (GA) based FCM and particle swarm optimization (PSO) based FCM in terms of fitness value. Experimental results indicate that the proposed method is robust, adaptive and exhibits the better performance than other methods involved in the paper.

  1. Accelerated Dimension-Independent Adaptive Metropolis

    DOE PAGES

    Chen, Yuxin; Keyes, David E.; Law, Kody J.; ...

    2016-10-27

    This work describes improvements from algorithmic and architectural means to black-box Bayesian inference over high-dimensional parameter spaces. The well-known adaptive Metropolis (AM) algorithm [33] is extended herein to scale asymptotically uniformly with respect to the underlying parameter dimension for Gaussian targets, by respecting the variance of the target. The resulting algorithm, referred to as the dimension-independent adaptive Metropolis (DIAM) algorithm, also shows improved performance with respect to adaptive Metropolis on non-Gaussian targets. This algorithm is further improved, and the possibility of probing high-dimensional (with dimension d 1000) targets is enabled, via GPU-accelerated numerical libraries and periodically synchronized concurrent chains (justimore » ed a posteriori). Asymptotically in dimension, this GPU implementation exhibits a factor of four improvement versus a competitive CPU-based Intel MKL parallel version alone. Strong scaling to concurrent chains is exhibited, through a combination of longer time per sample batch (weak scaling) and yet fewer necessary samples to convergence. The algorithm performance is illustrated on several Gaussian and non-Gaussian target examples, in which the dimension may be in excess of one thousand.« less

  2. Accelerated Dimension-Independent Adaptive Metropolis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yuxin; Keyes, David E.; Law, Kody J.

    This work describes improvements from algorithmic and architectural means to black-box Bayesian inference over high-dimensional parameter spaces. The well-known adaptive Metropolis (AM) algorithm [33] is extended herein to scale asymptotically uniformly with respect to the underlying parameter dimension for Gaussian targets, by respecting the variance of the target. The resulting algorithm, referred to as the dimension-independent adaptive Metropolis (DIAM) algorithm, also shows improved performance with respect to adaptive Metropolis on non-Gaussian targets. This algorithm is further improved, and the possibility of probing high-dimensional (with dimension d 1000) targets is enabled, via GPU-accelerated numerical libraries and periodically synchronized concurrent chains (justimore » ed a posteriori). Asymptotically in dimension, this GPU implementation exhibits a factor of four improvement versus a competitive CPU-based Intel MKL parallel version alone. Strong scaling to concurrent chains is exhibited, through a combination of longer time per sample batch (weak scaling) and yet fewer necessary samples to convergence. The algorithm performance is illustrated on several Gaussian and non-Gaussian target examples, in which the dimension may be in excess of one thousand.« less

  3. A fast 4D cone beam CT reconstruction method based on the OSC-TV algorithm.

    PubMed

    Mascolo-Fortin, Julia; Matenine, Dmitri; Archambault, Louis; Després, Philippe

    2018-01-01

    Four-dimensional cone beam computed tomography allows for temporally resolved imaging with useful applications in radiotherapy, but raises particular challenges in terms of image quality and computation time. The purpose of this work is to develop a fast and accurate 4D algorithm by adapting a GPU-accelerated ordered subsets convex algorithm (OSC), combined with the total variation minimization regularization technique (TV). Different initialization schemes were studied to adapt the OSC-TV algorithm to 4D reconstruction: each respiratory phase was initialized either with a 3D reconstruction or a blank image. Reconstruction algorithms were tested on a dynamic numerical phantom and on a clinical dataset. 4D iterations were implemented for a cluster of 8 GPUs. All developed methods allowed for an adequate visualization of the respiratory movement and compared favorably to the McKinnon-Bates and adaptive steepest descent projection onto convex sets algorithms, while the 4D reconstructions initialized from a prior 3D reconstruction led to better overall image quality. The most suitable adaptation of OSC-TV to 4D CBCT was found to be a combination of a prior FDK reconstruction and a 4D OSC-TV reconstruction with a reconstruction time of 4.5 minutes. This relatively short reconstruction time could facilitate a clinical use.

  4. Wavelet methods in multi-conjugate adaptive optics

    NASA Astrophysics Data System (ADS)

    Helin, T.; Yudytskiy, M.

    2013-08-01

    The next generation ground-based telescopes rely heavily on adaptive optics for overcoming the limitation of atmospheric turbulence. In the future adaptive optics modalities, like multi-conjugate adaptive optics (MCAO), atmospheric tomography is the major mathematical and computational challenge. In this severely ill-posed problem, a fast and stable reconstruction algorithm is needed that can take into account many real-life phenomena of telescope imaging. We introduce a novel reconstruction method for the atmospheric tomography problem and demonstrate its performance and flexibility in the context of MCAO. Our method is based on using locality properties of compactly supported wavelets, both in the spatial and frequency domains. The reconstruction in the atmospheric tomography problem is obtained by solving the Bayesian MAP estimator with a conjugate-gradient-based algorithm. An accelerated algorithm with preconditioning is also introduced. Numerical performance is demonstrated on the official end-to-end simulation tool OCTOPUS of European Southern Observatory.

  5. Rapid Transfer Alignment of MEMS SINS Based on Adaptive Incremental Kalman Filter.

    PubMed

    Chu, Hairong; Sun, Tingting; Zhang, Baiqiang; Zhang, Hongwei; Chen, Yang

    2017-01-14

    In airborne MEMS SINS transfer alignment, the error of MEMS IMU is highly environment-dependent and the parameters of the system model are also uncertain, which may lead to large error and bad convergence of the Kalman filter. In order to solve this problem, an improved adaptive incremental Kalman filter (AIKF) algorithm is proposed. First, the model of SINS transfer alignment is defined based on the "Velocity and Attitude" matching method. Then the detailed algorithm progress of AIKF and its recurrence formulas are presented. The performance and calculation amount of AKF and AIKF are also compared. Finally, a simulation test is designed to verify the accuracy and the rapidity of the AIKF algorithm by comparing it with KF and AKF. The results show that the AIKF algorithm has better estimation accuracy and shorter convergence time, especially for the bias of the gyroscope and the accelerometer, which can meet the accuracy and rapidity requirement of transfer alignment.

  6. Rapid Transfer Alignment of MEMS SINS Based on Adaptive Incremental Kalman Filter

    PubMed Central

    Chu, Hairong; Sun, Tingting; Zhang, Baiqiang; Zhang, Hongwei; Chen, Yang

    2017-01-01

    In airborne MEMS SINS transfer alignment, the error of MEMS IMU is highly environment-dependent and the parameters of the system model are also uncertain, which may lead to large error and bad convergence of the Kalman filter. In order to solve this problem, an improved adaptive incremental Kalman filter (AIKF) algorithm is proposed. First, the model of SINS transfer alignment is defined based on the “Velocity and Attitude” matching method. Then the detailed algorithm progress of AIKF and its recurrence formulas are presented. The performance and calculation amount of AKF and AIKF are also compared. Finally, a simulation test is designed to verify the accuracy and the rapidity of the AIKF algorithm by comparing it with KF and AKF. The results show that the AIKF algorithm has better estimation accuracy and shorter convergence time, especially for the bias of the gyroscope and the accelerometer, which can meet the accuracy and rapidity requirement of transfer alignment. PMID:28098829

  7. The application of Firefly algorithm in an Adaptive Emergency Evacuation Centre Management (AEECM) for dynamic relocation of flood victims

    NASA Astrophysics Data System (ADS)

    ChePa, Noraziah; Hashim, Nor Laily; Yusof, Yuhanis; Hussain, Azham

    2016-08-01

    Flood evacuation centre is defined as a temporary location or area of people from disaster particularly flood as a rescue or precautionary measure. Gazetted evacuation centres are normally located at secure places which have small chances from being drowned by flood. However, due to extreme flood several evacuation centres in Kelantan were unexpectedly drowned. Currently, there is no study done on proposing a decision support aid to reallocate victims and resources of the evacuation centre when the situation getting worsens. Therefore, this study proposes a decision aid model to be utilized in realizing an adaptive emergency evacuation centre management system. This study undergoes two main phases; development of algorithm and models, and development of a web-based and mobile app. The proposed model operates using Firefly multi-objective optimization algorithm that creates an optimal schedule for the relocation of victims and resources for an evacuation centre. The proposed decision aid model and the adaptive system can be applied in supporting the National Security Council's respond mechanisms for handling disaster management level II (State level) especially in providing better management of the flood evacuating centres.

  8. Building simplification algorithms based on user cognition in mobile environment

    NASA Astrophysics Data System (ADS)

    Shen, Jie; Shi, Junfei; Wang, Meizhen; Wu, Chenyan

    2008-10-01

    With the development of LBS, mobile map should adaptively satisfy the cognitive requirement of user. User cognition in mobile environment is much more objective oriented and also seem to be a heavier burden than the user in static environment. The holistic idea and methods of map generalization can not fully suitable for the mobile map. This paper took the building simplification in habitation generalization as example, analyzed the characteristic of user cognition in mobile environment and the basic rules of building simplification, collected and studied the state-of-the-art of algorithms of building simplification in the static and mobile environment, put forward the idea of hierarchical building simplification based on user cognition. This paper took Hunan road business district of Nanjing as test area and took the building data with shapfile format of ESRI as test data and realized the simplification algorithm. The method took user as center, calculated the distance between user and the building which will be simplified and took the distance as the basis for choosing different simplification algorithm for different spaces. This contribution aimed to hierarchically present the building in different level of detail by real-time simplification.

  9. Single image interpolation via adaptive nonlocal sparsity-based modeling.

    PubMed

    Romano, Yaniv; Protter, Matan; Elad, Michael

    2014-07-01

    Single image interpolation is a central and extensively studied problem in image processing. A common approach toward the treatment of this problem in recent years is to divide the given image into overlapping patches and process each of them based on a model for natural image patches. Adaptive sparse representation modeling is one such promising image prior, which has been shown to be powerful in filling-in missing pixels in an image. Another force that such algorithms may use is the self-similarity that exists within natural images. Processing groups of related patches together exploits their correspondence, leading often times to improved results. In this paper, we propose a novel image interpolation method, which combines these two forces-nonlocal self-similarities and sparse representation modeling. The proposed method is contrasted with competitive and related algorithms, and demonstrated to achieve state-of-the-art results.

  10. Adaptive learning compressive tracking based on Markov location prediction

    NASA Astrophysics Data System (ADS)

    Zhou, Xingyu; Fu, Dongmei; Yang, Tao; Shi, Yanan

    2017-03-01

    Object tracking is an interdisciplinary research topic in image processing, pattern recognition, and computer vision which has theoretical and practical application value in video surveillance, virtual reality, and automatic navigation. Compressive tracking (CT) has many advantages, such as efficiency and accuracy. However, when there are object occlusion, abrupt motion and blur, similar objects, and scale changing, the CT has the problem of tracking drift. We propose the Markov object location prediction to get the initial position of the object. Then CT is used to locate the object accurately, and the classifier parameter adaptive updating strategy is given based on the confidence map. At the same time according to the object location, extract the scale features, which is able to deal with object scale variations effectively. Experimental results show that the proposed algorithm has better tracking accuracy and robustness than current advanced algorithms and achieves real-time performance.

  11. Self-Avoiding Walks Over Adaptive Triangular Grids

    NASA Technical Reports Server (NTRS)

    Heber, Gerd; Biswas, Rupak; Gao, Guang R.; Saini, Subhash (Technical Monitor)

    1999-01-01

    Space-filling curves is a popular approach based on a geometric embedding for linearizing computational meshes. We present a new O(n log n) combinatorial algorithm for constructing a self avoiding walk through a two dimensional mesh containing n triangles. We show that for hierarchical adaptive meshes, the algorithm can be locally adapted and easily parallelized by taking advantage of the regularity of the refinement rules. The proposed approach should be very useful in the runtime partitioning and load balancing of adaptive unstructured grids.

  12. A two-hop based adaptive routing protocol for real-time wireless sensor networks.

    PubMed

    Rachamalla, Sandhya; Kancherla, Anitha Sheela

    2016-01-01

    One of the most important and challenging issues in wireless sensor networks (WSNs) is to optimally manage the limited energy of nodes without degrading the routing efficiency. In this paper, we propose an energy-efficient adaptive routing mechanism for WSNs, which saves energy of nodes by removing the much delayed packets without degrading the real-time performance of the used routing protocol. It uses the adaptive transmission power algorithm which is based on the attenuation of the wireless link to improve the energy efficiency. The proposed routing mechanism can be associated with any geographic routing protocol and its performance is evaluated by integrating with the well known two-hop based real-time routing protocol, PATH and the resulting protocol is energy-efficient adaptive routing protocol (EE-ARP). The EE-ARP performs well in terms of energy consumption, deadline miss ratio, packet drop and end-to-end delay.

  13. Attitude determination and calibration using a recursive maximum likelihood-based adaptive Kalman filter

    NASA Technical Reports Server (NTRS)

    Kelly, D. A.; Fermelia, A.; Lee, G. K. F.

    1990-01-01

    An adaptive Kalman filter design that utilizes recursive maximum likelihood parameter identification is discussed. At the center of this design is the Kalman filter itself, which has the responsibility for attitude determination. At the same time, the identification algorithm is continually identifying the system parameters. The approach is applicable to nonlinear, as well as linear systems. This adaptive Kalman filter design has much potential for real time implementation, especially considering the fast clock speeds, cache memory and internal RAM available today. The recursive maximum likelihood algorithm is discussed in detail, with special attention directed towards its unique matrix formulation. The procedure for using the algorithm is described along with comments on how this algorithm interacts with the Kalman filter.

  14. [MicroRNA Target Prediction Based on Support Vector Machine Ensemble Classification Algorithm of Under-sampling Technique].

    PubMed

    Chen, Zhiru; Hong, Wenxue

    2016-02-01

    Considering the low accuracy of prediction in the positive samples and poor overall classification effects caused by unbalanced sample data of MicroRNA (miRNA) target, we proposes a support vector machine (SVM)-integration of under-sampling and weight (IUSM) algorithm in this paper, an under-sampling based on the ensemble learning algorithm. The algorithm adopts SVM as learning algorithm and AdaBoost as integration framework, and embeds clustering-based under-sampling into the iterative process, aiming at reducing the degree of unbalanced distribution of positive and negative samples. Meanwhile, in the process of adaptive weight adjustment of the samples, the SVM-IUSM algorithm eliminates the abnormal ones in negative samples with robust sample weights smoothing mechanism so as to avoid over-learning. Finally, the prediction of miRNA target integrated classifier is achieved with the combination of multiple weak classifiers through the voting mechanism. The experiment revealed that the SVM-IUSW, compared with other algorithms on unbalanced dataset collection, could not only improve the accuracy of positive targets and the overall effect of classification, but also enhance the generalization ability of miRNA target classifier.

  15. Longest jobs first algorithm in solving job shop scheduling using adaptive genetic algorithm (GA)

    NASA Astrophysics Data System (ADS)

    Alizadeh Sahzabi, Vahid; Karimi, Iman; Alizadeh Sahzabi, Navid; Mamaani Barnaghi, Peiman

    2012-01-01

    In this paper, genetic algorithm was used to solve job shop scheduling problems. One example discussed in JSSP (Job Shop Scheduling Problem) and I described how we can solve such these problems by genetic algorithm. The goal in JSSP is to gain the shortest process time. Furthermore I proposed a method to obtain best performance on performing all jobs in shortest time. The method mainly, is according to Genetic algorithm (GA) and crossing over between parents always follows the rule which the longest process is at the first in the job queue. In the other word chromosomes is suggested to sorts based on the longest processes to shortest i.e. "longest job first" says firstly look which machine contains most processing time during its performing all its jobs and that is the bottleneck. Secondly, start sort those jobs which are belonging to that specific machine descending. Based on the achieved results," longest jobs first" is the optimized status in job shop scheduling problems. In our results the accuracy would grow up to 94.7% for total processing time and the method improved 4% the accuracy of performing all jobs in the presented example.

  16. AIDA: an adaptive image deconvolution algorithm with application to multi-frame and three-dimensional data

    PubMed Central

    Hom, Erik F. Y.; Marchis, Franck; Lee, Timothy K.; Haase, Sebastian; Agard, David A.; Sedat, John W.

    2011-01-01

    We describe an adaptive image deconvolution algorithm (AIDA) for myopic deconvolution of multi-frame and three-dimensional data acquired through astronomical and microscopic imaging. AIDA is a reimplementation and extension of the MISTRAL method developed by Mugnier and co-workers and shown to yield object reconstructions with excellent edge preservation and photometric precision [J. Opt. Soc. Am. A 21, 1841 (2004)]. Written in Numerical Python with calls to a robust constrained conjugate gradient method, AIDA has significantly improved run times over the original MISTRAL implementation. Included in AIDA is a scheme to automatically balance maximum-likelihood estimation and object regularization, which significantly decreases the amount of time and effort needed to generate satisfactory reconstructions. We validated AIDA using synthetic data spanning a broad range of signal-to-noise ratios and image types and demonstrated the algorithm to be effective for experimental data from adaptive optics–equipped telescope systems and wide-field microscopy. PMID:17491626

  17. Simulation Based Evaluation of Integrated Adaptive Control and Flight Planning Technologies

    NASA Technical Reports Server (NTRS)

    Campbell, Stefan Forrest; Kaneshige, John T.

    2008-01-01

    The objective of this work is to leverage NASA resources to enable effective evaluation of resilient aircraft technologies through simulation. This includes examining strengths and weaknesses of adaptive controllers, emergency flight planning algorithms, and flight envelope determination algorithms both individually and as an integrated package.

  18. TH-E-BRE-04: An Online Replanning Algorithm for VMAT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahunbay, E; Li, X; Moreau, M

    2014-06-15

    Purpose: To develop a fast replanning algorithm based on segment aperture morphing (SAM) for online replanning of volumetric modulated arc therapy (VMAT) with flattening filtered (FF) and flattening filter free (FFF) beams. Methods: A software tool was developed to interface with a VMAT planning system ((Monaco, Elekta), enabling the output of detailed beam/machine parameters of original VMAT plans generated based on planning CTs for FF or FFF beams. A SAM algorithm, previously developed for fixed-beam IMRT, was modified to allow the algorithm to correct for interfractional variations (e.g., setup error, organ motion and deformation) by morphing apertures based on themore » geometric relationship between the beam's eye view of the anatomy from the planning CT and that from the daily CT for each control point. The algorithm was tested using daily CTs acquired using an in-room CT during daily IGRT for representative prostate cancer cases along with their planning CTs. The algorithm allows for restricted MLC leaf travel distance between control points of the VMAT delivery to prevent SAM from increasing leaf travel, and therefore treatment delivery time. Results: The VMAT plans adapted to the daily CT by SAM were found to improve the dosimetry relative to the IGRT repositioning plans for both FF and FFF beams. For the adaptive plans, the changes in leaf travel distance between control points were < 1cm for 80% of the control points with no restriction. When restricted to the original plans' maximum travel distance, the dosimetric effect was minimal. The adaptive plans were delivered successfully with similar delivery times as the original plans. The execution of the SAM algorithm was < 10 seconds. Conclusion: The SAM algorithm can quickly generate deliverable online-adaptive VMAT plans based on the anatomy of the day for both FF and FFF beams.« less

  19. AMA- and RWE- Based Adaptive Kalman Filter for Denoising Fiber Optic Gyroscope Drift Signal.

    PubMed

    Yang, Gongliu; Liu, Yuanyuan; Li, Ming; Song, Shunguang

    2015-10-23

    An improved double-factor adaptive Kalman filter called AMA-RWE-DFAKF is proposed to denoise fiber optic gyroscope (FOG) drift signal in both static and dynamic conditions. The first factor is Kalman gain updated by random weighting estimation (RWE) of the covariance matrix of innovation sequence at any time to ensure the lowest noise level of output, but the inertia of KF response increases in dynamic condition. To decrease the inertia, the second factor is the covariance matrix of predicted state vector adjusted by RWE only when discontinuities are detected by adaptive moving average (AMA).The AMA-RWE-DFAKF is applied for denoising FOG static and dynamic signals, its performance is compared with conventional KF (CKF), RWE-based adaptive KF with gain correction (RWE-AKFG), AMA- and RWE- based dual mode adaptive KF (AMA-RWE-DMAKF). Results of Allan variance on static signal and root mean square error (RMSE) on dynamic signal show that this proposed algorithm outperforms all the considered methods in denoising FOG signal.

  20. Benchmarking Diagnostic Algorithms on an Electrical Power System Testbed

    NASA Technical Reports Server (NTRS)

    Kurtoglu, Tolga; Narasimhan, Sriram; Poll, Scott; Garcia, David; Wright, Stephanie

    2009-01-01

    Diagnostic algorithms (DAs) are key to enabling automated health management. These algorithms are designed to detect and isolate anomalies of either a component or the whole system based on observations received from sensors. In recent years a wide range of algorithms, both model-based and data-driven, have been developed to increase autonomy and improve system reliability and affordability. However, the lack of support to perform systematic benchmarking of these algorithms continues to create barriers for effective development and deployment of diagnostic technologies. In this paper, we present our efforts to benchmark a set of DAs on a common platform using a framework that was developed to evaluate and compare various performance metrics for diagnostic technologies. The diagnosed system is an electrical power system, namely the Advanced Diagnostics and Prognostics Testbed (ADAPT) developed and located at the NASA Ames Research Center. The paper presents the fundamentals of the benchmarking framework, the ADAPT system, description of faults and data sets, the metrics used for evaluation, and an in-depth analysis of benchmarking results obtained from testing ten diagnostic algorithms on the ADAPT electrical power system testbed.

  1. Angular dependence of multiangle dynamic light scattering for particle size distribution inversion using a self-adapting regularization algorithm

    NASA Astrophysics Data System (ADS)

    Li, Lei; Yu, Long; Yang, Kecheng; Li, Wei; Li, Kai; Xia, Min

    2018-04-01

    The multiangle dynamic light scattering (MDLS) technique can better estimate particle size distributions (PSDs) than single-angle dynamic light scattering. However, determining the inversion range, angular weighting coefficients, and scattering angle combination is difficult but fundamental to the reconstruction for both unimodal and multimodal distributions. In this paper, we propose a self-adapting regularization method called the wavelet iterative recursion nonnegative Tikhonov-Phillips-Twomey (WIRNNT-PT) algorithm. This algorithm combines a wavelet multiscale strategy with an appropriate inversion method and could self-adaptively optimize several noteworthy issues containing the choices of the weighting coefficients, the inversion range and the optimal inversion method from two regularization algorithms for estimating the PSD from MDLS measurements. In addition, the angular dependence of the MDLS for estimating the PSDs of polymeric latexes is thoroughly analyzed. The dependence of the results on the number and range of measurement angles was analyzed in depth to identify the optimal scattering angle combination. Numerical simulations and experimental results for unimodal and multimodal distributions are presented to demonstrate both the validity of the WIRNNT-PT algorithm and the angular dependence of MDLS and show that the proposed algorithm with a six-angle analysis in the 30-130° range can be satisfactorily applied to retrieve PSDs from MDLS measurements.

  2. Hybrid employment recommendation algorithm based on Spark

    NASA Astrophysics Data System (ADS)

    Li, Zuoquan; Lin, Yubei; Zhang, Xingming

    2017-08-01

    Aiming at the real-time application of collaborative filtering employment recommendation algorithm (CF), a clustering collaborative filtering recommendation algorithm (CCF) is developed, which applies hierarchical clustering to CF and narrows the query range of neighbour items. In addition, to solve the cold-start problem of content-based recommendation algorithm (CB), a content-based algorithm with users’ information (CBUI) is introduced for job recommendation. Furthermore, a hybrid recommendation algorithm (HRA) which combines CCF and CBUI algorithms is proposed, and implemented on Spark platform. The experimental results show that HRA can overcome the problems of cold start and data sparsity, and achieve good recommendation accuracy and scalability for employment recommendation.

  3. The Research and Implementation of MUSER CLEAN Algorithm Based on OpenCL

    NASA Astrophysics Data System (ADS)

    Feng, Y.; Chen, K.; Deng, H.; Wang, F.; Mei, Y.; Wei, S. L.; Dai, W.; Yang, Q. P.; Liu, Y. B.; Wu, J. P.

    2017-03-01

    It's urgent to carry out high-performance data processing with a single machine in the development of astronomical software. However, due to the different configuration of the machine, traditional programming techniques such as multi-threading, and CUDA (Compute Unified Device Architecture)+GPU (Graphic Processing Unit) have obvious limitations in portability and seamlessness between different operation systems. The OpenCL (Open Computing Language) used in the development of MUSER (MingantU SpEctral Radioheliograph) data processing system is introduced. And the Högbom CLEAN algorithm is re-implemented into parallel CLEAN algorithm by the Python language and PyOpenCL extended package. The experimental results show that the CLEAN algorithm based on OpenCL has approximately equally operating efficiency compared with the former CLEAN algorithm based on CUDA. More important, the data processing in merely CPU (Central Processing Unit) environment of this system can also achieve high performance, which has solved the problem of environmental dependence of CUDA+GPU. Overall, the research improves the adaptability of the system with emphasis on performance of MUSER image clean computing. In the meanwhile, the realization of OpenCL in MUSER proves its availability in scientific data processing. In view of the high-performance computing features of OpenCL in heterogeneous environment, it will probably become the preferred technology in the future high-performance astronomical software development.

  4. An unbiased adaptive sampling algorithm for the exploration of RNA mutational landscapes under evolutionary pressure.

    PubMed

    Waldispühl, Jérôme; Ponty, Yann

    2011-11-01

    The analysis of the relationship between sequences and structures (i.e., how mutations affect structures and reciprocally how structures influence mutations) is essential to decipher the principles driving molecular evolution, to infer the origins of genetic diseases, and to develop bioengineering applications such as the design of artificial molecules. Because their structures can be predicted from the sequence data only, RNA molecules provide a good framework to study this sequence-structure relationship. We recently introduced a suite of algorithms called RNAmutants which allows a complete exploration of RNA sequence-structure maps in polynomial time and space. Formally, RNAmutants takes an input sequence (or seed) to compute the Boltzmann-weighted ensembles of mutants with exactly k mutations, and sample mutations from these ensembles. However, this approach suffers from major limitations. Indeed, since the Boltzmann probabilities of the mutations depend of the free energy of the structures, RNAmutants has difficulties to sample mutant sequences with low G+C-contents. In this article, we introduce an unbiased adaptive sampling algorithm that enables RNAmutants to sample regions of the mutational landscape poorly covered by classical algorithms. We applied these methods to sample mutations with low G+C-contents. These adaptive sampling techniques can be easily adapted to explore other regions of the sequence and structural landscapes which are difficult to sample. Importantly, these algorithms come at a minimal computational cost. We demonstrate the insights offered by these techniques on studies of complete RNA sequence structures maps of sizes up to 40 nucleotides. Our results indicate that the G+C-content has a strong influence on the size and shape of the evolutionary accessible sequence and structural spaces. In particular, we show that low G+C-contents favor the apparition of internal loops and thus possibly the synthesis of tertiary structure motifs. On

  5. Recognition of digital characteristics based new improved genetic algorithm

    NASA Astrophysics Data System (ADS)

    Wang, Meng; Xu, Guoqiang; Lin, Zihao

    2017-08-01

    In the field of digital signal processing, Estimating the characteristics of signal modulation parameters is an significant research direction. The paper determines the set of eigenvalue which can show the difference of the digital signal modulation based on the deep research of the new improved genetic algorithm. Firstly take them as the best gene pool; secondly, The best gene pool will be changed in the genetic evolvement by selecting, overlapping and eliminating each other; Finally, Adapting the strategy of futher enhance competition and punishment to more optimizer the gene pool and ensure each generation are of high quality gene. The simulation results show that this method not only has the global convergence, stability and faster convergence speed.

  6. Improvement and implementation for Canny edge detection algorithm

    NASA Astrophysics Data System (ADS)

    Yang, Tao; Qiu, Yue-hong

    2015-07-01

    Edge detection is necessary for image segmentation and pattern recognition. In this paper, an improved Canny edge detection approach is proposed due to the defect of traditional algorithm. A modified bilateral filter with a compensation function based on pixel intensity similarity judgment was used to smooth image instead of Gaussian filter, which could preserve edge feature and remove noise effectively. In order to solve the problems of sensitivity to the noise in gradient calculating, the algorithm used 4 directions gradient templates. Finally, Otsu algorithm adaptively obtain the dual-threshold. All of the algorithm simulated with OpenCV 2.4.0 library in the environments of vs2010, and through the experimental analysis, the improved algorithm has been proved to detect edge details more effectively and with more adaptability.

  7. Coevolving memetic algorithms: a review and progress report.

    PubMed

    Smith, Jim E

    2007-02-01

    Coevolving memetic algorithms are a family of metaheuristic search algorithms in which a rule-based representation of local search (LS) is coadapted alongside candidate solutions within a hybrid evolutionary system. Simple versions of these systems have been shown to outperform other nonadaptive memetic and evolutionary algorithms on a range of problems. This paper presents a rationale for such systems and places them in the context of other recent work on adaptive memetic algorithms. It then proposes a general structure within which a population of LS algorithms can be evolved in tandem with the solutions to which they are applied. Previous research started with a simple self-adaptive system before moving on to more complex models. Results showed that the algorithm was able to discover and exploit certain forms of structure and regularities within the problems. This "metalearning" of problem features provided a means of creating highly scalable algorithms. This work is briefly reviewed to highlight some of the important findings and behaviors exhibited. Based on this analysis, new results are then presented from systems with more flexible representations, which, again, show significant improvements. Finally, the current state of, and future directions for, research in this area is discussed.

  8. Performance comparisons on spatial lattice algorithm and direct matrix inverse method with application to adaptive arrays processing

    NASA Technical Reports Server (NTRS)

    An, S. H.; Yao, K.

    1986-01-01

    Lattice algorithm has been employed in numerous adaptive filtering applications such as speech analysis/synthesis, noise canceling, spectral analysis, and channel equalization. In this paper the application to adaptive-array processing is discussed. The advantages are fast convergence rate as well as computational accuracy independent of the noise and interference conditions. The results produced by this technique are compared to those obtained by the direct matrix inverse method.

  9. Adaptive algorithm of selecting optimal variant of errors detection system for digital means of automation facility of oil and gas complex

    NASA Astrophysics Data System (ADS)

    Poluyan, A. Y.; Fugarov, D. D.; Purchina, O. A.; Nesterchuk, V. V.; Smirnova, O. V.; Petrenkova, S. B.

    2018-05-01

    To date, the problems associated with the detection of errors in digital equipment (DE) systems for the automation of explosive objects of the oil and gas complex are extremely actual. Especially this problem is actual for facilities where a violation of the accuracy of the DE will inevitably lead to man-made disasters and essential material damage, at such facilities, the diagnostics of the accuracy of the DE operation is one of the main elements of the industrial safety management system. In the work, the solution of the problem of selecting the optimal variant of the errors detection system of errors detection by a validation criterion. Known methods for solving these problems have an exponential valuation of labor intensity. Thus, with a view to reduce time for solving the problem, a validation criterion is compiled as an adaptive bionic algorithm. Bionic algorithms (BA) have proven effective in solving optimization problems. The advantages of bionic search include adaptability, learning ability, parallelism, the ability to build hybrid systems based on combining. [1].

  10. Tree-based solvers for adaptive mesh refinement code FLASH - I: gravity and optical depths

    NASA Astrophysics Data System (ADS)

    Wünsch, R.; Walch, S.; Dinnbier, F.; Whitworth, A.

    2018-04-01

    We describe an OctTree algorithm for the MPI parallel, adaptive mesh refinement code FLASH, which can be used to calculate the gas self-gravity, and also the angle-averaged local optical depth, for treating ambient diffuse radiation. The algorithm communicates to the different processors only those parts of the tree that are needed to perform the tree-walk locally. The advantage of this approach is a relatively low memory requirement, important in particular for the optical depth calculation, which needs to process information from many different directions. This feature also enables a general tree-based radiation transport algorithm that will be described in a subsequent paper, and delivers excellent scaling up to at least 1500 cores. Boundary conditions for gravity can be either isolated or periodic, and they can be specified in each direction independently, using a newly developed generalization of the Ewald method. The gravity calculation can be accelerated with the adaptive block update technique by partially re-using the solution from the previous time-step. Comparison with the FLASH internal multigrid gravity solver shows that tree-based methods provide a competitive alternative, particularly for problems with isolated or mixed boundary conditions. We evaluate several multipole acceptance criteria (MACs) and identify a relatively simple approximate partial error MAC which provides high accuracy at low computational cost. The optical depth estimates are found to agree very well with those of the RADMC-3D radiation transport code, with the tree-solver being much faster. Our algorithm is available in the standard release of the FLASH code in version 4.0 and later.

  11. Patch-based Adaptive Mesh Refinement for Multimaterial Hydrodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lomov, I; Pember, R; Greenough, J

    2005-10-18

    We present a patch-based direct Eulerian adaptive mesh refinement (AMR) algorithm for modeling real equation-of-state, multimaterial compressible flow with strength. Our approach to AMR uses a hierarchical, structured grid approach first developed by (Berger and Oliger 1984), (Berger and Oliger 1984). The grid structure is dynamic in time and is composed of nested uniform rectangular grids of varying resolution. The integration scheme on the grid hierarchy is a recursive procedure in which the coarse grids are advanced, then the fine grids are advanced multiple steps to reach the same time, and finally the coarse and fine grids are synchronized tomore » remove conservation errors during the separate advances. The methodology presented here is based on a single grid algorithm developed for multimaterial gas dynamics by (Colella et al. 1993), refined by(Greenough et al. 1995), and extended to the solution of solid mechanics problems with significant strength by (Lomov and Rubin 2003). The single grid algorithm uses a second-order Godunov scheme with an approximate single fluid Riemann solver and a volume-of-fluid treatment of material interfaces. The method also uses a non-conservative treatment of the deformation tensor and an acoustic approximation for shear waves in the Riemann solver. This departure from a strict application of the higher-order Godunov methodology to the equation of solid mechanics is justified due to the fact that highly nonlinear behavior of shear stresses is rare. This algorithm is implemented in two codes, Geodyn and Raptor, the latter of which is a coupled rad-hydro code. The present discussion will be solely concerned with hydrodynamics modeling. Results from a number of simulations for flows with and without strength will be presented.« less

  12. A novel Gravity-FREAK feature extraction and Gravity-KLT tracking registration algorithm based on iPhone MEMS mobile sensor in mobile environment

    PubMed Central

    Lin, Fan; Xiao, Bin

    2017-01-01

    Based on the traditional Fast Retina Keypoint (FREAK) feature description algorithm, this paper proposed a Gravity-FREAK feature description algorithm based on Micro-electromechanical Systems (MEMS) sensor to overcome the limited computing performance and memory resources of mobile devices and further improve the reality interaction experience of clients through digital information added to the real world by augmented reality technology. The algorithm takes the gravity projection vector corresponding to the feature point as its feature orientation, which saved the time of calculating the neighborhood gray gradient of each feature point, reduced the cost of calculation and improved the accuracy of feature extraction. In the case of registration method of matching and tracking natural features, the adaptive and generic corner detection based on the Gravity-FREAK matching purification algorithm was used to eliminate abnormal matches, and Gravity Kaneda-Lucas Tracking (KLT) algorithm based on MEMS sensor can be used for the tracking registration of the targets and robustness improvement of tracking registration algorithm under mobile environment. PMID:29088228

  13. A novel Gravity-FREAK feature extraction and Gravity-KLT tracking registration algorithm based on iPhone MEMS mobile sensor in mobile environment.

    PubMed

    Hong, Zhiling; Lin, Fan; Xiao, Bin

    2017-01-01

    Based on the traditional Fast Retina Keypoint (FREAK) feature description algorithm, this paper proposed a Gravity-FREAK feature description algorithm based on Micro-electromechanical Systems (MEMS) sensor to overcome the limited computing performance and memory resources of mobile devices and further improve the reality interaction experience of clients through digital information added to the real world by augmented reality technology. The algorithm takes the gravity projection vector corresponding to the feature point as its feature orientation, which saved the time of calculating the neighborhood gray gradient of each feature point, reduced the cost of calculation and improved the accuracy of feature extraction. In the case of registration method of matching and tracking natural features, the adaptive and generic corner detection based on the Gravity-FREAK matching purification algorithm was used to eliminate abnormal matches, and Gravity Kaneda-Lucas Tracking (KLT) algorithm based on MEMS sensor can be used for the tracking registration of the targets and robustness improvement of tracking registration algorithm under mobile environment.

  14. Adaptive control of nonlinear system using online error minimum neural networks.

    PubMed

    Jia, Chao; Li, Xiaoli; Wang, Kang; Ding, Dawei

    2016-11-01

    In this paper, a new learning algorithm named OEM-ELM (Online Error Minimized-ELM) is proposed based on ELM (Extreme Learning Machine) neural network algorithm and the spreading of its main structure. The core idea of this OEM-ELM algorithm is: online learning, evaluation of network performance, and increasing of the number of hidden nodes. It combines the advantages of OS-ELM and EM-ELM, which can improve the capability of identification and avoid the redundancy of networks. The adaptive control based on the proposed algorithm OEM-ELM is set up which has stronger adaptive capability to the change of environment. The adaptive control of chemical process Continuous Stirred Tank Reactor (CSTR) is also given for application. The simulation results show that the proposed algorithm with respect to the traditional ELM algorithm can avoid network redundancy and improve the control performance greatly. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Supervised chaos genetic algorithm based state of charge determination for LiFePO4 batteries in electric vehicles

    NASA Astrophysics Data System (ADS)

    Shen, Yanqing

    2018-04-01

    LiFePO4 battery is developed rapidly in electric vehicle, whose safety and functional capabilities are influenced greatly by the evaluation of available cell capacity. Added with adaptive switch mechanism, this paper advances a supervised chaos genetic algorithm based state of charge determination method, where a combined state space model is employed to simulate battery dynamics. The method is validated by the experiment data collected from battery test system. Results indicate that the supervised chaos genetic algorithm based state of charge determination method shows great performance with less computation complexity and is little influenced by the unknown initial cell state.

  16. F-8C adaptive control law refinement and software development

    NASA Technical Reports Server (NTRS)

    Hartmann, G. L.; Stein, G.

    1981-01-01

    An explicit adaptive control algorithm based on maximum likelihood estimation of parameters was designed. To avoid iterative calculations, the algorithm uses parallel channels of Kalman filters operating at fixed locations in parameter space. This algorithm was implemented in NASA/DFRC's Remotely Augmented Vehicle (RAV) facility. Real-time sensor outputs (rate gyro, accelerometer, surface position) are telemetered to a ground computer which sends new gain values to an on-board system. Ground test data and flight records were used to establish design values of noise statistics and to verify the ground-based adaptive software.

  17. An adaptive compensation algorithm for temperature drift of micro-electro-mechanical systems gyroscopes using a strong tracking Kalman filter.

    PubMed

    Feng, Yibo; Li, Xisheng; Zhang, Xiaojuan

    2015-05-13

    We present an adaptive algorithm for a system integrated with micro-electro-mechanical systems (MEMS) gyroscopes and a compass to eliminate the influence from the environment, compensate the temperature drift precisely, and improve the accuracy of the MEMS gyroscope. We use a simplified drift model and changing but appropriate model parameters to implement this algorithm. The model of MEMS gyroscope temperature drift is constructed mostly on the basis of the temperature sensitivity of the gyroscope. As the state variables of a strong tracking Kalman filter (STKF), the parameters of the temperature drift model can be calculated to adapt to the environment under the support of the compass. These parameters change intelligently with the environment to maintain the precision of the MEMS gyroscope in the changing temperature. The heading error is less than 0.6° in the static temperature experiment, and also is kept in the range from 5° to -2° in the dynamic outdoor experiment. This demonstrates that the proposed algorithm exhibits strong adaptability to a changing temperature, and performs significantly better than KF and MLR to compensate the temperature drift of a gyroscope and eliminate the influence of temperature variation.

  18. An Adaptive Defect Weighted Sampling Algorithm to Design Pseudoknotted RNA Secondary Structures

    PubMed Central

    Zandi, Kasra; Butler, Gregory; Kharma, Nawwaf

    2016-01-01

    Computational design of RNA sequences that fold into targeted secondary structures has many applications in biomedicine, nanotechnology and synthetic biology. An RNA molecule is made of different types of secondary structure elements and an important RNA element named pseudoknot plays a key role in stabilizing the functional form of the molecule. However, due to the computational complexities associated with characterizing pseudoknotted RNA structures, most of the existing RNA sequence designer algorithms generally ignore this important structural element and therefore limit their applications. In this paper we present a new algorithm to design RNA sequences for pseudoknotted secondary structures. We use NUPACK as the folding algorithm to compute the equilibrium characteristics of the pseudoknotted RNAs, and describe a new adaptive defect weighted sampling algorithm named Enzymer to design low ensemble defect RNA sequences for targeted secondary structures including pseudoknots. We used a biological data set of 201 pseudoknotted structures from the Pseudobase library to benchmark the performance of our algorithm. We compared the quality characteristics of the RNA sequences we designed by Enzymer with the results obtained from the state of the art MODENA and antaRNA. Our results show our method succeeds more frequently than MODENA and antaRNA do, and generates sequences that have lower ensemble defect, lower probability defect and higher thermostability. Finally by using Enzymer and by constraining the design to a naturally occurring and highly conserved Hammerhead motif, we designed 8 sequences for a pseudoknotted cis-acting Hammerhead ribozyme. Enzymer is available for download at https://bitbucket.org/casraz/enzymer. PMID:27499762

  19. SASS: A symmetry adapted stochastic search algorithm exploiting site symmetry

    NASA Astrophysics Data System (ADS)

    Wheeler, Steven E.; Schleyer, Paul v. R.; Schaefer, Henry F.

    2007-03-01

    A simple symmetry adapted search algorithm (SASS) exploiting point group symmetry increases the efficiency of systematic explorations of complex quantum mechanical potential energy surfaces. In contrast to previously described stochastic approaches, which do not employ symmetry, candidate structures are generated within simple point groups, such as C2, Cs, and C2v. This facilitates efficient sampling of the 3N-6 Pople's dimensional configuration space and increases the speed and effectiveness of quantum chemical geometry optimizations. Pople's concept of framework groups [J. Am. Chem. Soc. 102, 4615 (1980)] is used to partition the configuration space into structures spanning all possible distributions of sets of symmetry equivalent atoms. This provides an efficient means of computing all structures of a given symmetry with minimum redundancy. This approach also is advantageous for generating initial structures for global optimizations via genetic algorithm and other stochastic global search techniques. Application of the SASS method is illustrated by locating 14 low-lying stationary points on the cc-pwCVDZ ROCCSD(T) potential energy surface of Li5H2. The global minimum structure is identified, along with many unique, nonintuitive, energetically favorable isomers.

  20. Adaptive Control of Four-Leg VSC Based DSTATCOM in Distribution System

    NASA Astrophysics Data System (ADS)

    Singh, Bhim; Arya, Sabha Raj

    2014-01-01

    This work discusses an experimental performance of a four-leg Distribution Static Compensator (DSTATCOM) using an adaptive filter based approach. It is used for estimation of reference supply currents through extracting the fundamental active power components of three-phase distorted load currents. This control algorithm is implemented on an assembled DSTATCOM for harmonics elimination, neutral current compensation and load balancing, under nonlinear loads. Experimental results are discussed, and it is noticed that DSTATCOM is effective solution to perform satisfactory performance under load dynamics.

  1. A novel automated spike sorting algorithm with adaptable feature extraction.

    PubMed

    Bestel, Robert; Daus, Andreas W; Thielemann, Christiane

    2012-10-15

    To study the electrophysiological properties of neuronal networks, in vitro studies based on microelectrode arrays have become a viable tool for analysis. Although in constant progress, a challenging task still remains in this area: the development of an efficient spike sorting algorithm that allows an accurate signal analysis at the single-cell level. Most sorting algorithms currently available only extract a specific feature type, such as the principal components or Wavelet coefficients of the measured spike signals in order to separate different spike shapes generated by different neurons. However, due to the great variety in the obtained spike shapes, the derivation of an optimal feature set is still a very complex issue that current algorithms struggle with. To address this problem, we propose a novel algorithm that (i) extracts a variety of geometric, Wavelet and principal component-based features and (ii) automatically derives a feature subset, most suitable for sorting an individual set of spike signals. Thus, there is a new approach that evaluates the probability distribution of the obtained spike features and consequently determines the candidates most suitable for the actual spike sorting. These candidates can be formed into an individually adjusted set of spike features, allowing a separation of the various shapes present in the obtained neuronal signal by a subsequent expectation maximisation clustering algorithm. Test results with simulated data files and data obtained from chick embryonic neurons cultured on microelectrode arrays showed an excellent classification result, indicating the superior performance of the described algorithm approach. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. An adaptive angle-doppler compensation method for airborne bistatic radar based on PAST

    NASA Astrophysics Data System (ADS)

    Hang, Xu; Jun, Zhao

    2018-05-01

    Adaptive angle-Doppler compensation method extract the requisite information based on the data itself adaptively, thus avoiding the problem of performance degradation caused by inertia system error. However, this method requires estimation and egiendecomposition of sample covariance matrix, which has a high computational complexity and limits its real-time application. In this paper, an adaptive angle Doppler compensation method based on projection approximation subspace tracking (PAST) is studied. The method uses cyclic iterative processing to quickly estimate the positions of the spectral center of the maximum eigenvector of each range cell, and the computational burden of matrix estimation and eigen-decompositon is avoided, and then the spectral centers of all range cells is overlapped by two dimensional compensation. Simulation results show the proposed method can effectively reduce the no homogeneity of airborne bistatic radar, and its performance is similar to that of egien-decomposition algorithms, but the computation load is obviously reduced and easy to be realized.

  3. Geometry correction Algorithm for UAV Remote Sensing Image Based on Improved Neural Network

    NASA Astrophysics Data System (ADS)

    Liu, Ruian; Liu, Nan; Zeng, Beibei; Chen, Tingting; Yin, Ninghao

    2018-03-01

    Aiming at the disadvantage of current geometry correction algorithm for UAV remote sensing image, a new algorithm is proposed. Adaptive genetic algorithm (AGA) and RBF neural network are introduced into this algorithm. And combined with the geometry correction principle for UAV remote sensing image, the algorithm and solving steps of AGA-RBF are presented in order to realize geometry correction for UAV remote sensing. The correction accuracy and operational efficiency is improved through optimizing the structure and connection weight of RBF neural network separately with AGA and LMS algorithm. Finally, experiments show that AGA-RBF algorithm has the advantages of high correction accuracy, high running rate and strong generalization ability.

  4. An Online Dictionary Learning-Based Compressive Data Gathering Algorithm in Wireless Sensor Networks.

    PubMed

    Wang, Donghao; Wan, Jiangwen; Chen, Junying; Zhang, Qiang

    2016-09-22

    To adapt to sense signals of enormous diversities and dynamics, and to decrease the reconstruction errors caused by ambient noise, a novel online dictionary learning method-based compressive data gathering (ODL-CDG) algorithm is proposed. The proposed dictionary is learned from a two-stage iterative procedure, alternately changing between a sparse coding step and a dictionary update step. The self-coherence of the learned dictionary is introduced as a penalty term during the dictionary update procedure. The dictionary is also constrained with sparse structure. It's theoretically demonstrated that the sensing matrix satisfies the restricted isometry property (RIP) with high probability. In addition, the lower bound of necessary number of measurements for compressive sensing (CS) reconstruction is given. Simulation results show that the proposed ODL-CDG algorithm can enhance the recovery accuracy in the presence of noise, and reduce the energy consumption in comparison with other dictionary based data gathering methods.

  5. Hybrid genetic algorithm with an adaptive penalty function for fitting multimodal experimental data: application to exchange-coupled non-Kramers binuclear iron active sites.

    PubMed

    Beaser, Eric; Schwartz, Jennifer K; Bell, Caleb B; Solomon, Edward I

    2011-09-26

    A Genetic Algorithm (GA) is a stochastic optimization technique based on the mechanisms of biological evolution. These algorithms have been successfully applied in many fields to solve a variety of complex nonlinear problems. While they have been used with some success in chemical problems such as fitting spectroscopic and kinetic data, many have avoided their use due to the unconstrained nature of the fitting process. In engineering, this problem is now being addressed through incorporation of adaptive penalty functions, but their transfer to other fields has been slow. This study updates the Nanakorrn Adaptive Penalty function theory, expanding its validity beyond maximization problems to minimization as well. The expanded theory, using a hybrid genetic algorithm with an adaptive penalty function, was applied to analyze variable temperature variable field magnetic circular dichroism (VTVH MCD) spectroscopic data collected on exchange coupled Fe(II)Fe(II) enzyme active sites. The data obtained are described by a complex nonlinear multimodal solution space with at least 6 to 13 interdependent variables and are costly to search efficiently. The use of the hybrid GA is shown to improve the probability of detecting the global optimum. It also provides large gains in computational and user efficiency. This method allows a full search of a multimodal solution space, greatly improving the quality and confidence in the final solution obtained, and can be applied to other complex systems such as fitting of other spectroscopic or kinetics data.

  6. Kalman Filtered Bio Heat Transfer Model Based Self-adaptive Hybrid Magnetic Resonance Thermometry.

    PubMed

    Zhang, Yuxin; Chen, Shuo; Deng, Kexin; Chen, Bingyao; Wei, Xing; Yang, Jiafei; Wang, Shi; Ying, Kui

    2017-01-01

    To develop a self-adaptive and fast thermometry method by combining the original hybrid magnetic resonance thermometry method and the bio heat transfer equation (BHTE) model. The proposed Kalman filtered Bio Heat Transfer Model Based Self-adaptive Hybrid Magnetic Resonance Thermometry, abbreviated as KalBHT hybrid method, introduced the BHTE model to synthesize a window on the regularization term of the hybrid algorithm, which leads to a self-adaptive regularization both spatially and temporally with change of temperature. Further, to decrease the sensitivity to accuracy of the BHTE model, Kalman filter is utilized to update the window at each iteration time. To investigate the effect of the proposed model, computer heating simulation, phantom microwave heating experiment and dynamic in-vivo model validation of liver and thoracic tumor were conducted in this study. The heating simulation indicates that the KalBHT hybrid algorithm achieves more accurate results without adjusting λ to a proper value in comparison to the hybrid algorithm. The results of the phantom heating experiment illustrate that the proposed model is able to follow temperature changes in the presence of motion and the temperature estimated also shows less noise in the background and surrounding the hot spot. The dynamic in-vivo model validation with heating simulation demonstrates that the proposed model has a higher convergence rate, more robustness to susceptibility problem surrounding the hot spot and more accuracy of temperature estimation. In the healthy liver experiment with heating simulation, the RMSE of the hot spot of the proposed model is reduced to about 50% compared to the RMSE of the original hybrid model and the convergence time becomes only about one fifth of the hybrid model. The proposed model is able to improve the accuracy of the original hybrid algorithm and accelerate the convergence rate of MR temperature estimation.

  7. Flexible Multi agent Algorithm for Distributed Decision Making

    DTIC Science & Technology

    2015-01-01

    How, J. P. Consensus - Based Auction Approaches for Decentralized task Assignment. Proceedings of the AIAA Guidance, Navigation, and Control...G. ; Kim, Y. Market- based Decentralized Task Assignment for Cooperative UA V Mission Including Rendezvous. Proceedings of the AIAA Guidance...scalable and adaptable to a variety of specific mission tasks . Additionally, the algorithm could easily be adapted for use on land or sea- based systems

  8. Model-based spectral estimation of Doppler signals using parallel genetic algorithms.

    PubMed

    Solano González, J; Rodríguez Vázquez, K; García Nocetti, D F

    2000-05-01

    Conventional spectral analysis methods use a fast Fourier transform (FFT) on consecutive or overlapping windowed data segments. For Doppler ultrasound signals, this approach suffers from an inadequate frequency resolution due to the time segment duration and the non-stationarity characteristics of the signals. Parametric or model-based estimators can give significant improvements in the time-frequency resolution at the expense of a higher computational complexity. This work describes an approach which implements in real-time a parametric spectral estimator method using genetic algorithms (GAs) in order to find the optimum set of parameters for the adaptive filter that minimises the error function. The aim is to reduce the computational complexity of the conventional algorithm by using the simplicity associated to GAs and exploiting its parallel characteristics. This will allow the implementation of higher order filters, increasing the spectrum resolution, and opening a greater scope for using more complex methods.

  9. An Adaptive Buddy Check for Observational Quality Control

    NASA Technical Reports Server (NTRS)

    Dee, Dick P.; Rukhovets, Leonid; Todling, Ricardo; DaSilva, Arlindo M.; Larson, Jay W.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    An adaptive buddy check algorithm is presented that adjusts tolerances for outlier observations based on the variability of surrounding data. The algorithm derives from a statistical hypothesis test combined with maximum-likelihood covariance estimation. Its stability is shown to depend on the initial identification of outliers by a simple background check. The adaptive feature ensures that the final quality control decisions are not very sensitive to prescribed statistics of first-guess and observation errors, nor on other approximations introduced into the algorithm. The implementation of the algorithm in a global atmospheric data assimilation is described. Its performance is contrasted with that of a non-adaptive buddy check, for the surface analysis of an extreme storm that took place in Europe on 27 December 1999. The adaptive algorithm allowed the inclusion of many important observations that differed greatly from the first guess and that would have been excluded on the basis of prescribed statistics. The analysis of the storm development was much improved as a result of these additional observations.

  10. hp-Adaptive time integration based on the BDF for viscous flows

    NASA Astrophysics Data System (ADS)

    Hay, A.; Etienne, S.; Pelletier, D.; Garon, A.

    2015-06-01

    This paper presents a procedure based on the Backward Differentiation Formulas of order 1 to 5 to obtain efficient time integration of the incompressible Navier-Stokes equations. The adaptive algorithm performs both stepsize and order selections to control respectively the solution accuracy and the computational efficiency of the time integration process. The stepsize selection (h-adaptivity) is based on a local error estimate and an error controller to guarantee that the numerical solution accuracy is within a user prescribed tolerance. The order selection (p-adaptivity) relies on the idea that low-accuracy solutions can be computed efficiently by low order time integrators while accurate solutions require high order time integrators to keep computational time low. The selection is based on a stability test that detects growing numerical noise and deems a method of order p stable if there is no method of lower order that delivers the same solution accuracy for a larger stepsize. Hence, it guarantees both that (1) the used method of integration operates inside of its stability region and (2) the time integration procedure is computationally efficient. The proposed time integration procedure also features a time-step rejection and quarantine mechanisms, a modified Newton method with a predictor and dense output techniques to compute solution at off-step points.

  11. A survey on adaptive engine technology for serious games

    NASA Astrophysics Data System (ADS)

    Rasim, Langi, Armein Z. R.; Munir, Rosmansyah, Yusep

    2016-02-01

    Serious Games has become a priceless tool in learning because it can simulate abstract concept to appear more realistic. The problem faced is that the players have different ability in playing the games. This causes the players to become frustrated if the game is too difficult or to get bored if it is too easy. Serious games have non-player character (NPC) in it. The NPC should be able to adapt to the players in such a way so that the players can feel comfortable in playing the games. Because of that, serious games development must involve an adaptive engine, which is by applying a learning machine that can adapt to different players. The development of adaptive engine can be viewed in terms of the frameworks and the algorithms. Frameworks include rules based, plan based, organization description based, proficiency of player based, and learning style and cognitive state based. Algorithms include agents based and non-agent based

  12. Entropy-functional-based online adaptive decision fusion framework with application to wildfire detection in video.

    PubMed

    Gunay, Osman; Toreyin, Behçet Ugur; Kose, Kivanc; Cetin, A Enis

    2012-05-01

    In this paper, an entropy-functional-based online adaptive decision fusion (EADF) framework is developed for image analysis and computer vision applications. In this framework, it is assumed that the compound algorithm consists of several subalgorithms, each of which yields its own decision as a real number centered around zero, representing the confidence level of that particular subalgorithm. Decision values are linearly combined with weights that are updated online according to an active fusion method based on performing entropic projections onto convex sets describing subalgorithms. It is assumed that there is an oracle, who is usually a human operator, providing feedback to the decision fusion method. A video-based wildfire detection system was developed to evaluate the performance of the decision fusion algorithm. In this case, image data arrive sequentially, and the oracle is the security guard of the forest lookout tower, verifying the decision of the combined algorithm. The simulation results are presented.

  13. Refinement and evaluation of helicopter real-time self-adaptive active vibration controller algorithms

    NASA Technical Reports Server (NTRS)

    Davis, M. W.

    1984-01-01

    A Real-Time Self-Adaptive (RTSA) active vibration controller was used as the framework in developing a computer program for a generic controller that can be used to alleviate helicopter vibration. Based upon on-line identification of system parameters, the generic controller minimizes vibration in the fuselage by closed-loop implementation of higher harmonic control in the main rotor system. The new generic controller incorporates a set of improved algorithms that gives the capability to readily define many different configurations by selecting one of three different controller types (deterministic, cautious, and dual), one of two linear system models (local and global), and one or more of several methods of applying limits on control inputs (external and/or internal limits on higher harmonic pitch amplitude and rate). A helicopter rotor simulation analysis was used to evaluate the algorithms associated with the alternative controller types as applied to the four-bladed H-34 rotor mounted on the NASA Ames Rotor Test Apparatus (RTA) which represents the fuselage. After proper tuning all three controllers provide more effective vibration reduction and converge more quickly and smoothly with smaller control inputs than the initial RTSA controller (deterministic with external pitch-rate limiting). It is demonstrated that internal limiting of the control inputs a significantly improves the overall performance of the deterministic controller.

  14. PCA-LBG-based algorithms for VQ codebook generation

    NASA Astrophysics Data System (ADS)

    Tsai, Jinn-Tsong; Yang, Po-Yuan

    2015-04-01

    Vector quantisation (VQ) codebooks are generated by combining principal component analysis (PCA) algorithms with Linde-Buzo-Gray (LBG) algorithms. All training vectors are grouped according to the projected values of the principal components. The PCA-LBG-based algorithms include (1) PCA-LBG-Median, which selects the median vector of each group, (2) PCA-LBG-Centroid, which adopts the centroid vector of each group, and (3) PCA-LBG-Random, which randomly selects a vector of each group. The LBG algorithm finds a codebook based on the better vectors sent to an initial codebook by the PCA. The PCA performs an orthogonal transformation to convert a set of potentially correlated variables into a set of variables that are not linearly correlated. Because the orthogonal transformation efficiently distinguishes test image vectors, the proposed PCA-LBG-based algorithm is expected to outperform conventional algorithms in designing VQ codebooks. The experimental results confirm that the proposed PCA-LBG-based algorithms indeed obtain better results compared to existing methods reported in the literature.

  15. An Adaptive Inpainting Algorithm Based on DCT Induced Wavelet Regularization

    DTIC Science & Technology

    2013-01-01

    research in image processing. Applications of image inpainting include old films restoration, video inpainting [4], de -interlacing of video sequences...show 5 (a) (b) (c) (d) (e) (f) Fig. 1. Performance of various inpainting algorithms for a cartoon image with text. (a) the original test image; (b...the test image with text; inpainted images by (c) SF (PSNR=37.38 dB); (d) SF-LDCT (PSNR=37.37 dB); (e) MCA (PSNR=37.04 dB); and (f) the proposed

  16. An adaptive evolutionary multi-objective approach based on simulated annealing.

    PubMed

    Li, H; Landa-Silva, D

    2011-01-01

    A multi-objective optimization problem can be solved by decomposing it into one or more single objective subproblems in some multi-objective metaheuristic algorithms. Each subproblem corresponds to one weighted aggregation function. For example, MOEA/D is an evolutionary multi-objective optimization (EMO) algorithm that attempts to optimize multiple subproblems simultaneously by evolving a population of solutions. However, the performance of MOEA/D highly depends on the initial setting and diversity of the weight vectors. In this paper, we present an improved version of MOEA/D, called EMOSA, which incorporates an advanced local search technique (simulated annealing) and adapts the search directions (weight vectors) corresponding to various subproblems. In EMOSA, the weight vector of each subproblem is adaptively modified at the lowest temperature in order to diversify the search toward the unexplored parts of the Pareto-optimal front. Our computational results show that EMOSA outperforms six other well established multi-objective metaheuristic algorithms on both the (constrained) multi-objective knapsack problem and the (unconstrained) multi-objective traveling salesman problem. Moreover, the effects of the main algorithmic components and parameter sensitivities on the search performance of EMOSA are experimentally investigated.

  17. Adaptive gamma correction-based expert system for nonuniform illumination face enhancement

    NASA Astrophysics Data System (ADS)

    Abdelhamid, Iratni; Mustapha, Aouache; Adel, Oulefki

    2018-03-01

    The image quality of a face recognition system suffers under severe lighting conditions. Thus, this study aims to develop an approach for nonuniform illumination adjustment based on an adaptive gamma correction (AdaptGC) filter that can solve the aforementioned issue. An approach for adaptive gain factor prediction was developed via neural network model-based cross-validation (NN-CV). To achieve this objective, a gamma correction function and its effects on the face image quality with different gain values were examined first. Second, an orientation histogram (OH) algorithm was assessed as a face's feature descriptor. Subsequently, a density histogram module was developed for face label generation. During the NN-CV construction, the model was assessed to recognize the OH descriptor and predict the face label. The performance of the NN-CV model was evaluated by examining the statistical measures of root mean square error and coefficient of efficiency. Third, to evaluate the AdaptGC enhancement approach, an image quality metric was adopted using enhancement by entropy, contrast per pixel, second-derivative-like measure of enhancement, and sharpness, then supported by visual inspection. The experiment results were examined using five face's databases, namely, extended Yale-B, Carnegie Mellon University-Pose, Illumination, and Expression, Mobio, FERET, and Oulu-CASIA-NIR-VIS. The final results prove that AdaptGC filter implementation compared with state-of-the-art methods is the best choice in terms of contrast and nonuniform illumination adjustment. In summary, the benefits attained prove that AdaptGC is driven by a profitable enhancement rate, which provides satisfying features for high rate face recognition systems.

  18. Robust MST-Based Clustering Algorithm.

    PubMed

    Liu, Qidong; Zhang, Ruisheng; Zhao, Zhili; Wang, Zhenghai; Jiao, Mengyao; Wang, Guangjing

    2018-06-01

    Minimax similarity stresses the connectedness of points via mediating elements rather than favoring high mutual similarity. The grouping principle yields superior clustering results when mining arbitrarily-shaped clusters in data. However, it is not robust against noises and outliers in the data. There are two main problems with the grouping principle: first, a single object that is far away from all other objects defines a separate cluster, and second, two connected clusters would be regarded as two parts of one cluster. In order to solve such problems, we propose robust minimum spanning tree (MST)-based clustering algorithm in this letter. First, we separate the connected objects by applying a density-based coarsening phase, resulting in a low-rank matrix in which the element denotes the supernode by combining a set of nodes. Then a greedy method is presented to partition those supernodes through working on the low-rank matrix. Instead of removing the longest edges from MST, our algorithm groups the data set based on the minimax similarity. Finally, the assignment of all data points can be achieved through their corresponding supernodes. Experimental results on many synthetic and real-world data sets show that our algorithm consistently outperforms compared clustering algorithms.

  19. Computed Tomography Image Quality Evaluation of a New Iterative Reconstruction Algorithm in the Abdomen (Adaptive Statistical Iterative Reconstruction-V) a Comparison With Model-Based Iterative Reconstruction, Adaptive Statistical Iterative Reconstruction, and Filtered Back Projection Reconstructions.

    PubMed

    Goodenberger, Martin H; Wagner-Bartak, Nicolaus A; Gupta, Shiva; Liu, Xinming; Yap, Ramon Q; Sun, Jia; Tamm, Eric P; Jensen, Corey T

    The purpose of this study was to compare abdominopelvic computed tomography images reconstructed with adaptive statistical iterative reconstruction-V (ASIR-V) with model-based iterative reconstruction (Veo 3.0), ASIR, and filtered back projection (FBP). Abdominopelvic computed tomography scans for 36 patients (26 males and 10 females) were reconstructed using FBP, ASIR (80%), Veo 3.0, and ASIR-V (30%, 60%, 90%). Mean ± SD patient age was 32 ± 10 years with mean ± SD body mass index of 26.9 ± 4.4 kg/m. Images were reviewed by 2 independent readers in a blinded, randomized fashion. Hounsfield unit, noise, and contrast-to-noise ratio (CNR) values were calculated for each reconstruction algorithm for further comparison. Phantom evaluation of low-contrast detectability (LCD) and high-contrast resolution was performed. Adaptive statistical iterative reconstruction-V 30%, ASIR-V 60%, and ASIR 80% were generally superior qualitatively compared with ASIR-V 90%, Veo 3.0, and FBP (P < 0.05). Adaptive statistical iterative reconstruction-V 90% showed superior LCD and had the highest CNR in the liver, aorta, and, pancreas, measuring 7.32 ± 3.22, 11.60 ± 4.25, and 4.60 ± 2.31, respectively, compared with the next best series of ASIR-V 60% with respective CNR values of 5.54 ± 2.39, 8.78 ± 3.15, and 3.49 ± 1.77 (P <0.0001). Veo 3.0 and ASIR 80% had the best and worst spatial resolution, respectively. Adaptive statistical iterative reconstruction-V 30% and ASIR-V 60% provided the best combination of qualitative and quantitative performance. Adaptive statistical iterative reconstruction 80% was equivalent qualitatively, but demonstrated inferior spatial resolution and LCD.

  20. Adaptive phase extraction: incorporating the Gabor transform in the matching pursuit algorithm.

    PubMed

    Wacker, Matthias; Witte, Herbert

    2011-10-01

    Short-time Fourier transform (STFT), Gabor transform (GT), wavelet transform (WT), and the Wigner-Ville distribution (WVD) are just some examples of time-frequency analysis methods which are frequently applied in biomedical signal analysis. However, all of these methods have their individual drawbacks. The STFT, GT, and WT have a time-frequency resolution that is determined by algorithm parameters and the WVD is contaminated by cross terms. In 1993, Mallat and Zhang introduced the matching pursuit (MP) algorithm that decomposes a signal into a sum of atoms and uses a cross-term free pseudo-WVD to generate a data-adaptive power distribution in the time-frequency space. Thus, it solved some of the problems of the GT and WT but lacks phase information that is crucial e.g., for synchronization analysis. We introduce a new time-frequency analysis method that combines the MP with a pseudo-GT. Therefore, the signal is decomposed into a set of Gabor atoms. Afterward, each atom is analyzed with a Gabor analysis, where the time-domain gaussian window of the analysis matches that of the specific atom envelope. A superposition of the single time-frequency planes gives the final result. This is the first time that a complete analysis of the complex time-frequency plane can be performed in a fully data-adaptive and frequency-selective manner. We demonstrate the capabilities of our approach on a simulation and on real-life magnetoencephalogram data.

  1. On recursive least-squares filtering algorithms and implementations. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Hsieh, Shih-Fu

    1990-01-01

    In many real-time signal processing applications, fast and numerically stable algorithms for solving least-squares problems are necessary and important. In particular, under non-stationary conditions, these algorithms must be able to adapt themselves to reflect the changes in the system and take appropriate adjustments to achieve optimum performances. Among existing algorithms, the QR-decomposition (QRD)-based recursive least-squares (RLS) methods have been shown to be useful and effective for adaptive signal processing. In order to increase the speed of processing and achieve high throughput rate, many algorithms are being vectorized and/or pipelined to facilitate high degrees of parallelism. A time-recursive formulation of RLS filtering employing block QRD will be considered first. Several methods, including a new non-continuous windowing scheme based on selectively rejecting contaminated data, were investigated for adaptive processing. Based on systolic triarrays, many other forms of systolic arrays are shown to be capable of implementing different algorithms. Various updating and downdating systolic algorithms and architectures for RLS filtering are examined and compared in details, which include Householder reflector, Gram-Schmidt procedure, and Givens rotation. A unified approach encompassing existing square-root-free algorithms is also proposed. For the sinusoidal spectrum estimation problem, a judicious method of separating the noise from the signal is of great interest. Various truncated QR methods are proposed for this purpose and compared to the truncated SVD method. Computer simulations provided for detailed comparisons show the effectiveness of these methods. This thesis deals with fundamental issues of numerical stability, computational efficiency, adaptivity, and VLSI implementation for the RLS filtering problems. In all, various new and modified algorithms and architectures are proposed and analyzed; the significance of any of the new method depends

  2. Quick fuzzy backpropagation algorithm.

    PubMed

    Nikov, A; Stoeva, S

    2001-03-01

    A modification of the fuzzy backpropagation (FBP) algorithm called QuickFBP algorithm is proposed, where the computation of the net function is significantly quicker. It is proved that the FBP algorithm is of exponential time complexity, while the QuickFBP algorithm is of polynomial time complexity. Convergence conditions of the QuickFBP, resp. the FBP algorithm are defined and proved for: (1) single output neural networks in case of training patterns with different targets; and (2) multiple output neural networks in case of training patterns with equivalued target vector. They support the automation of the weights training process (quasi-unsupervised learning) establishing the target value(s) depending on the network's input values. In these cases the simulation results confirm the convergence of both algorithms. An example with a large-sized neural network illustrates the significantly greater training speed of the QuickFBP rather than the FBP algorithm. The adaptation of an interactive web system to users on the basis of the QuickFBP algorithm is presented. Since the QuickFBP algorithm ensures quasi-unsupervised learning, this implies its broad applicability in areas of adaptive and adaptable interactive systems, data mining, etc. applications.

  3. A New Powered Lower Limb Prosthesis Control Framework Based on Adaptive Dynamic Programming.

    PubMed

    Wen, Yue; Si, Jennie; Gao, Xiang; Huang, Stephanie; Huang, He Helen

    2017-09-01

    This brief presents a novel application of adaptive dynamic programming (ADP) for optimal adaptive control of powered lower limb prostheses, a type of wearable robots to assist the motor function of the limb amputees. Current control of these robotic devices typically relies on finite state impedance control (FS-IC), which lacks adaptability to the user's physical condition. As a result, joint impedance settings are often customized manually and heuristically in clinics, which greatly hinder the wide use of these advanced medical devices. This simulation study aimed at demonstrating the feasibility of ADP for automatic tuning of the twelve knee joint impedance parameters during a complete gait cycle to achieve balanced walking. Given that the accurate models of human walking dynamics are difficult to obtain, the model-free ADP control algorithms were considered. First, direct heuristic dynamic programming (dHDP) was applied to the control problem, and its performance was evaluated on OpenSim, an often-used dynamic walking simulator. For the comparison purposes, we selected another established ADP algorithm, the neural fitted Q with continuous action (NFQCA). In both cases, the ADP controllers learned to control the right knee joint and achieved balanced walking, but dHDP outperformed NFQCA in this application during a 200 gait cycle-based testing.

  4. Vertex shading of the three-dimensional model based on ray-tracing algorithm

    NASA Astrophysics Data System (ADS)

    Hu, Xiaoming; Sang, Xinzhu; Xing, Shujun; Yan, Binbin; Wang, Kuiru; Dou, Wenhua; Xiao, Liquan

    2016-10-01

    Ray Tracing Algorithm is one of the research hotspots in Photorealistic Graphics. It is an important light and shadow technology in many industries with the three-dimensional (3D) structure, such as aerospace, game, video and so on. Unlike the traditional method of pixel shading based on ray tracing, a novel ray tracing algorithm is presented to color and render vertices of the 3D model directly. Rendering results are related to the degree of subdivision of the 3D model. A good light and shade effect is achieved by realizing the quad-tree data structure to get adaptive subdivision of a triangle according to the brightness difference of its vertices. The uniform grid algorithm is adopted to improve the rendering efficiency. Besides, the rendering time is independent of the screen resolution. In theory, as long as the subdivision of a model is adequate, cool effects as the same as the way of pixel shading will be obtained. Our practical application can be compromised between the efficiency and the effectiveness.

  5. One-dimensional swarm algorithm packaging

    NASA Astrophysics Data System (ADS)

    Lebedev, Boris K.; Lebedev, Oleg B.; Lebedeva, Ekaterina O.

    2018-05-01

    The paper considers an algorithm for solving the problem of onedimensional packaging based on the adaptive behavior model of an ant colony. The key role in the development of the ant algorithm is the choice of representation (interpretation) of the solution. The structure of the solution search graph, the procedure for finding solutions on the graph, the methods of deposition and evaporation of pheromone are described. Unlike the canonical paradigm of an ant algorithm, an ant on the solution search graph generates sets of elements distributed across blocks. Experimental studies were conducted on IBM PC. Compared with the existing algorithms, the results are improved.

  6. An adaptive interpolation scheme for molecular potential energy surfaces

    NASA Astrophysics Data System (ADS)

    Kowalewski, Markus; Larsson, Elisabeth; Heryudono, Alfa

    2016-08-01

    The calculation of potential energy surfaces for quantum dynamics can be a time consuming task—especially when a high level of theory for the electronic structure calculation is required. We propose an adaptive interpolation algorithm based on polyharmonic splines combined with a partition of unity approach. The adaptive node refinement allows to greatly reduce the number of sample points by employing a local error estimate. The algorithm and its scaling behavior are evaluated for a model function in 2, 3, and 4 dimensions. The developed algorithm allows for a more rapid and reliable interpolation of a potential energy surface within a given accuracy compared to the non-adaptive version.

  7. Robust local search for spacecraft operations using adaptive noise

    NASA Technical Reports Server (NTRS)

    Fukunaga, Alex S.; Rabideau, Gregg; Chien, Steve

    2004-01-01

    Randomization is a standard technique for improving the performance of local search algorithms for constraint satisfaction. However, it is well-known that local search algorithms are constraints satisfaction. However, it is well-known that local search algorithms are to the noise values selected. We investigate the use of an adaptive noise mechanism in an iterative repair-based planner/scheduler for spacecraft operations. Preliminary results indicate that adaptive noise makes the use of randomized repair moves safe and robust; that is, using adaptive noise makes it possible to consistently achieve, performance comparable with the best tuned noise setting without the need for manually tuning the noise parameter.

  8. Filtering Based Adaptive Visual Odometry Sensor Framework Robust to Blurred Images

    PubMed Central

    Zhao, Haiying; Liu, Yong; Xie, Xiaojia; Liao, Yiyi; Liu, Xixi

    2016-01-01

    Visual odometry (VO) estimation from blurred image is a challenging problem in practical robot applications, and the blurred images will severely reduce the estimation accuracy of the VO. In this paper, we address the problem of visual odometry estimation from blurred images, and present an adaptive visual odometry estimation framework robust to blurred images. Our approach employs an objective measure of images, named small image gradient distribution (SIGD), to evaluate the blurring degree of the image, then an adaptive blurred image classification algorithm is proposed to recognize the blurred images, finally we propose an anti-blurred key-frame selection algorithm to enable the VO robust to blurred images. We also carried out varied comparable experiments to evaluate the performance of the VO algorithms with our anti-blur framework under varied blurred images, and the experimental results show that our approach can achieve superior performance comparing to the state-of-the-art methods under the condition with blurred images while not increasing too much computation cost to the original VO algorithms. PMID:27399704

  9. A Real-time Spectrum Handoff Algorithm for VoIP based Cognitive Radio Networks: Design and Performance Analysis

    NASA Astrophysics Data System (ADS)

    Chakraborty, Tamal; Saha Misra, Iti

    2016-03-01

    Secondary Users (SUs) in a Cognitive Radio Network (CRN) face unpredictable interruptions in transmission due to the random arrival of Primary Users (PUs), leading to spectrum handoff or dropping instances. An efficient spectrum handoff algorithm, thus, becomes one of the indispensable components in CRN, especially for real-time communication like Voice over IP (VoIP). In this regard, this paper investigates the effects of spectrum handoff on the Quality of Service (QoS) for VoIP traffic in CRN, and proposes a real-time spectrum handoff algorithm in two phases. The first phase (VAST-VoIP based Adaptive Sensing and Transmission) adaptively varies the channel sensing and transmission durations to perform intelligent dropping decisions. The second phase (ProReact-Proactive and Reactive Handoff) deploys efficient channel selection mechanisms during spectrum handoff for resuming communication. Extensive performance analysis in analytical and simulation models confirms a decrease in spectrum handoff delay for VoIP SUs by more than 40% and 60%, compared to existing proactive and reactive algorithms, respectively and ensures a minimum 10% reduction in call-dropping probability with respect to the previous works in this domain. The effective SU transmission duration is also maximized under the proposed algorithm, thereby making it suitable for successful VoIP communication.

  10. AMA- and RWE- Based Adaptive Kalman Filter for Denoising Fiber Optic Gyroscope Drift Signal

    PubMed Central

    Yang, Gongliu; Liu, Yuanyuan; Li, Ming; Song, Shunguang

    2015-01-01

    An improved double-factor adaptive Kalman filter called AMA-RWE-DFAKF is proposed to denoise fiber optic gyroscope (FOG) drift signal in both static and dynamic conditions. The first factor is Kalman gain updated by random weighting estimation (RWE) of the covariance matrix of innovation sequence at any time to ensure the lowest noise level of output, but the inertia of KF response increases in dynamic condition. To decrease the inertia, the second factor is the covariance matrix of predicted state vector adjusted by RWE only when discontinuities are detected by adaptive moving average (AMA).The AMA-RWE-DFAKF is applied for denoising FOG static and dynamic signals, its performance is compared with conventional KF (CKF), RWE-based adaptive KF with gain correction (RWE-AKFG), AMA- and RWE- based dual mode adaptive KF (AMA-RWE-DMAKF). Results of Allan variance on static signal and root mean square error (RMSE) on dynamic signal show that this proposed algorithm outperforms all the considered methods in denoising FOG signal. PMID:26512665

  11. A Collaborative Recommend Algorithm Based on Bipartite Community

    PubMed Central

    Fu, Yuchen; Liu, Quan; Cui, Zhiming

    2014-01-01

    The recommendation algorithm based on bipartite network is superior to traditional methods on accuracy and diversity, which proves that considering the network topology of recommendation systems could help us to improve recommendation results. However, existing algorithms mainly focus on the overall topology structure and those local characteristics could also play an important role in collaborative recommend processing. Therefore, on account of data characteristics and application requirements of collaborative recommend systems, we proposed a link community partitioning algorithm based on the label propagation and a collaborative recommendation algorithm based on the bipartite community. Then we designed numerical experiments to verify the algorithm validity under benchmark and real database. PMID:24955393

  12. Adaptive learning and control for MIMO system based on adaptive dynamic programming.

    PubMed

    Fu, Jian; He, Haibo; Zhou, Xinmin

    2011-07-01

    Adaptive dynamic programming (ADP) is a promising research field for design of intelligent controllers, which can both learn on-the-fly and exhibit optimal behavior. Over the past decades, several generations of ADP design have been proposed in the literature, which have demonstrated many successful applications in various benchmarks and industrial applications. While many of the existing researches focus on multiple-inputs-single-output system with steepest descent search, in this paper we investigate a generalized multiple-input-multiple-output (GMIMO) ADP design for online learning and control, which is more applicable to a wide range of practical real-world applications. Furthermore, an improved weight-updating algorithm based on recursive Levenberg-Marquardt methods is presented and embodied in the GMIMO approach to improve its performance. Finally, we test the performance of this approach based on a practical complex system, namely, the learning and control of the tension and height of the looper system in a hot strip mill. Experimental results demonstrate that the proposed approach can achieve effective and robust performance.

  13. Standardized evaluation of algorithms for computer-aided diagnosis of dementia based on structural MRI: the CADDementia challenge.

    PubMed

    Bron, Esther E; Smits, Marion; van der Flier, Wiesje M; Vrenken, Hugo; Barkhof, Frederik; Scheltens, Philip; Papma, Janne M; Steketee, Rebecca M E; Méndez Orellana, Carolina; Meijboom, Rozanna; Pinto, Madalena; Meireles, Joana R; Garrett, Carolina; Bastos-Leite, António J; Abdulkadir, Ahmed; Ronneberger, Olaf; Amoroso, Nicola; Bellotti, Roberto; Cárdenas-Peña, David; Álvarez-Meza, Andrés M; Dolph, Chester V; Iftekharuddin, Khan M; Eskildsen, Simon F; Coupé, Pierrick; Fonov, Vladimir S; Franke, Katja; Gaser, Christian; Ledig, Christian; Guerrero, Ricardo; Tong, Tong; Gray, Katherine R; Moradi, Elaheh; Tohka, Jussi; Routier, Alexandre; Durrleman, Stanley; Sarica, Alessia; Di Fatta, Giuseppe; Sensi, Francesco; Chincarini, Andrea; Smith, Garry M; Stoyanov, Zhivko V; Sørensen, Lauge; Nielsen, Mads; Tangaro, Sabina; Inglese, Paolo; Wachinger, Christian; Reuter, Martin; van Swieten, John C; Niessen, Wiro J; Klein, Stefan

    2015-05-01

    Algorithms for computer-aided diagnosis of dementia based on structural MRI have demonstrated high performance in the literature, but are difficult to compare as different data sets and methodology were used for evaluation. In addition, it is unclear how the algorithms would perform on previously unseen data, and thus, how they would perform in clinical practice when there is no real opportunity to adapt the algorithm to the data at hand. To address these comparability, generalizability and clinical applicability issues, we organized a grand challenge that aimed to objectively compare algorithms based on a clinically representative multi-center data set. Using clinical practice as the starting point, the goal was to reproduce the clinical diagnosis. Therefore, we evaluated algorithms for multi-class classification of three diagnostic groups: patients with probable Alzheimer's disease, patients with mild cognitive impairment and healthy controls. The diagnosis based on clinical criteria was used as reference standard, as it was the best available reference despite its known limitations. For evaluation, a previously unseen test set was used consisting of 354 T1-weighted MRI scans with the diagnoses blinded. Fifteen research teams participated with a total of 29 algorithms. The algorithms were trained on a small training set (n=30) and optionally on data from other sources (e.g., the Alzheimer's Disease Neuroimaging Initiative, the Australian Imaging Biomarkers and Lifestyle flagship study of aging). The best performing algorithm yielded an accuracy of 63.0% and an area under the receiver-operating-characteristic curve (AUC) of 78.8%. In general, the best performances were achieved using feature extraction based on voxel-based morphometry or a combination of features that included volume, cortical thickness, shape and intensity. The challenge is open for new submissions via the web-based framework: http://caddementia.grand-challenge.org. Copyright © 2015 Elsevier Inc

  14. Adaptive Control Strategies for Flexible Robotic Arm

    NASA Technical Reports Server (NTRS)

    Bialasiewicz, Jan T.

    1996-01-01

    The control problem of a flexible robotic arm has been investigated. The control strategies that have been developed have a wide application in approaching the general control problem of flexible space structures. The following control strategies have been developed and evaluated: neural self-tuning control algorithm, neural-network-based fuzzy logic control algorithm, and adaptive pole assignment algorithm. All of the above algorithms have been tested through computer simulation. In addition, the hardware implementation of a computer control system that controls the tip position of a flexible arm clamped on a rigid hub mounted directly on the vertical shaft of a dc motor, has been developed. An adaptive pole assignment algorithm has been applied to suppress vibrations of the described physical model of flexible robotic arm and has been successfully tested using this testbed.

  15. An Adaptive Impedance Matching Network with Closed Loop Control Algorithm for Inductive Wireless Power Transfer

    PubMed Central

    Miao, Zhidong; Liu, Dake

    2017-01-01

    For an inductive wireless power transfer (IWPT) system, maintaining a reasonable power transfer efficiency and a stable output power are two most challenging design issues, especially when coil distance varies. To solve these issues, this paper presents a novel adaptive impedance matching network (IMN) for IWPT system. In our adaptive IMN IWPT system, the IMN is automatically reconfigured to keep matching with the coils and to adjust the output power adapting to coil distance variation. A closed loop control algorithm is used to change the capacitors continually, which can compensate mismatches and adjust output power simultaneously. The proposed adaptive IMN IWPT system is working at 125 kHz for 2 W power delivered to load. Comparing with the series resonant IWPT system and fixed IMN IWPT system, the power transfer efficiency of our system increases up to 31.79% and 60% when the coupling coefficient varies in a large range from 0.05 to 0.8 for 2 W output power. PMID:28763011

  16. An Adaptive Impedance Matching Network with Closed Loop Control Algorithm for Inductive Wireless Power Transfer.

    PubMed

    Miao, Zhidong; Liu, Dake; Gong, Chen

    2017-08-01

    For an inductive wireless power transfer (IWPT) system, maintaining a reasonable power transfer efficiency and a stable output power are two most challenging design issues, especially when coil distance varies. To solve these issues, this paper presents a novel adaptive impedance matching network (IMN) for IWPT system. In our adaptive IMN IWPT system, the IMN is automatically reconfigured to keep matching with the coils and to adjust the output power adapting to coil distance variation. A closed loop control algorithm is used to change the capacitors continually, which can compensate mismatches and adjust output power simultaneously. The proposed adaptive IMN IWPT system is working at 125 kHz for 2 W power delivered to load. Comparing with the series resonant IWPT system and fixed IMN IWPT system, the power transfer efficiency of our system increases up to 31.79% and 60% when the coupling coefficient varies in a large range from 0.05 to 0.8 for 2 W output power.

  17. An Energy Aware Adaptive Sampling Algorithm for Energy Harvesting WSN with Energy Hungry Sensors.

    PubMed

    Srbinovski, Bruno; Magno, Michele; Edwards-Murphy, Fiona; Pakrashi, Vikram; Popovici, Emanuel

    2016-03-28

    Wireless sensor nodes have a limited power budget, though they are often expected to be functional in the field once deployed for extended periods of time. Therefore, minimization of energy consumption and energy harvesting technology in Wireless Sensor Networks (WSN) are key tools for maximizing network lifetime, and achieving self-sustainability. This paper proposes an energy aware Adaptive Sampling Algorithm (ASA) for WSN with power hungry sensors and harvesting capabilities, an energy management technique that can be implemented on any WSN platform with enough processing power to execute the proposed algorithm. An existing state-of-the-art ASA developed for wireless sensor networks with power hungry sensors is optimized and enhanced to adapt the sampling frequency according to the available energy of the node. The proposed algorithm is evaluated using two in-field testbeds that are supplied by two different energy harvesting sources (solar and wind). Simulation and comparison between the state-of-the-art ASA and the proposed energy aware ASA (EASA) in terms of energy durability are carried out using in-field measured harvested energy (using both wind and solar sources) and power hungry sensors (ultrasonic wind sensor and gas sensors). The simulation results demonstrate that using ASA in combination with an energy aware function on the nodes can drastically increase the lifetime of a WSN node and enable self-sustainability. In fact, the proposed EASA in conjunction with energy harvesting capability can lead towards perpetual WSN operation and significantly outperform the state-of-the-art ASA.

  18. An Energy Aware Adaptive Sampling Algorithm for Energy Harvesting WSN with Energy Hungry Sensors

    PubMed Central

    Srbinovski, Bruno; Magno, Michele; Edwards-Murphy, Fiona; Pakrashi, Vikram; Popovici, Emanuel

    2016-01-01

    Wireless sensor nodes have a limited power budget, though they are often expected to be functional in the field once deployed for extended periods of time. Therefore, minimization of energy consumption and energy harvesting technology in Wireless Sensor Networks (WSN) are key tools for maximizing network lifetime, and achieving self-sustainability. This paper proposes an energy aware Adaptive Sampling Algorithm (ASA) for WSN with power hungry sensors and harvesting capabilities, an energy management technique that can be implemented on any WSN platform with enough processing power to execute the proposed algorithm. An existing state-of-the-art ASA developed for wireless sensor networks with power hungry sensors is optimized and enhanced to adapt the sampling frequency according to the available energy of the node. The proposed algorithm is evaluated using two in-field testbeds that are supplied by two different energy harvesting sources (solar and wind). Simulation and comparison between the state-of-the-art ASA and the proposed energy aware ASA (EASA) in terms of energy durability are carried out using in-field measured harvested energy (using both wind and solar sources) and power hungry sensors (ultrasonic wind sensor and gas sensors). The simulation results demonstrate that using ASA in combination with an energy aware function on the nodes can drastically increase the lifetime of a WSN node and enable self-sustainability. In fact, the proposed EASA in conjunction with energy harvesting capability can lead towards perpetual WSN operation and significantly outperform the state-of-the-art ASA. PMID:27043559

  19. An Online Dictionary Learning-Based Compressive Data Gathering Algorithm in Wireless Sensor Networks

    PubMed Central

    Wang, Donghao; Wan, Jiangwen; Chen, Junying; Zhang, Qiang

    2016-01-01

    To adapt to sense signals of enormous diversities and dynamics, and to decrease the reconstruction errors caused by ambient noise, a novel online dictionary learning method-based compressive data gathering (ODL-CDG) algorithm is proposed. The proposed dictionary is learned from a two-stage iterative procedure, alternately changing between a sparse coding step and a dictionary update step. The self-coherence of the learned dictionary is introduced as a penalty term during the dictionary update procedure. The dictionary is also constrained with sparse structure. It’s theoretically demonstrated that the sensing matrix satisfies the restricted isometry property (RIP) with high probability. In addition, the lower bound of necessary number of measurements for compressive sensing (CS) reconstruction is given. Simulation results show that the proposed ODL-CDG algorithm can enhance the recovery accuracy in the presence of noise, and reduce the energy consumption in comparison with other dictionary based data gathering methods. PMID:27669250

  20. Piezoelectric self-sensing actuator for active vibration control of motorized spindle based on adaptive signal separation

    NASA Astrophysics Data System (ADS)

    He, Ye; Chen, Xiaoan; Liu, Zhi; Qin, Yi

    2018-06-01

    The motorized spindle is the core component of CNC machine tools, and the vibration of it reduces the machining precision and service life of the machine tools. Owing to the fast response, large output force, and displacement of the piezoelectric stack, it is often used as the actuator in the active vibration control of the spindle. A piezoelectric self-sensing actuator (SSA) can reduce the cost of the active vibration control system and simplify the structure by eliminating the use of a sensor, because a SSA can have both actuating and sensing functions at the same time. The signal separation method of a SSA based on a bridge circuit is widely applied because of its simple principle and easy implementation. However, it is difficult to maintain dynamic balance of the circuit. Prior research has used adaptive algorithm to balance of the bridge circuit on the flexible beam dynamically, but those algorithms need no correlation between sensing and control voltage, which limit the applications of SSA in the vibration control of the rotor-bearing system. Here, the electromechanical coupling model of the piezoelectric stack is established, followed by establishment of the dynamic model of the spindle system. Next, a new adaptive signal separation method based on the bridge circuit is proposed, which can separate relative small sensing voltage from related mixed voltage adaptively. The experimental results show that when the self-sensing signal obtained from the proposed method is used as a displacement signal, the vibration of the motorized spindle can be suppressed effectively through a linear quadratic Gaussian (LQG) algorithm.