Sample records for adaptive design methods

  1. Assessing Adaptive Instructional Design Tools and Methods in ADAPT[IT].

    ERIC Educational Resources Information Center

    Eseryel, Deniz; Spector, J. Michael

    ADAPT[IT] (Advanced Design Approach for Personalized Training - Interactive Tools) is a European project within the Information Society Technologies program that is providing design methods and tools to guide a training designer according to the latest cognitive science and standardization principles. ADAPT[IT] addresses users in two significantly…

  2. Adaptive clinical trial design.

    PubMed

    Chow, Shein-Chung

    2014-01-01

    In recent years, the use of adaptive design methods in clinical trials based on accumulated data at interim has received much attention because of its flexibility and efficiency in pharmaceutical/clinical development. In practice, adaptive design may provide the investigators a second chance to modify or redesign the trial while the study is still ongoing. However, it is a concern that a shift in target patient population may occur after significant adaptations are made. In addition, the overall type I error rate may not be preserved. Moreover, the results may not be reliable and hence are difficult to interpret. As indicated by the US Food and Drug Administration draft guidance on adaptive design clinical trials, the adaptive design has to be a prospectively planned opportunity and should be based on information collected within the study, with or without formal statistical hypothesis testing. This article reviews the relative advantages, limitations, and feasibility of commonly considered adaptive designs in clinical trials. Statistical concerns when implementing adaptive designs are also discussed.

  3. Adaptive designs in clinical trials.

    PubMed

    Bowalekar, Suresh

    2011-01-01

    In addition to the expensive and lengthy process of developing a new medicine, the attrition rate in clinical research was on the rise, resulting in stagnation in the development of new compounds. As a consequence to this, the US Food and Drug Administration released a critical path initiative document in 2004, highlighting the need for developing innovative trial designs. One of the innovations suggested the use of adaptive designs for clinical trials. Thus, post critical path initiative, there is a growing interest in using adaptive designs for the development of pharmaceutical products. Adaptive designs are expected to have great potential to reduce the number of patients and duration of trial and to have relatively less exposure to new drug. Adaptive designs are not new in the sense that the task of interim analysis (IA)/review of the accumulated data used in adaptive designs existed in the past too. However, such reviews/analyses of accumulated data were not necessarily planned at the stage of planning clinical trial and the methods used were not necessarily compliant with clinical trial process. The Bayesian approach commonly used in adaptive designs was developed by Thomas Bayes in the 18th century, about hundred years prior to the development of modern statistical methods by the father of modern statistics, Sir Ronald A. Fisher, but the complexity involved in Bayesian approach prevented its use in real life practice. The advances in the field of computer and information technology over the last three to four decades has changed the scenario and the Bayesian techniques are being used in adaptive designs in addition to other sequential methods used in IA. This paper attempts to describe the various adaptive designs in clinical trial and views of stakeholders about feasibility of using them, without going into mathematical complexities.

  4. Experimental Design and Primary Data Analysis Methods for Comparing Adaptive Interventions

    PubMed Central

    Nahum-Shani, Inbal; Qian, Min; Almirall, Daniel; Pelham, William E.; Gnagy, Beth; Fabiano, Greg; Waxmonsky, Jim; Yu, Jihnhee; Murphy, Susan

    2013-01-01

    In recent years, research in the area of intervention development is shifting from the traditional fixed-intervention approach to adaptive interventions, which allow greater individualization and adaptation of intervention options (i.e., intervention type and/or dosage) over time. Adaptive interventions are operationalized via a sequence of decision rules that specify how intervention options should be adapted to an individual’s characteristics and changing needs, with the general aim to optimize the long-term effectiveness of the intervention. Here, we review adaptive interventions, discussing the potential contribution of this concept to research in the behavioral and social sciences. We then propose the sequential multiple assignment randomized trial (SMART), an experimental design useful for addressing research questions that inform the construction of high-quality adaptive interventions. To clarify the SMART approach and its advantages, we compare SMART with other experimental approaches. We also provide methods for analyzing data from SMART to address primary research questions that inform the construction of a high-quality adaptive intervention. PMID:23025433

  5. Modeling Adaptive Educational Methods with IMS Learning Design

    ERIC Educational Resources Information Center

    Specht, Marcus; Burgos, Daniel

    2007-01-01

    The paper describes a classification system for adaptive methods developed in the area of adaptive educational hypermedia based on four dimensions: What components of the educational system are adapted? To what features of the user and the current context does the system adapt? Why does the system adapt? How does the system get the necessary…

  6. An adaptive two-stage dose-response design method for establishing proof of concept.

    PubMed

    Franchetti, Yoko; Anderson, Stewart J; Sampson, Allan R

    2013-01-01

    We propose an adaptive two-stage dose-response design where a prespecified adaptation rule is used to add and/or drop treatment arms between the stages. We extend the multiple comparison procedures-modeling (MCP-Mod) approach into a two-stage design. In each stage, we use the same set of candidate dose-response models and test for a dose-response relationship or proof of concept (PoC) via model-associated statistics. The stage-wise test results are then combined to establish "global" PoC using a conditional error function. Our simulation studies showed good and more robust power in our design method compared to conventional and fixed designs.

  7. Some challenges with statistical inference in adaptive designs.

    PubMed

    Hung, H M James; Wang, Sue-Jane; Yang, Peiling

    2014-01-01

    Adaptive designs have generated a great deal of attention to clinical trial communities. The literature contains many statistical methods to deal with added statistical uncertainties concerning the adaptations. Increasingly encountered in regulatory applications are adaptive statistical information designs that allow modification of sample size or related statistical information and adaptive selection designs that allow selection of doses or patient populations during the course of a clinical trial. For adaptive statistical information designs, a few statistical testing methods are mathematically equivalent, as a number of articles have stipulated, but arguably there are large differences in their practical ramifications. We pinpoint some undesirable features of these methods in this work. For adaptive selection designs, the selection based on biomarker data for testing the correlated clinical endpoints may increase statistical uncertainty in terms of type I error probability, and most importantly the increased statistical uncertainty may be impossible to assess.

  8. Evaluation and comparison of an adaptive method technique for improved performance of linear Fresnel secondary designs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hack, Madeline; Zhu, Guangdong; Wendelin, Timothy J.

    As a line-focus concentrating solar power (CSP) technology, linear Fresnel collectors have the potential to become a low-cost solution for electricity production and a variety of thermal energy applications. However, this technology often suffers from relatively low performance. A secondary reflector is a key component used to improve optical performance of a linear Fresnel collector. The shape of a secondary reflector is particularly critical in determining solar power captured by the absorber tube(s), and thus, the collector's optical performance. However, to the authors' knowledge, no well-established process existed to derive the optimal secondary shape prior to the development of amore » new adaptive method to optimize the secondary reflector shape. The new adaptive method does not assume any pre-defined analytical form; rather, it constitutes an optimum shape through an adaptive process by maximizing the energy collection onto the absorber tube. In this paper, the adaptive method is compared with popular secondary-reflector designs with respect to a collector's optical performance under various scenarios. For the first time, a comprehensive, in-depth comparison was conducted on all popular secondary designs for CSP applications. In conclusion, it is shown that the adaptive design exhibits the best optical performance.« less

  9. Evaluation and comparison of an adaptive method technique for improved performance of linear Fresnel secondary designs

    DOE PAGES

    Hack, Madeline; Zhu, Guangdong; Wendelin, Timothy J.

    2017-09-13

    As a line-focus concentrating solar power (CSP) technology, linear Fresnel collectors have the potential to become a low-cost solution for electricity production and a variety of thermal energy applications. However, this technology often suffers from relatively low performance. A secondary reflector is a key component used to improve optical performance of a linear Fresnel collector. The shape of a secondary reflector is particularly critical in determining solar power captured by the absorber tube(s), and thus, the collector's optical performance. However, to the authors' knowledge, no well-established process existed to derive the optimal secondary shape prior to the development of amore » new adaptive method to optimize the secondary reflector shape. The new adaptive method does not assume any pre-defined analytical form; rather, it constitutes an optimum shape through an adaptive process by maximizing the energy collection onto the absorber tube. In this paper, the adaptive method is compared with popular secondary-reflector designs with respect to a collector's optical performance under various scenarios. For the first time, a comprehensive, in-depth comparison was conducted on all popular secondary designs for CSP applications. In conclusion, it is shown that the adaptive design exhibits the best optical performance.« less

  10. Design Specifications for Adaptive Real-Time Systems

    DTIC Science & Technology

    1991-12-01

    TICfl \\ E CT E Design Specifications for JAN’\\ 1992 Adaptive Real - Time Systems fl Randall W. Lichota U, Alice H. Muntz - December 1991 \\ \\\\/ 0 / r...268-2056 Technical Report CMU/SEI-91-TR-20 ESD-91-TR-20 December 1991 Design Specifications for Adaptive Real - Time Systems Randall W. Lichota Hughes...Design Specifications for Adaptive Real - Time Systems Abstract: The design specification method described in this report treats a software

  11. Robust design of configurations and parameters of adaptable products

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Chen, Yongliang; Xue, Deyi; Gu, Peihua

    2014-03-01

    An adaptable product can satisfy different customer requirements by changing its configuration and parameter values during the operation stage. Design of adaptable products aims at reducing the environment impact through replacement of multiple different products with single adaptable ones. Due to the complex architecture, multiple functional requirements, and changes of product configurations and parameter values in operation, impact of uncertainties to the functional performance measures needs to be considered in design of adaptable products. In this paper, a robust design approach is introduced to identify the optimal design configuration and parameters of an adaptable product whose functional performance measures are the least sensitive to uncertainties. An adaptable product in this paper is modeled by both configurations and parameters. At the configuration level, methods to model different product configuration candidates in design and different product configuration states in operation to satisfy design requirements are introduced. At the parameter level, four types of product/operating parameters and relations among these parameters are discussed. A two-level optimization approach is developed to identify the optimal design configuration and its parameter values of the adaptable product. A case study is implemented to illustrate the effectiveness of the newly developed robust adaptable design method.

  12. Survey of adaptive control using Liapunov design

    NASA Technical Reports Server (NTRS)

    Lindorff, D. P.; Carroll, R. L.

    1972-01-01

    A survey was made of the literature devoted to the synthesis of model-tracking adaptive systems based on application of Liapunov's second method. The basic synthesis procedure is introduced and a critical review of extensions made to the theory since 1966 is made. The extensions relate to design for relative stability, reduction of order techniques, design with disturbance, design with time variable parameters, multivariable systems, identification, and an adaptive observer.

  13. Adaptive Design of Confirmatory Trials: Advances and Challenges

    PubMed Central

    Lai, Tze Leung; Lavori, Philip W.; Tsang, Ka Wai

    2015-01-01

    The past decade witnessed major developments in innovative designs of confirmatory clinical trials, and adaptive designs represent the most active area of these developments. We give an overview of the developments and associated statistical methods in several classes of adaptive designs of confirmatory trials. We also discuss their statistical difficulties and implementation challenges, and show how these problems are connected to other branches of mainstream Statistics, which we then apply to resolve the difficulties and bypass the bottlenecks in the development of adaptive designs for the next decade. PMID:26079372

  14. Exploring adaptations to climate change with stakeholders: A participatory method to design grassland-based farming systems.

    PubMed

    Sautier, Marion; Piquet, Mathilde; Duru, Michel; Martin-Clouaire, Roger

    2017-05-15

    Research is expected to produce knowledge, methods and tools to enhance stakeholders' adaptive capacity by helping them to anticipate and cope with the effects of climate change at their own level. Farmers face substantial challenges from climate change, from changes in the average temperatures and the precipitation regime to an increased variability of weather conditions and the frequency of extreme events. Such changes can have dramatic consequences for many types of agricultural production systems such as grassland-based livestock systems for which climate change influences the seasonality and productivity of fodder production. We present a participatory design method called FARMORE (FARM-Oriented REdesign) that allows farmers to design and evaluate adaptations of livestock systems to future climatic conditions. It explicitly considers three climate features in the design and evaluation processes: climate change, climate variability and the limited predictability of weather. FARMORE consists of a sequence of three workshops for which a pre-existing game-like platform was adapted. Various year-round forage production and animal feeding requirements must be assembled by participants with a computerized support system. In workshop 1, farmers aim to produce a configuration that satisfies an average future weather scenario. They refine or revise the previous configuration by considering a sample of the between-year variability of weather in workshop 2. In workshop 3, they explicitly take the limited predictability of weather into account. We present the practical aspects of the method based on four case studies involving twelve farmers from Aveyron (France), and illustrate it through an in-depth description of one of these case studies with three dairy farmers. The case studies shows and discusses how workshop sequencing (1) supports a design process that progressively accommodates complexity of real management contexts by enlarging considerations of climate change

  15. Teacher-Led Design of an Adaptive Learning Environment

    ERIC Educational Resources Information Center

    Mavroudi, Anna; Hadzilacos, Thanasis; Kalles, Dimitris; Gregoriades, Andreas

    2016-01-01

    This paper discusses a requirements engineering process that exemplifies teacher-led design in the case of an envisioned system for adaptive learning. Such a design poses various challenges and still remains an open research issue in the field of adaptive learning. Starting from a scenario-based elicitation method, the whole process was highly…

  16. Drought Adaptation Mechanisms Should Guide Experimental Design.

    PubMed

    Gilbert, Matthew E; Medina, Viviana

    2016-08-01

    The mechanism, or hypothesis, of how a plant might be adapted to drought should strongly influence experimental design. For instance, an experiment testing for water conservation should be distinct from a damage-tolerance evaluation. We define here four new, general mechanisms for plant adaptation to drought such that experiments can be more easily designed based upon the definitions. A series of experimental methods are suggested together with appropriate physiological measurements related to the drought adaptation mechanisms. The suggestion is made that the experimental manipulation should match the rate, length, and severity of soil water deficit (SWD) necessary to test the hypothesized type of drought adaptation mechanism. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Team-Centered Perspective for Adaptive Automation Design

    NASA Technical Reports Server (NTRS)

    Prinzel, Lawrence J., III

    2003-01-01

    Automation represents a very active area of human factors research. The journal, Human Factors, published a special issue on automation in 1985. Since then, hundreds of scientific studies have been published examining the nature of automation and its interaction with human performance. However, despite a dramatic increase in research investigating human factors issues in aviation automation, there remain areas that need further exploration. This NASA Technical Memorandum describes a new area of automation design and research, called adaptive automation. It discusses the concepts and outlines the human factors issues associated with the new method of adaptive function allocation. The primary focus is on human-centered design, and specifically on ensuring that adaptive automation is from a team-centered perspective. The document shows that adaptive automation has many human factors issues common to traditional automation design. Much like the introduction of other new technologies and paradigm shifts, adaptive automation presents an opportunity to remediate current problems but poses new ones for human-automation interaction in aerospace operations. The review here is intended to communicate the philosophical perspective and direction of adaptive automation research conducted under the Aerospace Operations Systems (AOS), Physiological and Psychological Stressors and Factors (PPSF) project.

  18. Design of Low Complexity Model Reference Adaptive Controllers

    NASA Technical Reports Server (NTRS)

    Hanson, Curt; Schaefer, Jacob; Johnson, Marcus; Nguyen, Nhan

    2012-01-01

    Flight research experiments have demonstrated that adaptive flight controls can be an effective technology for improving aircraft safety in the event of failures or damage. However, the nonlinear, timevarying nature of adaptive algorithms continues to challenge traditional methods for the verification and validation testing of safety-critical flight control systems. Increasingly complex adaptive control theories and designs are emerging, but only make testing challenges more difficult. A potential first step toward the acceptance of adaptive flight controllers by aircraft manufacturers, operators, and certification authorities is a very simple design that operates as an augmentation to a non-adaptive baseline controller. Three such controllers were developed as part of a National Aeronautics and Space Administration flight research experiment to determine the appropriate level of complexity required to restore acceptable handling qualities to an aircraft that has suffered failures or damage. The controllers consist of the same basic design, but incorporate incrementally-increasing levels of complexity. Derivations of the controllers and their adaptive parameter update laws are presented along with details of the controllers implementations.

  19. Adaptation as organism design

    PubMed Central

    Gardner, Andy

    2009-01-01

    The problem of adaptation is to explain the apparent design of organisms. Darwin solved this problem with the theory of natural selection. However, population geneticists, whose responsibility it is to formalize evolutionary theory, have long neglected the link between natural selection and organismal design. Here, I review the major historical developments in theory of organismal adaptation, clarifying what adaptation is and what it is not, and I point out future avenues for research. PMID:19793739

  20. Investigation of the Multiple Method Adaptive Control (MMAC) method for flight control systems

    NASA Technical Reports Server (NTRS)

    Athans, M.; Baram, Y.; Castanon, D.; Dunn, K. P.; Green, C. S.; Lee, W. H.; Sandell, N. R., Jr.; Willsky, A. S.

    1979-01-01

    The stochastic adaptive control of the NASA F-8C digital-fly-by-wire aircraft using the multiple model adaptive control (MMAC) method is presented. The selection of the performance criteria for the lateral and the longitudinal dynamics, the design of the Kalman filters for different operating conditions, the identification algorithm associated with the MMAC method, the control system design, and simulation results obtained using the real time simulator of the F-8 aircraft at the NASA Langley Research Center are discussed.

  1. Biomimetic molecular design tools that learn, evolve, and adapt.

    PubMed

    Winkler, David A

    2017-01-01

    A dominant hallmark of living systems is their ability to adapt to changes in the environment by learning and evolving. Nature does this so superbly that intensive research efforts are now attempting to mimic biological processes. Initially this biomimicry involved developing synthetic methods to generate complex bioactive natural products. Recent work is attempting to understand how molecular machines operate so their principles can be copied, and learning how to employ biomimetic evolution and learning methods to solve complex problems in science, medicine and engineering. Automation, robotics, artificial intelligence, and evolutionary algorithms are now converging to generate what might broadly be called in silico-based adaptive evolution of materials. These methods are being applied to organic chemistry to systematize reactions, create synthesis robots to carry out unit operations, and to devise closed loop flow self-optimizing chemical synthesis systems. Most scientific innovations and technologies pass through the well-known "S curve", with slow beginning, an almost exponential growth in capability, and a stable applications period. Adaptive, evolving, machine learning-based molecular design and optimization methods are approaching the period of very rapid growth and their impact is already being described as potentially disruptive. This paper describes new developments in biomimetic adaptive, evolving, learning computational molecular design methods and their potential impacts in chemistry, engineering, and medicine.

  2. Reflections on the Adaptive Designs Accelerating Promising Trials Into Treatments (ADAPT-IT) Process—Findings from a Qualitative Study

    PubMed Central

    Guetterman, Timothy C.; Fetters, Michael D.; Legocki, Laurie J.; Mawocha, Samkeliso; Barsan, William G.; Lewis, Roger J.; Berry, Donald A.; Meurer, William J.

    2015-01-01

    Context The context for this study was the Adaptive Designs Advancing Promising Treatments Into Trials (ADAPT-IT) project, which aimed to incorporate flexible adaptive designs into pivotal clinical trials and to conduct an assessment of the trial development process. Little research provides guidance to academic institutions in planning adaptive trials. Objectives The purpose of this qualitative study was to explore the perspectives and experiences of stakeholders as they reflected back about the interactive ADAPT-IT adaptive design development process, and to understand their perspectives regarding lessons learned about the design of the trials and trial development. Materials and methods We conducted semi-structured interviews with ten key stakeholders and observations of the process. We employed qualitative thematic text data analysis to reduce the data into themes about the ADAPT-IT project and adaptive clinical trials. Results The qualitative analysis revealed four themes: education of the project participants, how the process evolved with participant feedback, procedures that could enhance the development of other trials, and education of the broader research community. Discussion and conclusions While participants became more likely to consider flexible adaptive designs, additional education is needed to both understand the adaptive methodology and articulate it when planning trials. PMID:26622163

  3. Biomimetic molecular design tools that learn, evolve, and adapt

    PubMed Central

    2017-01-01

    A dominant hallmark of living systems is their ability to adapt to changes in the environment by learning and evolving. Nature does this so superbly that intensive research efforts are now attempting to mimic biological processes. Initially this biomimicry involved developing synthetic methods to generate complex bioactive natural products. Recent work is attempting to understand how molecular machines operate so their principles can be copied, and learning how to employ biomimetic evolution and learning methods to solve complex problems in science, medicine and engineering. Automation, robotics, artificial intelligence, and evolutionary algorithms are now converging to generate what might broadly be called in silico-based adaptive evolution of materials. These methods are being applied to organic chemistry to systematize reactions, create synthesis robots to carry out unit operations, and to devise closed loop flow self-optimizing chemical synthesis systems. Most scientific innovations and technologies pass through the well-known “S curve”, with slow beginning, an almost exponential growth in capability, and a stable applications period. Adaptive, evolving, machine learning-based molecular design and optimization methods are approaching the period of very rapid growth and their impact is already being described as potentially disruptive. This paper describes new developments in biomimetic adaptive, evolving, learning computational molecular design methods and their potential impacts in chemistry, engineering, and medicine. PMID:28694872

  4. Adaptive seamless designs: selection and prospective testing of hypotheses.

    PubMed

    Jennison, Christopher; Turnbull, Bruce W

    2007-01-01

    There is a current trend towards clinical protocols which involve an initial "selection" phase followed by a hypothesis testing phase. The selection phase may involve a choice between competing treatments or different dose levels of a drug, between different target populations, between different endpoints, or between a superiority and a non-inferiority hypothesis. Clearly there can be benefits in elapsed time and economy in organizational effort if both phases can be designed up front as one experiment, with little downtime between phases. Adaptive designs have been proposed as a way to handle these selection/testing problems. They offer flexibility and allow final inferences to depend on data from both phases, while maintaining control of overall false positive rates. We review and critique the methods, give worked examples and discuss the efficiency of adaptive designs relative to more conventional procedures. Where gains are possible using the adaptive approach, a variety of logistical, operational, data handling and other practical difficulties remain to be overcome if adaptive, seamless designs are to be effectively implemented.

  5. The Potential of Adaptive Design in Animal Studies.

    PubMed

    Majid, Arshad; Bae, Ok-Nam; Redgrave, Jessica; Teare, Dawn; Ali, Ali; Zemke, Daniel

    2015-10-12

    Clinical trials are the backbone of medical research, and are often the last step in the development of new therapies for use in patients. Prior to human testing, however, preclinical studies using animal subjects are usually performed in order to provide initial data on the safety and effectiveness of prospective treatments. These studies can be costly and time consuming, and may also raise concerns about the ethical treatment of animals when potentially harmful procedures are involved. Adaptive design is a process by which the methods used in a study may be altered while it is being conducted in response to preliminary data or other new information. Adaptive design has been shown to be useful in reducing the time and costs associated with clinical trials, and may provide similar benefits in preclinical animal studies. The purpose of this review is to summarize various aspects of adaptive design and evaluate its potential for use in preclinical research.

  6. The Potential of Adaptive Design in Animal Studies

    PubMed Central

    Majid, Arshad; Bae, Ok-Nam; Redgrave, Jessica; Teare, Dawn; Ali, Ali; Zemke, Daniel

    2015-01-01

    Clinical trials are the backbone of medical research, and are often the last step in the development of new therapies for use in patients. Prior to human testing, however, preclinical studies using animal subjects are usually performed in order to provide initial data on the safety and effectiveness of prospective treatments. These studies can be costly and time consuming, and may also raise concerns about the ethical treatment of animals when potentially harmful procedures are involved. Adaptive design is a process by which the methods used in a study may be altered while it is being conducted in response to preliminary data or other new information. Adaptive design has been shown to be useful in reducing the time and costs associated with clinical trials, and may provide similar benefits in preclinical animal studies. The purpose of this review is to summarize various aspects of adaptive design and evaluate its potential for use in preclinical research. PMID:26473839

  7. Systems and Methods for Parameter Dependent Riccati Equation Approaches to Adaptive Control

    NASA Technical Reports Server (NTRS)

    Kim, Kilsoo (Inventor); Yucelen, Tansel (Inventor); Calise, Anthony J. (Inventor)

    2015-01-01

    Systems and methods for adaptive control are disclosed. The systems and methods can control uncertain dynamic systems. The control system can comprise a controller that employs a parameter dependent Riccati equation. The controller can produce a response that causes the state of the system to remain bounded. The control system can control both minimum phase and non-minimum phase systems. The control system can augment an existing, non-adaptive control design without modifying the gains employed in that design. The control system can also avoid the use of high gains in both the observer design and the adaptive control law.

  8. A Bayesian sequential design with adaptive randomization for 2-sided hypothesis test.

    PubMed

    Yu, Qingzhao; Zhu, Lin; Zhu, Han

    2017-11-01

    Bayesian sequential and adaptive randomization designs are gaining popularity in clinical trials thanks to their potentials to reduce the number of required participants and save resources. We propose a Bayesian sequential design with adaptive randomization rates so as to more efficiently attribute newly recruited patients to different treatment arms. In this paper, we consider 2-arm clinical trials. Patients are allocated to the 2 arms with a randomization rate to achieve minimum variance for the test statistic. Algorithms are presented to calculate the optimal randomization rate, critical values, and power for the proposed design. Sensitivity analysis is implemented to check the influence on design by changing the prior distributions. Simulation studies are applied to compare the proposed method and traditional methods in terms of power and actual sample sizes. Simulations show that, when total sample size is fixed, the proposed design can obtain greater power and/or cost smaller actual sample size than the traditional Bayesian sequential design. Finally, we apply the proposed method to a real data set and compare the results with the Bayesian sequential design without adaptive randomization in terms of sample sizes. The proposed method can further reduce required sample size. Copyright © 2017 John Wiley & Sons, Ltd.

  9. Practical characteristics of adaptive design in phase 2 and 3 clinical trials.

    PubMed

    Sato, A; Shimura, M; Gosho, M

    2018-04-01

    Adaptive design methods are expected to be ethical, reflect real medical practice, increase the likelihood of research and development success and reduce the allocation of patients into ineffective treatment groups by the early termination of clinical trials. However, the comprehensive details regarding which types of clinical trials will include adaptive designs remain unclear. We examined the practical characteristics of adaptive design used in clinical trials. We conducted a literature search of adaptive design clinical trials published from 2012 to 2015 using PubMed, EMBASE, and the Cochrane Central Register of Controlled Trials, with common search terms related to adaptive design. We systematically assessed the types and characteristics of adaptive designs and disease areas employed in the adaptive design trials. Our survey identified 245 adaptive design clinical trials. The number of trials by the publication year increased from 2012 to 2013 and did not greatly change afterwards. The most frequently used adaptive design was group sequential design (n = 222, 90.6%), especially for neoplasm or cardiovascular disease trials. Among the other types of adaptive design, adaptive dose/treatment group selection (n = 21, 8.6%) and adaptive sample-size adjustment (n = 19, 7.8%) were frequently used. The adaptive randomization (n = 8, 3.3%) and adaptive seamless design (n = 6, 2.4%) were less frequent. Adaptive dose/treatment group selection and adaptive sample-size adjustment were frequently used (up to 23%) in "certain infectious and parasitic diseases," "diseases of nervous system," and "mental and behavioural disorders" in comparison with "neoplasms" (<6.6%). For "mental and behavioural disorders," adaptive randomization was used in two trials of eight trials in total (25%). Group sequential design and adaptive sample-size adjustment were used frequently in phase 3 trials or in trials where study phase was not specified, whereas the other types of adaptive

  10. An adaptive two-stage sequential design for sampling rare and clustered populations

    USGS Publications Warehouse

    Brown, J.A.; Salehi, M.M.; Moradi, M.; Bell, G.; Smith, D.R.

    2008-01-01

    How to design an efficient large-area survey continues to be an interesting question for ecologists. In sampling large areas, as is common in environmental studies, adaptive sampling can be efficient because it ensures survey effort is targeted to subareas of high interest. In two-stage sampling, higher density primary sample units are usually of more interest than lower density primary units when populations are rare and clustered. Two-stage sequential sampling has been suggested as a method for allocating second stage sample effort among primary units. Here, we suggest a modification: adaptive two-stage sequential sampling. In this method, the adaptive part of the allocation process means the design is more flexible in how much extra effort can be directed to higher-abundance primary units. We discuss how best to design an adaptive two-stage sequential sample. ?? 2008 The Society of Population Ecology and Springer.

  11. Simple adaptive control system design for a quadrotor with an internal PFC

    NASA Astrophysics Data System (ADS)

    Mizumoto, Ikuro; Nakamura, Takuto; Kumon, Makoto; Takagi, Taro

    2014-12-01

    The paper deals with an adaptive control system design problem for a four rotor helicopter or quadrotor. A simple adaptive control design scheme with a parallel feedforward compensator (PFC) in the internal loop of the considered quadrotor will be proposed based on the backstepping strategy. As is well known, the backstepping control strategy is one of the advanced control strategy for nonlinear systems. However, the control algorithm will become complex if the system has higher order relative degrees. We will show that one can skip some design steps of the backstepping method by introducing a PFC in the inner loop of the considered quadrotor, so that the structure of the obtained controller will be simplified and a high gain based adaptive feedback control system will be designed. The effectiveness of the proposed method will be confirmed through numerical simulations.

  12. Adaptive Monte Carlo methods

    NASA Astrophysics Data System (ADS)

    Fasnacht, Marc

    We develop adaptive Monte Carlo methods for the calculation of the free energy as a function of a parameter of interest. The methods presented are particularly well-suited for systems with complex energy landscapes, where standard sampling techniques have difficulties. The Adaptive Histogram Method uses a biasing potential derived from histograms recorded during the simulation to achieve uniform sampling in the parameter of interest. The Adaptive Integration method directly calculates an estimate of the free energy from the average derivative of the Hamiltonian with respect to the parameter of interest and uses it as a biasing potential. We compare both methods to a state of the art method, and demonstrate that they compare favorably for the calculation of potentials of mean force of dense Lennard-Jones fluids. We use the Adaptive Integration Method to calculate accurate potentials of mean force for different types of simple particles in a Lennard-Jones fluid. Our approach allows us to separate the contributions of the solvent to the potential of mean force from the effect of the direct interaction between the particles. With contributions of the solvent determined, we can find the potential of mean force directly for any other direct interaction without additional simulations. We also test the accuracy of the Adaptive Integration Method on a thermodynamic cycle, which allows us to perform a consistency check between potentials of mean force and chemical potentials calculated using the Adaptive Integration Method. The results demonstrate a high degree of consistency of the method.

  13. Bayesian adaptive phase II screening design for combination trials

    PubMed Central

    Cai, Chunyan; Yuan, Ying; Johnson, Valen E

    2013-01-01

    Background Trials of combination therapies for the treatment of cancer are playing an increasingly important role in the battle against this disease. To more efficiently handle the large number of combination therapies that must be tested, we propose a novel Bayesian phase II adaptive screening design to simultaneously select among possible treatment combinations involving multiple agents. Methods Our design is based on formulating the selection procedure as a Bayesian hypothesis testing problem in which the superiority of each treatment combination is equated to a single hypothesis. During the trial conduct, we use the current values of the posterior probabilities of all hypotheses to adaptively allocate patients to treatment combinations. Results Simulation studies show that the proposed design substantially outperforms the conventional multiarm balanced factorial trial design. The proposed design yields a significantly higher probability for selecting the best treatment while allocating substantially more patients to efficacious treatments. Limitations The proposed design is most appropriate for the trials combining multiple agents and screening out the efficacious combination to be further investigated. Conclusions The proposed Bayesian adaptive phase II screening design substantially outperformed the conventional complete factorial design. Our design allocates more patients to better treatments while providing higher power to identify the best treatment at the end of the trial. PMID:23359875

  14. A Tutorial on Adaptive Design Optimization

    PubMed Central

    Myung, Jay I.; Cavagnaro, Daniel R.; Pitt, Mark A.

    2013-01-01

    Experimentation is ubiquitous in the field of psychology and fundamental to the advancement of its science, and one of the biggest challenges for researchers is designing experiments that can conclusively discriminate the theoretical hypotheses or models under investigation. The recognition of this challenge has led to the development of sophisticated statistical methods that aid in the design of experiments and that are within the reach of everyday experimental scientists. This tutorial paper introduces the reader to an implementable experimentation methodology, dubbed Adaptive Design Optimization, that can help scientists to conduct “smart” experiments that are maximally informative and highly efficient, which in turn should accelerate scientific discovery in psychology and beyond. PMID:23997275

  15. Simple adaptive control system design for a quadrotor with an internal PFC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mizumoto, Ikuro; Nakamura, Takuto; Kumon, Makoto

    2014-12-10

    The paper deals with an adaptive control system design problem for a four rotor helicopter or quadrotor. A simple adaptive control design scheme with a parallel feedforward compensator (PFC) in the internal loop of the considered quadrotor will be proposed based on the backstepping strategy. As is well known, the backstepping control strategy is one of the advanced control strategy for nonlinear systems. However, the control algorithm will become complex if the system has higher order relative degrees. We will show that one can skip some design steps of the backstepping method by introducing a PFC in the inner loopmore » of the considered quadrotor, so that the structure of the obtained controller will be simplified and a high gain based adaptive feedback control system will be designed. The effectiveness of the proposed method will be confirmed through numerical simulations.« less

  16. Stochastic Methods for Aircraft Design

    NASA Technical Reports Server (NTRS)

    Pelz, Richard B.; Ogot, Madara

    1998-01-01

    The global stochastic optimization method, simulated annealing (SA), was adapted and applied to various problems in aircraft design. The research was aimed at overcoming the problem of finding an optimal design in a space with multiple minima and roughness ubiquitous to numerically generated nonlinear objective functions. SA was modified to reduce the number of objective function evaluations for an optimal design, historically the main criticism of stochastic methods. SA was applied to many CFD/MDO problems including: low sonic-boom bodies, minimum drag on supersonic fore-bodies, minimum drag on supersonic aeroelastic fore-bodies, minimum drag on HSCT aeroelastic wings, FLOPS preliminary design code, another preliminary aircraft design study with vortex lattice aerodynamics, HSR complete aircraft aerodynamics. In every case, SA provided a simple, robust and reliable optimization method which found optimal designs in order 100 objective function evaluations. Perhaps most importantly, from this academic/industrial project, technology has been successfully transferred; this method is the method of choice for optimization problems at Northrop Grumman.

  17. Application of Adaptive Autopilot Designs for an Unmanned Aerial Vehicle

    NASA Technical Reports Server (NTRS)

    Shin, Yoonghyun; Calise, Anthony J.; Motter, Mark A.

    2005-01-01

    This paper summarizes the application of two adaptive approaches to autopilot design, and presents an evaluation and comparison of the two approaches in simulation for an unmanned aerial vehicle. One approach employs two-stage dynamic inversion and the other employs feedback dynamic inversions based on a command augmentation system. Both are augmented with neural network based adaptive elements. The approaches permit adaptation to both parametric uncertainty and unmodeled dynamics, and incorporate a method that permits adaptation during periods of control saturation. Simulation results for an FQM-117B radio controlled miniature aerial vehicle are presented to illustrate the performance of the neural network based adaptation.

  18. Fuzzy Adaptive Control Design and Discretization for a Class of Nonlinear Uncertain Systems.

    PubMed

    Zhao, Xudong; Shi, Peng; Zheng, Xiaolong

    2016-06-01

    In this paper, tracking control problems are investigated for a class of uncertain nonlinear systems in lower triangular form. First, a state-feedback controller is designed by using adaptive backstepping technique and the universal approximation ability of fuzzy logic systems. During the design procedure, a developed method with less computation is proposed by constructing one maximum adaptive parameter. Furthermore, adaptive controllers with nonsymmetric dead-zone are also designed for the systems. Then, a sampled-data control scheme is presented to discretize the obtained continuous-time controller by using the forward Euler method. It is shown that both proposed continuous and discrete controllers can ensure that the system output tracks the target signal with a small bounded error and the other closed-loop signals remain bounded. Two simulation examples are presented to verify the effectiveness and applicability of the proposed new design techniques.

  19. Using Bayesian Adaptive Trial Designs for Comparative Effectiveness Research: A Virtual Trial Execution.

    PubMed

    Luce, Bryan R; Connor, Jason T; Broglio, Kristine R; Mullins, C Daniel; Ishak, K Jack; Saunders, Elijah; Davis, Barry R

    2016-09-20

    Bayesian and adaptive clinical trial designs offer the potential for more efficient processes that result in lower sample sizes and shorter trial durations than traditional designs. To explore the use and potential benefits of Bayesian adaptive clinical trial designs in comparative effectiveness research. Virtual execution of ALLHAT (Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial) as if it had been done according to a Bayesian adaptive trial design. Comparative effectiveness trial of antihypertensive medications. Patient data sampled from the more than 42 000 patients enrolled in ALLHAT with publicly available data. Number of patients randomly assigned between groups, trial duration, observed numbers of events, and overall trial results and conclusions. The Bayesian adaptive approach and original design yielded similar overall trial conclusions. The Bayesian adaptive trial randomly assigned more patients to the better-performing group and would probably have ended slightly earlier. This virtual trial execution required limited resampling of ALLHAT patients for inclusion in RE-ADAPT (REsearch in ADAptive methods for Pragmatic Trials). Involvement of a data monitoring committee and other trial logistics were not considered. In a comparative effectiveness research trial, Bayesian adaptive trial designs are a feasible approach and potentially generate earlier results and allocate more patients to better-performing groups. National Heart, Lung, and Blood Institute.

  20. Adaptive designs in clinical trials: why use them, and how to run and report them.

    PubMed

    Pallmann, Philip; Bedding, Alun W; Choodari-Oskooei, Babak; Dimairo, Munyaradzi; Flight, Laura; Hampson, Lisa V; Holmes, Jane; Mander, Adrian P; Odondi, Lang'o; Sydes, Matthew R; Villar, Sofía S; Wason, James M S; Weir, Christopher J; Wheeler, Graham M; Yap, Christina; Jaki, Thomas

    2018-02-28

    Adaptive designs can make clinical trials more flexible by utilising results accumulating in the trial to modify the trial's course in accordance with pre-specified rules. Trials with an adaptive design are often more efficient, informative and ethical than trials with a traditional fixed design since they often make better use of resources such as time and money, and might require fewer participants. Adaptive designs can be applied across all phases of clinical research, from early-phase dose escalation to confirmatory trials. The pace of the uptake of adaptive designs in clinical research, however, has remained well behind that of the statistical literature introducing new methods and highlighting their potential advantages. We speculate that one factor contributing to this is that the full range of adaptations available to trial designs, as well as their goals, advantages and limitations, remains unfamiliar to many parts of the clinical community. Additionally, the term adaptive design has been misleadingly used as an all-encompassing label to refer to certain methods that could be deemed controversial or that have been inadequately implemented.We believe that even if the planning and analysis of a trial is undertaken by an expert statistician, it is essential that the investigators understand the implications of using an adaptive design, for example, what the practical challenges are, what can (and cannot) be inferred from the results of such a trial, and how to report and communicate the results. This tutorial paper provides guidance on key aspects of adaptive designs that are relevant to clinical triallists. We explain the basic rationale behind adaptive designs, clarify ambiguous terminology and summarise the utility and pitfalls of adaptive designs. We discuss practical aspects around funding, ethical approval, treatment supply and communication with stakeholders and trial participants. Our focus, however, is on the interpretation and reporting of results

  1. A modified adjoint-based grid adaptation and error correction method for unstructured grid

    NASA Astrophysics Data System (ADS)

    Cui, Pengcheng; Li, Bin; Tang, Jing; Chen, Jiangtao; Deng, Youqi

    2018-05-01

    Grid adaptation is an important strategy to improve the accuracy of output functions (e.g. drag, lift, etc.) in computational fluid dynamics (CFD) analysis and design applications. This paper presents a modified robust grid adaptation and error correction method for reducing simulation errors in integral outputs. The procedure is based on discrete adjoint optimization theory in which the estimated global error of output functions can be directly related to the local residual error. According to this relationship, local residual error contribution can be used as an indicator in a grid adaptation strategy designed to generate refined grids for accurately estimating the output functions. This grid adaptation and error correction method is applied to subsonic and supersonic simulations around three-dimensional configurations. Numerical results demonstrate that the sensitive grids to output functions are detected and refined after grid adaptation, and the accuracy of output functions is obviously improved after error correction. The proposed grid adaptation and error correction method is shown to compare very favorably in terms of output accuracy and computational efficiency relative to the traditional featured-based grid adaptation.

  2. Nonlinear adaptive control system design with asymptotically stable parameter estimation error

    NASA Astrophysics Data System (ADS)

    Mishkov, Rumen; Darmonski, Stanislav

    2018-01-01

    The paper presents a new general method for nonlinear adaptive system design with asymptotic stability of the parameter estimation error. The advantages of the approach include asymptotic unknown parameter estimation without persistent excitation and capability to directly control the estimates transient response time. The method proposed modifies the basic parameter estimation dynamics designed via a known nonlinear adaptive control approach. The modification is based on the generalised prediction error, a priori constraints with a hierarchical parameter projection algorithm, and the stable data accumulation concepts. The data accumulation principle is the main tool for achieving asymptotic unknown parameter estimation. It relies on the parametric identifiability system property introduced. Necessary and sufficient conditions for exponential stability of the data accumulation dynamics are derived. The approach is applied in a nonlinear adaptive speed tracking vector control of a three-phase induction motor.

  3. Adaptive trial designs: a review of barriers and opportunities

    PubMed Central

    2012-01-01

    Adaptive designs allow planned modifications based on data accumulating within a study. The promise of greater flexibility and efficiency stimulates increasing interest in adaptive designs from clinical, academic, and regulatory parties. When adaptive designs are used properly, efficiencies can include a smaller sample size, a more efficient treatment development process, and an increased chance of correctly answering the clinical question of interest. However, improper adaptations can lead to biased studies. A broad definition of adaptive designs allows for countless variations, which creates confusion as to the statistical validity and practical feasibility of many designs. Determining properties of a particular adaptive design requires careful consideration of the scientific context and statistical assumptions. We first review several adaptive designs that garner the most current interest. We focus on the design principles and research issues that lead to particular designs being appealing or unappealing in particular applications. We separately discuss exploratory and confirmatory stage designs in order to account for the differences in regulatory concerns. We include adaptive seamless designs, which combine stages in a unified approach. We also highlight a number of applied areas, such as comparative effectiveness research, that would benefit from the use of adaptive designs. Finally, we describe a number of current barriers and provide initial suggestions for overcoming them in order to promote wider use of appropriate adaptive designs. Given the breadth of the coverage all mathematical and most implementation details are omitted for the sake of brevity. However, the interested reader will find that we provide current references to focused reviews and original theoretical sources which lead to details of the current state of the art in theory and practice. PMID:22917111

  4. Artificial Intelligence Methods in Computer-Based Instructional Design. The Minnesota Adaptive Instructional System.

    ERIC Educational Resources Information Center

    Tennyson, Robert

    1984-01-01

    Reviews educational applications of artificial intelligence and presents empirically-based design variables for developing a computer-based instruction management system. Taken from a programmatic research effort based on the Minnesota Adaptive Instructional System, variables include amount and sequence of instruction, display time, advisement,…

  5. Dynamic optimization and adaptive controller design

    NASA Astrophysics Data System (ADS)

    Inamdar, S. R.

    2010-10-01

    In this work I present a new type of controller which is an adaptive tracking controller which employs dynamic optimization for optimizing current value of controller action for the temperature control of nonisothermal continuously stirred tank reactor (CSTR). We begin with a two-state model of nonisothermal CSTR which are mass and heat balance equations and then add cooling system dynamics to eliminate input multiplicity. The initial design value is obtained using local stability of steady states where approach temperature for cooling action is specified as a steady state and a design specification. Later we make a correction in the dynamics where material balance is manipulated to use feed concentration as a system parameter as an adaptive control measure in order to avoid actuator saturation for the main control loop. The analysis leading to design of dynamic optimization based parameter adaptive controller is presented. The important component of this mathematical framework is reference trajectory generation to form an adaptive control measure.

  6. An Adaptive Cross-Architecture Combination Method for Graph Traversal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    You, Yang; Song, Shuaiwen; Kerbyson, Darren J.

    2014-06-18

    Breadth-First Search (BFS) is widely used in many real-world applications including computational biology, social networks, and electronic design automation. The combination method, using both top-down and bottom-up techniques, is the most effective BFS approach. However, current combination methods rely on trial-and-error and exhaustive search to locate the optimal switching point, which may cause significant runtime overhead. To solve this problem, we design an adaptive method based on regression analysis to predict an optimal switching point for the combination method at runtime within less than 0.1% of the BFS execution time.

  7. Biomarker-Guided Adaptive Trial Designs in Phase II and Phase III: A Methodological Review

    PubMed Central

    Antoniou, Miranta; Jorgensen, Andrea L; Kolamunnage-Dona, Ruwanthi

    2016-01-01

    Background Personalized medicine is a growing area of research which aims to tailor the treatment given to a patient according to one or more personal characteristics. These characteristics can be demographic such as age or gender, or biological such as a genetic or other biomarker. Prior to utilizing a patient’s biomarker information in clinical practice, robust testing in terms of analytical validity, clinical validity and clinical utility is necessary. A number of clinical trial designs have been proposed for testing a biomarker’s clinical utility, including Phase II and Phase III clinical trials which aim to test the effectiveness of a biomarker-guided approach to treatment; these designs can be broadly classified into adaptive and non-adaptive. While adaptive designs allow planned modifications based on accumulating information during a trial, non-adaptive designs are typically simpler but less flexible. Methods and Findings We have undertaken a comprehensive review of biomarker-guided adaptive trial designs proposed in the past decade. We have identified eight distinct biomarker-guided adaptive designs and nine variations from 107 studies. Substantial variability has been observed in terms of how trial designs are described and particularly in the terminology used by different authors. We have graphically displayed the current biomarker-guided adaptive trial designs and summarised the characteristics of each design. Conclusions Our in-depth overview provides future researchers with clarity in definition, methodology and terminology for biomarker-guided adaptive trial designs. PMID:26910238

  8. ICASE/LaRC Workshop on Adaptive Grid Methods

    NASA Technical Reports Server (NTRS)

    South, Jerry C., Jr. (Editor); Thomas, James L. (Editor); Vanrosendale, John (Editor)

    1995-01-01

    Solution-adaptive grid techniques are essential to the attainment of practical, user friendly, computational fluid dynamics (CFD) applications. In this three-day workshop, experts gathered together to describe state-of-the-art methods in solution-adaptive grid refinement, analysis, and implementation; to assess the current practice; and to discuss future needs and directions for research. This was accomplished through a series of invited and contributed papers. The workshop focused on a set of two-dimensional test cases designed by the organizers to aid in assessing the current state of development of adaptive grid technology. In addition, a panel of experts from universities, industry, and government research laboratories discussed their views of needs and future directions in this field.

  9. Adaptive Prior Variance Calibration in the Bayesian Continual Reassessment Method

    PubMed Central

    Zhang, Jin; Braun, Thomas M.; Taylor, Jeremy M.G.

    2012-01-01

    Use of the Continual Reassessment Method (CRM) and other model-based approaches to design in Phase I clinical trials has increased due to the ability of the CRM to identify the maximum tolerated dose (MTD) better than the 3+3 method. However, the CRM can be sensitive to the variance selected for the prior distribution of the model parameter, especially when a small number of patients are enrolled. While methods have emerged to adaptively select skeletons and to calibrate the prior variance only at the beginning of a trial, there has not been any approach developed to adaptively calibrate the prior variance throughout a trial. We propose three systematic approaches to adaptively calibrate the prior variance during a trial and compare them via simulation to methods proposed to calibrate the variance at the beginning of a trial. PMID:22987660

  10. Inexact adaptive Newton methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertiger, W.I.; Kelsey, F.J.

    1985-02-01

    The Inexact Adaptive Newton method (IAN) is a modification of the Adaptive Implicit Method/sup 1/ (AIM) with improved Newton convergence. Both methods simplify the Jacobian at each time step by zeroing coefficients in regions where saturations are changing slowly. The methods differ in how the diagonal block terms are treated. On test problems with up to 3,000 cells, IAN consistently saves approximately 30% of the CPU time when compared to the fully implicit method. AIM shows similar savings on some problems, but takes as much CPU time as fully implicit on other test problems due to poor Newton convergence.

  11. Designing for Productive Adaptations of Curriculum Interventions

    ERIC Educational Resources Information Center

    Debarger, Angela Haydel; Choppin, Jeffrey; Beauvineau, Yves; Moorthy, Savitha

    2013-01-01

    Productive adaptations at the classroom level are evidence-based curriculum adaptations that are responsive to the demands of a particular classroom context and still consistent with the core design principles and intentions of a curriculum intervention. The model of design-based implementation research (DBIR) offers insights into complexities and…

  12. Computerized Adaptive Testing System Design: Preliminary Design Considerations.

    ERIC Educational Resources Information Center

    Croll, Paul R.

    A functional design model for a computerized adaptive testing (CAT) system was developed and presented through a series of hierarchy plus input-process-output (HIPO) diagrams. System functions were translated into system structure: specifically, into 34 software components. Implementation of the design in a physical system was addressed through…

  13. Optical Design for Extremely Large Telescope Adaptive Optics Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauman, Brian J.

    2003-01-01

    Designing an adaptive optics (AO) system for extremely large telescopes (ELT's) will present new optical engineering challenges. Several of these challenges are addressed in this work, including first-order design of multi-conjugate adaptive optics (MCAO) systems, pyramid wavefront sensors (PWFS's), and laser guide star (LGS) spot elongation. MCAO systems need to be designed in consideration of various constraints, including deformable mirror size and correction height. The y,{bar y} method of first-order optical design is a graphical technique that uses a plot with marginal and chief ray heights as coordinates; the optical system is represented as a segmented line. This method ismore » shown to be a powerful tool in designing MCAO systems. From these analyses, important conclusions about configurations are derived. PWFS's, which offer an alternative to Shack-Hartmann (SH) wavefront sensors (WFS's), are envisioned as the workhorse of layer-oriented adaptive optics. Current approaches use a 4-faceted glass pyramid to create a WFS analogous to a quad-cell SH WFS. PWFS's and SH WFS's are compared and some newly-considered similarities and PWFS advantages are presented. Techniques to extend PWFS's are offered: First, PWFS's can be extended to more pixels in the image by tiling pyramids contiguously. Second, pyramids, which are difficult to manufacture, can be replaced by less expensive lenslet arrays. An approach is outlined to convert existing SH WFS's to PWFS's for easy evaluation of PWFS's. Also, a demonstration of PWFS's in sensing varying amounts of an aberration is presented. For ELT's, the finite altitude and finite thickness of LGS's means that the LGS will appear elongated from the viewpoint of subapertures not directly under the telescope. Two techniques for dealing with LGS spot elongation in SH WFS's are presented. One method assumes that the laser will be pulsed and uses a segmented micro-electromechanical system (MEMS) to track the LGS light subaperture

  14. QUEST+: A general multidimensional Bayesian adaptive psychometric method.

    PubMed

    Watson, Andrew B

    2017-03-01

    QUEST+ is a Bayesian adaptive psychometric testing method that allows an arbitrary number of stimulus dimensions, psychometric function parameters, and trial outcomes. It is a generalization and extension of the original QUEST procedure and incorporates many subsequent developments in the area of parametric adaptive testing. With a single procedure, it is possible to implement a wide variety of experimental designs, including conventional threshold measurement; measurement of psychometric function parameters, such as slope and lapse; estimation of the contrast sensitivity function; measurement of increment threshold functions; measurement of noise-masking functions; Thurstone scale estimation using pair comparisons; and categorical ratings on linear and circular stimulus dimensions. QUEST+ provides a general method to accelerate data collection in many areas of cognitive and perceptual science.

  15. Adaptive envelope protection methods for aircraft

    NASA Astrophysics Data System (ADS)

    Unnikrishnan, Suraj

    Carefree handling refers to the ability of a pilot to operate an aircraft without the need to continuously monitor aircraft operating limits. At the heart of all carefree handling or maneuvering systems, also referred to as envelope protection systems, are algorithms and methods for predicting future limit violations. Recently, envelope protection methods that have gained more acceptance, translate limit proximity information to its equivalent in the control channel. Envelope protection algorithms either use very small prediction horizon or are static methods with no capability to adapt to changes in system configurations. Adaptive approaches maximizing prediction horizon such as dynamic trim, are only applicable to steady-state-response critical limit parameters. In this thesis, a new adaptive envelope protection method is developed that is applicable to steady-state and transient response critical limit parameters. The approach is based upon devising the most aggressive optimal control profile to the limit boundary and using it to compute control limits. Pilot-in-the-loop evaluations of the proposed approach are conducted at the Georgia Tech Carefree Maneuver lab for transient longitudinal hub moment limit protection. Carefree maneuvering is the dual of carefree handling in the realm of autonomous Uninhabited Aerial Vehicles (UAVs). Designing a flight control system to fully and effectively utilize the operational flight envelope is very difficult. With the increasing role and demands for extreme maneuverability there is a need for developing envelope protection methods for autonomous UAVs. In this thesis, a full-authority automatic envelope protection method is proposed for limit protection in UAVs. The approach uses adaptive estimate of limit parameter dynamics and finite-time horizon predictions to detect impending limit boundary violations. Limit violations are prevented by treating the limit boundary as an obstacle and by correcting nominal control

  16. Paradigms for adaptive statistical information designs: practical experiences and strategies.

    PubMed

    Wang, Sue-Jane; Hung, H M James; O'Neill, Robert

    2012-11-10

    In the last decade or so, interest in adaptive design clinical trials has gradually been directed towards their use in regulatory submissions by pharmaceutical drug sponsors to evaluate investigational new drugs. Methodological advances of adaptive designs are abundant in the statistical literature since the 1970s. The adaptive design paradigm has been enthusiastically perceived to increase the efficiency and to be more cost-effective than the fixed design paradigm for drug development. Much interest in adaptive designs is in those studies with two-stages, where stage 1 is exploratory and stage 2 depends upon stage 1 results, but where the data of both stages will be combined to yield statistical evidence for use as that of a pivotal registration trial. It was not until the recent release of the US Food and Drug Administration Draft Guidance for Industry on Adaptive Design Clinical Trials for Drugs and Biologics (2010) that the boundaries of flexibility for adaptive designs were specifically considered for regulatory purposes, including what are exploratory goals, and what are the goals of adequate and well-controlled (A&WC) trials (2002). The guidance carefully described these distinctions in an attempt to minimize the confusion between the goals of preliminary learning phases of drug development, which are inherently substantially uncertain, and the definitive inference-based phases of drug development. In this paper, in addition to discussing some aspects of adaptive designs in a confirmatory study setting, we underscore the value of adaptive designs when used in exploratory trials to improve planning of subsequent A&WC trials. One type of adaptation that is receiving attention is the re-estimation of the sample size during the course of the trial. We refer to this type of adaptation as an adaptive statistical information design. Specifically, a case example is used to illustrate how challenging it is to plan a confirmatory adaptive statistical information

  17. Valuation of design adaptability in aerospace systems

    NASA Astrophysics Data System (ADS)

    Fernandez Martin, Ismael

    As more information is brought into early stages of the design, more pressure is put on engineers to produce a reliable, high quality, and financially sustainable product. Unfortunately, requirements established at the beginning of a new project by customers, and the environment that surrounds them, continue to change in some unpredictable ways. The risk of designing a system that may become obsolete during early stages of production is currently tackled by the use of robust design simulation, a method that allows to simultaneously explore a plethora of design alternatives and requirements with the intention of accounting for uncertain factors in the future. Whereas this design technique has proven to be quite an improvement in design methods, under certain conditions, it fails to account for the change of uncertainty over time and the intrinsic value embedded in the system when certain design features are activated. This thesis introduces the concepts of adaptability and real options to manage risk foreseen in the face of uncertainty at early design stages. The method described herein allows decision-makers to foresee the financial impact of their decisions at the design level, as well as the final exposure to risk. In this thesis, cash flow models, traditionally used to obtain the forecast of a project's value over the years, were replaced with surrogate models that are capable of showing fluctuations on value every few days. This allowed a better implementation of real options valuation, optimization, and strategy selection. Through the option analysis model, an optimization exercise allows the user to obtain the best implementation strategy in the face of uncertainty as well as the overall value of the design feature. Here implementation strategy refers to the decision to include a new design feature in the system, after the design has been finalized, but before the end of its production life. The ability to do this in a cost efficient manner after the system

  18. Can emergency medicine research benefit from adaptive design clinical trials?

    PubMed

    Flight, Laura; Julious, Steven A; Goodacre, Steve

    2017-04-01

    Adaptive design clinical trials use preplanned interim analyses to determine whether studies should be stopped or modified before recruitment is complete. Emergency medicine trials are well suited to these designs as many have a short time to primary outcome relative to the length of recruitment. We hypothesised that the majority of published emergency medicine trials have the potential to use a simple adaptive trial design. We reviewed clinical trials published in three emergency medicine journals between January 2003 and December 2013. We determined the proportion that used an adaptive design as well as the proportion that could have used a simple adaptive design based on the time to primary outcome and length of recruitment. Only 19 of 188 trials included in the review were considered to have used an adaptive trial design. A total of 154/165 trials that were fixed in design had the potential to use an adaptive design. Currently, there seems to be limited uptake in the use of adaptive trial designs in emergency medicine despite their potential benefits to save time and resources. Failing to take advantage of adaptive designs could be costly to patients and research. It is recommended that where practical and logistical considerations allow, adaptive designs should be used for all emergency medicine clinical trials. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  19. Advances in Adaptive Control Methods

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan

    2009-01-01

    This poster presentation describes recent advances in adaptive control technology developed by NASA. Optimal Control Modification is a novel adaptive law that can improve performance and robustness of adaptive control systems. A new technique has been developed to provide an analytical method for computing time delay stability margin for adaptive control systems.

  20. An Adaptive Staggered Dose Design for a Normal Endpoint.

    PubMed

    Wu, Joseph; Menon, Sandeep; Chang, Mark

    2015-01-01

    In a clinical trial where several doses are compared to a control, a multi-stage design that combines both the selection of the best dose and the confirmation of this selected dose is desirable. An example is the two-stage drop-the-losers or pick-the-winner design, where inferior doses are dropped after interim analysis. Selection of target dose(s) can be based on ranking of observed effects, hypothesis testing with adjustment for multiplicity, or other criteria at interim stages. A number of methods have been proposed and have made significant gains in trial efficiency. However, many of these designs started off with all doses with equal allocation and did not consider prioritizing the doses using existing dose-response information. We propose an adaptive staggered dose procedure that allows explicit prioritization of doses and applies error spending scheme that favors doses with assumed better responses. This design starts off with only a subset of the doses and adaptively adds new doses depending on interim results. Using simulation, we have shown that this design performs better in terms of increased statistical power than the drop-the-losers design given strong prior information of dose response.

  1. Design of Unstructured Adaptive (UA) NAS Parallel Benchmark Featuring Irregular, Dynamic Memory Accesses

    NASA Technical Reports Server (NTRS)

    Feng, Hui-Yu; VanderWijngaart, Rob; Biswas, Rupak; Biegel, Bryan (Technical Monitor)

    2001-01-01

    We describe the design of a new method for the measurement of the performance of modern computer systems when solving scientific problems featuring irregular, dynamic memory accesses. The method involves the solution of a stylized heat transfer problem on an unstructured, adaptive grid. A Spectral Element Method (SEM) with an adaptive, nonconforming mesh is selected to discretize the transport equation. The relatively high order of the SEM lowers the fraction of wall clock time spent on inter-processor communication, which eases the load balancing task and allows us to concentrate on the memory accesses. The benchmark is designed to be three-dimensional. Parallelization and load balance issues of a reference implementation will be described in detail in future reports.

  2. A literature review of applied adaptive design methodology within the field of oncology in randomised controlled trials and a proposed extension to the CONSORT guidelines.

    PubMed

    Mistry, Pankaj; Dunn, Janet A; Marshall, Andrea

    2017-07-18

    The application of adaptive design methodology within a clinical trial setting is becoming increasingly popular. However the application of these methods within trials is not being reported as adaptive designs hence making it more difficult to capture the emerging use of these designs. Within this review, we aim to understand how adaptive design methodology is being reported, whether these methods are explicitly stated as an 'adaptive design' or if it has to be inferred and to identify whether these methods are applied prospectively or concurrently. Three databases; Embase, Ovid and PubMed were chosen to conduct the literature search. The inclusion criteria for the review were phase II, phase III and phase II/III randomised controlled trials within the field of Oncology that published trial results in 2015. A variety of search terms related to adaptive designs were used. A total of 734 results were identified, after screening 54 were eligible. Adaptive designs were more commonly applied in phase III confirmatory trials. The majority of the papers performed an interim analysis, which included some sort of stopping criteria. Additionally only two papers explicitly stated the term 'adaptive design' and therefore for most of the papers, it had to be inferred that adaptive methods was applied. Sixty-five applications of adaptive design methods were applied, from which the most common method was an adaptation using group sequential methods. This review indicated that the reporting of adaptive design methodology within clinical trials needs improving. The proposed extension to the current CONSORT 2010 guidelines could help capture adaptive design methods. Furthermore provide an essential aid to those involved with clinical trials.

  3. Adaptive design of visual perception experiments

    NASA Astrophysics Data System (ADS)

    O'Connor, John D.; Hixson, Jonathan; Thomas, James M., Jr.; Peterson, Matthew S.; Parasuraman, Raja

    2010-04-01

    Meticulous experimental design may not always prevent confounds from affecting experimental data acquired during visual perception experiments. Although experimental controls reduce the potential effects of foreseen sources of interference, interaction, or noise, they are not always adequate for preventing the confounding effects of unforeseen forces. Visual perception experimentation is vulnerable to unforeseen confounds because of the nature of the associated cognitive processes involved in the decision task. Some confounds are beyond the control of experimentation, such as what a participant does immediately prior to experimental participation, or the participant's attitude or emotional state. Other confounds may occur through ignorance of practical control methods on the part of the experiment's designer. The authors conducted experiments related to experimental fatigue and initially achieved significant results that were, upon re-examination, attributable to a lack of adequate controls. Re-examination of the original results and the processes and events that led to them yielded a second experimental design with more experimental controls and significantly different results. The authors propose that designers of visual perception experiments can benefit from planning to use a test-fix-test or adaptive experimental design cycle, so that unforeseen confounds in the initial design can be remedied.

  4. Transient analysis of an adaptive system for optimization of design parameters

    NASA Technical Reports Server (NTRS)

    Bayard, D. S.

    1992-01-01

    Averaging methods are applied to analyzing and optimizing the transient response associated with the direct adaptive control of an oscillatory second-order minimum-phase system. The analytical design methods developed for a second-order plant can be applied with some approximation to a MIMO flexible structure having a single dominant mode.

  5. A Bayesian Hybrid Adaptive Randomisation Design for Clinical Trials with Survival Outcomes.

    PubMed

    Moatti, M; Chevret, S; Zohar, S; Rosenberger, W F

    2016-01-01

    Response-adaptive randomisation designs have been proposed to improve the efficiency of phase III randomised clinical trials and improve the outcomes of the clinical trial population. In the setting of failure time outcomes, Zhang and Rosenberger (2007) developed a response-adaptive randomisation approach that targets an optimal allocation, based on a fixed sample size. The aim of this research is to propose a response-adaptive randomisation procedure for survival trials with an interim monitoring plan, based on the following optimal criterion: for fixed variance of the estimated log hazard ratio, what allocation minimizes the expected hazard of failure? We demonstrate the utility of the design by redesigning a clinical trial on multiple myeloma. To handle continuous monitoring of data, we propose a Bayesian response-adaptive randomisation procedure, where the log hazard ratio is the effect measure of interest. Combining the prior with the normal likelihood, the mean posterior estimate of the log hazard ratio allows derivation of the optimal target allocation. We perform a simulation study to assess and compare the performance of this proposed Bayesian hybrid adaptive design to those of fixed, sequential or adaptive - either frequentist or fully Bayesian - designs. Non informative normal priors of the log hazard ratio were used, as well as mixture of enthusiastic and skeptical priors. Stopping rules based on the posterior distribution of the log hazard ratio were computed. The method is then illustrated by redesigning a phase III randomised clinical trial of chemotherapy in patients with multiple myeloma, with mixture of normal priors elicited from experts. As expected, there was a reduction in the proportion of observed deaths in the adaptive vs. non-adaptive designs; this reduction was maximized using a Bayes mixture prior, with no clear-cut improvement by using a fully Bayesian procedure. The use of stopping rules allows a slight decrease in the observed

  6. Adaptive Mesh Refinement for Microelectronic Device Design

    NASA Technical Reports Server (NTRS)

    Cwik, Tom; Lou, John; Norton, Charles

    1999-01-01

    Finite element and finite volume methods are used in a variety of design simulations when it is necessary to compute fields throughout regions that contain varying materials or geometry. Convergence of the simulation can be assessed by uniformly increasing the mesh density until an observable quantity stabilizes. Depending on the electrical size of the problem, uniform refinement of the mesh may be computationally infeasible due to memory limitations. Similarly, depending on the geometric complexity of the object being modeled, uniform refinement can be inefficient since regions that do not need refinement add to the computational expense. In either case, convergence to the correct (measured) solution is not guaranteed. Adaptive mesh refinement methods attempt to selectively refine the region of the mesh that is estimated to contain proportionally higher solution errors. The refinement may be obtained by decreasing the element size (h-refinement), by increasing the order of the element (p-refinement) or by a combination of the two (h-p refinement). A successful adaptive strategy refines the mesh to produce an accurate solution measured against the correct fields without undue computational expense. This is accomplished by the use of a) reliable a posteriori error estimates, b) hierarchal elements, and c) automatic adaptive mesh generation. Adaptive methods are also useful when problems with multi-scale field variations are encountered. These occur in active electronic devices that have thin doped layers and also when mixed physics is used in the calculation. The mesh needs to be fine at and near the thin layer to capture rapid field or charge variations, but can coarsen away from these layers where field variations smoothen and charge densities are uniform. This poster will present an adaptive mesh refinement package that runs on parallel computers and is applied to specific microelectronic device simulations. Passive sensors that operate in the infrared portion of

  7. Adaptive Clinical Trials: Advantages and Disadvantages of Various Adaptive Design Elements.

    PubMed

    Korn, Edward L; Freidlin, Boris

    2017-06-01

    There is a wide range of adaptive elements of clinical trial design (some old and some new), with differing advantages and disadvantages. Classical interim monitoring, which adapts the design based on early evidence of superiority or futility of a treatment arm, has long been known to be extremely useful. A more recent application of interim monitoring is in the use of phase II/III designs, which can be very effective (especially in the setting of multiple experimental treatments and a reliable intermediate end point) but do have the cost of having to commit earlier to the phase III question than if separate phase II and phase III trials were performed. Outcome-adaptive randomization is an older technique that has recently regained attention; it increases trial complexity and duration without offering substantial benefits to the patients in the trial. The use of adaptive trials with biomarkers is new and has great potential for efficiently identifying patients who will be helped most by specific treatments. Master protocols in which trial arms and treatment questions are added to an ongoing trial can be especially efficient in the biomarker setting, where patients are screened for entry into different subtrials based on evolving knowledge about targeted therapies. A discussion of three recent adaptive clinical trials (BATTLE-2, I-SPY 2, and FOCUS4) highlights the issues. Published by Oxford University Press 2017. This work is written by US Government employees and is in the public domain in the US.

  8. Implementation of time-efficient adaptive sampling function design for improved undersampled MRI reconstruction

    NASA Astrophysics Data System (ADS)

    Choi, Jinhyeok; Kim, Hyeonjin

    2016-12-01

    To improve the efficacy of undersampled MRI, a method of designing adaptive sampling functions is proposed that is simple to implement on an MR scanner and yet effectively improves the performance of the sampling functions. An approximation of the energy distribution of an image (E-map) is estimated from highly undersampled k-space data acquired in a prescan and efficiently recycled in the main scan. An adaptive probability density function (PDF) is generated by combining the E-map with a modeled PDF. A set of candidate sampling functions are then prepared from the adaptive PDF, among which the one with maximum energy is selected as the final sampling function. To validate its computational efficiency, the proposed method was implemented on an MR scanner, and its robust performance in Fourier-transform (FT) MRI and compressed sensing (CS) MRI was tested by simulations and in a cherry tomato. The proposed method consistently outperforms the conventional modeled PDF approach for undersampling ratios of 0.2 or higher in both FT-MRI and CS-MRI. To fully benefit from undersampled MRI, it is preferable that the design of adaptive sampling functions be performed online immediately before the main scan. In this way, the proposed method may further improve the efficacy of the undersampled MRI.

  9. Test Information Targeting Strategies for Adaptive Multistage Testing Designs.

    ERIC Educational Resources Information Center

    Luecht, Richard M.; Burgin, William

    Adaptive multistage testlet (MST) designs appear to be gaining popularity for many large-scale computer-based testing programs. These adaptive MST designs use a modularized configuration of preconstructed testlets and embedded score-routing schemes to prepackage different forms of an adaptive test. The conditional information targeting (CIT)…

  10. Robust Optimal Adaptive Control Method with Large Adaptive Gain

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.

    2009-01-01

    In the presence of large uncertainties, a control system needs to be able to adapt rapidly to regain performance. Fast adaptation is referred to the implementation of adaptive control with a large adaptive gain to reduce the tracking error rapidly. However, a large adaptive gain can lead to high-frequency oscillations which can adversely affect robustness of an adaptive control law. A new adaptive control modification is presented that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. The modification is based on the minimization of the Y2 norm of the tracking error, which is formulated as an optimal control problem. The optimality condition is used to derive the modification using the gradient method. The optimal control modification results in a stable adaptation and allows a large adaptive gain to be used for better tracking while providing sufficient stability robustness. Simulations were conducted for a damaged generic transport aircraft with both standard adaptive control and the adaptive optimal control modification technique. The results demonstrate the effectiveness of the proposed modification in tracking a reference model while maintaining a sufficient time delay margin.

  11. Method and apparatus for adaptive force and position control of manipulators

    NASA Technical Reports Server (NTRS)

    Seraji, Homayoun (Inventor)

    1989-01-01

    The present invention discloses systematic methods and apparatus for the design of real time controllers. Real-time control employs adaptive force/position by use of feedforward and feedback controllers, with the feedforward controller being the inverse of the linearized model of robot dynamics and containing only proportional-double-derivative terms is disclosed. The feedback controller, of the proportional-integral-derivative type, ensures that manipulator joints follow reference trajectories and the feedback controller achieves robust tracking of step-plus-exponential trajectories, all in real time. The adaptive controller includes adaptive force and position control within a hybrid control architecture. The adaptive controller, for force control, achieves tracking of desired force setpoints, and the adaptive position controller accomplishes tracking of desired position trajectories. Circuits in the adaptive feedback and feedforward controllers are varied by adaptation laws.

  12. Impacting patient outcomes through design: acuity adaptable care/universal room design.

    PubMed

    Brown, Katherine Kay; Gallant, Dennis

    2006-01-01

    To succeed in today's challenging healthcare environment, hospitals must examine their impact on customers--patients and families--staff and physicians. By using competitive facility design and incorporating evidence-based concepts such as the acuity adaptable care delivery model and the universal room, the hospital will realize an impact on patient satisfaction that will enhance market share, on physician satisfaction that will foster loyalty, and on staff satisfaction that will decrease turnover. At the same time, clinical outcomes such as a reduction in mortality and complications and efficiencies such as a reduction in length of stay and minimization of hospital costs through the elimination of transfers can be gained. The results achieved are dependent on the principles used in designing the patient room that should focus on maximizing patient safety and improving healing. This article will review key design elements that support the success of an acuity adaptable unit such as the use of a private room with zones dedicated to patients, families, and staff, healing environment, technology, and decentralized nursing stations that support the success of the acuity adaptable unit. Outcomes of institutions currently utilizing the acuity adaptable concept will be reviewed.

  13. Design of sewage treatment system by applying fuzzy adaptive PID controller

    NASA Astrophysics Data System (ADS)

    Jin, Liang-Ping; Li, Hong-Chan

    2013-03-01

    In the sewage treatment system, the dissolved oxygen concentration control, due to its nonlinear, time-varying, large time delay and uncertainty, is difficult to establish the exact mathematical model. While the conventional PID controller only works with good linear not far from its operating point, it is difficult to realize the system control when the operating point far off. In order to solve the above problems, the paper proposed a method which combine fuzzy control with PID methods and designed a fuzzy adaptive PID controller based on S7-300 PLC .It employs fuzzy inference method to achieve the online tuning for PID parameters. The control algorithm by simulation and practical application show that the system has stronger robustness and better adaptability.

  14. Solving delay differential equations in S-ADAPT by method of steps.

    PubMed

    Bauer, Robert J; Mo, Gary; Krzyzanski, Wojciech

    2013-09-01

    S-ADAPT is a version of the ADAPT program that contains additional simulation and optimization abilities such as parametric population analysis. S-ADAPT utilizes LSODA to solve ordinary differential equations (ODEs), an algorithm designed for large dimension non-stiff and stiff problems. However, S-ADAPT does not have a solver for delay differential equations (DDEs). Our objective was to implement in S-ADAPT a DDE solver using the methods of steps. The method of steps allows one to solve virtually any DDE system by transforming it to an ODE system. The solver was validated for scalar linear DDEs with one delay and bolus and infusion inputs for which explicit analytic solutions were derived. Solutions of nonlinear DDE problems coded in S-ADAPT were validated by comparing them with ones obtained by the MATLAB DDE solver dde23. The estimation of parameters was tested on the MATLB simulated population pharmacodynamics data. The comparison of S-ADAPT generated solutions for DDE problems with the explicit solutions as well as MATLAB produced solutions which agreed to at least 7 significant digits. The population parameter estimates from using importance sampling expectation-maximization in S-ADAPT agreed with ones used to generate the data. Published by Elsevier Ireland Ltd.

  15. Adjoint-Based Algorithms for Adaptation and Design Optimizations on Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Nielsen, Eric J.

    2006-01-01

    Schemes based on discrete adjoint algorithms present several exciting opportunities for significantly advancing the current state of the art in computational fluid dynamics. Such methods provide an extremely efficient means for obtaining discretely consistent sensitivity information for hundreds of design variables, opening the door to rigorous, automated design optimization of complex aerospace configuration using the Navier-Stokes equation. Moreover, the discrete adjoint formulation provides a mathematically rigorous foundation for mesh adaptation and systematic reduction of spatial discretization error. Error estimates are also an inherent by-product of an adjoint-based approach, valuable information that is virtually non-existent in today's large-scale CFD simulations. An overview of the adjoint-based algorithm work at NASA Langley Research Center is presented, with examples demonstrating the potential impact on complex computational problems related to design optimization as well as mesh adaptation.

  16. Survey of adaptive control using Liapunov design

    NASA Technical Reports Server (NTRS)

    Lindorff, D. P.; Carroll, R. L.

    1973-01-01

    A survey of the literature in which Liapunov's second method is used in determining the control law is presented, with emphasis placed on the model-tracking adaptive control problem. Forty references are listed. Following a brief tutorial exposition of the adaptive control problem, the techniques for treating reduction of order, disturbance and time-varying parameters, multivariable systems, identification, and adaptive observers are discussed. The method is critically evaluated, particularly with respect to possibilities for application.

  17. Towards Individualized Online Learning: The Design and Development of an Adaptive Web Based Learning Environment

    ERIC Educational Resources Information Center

    Inan, Fethi A.; Flores, Raymond; Ari, Fatih; Arslan-Ari, Ismahan

    2011-01-01

    The purpose of this study was to document the design and development of an adaptive system which individualizes instruction such as content, interfaces, instructional strategies, and resources dependent on two factors, namely student motivation and prior knowledge levels. Combining adaptive hypermedia methods with strategies proposed by…

  18. A self-organizing Lagrangian particle method for adaptive-resolution advection-diffusion simulations

    NASA Astrophysics Data System (ADS)

    Reboux, Sylvain; Schrader, Birte; Sbalzarini, Ivo F.

    2012-05-01

    We present a novel adaptive-resolution particle method for continuous parabolic problems. In this method, particles self-organize in order to adapt to local resolution requirements. This is achieved by pseudo forces that are designed so as to guarantee that the solution is always well sampled and that no holes or clusters develop in the particle distribution. The particle sizes are locally adapted to the length scale of the solution. Differential operators are consistently evaluated on the evolving set of irregularly distributed particles of varying sizes using discretization-corrected operators. The method does not rely on any global transforms or mapping functions. After presenting the method and its error analysis, we demonstrate its capabilities and limitations on a set of two- and three-dimensional benchmark problems. These include advection-diffusion, the Burgers equation, the Buckley-Leverett five-spot problem, and curvature-driven level-set surface refinement.

  19. Statistical controversies in clinical research: early-phase adaptive design for combination immunotherapies.

    PubMed

    Wages, N A; Slingluff, C L; Petroni, G R

    2017-04-01

    In recent years, investigators have asserted that the 3 + 3 design lacks flexibility, making its use in modern early-phase trial settings, such as combinations and/or biological agents, inefficient. More innovative approaches are required to address contemporary research questions, such as those posed in trials involving immunotherapies. We describe the implementation of an adaptive design for identifying an optimal treatment regimen, defined by low toxicity and high immune response, in an early-phase trial of a melanoma helper peptide vaccine plus novel adjuvant combinations. Operating characteristics demonstrate the ability of the method to effectively recommend optimal regimens in a high percentage of trials with reasonable sample sizes. The proposed design is a practical, early-phase, adaptive method for use with combined immunotherapy regimens. This design can be applied more broadly to early-phase combination studies, as it was used in an ongoing study of two small molecule inhibitors in relapsed/refractory mantle cell lymphoma. © The Author 2016. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  20. New adaptive method to optimize the secondary reflector of linear Fresnel collectors

    DOE PAGES

    Zhu, Guangdong

    2017-01-16

    Performance of linear Fresnel collectors may largely depend on the secondary-reflector profile design when small-aperture absorbers are used. Optimization of the secondary-reflector profile is an extremely challenging task because there is no established theory to ensure superior performance of derived profiles. In this work, an innovative optimization method is proposed to optimize the secondary-reflector profile of a generic linear Fresnel configuration. The method correctly and accurately captures impacts of both geometric and optical aspects of a linear Fresnel collector to secondary-reflector design. The proposed method is an adaptive approach that does not assume a secondary shape of any particular form,more » but rather, starts at a single edge point and adaptively constructs the next surface point to maximize the reflected power to be reflected to absorber(s). As a test case, the proposed optimization method is applied to an industrial linear Fresnel configuration, and the results show that the derived optimal secondary reflector is able to redirect more than 90% of the power to the absorber in a wide range of incidence angles. Here, the proposed method can be naturally extended to other types of solar collectors as well, and it will be a valuable tool for solar-collector designs with a secondary reflector.« less

  1. New adaptive method to optimize the secondary reflector of linear Fresnel collectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Guangdong

    Performance of linear Fresnel collectors may largely depend on the secondary-reflector profile design when small-aperture absorbers are used. Optimization of the secondary-reflector profile is an extremely challenging task because there is no established theory to ensure superior performance of derived profiles. In this work, an innovative optimization method is proposed to optimize the secondary-reflector profile of a generic linear Fresnel configuration. The method correctly and accurately captures impacts of both geometric and optical aspects of a linear Fresnel collector to secondary-reflector design. The proposed method is an adaptive approach that does not assume a secondary shape of any particular form,more » but rather, starts at a single edge point and adaptively constructs the next surface point to maximize the reflected power to be reflected to absorber(s). As a test case, the proposed optimization method is applied to an industrial linear Fresnel configuration, and the results show that the derived optimal secondary reflector is able to redirect more than 90% of the power to the absorber in a wide range of incidence angles. Here, the proposed method can be naturally extended to other types of solar collectors as well, and it will be a valuable tool for solar-collector designs with a secondary reflector.« less

  2. Numerical design of an adaptive aileron

    NASA Astrophysics Data System (ADS)

    Amendola, Gianluca; Dimino, Ignazio; Concilio, Antonio; Magnifico, Marco; Pecora, Rosario

    2016-04-01

    The study herein described is aimed at investigating the feasibility of an innovative full-scale camber morphing aileron device. In the framework of the "Adaptive Aileron" project, an international cooperation between Italy and Canada, this goal was carried out with the integration of different morphing concepts in a wing-tip prototype. As widely demonstrated in recent European projects such as Clean Sky JTI and SARISTU, wing trailing edge morphing may lead to significant drag reduction (up to 6%) in off-design flight points by adapting chord-wise camber variations in cruise to compensate A/C weight reduction following fuel consumption. Those researches focused on the flap region as the most immediate solution to implement structural adaptations. However, there is also a growing interest in extending morphing functionalities to the aileron region preserving its main functionality in controlling aircraft directional stability. In fact, the external region of the wing seems to be the most effective in producing "lift over drag" improvements by morphing. Thus, the objective of the presented research is to achieve a certain drag reduction in off-design flight points by adapting wing shape and lift distribution following static deflections. In perspective, the developed device could also be used as a load alleviation system to reduce gust effects, augmenting its frequency bandwidth. In this paper, the preliminary design of the adaptive aileron is first presented, assessed on the base of the external aerodynamic loads. The primary structure is made of 5 segmented ribs, distributed along 4 bays, each splitted into three consecutive parts, connected with spanwise stringers. The aileron shape modification is then implemented by means of an actuation system, based on a classical quick-return mechanism, opportunely suited for the presented application. Finite element analyses were assessed for properly sizing the load-bearing structure and actuation systems and for

  3. Design of infrasound-detection system via adaptive LMSTDE algorithm

    NASA Technical Reports Server (NTRS)

    Khalaf, C. S.; Stoughton, J. W.

    1984-01-01

    A proposed solution to an aviation safety problem is based on passive detection of turbulent weather phenomena through their infrasonic emission. This thesis describes a system design that is adequate for detection and bearing evaluation of infrasounds. An array of four sensors, with the appropriate hardware, is used for the detection part. Bearing evaluation is based on estimates of time delays between sensor outputs. The generalized cross correlation (GCC), as the conventional time-delay estimation (TDE) method, is first reviewed. An adaptive TDE approach, using the least mean square (LMS) algorithm, is then discussed. A comparison between the two techniques is made and the advantages of the adaptive approach are listed. The behavior of the GCC, as a Roth processor, is examined for the anticipated signals. It is shown that the Roth processor has the desired effect of sharpening the peak of the correlation function. It is also shown that the LMSTDE technique is an equivalent implementation of the Roth processor in the time domain. A LMSTDE lead-lag model, with a variable stability coefficient and a convergence criterion, is designed.

  4. The stochastic control of the F-8C aircraft using the Multiple Model Adaptive Control (MMAC) method

    NASA Technical Reports Server (NTRS)

    Athans, M.; Dunn, K. P.; Greene, E. S.; Lee, W. H.; Sandel, N. R., Jr.

    1975-01-01

    The purpose of this paper is to summarize results obtained for the adaptive control of the F-8C aircraft using the so-called Multiple Model Adaptive Control method. The discussion includes the selection of the performance criteria for both the lateral and the longitudinal dynamics, the design of the Kalman filters for different flight conditions, the 'identification' aspects of the design using hypothesis testing ideas, and the performance of the closed loop adaptive system.

  5. Adaptive design clinical trials: a review of the literature and ClinicalTrials.gov

    PubMed Central

    Bothwell, Laura E; Avorn, Jerry; Khan, Nazleen F; Kesselheim, Aaron S

    2018-01-01

    Objectives This review investigates characteristics of implemented adaptive design clinical trials and provides examples of regulatory experience with such trials. Design Review of adaptive design clinical trials in EMBASE, PubMed, Cochrane Registry of Controlled Clinical Trials, Web of Science and ClinicalTrials.gov. Phase I and seamless Phase I/II trials were excluded. Variables extracted from trials included basic study characteristics, adaptive design features, size and use of independent data monitoring committees (DMCs) and blinded interim analyses. We also examined use of the adaptive trials in new drug submissions to the Food and Drug Administration (FDA) and European Medicines Agency (EMA) and recorded regulators’ experiences with adaptive designs. Results 142 studies met inclusion criteria. There has been a recent growth in publicly reported use of adaptive designs among researchers around the world. The most frequently appearing types of adaptations were seamless Phase II/III (57%), group sequential (21%), biomarker adaptive (20%), and adaptive dose-finding designs (16%). About one-third (32%) of trials reported an independent DMC, while 6% reported blinded interim analysis. We found that 9% of adaptive trials were used for FDA product approval consideration, and 12% were used for EMA product approval consideration. International regulators had mixed experiences with adaptive trials. Many product applications with adaptive trials had extensive correspondence between drug sponsors and regulators regarding the adaptive designs, in some cases with regulators requiring revisions or alterations to research designs. Conclusions Wider use of adaptive designs will necessitate new drug application sponsors to engage with regulatory scientists during planning and conduct of the trials. Investigators need to more consistently report protections intended to preserve confidentiality and minimise potential operational bias during interim analysis. PMID:29440155

  6. Adaptive control method for core power control in TRIGA Mark II reactor

    NASA Astrophysics Data System (ADS)

    Sabri Minhat, Mohd; Selamat, Hazlina; Subha, Nurul Adilla Mohd

    2018-01-01

    The 1MWth Reactor TRIGA PUSPATI (RTP) Mark II type has undergone more than 35 years of operation. The existing core power control uses feedback control algorithm (FCA). It is challenging to keep the core power stable at the desired value within acceptable error bands to meet the safety demand of RTP due to the sensitivity of nuclear research reactor operation. Currently, the system is not satisfied with power tracking performance and can be improved. Therefore, a new design core power control is very important to improve the current performance in tracking and regulate reactor power by control the movement of control rods. In this paper, the adaptive controller and focus on Model Reference Adaptive Control (MRAC) and Self-Tuning Control (STC) were applied to the control of the core power. The model for core power control was based on mathematical models of the reactor core, adaptive controller model, and control rods selection programming. The mathematical models of the reactor core were based on point kinetics model, thermal hydraulic models, and reactivity models. The adaptive control model was presented using Lyapunov method to ensure stable close loop system and STC Generalised Minimum Variance (GMV) Controller was not necessary to know the exact plant transfer function in designing the core power control. The performance between proposed adaptive control and FCA will be compared via computer simulation and analysed the simulation results manifest the effectiveness and the good performance of the proposed control method for core power control.

  7. Method study on fuzzy-PID adaptive control of electric-hydraulic hitch system

    NASA Astrophysics Data System (ADS)

    Li, Mingsheng; Wang, Liubu; Liu, Jian; Ye, Jin

    2017-03-01

    In this paper, fuzzy-PID adaptive control method is applied to the control of tractor electric-hydraulic hitch system. According to the characteristics of the system, a fuzzy-PID adaptive controller is designed and the electric-hydraulic hitch system model is established. Traction control and position control performance simulation are carried out with the common PID control method. A field test rig was set up to test the electric-hydraulic hitch system. The test results showed that, after the fuzzy-PID adaptive control is adopted, when the tillage depth steps from 0.1m to 0.3m, the system transition process time is 4s, without overshoot, and when the tractive force steps from 3000N to 7000N, the system transition process time is 5s, the system overshoot is 25%.

  8. Design of telehealth trials--introducing adaptive approaches.

    PubMed

    Law, Lisa M; Wason, James M S

    2014-12-01

    The field of telehealth and telemedicine is expanding as the need to improve efficiency of health care becomes more pressing. The decision to implement a telehealth system is generally an expensive undertaking that impacts a large number of patients and other stakeholders. It is therefore extremely important that the decision is fully supported by accurate evaluation of telehealth interventions. Numerous reviews of telehealth have described the evidence base as inconsistent. In response they call for larger, more rigorously controlled trials, and trials which go beyond evaluation of clinical effectiveness alone. The aim of this paper is to discuss various ways in which evaluation of telehealth could be improved by the use of adaptive trial designs. We discuss various adaptive design options, such as sample size reviews and changing the study hypothesis to address uncertain parameters, group sequential trials and multi-arm multi-stage trials to improve efficiency, and enrichment designs to maximise the chances of obtaining clear evidence about the telehealth intervention. There is potential to address the flaws discussed in the telehealth literature through the adoption of adaptive approaches to trial design. Such designs could lead to improvements in efficiency, allow the evaluation of multiple telehealth interventions in a cost-effective way, or accurately assess a range of endpoints that are important in the overall success of a telehealth programme. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  9. Application of Adaptive Design Methodology in Development of a Long-Acting Glucagon-Like Peptide-1 Analog (Dulaglutide): Statistical Design and Simulations

    PubMed Central

    Skrivanek, Zachary; Berry, Scott; Berry, Don; Chien, Jenny; Geiger, Mary Jane; Anderson, James H.; Gaydos, Brenda

    2012-01-01

    Background Dulaglutide (dula, LY2189265), a long-acting glucagon-like peptide-1 analog, is being developed to treat type 2 diabetes mellitus. Methods To foster the development of dula, we designed a two-stage adaptive, dose-finding, inferentially seamless phase 2/3 study. The Bayesian theoretical framework is used to adaptively randomize patients in stage 1 to 7 dula doses and, at the decision point, to either stop for futility or to select up to 2 dula doses for stage 2. After dose selection, patients continue to be randomized to the selected dula doses or comparator arms. Data from patients assigned the selected doses will be pooled across both stages and analyzed with an analysis of covariance model, using baseline hemoglobin A1c and country as covariates. The operating characteristics of the trial were assessed by extensive simulation studies. Results Simulations demonstrated that the adaptive design would identify the correct doses 88% of the time, compared to as low as 6% for a fixed-dose design (the latter value based on frequentist decision rules analogous to the Bayesian decision rules for adaptive design). Conclusions This article discusses the decision rules used to select the dula dose(s); the mathematical details of the adaptive algorithm—including a description of the clinical utility index used to mathematically quantify the desirability of a dose based on safety and efficacy measurements; and a description of the simulation process and results that quantify the operating characteristics of the design. PMID:23294775

  10. Accelerated Adaptive Integration Method

    PubMed Central

    2015-01-01

    Conformational changes that occur upon ligand binding may be too slow to observe on the time scales routinely accessible using molecular dynamics simulations. The adaptive integration method (AIM) leverages the notion that when a ligand is either fully coupled or decoupled, according to λ, barrier heights may change, making some conformational transitions more accessible at certain λ values. AIM adaptively changes the value of λ in a single simulation so that conformations sampled at one value of λ seed the conformational space sampled at another λ value. Adapting the value of λ throughout a simulation, however, does not resolve issues in sampling when barriers remain high regardless of the λ value. In this work, we introduce a new method, called Accelerated AIM (AcclAIM), in which the potential energy function is flattened at intermediate values of λ, promoting the exploration of conformational space as the ligand is decoupled from its receptor. We show, with both a simple model system (Bromocyclohexane) and the more complex biomolecule Thrombin, that AcclAIM is a promising approach to overcome high barriers in the calculation of free energies, without the need for any statistical reweighting or additional processors. PMID:24780083

  11. Experiences with an adaptive design for a dose-finding study in patients with osteoarthritis.

    PubMed

    Miller, Frank; Björnsson, Marcus; Svensson, Ola; Karlsten, Rolf

    2014-03-01

    Dose-finding studies in non-oncology areas are usually conducted in Phase II of the development process of a new potential medicine and it is key to choose a good design for such a study, as the results will decide if and how to proceed to Phase III. The present article has focus on the design of a dose-finding study for pain in osteoarthritis patients treated with the TRPV1 antagonist AZD1386. We describe different design alternatives in the planning of this study, the reasoning for choosing the adaptive design and experiences with conduct and interim analysis. Three alternatives were proposed: one single dose-finding study with parallel design, a programme with a smaller Phase IIa study followed by a Phase IIb dose-finding study, and an adaptive dose-finding study. We describe these alternatives in detail and explain why the adaptive design was chosen for the study. We give insights in design aspects of the adaptive study, which need to be pre-planned, like interim decision criteria, statistical analysis method and setup of a Data Monitoring Committee. Based on the interim analysis it was recommended to stop the study for futility since AZD1386 showed no significant pain decrease based on the primary variable. We discuss results and experiences from the conduct of the study with the novel design approach. Huge cost savings have been done compared to if the option with one dose-finding design for Phase II had been chosen. However, we point out several challenges with this approach. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. An evaluation of inferential procedures for adaptive clinical trial designs with pre-specified rules for modifying the sample size.

    PubMed

    Levin, Gregory P; Emerson, Sarah C; Emerson, Scott S

    2014-09-01

    Many papers have introduced adaptive clinical trial methods that allow modifications to the sample size based on interim estimates of treatment effect. There has been extensive commentary on type I error control and efficiency considerations, but little research on estimation after an adaptive hypothesis test. We evaluate the reliability and precision of different inferential procedures in the presence of an adaptive design with pre-specified rules for modifying the sampling plan. We extend group sequential orderings of the outcome space based on the stage at stopping, likelihood ratio statistic, and sample mean to the adaptive setting in order to compute median-unbiased point estimates, exact confidence intervals, and P-values uniformly distributed under the null hypothesis. The likelihood ratio ordering is found to average shorter confidence intervals and produce higher probabilities of P-values below important thresholds than alternative approaches. The bias adjusted mean demonstrates the lowest mean squared error among candidate point estimates. A conditional error-based approach in the literature has the benefit of being the only method that accommodates unplanned adaptations. We compare the performance of this and other methods in order to quantify the cost of failing to plan ahead in settings where adaptations could realistically be pre-specified at the design stage. We find the cost to be meaningful for all designs and treatment effects considered, and to be substantial for designs frequently proposed in the literature. © 2014, The International Biometric Society.

  13. Bayesian adaptive phase II screening design for combination trials.

    PubMed

    Cai, Chunyan; Yuan, Ying; Johnson, Valen E

    2013-01-01

    Trials of combination therapies for the treatment of cancer are playing an increasingly important role in the battle against this disease. To more efficiently handle the large number of combination therapies that must be tested, we propose a novel Bayesian phase II adaptive screening design to simultaneously select among possible treatment combinations involving multiple agents. Our design is based on formulating the selection procedure as a Bayesian hypothesis testing problem in which the superiority of each treatment combination is equated to a single hypothesis. During the trial conduct, we use the current values of the posterior probabilities of all hypotheses to adaptively allocate patients to treatment combinations. Simulation studies show that the proposed design substantially outperforms the conventional multiarm balanced factorial trial design. The proposed design yields a significantly higher probability for selecting the best treatment while allocating substantially more patients to efficacious treatments. The proposed design is most appropriate for the trials combining multiple agents and screening out the efficacious combination to be further investigated. The proposed Bayesian adaptive phase II screening design substantially outperformed the conventional complete factorial design. Our design allocates more patients to better treatments while providing higher power to identify the best treatment at the end of the trial.

  14. Fast spacecraft adaptive attitude tracking control through immersion and invariance design

    NASA Astrophysics Data System (ADS)

    Wen, Haowei; Yue, Xiaokui; Li, Peng; Yuan, Jianping

    2017-10-01

    This paper presents a novel non-certainty-equivalence adaptive control method for the attitude tracking control problem of spacecraft with inertia uncertainties. The proposed immersion and invariance (I&I) based adaptation law provides a more direct and flexible approach to circumvent the limitations of the basic I&I method without employing any filter signal. By virtue of the adaptation high-gain equivalence property derived from the proposed adaptive method, the closed-loop adaptive system with a low adaptation gain could recover the high adaptation gain performance of the filter-based I&I method, and the resulting control torque demands during the initial transient has been significantly reduced. A special feature of this method is that the convergence of the parameter estimation error has been observably improved by utilizing an adaptation gain matrix instead of a single adaptation gain value. Numerical simulations are presented to highlight the various benefits of the proposed method compared with the certainty-equivalence-based control method and filter-based I&I control schemes.

  15. Bayesian selective response-adaptive design using the historical control.

    PubMed

    Kim, Mi-Ok; Harun, Nusrat; Liu, Chunyan; Khoury, Jane C; Broderick, Joseph P

    2018-06-13

    High quality historical control data, if incorporated, may reduce sample size, trial cost, and duration. A too optimistic use of the data, however, may result in bias under prior-data conflict. Motivated by well-publicized two-arm comparative trials in stroke, we propose a Bayesian design that both adaptively incorporates historical control data and selectively adapt the treatment allocation ratios within an ongoing trial responsively to the relative treatment effects. The proposed design differs from existing designs that borrow from historical controls. As opposed to reducing the number of subjects assigned to the control arm blindly, this design does so adaptively to the relative treatment effects only if evaluation of cumulated current trial data combined with the historical control suggests the superiority of the intervention arm. We used the effective historical sample size approach to quantify borrowed information on the control arm and modified the treatment allocation rules of the doubly adaptive biased coin design to incorporate the quantity. The modified allocation rules were then implemented under the Bayesian framework with commensurate priors addressing prior-data conflict. Trials were also more frequently concluded earlier in line with the underlying truth, reducing trial cost, and duration and yielded parameter estimates with smaller standard errors. © 2018 The Authors. Statistics in Medicine Published by John Wiley & Sons, Ltd.

  16. Application of positive-real functions in hyperstable discrete model-reference adaptive system design.

    NASA Technical Reports Server (NTRS)

    Karmarkar, J. S.

    1972-01-01

    Proposal of an algorithmic procedure, based on mathematical programming methods, to design compensators for hyperstable discrete model-reference adaptive systems (MRAS). The objective of the compensator is to render the MRAS insensitive to initial parameter estimates within a maximized hypercube in the model parameter space.

  17. Adapt Design: A Methodology for Enabling Modular Design for Mission Specific SUAS

    DTIC Science & Technology

    2016-08-24

    ADAPT DESIGN: A METHODOLOGY FOR ENABLING MODULAR DESIGN FOR MISSION SPECIFIC SUAS Zachary C. Fisher David Locascio K. Daniel Cooksey...vehicle’s small scale. This paper considers a different approach to SUAS design aimed at addressing this issue. In this approach, a hybrid modular and...Two types of platforms have been identified: scalable platforms where variants are produced by varying scalable design variables, and modular

  18. Adaptive Finite Element Methods for Continuum Damage Modeling

    NASA Technical Reports Server (NTRS)

    Min, J. B.; Tworzydlo, W. W.; Xiques, K. E.

    1995-01-01

    The paper presents an application of adaptive finite element methods to the modeling of low-cycle continuum damage and life prediction of high-temperature components. The major objective is to provide automated and accurate modeling of damaged zones through adaptive mesh refinement and adaptive time-stepping methods. The damage modeling methodology is implemented in an usual way by embedding damage evolution in the transient nonlinear solution of elasto-viscoplastic deformation problems. This nonlinear boundary-value problem is discretized by adaptive finite element methods. The automated h-adaptive mesh refinements are driven by error indicators, based on selected principal variables in the problem (stresses, non-elastic strains, damage, etc.). In the time domain, adaptive time-stepping is used, combined with a predictor-corrector time marching algorithm. The time selection is controlled by required time accuracy. In order to take into account strong temperature dependency of material parameters, the nonlinear structural solution a coupled with thermal analyses (one-way coupling). Several test examples illustrate the importance and benefits of adaptive mesh refinements in accurate prediction of damage levels and failure time.

  19. Optimal Bayesian Adaptive Design for Test-Item Calibration.

    PubMed

    van der Linden, Wim J; Ren, Hao

    2015-06-01

    An optimal adaptive design for test-item calibration based on Bayesian optimality criteria is presented. The design adapts the choice of field-test items to the examinees taking an operational adaptive test using both the information in the posterior distributions of their ability parameters and the current posterior distributions of the field-test parameters. Different criteria of optimality based on the two types of posterior distributions are possible. The design can be implemented using an MCMC scheme with alternating stages of sampling from the posterior distributions of the test takers' ability parameters and the parameters of the field-test items while reusing samples from earlier posterior distributions of the other parameters. Results from a simulation study demonstrated the feasibility of the proposed MCMC implementation for operational item calibration. A comparison of performances for different optimality criteria showed faster calibration of substantial numbers of items for the criterion of D-optimality relative to A-optimality, a special case of c-optimality, and random assignment of items to the test takers.

  20. Adaptive strategies for materials design using uncertainties

    DOE PAGES

    Balachandran, Prasanna V.; Xue, Dezhen; Theiler, James; ...

    2016-01-21

    Here, we compare several adaptive design strategies using a data set of 223 M2AX family of compounds for which the elastic properties [bulk (B), shear (G), and Young’s (E) modulus] have been computed using density functional theory. The design strategies are decomposed into an iterative loop with two main steps: machine learning is used to train a regressor that predicts elastic properties in terms of elementary orbital radii of the individual components of the materials; and a selector uses these predictions and their uncertainties to choose the next material to investigate. The ultimate goal is to obtain a material withmore » desired elastic properties in as few iterations as possible. We examine how the choice of data set size, regressor and selector impact the design. We find that selectors that use information about the prediction uncertainty outperform those that don’t. Our work is a step in illustrating how adaptive design tools can guide the search for new materials with desired properties.« less

  1. Adaptive strategies for materials design using uncertainties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balachandran, Prasanna V.; Xue, Dezhen; Theiler, James

    Here, we compare several adaptive design strategies using a data set of 223 M2AX family of compounds for which the elastic properties [bulk (B), shear (G), and Young’s (E) modulus] have been computed using density functional theory. The design strategies are decomposed into an iterative loop with two main steps: machine learning is used to train a regressor that predicts elastic properties in terms of elementary orbital radii of the individual components of the materials; and a selector uses these predictions and their uncertainties to choose the next material to investigate. The ultimate goal is to obtain a material withmore » desired elastic properties in as few iterations as possible. We examine how the choice of data set size, regressor and selector impact the design. We find that selectors that use information about the prediction uncertainty outperform those that don’t. Our work is a step in illustrating how adaptive design tools can guide the search for new materials with desired properties.« less

  2. Design and analysis of adaptive Super-Twisting sliding mode control for a microgyroscope.

    PubMed

    Feng, Zhilin; Fei, Juntao

    2018-01-01

    This paper proposes a novel adaptive Super-Twisting sliding mode control for a microgyroscope under unknown model uncertainties and external disturbances. In order to improve the convergence rate of reaching the sliding surface and the accuracy of regulating and trajectory tracking, a high order Super-Twisting sliding mode control strategy is employed, which not only can combine the advantages of the traditional sliding mode control with the Super-Twisting sliding mode control, but also guarantee that the designed control system can reach the sliding surface and equilibrium point in a shorter finite time from any initial state and avoid chattering problems. In consideration of unknown parameters of micro gyroscope system, an adaptive algorithm based on Lyapunov stability theory is designed to estimate the unknown parameters and angular velocity of microgyroscope. Finally, the effectiveness of the proposed scheme is demonstrated by simulation results. The comparative study between adaptive Super-Twisting sliding mode control and conventional sliding mode control demonstrate the superiority of the proposed method.

  3. An analysis of adaptive design variations on the sequential parallel comparison design for clinical trials

    PubMed Central

    Mi, Michael Y.; Betensky, Rebecca A.

    2013-01-01

    Background Currently, a growing placebo response rate has been observed in clinical trials for antidepressant drugs, a phenomenon that has made it increasingly difficult to demonstrate efficacy. The sequential parallel comparison design (SPCD) is a clinical trial design that was proposed to address this issue. The SPCD theoretically has the potential to reduce the sample size requirement for a clinical trial and to simultaneously enrich the study population to be less responsive to the placebo. Purpose Because the basic SPCD design already reduces the placebo response by removing placebo responders between the first and second phases of a trial, the purpose of this study was to examine whether we can further improve the efficiency of the basic SPCD and if we can do so when the projected underlying drug and placebo response rates differ considerably from the actual ones. Methods Three adaptive designs that used interim analyses to readjust the length of study duration for individual patients were tested to reduce the sample size requirement or increase the statistical power of the SPCD. Various simulations of clinical trials using the SPCD with interim analyses were conducted to test these designs through calculations of empirical power. Results From the simulations, we found that the adaptive designs can recover unnecessary resources spent in the traditional SPCD trial format with overestimated initial sample sizes and provide moderate gains in power. Under the first design, results showed up to a 25% reduction in person-days, with most power losses below 5%. In the second design, results showed up to a 8% reduction in person-days with negligible loss of power. In the third design using sample size re-estimation, up to 25% power was recovered from underestimated sample size scenarios. Limitations Given the numerous possible test parameters that could have been chosen for the simulations, the study’s results are limited to situations described by the parameters

  4. Topological Methods for Design and Control of Adaptive Stochastic Complex Systems - to Meet the Challenges of Resilient Urban Infrastructure

    DTIC Science & Technology

    2017-03-24

    for Design and Control of Adaptive Stochastic Complex Systems John Baillieul∗ Contents 1 Executive Summary 2 2 Introduction and Issues to Be Addressed...difficult of real-world Systems-of-Systems challenges is the design and operational control of medical treatment networks that support forces operating...This report describes a brief research project on foundartional aspects of systems-of-systems design and operation. The overarching goal of the

  5. An Adaptive Unstructured Grid Method by Grid Subdivision, Local Remeshing, and Grid Movement

    NASA Technical Reports Server (NTRS)

    Pirzadeh, Shahyar Z.

    1999-01-01

    An unstructured grid adaptation technique has been developed and successfully applied to several three dimensional inviscid flow test cases. The approach is based on a combination of grid subdivision, local remeshing, and grid movement. For solution adaptive grids, the surface triangulation is locally refined by grid subdivision, and the tetrahedral grid in the field is partially remeshed at locations of dominant flow features. A grid redistribution strategy is employed for geometric adaptation of volume grids to moving or deforming surfaces. The method is automatic and fast and is designed for modular coupling with different solvers. Several steady state test cases with different inviscid flow features were tested for grid/solution adaptation. In all cases, the dominant flow features, such as shocks and vortices, were accurately and efficiently predicted with the present approach. A new and robust method of moving tetrahedral "viscous" grids is also presented and demonstrated on a three-dimensional example.

  6. Low-Complexity Adaptive Multisine Waveform Design for Wireless Power Transfer

    NASA Astrophysics Data System (ADS)

    Clerckx, Bruno; Bayguzina, Ekaterina

    Far-field Wireless Power Transfer (WPT) has attracted significant attention in the last decade. Recently, channel-adaptive waveforms have been shown to significantly increase the DC power level at the output of the rectifier. However the design of those waveforms is generally computationally complex and does not lend itself easily to practical implementation. We here propose a low-complexity channel-adaptive multisine waveform design whose performance is very close to that of the optimal design. Performance evaluations confirm the benefits of the new design in various rectifier topologies.

  7. A novel composite adaptive flap controller design by a high-efficient modified differential evolution identification approach.

    PubMed

    Li, Nailu; Mu, Anle; Yang, Xiyun; Magar, Kaman T; Liu, Chao

    2018-05-01

    The optimal tuning of adaptive flap controller can improve adaptive flap control performance on uncertain operating environments, but the optimization process is usually time-consuming and it is difficult to design proper optimal tuning strategy for the flap control system (FCS). To solve this problem, a novel adaptive flap controller is designed based on a high-efficient differential evolution (DE) identification technique and composite adaptive internal model control (CAIMC) strategy. The optimal tuning can be easily obtained by DE identified inverse of the FCS via CAIMC structure. To achieve fast tuning, a high-efficient modified adaptive DE algorithm is proposed with new mutant operator and varying range adaptive mechanism for the FCS identification. A tradeoff between optimized adaptive flap control and low computation cost is successfully achieved by proposed controller. Simulation results show the robustness of proposed method and its superiority to conventional adaptive IMC (AIMC) flap controller and the CAIMC flap controllers using other DE algorithms on various uncertain operating conditions. The high computation efficiency of proposed controller is also verified based on the computation time on those operating cases. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Computerized Adaptive Testing System Design: Preliminary Design Considerations.

    DTIC Science & Technology

    1982-07-01

    the administrative or operational requirements of CAT and presented - # k*----.,ku nh-n.-utu (IPOI efi~g.2me (PMU tQ7q. vim NPRDC TR 82-52 July 1982...design model for a computerized adaptive testing ( CAT ) system was developed and presented through a series of hierarchy plus input-process-output (HIPO...physical system was addressed through brief discussions of hardware, software, interfaces, and personnel requirements. Further steps in CAT system

  9. Some design guidelines for discrete-time adaptive controllers

    NASA Technical Reports Server (NTRS)

    Rohrs, C. E.; Athans, M.; Valavani, L.; Stein, G.

    1985-01-01

    There have been many algorithms proposed for adaptive control which will provide globally asymptotically stable controllers if some stringent conditions on the plant are met. The conditions on the plant cannot be met in practice as all plants will contain high frequency unmolded dynamics therefore, blind implementation of the published algorithms can lead to disastrous results. This paper uses a linearization analysis of a non-linear adaptive controller to demonstrate analytically design guidelines which aleviate some of the problems associated with adaptive control in the presence of unmodeled dynamics.

  10. Current Practice in Designing Training for Complex Skills: Implications for Design and Evaluation of ADAPT[IT].

    ERIC Educational Resources Information Center

    Eseryel, Deniz; Schuver-van Blanken, Marian J.; Spector, J. Michael

    ADAPT[IT] (Advanced Design Approach for Personalized Training-Interactive Tools is a European project coordinated by the Dutch National Aerospace Laboratory. The aim of ADAPT[IT] is to create and validate an effective training design methodology, based on cognitive science and leading to the integration of advanced technologies, so that the…

  11. Time-varying SMART design and data analysis methods for evaluating adaptive intervention effects.

    PubMed

    Dai, Tianjiao; Shete, Sanjay

    2016-08-30

    In a standard two-stage SMART design, the intermediate response to the first-stage intervention is measured at a fixed time point for all participants. Subsequently, responders and non-responders are re-randomized and the final outcome of interest is measured at the end of the study. To reduce the side effects and costs associated with first-stage interventions in a SMART design, we proposed a novel time-varying SMART design in which individuals are re-randomized to the second-stage interventions as soon as a pre-fixed intermediate response is observed. With this strategy, the duration of the first-stage intervention will vary. We developed a time-varying mixed effects model and a joint model that allows for modeling the outcomes of interest (intermediate and final) and the random durations of the first-stage interventions simultaneously. The joint model borrows strength from the survival sub-model in which the duration of the first-stage intervention (i.e., time to response to the first-stage intervention) is modeled. We performed a simulation study to evaluate the statistical properties of these models. Our simulation results showed that the two modeling approaches were both able to provide good estimations of the means of the final outcomes of all the embedded interventions in a SMART. However, the joint modeling approach was more accurate for estimating the coefficients of first-stage interventions and time of the intervention. We conclude that the joint modeling approach provides more accurate parameter estimates and a higher estimated coverage probability than the single time-varying mixed effects model, and we recommend the joint model for analyzing data generated from time-varying SMART designs. In addition, we showed that the proposed time-varying SMART design is cost-efficient and equally effective in selecting the optimal embedded adaptive intervention as the standard SMART design.

  12. Adaptive and Adaptable Automation Design: A Critical Review of the Literature and Recommendations for Future Research

    NASA Technical Reports Server (NTRS)

    Prinzel, Lawrence J., III; Kaber, David B.

    2006-01-01

    This report presents a review of literature on approaches to adaptive and adaptable task/function allocation and adaptive interface technologies for effective human management of complex systems that are likely to be issues for the Next Generation Air Transportation System, and a focus of research under the Aviation Safety Program, Integrated Intelligent Flight Deck Project. Contemporary literature retrieved from an online database search is summarized and integrated. The major topics include the effects of delegation-type, adaptable automation on human performance, workload and situation awareness, the effectiveness of various automation invocation philosophies and strategies to function allocation in adaptive systems, and the role of user modeling in adaptive interface design and the performance implications of adaptive interface technology.

  13. Do Bayesian adaptive trials offer advantages for comparative effectiveness research? Protocol for the RE-ADAPT study

    PubMed Central

    Luce, Bryan R; Broglio, Kristine R; Ishak, K Jack; Mullins, C Daniel; Vanness, David J; Fleurence, Rachael; Saunders, Elijah; Davis, Barry R

    2013-01-01

    Background Randomized clinical trials, particularly for comparative effectiveness research (CER), are frequently criticized for being overly restrictive or untimely for health-care decision making. Purpose Our prospectively designed REsearch in ADAptive methods for Pragmatic Trials (RE-ADAPT) study is a ‘proof of concept’ to stimulate investment in Bayesian adaptive designs for future CER trials. Methods We will assess whether Bayesian adaptive designs offer potential efficiencies in CER by simulating a re-execution of the Antihypertensive and Lipid Lowering Treatment to Prevent Heart Attack Trial (ALLHAT) study using actual data from ALLHAT. Results We prospectively define seven alternate designs consisting of various combinations of arm dropping, adaptive randomization, and early stopping and describe how these designs will be compared to the original ALLHAT design. We identify the one particular design that would have been executed, which incorporates early stopping and information-based adaptive randomization. Limitations While the simulation realistically emulates patient enrollment, interim analyses, and adaptive changes to design, it cannot incorporate key features like the involvement of data monitoring committee in making decisions about adaptive changes. Conclusion This article describes our analytic approach for RE-ADAPT. The next stage of the project is to conduct the re-execution analyses using the seven prespecified designs and the original ALLHAT data. PMID:23983160

  14. Bayesian randomized clinical trials: From fixed to adaptive design.

    PubMed

    Yin, Guosheng; Lam, Chi Kin; Shi, Haolun

    2017-08-01

    Randomized controlled studies are the gold standard for phase III clinical trials. Using α-spending functions to control the overall type I error rate, group sequential methods are well established and have been dominating phase III studies. Bayesian randomized design, on the other hand, can be viewed as a complement instead of competitive approach to the frequentist methods. For the fixed Bayesian design, the hypothesis testing can be cast in the posterior probability or Bayes factor framework, which has a direct link to the frequentist type I error rate. Bayesian group sequential design relies upon Bayesian decision-theoretic approaches based on backward induction, which is often computationally intensive. Compared with the frequentist approaches, Bayesian methods have several advantages. The posterior predictive probability serves as a useful and convenient tool for trial monitoring, and can be updated at any time as the data accrue during the trial. The Bayesian decision-theoretic framework possesses a direct link to the decision making in the practical setting, and can be modeled more realistically to reflect the actual cost-benefit analysis during the drug development process. Other merits include the possibility of hierarchical modeling and the use of informative priors, which would lead to a more comprehensive utilization of information from both historical and longitudinal data. From fixed to adaptive design, we focus on Bayesian randomized controlled clinical trials and make extensive comparisons with frequentist counterparts through numerical studies. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Adaptive bra designs for the individuals with special needs

    NASA Astrophysics Data System (ADS)

    Imran, A.; Drean, E.; Schacher, L.; Adolphe, D.

    2017-10-01

    Nowadays the numbers of disabled and elderly people is increasing, and the development of adaptive clothing for these people is in demand. The purpose of this study is to add features in bra design, to make it “Easy on, Easy off", to encourage the hemiplegic females to begin to dress themselves and to make dressing easier and more protective for them. This adaptive bra design will offer benefits to the wearer that include independence, conformity to culture, concealment of the disability, comfort, psychological contentment, safety, and durability. Our adaptive bra will promote harmony between functionality and aesthetics. Our e-bra enables continuous, real-time monitoring to identify any pathophysiological changes by monitoring blood pressure, body temperature, respiratory rate, oxygen consumption, some neural activity.

  16. Fully probabilistic control design in an adaptive critic framework.

    PubMed

    Herzallah, Randa; Kárný, Miroslav

    2011-12-01

    Optimal stochastic controller pushes the closed-loop behavior as close as possible to the desired one. The fully probabilistic design (FPD) uses probabilistic description of the desired closed loop and minimizes Kullback-Leibler divergence of the closed-loop description to the desired one. Practical exploitation of the fully probabilistic design control theory continues to be hindered by the computational complexities involved in numerically solving the associated stochastic dynamic programming problem; in particular, very hard multivariate integration and an approximate interpolation of the involved multivariate functions. This paper proposes a new fully probabilistic control algorithm that uses the adaptive critic methods to circumvent the need for explicitly evaluating the optimal value function, thereby dramatically reducing computational requirements. This is a main contribution of this paper. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Hybrid Adaptive Flight Control with Model Inversion Adaptation

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan

    2011-01-01

    This study investigates a hybrid adaptive flight control method as a design possibility for a flight control system that can enable an effective adaptation strategy to deal with off-nominal flight conditions. The hybrid adaptive control blends both direct and indirect adaptive control in a model inversion flight control architecture. The blending of both direct and indirect adaptive control provides a much more flexible and effective adaptive flight control architecture than that with either direct or indirect adaptive control alone. The indirect adaptive control is used to update the model inversion controller by an on-line parameter estimation of uncertain plant dynamics based on two methods. The first parameter estimation method is an indirect adaptive law based on the Lyapunov theory, and the second method is a recursive least-squares indirect adaptive law. The model inversion controller is therefore made to adapt to changes in the plant dynamics due to uncertainty. As a result, the modeling error is reduced that directly leads to a decrease in the tracking error. In conjunction with the indirect adaptive control that updates the model inversion controller, a direct adaptive control is implemented as an augmented command to further reduce any residual tracking error that is not entirely eliminated by the indirect adaptive control.

  18. Adaptation and focusing of optode configurations for fluorescence optical tomography by experimental design methods.

    PubMed

    Freiberger, Manuel; Clason, Christian; Scharfetter, Hermann

    2010-01-01

    Fluorescence tomography excites a fluorophore inside a sample by light sources on the surface. From boundary measurements of the fluorescent light, the distribution of the fluorophore is reconstructed. The optode placement determines the quality of the reconstructions in terms of, e.g., resolution and contrast-to-noise ratio. We address the adaptation of the measurement setup. The redundancy of the measurements is chosen as a quality criterion for the optodes and is computed from the Jacobian of the mathematical formulation of light propagation. The algorithm finds a subset with minimum redundancy in the measurements from a feasible pool of optodes. This allows biasing the design in order to favor reconstruction results inside a given region. Two different variations of the algorithm, based on geometric and arithmetic averaging, are compared. Both deliver similar optode configurations. The arithmetic averaging is slightly more stable, whereas the geometric averaging approach shows a better conditioning of the sensitivity matrix and mathematically corresponds more closely with entropy optimization. Adapted illumination and detector patterns are presented for an initial set of 96 optodes placed on a cylinder with focusing on different regions. Examples for the attenuation of fluorophore signals from regions outside the focus are given.

  19. Turbine blade profile design method based on Bezier curves

    NASA Astrophysics Data System (ADS)

    Alexeev, R. A.; Tishchenko, V. A.; Gribin, V. G.; Gavrilov, I. Yu.

    2017-11-01

    In this paper, the technique of two-dimensional parametric blade profile design is presented. Bezier curves are used to create the profile geometry. The main feature of the proposed method is an adaptive approach of curve fitting to given geometric conditions. Calculation of the profile shape is produced by multi-dimensional minimization method with a number of restrictions imposed on the blade geometry.The proposed method has been used to describe parametric geometry of known blade profile. Then the baseline geometry was modified by varying some parameters of the blade. The numerical calculation of obtained designs has been carried out. The results of calculations have shown the efficiency of chosen approach.

  20. Adaptive mesh strategies for the spectral element method

    NASA Technical Reports Server (NTRS)

    Mavriplis, Catherine

    1992-01-01

    An adaptive spectral method was developed for the efficient solution of time dependent partial differential equations. Adaptive mesh strategies that include resolution refinement and coarsening by three different methods are illustrated on solutions to the 1-D viscous Burger equation and the 2-D Navier-Stokes equations for driven flow in a cavity. Sharp gradients, singularities, and regions of poor resolution are resolved optimally as they develop in time using error estimators which indicate the choice of refinement to be used. The adaptive formulation presents significant increases in efficiency, flexibility, and general capabilities for high order spectral methods.

  1. Methodological issues with adaptation of clinical trial design.

    PubMed

    Hung, H M James; Wang, Sue-Jane; O'Neill, Robert T

    2006-01-01

    Adaptation of clinical trial design generates many issues that have not been resolved for practical applications, though statistical methodology has advanced greatly. This paper focuses on some methodological issues. In one type of adaptation such as sample size re-estimation, only the postulated value of a parameter for planning the trial size may be altered. In another type, the originally intended hypothesis for testing may be modified using the internal data accumulated at an interim time of the trial, such as changing the primary endpoint and dropping a treatment arm. For sample size re-estimation, we make a contrast between an adaptive test weighting the two-stage test statistics with the statistical information given by the original design and the original sample mean test with a properly corrected critical value. We point out the difficulty in planning a confirmatory trial based on the crude information generated by exploratory trials. In regards to selecting a primary endpoint, we argue that the selection process that allows switching from one endpoint to the other with the internal data of the trial is not very likely to gain a power advantage over the simple process of selecting one from the two endpoints by testing them with an equal split of alpha (Bonferroni adjustment). For dropping a treatment arm, distributing the remaining sample size of the discontinued arm to other treatment arms can substantially improve the statistical power of identifying a superior treatment arm in the design. A common difficult methodological issue is that of how to select an adaptation rule in the trial planning stage. Pre-specification of the adaptation rule is important for the practicality consideration. Changing the originally intended hypothesis for testing with the internal data generates great concerns to clinical trial researchers.

  2. Track and vertex reconstruction: From classical to adaptive methods

    NASA Astrophysics Data System (ADS)

    Strandlie, Are; Frühwirth, Rudolf

    2010-04-01

    This paper reviews classical and adaptive methods of track and vertex reconstruction in particle physics experiments. Adaptive methods have been developed to meet the experimental challenges at high-energy colliders, in particular, the CERN Large Hadron Collider. They can be characterized by the obliteration of the traditional boundaries between pattern recognition and statistical estimation, by the competition between different hypotheses about what constitutes a track or a vertex, and by a high level of flexibility and robustness achieved with a minimum of assumptions about the data. The theoretical background of some of the adaptive methods is described, and it is shown that there is a close connection between the two main branches of adaptive methods: neural networks and deformable templates, on the one hand, and robust stochastic filters with annealing, on the other hand. As both classical and adaptive methods of track and vertex reconstruction presuppose precise knowledge of the positions of the sensitive detector elements, the paper includes an overview of detector alignment methods and a survey of the alignment strategies employed by past and current experiments.

  3. Hybrid Computerized Adaptive Testing: From Group Sequential Design to Fully Sequential Design

    ERIC Educational Resources Information Center

    Wang, Shiyu; Lin, Haiyan; Chang, Hua-Hua; Douglas, Jeff

    2016-01-01

    Computerized adaptive testing (CAT) and multistage testing (MST) have become two of the most popular modes in large-scale computer-based sequential testing. Though most designs of CAT and MST exhibit strength and weakness in recent large-scale implementations, there is no simple answer to the question of which design is better because different…

  4. Design of Adaptive Policy Pathways under Deep Uncertainties

    NASA Astrophysics Data System (ADS)

    Babovic, Vladan

    2013-04-01

    The design of large-scale engineering and infrastructural systems today is growing in complexity. Designers need to consider sociotechnical uncertainties, intricacies, and processes in the long- term strategic deployment and operations of these systems. In this context, water and spatial management is increasingly challenged not only by climate-associated changes such as sea level rise and increased spatio-temporal variability of precipitation, but also by pressures due to population growth and particularly accelerating rate of urbanisation. Furthermore, high investment costs and long term-nature of water-related infrastructure projects requires long-term planning perspective, sometimes extending over many decades. Adaptation to such changes is not only determined by what is known or anticipated at present, but also by what will be experienced and learned as the future unfolds, as well as by policy responses to social and water events. As a result, a pathway emerges. Instead of responding to 'surprises' and making decisions on ad hoc basis, exploring adaptation pathways into the future provide indispensable support in water management decision-making. In this contribution, a structured approach for designing a dynamic adaptive policy based on the concepts of adaptive policy making and adaptation pathways is introduced. Such an approach provides flexibility which allows change over time in response to how the future unfolds, what is learned about the system, and changes in societal preferences. The introduced flexibility provides means for dealing with complexities of adaptation under deep uncertainties. It enables engineering systems to change in the face of uncertainty to reduce impacts from downside scenarios while capitalizing on upside opportunities. This contribution presents comprehensive framework for development and deployment of adaptive policy pathway framework, and demonstrates its performance under deep uncertainties on a case study related to urban

  5. Adaptive [theta]-methods for pricing American options

    NASA Astrophysics Data System (ADS)

    Khaliq, Abdul Q. M.; Voss, David A.; Kazmi, Kamran

    2008-12-01

    We develop adaptive [theta]-methods for solving the Black-Scholes PDE for American options. By adding a small, continuous term, the Black-Scholes PDE becomes an advection-diffusion-reaction equation on a fixed spatial domain. Standard implementation of [theta]-methods would require a Newton-type iterative procedure at each time step thereby increasing the computational complexity of the methods. Our linearly implicit approach avoids such complications. We establish a general framework under which [theta]-methods satisfy a discrete version of the positivity constraint characteristic of American options, and numerically demonstrate the sensitivity of the constraint. The positivity results are established for the single-asset and independent two-asset models. In addition, we have incorporated and analyzed an adaptive time-step control strategy to increase the computational efficiency. Numerical experiments are presented for one- and two-asset American options, using adaptive exponential splitting for two-asset problems. The approach is compared with an iterative solution of the two-asset problem in terms of computational efficiency.

  6. From vision to action: roadmapping as a strategic method and tool to implement climate change adaptation - the example of the roadmap 'water sensitive urban design 2020'.

    PubMed

    Hasse, J U; Weingaertner, D E

    2016-01-01

    As the central product of the BMBF-KLIMZUG-funded Joint Network and Research Project (JNRP) 'dynaklim - Dynamic adaptation of regional planning and development processes to the effects of climate change in the Emscher-Lippe region (North Rhine Westphalia, Germany)', the Roadmap 2020 'Regional Climate Adaptation' has been developed by the various regional stakeholders and institutions containing specific regional scenarios, strategies and adaptation measures applicable throughout the region. This paper presents the method, elements and main results of this regional roadmap process by using the example of the thematic sub-roadmap 'Water Sensitive Urban Design 2020'. With a focus on the process support tool 'KlimaFLEX', one of the main adaptation measures of the WSUD 2020 roadmap, typical challenges for integrated climate change adaptation like scattered knowledge, knowledge gaps and divided responsibilities but also potential solutions and promising chances for urban development and urban water management are discussed. With the roadmap and the related tool, the relevant stakeholders of the Emscher-Lippe region have jointly developed important prerequisites to integrate their knowledge, to clarify vulnerabilities, adaptation goals, responsibilities and interests, and to foresightedly coordinate measures, resources, priorities and schedules for an efficient joint urban planning, well-grounded decision-making in times of continued uncertainties and step-by-step implementation of adaptation measures from now on.

  7. Anti-windup adaptive PID control design for a class of uncertain chaotic systems with input saturation.

    PubMed

    Tahoun, A H

    2017-01-01

    In this paper, the stabilization problem of actuators saturation in uncertain chaotic systems is investigated via an adaptive PID control method. The PID control parameters are auto-tuned adaptively via adaptive control laws. A multi-level augmented error is designed to account for the extra terms appearing due to the use of PID and saturation. The proposed control technique uses both the state-feedback and the output-feedback methodologies. Based on Lyapunov׳s stability theory, new anti-windup adaptive controllers are proposed. Demonstrative examples with MATLAB simulations are studied. The simulation results show the efficiency of the proposed adaptive PID controllers. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  8. An Adaptive Instability Suppression Controls Method for Aircraft Gas Turbine Engine Combustors

    NASA Technical Reports Server (NTRS)

    Kopasakis, George; DeLaat, John C.; Chang, Clarence T.

    2008-01-01

    An adaptive controls method for instability suppression in gas turbine engine combustors has been developed and successfully tested with a realistic aircraft engine combustor rig. This testing was part of a program that demonstrated, for the first time, successful active combustor instability control in an aircraft gas turbine engine-like environment. The controls method is called Adaptive Sliding Phasor Averaged Control. Testing of the control method has been conducted in an experimental rig with different configurations designed to simulate combustors with instabilities of about 530 and 315 Hz. Results demonstrate the effectiveness of this method in suppressing combustor instabilities. In addition, a dramatic improvement in suppression of the instability was achieved by focusing control on the second harmonic of the instability. This is believed to be due to a phenomena discovered and reported earlier, the so called Intra-Harmonic Coupling. These results may have implications for future research in combustor instability control.

  9. Using mixed methods research designs in health psychology: an illustrated discussion from a pragmatist perspective.

    PubMed

    Bishop, Felicity L

    2015-02-01

    To outline some of the challenges of mixed methods research and illustrate how they can be addressed in health psychology research. This study critically reflects on the author's previously published mixed methods research and discusses the philosophical and technical challenges of mixed methods, grounding the discussion in a brief review of methodological literature. Mixed methods research is characterized as having philosophical and technical challenges; the former can be addressed by drawing on pragmatism, the latter by considering formal mixed methods research designs proposed in a number of design typologies. There are important differences among the design typologies which provide diverse examples of designs that health psychologists can adapt for their own mixed methods research. There are also similarities; in particular, many typologies explicitly orient to the technical challenges of deciding on the respective timing of qualitative and quantitative methods and the relative emphasis placed on each method. Characteristics, strengths, and limitations of different sequential and concurrent designs are identified by reviewing five mixed methods projects each conducted for a different purpose. Adapting formal mixed methods designs can help health psychologists address the technical challenges of mixed methods research and identify the approach that best fits the research questions and purpose. This does not obfuscate the need to address philosophical challenges of mixing qualitative and quantitative methods. Statement of contribution What is already known on this subject? Mixed methods research poses philosophical and technical challenges. Pragmatism in a popular approach to the philosophical challenges while diverse typologies of mixed methods designs can help address the technical challenges. Examples of mixed methods research can be hard to locate when component studies from mixed methods projects are published separately. What does this study add? Critical

  10. Improved methods in neural network-based adaptive output feedback control, with applications to flight control

    NASA Astrophysics Data System (ADS)

    Kim, Nakwan

    Utilizing the universal approximation property of neural networks, we develop several novel approaches to neural network-based adaptive output feedback control of nonlinear systems, and illustrate these approaches for several flight control applications. In particular, we address the problem of non-affine systems and eliminate the fixed point assumption present in earlier work. All of the stability proofs are carried out in a form that eliminates an algebraic loop in the neural network implementation. An approximate input/output feedback linearizing controller is augmented with a neural network using input/output sequences of the uncertain system. These approaches permit adaptation to both parametric uncertainty and unmodeled dynamics. All physical systems also have control position and rate limits, which may either deteriorate performance or cause instability for a sufficiently high control bandwidth. Here we apply a method for protecting an adaptive process from the effects of input saturation and time delays, known as "pseudo control hedging". This method was originally developed for the state feedback case, and we provide a stability analysis that extends its domain of applicability to the case of output feedback. The approach is illustrated by the design of a pitch-attitude flight control system for a linearized model of an R-50 experimental helicopter, and by the design of a pitch-rate control system for a 58-state model of a flexible aircraft consisting of rigid body dynamics coupled with actuator and flexible modes. A new approach to augmentation of an existing linear controller is introduced. It is especially useful when there is limited information concerning the plant model, and the existing controller. The approach is applied to the design of an adaptive autopilot for a guided munition. Design of a neural network adaptive control that ensures asymptotically stable tracking performance is also addressed.

  11. Stress adapted embroidered meshes with a graded pattern design for abdominal wall hernia repair

    NASA Astrophysics Data System (ADS)

    Hahn, J.; Bittrich, L.; Breier, A.; Spickenheuer, A.

    2017-10-01

    Abdominal wall hernias are one of the most relevant injuries of the digestive system with 25 million patients in 2013. Surgery is recommended primarily using allogenic non-absorbable wrap-knitted meshes. These meshes have in common that their stress-strain behaviour is not adapted to the anisotropic behaviour of native abdominal wall tissue. The ideal mesh should possess an adequate mechanical behaviour and a suitable porosity at the same time. An alternative fabrication method to wrap-knitting is the embroidery technology with a high flexibility in pattern design and adaption of mechanical properties. In this study, a pattern generator was created for pattern designs consisting of a base and a reinforcement pattern. The embroidered mesh structures demonstrated different structural and mechanical characteristics. Additionally, the investigation of the mechanical properties exhibited an anisotropic mechanical behaviour for the embroidered meshes. As a result, the investigated pattern generator and the embroidery technology allow the production of stress adapted mesh structures that are a promising approach for hernia reconstruction.

  12. Virtual reality based adaptive dose assessment method for arbitrary geometries in nuclear facility decommissioning.

    PubMed

    Liu, Yong-Kuo; Chao, Nan; Xia, Hong; Peng, Min-Jun; Ayodeji, Abiodun

    2018-05-17

    This paper presents an improved and efficient virtual reality-based adaptive dose assessment method (VRBAM) applicable to the cutting and dismantling tasks in nuclear facility decommissioning. The method combines the modeling strength of virtual reality with the flexibility of adaptive technology. The initial geometry is designed with the three-dimensional computer-aided design tools, and a hybrid model composed of cuboids and a point-cloud is generated automatically according to the virtual model of the object. In order to improve the efficiency of dose calculation while retaining accuracy, the hybrid model is converted to a weighted point-cloud model, and the point kernels are generated by adaptively simplifying the weighted point-cloud model according to the detector position, an approach that is suitable for arbitrary geometries. The dose rates are calculated with the Point-Kernel method. To account for radiation scattering effects, buildup factors are calculated with the Geometric-Progression formula in the fitting function. The geometric modeling capability of VRBAM was verified by simulating basic geometries, which included a convex surface, a concave surface, a flat surface and their combination. The simulation results show that the VRBAM is more flexible and superior to other approaches in modeling complex geometries. In this paper, the computation time and dose rate results obtained from the proposed method were also compared with those obtained using the MCNP code and an earlier virtual reality-based method (VRBM) developed by the same authors. © 2018 IOP Publishing Ltd.

  13. Methods used in adaptation of health-related guidelines: A systematic survey.

    PubMed

    Abdul-Khalek, Rima A; Darzi, Andrea J; Godah, Mohammad W; Kilzar, Lama; Lakis, Chantal; Agarwal, Arnav; Abou-Jaoude, Elias; Meerpohl, Joerg J; Wiercioch, Wojtek; Santesso, Nancy; Brax, Hneine; Schünemann, Holger; Akl, Elie A

    2017-12-01

    Adaptation refers to the systematic approach for considering the endorsement or modification of recommendations produced in one setting for application in another as an alternative to de novo development. To describe and assess the methods used for adapting health-related guidelines published in peer-reviewed journals, and to assess the quality of the resulting adapted guidelines. We searched Medline and Embase up to June 2015. We assessed the method of adaptation, and the quality of included guidelines. Seventy-two papers were eligible. Most adapted guidelines and their source guidelines were published by professional societies (71% and 68% respectively), and in high-income countries (83% and 85% respectively). Of the 57 adapted guidelines that reported any detail about adaptation method, 34 (60%) did not use a published adaptation method. The number (and percentage) of adapted guidelines fulfilling each of the ADAPTE steps ranged between 2 (4%) and 57 (100%). The quality of adapted guidelines was highest for the "scope and purpose" domain and lowest for the "editorial independence" domain (respective mean percentages of the maximum possible scores were 93% and 43%). The mean score for "rigor of development" was 57%. Most adapted guidelines published in peer-reviewed journals do not report using a published adaptation method, and their adaptation quality was variable.

  14. Temporally Adaptive Sampling: A Case Study in Rare Species Survey Design with Marbled Salamanders (Ambystoma opacum)

    PubMed Central

    Charney, Noah D.; Kubel, Jacob E.; Eiseman, Charles S.

    2015-01-01

    Improving detection rates for elusive species with clumped distributions is often accomplished through adaptive sampling designs. This approach can be extended to include species with temporally variable detection probabilities. By concentrating survey effort in years when the focal species are most abundant or visible, overall detection rates can be improved. This requires either long-term monitoring at a few locations where the species are known to occur or models capable of predicting population trends using climatic and demographic data. For marbled salamanders (Ambystoma opacum) in Massachusetts, we demonstrate that annual variation in detection probability of larvae is regionally correlated. In our data, the difference in survey success between years was far more important than the difference among the three survey methods we employed: diurnal surveys, nocturnal surveys, and dipnet surveys. Based on these data, we simulate future surveys to locate unknown populations under a temporally adaptive sampling framework. In the simulations, when pond dynamics are correlated over the focal region, the temporally adaptive design improved mean survey success by as much as 26% over a non-adaptive sampling design. Employing a temporally adaptive strategy costs very little, is simple, and has the potential to substantially improve the efficient use of scarce conservation funds. PMID:25799224

  15. Adaptive method with intercessory feedback control for an intelligent agent

    DOEpatents

    Goldsmith, Steven Y.

    2004-06-22

    An adaptive architecture method with feedback control for an intelligent agent provides for adaptively integrating reflexive and deliberative responses to a stimulus according to a goal. An adaptive architecture method with feedback control for multiple intelligent agents provides for coordinating and adaptively integrating reflexive and deliberative responses to a stimulus according to a goal. Re-programming of the adaptive architecture is through a nexus which coordinates reflexive and deliberator components.

  16. Experimental design to evaluate directed adaptive mutation in Mammalian cells.

    PubMed

    Bordonaro, Michael; Chiaro, Christopher R; May, Tobias

    2014-12-09

    We describe the experimental design for a methodological approach to determine whether directed adaptive mutation occurs in mammalian cells. Identification of directed adaptive mutation would have profound practical significance for a wide variety of biomedical problems, including disease development and resistance to treatment. In adaptive mutation, the genetic or epigenetic change is not random; instead, the presence and type of selection influences the frequency and character of the mutation event. Adaptive mutation can contribute to the evolution of microbial pathogenesis, cancer, and drug resistance, and may become a focus of novel therapeutic interventions. Our experimental approach was designed to distinguish between 3 types of mutation: (1) random mutations that are independent of selective pressure, (2) undirected adaptive mutations that arise when selective pressure induces a general increase in the mutation rate, and (3) directed adaptive mutations that arise when selective pressure induces targeted mutations that specifically influence the adaptive response. The purpose of this report is to introduce an experimental design and describe limited pilot experiment data (not to describe a complete set of experiments); hence, it is an early report. An experimental design based on immortalization of mouse embryonic fibroblast cells is presented that links clonal cell growth to reversal of an inactivating polyadenylation site mutation. Thus, cells exhibit growth only in the presence of both the countermutation and an inducing agent (doxycycline). The type and frequency of mutation in the presence or absence of doxycycline will be evaluated. Additional experimental approaches would determine whether the cells exhibit a generalized increase in mutation rate and/or whether the cells show altered expression of error-prone DNA polymerases or of mismatch repair proteins. We performed the initial stages of characterizing our system and have limited preliminary data

  17. Launch vehicle payload adapter design with vibration isolation features

    NASA Astrophysics Data System (ADS)

    Thomas, Gareth R.; Fadick, Cynthia M.; Fram, Bryan J.

    2005-05-01

    Payloads, such as satellites or spacecraft, which are mounted on launch vehicles, are subject to severe vibrations during flight. These vibrations are induced by multiple sources that occur between liftoff and the instant of final separation from the launch vehicle. A direct result of the severe vibrations is that fatigue damage and failure can be incurred by sensitive payload components. For this reason a payload adapter has been designed with special emphasis on its vibration isolation characteristics. The design consists of an annular plate that has top and bottom face sheets separated by radial ribs and close-out rings. These components are manufactured from graphite epoxy composites to ensure a high stiffness to weight ratio. The design is tuned to keep the frequency of the axial mode of vibration of the payload on the flexibility of the adapter to a low value. This is the main strategy adopted for isolating the payload from damaging vibrations in the intermediate to higher frequency range (45Hz-200Hz). A design challenge for this type of adapter is to keep the pitch frequency of the payload above a critical value in order to avoid dynamic interactions with the launch vehicle control system. This high frequency requirement conflicts with the low axial mode frequency requirement and this problem is overcome by innovative tuning of the directional stiffnesses of the composite parts. A second design strategy that is utilized to achieve good isolation characteristics is the use of constrained layer damping. This feature is particularly effective at keeping the responses to a minimum for one of the most important dynamic loading mechanisms. This mechanism consists of the almost-tonal vibratory load associated with the resonant burn condition present in any stage powered by a solid rocket motor. The frequency of such a load typically falls in the 45-75Hz range and this phenomenon drives the low frequency design of the adapter. Detailed finite element analysis is

  18. Adaptive Designs for Randomized Trials in Public Health

    PubMed Central

    Brown, C. Hendricks; Have, Thomas R. Ten; Jo, Booil; Dagne, Getachew; Wyman, Peter A.; Muthén, Bengt; Gibbons, Robert D.

    2009-01-01

    In this article, we present a discussion of two general ways in which the traditional randomized trial can be modified or adapted in response to the data being collected. We use the term adaptive design to refer to a trial in which characteristics of the study itself, such as the proportion assigned to active intervention versus control, change during the trial in response to data being collected. The term adaptive sequence of trials refers to a decision-making process that fundamentally informs the conceptualization and conduct of each new trial with the results of previous trials. Our discussion below investigates the utility of these two types of adaptations for public health evaluations. Examples are provided to illustrate how adaptation can be used in practice. From these case studies, we discuss whether such evaluations can or should be analyzed as if they were formal randomized trials, and we discuss practical as well as ethical issues arising in the conduct of these new-generation trials. PMID:19296774

  19. On Mixed Data and Event Driven Design for Adaptive-Critic-Based Nonlinear $H_{\\infty}$ Control.

    PubMed

    Wang, Ding; Mu, Chaoxu; Liu, Derong; Ma, Hongwen

    2018-04-01

    In this paper, based on the adaptive critic learning technique, the control for a class of unknown nonlinear dynamic systems is investigated by adopting a mixed data and event driven design approach. The nonlinear control problem is formulated as a two-player zero-sum differential game and the adaptive critic method is employed to cope with the data-based optimization. The novelty lies in that the data driven learning identifier is combined with the event driven design formulation, in order to develop the adaptive critic controller, thereby accomplishing the nonlinear control. The event driven optimal control law and the time driven worst case disturbance law are approximated by constructing and tuning a critic neural network. Applying the event driven feedback control, the closed-loop system is built with stability analysis. Simulation studies are conducted to verify the theoretical results and illustrate the control performance. It is significant to observe that the present research provides a new avenue of integrating data-based control and event-triggering mechanism into establishing advanced adaptive critic systems.

  20. Urn models for response-adaptive randomized designs: a simulation study based on a non-adaptive randomized trial.

    PubMed

    Ghiglietti, Andrea; Scarale, Maria Giovanna; Miceli, Rosalba; Ieva, Francesca; Mariani, Luigi; Gavazzi, Cecilia; Paganoni, Anna Maria; Edefonti, Valeria

    2018-03-22

    Recently, response-adaptive designs have been proposed in randomized clinical trials to achieve ethical and/or cost advantages by using sequential accrual information collected during the trial to dynamically update the probabilities of treatment assignments. In this context, urn models-where the probability to assign patients to treatments is interpreted as the proportion of balls of different colors available in a virtual urn-have been used as response-adaptive randomization rules. We propose the use of Randomly Reinforced Urn (RRU) models in a simulation study based on a published randomized clinical trial on the efficacy of home enteral nutrition in cancer patients after major gastrointestinal surgery. We compare results with the RRU design with those previously published with the non-adaptive approach. We also provide a code written with the R software to implement the RRU design in practice. In detail, we simulate 10,000 trials based on the RRU model in three set-ups of different total sample sizes. We report information on the number of patients allocated to the inferior treatment and on the empirical power of the t-test for the treatment coefficient in the ANOVA model. We carry out a sensitivity analysis to assess the effect of different urn compositions. For each sample size, in approximately 75% of the simulation runs, the number of patients allocated to the inferior treatment by the RRU design is lower, as compared to the non-adaptive design. The empirical power of the t-test for the treatment effect is similar in the two designs.

  1. The life cycles of six multi-center adaptive clinical trials focused on neurological emergencies developed for the Advancing Regulatory Science initiative of the National Institutes of Health and US Food and Drug Administration: Case studies from the Adaptive Designs Accelerating Promising Treatments Into Trials Project

    PubMed Central

    Guetterman, Timothy C; Fetters, Michael D; Mawocha, Samkeliso; Legocki, Laurie J; Barsan, William G; Lewis, Roger J; Berry, Donald A; Meurer, William J

    2017-01-01

    Objectives: Clinical trials are complicated, expensive, time-consuming, and frequently do not lead to discoveries that improve the health of patients with disease. Adaptive clinical trials have emerged as a methodology to provide more flexibility in design elements to better answer scientific questions regarding whether new treatments are efficacious. Limited observational data exist that describe the complex process of designing adaptive clinical trials. To address these issues, the Adaptive Designs Accelerating Promising Treatments Into Trials project developed six, tailored, flexible, adaptive, phase-III clinical trials for neurological emergencies, and investigators prospectively monitored and observed the processes. The objective of this work is to describe the adaptive design development process, the final design, and the current status of the adaptive trial designs that were developed. Methods: To observe and reflect upon the trial development process, we employed a rich, mixed methods evaluation that combined quantitative data from visual analog scale to assess attitudes about adaptive trials, along with in-depth qualitative data about the development process gathered from observations. Results: The Adaptive Designs Accelerating Promising Treatments Into Trials team developed six adaptive clinical trial designs. Across the six designs, 53 attitude surveys were completed at baseline and after the trial planning process completed. Compared to baseline, the participants believed significantly more strongly that the adaptive designs would be accepted by National Institutes of Health review panels and non-researcher clinicians. In addition, after the trial planning process, the participants more strongly believed that the adaptive design would meet the scientific and medical goals of the studies. Conclusion: Introducing the adaptive design at early conceptualization proved critical to successful adoption and implementation of that trial. Involving key

  2. Trends in study design and the statistical methods employed in a leading general medicine journal.

    PubMed

    Gosho, M; Sato, Y; Nagashima, K; Takahashi, S

    2018-02-01

    Study design and statistical methods have become core components of medical research, and the methodology has become more multifaceted and complicated over time. The study of the comprehensive details and current trends of study design and statistical methods is required to support the future implementation of well-planned clinical studies providing information about evidence-based medicine. Our purpose was to illustrate study design and statistical methods employed in recent medical literature. This was an extension study of Sato et al. (N Engl J Med 2017; 376: 1086-1087), which reviewed 238 articles published in 2015 in the New England Journal of Medicine (NEJM) and briefly summarized the statistical methods employed in NEJM. Using the same database, we performed a new investigation of the detailed trends in study design and individual statistical methods that were not reported in the Sato study. Due to the CONSORT statement, prespecification and justification of sample size are obligatory in planning intervention studies. Although standard survival methods (eg Kaplan-Meier estimator and Cox regression model) were most frequently applied, the Gray test and Fine-Gray proportional hazard model for considering competing risks were sometimes used for a more valid statistical inference. With respect to handling missing data, model-based methods, which are valid for missing-at-random data, were more frequently used than single imputation methods. These methods are not recommended as a primary analysis, but they have been applied in many clinical trials. Group sequential design with interim analyses was one of the standard designs, and novel design, such as adaptive dose selection and sample size re-estimation, was sometimes employed in NEJM. Model-based approaches for handling missing data should replace single imputation methods for primary analysis in the light of the information found in some publications. Use of adaptive design with interim analyses is increasing

  3. Power of an Adaptive Trial Design for Endovascular Stroke Studies: Simulations Using IMS (Interventional Management of Stroke) III Data.

    PubMed

    Lansberg, Maarten G; Bhat, Ninad S; Yeatts, Sharon D; Palesch, Yuko Y; Broderick, Joseph P; Albers, Gregory W; Lai, Tze L; Lavori, Philip W

    2016-12-01

    Adaptive trial designs that allow enrichment of the study population through subgroup selection can increase the chance of a positive trial when there is a differential treatment effect among patient subgroups. The goal of this study is to illustrate the potential benefit of adaptive subgroup selection in endovascular stroke studies. We simulated the performance of a trial design with adaptive subgroup selection and compared it with that of a traditional design. Outcome data were based on 90-day modified Rankin Scale scores, observed in IMS III (Interventional Management of Stroke III), among patients with a vessel occlusion on baseline computed tomographic angiography (n=382). Patients were categorized based on 2 methods: (1) according to location of the arterial occlusive lesion and onset-to-randomization time and (2) according to onset-to-randomization time alone. The power to demonstrate a treatment benefit was based on 10 000 trial simulations for each design. The treatment effect was relatively homogeneous across categories when patients were categorized based on arterial occlusive lesion and time. Consequently, the adaptive design had similar power (47%) compared with the fixed trial design (45%). There was a differential treatment effect when patients were categorized based on time alone, resulting in greater power with the adaptive design (82%) than with the fixed design (57%). These simulations, based on real-world patient data, indicate that adaptive subgroup selection has merit in endovascular stroke trials as it substantially increases power when the treatment effect differs among subgroups in a predicted pattern. © 2016 American Heart Association, Inc.

  4. Application of Taguchi methods to infrared window design

    NASA Astrophysics Data System (ADS)

    Osmer, Kurt A.; Pruszynski, Charles J.

    1990-10-01

    Dr. Genichi Taguchi, a prominent quality consultant, reduced a branch of statistics known as "Design of Experiments" to a cookbook methodology that can be employed by any competent engineer. This technique has been extensively employed by Japanese manufacturers, and is widely credited with helping them attain their current level of success in low cost, high quality product design and fabrication. Although this technique was originally put forth as a tool to streamline the determination of improved production processes, it can also be applied to a wide range of engineering problems. As part of an internal research project, this method of experimental design has been adapted to window trade studies and materials research. Two of these analyses are presented herein, and have been chosen to illustrate the breadth of applications to which the Taguchi method can be utilized.

  5. Adaptive Set-Based Methods for Association Testing.

    PubMed

    Su, Yu-Chen; Gauderman, William James; Berhane, Kiros; Lewinger, Juan Pablo

    2016-02-01

    With a typical sample size of a few thousand subjects, a single genome-wide association study (GWAS) using traditional one single nucleotide polymorphism (SNP)-at-a-time methods can only detect genetic variants conferring a sizable effect on disease risk. Set-based methods, which analyze sets of SNPs jointly, can detect variants with smaller effects acting within a gene, a pathway, or other biologically relevant sets. Although self-contained set-based methods (those that test sets of variants without regard to variants not in the set) are generally more powerful than competitive set-based approaches (those that rely on comparison of variants in the set of interest with variants not in the set), there is no consensus as to which self-contained methods are best. In particular, several self-contained set tests have been proposed to directly or indirectly "adapt" to the a priori unknown proportion and distribution of effects of the truly associated SNPs in the set, which is a major determinant of their power. A popular adaptive set-based test is the adaptive rank truncated product (ARTP), which seeks the set of SNPs that yields the best-combined evidence of association. We compared the standard ARTP, several ARTP variations we introduced, and other adaptive methods in a comprehensive simulation study to evaluate their performance. We used permutations to assess significance for all the methods and thus provide a level playing field for comparison. We found the standard ARTP test to have the highest power across our simulations followed closely by the global model of random effects (GMRE) and a least absolute shrinkage and selection operator (LASSO)-based test. © 2015 WILEY PERIODICALS, INC.

  6. Advanced adaptive computational methods for Navier-Stokes simulations in rotorcraft aerodynamics

    NASA Technical Reports Server (NTRS)

    Stowers, S. T.; Bass, J. M.; Oden, J. T.

    1993-01-01

    A phase 2 research and development effort was conducted in area transonic, compressible, inviscid flows with an ultimate goal of numerically modeling complex flows inherent in advanced helicopter blade designs. The algorithms and methodologies therefore are classified as adaptive methods, which are error estimation techniques for approximating the local numerical error, and automatically refine or unrefine the mesh so as to deliver a given level of accuracy. The result is a scheme which attempts to produce the best possible results with the least number of grid points, degrees of freedom, and operations. These types of schemes automatically locate and resolve shocks, shear layers, and other flow details to an accuracy level specified by the user of the code. The phase 1 work involved a feasibility study of h-adaptive methods for steady viscous flows, with emphasis on accurate simulation of vortex initiation, migration, and interaction. Phase 2 effort focused on extending these algorithms and methodologies to a three-dimensional topology.

  7. Adaptive spline autoregression threshold method in forecasting Mitsubishi car sales volume at PT Srikandi Diamond Motors

    NASA Astrophysics Data System (ADS)

    Susanti, D.; Hartini, E.; Permana, A.

    2017-01-01

    Sale and purchase of the growing competition between companies in Indonesian, make every company should have a proper planning in order to win the competition with other companies. One of the things that can be done to design the plan is to make car sales forecast for the next few periods, it’s required that the amount of inventory of cars that will be sold in proportion to the number of cars needed. While to get the correct forecasting, on of the methods that can be used is the method of Adaptive Spline Threshold Autoregression (ASTAR). Therefore, this time the discussion will focus on the use of Adaptive Spline Threshold Autoregression (ASTAR) method in forecasting the volume of car sales in PT.Srikandi Diamond Motors using time series data.In the discussion of this research, forecasting using the method of forecasting value Adaptive Spline Threshold Autoregression (ASTAR) produce approximately correct.

  8. Principles and Methods of Adapted Physical Education and Recreation.

    ERIC Educational Resources Information Center

    Arnheim, Daniel D.; And Others

    This text is designed for the elementary and secondary school physical educator and the recreation specialist in adapted physical education and, more specifically, as a text for college courses in adapted and corrective physical education and therapeutic recreation. The text is divided into four major divisions: scope, key teaching and therapy…

  9. Design of an LVDS to USB3.0 adapter and application

    NASA Astrophysics Data System (ADS)

    Qiu, Xiaohan; Wang, Yu; Zhao, Xin; Chang, Zhen; Zhang, Quan; Tian, Yuze; Zhang, Yunyi; Lin, Fang; Liu, Wenqing

    2016-10-01

    USB 3.0 specification was published in 2008. With the development of technology, USB 3.0 is becoming popular. LVDS(Low Voltage Differential Signaling) to USB 3.0 Adapter connects the communication port of spectrometer device and the USB 3.0 port of a computer, and converts the output of an LVDS spectrometer device data to USB. In order to adapt to the changing and developing of technology, LVDS to USB3.0 Adapter was designed and developed based on LVDS to USB2.0 Adapter. The CYUSB3014, a new generation of USB bus interface chip produced by Cypress and conforming to USB3.0 communication protocol, utilizes GPIF-II (GPIF, general programmable interface) to connect the FPGA and increases effective communication speed to 2Gbps. Therefore, the adapter, based on USB3.0 technology, is able to connect more spectrometers to single computer and provides technical basis for the development of the higher speed industrial camera. This article describes the design and development process of the LVDS to USB3.0 adapter.

  10. Dynamic experiment design regularization approach to adaptive imaging with array radar/SAR sensor systems.

    PubMed

    Shkvarko, Yuriy; Tuxpan, José; Santos, Stewart

    2011-01-01

    We consider a problem of high-resolution array radar/SAR imaging formalized in terms of a nonlinear ill-posed inverse problem of nonparametric estimation of the power spatial spectrum pattern (SSP) of the random wavefield scattered from a remotely sensed scene observed through a kernel signal formation operator and contaminated with random Gaussian noise. First, the Sobolev-type solution space is constructed to specify the class of consistent kernel SSP estimators with the reproducing kernel structures adapted to the metrics in such the solution space. Next, the "model-free" variational analysis (VA)-based image enhancement approach and the "model-based" descriptive experiment design (DEED) regularization paradigm are unified into a new dynamic experiment design (DYED) regularization framework. Application of the proposed DYED framework to the adaptive array radar/SAR imaging problem leads to a class of two-level (DEED-VA) regularized SSP reconstruction techniques that aggregate the kernel adaptive anisotropic windowing with the projections onto convex sets to enforce the consistency and robustness of the overall iterative SSP estimators. We also show how the proposed DYED regularization method may be considered as a generalization of the MVDR, APES and other high-resolution nonparametric adaptive radar sensing techniques. A family of the DYED-related algorithms is constructed and their effectiveness is finally illustrated via numerical simulations.

  11. Optimization of cold-adapted lysozyme production from the psychrophilic yeast Debaryomyces hansenii using statistical experimental methods.

    PubMed

    Wang, Quanfu; Hou, Yanhua; Yan, Peisheng

    2012-06-01

    Statistical experimental designs were employed to optimize culture conditions for cold-adapted lysozyme production of a psychrophilic yeast Debaryomyces hansenii. In the first step of optimization using Plackett-Burman design (PBD), peptone, glucose, temperature, and NaCl were identified as significant variables that affected lysozyme production, the formula was further optimized using a four factor central composite design (CCD) to understand their interaction and to determine their optimal levels. A quadratic model was developed and validated. Compared to the initial level (18.8 U/mL), the maximum lysozyme production (65.8 U/mL) observed was approximately increased by 3.5-fold under the optimized conditions. Cold-adapted lysozymes production was first optimized using statistical experimental methods. A 3.5-fold enhancement of microbial lysozyme was gained after optimization. Such an improved production will facilitate the application of microbial lysozyme. Thus, D. hansenii lysozyme may be a good and new resource for the industrial production of cold-adapted lysozymes. © 2012 Institute of Food Technologists®

  12. A modified varying-stage adaptive phase II/III clinical trial design.

    PubMed

    Dong, Gaohong; Vandemeulebroecke, Marc

    2016-07-01

    Conventionally, adaptive phase II/III clinical trials are carried out with a strict two-stage design. Recently, a varying-stage adaptive phase II/III clinical trial design has been developed. In this design, following the first stage, an intermediate stage can be adaptively added to obtain more data, so that a more informative decision can be made. Therefore, the number of further investigational stages is determined based upon data accumulated to the interim analysis. This design considers two plausible study endpoints, with one of them initially designated as the primary endpoint. Based on interim results, another endpoint can be switched as the primary endpoint. However, in many therapeutic areas, the primary study endpoint is well established. Therefore, we modify this design to consider one study endpoint only so that it may be more readily applicable in real clinical trial designs. Our simulations show that, the same as the original design, this modified design controls the Type I error rate, and the design parameters such as the threshold probability for the two-stage setting and the alpha allocation ratio in the two-stage setting versus the three-stage setting have a great impact on the design characteristics. However, this modified design requires a larger sample size for the initial stage, and the probability of futility becomes much higher when the threshold probability for the two-stage setting gets smaller. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  13. Robust time and frequency domain estimation methods in adaptive control

    NASA Technical Reports Server (NTRS)

    Lamaire, Richard Orville

    1987-01-01

    A robust identification method was developed for use in an adaptive control system. The type of estimator is called the robust estimator, since it is robust to the effects of both unmodeled dynamics and an unmeasurable disturbance. The development of the robust estimator was motivated by a need to provide guarantees in the identification part of an adaptive controller. To enable the design of a robust control system, a nominal model as well as a frequency-domain bounding function on the modeling uncertainty associated with this nominal model must be provided. Two estimation methods are presented for finding parameter estimates, and, hence, a nominal model. One of these methods is based on the well developed field of time-domain parameter estimation. In a second method of finding parameter estimates, a type of weighted least-squares fitting to a frequency-domain estimated model is used. The frequency-domain estimator is shown to perform better, in general, than the time-domain parameter estimator. In addition, a methodology for finding a frequency-domain bounding function on the disturbance is used to compute a frequency-domain bounding function on the additive modeling error due to the effects of the disturbance and the use of finite-length data. The performance of the robust estimator in both open-loop and closed-loop situations is examined through the use of simulations.

  14. Dual adaptive control: Design principles and applications

    NASA Technical Reports Server (NTRS)

    Mookerjee, Purusottam

    1988-01-01

    The design of an actively adaptive dual controller based on an approximation of the stochastic dynamic programming equation for a multi-step horizon is presented. A dual controller that can enhance identification of the system while controlling it at the same time is derived for multi-dimensional problems. This dual controller uses sensitivity functions of the expected future cost with respect to the parameter uncertainties. A passively adaptive cautious controller and the actively adaptive dual controller are examined. In many instances, the cautious controller is seen to turn off while the latter avoids the turn-off of the control and the slow convergence of the parameter estimates, characteristic of the cautious controller. The algorithms have been applied to a multi-variable static model which represents a simplified linear version of the relationship between the vibration output and the higher harmonic control input for a helicopter. Monte Carlo comparisons based on parametric and nonparametric statistical analysis indicate the superiority of the dual controller over the baseline controller.

  15. Adaptive intervention design in mobile health: Intervention design and development in the Cell Phone Intervention for You trial.

    PubMed

    Lin, Pao-Hwa; Intille, Stephen; Bennett, Gary; Bosworth, Hayden B; Corsino, Leonor; Voils, Corrine; Grambow, Steven; Lazenka, Tony; Batch, Bryan C; Tyson, Crystal; Svetkey, Laura P

    2015-12-01

    The obesity epidemic has spread to young adults, and obesity is a significant risk factor for cardiovascular disease. The prominence and increasing functionality of mobile phones may provide an opportunity to deliver longitudinal and scalable weight management interventions in young adults. The aim of this article is to describe the design and development of the intervention tested in the Cell Phone Intervention for You study and to highlight the importance of adaptive intervention design that made it possible. The Cell Phone Intervention for You study was a National Heart, Lung, and Blood Institute-sponsored, controlled, 24-month randomized clinical trial comparing two active interventions to a usual-care control group. Participants were 365 overweight or obese (body mass index≥25 kg/m2) young adults. Both active interventions were designed based on social cognitive theory and incorporated techniques for behavioral self-management and motivational enhancement. Initial intervention development occurred during a 1-year formative phase utilizing focus groups and iterative, participatory design. During the intervention testing, adaptive intervention design, where an intervention is updated or extended throughout a trial while assuring the delivery of exactly the same intervention to each cohort, was employed. The adaptive intervention design strategy distributed technical work and allowed introduction of novel components in phases intended to help promote and sustain participant engagement. Adaptive intervention design was made possible by exploiting the mobile phone's remote data capabilities so that adoption of particular application components could be continuously monitored and components subsequently added or updated remotely. The cell phone intervention was delivered almost entirely via cell phone and was always-present, proactive, and interactive-providing passive and active reminders, frequent opportunities for knowledge dissemination, and multiple tools

  16. A Bayesian adaptive design for biomarker trials with linked treatments

    PubMed Central

    Wason, James M S; Abraham, Jean E; Baird, Richard D; Gournaris, Ioannis; Vallier, Anne-Laure; Brenton, James D; Earl, Helena M; Mander, Adrian P

    2015-01-01

    Background: Response to treatments is highly heterogeneous in cancer. Increased availability of biomarkers and targeted treatments has led to the need for trial designs that efficiently test new treatments in biomarker-stratified patient subgroups. Methods: We propose a novel Bayesian adaptive randomisation (BAR) design for use in multi-arm phase II trials where biomarkers exist that are potentially predictive of a linked treatment's effect. The design is motivated in part by two phase II trials that are currently in development. The design starts by randomising patients to the control treatment or to experimental treatments that the biomarker profile suggests should be active. At interim analyses, data from treated patients are used to update the allocation probabilities. If the linked treatments are effective, the allocation remains high; if ineffective, the allocation changes over the course of the trial to unlinked treatments that are more effective. Results: Our proposed design has high power to detect treatment effects if the pairings of treatment with biomarker are correct, but also performs well when alternative pairings are true. The design is consistently more powerful than parallel-groups stratified trials. Conclusions: This BAR design is a powerful approach to use when there are pairings of biomarkers with treatments available for testing simultaneously. PMID:26263479

  17. Biomarker-Guided Non-Adaptive Trial Designs in Phase II and Phase III: A Methodological Review

    PubMed Central

    Antoniou, Miranta; Kolamunnage-Dona, Ruwanthi; Jorgensen, Andrea L.

    2017-01-01

    Biomarker-guided treatment is a rapidly developing area of medicine, where treatment choice is personalised according to one or more of an individual’s biomarker measurements. A number of biomarker-guided trial designs have been proposed in the past decade, including both adaptive and non-adaptive trial designs which test the effectiveness of a biomarker-guided approach to treatment with the aim of improving patient health. A better understanding of them is needed as challenges occur both in terms of trial design and analysis. We have undertaken a comprehensive literature review based on an in-depth search strategy with a view to providing the research community with clarity in definition, methodology and terminology of the various biomarker-guided trial designs (both adaptive and non-adaptive designs) from a total of 211 included papers. In the present paper, we focus on non-adaptive biomarker-guided trial designs for which we have identified five distinct main types mentioned in 100 papers. We have graphically displayed each non-adaptive trial design and provided an in-depth overview of their key characteristics. Substantial variability has been observed in terms of how trial designs are described and particularly in the terminology used by different authors. Our comprehensive review provides guidance for those designing biomarker-guided trials. PMID:28125057

  18. Best Design for Multidimensional Computerized Adaptive Testing With the Bifactor Model

    PubMed Central

    Seo, Dong Gi; Weiss, David J.

    2015-01-01

    Most computerized adaptive tests (CATs) have been studied using the framework of unidimensional item response theory. However, many psychological variables are multidimensional and might benefit from using a multidimensional approach to CATs. This study investigated the accuracy, fidelity, and efficiency of a fully multidimensional CAT algorithm (MCAT) with a bifactor model using simulated data. Four item selection methods in MCAT were examined for three bifactor pattern designs using two multidimensional item response theory models. To compare MCAT item selection and estimation methods, a fixed test length was used. The Ds-optimality item selection improved θ estimates with respect to a general factor, and either D- or A-optimality improved estimates of the group factors in three bifactor pattern designs under two multidimensional item response theory models. The MCAT model without a guessing parameter functioned better than the MCAT model with a guessing parameter. The MAP (maximum a posteriori) estimation method provided more accurate θ estimates than the EAP (expected a posteriori) method under most conditions, and MAP showed lower observed standard errors than EAP under most conditions, except for a general factor condition using Ds-optimality item selection. PMID:29795848

  19. Interactive design optimization of magnetorheological-brake actuators using the Taguchi method

    NASA Astrophysics Data System (ADS)

    Erol, Ozan; Gurocak, Hakan

    2011-10-01

    This research explored an optimization method that would automate the process of designing a magnetorheological (MR)-brake but still keep the designer in the loop. MR-brakes apply resistive torque by increasing the viscosity of an MR fluid inside the brake. This electronically controllable brake can provide a very large torque-to-volume ratio, which is very desirable for an actuator. However, the design process is quite complex and time consuming due to many parameters. In this paper, we adapted the popular Taguchi method, widely used in manufacturing, to the problem of designing a complex MR-brake. Unlike other existing methods, this approach can automatically identify the dominant parameters of the design, which reduces the search space and the time it takes to find the best possible design. While automating the search for a solution, it also lets the designer see the dominant parameters and make choices to investigate only their interactions with the design output. The new method was applied for re-designing MR-brakes. It reduced the design time from a week or two down to a few minutes. Also, usability experiments indicated significantly better brake designs by novice users.

  20. Online learning control using adaptive critic designs with sparse kernel machines.

    PubMed

    Xu, Xin; Hou, Zhongsheng; Lian, Chuanqiang; He, Haibo

    2013-05-01

    In the past decade, adaptive critic designs (ACDs), including heuristic dynamic programming (HDP), dual heuristic programming (DHP), and their action-dependent ones, have been widely studied to realize online learning control of dynamical systems. However, because neural networks with manually designed features are commonly used to deal with continuous state and action spaces, the generalization capability and learning efficiency of previous ACDs still need to be improved. In this paper, a novel framework of ACDs with sparse kernel machines is presented by integrating kernel methods into the critic of ACDs. To improve the generalization capability as well as the computational efficiency of kernel machines, a sparsification method based on the approximately linear dependence analysis is used. Using the sparse kernel machines, two kernel-based ACD algorithms, that is, kernel HDP (KHDP) and kernel DHP (KDHP), are proposed and their performance is analyzed both theoretically and empirically. Because of the representation learning and generalization capability of sparse kernel machines, KHDP and KDHP can obtain much better performance than previous HDP and DHP with manually designed neural networks. Simulation and experimental results of two nonlinear control problems, that is, a continuous-action inverted pendulum problem and a ball and plate control problem, demonstrate the effectiveness of the proposed kernel ACD methods.

  1. Management of Computer-Based Instruction: Design of an Adaptive Control Strategy.

    ERIC Educational Resources Information Center

    Tennyson, Robert D.; Rothen, Wolfgang

    1979-01-01

    Theoretical and research literature on learner, program, and adaptive control as forms of instructional management are critiqued in reference to the design of computer-based instruction. An adaptive control strategy using an online, iterative algorithmic model is proposed. (RAO)

  2. A Web-Based Adaptive Tutor to Teach PCR Primer Design

    ERIC Educational Resources Information Center

    van Seters, Janneke R.; Wellink, Joan; Tramper, Johannes; Goedhart, Martin J.; Ossevoort, Miriam A.

    2012-01-01

    When students have varying prior knowledge, personalized instruction is desirable. One way to personalize instruction is by using adaptive e-learning to offer training of varying complexity. In this study, we developed a web-based adaptive tutor to teach PCR primer design: the PCR Tutor. We used part of the Taxonomy of Educational Objectives (the…

  3. Multi-objective Optimization Design of Gear Reducer Based on Adaptive Genetic Algorithms

    NASA Astrophysics Data System (ADS)

    Li, Rui; Chang, Tian; Wang, Jianwei; Wei, Xiaopeng; Wang, Jinming

    2008-11-01

    An adaptive Genetic Algorithm (GA) is introduced to solve the multi-objective optimized design of the reducer. Firstly, according to the structure, strength, etc. in a reducer, a multi-objective optimized model of the helical gear reducer is established. And then an adaptive GA based on a fuzzy controller is introduced, aiming at the characteristics of multi-objective, multi-parameter, multi-constraint conditions. Finally, a numerical example is illustrated to show the advantages of this approach and the effectiveness of an adaptive genetic algorithm used in optimized design of a reducer.

  4. Adaptive reconnection-based arbitrary Lagrangian Eulerian method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bo, Wurigen; Shashkov, Mikhail

    We present a new adaptive Arbitrary Lagrangian Eulerian (ALE) method. This method is based on the reconnection-based ALE (ReALE) methodology of Refs. [35], [34] and [6]. The main elements in a standard ReALE method are: an explicit Lagrangian phase on an arbitrary polygonal (in 2D) mesh in which the solution and positions of grid nodes are updated; a rezoning phase in which a new grid is defined by changing the connectivity (using Voronoi tessellation) but not the number of cells; and a remapping phase in which the Lagrangian solution is transferred onto the new grid. Furthermore, in the standard ReALEmore » method, the rezoned mesh is smoothed by using one or several steps toward centroidal Voronoi tessellation, but it is not adapted to the solution in any way.« less

  5. Adaptive reconnection-based arbitrary Lagrangian Eulerian method

    DOE PAGES

    Bo, Wurigen; Shashkov, Mikhail

    2015-07-21

    We present a new adaptive Arbitrary Lagrangian Eulerian (ALE) method. This method is based on the reconnection-based ALE (ReALE) methodology of Refs. [35], [34] and [6]. The main elements in a standard ReALE method are: an explicit Lagrangian phase on an arbitrary polygonal (in 2D) mesh in which the solution and positions of grid nodes are updated; a rezoning phase in which a new grid is defined by changing the connectivity (using Voronoi tessellation) but not the number of cells; and a remapping phase in which the Lagrangian solution is transferred onto the new grid. Furthermore, in the standard ReALEmore » method, the rezoned mesh is smoothed by using one or several steps toward centroidal Voronoi tessellation, but it is not adapted to the solution in any way.« less

  6. Controller design for a class of nonlinear MIMO coupled system using multiple models and second level adaptation.

    PubMed

    Pandey, Vinay Kumar; Kar, Indrani; Mahanta, Chitralekha

    2017-07-01

    In this paper, an adaptive control method using multiple models with second level adaptation is proposed for a class of nonlinear multi-input multi-output (MIMO) coupled systems. Multiple estimation models are used to tune the unknown parameters at the first level. The second level adaptation provides a single parameter vector for the controller. A feedback linearization technique is used to design a state feedback control. The efficacy of the designed controller is validated by conducting real time experiment on a laboratory setup of twin rotor MIMO system (TRMS). The TRMS setup is discussed in detail and the experiments were performed for regulation and tracking problem for pitch and yaw control using different reference signals. An Extended Kalman Filter (EKF) has been used to observe the unavailable states of the TRMS. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Local Laser Strengthening of Steel Sheets for Load Adapted Component Design in Car Body Structures

    NASA Astrophysics Data System (ADS)

    Jahn, Axel; Heitmanek, Marco; Standfuss, Jens; Brenner, Berndt; Wunderlich, Gerd; Donat, Bernd

    The current trend in car body construction concerning light weight design and car safety improvement increasingly requires an adaption of the local material properties on the component load. Martensitic hardenable steels, which are typically used in car body components, show a significant hardening effect, for instance in laser welded seams. This effect can be purposefully used as a local strengthening method. For several steel grades the local strengthening, resulting from a laser remelting process was investigated. The strength in the treated zone was determined at crash relevant strain rates. A load adapted design of complex reinforcement structures was developed for compression and bending loaded tube samples, using numerical simulation of the deformation behavior. Especially for bending loaded parts, the crash energy absorption can be increased significantly by local laser strengthening.

  8. Scale Development and Initial Tests of the Multidimensional Complex Adaptive Leadership Scale for School Principals: An Exploratory Mixed Method Study

    ERIC Educational Resources Information Center

    Özen, Hamit; Turan, Selahattin

    2017-01-01

    This study was designed to develop the scale of the Complex Adaptive Leadership for School Principals (CAL-SP) and examine its psychometric properties. This was an exploratory mixed method research design (ES-MMD). Both qualitative and quantitative methods were used to develop and assess psychometric properties of the questionnaire. This study…

  9. Seamless Phase IIa/IIb and enhanced dose-finding adaptive design.

    PubMed

    Yuan, Jiacheng; Pang, Herbert; Tong, Tiejun; Xi, Dong; Guo, Wenzhao; Mesenbrink, Peter

    2016-01-01

    In drug development, when the drug class has a relatively well-defined path to regulatory approval and the enrollment is slow with certain patient populations, one may want to consider combining studies of different phases. This article considers combining a proof of concept (POC) study and a dose-finding (DF) study with a control treatment. Conventional DF study designs sometimes are not efficient, or do not have a high probability to find the optimal dose(s) for Phase III trials. This article seeks more efficient DF strategies that allow the economical testing of more doses. Hypothetical examples are simulated to compare the proposed adaptive design vs. the conventional design based on different models of the overall quantitative representation of efficacy, safety, and tolerability. The results show that the proposed adaptive design tests more active doses with higher power and comparable or smaller sample size in a shorter overall study duration for POC and DF, compared with a conventional design.

  10. Effect of Margin Designs on the Marginal Adaptation of Zirconia Copings.

    PubMed

    Habib, Syed Rashid; Al Ajmi, Mohammed Ginan; Al Dhafyan, Mohammed; Jomah, Abdulrehman; Abualsaud, Haytham; Almashali, Mazen

    2017-09-01

    The aim of this in vitro study was to investigate the effect of Shoulder versus Chamfer margin design on the marginal adaptation of zirconia (Zr) copings. 40 extracted molar teeth were mounted in resin and prepared for zirconia crowns with two margin preparation designs (20=Shoulder and 20=Chamfer). The copings were manufactured by Cercon® (DeguDent GmbH, Germany) using the CAD/CAM system for each tooth. They were tried on each tooth, cemented, thermocycled, re-embedded in resin and were subsequently cross sectioned centrally into two equal mesial and distal halves. They were examined under electron microscope at 200 X magnification and the measurements were recorded at 5 predetermined points in micrometers (µm). The o verall mean marginal gap for the two groups was found to be 206.98+42.78µm with Shoulder margin design (Marginal Gap=199.50+40.72µm) having better adaptation compared to Chamfer (Marginal Gap=214.46+44.85µm). The independent-samples t-test showed a statistically non-significant difference (p=.113) between the means of marginal gap for Shoulder and Chamfer margin designs and the measurements were recorded at 5 predetermined points for the two groups. The Chamfer margin design appeared to offer the same adaptation results as the Shoulder margin design.

  11. Adaptive web sampling.

    PubMed

    Thompson, Steven K

    2006-12-01

    A flexible class of adaptive sampling designs is introduced for sampling in network and spatial settings. In the designs, selections are made sequentially with a mixture distribution based on an active set that changes as the sampling progresses, using network or spatial relationships as well as sample values. The new designs have certain advantages compared with previously existing adaptive and link-tracing designs, including control over sample sizes and of the proportion of effort allocated to adaptive selections. Efficient inference involves averaging over sample paths consistent with the minimal sufficient statistic. A Markov chain resampling method makes the inference computationally feasible. The designs are evaluated in network and spatial settings using two empirical populations: a hidden human population at high risk for HIV/AIDS and an unevenly distributed bird population.

  12. Designs and adaptive analysis plans for pivotal clinical trials of therapeutics and companion diagnostics.

    PubMed

    Simon, Richard

    2008-06-01

    Developments in genomics and biotechnology provide unprecedented opportunities for the development of effective therapeutics and companion diagnostics for matching the right drug to the right patient. Effective co-development involves many new challenges with increased opportunity for success as well as delay and failure. Clinical trial designs and adaptive analysis plans for the prospective design of pivotal trials of new therapeutics and companion diagnostics are reviewed. Effective co-development requires careful prospective planning of the design and analysis strategy for pivotal clinical trials. Randomized clinical trials continue to be important for evaluating the effectiveness of new treatments, but the target populations for analysis should be prospectively specified based on the companion diagnostic. Post hoc analyses of traditionally designed randomized clinical trials are often deeply problematic. Clear separation is generally required of the data used for developing the diagnostic test, including their threshold of positivity, from the data used for evaluating treatment effectiveness in subsets determined by the test. Adaptive analysis can be used to provide flexibility to the analysis but the use of such methods requires careful planning and prospective definition in order to assure that the pivotal trial adequately limits the chance of erroneous conclusions.

  13. Adaptive output feedback control of flexible-joint robots using neural networks: dynamic surface design approach.

    PubMed

    Yoo, Sung Jin; Park, Jin Bae; Choi, Yoon Ho

    2008-10-01

    In this paper, we propose a new robust output feedback control approach for flexible-joint electrically driven (FJED) robots via the observer dynamic surface design technique. The proposed method only requires position measurements of the FJED robots. To estimate the link and actuator velocity information of the FJED robots with model uncertainties, we develop an adaptive observer using self-recurrent wavelet neural networks (SRWNNs). The SRWNNs are used to approximate model uncertainties in both robot (link) dynamics and actuator dynamics, and all their weights are trained online. Based on the designed observer, the link position tracking controller using the estimated states is induced from the dynamic surface design procedure. Therefore, the proposed controller can be designed more simply than the observer backstepping controller. From the Lyapunov stability analysis, it is shown that all signals in a closed-loop adaptive system are uniformly ultimately bounded. Finally, the simulation results on a three-link FJED robot are presented to validate the good position tracking performance and robustness of the proposed control system against payload uncertainties and external disturbances.

  14. A Model for Designing Adaptive Laboratory Evolution Experiments.

    PubMed

    LaCroix, Ryan A; Palsson, Bernhard O; Feist, Adam M

    2017-04-15

    The occurrence of mutations is a cornerstone of the evolutionary theory of adaptation, capitalizing on the rare chance that a mutation confers a fitness benefit. Natural selection is increasingly being leveraged in laboratory settings for industrial and basic science applications. Despite increasing deployment, there are no standardized procedures available for designing and performing adaptive laboratory evolution (ALE) experiments. Thus, there is a need to optimize the experimental design, specifically for determining when to consider an experiment complete and for balancing outcomes with available resources (i.e., laboratory supplies, personnel, and time). To design and to better understand ALE experiments, a simulator, ALEsim, was developed, validated, and applied to the optimization of ALE experiments. The effects of various passage sizes were experimentally determined and subsequently evaluated with ALEsim, to explain differences in experimental outcomes. Furthermore, a beneficial mutation rate of 10 -6.9 to 10 -8.4 mutations per cell division was derived. A retrospective analysis of ALE experiments revealed that passage sizes typically employed in serial passage batch culture ALE experiments led to inefficient production and fixation of beneficial mutations. ALEsim and the results described here will aid in the design of ALE experiments to fit the exact needs of a project while taking into account the resources required and will lower the barriers to entry for this experimental technique. IMPORTANCE ALE is a widely used scientific technique to increase scientific understanding, as well as to create industrially relevant organisms. The manner in which ALE experiments are conducted is highly manual and uniform, with little optimization for efficiency. Such inefficiencies result in suboptimal experiments that can take multiple months to complete. With the availability of automation and computer simulations, we can now perform these experiments in an optimized

  15. Wavelet methods in multi-conjugate adaptive optics

    NASA Astrophysics Data System (ADS)

    Helin, T.; Yudytskiy, M.

    2013-08-01

    The next generation ground-based telescopes rely heavily on adaptive optics for overcoming the limitation of atmospheric turbulence. In the future adaptive optics modalities, like multi-conjugate adaptive optics (MCAO), atmospheric tomography is the major mathematical and computational challenge. In this severely ill-posed problem, a fast and stable reconstruction algorithm is needed that can take into account many real-life phenomena of telescope imaging. We introduce a novel reconstruction method for the atmospheric tomography problem and demonstrate its performance and flexibility in the context of MCAO. Our method is based on using locality properties of compactly supported wavelets, both in the spatial and frequency domains. The reconstruction in the atmospheric tomography problem is obtained by solving the Bayesian MAP estimator with a conjugate-gradient-based algorithm. An accelerated algorithm with preconditioning is also introduced. Numerical performance is demonstrated on the official end-to-end simulation tool OCTOPUS of European Southern Observatory.

  16. Solution-adaptive finite element method in computational fracture mechanics

    NASA Technical Reports Server (NTRS)

    Min, J. B.; Bass, J. M.; Spradley, L. W.

    1993-01-01

    Some recent results obtained using solution-adaptive finite element method in linear elastic two-dimensional fracture mechanics problems are presented. The focus is on the basic issue of adaptive finite element method for validating the applications of new methodology to fracture mechanics problems by computing demonstration problems and comparing the stress intensity factors to analytical results.

  17. NEID Port Adapter: Design and Verification Plan

    NASA Astrophysics Data System (ADS)

    Logsdon, Sarah E.; McElwain, Michael; McElwain, Michael W.; Gong, Qian; Bender, Chad; Halverson, Samuel; Hearty, Fred; Hunting, Emily; Jaehnig, Kurt; Liang, Ming; Mahadevan, Suvrath; Monson, A. J.; Percival, Jeffrey; Rajagopal, Jayadev; Ramsey, Lawrence; Roy, Arpita; Santoro, Fernando; Schwab, Christian; Smith, Michael; Wolf, Marsha; Wright, Jason

    2018-01-01

    The NEID spectrograph is an optical (380-930 nm), fiber-fed, precision Doppler spectrograph currently in development for the 3.5 m WIYN Telescope at Kitt Peak National Observatory. Designed to achieve a radial velocity precision of <30 cm/s, NEID will be sensitive enough to detect terrestrial-mass exoplanets around low-mass stars. Light from the target stars is focused by the telescope to a bent-Cassegrain port at the edge of the primary mirror mechanical support. The specialized NEID “Port Adapter” system is mounted at this bent-Cassegrain port and is responsible for delivering the incident light from the telescope to the NEID fibers. In order to provide stable, high-quality images to the science instrument, the Port Adapter houses several subcomponents designed to acquire the target stars, correct for atmospheric dispersion, stabilize the light onto the science fibers, and calibrate the spectrograph by injecting known wavelength sources such as a laser frequency comb. Here we describe the overall design of the Port Adapter and outline the development of calibration tools and an on-sky test plan to verify the performance of the atmospheric dispersion corrector (ADC). We also discuss the development of an error budget and test requirements to ensure high-precision centroiding onto the NEID science fibers using a system of coherent fiber bundles.

  18. The DIAN-TU Next Generation Alzheimer’s prevention trial: adaptive design and disease progression model

    PubMed Central

    Bateman, Randall J.; Benzinger, Tammie L.; Berry, Scott; Clifford, David B.; Duggan, Cynthia; Fagan, Anne M.; Fanning, Kathleen; Farlow, Martin R.; Hassenstab, Jason; McDade, Eric M.; Mills, Susan; Paumier, Katrina; Quintana, Melanie; Salloway, Stephen P.; Santacruz, Anna; Schneider, Lon S.; Wang, Guoqiao; Xiong, Chengjie

    2016-01-01

    INTRODUCTION The Dominantly Inherited Alzheimer Network Trials Unit (DIAN-TU) trial is an adaptive platform trial testing multiple drugs to slow or prevent the progression of Alzheimer’s disease in autosomal dominant Alzheimer’s disease (ADAD) families. With completion of enrollment of the first two drug arms, the DIAN-TU now plans to add new drugs to the platform, designated as the Next Generation Prevention Trial (NexGen). METHODS In collaboration with ADAD families, philanthropic organizations, academic leaders, the DIAN-TU Pharma Consortium, the NIH, and regulatory colleagues, the DIAN-TU developed innovative clinical study designs for the DIAN-TU NexGen trial. RESULTS Our expanded trials toolbox consists of a Disease Progression Model for ADAD, primary endpoint DIAN-TU cognitive performance composite, biomarker development, self-administered cognitive assessments, adaptive dose adjustments, and blinded data collection through the last participant completion. CONCLUSION These steps represent elements to improve efficacy of the adaptive platform trial and a continued effort to optimize prevention and treatment trials in ADAD. PMID:27583651

  19. Adaptation Design Tool for Climate-Smart Management of Coral Reefs and Other Natural Resources.

    PubMed

    West, Jordan M; Courtney, Catherine A; Hamilton, Anna T; Parker, Britt A; Gibbs, David A; Bradley, Patricia; Julius, Susan H

    2018-06-22

    Scientists and managers of natural resources have recognized an urgent need for improved methods and tools to enable effective adaptation of management measures in the face of climate change. This paper presents an Adaptation Design Tool that uses a structured approach to break down an otherwise overwhelming and complex process into tractable steps. The tool contains worksheets that guide users through a series of design considerations for adapting their planned management actions to be more climate-smart given changing environmental stressors. Also provided with other worksheets is a framework for brainstorming new adaptation options in response to climate threats not yet addressed in the current plan. Developed and tested in collaboration with practitioners in Hawai'i and Puerto Rico using coral reefs as a pilot ecosystem, the tool and associated reference materials consist of worksheets, instructions and lessons-learned from real-world examples. On the basis of stakeholder feedback from expert consultations during tool development, we present insights and recommendations regarding how to maximize tool efficiency, gain the greatest value from the thought process, and deal with issues of scale and uncertainty. We conclude by reflecting on how the tool advances the theory and practice of assessment and decision-making science, informs higher level strategic planning, and serves as a platform for a systematic, transparent and inclusive process to tackle the practical implications of climate change for management of natural resources.

  20. Dynamic Experiment Design Regularization Approach to Adaptive Imaging with Array Radar/SAR Sensor Systems

    PubMed Central

    Shkvarko, Yuriy; Tuxpan, José; Santos, Stewart

    2011-01-01

    We consider a problem of high-resolution array radar/SAR imaging formalized in terms of a nonlinear ill-posed inverse problem of nonparametric estimation of the power spatial spectrum pattern (SSP) of the random wavefield scattered from a remotely sensed scene observed through a kernel signal formation operator and contaminated with random Gaussian noise. First, the Sobolev-type solution space is constructed to specify the class of consistent kernel SSP estimators with the reproducing kernel structures adapted to the metrics in such the solution space. Next, the “model-free” variational analysis (VA)-based image enhancement approach and the “model-based” descriptive experiment design (DEED) regularization paradigm are unified into a new dynamic experiment design (DYED) regularization framework. Application of the proposed DYED framework to the adaptive array radar/SAR imaging problem leads to a class of two-level (DEED-VA) regularized SSP reconstruction techniques that aggregate the kernel adaptive anisotropic windowing with the projections onto convex sets to enforce the consistency and robustness of the overall iterative SSP estimators. We also show how the proposed DYED regularization method may be considered as a generalization of the MVDR, APES and other high-resolution nonparametric adaptive radar sensing techniques. A family of the DYED-related algorithms is constructed and their effectiveness is finally illustrated via numerical simulations. PMID:22163859

  1. Application of Adaptive DP-optimality to Design a Pilot Study for a Clotting Time Test for Enoxaparin.

    PubMed

    Gulati, Abhishek; Faed, James M; Isbister, Geoffrey K; Duffull, Stephen B

    2015-10-01

    Dosing of enoxaparin, like other anticoagulants, may result in bleeding following excessive doses and clot formation if the dose is too low. We recently showed that a factor Xa based clotting time test could potentially assess the effect of enoxaparin on the clotting system. However, the test did not perform well in subsequent individuals and effectiveness of an exogenous phospholipid, Actin FS, in reducing the variability in the clotting time was assessed. The aim of this work was to conduct an adaptive pilot study to determine the range of concentrations of Xa and Actin FS to take forward into a proof-of-concept study. A nonlinear parametric function was developed to describe the response surface over the factors of interest. An adaptive method was used to estimate the parameters using a D-optimal design criterion. In order to provide a reasonable probability of observing a success of the clotting time test, a P-optimal design criterion was incorporated using a loss function to describe the hybrid DP-optimality. The use of adaptive DP-optimality method resulted in an efficient estimation of model parameters using data from only 6 healthy volunteers. The use of response surface modelling identified a range of sets of Xa and Actin FS concentrations, any of which could be used for the proof-of-concept study. This study shows that parsimonious adaptive DP-optimal designs may provide both precise parameter estimates for response surface modelling as well as clinical confidence in the potential benefits of the study.

  2. Designing Adaptive Low-Dissipative High Order Schemes for Long-Time Integrations. Chapter 1

    NASA Technical Reports Server (NTRS)

    Yee, Helen C.; Sjoegreen, B.; Mansour, Nagi N. (Technical Monitor)

    2001-01-01

    A general framework for the design of adaptive low-dissipative high order schemes is presented. It encompasses a rather complete treatment of the numerical approach based on four integrated design criteria: (1) For stability considerations, condition the governing equations before the application of the appropriate numerical scheme whenever it is possible; (2) For consistency, compatible schemes that possess stability properties, including physical and numerical boundary condition treatments, similar to those of the discrete analogue of the continuum are preferred; (3) For the minimization of numerical dissipation contamination, efficient and adaptive numerical dissipation control to further improve nonlinear stability and accuracy should be used; and (4) For practical considerations, the numerical approach should be efficient and applicable to general geometries, and an efficient and reliable dynamic grid adaptation should be used if necessary. These design criteria are, in general, very useful to a wide spectrum of flow simulations. However, the demand on the overall numerical approach for nonlinear stability and accuracy is much more stringent for long-time integration of complex multiscale viscous shock/shear/turbulence/acoustics interactions and numerical combustion. Robust classical numerical methods for less complex flow physics are not suitable or practical for such applications. The present approach is designed expressly to address such flow problems, especially unsteady flows. The minimization of employing very fine grids to overcome the production of spurious numerical solutions and/or instability due to under-resolved grids is also sought. The incremental studies to illustrate the performance of the approach are summarized. Extensive testing and full implementation of the approach is forthcoming. The results shown so far are very encouraging.

  3. Design of multi-view stereoscopic HD video transmission system based on MPEG-21 digital item adaptation

    NASA Astrophysics Data System (ADS)

    Lee, Seokhee; Lee, Kiyoung; Kim, Man Bae; Kim, JongWon

    2005-11-01

    In this paper, we propose a design of multi-view stereoscopic HD video transmission system based on MPEG-21 Digital Item Adaptation (DIA). It focuses on the compatibility and scalability to meet various user preferences and terminal capabilities. There exist a large variety of multi-view 3D HD video types according to the methods for acquisition, display, and processing. By following the MPEG-21 DIA framework, the multi-view stereoscopic HD video is adapted according to user feedback. A user can be served multi-view stereoscopic video which corresponds with his or her preferences and terminal capabilities. In our preliminary prototype, we verify that the proposed design can support two deferent types of display device (stereoscopic and auto-stereoscopic) and switching viewpoints between two available viewpoints.

  4. Development of a Bayesian response-adaptive trial design for the Dexamethasone for Excessive Menstruation study.

    PubMed

    Holm Hansen, Christian; Warner, Pamela; Parker, Richard A; Walker, Brian R; Critchley, Hilary Od; Weir, Christopher J

    2017-12-01

    It is often unclear what specific adaptive trial design features lead to an efficient design which is also feasible to implement. This article describes the preparatory simulation study for a Bayesian response-adaptive dose-finding trial design. Dexamethasone for Excessive Menstruation aims to assess the efficacy of Dexamethasone in reducing excessive menstrual bleeding and to determine the best dose for further study. To maximise learning about the dose response, patients receive placebo or an active dose with randomisation probabilities adapting based on evidence from patients already recruited. The dose-response relationship is estimated using a flexible Bayesian Normal Dynamic Linear Model. Several competing design options were considered including: number of doses, proportion assigned to placebo, adaptation criterion, and number and timing of adaptations. We performed a fractional factorial study using SAS software to simulate virtual trial data for candidate adaptive designs under a variety of scenarios and to invoke WinBUGS for Bayesian model estimation. We analysed the simulated trial results using Normal linear models to estimate the effects of each design feature on empirical type I error and statistical power. Our readily-implemented approach using widely available statistical software identified a final design which performed robustly across a range of potential trial scenarios.

  5. Adaptive Set-Based Methods for Association Testing

    PubMed Central

    Su, Yu-Chen; Gauderman, W. James; Kiros, Berhane; Lewinger, Juan Pablo

    2017-01-01

    With a typical sample size of a few thousand subjects, a single genomewide association study (GWAS) using traditional one-SNP-at-a-time methods can only detect genetic variants conferring a sizable effect on disease risk. Set-based methods, which analyze sets of SNPs jointly, can detect variants with smaller effects acting within a gene, a pathway, or other biologically relevant sets. While self-contained set-based methods (those that test sets of variants without regard to variants not in the set) are generally more powerful than competitive set-based approaches (those that rely on comparison of variants in the set of interest with variants not in the set), there is no consensus as to which self-contained methods are best. In particular, several self-contained set tests have been proposed to directly or indirectly ‘adapt’ to the a priori unknown proportion and distribution of effects of the truly associated SNPs in the set, which is a major determinant of their power. A popular adaptive set-based test is the adaptive rank truncated product (ARTP), which seeks the set of SNPs that yields the best-combined evidence of association. We compared the standard ARTP, several ARTP variations we introduced, and other adaptive methods in a comprehensive simulation study to evaluate their performance. We used permutations to assess significance for all the methods and thus provide a level playing field for comparison. We found the standard ARTP test to have the highest power across our simulations followed closely by the global model of random effects (GMRE) and a LASSO based test. PMID:26707371

  6. Cultural adaptation and translation of measures: an integrated method.

    PubMed

    Sidani, Souraya; Guruge, Sepali; Miranda, Joyal; Ford-Gilboe, Marilyn; Varcoe, Colleen

    2010-04-01

    Differences in the conceptualization and operationalization of health-related concepts may exist across cultures. Such differences underscore the importance of examining conceptual equivalence when adapting and translating instruments. In this article, we describe an integrated method for exploring conceptual equivalence within the process of adapting and translating measures. The integrated method involves five phases including selection of instruments for cultural adaptation and translation; assessment of conceptual equivalence, leading to the generation of a set of items deemed to be culturally and linguistically appropriate to assess the concept of interest in the target community; forward translation; back translation (optional); and pre-testing of the set of items. Strengths and limitations of the proposed integrated method are discussed. (c) 2010 Wiley Periodicals, Inc.

  7. Improved neural network based scene-adaptive nonuniformity correction method for infrared focal plane arrays.

    PubMed

    Lai, Rui; Yang, Yin-tang; Zhou, Duan; Li, Yue-jin

    2008-08-20

    An improved scene-adaptive nonuniformity correction (NUC) algorithm for infrared focal plane arrays (IRFPAs) is proposed. This method simultaneously estimates the infrared detectors' parameters and eliminates the nonuniformity causing fixed pattern noise (FPN) by using a neural network (NN) approach. In the learning process of neuron parameter estimation, the traditional LMS algorithm is substituted with the newly presented variable step size (VSS) normalized least-mean square (NLMS) based adaptive filtering algorithm, which yields faster convergence, smaller misadjustment, and lower computational cost. In addition, a new NN structure is designed to estimate the desired target value, which promotes the calibration precision considerably. The proposed NUC method reaches high correction performance, which is validated by the experimental results quantitatively tested with a simulative testing sequence and a real infrared image sequence.

  8. Adaptive filter design using recurrent cerebellar model articulation controller.

    PubMed

    Lin, Chih-Min; Chen, Li-Yang; Yeung, Daniel S

    2010-07-01

    A novel adaptive filter is proposed using a recurrent cerebellar-model-articulation-controller (CMAC). The proposed locally recurrent globally feedforward recurrent CMAC (RCMAC) has favorable properties of small size, good generalization, rapid learning, and dynamic response, thus it is more suitable for high-speed signal processing. To provide fast training, an efficient parameter learning algorithm based on the normalized gradient descent method is presented, in which the learning rates are on-line adapted. Then the Lyapunov function is utilized to derive the conditions of the adaptive learning rates, so the stability of the filtering error can be guaranteed. To demonstrate the performance of the proposed adaptive RCMAC filter, it is applied to a nonlinear channel equalization system and an adaptive noise cancelation system. The advantages of the proposed filter over other adaptive filters are verified through simulations.

  9. The design of digital-adaptive controllers for VTOL aircraft

    NASA Technical Reports Server (NTRS)

    Stengel, R. F.; Broussard, J. R.; Berry, P. W.

    1976-01-01

    Design procedures for VTOL automatic control systems have been developed and are presented. Using linear-optimal estimation and control techniques as a starting point, digital-adaptive control laws have been designed for the VALT Research Aircraft, a tandem-rotor helicopter which is equipped for fully automatic flight in terminal area operations. These control laws are designed to interface with velocity-command and attitude-command guidance logic, which could be used in short-haul VTOL operations. Developments reported here include new algorithms for designing non-zero-set-point digital regulators, design procedures for rate-limited systems, and algorithms for dynamic control trim setting.

  10. Meta-analyses and adaptive group sequential designs in the clinical development process.

    PubMed

    Jennison, Christopher; Turnbull, Bruce W

    2005-01-01

    The clinical development process can be viewed as a succession of trials, possibly overlapping in calendar time. The design of each trial may be influenced by results from previous studies and other currently proceeding trials, as well as by external information. Results from all of these trials must be considered together in order to assess the efficacy and safety of the proposed new treatment. Meta-analysis techniques provide a formal way of combining the information. We examine how such methods can be used in combining results from: (1) a collection of separate studies, (2) a sequence of studies in an organized development program, and (3) stages within a single study using a (possibly adaptive) group sequential design. We present two examples. The first example concerns the combining of results from a Phase IIb trial using several dose levels or treatment arms with those of the Phase III trial comparing the treatment selected in Phase IIb against a control This enables a "seamless transition" from Phase IIb to Phase III. The second example examines the use of combination tests to analyze data from an adaptive group sequential trial.

  11. Application of Bounded Linear Stability Analysis Method for Metrics-Driven Adaptive Control

    NASA Technical Reports Server (NTRS)

    Bakhtiari-Nejad, Maryam; Nguyen, Nhan T.; Krishnakumar, Kalmanje

    2009-01-01

    This paper presents the application of Bounded Linear Stability Analysis (BLSA) method for metrics-driven adaptive control. The bounded linear stability analysis method is used for analyzing stability of adaptive control models, without linearizing the adaptive laws. Metrics-driven adaptive control introduces a notion that adaptation should be driven by some stability metrics to achieve robustness. By the application of bounded linear stability analysis method the adaptive gain is adjusted during the adaptation in order to meet certain phase margin requirements. Analysis of metrics-driven adaptive control is evaluated for a second order system that represents a pitch attitude control of a generic transport aircraft. The analysis shows that the system with the metrics-conforming variable adaptive gain becomes more robust to unmodeled dynamics or time delay. The effect of analysis time-window for BLSA is also evaluated in order to meet the stability margin criteria.

  12. A two-stage patient enrichment adaptive design in phase II oncology trials.

    PubMed

    Song, James X

    2014-01-01

    Illustrated is the use of a patient enrichment adaptive design in a randomized phase II trial which allows the evaluation of treatment benefits by the biomarker expression level and makes interim adjustment according to the pre-specified rules. The design was applied to an actual phase II metastatic hepatocellular carcinoma (HCC) trial in which progression-free survival (PFS) in two biomarker-defined populations is evaluated at both interim and final analyses. As an extension, a short-term biomarker is used to predict the long-term PFS in a Bayesian model in order to improve the precision of hazard ratio (HR) estimate at the interim analysis. The characteristics of the extended design are examined in a number of scenarios via simulations. The recommended adaptive design is shown to be useful in a phase II setting. When a short-term maker which correlates with the long-term PFS is available, the design can be applied in smaller early phase trials in which PFS requires longer follow-up. In summary, the adaptive design offers flexibility in randomized phase II patient enrichment trials and should be considered in an overall personalized healthcare (PHC) strategy. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Robust Engineering Designs for Infrastructure Adaptation to a Changing Climate

    NASA Astrophysics Data System (ADS)

    Samaras, C.; Cook, L.

    2015-12-01

    Infrastructure systems are expected to be functional, durable and safe over long service lives - 50 to over 100 years. Observations and models of climate science show that greenhouse gas emissions resulting from human activities have changed climate, weather and extreme events. Projections of future changes (albeit with uncertainties caused by inadequacies of current climate/weather models) can be made based on scenarios for future emissions, but actual future emissions are themselves uncertain. Most current engineering standards and practices for infrastructure assume that the probabilities of future extreme climate and weather events will match those of the past. Climate science shows that this assumption is invalid, but is unable, at present, to define these probabilities over the service lives of existing and new infrastructure systems. Engineering designs, plans, and institutions and regulations will need to be adaptable for a range of future conditions (conditions of climate, weather and extreme events, as well as changing societal demands for infrastructure services). For their current and future projects, engineers should: Involve all stakeholders (owners, financers, insurance, regulators, affected public, climate/weather scientists, etc.) in key decisions; Use low regret, adaptive strategies, such as robust decision making and the observational method, comply with relevant standards and regulations, and exceed their requirements where appropriate; Publish design studies and performance/failure investigations to extend the body of knowledge for advancement of practice. The engineering community should conduct observational and modeling research with climate/weather/social scientists and the concerned communities and account rationally for climate change in revised engineering standards and codes. This presentation presents initial research on decisionmaking under uncertainty for climate resilient infrastructure design.

  14. Moving and adaptive grid methods for compressible flows

    NASA Technical Reports Server (NTRS)

    Trepanier, Jean-Yves; Camarero, Ricardo

    1995-01-01

    This paper describes adaptive grid methods developed specifically for compressible flow computations. The basic flow solver is a finite-volume implementation of Roe's flux difference splitting scheme or arbitrarily moving unstructured triangular meshes. The grid adaptation is performed according to geometric and flow requirements. Some results are included to illustrate the potential of the methodology.

  15. Adaptive Discontinuous Galerkin Methods in Multiwavelets Bases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Archibald, Richard K; Fann, George I; Shelton Jr, William Allison

    2011-01-01

    We use a multiwavelet basis with the Discontinuous Galerkin (DG) method to produce a multi-scale DG method. We apply this Multiwavelet DG method to convection and convection-diffusion problems in multiple dimensions. Merging the DG method with multiwavelets allows the adaptivity in the DG method to be resolved through manipulation of multiwavelet coefficients rather than grid manipulation. Additionally, the Multiwavelet DG method is tested on non-linear equations in one dimension and on the cubed sphere.

  16. Comparing Anisotropic Output-Based Grid Adaptation Methods by Decomposition

    NASA Technical Reports Server (NTRS)

    Park, Michael A.; Loseille, Adrien; Krakos, Joshua A.; Michal, Todd

    2015-01-01

    Anisotropic grid adaptation is examined by decomposing the steps of flow solution, ad- joint solution, error estimation, metric construction, and simplex grid adaptation. Multiple implementations of each of these steps are evaluated by comparison to each other and expected analytic results when available. For example, grids are adapted to analytic metric fields and grid measures are computed to illustrate the properties of multiple independent implementations of grid adaptation mechanics. Different implementations of each step in the adaptation process can be evaluated in a system where the other components of the adaptive cycle are fixed. Detailed examination of these properties allows comparison of different methods to identify the current state of the art and where further development should be targeted.

  17. An adaptive sampling method for variable-fidelity surrogate models using improved hierarchical kriging

    NASA Astrophysics Data System (ADS)

    Hu, Jiexiang; Zhou, Qi; Jiang, Ping; Shao, Xinyu; Xie, Tingli

    2018-01-01

    Variable-fidelity (VF) modelling methods have been widely used in complex engineering system design to mitigate the computational burden. Building a VF model generally includes two parts: design of experiments and metamodel construction. In this article, an adaptive sampling method based on improved hierarchical kriging (ASM-IHK) is proposed to refine the improved VF model. First, an improved hierarchical kriging model is developed as the metamodel, in which the low-fidelity model is varied through a polynomial response surface function to capture the characteristics of a high-fidelity model. Secondly, to reduce local approximation errors, an active learning strategy based on a sequential sampling method is introduced to make full use of the already required information on the current sampling points and to guide the sampling process of the high-fidelity model. Finally, two numerical examples and the modelling of the aerodynamic coefficient for an aircraft are provided to demonstrate the approximation capability of the proposed approach, as well as three other metamodelling methods and two sequential sampling methods. The results show that ASM-IHK provides a more accurate metamodel at the same simulation cost, which is very important in metamodel-based engineering design problems.

  18. Adaptive multibeam phased array design for a Spacelab experiment

    NASA Technical Reports Server (NTRS)

    Noji, T. T.; Fass, S.; Fuoco, A. M.; Wang, C. D.

    1977-01-01

    The parametric tradeoff analyses and design for an Adaptive Multibeam Phased Array (AMPA) for a Spacelab experiment are described. This AMPA Experiment System was designed with particular emphasis to maximize channel capacity and minimize implementation and cost impacts for future austere maritime and aeronautical users, operating with a low gain hemispherical coverage antenna element, low effective radiated power, and low antenna gain-to-system noise temperature ratio.

  19. Adaptive Behaviour Assessment System: Indigenous Australian Adaptation Model (ABAS: IAAM)

    ERIC Educational Resources Information Center

    du Plessis, Santie

    2015-01-01

    The study objectives were to develop, trial and evaluate a cross-cultural adaptation of the Adaptive Behavior Assessment System-Second Edition Teacher Form (ABAS-II TF) ages 5-21 for use with Indigenous Australian students ages 5-14. This study introduced a multiphase mixed-method design with semi-structured and informal interviews, school…

  20. Adaptive Actor-Critic Design-Based Integral Sliding-Mode Control for Partially Unknown Nonlinear Systems With Input Disturbances.

    PubMed

    Fan, Quan-Yong; Yang, Guang-Hong

    2016-01-01

    This paper is concerned with the problem of integral sliding-mode control for a class of nonlinear systems with input disturbances and unknown nonlinear terms through the adaptive actor-critic (AC) control method. The main objective is to design a sliding-mode control methodology based on the adaptive dynamic programming (ADP) method, so that the closed-loop system with time-varying disturbances is stable and the nearly optimal performance of the sliding-mode dynamics can be guaranteed. In the first step, a neural network (NN)-based observer and a disturbance observer are designed to approximate the unknown nonlinear terms and estimate the input disturbances, respectively. Based on the NN approximations and disturbance estimations, the discontinuous part of the sliding-mode control is constructed to eliminate the effect of the disturbances and attain the expected equivalent sliding-mode dynamics. Then, the ADP method with AC structure is presented to learn the optimal control for the sliding-mode dynamics online. Reconstructed tuning laws are developed to guarantee the stability of the sliding-mode dynamics and the convergence of the weights of critic and actor NNs. Finally, the simulation results are presented to illustrate the effectiveness of the proposed method.

  1. Design of smart composite platforms for adaptive trust vector control and adaptive laser telescope for satellite applications

    NASA Astrophysics Data System (ADS)

    Ghasemi-Nejhad, Mehrdad N.

    2013-04-01

    This paper presents design of smart composite platforms for adaptive trust vector control (TVC) and adaptive laser telescope for satellite applications. To eliminate disturbances, the proposed adaptive TVC and telescope systems will be mounted on two analogous smart composite platform with simultaneous precision positioning (pointing) and vibration suppression (stabilizing), SPPVS, with micro-radian pointing resolution, and then mounted on a satellite in two different locations. The adaptive TVC system provides SPPVS with large tip-tilt to potentially eliminate the gimbals systems. The smart composite telescope will be mounted on a smart composite platform with SPPVS and then mounted on a satellite. The laser communication is intended for the Geosynchronous orbit. The high degree of directionality increases the security of the laser communication signal (as opposed to a diffused RF signal), but also requires sophisticated subsystems for transmission and acquisition. The shorter wavelength of the optical spectrum increases the data transmission rates, but laser systems require large amounts of power, which increases the mass and complexity of the supporting systems. In addition, the laser communication on the Geosynchronous orbit requires an accurate platform with SPPVS capabilities. Therefore, this work also addresses the design of an active composite platform to be used to simultaneously point and stabilize an intersatellite laser communication telescope with micro-radian pointing resolution. The telescope is a Cassegrain receiver that employs two mirrors, one convex (primary) and the other concave (secondary). The distance, as well as the horizontal and axial alignment of the mirrors, must be precisely maintained or else the optical properties of the system will be severely degraded. The alignment will also have to be maintained during thruster firings, which will require vibration suppression capabilities of the system as well. The innovative platform has been

  2. Fast adaptive composite grid methods on distributed parallel architectures

    NASA Technical Reports Server (NTRS)

    Lemke, Max; Quinlan, Daniel

    1992-01-01

    The fast adaptive composite (FAC) grid method is compared with the adaptive composite method (AFAC) under variety of conditions including vectorization and parallelization. Results are given for distributed memory multiprocessor architectures (SUPRENUM, Intel iPSC/2 and iPSC/860). It is shown that the good performance of AFAC and its superiority over FAC in a parallel environment is a property of the algorithm and not dependent on peculiarities of any machine.

  3. The life cycles of six multi-center adaptive clinical trials focused on neurological emergencies developed for the Advancing Regulatory Science initiative of the National Institutes of Health and US Food and Drug Administration: Case studies from the Adaptive Designs Accelerating Promising Treatments Into Trials Project.

    PubMed

    Guetterman, Timothy C; Fetters, Michael D; Mawocha, Samkeliso; Legocki, Laurie J; Barsan, William G; Lewis, Roger J; Berry, Donald A; Meurer, William J

    2017-01-01

    Clinical trials are complicated, expensive, time-consuming, and frequently do not lead to discoveries that improve the health of patients with disease. Adaptive clinical trials have emerged as a methodology to provide more flexibility in design elements to better answer scientific questions regarding whether new treatments are efficacious. Limited observational data exist that describe the complex process of designing adaptive clinical trials. To address these issues, the Adaptive Designs Accelerating Promising Treatments Into Trials project developed six, tailored, flexible, adaptive, phase-III clinical trials for neurological emergencies, and investigators prospectively monitored and observed the processes. The objective of this work is to describe the adaptive design development process, the final design, and the current status of the adaptive trial designs that were developed. To observe and reflect upon the trial development process, we employed a rich, mixed methods evaluation that combined quantitative data from visual analog scale to assess attitudes about adaptive trials, along with in-depth qualitative data about the development process gathered from observations. The Adaptive Designs Accelerating Promising Treatments Into Trials team developed six adaptive clinical trial designs. Across the six designs, 53 attitude surveys were completed at baseline and after the trial planning process completed. Compared to baseline, the participants believed significantly more strongly that the adaptive designs would be accepted by National Institutes of Health review panels and non-researcher clinicians. In addition, after the trial planning process, the participants more strongly believed that the adaptive design would meet the scientific and medical goals of the studies. Introducing the adaptive design at early conceptualization proved critical to successful adoption and implementation of that trial. Involving key stakeholders from several scientific domains early

  4. Robust Adaptive Flight Control Design of Air-breathing Hypersonic Vehicles

    DTIC Science & Technology

    2016-12-07

    dynamic inversion controller design for a non -minimum phase hypersonic vehicle is derived by Kuipers et al. [2008]. Moreover, integrated guidance and...stabilization time for inner loop variables is lesser than the intermediate loop variables because of the three-loop-control design methodology . The control...adaptive design . Control Engineering Practice, 2016. Michael A Bolender and David B Doman. A non -linear model for the longitudinal dynamics of a

  5. An analysis of adaptive design variations on the sequential parallel comparison design for clinical trials.

    PubMed

    Mi, Michael Y; Betensky, Rebecca A

    2013-04-01

    Currently, a growing placebo response rate has been observed in clinical trials for antidepressant drugs, a phenomenon that has made it increasingly difficult to demonstrate efficacy. The sequential parallel comparison design (SPCD) is a clinical trial design that was proposed to address this issue. The SPCD theoretically has the potential to reduce the sample-size requirement for a clinical trial and to simultaneously enrich the study population to be less responsive to the placebo. Because the basic SPCD already reduces the placebo response by removing placebo responders between the first and second phases of a trial, the purpose of this study was to examine whether we can further improve the efficiency of the basic SPCD and whether we can do so when the projected underlying drug and placebo response rates differ considerably from the actual ones. Three adaptive designs that used interim analyses to readjust the length of study duration for individual patients were tested to reduce the sample-size requirement or increase the statistical power of the SPCD. Various simulations of clinical trials using the SPCD with interim analyses were conducted to test these designs through calculations of empirical power. From the simulations, we found that the adaptive designs can recover unnecessary resources spent in the traditional SPCD trial format with overestimated initial sample sizes and provide moderate gains in power. Under the first design, results showed up to a 25% reduction in person-days, with most power losses below 5%. In the second design, results showed up to a 8% reduction in person-days with negligible loss of power. In the third design using sample-size re-estimation, up to 25% power was recovered from underestimated sample-size scenarios. Given the numerous possible test parameters that could have been chosen for the simulations, the study's results are limited to situations described by the parameters that were used and may not generalize to all possible

  6. An adaptive response surface method for crashworthiness optimization

    NASA Astrophysics Data System (ADS)

    Shi, Lei; Yang, Ren-Jye; Zhu, Ping

    2013-11-01

    Response surface-based design optimization has been commonly used for optimizing large-scale design problems in the automotive industry. However, most response surface models are built by a limited number of design points without considering data uncertainty. In addition, the selection of a response surface in the literature is often arbitrary. This article uses a Bayesian metric to systematically select the best available response surface among several candidates in a library while considering data uncertainty. An adaptive, efficient response surface strategy, which minimizes the number of computationally intensive simulations, was developed for design optimization of large-scale complex problems. This methodology was demonstrated by a crashworthiness optimization example.

  7. Adaptive transmission disequilibrium test for family trio design.

    PubMed

    Yuan, Min; Tian, Xin; Zheng, Gang; Yang, Yaning

    2009-01-01

    The transmission disequilibrium test (TDT) is a standard method to detect association using family trio design. It is optimal for an additive genetic model. Other TDT-type tests optimal for recessive and dominant models have also been developed. Association tests using family data, including the TDT-type statistics, have been unified to a class of more comprehensive and flexable family-based association tests (FBAT). TDT-type tests have high efficiency when the genetic model is known or correctly specified, but may lose power if the model is mis-specified. Hence tests that are robust to genetic model mis-specification yet efficient are preferred. Constrained likelihood ratio test (CLRT) and MAX-type test have been shown to be efficiency robust. In this paper we propose a new efficiency robust procedure, referred to as adaptive TDT (aTDT). It uses the Hardy-Weinberg disequilibrium coefficient to identify the potential genetic model underlying the data and then applies the TDT-type test (or FBAT for general applications) corresponding to the selected model. Simulation demonstrates that aTDT is efficiency robust to model mis-specifications and generally outperforms the MAX test and CLRT in terms of power. We also show that aTDT has power close to, but much more robust, than the optimal TDT-type test based on a single genetic model. Applications to real and simulated data from Genetic Analysis Workshop (GAW) illustrate the use of our adaptive TDT.

  8. Adaptive Nodal Transport Methods for Reactor Transient Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas Downar; E. Lewis

    2005-08-31

    Develop methods for adaptively treating the angular, spatial, and time dependence of the neutron flux in reactor transient analysis. These methods were demonstrated in the DOE transport nodal code VARIANT and the US NRC spatial kinetics code, PARCS.

  9. An ACC Design Method for Achieving Both String Stability and Ride Comfort

    NASA Astrophysics Data System (ADS)

    Yamamura, Yoshinori; Seto, Yoji; Nishira, Hikaru; Kawabe, Taketoshi

    An investigation was made of a method for designing adaptive cruise control (ACC) so as to achieve a headway distance response that feels natural to the driver while at the same time obtaining high levels of both string stability and ride comfort. With this design method, the H∞ norm is adopted as the index of string stability. Additionally, two norms are introduced for evaluating ride comfort and natural vehicle behavior. The relationship between these three norms and headway distance response characteristics was analyzed, and an evaluation method was established for achieving high levels of the various performance characteristics required of ACC. An ACC system designed with this method was evaluated in driving tests conducted on a proving ground course, and the results confirmed that it achieved the targeted levels of string stability, ride comfort and natural vehicle behavior.

  10. Wavelet-based adaptive thresholding method for image segmentation

    NASA Astrophysics Data System (ADS)

    Chen, Zikuan; Tao, Yang; Chen, Xin; Griffis, Carl

    2001-05-01

    A nonuniform background distribution may cause a global thresholding method to fail to segment objects. One solution is using a local thresholding method that adapts to local surroundings. In this paper, we propose a novel local thresholding method for image segmentation, using multiscale threshold functions obtained by wavelet synthesis with weighted detail coefficients. In particular, the coarse-to- fine synthesis with attenuated detail coefficients produces a threshold function corresponding to a high-frequency- reduced signal. This wavelet-based local thresholding method adapts to both local size and local surroundings, and its implementation can take advantage of the fast wavelet algorithm. We applied this technique to physical contaminant detection for poultry meat inspection using x-ray imaging. Experiments showed that inclusion objects in deboned poultry could be extracted at multiple resolutions despite their irregular sizes and uneven backgrounds.

  11. Adaptive grid methods for RLV environment assessment and nozzle analysis

    NASA Technical Reports Server (NTRS)

    Thornburg, Hugh J.

    1996-01-01

    Rapid access to highly accurate data about complex configurations is needed for multi-disciplinary optimization and design. In order to efficiently meet these requirements a closer coupling between the analysis algorithms and the discretization process is needed. In some cases, such as free surface, temporally varying geometries, and fluid structure interaction, the need is unavoidable. In other cases the need is to rapidly generate and modify high quality grids. Techniques such as unstructured and/or solution-adaptive methods can be used to speed the grid generation process and to automatically cluster mesh points in regions of interest. Global features of the flow can be significantly affected by isolated regions of inadequately resolved flow. These regions may not exhibit high gradients and can be difficult to detect. Thus excessive resolution in certain regions does not necessarily increase the accuracy of the overall solution. Several approaches have been employed for both structured and unstructured grid adaption. The most widely used involve grid point redistribution, local grid point enrichment/derefinement or local modification of the actual flow solver. However, the success of any one of these methods ultimately depends on the feature detection algorithm used to determine solution domain regions which require a fine mesh for their accurate representation. Typically, weight functions are constructed to mimic the local truncation error and may require substantial user input. Most problems of engineering interest involve multi-block grids and widely disparate length scales. Hence, it is desirable that the adaptive grid feature detection algorithm be developed to recognize flow structures of different type as well as differing intensity, and adequately address scaling and normalization across blocks. These weight functions can then be used to construct blending functions for algebraic redistribution, interpolation functions for unstructured grid generation

  12. Adaptive methods, rolling contact, and nonclassical friction laws

    NASA Technical Reports Server (NTRS)

    Oden, J. T.

    1989-01-01

    Results and methods on three different areas of contemporary research are outlined. These include adaptive methods, the rolling contact problem for finite deformation of a hyperelastic or viscoelastic cylinder, and non-classical friction laws for modeling dynamic friction phenomena.

  13. The Formative Method for Adapting Psychotherapy (FMAP): A community-based developmental approach to culturally adapting therapy

    PubMed Central

    Hwang, Wei-Chin

    2010-01-01

    How do we culturally adapt psychotherapy for ethnic minorities? Although there has been growing interest in doing so, few therapy adaptation frameworks have been developed. The majority of these frameworks take a top-down theoretical approach to adapting psychotherapy. The purpose of this paper is to introduce a community-based developmental approach to modifying psychotherapy for ethnic minorities. The Formative Method for Adapting Psychotherapy (FMAP) is a bottom-up approach that involves collaborating with consumers to generate and support ideas for therapy adaptation. It involves 5-phases that target developing, testing, and reformulating therapy modifications. These phases include: (a) generating knowledge and collaborating with stakeholders (b) integrating generated information with theory and empirical and clinical knowledge, (c) reviewing the initial culturally adapted clinical intervention with stakeholders and revising the culturally adapted intervention, (d) testing the culturally adapted intervention, and (e) finalizing the culturally adapted intervention. Application of the FMAP is illustrated using examples from a study adapting psychotherapy for Chinese Americans, but can also be readily applied to modify therapy for other ethnic groups. PMID:20625458

  14. Stability and error estimation for Component Adaptive Grid methods

    NASA Technical Reports Server (NTRS)

    Oliger, Joseph; Zhu, Xiaolei

    1994-01-01

    Component adaptive grid (CAG) methods for solving hyperbolic partial differential equations (PDE's) are discussed in this paper. Applying recent stability results for a class of numerical methods on uniform grids. The convergence of these methods for linear problems on component adaptive grids is established here. Furthermore, the computational error can be estimated on CAG's using the stability results. Using these estimates, the error can be controlled on CAG's. Thus, the solution can be computed efficiently on CAG's within a given error tolerance. Computational results for time dependent linear problems in one and two space dimensions are presented.

  15. Capillary Electrophoresis Sensitivity Enhancement Based on Adaptive Moving Average Method.

    PubMed

    Drevinskas, Tomas; Telksnys, Laimutis; Maruška, Audrius; Gorbatsova, Jelena; Kaljurand, Mihkel

    2018-06-05

    In the present work, we demonstrate a novel approach to improve the sensitivity of the "out of lab" portable capillary electrophoretic measurements. Nowadays, many signal enhancement methods are (i) underused (nonoptimal), (ii) overused (distorts the data), or (iii) inapplicable in field-portable instrumentation because of a lack of computational power. The described innovative migration velocity-adaptive moving average method uses an optimal averaging window size and can be easily implemented with a microcontroller. The contactless conductivity detection was used as a model for the development of a signal processing method and the demonstration of its impact on the sensitivity. The frequency characteristics of the recorded electropherograms and peaks were clarified. Higher electrophoretic mobility analytes exhibit higher-frequency peaks, whereas lower electrophoretic mobility analytes exhibit lower-frequency peaks. On the basis of the obtained data, a migration velocity-adaptive moving average algorithm was created, adapted, and programmed into capillary electrophoresis data-processing software. Employing the developed algorithm, each data point is processed depending on a certain migration time of the analyte. Because of the implemented migration velocity-adaptive moving average method, the signal-to-noise ratio improved up to 11 times for sampling frequency of 4.6 Hz and up to 22 times for sampling frequency of 25 Hz. This paper could potentially be used as a methodological guideline for the development of new smoothing algorithms that require adaptive conditions in capillary electrophoresis and other separation methods.

  16. Designing Networks that are Capable of Self-Healing and Adapting

    DTIC Science & Technology

    2017-04-01

    from statistical mechanics, combinatorics, boolean networks, and numerical simulations, and inspired by design principles from biological networks, we... principles for self-healing networks, and applications, and construct an all-possible-paths model for network adaptation. 2015-11-16 UNIT CONVERSION...combinatorics, boolean networks, and numerical simulations, and inspired by design principles from biological networks, we will undertake the fol

  17. On Accuracy of Adaptive Grid Methods for Captured Shocks

    NASA Technical Reports Server (NTRS)

    Yamaleev, Nail K.; Carpenter, Mark H.

    2002-01-01

    The accuracy of two grid adaptation strategies, grid redistribution and local grid refinement, is examined by solving the 2-D Euler equations for the supersonic steady flow around a cylinder. Second- and fourth-order linear finite difference shock-capturing schemes, based on the Lax-Friedrichs flux splitting, are used to discretize the governing equations. The grid refinement study shows that for the second-order scheme, neither grid adaptation strategy improves the numerical solution accuracy compared to that calculated on a uniform grid with the same number of grid points. For the fourth-order scheme, the dominant first-order error component is reduced by the grid adaptation, while the design-order error component drastically increases because of the grid nonuniformity. As a result, both grid adaptation techniques improve the numerical solution accuracy only on the coarsest mesh or on very fine grids that are seldom found in practical applications because of the computational cost involved. Similar error behavior has been obtained for the pressure integral across the shock. A simple analysis shows that both grid adaptation strategies are not without penalties in the numerical solution accuracy. Based on these results, a new grid adaptation criterion for captured shocks is proposed.

  18. Three-dimensional self-adaptive grid method for complex flows

    NASA Technical Reports Server (NTRS)

    Djomehri, M. Jahed; Deiwert, George S.

    1988-01-01

    A self-adaptive grid procedure for efficient computation of three-dimensional complex flow fields is described. The method is based on variational principles to minimize the energy of a spring system analogy which redistributes the grid points. Grid control parameters are determined by specifying maximum and minimum grid spacing. Multidirectional adaptation is achieved by splitting the procedure into a sequence of successive applications of a unidirectional adaptation. One-sided, two-directional constraints for orthogonality and smoothness are used to enhance the efficiency of the method. Feasibility of the scheme is demonstrated by application to a multinozzle, afterbody, plume flow field. Application of the algorithm for initial grid generation is illustrated by constructing a three-dimensional grid about a bump-like geometry.

  19. Efficient Unstructured Grid Adaptation Methods for Sonic Boom Prediction

    NASA Technical Reports Server (NTRS)

    Campbell, Richard L.; Carter, Melissa B.; Deere, Karen A.; Waithe, Kenrick A.

    2008-01-01

    This paper examines the use of two grid adaptation methods to improve the accuracy of the near-to-mid field pressure signature prediction of supersonic aircraft computed using the USM3D unstructured grid flow solver. The first method (ADV) is an interactive adaptation process that uses grid movement rather than enrichment to more accurately resolve the expansion and compression waves. The second method (SSGRID) uses an a priori adaptation approach to stretch and shear the original unstructured grid to align the grid with the pressure waves and reduce the cell count required to achieve an accurate signature prediction at a given distance from the vehicle. Both methods initially create negative volume cells that are repaired in a module in the ADV code. While both approaches provide significant improvements in the near field signature (< 3 body lengths) relative to a baseline grid without increasing the number of grid points, only the SSGRID approach allows the details of the signature to be accurately computed at mid-field distances (3-10 body lengths) for direct use with mid-field-to-ground boom propagation codes.

  20. Object-oriented philosophy in designing adaptive finite-element package for 3D elliptic deferential equations

    NASA Astrophysics Data System (ADS)

    Zhengyong, R.; Jingtian, T.; Changsheng, L.; Xiao, X.

    2007-12-01

    Although adaptive finite-element (AFE) analysis is becoming more and more focused in scientific and engineering fields, its efficient implementations are remain to be a discussed problem as its more complex procedures. In this paper, we propose a clear C++ framework implementation to show the powerful properties of Object-oriented philosophy (OOP) in designing such complex adaptive procedure. In terms of the modal functions of OOP language, the whole adaptive system is divided into several separate parts such as the mesh generation or refinement, a-posterior error estimator, adaptive strategy and the final post processing. After proper designs are locally performed on these separate modals, a connected framework of adaptive procedure is formed finally. Based on the general elliptic deferential equation, little efforts should be added in the adaptive framework to do practical simulations. To show the preferable properties of OOP adaptive designing, two numerical examples are tested. The first one is the 3D direct current resistivity problem in which the powerful framework is efficiently shown as only little divisions are added. And then, in the second induced polarization£¨IP£©exploration case, new adaptive procedure is easily added which adequately shows the strong extendibility and re-usage of OOP language. Finally we believe based on the modal framework adaptive implementation by OOP methodology, more advanced adaptive analysis system will be available in future.

  1. A Phase I/II adaptive design for heterogeneous groups with application to a stereotactic body radiation therapy trial.

    PubMed

    Wages, Nolan A; Read, Paul W; Petroni, Gina R

    2015-01-01

    Dose-finding studies that aim to evaluate the safety of single agents are becoming less common, and advances in clinical research have complicated the paradigm of dose finding in oncology. A class of more complex problems, such as targeted agents, combination therapies and stratification of patients by clinical or genetic characteristics, has created the need to adapt early-phase trial design to the specific type of drug being investigated and the corresponding endpoints. In this article, we describe the implementation of an adaptive design based on a continual reassessment method for heterogeneous groups, modified to coincide with the objectives of a Phase I/II trial of stereotactic body radiation therapy in patients with painful osseous metastatic disease. Operating characteristics of the Institutional Review Board approved design are demonstrated under various possible true scenarios via simulation studies. Copyright © 2015 John Wiley & Sons, Ltd.

  2. Chance-constrained multi-objective optimization of groundwater remediation design at DNAPLs-contaminated sites using a multi-algorithm genetically adaptive method

    NASA Astrophysics Data System (ADS)

    Ouyang, Qi; Lu, Wenxi; Hou, Zeyu; Zhang, Yu; Li, Shuai; Luo, Jiannan

    2017-05-01

    In this paper, a multi-algorithm genetically adaptive multi-objective (AMALGAM) method is proposed as a multi-objective optimization solver. It was implemented in the multi-objective optimization of a groundwater remediation design at sites contaminated by dense non-aqueous phase liquids. In this study, there were two objectives: minimization of the total remediation cost, and minimization of the remediation time. A non-dominated sorting genetic algorithm II (NSGA-II) was adopted to compare with the proposed method. For efficiency, the time-consuming surfactant-enhanced aquifer remediation simulation model was replaced by a surrogate model constructed by a multi-gene genetic programming (MGGP) technique. Similarly, two other surrogate modeling methods-support vector regression (SVR) and Kriging (KRG)-were employed to make comparisons with MGGP. In addition, the surrogate-modeling uncertainty was incorporated in the optimization model by chance-constrained programming (CCP). The results showed that, for the problem considered in this study, (1) the solutions obtained by AMALGAM incurred less remediation cost and required less time than those of NSGA-II, indicating that AMALGAM outperformed NSGA-II. It was additionally shown that (2) the MGGP surrogate model was more accurate than SVR and KRG; and (3) the remediation cost and time increased with the confidence level, which can enable decision makers to make a suitable choice by considering the given budget, remediation time, and reliability.

  3. Project Lifespan-based Nonstationary Hydrologic Design Methods for Changing Environment

    NASA Astrophysics Data System (ADS)

    Xiong, L.

    2017-12-01

    Under changing environment, we must associate design floods with the design life period of projects to ensure the hydrologic design is really relevant to the operation of the hydrologic projects, because the design value for a given exceedance probability over the project life period would be significantly different from that over other time periods of the same length due to the nonstationarity of probability distributions. Several hydrologic design methods that take the design life period of projects into account have been proposed in recent years, i.e. the expected number of exceedances (ENE), design life level (DLL), equivalent reliability (ER), and average design life level (ADLL). Among the four methods to be compared, both the ENE and ER methods are return period-based methods, while DLL and ADLL are risk/reliability- based methods which estimate design values for given probability values of risk or reliability. However, the four methods can be unified together under a general framework through a relationship transforming the so-called representative reliability (RRE) into the return period, i.e. m=1/1(1-RRE), in which we compute the return period m using the representative reliability RRE.The results of nonstationary design quantiles and associated confidence intervals calculated by ENE, ER and ADLL were very similar, since ENE or ER was a special case or had a similar expression form with respect to ADLL. In particular, the design quantiles calculated by ENE and ADLL were the same when return period was equal to the length of the design life. In addition, DLL can yield similar design values if the relationship between DLL and ER/ADLL return periods is considered. Furthermore, ENE, ER and ADLL had good adaptability to either an increasing or decreasing situation, yielding not too large or too small design quantiles. This is important for applications of nonstationary hydrologic design methods in actual practice because of the concern of choosing the emerging

  4. Adaptive designs for subpopulation analysis optimizing utility functions.

    PubMed

    Graf, Alexandra C; Posch, Martin; Koenig, Franz

    2015-01-01

    If the response to treatment depends on genetic biomarkers, it is important to identify predictive biomarkers that define (sub-)populations where the treatment has a positive benefit risk balance. One approach to determine relevant subpopulations are subgroup analyses where the treatment effect is estimated in biomarker positive and biomarker negative groups. Subgroup analyses are challenging because several types of risks are associated with inference on subgroups. On the one hand, by disregarding a relevant subpopulation a treatment option may be missed due to a dilution of the treatment effect in the full population. Furthermore, even if the diluted treatment effect can be demonstrated in an overall population, it is not ethical to treat patients that do not benefit from the treatment when they can be identified in advance. On the other hand, selecting a spurious subpopulation increases the risk to restrict an efficacious treatment to a too narrow fraction of a potential benefiting population. We propose to quantify these risks with utility functions and investigate nonadaptive study designs that allow for inference on subgroups using multiple testing procedures as well as adaptive designs, where subgroups may be selected in an interim analysis. The characteristics of such adaptive and nonadaptive designs are compared for a range of scenarios. © 2014 The Authors. Biometrical Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Free energy calculations: an efficient adaptive biasing potential method.

    PubMed

    Dickson, Bradley M; Legoll, Frédéric; Lelièvre, Tony; Stoltz, Gabriel; Fleurat-Lessard, Paul

    2010-05-06

    We develop an efficient sampling and free energy calculation technique within the adaptive biasing potential (ABP) framework. By mollifying the density of states we obtain an approximate free energy and an adaptive bias potential that is computed directly from the population along the coordinates of the free energy. Because of the mollifier, the bias potential is "nonlocal", and its gradient admits a simple analytic expression. A single observation of the reaction coordinate can thus be used to update the approximate free energy at every point within a neighborhood of the observation. This greatly reduces the equilibration time of the adaptive bias potential. This approximation introduces two parameters: strength of mollification and the zero of energy of the bias potential. While we observe that the approximate free energy is a very good estimate of the actual free energy for a large range of mollification strength, we demonstrate that the errors associated with the mollification may be removed via deconvolution. The zero of energy of the bias potential, which is easy to choose, influences the speed of convergence but not the limiting accuracy. This method is simple to apply to free energy or mean force computation in multiple dimensions and does not involve second derivatives of the reaction coordinates, matrix manipulations nor on-the-fly adaptation of parameters. For the alanine dipeptide test case, the new method is found to gain as much as a factor of 10 in efficiency as compared to two basic implementations of the adaptive biasing force methods, and it is shown to be as efficient as well-tempered metadynamics with the postprocess deconvolution giving a clear advantage to the mollified density of states method.

  6. Robust Brain-Machine Interface Design Using Optimal Feedback Control Modeling and Adaptive Point Process Filtering

    PubMed Central

    Carmena, Jose M.

    2016-01-01

    Much progress has been made in brain-machine interfaces (BMI) using decoders such as Kalman filters and finding their parameters with closed-loop decoder adaptation (CLDA). However, current decoders do not model the spikes directly, and hence may limit the processing time-scale of BMI control and adaptation. Moreover, while specialized CLDA techniques for intention estimation and assisted training exist, a unified and systematic CLDA framework that generalizes across different setups is lacking. Here we develop a novel closed-loop BMI training architecture that allows for processing, control, and adaptation using spike events, enables robust control and extends to various tasks. Moreover, we develop a unified control-theoretic CLDA framework within which intention estimation, assisted training, and adaptation are performed. The architecture incorporates an infinite-horizon optimal feedback-control (OFC) model of the brain’s behavior in closed-loop BMI control, and a point process model of spikes. The OFC model infers the user’s motor intention during CLDA—a process termed intention estimation. OFC is also used to design an autonomous and dynamic assisted training technique. The point process model allows for neural processing, control and decoder adaptation with every spike event and at a faster time-scale than current decoders; it also enables dynamic spike-event-based parameter adaptation unlike current CLDA methods that use batch-based adaptation on much slower adaptation time-scales. We conducted closed-loop experiments in a non-human primate over tens of days to dissociate the effects of these novel CLDA components. The OFC intention estimation improved BMI performance compared with current intention estimation techniques. OFC assisted training allowed the subject to consistently achieve proficient control. Spike-event-based adaptation resulted in faster and more consistent performance convergence compared with batch-based methods, and was robust to

  7. Issues and Challenges in the Design of Culturally Adapted Evidence-Based Interventions

    PubMed Central

    Castro, Felipe González; Barrera, Manuel; Holleran Steiker, Lori K.

    2014-01-01

    This article examines issues and challenges in the design of cultural adaptations that are developed from an original evidence-based intervention (EBI). Recently emerging multistep frameworks or stage models are examined, as these can systematically guide the development of culturally adapted EBIs. Critical issues are also presented regarding whether and how such adaptations may be conducted, and empirical evidence is presented regarding the effectiveness of such cultural adaptations. Recent evidence suggests that these cultural adaptations are effective when applied with certain subcultural groups, although they are less effective when applied with other subcultural groups. Generally, current evidence regarding the effectiveness of cultural adaptations is promising but mixed. Further research is needed to obtain more definitive conclusions regarding the efficacy and effectiveness of culturally adapted EBIs. Directions for future research and recommendations are presented to guide the development of a new generation of culturally adapted EBIs. PMID:20192800

  8. 28. 'TOWER DESIGN NO. 11, ADAPTED FROM NO. 9,' drawn ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. 'TOWER DESIGN NO. 11, ADAPTED FROM NO. 9,' drawn by project architect Alfred Eichler, undated, ca. 1934. - Sacramento River Bridge, Spanning Sacramento River at California State Highway 275, Sacramento, Sacramento County, CA

  9. Validation of an Adaptive Combustion Instability Control Method for Gas-Turbine Engines

    NASA Technical Reports Server (NTRS)

    Kopasakis, George; DeLaat, John C.; Chang, Clarence T.

    2004-01-01

    This paper describes ongoing testing of an adaptive control method to suppress high frequency thermo-acoustic instabilities like those found in lean-burning, low emission combustors that are being developed for future aircraft gas turbine engines. The method called Adaptive Sliding Phasor Averaged Control, was previously tested in an experimental rig designed to simulate a combustor with an instability of about 530 Hz. Results published earlier, and briefly presented here, demonstrated that this method was effective in suppressing the instability. Because this test rig did not exhibit a well pronounced instability, a question remained regarding the effectiveness of the control methodology when applied to a more coherent instability. To answer this question, a modified combustor rig was assembled at the NASA Glenn Research Center in Cleveland, Ohio. The modified rig exhibited a more coherent, higher amplitude instability, but at a lower frequency of about 315 Hz. Test results show that this control method successfully reduced the instability pressure of the lower frequency test rig. In addition, due to a certain phenomena discovered and reported earlier, the so called Intra-Harmonic Coupling, a dramatic suppression of the instability was achieved by focusing control on the second harmonic of the instability. These results and their implications are discussed, as well as a hypothesis describing the mechanism of intra-harmonic coupling.

  10. Optimizing trial design in pharmacogenetics research: comparing a fixed parallel group, group sequential, and adaptive selection design on sample size requirements.

    PubMed

    Boessen, Ruud; van der Baan, Frederieke; Groenwold, Rolf; Egberts, Antoine; Klungel, Olaf; Grobbee, Diederick; Knol, Mirjam; Roes, Kit

    2013-01-01

    Two-stage clinical trial designs may be efficient in pharmacogenetics research when there is some but inconclusive evidence of effect modification by a genomic marker. Two-stage designs allow to stop early for efficacy or futility and can offer the additional opportunity to enrich the study population to a specific patient subgroup after an interim analysis. This study compared sample size requirements for fixed parallel group, group sequential, and adaptive selection designs with equal overall power and control of the family-wise type I error rate. The designs were evaluated across scenarios that defined the effect sizes in the marker positive and marker negative subgroups and the prevalence of marker positive patients in the overall study population. Effect sizes were chosen to reflect realistic planning scenarios, where at least some effect is present in the marker negative subgroup. In addition, scenarios were considered in which the assumed 'true' subgroup effects (i.e., the postulated effects) differed from those hypothesized at the planning stage. As expected, both two-stage designs generally required fewer patients than a fixed parallel group design, and the advantage increased as the difference between subgroups increased. The adaptive selection design added little further reduction in sample size, as compared with the group sequential design, when the postulated effect sizes were equal to those hypothesized at the planning stage. However, when the postulated effects deviated strongly in favor of enrichment, the comparative advantage of the adaptive selection design increased, which precisely reflects the adaptive nature of the design. Copyright © 2013 John Wiley & Sons, Ltd.

  11. Locally adaptive parallel temperature accelerated dynamics method

    NASA Astrophysics Data System (ADS)

    Shim, Yunsic; Amar, Jacques G.

    2010-03-01

    The recently-developed temperature-accelerated dynamics (TAD) method [M. Sørensen and A.F. Voter, J. Chem. Phys. 112, 9599 (2000)] along with the more recently developed parallel TAD (parTAD) method [Y. Shim et al, Phys. Rev. B 76, 205439 (2007)] allow one to carry out non-equilibrium simulations over extended time and length scales. The basic idea behind TAD is to speed up transitions by carrying out a high-temperature MD simulation and then use the resulting information to obtain event times at the desired low temperature. In a typical implementation, a fixed high temperature Thigh is used. However, in general one expects that for each configuration there exists an optimal value of Thigh which depends on the particular transition pathways and activation energies for that configuration. Here we present a locally adaptive high-temperature TAD method in which instead of using a fixed Thigh the high temperature is dynamically adjusted in order to maximize simulation efficiency. Preliminary results of the performance obtained from parTAD simulations of Cu/Cu(100) growth using the locally adaptive Thigh method will also be presented.

  12. The Applied Behavior Analysis Research Paradigm and Single-Subject Designs in Adapted Physical Activity Research.

    PubMed

    Haegele, Justin A; Hodge, Samuel Russell

    2015-10-01

    There are basic philosophical and paradigmatic assumptions that guide scholarly research endeavors, including the methods used and the types of questions asked. Through this article, kinesiology faculty and students with interests in adapted physical activity are encouraged to understand the basic assumptions of applied behavior analysis (ABA) methodology for conducting, analyzing, and presenting research of high quality in this paradigm. The purposes of this viewpoint paper are to present information fundamental to understanding the assumptions undergirding research methodology in ABA, describe key aspects of single-subject research designs, and discuss common research designs and data-analysis strategies used in single-subject studies.

  13. A self-adaptive-grid method with application to airfoil flow

    NASA Technical Reports Server (NTRS)

    Nakahashi, K.; Deiwert, G. S.

    1985-01-01

    A self-adaptive-grid method is described that is suitable for multidimensional steady and unsteady computations. Based on variational principles, a spring analogy is used to redistribute grid points in an optimal sense to reduce the overall solution error. User-specified parameters, denoting both maximum and minimum permissible grid spacings, are used to define the all-important constants, thereby minimizing the empiricism and making the method self-adaptive. Operator splitting and one-sided controls for orthogonality and smoothness are used to make the method practical, robust, and efficient. Examples are included for both steady and unsteady viscous flow computations about airfoils in two dimensions, as well as for a steady inviscid flow computation and a one-dimensional case. These examples illustrate the precise control the user has with the self-adaptive method and demonstrate a significant improvement in accuracy and quality of the solutions.

  14. Speckle reduction in optical coherence tomography by adaptive total variation method

    NASA Astrophysics Data System (ADS)

    Wu, Tong; Shi, Yaoyao; Liu, Youwen; He, Chongjun

    2015-12-01

    An adaptive total variation method based on the combination of speckle statistics and total variation restoration is proposed and developed for reducing speckle noise in optical coherence tomography (OCT) images. The statistical distribution of the speckle noise in OCT image is investigated and measured. With the measured parameters such as the mean value and variance of the speckle noise, the OCT image is restored by the adaptive total variation restoration method. The adaptive total variation restoration algorithm was applied to the OCT images of a volunteer's hand skin, which showed effective speckle noise reduction and image quality improvement. For image quality comparison, the commonly used median filtering method was also applied to the same images to reduce the speckle noise. The measured results demonstrate the superior performance of the adaptive total variation restoration method in terms of image signal-to-noise ratio, equivalent number of looks, contrast-to-noise ratio, and mean square error.

  15. H-P adaptive methods for finite element analysis of aerothermal loads in high-speed flows

    NASA Technical Reports Server (NTRS)

    Chang, H. J.; Bass, J. M.; Tworzydlo, W.; Oden, J. T.

    1993-01-01

    The commitment to develop the National Aerospace Plane and Maneuvering Reentry Vehicles has generated resurgent interest in the technology required to design structures for hypersonic flight. The principal objective of this research and development effort has been to formulate and implement a new class of computational methodologies for accurately predicting fine scale phenomena associated with this class of problems. The initial focus of this effort was to develop optimal h-refinement and p-enrichment adaptive finite element methods which utilize a-posteriori estimates of the local errors to drive the adaptive methodology. Over the past year this work has specifically focused on two issues which are related to overall performance of a flow solver. These issues include the formulation and implementation (in two dimensions) of an implicit/explicit flow solver compatible with the hp-adaptive methodology, and the design and implementation of computational algorithm for automatically selecting optimal directions in which to enrich the mesh. These concepts and algorithms have been implemented in a two-dimensional finite element code and used to solve three hypersonic flow benchmark problems (Holden Mach 14.1, Edney shock on shock interaction Mach 8.03, and the viscous backstep Mach 4.08).

  16. Design and Flight Tests of an Adaptive Control System Employing Normal-Acceleration Command

    NASA Technical Reports Server (NTRS)

    McNeill, Water E.; McLean, John D.; Hegarty, Daniel M.; Heinle, Donovan R.

    1961-01-01

    An adaptive control system employing normal-acceleration command has been designed with the aid of an analog computer and has been flight tested. The design of the system was based on the concept of using a mathematical model in combination with a high gain and a limiter. The study was undertaken to investigate the application of a system of this type to the task of maintaining nearly constant dynamic longitudinal response of a piloted airplane over the flight envelope without relying on air data measurements for gain adjustment. The range of flight conditions investigated was between Mach numbers of 0.36 and 1.15 and altitudes of 10,000 and 40,000 feet. The final adaptive system configuration was derived from analog computer tests, in which the physical airplane control system and much of the control circuitry were included in the loop. The method employed to generate the feedback signals resulted in a model whose characteristics varied somewhat with changes in flight condition. Flight results showed that the system limited the variation in longitudinal natural frequency of the adaptive airplane to about half that of the basic airplane and that, for the subsonic cases, the damping ratio was maintained between 0.56 and 0.69. The system also automatically compensated for the transonic trim change. Objectionable features of the system were an exaggerated sensitivity of pitch attitude to gust disturbances, abnormally large pitch attitude response for a given pilot input at low speeds, and an initial delay in normal-acceleration response to pilot control at all flight conditions. The adaptive system chatter of +/-0.05 to +/-0.10 of elevon at about 9 cycles per second (resulting in a maximum airplane normal-acceleration response of from +/-0.025 g to +/- 0.035 g) was considered by the pilots to be mildly objectionable but tolerable.

  17. A Framework for Adaptive Learning Design in a Web-Conferencing Environment

    ERIC Educational Resources Information Center

    Bower, Matt

    2016-01-01

    Many recent technologies provide the ability to dynamically adjust the interface depending on the emerging cognitive and collaborative needs of the learning episode. This means that educators can adaptively re-design the learning environment during the lesson, rather than purely relying on preemptive learning design thinking. Based on a…

  18. Adaptive critic autopilot design of bank-to-turn missiles using fuzzy basis function networks.

    PubMed

    Lin, Chuan-Kai

    2005-04-01

    A new adaptive critic autopilot design for bank-to-turn missiles is presented. In this paper, the architecture of adaptive critic learning scheme contains a fuzzy-basis-function-network based associative search element (ASE), which is employed to approximate nonlinear and complex functions of bank-to-turn missiles, and an adaptive critic element (ACE) generating the reinforcement signal to tune the associative search element. In the design of the adaptive critic autopilot, the control law receives signals from a fixed gain controller, an ASE and an adaptive robust element, which can eliminate approximation errors and disturbances. Traditional adaptive critic reinforcement learning is the problem faced by an agent that must learn behavior through trial-and-error interactions with a dynamic environment, however, the proposed tuning algorithm can significantly shorten the learning time by online tuning all parameters of fuzzy basis functions and weights of ASE and ACE. Moreover, the weight updating law derived from the Lyapunov stability theory is capable of guaranteeing both tracking performance and stability. Computer simulation results confirm the effectiveness of the proposed adaptive critic autopilot.

  19. Exploiting co-adaptation for the design of symbiotic neuroprosthetic assistants.

    PubMed

    Sanchez, Justin C; Mahmoudi, Babak; DiGiovanna, Jack; Principe, Jose C

    2009-04-01

    The success of brain-machine interfaces (BMI) is enabled by the remarkable ability of the brain to incorporate the artificial neuroprosthetic 'tool' into its own cognitive space and use it as an extension of the user's body. Unlike other tools, neuroprosthetics create a shared space that seamlessly spans the user's internal goal representation of the world and the external physical environment enabling a much deeper human-tool symbiosis. A key factor in the transformation of 'simple tools' into 'intelligent tools' is the concept of co-adaptation where the tool becomes functionally involved in the extraction and definition of the user's goals. Recent advancements in the neuroscience and engineering of neuroprosthetics are providing a blueprint for how new co-adaptive designs based on reinforcement learning change the nature of a user's ability to accomplish tasks that were not possible using conventional methodologies. By designing adaptive controls and artificial intelligence into the neural interface, tools can become active assistants in goal-directed behavior and further enhance human performance in particular for the disabled population. This paper presents recent advances in computational and neural systems supporting the development of symbiotic neuroprosthetic assistants.

  20. Laying the Groundwork for NCLEX Success: An Exploration of Adaptive Quizzing as an Examination Preparation Method.

    PubMed

    Cox-Davenport, Rebecca A; Phelan, Julia C

    2015-05-01

    First-time NCLEX-RN pass rates are an important indicator of nursing school success and quality. Nursing schools use different methods to anticipate NCLEX outcomes and help prevent student failure and possible threat to accreditation. This study evaluated the impact of a shift in NCLEX preparation policy at a BSN program in the southeast United States. The policy shifted from the use of predictor score thresholds to determine graduation eligibility to a more proactive remediation strategy involving adaptive quizzing. A descriptive correlational design evaluated the impact of an adaptive quizzing system designed to give students ongoing active practice and feedback and explored the relationship between predictor examinations and NCLEX success. Data from student usage of the system as well as scores on predictor tests were collected for three student cohorts. Results revealed a positive correlation between adaptive quizzing system usage and content mastery. Two of the 69 students in the sample did not pass the NCLEX. With so few students failing the NCLEX, predictability of any course variables could not be determined. The power of predictor examinations to predict NCLEX failure could also not be supported. The most consistent factor among students, however, was their content mastery level within the adaptive quizzing system. Implications of these findings are discussed.

  1. Designing a VMEbus FDDI adapter card

    NASA Astrophysics Data System (ADS)

    Venkataraman, Raman

    1992-03-01

    This paper presents a system architecture for a VMEbus FDDI adapter card containing a node core, FDDI block, frame buffer memory and system interface unit. Most of the functions of the PHY and MAC layers of FDDI are implemented with National's FDDI chip set and the SMT implementation is simplified with a low cost microcontroller. The factors that influence the system bus bandwidth utilization and FDDI bandwidth utilization are the data path and frame buffer memory architecture. The VRAM based frame buffer memory has two sections - - LLC frame memory and SMT frame memory. Each section with an independent serial access memory (SAM) port provides an independent access after the initial data transfer cycle on the main port and hence, the throughput is maximized on each port of the memory. The SAM port simplifies the system bus master DMA design and the VMEbus interface can be designed with low-cost off-the-shelf interface chips.

  2. Vortical Flow Prediction Using an Adaptive Unstructured Grid Method

    NASA Technical Reports Server (NTRS)

    Pirzadeh, Shahyar Z.

    2001-01-01

    A computational fluid dynamics (CFD) method has been employed to compute vortical flows around slender wing/body configurations. The emphasis of the paper is on the effectiveness of an adaptive grid procedure in "capturing" concentrated vortices generated at sharp edges or flow separation lines of lifting surfaces flying at high angles of attack. The method is based on a tetrahedral unstructured grid technology developed at the NASA Langley Research Center. Two steady-state, subsonic, inviscid and Navier-Stokes flow test cases are presented to demonstrate the applicability of the method for solving practical vortical flow problems. The first test case concerns vortex flow over a simple 65deg delta wing with different values of leading-edge bluntness, and the second case is that of a more complex fighter configuration. The superiority of the adapted solutions in capturing the vortex flow structure over the conventional unadapted results is demonstrated by comparisons with the windtunnel experimental data. The study shows that numerical prediction of vortical flows is highly sensitive to the local grid resolution and that the implementation of grid adaptation is essential when applying CFD methods to such complicated flow problems.

  3. Adaptive Modeling, Engineering Analysis and Design of Advanced Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek; Hsu, Su-Yuen; Mason, Brian H.; Hicks, Mike D.; Jones, William T.; Sleight, David W.; Chun, Julio; Spangler, Jan L.; Kamhawi, Hilmi; Dahl, Jorgen L.

    2006-01-01

    This paper describes initial progress towards the development and enhancement of a set of software tools for rapid adaptive modeling, and conceptual design of advanced aerospace vehicle concepts. With demanding structural and aerodynamic performance requirements, these high fidelity geometry based modeling tools are essential for rapid and accurate engineering analysis at the early concept development stage. This adaptive modeling tool was used for generating vehicle parametric geometry, outer mold line and detailed internal structural layout of wing, fuselage, skin, spars, ribs, control surfaces, frames, bulkheads, floors, etc., that facilitated rapid finite element analysis, sizing study and weight optimization. The high quality outer mold line enabled rapid aerodynamic analysis in order to provide reliable design data at critical flight conditions. Example application for structural design of a conventional aircraft and a high altitude long endurance vehicle configuration are presented. This work was performed under the Conceptual Design Shop sub-project within the Efficient Aerodynamic Shape and Integration project, under the former Vehicle Systems Program. The project objective was to design and assess unconventional atmospheric vehicle concepts efficiently and confidently. The implementation may also dramatically facilitate physics-based systems analysis for the NASA Fundamental Aeronautics Mission. In addition to providing technology for design and development of unconventional aircraft, the techniques for generation of accurate geometry and internal sub-structure and the automated interface with the high fidelity analysis codes could also be applied towards the design of vehicles for the NASA Exploration and Space Science Mission projects.

  4. Adaptive sampling in research on risk-related behaviors.

    PubMed

    Thompson, Steven K; Collins, Linda M

    2002-11-01

    This article introduces adaptive sampling designs to substance use researchers. Adaptive sampling is particularly useful when the population of interest is rare, unevenly distributed, hidden, or hard to reach. Examples of such populations are injection drug users, individuals at high risk for HIV/AIDS, and young adolescents who are nicotine dependent. In conventional sampling, the sampling design is based entirely on a priori information, and is fixed before the study begins. By contrast, in adaptive sampling, the sampling design adapts based on observations made during the survey; for example, drug users may be asked to refer other drug users to the researcher. In the present article several adaptive sampling designs are discussed. Link-tracing designs such as snowball sampling, random walk methods, and network sampling are described, along with adaptive allocation and adaptive cluster sampling. It is stressed that special estimation procedures taking the sampling design into account are needed when adaptive sampling has been used. These procedures yield estimates that are considerably better than conventional estimates. For rare and clustered populations adaptive designs can give substantial gains in efficiency over conventional designs, and for hidden populations link-tracing and other adaptive procedures may provide the only practical way to obtain a sample large enough for the study objectives.

  5. Bayesian Adaptive Trial Design for a Newly Validated Surrogate Endpoint

    PubMed Central

    Renfro, Lindsay A.; Carlin, Bradley P.; Sargent, Daniel J.

    2011-01-01

    Summary The evaluation of surrogate endpoints for primary use in future clinical trials is an increasingly important research area, due to demands for more efficient trials coupled with recent regulatory acceptance of some surrogates as ‘valid.’ However, little consideration has been given to how a trial which utilizes a newly-validated surrogate endpoint as its primary endpoint might be appropriately designed. We propose a novel Bayesian adaptive trial design that allows the new surrogate endpoint to play a dominant role in assessing the effect of an intervention, while remaining realistically cautious about its use. By incorporating multi-trial historical information on the validated relationship between the surrogate and clinical endpoints, then subsequently evaluating accumulating data against this relationship as the new trial progresses, we adaptively guard against an erroneous assessment of treatment based upon a truly invalid surrogate. When the joint outcomes in the new trial seem plausible given similar historical trials, we proceed with the surrogate endpoint as the primary endpoint, and do so adaptively–perhaps stopping the trial for early success or inferiority of the experimental treatment, or for futility. Otherwise, we discard the surrogate and switch adaptive determinations to the original primary endpoint. We use simulation to test the operating characteristics of this new design compared to a standard O’Brien-Fleming approach, as well as the ability of our design to discriminate trustworthy from untrustworthy surrogates in hypothetical future trials. Furthermore, we investigate possible benefits using patient-level data from 18 adjuvant therapy trials in colon cancer, where disease-free survival is considered a newly-validated surrogate endpoint for overall survival. PMID:21838811

  6. Parallel adaptive wavelet collocation method for PDEs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nejadmalayeri, Alireza, E-mail: Alireza.Nejadmalayeri@gmail.com; Vezolainen, Alexei, E-mail: Alexei.Vezolainen@Colorado.edu; Brown-Dymkoski, Eric, E-mail: Eric.Browndymkoski@Colorado.edu

    2015-10-01

    A parallel adaptive wavelet collocation method for solving a large class of Partial Differential Equations is presented. The parallelization is achieved by developing an asynchronous parallel wavelet transform, which allows one to perform parallel wavelet transform and derivative calculations with only one data synchronization at the highest level of resolution. The data are stored using tree-like structure with tree roots starting at a priori defined level of resolution. Both static and dynamic domain partitioning approaches are developed. For the dynamic domain partitioning, trees are considered to be the minimum quanta of data to be migrated between the processes. This allowsmore » fully automated and efficient handling of non-simply connected partitioning of a computational domain. Dynamic load balancing is achieved via domain repartitioning during the grid adaptation step and reassigning trees to the appropriate processes to ensure approximately the same number of grid points on each process. The parallel efficiency of the approach is discussed based on parallel adaptive wavelet-based Coherent Vortex Simulations of homogeneous turbulence with linear forcing at effective non-adaptive resolutions up to 2048{sup 3} using as many as 2048 CPU cores.« less

  7. Backstepping Design of Adaptive Neural Fault-Tolerant Control for MIMO Nonlinear Systems.

    PubMed

    Gao, Hui; Song, Yongduan; Wen, Changyun

    In this paper, an adaptive controller is developed for a class of multi-input and multioutput nonlinear systems with neural networks (NNs) used as a modeling tool. It is shown that all the signals in the closed-loop system with the proposed adaptive neural controller are globally uniformly bounded for any external input in . In our control design, the upper bound of the NN modeling error and the gains of external disturbance are characterized by unknown upper bounds, which is more rational to establish the stability in the adaptive NN control. Filter-based modification terms are used in the update laws of unknown parameters to improve the transient performance. Finally, fault-tolerant control is developed to accommodate actuator failure. An illustrative example applying the adaptive controller to control a rigid robot arm shows the validation of the proposed controller.In this paper, an adaptive controller is developed for a class of multi-input and multioutput nonlinear systems with neural networks (NNs) used as a modeling tool. It is shown that all the signals in the closed-loop system with the proposed adaptive neural controller are globally uniformly bounded for any external input in . In our control design, the upper bound of the NN modeling error and the gains of external disturbance are characterized by unknown upper bounds, which is more rational to establish the stability in the adaptive NN control. Filter-based modification terms are used in the update laws of unknown parameters to improve the transient performance. Finally, fault-tolerant control is developed to accommodate actuator failure. An illustrative example applying the adaptive controller to control a rigid robot arm shows the validation of the proposed controller.

  8. Designing ROW Methods

    NASA Technical Reports Server (NTRS)

    Freed, Alan D.

    1996-01-01

    There are many aspects to consider when designing a Rosenbrock-Wanner-Wolfbrandt (ROW) method for the numerical integration of ordinary differential equations (ODE's) solving initial value problems (IVP's). The process can be simplified by constructing ROW methods around good Runge-Kutta (RK) methods. The formulation of a new, simple, embedded, third-order, ROW method demonstrates this design approach.

  9. The practical application of adaptive study design in early phase clinical trials: a retrospective analysis of time savings.

    PubMed

    Lorch, U; Berelowitz, K; Ozen, C; Naseem, A; Akuffo, E; Taubel, J

    2012-05-01

    The interest in adaptive study design is evident from the growing amount of clinical research employing this model in the mid to later stages of medicines development. Little has been published on the practical application and merits of adaptive study design in early phase clinical research. This paper describes a retrospective analysis performed on a sample of 29 industry lead adaptive early phase studies commencing between 1 January 2006 and 31 December 2010 in a clinical trials unit in London, England. All studies containing at least one adaptive feature in the original protocol were included in the analysis. The scope of the analysis was to assess whether the use of adaptive study designs provided tangible benefits over the use of conventional study designs using time savings as the main measure. We conclude that the use of adaptive study design saves time in early phase research programs. This is achieved by abolishing the need for substantial amendments or by mitigating their impact on timelines and by using adaptive scheduling efficiencies.

  10. Adaptive design of an X-ray magnetic circular dichroism spectroscopy experiment with Gaussian process modelling

    NASA Astrophysics Data System (ADS)

    Ueno, Tetsuro; Hino, Hideitsu; Hashimoto, Ai; Takeichi, Yasuo; Sawada, Masahiro; Ono, Kanta

    2018-01-01

    Spectroscopy is a widely used experimental technique, and enhancing its efficiency can have a strong impact on materials research. We propose an adaptive design for spectroscopy experiments that uses a machine learning technique to improve efficiency. We examined X-ray magnetic circular dichroism (XMCD) spectroscopy for the applicability of a machine learning technique to spectroscopy. An XMCD spectrum was predicted by Gaussian process modelling with learning of an experimental spectrum using a limited number of observed data points. Adaptive sampling of data points with maximum variance of the predicted spectrum successfully reduced the total data points for the evaluation of magnetic moments while providing the required accuracy. The present method reduces the time and cost for XMCD spectroscopy and has potential applicability to various spectroscopies.

  11. Methods for prismatic/tetrahedral grid generation and adaptation

    NASA Technical Reports Server (NTRS)

    Kallinderis, Y.

    1995-01-01

    The present work involves generation of hybrid prismatic/tetrahedral grids for complex 3-D geometries including multi-body domains. The prisms cover the region close to each body's surface, while tetrahedra are created elsewhere. Two developments are presented for hybrid grid generation around complex 3-D geometries. The first is a new octree/advancing front type of method for generation of the tetrahedra of the hybrid mesh. The main feature of the present advancing front tetrahedra generator that is different from previous such methods is that it does not require the creation of a background mesh by the user for the determination of the grid-spacing and stretching parameters. These are determined via an automatically generated octree. The second development is a method for treating the narrow gaps in between different bodies in a multiply-connected domain. This method is applied to a two-element wing case. A High Speed Civil Transport (HSCT) type of aircraft geometry is considered. The generated hybrid grid required only 170 K tetrahedra instead of an estimated two million had a tetrahedral mesh been used in the prisms region as well. A solution adaptive scheme for viscous computations on hybrid grids is also presented. A hybrid grid adaptation scheme that employs both h-refinement and redistribution strategies is developed to provide optimum meshes for viscous flow computations. Grid refinement is a dual adaptation scheme that couples 3-D, isotropic division of tetrahedra and 2-D, directional division of prisms.

  12. Passive activity observation (PAO) method to estimate outdoor thermal adaptation in public space: case studies in Australian cities.

    PubMed

    Sharifi, Ehsan; Boland, John

    2018-06-18

    Outdoor thermal comfort is influenced by people's climate expectations, perceptions and adaptation capacity. Varied individual response to comfortable or stressful thermal environments results in a deviation between actual outdoor thermal activity choices and those predicted by thermal comfort indices. This paper presents a passive activity observation (PAO) method for estimating contextual limits of outdoor thermal adaptation. The PAO method determines which thermal environment result in statistically meaningful changes may occur in outdoor activity patterns, and it estimates thresholds of outdoor thermal neutrality and limits of thermal adaptation in public space based on activity observation and microclimate field measurement. Applications of the PAO method have been demonstrated in Adelaide, Melbourne and Sydney, where outdoor activities were analysed against outdoor thermal comfort indices between 2013 and 2014. Adjusted apparent temperature (aAT), adaptive predicted mean vote (aPMV), outdoor standard effective temperature (OUT_SET), physiological equivalent temperature (PET) and universal thermal comfort index (UTCI) are calculated from the PAO data. Using the PAO method, the high threshold of outdoor thermal neutrality was observed between 24 °C for optional activities and 34 °C for necessary activities (UTCI scale). Meanwhile, the ultimate limit of thermal adaptation in uncontrolled public spaces is estimated to be between 28 °C for social activities and 48 °C for necessary activities. Normalised results indicate that city-wide high thresholds for outdoor thermal neutrality vary from 25 °C in Melbourne to 26 °C in Sydney and 30 °C in Adelaide. The PAO method is a relatively fast and localised method for measuring limits of outdoor thermal adaptation and effectively informs urban design and policy making in the context of climate change.

  13. An information theoretic approach of designing sparse kernel adaptive filters.

    PubMed

    Liu, Weifeng; Park, Il; Principe, José C

    2009-12-01

    This paper discusses an information theoretic approach of designing sparse kernel adaptive filters. To determine useful data to be learned and remove redundant ones, a subjective information measure called surprise is introduced. Surprise captures the amount of information a datum contains which is transferable to a learning system. Based on this concept, we propose a systematic sparsification scheme, which can drastically reduce the time and space complexity without harming the performance of kernel adaptive filters. Nonlinear regression, short term chaotic time-series prediction, and long term time-series forecasting examples are presented.

  14. Designing Dynamic Adaptive Policy Pathways using Many-Objective Robust Decision Making

    NASA Astrophysics Data System (ADS)

    Kwakkel, Jan; Haasnoot, Marjolijn

    2017-04-01

    Dealing with climate risks in water management requires confronting a wide variety of deeply uncertain factors, while navigating a many dimensional space of trade-offs amongst objectives. There is an emerging body of literature on supporting this type of decision problem, under the label of decision making under deep uncertainty. Two approaches within this literature are Many-Objective Robust Decision Making, and Dynamic Adaptive Policy Pathways. In recent work, these approaches have been compared. One of the main conclusions of this comparison was that they are highly complementary. Many-Objective Robust Decision Making is a model based decision support approach, while Dynamic Adaptive Policy Pathways is primarily a conceptual framework for the design of flexible strategies that can be adapted over time in response to how the future is actually unfolding. In this research we explore this complementarity in more detail. Specifically, we demonstrate how Many-Objective Robust Decision Making can be used to design adaptation pathways. We demonstrate this combined approach using a water management problem, in the Netherlands. The water level of Lake IJselmeer, the main fresh water resource of the Netherlands, is currently managed through discharge by gravity. Due to climate change, this won't be possible in the future, unless water levels are changed. Changing the water level has undesirable flood risk and spatial planning consequences. The challenge is to find promising adaptation pathways that balance objectives related to fresh water supply, flood risk, and spatial issues, while accounting for uncertain climatic and land use change. We conclude that the combination of Many-Objective Robust Decision Making and Dynamic Adaptive Policy Pathways is particularly suited for dealing with deeply uncertain climate risks.

  15. Layer-based buffer aware rate adaptation design for SHVC video streaming

    NASA Astrophysics Data System (ADS)

    Gudumasu, Srinivas; Hamza, Ahmed; Asbun, Eduardo; He, Yong; Ye, Yan

    2016-09-01

    This paper proposes a layer based buffer aware rate adaptation design which is able to avoid abrupt video quality fluctuation, reduce re-buffering latency and improve bandwidth utilization when compared to a conventional simulcast based adaptive streaming system. The proposed adaptation design schedules DASH segment requests based on the estimated bandwidth, dependencies among video layers and layer buffer fullness. Scalable HEVC video coding is the latest state-of-art video coding technique that can alleviate various issues caused by simulcast based adaptive video streaming. With scalable coded video streams, the video is encoded once into a number of layers representing different qualities and/or resolutions: a base layer (BL) and one or more enhancement layers (EL), each incrementally enhancing the quality of the lower layers. Such layer based coding structure allows fine granularity rate adaptation for the video streaming applications. Two video streaming use cases are presented in this paper. The first use case is to stream HD SHVC video over a wireless network where available bandwidth varies, and the performance comparison between proposed layer-based streaming approach and conventional simulcast streaming approach is provided. The second use case is to stream 4K/UHD SHVC video over a hybrid access network that consists of a 5G millimeter wave high-speed wireless link and a conventional wired or WiFi network. The simulation results verify that the proposed layer based rate adaptation approach is able to utilize the bandwidth more efficiently. As a result, a more consistent viewing experience with higher quality video content and minimal video quality fluctuations can be presented to the user.

  16. Adaptation Method for Overall and Local Performances of Gas Turbine Engine Model

    NASA Astrophysics Data System (ADS)

    Kim, Sangjo; Kim, Kuisoon; Son, Changmin

    2018-04-01

    An adaptation method was proposed to improve the modeling accuracy of overall and local performances of gas turbine engine. The adaptation method was divided into two steps. First, the overall performance parameters such as engine thrust, thermal efficiency, and pressure ratio were adapted by calibrating compressor maps, and second, the local performance parameters such as temperature of component intersection and shaft speed were adjusted by additional adaptation factors. An optimization technique was used to find the correlation equation of adaptation factors for compressor performance maps. The multi-island genetic algorithm (MIGA) was employed in the present optimization. The correlations of local adaptation factors were generated based on the difference between the first adapted engine model and performance test data. The proposed adaptation method applied to a low-bypass ratio turbofan engine of 12,000 lb thrust. The gas turbine engine model was generated and validated based on the performance test data in the sea-level static condition. In flight condition at 20,000 ft and 0.9 Mach number, the result of adapted engine model showed improved prediction in engine thrust (overall performance parameter) by reducing the difference from 14.5 to 3.3%. Moreover, there was further improvement in the comparison of low-pressure turbine exit temperature (local performance parameter) as the difference is reduced from 3.2 to 0.4%.

  17. Chance-constrained multi-objective optimization of groundwater remediation design at DNAPLs-contaminated sites using a multi-algorithm genetically adaptive method.

    PubMed

    Ouyang, Qi; Lu, Wenxi; Hou, Zeyu; Zhang, Yu; Li, Shuai; Luo, Jiannan

    2017-05-01

    In this paper, a multi-algorithm genetically adaptive multi-objective (AMALGAM) method is proposed as a multi-objective optimization solver. It was implemented in the multi-objective optimization of a groundwater remediation design at sites contaminated by dense non-aqueous phase liquids. In this study, there were two objectives: minimization of the total remediation cost, and minimization of the remediation time. A non-dominated sorting genetic algorithm II (NSGA-II) was adopted to compare with the proposed method. For efficiency, the time-consuming surfactant-enhanced aquifer remediation simulation model was replaced by a surrogate model constructed by a multi-gene genetic programming (MGGP) technique. Similarly, two other surrogate modeling methods-support vector regression (SVR) and Kriging (KRG)-were employed to make comparisons with MGGP. In addition, the surrogate-modeling uncertainty was incorporated in the optimization model by chance-constrained programming (CCP). The results showed that, for the problem considered in this study, (1) the solutions obtained by AMALGAM incurred less remediation cost and required less time than those of NSGA-II, indicating that AMALGAM outperformed NSGA-II. It was additionally shown that (2) the MGGP surrogate model was more accurate than SVR and KRG; and (3) the remediation cost and time increased with the confidence level, which can enable decision makers to make a suitable choice by considering the given budget, remediation time, and reliability. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Adaptive smart wing design for military aircraft: requirements, concepts, and payoffs

    NASA Astrophysics Data System (ADS)

    Kudva, Jayanth N.; Appa, Kari; Van Way, Craig B.; Lockyer, Allen J.

    1995-05-01

    New developments in smart structures and materials have made it possible to revisit earlier work in adaptive and flexible wing technology, and remove some of the limitations for technology transition to next-generation aircraft. Research performed by Northrop Grumman, under internal funding, has led to a new program sponsored by ARPA to investigate the application of smart structures and materials technologies to twist and adapt and aircraft wing. Conceptual designs are presented based on state-of-the-art materials, including shape memory alloys, piezoelectrics, and fiber optic sensors for incorporation in a proposed smart wing design. Plans are described to demonstrate proof-of-concept on a prototype 1/10 scale -18 model that will be tested in a wind tunnel for final validation. Highlights of the proposed program are summarized with respect to program objectives, requirements, key concept design features, demonstration testing, and smart wing technology payoffs and risks.

  19. A new approach for designing self-organizing systems and application to adaptive control

    NASA Technical Reports Server (NTRS)

    Ramamoorthy, P. A.; Zhang, Shi; Lin, Yueqing; Huang, Song

    1993-01-01

    There is tremendous interest in the design of intelligent machines capable of autonomous learning and skillful performance under complex environments. A major task in designing such systems is to make the system plastic and adaptive when presented with new and useful information and stable in response to irrelevant events. A great body of knowledge, based on neuro-physiological concepts, has evolved as a possible solution to this problem. Adaptive resonance theory (ART) is a classical example under this category. The system dynamics of an ART network is described by a set of differential equations with nonlinear functions. An approach for designing self-organizing networks characterized by nonlinear differential equations is proposed.

  20. Parallel 3D Mortar Element Method for Adaptive Nonconforming Meshes

    NASA Technical Reports Server (NTRS)

    Feng, Huiyu; Mavriplis, Catherine; VanderWijngaart, Rob; Biswas, Rupak

    2004-01-01

    High order methods are frequently used in computational simulation for their high accuracy. An efficient way to avoid unnecessary computation in smooth regions of the solution is to use adaptive meshes which employ fine grids only in areas where they are needed. Nonconforming spectral elements allow the grid to be flexibly adjusted to satisfy the computational accuracy requirements. The method is suitable for computational simulations of unsteady problems with very disparate length scales or unsteady moving features, such as heat transfer, fluid dynamics or flame combustion. In this work, we select the Mark Element Method (MEM) to handle the non-conforming interfaces between elements. A new technique is introduced to efficiently implement MEM in 3-D nonconforming meshes. By introducing an "intermediate mortar", the proposed method decomposes the projection between 3-D elements and mortars into two steps. In each step, projection matrices derived in 2-D are used. The two-step method avoids explicitly forming/deriving large projection matrices for 3-D meshes, and also helps to simplify the implementation. This new technique can be used for both h- and p-type adaptation. This method is applied to an unsteady 3-D moving heat source problem. With our new MEM implementation, mesh adaptation is able to efficiently refine the grid near the heat source and coarsen the grid once the heat source passes. The savings in computational work resulting from the dynamic mesh adaptation is demonstrated by the reduction of the the number of elements used and CPU time spent. MEM and mesh adaptation, respectively, bring irregularity and dynamics to the computer memory access pattern. Hence, they provide a good way to gauge the performance of computer systems when running scientific applications whose memory access patterns are irregular and unpredictable. We select a 3-D moving heat source problem as the Unstructured Adaptive (UA) grid benchmark, a new component of the NAS Parallel

  1. Comparing oncology clinical programs by use of innovative designs and expected net present value optimization: Which adaptive approach leads to the best result?

    PubMed

    Parke, Tom; Marchenko, Olga; Anisimov, Vladimir; Ivanova, Anastasia; Jennison, Christopher; Perevozskaya, Inna; Song, Guochen

    2017-01-01

    Designing an oncology clinical program is more challenging than designing a single study. The standard approaches have been proven to be not very successful during the last decade; the failure rate of Phase 2 and Phase 3 trials in oncology remains high. Improving a development strategy by applying innovative statistical methods is one of the major objectives of a drug development process. The oncology sub-team on Adaptive Program under the Drug Information Association Adaptive Design Scientific Working Group (DIA ADSWG) evaluated hypothetical oncology programs with two competing treatments and published the work in the Therapeutic Innovation and Regulatory Science journal in January 2014. Five oncology development programs based on different Phase 2 designs, including adaptive designs and a standard two parallel arm Phase 3 design were simulated and compared in terms of the probability of clinical program success and expected net present value (eNPV). In this article, we consider eight Phase2/Phase3 development programs based on selected combinations of five Phase 2 study designs and three Phase 3 study designs. We again used the probability of program success and eNPV to compare simulated programs. For the development strategies, we considered that the eNPV showed robust improvement for each successive strategy, with the highest being for a three-arm response adaptive randomization design in Phase 2 and a group sequential design with 5 analyses in Phase 3.

  2. Adaptive Signal Recovery on Graphs via Harmonic Analysis for Experimental Design in Neuroimaging.

    PubMed

    Kim, Won Hwa; Hwang, Seong Jae; Adluru, Nagesh; Johnson, Sterling C; Singh, Vikas

    2016-10-01

    Consider an experimental design of a neuroimaging study, where we need to obtain p measurements for each participant in a setting where p ' (< p ) are cheaper and easier to acquire while the remaining ( p - p ') are expensive. For example, the p ' measurements may include demographics, cognitive scores or routinely offered imaging scans while the ( p - p ') measurements may correspond to more expensive types of brain image scans with a higher participant burden. In this scenario, it seems reasonable to seek an "adaptive" design for data acquisition so as to minimize the cost of the study without compromising statistical power. We show how this problem can be solved via harmonic analysis of a band-limited graph whose vertices correspond to participants and our goal is to fully recover a multi-variate signal on the nodes, given the full set of cheaper features and a partial set of more expensive measurements. This is accomplished using an adaptive query strategy derived from probing the properties of the graph in the frequency space. To demonstrate the benefits that this framework can provide, we present experimental evaluations on two independent neuroimaging studies and show that our proposed method can reliably recover the true signal with only partial observations directly yielding substantial financial savings.

  3. Adaptive NN controller design for a class of nonlinear MIMO discrete-time systems.

    PubMed

    Liu, Yan-Jun; Tang, Li; Tong, Shaocheng; Chen, C L Philip

    2015-05-01

    An adaptive neural network tracking control is studied for a class of multiple-input multiple-output (MIMO) nonlinear systems. The studied systems are in discrete-time form and the discretized dead-zone inputs are considered. In addition, the studied MIMO systems are composed of N subsystems, and each subsystem contains unknown functions and external disturbance. Due to the complicated framework of the discrete-time systems, the existence of the dead zone and the noncausal problem in discrete-time, it brings about difficulties for controlling such a class of systems. To overcome the noncausal problem, by defining the coordinate transformations, the studied systems are transformed into a special form, which is suitable for the backstepping design. The radial basis functions NNs are utilized to approximate the unknown functions of the systems. The adaptation laws and the controllers are designed based on the transformed systems. By using the Lyapunov method, it is proved that the closed-loop system is stable in the sense that the semiglobally uniformly ultimately bounded of all the signals and the tracking errors converge to a bounded compact set. The simulation examples and the comparisons with previous approaches are provided to illustrate the effectiveness of the proposed control algorithm.

  4. Isothermic and fixed intensity heat acclimation methods induce similar heat adaptation following short and long-term timescales.

    PubMed

    Gibson, Oliver R; Mee, Jessica A; Tuttle, James A; Taylor, Lee; Watt, Peter W; Maxwell, Neil S

    2015-01-01

    Heat acclimation requires the interaction between hot environments and exercise to elicit thermoregulatory adaptations. Optimal synergism between these parameters is unknown. Common practise involves utilising a fixed workload model where exercise prescription is controlled and core temperature is uncontrolled, or an isothermic model where core temperature is controlled and work rate is manipulated to control core temperature. Following a baseline heat stress test; 24 males performed a between groups experimental design performing short term heat acclimation (STHA; five 90 min sessions) and long term heat acclimation (LTHA; STHA plus further five 90 min sessions) utilising either fixed intensity (50% VO2peak), continuous isothermic (target rectal temperature 38.5 °C for STHA and LTHA), or progressive isothermic heat acclimation (target rectal temperature 38.5 °C for STHA, and 39.0 °C for LTHA). Identical heat stress tests followed STHA and LTHA to determine the magnitude of adaptation. All methods induced equal adaptation from baseline however isothermic methods induced adaptation and reduced exercise durations (STHA = -66% and LTHA = -72%) and mean session intensity (STHA = -13% VO2peak and LTHA = -9% VO2peak) in comparison to fixed (p < 0.05). STHA decreased exercising heart rate (-10 b min(-1)), core (-0.2 °C) and skin temperature (-0.51 °C), with sweat losses increasing (+0.36 Lh(-1)) (p<0.05). No difference between heat acclimation methods, and no further benefit of LTHA was observed (p > 0.05). Only thermal sensation improved from baseline to STHA (-0.2), and then between STHA and LTHA (-0.5) (p<0.05). Both the continuous and progressive isothermic methods elicited exercise duration, mean session intensity, and mean T(rec) analogous to more efficient administration for maximising adaptation. Short term isothermic methods are therefore optimal for individuals aiming to achieve heat adaptation most economically, i.e. when integrating heat acclimation into

  5. A decentralized linear quadratic control design method for flexible structures

    NASA Technical Reports Server (NTRS)

    Su, Tzu-Jeng; Craig, Roy R., Jr.

    1990-01-01

    A decentralized suboptimal linear quadratic control design procedure which combines substructural synthesis, model reduction, decentralized control design, subcontroller synthesis, and controller reduction is proposed for the design of reduced-order controllers for flexible structures. The procedure starts with a definition of the continuum structure to be controlled. An evaluation model of finite dimension is obtained by the finite element method. Then, the finite element model is decomposed into several substructures by using a natural decomposition called substructuring decomposition. Each substructure, at this point, still has too large a dimension and must be reduced to a size that is Riccati-solvable. Model reduction of each substructure can be performed by using any existing model reduction method, e.g., modal truncation, balanced reduction, Krylov model reduction, or mixed-mode method. Then, based on the reduced substructure model, a subcontroller is designed by an LQ optimal control method for each substructure independently. After all subcontrollers are designed, a controller synthesis method called substructural controller synthesis is employed to synthesize all subcontrollers into a global controller. The assembling scheme used is the same as that employed for the structure matrices. Finally, a controller reduction scheme, called the equivalent impulse response energy controller (EIREC) reduction algorithm, is used to reduce the global controller to a reasonable size for implementation. The EIREC reduced controller preserves the impulse response energy of the full-order controller and has the property of matching low-frequency moments and low-frequency power moments. An advantage of the substructural controller synthesis method is that it relieves the computational burden associated with dimensionality. Besides that, the SCS design scheme is also a highly adaptable controller synthesis method for structures with varying configuration, or varying mass

  6. Parameter Studies, time-dependent simulations and design with automated Cartesian methods

    NASA Technical Reports Server (NTRS)

    Aftosmis, Michael

    2005-01-01

    Over the past decade, NASA has made a substantial investment in developing adaptive Cartesian grid methods for aerodynamic simulation. Cartesian-based methods played a key role in both the Space Shuttle Accident Investigation and in NASA's return to flight activities. The talk will provide an overview of recent technological developments focusing on the generation of large-scale aerodynamic databases, automated CAD-based design, and time-dependent simulations with of bodies in relative motion. Automation, scalability and robustness underly all of these applications and research in each of these topics will be presented.

  7. Adaptive sampling in behavioral surveys.

    PubMed

    Thompson, S K

    1997-01-01

    Studies of populations such as drug users encounter difficulties because the members of the populations are rare, hidden, or hard to reach. Conventionally designed large-scale surveys detect relatively few members of the populations so that estimates of population characteristics have high uncertainty. Ethnographic studies, on the other hand, reach suitable numbers of individuals only through the use of link-tracing, chain referral, or snowball sampling procedures that often leave the investigators unable to make inferences from their sample to the hidden population as a whole. In adaptive sampling, the procedure for selecting people or other units to be in the sample depends on variables of interest observed during the survey, so the design adapts to the population as encountered. For example, when self-reported drug use is found among members of the sample, sampling effort may be increased in nearby areas. Types of adaptive sampling designs include ordinary sequential sampling, adaptive allocation in stratified sampling, adaptive cluster sampling, and optimal model-based designs. Graph sampling refers to situations with nodes (for example, people) connected by edges (such as social links or geographic proximity). An initial sample of nodes or edges is selected and edges are subsequently followed to bring other nodes into the sample. Graph sampling designs include network sampling, snowball sampling, link-tracing, chain referral, and adaptive cluster sampling. A graph sampling design is adaptive if the decision to include linked nodes depends on variables of interest observed on nodes already in the sample. Adjustment methods for nonsampling errors such as imperfect detection of drug users in the sample apply to adaptive as well as conventional designs.

  8. Using engineering control principles to inform the design of adaptive interventions: a conceptual introduction.

    PubMed

    Rivera, Daniel E; Pew, Michael D; Collins, Linda M

    2007-05-01

    The goal of this paper is to describe the role that control engineering principles can play in developing and improving the efficacy of adaptive, time-varying interventions. It is demonstrated that adaptive interventions constitute a form of feedback control system in the context of behavioral health. Consequently, drawing from ideas in control engineering has the potential to significantly inform the analysis, design, and implementation of adaptive interventions, leading to improved adherence, better management of limited resources, a reduction of negative effects, and overall more effective interventions. This article illustrates how to express an adaptive intervention in control engineering terms, and how to use this framework in a computer simulation to investigate the anticipated impact of intervention design choices on efficacy. The potential benefits of operationalizing decision rules based on control engineering principles are particularly significant for adaptive interventions that involve multiple components or address co-morbidities, situations that pose significant challenges to conventional clinical practice.

  9. Using Engineering Control Principles to Inform the Design of Adaptive Interventions: A Conceptual Introduction

    PubMed Central

    Rivera, Daniel E.; Pew, Michael D.; Collins, Linda M.

    2007-01-01

    The goal of this paper is to describe the role that control engineering principles can play in developing and improving the efficacy of adaptive, time-varying interventions. It is demonstrated that adaptive interventions constitute a form of feedback control system in the context of behavioral health. Consequently, drawing from ideas in control engineering has the potential to significantly inform the analysis, design, and implementation of adaptive interventions, leading to improved adherence, better management of limited resources, a reduction of negative effects, and overall more effective interventions. This article illustrates how to express an adaptive intervention in control engineering terms, and how to use this framework in a computer simulation to investigate the anticipated impact of intervention design choices on efficacy. The potential benefits of operationalizing decision rules based on control engineering principles are particularly significant for adaptive interventions that involve multiple components or address co-morbidities, situations that pose significant challenges to conventional clinical practice. PMID:17169503

  10. A modified method for COD determination of solid waste, using a commercial COD kit and an adapted disposable weighing support.

    PubMed

    André, L; Pauss, A; Ribeiro, T

    2017-03-01

    The chemical oxygen demand (COD) is an essential parameter in waste management, particularly when monitoring wet anaerobic digestion processes. An adapted method to determine COD was developed for solid waste (total solids >15%). This method used commercial COD tubes and did not require sample dilution. A homemade plastic weighing support was used to transfer the solid sample into COD tubes. Potassium hydrogen phthalate and glucose used as standards showed an excellent repeatability. A small underestimation of the theoretical COD value (standard values around 5% lower than theoretical values) was also observed, mainly due to the intrinsic COD of the weighing support and to measurement uncertainties. The adapted COD method was tested using various solid wastes in the range of 1-8 mg COD , determining the COD of dried and ground cellulose, cattle manure, straw and a mixed-substrate sample. This new adapted method could be used to monitor and design dry anaerobic digestion processes.

  11. Adaptive OFDM Waveform Design for Spatio-Temporal-Sparsity Exploited STAP Radar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sen, Satyabrata

    In this chapter, we describe a sparsity-based space-time adaptive processing (STAP) algorithm to detect a slowly moving target using an orthogonal frequency division multiplexing (OFDM) radar. The motivation of employing an OFDM signal is that it improves the target-detectability from the interfering signals by increasing the frequency diversity of the system. However, due to the addition of one extra dimension in terms of frequency, the adaptive degrees-of-freedom in an OFDM-STAP also increases. Therefore, to avoid the construction a fully adaptive OFDM-STAP, we develop a sparsity-based STAP algorithm. We observe that the interference spectrum is inherently sparse in the spatio-temporal domain,more » as the clutter responses occupy only a diagonal ridge on the spatio-temporal plane and the jammer signals interfere only from a few spatial directions. Hence, we exploit that sparsity to develop an efficient STAP technique that utilizes considerably lesser number of secondary data compared to the other existing STAP techniques, and produces nearly optimum STAP performance. In addition to designing the STAP filter, we optimally design the transmit OFDM signals by maximizing the output signal-to-interference-plus-noise ratio (SINR) in order to improve the STAP performance. The computation of output SINR depends on the estimated value of the interference covariance matrix, which we obtain by applying the sparse recovery algorithm. Therefore, we analytically assess the effects of the synthesized OFDM coefficients on the sparse recovery of the interference covariance matrix by computing the coherence measure of the sparse measurement matrix. Our numerical examples demonstrate the achieved STAP-performance due to sparsity-based technique and adaptive waveform design.« less

  12. [Application of adaptive canceling methods in temperature control in ultrasonic therapeutical treatment].

    PubMed

    Deng, Jun; Liu, Du-ren

    2002-12-01

    Objective. To improve the quality of ultrasonic therapeutical treatment by improving the accuracy of temperature control. Method. Adaptive canceling methods were used to reduce the noise of temperature signal gained, and enhance signal-to-noise ratio. Result. The test's result corresponds basically to the theoretical curve. Conclusion. Adaptive canceling methods can be applied to clinic treatment.

  13. Just-in-time adaptive classifiers-part II: designing the classifier.

    PubMed

    Alippi, Cesare; Roveri, Manuel

    2008-12-01

    Aging effects, environmental changes, thermal drifts, and soft and hard faults affect physical systems by changing their nature and behavior over time. To cope with a process evolution adaptive solutions must be envisaged to track its dynamics; in this direction, adaptive classifiers are generally designed by assuming the stationary hypothesis for the process generating the data with very few results addressing nonstationary environments. This paper proposes a methodology based on k-nearest neighbor (NN) classifiers for designing adaptive classification systems able to react to changing conditions just-in-time (JIT), i.e., exactly when it is needed. k-NN classifiers have been selected for their computational-free training phase, the possibility to easily estimate the model complexity k and keep under control the computational complexity of the classifier through suitable data reduction mechanisms. A JIT classifier requires a temporal detection of a (possible) process deviation (aspect tackled in a companion paper) followed by an adaptive management of the knowledge base (KB) of the classifier to cope with the process change. The novelty of the proposed approach resides in the general framework supporting the real-time update of the KB of the classification system in response to novel information coming from the process both in stationary conditions (accuracy improvement) and in nonstationary ones (process tracking) and in providing a suitable estimate of k. It is shown that the classification system grants consistency once the change targets the process generating the data in a new stationary state, as it is the case in many real applications.

  14. Conceptual design for a user-friendly adaptive optics system at Lick Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bissinger, H.D.; Olivier, S.; Max, C.

    1996-03-08

    In this paper, we present a conceptual design for a general-purpose adaptive optics system, usable with all Cassegrain facility instruments on the 3 meter Shane telescope at the University of California`s Lick Observatory located on Mt. Hamilton near San Jose, California. The overall design goal for this system is to take the sodium-layer laser guide star adaptive optics technology out of the demonstration stage and to build a user-friendly astronomical tool. The emphasis will be on ease of calibration, improved stability and operational simplicity in order to allow the system to be run routinely by observatory staff. A prototype adaptivemore » optics system and a 20 watt sodium-layer laser guide star system have already been built at Lawrence Livermore National Laboratory for use at Lick Observatory. The design presented in this paper is for a next- generation adaptive optics system that extends the capabilities of the prototype system into the visible with more degrees of freedom. When coupled with a laser guide star system that is upgraded to a power matching the new adaptive optics system, the combined system will produce diffraction-limited images for near-IR cameras. Atmospheric correction at wavelengths of 0.6-1 mm will significantly increase the throughput of the most heavily used facility instrument at Lick, the Kast Spectrograph, and will allow it to operate with smaller slit widths and deeper limiting magnitudes. 8 refs., 2 figs.« less

  15. An adaptive singular spectrum analysis method for extracting brain rhythms of electroencephalography

    PubMed Central

    Hu, Hai; Guo, Shengxin; Liu, Ran

    2017-01-01

    Artifacts removal and rhythms extraction from electroencephalography (EEG) signals are important for portable and wearable EEG recording devices. Incorporating a novel grouping rule, we proposed an adaptive singular spectrum analysis (SSA) method for artifacts removal and rhythms extraction. Based on the EEG signal amplitude, the grouping rule determines adaptively the first one or two SSA reconstructed components as artifacts and removes them. The remaining reconstructed components are then grouped based on their peak frequencies in the Fourier transform to extract the desired rhythms. The grouping rule thus enables SSA to be adaptive to EEG signals containing different levels of artifacts and rhythms. The simulated EEG data based on the Markov Process Amplitude (MPA) EEG model and the experimental EEG data in the eyes-open and eyes-closed states were used to verify the adaptive SSA method. Results showed a better performance in artifacts removal and rhythms extraction, compared with the wavelet decomposition (WDec) and another two recently reported SSA methods. Features of the extracted alpha rhythms using adaptive SSA were calculated to distinguish between the eyes-open and eyes-closed states. Results showed a higher accuracy (95.8%) than those of the WDec method (79.2%) and the infinite impulse response (IIR) filtering method (83.3%). PMID:28674650

  16. RARtool: A MATLAB Software Package for Designing Response-Adaptive Randomized Clinical Trials with Time-to-Event Outcomes.

    PubMed

    Ryeznik, Yevgen; Sverdlov, Oleksandr; Wong, Weng Kee

    2015-08-01

    Response-adaptive randomization designs are becoming increasingly popular in clinical trial practice. In this paper, we present RARtool , a user interface software developed in MATLAB for designing response-adaptive randomized comparative clinical trials with censored time-to-event outcomes. The RARtool software can compute different types of optimal treatment allocation designs, and it can simulate response-adaptive randomization procedures targeting selected optimal allocations. Through simulations, an investigator can assess design characteristics under a variety of experimental scenarios and select the best procedure for practical implementation. We illustrate the utility of our RARtool software by redesigning a survival trial from the literature.

  17. A Requirements-Driven Optimization Method for Acoustic Treatment Design

    NASA Technical Reports Server (NTRS)

    Berton, Jeffrey J.

    2016-01-01

    Acoustic treatment designers have long been able to target specific noise sources inside turbofan engines. Facesheet porosity and cavity depth are key design variables of perforate-over-honeycomb liners that determine levels of noise suppression as well as the frequencies at which suppression occurs. Layers of these structures can be combined to create a robust attenuation spectrum that covers a wide range of frequencies. Looking to the future, rapidly-emerging additive manufacturing technologies are enabling new liners with multiple degrees of freedom, and new adaptive liners with variable impedance are showing promise. More than ever, there is greater flexibility and freedom in liner design. Subject to practical considerations, liner design variables may be manipulated to achieve a target attenuation spectrum. But characteristics of the ideal attenuation spectrum can be difficult to know. Many multidisciplinary system effects govern how engine noise sources contribute to community noise. Given a hardwall fan noise source to be suppressed, and using an analytical certification noise model to compute a community noise measure of merit, the optimal attenuation spectrum can be derived using multidisciplinary systems analysis methods. The subject of this paper is an analytical method that derives the ideal target attenuation spectrum that minimizes noise perceived by observers on the ground.

  18. Parametric optimization and design validation based on finite element analysis of hybrid socket adapter for transfemoral prosthetic knee.

    PubMed

    Kumar, Neelesh

    2014-10-01

    Finite element analysis has been universally employed for the stress and strain analysis in lower extremity prosthetics. The socket adapter was the principal subject of interest due to its importance in deciding the knee motion range. This article focused on the static and dynamic stress analysis of the designed hybrid adapter developed by the authors. A standard mechanical design validation approach using von Mises was followed. Four materials were considered for the analysis, namely, carbon fiber, oil-filled nylon, Al-6061, and mild steel. The paper analyses the static and dynamic stress on designed hybrid adapter which incorporates features of conventional male and female socket adapters. The finite element analysis was carried out for possible different angles of knee flexion simulating static and dynamic gait situation. Research was carried out on available design of socket adapter. Mechanical design of hybrid adapter was conceptualized and a CAD model was generated using Inventor modelling software. Static and dynamic stress analysis was carried out on different materials for optimization. The finite element analysis was carried out on the software Autodesk Inventor Professional Ver. 2011. The peak value of von Mises stress occurred in the neck region of the adapter and in the lower face region at rod eye-adapter junction in static and dynamic analyses, respectively. Oil-filled nylon was found to be the best material among the four with respect to strength, weight, and cost. Research investigations on newer materials for development of improved prosthesis will immensely benefit the amputees. The study analyze the static and dynamic stress on the knee joint adapter to provide better material used for hybrid design of adapter. © The International Society for Prosthetics and Orthotics 2013.

  19. Development of an Integrated Team Training Design and Assessment Architecture to Support Adaptability in Healthcare Teams

    DTIC Science & Technology

    2016-10-01

    and implementation of embedded, adaptive feedback and performance assessment. The investigators also initiated work designing a Bayesian Belief ...training; Teamwork; Adaptive performance; Leadership; Simulation; Modeling; Bayesian belief networks (BBN) 16. SECURITY CLASSIFICATION OF: 17. LIMITATION...Trauma teams Team training Teamwork Adaptability Adaptive performance Leadership Simulation Modeling Bayesian belief networks (BBN) 6

  20. Adaptation to Climate Change: A Comparative Analysis of Modeling Methods for Heat-Related Mortality

    PubMed Central

    Hondula, David M.; Bunker, Aditi; Ibarreta, Dolores; Liu, Junguo; Zhang, Xinxin; Sauerborn, Rainer

    2017-01-01

    Background: Multiple methods are employed for modeling adaptation when projecting the impact of climate change on heat-related mortality. The sensitivity of impacts to each is unknown because they have never been systematically compared. In addition, little is known about the relative sensitivity of impacts to “adaptation uncertainty” (i.e., the inclusion/exclusion of adaptation modeling) relative to using multiple climate models and emissions scenarios. Objectives: This study had three aims: a) Compare the range in projected impacts that arises from using different adaptation modeling methods; b) compare the range in impacts that arises from adaptation uncertainty with ranges from using multiple climate models and emissions scenarios; c) recommend modeling method(s) to use in future impact assessments. Methods: We estimated impacts for 2070–2099 for 14 European cities, applying six different methods for modeling adaptation; we also estimated impacts with five climate models run under two emissions scenarios to explore the relative effects of climate modeling and emissions uncertainty. Results: The range of the difference (percent) in impacts between including and excluding adaptation, irrespective of climate modeling and emissions uncertainty, can be as low as 28% with one method and up to 103% with another (mean across 14 cities). In 13 of 14 cities, the ranges in projected impacts due to adaptation uncertainty are larger than those associated with climate modeling and emissions uncertainty. Conclusions: Researchers should carefully consider how to model adaptation because it is a source of uncertainty that can be greater than the uncertainty in emissions and climate modeling. We recommend absolute threshold shifts and reductions in slope. https://doi.org/10.1289/EHP634 PMID:28885979

  1. Adaptive nonlinear control for autonomous ground vehicles

    NASA Astrophysics Data System (ADS)

    Black, William S.

    We present the background and motivation for ground vehicle autonomy, and focus on uses for space-exploration. Using a simple design example of an autonomous ground vehicle we derive the equations of motion. After providing the mathematical background for nonlinear systems and control we present two common methods for exactly linearizing nonlinear systems, feedback linearization and backstepping. We use these in combination with three adaptive control methods: model reference adaptive control, adaptive sliding mode control, and extremum-seeking model reference adaptive control. We show the performances of each combination through several simulation results. We then consider disturbances in the system, and design nonlinear disturbance observers for both single-input-single-output and multi-input-multi-output systems. Finally, we show the performance of these observers with simulation results.

  2. Adaptive finite element methods for two-dimensional problems in computational fracture mechanics

    NASA Technical Reports Server (NTRS)

    Min, J. B.; Bass, J. M.; Spradley, L. W.

    1994-01-01

    Some recent results obtained using solution-adaptive finite element methods in two-dimensional problems in linear elastic fracture mechanics are presented. The focus is on the basic issue of adaptive finite element methods for validating the new methodology by computing demonstration problems and comparing the stress intensity factors to analytical results.

  3. The Study and Design of Adaptive Learning System Based on Fuzzy Set Theory

    NASA Astrophysics Data System (ADS)

    Jia, Bing; Zhong, Shaochun; Zheng, Tianyang; Liu, Zhiyong

    Adaptive learning is an effective way to improve the learning outcomes, that is, the selection of learning content and presentation should be adapted to each learner's learning context, learning levels and learning ability. Adaptive Learning System (ALS) can provide effective support for adaptive learning. This paper proposes a new ALS based on fuzzy set theory. It can effectively estimate the learner's knowledge level by test according to learner's target. Then take the factors of learner's cognitive ability and preference into consideration to achieve self-organization and push plan of knowledge. This paper focuses on the design and implementation of domain model and user model in ALS. Experiments confirmed that the system providing adaptive content can effectively help learners to memory the content and improve their comprehension.

  4. Design and Preliminary Testing of the International Docking Adapter's Peripheral Docking Target

    NASA Technical Reports Server (NTRS)

    Foster, Christopher W.; Blaschak, Johnathan; Eldridge, Erin A.; Brazzel, Jack P.; Spehar, Peter T.

    2015-01-01

    The International Docking Adapter's Peripheral Docking Target (PDT) was designed to allow a docking spacecraft to judge its alignment relative to the docking system. The PDT was designed to be compatible with relative sensors using visible cameras, thermal imagers, or Light Detection and Ranging (LIDAR) technologies. The conceptual design team tested prototype designs and materials to determine the contrast requirements for the features. This paper will discuss the design of the PDT, the methodology and results of the tests, and the conclusions pertaining to PDT design that were drawn from testing.

  5. An adaptive grid scheme using the boundary element method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munipalli, R.; Anderson, D.A.

    1996-09-01

    A technique to solve the Poisson grid generation equations by Green`s function related methods has been proposed, with the source terms being purely position dependent. The use of distributed singularities in the flow domain coupled with the boundary element method (BEM) formulation is presented in this paper as a natural extension of the Green`s function method. This scheme greatly simplifies the adaption process. The BEM reduces the dimensionality of the given problem by one. Internal grid-point placement can be achieved for a given boundary distribution by adding continuous and discrete source terms in the BEM formulation. A distribution of vortexmore » doublets is suggested as a means of controlling grid-point placement and grid-line orientation. Examples for sample adaption problems are presented and discussed. 15 refs., 20 figs.« less

  6. Smart algorithms and adaptive methods in computational fluid dynamics

    NASA Astrophysics Data System (ADS)

    Tinsley Oden, J.

    1989-05-01

    A review is presented of the use of smart algorithms which employ adaptive methods in processing large amounts of data in computational fluid dynamics (CFD). Smart algorithms use a rationally based set of criteria for automatic decision making in an attempt to produce optimal simulations of complex fluid dynamics problems. The information needed to make these decisions is not known beforehand and evolves in structure and form during the numerical solution of flow problems. Once the code makes a decision based on the available data, the structure of the data may change, and criteria may be reapplied in order to direct the analysis toward an acceptable end. Intelligent decisions are made by processing vast amounts of data that evolve unpredictably during the calculation. The basic components of adaptive methods and their application to complex problems of fluid dynamics are reviewed. The basic components of adaptive methods are: (1) data structures, that is what approaches are available for modifying data structures of an approximation so as to reduce errors; (2) error estimation, that is what techniques exist for estimating error evolution in a CFD calculation; and (3) solvers, what algorithms are available which can function in changing meshes. Numerical examples which demonstrate the viability of these approaches are presented.

  7. Self-Adaptive Stepsize Search Applied to Optimal Structural Design

    NASA Astrophysics Data System (ADS)

    Nolle, L.; Bland, J. A.

    Structural engineering often involves the design of space frames that are required to resist predefined external forces without exhibiting plastic deformation. The weight of the structure and hence the weight of its constituent members has to be as low as possible for economical reasons without violating any of the load constraints. Design spaces are usually vast and the computational costs for analyzing a single design are usually high. Therefore, not every possible design can be evaluated for real-world problems. In this work, a standard structural design problem, the 25-bar problem, has been solved using self-adaptive stepsize search (SASS), a relatively new search heuristic. This algorithm has only one control parameter and therefore overcomes the drawback of modern search heuristics, i.e. the need to first find a set of optimum control parameter settings for the problem at hand. In this work, SASS outperforms simulated-annealing, genetic algorithms, tabu search and ant colony optimization.

  8. Free-energy landscapes from adaptively biased methods: Application to quantum systems

    NASA Astrophysics Data System (ADS)

    Calvo, F.

    2010-10-01

    Several parallel adaptive biasing methods are applied to the calculation of free-energy pathways along reaction coordinates, choosing as a difficult example the double-funnel landscape of the 38-atom Lennard-Jones cluster. In the case of classical statistics, the Wang-Landau and adaptively biased molecular-dynamics (ABMD) methods are both found efficient if multiple walkers and replication and deletion schemes are used. An extension of the ABMD technique to quantum systems, implemented through the path-integral MD framework, is presented and tested on Ne38 against the quantum superposition method.

  9. Adaptation to Climate Change: A Comparative Analysis of Modeling Methods for Heat-Related Mortality.

    PubMed

    Gosling, Simon N; Hondula, David M; Bunker, Aditi; Ibarreta, Dolores; Liu, Junguo; Zhang, Xinxin; Sauerborn, Rainer

    2017-08-16

    Multiple methods are employed for modeling adaptation when projecting the impact of climate change on heat-related mortality. The sensitivity of impacts to each is unknown because they have never been systematically compared. In addition, little is known about the relative sensitivity of impacts to "adaptation uncertainty" (i.e., the inclusion/exclusion of adaptation modeling) relative to using multiple climate models and emissions scenarios. This study had three aims: a ) Compare the range in projected impacts that arises from using different adaptation modeling methods; b ) compare the range in impacts that arises from adaptation uncertainty with ranges from using multiple climate models and emissions scenarios; c ) recommend modeling method(s) to use in future impact assessments. We estimated impacts for 2070-2099 for 14 European cities, applying six different methods for modeling adaptation; we also estimated impacts with five climate models run under two emissions scenarios to explore the relative effects of climate modeling and emissions uncertainty. The range of the difference (percent) in impacts between including and excluding adaptation, irrespective of climate modeling and emissions uncertainty, can be as low as 28% with one method and up to 103% with another (mean across 14 cities). In 13 of 14 cities, the ranges in projected impacts due to adaptation uncertainty are larger than those associated with climate modeling and emissions uncertainty. Researchers should carefully consider how to model adaptation because it is a source of uncertainty that can be greater than the uncertainty in emissions and climate modeling. We recommend absolute threshold shifts and reductions in slope. https://doi.org/10.1289/EHP634.

  10. A constrained Delaunay discretization method for adaptively meshing highly discontinuous geological media

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Ma, Guowei; Ren, Feng; Li, Tuo

    2017-12-01

    A constrained Delaunay discretization method is developed to generate high-quality doubly adaptive meshes of highly discontinuous geological media. Complex features such as three-dimensional discrete fracture networks (DFNs), tunnels, shafts, slopes, boreholes, water curtains, and drainage systems are taken into account in the mesh generation. The constrained Delaunay triangulation method is used to create adaptive triangular elements on planar fractures. Persson's algorithm (Persson, 2005), based on an analogy between triangular elements and spring networks, is enriched to automatically discretize a planar fracture into mesh points with varying density and smooth-quality gradient. The triangulated planar fractures are treated as planar straight-line graphs (PSLGs) to construct piecewise-linear complex (PLC) for constrained Delaunay tetrahedralization. This guarantees the doubly adaptive characteristic of the resulted mesh: the mesh is adaptive not only along fractures but also in space. The quality of elements is compared with the results from an existing method. It is verified that the present method can generate smoother elements and a better distribution of element aspect ratios. Two numerical simulations are implemented to demonstrate that the present method can be applied to various simulations of complex geological media that contain a large number of discontinuities.

  11. Neural-Network-Based Robust Optimal Tracking Control for MIMO Discrete-Time Systems With Unknown Uncertainty Using Adaptive Critic Design.

    PubMed

    Liu, Lei; Wang, Zhanshan; Zhang, Huaguang

    2018-04-01

    This paper is concerned with the robust optimal tracking control strategy for a class of nonlinear multi-input multi-output discrete-time systems with unknown uncertainty via adaptive critic design (ACD) scheme. The main purpose is to establish an adaptive actor-critic control method, so that the cost function in the procedure of dealing with uncertainty is minimum and the closed-loop system is stable. Based on the neural network approximator, an action network is applied to generate the optimal control signal and a critic network is used to approximate the cost function, respectively. In contrast to the previous methods, the main features of this paper are: 1) the ACD scheme is integrated into the controllers to cope with the uncertainty and 2) a novel cost function, which is not in quadric form, is proposed so that the total cost in the design procedure is reduced. It is proved that the optimal control signals and the tracking errors are uniformly ultimately bounded even when the uncertainty exists. Finally, a numerical simulation is developed to show the effectiveness of the present approach.

  12. OpenMDAO: Framework for Flexible Multidisciplinary Design, Analysis and Optimization Methods

    NASA Technical Reports Server (NTRS)

    Heath, Christopher M.; Gray, Justin S.

    2012-01-01

    The OpenMDAO project is underway at NASA to develop a framework which simplifies the implementation of state-of-the-art tools and methods for multidisciplinary design, analysis and optimization. Foremost, OpenMDAO has been designed to handle variable problem formulations, encourage reconfigurability, and promote model reuse. This work demonstrates the concept of iteration hierarchies in OpenMDAO to achieve a flexible environment for supporting advanced optimization methods which include adaptive sampling and surrogate modeling techniques. In this effort, two efficient global optimization methods were applied to solve a constrained, single-objective and constrained, multiobjective version of a joint aircraft/engine sizing problem. The aircraft model, NASA's nextgeneration advanced single-aisle civil transport, is being studied as part of the Subsonic Fixed Wing project to help meet simultaneous program goals for reduced fuel burn, emissions, and noise. This analysis serves as a realistic test problem to demonstrate the flexibility and reconfigurability offered by OpenMDAO.

  13. Building Adaptive Capacity with the Delphi Method and Mediated Modeling for Water Quality and Climate Change Adaptation in Lake Champlain Basin

    NASA Astrophysics Data System (ADS)

    Coleman, S.; Hurley, S.; Koliba, C.; Zia, A.; Exler, S.

    2014-12-01

    Eutrophication and nutrient pollution of surface waters occur within complex governance, social, hydrologic and biophysical basin contexts. The pervasive and perennial nutrient pollution in Lake Champlain Basin, despite decades of efforts, exemplifies problems found across the world's surface waters. Stakeholders with diverse values, interests, and forms of explicit and tacit knowledge determine water quality impacts through land use, agricultural and water resource decisions. Uncertainty, ambiguity and dynamic feedback further complicate the ability to promote the continual provision of water quality and ecosystem services. Adaptive management of water resources and land use requires mechanisms to allow for learning and integration of new information over time. The transdisciplinary Research on Adaptation to Climate Change (RACC) team is working to build regional adaptive capacity in Lake Champlain Basin while studying and integrating governance, land use, hydrological, and biophysical systems to evaluate implications for adaptive management. The RACC team has engaged stakeholders through mediated modeling workshops, online forums, surveys, focus groups and interviews. In March 2014, CSS2CC.org, an interactive online forum to source and identify adaptive interventions from a group of stakeholders across sectors was launched. The forum, based on the Delphi Method, brings forward the collective wisdom of stakeholders and experts to identify potential interventions and governance designs in response to scientific uncertainty and ambiguity surrounding the effectiveness of any strategy, climate change impacts, and the social and natural systems governing water quality and eutrophication. A Mediated Modeling Workshop followed the forum in May 2014, where participants refined and identified plausible interventions under different governance, policy and resource scenarios. Results from the online forum and workshop can identify emerging consensus across scales and sectors

  14. Aircraft digital control design methods

    NASA Technical Reports Server (NTRS)

    Powell, J. D.; Parsons, E.; Tashker, M. G.

    1976-01-01

    Variations in design methods for aircraft digital flight control are evaluated and compared. The methods fall into two categories; those where the design is done in the continuous domain (or s plane) and those where the design is done in the discrete domain (or z plane). Design method fidelity is evaluated by examining closed loop root movement and the frequency response of the discretely controlled continuous aircraft. It was found that all methods provided acceptable performance for sample rates greater than 10 cps except the uncompensated s plane design method which was acceptable above 20 cps. A design procedure based on optimal control methods was proposed that provided the best fidelity at very slow sample rates and required no design iterations for changing sample rates.

  15. Integrated System Design: Promoting the Capacity of Sociotechnical Systems for Adaptation through Extensions of Cognitive Work Analysis

    PubMed Central

    Naikar, Neelam; Elix, Ben

    2016-01-01

    This paper proposes an approach for integrated system design, which has the intent of facilitating high levels of effectiveness in sociotechnical systems by promoting their capacity for adaptation. Building on earlier ideas and empirical observations, this approach recognizes that to create adaptive systems it is necessary to integrate the design of all of the system elements, including the interfaces, teams, training, and automation, such that workers are supported in adapting their behavior as well as their structure, or organization, in a coherent manner. Current approaches for work analysis and design are limited in regard to this fundamental objective, especially in cases when workers are confronted with unforeseen events. A suitable starting point is offered by cognitive work analysis (CWA), but while this framework can support actors in adapting their behavior, it does not necessarily accommodate adaptations in their structure. Moreover, associated design approaches generally focus on individual system elements, and those that consider multiple elements appear limited in their ability to facilitate integration, especially in the manner intended here. The proposed approach puts forward the set of possibilities for work organization in a system as the central mechanism for binding the design of its various elements, so that actors can adapt their structure as well as their behavior—in a unified fashion—to handle both familiar and novel conditions. Accordingly, this paper demonstrates how the set of possibilities for work organization in a system may be demarcated independently of the situation, through extensions of CWA, and how it may be utilized in design. This lynchpin, conceptualized in the form of a diagram of work organization possibilities (WOP), is important for preserving a system's inherent capacity for adaptation. Future research should focus on validating these concepts and establishing the feasibility of implementing them in industrial

  16. Integrated System Design: Promoting the Capacity of Sociotechnical Systems for Adaptation through Extensions of Cognitive Work Analysis.

    PubMed

    Naikar, Neelam; Elix, Ben

    2016-01-01

    This paper proposes an approach for integrated system design, which has the intent of facilitating high levels of effectiveness in sociotechnical systems by promoting their capacity for adaptation. Building on earlier ideas and empirical observations, this approach recognizes that to create adaptive systems it is necessary to integrate the design of all of the system elements, including the interfaces, teams, training, and automation, such that workers are supported in adapting their behavior as well as their structure, or organization, in a coherent manner. Current approaches for work analysis and design are limited in regard to this fundamental objective, especially in cases when workers are confronted with unforeseen events. A suitable starting point is offered by cognitive work analysis (CWA), but while this framework can support actors in adapting their behavior, it does not necessarily accommodate adaptations in their structure. Moreover, associated design approaches generally focus on individual system elements, and those that consider multiple elements appear limited in their ability to facilitate integration, especially in the manner intended here. The proposed approach puts forward the set of possibilities for work organization in a system as the central mechanism for binding the design of its various elements, so that actors can adapt their structure as well as their behavior-in a unified fashion-to handle both familiar and novel conditions. Accordingly, this paper demonstrates how the set of possibilities for work organization in a system may be demarcated independently of the situation, through extensions of CWA, and how it may be utilized in design. This lynchpin, conceptualized in the form of a diagram of work organization possibilities (WOP), is important for preserving a system's inherent capacity for adaptation. Future research should focus on validating these concepts and establishing the feasibility of implementing them in industrial contexts.

  17. Adapting the Wii Fit Balance Board to Enable Active Video Game Play by Wheelchair Users: User-Centered Design and Usability Evaluation

    PubMed Central

    Kirkland, William B; Misko, Samuel R; Padalabalanarayanan, Sangeetha; Malone, Laurie A

    2018-01-01

    Background Active video game (AVG) playing, also known as “exergaming,” is increasingly employed to promote physical activity across all age groups. The Wii Fit Balance Board is a popular gaming controller for AVGs and is used in a variety of settings. However, the commercial off-the-shelf (OTS) design poses several limitations. It is inaccessible to wheelchair users, does not support the use of stabilization assistive devices, and requires the ability to shift the center of balance (COB) in all directions to fully engage in game play. Objective The aim of this study was to design an adapted version of the Wii Fit Balance Board to overcome the identified limitations and to evaluate the usability of the newly designed adapted Wii Fit Balance Board in persons with mobility impairments. Methods In a previous study, 16 participants tried the OTS version of the Wii Fit Balance Board. On the basis of observed limitations, a team of engineers developed and adapted the design of the Wii Fit Balance Board, which was then subjected to multiple iterations of user feedback and design tweaks. On design completion, we recruited a new pool of participants with mobility impairments for a larger study. During their first visit, we assessed lower-extremity function using selected mobility tasks from the International Classification of Functioning, Disability and Health. During a subsequent session, participants played 2 sets of games on both the OTS and adapted versions of the Wii Fit Balance Board. Order of controller version played first was randomized. After participants played each version, we administered the System Usability Scale (SUS) to examine the participants’ perceived usability. Results The adapted version of the Wii Fit Balance Board resulting from the user-centered design approach met the needs of a variety of users. The adapted controller (1) allowed manual wheelchair users to engage in game play, which was previously not possible; (2) included Americans with

  18. A multilevel correction adaptive finite element method for Kohn-Sham equation

    NASA Astrophysics Data System (ADS)

    Hu, Guanghui; Xie, Hehu; Xu, Fei

    2018-02-01

    In this paper, an adaptive finite element method is proposed for solving Kohn-Sham equation with the multilevel correction technique. In the method, the Kohn-Sham equation is solved on a fixed and appropriately coarse mesh with the finite element method in which the finite element space is kept improving by solving the derived boundary value problems on a series of adaptively and successively refined meshes. A main feature of the method is that solving large scale Kohn-Sham system is avoided effectively, and solving the derived boundary value problems can be handled efficiently by classical methods such as the multigrid method. Hence, the significant acceleration can be obtained on solving Kohn-Sham equation with the proposed multilevel correction technique. The performance of the method is examined by a variety of numerical experiments.

  19. Adaptive Constrained Optimal Control Design for Data-Based Nonlinear Discrete-Time Systems With Critic-Only Structure.

    PubMed

    Luo, Biao; Liu, Derong; Wu, Huai-Ning

    2018-06-01

    Reinforcement learning has proved to be a powerful tool to solve optimal control problems over the past few years. However, the data-based constrained optimal control problem of nonaffine nonlinear discrete-time systems has rarely been studied yet. To solve this problem, an adaptive optimal control approach is developed by using the value iteration-based Q-learning (VIQL) with the critic-only structure. Most of the existing constrained control methods require the use of a certain performance index and only suit for linear or affine nonlinear systems, which is unreasonable in practice. To overcome this problem, the system transformation is first introduced with the general performance index. Then, the constrained optimal control problem is converted to an unconstrained optimal control problem. By introducing the action-state value function, i.e., Q-function, the VIQL algorithm is proposed to learn the optimal Q-function of the data-based unconstrained optimal control problem. The convergence results of the VIQL algorithm are established with an easy-to-realize initial condition . To implement the VIQL algorithm, the critic-only structure is developed, where only one neural network is required to approximate the Q-function. The converged Q-function obtained from the critic-only VIQL method is employed to design the adaptive constrained optimal controller based on the gradient descent scheme. Finally, the effectiveness of the developed adaptive control method is tested on three examples with computer simulation.

  20. Optimal and adaptive methods of processing hydroacoustic signals (review)

    NASA Astrophysics Data System (ADS)

    Malyshkin, G. S.; Sidel'nikov, G. B.

    2014-09-01

    Different methods of optimal and adaptive processing of hydroacoustic signals for multipath propagation and scattering are considered. Advantages and drawbacks of the classical adaptive (Capon, MUSIC, and Johnson) algorithms and "fast" projection algorithms are analyzed for the case of multipath propagation and scattering of strong signals. The classical optimal approaches to detecting multipath signals are presented. A mechanism of controlled normalization of strong signals is proposed to automatically detect weak signals. The results of simulating the operation of different detection algorithms for a linear equidistant array under multipath propagation and scattering are presented. An automatic detector is analyzed, which is based on classical or fast projection algorithms, which estimates the background proceeding from median filtering or the method of bilateral spatial contrast.

  1. Marginal adaptation of CAD-CAM onlays: Influence of preparation design and impression technique.

    PubMed

    Lima, Fernanda Ferruzzi; Neto, Constantino Fernandes; Rubo, José H; Santos, Gildo Coelho; Moraes Coelho Santos, Maria Jacinta

    2018-03-15

    Factors that may affect the marginal adaptation of computer-aided design and computer-aided manufacturing (CAD-CAM) restorations include preparation design, impression technique, and CAD-CAM system. The influence of impression technique and preparation design on CAD-CAM partial coverage restorations has not been fully addressed. The purpose of this in vitro study was to investigate the influence of direct and indirect digital impression techniques and 2 preparation designs on the marginal adaptation of CAD-CAM onlays. Two mesio-occlusal buccal onlay preparations with reduction of the mesiobuccal cusp were made: conventional preparation (CP) with a 1.2-mm modified shoulder margin and modified preparation (MP) flat cuspal reduction without shoulder. Virtual models were generated from each preparation by using a digital scanner (BlueCam; Dentsply Sirona) from the plastic teeth (direct digital impression) or from the stone dies (indirect digital impression). Onlays were designed using a CAD-CAM system (CEREC 4.0; Dentsply Sirona), and nanoceramic resin blocks (Lava Ultimate Restorative; 3M ESPE) were milled using the CEREC MCX milling machine. Marginal discrepancy was evaluated using an optical stereomicroscope at ×25 magnification in 18 locations distributed along the margins of the preparation. The data were analyzed by using 3-way ANOVA followed by the Tukey HSD test (α=.05). CP presented a statistically significant reduced average marginal adaptation (59 ±50 μm) than did MP (69 ±58 μm) (P<.001). The Tukey HSD test showed the presence of a significantly larger marginal discrepancy in the mesial and buccal locations of MP when compared with CP. Regarding impression techniques, the buccal location presented the smallest average marginal discrepancy in restorations fabricated with indirect impression when compared with direct impression (42 ±33 μm and 60 ±39 μm) (P<.001). The results showed that conventional preparation with a modified shoulder margin

  2. Implementation of an improved adaptive-implicit method in a thermal compositional simulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, T.B.

    1988-11-01

    A multicomponent thermal simulator with an adaptive-implicit-method (AIM) formulation/inexact-adaptive-Newton (IAN) method is presented. The final coefficient matrix retains the original banded structure so that conventional iterative methods can be used. Various methods for selection of the eliminated unknowns are tested. AIM/IAN method has a lower work count per Newtonian iteration than fully implicit methods, but a wrong choice of unknowns will result in excessive Newtonian iterations. For the problems tested, the residual-error method described in the paper for selecting implicit unknowns, together with the IAN method, had an improvement of up to 28% of the CPU time over the fullymore » implicit method.« less

  3. Adaptive variational mode decomposition method for signal processing based on mode characteristic

    NASA Astrophysics Data System (ADS)

    Lian, Jijian; Liu, Zhuo; Wang, Haijun; Dong, Xiaofeng

    2018-07-01

    Variational mode decomposition is a completely non-recursive decomposition model, where all the modes are extracted concurrently. However, the model requires a preset mode number, which limits the adaptability of the method since a large deviation in the number of mode set will cause the discard or mixing of the mode. Hence, a method called Adaptive Variational Mode Decomposition (AVMD) was proposed to automatically determine the mode number based on the characteristic of intrinsic mode function. The method was used to analyze the simulation signals and the measured signals in the hydropower plant. Comparisons have also been conducted to evaluate the performance by using VMD, EMD and EWT. It is indicated that the proposed method has strong adaptability and is robust to noise. It can determine the mode number appropriately without modulation even when the signal frequencies are relatively close.

  4. Design, optimization and numerical modelling of a novel floating pendulum wave energy converter with tide adaptation

    NASA Astrophysics Data System (ADS)

    Yang, Jing; Zhang, Da-hai; Chen, Ying; Liang, Hui; Tan, Ming; Li, Wei; Ma, Xian-dong

    2017-10-01

    A novel floating pendulum wave energy converter (WEC) with the ability of tide adaptation is designed and presented in this paper. Aiming to a high efficiency, the buoy's hydrodynamic shape is optimized by enumeration and comparison. Furthermore, in order to keep the buoy's well-designed leading edge always facing the incoming wave straightly, a novel transmission mechanism is then adopted, which is called the tidal adaptation mechanism in this paper. Time domain numerical models of a floating pendulum WEC with or without tide adaptation mechanism are built to compare their performance on various water levels. When comparing these two WECs in terms of their average output based on the linear passive control strategy, the output power of WEC with the tide adaptation mechanism is much steadier with the change of the water level and always larger than that without the tide adaptation mechanism.

  5. A survey of adaptive control technology in robotics

    NASA Technical Reports Server (NTRS)

    Tosunoglu, S.; Tesar, D.

    1987-01-01

    Previous work on the adaptive control of robotic systems is reviewed. Although the field is relatively new and does not yet represent a mature discipline, considerable attention has been given to the design of sophisticated robot controllers. Here, adaptive control methods are divided into model reference adaptive systems and self-tuning regulators with further definition of various approaches given in each class. The similarity and distinct features of the designed controllers are delineated and tabulated to enhance comparative review.

  6. Assisted Design of Antibody and Protein Therapeutics (ADAPT)

    PubMed Central

    Vivcharuk, Victor; Baardsnes, Jason; Deprez, Christophe; Sulea, Traian; Jaramillo, Maria; Corbeil, Christopher R.; Mullick, Alaka; Magoon, Joanne; Marcil, Anne; Durocher, Yves; O’Connor-McCourt, Maureen D.

    2017-01-01

    Effective biologic therapeutics require binding affinities that are fine-tuned to their disease-related molecular target. The ADAPT (Assisted Design of Antibody and Protein Therapeutics) platform aids in the selection of mutants that improve/modulate the affinity of antibodies and other biologics. It uses a consensus z-score from three scoring functions and interleaves computational predictions with experimental validation, significantly enhancing the robustness of the design and selection of mutants. The platform was tested on three antibody Fab-antigen systems that spanned a wide range of initial binding affinities: bH1-VEGF-A (44 nM), bH1-HER2 (3.6 nM) and Herceptin-HER2 (0.058 nM). Novel triple mutants were obtained that exhibited 104-, 46- and 32-fold improvements in binding affinity for each system, respectively. Moreover, for all three antibody-antigen systems over 90% of all the intermediate single and double mutants that were designed and tested showed higher affinities than the parent sequence. The contributions of the individual mutants to the change in binding affinity appear to be roughly additive when combined to form double and triple mutants. The new interactions introduced by the affinity-enhancing mutants included long-range electrostatics as well as short-range nonpolar interactions. This diversity in the types of new interactions formed by the mutants was reflected in SPR kinetics that showed that the enhancements in affinities arose from increasing on-rates, decreasing off-rates or a combination of the two effects, depending on the mutation. ADAPT is a very focused search of sequence space and required only 20–30 mutants for each system to be made and tested to achieve the affinity enhancements mentioned above. PMID:28750054

  7. Application of free energy minimization to the design of adaptive multi-agent teams

    NASA Astrophysics Data System (ADS)

    Levchuk, Georgiy; Pattipati, Krishna; Fouse, Adam; Serfaty, Daniel

    2017-05-01

    Many novel DoD missions, from disaster relief to cyber reconnaissance, require teams of humans and machines with diverse capabilities. Current solutions do not account for heterogeneity of agent capabilities, uncertainty of team knowledge, and dynamics of and dependencies between tasks and agent roles, resulting in brittle teams. Most importantly, the state-of-the-art team design solutions are either centralized, imposing role and relation assignment onto agents, or completely distributed, suitable for only homogeneous organizations such as swarms. Centralized design models can't provide insights for team's self-organization, i.e. adapting team structure over time in distributed collaborative manner by team members with diverse expertise and responsibilities. In this paper we present an information-theoretic formalization of team composition and structure adaptation using a minimization of variational free energy. The structure adaptation is obtained in an iterative distributed and collaborative manner without the need for centralized control. We show that our model is lightweight, predictive, and produces team structures that theoretically approximate an optimal policy for team adaptation. Our model also provides a unique coupling between the structure and action policy, and captures three essential processes of learning, perception, and control.

  8. The method for froth floatation condition recognition based on adaptive feature weighted

    NASA Astrophysics Data System (ADS)

    Wang, Jieran; Zhang, Jun; Tian, Jinwen; Zhang, Daimeng; Liu, Xiaomao

    2018-03-01

    The fusion of foam characteristics can play a complementary role in expressing the content of foam image. The weight of foam characteristics is the key to make full use of the relationship between the different features. In this paper, an Adaptive Feature Weighted Method For Froth Floatation Condition Recognition is proposed. Foam features without and with weights are both classified by using support vector machine (SVM).The classification accuracy and optimal equaling algorithm under the each ore grade are regarded as the result of the adaptive feature weighting algorithm. At the same time the effectiveness of adaptive weighted method is demonstrated.

  9. Why does Japan use the probability method to set design flood?

    NASA Astrophysics Data System (ADS)

    Nakamura, S.; Oki, T.

    2015-12-01

    socio-economic situation in design flood, and they applied to Japanese rivers in 1958. The probability method was applied Japan to adapt the specific socio-economic and natural situation during the confusion after the war.

  10. Design of a motion JPEG (M/JPEG) adapter card

    NASA Astrophysics Data System (ADS)

    Lee, D. H.; Sudharsanan, Subramania I.

    1994-05-01

    In this paper we describe a design of a high performance JPEG (Joint Photographic Experts Group) Micro Channel adapter card. The card, tested on a range of PS/2 platforms (models 50 to 95), can complete JPEG operations on a 640 by 240 pixel image within 1/60 of a second, thus enabling real-time capture and display of high quality digital video. The card accepts digital pixels for either a YUV 4:2:2 or an RGB 4:4:4 pixel bus and has been shown to handle up to 2.05 MBytes/second of compressed data. The compressed data is transmitted to a host memory area by Direct Memory Access operations. The card uses a single C-Cube's CL550 JPEG processor that complies with the baseline JPEG. We give broad descriptions of the hardware that controls the video interface, CL550, and the system interface. Some critical design points that enhance the overall performance of the M/JPEG systems are pointed out. The control of the adapter card is achieved by an interrupt driven software that runs under DOS. The software performs a variety of tasks that include change of color space (RGB or YUV), change of quantization and Huffman tables, odd and even field control and some diagnostic operations.

  11. Design of a Model Reference Adaptive Controller for an Unmanned Air Vehicle

    NASA Technical Reports Server (NTRS)

    Crespo, Luis G.; Matsutani, Megumi; Annaswamy, Anuradha M.

    2010-01-01

    This paper presents the "Adaptive Control Technology for Safe Flight (ACTS)" architecture, which consists of a non-adaptive controller that provides satisfactory performance under nominal flying conditions, and an adaptive controller that provides robustness under off nominal ones. The design and implementation procedures of both controllers are presented. The aim of these procedures, which encompass both theoretical and practical considerations, is to develop a controller suitable for flight. The ACTS architecture is applied to the Generic Transport Model developed by NASA-Langley Research Center. The GTM is a dynamically scaled test model of a transport aircraft for which a flight-test article and a high-fidelity simulation are available. The nominal controller at the core of the ACTS architecture has a multivariable LQR-PI structure while the adaptive one has a direct, model reference structure. The main control surfaces as well as the throttles are used as control inputs. The inclusion of the latter alleviates the pilot s workload by eliminating the need for cancelling the pitch coupling generated by changes in thrust. Furthermore, the independent usage of the throttles by the adaptive controller enables their use for attitude control. Advantages and potential drawbacks of adaptation are demonstrated by performing high fidelity simulations of a flight-validated controller and of its adaptive augmentation.

  12. A comparison of locally adaptive multigrid methods: LDC, FAC and FIC

    NASA Technical Reports Server (NTRS)

    Khadra, Khodor; Angot, Philippe; Caltagirone, Jean-Paul

    1993-01-01

    This study is devoted to a comparative analysis of three 'Adaptive ZOOM' (ZOom Overlapping Multi-level) methods based on similar concepts of hierarchical multigrid local refinement: LDC (Local Defect Correction), FAC (Fast Adaptive Composite), and FIC (Flux Interface Correction)--which we proposed recently. These methods are tested on two examples of a bidimensional elliptic problem. We compare, for V-cycle procedures, the asymptotic evolution of the global error evaluated by discrete norms, the corresponding local errors, and the convergence rates of these algorithms.

  13. An Adaptive Defect Weighted Sampling Algorithm to Design Pseudoknotted RNA Secondary Structures

    PubMed Central

    Zandi, Kasra; Butler, Gregory; Kharma, Nawwaf

    2016-01-01

    Computational design of RNA sequences that fold into targeted secondary structures has many applications in biomedicine, nanotechnology and synthetic biology. An RNA molecule is made of different types of secondary structure elements and an important RNA element named pseudoknot plays a key role in stabilizing the functional form of the molecule. However, due to the computational complexities associated with characterizing pseudoknotted RNA structures, most of the existing RNA sequence designer algorithms generally ignore this important structural element and therefore limit their applications. In this paper we present a new algorithm to design RNA sequences for pseudoknotted secondary structures. We use NUPACK as the folding algorithm to compute the equilibrium characteristics of the pseudoknotted RNAs, and describe a new adaptive defect weighted sampling algorithm named Enzymer to design low ensemble defect RNA sequences for targeted secondary structures including pseudoknots. We used a biological data set of 201 pseudoknotted structures from the Pseudobase library to benchmark the performance of our algorithm. We compared the quality characteristics of the RNA sequences we designed by Enzymer with the results obtained from the state of the art MODENA and antaRNA. Our results show our method succeeds more frequently than MODENA and antaRNA do, and generates sequences that have lower ensemble defect, lower probability defect and higher thermostability. Finally by using Enzymer and by constraining the design to a naturally occurring and highly conserved Hammerhead motif, we designed 8 sequences for a pseudoknotted cis-acting Hammerhead ribozyme. Enzymer is available for download at https://bitbucket.org/casraz/enzymer. PMID:27499762

  14. Method and apparatus for telemetry adaptive bandwidth compression

    NASA Technical Reports Server (NTRS)

    Graham, Olin L.

    1987-01-01

    Methods and apparatus are provided for automatic and/or manual adaptive bandwidth compression of telemetry. An adaptive sampler samples a video signal from a scanning sensor and generates a sequence of sampled fields. Each field and range rate information from the sensor are hence sequentially transmitted to and stored in a multiple and adaptive field storage means. The field storage means then, in response to an automatic or manual control signal, transfers the stored sampled field signals to a video monitor in a form for sequential or simultaneous display of a desired number of stored signal fields. The sampling ratio of the adaptive sample, the relative proportion of available communication bandwidth allocated respectively to transmitted data and video information, and the number of fields simultaneously displayed are manually or automatically selectively adjustable in functional relationship to each other and detected range rate. In one embodiment, when relatively little or no scene motion is detected, the control signal maximizes sampling ratio and causes simultaneous display of all stored fields, thus maximizing resolution and bandwidth available for data transmission. When increased scene motion is detected, the control signal is adjusted accordingly to cause display of fewer fields. If greater resolution is desired, the control signal is adjusted to increase the sampling ratio.

  15. Opportunities and Challenges for Drug Development: Public-Private Partnerships, Adaptive Designs and Big Data.

    PubMed

    Yildirim, Oktay; Gottwald, Matthias; Schüler, Peter; Michel, Martin C

    2016-01-01

    Drug development faces the double challenge of increasing costs and increasing pressure on pricing. To avoid that lack of perceived commercial perspective will leave existing medical needs unmet, pharmaceutical companies and many other stakeholders are discussing ways to improve the efficiency of drug Research and Development. Based on an international symposium organized by the Medical School of the University of Duisburg-Essen (Germany) and held in January 2016, we discuss the opportunities and challenges of three specific areas, i.e., public-private partnerships, adaptive designs and big data. Public-private partnerships come in many different forms with regard to scope, duration and type and number of participants. They range from project-specific collaborations to strategic alliances to large multi-party consortia. Each of them offers specific opportunities and faces distinct challenges. Among types of collaboration, investigator-initiated studies are becoming increasingly popular but have legal, ethical, and financial implications. Adaptive trial designs are also increasingly discussed. However, adaptive should not be used as euphemism for the repurposing of a failed trial; rather it requires carefully planning and specification before a trial starts. Adaptive licensing can be a counter-part of adaptive trial design. The use of Big Data is another opportunity to leverage existing information into knowledge useable for drug discovery and development. Respecting limitations of informed consent and privacy is a key challenge in the use of Big Data. Speakers and participants at the symposium were convinced that appropriate use of the above new options may indeed help to increase the efficiency of future drug development.

  16. Opportunities and Challenges for Drug Development: Public–Private Partnerships, Adaptive Designs and Big Data

    PubMed Central

    Yildirim, Oktay; Gottwald, Matthias; Schüler, Peter; Michel, Martin C.

    2016-01-01

    Drug development faces the double challenge of increasing costs and increasing pressure on pricing. To avoid that lack of perceived commercial perspective will leave existing medical needs unmet, pharmaceutical companies and many other stakeholders are discussing ways to improve the efficiency of drug Research and Development. Based on an international symposium organized by the Medical School of the University of Duisburg-Essen (Germany) and held in January 2016, we discuss the opportunities and challenges of three specific areas, i.e., public–private partnerships, adaptive designs and big data. Public–private partnerships come in many different forms with regard to scope, duration and type and number of participants. They range from project-specific collaborations to strategic alliances to large multi-party consortia. Each of them offers specific opportunities and faces distinct challenges. Among types of collaboration, investigator-initiated studies are becoming increasingly popular but have legal, ethical, and financial implications. Adaptive trial designs are also increasingly discussed. However, adaptive should not be used as euphemism for the repurposing of a failed trial; rather it requires carefully planning and specification before a trial starts. Adaptive licensing can be a counter-part of adaptive trial design. The use of Big Data is another opportunity to leverage existing information into knowledge useable for drug discovery and development. Respecting limitations of informed consent and privacy is a key challenge in the use of Big Data. Speakers and participants at the symposium were convinced that appropriate use of the above new options may indeed help to increase the efficiency of future drug development. PMID:27999543

  17. The design and development of a two-dimensional adaptive truss structure

    NASA Technical Reports Server (NTRS)

    Kuwao, Fumihiro; Motohashi, Shoichi; Yoshihara, Makoto; Takahara, Kenichi; Natori, Michihiro

    1987-01-01

    The functional model of a two dimensional adaptive truss structure which can purposefully change its geometrical configuration is introduced. The details of design and fabrication such as kinematic analysis, dynamic characteristics analysis and some test results are presented for the demonstration of this two dimensional truss concept.

  18. A Novel Unsupervised Adaptive Learning Method for Long-Term Electromyography (EMG) Pattern Recognition.

    PubMed

    Huang, Qi; Yang, Dapeng; Jiang, Li; Zhang, Huajie; Liu, Hong; Kotani, Kiyoshi

    2017-06-13

    Performance degradation will be caused by a variety of interfering factors for pattern recognition-based myoelectric control methods in the long term. This paper proposes an adaptive learning method with low computational cost to mitigate the effect in unsupervised adaptive learning scenarios. We presents a particle adaptive classifier (PAC), by constructing a particle adaptive learning strategy and universal incremental least square support vector classifier (LS-SVC). We compared PAC performance with incremental support vector classifier (ISVC) and non-adapting SVC (NSVC) in a long-term pattern recognition task in both unsupervised and supervised adaptive learning scenarios. Retraining time cost and recognition accuracy were compared by validating the classification performance on both simulated and realistic long-term EMG data. The classification results of realistic long-term EMG data showed that the PAC significantly decreased the performance degradation in unsupervised adaptive learning scenarios compared with NSVC (9.03% ± 2.23%, p < 0.05) and ISVC (13.38% ± 2.62%, p = 0.001), and reduced the retraining time cost compared with ISVC (2 ms per updating cycle vs. 50 ms per updating cycle).

  19. Distortion analysis of subband adaptive filtering methods for FMRI active noise control systems.

    PubMed

    Milani, Ali A; Panahi, Issa M; Briggs, Richard

    2007-01-01

    Delayless subband filtering structure, as a high performance frequency domain filtering technique, is used for canceling broadband fMRI noise (8 kHz bandwidth). In this method, adaptive filtering is done in subbands and the coefficients of the main canceling filter are computed by stacking the subband weights together. There are two types of stacking methods called FFT and FFT-2. In this paper, we analyze the distortion introduced by these two stacking methods. The effect of the stacking distortion on the performance of different adaptive filters in FXLMS algorithm with non-minimum phase secondary path is explored. The investigation is done for different adaptive algorithms (nLMS, APA and RLS), different weight stacking methods, and different number of subbands.

  20. Adaptive form-finding method for form-fixed spatial network structures

    NASA Astrophysics Data System (ADS)

    Lan, Cheng; Tu, Xi; Xue, Junqing; Briseghella, Bruno; Zordan, Tobia

    2018-02-01

    An effective form-finding method for form-fixed spatial network structures is presented in this paper. The adaptive form-finding method is introduced along with the example of designing an ellipsoidal network dome with bar length variations being as small as possible. A typical spherical geodesic network is selected as an initial state, having bar lengths in a limit group number. Next, this network is transformed into the ellipsoidal shape as desired by applying compressions on bars according to the bar length variations caused by transformation. Afterwards, the dynamic relaxation method is employed to explicitly integrate the node positions by applying residual forces. During the form-finding process, the boundary condition of constraining nodes on the ellipsoid surface is innovatively considered as reactions on the normal direction of the surface at node positions, which are balanced with the components of the nodal forces in a reverse direction induced by compressions on bars. The node positions are also corrected according to the fixed-form condition in each explicit iteration step. In the serial results of time history, the optimal solution is found from a time history of states by properly choosing convergence criteria, and the presented form-finding procedure is proved to be applicable for form-fixed problems.

  1. Economic assessment of climate adaptation options for urban drainage design in Odense, Denmark.

    PubMed

    Zhou, Q; Halsnæs, K; Arnbjerg-Nielsen, K

    2012-01-01

    Climate change is likely to influence the water cycle by changing the precipitation patterns, in some cases leading to increased occurrences of precipitation extremes. Urban landscapes are vulnerable to such changes due to the concentrated population and socio-economic values in cities. Feasible adaptation requires better flood risk quantification and assessment of appropriate adaptation actions in term of costs and benefits. This paper presents an economic assessment of three prevailing climate adaptation options for urban drainage design in a Danish case study, Odense. A risk-based evaluation framework is used to give detailed insights of the physical and economic feasibilities of each option. Estimation of marginal benefits of adaptation options are carried out through a step-by-step cost-benefit analysis. The results are aimed at providing important information for decision making on how best to adapt to urban pluvial flooding due to climate impacts in cities.

  2. Novel adaptive neural control design for a constrained flexible air-breathing hypersonic vehicle based on actuator compensation

    NASA Astrophysics Data System (ADS)

    Bu, Xiangwei; Wu, Xiaoyan; He, Guangjun; Huang, Jiaqi

    2016-03-01

    This paper investigates the design of a novel adaptive neural controller for the longitudinal dynamics of a flexible air-breathing hypersonic vehicle with control input constraints. To reduce the complexity of controller design, the vehicle dynamics is decomposed into the velocity subsystem and the altitude subsystem, respectively. For each subsystem, only one neural network is utilized to approach the lumped unknown function. By employing a minimal-learning parameter method to estimate the norm of ideal weight vectors rather than their elements, there are only two adaptive parameters required for neural approximation. Thus, the computational burden is lower than the ones derived from neural back-stepping schemes. Specially, to deal with the control input constraints, additional systems are exploited to compensate the actuators. Lyapunov synthesis proves that all the closed-loop signals involved are uniformly ultimately bounded. Finally, simulation results show that the adopted compensation scheme can tackle actuator constraint effectively and moreover velocity and altitude can stably track their reference trajectories even when the physical limitations on control inputs are in effect.

  3. Bayesian adaptive bandit-based designs using the Gittins index for multi-armed trials with normally distributed endpoints.

    PubMed

    Smith, Adam L; Villar, Sofía S

    2018-01-01

    Adaptive designs for multi-armed clinical trials have become increasingly popular recently because of their potential to shorten development times and to increase patient response. However, developing response-adaptive designs that offer patient-benefit while ensuring the resulting trial provides a statistically rigorous and unbiased comparison of the different treatments included is highly challenging. In this paper, the theory of Multi-Armed Bandit Problems is used to define near optimal adaptive designs in the context of a clinical trial with a normally distributed endpoint with known variance. We report the operating characteristics (type I error, power, bias) and patient-benefit of these approaches and alternative designs using simulation studies based on an ongoing trial. These results are then compared to those recently published in the context of Bernoulli endpoints. Many limitations and advantages are similar in both cases but there are also important differences, specially with respect to type I error control. This paper proposes a simulation-based testing procedure to correct for the observed type I error inflation that bandit-based and adaptive rules can induce.

  4. Reinforcement learning design-based adaptive tracking control with less learning parameters for nonlinear discrete-time MIMO systems.

    PubMed

    Liu, Yan-Jun; Tang, Li; Tong, Shaocheng; Chen, C L Philip; Li, Dong-Juan

    2015-01-01

    Based on the neural network (NN) approximator, an online reinforcement learning algorithm is proposed for a class of affine multiple input and multiple output (MIMO) nonlinear discrete-time systems with unknown functions and disturbances. In the design procedure, two networks are provided where one is an action network to generate an optimal control signal and the other is a critic network to approximate the cost function. An optimal control signal and adaptation laws can be generated based on two NNs. In the previous approaches, the weights of critic and action networks are updated based on the gradient descent rule and the estimations of optimal weight vectors are directly adjusted in the design. Consequently, compared with the existing results, the main contributions of this paper are: 1) only two parameters are needed to be adjusted, and thus the number of the adaptation laws is smaller than the previous results and 2) the updating parameters do not depend on the number of the subsystems for MIMO systems and the tuning rules are replaced by adjusting the norms on optimal weight vectors in both action and critic networks. It is proven that the tracking errors, the adaptation laws, and the control inputs are uniformly bounded using Lyapunov analysis method. The simulation examples are employed to illustrate the effectiveness of the proposed algorithm.

  5. Successful adaptation of a research methods course in South America.

    PubMed

    Tamariz, Leonardo; Vasquez, Diego; Loor, Cecilia; Palacio, Ana

    2017-01-01

    South America has low research productivity. The lack of a structured research curriculum is one of the barriers to conducting research. To report our experience adapting an active learning-based research methods curriculum to improve research productivity at a university in Ecuador. We used a mixed-method approach to test the adaptation of the research curriculum at Universidad Catolica Santiago de Guayaquil. The curriculum uses a flipped classroom and active learning approach to teach research methods. When adapted, it was longitudinal and had 16-hour programme of in-person teaching and a six-month follow-up online component. Learners were organized in theme groups according to interest, and each group had a faculty leader. Our primary outcome was research productivity, which was measured by the succesful presentation of the research project at a national meeting, or publication in a peer-review journal. Our secondary outcomes were knowledge and perceived competence before and after course completion. We conducted qualitative interviews of faculty members and students to evaluate themes related to participation in research. Fifty university students and 10 faculty members attended the course. We had a total of 15 groups. Both knowledge and perceived competence increased by 17 and 18 percentage points, respectively. The presentation or publication rate for the entire group was 50%. The qualitative analysis showed that a lack of research culture and curriculum were common barriers to research. A US-based curriculum can be successfully adapted in low-middle income countries. A research curriculum aids in achieving pre-determined milestones. UCSG: Universidad Catolica Santiago de Guayaquil; UM: University of Miami.

  6. [Comparative adaptation of crowns of selective laser melting and wax-lost-casting method].

    PubMed

    Li, Guo-qiang; Shen, Qing-yi; Gao, Jian-hua; Wu, Xue-ying; Chen, Li; Dai, Wen-an

    2012-07-01

    To investigate the marginal adaptation of crowns fabricated by selective laser melting (SLM) and wax-lost-casting method, so as to provide an experimental basis for clinic. Co-Cr alloy full crown were fabricated by SLM and wax-lost-casting for 24 samples in each group. All crowns were cemented with zinc phosphate cement and cut along longitudinal axis by line cutting machine. The gap between crown tissue surface and die was measured by 6-point measuring method with scanning electron microscope (SEM). The marginal adaptation of crowns fabricated by SLM and wax-lost-casting were compared statistically. The gap between SLM crowns were (36.51 ± 2.94), (49.36 ± 3.31), (56.48 ± 3.35), (42.20 ± 3.60) µm, and wax-lost-casting crowns were (68.86 ± 5.41), (58.86 ± 6.10), (70.62 ± 5.79), (69.90 ± 6.00) µm. There were significant difference between two groups (P < 0.05). Co-Cr alloy full crown fabricated by wax-lost-casting method and SLM method provide acceptable marginal adaptation in clinic, and the marginal adaptation of SLM is better than that of wax-lost-casting method.

  7. Optomechanical design and analysis of a self-adaptive mounting method for optimizing phase matching of large potassium dihydrogen phosphate converter

    NASA Astrophysics Data System (ADS)

    Zhang, Zheng; Tian, Menjiya; Quan, Xusong; Pei, Guoqing; Wang, Hui; Liu, Tianye; Long, Kai; Xiong, Zhao; Rong, Yiming

    2017-11-01

    Surface control and phase matching of large laser conversion optics are urgent requirements and huge challenges in high-power solid-state laser facilities. A self-adaptive, nanocompensating mounting configuration of a large aperture potassium dihydrogen phosphate (KDP) frequency doubler is proposed based on a lever-type surface correction mechanism. A mechanical, numerical, and optical model is developed and employed to evaluate comprehensive performance of this mounting method. The results validate the method's advantages of surface adjustment and phase matching improvement. In addition, the optimal value of the modulation force is figured out through a series of simulations and calculations.

  8. Analysis and design of a high power laser adaptive phased array transmitter

    NASA Technical Reports Server (NTRS)

    Mevers, G. E.; Soohoo, J. F.; Winocur, J.; Massie, N. A.; Southwell, W. H.; Brandewie, R. A.; Hayes, C. L.

    1977-01-01

    The feasibility of delivering substantial quantities of optical power to a satellite in low earth orbit from a ground based high energy laser (HEL) coupled to an adaptive antenna was investigated. Diffraction effects, atmospheric transmission efficiency, adaptive compensation for atmospheric turbulence effects, including the servo bandwidth requirements for this correction, and the adaptive compensation for thermal blooming were examined. To evaluate possible HEL sources, atmospheric investigations were performed for the CO2, (C-12)(O-18)2 isotope, CO and DF wavelengths using output antenna locations of both sea level and mountain top. Results indicate that both excellent atmospheric and adaption efficiency can be obtained for mountain top operation with a micron isotope laser operating at 9.1 um, or a CO laser operating single line (P10) at about 5.0 (C-12)(O-18)2um, which was a close second in the evaluation. Four adaptive power transmitter system concepts were generated and evaluated, based on overall system efficiency, reliability, size and weight, advanced technology requirements and potential cost. A multiple source phased array was selected for detailed conceptual design. The system uses a unique adaption technique of phase locking independent laser oscillators which allows it to be both relatively inexpensive and most reliable with a predicted overall power transfer efficiency of 53%.

  9. Automatic telangiectasia analysis in dermoscopy images using adaptive critic design.

    PubMed

    Cheng, B; Stanley, R J; Stoecker, W V; Hinton, K

    2012-11-01

    Telangiectasia, tiny skin vessels, are important dermoscopy structures used to discriminate basal cell carcinoma (BCC) from benign skin lesions. This research builds off of previously developed image analysis techniques to identify vessels automatically to discriminate benign lesions from BCCs. A biologically inspired reinforcement learning approach is investigated in an adaptive critic design framework to apply action-dependent heuristic dynamic programming (ADHDP) for discrimination based on computed features using different skin lesion contrast variations to promote the discrimination process. Lesion discrimination results for ADHDP are compared with multilayer perception backpropagation artificial neural networks. This study uses a data set of 498 dermoscopy skin lesion images of 263 BCCs and 226 competitive benign images as the input sets. This data set is extended from previous research [Cheng et al., Skin Research and Technology, 2011, 17: 278]. Experimental results yielded a diagnostic accuracy as high as 84.6% using the ADHDP approach, providing an 8.03% improvement over a standard multilayer perception method. We have chosen BCC detection rather than vessel detection as the endpoint. Although vessel detection is inherently easier, BCC detection has potential direct clinical applications. Small BCCs are detectable early by dermoscopy and potentially detectable by the automated methods described in this research. © 2011 John Wiley & Sons A/S.

  10. Design of adaptive control systems by means of self-adjusting transversal filters

    NASA Technical Reports Server (NTRS)

    Merhav, S. J.

    1986-01-01

    The design of closed-loop adaptive control systems based on nonparametric identification was addressed. Implementation is by self-adjusting Least Mean Square (LMS) transversal filters. The design concept is Model Reference Adaptive Control (MRAC). Major issues are to preserve the linearity of the error equations of each LMS filter, and to prevent estimation bias that is due to process or measurement noise, thus providing necessary conditions for the convergence and stability of the control system. The controlled element is assumed to be asymptotically stable and minimum phase. Because of the nonparametric Finite Impulse Response (FIR) estimates provided by the LMS filters, a-priori information on the plant model is needed only in broad terms. Following a survey of control system configurations and filter design considerations, system implementation is shown here in Single Input Single Output (SISO) format which is readily extendable to multivariable forms. In extensive computer simulation studies the controlled element is represented by a second-order system with widely varying damping, natural frequency, and relative degree.

  11. Adaptive eigenspace method for inverse scattering problems in the frequency domain

    NASA Astrophysics Data System (ADS)

    Grote, Marcus J.; Kray, Marie; Nahum, Uri

    2017-02-01

    A nonlinear optimization method is proposed for the solution of inverse scattering problems in the frequency domain, when the scattered field is governed by the Helmholtz equation. The time-harmonic inverse medium problem is formulated as a PDE-constrained optimization problem and solved by an inexact truncated Newton-type iteration. Instead of a grid-based discrete representation, the unknown wave speed is projected to a particular finite-dimensional basis of eigenfunctions, which is iteratively adapted during the optimization. Truncating the adaptive eigenspace (AE) basis at a (small and slowly increasing) finite number of eigenfunctions effectively introduces regularization into the inversion and thus avoids the need for standard Tikhonov-type regularization. Both analytical and numerical evidence underpins the accuracy of the AE representation. Numerical experiments demonstrate the efficiency and robustness to missing or noisy data of the resulting adaptive eigenspace inversion method.

  12. Methods of multi-conjugate adaptive optics for astronomy

    NASA Astrophysics Data System (ADS)

    Flicker, Ralf

    2003-07-01

    This work analyses several aspects of multi-conjugate adaptive optics (MCAO) for astronomy. The research ranges from fundamental and technical studies for present-day MCAO projects, to feasibility studies of high-order MCAO instruments for the extremely large telescopes (ELTs) of the future. The first part is an introductory exposition on atmospheric turbulence, adaptive optics (AO) and MCAO, establishing the framework within which the research was carried out The second part (papers I VI) commences with a fundamental design parameter study of MCAO systems, based upon a first-order performance estimation Monte Carlo simulation. It is investigated how the number and geometry of deformable mirrors and reference beacons, and the choice of wavefront reconstruction algorithm, affect system performance. Multi-conjugation introduces the possibility of optically canceling scintillation in part, at the expense of additional optics, by applying the phase correction in a certain sequence. The effects of scintillation when this sequence is not observed are investigated. As a link in characterizing anisoplanatism in conventional AO systems, images made with the AO instrument Hokupa'a on the Gemini-North Telescope were analysed with respect to the anisoplanatism signal. By model-fitting of simulated data, conclusions could be drawn about the vertical distribution of turbulence above the observatory site (Mauna Kea), and the significance to future AO and MCAO instruments with conjugated deformable mirrors is addressed. The problem of tilt anisoplanatism with MCAO systems relying on artificial reference beacons—laser guide stars (LGSs)—is analysed, and analytical models for predicting the effects of tilt anisoplanatism are devised. A method is presented for real-time retrieval of the tilt anisoplanatism point spread function (PSF), using control loop data. An independent PSF estimation of high accuracy is thus obtained which enables accurate PSF photometry and deconvolution

  13. Earthquake Rupture Dynamics using Adaptive Mesh Refinement and High-Order Accurate Numerical Methods

    NASA Astrophysics Data System (ADS)

    Kozdon, J. E.; Wilcox, L.

    2013-12-01

    Our goal is to develop scalable and adaptive (spatial and temporal) numerical methods for coupled, multiphysics problems using high-order accurate numerical methods. To do so, we are developing an opensource, parallel library known as bfam (available at http://bfam.in). The first application to be developed on top of bfam is an earthquake rupture dynamics solver using high-order discontinuous Galerkin methods and summation-by-parts finite difference methods. In earthquake rupture dynamics, wave propagation in the Earth's crust is coupled to frictional sliding on fault interfaces. This coupling is two-way, required the simultaneous simulation of both processes. The use of laboratory-measured friction parameters requires near-fault resolution that is 4-5 orders of magnitude higher than that needed to resolve the frequencies of interest in the volume. This, along with earlier simulations using a low-order, finite volume based adaptive mesh refinement framework, suggest that adaptive mesh refinement is ideally suited for this problem. The use of high-order methods is motivated by the high level of resolution required off the fault in earlier the low-order finite volume simulations; we believe this need for resolution is a result of the excessive numerical dissipation of low-order methods. In bfam spatial adaptivity is handled using the p4est library and temporal adaptivity will be accomplished through local time stepping. In this presentation we will present the guiding principles behind the library as well as verification of code against the Southern California Earthquake Center dynamic rupture code validation test problems.

  14. A Novel Unsupervised Adaptive Learning Method for Long-Term Electromyography (EMG) Pattern Recognition

    PubMed Central

    Huang, Qi; Yang, Dapeng; Jiang, Li; Zhang, Huajie; Liu, Hong; Kotani, Kiyoshi

    2017-01-01

    Performance degradation will be caused by a variety of interfering factors for pattern recognition-based myoelectric control methods in the long term. This paper proposes an adaptive learning method with low computational cost to mitigate the effect in unsupervised adaptive learning scenarios. We presents a particle adaptive classifier (PAC), by constructing a particle adaptive learning strategy and universal incremental least square support vector classifier (LS-SVC). We compared PAC performance with incremental support vector classifier (ISVC) and non-adapting SVC (NSVC) in a long-term pattern recognition task in both unsupervised and supervised adaptive learning scenarios. Retraining time cost and recognition accuracy were compared by validating the classification performance on both simulated and realistic long-term EMG data. The classification results of realistic long-term EMG data showed that the PAC significantly decreased the performance degradation in unsupervised adaptive learning scenarios compared with NSVC (9.03% ± 2.23%, p < 0.05) and ISVC (13.38% ± 2.62%, p = 0.001), and reduced the retraining time cost compared with ISVC (2 ms per updating cycle vs. 50 ms per updating cycle). PMID:28608824

  15. Parallel, adaptive finite element methods for conservation laws

    NASA Technical Reports Server (NTRS)

    Biswas, Rupak; Devine, Karen D.; Flaherty, Joseph E.

    1994-01-01

    We construct parallel finite element methods for the solution of hyperbolic conservation laws in one and two dimensions. Spatial discretization is performed by a discontinuous Galerkin finite element method using a basis of piecewise Legendre polynomials. Temporal discretization utilizes a Runge-Kutta method. Dissipative fluxes and projection limiting prevent oscillations near solution discontinuities. A posteriori estimates of spatial errors are obtained by a p-refinement technique using superconvergence at Radau points. The resulting method is of high order and may be parallelized efficiently on MIMD computers. We compare results using different limiting schemes and demonstrate parallel efficiency through computations on an NCUBE/2 hypercube. We also present results using adaptive h- and p-refinement to reduce the computational cost of the method.

  16. An adaptive Gaussian process-based method for efficient Bayesian experimental design in groundwater contaminant source identification problems: ADAPTIVE GAUSSIAN PROCESS-BASED INVERSION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jiangjiang; Li, Weixuan; Zeng, Lingzao

    Surrogate models are commonly used in Bayesian approaches such as Markov Chain Monte Carlo (MCMC) to avoid repetitive CPU-demanding model evaluations. However, the approximation error of a surrogate may lead to biased estimations of the posterior distribution. This bias can be corrected by constructing a very accurate surrogate or implementing MCMC in a two-stage manner. Since the two-stage MCMC requires extra original model evaluations, the computational cost is still high. If the information of measurement is incorporated, a locally accurate approximation of the original model can be adaptively constructed with low computational cost. Based on this idea, we propose amore » Gaussian process (GP) surrogate-based Bayesian experimental design and parameter estimation approach for groundwater contaminant source identification problems. A major advantage of the GP surrogate is that it provides a convenient estimation of the approximation error, which can be incorporated in the Bayesian formula to avoid over-confident estimation of the posterior distribution. The proposed approach is tested with a numerical case study. Without sacrificing the estimation accuracy, the new approach achieves about 200 times of speed-up compared to our previous work using two-stage MCMC.« less

  17. Adaptive Critic Nonlinear Robust Control: A Survey.

    PubMed

    Wang, Ding; He, Haibo; Liu, Derong

    2017-10-01

    Adaptive dynamic programming (ADP) and reinforcement learning are quite relevant to each other when performing intelligent optimization. They are both regarded as promising methods involving important components of evaluation and improvement, at the background of information technology, such as artificial intelligence, big data, and deep learning. Although great progresses have been achieved and surveyed when addressing nonlinear optimal control problems, the research on robustness of ADP-based control strategies under uncertain environment has not been fully summarized. Hence, this survey reviews the recent main results of adaptive-critic-based robust control design of continuous-time nonlinear systems. The ADP-based nonlinear optimal regulation is reviewed, followed by robust stabilization of nonlinear systems with matched uncertainties, guaranteed cost control design of unmatched plants, and decentralized stabilization of interconnected systems. Additionally, further comprehensive discussions are presented, including event-based robust control design, improvement of the critic learning rule, nonlinear H ∞ control design, and several notes on future perspectives. By applying the ADP-based optimal and robust control methods to a practical power system and an overhead crane plant, two typical examples are provided to verify the effectiveness of theoretical results. Overall, this survey is beneficial to promote the development of adaptive critic control methods with robustness guarantee and the construction of higher level intelligent systems.

  18. Arbitrary-level hanging nodes for adaptive hphp-FEM approximations in 3D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavel Kus; Pavel Solin; David Andrs

    2014-11-01

    In this paper we discuss constrained approximation with arbitrary-level hanging nodes in adaptive higher-order finite element methods (hphp-FEM) for three-dimensional problems. This technique enables using highly irregular meshes, and it greatly simplifies the design of adaptive algorithms as it prevents refinements from propagating recursively through the finite element mesh. The technique makes it possible to design efficient adaptive algorithms for purely hexahedral meshes. We present a detailed mathematical description of the method and illustrate it with numerical examples.

  19. Micro-Randomized Trials: An Experimental Design for Developing Just-in-Time Adaptive Interventions

    PubMed Central

    Klasnja, Predrag; Hekler, Eric B.; Shiffman, Saul; Boruvka, Audrey; Almirall, Daniel; Tewari, Ambuj; Murphy, Susan A.

    2015-01-01

    Objective This paper presents an experimental design, the micro-randomized trial, developed to support optimization of just-in-time adaptive interventions (JITAIs). JITAIs are mHealth technologies that aim to deliver the right intervention components at the right times and locations to optimally support individuals’ health behaviors. Micro-randomized trials offer a way to optimize such interventions by enabling modeling of causal effects and time-varying effect moderation for individual intervention components within a JITAI. Methods The paper describes the micro-randomized trial design, enumerates research questions that this experimental design can help answer, and provides an overview of the data analyses that can be used to assess the causal effects of studied intervention components and investigate time-varying moderation of those effects. Results Micro-randomized trials enable causal modeling of proximal effects of the randomized intervention components and assessment of time-varying moderation of those effects. Conclusions Micro-randomized trials can help researchers understand whether their interventions are having intended effects, when and for whom they are effective, and what factors moderate the interventions’ effects, enabling creation of more effective JITAIs. PMID:26651463

  20. Key concepts and methods in social vulnerability and adaptive capacity

    Treesearch

    Daniel J. Murphy; Carina Wyborn; Laurie Yung; Daniel R. Williams

    2015-01-01

    National forests have been asked to assess how climate change will impact nearby human communities. To assist their thinking on this topic, we examine the concepts of social vulnerability and adaptive capacity with an emphasis on a range of theoretical and methodological approaches. This analysis is designed to help researchers and decision-makers select appropriate...

  1. Adaptive and dynamic meshing methods for numerical simulations

    NASA Astrophysics Data System (ADS)

    Acikgoz, Nazmiye

    -hoc application of the simulated annealing technique, which improves the likelihood of removing poor elements from the grid. Moreover, a local implementation of the simulated annealing is proposed to reduce the computational cost. Many challenging multi-physics and multi-field problems that are unsteady in nature are characterized by moving boundaries and/or interfaces. When the boundary displacements are large, which typically occurs when implicit time marching procedures are used, degenerate elements are easily formed in the grid such that frequent remeshing is required. To deal with this problem, in the second part of this work, we propose a new r-adaptation methodology. The new technique is valid for both simplicial (e.g., triangular, tet) and non-simplicial (e.g., quadrilateral, hex) deforming grids that undergo large imposed displacements at their boundaries. A two- or three-dimensional grid is deformed using a network of linear springs composed of edge springs and a set of virtual springs. The virtual springs are constructed in such a way as to oppose element collapsing. This is accomplished by confining each vertex to its ball through springs that are attached to the vertex and its projection on the ball entities. The resulting linear problem is solved using a preconditioned conjugate gradient method. The new method is compared with the classical spring analogy technique in two- and three-dimensional examples, highlighting the performance improvements achieved by the new method. Meshes are an important part of numerical simulations. Depending on the geometry and flow conditions, the most suitable mesh for each particular problem is different. Meshes are usually generated by either using a suitable software package or solving a PDE. In both cases, engineering intuition plays a significant role in deciding where clusterings should take place. In addition, for unsteady problems, the gradients vary for each time step, which requires frequent remeshing during simulations

  2. ZZ-Type a posteriori error estimators for adaptive boundary element methods on a curve☆

    PubMed Central

    Feischl, Michael; Führer, Thomas; Karkulik, Michael; Praetorius, Dirk

    2014-01-01

    In the context of the adaptive finite element method (FEM), ZZ-error estimators named after Zienkiewicz and Zhu (1987) [52] are mathematically well-established and widely used in practice. In this work, we propose and analyze ZZ-type error estimators for the adaptive boundary element method (BEM). We consider weakly singular and hyper-singular integral equations and prove, in particular, convergence of the related adaptive mesh-refining algorithms. Throughout, the theoretical findings are underlined by numerical experiments. PMID:24748725

  3. A novel method based on new adaptive LVQ neural network for predicting protein-protein interactions from protein sequences.

    PubMed

    Yousef, Abdulaziz; Moghadam Charkari, Nasrollah

    2013-11-07

    Protein-Protein interaction (PPI) is one of the most important data in understanding the cellular processes. Many interesting methods have been proposed in order to predict PPIs. However, the methods which are based on the sequence of proteins as a prior knowledge are more universal. In this paper, a sequence-based, fast, and adaptive PPI prediction method is introduced to assign two proteins to an interaction class (yes, no). First, in order to improve the presentation of the sequences, twelve physicochemical properties of amino acid have been used by different representation methods to transform the sequence of protein pairs into different feature vectors. Then, for speeding up the learning process and reducing the effect of noise PPI data, principal component analysis (PCA) is carried out as a proper feature extraction algorithm. Finally, a new and adaptive Learning Vector Quantization (LVQ) predictor is designed to deal with different models of datasets that are classified into balanced and imbalanced datasets. The accuracy of 93.88%, 90.03%, and 89.72% has been found on S. cerevisiae, H. pylori, and independent datasets, respectively. The results of various experiments indicate the efficiency and validity of the method. © 2013 Published by Elsevier Ltd.

  4. An adaptive angle-doppler compensation method for airborne bistatic radar based on PAST

    NASA Astrophysics Data System (ADS)

    Hang, Xu; Jun, Zhao

    2018-05-01

    Adaptive angle-Doppler compensation method extract the requisite information based on the data itself adaptively, thus avoiding the problem of performance degradation caused by inertia system error. However, this method requires estimation and egiendecomposition of sample covariance matrix, which has a high computational complexity and limits its real-time application. In this paper, an adaptive angle Doppler compensation method based on projection approximation subspace tracking (PAST) is studied. The method uses cyclic iterative processing to quickly estimate the positions of the spectral center of the maximum eigenvector of each range cell, and the computational burden of matrix estimation and eigen-decompositon is avoided, and then the spectral centers of all range cells is overlapped by two dimensional compensation. Simulation results show the proposed method can effectively reduce the no homogeneity of airborne bistatic radar, and its performance is similar to that of egien-decomposition algorithms, but the computation load is obviously reduced and easy to be realized.

  5. The design of an adaptive predictive coder using a single-chip digital signal processor

    NASA Astrophysics Data System (ADS)

    Randolph, M. A.

    1985-01-01

    A speech coding processor architecture design study has been performed in which Texas Instruments TMS32010 has been selected from among three commercially available digital signal processing integrated circuits and evaluated in an implementation study of real-time Adaptive Predictive Coding (APC). The TMS32010 has been compared with AR&T Bell Laboratories DSP I and Nippon Electric Co. PD7720 and was found to be most suitable for a single chip implementation of APC. A preliminary design system based on TMS32010 has been performed, and several of the hardware and software design issues are discussed. Particular attention was paid to the design of an external memory controller which permits rapid sequential access of external RAM. As a result, it has been determined that a compact hardware implementation of the APC algorithm is feasible based of the TSM32010. Originator-supplied keywords include: vocoders, speech compression, adaptive predictive coding, digital signal processing microcomputers, speech processor architectures, and special purpose processor.

  6. The Design and the Formative Evaluation of an Adaptive Educational System Based on Cognitive Styles

    ERIC Educational Resources Information Center

    Triantafillou, Evangelos; Pomportsis, Andreas; Demetriadis, Stavros

    2003-01-01

    Adaptive Hypermedia Systems (AHS) can be developed to accommodate a variety of individual differences, including learning style and cognitive style. The current research is an attempt to examine some of the critical variables, which may be important in the design of an Adaptive Educational System (AES) based on student's cognitive style. Moreover,…

  7. A multigrid method for steady Euler equations on unstructured adaptive grids

    NASA Technical Reports Server (NTRS)

    Riemslagh, Kris; Dick, Erik

    1993-01-01

    A flux-difference splitting type algorithm is formulated for the steady Euler equations on unstructured grids. The polynomial flux-difference splitting technique is used. A vertex-centered finite volume method is employed on a triangular mesh. The multigrid method is in defect-correction form. A relaxation procedure with a first order accurate inner iteration and a second-order correction performed only on the finest grid, is used. A multi-stage Jacobi relaxation method is employed as a smoother. Since the grid is unstructured a Jacobi type is chosen. The multi-staging is necessary to provide sufficient smoothing properties. The domain is discretized using a Delaunay triangular mesh generator. Three grids with more or less uniform distribution of nodes but with different resolution are generated by successive refinement of the coarsest grid. Nodes of coarser grids appear in the finer grids. The multigrid method is started on these grids. As soon as the residual drops below a threshold value, an adaptive refinement is started. The solution on the adaptively refined grid is accelerated by a multigrid procedure. The coarser multigrid grids are generated by successive coarsening through point removement. The adaption cycle is repeated a few times. Results are given for the transonic flow over a NACA-0012 airfoil.

  8. Design of a knee joint mechanism that adapts to individual physiology.

    PubMed

    Jiun-Yih Kuan; Pasch, Kenneth A; Herr, Hugh M

    2014-01-01

    This paper describes the design of a new knee joint mechanism, called the Adaptive Coupling Joint (ACJ). The new mechanism has an adaptive trajectory of the center of rotations (COR) that automatically matches those of the attached biological joint. The detailed design is presented as well as characterization results of the ACJ. Conventional exoskeleton and assistive devices usually consider limb joints as a one to three degrees of freedom (DOFs) joint synthesized by multiple one-DOF hinge joints in a single plane. However, the biological joints are complex and usually rotate with respect to a changing COR. As a result, the mismatch between limb joint motion and mechanical interface motion can lead to forces that cause undesired ligament and muscle length changes and internal mechanical changes. These undesired changes contribute to discomfort, as well as to the slippage and sluggish interaction between humans and devices. It is shown that the ACJ can transmit planetary torques from either active or passive devices to the limbs without altering the normal biological joint motion.

  9. A multi-block adaptive solving technique based on lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Xie, Jiahua; Li, Xiaoyue; Ma, Zhenghai; Zou, Jianfeng; Zheng, Yao

    2018-05-01

    In this paper, a CFD parallel adaptive algorithm is self-developed by combining the multi-block Lattice Boltzmann Method (LBM) with Adaptive Mesh Refinement (AMR). The mesh refinement criterion of this algorithm is based on the density, velocity and vortices of the flow field. The refined grid boundary is obtained by extending outward half a ghost cell from the coarse grid boundary, which makes the adaptive mesh more compact and the boundary treatment more convenient. Two numerical examples of the backward step flow separation and the unsteady flow around circular cylinder demonstrate the vortex structure of the cold flow field accurately and specifically.

  10. Method and system for spatial data input, manipulation and distribution via an adaptive wireless transceiver

    NASA Technical Reports Server (NTRS)

    Wang, Ray (Inventor)

    2009-01-01

    A method and system for spatial data manipulation input and distribution via an adaptive wireless transceiver. The method and system include a wireless transceiver for automatically and adaptively controlling wireless transmissions using a Waveform-DNA method. The wireless transceiver can operate simultaneously over both the short and long distances. The wireless transceiver is automatically adaptive and wireless devices can send and receive wireless digital and analog data from various sources rapidly in real-time via available networks and network services.

  11. Phase I/II adaptive design for drug combination oncology trials

    PubMed Central

    Wages, Nolan A.; Conaway, Mark R.

    2014-01-01

    Existing statistical methodology on dose finding for combination chemotherapies has focused on toxicity considerations alone in finding a maximum tolerated dose combination to recommend for further testing of efficacy in a phase II setting. Recently, there has been increasing interest in integrating phase I and phase II trials in order to facilitate drug development. In this article, we propose a new adaptive phase I/II method for dual-agent combinations that takes into account both toxicity and efficacy after each cohort inclusion. The primary objective, both within and at the conclusion of the trial, becomes finding a single dose combination with an acceptable level of toxicity that maximizes efficacious response. We assume that there exist monotone dose–toxicity and dose–efficacy relationships among doses of one agent when the dose of other agent is fixed. We perform extensive simulation studies that demonstrate the operating characteristics of our proposed approach, and we compare simulated results to existing methodology in phase I/II design for combinations of agents. PMID:24470329

  12. Optimal Control-Based Adaptive NN Design for a Class of Nonlinear Discrete-Time Block-Triangular Systems.

    PubMed

    Liu, Yan-Jun; Tong, Shaocheng

    2016-11-01

    In this paper, we propose an optimal control scheme-based adaptive neural network design for a class of unknown nonlinear discrete-time systems. The controlled systems are in a block-triangular multi-input-multi-output pure-feedback structure, i.e., there are both state and input couplings and nonaffine functions to be included in every equation of each subsystem. The design objective is to provide a control scheme, which not only guarantees the stability of the systems, but also achieves optimal control performance. The main contribution of this paper is that it is for the first time to achieve the optimal performance for such a class of systems. Owing to the interactions among subsystems, making an optimal control signal is a difficult task. The design ideas are that: 1) the systems are transformed into an output predictor form; 2) for the output predictor, the ideal control signal and the strategic utility function can be approximated by using an action network and a critic network, respectively; and 3) an optimal control signal is constructed with the weight update rules to be designed based on a gradient descent method. The stability of the systems can be proved based on the difference Lyapunov method. Finally, a numerical simulation is given to illustrate the performance of the proposed scheme.

  13. A Taylor Expansion-Based Adaptive Design Strategy for Global Surrogate Modeling With Applications in Groundwater Modeling

    NASA Astrophysics Data System (ADS)

    Mo, Shaoxing; Lu, Dan; Shi, Xiaoqing; Zhang, Guannan; Ye, Ming; Wu, Jianfeng; Wu, Jichun

    2017-12-01

    Global sensitivity analysis (GSA) and uncertainty quantification (UQ) for groundwater modeling are challenging because of the model complexity and significant computational requirements. To reduce the massive computational cost, a cheap-to-evaluate surrogate model is usually constructed to approximate and replace the expensive groundwater models in the GSA and UQ. Constructing an accurate surrogate requires actual model simulations on a number of parameter samples. Thus, a robust experimental design strategy is desired to locate informative samples so as to reduce the computational cost in surrogate construction and consequently to improve the efficiency in the GSA and UQ. In this study, we develop a Taylor expansion-based adaptive design (TEAD) that aims to build an accurate global surrogate model with a small training sample size. TEAD defines a novel hybrid score function to search informative samples, and a robust stopping criterion to terminate the sample search that guarantees the resulted approximation errors satisfy the desired accuracy. The good performance of TEAD in building global surrogate models is demonstrated in seven analytical functions with different dimensionality and complexity in comparison to two widely used experimental design methods. The application of the TEAD-based surrogate method in two groundwater models shows that the TEAD design can effectively improve the computational efficiency of GSA and UQ for groundwater modeling.

  14. AP-Cloud: Adaptive particle-in-cloud method for optimal solutions to Vlasov–Poisson equation

    DOE PAGES

    Wang, Xingyu; Samulyak, Roman; Jiao, Xiangmin; ...

    2016-04-19

    We propose a new adaptive Particle-in-Cloud (AP-Cloud) method for obtaining optimal numerical solutions to the Vlasov–Poisson equation. Unlike the traditional particle-in-cell (PIC) method, which is commonly used for solving this problem, the AP-Cloud adaptively selects computational nodes or particles to deliver higher accuracy and efficiency when the particle distribution is highly non-uniform. Unlike other adaptive techniques for PIC, our method balances the errors in PDE discretization and Monte Carlo integration, and discretizes the differential operators using a generalized finite difference (GFD) method based on a weighted least square formulation. As a result, AP-Cloud is independent of the geometric shapes ofmore » computational domains and is free of artificial parameters. Efficient and robust implementation is achieved through an octree data structure with 2:1 balance. We analyze the accuracy and convergence order of AP-Cloud theoretically, and verify the method using an electrostatic problem of a particle beam with halo. Here, simulation results show that the AP-Cloud method is substantially more accurate and faster than the traditional PIC, and it is free of artificial forces that are typical for some adaptive PIC techniques.« less

  15. AP-Cloud: Adaptive Particle-in-Cloud method for optimal solutions to Vlasov–Poisson equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xingyu; Samulyak, Roman, E-mail: roman.samulyak@stonybrook.edu; Computational Science Initiative, Brookhaven National Laboratory, Upton, NY 11973

    We propose a new adaptive Particle-in-Cloud (AP-Cloud) method for obtaining optimal numerical solutions to the Vlasov–Poisson equation. Unlike the traditional particle-in-cell (PIC) method, which is commonly used for solving this problem, the AP-Cloud adaptively selects computational nodes or particles to deliver higher accuracy and efficiency when the particle distribution is highly non-uniform. Unlike other adaptive techniques for PIC, our method balances the errors in PDE discretization and Monte Carlo integration, and discretizes the differential operators using a generalized finite difference (GFD) method based on a weighted least square formulation. As a result, AP-Cloud is independent of the geometric shapes ofmore » computational domains and is free of artificial parameters. Efficient and robust implementation is achieved through an octree data structure with 2:1 balance. We analyze the accuracy and convergence order of AP-Cloud theoretically, and verify the method using an electrostatic problem of a particle beam with halo. Simulation results show that the AP-Cloud method is substantially more accurate and faster than the traditional PIC, and it is free of artificial forces that are typical for some adaptive PIC techniques.« less

  16. AP-Cloud: Adaptive particle-in-cloud method for optimal solutions to Vlasov–Poisson equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xingyu; Samulyak, Roman; Jiao, Xiangmin

    We propose a new adaptive Particle-in-Cloud (AP-Cloud) method for obtaining optimal numerical solutions to the Vlasov–Poisson equation. Unlike the traditional particle-in-cell (PIC) method, which is commonly used for solving this problem, the AP-Cloud adaptively selects computational nodes or particles to deliver higher accuracy and efficiency when the particle distribution is highly non-uniform. Unlike other adaptive techniques for PIC, our method balances the errors in PDE discretization and Monte Carlo integration, and discretizes the differential operators using a generalized finite difference (GFD) method based on a weighted least square formulation. As a result, AP-Cloud is independent of the geometric shapes ofmore » computational domains and is free of artificial parameters. Efficient and robust implementation is achieved through an octree data structure with 2:1 balance. We analyze the accuracy and convergence order of AP-Cloud theoretically, and verify the method using an electrostatic problem of a particle beam with halo. Here, simulation results show that the AP-Cloud method is substantially more accurate and faster than the traditional PIC, and it is free of artificial forces that are typical for some adaptive PIC techniques.« less

  17. A randomized controlled trial of culturally adapted motivational interviewing for Hispanic heavy drinkers: Theory of Adaptation and Study Protocol

    PubMed Central

    Lee, Christina S.; Colby, Suzanne M.; Magill, Molly; Almeida, Joanna; Tavares, Tonya; Rohsenow, Damaris J.

    2016-01-01

    Background The NIH Strategic Plan prioritizes health disparities research for socially disadvantaged Hispanics, to reduce the disproportionate burden of alcohol-related negative consequences compared to other racial/ethnic groups. Cultural adaptation of evidence-based treatments, such as motivational interviewing (MI), can improve access and response to alcohol treatment. However, the lack of rigorous clinical trials designed to test the efficacy and theoretical underpinnings of cultural adaptation has made proof of concept difficult. Objective The CAMI2 (Culturally Adapted Motivational Interviewing) study design and its theoretical model, is described to illustrate how MI adapted to social and cultural factors (CAMI) can be discriminated against non-adapted MI. Methods and Design CAMI2, a large, 12 month randomized prospective trial, examines the efficacy of CAMI and MI among heavy drinking Hispanics recruited from the community (n=257). Outcomes are reductions in heavy drinking days (Time Line Follow-Back) and negative consequences of drinking among Hispanics (Drinkers Inventory of Consequences). A second aim examines perceived acculturation stress as a moderator of treatment outcomes in the CAMI condition. Summary The CAMI2 study design protocol is presented and the theory of adaptation is presented. Findings from the trial described may yield important recommendations on the science of cultural adaptation and improve MI dissemination to Hispanics with alcohol risk. PMID:27565832

  18. College Adapter Program Curriculum Design. Manpower Education Monograph Series, Volume II.

    ERIC Educational Resources Information Center

    Higher Education Development Fund, New York, NY.

    The College Adapter Program (CAP) is a program to train inner-city young men and women with high potential for post-secondary technical training. These young men and women either have dropped out of high school, or have been insufficiently prepared in high school for further educational training. The Curriculum Design monograph is a statement of…

  19. A Hyperspherical Adaptive Sparse-Grid Method for High-Dimensional Discontinuity Detection

    DOE PAGES

    Zhang, Guannan; Webster, Clayton G.; Gunzburger, Max D.; ...

    2015-06-24

    This study proposes and analyzes a hyperspherical adaptive hierarchical sparse-grid method for detecting jump discontinuities of functions in high-dimensional spaces. The method is motivated by the theoretical and computational inefficiencies of well-known adaptive sparse-grid methods for discontinuity detection. Our novel approach constructs a function representation of the discontinuity hypersurface of an N-dimensional discontinuous quantity of interest, by virtue of a hyperspherical transformation. Then, a sparse-grid approximation of the transformed function is built in the hyperspherical coordinate system, whose value at each point is estimated by solving a one-dimensional discontinuity detection problem. Due to the smoothness of the hypersurface, the newmore » technique can identify jump discontinuities with significantly reduced computational cost, compared to existing methods. In addition, hierarchical acceleration techniques are also incorporated to further reduce the overall complexity. Rigorous complexity analyses of the new method are provided as are several numerical examples that illustrate the effectiveness of the approach.« less

  20. Data Assimilation Methods on a Non-conservative Adaptive Mesh

    NASA Astrophysics Data System (ADS)

    Guider, Colin Thomas; Rabatel, Matthias; Carrassi, Alberto; Jones, Christopher K. R. T.

    2017-04-01

    Adaptive mesh methods are used to model a wide variety of physical phenomena. Some of these models, in particular those of sea ice movement, are particularly interesting in that they use a remeshing process to remove and insert mesh points at various points in their evolution. This presents a challenge in developing compatible data assimilation schemes, as the dimension of the state space we wish to estimate can change over time when these remeshings occur. In this work, we first describe a remeshing scheme for an adaptive mesh in one dimension. We then develop advanced data assimilation methods that are appropriate for such a moving and remeshed grid. We hope to extend these techniques to two-dimensional models, like the Lagrangian sea ice model neXtSIM te{ns}. \\bibitem{ns} P. Rampal, S. Bouillon, E. Ólason, and M. Morlighem. ne{X}t{SIM}: a new {L}agrangian sea ice model. {The Cryosphere}, 10 (3): 1055-1073, 2016.

  1. Numerical simulation of h-adaptive immersed boundary method for freely falling disks

    NASA Astrophysics Data System (ADS)

    Zhang, Pan; Xia, Zhenhua; Cai, Qingdong

    2018-05-01

    In this work, a freely falling disk with aspect ratio 1/10 is directly simulated by using an adaptive numerical model implemented on a parallel computation framework JASMIN. The adaptive numerical model is a combination of the h-adaptive mesh refinement technique and the implicit immersed boundary method (IBM). Our numerical results agree well with the experimental results in all of the six degrees of freedom of the disk. Furthermore, very similar vortex structures observed in the experiment were also obtained.

  2. Adaptive mesh refinement and adjoint methods in geophysics simulations

    NASA Astrophysics Data System (ADS)

    Burstedde, Carsten

    2013-04-01

    It is an ongoing challenge to increase the resolution that can be achieved by numerical geophysics simulations. This applies to considering sub-kilometer mesh spacings in global-scale mantle convection simulations as well as to using frequencies up to 1 Hz in seismic wave propagation simulations. One central issue is the numerical cost, since for three-dimensional space discretizations, possibly combined with time stepping schemes, a doubling of resolution can lead to an increase in storage requirements and run time by factors between 8 and 16. A related challenge lies in the fact that an increase in resolution also increases the dimensionality of the model space that is needed to fully parametrize the physical properties of the simulated object (a.k.a. earth). Systems that exhibit a multiscale structure in space are candidates for employing adaptive mesh refinement, which varies the resolution locally. An example that we found well suited is the mantle, where plate boundaries and fault zones require a resolution on the km scale, while deeper area can be treated with 50 or 100 km mesh spacings. This approach effectively reduces the number of computational variables by several orders of magnitude. While in this case it is possible to derive the local adaptation pattern from known physical parameters, it is often unclear what are the most suitable criteria for adaptation. We will present the goal-oriented error estimation procedure, where such criteria are derived from an objective functional that represents the observables to be computed most accurately. Even though this approach is well studied, it is rarely used in the geophysics community. A related strategy to make finer resolution manageable is to design methods that automate the inference of model parameters. Tweaking more than a handful of numbers and judging the quality of the simulation by adhoc comparisons to known facts and observations is a tedious task and fundamentally limited by the turnaround times

  3. Design for an Adaptive Library Catalog.

    ERIC Educational Resources Information Center

    Buckland, Michael K.; And Others

    1992-01-01

    Describes OASIS, a prototype adaptive online catalog implemented as a front end to the University of California MELVYL catalog. Topics addressed include the concept of adaptive retrieval systems, strategic search commands, feedback, prototyping using a front-end, the problem of excessive retrieval, commands to limit or increase search results, and…

  4. Adaptive Fuzzy Output Constrained Control Design for Multi-Input Multioutput Stochastic Nonstrict-Feedback Nonlinear Systems.

    PubMed

    Li, Yongming; Tong, Shaocheng

    2017-12-01

    In this paper, an adaptive fuzzy output constrained control design approach is addressed for multi-input multioutput uncertain stochastic nonlinear systems in nonstrict-feedback form. The nonlinear systems addressed in this paper possess unstructured uncertainties, unknown gain functions and unknown stochastic disturbances. Fuzzy logic systems are utilized to tackle the problem of unknown nonlinear uncertainties. The barrier Lyapunov function technique is employed to solve the output constrained problem. In the framework of backstepping design, an adaptive fuzzy control design scheme is constructed. All the signals in the closed-loop system are proved to be bounded in probability and the system outputs are constrained in a given compact set. Finally, the applicability of the proposed controller is well carried out by a simulation example.

  5. Adapting a perinatal empathic training method from South Africa to Germany.

    PubMed

    Knapp, Caprice; Honikman, Simone; Wirsching, Michael; Husni-Pascha, Gidah; Hänselmann, Eva

    2018-01-01

    Maternal mental health conditions are prevalent across the world. For women, the perinatal period is associated with increased rates of depression and anxiety. At the same time, there is widespread documentation of disrespectful care for women by maternity health staff. Improving the empathic engagement skills of maternity healthcare workers may enable them to respond to the mental health needs of their clients more effectively. In South Africa, a participatory empathic training method, the "Secret History" has been used as part of a national Department of Health training program with maternity staff and has showed promising results. For this paper, we aimed to describe an adaptation of the Secret History empathic training method from the South African to the German setting and to evaluate the adapted training. The pilot study occurred in an academic medical center in Germany. A focus group ( n  = 8) was used to adapt the training by describing the local context and changing the materials to be relevant to Germany. After adapting the materials, the pilot training was conducted with a mixed group of professionals ( n  = 15), many of whom were trainers themselves. A pre-post survey assessed the participants' empathy levels and attitudes towards the training method. In adapting the materials, the focus group discussion generated several experiences that were considered to be typical interpersonal and structural challenges facing healthcare workers in maternal care in Germany. These experiences were crafted into case scenarios that then formed the basis of the activities used in the Secret History empathic training pilot. Evaluation of the pilot training showed that although the participants had high levels of empathy in the pre-phase (100% estimated their empathic ability as high or very high), 69% became more aware of their own emotional experiences with patients and the need for self-care after the training. A majority, or 85%, indicated that the training

  6. A Robust Adaptive Autonomous Approach to Optimal Experimental Design

    NASA Astrophysics Data System (ADS)

    Gu, Hairong

    Experimentation is the fundamental tool of scientific inquiries to understand the laws governing the nature and human behaviors. Many complex real-world experimental scenarios, particularly in quest of prediction accuracy, often encounter difficulties to conduct experiments using an existing experimental procedure for the following two reasons. First, the existing experimental procedures require a parametric model to serve as the proxy of the latent data structure or data-generating mechanism at the beginning of an experiment. However, for those experimental scenarios of concern, a sound model is often unavailable before an experiment. Second, those experimental scenarios usually contain a large number of design variables, which potentially leads to a lengthy and costly data collection cycle. Incompetently, the existing experimental procedures are unable to optimize large-scale experiments so as to minimize the experimental length and cost. Facing the two challenges in those experimental scenarios, the aim of the present study is to develop a new experimental procedure that allows an experiment to be conducted without the assumption of a parametric model while still achieving satisfactory prediction, and performs optimization of experimental designs to improve the efficiency of an experiment. The new experimental procedure developed in the present study is named robust adaptive autonomous system (RAAS). RAAS is a procedure for sequential experiments composed of multiple experimental trials, which performs function estimation, variable selection, reverse prediction and design optimization on each trial. Directly addressing the challenges in those experimental scenarios of concern, function estimation and variable selection are performed by data-driven modeling methods to generate a predictive model from data collected during the course of an experiment, thus exempting the requirement of a parametric model at the beginning of an experiment; design optimization is

  7. An examination of an adapter method for measuring the vibration transmitted to the human arms.

    PubMed

    Xu, Xueyan S; Dong, Ren G; Welcome, Daniel E; Warren, Christopher; McDowell, Thomas W

    2015-09-01

    The objective of this study is to evaluate an adapter method for measuring the vibration on the human arms. Four instrumented adapters with different weights were used to measure the vibration transmitted to the wrist, forearm, and upper arm of each subject. Each adapter was attached at each location on the subjects using an elastic cloth wrap. Two laser vibrometers were also used to measure the transmitted vibration at each location to evaluate the validity of the adapter method. The apparent mass at the palm of the hand along the forearm direction was also measured to enhance the evaluation. This study found that the adapter and laser-measured transmissibility spectra were comparable with some systematic differences. While increasing the adapter mass reduced the resonant frequency at the measurement location, increasing the tightness of the adapter attachment increased the resonant frequency. However, the use of lightweight (≤15 g) adapters under medium attachment tightness did not change the basic trends of the transmissibility spectrum. The resonant features observed in the transmissibility spectra were also correlated with those observed in the apparent mass spectra. Because the local coordinate systems of the adapters may be significantly misaligned relative to the global coordinates of the vibration test systems, large errors were observed for the adapter-measured transmissibility in some individual orthogonal directions. This study, however, also demonstrated that the misalignment issue can be resolved by either using the total vibration transmissibility or by measuring the misalignment angles to correct the errors. Therefore, the adapter method is acceptable for understanding the basic characteristics of the vibration transmission in the human arms, and the adapter-measured data are acceptable for approximately modeling the system.

  8. The Adaptive Ecosystem Climatology (AEC): Design and Development

    NASA Astrophysics Data System (ADS)

    deRada, S.; Penta, B.; McCarthy, S.; Gould, R. W., Jr.

    2016-02-01

    The concept of ecosystem-based management (EBM), recently introduced to rectify the shortcomings of single-species management policies, has been widely accepted as a basis for the conservation and management of natural resources. In line with NOAA's Integrated Ecosystem Assessment (IEA) Program, EBM is an integrated approach that considers the entire ecosystem and the interactions among species rather than focusing on individual components. This integrative approach relies on heterogeneous data, physical as well as biogeochemical data, among many others. Relative to physical data, however, marine biogeochemical records, also critical in IEA and EBM, are still lacking, both in terms of mature models and in terms of observational data availability. TheAdaptive Ecosystem Climatology (AEC) was conceived as a novel approach to address these limitations, mitigating the shortcomings of the individual components and combining their strengths to enhance decision-making activities. AEC is designed on the concept that a high-frequency climatology can be used as a baseline into which available observational data can be ingested to produce a higher accuracy product. In the absence of observations, the climatology acts as a best estimate. AEC was developed using a long-term simulation of a coupled biophysical numerical model configured for the Gulf of Mexico. Using the model results, we constructed a three-dimensional, dynamically balanced, gridded, static climatology for each calendar day. Using this `static' climatology as a background `first guess', observations from a particular date are ingested via optimal interpolation to `nudge' the climatology toward current conditions, thus providing representative fields for that date (adaptive climatology). With this adaptive approach, AEC can support a variety of EBM objectives, from fisheries, to resource management, to coastal resilience.

  9. Non-orthogonal spin-adaptation of coupled cluster methods: A new implementation of methods including quadruple excitations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthews, Devin A., E-mail: dmatthews@utexas.edu; Stanton, John F.

    2015-02-14

    The theory of non-orthogonal spin-adaptation for closed-shell molecular systems is applied to coupled cluster methods with quadruple excitations (CCSDTQ). Calculations at this level of detail are of critical importance in describing the properties of molecular systems to an accuracy which can meet or exceed modern experimental techniques. Such calculations are of significant (and growing) importance in such fields as thermodynamics, kinetics, and atomic and molecular spectroscopies. With respect to the implementation of CCSDTQ and related methods, we show that there are significant advantages to non-orthogonal spin-adaption with respect to simplification and factorization of the working equations and to creating anmore » efficient implementation. The resulting algorithm is implemented in the CFOUR program suite for CCSDT, CCSDTQ, and various approximate methods (CCSD(T), CC3, CCSDT-n, and CCSDT(Q))« less

  10. Adaptive clinical trial designs for European marketing authorization: a survey of scientific advice letters from the European Medicines Agency.

    PubMed

    Elsäßer, Amelie; Regnstrom, Jan; Vetter, Thorsten; Koenig, Franz; Hemmings, Robert James; Greco, Martina; Papaluca-Amati, Marisa; Posch, Martin

    2014-10-02

    Since the first methodological publications on adaptive study design approaches in the 1990s, the application of these approaches in drug development has raised increasing interest among academia, industry and regulators. The European Medicines Agency (EMA) as well as the Food and Drug Administration (FDA) have published guidance documents addressing the potentials and limitations of adaptive designs in the regulatory context. Since there is limited experience in the implementation and interpretation of adaptive clinical trials, early interaction with regulators is recommended. The EMA offers such interactions through scientific advice and protocol assistance procedures. We performed a text search of scientific advice letters issued between 1 January 2007 and 8 May 2012 that contained relevant key terms. Letters containing questions related to adaptive clinical trials in phases II or III were selected for further analysis. From the selected letters, important characteristics of the proposed design and its context in the drug development program, as well as the responses of the Committee for Human Medicinal Products (CHMP)/Scientific Advice Working Party (SAWP), were extracted and categorized. For 41 more recent procedures (1 January 2009 to 8 May 2012), additional details of the trial design and the CHMP/SAWP responses were assessed. In addition, case studies are presented as examples. Over a range of 5½ years, 59 scientific advices were identified that address adaptive study designs in phase II and phase III clinical trials. Almost all were proposed as confirmatory phase III or phase II/III studies. The most frequently proposed adaptation was sample size reassessment, followed by dropping of treatment arms and population enrichment. While 12 (20%) of the 59 proposals for an adaptive clinical trial were not accepted, the great majority of proposals were accepted (15, 25%) or conditionally accepted (32, 54%). In the more recent 41 procedures, the most frequent

  11. Method and system for training dynamic nonlinear adaptive filters which have embedded memory

    NASA Technical Reports Server (NTRS)

    Rabinowitz, Matthew (Inventor)

    2002-01-01

    Described herein is a method and system for training nonlinear adaptive filters (or neural networks) which have embedded memory. Such memory can arise in a multi-layer finite impulse response (FIR) architecture, or an infinite impulse response (IIR) architecture. We focus on filter architectures with separate linear dynamic components and static nonlinear components. Such filters can be structured so as to restrict their degrees of computational freedom based on a priori knowledge about the dynamic operation to be emulated. The method is detailed for an FIR architecture which consists of linear FIR filters together with nonlinear generalized single layer subnets. For the IIR case, we extend the methodology to a general nonlinear architecture which uses feedback. For these dynamic architectures, we describe how one can apply optimization techniques which make updates closer to the Newton direction than those of a steepest descent method, such as backpropagation. We detail a novel adaptive modified Gauss-Newton optimization technique, which uses an adaptive learning rate to determine both the magnitude and direction of update steps. For a wide range of adaptive filtering applications, the new training algorithm converges faster and to a smaller value of cost than both steepest-descent methods such as backpropagation-through-time, and standard quasi-Newton methods. We apply the algorithm to modeling the inverse of a nonlinear dynamic tracking system 5, as well as a nonlinear amplifier 6.

  12. Adaptive optics image restoration algorithm based on wavefront reconstruction and adaptive total variation method

    NASA Astrophysics Data System (ADS)

    Li, Dongming; Zhang, Lijuan; Wang, Ting; Liu, Huan; Yang, Jinhua; Chen, Guifen

    2016-11-01

    To improve the adaptive optics (AO) image's quality, we study the AO image restoration algorithm based on wavefront reconstruction technology and adaptive total variation (TV) method in this paper. Firstly, the wavefront reconstruction using Zernike polynomial is used for initial estimated for the point spread function (PSF). Then, we develop our proposed iterative solutions for AO images restoration, addressing the joint deconvolution issue. The image restoration experiments are performed to verify the image restoration effect of our proposed algorithm. The experimental results show that, compared with the RL-IBD algorithm and Wiener-IBD algorithm, we can see that GMG measures (for real AO image) from our algorithm are increased by 36.92%, and 27.44% respectively, and the computation time are decreased by 7.2%, and 3.4% respectively, and its estimation accuracy is significantly improved.

  13. Methods for the cultural adaptation of a diabetes lifestyle intervention for Latinas: an illustrative project.

    PubMed

    Osuna, Diego; Barrera, Manuel; Strycker, Lisa A; Toobert, Deborah J; Glasgow, Russell E; Geno, Cristy R; Almeida, Fabio; Perdomo, Malena; King, Diane; Doty, Alyssa Tinley

    2011-05-01

    Because Latinas experience a high prevalence of type 2 diabetes and its complications, there is an urgent need to reach them with interventions that promote healthful lifestyles. This article illustrates a sequential approach that took an effective multiple-risk-factor behavior-change program and adapted it for Latinas with type 2 diabetes. Adaptation stages include (a) information gathering from literature and focus groups, (b) preliminary adaptation design, and (c) preliminary adaptation test. In this third stage, a pilot study finds that participants were highly satisfied with the intervention and showed improvement across diverse outcomes. Key implications for applications include the importance of a model for guiding cultural adaptations, and the value of procedures for obtaining continuous feedback from staff and participants during the preliminary adaptation test.

  14. Adaptive monitoring design for ecosystem management

    Treesearch

    Paul L. Ringold; Jim Alegria; Raymond L. Czaplewski; Barry S. Mulder; Tim Tolle; Kelly Burnett

    1996-01-01

    Adaptive management of ecosystems (e.g., Holling 1978, Walters 1986, Everett et al. 1994, Grumbine 1994, Yaffee 1994, Gunderson et al. 1995, Frentz et al. 1995, Montgomery et al. 1995) structures a system in which monitoring iteratively improves the knowledge base and helps refine management plans. This adaptive approach acknowledges that action is necessary or...

  15. Adaptive finite element method for turbulent flow near a propeller

    NASA Astrophysics Data System (ADS)

    Pelletier, Dominique; Ilinca, Florin; Hetu, Jean-Francois

    1994-11-01

    This paper presents an adaptive finite element method based on remeshing to solve incompressible turbulent free shear flow near a propeller. Solutions are obtained in primitive variables using a highly accurate finite element approximation on unstructured grids. Turbulence is modeled by a mixing length formulation. Two general purpose error estimators, which take into account swirl and the variation of the eddy viscosity, are presented and applied to the turbulent wake of a propeller. Predictions compare well with experimental measurements. The proposed adaptive scheme is robust, reliable and cost effective.

  16. Final Report - Regulatory Considerations for Adaptive Systems

    NASA Technical Reports Server (NTRS)

    Wilkinson, Chris; Lynch, Jonathan; Bharadwaj, Raj

    2013-01-01

    This report documents the findings of a preliminary research study into new approaches to the software design assurance of adaptive systems. We suggest a methodology to overcome the software validation and verification difficulties posed by the underlying assumption of non-adaptive software in the requirementsbased- testing verification methods in RTCA/DO-178B and C. An analysis of the relevant RTCA/DO-178B and C objectives is presented showing the reasons for the difficulties that arise in showing satisfaction of the objectives and suggested additional means by which they could be satisfied. We suggest that the software design assurance problem for adaptive systems is principally one of developing correct and complete high level requirements and system level constraints that define the necessary system functional and safety properties to assure the safe use of adaptive systems. We show how analytical techniques such as model based design, mathematical modeling and formal or formal-like methods can be used to both validate the high level functional and safety requirements, establish necessary constraints and provide the verification evidence for the satisfaction of requirements and constraints that supplements conventional testing. Finally the report identifies the follow-on research topics needed to implement this methodology.

  17. A solution-adaptive hybrid-grid method for the unsteady analysis of turbomachinery

    NASA Technical Reports Server (NTRS)

    Mathur, Sanjay R.; Madavan, Nateri K.; Rajagopalan, R. G.

    1993-01-01

    A solution-adaptive method for the time-accurate analysis of two-dimensional flows in turbomachinery is described. The method employs a hybrid structured-unstructured zonal grid topology in conjunction with appropriate modeling equations and solution techniques in each zone. The viscous flow region in the immediate vicinity of the airfoils is resolved on structured O-type grids while the rest of the domain is discretized using an unstructured mesh of triangular cells. Implicit, third-order accurate, upwind solutions of the Navier-Stokes equations are obtained in the inner regions. In the outer regions, the Euler equations are solved using an explicit upwind scheme that incorporates a second-order reconstruction procedure. An efficient and robust grid adaptation strategy, including both grid refinement and coarsening capabilities, is developed for the unstructured grid regions. Grid adaptation is also employed to facilitate information transfer at the interfaces between unstructured grids in relative motion. Results for grid adaptation to various features pertinent to turbomachinery flows are presented. Good comparisons between the present results and experimental measurements and earlier structured-grid results are obtained.

  18. An adaptive design for updating the threshold value of a continuous biomarker

    PubMed Central

    Spencer, Amy V.; Harbron, Chris; Mander, Adrian; Wason, James; Peers, Ian

    2017-01-01

    Potential predictive biomarkers are often measured on a continuous scale, but in practice, a threshold value to divide the patient population into biomarker ‘positive’ and ‘negative’ is desirable. Early phase clinical trials are increasingly using biomarkers for patient selection, but at this stage, it is likely that little will be known about the relationship between the biomarker and the treatment outcome. We describe a single-arm trial design with adaptive enrichment, which can increase power to demonstrate efficacy within a patient subpopulation, the parameters of which are also estimated. Our design enables us to learn about the biomarker and optimally adjust the threshold during the study, using a combination of generalised linear modelling and Bayesian prediction. At the final analysis, a binomial exact test is carried out, allowing the hypothesis that ‘no population subset exists in which the novel treatment has a desirable response rate’ to be tested. Through extensive simulations, we are able to show increased power over fixed threshold methods in many situations without increasing the type-I error rate. We also show that estimates of the threshold, which defines the population subset, are unbiased and often more precise than those from fixed threshold studies. We provide an example of the method applied (retrospectively) to publically available data from a study of the use of tamoxifen after mastectomy by the German Breast Study Group, where progesterone receptor is the biomarker of interest. PMID:27417407

  19. Method and system for environmentally adaptive fault tolerant computing

    NASA Technical Reports Server (NTRS)

    Copenhaver, Jason L. (Inventor); Jeremy, Ramos (Inventor); Wolfe, Jeffrey M. (Inventor); Brenner, Dean (Inventor)

    2010-01-01

    A method and system for adapting fault tolerant computing. The method includes the steps of measuring an environmental condition representative of an environment. An on-board processing system's sensitivity to the measured environmental condition is measured. It is determined whether to reconfigure a fault tolerance of the on-board processing system based in part on the measured environmental condition. The fault tolerance of the on-board processing system may be reconfigured based in part on the measured environmental condition.

  20. Model-Based Adaptive Event-Triggered Control of Strict-Feedback Nonlinear Systems.

    PubMed

    Li, Yuan-Xin; Yang, Guang-Hong

    2018-04-01

    This paper is concerned with the adaptive event-triggered control problem of nonlinear continuous-time systems in strict-feedback form. By using the event-sampled neural network (NN) to approximate the unknown nonlinear function, an adaptive model and an associated event-triggered controller are designed by exploiting the backstepping method. In the proposed method, the feedback signals and the NN weights are aperiodically updated only when the event-triggered condition is violated. A positive lower bound on the minimum intersample time is guaranteed to avoid accumulation point. The closed-loop stability of the resulting nonlinear impulsive dynamical system is rigorously proved via Lyapunov analysis under an adaptive event sampling condition. In comparing with the traditional adaptive backstepping design with a fixed sample period, the event-triggered method samples the state and updates the NN weights only when it is necessary. Therefore, the number of transmissions can be significantly reduced. Finally, two simulation examples are presented to show the effectiveness of the proposed control method.

  1. An adaptive proper orthogonal decomposition method for model order reduction of multi-disc rotor system

    NASA Astrophysics Data System (ADS)

    Jin, Yulin; Lu, Kuan; Hou, Lei; Chen, Yushu

    2017-12-01

    The proper orthogonal decomposition (POD) method is a main and efficient tool for order reduction of high-dimensional complex systems in many research fields. However, the robustness problem of this method is always unsolved, although there are some modified POD methods which were proposed to solve this problem. In this paper, a new adaptive POD method called the interpolation Grassmann manifold (IGM) method is proposed to address the weakness of local property of the interpolation tangent-space of Grassmann manifold (ITGM) method in a wider parametric region. This method is demonstrated here by a nonlinear rotor system of 33-degrees of freedom (DOFs) with a pair of liquid-film bearings and a pedestal looseness fault. The motion region of the rotor system is divided into two parts: simple motion region and complex motion region. The adaptive POD method is compared with the ITGM method for the large and small spans of parameter in the two parametric regions to present the advantage of this method and disadvantage of the ITGM method. The comparisons of the responses are applied to verify the accuracy and robustness of the adaptive POD method, as well as the computational efficiency is also analyzed. As a result, the new adaptive POD method has a strong robustness and high computational efficiency and accuracy in a wide scope of parameter.

  2. Experimental design methods for bioengineering applications.

    PubMed

    Keskin Gündoğdu, Tuğba; Deniz, İrem; Çalışkan, Gülizar; Şahin, Erdem Sefa; Azbar, Nuri

    2016-01-01

    Experimental design is a form of process analysis in which certain factors are selected to obtain the desired responses of interest. It may also be used for the determination of the effects of various independent factors on a dependent factor. The bioengineering discipline includes many different areas of scientific interest, and each study area is affected and governed by many different factors. Briefly analyzing the important factors and selecting an experimental design for optimization are very effective tools for the design of any bioprocess under question. This review summarizes experimental design methods that can be used to investigate various factors relating to bioengineering processes. The experimental methods generally used in bioengineering are as follows: full factorial design, fractional factorial design, Plackett-Burman design, Taguchi design, Box-Behnken design and central composite design. These design methods are briefly introduced, and then the application of these design methods to study different bioengineering processes is analyzed.

  3. On some properties of bone functional adaptation phenomenon useful in mechanical design.

    PubMed

    Nowak, Michał

    2010-01-01

    The paper discusses some unique properties of trabecular bone functional adaptation phenomenon, useful in mechanical design. On the basis of the biological process observations and the principle of constant strain energy density on the surface of the structure, the generic structural optimisation system has been developed. Such approach allows fulfilling mechanical theorem for the stiffest design, comprising the optimisations of size, shape and topology, using the concepts known from biomechanical studies. Also the biomimetic solution of multiple load problems is presented.

  4. Coupled sensor/platform control design for low-level chemical detection with position-adaptive micro-UAVs

    NASA Astrophysics Data System (ADS)

    Goodwin, Thomas; Carr, Ryan; Mitra, Atindra K.; Selmic, Rastko R.

    2009-05-01

    We discuss the development of Position-Adaptive Sensors [1] for purposes for detecting embedded chemical substances in challenging environments. This concept is a generalization of patented Position-Adaptive Radar Concepts developed at AFRL for challenging conditions such as urban environments. For purposes of investigating the detection of chemical substances using multiple MAV (Micro-UAV) platforms, we have designed and implemented an experimental testbed with sample structures such as wooden carts that contain controlled leakage points. Under this general concept, some of the members of a MAV swarm can serve as external position-adaptive "transmitters" by blowing air over the cart and some of the members of a MAV swarm can serve as external position-adaptive "receivers" that are equipped with chemical or biological (chem/bio) sensors that function as "electronic noses". The objective can be defined as improving the particle count of chem/bio concentrations that impinge on a MAV-based position-adaptive sensor that surrounds a chemical repository, such as a cart, via the development of intelligent position-adaptive control algorithms. The overall effect is to improve the detection and false-alarm statistics of the overall system. Within the major sections of this paper, we discuss a number of different aspects of developing our initial MAV-Based Sensor Testbed. This testbed includes blowers to simulate position-adaptive excitations and a MAV from Draganfly Innovations Inc. with stable design modifications to accommodate our chem/bio sensor boom design. We include details with respect to several critical phases of the development effort including development of the wireless sensor network and experimental apparatus, development of the stable sensor boom for the MAV, integration of chem/bio sensors and sensor node onto the MAV and boom, development of position-adaptive control algorithms and initial tests at IDCAST (Institute for the Development and

  5. Adaptive Modal Identification for Flutter Suppression Control

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.; Drew, Michael; Swei, Sean S.

    2016-01-01

    In this paper, we will develop an adaptive modal identification method for identifying the frequencies and damping of a flutter mode based on model-reference adaptive control (MRAC) and least-squares methods. The least-squares parameter estimation will achieve parameter convergence in the presence of persistent excitation whereas the MRAC parameter estimation does not guarantee parameter convergence. Two adaptive flutter suppression control approaches are developed: one based on MRAC and the other based on the least-squares method. The MRAC flutter suppression control is designed as an integral part of the parameter estimation where the feedback signal is used to estimate the modal information. On the other hand, the separation principle of control and estimation is applied to the least-squares method. The least-squares modal identification is used to perform parameter estimation.

  6. An examination of an adapter method for measuring the vibration transmitted to the human arms

    PubMed Central

    Xu, Xueyan S.; Dong, Ren G.; Welcome, Daniel E.; Warren, Christopher; McDowell, Thomas W.

    2016-01-01

    The objective of this study is to evaluate an adapter method for measuring the vibration on the human arms. Four instrumented adapters with different weights were used to measure the vibration transmitted to the wrist, forearm, and upper arm of each subject. Each adapter was attached at each location on the subjects using an elastic cloth wrap. Two laser vibrometers were also used to measure the transmitted vibration at each location to evaluate the validity of the adapter method. The apparent mass at the palm of the hand along the forearm direction was also measured to enhance the evaluation. This study found that the adapter and laser-measured transmissibility spectra were comparable with some systematic differences. While increasing the adapter mass reduced the resonant frequency at the measurement location, increasing the tightness of the adapter attachment increased the resonant frequency. However, the use of lightweight (≤15 g) adapters under medium attachment tightness did not change the basic trends of the transmissibility spectrum. The resonant features observed in the transmissibility spectra were also correlated with those observed in the apparent mass spectra. Because the local coordinate systems of the adapters may be significantly misaligned relative to the global coordinates of the vibration test systems, large errors were observed for the adapter-measured transmissibility in some individual orthogonal directions. This study, however, also demonstrated that the misalignment issue can be resolved by either using the total vibration transmissibility or by measuring the misalignment angles to correct the errors. Therefore, the adapter method is acceptable for understanding the basic characteristics of the vibration transmission in the human arms, and the adapter-measured data are acceptable for approximately modeling the system. PMID:26834309

  7. Adaptive Comparative Judgment as a Tool for Assessing Open-Ended Design Problems and Model Eliciting Activities

    ERIC Educational Resources Information Center

    Bartholomew, Scott R.; Nadelson, Louis S.; Goodridge, Wade H.; Reeve, Edward M.

    2018-01-01

    We investigated the use of adaptive comparative judgment to evaluate the middle school student learning, engagement, and experience with the design process in an open-ended problem assigned in a technology and engineering education course. Our results indicate that the adaptive comparative judgment tool effectively facilitated the grading of the…

  8. The DIAN-TU Next Generation Alzheimer's prevention trial: Adaptive design and disease progression model.

    PubMed

    Bateman, Randall J; Benzinger, Tammie L; Berry, Scott; Clifford, David B; Duggan, Cynthia; Fagan, Anne M; Fanning, Kathleen; Farlow, Martin R; Hassenstab, Jason; McDade, Eric M; Mills, Susan; Paumier, Katrina; Quintana, Melanie; Salloway, Stephen P; Santacruz, Anna; Schneider, Lon S; Wang, Guoqiao; Xiong, Chengjie

    2017-01-01

    The Dominantly Inherited Alzheimer Network Trials Unit (DIAN-TU) trial is an adaptive platform trial testing multiple drugs to slow or prevent the progression of Alzheimer's disease in autosomal dominant Alzheimer's disease (ADAD) families. With completion of enrollment of the first two drug arms, the DIAN-TU now plans to add new drugs to the platform, designated as the Next Generation (NexGen) prevention trial. In collaboration with ADAD families, philanthropic organizations, academic leaders, the DIAN-TU Pharma Consortium, the National Institutes of Health, and regulatory colleagues, the DIAN-TU developed innovative clinical study designs for the DIAN-TU NexGen prevention trial. Our expanded trial toolbox consists of a disease progression model for ADAD, primary end point DIAN-TU cognitive performance composite, biomarker development, self-administered cognitive assessments, adaptive dose adjustments, and blinded data collection through the last participant completion. These steps represent elements to improve efficacy of the adaptive platform trial and a continued effort to optimize prevention and treatment trials in ADAD. Copyright © 2016 the Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  9. A Remote Sensing Image Fusion Method based on adaptive dictionary learning

    NASA Astrophysics Data System (ADS)

    He, Tongdi; Che, Zongxi

    2018-01-01

    This paper discusses using a remote sensing fusion method, based on' adaptive sparse representation (ASP)', to provide improved spectral information, reduce data redundancy and decrease system complexity. First, the training sample set is formed by taking random blocks from the images to be fused, the dictionary is then constructed using the training samples, and the remaining terms are clustered to obtain the complete dictionary by iterated processing at each step. Second, the self-adaptive weighted coefficient rule of regional energy is used to select the feature fusion coefficients and complete the reconstruction of the image blocks. Finally, the reconstructed image blocks are rearranged and an average is taken to obtain the final fused images. Experimental results show that the proposed method is superior to other traditional remote sensing image fusion methods in both spectral information preservation and spatial resolution.

  10. Adapted RF pulse design for SAR reduction in parallel excitation with experimental verification at 9.4 T.

    PubMed

    Wu, Xiaoping; Akgün, Can; Vaughan, J Thomas; Andersen, Peter; Strupp, John; Uğurbil, Kâmil; Van de Moortele, Pierre-François

    2010-07-01

    Parallel excitation holds strong promises to mitigate the impact of large transmit B1 (B+1) distortion at very high magnetic field. Accelerated RF pulses, however, inherently tend to require larger values in RF peak power which may result in substantial increase in Specific Absorption Rate (SAR) in tissues, which is a constant concern for patient safety at very high field. In this study, we demonstrate adapted rate RF pulse design allowing for SAR reduction while preserving excitation target accuracy. Compared with other proposed implementations of adapted rate RF pulses, our approach is compatible with any k-space trajectories, does not require an analytical expression of the gradient waveform and can be used for large flip angle excitation. We demonstrate our method with numerical simulations based on electromagnetic modeling and we include an experimental verification of transmit pattern accuracy on an 8 transmit channel 9.4 T system.

  11. A Bayesian adaptive design for biomarker trials with linked treatments.

    PubMed

    Wason, James M S; Abraham, Jean E; Baird, Richard D; Gournaris, Ioannis; Vallier, Anne-Laure; Brenton, James D; Earl, Helena M; Mander, Adrian P

    2015-09-01

    Response to treatments is highly heterogeneous in cancer. Increased availability of biomarkers and targeted treatments has led to the need for trial designs that efficiently test new treatments in biomarker-stratified patient subgroups. We propose a novel Bayesian adaptive randomisation (BAR) design for use in multi-arm phase II trials where biomarkers exist that are potentially predictive of a linked treatment's effect. The design is motivated in part by two phase II trials that are currently in development. The design starts by randomising patients to the control treatment or to experimental treatments that the biomarker profile suggests should be active. At interim analyses, data from treated patients are used to update the allocation probabilities. If the linked treatments are effective, the allocation remains high; if ineffective, the allocation changes over the course of the trial to unlinked treatments that are more effective. Our proposed design has high power to detect treatment effects if the pairings of treatment with biomarker are correct, but also performs well when alternative pairings are true. The design is consistently more powerful than parallel-groups stratified trials. This BAR design is a powerful approach to use when there are pairings of biomarkers with treatments available for testing simultaneously.

  12. A seamless phase IIB/III adaptive outcome trial: design rationale and implementation challenges.

    PubMed

    Chen, Y H Joshua; Gesser, Richard; Luxembourg, Alain

    2015-02-01

    The licensed four-valent prophylactic human papillomavirus vaccine is highly efficacious in preventing cervical, vulvar, vaginal, and anal cancers and related precancers caused by human papillomavirus types 6, 11, 16, and 18. These four types account for approximately 70% of cervical cancers. A nine-valent human papillomavirus vaccine, including the four original types (6, 11, 16, and 18) plus the next five most prevalent types in cervical cancer (31, 33, 45, 52, and 58) could provide approximately 90% overall cervical cancer coverage. To expedite the nine-valent human papillomavirus vaccine clinical development, an adaptive, seamless Phase IIB/III outcome trial with ∼ 15,000 subjects was conducted to facilitate dose formulation selection and provide pivotal evidence of safety and efficacy for regulatory registrations. We discuss the design rationale and implementation challenges of the outcome trial, focusing on the adaptive feature of the seamless Phase IIB/III design. Subjects were enrolled in two parts (Part A and Part B). Approximately 1240 women, 16-26 years of age, were enrolled in Part A for Phase IIB evaluation and equally randomized to one of three dose formulations of the nine-valent human papillomavirus vaccine or the four-valent human papillomavirus vaccine (active control). Based on an interim analysis of immunogenicity and safety, one dose formulation of the nine-valent human papillomavirus vaccine was selected for evaluation in the Phase III part of the study. Subjects enrolled in Part A who received the selected dose formulation of the nine-valent human papillomavirus vaccine or four-valent human papillomavirus vaccine continued to be followed up and contributed to the final efficacy and safety analyses. In addition, ∼ 13,400 women 16-26 years of age were enrolled in Part B, randomized to nine-valent human papillomavirus vaccine at the selected dose formulation or four-valent human papillomavirus vaccine, and followed for immunogenicity

  13. Improved quality-by-design compliant methodology for method development in reversed-phase liquid chromatography.

    PubMed

    Debrus, Benjamin; Guillarme, Davy; Rudaz, Serge

    2013-10-01

    A complete strategy dedicated to quality-by-design (QbD) compliant method development using design of experiments (DOE), multiple linear regressions responses modelling and Monte Carlo simulations for error propagation was evaluated for liquid chromatography (LC). The proposed approach includes four main steps: (i) the initial screening of column chemistry, mobile phase pH and organic modifier, (ii) the selectivity optimization through changes in gradient time and mobile phase temperature, (iii) the adaptation of column geometry to reach sufficient resolution, and (iv) the robust resolution optimization and identification of the method design space. This procedure was employed to obtain a complex chromatographic separation of 15 antipsychotic basic drugs, widely prescribed. To fully automate and expedite the QbD method development procedure, short columns packed with sub-2 μm particles were employed, together with a UHPLC system possessing columns and solvents selection valves. Through this example, the possibilities of the proposed QbD method development workflow were exposed and the different steps of the automated strategy were critically discussed. A baseline separation of the mixture of antipsychotic drugs was achieved with an analysis time of less than 15 min and the robustness of the method was demonstrated simultaneously with the method development phase. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Studying the neural bases of prism adaptation using fMRI: A technical and design challenge.

    PubMed

    Bultitude, Janet H; Farnè, Alessandro; Salemme, Romeo; Ibarrola, Danielle; Urquizar, Christian; O'Shea, Jacinta; Luauté, Jacques

    2017-12-01

    Prism adaptation induces rapid recalibration of visuomotor coordination. The neural mechanisms of prism adaptation have come under scrutiny since the observations that the technique can alleviate hemispatial neglect following stroke, and can alter spatial cognition in healthy controls. Relative to non-imaging behavioral studies, fMRI investigations of prism adaptation face several challenges arising from the confined physical environment of the scanner and the supine position of the participants. Any researcher who wishes to administer prism adaptation in an fMRI environment must adjust their procedures enough to enable the experiment to be performed, but not so much that the behavioral task departs too much from true prism adaptation. Furthermore, the specific temporal dynamics of behavioral components of prism adaptation present additional challenges for measuring their neural correlates. We developed a system for measuring the key features of prism adaptation behavior within an fMRI environment. To validate our configuration, we present behavioral (pointing) and head movement data from 11 right-hemisphere lesioned patients and 17 older controls who underwent sham and real prism adaptation in an MRI scanner. Most participants could adapt to prismatic displacement with minimal head movements, and the procedure was well tolerated. We propose recommendations for fMRI studies of prism adaptation based on the design-specific constraints and our results.

  15. An Integrated Systems Approach to Designing Climate Change Adaptation Policy in Water Resources

    NASA Astrophysics Data System (ADS)

    Ryu, D.; Malano, H. M.; Davidson, B.; George, B.

    2014-12-01

    Climate change projections are characterised by large uncertainties with rainfall variability being the key challenge in designing adaptation policies. Climate change adaptation in water resources shows all the typical characteristics of 'wicked' problems typified by cognitive uncertainty as new scientific knowledge becomes available, problem instability, knowledge imperfection and strategic uncertainty due to institutional changes that inevitably occur over time. Planning that is characterised by uncertainties and instability requires an approach that can accommodate flexibility and adaptive capacity for decision-making. An ability to take corrective measures in the event that scenarios and responses envisaged initially derive into forms at some future stage. We present an integrated-multidisciplinary and comprehensive framework designed to interface and inform science and decision making in the formulation of water resource management strategies to deal with climate change in the Musi Catchment of Andhra Pradesh, India. At the core of this framework is a dialogue between stakeholders, decision makers and scientists to define a set of plausible responses to an ensemble of climate change scenarios derived from global climate modelling. The modelling framework used to evaluate the resulting combination of climate scenarios and adaptation responses includes the surface and groundwater assessment models (SWAT & MODFLOW) and the water allocation modelling (REALM) to determine the water security of each adaptation strategy. Three climate scenarios extracted from downscaled climate models were selected for evaluation together with four agreed responses—changing cropping patterns, increasing watershed development, changing the volume of groundwater extraction and improving irrigation efficiency. Water security in this context is represented by the combination of level of water availability and its associated security of supply for three economic activities (agriculture

  16. Highly accurate adaptive TOF determination method for ultrasonic thickness measurement

    NASA Astrophysics Data System (ADS)

    Zhou, Lianjie; Liu, Haibo; Lian, Meng; Ying, Yangwei; Li, Te; Wang, Yongqing

    2018-04-01

    Determining the time of flight (TOF) is very critical for precise ultrasonic thickness measurement. However, the relatively low signal-to-noise ratio (SNR) of the received signals would induce significant TOF determination errors. In this paper, an adaptive time delay estimation method has been developed to improve the TOF determination’s accuracy. An improved variable step size adaptive algorithm with comprehensive step size control function is proposed. Meanwhile, a cubic spline fitting approach is also employed to alleviate the restriction of finite sampling interval. Simulation experiments under different SNR conditions were conducted for performance analysis. Simulation results manifested the performance advantage of proposed TOF determination method over existing TOF determination methods. When comparing with the conventional fixed step size, and Kwong and Aboulnasr algorithms, the steady state mean square deviation of the proposed algorithm was generally lower, which makes the proposed algorithm more suitable for TOF determination. Further, ultrasonic thickness measurement experiments were performed on aluminum alloy plates with various thicknesses. They indicated that the proposed TOF determination method was more robust even under low SNR conditions, and the ultrasonic thickness measurement accuracy could be significantly improved.

  17. Bayesian dose selection design for a binary outcome using restricted response adaptive randomization.

    PubMed

    Meinzer, Caitlyn; Martin, Renee; Suarez, Jose I

    2017-09-08

    In phase II trials, the most efficacious dose is usually not known. Moreover, given limited resources, it is difficult to robustly identify a dose while also testing for a signal of efficacy that would support a phase III trial. Recent designs have sought to be more efficient by exploring multiple doses through the use of adaptive strategies. However, the added flexibility may potentially increase the risk of making incorrect assumptions and reduce the total amount of information available across the dose range as a function of imbalanced sample size. To balance these challenges, a novel placebo-controlled design is presented in which a restricted Bayesian response adaptive randomization (RAR) is used to allocate a majority of subjects to the optimal dose of active drug, defined as the dose with the lowest probability of poor outcome. However, the allocation between subjects who receive active drug or placebo is held constant to retain the maximum possible power for a hypothesis test of overall efficacy comparing the optimal dose to placebo. The design properties and optimization of the design are presented in the context of a phase II trial for subarachnoid hemorrhage. For a fixed total sample size, a trade-off exists between the ability to select the optimal dose and the probability of rejecting the null hypothesis. This relationship is modified by the allocation ratio between active and control subjects, the choice of RAR algorithm, and the number of subjects allocated to an initial fixed allocation period. While a responsive RAR algorithm improves the ability to select the correct dose, there is an increased risk of assigning more subjects to a worse arm as a function of ephemeral trends in the data. A subarachnoid treatment trial is used to illustrate how this design can be customized for specific objectives and available data. Bayesian adaptive designs are a flexible approach to addressing multiple questions surrounding the optimal dose for treatment efficacy

  18. Application of Sliding Mode Methods to the Design of Reconfigurable Flight Control Systems

    NASA Technical Reports Server (NTRS)

    Wells, Scott R.

    2002-01-01

    Observer-based sliding mode control is investigated for application to aircraft reconfigurable flight control. A comprehensive overview of reconfigurable flight control is given, including, a review of the current state-of-the-art within the subdisciplines of fault detection, parameter identification, adaptive control schemes, and dynamic control allocation. Of the adaptive control methods reviewed, sliding mode control (SMC) appears very promising due its property of invariance to matched uncertainty. An overview of sliding mode control is given and its remarkable properties are demonstrated by example. Sliding mode methods, however, are difficult to implement because unmodeled parasitic dynamics cause immediate and severe instability. This presents a challenge for all practical applications with limited bandwidth actuators. One method to deal with parasitic dynamics is the use of an asymptotic observer in the feedback path. Observer-based SMC is investigated, and a method for selecting observer gains is offered. An additional method for shaping the feedback loop using a filter is also developed. It is shown that this SMC prefilter is equivalent to a form of model reference hedging. A complete design procedure is given which takes advantage of the sliding mode boundary layer to recast the SMC as a linear control law. Frequency domain loop shaping is then used to design the sliding manifold. Finally, three aircraft applications are demonstrated. An F-18/HARV is used to demonstrate a SISO pitch rate tracking controller. It is also used to demonstrate a MIMO lateral-directional roll rate tracking controller. The last application is a full linear six degree-of-freedom advanced tailless fighter model. The observer-based SMC is seen to provide excellent tracking with superior robustness to parameter changes and actuator failures.

  19. A Taylor Expansion-Based Adaptive Design Strategy for Global Surrogate Modeling With Applications in Groundwater Modeling

    DOE PAGES

    Mo, Shaoxing; Lu, Dan; Shi, Xiaoqing; ...

    2017-12-27

    Global sensitivity analysis (GSA) and uncertainty quantification (UQ) for groundwater modeling are challenging because of the model complexity and significant computational requirements. To reduce the massive computational cost, a cheap-to-evaluate surrogate model is usually constructed to approximate and replace the expensive groundwater models in the GSA and UQ. Constructing an accurate surrogate requires actual model simulations on a number of parameter samples. Thus, a robust experimental design strategy is desired to locate informative samples so as to reduce the computational cost in surrogate construction and consequently to improve the efficiency in the GSA and UQ. In this study, we developmore » a Taylor expansion-based adaptive design (TEAD) that aims to build an accurate global surrogate model with a small training sample size. TEAD defines a novel hybrid score function to search informative samples, and a robust stopping criterion to terminate the sample search that guarantees the resulted approximation errors satisfy the desired accuracy. The good performance of TEAD in building global surrogate models is demonstrated in seven analytical functions with different dimensionality and complexity in comparison to two widely used experimental design methods. The application of the TEAD-based surrogate method in two groundwater models shows that the TEAD design can effectively improve the computational efficiency of GSA and UQ for groundwater modeling.« less

  20. A Taylor Expansion-Based Adaptive Design Strategy for Global Surrogate Modeling With Applications in Groundwater Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mo, Shaoxing; Lu, Dan; Shi, Xiaoqing

    Global sensitivity analysis (GSA) and uncertainty quantification (UQ) for groundwater modeling are challenging because of the model complexity and significant computational requirements. To reduce the massive computational cost, a cheap-to-evaluate surrogate model is usually constructed to approximate and replace the expensive groundwater models in the GSA and UQ. Constructing an accurate surrogate requires actual model simulations on a number of parameter samples. Thus, a robust experimental design strategy is desired to locate informative samples so as to reduce the computational cost in surrogate construction and consequently to improve the efficiency in the GSA and UQ. In this study, we developmore » a Taylor expansion-based adaptive design (TEAD) that aims to build an accurate global surrogate model with a small training sample size. TEAD defines a novel hybrid score function to search informative samples, and a robust stopping criterion to terminate the sample search that guarantees the resulted approximation errors satisfy the desired accuracy. The good performance of TEAD in building global surrogate models is demonstrated in seven analytical functions with different dimensionality and complexity in comparison to two widely used experimental design methods. The application of the TEAD-based surrogate method in two groundwater models shows that the TEAD design can effectively improve the computational efficiency of GSA and UQ for groundwater modeling.« less

  1. Formation tracker design of multiple mobile robots with wheel perturbations: adaptive output-feedback approach

    NASA Astrophysics Data System (ADS)

    Yoo, Sung Jin

    2016-11-01

    This paper presents a theoretical design approach for output-feedback formation tracking of multiple mobile robots under wheel perturbations. It is assumed that these perturbations are unknown and the linear and angular velocities of the robots are unmeasurable. First, adaptive state observers for estimating unmeasurable velocities of the robots are developed under the robots' kinematics and dynamics including wheel perturbation effects. Then, we derive a virtual-structure-based formation tracker scheme according to the observer dynamic surface design procedure. The main difficulty of the output-feedback control design is to manage the coupling problems between unmeasurable velocities and unknown wheel perturbation effects. These problems are avoided by using the adaptive technique and the function approximation property based on fuzzy logic systems. From the Lyapunov stability analysis, it is shown that point tracking errors of each robot and synchronisation errors for the desired formation converge to an adjustable neighbourhood of the origin, while all signals in the controlled closed-loop system are semiglobally uniformly ultimately bounded.

  2. A Conditional Exposure Control Method for Multidimensional Adaptive Testing

    ERIC Educational Resources Information Center

    Finkelman, Matthew; Nering, Michael L.; Roussos, Louis A.

    2009-01-01

    In computerized adaptive testing (CAT), ensuring the security of test items is a crucial practical consideration. A common approach to reducing item theft is to define maximum item exposure rates, i.e., to limit the proportion of examinees to whom a given item can be administered. Numerous methods for controlling exposure rates have been proposed…

  3. Lessons Learned in Designing and Implementing a Computer-Adaptive Test for English

    ERIC Educational Resources Information Center

    Burston, Jack; Neophytou, Maro

    2014-01-01

    This paper describes the lessons learned in designing and implementing a computer-adaptive test (CAT) for English. The early identification of students with weak L2 English proficiency is of critical importance in university settings that have compulsory English language course graduation requirements. The most efficient means of diagnosing the L2…

  4. A discrete-time adaptive control scheme for robot manipulators

    NASA Technical Reports Server (NTRS)

    Tarokh, M.

    1990-01-01

    A discrete-time model reference adaptive control scheme is developed for trajectory tracking of robot manipulators. The scheme utilizes feedback, feedforward, and auxiliary signals, obtained from joint angle measurement through simple expressions. Hyperstability theory is utilized to derive the adaptation laws for the controller gain matrices. It is shown that trajectory tracking is achieved despite gross robot parameter variation and uncertainties. The method offers considerable design flexibility and enables the designer to improve the performance of the control system by adjusting free design parameters. The discrete-time adaptation algorithm is extremely simple and is therefore suitable for real-time implementation. Simulations and experimental results are given to demonstrate the performance of the scheme.

  5. State of the art in adaptive control of robotic systems

    NASA Technical Reports Server (NTRS)

    Tosunoglu, Sabri; Tesar, Delbert

    1988-01-01

    An up-to-date assessment of adaptive control technology as applied to robotics is presented. Although the field is relatively new and does not yet represent a mature discipline, considerable attention for the design of sophisticated robot controllers has occured. In this presentation, adaptive control methods are divided into model reference adaptive systems and self-tuning regulators, with further definition of various approaches given in each class. The similarity and distinct features of the designed controllers are delineated and tabulated to enhance comparative review.

  6. ZAP! Adapted: Incorporating design in the introductory electromagnetism lab

    NASA Astrophysics Data System (ADS)

    McNeil, J. A.

    2002-04-01

    In the last decade the Accreditation Board of Engineering and Technology(ABET) significantly reformed the criteria by which engineering programs are accredited. The new criteria are called Engineering Criteria 2000 (EC2000). Not surprisingly, engineering design constitutes an essential component of these criteria. The Engineering Physics program at the Colorado School of Mines (CSM) underwent an ABET general review and site visit in the fall of 2000. In preparation for this review and as part of a campus-wide curriculum reform the Physics Department was challenged to include elements of design in its introductory laboratories. As part of the background research for this reform, several laboratory programs were reviewed including traditional and studio modes as well as a course used by Cal Tech and MIT called "ZAP!" which incorporates design activities well-aligned with the EC2000 criteria but in a nontraditional delivery mode. CSM has adapted several ZAP! experiments to a traditional laboratory format while attempting to preserve significant design experiences. The new laboratory forms an important component of the reformed course which attempts to respect the psychological principles of learner-based education. This talk reviews the reformed introductory electromagnetism course and how the laboratories are integrated into the pedagogy along with design activities. In their new form the laboratories can be readily adopted by physics departments using traditional delivery formats.

  7. Culture, Interface Design, and Design Methods for Mobile Devices

    NASA Astrophysics Data System (ADS)

    Lee, Kun-Pyo

    Aesthetic differences and similarities among cultures are obviously one of the very important issues in cultural design. However, ever since products became knowledge-supporting tools, the visible elements of products have become more universal so that the invisible parts of products such as interface and interaction are getting more important. Therefore, the cultural design should be extended to the invisible elements of culture like people's conceptual models beyond material and phenomenal culture. This chapter aims to explain how we address the invisible cultural elements in interface design and design methods by exploring the users' cognitive styles and communication patterns in different cultures. Regarding cultural interface design, we examined users' conceptual models while interacting with mobile phone and website interfaces, and observed cultural difference in performing tasks and viewing patterns, which appeared to agree with cultural cognitive styles known as Holistic thoughts vs. Analytic thoughts. Regarding design methods for culture, we explored how to localize design methods such as focus group interview and generative session for specific cultural groups, and the results of comparative experiments revealed cultural difference on participants' behaviors and performance in each design method and led us to suggest how to conduct them in East Asian culture. Mobile Observation Analyzer and Wi-Pro, user research tools we invented to capture user behaviors and needs especially in their mobile context, were also introduced.

  8. Design of a home-based adaptive mixed reality rehabilitation system for stroke survivors.

    PubMed

    Baran, Michael; Lehrer, Nicole; Siwiak, Diana; Chen, Yinpeng; Duff, Margaret; Ingalls, Todd; Rikakis, Thanassis

    2011-01-01

    This paper presents the design of a home-based adaptive mixed reality system (HAMRR) for upper extremity stroke rehabilitation. The goal of HAMRR is to help restore motor function to chronic stroke survivors by providing an engaging long-term reaching task therapy at home. The system uses an intelligent adaptation scheme to create a continuously challenging and unique multi-year therapy experience. The therapy is overseen by a physical therapist, but day-to-day use of the system can be independently set up and completed by a stroke survivor. The HAMMR system tracks movement of the wrist and torso and provides real-time, post-trial, and post-set feedback to encourage the stroke survivor to self-assess his or her movement and engage in active learning of new movement strategies. The HAMRR system consists of a custom table, chair, and media center, and is designed to easily integrate into any home.

  9. Influence of the Size of Cohorts in Adaptive Design for Nonlinear Mixed Effects Models: An Evaluation by Simulation for a Pharmacokinetic and Pharmacodynamic Model for a Biomarker in Oncology

    PubMed Central

    Lestini, Giulia; Dumont, Cyrielle; Mentré, France

    2015-01-01

    Purpose In this study we aimed to evaluate adaptive designs (ADs) by clinical trial simulation for a pharmacokinetic-pharmacodynamic model in oncology and to compare them with one-stage designs, i.e. when no adaptation is performed, using wrong prior parameters. Methods We evaluated two one-stage designs, ξ0 and ξ*, optimised for prior and true population parameters, Ψ0 and Ψ*, and several ADs (two-, three- and five-stage). All designs had 50 patients. For ADs, the first cohort design was ξ0. The next cohort design was optimised using prior information updated from the previous cohort. Optimal design was based on the determinant of the Fisher information matrix using PFIM. Design evaluation was performed by clinical trial simulations using data simulated from Ψ*. Results Estimation results of two-stage ADs and ξ* were close and much better than those obtained with ξ0. The balanced two-stage AD performed better than two-stage ADs with different cohort sizes. Three-and five-stage ADs were better than two-stage with small first cohort, but not better than the balanced two-stage design. Conclusions Two-stage ADs are useful when prior parameters are unreliable. In case of small first cohort, more adaptations are needed but these designs are complex to implement. PMID:26123680

  10. Adaptive Flight Control Design with Optimal Control Modification on an F-18 Aircraft Model

    NASA Technical Reports Server (NTRS)

    Burken, John J.; Nguyen, Nhan T.; Griffin, Brian J.

    2010-01-01

    In the presence of large uncertainties, a control system needs to be able to adapt rapidly to regain performance. Fast adaptation is referred to as the implementation of adaptive control with a large adaptive gain to reduce the tracking error rapidly; however, a large adaptive gain can lead to high-frequency oscillations which can adversely affect the robustness of an adaptive control law. A new adaptive control modification is presented that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. The modification is based on the minimization of the Y2 norm of the tracking error, which is formulated as an optimal control problem. The optimality condition is used to derive the modification using the gradient method. The optimal control modification results in a stable adaptation and allows a large adaptive gain to be used for better tracking while providing sufficient robustness. A damping term (v) is added in the modification to increase damping as needed. Simulations were conducted on a damaged F-18 aircraft (McDonnell Douglas, now The Boeing Company, Chicago, Illinois) with both the standard baseline dynamic inversion controller and the adaptive optimal control modification technique. The results demonstrate the effectiveness of the proposed modification in tracking a reference model.

  11. Mixed Methods in Intervention Research: Theory to Adaptation

    ERIC Educational Resources Information Center

    Nastasi, Bonnie K.; Hitchcock, John; Sarkar, Sreeroopa; Burkholder, Gary; Varjas, Kristen; Jayasena, Asoka

    2007-01-01

    The purpose of this article is to demonstrate the application of mixed methods research designs to multiyear programmatic research and development projects whose goals include integration of cultural specificity when generating or translating evidence-based practices. The authors propose a set of five mixed methods designs related to different…

  12. Asynchronous multilevel adaptive methods for solving partial differential equations on multiprocessors - Performance results

    NASA Technical Reports Server (NTRS)

    Mccormick, S.; Quinlan, D.

    1989-01-01

    The fast adaptive composite grid method (FAC) is an algorithm that uses various levels of uniform grids (global and local) to provide adaptive resolution and fast solution of PDEs. Like all such methods, it offers parallelism by using possibly many disconnected patches per level, but is hindered by the need to handle these levels sequentially. The finest levels must therefore wait for processing to be essentially completed on all the coarser ones. A recently developed asynchronous version of FAC, called AFAC, completely eliminates this bottleneck to parallelism. This paper describes timing results for AFAC, coupled with a simple load balancing scheme, applied to the solution of elliptic PDEs on an Intel iPSC hypercube. These tests include performance of certain processes necessary in adaptive methods, including moving grids and changing refinement. A companion paper reports on numerical and analytical results for estimating convergence factors of AFAC applied to very large scale examples.

  13. Smartphone adapters for digital photomicrography

    PubMed Central

    Roy, Somak; Pantanowitz, Liron; Amin, Milon; Seethala, Raja R.; Ishtiaque, Ahmed; Yousem, Samuel A.; Parwani, Anil V.; Cucoranu, Ioan; Hartman, Douglas J.

    2014-01-01

    Background: Photomicrographs in Anatomic Pathology provide a means of quickly sharing information from a glass slide for consultation, education, documentation and publication. While static image acquisition historically involved the use of a permanently mounted camera unit on a microscope, such cameras may be expensive, need to be connected to a computer, and often require proprietary software to acquire and process images. Another novel approach for capturing digital microscopic images is to use smartphones coupled with the eyepiece of a microscope. Recently, several smartphone adapters have emerged that allow users to attach mobile phones to the microscope. The aim of this study was to test the utility of these various smartphone adapters. Materials and Methods: We surveyed the market for adapters to attach smartphones to the ocular lens of a conventional light microscope. Three adapters (Magnifi, Skylight and Snapzoom) were tested. We assessed the designs of these adapters and their effectiveness at acquiring static microscopic digital images. Results: All adapters facilitated the acquisition of digital microscopic images with a smartphone. The optimal adapter was dependent on the type of phone used. The Magnifi adapters for iPhone were incompatible when using a protective case. The Snapzoom adapter was easiest to use with iPhones and other smartphones even with protective cases. Conclusions: Smartphone adapters are inexpensive and easy to use for acquiring digital microscopic images. However, they require some adjustment by the user in order to optimize focus and obtain good quality images. Smartphone microscope adapters provide an economically feasible method of acquiring and sharing digital pathology photomicrographs. PMID:25191623

  14. Methods for assessing wall interference in the 2- by 2-foot adaptive-wall wind tunnel

    NASA Technical Reports Server (NTRS)

    Schairer, E. T.

    1986-01-01

    Discussed are two methods for assessing two-dimensional wall interference in the adaptive-wall test section of the NASA Ames 2 x 2-Foot Transonic Wind Tunnel: (1) a method for predicting free-air conditions near the walls of the test section (adaptive-wall methods); and (2) a method for estimating wall-induced velocities near the model (correction methods), both of which methods are based on measurements of either one or two components of flow velocity near the walls of the test section. Each method is demonstrated using simulated wind tunnel data and is compared with other methods of the same type. The two-component adaptive-wall and correction methods were found to be preferable to the corresponding one-component methods because: (1) they are more sensitive to, and give a more complete description of, wall interference; (2) they require measurements at fewer locations; (3) they can be used to establish free-stream conditions; and (4) they are independent of a description of the model and constants of integration.

  15. Design of Range Adaptive Wireless Power Transfer System Using Non-coaxial Coils

    NASA Astrophysics Data System (ADS)

    Yang, Dongsheng; Won, Sokhui; Hong, Huan

    2017-05-01

    Wireless Power Transfer (WPT) is a remarkable technology because of its convenience and applicability in harsh environment. Particularly, Magnetic Coupling WPT (MC-WPT) is a proper method to midrange power transfer, but the frequency splitting at over-coupling range, which is related with transfer distance, is challenge of transmission efficiency. In order to overcome this phenomenon, recently the range adaptive WPT is proposed. In this paper, we aim to the type with a set of non-coaxial driving coils, so that this may remove the connection wires from PA (Power Amplifier) to driving coil. And, when the radius of driving coil is changed, on the different gaps between driving and TX coils, coupling coefficient between these is computed in both cases of coaxial and non-coaxial configurations. In addition, the designing steps for 4-coil WPT system using non-coaxial coils are described with the example. Finally, the reliability of this topology has been proved and simulated with PSPICE.

  16. Adaptive model training system and method

    DOEpatents

    Bickford, Randall L; Palnitkar, Rahul M; Lee, Vo

    2014-04-15

    An adaptive model training system and method for filtering asset operating data values acquired from a monitored asset for selectively choosing asset operating data values that meet at least one predefined criterion of good data quality while rejecting asset operating data values that fail to meet at least the one predefined criterion of good data quality; and recalibrating a previously trained or calibrated model having a learned scope of normal operation of the asset by utilizing the asset operating data values that meet at least the one predefined criterion of good data quality for adjusting the learned scope of normal operation of the asset for defining a recalibrated model having the adjusted learned scope of normal operation of the asset.

  17. Adaptive model training system and method

    DOEpatents

    Bickford, Randall L; Palnitkar, Rahul M

    2014-11-18

    An adaptive model training system and method for filtering asset operating data values acquired from a monitored asset for selectively choosing asset operating data values that meet at least one predefined criterion of good data quality while rejecting asset operating data values that fail to meet at least the one predefined criterion of good data quality; and recalibrating a previously trained or calibrated model having a learned scope of normal operation of the asset by utilizing the asset operating data values that meet at least the one predefined criterion of good data quality for adjusting the learned scope of normal operation of the asset for defining a recalibrated model having the adjusted learned scope of normal operation of the asset.

  18. An adaptive design for updating the threshold value of a continuous biomarker.

    PubMed

    Spencer, Amy V; Harbron, Chris; Mander, Adrian; Wason, James; Peers, Ian

    2016-11-30

    Potential predictive biomarkers are often measured on a continuous scale, but in practice, a threshold value to divide the patient population into biomarker 'positive' and 'negative' is desirable. Early phase clinical trials are increasingly using biomarkers for patient selection, but at this stage, it is likely that little will be known about the relationship between the biomarker and the treatment outcome. We describe a single-arm trial design with adaptive enrichment, which can increase power to demonstrate efficacy within a patient subpopulation, the parameters of which are also estimated. Our design enables us to learn about the biomarker and optimally adjust the threshold during the study, using a combination of generalised linear modelling and Bayesian prediction. At the final analysis, a binomial exact test is carried out, allowing the hypothesis that 'no population subset exists in which the novel treatment has a desirable response rate' to be tested. Through extensive simulations, we are able to show increased power over fixed threshold methods in many situations without increasing the type-I error rate. We also show that estimates of the threshold, which defines the population subset, are unbiased and often more precise than those from fixed threshold studies. We provide an example of the method applied (retrospectively) to publically available data from a study of the use of tamoxifen after mastectomy by the German Breast Study Group, where progesterone receptor is the biomarker of interest. © 2016 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. © 2016 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.

  19. L∞-gain adaptive fuzzy fault accommodation control design for nonlinear time-delay systems.

    PubMed

    Wu, Huai-Ning; Qiang, Xiao-Hong; Guo, Lei

    2011-06-01

    In this paper, an adaptive fuzzy fault accommodation (FA) control design with a guaranteed L(∞)-gain performance is developed for a class of nonlinear time-delay systems with persistent bounded disturbances. Using the Lyapunov technique and the Razumikhin-type lemma, the existence condition of the L(∞) -gain adaptive fuzzy FA controllers is provided in terms of linear matrix inequalities (LMIs). In the proposed FA scheme, a fuzzy logic system is employed to approximate the unknown term in the derivative of the Lyapunov function due to the unknown fault function; a continuous-state feedback control strategy is adopted for the control design to avoid the undesirable chattering phenomenon. The resulting FA controllers can ensure that every response of the closed-loop system is uniformly ultimately bounded with a guaranteed L(∞)-gain performance in the presence of a fault. Moreover, by the existing LMI optimization technique, a suboptimal controller is obtained in the sense of minimizing an upper bound of the L(∞)-gain. Finally, the achieved simulation results on the FA control of a continuous stirred tank reactor (CSTR) show the effectiveness of the proposed design procedure.

  20. A Self-Adaptive Model-Based Wi-Fi Indoor Localization Method.

    PubMed

    Tuta, Jure; Juric, Matjaz B

    2016-12-06

    This paper presents a novel method for indoor localization, developed with the main aim of making it useful for real-world deployments. Many indoor localization methods exist, yet they have several disadvantages in real-world deployments-some are static, which is not suitable for long-term usage; some require costly human recalibration procedures; and others require special hardware such as Wi-Fi anchors and transponders. Our method is self-calibrating and self-adaptive thus maintenance free and based on Wi-Fi only. We have employed two well-known propagation models-free space path loss and ITU models-which we have extended with additional parameters for better propagation simulation. Our self-calibrating procedure utilizes one propagation model to infer parameters of the space and the other to simulate the propagation of the signal without requiring any additional hardware beside Wi-Fi access points, which is suitable for real-world usage. Our method is also one of the few model-based Wi-Fi only self-adaptive approaches that do not require the mobile terminal to be in the access-point mode. The only input requirements of the method are Wi-Fi access point positions, and positions and properties of the walls. Our method has been evaluated in single- and multi-room environments, with measured mean error of 2-3 and 3-4 m, respectively, which is similar to existing methods. The evaluation has proven that usable localization accuracy can be achieved in real-world environments solely by the proposed Wi-Fi method that relies on simple hardware and software requirements.

  1. A Self-Adaptive Model-Based Wi-Fi Indoor Localization Method

    PubMed Central

    Tuta, Jure; Juric, Matjaz B.

    2016-01-01

    This paper presents a novel method for indoor localization, developed with the main aim of making it useful for real-world deployments. Many indoor localization methods exist, yet they have several disadvantages in real-world deployments—some are static, which is not suitable for long-term usage; some require costly human recalibration procedures; and others require special hardware such as Wi-Fi anchors and transponders. Our method is self-calibrating and self-adaptive thus maintenance free and based on Wi-Fi only. We have employed two well-known propagation models—free space path loss and ITU models—which we have extended with additional parameters for better propagation simulation. Our self-calibrating procedure utilizes one propagation model to infer parameters of the space and the other to simulate the propagation of the signal without requiring any additional hardware beside Wi-Fi access points, which is suitable for real-world usage. Our method is also one of the few model-based Wi-Fi only self-adaptive approaches that do not require the mobile terminal to be in the access-point mode. The only input requirements of the method are Wi-Fi access point positions, and positions and properties of the walls. Our method has been evaluated in single- and multi-room environments, with measured mean error of 2–3 and 3–4 m, respectively, which is similar to existing methods. The evaluation has proven that usable localization accuracy can be achieved in real-world environments solely by the proposed Wi-Fi method that relies on simple hardware and software requirements. PMID:27929453

  2. Overview, hurdles, and future work in adaptive designs: perspectives from a National Institutes of Health-funded workshop.

    PubMed

    Coffey, Christopher S; Levin, Bruce; Clark, Christina; Timmerman, Cate; Wittes, Janet; Gilbert, Peter; Harris, Sara

    2012-12-01

    The clinical trials community has a never-ending search for dependable and reliable ways to improve clinical research. This exploration has led to considerable interest in adaptive clinical trial designs, which provide the flexibility to adjust trial characteristics on the basis of data reviewed at interim stages. Statisticians and clinical investigators have proposed or implemented a wide variety of adaptations in clinical trials, but specific approaches have met with differing levels of support. Within industry, investigators are actively exploring the benefits and pitfalls associated with adaptive designs (ADs). For example, a Drug Information Association (DIA) working group on ADs has engaged regulatory agencies in discussions. Many researchers working on publicly funded clinical trials, however, are not yet fully engaged in this discussion. We organized the Scientific Advances in Adaptive Clinical Trial Designs Workshop to begin a conversation about using ADs in publicly funded research. Held in November of 2009, the 1½-day workshop brought together representatives from the National Institutes of Health (NIH), the Food and Drug Administration (FDA), the European Medicines Agency (EMA), the pharmaceutical industry, nonprofit foundations, the patient advocacy community, and academia. The workshop offered a forum for participants to address issues of ADs that arise at the planning, designing, and execution stages of clinical trials, and to hear the perspectives of influential members of the clinical trials community. The participants also set forth recommendations for guiding action to promote the appropriate use of ADs. These recommendations have since been presented, discussed, and vetted in a number of venues including the University of Pennsylvania Conference on Statistical Issues in Clinical Trials and the Society for Clinical Trials annual meeting. To provide a brief overview of ADs, describe the rationale behind conducting the workshop, and summarize the

  3. Optimized molecular design of ADAPT-based HER2-imaging probes labelled with 111In and 68Ga.

    PubMed

    Lindbo, Sarah; Garousi, Javad; Mitran, Bogdan; Vorobyeva, Anzhelika; Oroujeni, Maryam; Orlova, Anna; Hober, Sophia; Tolmachev, Vladimir

    2018-06-04

    Radionuclide molecular imaging is a promising tool for visualization of cancer associated molecular abnormalities in vivo and stratification of patients for specific therapies. ADAPT is a new type of small engineered proteins based on the scaffold of an albumin binding domain of protein G. ADAPTs have been utilized to select and develop high affinity binders to different proteinaceous targets. ADAPT6 binds to human epidermal growth factor 2 (HER2) with low nanomolar affinity and can be used for its in vivo visualization. Molecular design of 111 In-labeled anti-HER2 ADAPT has been optimized in several earlier studies. In this study, we made a direct comparison of two of the most promising variants, having either a DEAVDANS or a (HE) 3 DANS sequence at the N-terminus, conjugated with a maleimido derivative of DOTA to a GSSC amino acids sequence at the C-terminus. The variants (designated DOTA-C 59 - DEAVDANS-ADAPT6-GSSC and DOTA-C 61 -(HE) 3 DANS-ADAPT6-GSSC) were stably labeled with 111 In for SPECT and 68 Ga for PET. Biodistribution of labeled ADAPT variants was evaluated in nude mice bearing human tumor xenografts with different levels of HER2 expression. Both variants enabled clear discrimination between tumors with high and low levels of HER2 expression. 111 In-labeled ADAPT6 derivatives provided higher tumor-to-organ ratios compared to 68 Ga-labeled counterparts. The best performing variant was DOTA-C 61 -(HE) 3 DANS-ADAPT6-GSSC, providing tumor-to-blood ratios of 208±36 and 109±17 at 3 h for 111 In and 68 Ga labels, respectively.

  4. A NDVI assisted remote sensing image adaptive scale segmentation method

    NASA Astrophysics Data System (ADS)

    Zhang, Hong; Shen, Jinxiang; Ma, Yanmei

    2018-03-01

    Multiscale segmentation of images can effectively form boundaries of different objects with different scales. However, for the remote sensing image which widely coverage with complicated ground objects, the number of suitable segmentation scales, and each of the scale size is still difficult to be accurately determined, which severely restricts the rapid information extraction of the remote sensing image. A great deal of experiments showed that the normalized difference vegetation index (NDVI) can effectively express the spectral characteristics of a variety of ground objects in remote sensing images. This paper presents a method using NDVI assisted adaptive segmentation of remote sensing images, which segment the local area by using NDVI similarity threshold to iteratively select segmentation scales. According to the different regions which consist of different targets, different segmentation scale boundaries could be created. The experimental results showed that the adaptive segmentation method based on NDVI can effectively create the objects boundaries for different ground objects of remote sensing images.

  5. Adaptive methods for nonlinear structural dynamics and crashworthiness analysis

    NASA Technical Reports Server (NTRS)

    Belytschko, Ted

    1993-01-01

    The objective is to describe three research thrusts in crashworthiness analysis: adaptivity; mixed time integration, or subcycling, in which different timesteps are used for different parts of the mesh in explicit methods; and methods for contact-impact which are highly vectorizable. The techniques are being developed to improve the accuracy of calculations, ease-of-use of crashworthiness programs, and the speed of calculations. The latter is still of importance because crashworthiness calculations are often made with models of 20,000 to 50,000 elements using explicit time integration and require on the order of 20 to 100 hours on current supercomputers. The methodologies are briefly reviewed and then some example calculations employing these methods are described. The methods are also of value to other nonlinear transient computations.

  6. MONITORING METHODS ADAPTABLE TO VAPOR INTRUSION MONITORING - USEPA COMPENDIUM METHODS TO-15, TO-15 SUPPLEMENT (DRAFT), AND TO-17

    EPA Science Inventory

    USEPA ambient air monitoring methods for volatile organic compounds (VOCs) using specially-prepared canisters and solid adsorbents are directly adaptable to monitoring for vapors in the indoor environment. The draft Method TO-15 Supplement, an extension of the USEPA Method TO-15,...

  7. The adaptive problems of female teenage refugees and their behavioral adjustment methods for coping

    PubMed Central

    Mhaidat, Fatin

    2016-01-01

    This study aimed at identifying the levels of adaptive problems among teenage female refugees in the government schools and explored the behavioral methods that were used to cope with the problems. The sample was composed of 220 Syrian female students (seventh to first secondary grades) enrolled at government schools within the Zarqa Directorate and who came to Jordan due to the war conditions in their home country. The study used the scale of adaptive problems that consists of four dimensions (depression, anger and hostility, low self-esteem, and feeling insecure) and a questionnaire of the behavioral adjustment methods for dealing with the problem of asylum. The results indicated that the Syrian teenage female refugees suffer a moderate degree of adaptation problems, and the positive adjustment methods they have used are more than the negatives. PMID:27175098

  8. The block adaptive multigrid method applied to the solution of the Euler equations

    NASA Technical Reports Server (NTRS)

    Pantelelis, Nikos

    1993-01-01

    In the present study, a scheme capable of solving very fast and robust complex nonlinear systems of equations is presented. The Block Adaptive Multigrid (BAM) solution method offers multigrid acceleration and adaptive grid refinement based on the prediction of the solution error. The proposed solution method was used with an implicit upwind Euler solver for the solution of complex transonic flows around airfoils. Very fast results were obtained (18-fold acceleration of the solution) using one fourth of the volumes of a global grid with the same solution accuracy for two test cases.

  9. Design of a Mobile Agent-Based Adaptive Communication Middleware for Federations of Critical Infrastructure Simulations

    NASA Astrophysics Data System (ADS)

    Görbil, Gökçe; Gelenbe, Erol

    The simulation of critical infrastructures (CI) can involve the use of diverse domain specific simulators that run on geographically distant sites. These diverse simulators must then be coordinated to run concurrently in order to evaluate the performance of critical infrastructures which influence each other, especially in emergency or resource-critical situations. We therefore describe the design of an adaptive communication middleware that provides reliable and real-time one-to-one and group communications for federations of CI simulators over a wide-area network (WAN). The proposed middleware is composed of mobile agent-based peer-to-peer (P2P) overlays, called virtual networks (VNets), to enable resilient, adaptive and real-time communications over unreliable and dynamic physical networks (PNets). The autonomous software agents comprising the communication middleware monitor their performance and the underlying PNet, and dynamically adapt the P2P overlay and migrate over the PNet in order to optimize communications according to the requirements of the federation and the current conditions of the PNet. Reliable communications is provided via redundancy within the communication middleware and intelligent migration of agents over the PNet. The proposed middleware integrates security methods in order to protect the communication infrastructure against attacks and provide privacy and anonymity to the participants of the federation. Experiments with an initial version of the communication middleware over a real-life networking testbed show that promising improvements can be obtained for unicast and group communications via the agent migration capability of our middleware.

  10. The design and implementation of radar clutter modelling and adaptive target detection techniques

    NASA Astrophysics Data System (ADS)

    Ali, Mohammed Hussain

    The analysis and reduction of radar clutter is investigated. Clutter is the term applied to unwanted radar reflections from land, sea, precipitation, and/or man-made objects. A great deal of useful information regarding the characteristics of clutter can be obtained by the application of frequency domain analytical methods. Thus, some considerable time was spent assessing the various techniques available and their possible application to radar clutter. In order to better understand clutter, use of a clutter model was considered desirable. There are many techniques which will enable a target to be detected in the presence of clutter. One of the most flexible of these is that of adaptive filtering. This technique was thoroughly investigated and a method for improving its efficacy was devised. The modified adaptive filter employed differential adaption times to enhance detectability. Adaptation time as a factor relating to target detectability is a new concept and was investigated in some detail. It was considered desirable to implement the theoretical work in dedicated hardware to confirm that the modified clutter model and the adaptive filter technique actually performed as predicted. The equipment produced is capable of operation in real time and provides an insight into real time DSP applications. This equipment is sufficiently rapid to produce a real time display on the actual PPI system. Finally a software package was also produced which would simulate the operation of a PPI display and thus ease the interpretation of the filter outputs.

  11. Policy Gradient Adaptive Dynamic Programming for Data-Based Optimal Control.

    PubMed

    Luo, Biao; Liu, Derong; Wu, Huai-Ning; Wang, Ding; Lewis, Frank L

    2017-10-01

    The model-free optimal control problem of general discrete-time nonlinear systems is considered in this paper, and a data-based policy gradient adaptive dynamic programming (PGADP) algorithm is developed to design an adaptive optimal controller method. By using offline and online data rather than the mathematical system model, the PGADP algorithm improves control policy with a gradient descent scheme. The convergence of the PGADP algorithm is proved by demonstrating that the constructed Q -function sequence converges to the optimal Q -function. Based on the PGADP algorithm, the adaptive control method is developed with an actor-critic structure and the method of weighted residuals. Its convergence properties are analyzed, where the approximate Q -function converges to its optimum. Computer simulation results demonstrate the effectiveness of the PGADP-based adaptive control method.

  12. Spanish-Language Adaptation of Morgeson and Humphrey's Work Design Questionnaire (WDQ).

    PubMed

    Fernández Ríos, Manuel; Ramírez Vielma, Raúl G; Sánchez García, José Carlos; Bargsted Aravena, Mariana; Polo Vargas, Jean David; Ruiz Díaz, Miguel Ángel

    2017-06-09

    Since work organizations became the subject of scientific research, how to operationalize and measure dimensions of work design has been an issue, mainly due to concerns about internal consistency and factor structure. In response, Morgeson and Humphrey (2006) built the Work Design Questionnaire -WDQ-, an instrument that identifies and measures these dimensions in different work and organizational contexts. This paper presents the instruent's adaptation into Spanish using reliability and validity analysis and drawing on a sample of 1035 Spanish workers who hold various jobs in an array of occupational categories. The total instrument's internal consistency was Cronbach's alpha of .92 and the various scales' reliability ranged from .70 to .96, except for three dimensions. There was initially a difference in the comparative fit of the two versions' factor structures, but the model with 21 work characteristics (motivational -task and knowledge-, social, and work context) showed the highest goodness of fit of the various models tested, confirming previous results from the U.S. version as well as adaptations into other languages and contexts. CFA results indicated goodness of fit of factor configurations corresponding to each of the four major categories of work characteristics, with CFI and TLI around .90, as well as SRMR and RMSEA below .08. Thus it brings to the table a reliable, valid measure of work design with clear potential applications in research as well as professional practice, applications that could improve working conditions, boost productivity, and generate more personal and professional development opportunities for workers.

  13. An A-T linker adapter polymerase chain reaction method for chromosome walking without restriction site cloning bias.

    PubMed

    Trinh, Quoclinh; Xu, Wentao; Shi, Hui; Luo, Yunbo; Huang, Kunlun

    2012-06-01

    A-T linker adapter polymerase chain reaction (PCR) was modified and employed for the isolation of genomic fragments adjacent to a known DNA sequence. The improvements in the method focus on two points. The first is the modification of the PO(4) and NH(2) groups in the adapter to inhibit the self-ligation of the adapter or the generation of nonspecific products. The second improvement is the use of the capacity of rTaq DNA polymerase to add an adenosine overhang at the 3' ends of digested DNA to suppress self-ligation in the digested DNA and simultaneously resolve restriction site clone bias. The combination of modifications in the adapter and in the digested DNA leads to T/A-specific ligation, which enhances the flexibility of this method and makes it feasible to use many different restriction enzymes with a single adapter. This novel A-T linker adapter PCR overcomes the inherent limitations of the original ligation-mediated PCR method such as low specificity and a lack of restriction enzyme choice. Moreover, this method also offers higher amplification efficiency, greater flexibility, and easier manipulation compared with other PCR methods for chromosome walking. Experimental results from 143 Arabidopsis mutants illustrate that this method is reliable and efficient in high-throughput experiments. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. MFAM: Multiple Frequency Adaptive Model-Based Indoor Localization Method.

    PubMed

    Tuta, Jure; Juric, Matjaz B

    2018-03-24

    This paper presents MFAM (Multiple Frequency Adaptive Model-based localization method), a novel model-based indoor localization method that is capable of using multiple wireless signal frequencies simultaneously. It utilizes indoor architectural model and physical properties of wireless signal propagation through objects and space. The motivation for developing multiple frequency localization method lies in the future Wi-Fi standards (e.g., 802.11ah) and the growing number of various wireless signals present in the buildings (e.g., Wi-Fi, Bluetooth, ZigBee, etc.). Current indoor localization methods mostly rely on a single wireless signal type and often require many devices to achieve the necessary accuracy. MFAM utilizes multiple wireless signal types and improves the localization accuracy over the usage of a single frequency. It continuously monitors signal propagation through space and adapts the model according to the changes indoors. Using multiple signal sources lowers the required number of access points for a specific signal type while utilizing signals, already present in the indoors. Due to the unavailability of the 802.11ah hardware, we have evaluated proposed method with similar signals; we have used 2.4 GHz Wi-Fi and 868 MHz HomeMatic home automation signals. We have performed the evaluation in a modern two-bedroom apartment and measured mean localization error 2.0 to 2.3 m and median error of 2.0 to 2.2 m. Based on our evaluation results, using two different signals improves the localization accuracy by 18% in comparison to 2.4 GHz Wi-Fi-only approach. Additional signals would improve the accuracy even further. We have shown that MFAM provides better accuracy than competing methods, while having several advantages for real-world usage.

  15. MFAM: Multiple Frequency Adaptive Model-Based Indoor Localization Method

    PubMed Central

    Juric, Matjaz B.

    2018-01-01

    This paper presents MFAM (Multiple Frequency Adaptive Model-based localization method), a novel model-based indoor localization method that is capable of using multiple wireless signal frequencies simultaneously. It utilizes indoor architectural model and physical properties of wireless signal propagation through objects and space. The motivation for developing multiple frequency localization method lies in the future Wi-Fi standards (e.g., 802.11ah) and the growing number of various wireless signals present in the buildings (e.g., Wi-Fi, Bluetooth, ZigBee, etc.). Current indoor localization methods mostly rely on a single wireless signal type and often require many devices to achieve the necessary accuracy. MFAM utilizes multiple wireless signal types and improves the localization accuracy over the usage of a single frequency. It continuously monitors signal propagation through space and adapts the model according to the changes indoors. Using multiple signal sources lowers the required number of access points for a specific signal type while utilizing signals, already present in the indoors. Due to the unavailability of the 802.11ah hardware, we have evaluated proposed method with similar signals; we have used 2.4 GHz Wi-Fi and 868 MHz HomeMatic home automation signals. We have performed the evaluation in a modern two-bedroom apartment and measured mean localization error 2.0 to 2.3 m and median error of 2.0 to 2.2 m. Based on our evaluation results, using two different signals improves the localization accuracy by 18% in comparison to 2.4 GHz Wi-Fi-only approach. Additional signals would improve the accuracy even further. We have shown that MFAM provides better accuracy than competing methods, while having several advantages for real-world usage. PMID:29587352

  16. Intelligent Condition Diagnosis Method Based on Adaptive Statistic Test Filter and Diagnostic Bayesian Network

    PubMed Central

    Li, Ke; Zhang, Qiuju; Wang, Kun; Chen, Peng; Wang, Huaqing

    2016-01-01

    A new fault diagnosis method for rotating machinery based on adaptive statistic test filter (ASTF) and Diagnostic Bayesian Network (DBN) is presented in this paper. ASTF is proposed to obtain weak fault features under background noise, ASTF is based on statistic hypothesis testing in the frequency domain to evaluate similarity between reference signal (noise signal) and original signal, and remove the component of high similarity. The optimal level of significance α is obtained using particle swarm optimization (PSO). To evaluate the performance of the ASTF, evaluation factor Ipq is also defined. In addition, a simulation experiment is designed to verify the effectiveness and robustness of ASTF. A sensitive evaluation method using principal component analysis (PCA) is proposed to evaluate the sensitiveness of symptom parameters (SPs) for condition diagnosis. By this way, the good SPs that have high sensitiveness for condition diagnosis can be selected. A three-layer DBN is developed to identify condition of rotation machinery based on the Bayesian Belief Network (BBN) theory. Condition diagnosis experiment for rolling element bearings demonstrates the effectiveness of the proposed method. PMID:26761006

  17. Intelligent Condition Diagnosis Method Based on Adaptive Statistic Test Filter and Diagnostic Bayesian Network.

    PubMed

    Li, Ke; Zhang, Qiuju; Wang, Kun; Chen, Peng; Wang, Huaqing

    2016-01-08

    A new fault diagnosis method for rotating machinery based on adaptive statistic test filter (ASTF) and Diagnostic Bayesian Network (DBN) is presented in this paper. ASTF is proposed to obtain weak fault features under background noise, ASTF is based on statistic hypothesis testing in the frequency domain to evaluate similarity between reference signal (noise signal) and original signal, and remove the component of high similarity. The optimal level of significance α is obtained using particle swarm optimization (PSO). To evaluate the performance of the ASTF, evaluation factor Ipq is also defined. In addition, a simulation experiment is designed to verify the effectiveness and robustness of ASTF. A sensitive evaluation method using principal component analysis (PCA) is proposed to evaluate the sensitiveness of symptom parameters (SPs) for condition diagnosis. By this way, the good SPs that have high sensitiveness for condition diagnosis can be selected. A three-layer DBN is developed to identify condition of rotation machinery based on the Bayesian Belief Network (BBN) theory. Condition diagnosis experiment for rolling element bearings demonstrates the effectiveness of the proposed method.

  18. Designing for adaptation to novelty and change: functional information, emergent feature graphics, and higher-level control.

    PubMed

    Hajdukiewicz, John R; Vicente, Kim J

    2002-01-01

    Ecological interface design (EID) is a theoretical framework that aims to support worker adaptation to change and novelty in complex systems. Previous evaluations of EID have emphasized representativeness to enhance generalizability of results to operational settings. The research presented here is complementary, emphasizing experimental control to enhance theory building. Two experiments were conducted to test the impact of functional information and emergent feature graphics on adaptation to novelty and change in a thermal-hydraulic process control microworld. Presenting functional information in an interface using emergent features encouraged experienced participants to become perceptually coupled to the interface and thereby to exhibit higher-level control and more successful adaptation to unanticipated events. The absence of functional information or of emergent features generally led to lower-level control and less success at adaptation, the exception being a minority of participants who compensated by relying on analytical reasoning. These findings may have practical implications for shaping coordination in complex systems and fundamental implications for the development of a general unified theory of coordination for the technical, human, and social sciences. Actual or potential applications of this research include the design of human-computer interfaces that improve safety in complex sociotechnical systems.

  19. Adaptive Intervention Design in Mobile Health: Intervention Design and Development in the Cell Phone Intervention for You (CITY) Trial

    PubMed Central

    Lin, Pao-Hwa; Intille, Stephen; Bennett, Gary; Bosworth, Hayden B; Corsino, Leonor; Voils, Corrine; Grambow, Steven; Lazenka, Tony; Batch, Bryan C; Tyson, Crystal; Svetkey, Laura P

    2015-01-01

    Background/Aims The obesity epidemic has spread to young adults, and obesity is a significant risk factor for cardiovascular disease. The prominence and increasing functionality of mobile phones may provide an opportunity to deliver longitudinal and scalable weight management interventions in young adults. The aim of this manuscript is to describe the design and development of the intervention tested in the Cell Phone Intervention for You (CITY) study and to highlight the importance of adaptive intervention design (AID) that made it possible. The CITY study was an NHLBI-sponsored, controlled 24-month randomized clinical trial (RCT) comparing two active interventions to a usual-care control group. Participants were 365 overweight or obese (BMI ≥ 25 kg/m2) young adults. Methods Both active interventions were designed based on social cognitive theory and incorporated techniques for behavioral self-management and motivational enhancement. Initial intervention development occurred during a 1-year formative phase utilizing focus groups and iterative, participatory design. During the intervention testing, AID, where an intervention is updated or extended throughout a trial while assuring the delivery of exactly the same intervention to each cohort, was employed. The AID strategy distributed technical work and allowed introduction of novel components in phases intended to help promote and sustain participant engagement. AID was made possible by exploiting the mobile phone's remote data capabilities so that adoption of particular application components could be continuously monitored and components subsequently added or updated remotely. Results The cellphone intervention was delivered almost entirely via cell phone and was always-present, proactive, and interactive – providing passive and active reminders, frequent opportunities for knowledge dissemination, and multiple tools for self-tracking and receiving tailored feedback. The intervention changed over two years to

  20. A resilience perspective to water risk management: case-study application of the adaptation tipping point method

    NASA Astrophysics Data System (ADS)

    Gersonius, Berry; Ashley, Richard; Jeuken, Ad; Nasruddin, Fauzy; Pathirana, Assela; Zevenbergen, Chris

    2010-05-01

    In a context of high uncertainty about hydrological variables due to climate change and other factors, the development of updated risk management approaches is as important as—if not more important than—the provision of improved data and forecasts of the future. Traditional approaches to adaptation attempt to manage future water risks to cities with the use of the predict-then-adapt method. This method uses hydrological change projections as the starting point to identify adaptive strategies, which is followed by analysing the cause-effect chain based on some sort of Pressures-State-Impact-Response (PSIR) scheme. The predict-then-adapt method presumes that it is possible to define a singular (optimal) adaptive strategy according to a most likely or average projection of future change. A key shortcoming of the method is, however, that the planning of water management structures is typically decoupled from forecast uncertainties and is, as such, inherently inflexible. This means that there is an increased risk of under- or over-adaptation, resulting in either mal-functioning or unnecessary costs. Rather than taking a traditional approach, responsible water risk management requires an alternative approach to adaptation that recognises and cultivates resiliency for change. The concept of resiliency relates to the capability of complex socio-technical systems to make aspirational levels of functioning attainable despite the occurrence of possible changes. Focusing on resiliency does not attempt to reduce uncertainty associated with future change, but rather to develop better ways of managing it. This makes it a particularly relevant perspective for adaptation to long-term hydrological change. Although resiliency is becoming more refined as a theory, the application of the concept to water risk management is still in an initial phase. Different methods are used in practice to support the implementation of a resilience-focused approach. Typically these approaches

  1. ADAPTIVE METHODS FOR STOCHASTIC DIFFERENTIAL EQUATIONS VIA NATURAL EMBEDDINGS AND REJECTION SAMPLING WITH MEMORY.

    PubMed

    Rackauckas, Christopher; Nie, Qing

    2017-01-01

    Adaptive time-stepping with high-order embedded Runge-Kutta pairs and rejection sampling provides efficient approaches for solving differential equations. While many such methods exist for solving deterministic systems, little progress has been made for stochastic variants. One challenge in developing adaptive methods for stochastic differential equations (SDEs) is the construction of embedded schemes with direct error estimates. We present a new class of embedded stochastic Runge-Kutta (SRK) methods with strong order 1.5 which have a natural embedding of strong order 1.0 methods. This allows for the derivation of an error estimate which requires no additional function evaluations. Next we derive a general method to reject the time steps without losing information about the future Brownian path termed Rejection Sampling with Memory (RSwM). This method utilizes a stack data structure to do rejection sampling, costing only a few floating point calculations. We show numerically that the methods generate statistically-correct and tolerance-controlled solutions. Lastly, we show that this form of adaptivity can be applied to systems of equations, and demonstrate that it solves a stiff biological model 12.28x faster than common fixed timestep algorithms. Our approach only requires the solution to a bridging problem and thus lends itself to natural generalizations beyond SDEs.

  2. ADAPTIVE METHODS FOR STOCHASTIC DIFFERENTIAL EQUATIONS VIA NATURAL EMBEDDINGS AND REJECTION SAMPLING WITH MEMORY

    PubMed Central

    Rackauckas, Christopher

    2017-01-01

    Adaptive time-stepping with high-order embedded Runge-Kutta pairs and rejection sampling provides efficient approaches for solving differential equations. While many such methods exist for solving deterministic systems, little progress has been made for stochastic variants. One challenge in developing adaptive methods for stochastic differential equations (SDEs) is the construction of embedded schemes with direct error estimates. We present a new class of embedded stochastic Runge-Kutta (SRK) methods with strong order 1.5 which have a natural embedding of strong order 1.0 methods. This allows for the derivation of an error estimate which requires no additional function evaluations. Next we derive a general method to reject the time steps without losing information about the future Brownian path termed Rejection Sampling with Memory (RSwM). This method utilizes a stack data structure to do rejection sampling, costing only a few floating point calculations. We show numerically that the methods generate statistically-correct and tolerance-controlled solutions. Lastly, we show that this form of adaptivity can be applied to systems of equations, and demonstrate that it solves a stiff biological model 12.28x faster than common fixed timestep algorithms. Our approach only requires the solution to a bridging problem and thus lends itself to natural generalizations beyond SDEs. PMID:29527134

  3. Adaptive mixed finite element methods for Darcy flow in fractured porous media

    NASA Astrophysics Data System (ADS)

    Chen, Huangxin; Salama, Amgad; Sun, Shuyu

    2016-10-01

    In this paper, we propose adaptive mixed finite element methods for simulating the single-phase Darcy flow in two-dimensional fractured porous media. The reduced model that we use for the simulation is a discrete fracture model coupling Darcy flows in the matrix and the fractures, and the fractures are modeled by one-dimensional entities. The Raviart-Thomas mixed finite element methods are utilized for the solution of the coupled Darcy flows in the matrix and the fractures. In order to improve the efficiency of the simulation, we use adaptive mixed finite element methods based on novel residual-based a posteriori error estimators. In addition, we develop an efficient upscaling algorithm to compute the effective permeability of the fractured porous media. Several interesting examples of Darcy flow in the fractured porous media are presented to demonstrate the robustness of the algorithm.

  4. Arbitrary Lagrangian-Eulerian Method with Local Structured Adaptive Mesh Refinement for Modeling Shock Hydrodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, R W; Pember, R B; Elliott, N S

    2001-10-22

    A new method that combines staggered grid Arbitrary Lagrangian-Eulerian (ALE) techniques with structured local adaptive mesh refinement (AMR) has been developed for solution of the Euler equations. This method facilitates the solution of problems currently at and beyond the boundary of soluble problems by traditional ALE methods by focusing computational resources where they are required through dynamic adaption. Many of the core issues involved in the development of the combined ALEAMR method hinge upon the integration of AMR with a staggered grid Lagrangian integration method. The novel components of the method are mainly driven by the need to reconcile traditionalmore » AMR techniques, which are typically employed on stationary meshes with cell-centered quantities, with the staggered grids and grid motion employed by Lagrangian methods. Numerical examples are presented which demonstrate the accuracy and efficiency of the method.« less

  5. Development and evaluation of a method of calibrating medical displays based on fixed adaptation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sund, Patrik, E-mail: patrik.sund@vgregion.se; Månsson, Lars Gunnar; Båth, Magnus

    2015-04-15

    Purpose: The purpose of this work was to develop and evaluate a new method for calibration of medical displays that includes the effect of fixed adaptation and by using equipment and luminance levels typical for a modern radiology department. Methods: Low contrast sinusoidal test patterns were derived at nine luminance levels from 2 to 600 cd/m{sup 2} and used in a two alternative forced choice observer study, where the adaptation level was fixed at the logarithmic average of 35 cd/m{sup 2}. The contrast sensitivity at each luminance level was derived by establishing a linear relationship between the ten pattern contrastmore » levels used at every luminance level and a detectability index (d′) calculated from the fraction of correct responses. A Gaussian function was fitted to the data and normalized to the adaptation level. The corresponding equation was used in a display calibration method that included the grayscale standard display function (GSDF) but compensated for fixed adaptation. In the evaluation study, the contrast of circular objects with a fixed pixel contrast was displayed using both calibration methods and was rated on a five-grade scale. Results were calculated using a visual grading characteristics method. Error estimations in both observer studies were derived using a bootstrap method. Results: The contrast sensitivities for the darkest and brightest patterns compared to the contrast sensitivity at the adaptation luminance were 37% and 56%, respectively. The obtained Gaussian fit corresponded well with similar studies. The evaluation study showed a higher degree of equally distributed contrast throughout the luminance range with the calibration method compensated for fixed adaptation than for the GSDF. The two lowest scores for the GSDF were obtained for the darkest and brightest patterns. These scores were significantly lower than the lowest score obtained for the compensated GSDF. For the GSDF, the scores for all luminance levels were

  6. A QoS adaptive multimedia transport system: design, implementation and experiences

    NASA Astrophysics Data System (ADS)

    Campbell, Andrew; Coulson, Geoff

    1997-03-01

    The long awaited `new environment' of high speed broadband networks and multimedia applications is fast becoming a reality. However, few systems in existence today, whether they be large scale pilots or small scale test-beds in research laboratories, offer a fully integrated and flexible environment where multimedia applications can maximally exploit the quality of service (QoS) capabilities of supporting networks and end-systems. In this paper we describe the implementation of an adaptive transport system that incorporates a QoS oriented API and a range of mechanisms to assist applications in exploiting QoS and adapting to fluctuations in QoS. The system, which is an instantiation of the Lancaster QoS Architecture, is implemented in a multi ATM switch network environment with Linux based PC end systems and continuous media file servers. A performance evaluation of the system configured to support video-on-demand application scenario is presented and discussed. Emphasis is placed on novel features of the system and on their integration into a complete prototype. The most prominent novelty of our design is a `distributed QoS adaptation' scheme which allows applications to delegate to the system responsibility for augmenting and reducing the perceptual quality of video and audio flows when resource availability increases or decreases.

  7. Spatial adaptive sampling in multiscale simulation

    NASA Astrophysics Data System (ADS)

    Rouet-Leduc, Bertrand; Barros, Kipton; Cieren, Emmanuel; Elango, Venmugil; Junghans, Christoph; Lookman, Turab; Mohd-Yusof, Jamaludin; Pavel, Robert S.; Rivera, Axel Y.; Roehm, Dominic; McPherson, Allen L.; Germann, Timothy C.

    2014-07-01

    In a common approach to multiscale simulation, an incomplete set of macroscale equations must be supplemented with constitutive data provided by fine-scale simulation. Collecting statistics from these fine-scale simulations is typically the overwhelming computational cost. We reduce this cost by interpolating the results of fine-scale simulation over the spatial domain of the macro-solver. Unlike previous adaptive sampling strategies, we do not interpolate on the potentially very high dimensional space of inputs to the fine-scale simulation. Our approach is local in space and time, avoids the need for a central database, and is designed to parallelize well on large computer clusters. To demonstrate our method, we simulate one-dimensional elastodynamic shock propagation using the Heterogeneous Multiscale Method (HMM); we find that spatial adaptive sampling requires only ≈ 50 ×N0.14 fine-scale simulations to reconstruct the stress field at all N grid points. Related multiscale approaches, such as Equation Free methods, may also benefit from spatial adaptive sampling.

  8. A hyper-spherical adaptive sparse-grid method for high-dimensional discontinuity detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Guannan; Webster, Clayton G.; Gunzburger, Max D.

    This work proposes and analyzes a hyper-spherical adaptive hierarchical sparse-grid method for detecting jump discontinuities of functions in high-dimensional spaces is proposed. The method is motivated by the theoretical and computational inefficiencies of well-known adaptive sparse-grid methods for discontinuity detection. Our novel approach constructs a function representation of the discontinuity hyper-surface of an N-dimensional dis- continuous quantity of interest, by virtue of a hyper-spherical transformation. Then, a sparse-grid approximation of the transformed function is built in the hyper-spherical coordinate system, whose value at each point is estimated by solving a one-dimensional discontinuity detection problem. Due to the smoothness of themore » hyper-surface, the new technique can identify jump discontinuities with significantly reduced computational cost, compared to existing methods. Moreover, hierarchical acceleration techniques are also incorporated to further reduce the overall complexity. Rigorous error estimates and complexity analyses of the new method are provided as are several numerical examples that illustrate the effectiveness of the approach.« less

  9. Markov chains of infinite order and asymptotic satisfaction of balance: application to the adaptive integration method.

    PubMed

    Earl, David J; Deem, Michael W

    2005-04-14

    Adaptive Monte Carlo methods can be viewed as implementations of Markov chains with infinite memory. We derive a general condition for the convergence of a Monte Carlo method whose history dependence is contained within the simulated density distribution. In convergent cases, our result implies that the balance condition need only be satisfied asymptotically. As an example, we show that the adaptive integration method converges.

  10. Design, fabrication and characterization of MEMS deformable mirrors for ocular adaptive optics

    NASA Astrophysics Data System (ADS)

    Park, Hyunkyu

    This dissertation describes the design and modeling of MEMS-based bimorph deformable mirrors for adaptive optics as well as the characterization of fabricated devices. The objective of this research is to create a compact and low-cost deformable mirror that can be used as a phase corrector particularly for vision science applications. A fundamental theory of adaptive optics is reviewed, paying attention to the phase corrector which is a key component of the adaptive optics system. Several types of phase corrector are presented and the minimization of their size and cost using micro electromechanical systems (MEMS) technology is also discussed. Since this research is targeted towards the ophthalmic applications of adaptive optics, aberrations of the human eye are illustrated and the benefits of corrections by adaptive optics are explained. A couple of actuator types of the phase corrector that can be used in vision science are introduced and discussed their suitability for the purpose. The requirements to be an ideal deformable mirror for ocular adaptive optics are presented. The characteristics of bimorph deformable mirrors originally developed for laser communications are investigated in an effort to understand their suitability for ophthalmological adaptive optics applications. A Phase shifting interferometer setup is developed for optical characterization and fundamental theory of interferogram analysis is described along with wavefront reconstruction. The theoretical analysis of the bimorph deformable mirror begins with developing an analytical model of the laminated structure. The finite element models are also developed using COMSOL Multiphysics. Using the FEM results, the performance of deformable mirrors under various structure dimensions and operating conditions is analyzed for optimization. A basic theory of piezoelectricity is explained, followed by introduction of applications to MEMS devices. The material properties of single crystal PMN-PT adopted in

  11. Design and adaptation of a folded split ring resonator antenna for use in an animal-borne sensor

    NASA Astrophysics Data System (ADS)

    Dodson, S. C.; Wiid, P. G.; Niesler, T. R.

    2018-03-01

    We present the design, optimisation and practical evaluation of a folded split ring resonator (FSRR) antenna for the purpose of radio communication with an animal-borne sensor. We show that the measurements agree with the simulated results and that we are able to produce an electrically small antenna with low mismatch, high radiation efficiency and a quasi-isotropic radiation pattern. We then adapt the topology of the design from a circular to a rectangular shape, to completely fit inside the sensor enclosure. A quasi-isotropic pattern is maintained as well as low mismatch by appropriate tuning. There is a decrease in radiation efficiency which may be countered by a thinner substrate and retuning. We conclude that the adapted FSRR antenna is a suitable design for our application.

  12. Gait-Event-Based Synchronization Method for Gait Rehabilitation Robots via a Bioinspired Adaptive Oscillator.

    PubMed

    Chen, Gong; Qi, Peng; Guo, Zhao; Yu, Haoyong

    2017-06-01

    In the field of gait rehabilitation robotics, achieving human-robot synchronization is very important. In this paper, a novel human-robot synchronization method using gait event information is proposed. This method includes two steps. First, seven gait events in one gait cycle are detected in real time with a hidden Markov model; second, an adaptive oscillator is utilized to estimate the stride percentage of human gait using any one of the gait events. Synchronous reference trajectories for the robot are then generated with the estimated stride percentage. This method is based on a bioinspired adaptive oscillator, which is a mathematical tool, first proposed to explain the phenomenon of synchronous flashing among fireflies. The proposed synchronization method is implemented in a portable knee-ankle-foot robot and tested in 15 healthy subjects. This method has the advantages of simple structure, flexible selection of gait events, and fast adaptation. Gait event is the only information needed, and hence the performance of synchronization holds when an abnormal gait pattern is involved. The results of the experiments reveal that our approach is efficient in achieving human-robot synchronization and feasible for rehabilitation robotics application.

  13. Self-adaptive multi-objective harmony search for optimal design of water distribution networks

    NASA Astrophysics Data System (ADS)

    Choi, Young Hwan; Lee, Ho Min; Yoo, Do Guen; Kim, Joong Hoon

    2017-11-01

    In multi-objective optimization computing, it is important to assign suitable parameters to each optimization problem to obtain better solutions. In this study, a self-adaptive multi-objective harmony search (SaMOHS) algorithm is developed to apply the parameter-setting-free technique, which is an example of a self-adaptive methodology. The SaMOHS algorithm attempts to remove some of the inconvenience from parameter setting and selects the most adaptive parameters during the iterative solution search process. To verify the proposed algorithm, an optimal least cost water distribution network design problem is applied to three different target networks. The results are compared with other well-known algorithms such as multi-objective harmony search and the non-dominated sorting genetic algorithm-II. The efficiency of the proposed algorithm is quantified by suitable performance indices. The results indicate that SaMOHS can be efficiently applied to the search for Pareto-optimal solutions in a multi-objective solution space.

  14. Prototype of a computer method for designing and analyzing heating, ventilating and air conditioning proportional, electronic control systems

    NASA Astrophysics Data System (ADS)

    Barlow, Steven J.

    1986-09-01

    The Air Force needs a better method of designing new and retrofit heating, ventilating and air conditioning (HVAC) control systems. Air Force engineers currently use manual design/predict/verify procedures taught at the Air Force Institute of Technology, School of Civil Engineering, HVAC Control Systems course. These existing manual procedures are iterative and time-consuming. The objectives of this research were to: (1) Locate and, if necessary, modify an existing computer-based method for designing and analyzing HVAC control systems that is compatible with the HVAC Control Systems manual procedures, or (2) Develop a new computer-based method of designing and analyzing HVAC control systems that is compatible with the existing manual procedures. Five existing computer packages were investigated in accordance with the first objective: MODSIM (for modular simulation), HVACSIM (for HVAC simulation), TRNSYS (for transient system simulation), BLAST (for building load and system thermodynamics) and Elite Building Energy Analysis Program. None were found to be compatible or adaptable to the existing manual procedures, and consequently, a prototype of a new computer method was developed in accordance with the second research objective.

  15. Wavelet and adaptive methods for time dependent problems and applications in aerosol dynamics

    NASA Astrophysics Data System (ADS)

    Guo, Qiang

    Time dependent partial differential equations (PDEs) are widely used as mathematical models of environmental problems. Aerosols are now clearly identified as an important factor in many environmental aspects of climate and radiative forcing processes, as well as in the health effects of air quality. The mathematical models for the aerosol dynamics with respect to size distribution are nonlinear partial differential and integral equations, which describe processes of condensation, coagulation and deposition. Simulating the general aerosol dynamic equations on time, particle size and space exhibits serious difficulties because the size dimension ranges from a few nanometer to several micrometer while the spatial dimension is usually described with kilometers. Therefore, it is an important and challenging task to develop efficient techniques for solving time dependent dynamic equations. In this thesis, we develop and analyze efficient wavelet and adaptive methods for the time dependent dynamic equations on particle size and further apply them to the spatial aerosol dynamic systems. Wavelet Galerkin method is proposed to solve the aerosol dynamic equations on time and particle size due to the fact that aerosol distribution changes strongly along size direction and the wavelet technique can solve it very efficiently. Daubechies' wavelets are considered in the study due to the fact that they possess useful properties like orthogonality, compact support, exact representation of polynomials to a certain degree. Another problem encountered in the solution of the aerosol dynamic equations results from the hyperbolic form due to the condensation growth term. We propose a new characteristic-based fully adaptive multiresolution numerical scheme for solving the aerosol dynamic equation, which combines the attractive advantages of adaptive multiresolution technique and the characteristics method. On the aspect of theoretical analysis, the global existence and uniqueness of

  16. Irregular and adaptive sampling for automatic geophysic measure systems

    NASA Astrophysics Data System (ADS)

    Avagnina, Davide; Lo Presti, Letizia; Mulassano, Paolo

    2000-07-01

    In this paper a sampling method, based on an irregular and adaptive strategy, is described. It can be used as automatic guide for rovers designed to explore terrestrial and planetary environments. Starting from the hypothesis that a explorative vehicle is equipped with a payload able to acquire measurements of interesting quantities, the method is able to detect objects of interest from measured points and to realize an adaptive sampling, while badly describing the not interesting background.

  17. Adaptive Beam Loading Compensation in Room Temperature Bunching Cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edelen, J. P.; Chase, B. E.; Cullerton, E.

    In this paper we present the design, simulation, and proof of principle results of an optimization based adaptive feedforward algorithm for beam-loading compensation in a high impedance room temperature cavity. We begin with an overview of prior developments in beam loading compensation. Then we discuss different techniques for adaptive beam loading compensation and why the use of Newton?s Method is of interest for this application. This is followed by simulation and initial experimental results of this method.

  18. Robust adaptive controller design for a class of uncertain nonlinear systems using online T-S fuzzy-neural modeling approach.

    PubMed

    Chien, Yi-Hsing; Wang, Wei-Yen; Leu, Yih-Guang; Lee, Tsu-Tian

    2011-04-01

    This paper proposes a novel method of online modeling and control via the Takagi-Sugeno (T-S) fuzzy-neural model for a class of uncertain nonlinear systems with some kinds of outputs. Although studies about adaptive T-S fuzzy-neural controllers have been made on some nonaffine nonlinear systems, little is known about the more complicated uncertain nonlinear systems. Because the nonlinear functions of the systems are uncertain, traditional T-S fuzzy control methods can model and control them only with great difficulty, if at all. Instead of modeling these uncertain functions directly, we propose that a T-S fuzzy-neural model approximates a so-called virtual linearized system (VLS) of the system, which includes modeling errors and external disturbances. We also propose an online identification algorithm for the VLS and put significant emphasis on robust tracking controller design using an adaptive scheme for the uncertain systems. Moreover, the stability of the closed-loop systems is proven by using strictly positive real Lyapunov theory. The proposed overall scheme guarantees that the outputs of the closed-loop systems asymptotically track the desired output trajectories. To illustrate the effectiveness and applicability of the proposed method, simulation results are given in this paper.

  19. Continuous-time adaptive critics.

    PubMed

    Hanselmann, Thomas; Noakes, Lyle; Zaknich, Anthony

    2007-05-01

    A continuous-time formulation of an adaptive critic design (ACD) is investigated. Connections to the discrete case are made, where backpropagation through time (BPTT) and real-time recurrent learning (RTRL) are prevalent. Practical benefits are that this framework fits in well with plant descriptions given by differential equations and that any standard integration routine with adaptive step-size does an adaptive sampling for free. A second-order actor adaptation using Newton's method is established for fast actor convergence for a general plant and critic. Also, a fast critic update for concurrent actor-critic training is introduced to immediately apply necessary adjustments of critic parameters induced by actor updates to keep the Bellman optimality correct to first-order approximation after actor changes. Thus, critic and actor updates may be performed at the same time until some substantial error build up in the Bellman optimality or temporal difference equation, when a traditional critic training needs to be performed and then another interval of concurrent actor-critic training may resume.

  20. Design, realization and structural testing of a compliant adaptable wing

    NASA Astrophysics Data System (ADS)

    Molinari, G.; Quack, M.; Arrieta, A. F.; Morari, M.; Ermanni, P.

    2015-10-01

    This paper presents the design, optimization, realization and testing of a novel wing morphing concept, based on distributed compliance structures, and actuated by piezoelectric elements. The adaptive wing features ribs with a selectively compliant inner structure, numerically optimized to achieve aerodynamically efficient shape changes while simultaneously withstanding aeroelastic loads. The static and dynamic aeroelastic behavior of the wing, and the effect of activating the actuators, is assessed by means of coupled 3D aerodynamic and structural simulations. To demonstrate the capabilities of the proposed morphing concept and optimization procedure, the wings of a model airplane are designed and manufactured according to the presented approach. The goal is to replace conventional ailerons, thus to achieve controllability in roll purely by morphing. The mechanical properties of the manufactured components are characterized experimentally, and used to create a refined and correlated finite element model. The overall stiffness, strength, and actuation capabilities are experimentally tested and successfully compared with the numerical prediction. To counteract the nonlinear hysteretic behavior of the piezoelectric actuators, a closed-loop controller is implemented, and its capability of accurately achieving the desired shape adaptation is evaluated experimentally. Using the correlated finite element model, the aeroelastic behavior of the manufactured wing is simulated, showing that the morphing concept can provide sufficient roll authority to allow controllability of the flight. The additional degrees of freedom offered by morphing can be also used to vary the plane lift coefficient, similarly to conventional flaps. The efficiency improvements offered by this technique are evaluated numerically, and compared to the performance of a rigid wing.

  1. Prism adaptation and neck muscle vibration in healthy individuals: are two methods better than one?

    PubMed

    Guinet, M; Michel, C

    2013-12-19

    Studies involving therapeutic combinations reveal an important benefit in the rehabilitation of neglect patients when compared to single therapies. In light of these observations our present work examines, in healthy individuals, sensorimotor and cognitive after-effects of prism adaptation and neck muscle vibration applied individually or simultaneously. We explored sensorimotor after-effects on visuo-manual open-loop pointing, visual and proprioceptive straight-ahead estimations. We assessed cognitive after-effects on the line bisection task. Fifty-four healthy participants were divided into six groups designated according to the exposure procedure used with each: 'Prism' (P) group; 'Vibration with a sensation of body rotation' (Vb) group; 'Vibration with a move illusion of the LED' (Vl) group; 'Association with a sensation of body rotation' (Ab) group; 'Association with a move illusion of the LED' (Al) group; and 'Control' (C) group. The main findings showed that prism adaptation applied alone or combined with vibration showed significant adaptation in visuo-manual open-loop pointing, visual straight-ahead and proprioceptive straight-ahead. Vibration alone produced significant after-effects on proprioceptive straight-ahead estimation in the Vl group. Furthermore all groups (except C group) showed a rightward neglect-like bias in line bisection following the training procedure. This is the first demonstration of cognitive after-effects following neck muscle vibration in healthy individuals. The simultaneous application of both methods did not produce significant greater after-effects than prism adaptation alone in both sensorimotor and cognitive tasks. These results are discussed in terms of transfer of sensorimotor plasticity to spatial cognition in healthy individuals. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Adaptive hybrid control of manipulators

    NASA Technical Reports Server (NTRS)

    Seraji, H.

    1987-01-01

    Simple methods for the design of adaptive force and position controllers for robot manipulators within the hybrid control architecuture is presented. The force controller is composed of an adaptive PID feedback controller, an auxiliary signal and a force feedforward term, and it achieves tracking of desired force setpoints in the constraint directions. The position controller consists of adaptive feedback and feedforward controllers and an auxiliary signal, and it accomplishes tracking of desired position trajectories in the free directions. The controllers are capable of compensating for dynamic cross-couplings that exist between the position and force control loops in the hybrid control architecture. The adaptive controllers do not require knowledge of the complex dynamic model or parameter values of the manipulator or the environment. The proposed control schemes are computationally fast and suitable for implementation in on-line control with high sampling rates.

  3. Evaluation of an Adaptive Game that Uses EEG Measures Validated during the Design Process as Inputs to a Biocybernetic Loop.

    PubMed

    Ewing, Kate C; Fairclough, Stephen H; Gilleade, Kiel

    2016-01-01

    Biocybernetic adaptation is a form of physiological computing whereby real-time data streaming from the brain and body is used by a negative control loop to adapt the user interface. This article describes the development of an adaptive game system that is designed to maximize player engagement by utilizing changes in real-time electroencephalography (EEG) to adjust the level of game demand. The research consists of four main stages: (1) the development of a conceptual framework upon which to model the interaction between person and system; (2) the validation of the psychophysiological inference underpinning the loop; (3) the construction of a working prototype; and (4) an evaluation of the adaptive game. Two studies are reported. The first demonstrates the sensitivity of EEG power in the (frontal) theta and (parietal) alpha bands to changing levels of game demand. These variables were then reformulated within the working biocybernetic control loop designed to maximize player engagement. The second study evaluated the performance of an adaptive game of Tetris with respect to system behavior and user experience. Important issues for the design and evaluation of closed-loop interfaces are discussed.

  4. Evaluation of an Adaptive Game that Uses EEG Measures Validated during the Design Process as Inputs to a Biocybernetic Loop

    PubMed Central

    Ewing, Kate C.; Fairclough, Stephen H.; Gilleade, Kiel

    2016-01-01

    Biocybernetic adaptation is a form of physiological computing whereby real-time data streaming from the brain and body is used by a negative control loop to adapt the user interface. This article describes the development of an adaptive game system that is designed to maximize player engagement by utilizing changes in real-time electroencephalography (EEG) to adjust the level of game demand. The research consists of four main stages: (1) the development of a conceptual framework upon which to model the interaction between person and system; (2) the validation of the psychophysiological inference underpinning the loop; (3) the construction of a working prototype; and (4) an evaluation of the adaptive game. Two studies are reported. The first demonstrates the sensitivity of EEG power in the (frontal) theta and (parietal) alpha bands to changing levels of game demand. These variables were then reformulated within the working biocybernetic control loop designed to maximize player engagement. The second study evaluated the performance of an adaptive game of Tetris with respect to system behavior and user experience. Important issues for the design and evaluation of closed-loop interfaces are discussed. PMID:27242486

  5. Likelihood Methods for Adaptive Filtering and Smoothing. Technical Report #455.

    ERIC Educational Resources Information Center

    Butler, Ronald W.

    The dynamic linear model or Kalman filtering model provides a useful methodology for predicting the past, present, and future states of a dynamic system, such as an object in motion or an economic or social indicator that is changing systematically with time. Recursive likelihood methods for adaptive Kalman filtering and smoothing are developed.…

  6. An adaptive optics imaging system designed for clinical use.

    PubMed

    Zhang, Jie; Yang, Qiang; Saito, Kenichi; Nozato, Koji; Williams, David R; Rossi, Ethan A

    2015-06-01

    Here we demonstrate a new imaging system that addresses several major problems limiting the clinical utility of conventional adaptive optics scanning light ophthalmoscopy (AOSLO), including its small field of view (FOV), reliance on patient fixation for targeting imaging, and substantial post-processing time. We previously showed an efficient image based eye tracking method for real-time optical stabilization and image registration in AOSLO. However, in patients with poor fixation, eye motion causes the FOV to drift substantially, causing this approach to fail. We solve that problem here by tracking eye motion at multiple spatial scales simultaneously by optically and electronically integrating a wide FOV SLO (WFSLO) with an AOSLO. This multi-scale approach, implemented with fast tip/tilt mirrors, has a large stabilization range of ± 5.6°. Our method consists of three stages implemented in parallel: 1) coarse optical stabilization driven by a WFSLO image, 2) fine optical stabilization driven by an AOSLO image, and 3) sub-pixel digital registration of the AOSLO image. We evaluated system performance in normal eyes and diseased eyes with poor fixation. Residual image motion with incremental compensation after each stage was: 1) ~2-3 arc minutes, (arcmin) 2) ~0.5-0.8 arcmin and, 3) ~0.05-0.07 arcmin, for normal eyes. Performance in eyes with poor fixation was: 1) ~3-5 arcmin, 2) ~0.7-1.1 arcmin and 3) ~0.07-0.14 arcmin. We demonstrate that this system is capable of reducing image motion by a factor of ~400, on average. This new optical design provides additional benefits for clinical imaging, including a steering subsystem for AOSLO that can be guided by the WFSLO to target specific regions of interest such as retinal pathology and real-time averaging of registered images to eliminate image post-processing.

  7. An adaptive optics imaging system designed for clinical use

    PubMed Central

    Zhang, Jie; Yang, Qiang; Saito, Kenichi; Nozato, Koji; Williams, David R.; Rossi, Ethan A.

    2015-01-01

    Here we demonstrate a new imaging system that addresses several major problems limiting the clinical utility of conventional adaptive optics scanning light ophthalmoscopy (AOSLO), including its small field of view (FOV), reliance on patient fixation for targeting imaging, and substantial post-processing time. We previously showed an efficient image based eye tracking method for real-time optical stabilization and image registration in AOSLO. However, in patients with poor fixation, eye motion causes the FOV to drift substantially, causing this approach to fail. We solve that problem here by tracking eye motion at multiple spatial scales simultaneously by optically and electronically integrating a wide FOV SLO (WFSLO) with an AOSLO. This multi-scale approach, implemented with fast tip/tilt mirrors, has a large stabilization range of ± 5.6°. Our method consists of three stages implemented in parallel: 1) coarse optical stabilization driven by a WFSLO image, 2) fine optical stabilization driven by an AOSLO image, and 3) sub-pixel digital registration of the AOSLO image. We evaluated system performance in normal eyes and diseased eyes with poor fixation. Residual image motion with incremental compensation after each stage was: 1) ~2–3 arc minutes, (arcmin) 2) ~0.5–0.8 arcmin and, 3) ~0.05–0.07 arcmin, for normal eyes. Performance in eyes with poor fixation was: 1) ~3–5 arcmin, 2) ~0.7–1.1 arcmin and 3) ~0.07–0.14 arcmin. We demonstrate that this system is capable of reducing image motion by a factor of ~400, on average. This new optical design provides additional benefits for clinical imaging, including a steering subsystem for AOSLO that can be guided by the WFSLO to target specific regions of interest such as retinal pathology and real-time averaging of registered images to eliminate image post-processing. PMID:26114033

  8. Development of fault tolerant adaptive control laws for aerospace systems

    NASA Astrophysics Data System (ADS)

    Perez Rocha, Andres E.

    The main topic of this dissertation is the design, development and implementation of intelligent adaptive control techniques designed to maintain healthy performance of aerospace systems subjected to malfunctions, external parameter changes and/or unmodeled dynamics. The dissertation is focused on the development of novel adaptive control configurations that rely on non-linear functions that appear in the immune system of living organisms as main source of adaptation. One of the main goals of this dissertation is to demonstrate that these novel adaptive control architectures are able to improve overall performance and protect the system while reducing control effort and maintaining adequate operation outside bounds of nominal design. This research effort explores several phases, ranging from theoretical stability analysis, simulation and hardware implementation on different types of aerospace systems including spacecraft, aircraft and quadrotor vehicles. The results presented in this dissertation are focused on two main adaptivity approaches, the first one is intended for aerospace systems that do not attain large angles and use exact feedback linearization of Euler angle kinematics. A proof of stability is presented by means of the circle Criterion and Lyapunov's direct method. The second approach is intended for aerospace systems that can attain large attitude angles (e.g. space systems in gravity-less environments), the adaptation is incorporated on a baseline architecture that uses partial feedback linearization of quaternions kinematics. In this case, the closed loop stability was analyzed using Lyapunov's direct method and Barbalat's Lemma. It is expected that some results presented in this dissertation can contribute towards the validation and certification of direct adaptive controllers.

  9. Aircraft conceptual design - an adaptable parametric sizing methodology

    NASA Astrophysics Data System (ADS)

    Coleman, Gary John, Jr.

    Aerospace is a maturing industry with successful and refined baselines which work well for traditional baseline missions, markets and technologies. However, when new markets (space tourism) or new constrains (environmental) or new technologies (composite, natural laminar flow) emerge, the conventional solution is not necessarily best for the new situation. Which begs the question "how does a design team quickly screen and compare novel solutions to conventional solutions for new aerospace challenges?" The answer is rapid and flexible conceptual design Parametric Sizing. In the product design life-cycle, parametric sizing is the first step in screening the total vehicle in terms of mission, configuration and technology to quickly assess first order design and mission sensitivities. During this phase, various missions and technologies are assessed. During this phase, the designer is identifying design solutions of concepts and configurations to meet combinations of mission and technology. This research undertaking contributes the state-of-the-art in aircraft parametric sizing through (1) development of a dedicated conceptual design process and disciplinary methods library, (2) development of a novel and robust parametric sizing process based on 'best-practice' approaches found in the process and disciplinary methods library, and (3) application of the parametric sizing process to a variety of design missions (transonic, supersonic and hypersonic transports), different configurations (tail-aft, blended wing body, strut-braced wing, hypersonic blended bodies, etc.), and different technologies (composite, natural laminar flow, thrust vectored control, etc.), in order to demonstrate the robustness of the methodology and unearth first-order design sensitivities to current and future aerospace design problems. This research undertaking demonstrates the importance of this early design step in selecting the correct combination of mission, technologies and configuration to

  10. Adaptive Neural Networks Prescribed Performance Control Design for Switched Interconnected Uncertain Nonlinear Systems.

    PubMed

    Li, Yongming; Tong, Shaocheng

    2017-06-28

    In this paper, an adaptive neural networks (NNs)-based decentralized control scheme with the prescribed performance is proposed for uncertain switched nonstrict-feedback interconnected nonlinear systems. It is assumed that nonlinear interconnected terms and nonlinear functions of the concerned systems are unknown, and also the switching signals are unknown and arbitrary. A linear state estimator is constructed to solve the problem of unmeasured states. The NNs are employed to approximate unknown interconnected terms and nonlinear functions. A new output feedback decentralized control scheme is developed by using the adaptive backstepping design technique. The control design problem of nonlinear interconnected switched systems with unknown switching signals can be solved by the proposed scheme, and only a tuning parameter is needed for each subsystem. The proposed scheme can ensure that all variables of the control systems are semi-globally uniformly ultimately bounded and the tracking errors converge to a small residual set with the prescribed performance bound. The effectiveness of the proposed control approach is verified by some simulation results.

  11. Three Experiments Examining the Use of Electroencephalogram,Event-Related Potentials, and Heart-Rate Variability for Real-Time Human-Centered Adaptive Automation Design

    NASA Technical Reports Server (NTRS)

    Prinzel, Lawrence J., III; Parasuraman, Raja; Freeman, Frederick G.; Scerbo, Mark W.; Mikulka, Peter J.; Pope, Alan T.

    2003-01-01

    Adaptive automation represents an advanced form of human-centered automation design. The approach to automation provides for real-time and model-based assessments of human-automation interaction, determines whether the human has entered into a hazardous state of awareness and then modulates the task environment to keep the operator in-the-loop , while maintaining an optimal state of task engagement and mental alertness. Because adaptive automation has not matured, numerous challenges remain, including what the criteria are, for determining when adaptive aiding and adaptive function allocation should take place. Human factors experts in the area have suggested a number of measures including the use of psychophysiology. This NASA Technical Paper reports on three experiments that examined the psychophysiological measures of event-related potentials, electroencephalogram, and heart-rate variability for real-time adaptive automation. The results of the experiments confirm the efficacy of these measures for use in both a developmental and operational role for adaptive automation design. The implications of these results and future directions for psychophysiology and human-centered automation design are discussed.

  12. Finite element analysis and genetic algorithm optimization design for the actuator placement on a large adaptive structure

    NASA Astrophysics Data System (ADS)

    Sheng, Lizeng

    The dissertation focuses on one of the major research needs in the area of adaptive/intelligent/smart structures, the development and application of finite element analysis and genetic algorithms for optimal design of large-scale adaptive structures. We first review some basic concepts in finite element method and genetic algorithms, along with the research on smart structures. Then we propose a solution methodology for solving a critical problem in the design of a next generation of large-scale adaptive structures---optimal placements of a large number of actuators to control thermal deformations. After briefly reviewing the three most frequently used general approaches to derive a finite element formulation, the dissertation presents techniques associated with general shell finite element analysis using flat triangular laminated composite elements. The element used here has three nodes and eighteen degrees of freedom and is obtained by combining a triangular membrane element and a triangular plate bending element. The element includes the coupling effect between membrane deformation and bending deformation. The membrane element is derived from the linear strain triangular element using Cook's transformation. The discrete Kirchhoff triangular (DKT) element is used as the plate bending element. For completeness, a complete derivation of the DKT is presented. Geometrically nonlinear finite element formulation is derived for the analysis of adaptive structures under the combined thermal and electrical loads. Next, we solve the optimization problems of placing a large number of piezoelectric actuators to control thermal distortions in a large mirror in the presence of four different thermal loads. We then extend this to a multi-objective optimization problem of determining only one set of piezoelectric actuator locations that can be used to control the deformation in the same mirror under the action of any one of the four thermal loads. A series of genetic algorithms

  13. Experimental aeroelastic control using adaptive wing model concepts

    NASA Astrophysics Data System (ADS)

    Costa, Antonio P.; Moniz, Paulo A.; Suleman, Afzal

    2001-06-01

    The focus of this study is to evaluate the aeroelastic performance and control of adaptive wings. Ailerons and flaps have been designed and implemented into 3D wings for comparison with adaptive structures and active aerodynamic surface control methods. The adaptive structures concept, the experimental setup and the control design are presented. The wind-tunnel tests of the wing models are presented for the open- and closed-loop systems. The wind tunnel testing has allowed for quantifying the effectiveness of the piezoelectric vibration control of the wings, and also provided performance data for comparison with conventional aerodynamic control surfaces. The results indicate that a wing utilizing skins as active structural elements with embedded piezoelectric actuators can be effectively used to improve the aeroelastic response of aeronautical components. It was also observed that the control authority of adaptive wings is much greater than wings using conventional aerodynamic control surfaces.

  14. Prioritizing the mHealth Design Space: A Mixed-Methods Analysis of Smokers’ Perspectives

    PubMed Central

    BlueSpruce, June; Catz, Sheryl L; McClure, Jennifer B

    2016-01-01

    Background Smoking remains the leading cause of preventable disease and death in the United States. Therefore, researchers are constantly exploring new ways to promote smoking cessation. Mobile health (mHealth) technologies could be effective cessation tools. Despite the availability of commercial quit-smoking apps, little research to date has examined smokers’ preferred treatment intervention components (ie, design features). Honoring these preferences is important for designing programs that are appealing to smokers and may be more likely to be adopted and used. Objective The aim of this study was to understand smokers’ preferred design features of mHealth quit-smoking tools. Methods We used a mixed-methods approach consisting of focus groups and written surveys to understand the design preferences of adult smokers who were interested in quitting smoking (N=40). Focus groups were stratified by age to allow differing perspectives to emerge between older (>40 years) and younger (<40 years) participants. Focus group discussion included a “blue-sky” brainstorming exercise followed by participant reactions to contrasting design options for communicating with smokers, providing social support, and incentivizing program use. Participants rated the importance of preselected design features on an exit survey. Qualitative analyses examined emergent discussion themes and quantitative analyses compared feature ratings to determine which were perceived as most important. Results Participants preferred a highly personalized and adaptive mHealth experience. Their ideal mHealth quit-smoking tool would allow personalized tracking of their progress, adaptively tailored feedback, and real-time peer support to help manage smoking cravings. Based on qualitative analysis of focus group discussion, participants preferred pull messages (ie, delivered upon request) over push messages (ie, sent automatically) and preferred interaction with other smokers through closed social

  15. Adapting the Wii Fit Balance Board to Enable Active Video Game Play by Wheelchair Users: User-Centered Design and Usability Evaluation.

    PubMed

    Thirumalai, Mohanraj; Kirkland, William B; Misko, Samuel R; Padalabalanarayanan, Sangeetha; Malone, Laurie A

    2018-03-06

    Active video game (AVG) playing, also known as "exergaming," is increasingly employed to promote physical activity across all age groups. The Wii Fit Balance Board is a popular gaming controller for AVGs and is used in a variety of settings. However, the commercial off-the-shelf (OTS) design poses several limitations. It is inaccessible to wheelchair users, does not support the use of stabilization assistive devices, and requires the ability to shift the center of balance (COB) in all directions to fully engage in game play. The aim of this study was to design an adapted version of the Wii Fit Balance Board to overcome the identified limitations and to evaluate the usability of the newly designed adapted Wii Fit Balance Board in persons with mobility impairments. In a previous study, 16 participants tried the OTS version of the Wii Fit Balance Board. On the basis of observed limitations, a team of engineers developed and adapted the design of the Wii Fit Balance Board, which was then subjected to multiple iterations of user feedback and design tweaks. On design completion, we recruited a new pool of participants with mobility impairments for a larger study. During their first visit, we assessed lower-extremity function using selected mobility tasks from the International Classification of Functioning, Disability and Health. During a subsequent session, participants played 2 sets of games on both the OTS and adapted versions of the Wii Fit Balance Board. Order of controller version played first was randomized. After participants played each version, we administered the System Usability Scale (SUS) to examine the participants' perceived usability. The adapted version of the Wii Fit Balance Board resulting from the user-centered design approach met the needs of a variety of users. The adapted controller (1) allowed manual wheelchair users to engage in game play, which was previously not possible; (2) included Americans with Disabilities Act-compliant handrails as part

  16. Comparison of Traditional Design Nonlinear Programming Optimization and Stochastic Methods for Structural Design

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Pai, Shantaram S.; Coroneos, Rula M.

    2010-01-01

    Structural design generated by traditional method, optimization method and the stochastic design concept are compared. In the traditional method, the constraints are manipulated to obtain the design and weight is back calculated. In design optimization, the weight of a structure becomes the merit function with constraints imposed on failure modes and an optimization algorithm is used to generate the solution. Stochastic design concept accounts for uncertainties in loads, material properties, and other parameters and solution is obtained by solving a design optimization problem for a specified reliability. Acceptable solutions were produced by all the three methods. The variation in the weight calculated by the methods was modest. Some variation was noticed in designs calculated by the methods. The variation may be attributed to structural indeterminacy. It is prudent to develop design by all three methods prior to its fabrication. The traditional design method can be improved when the simplified sensitivities of the behavior constraint is used. Such sensitivity can reduce design calculations and may have a potential to unify the traditional and optimization methods. Weight versus reliabilitytraced out an inverted-S-shaped graph. The center of the graph corresponded to mean valued design. A heavy design with weight approaching infinity could be produced for a near-zero rate of failure. Weight can be reduced to a small value for a most failure-prone design. Probabilistic modeling of load and material properties remained a challenge.

  17. An adaptive image sparse reconstruction method combined with nonlocal similarity and cosparsity for mixed Gaussian-Poisson noise removal

    NASA Astrophysics Data System (ADS)

    Chen, Yong-fei; Gao, Hong-xia; Wu, Zi-ling; Kang, Hui

    2018-01-01

    Compressed sensing (CS) has achieved great success in single noise removal. However, it cannot restore the images contaminated with mixed noise efficiently. This paper introduces nonlocal similarity and cosparsity inspired by compressed sensing to overcome the difficulties in mixed noise removal, in which nonlocal similarity explores the signal sparsity from similar patches, and cosparsity assumes that the signal is sparse after a possibly redundant transform. Meanwhile, an adaptive scheme is designed to keep the balance between mixed noise removal and detail preservation based on local variance. Finally, IRLSM and RACoSaMP are adopted to solve the objective function. Experimental results demonstrate that the proposed method is superior to conventional CS methods, like K-SVD and state-of-art method nonlocally centralized sparse representation (NCSR), in terms of both visual results and quantitative measures.

  18. Multimodal Interfaces: Literature Review of Ecological Interface Design, Multimodal Perception and Attention, and Intelligent Adaptive Multimodal Interfaces

    DTIC Science & Technology

    2010-05-01

    Multimodal Interfaces Literature Review of Ecological Interface Design , Multimodal Perception and Attention, and Intelligent... Design , Multimodal Perception and Attention, and Intelligent Adaptive Multimodal Interfaces Wayne Giang, Sathya Santhakumaran, Ehsan Masnavi, Doug...Advanced Interface Design Laboratory, E2-1303N 200 University Avenue West Waterloo, Ontario Canada N2L 3G1 Contract Project Manager: Dr. Catherine

  19. Adaptive Control for Microgravity Vibration Isolation System

    NASA Technical Reports Server (NTRS)

    Yang, Bong-Jun; Calise, Anthony J.; Craig, James I.; Whorton, Mark S.

    2005-01-01

    Most active vibration isolation systems that try to a provide quiescent acceleration environment for space science experiments have utilized linear design methods. In this paper, we address adaptive control augmentation of an existing classical controller that employs a high-gain acceleration feedback together with a low-gain position feedback to center the isolated platform. The control design feature includes parametric and dynamic uncertainties because the hardware of the isolation system is built as a payload-level isolator, and the acceleration Sensor exhibits a significant bias. A neural network is incorporated to adaptively compensate for the system uncertainties, and a high-pass filter is introduced to mitigate the effect of the measurement bias. Simulations show that the adaptive control improves the performance of the existing acceleration controller and keep the level of the isolated platform deviation to that of the existing control system.

  20. A new anisotropic mesh adaptation method based upon hierarchical a posteriori error estimates

    NASA Astrophysics Data System (ADS)

    Huang, Weizhang; Kamenski, Lennard; Lang, Jens

    2010-03-01

    A new anisotropic mesh adaptation strategy for finite element solution of elliptic differential equations is presented. It generates anisotropic adaptive meshes as quasi-uniform ones in some metric space, with the metric tensor being computed based on hierarchical a posteriori error estimates. A global hierarchical error estimate is employed in this study to obtain reliable directional information of the solution. Instead of solving the global error problem exactly, which is costly in general, we solve it iteratively using the symmetric Gauß-Seidel method. Numerical results show that a few GS iterations are sufficient for obtaining a reasonably good approximation to the error for use in anisotropic mesh adaptation. The new method is compared with several strategies using local error estimators or recovered Hessians. Numerical results are presented for a selection of test examples and a mathematical model for heat conduction in a thermal battery with large orthotropic jumps in the material coefficients.

  1. Marginal and Internal Adaptation of Zirconia Crowns: A Comparative Study of Assessment Methods.

    PubMed

    Cunali, Rafael Schlögel; Saab, Rafaella Caramori; Correr, Gisele Maria; Cunha, Leonardo Fernandes da; Ornaghi, Bárbara Pick; Ritter, André V; Gonzaga, Carla Castiglia

    2017-01-01

    Marginal and internal adaptation is critical for the success of indirect restorations. New imaging systems make it possible to evaluate these parameters with precision and non-destructively. This study evaluated the marginal and internal adaptation of zirconia copings fabricated with two different systems using both silicone replica and microcomputed tomography (micro-CT) assessment methods. A metal master model, representing a preparation for an all-ceramic full crown, was digitally scanned and polycrystalline zirconia copings were fabricated with either Ceramill Zi (Amann-Girrbach) or inCoris Zi (Dentslpy-Sirona), n=10. For each coping, marginal and internal gaps were evaluated by silicone replica and micro-CT assessment methods. Four assessment points of each replica cross-section and micro-CT image were evaluated using imaging software: marginal gap (MG), axial wall (AW), axio-occlusal angle (AO) and mid-occlusal wall (MO). Data were statistically analyzed by factorial ANOVA and Tukey test (a=0.05). There was no statistically significant difference between the methods for MG and AW. For AO, there were significant differences between methods for Amann copings, while for Dentsply-Sirona copings similar values were observed. For MO, both methods presented statistically significant differences. A positive correlation was observed determined by the two assessment methods for MG values. In conclusion, the assessment method influenced the evaluation of marginal and internal adaptation of zirconia copings. Micro-CT showed lower marginal and internal gap values when compared to the silicone replica technique, although the difference was not always statistically significant. Marginal gap and axial wall assessment points showed the lower gap values, regardless of ceramic system and assessment method used.

  2. Quantification of organ motion based on an adaptive image-based scale invariant feature method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paganelli, Chiara; Peroni, Marta; Baroni, Guido

    2013-11-15

    Purpose: The availability of corresponding landmarks in IGRT image series allows quantifying the inter and intrafractional motion of internal organs. In this study, an approach for the automatic localization of anatomical landmarks is presented, with the aim of describing the nonrigid motion of anatomo-pathological structures in radiotherapy treatments according to local image contrast.Methods: An adaptive scale invariant feature transform (SIFT) was developed from the integration of a standard 3D SIFT approach with a local image-based contrast definition. The robustness and invariance of the proposed method to shape-preserving and deformable transforms were analyzed in a CT phantom study. The application ofmore » contrast transforms to the phantom images was also tested, in order to verify the variation of the local adaptive measure in relation to the modification of image contrast. The method was also applied to a lung 4D CT dataset, relying on manual feature identification by an expert user as ground truth. The 3D residual distance between matches obtained in adaptive-SIFT was then computed to verify the internal motion quantification with respect to the expert user. Extracted corresponding features in the lungs were used as regularization landmarks in a multistage deformable image registration (DIR) mapping the inhale vs exhale phase. The residual distances between the warped manual landmarks and their reference position in the inhale phase were evaluated, in order to provide a quantitative indication of the registration performed with the three different point sets.Results: The phantom study confirmed the method invariance and robustness properties to shape-preserving and deformable transforms, showing residual matching errors below the voxel dimension. The adapted SIFT algorithm on the 4D CT dataset provided automated and accurate motion detection of peak to peak breathing motion. The proposed method resulted in reduced residual errors with respect to

  3. An Optimal Control Modification to Model-Reference Adaptive Control for Fast Adaptation

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.; Krishnakumar, Kalmanje; Boskovic, Jovan

    2008-01-01

    This paper presents a method that can achieve fast adaptation for a class of model-reference adaptive control. It is well-known that standard model-reference adaptive control exhibits high-gain control behaviors when a large adaptive gain is used to achieve fast adaptation in order to reduce tracking error rapidly. High gain control creates high-frequency oscillations that can excite unmodeled dynamics and can lead to instability. The fast adaptation approach is based on the minimization of the squares of the tracking error, which is formulated as an optimal control problem. The necessary condition of optimality is used to derive an adaptive law using the gradient method. This adaptive law is shown to result in uniform boundedness of the tracking error by means of the Lyapunov s direct method. Furthermore, this adaptive law allows a large adaptive gain to be used without causing undesired high-gain control effects. The method is shown to be more robust than standard model-reference adaptive control. Simulations demonstrate the effectiveness of the proposed method.

  4. Verifiable Adaptive Control with Analytical Stability Margins by Optimal Control Modification

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.

    2010-01-01

    This paper presents a verifiable model-reference adaptive control method based on an optimal control formulation for linear uncertain systems. A predictor model is formulated to enable a parameter estimation of the system parametric uncertainty. The adaptation is based on both the tracking error and predictor error. Using a singular perturbation argument, it can be shown that the closed-loop system tends to a linear time invariant model asymptotically under an assumption of fast adaptation. A stability margin analysis is given to estimate a lower bound of the time delay margin using a matrix measure method. Using this analytical method, the free design parameter n of the optimal control modification adaptive law can be determined to meet a specification of stability margin for verification purposes.

  5. An adaptive vibration control method to suppress the vibration of the maglev train caused by track irregularities

    NASA Astrophysics Data System (ADS)

    Zhou, Danfeng; Yu, Peichang; Wang, Lianchun; Li, Jie

    2017-11-01

    The levitation gap of the urban maglev train is around 8 mm, which puts a rather high requirement on the smoothness of the track. In practice, it is found that the track irregularity may cause stability problems when the maglev train is traveling. In this paper, the dynamic response of the levitation module, which is the basic levitation structure of the urban maglev train, is investigated in the presence of track irregularities. Analyses show that due to the structural configuration of the levitation module, the vibration of the levitation gap may be amplified and "resonances" may be observed under some specified track wavelengths and train speeds; besides, it is found that the gap vibration of the rear levitation unit in a levitation module is more significant than that of the front levitation unit, which agrees well with practice. To suppress the vibration of the rear levitation gap, an adaptive vibration control method is proposed, which utilizes the information of the front levitation unit as a reference. A pair of mirror FIR (finite impulse response) filters are designed and tuned by an adaptive mechanism, and they produce a compensation signal for the rear levitation controller to cancel the disturbance brought by the track irregularity. Simulations under some typical track conditions, including the sinusoidal track profile, random track irregularity, as well as track steps, indicate that the adaptive vibration control scheme can significantly reduce the amplitude of the rear gap vibration, which provides a method to improve the stability and ride comfort of the maglev train.

  6. Beyond Reduction: Climate Change Adaptation Planning for Universities and Colleges

    ERIC Educational Resources Information Center

    Owen, Rochelle; Fisher, Erica; McKenzie, Kyle

    2013-01-01

    Purpose: The purpose of this paper is to outline a unique six-step process for the inclusion of climate change adaption goals and strategies in a University Climate Change Plan. Design/methodology/approach: A mixed-method approach was used to gather data on campus climate change vulnerabilities and adaption strategies. A literature review…

  7. A flexible layout design method for passive micromixers.

    PubMed

    Deng, Yongbo; Liu, Zhenyu; Zhang, Ping; Liu, Yongshun; Gao, Qingyong; Wu, Yihui

    2012-10-01

    This paper discusses a flexible layout design method of passive micromixers based on the topology optimization of fluidic flows. Being different from the trial and error method, this method obtains the detailed layout of a passive micromixer according to the desired mixing performance by solving a topology optimization problem. Therefore, the dependence on the experience of the designer is weaken, when this method is used to design a passive micromixer with acceptable mixing performance. Several design disciplines for the passive micromixers are considered to demonstrate the flexibility of the layout design method for passive micromixers. These design disciplines include the approximation of the real 3D micromixer, the manufacturing feasibility, the spacial periodic design, and effects of the Péclet number and Reynolds number on the designs obtained by this layout design method. The capability of this design method is validated by several comparisons performed between the obtained layouts and the optimized designs in the recently published literatures, where the values of the mixing measurement is improved up to 40.4% for one cycle of the micromixer.

  8. Adaptive mesh refinement techniques for the immersed interface method applied to flow problems

    PubMed Central

    Li, Zhilin; Song, Peng

    2013-01-01

    In this paper, we develop an adaptive mesh refinement strategy of the Immersed Interface Method for flow problems with a moving interface. The work is built on the AMR method developed for two-dimensional elliptic interface problems in the paper [12] (CiCP, 12(2012), 515–527). The interface is captured by the zero level set of a Lipschitz continuous function φ(x, y, t). Our adaptive mesh refinement is built within a small band of |φ(x, y, t)| ≤ δ with finer Cartesian meshes. The AMR-IIM is validated for Stokes and Navier-Stokes equations with exact solutions, moving interfaces driven by the surface tension, and classical bubble deformation problems. A new simple area preserving strategy is also proposed in this paper for the level set method. PMID:23794763

  9. Designing Adaptive, Diagnostic Math Assessments for Individuals with and without Visual Disabilities. Research Report. ETS RR-06-01

    ERIC Educational Resources Information Center

    Shute, Valerie J.; Graf, Edith Aurora; Hansen, Eric G.

    2006-01-01

    This report summarizes the design and development of an adaptive e-learning prototype for middle school mathematics for use with both sighted and visually disabled students. Adaptation refers to the system's ability to adjust itself to suit particular characteristics of the learner. The main parts of the report describe the system's theoretical…

  10. An improved adaptive weighting function method for State Estimation in Power Systems with VSC-MTDC

    NASA Astrophysics Data System (ADS)

    Zhao, Kun; Yang, Xiaonan; Lang, Yansheng; Song, Xuri; Wang, Minkun; Luo, Yadi; Wu, Lingyun; Liu, Peng

    2017-04-01

    This paper presents an effective approach for state estimation in power systems that include multi-terminal voltage source converter based high voltage direct current (VSC-MTDC), called improved adaptive weighting function method. The proposed approach is simplified in which the VSC-MTDC system is solved followed by the AC system. Because the new state estimation method only changes the weight and keeps the matrix dimension unchanged. Accurate and fast convergence of AC/DC system can be realized by adaptive weight function method. This method also provides the technical support for the simulation analysis and accurate regulation of AC/DC system. Both the oretical analysis and numerical tests verify practicability, validity and convergence of new method.

  11. An edge-based solution-adaptive method applied to the AIRPLANE code

    NASA Technical Reports Server (NTRS)

    Biswas, Rupak; Thomas, Scott D.; Cliff, Susan E.

    1995-01-01

    Computational methods to solve large-scale realistic problems in fluid flow can be made more efficient and cost effective by using them in conjunction with dynamic mesh adaption procedures that perform simultaneous coarsening and refinement to capture flow features of interest. This work couples the tetrahedral mesh adaption scheme, 3D_TAG, with the AIRPLANE code to solve complete aircraft configuration problems in transonic and supersonic flow regimes. Results indicate that the near-field sonic boom pressure signature of a cone-cylinder is improved, the oblique and normal shocks are better resolved on a transonic wing, and the bow shock ahead of an unstarted inlet is better defined.

  12. Novel Multistatic Adaptive Microwave Imaging Methods for Early Breast Cancer Detection

    NASA Astrophysics Data System (ADS)

    Xie, Yao; Guo, Bin; Li, Jian; Stoica, Petre

    2006-12-01

    Multistatic adaptive microwave imaging (MAMI) methods are presented and compared for early breast cancer detection. Due to the significant contrast between the dielectric properties of normal and malignant breast tissues, developing microwave imaging techniques for early breast cancer detection has attracted much interest lately. MAMI is one of the microwave imaging modalities and employs multiple antennas that take turns to transmit ultra-wideband (UWB) pulses while all antennas are used to receive the reflected signals. MAMI can be considered as a special case of the multi-input multi-output (MIMO) radar with the multiple transmitted waveforms being either UWB pulses or zeros. Since the UWB pulses transmitted by different antennas are displaced in time, the multiple transmitted waveforms are orthogonal to each other. The challenge to microwave imaging is to improve resolution and suppress strong interferences caused by the breast skin, nipple, and so forth. The MAMI methods we investigate herein utilize the data-adaptive robust Capon beamformer (RCB) to achieve high resolution and interference suppression. We will demonstrate the effectiveness of our proposed methods for breast cancer detection via numerical examples with data simulated using the finite-difference time-domain method based on a 3D realistic breast model.

  13. Adaptive Flight Control Research at NASA

    NASA Technical Reports Server (NTRS)

    Motter, Mark A.

    2008-01-01

    A broad overview of current adaptive flight control research efforts at NASA is presented, as well as some more detailed discussion of selected specific approaches. The stated objective of the Integrated Resilient Aircraft Control Project, one of NASA s Aviation Safety programs, is to advance the state-of-the-art of adaptive controls as a design option to provide enhanced stability and maneuverability margins for safe landing in the presence of adverse conditions such as actuator or sensor failures. Under this project, a number of adaptive control approaches are being pursued, including neural networks and multiple models. Validation of all the adaptive control approaches will use not only traditional methods such as simulation, wind tunnel testing and manned flight tests, but will be augmented with recently developed capabilities in unmanned flight testing.

  14. Adaptive Automation Design and Implementation

    DTIC Science & Technology

    2015-09-17

    Study : Space Navigator This section demonstrates the player modeling paradigm, focusing specifically on the response generation section of the player ...human-machine system, a real-time player modeling framework for imitating a specific person’s task performance, and the Adaptive Automation System...Model . . . . . . . . . . . . . . . . . . . . . . . 13 Clustering-Based Real-Time Player Modeling . . . . . . . . . . . . . . . . . . . . . . 15 An

  15. Usability evaluation of intradermal adapters (IDA).

    PubMed

    Tsals, Izrail

    2017-03-27

    Intradermal adapter device technology minimizes the complexity of the Mantoux technique, thereby providing predictable, reproducible intradermal (ID) injections and removing the concerns regarding the ease and reliability of Mantoux technique when using conventional needle and syringe. The technology employs a simple device with geometry designed to gently deform the skin surface and the subcutaneous tissue, providing the ideal angle and depth of needle insertion for consistently successful intradermal injections. The results of this development were presented at the First, Second and Third Skin Vaccination Summits in 2011, 2013 and 2015 respectively [1,2,3]. The current publication addresses the performance of intradermal adapters (IDA) evaluated in three preclinical studies. The evaluations were based on the assessment of bleb formation in a skin model, an accepted indicator of ID injection success. All evaluated devices share the same proprietary dermal interface technology. Devices instituting this design are easy to use, require minimal training, and employ conventionally molded parts and cannula. These studies evaluated IDAs of initial design integral with luer lock needles, IDAs for use with conventional syringes, and intradermal adapters for use with auto disable syringes (ADID adapters). The evaluated ID adapters were intended to consistently place the lancet of the needle at a depth of 0.75mm from the skin's surface. This placement depth addresses the variation in the skin thickness at immunization sites for the majority of patients independent of many other variables. Most participants preferred the intradermal adapter method over the traditional Mantoux and identified a need for the adapter at their workplace. Evaluation of IDAs by registered nurses indicated these devices increase success of bleb formation. The use of IDA increased the success of forming blebs by about 30%. Nurses felt the injections were much easier to perform, in particular by

  16. Adaptive antenna arrays for satellite communications: Design and testing

    NASA Technical Reports Server (NTRS)

    Gupta, I. J.; Swarner, W. G.; Walton, E. K.

    1985-01-01

    When two separate antennas are used with each feedback loop to decorrelate noise, the antennas should be located such that the phase of the interfering signal in the two antennas is the same while the noise in them is uncorrelated. Thus, the antenna patterns and spatial distribution of the auxiliary antennas are quite important and should be carefully selected. The selection and spatial distribution of auxiliary elements is discussed when the main antenna is a center fed reflector antenna. It is shown that offset feeds of the reflector antenna can be used as auxiliary elements of an adaptive array to suppress weak interfering signals. An experimental system is designed to verify the theoretical analysis. The details of the experimental systems are presented.

  17. Convergence of fractional adaptive systems using gradient approach.

    PubMed

    Gallegos, Javier A; Duarte-Mermoud, Manuel A

    2017-07-01

    Conditions for boundedness and convergence of the output error and the parameter error for various Caputo's fractional order adaptive schemes based on the steepest descent method are derived in this paper. To this aim, the concept of sufficiently exciting signals is introduced, characterized and related to the concept of persistently exciting signals used in the integer order case. An application is designed in adaptive indirect control of integer order systems using fractional equations to adjust parameters. This application is illustrated for a pole placement adaptive problem. Advantages of using fractional adjustment in control adaptive schemes are experimentally obtained. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Evaluation of single and two-stage adaptive sampling designs for estimation of density and abundance of freshwater mussels in a large river

    USGS Publications Warehouse

    Smith, D.R.; Rogala, J.T.; Gray, B.R.; Zigler, S.J.; Newton, T.J.

    2011-01-01

    Reliable estimates of abundance are needed to assess consequences of proposed habitat restoration and enhancement projects on freshwater mussels in the Upper Mississippi River (UMR). Although there is general guidance on sampling techniques for population assessment of freshwater mussels, the actual performance of sampling designs can depend critically on the population density and spatial distribution at the project site. To evaluate various sampling designs, we simulated sampling of populations, which varied in density and degree of spatial clustering. Because of logistics and costs of large river sampling and spatial clustering of freshwater mussels, we focused on adaptive and non-adaptive versions of single and two-stage sampling. The candidate designs performed similarly in terms of precision (CV) and probability of species detection for fixed sample size. Both CV and species detection were determined largely by density, spatial distribution and sample size. However, designs did differ in the rate that occupied quadrats were encountered. Occupied units had a higher probability of selection using adaptive designs than conventional designs. We used two measures of cost: sample size (i.e. number of quadrats) and distance travelled between the quadrats. Adaptive and two-stage designs tended to reduce distance between sampling units, and thus performed better when distance travelled was considered. Based on the comparisons, we provide general recommendations on the sampling designs for the freshwater mussels in the UMR, and presumably other large rivers.

  19. An adaptive reentry guidance method considering the influence of blackout zone

    NASA Astrophysics Data System (ADS)

    Wu, Yu; Yao, Jianyao; Qu, Xiangju

    2018-01-01

    Reentry guidance has been researched as a popular topic because it is critical for a successful flight. In view that the existing guidance methods do not take into account the accumulated navigation error of Inertial Navigation System (INS) in the blackout zone, in this paper, an adaptive reentry guidance method is proposed to obtain the optimal reentry trajectory quickly with the target of minimum aerodynamic heating rate. The terminal error in position and attitude can be also reduced with the proposed method. In this method, the whole reentry guidance task is divided into two phases, i.e., the trajectory updating phase and the trajectory planning phase. In the first phase, the idea of model predictive control (MPC) is used, and the receding optimization procedure ensures the optimal trajectory in the next few seconds. In the trajectory planning phase, after the vehicle has flown out of the blackout zone, the optimal reentry trajectory is obtained by online planning to adapt to the navigation information. An effective swarm intelligence algorithm, i.e. pigeon inspired optimization (PIO) algorithm, is applied to obtain the optimal reentry trajectory in both of the two phases. Compared to the trajectory updating method, the proposed method can reduce the terminal error by about 30% considering both the position and attitude, especially, the terminal error of height has almost been eliminated. Besides, the PIO algorithm performs better than the particle swarm optimization (PSO) algorithm both in the trajectory updating phase and the trajectory planning phases.

  20. Mixed-methods designs in mental health services research: a review.

    PubMed

    Palinkas, Lawrence A; Horwitz, Sarah M; Chamberlain, Patricia; Hurlburt, Michael S; Landsverk, John

    2011-03-01

    Despite increased calls for use of mixed-methods designs in mental health services research, how and why such methods are being used and whether there are any consistent patterns that might indicate a consensus about how such methods can and should be used are unclear. Use of mixed methods was examined in 50 peer-reviewed journal articles found by searching PubMed Central and 60 National Institutes of Health (NIH)-funded projects found by searching the CRISP database over five years (2005-2009). Studies were coded for aims and the rationale, structure, function, and process for using mixed methods. A notable increase was observed in articles published and grants funded over the study period. However, most did not provide an explicit rationale for using mixed methods, and 74% gave priority to use of quantitative methods. Mixed methods were used to accomplish five distinct types of study aims (assess needs for services, examine existing services, develop new or adapt existing services, evaluate services in randomized controlled trials, and examine service implementation), with three categories of rationale, seven structural arrangements based on timing and weighting of methods, five functions of mixed methods, and three ways of linking quantitative and qualitative data. Each study aim was associated with a specific pattern of use of mixed methods, and four common patterns were identified. These studies offer guidance for continued progress in integrating qualitative and quantitative methods in mental health services research consistent with efforts by NIH and other funding agencies to promote their use.