Robust adaptive dynamic programming and feedback stabilization of nonlinear systems.
Jiang, Yu; Jiang, Zhong-Ping
2014-05-01
This paper studies the robust optimal control design for a class of uncertain nonlinear systems from a perspective of robust adaptive dynamic programming (RADP). The objective is to fill up a gap in the past literature of adaptive dynamic programming (ADP) where dynamic uncertainties or unmodeled dynamics are not addressed. A key strategy is to integrate tools from modern nonlinear control theory, such as the robust redesign and the backstepping techniques as well as the nonlinear small-gain theorem, with the theory of ADP. The proposed RADP methodology can be viewed as an extension of ADP to uncertain nonlinear systems. Practical learning algorithms are developed in this paper, and have been applied to the controller design problems for a jet engine and a one-machine power system. PMID:24808035
Robust adaptive dynamic programming with an application to power systems.
Jiang, Yu; Jiang, Zhong-Ping
2013-07-01
This brief presents a novel framework of robust adaptive dynamic programming (robust-ADP) aimed at computing globally stabilizing and suboptimal control policies in the presence of dynamic uncertainties. A key strategy is to integrate ADP theory with techniques in modern nonlinear control with a unique objective of filling up a gap in the past literature of ADP without taking into account dynamic uncertainties. Neither the system dynamics nor the system order are required to be precisely known. As an illustrative example, the computational algorithm is applied to the controller design of a two-machine power system. PMID:24808528
Adaptive dynamic programming for auto-resilient video streaming
NASA Astrophysics Data System (ADS)
Zhao, Juan; Li, Xingmei; Wang, Wei; Wu, Guoping
2007-11-01
Wireless video transmission encounters higher error rate than in wired network, which introduces distortion into the error-sensitive compressed data, reducing the quality of the playback video. Therefore, to ensure the end-to-end quality, wireless video needs a transmission system including both efficient source coding scheme and transmission technology against the influence of the channel error. This paper tackles a dynamic programming algorithm for robust video streaming over error-prone channels. An auto-resilient multiple-description coding with optimized transmission strategy has been proposed. Further study is done on the computational complexity of rate-distortion optimized video streaming and a dynamic programming algorithm is considered. Experiment results show that video streaming with adaptive dynamic programming gains better playback video quality at the receiver when transmitted through error-prone mobile channel.
Adaptive dynamic programming as a theory of sensorimotor control.
Jiang, Yu; Jiang, Zhong-Ping
2014-08-01
Many characteristics of sensorimotor control can be explained by models based on optimization and optimal control theories. However, most of the previous models assume that the central nervous system has access to the precise knowledge of the sensorimotor system and its interacting environment. This viewpoint is difficult to be justified theoretically and has not been convincingly validated by experiments. To address this problem, this paper presents a new computational mechanism for sensorimotor control from a perspective of adaptive dynamic programming (ADP), which shares some features of reinforcement learning. The ADP-based model for sensorimotor control suggests that a command signal for the human movement is derived directly from the real-time sensory data, without the need to identify the system dynamics. An iterative learning scheme based on the proposed ADP theory is developed, along with rigorous convergence analysis. Interestingly, the computational model as advocated here is able to reproduce the motor learning behavior observed in experiments where a divergent force field or velocity-dependent force field was present. In addition, this modeling strategy provides a clear way to perform stability analysis of the overall system. Hence, we conjecture that human sensorimotor systems use an ADP-type mechanism to control movements and to achieve successful adaptation to uncertainties present in the environment. PMID:24962078
Adaption of a corrector module to the IMP dynamics program
NASA Technical Reports Server (NTRS)
1972-01-01
The corrector module of the RAEIOS program and the IMP dynamics computer program were combined to achieve a date-fitting capability with the more general spacecraft dynamics models of the IMP program. The IMP dynamics program presents models of spacecraft dynamics for satellites with long, flexible booms. The properties of the corrector are discussed and a description is presented of the performance criteria and search logic for parameter estimation. A description is also given of the modifications made to add the corrector to the IMP program. This includes subroutine descriptions, common definitions, definition of input, and a description of output.
Recursive dynamic programming for adaptive sequence and structure alignment
Thiele, R.; Zimmer, R.; Lengauer, T.
1995-12-31
We propose a new alignment procedure that is capable of aligning protein sequences and structures in a unified manner. Recursive dynamic programming (RDP) is a hierarchical method which, on each level of the hierarchy, identifies locally optimal solutions and assembles them into partial alignments of sequences and/or structures. In contrast to classical dynamic programming, RDP can also handle alignment problems that use objective functions not obeying the principle of prefix optimality, e.g. scoring schemes derived from energy potentials of mean force. For such alignment problems, RDP aims at computing solutions that are near-optimal with respect to the involved cost function and biologically meaningful at the same time. Towards this goal, RDP maintains a dynamic balance between different factors governing alignment fitness such as evolutionary relationships and structural preferences. As in the RDP method gaps are not scored explicitly, the problematic assignment of gap cost parameters is circumvented. In order to evaluate the RDP approach we analyse whether known and accepted multiple alignments based on structural information can be reproduced with the RDP method.
Luo, Biao; Wu, Huai-Ning; Li, Han-Xiong
2015-04-01
Highly dissipative nonlinear partial differential equations (PDEs) are widely employed to describe the system dynamics of industrial spatially distributed processes (SDPs). In this paper, we consider the optimal control problem of the general highly dissipative SDPs, and propose an adaptive optimal control approach based on neuro-dynamic programming (NDP). Initially, Karhunen-Loève decomposition is employed to compute empirical eigenfunctions (EEFs) of the SDP based on the method of snapshots. These EEFs together with singular perturbation technique are then used to obtain a finite-dimensional slow subsystem of ordinary differential equations that accurately describes the dominant dynamics of the PDE system. Subsequently, the optimal control problem is reformulated on the basis of the slow subsystem, which is further converted to solve a Hamilton-Jacobi-Bellman (HJB) equation. HJB equation is a nonlinear PDE that has proven to be impossible to solve analytically. Thus, an adaptive optimal control method is developed via NDP that solves the HJB equation online using neural network (NN) for approximating the value function; and an online NN weight tuning law is proposed without requiring an initial stabilizing control policy. Moreover, by involving the NN estimation error, we prove that the original closed-loop PDE system with the adaptive optimal control policy is semiglobally uniformly ultimately bounded. Finally, the developed method is tested on a nonlinear diffusion-convection-reaction process and applied to a temperature cooling fin of high-speed aerospace vehicle, and the achieved results show its effectiveness. PMID:25794375
NASA Astrophysics Data System (ADS)
Liu, Derong; Huang, Yuzhu; Wang, Ding; Wei, Qinglai
2013-09-01
In this paper, an observer-based optimal control scheme is developed for unknown nonlinear systems using adaptive dynamic programming (ADP) algorithm. First, a neural-network (NN) observer is designed to estimate system states. Then, based on the observed states, a neuro-controller is constructed via ADP method to obtain the optimal control. In this design, two NN structures are used: a three-layer NN is used to construct the observer which can be applied to systems with higher degrees of nonlinearity and without a priori knowledge of system dynamics, and a critic NN is employed to approximate the value function. The optimal control law is computed using the critic NN and the observer NN. Uniform ultimate boundedness of the closed-loop system is guaranteed. The actor, critic, and observer structures are all implemented in real-time, continuously and simultaneously. Finally, simulation results are presented to demonstrate the effectiveness of the proposed control scheme.
Zhong, Xiangnan; He, Haibo; Zhang, Huaguang; Wang, Zhanshan
2014-12-01
In this paper, we develop and analyze an optimal control method for a class of discrete-time nonlinear Markov jump systems (MJSs) with unknown system dynamics. Specifically, an identifier is established for the unknown systems to approximate system states, and an optimal control approach for nonlinear MJSs is developed to solve the Hamilton-Jacobi-Bellman equation based on the adaptive dynamic programming technique. We also develop detailed stability analysis of the control approach, including the convergence of the performance index function for nonlinear MJSs and the existence of the corresponding admissible control. Neural network techniques are used to approximate the proposed performance index function and the control law. To demonstrate the effectiveness of our approach, three simulation studies, one linear case, one nonlinear case, and one single link robot arm case, are used to validate the performance of the proposed optimal control method. PMID:25420238
Liu, Derong; Li, Hongliang; Wang, Ding
2015-06-01
In this paper, we establish error bounds of adaptive dynamic programming algorithms for solving undiscounted infinite-horizon optimal control problems of discrete-time deterministic nonlinear systems. We consider approximation errors in the update equations of both value function and control policy. We utilize a new assumption instead of the contraction assumption in discounted optimal control problems. We establish the error bounds for approximate value iteration based on a new error condition. Furthermore, we also establish the error bounds for approximate policy iteration and approximate optimistic policy iteration algorithms. It is shown that the iterative approximate value function can converge to a finite neighborhood of the optimal value function under some conditions. To implement the developed algorithms, critic and action neural networks are used to approximate the value function and control policy, respectively. Finally, a simulation example is given to demonstrate the effectiveness of the developed algorithms. PMID:25751878
Finite-approximation-error-based discrete-time iterative adaptive dynamic programming.
Wei, Qinglai; Wang, Fei-Yue; Liu, Derong; Yang, Xiong
2014-12-01
In this paper, a new iterative adaptive dynamic programming (ADP) algorithm is developed to solve optimal control problems for infinite horizon discrete-time nonlinear systems with finite approximation errors. First, a new generalized value iteration algorithm of ADP is developed to make the iterative performance index function converge to the solution of the Hamilton-Jacobi-Bellman equation. The generalized value iteration algorithm permits an arbitrary positive semi-definite function to initialize it, which overcomes the disadvantage of traditional value iteration algorithms. When the iterative control law and iterative performance index function in each iteration cannot accurately be obtained, for the first time a new "design method of the convergence criteria" for the finite-approximation-error-based generalized value iteration algorithm is established. A suitable approximation error can be designed adaptively to make the iterative performance index function converge to a finite neighborhood of the optimal performance index function. Neural networks are used to implement the iterative ADP algorithm. Finally, two simulation examples are given to illustrate the performance of the developed method. PMID:25265640
Policy iteration adaptive dynamic programming algorithm for discrete-time nonlinear systems.
Liu, Derong; Wei, Qinglai
2014-03-01
This paper is concerned with a new discrete-time policy iteration adaptive dynamic programming (ADP) method for solving the infinite horizon optimal control problem of nonlinear systems. The idea is to use an iterative ADP technique to obtain the iterative control law, which optimizes the iterative performance index function. The main contribution of this paper is to analyze the convergence and stability properties of policy iteration method for discrete-time nonlinear systems for the first time. It shows that the iterative performance index function is nonincreasingly convergent to the optimal solution of the Hamilton-Jacobi-Bellman equation. It is also proven that any of the iterative control laws can stabilize the nonlinear systems. Neural networks are used to approximate the performance index function and compute the optimal control law, respectively, for facilitating the implementation of the iterative ADP algorithm, where the convergence of the weight matrices is analyzed. Finally, the numerical results and analysis are presented to illustrate the performance of the developed method. PMID:24807455
Fair Energy Scheduling for Vehicle-to-Grid Networks Using Adaptive Dynamic Programming.
Xie, Shengli; Zhong, Weifeng; Xie, Kan; Yu, Rong; Zhang, Yan
2016-08-01
Research on the smart grid is being given enormous supports worldwide due to its great significance in solving environmental and energy crises. Electric vehicles (EVs), which are powered by clean energy, are adopted increasingly year by year. It is predictable that the huge charge load caused by high EV penetration will have a considerable impact on the reliability of the smart grid. Therefore, fair energy scheduling for EV charge and discharge is proposed in this paper. By using the vehicle-to-grid technology, the scheduler controls the electricity loads of EVs considering fairness in the residential distribution network. We propose contribution-based fairness, in which EVs with high contributions have high priorities to obtain charge energy. The contribution value is defined by both the charge/discharge energy and the timing of the action. EVs can achieve higher contribution values when discharging during the load peak hours. However, charging during this time will decrease the contribution values seriously. We formulate the fair energy scheduling problem as an infinite-horizon Markov decision process. The methodology of adaptive dynamic programming is employed to maximize the long-term fairness by processing online network training. The numerical results illustrate that the proposed EV energy scheduling is able to mitigate and flatten the peak load in the distribution network. Furthermore, contribution-based fairness achieves a fast recovery of EV batteries that have deeply discharged and guarantee fairness in the full charge time of all EVs. PMID:26930694
Water Resource Adaptation Program
The Water Resource Adaptation Program (WRAP) contributes to the U.S. Environmental Protection Agency’s (U.S. EPA) efforts to provide water resource managers and decision makers with the tools needed to adapt water resources to demographic and economic development, and future clim...
Dynamical Adaptation in Photoreceptors
Clark, Damon A.; Benichou, Raphael; Meister, Markus; Azeredo da Silveira, Rava
2013-01-01
Adaptation is at the heart of sensation and nowhere is it more salient than in early visual processing. Light adaptation in photoreceptors is doubly dynamical: it depends upon the temporal structure of the input and it affects the temporal structure of the response. We introduce a non-linear dynamical adaptation model of photoreceptors. It is simple enough that it can be solved exactly and simulated with ease; analytical and numerical approaches combined provide both intuition on the behavior of dynamical adaptation and quantitative results to be compared with data. Yet the model is rich enough to capture intricate phenomenology. First, we show that it reproduces the known phenomenology of light response and short-term adaptation. Second, we present new recordings and demonstrate that the model reproduces cone response with great precision. Third, we derive a number of predictions on the response of photoreceptors to sophisticated stimuli such as periodic inputs, various forms of flickering inputs, and natural inputs. In particular, we demonstrate that photoreceptors undergo rapid adaptation of response gain and time scale, over ∼ 300 ms—i. e., over the time scale of the response itself—and we confirm this prediction with data. For natural inputs, this fast adaptation can modulate the response gain more than tenfold and is hence physiologically relevant. PMID:24244119
Karemere, Hermès; Ribesse, Nathalie; Kahindo, Jean-Bosco; Macq, Jean
2015-01-01
Introduction In many African countries, first referral hospitals received little attention from development agencies until recently. We report the evolution of two of them in an unstable region like Eastern Democratic Republic of Congo when receiving the support from development aid program. Specifically, we aimed at studying how actors’ network and institutional framework evolved over time and what could matter the most when looking at their performance in such an environment. Methods We performed two cases studies between 2006 and 2010. We used multiple sources of data: reports to document events; health information system for hospital services production, and “key-informants” interviews to interpret the relation between interventions and services production. Our analysis was inspired from complex adaptive system theory. It started from the analysis of events implementation, to explore interaction process between the main agents in each hospital, and the consequence it could have on hospital health services production. This led to the development of new theoretical propositions. Results Two events implemented in the frame of the development aid program were identified by most of the key-informants interviewed as having the greatest impact on hospital performance: the development of a hospital plan and the performance based financing. They resulted in contrasting interaction process between the main agents between the two hospitals. Two groups of services production were reviewed: consultation at outpatient department and admissions, and surgery. The evolution of both groups of services production were different between both hospitals. Conclusion By studying two first referral hospitals through the lens of a Complex Adaptive System, their performance in a context of development aid takes a different meaning. Success is not only measured through increased hospital production but through meaningful process of hospital agents’” network adaptation. Expected
Zhang, Jilie; Zhang, Huaguang; Liu, Zhenwei; Wang, Yingchun
2015-07-01
In this paper, we consider the problem of developing a controller for continuous-time nonlinear systems where the equations governing the system are unknown. Using the measurements, two new online schemes are presented for synthesizing a controller without building or assuming a model for the system, by two new implementation schemes based on adaptive dynamic programming (ADP). To circumvent the requirement of the prior knowledge for systems, a precompensator is introduced to construct an augmented system. The corresponding Hamilton-Jacobi-Bellman (HJB) equation is solved by adaptive dynamic programming, which consists of the least-squared technique, neural network approximator and policy iteration (PI) algorithm. The main idea of our method is to sample the information of state, state derivative and input to update the weighs of neural network by least-squared technique. The update process is implemented in the framework of PI. In this paper, two new implementation schemes are presented. Finally, several examples are given to illustrate the effectiveness of our schemes. PMID:25704057
Adaptive Dynamic Bayesian Networks
Ng, B M
2007-10-26
A discrete-time Markov process can be compactly modeled as a dynamic Bayesian network (DBN)--a graphical model with nodes representing random variables and directed edges indicating causality between variables. Each node has a probability distribution, conditional on the variables represented by the parent nodes. A DBN's graphical structure encodes fixed conditional dependencies between variables. But in real-world systems, conditional dependencies between variables may be unknown a priori or may vary over time. Model errors can result if the DBN fails to capture all possible interactions between variables. Thus, we explore the representational framework of adaptive DBNs, whose structure and parameters can change from one time step to the next: a distribution's parameters and its set of conditional variables are dynamic. This work builds on recent work in nonparametric Bayesian modeling, such as hierarchical Dirichlet processes, infinite-state hidden Markov networks and structured priors for Bayes net learning. In this paper, we will explain the motivation for our interest in adaptive DBNs, show how popular nonparametric methods are combined to formulate the foundations for adaptive DBNs, and present preliminary results.
Wang, Fei-Yue; Jin, Ning; Liu, Derong; Wei, Qinglai
2011-01-01
In this paper, we study the finite-horizon optimal control problem for discrete-time nonlinear systems using the adaptive dynamic programming (ADP) approach. The idea is to use an iterative ADP algorithm to obtain the optimal control law which makes the performance index function close to the greatest lower bound of all performance indices within an ε-error bound. The optimal number of control steps can also be obtained by the proposed ADP algorithms. A convergence analysis of the proposed ADP algorithms in terms of performance index function and control policy is made. In order to facilitate the implementation of the iterative ADP algorithms, neural networks are used for approximating the performance index function, computing the optimal control policy, and modeling the nonlinear system. Finally, two simulation examples are employed to illustrate the applicability of the proposed method. PMID:20876014
Yu, Rong; Zhong, Weifeng; Xie, Shengli; Zhang, Yan; Zhang, Yun
2016-02-01
As the next-generation power grid, smart grid will be integrated with a variety of novel communication technologies to support the explosive data traffic and the diverse requirements of quality of service (QoS). Cognitive radio (CR), which has the favorable ability to improve the spectrum utilization, provides an efficient and reliable solution for smart grid communications networks. In this paper, we study the QoS differential scheduling problem in the CR-based smart grid communications networks. The scheduler is responsible for managing the spectrum resources and arranging the data transmissions of smart grid users (SGUs). To guarantee the differential QoS, the SGUs are assigned to have different priorities according to their roles and their current situations in the smart grid. Based on the QoS-aware priority policy, the scheduler adjusts the channels allocation to minimize the transmission delay of SGUs. The entire transmission scheduling problem is formulated as a semi-Markov decision process and solved by the methodology of adaptive dynamic programming. A heuristic dynamic programming (HDP) architecture is established for the scheduling problem. By the online network training, the HDP can learn from the activities of primary users and SGUs, and adjust the scheduling decision to achieve the purpose of transmission delay minimization. Simulation results illustrate that the proposed priority policy ensures the low transmission delay of high priority SGUs. In addition, the emergency data transmission delay is also reduced to a significantly low level, guaranteeing the differential QoS in smart grid. PMID:25910254
Kurrasch, Deborah M; Nevin, Linda M; Wong, Jinny S; Baier, Herwig; Ingraham, Holly A
2009-01-01
role for NSF in hypothalamic development, with mutant 5 days post-fertilization larvae exhibiting a stage-dependent loss of neuroendocrine transcripts and a corresponding accumulation of neuropeptides in the soma. Based on our collective findings, we speculate that neuroendocrine transcriptional programs adapt dynamically to both the supply and demand for neuropeptides to ensure adequate homeostatic responses. PMID:19549326
Cultural Adaptation in Outdoor Programming
ERIC Educational Resources Information Center
Fabrizio, Sheila M.; Neill, James
2005-01-01
Outdoor programs often intentionally provide a different culture and the challenge of working out how to adapt. Failure to adapt, however, can cause symptoms of culture shock, including homesickness, negative personal behavior, and interpersonal conflict. This article links cross-cultural and outdoor programming literature and provides case…
Adaptive critics for dynamic optimization.
Kulkarni, Raghavendra V; Venayagamoorthy, Ganesh Kumar
2010-06-01
A novel action-dependent adaptive critic design (ACD) is developed for dynamic optimization. The proposed combination of a particle swarm optimization-based actor and a neural network critic is demonstrated through dynamic sleep scheduling of wireless sensor motes for wildlife monitoring. The objective of the sleep scheduler is to dynamically adapt the sleep duration to node's battery capacity and movement pattern of animals in its environment in order to obtain snapshots of the animal on its trajectory uniformly. Simulation results show that the sleep time of the node determined by the actor critic yields superior quality of sensory data acquisition and enhanced node longevity. PMID:20223635
Adaptive dynamics of saturated polymorphisms.
Kisdi, Éva; Geritz, Stefan A H
2016-03-01
We study the joint adaptive dynamics of n scalar-valued strategies in ecosystems where n is the maximum number of coexisting strategies permitted by the (generalized) competitive exclusion principle. The adaptive dynamics of such saturated systems exhibits special characteristics, which we first demonstrate in a simple example of a host-pathogen-predator model. The main part of the paper characterizes the adaptive dynamics of saturated polymorphisms in general. In order to investigate convergence stability, we give a new sufficient condition for absolute stability of an arbitrary (not necessarily saturated) polymorphic singularity and show that saturated evolutionarily stable polymorphisms satisfy it. For the case [Formula: see text], we also introduce a method to construct different pairwise invasibility plots of the monomorphic population without changing the selection gradients of the saturated dimorphism. PMID:26676357
Criticality of Adaptive Control Dynamics
NASA Astrophysics Data System (ADS)
Patzelt, Felix; Pawelzik, Klaus
2011-12-01
We show, that stabilization of a dynamical system can annihilate observable information about its structure. This mechanism induces critical points as attractors in locally adaptive control. It also reveals, that previously reported criticality in simple controllers is caused by adaptation and not by other controller details. We apply these results to a real-system example: human balancing behavior. A model of predictive adaptive closed-loop control subject to some realistic constraints is introduced and shown to reproduce experimental observations in unprecedented detail. Our results suggests, that observed error distributions in between the Lévy and Gaussian regimes may reflect a nearly optimal compromise between the elimination of random local trends and rare large errors.
Parallel Programming Strategies for Irregular Adaptive Applications
NASA Technical Reports Server (NTRS)
Biswas, Rupak; Biegel, Bryan (Technical Monitor)
2001-01-01
Achieving scalable performance for dynamic irregular applications is eminently challenging. Traditional message-passing approaches have been making steady progress towards this goal; however, they suffer from complex implementation requirements. The use of a global address space greatly simplifies the programming task, but can degrade the performance for such computations. In this work, we examine two typical irregular adaptive applications, Dynamic Remeshing and N-Body, under competing programming methodologies and across various parallel architectures. The Dynamic Remeshing application simulates flow over an airfoil, and refines localized regions of the underlying unstructured mesh. The N-Body experiment models two neighboring Plummer galaxies that are about to undergo a merger. Both problems demonstrate dramatic changes in processor workloads and interprocessor communication with time; thus, dynamic load balancing is a required component.
Adaptive Dynamic Event Tree in RAVEN code
Alfonsi, Andrea; Rabiti, Cristian; Mandelli, Diego; Cogliati, Joshua Joseph; Kinoshita, Robert Arthur
2014-11-01
RAVEN is a software tool that is focused on performing statistical analysis of stochastic dynamic systems. RAVEN has been designed in a high modular and pluggable way in order to enable easy integration of different programming languages (i.e., C++, Python) and coupling with other applications (system codes). Among the several capabilities currently present in RAVEN, there are five different sampling strategies: Monte Carlo, Latin Hyper Cube, Grid, Adaptive and Dynamic Event Tree (DET) sampling methodologies. The scope of this paper is to present a new sampling approach, currently under definition and implementation: an evolution of the DET me
Dynamic Adaption of Vascular Morphology
Okkels, Fridolin; Jacobsen, Jens Christian Brings
2012-01-01
The structure of vascular networks adapts continuously to meet changes in demand of the surrounding tissue. Most of the known vascular adaptation mechanisms are based on local reactions to local stimuli such as pressure and flow, which in turn reflects influence from the surrounding tissue. Here we present a simple two-dimensional model in which, as an alternative approach, the tissue is modeled as a porous medium with intervening sharply defined flow channels. Based on simple, physiologically realistic assumptions, flow-channel structure adapts so as to reach a configuration in which all parts of the tissue are supplied. A set of model parameters uniquely determine the model dynamics, and we have identified the region of the best-performing model parameters (a global optimum). This region is surrounded in parameter space by less optimal model parameter values, and this separation is characterized by steep gradients in the related fitness landscape. Hence it appears that the optimal set of parameters tends to localize close to critical transition zones. Consequently, while the optimal solution is stable for modest parameter perturbations, larger perturbations may cause a profound and permanent shift in systems characteristics. We suggest that the system is driven toward a critical state as a consequence of the ongoing parameter optimization, mimicking an evolutionary pressure on the system. PMID:23060814
Adaptive EAGLE dynamic solution adaptation and grid quality enhancement
NASA Technical Reports Server (NTRS)
Luong, Phu Vinh; Thompson, J. F.; Gatlin, B.; Mastin, C. W.; Kim, H. J.
1992-01-01
In the effort described here, the elliptic grid generation procedure in the EAGLE grid code was separated from the main code into a subroutine, and a new subroutine which evaluates several grid quality measures at each grid point was added. The elliptic grid routine can now be called, either by a computational fluid dynamics (CFD) code to generate a new adaptive grid based on flow variables and quality measures through multiple adaptation, or by the EAGLE main code to generate a grid based on quality measure variables through static adaptation. Arrays of flow variables can be read into the EAGLE grid code for use in static adaptation as well. These major changes in the EAGLE adaptive grid system make it easier to convert any CFD code that operates on a block-structured grid (or single-block grid) into a multiple adaptive code.
Dynamic optimization and adaptive controller design
NASA Astrophysics Data System (ADS)
Inamdar, S. R.
2010-10-01
In this work I present a new type of controller which is an adaptive tracking controller which employs dynamic optimization for optimizing current value of controller action for the temperature control of nonisothermal continuously stirred tank reactor (CSTR). We begin with a two-state model of nonisothermal CSTR which are mass and heat balance equations and then add cooling system dynamics to eliminate input multiplicity. The initial design value is obtained using local stability of steady states where approach temperature for cooling action is specified as a steady state and a design specification. Later we make a correction in the dynamics where material balance is manipulated to use feed concentration as a system parameter as an adaptive control measure in order to avoid actuator saturation for the main control loop. The analysis leading to design of dynamic optimization based parameter adaptive controller is presented. The important component of this mathematical framework is reference trajectory generation to form an adaptive control measure.
Multithreaded Model for Dynamic Load Balancing Parallel Adaptive PDE Computations
NASA Technical Reports Server (NTRS)
Chrisochoides, Nikos
1995-01-01
We present a multithreaded model for the dynamic load-balancing of numerical, adaptive computations required for the solution of Partial Differential Equations (PDE's) on multiprocessors. Multithreading is used as a means of exploring concurrency in the processor level in order to tolerate synchronization costs inherent to traditional (non-threaded) parallel adaptive PDE solvers. Our preliminary analysis for parallel, adaptive PDE solvers indicates that multithreading can be used an a mechanism to mask overheads required for the dynamic balancing of processor workloads with computations required for the actual numerical solution of the PDE's. Also, multithreading can simplify the implementation of dynamic load-balancing algorithms, a task that is very difficult for traditional data parallel adaptive PDE computations. Unfortunately, multithreading does not always simplify program complexity, often makes code re-usability not an easy task, and increases software complexity.
Dynamic adaptivity of "smart" piezoelectric structures
NASA Astrophysics Data System (ADS)
Tzou, Horn-Sen; Zhong, Jianping P.
1990-10-01
Active smart" space and machine structures with adaptive dynamic characteristics have long been interested in a variety of high-performance systems, e.g., flexible robots, flexible space structures, "smart" machines, etc. In this paper, an active adaptive structure made of piezoelectric materials is proposed and evaluated. The structural adaptivity is achieved by a voltage feedback (open or closed loops) utilizing the converse piezoelectric effect. A mathematical model is proposed and the electrodynamic equations of motion and the generalized boundary conditions of a generic piezoelectric shell subjected to mechanical and electrical excitations are derived using Hamilton's principle and the linear piezoelectric theory. The dynamic adaptivity of the structure is introduced using a feedback control system. The theory is demonstrated in a case study in which the structural adaptivity (natural frequency) is investigated.
Wittler, R.; McBain, S.; Stalnaker, C.
2003-01-01
Two adaptive management programs, the Glen Canyon Dam Adaptive Management Program (GCDAMP) and the Trinity River Restoration Program (TRRP) are examined. In both cases, the focus is on managing the aquatic and riparian systems downstream of a large dam and water supply project. The status of the two programs, lessons learned by the program managers and the Adaptive Environmental Assessment and Management (AEAM) evolution of the TRRP are discussed. The Trinity River illustrates some of the scientific uncertainities that a program faces and the ways the program evolves from concept through implementation.
An Adaptive Superintendent Induction Program
ERIC Educational Resources Information Center
Brandon, Jim; Donlevy, Kent; Hanna, Paulette; Gereluk, Dianne; Patterson, Peggy; Rhyason, Kath
2014-01-01
This study examined a recently established induction program for new superintendents in the Canadian province of Alberta over a three-year period. In keeping with principles of design-based research data were collected from a variety of sources from the 26 new superintendents and their 25 mentors to assess and adjust programming through three…
ERIC Educational Resources Information Center
Shih, Ching-Hsiang; Shih, Ching-Tien; Wu, Hsiao-Ling
2010-01-01
The latest research adopted software technology to redesign the mouse driver, and turned a mouse into a useful pointing assistive device for people with multiple disabilities who cannot easily or possibly use a standard mouse, to improve their pointing performance through a new operation method, Extended Dynamic Pointing Assistive Program (EDPAP),…
Automated adaptive inference of phenomenological dynamical models
Daniels, Bryan C.; Nemenman, Ilya
2015-01-01
Dynamics of complex systems is often driven by large and intricate networks of microscopic interactions, whose sheer size obfuscates understanding. With limited experimental data, many parameters of such dynamics are unknown, and thus detailed, mechanistic models risk overfitting and making faulty predictions. At the other extreme, simple ad hoc models often miss defining features of the underlying systems. Here we develop an approach that instead constructs phenomenological, coarse-grained models of network dynamics that automatically adapt their complexity to the available data. Such adaptive models produce accurate predictions even when microscopic details are unknown. The approach is computationally tractable, even for a relatively large number of dynamical variables. Using simulated data, it correctly infers the phase space structure for planetary motion, avoids overfitting in a biological signalling system and produces accurate predictions for yeast glycolysis with tens of data points and over half of the interacting species unobserved. PMID:26293508
Automated adaptive inference of phenomenological dynamical models
NASA Astrophysics Data System (ADS)
Daniels, Bryan C.; Nemenman, Ilya
2015-08-01
Dynamics of complex systems is often driven by large and intricate networks of microscopic interactions, whose sheer size obfuscates understanding. With limited experimental data, many parameters of such dynamics are unknown, and thus detailed, mechanistic models risk overfitting and making faulty predictions. At the other extreme, simple ad hoc models often miss defining features of the underlying systems. Here we develop an approach that instead constructs phenomenological, coarse-grained models of network dynamics that automatically adapt their complexity to the available data. Such adaptive models produce accurate predictions even when microscopic details are unknown. The approach is computationally tractable, even for a relatively large number of dynamical variables. Using simulated data, it correctly infers the phase space structure for planetary motion, avoids overfitting in a biological signalling system and produces accurate predictions for yeast glycolysis with tens of data points and over half of the interacting species unobserved.
Earth and ocean dynamics program
NASA Technical Reports Server (NTRS)
Vonbun, F. O.
1976-01-01
The objectives and requirements of the Earth and Ocean Dynamics Programs are outlined along with major goals and experiments. Spaceborne as well as ground systems needed to accomplish program goals are listed and discussed along with program accomplishments.
Dynamical Adaptation in Terrorist Cells/Networks
NASA Astrophysics Data System (ADS)
Hussain, D. M. Akbar; Ahmed, Zaki
Typical terrorist cells/networks have dynamical structure as they evolve or adapt to changes which may occur due to capturing or killing of a member of the cell/network. Analytical measures in graph theory like degree centrality, betweenness and closeness centralities are very common and have long history of their successful use in revealing the importance of various members of the network. However, modeling of covert, terrorist or criminal networks through social graph dose not really provide the hierarchical structure which exist in these networks as these networks are composed of leaders and followers etc. In this research we analyze and predict the most likely role a particular node can adapt once a member of the network is either killed or caught. The adaptation is based on computing Bayes posteriori probability of each node and the level of the said node in the network structure.
Dynamic Load Balancing for Adaptive Unstructured Grids
NASA Technical Reports Server (NTRS)
Biswas, Rupak; Saini, Subhash (Technical Monitor)
1998-01-01
Dynamic mesh adaptation on unstructured grids is a powerful tool for computing unsteady three-dimensional problems that require grid modifications to efficiently resolve solution features. By locally refining and coarsening the mesh to capture phenomena of interest, such procedures make standard computational methods more cost effective. Highly refined meshes are required to accurately capture shock waves, contact discontinuities, vortices, and shear layers in fluid flow problems. Adaptive meshes have also proved to be useful in several other areas of computational science and engineering like computer vision and graphics, semiconductor device modeling, and structural mechanics. Local mesh adaptation provides the opportunity to obtain solutions that are comparable to those obtained on globally-refined grids but at a much lower cost. Additional information is contained in the original extended abstract.
Target tracking with dynamically adaptive correlation
NASA Astrophysics Data System (ADS)
Gaxiola, Leopoldo N.; Diaz-Ramirez, Victor H.; Tapia, Juan J.; García-Martínez, Pascuala
2016-04-01
A reliable algorithm for target tracking based on dynamically adaptive correlation filtering is presented. The algorithm is capable of tracking with high accuracy the location of a target in an input video sequence without using an offline training process. The target is selected at the beginning of the algorithm. Afterwards, a composite correlation filter optimized for distortion tolerant pattern recognition is designed to recognize the target in the next frame. The filter is dynamically adapted to each frame using information of current and past scene observations. Results obtained with the proposed algorithm in synthetic and real-life video sequences, are analyzed and compared with those obtained with recent state-of-the-art tracking algorithms in terms of objective metrics.
Adaptive synchronization and anticipatory dynamical systems
NASA Astrophysics Data System (ADS)
Yang, Ying-Jen; Chen, Chun-Chung; Lai, Pik-Yin; Chan, C. K.
2015-09-01
Many biological systems can sense periodical variations in a stimulus input and produce well-timed, anticipatory responses after the input is removed. Such systems show memory effects for retaining timing information in the stimulus and cannot be understood from traditional synchronization consideration of passive oscillatory systems. To understand this anticipatory phenomena, we consider oscillators built from excitable systems with the addition of an adaptive dynamics. With such systems, well-timed post-stimulus responses similar to those from experiments can be obtained. Furthermore, a well-known model of working memory is shown to possess similar anticipatory dynamics when the adaptive mechanism is identified with synaptic facilitation. The last finding suggests that this type of oscillator can be common in neuronal systems with plasticity.
Synaptic dynamics: linear model and adaptation algorithm.
Yousefi, Ali; Dibazar, Alireza A; Berger, Theodore W
2014-08-01
In this research, temporal processing in brain neural circuitries is addressed by a dynamic model of synaptic connections in which the synapse model accounts for both pre- and post-synaptic processes determining its temporal dynamics and strength. Neurons, which are excited by the post-synaptic potentials of hundred of the synapses, build the computational engine capable of processing dynamic neural stimuli. Temporal dynamics in neural models with dynamic synapses will be analyzed, and learning algorithms for synaptic adaptation of neural networks with hundreds of synaptic connections are proposed. The paper starts by introducing a linear approximate model for the temporal dynamics of synaptic transmission. The proposed linear model substantially simplifies the analysis and training of spiking neural networks. Furthermore, it is capable of replicating the synaptic response of the non-linear facilitation-depression model with an accuracy better than 92.5%. In the second part of the paper, a supervised spike-in-spike-out learning rule for synaptic adaptation in dynamic synapse neural networks (DSNN) is proposed. The proposed learning rule is a biologically plausible process, and it is capable of simultaneously adjusting both pre- and post-synaptic components of individual synapses. The last section of the paper starts with presenting the rigorous analysis of the learning algorithm in a system identification task with hundreds of synaptic connections which confirms the learning algorithm's accuracy, repeatability and scalability. The DSNN is utilized to predict the spiking activity of cortical neurons and pattern recognition tasks. The DSNN model is demonstrated to be a generative model capable of producing different cortical neuron spiking patterns and CA1 Pyramidal neurons recordings. A single-layer DSNN classifier on a benchmark pattern recognition task outperforms a 2-Layer Neural Network and GMM classifiers while having fewer numbers of free parameters and
Emerging hierarchies in dynamically adapting webs
NASA Astrophysics Data System (ADS)
Katifori, Eleni; Graewer, Johannes; Magnasco, Marcelo; Modes, Carl
Transport networks play a key role across four realms of eukaryotic life: slime molds, fungi, plants, and animals. In addition to the developmental algorithms that build them, many also employ adaptive strategies to respond to stimuli, damage, and other environmental changes. We model these adapting network architectures using a generic dynamical system on weighted graphs and find in simulation that these networks ultimately develop a hierarchical organization of the final weighted architecture accompanied by the formation of a system-spanning backbone. We quantify the hierarchical organization of the networks by developing an algorithm that decomposes the architecture to multiple scales and analyzes how the organization in each scale relates to that of the scale above and below it. The methodologies developed in this work are applicable to a wide range of systems including the slime mold physarum polycephalum, human microvasculature, and force chains in granular media.
Cardiac fluid dynamics anticipates heart adaptation.
Pedrizzetti, Gianni; Martiniello, Alfonso R; Bianchi, Valter; D'Onofrio, Antonio; Caso, Pio; Tonti, Giovanni
2015-01-21
Hemodynamic forces represent an epigenetic factor during heart development and are supposed to influence the pathology of the grown heart. Cardiac blood motion is characterized by a vortical dynamics, and it is common belief that the cardiac vortex has a role in disease progressions or regression. Here we provide a preliminary demonstration about the relevance of maladaptive intra-cardiac vortex dynamics in the geometrical adaptation of the dysfunctional heart. We employed an in vivo model of patients who present a stable normal heart function in virtue of the cardiac resynchronization therapy (CRT, bi-ventricular pace-maker) and who are expected to develop left ventricle remodeling if pace-maker was switched off. Intra-ventricular fluid dynamics is analyzed by echocardiography (Echo-PIV). Under normal conditions, the flow presents a longitudinal alignment of the intraventricular hemodynamic forces. When pacing is temporarily switched off, flow forces develop a misalignment hammering onto lateral walls, despite no other electro-mechanical change is noticed. Hemodynamic forces result to be the first event that evokes a physiological activity anticipating cardiac changes and could help in the prediction of longer term heart adaptations. PMID:25529139
Mental workload dynamics in adaptive interface design
NASA Technical Reports Server (NTRS)
Hancock, Peter A.; Chignell, Mark H.
1988-01-01
In examining the role of time in mental workload, the authors present a different perspective from which to view the problem of assessment. Mental workload is plotted in three dimensions, whose axes represent effective time for action, perceived distance from desired goal state, level of effort required to achieve the time-constrained goal. This representation allows the generation of isodynamic workload contours that incorporate the factors of operator skill and equifinality of effort. An adaptive interface for dynamic task reallocation is described that uses this form of assessment to reconcile the joint aims of stable operator loading and acceptable primary task performance by the total system.
Direct adaptive control for nonlinear uncertain dynamical systems
NASA Astrophysics Data System (ADS)
Hayakawa, Tomohisa
In light of the complex and highly uncertain nature of dynamical systems requiring controls, it is not surprising that reliable system models for many high performance engineering and life science applications are unavailable. In the face of such high levels of system uncertainty, robust controllers may unnecessarily sacrifice system performance whereas adaptive controllers are clearly appropriate since they can tolerate far greater system uncertainty levels to improve system performance. In this dissertation, we develop a Lyapunov-based direct adaptive and neural adaptive control framework that addresses parametric uncertainty, unstructured uncertainty, disturbance rejection, amplitude and rate saturation constraints, and digital implementation issues. Specifically, we consider the following research topics; direct adaptive control for nonlinear uncertain systems with exogenous disturbances; robust adaptive control for nonlinear uncertain systems; adaptive control for nonlinear uncertain systems with actuator amplitude and rate saturation constraints; adaptive reduced-order dynamic compensation for nonlinear uncertain systems; direct adaptive control for nonlinear matrix second-order dynamical systems with state-dependent uncertainty; adaptive control for nonnegative and compartmental dynamical systems with applications to general anesthesia; direct adaptive control of nonnegative and compartmental dynamical systems with time delay; adaptive control for nonlinear nonnegative and compartmental dynamical systems with applications to clinical pharmacology; neural network adaptive control for nonlinear nonnegative dynamical systems; passivity-based neural network adaptive output feedback control for nonlinear nonnegative dynamical systems; neural network adaptive dynamic output feedback control for nonlinear nonnegative systems using tapped delay memory units; Lyapunov-based adaptive control framework for discrete-time nonlinear systems with exogenous disturbances
ADAPTIVE MULTILEVEL SPLITTING IN MOLECULAR DYNAMICS SIMULATIONS*
Aristoff, David; Lelièvre, Tony; Mayne, Christopher G.; Teo, Ivan
2014-01-01
Adaptive Multilevel Splitting (AMS) is a replica-based rare event sampling method that has been used successfully in high-dimensional stochastic simulations to identify trajectories across a high potential barrier separating one metastable state from another, and to estimate the probability of observing such a trajectory. An attractive feature of AMS is that, in the limit of a large number of replicas, it remains valid regardless of the choice of reaction coordinate used to characterize the trajectories. Previous studies have shown AMS to be accurate in Monte Carlo simulations. In this study, we extend the application of AMS to molecular dynamics simulations and demonstrate its effectiveness using a simple test system. Our conclusion paves the way for useful applications, such as molecular dynamics calculations of the characteristic time of drug dissociation from a protein target. PMID:26005670
Circuit dynamics of adaptive and maladaptive behaviour
Deisseroth, Karl
2014-01-01
The recent development of technologies for investigating specific components of intact biological systems has allowed elucidation of the neural circuitry underlying adaptive and maladaptive behaviours. Investigators are now able to observe and control, with high spatio-temporal resolution, structurally defined intact pathways along which electrical activity flows during and after the performance of complex behaviours. These investigations have revealed that control of projection-specific dynamics is well suited to modulating behavioural patterns that are relevant to a broad range of psychiatric diseases. Structural dynamics principles have emerged to provide diverse, unexpected and causal insights into the operation of intact and diseased nervous systems, linking form and function in the brain. PMID:24429629
Improvements to the adaptive maneuvering logic program
NASA Technical Reports Server (NTRS)
Burgin, George H.
1986-01-01
The Adaptive Maneuvering Logic (AML) computer program simulates close-in, one-on-one air-to-air combat between two fighter aircraft. Three important improvements are described. First, the previously available versions of AML were examined for their suitability as a baseline program. The selected program was then revised to eliminate some programming bugs which were uncovered over the years. A listing of this baseline program is included. Second, the equations governing the motion of the aircraft were completely revised. This resulted in a model with substantially higher fidelity than the original equations of motion provided. It also completely eliminated the over-the-top problem, which occurred in the older versions when the AML-driven aircraft attempted a vertical or near vertical loop. Third, the requirements for a versatile generic, yet realistic, aircraft model were studied and implemented in the program. The report contains detailed tables which make the generic aircraft to be either a modern, high performance aircraft, an older high performance aircraft, or a previous generation jet fighter.
Actin Filament Segmentation Using Dynamic Programming
Li, Hongsheng; Shen, Tian; Huang, Xiaolei
2011-01-01
We introduce a novel algorithm for actin filament segmentation in 2D TIRFM image sequences. This problem is difficult because actin filaments dynamically change shapes during their growth, and the TIRFM images are usually noisy. We ask a user to specify the two tips of a filament of interest in the first frame. We then model the segmentation problem in an image sequence as a temporal chain, where its states are tip locations; given candidate tip locations, actin filaments' body points are inferred by a dynamic programming method, which adaptively generates candidate solutions. Combining candidate tip locations and their inferred body points, the temporal chain model is efficiently optimized using another dynamic programming method. Evaluation on noisy TIRFM image sequences demonstrates the accuracy and robustness of this approach. PMID:21761674
Adaptive dynamics for physiologically structured population models.
Durinx, Michel; Metz, J A J Hans; Meszéna, Géza
2008-05-01
We develop a systematic toolbox for analyzing the adaptive dynamics of multidimensional traits in physiologically structured population models with point equilibria (sensu Dieckmann et al. in Theor. Popul. Biol. 63:309-338, 2003). Firstly, we show how the canonical equation of adaptive dynamics (Dieckmann and Law in J. Math. Biol. 34:579-612, 1996), an approximation for the rate of evolutionary change in characters under directional selection, can be extended so as to apply to general physiologically structured population models with multiple birth states. Secondly, we show that the invasion fitness function (up to and including second order terms, in the distances of the trait vectors to the singularity) for a community of N coexisting types near an evolutionarily singular point has a rational form, which is model-independent in the following sense: the form depends on the strategies of the residents and the invader, and on the second order partial derivatives of the one-resident fitness function at the singular point. This normal form holds for Lotka-Volterra models as well as for physiologically structured population models with multiple birth states, in discrete as well as continuous time and can thus be considered universal for the evolutionary dynamics in the neighbourhood of singular points. Only in the case of one-dimensional trait spaces or when N = 1 can the normal form be reduced to a Taylor polynomial. Lastly we show, in the form of a stylized recipe, how these results can be combined into a systematic approach for the analysis of the (large) class of evolutionary models that satisfy the above restrictions. PMID:17943289
Opinion dynamics on an adaptive random network
NASA Astrophysics Data System (ADS)
Benczik, I. J.; Benczik, S. Z.; Schmittmann, B.; Zia, R. K. P.
2009-04-01
We revisit the classical model for voter dynamics in a two-party system with two basic modifications. In contrast to the original voter model studied in regular lattices, we implement the opinion formation process in a random network of agents in which interactions are no longer restricted by geographical distance. In addition, we incorporate the rapidly changing nature of the interpersonal relations in the model. At each time step, agents can update their relationships. This update is determined by their own opinion, and by their preference to make connections with individuals sharing the same opinion, or rather with opponents. In this way, the network is built in an adaptive manner, in the sense that its structure is correlated and evolves with the dynamics of the agents. The simplicity of the model allows us to examine several issues analytically. We establish criteria to determine whether consensus or polarization will be the outcome of the dynamics and on what time scales these states will be reached. In finite systems consensus is typical, while in infinite systems a disordered metastable state can emerge and persist for infinitely long time before consensus is reached.
Nitric oxide regulates vascular adaptive mitochondrial dynamics.
Miller, Matthew W; Knaub, Leslie A; Olivera-Fragoso, Luis F; Keller, Amy C; Balasubramaniam, Vivek; Watson, Peter A; Reusch, Jane E B
2013-06-15
Cardiovascular disease risk factors, such as diabetes, hypertension, dyslipidemia, obesity, and physical inactivity, are all correlated with impaired endothelial nitric oxide synthase (eNOS) function and decreased nitric oxide (NO) production. NO-mediated regulation of mitochondrial biogenesis has been established in many tissues, yet the role of eNOS in vascular mitochondrial biogenesis and dynamics is unclear. We hypothesized that genetic eNOS deletion and 3-day nitric oxide synthase (NOS) inhibition in rodents would result in impaired mitochondrial biogenesis and defunct fission/fusion and autophagy profiles within the aorta. We observed a significant, eNOS expression-dependent decrease in mitochondrial electron transport chain (ETC) protein subunits from complexes I, II, III, and V in eNOS heterozygotes and eNOS null mice compared with age-matched controls. In response to NOS inhibition with NG-nitro-L-arginine methyl ester (L-NAME) treatment in Sprague Dawley rats, significant decreases were observed in ETC protein subunits from complexes I, III, and IV as well as voltage-dependent anion channel 1. Decreased protein content of upstream regulators of mitochondrial biogenesis, cAMP response element-binding protein and peroxisome proliferator-activated receptor-γ coactivator-1α, were observed in response to 3-day L-NAME treatment. Both genetic eNOS deletion and NOS inhibition resulted in decreased manganese superoxide dismutase protein. L-NAME treatment resulted in significant changes to mitochondrial dynamic protein profiles with decreased fusion, increased fission, and minimally perturbed autophagy. In addition, L-NAME treatment blocked mitochondrial adaptation to an exercise intervention in the aorta. These results suggest that eNOS/NO play a role in basal and adaptive mitochondrial biogenesis in the vasculature and regulation of mitochondrial turnover. PMID:23585138
Ultra-Low Power Dynamic Knob in Adaptive Compressed Sensing Towards Biosignal Dynamics.
Wang, Aosen; Lin, Feng; Jin, Zhanpeng; Xu, Wenyao
2016-06-01
Compressed sensing (CS) is an emerging sampling paradigm in data acquisition. Its integrated analog-to-information structure can perform simultaneous data sensing and compression with low-complexity hardware. To date, most of the existing CS implementations have a fixed architectural setup, which lacks flexibility and adaptivity for efficient dynamic data sensing. In this paper, we propose a dynamic knob (DK) design to effectively reconfigure the CS architecture by recognizing the biosignals. Specifically, the dynamic knob design is a template-based structure that comprises a supervised learning module and a look-up table module. We model the DK performance in a closed analytic form and optimize the design via a dynamic programming formulation. We present the design on a 130 nm process, with a 0.058 mm (2) fingerprint and a 187.88 nJ/event energy-consumption. Furthermore, we benchmark the design performance using a publicly available dataset. Given the energy constraint in wireless sensing, the adaptive CS architecture can consistently improve the signal reconstruction quality by more than 70%, compared with the traditional CS. The experimental results indicate that the ultra-low power dynamic knob can provide an effective adaptivity and improve the signal quality in compressed sensing towards biosignal dynamics. PMID:26800548
Adaptive Assessment of Student's Knowledge in Programming Courses
ERIC Educational Resources Information Center
Chatzopoulou, D. I.; Economides, A. A.
2010-01-01
This paper presents Programming Adaptive Testing (PAT), a Web-based adaptive testing system for assessing students' programming knowledge. PAT was used in two high school programming classes by 73 students. The question bank of PAT is composed of 443 questions. A question is classified in one out of three difficulty levels. In PAT, the levels of…
The CHARA Array Adaptive Optics Program
NASA Astrophysics Data System (ADS)
Ten Brummelaar, Theo; Che, Xiao; McAlister, Harold A.; Ireland, Michael; Monnier, John D.; Mourard, Denis; Ridgway, Stephen T.; sturmann, judit; Sturmann, Laszlo; Turner, Nils H.; Tuthill, Peter
2016-01-01
The CHARA array is an optical/near infrared interferometer consisting of six 1-meter diameter telescopes the longest baseline of which is 331 meters. With sub-millisecond angular resolution, the CHARA array is able to spatially resolve nearby stellar systems to reveal the detailed structures. To improve the sensitivity and scientific throughput, the CHARA array was funded by NSF-ATI in 2011, and by NSF-MRI in 2015, for an upgrade of adaptive optics (AO) systems to all six telescopes. The initial grant covers Phase I of the adaptive optics system, which includes an on-telescope Wavefront Sensor and non-common-path (NCP) error correction. The WFS use a fairly standard Shack-Hartman design and will initially close the tip tilt servo and log wavefront errors for use in data reduction and calibration. The second grant provides the funding for deformable mirrors for each telescope which will be used closed loop to remove atmospheric aberrations from the beams. There are then over twenty reflections after the WFS at the telescopes that bring the light several hundred meters into the beam combining laboratory. Some of these, including the delay line and beam reducing optics, are powered elements, and some of them, in particular the delay lines and telescope Coude optics, are continually moving. This means that the NCP problems in an interferometer are much greater than those found in more standard telescope systems. A second, slow AO system is required in the laboratory to correct for these NCP errors. We will breifly describe the AO system, and it's current status, as well as discuss the new science enabled by the system with a focus on our YSO program.
Neural network with dynamically adaptable neurons
NASA Technical Reports Server (NTRS)
Tawel, Raoul (Inventor)
1994-01-01
This invention is an adaptive neuron for use in neural network processors. The adaptive neuron participates in the supervised learning phase of operation on a co-equal basis with the synapse matrix elements by adaptively changing its gain in a similar manner to the change of weights in the synapse IO elements. In this manner, training time is decreased by as much as three orders of magnitude.
The Branching Bifurcation of Adaptive Dynamics
NASA Astrophysics Data System (ADS)
Della Rossa, Fabio; Dercole, Fabio; Landi, Pietro
2015-06-01
We unfold the bifurcation involving the loss of evolutionary stability of an equilibrium of the canonical equation of Adaptive Dynamics (AD). The equation deterministically describes the expected long-term evolution of inheritable traits — phenotypes or strategies — of coevolving populations, in the limit of rare and small mutations. In the vicinity of a stable equilibrium of the AD canonical equation, a mutant type can invade and coexist with the present — resident — types, whereas the fittest always win far from equilibrium. After coexistence, residents and mutants effectively diversify, according to the enlarged canonical equation, only if natural selection favors outer rather than intermediate traits — the equilibrium being evolutionarily unstable, rather than stable. Though the conditions for evolutionary branching — the joint effect of resident-mutant coexistence and evolutionary instability — have been known for long, the unfolding of the bifurcation has remained a missing tile of AD, the reason being related to the nonsmoothness of the mutant invasion fitness after branching. In this paper, we develop a methodology that allows the approximation of the invasion fitness after branching in terms of the expansion of the (smooth) fitness before branching. We then derive a canonical model for the branching bifurcation and perform its unfolding around the loss of evolutionary stability. We cast our analysis in the simplest (but classical) setting of asexual, unstructured populations living in an isolated, homogeneous, and constant abiotic environment; individual traits are one-dimensional; intra- as well as inter-specific ecological interactions are described in the vicinity of a stationary regime.
Static and dynamic responses of an ultrathin adaptive secondary mirror
NASA Astrophysics Data System (ADS)
del Vecchio, Ciro; Brusa, Guido; Gallieni, Daniele; Lloyd-Hart, Michael; Davison, Warren B.
1999-09-01
We present the results of a compete set of static and dynamic runs of the FEA model of the MMT adaptive secondary. The thin mirror is the most delicate component of the MMT adaptive secondary unit, as it provides the deformable optical surface able to correct the incoming wavefront. The static performances are evaluated as a function of the various load cases arising form gravitational loads and from the forces deriving from the magnetic interactions between actuators. In addition, computations were performed to assess the dynamic response to the high bandwidth, adaptive correcting force.s In both cases, the performances of the adaptive mirror design are able to accommodate the severe specifications.
Probabilistic dual heuristic programming-based adaptive critic
NASA Astrophysics Data System (ADS)
Herzallah, Randa
2010-02-01
Adaptive critic (AC) methods have common roots as generalisations of dynamic programming for neural reinforcement learning approaches. Since they approximate the dynamic programming solutions, they are potentially suitable for learning in noisy, non-linear and non-stationary environments. In this study, a novel probabilistic dual heuristic programming (DHP)-based AC controller is proposed. Distinct to current approaches, the proposed probabilistic (DHP) AC method takes uncertainties of forward model and inverse controller into consideration. Therefore, it is suitable for deterministic and stochastic control problems characterised by functional uncertainty. Theoretical development of the proposed method is validated by analytically evaluating the correct value of the cost function which satisfies the Bellman equation in a linear quadratic control problem. The target value of the probabilistic critic network is then calculated and shown to be equal to the analytically derived correct value. Full derivation of the Riccati solution for this non-standard stochastic linear quadratic control problem is also provided. Moreover, the performance of the proposed probabilistic controller is demonstrated on linear and non-linear control examples.
Conservation program participation and adaptive rangeland decision-making
Technology Transfer Automated Retrieval System (TEKTRAN)
This paper analyzes rancher participation in conservation programs in the context of a social-ecological framework for adaptive rangeland management. We argue that conservation programs are best understood as one of many strategies of adaptively managing rangelands in ways that sustain livelihoods a...
Recruitment dynamics in adaptive social networks.
Shkarayev, Maxim S; Schwartz, Ira B; Shaw, Leah B
2013-01-01
We model recruitment in adaptive social networks in the presence of birth and death processes. Recruitment is characterized by nodes changing their status to that of the recruiting class as a result of contact with recruiting nodes. Only a susceptible subset of nodes can be recruited. The recruiting individuals may adapt their connections in order to improve recruitment capabilities, thus changing the network structure adaptively. We derive a mean field theory to predict the dependence of the growth threshold of the recruiting class on the adaptation parameter. Furthermore, we investigate the effect of adaptation on the recruitment level, as well as on network topology. The theoretical predictions are compared with direct simulations of the full system. We identify two parameter regimes with qualitatively different bifurcation diagrams depending on whether nodes become susceptible frequently (multiple times in their lifetime) or rarely (much less than once per lifetime). PMID:25395989
Microcomputer Network for Computerized Adaptive Testing (CAT): Program Listing.
ERIC Educational Resources Information Center
Quan, Baldwin; And Others
This program listing is a supplement to the Microcomputer Network for Computerized Adaptive Testing (CAT). The driver textfile program allows access to major subprograms of the CAT project. The test administration textfile program gives examinees a prescribed set of subtests. The parameter management textfile program establishes a file containing…
Dynamic mesh adaption for triangular and tetrahedral grids
NASA Technical Reports Server (NTRS)
Biswas, Rupak; Strawn, Roger
1993-01-01
The following topics are discussed: requirements for dynamic mesh adaption; linked-list data structure; edge-based data structure; adaptive-grid data structure; three types of element subdivision; mesh refinement; mesh coarsening; additional constraints for coarsening; anisotropic error indicator for edges; unstructured-grid Euler solver; inviscid 3-D wing; and mesh quality for solution-adaptive grids. The discussion is presented in viewgraph form.
Selecting, adapting, and sustaining programs in health care systems.
Zullig, Leah L; Bosworth, Hayden B
2015-01-01
Practitioners and researchers often design behavioral programs that are effective for a specific population or problem. Despite their success in a controlled setting, relatively few programs are scaled up and implemented in health care systems. Planning for scale-up is a critical, yet often overlooked, element in the process of program design. Equally as important is understanding how to select a program that has already been developed, and adapt and implement the program to meet specific organizational goals. This adaptation and implementation requires attention to organizational goals, available resources, and program cost. We assert that translational behavioral medicine necessitates expanding successful programs beyond a stand-alone research study. This paper describes key factors to consider when selecting, adapting, and sustaining programs for scale-up in large health care systems and applies the Knowledge to Action (KTA) Framework to a case study, illustrating knowledge creation and an action cycle of implementation and evaluation activities. PMID:25931825
Adaptation and dynamics of cat retinal ganglion cells
Enroth-Cugell, Christina; Shapley, R. M.
1973-01-01
1. The impulse/quantum (I/Q) ratio was measured as a function of background illumination for rod-dominated, pure central, linear square-wave responses of retinal ganglion cells in the cat. 2. The I/Q ratio was constant at low backgrounds (dark adapted state) and inversely proportional to the 0·9 power of the background at high backgrounds (the light adapted state). There was an abrupt transition from the dark-adapted state to the light-adapted state. 3. It was possible to define the adaptation level at a particular background as the ratio (I/Q ratio at that background)/(dark adapted I/Q ratio). 4. The time course of the square-wave response was correlated with the adaptation level. The response was sustained in the dark-adapted state, partially transient at the transition level, and progressively more transient the lower the impulse/quantum ratio of the ganglion cell became. This was true both for on-centre and off-centre cells. 5. The frequency response of the central response mechanism at different adaptation levels was measured. It was a low-pass characteristic in the dark-adapted state and became progressively more of a bandpass characteristic as the cell became more light-adapted. 6. The rapidity of onset of adaptation was measured with a time-varying adapting light. The impulse/quantum ratio is reset within 100 msec of the onset of the conditioning light, and is kept at the new value throughout the time the conditioning light is on. 7. These results can be explained by a nonlinear feedback model. In the model, it is postulated that the exponential function of the horizontal cell potential controls transmission from rods to bipolars. This model has an abrupt transition from dark- to light-adapted states, and its response dynamics are correlated with adaptation level. PMID:4747229
Quantitative Adaptation Analytics for Assessing Dynamic Systems of Systems.
Gauthier, John H.; Miner, Nadine E.; Wilson, Michael L.; Le, Hai D.; Kao, Gio K; Melander, Darryl J.; Longsine, Dennis Earl; Vander Meer, Robert Charles,
2015-01-01
Our society is increasingly reliant on systems and interoperating collections of systems, known as systems of systems (SoS). These SoS are often subject to changing missions (e.g., nation- building, arms-control treaties), threats (e.g., asymmetric warfare, terrorism), natural environments (e.g., climate, weather, natural disasters) and budgets. How well can SoS adapt to these types of dynamic conditions? This report details the results of a three year Laboratory Directed Research and Development (LDRD) project aimed at developing metrics and methodologies for quantifying the adaptability of systems and SoS. Work products include: derivation of a set of adaptability metrics, a method for combining the metrics into a system of systems adaptability index (SoSAI) used to compare adaptability of SoS designs, development of a prototype dynamic SoS (proto-dSoS) simulation environment which provides the ability to investigate the validity of the adaptability metric set, and two test cases that evaluate the usefulness of a subset of the adaptability metrics and SoSAI for distinguishing good from poor adaptability in a SoS. Intellectual property results include three patents pending: A Method For Quantifying Relative System Adaptability, Method for Evaluating System Performance, and A Method for Determining Systems Re-Tasking.
Fluid dynamics computer programs for NERVA turbopump
NASA Technical Reports Server (NTRS)
Brunner, J. J.
1972-01-01
During the design of the NERVA turbopump, numerous computer programs were developed for the analyses of fluid dynamic problems within the machine. Program descriptions, example cases, users instructions, and listings for the majority of these programs are presented.
Dynamics of adaptive agents with asymmetric information
NASA Astrophysics Data System (ADS)
DeMartino, Andrea; Galla, Tobias
2005-08-01
We apply path integral techniques to study the dynamics of agent-based models with asymmetric information structures. In particular, we devise a batch version of a model proposed originally by Berg et al (2001 Quantitative Finance 1 203), and convert the coupled multi-agent processes into an effective-agent problem from which the dynamical order parameters in ergodic regimes can be derived self-consistently together with the corresponding phase structure. Our dynamical study complements and extends the available static theory. Results are confirmed by numerical simulations.
Complexity and network dynamics in physiological adaptation: an integrated view.
Baffy, György; Loscalzo, Joseph
2014-05-28
Living organisms constantly interact with their surroundings and sustain internal stability against perturbations. This dynamic process follows three fundamental strategies (restore, explore, and abandon) articulated in historical concepts of physiological adaptation such as homeostasis, allostasis, and the general adaptation syndrome. These strategies correspond to elementary forms of behavior (ordered, chaotic, and static) in complex adaptive systems and invite a network-based analysis of the operational characteristics, allowing us to propose an integrated framework of physiological adaptation from a complex network perspective. Applicability of this concept is illustrated by analyzing molecular and cellular mechanisms of adaptation in response to the pervasive challenge of obesity, a chronic condition resulting from sustained nutrient excess that prompts chaotic exploration for system stability associated with tradeoffs and a risk of adverse outcomes such as diabetes, cardiovascular disease, and cancer. Deconstruction of this complexity holds the promise of gaining novel insights into physiological adaptation in health and disease. PMID:24751342
Dynamics of adaptive structures: Design through simulations
NASA Technical Reports Server (NTRS)
Park, K. C.; Alexander, S.
1993-01-01
The use of a helical bi-morph actuator/sensor concept by mimicking the change of helical waveform in bacterial flagella is perhaps the first application of bacterial motions (living species) to longitudinal deployment of space structures. However, no dynamical considerations were analyzed to explain the waveform change mechanisms. The objective is to review various deployment concepts from the dynamics point of view and introduce the dynamical considerations from the outset as part of design considerations. Specifically, the impact of the incorporation of the combined static mechanisms and dynamic design considerations on the deployment performance during the reconfiguration stage is studied in terms of improved controllability, maneuvering duration, and joint singularity index. It is shown that intermediate configurations during articulations play an important role for improved joint mechanisms design and overall structural deployability.
Lessons Learned from the Everglades Collaborative Adaptive Management Program
Recent technical papers explore whether adaptive management (AM) is useful for environmental management and restoration efforts and discuss the many challenges to overcome for successful implementation, especially for large-scale restoration programs (McLain and Lee 1996; Levine ...
Everglades Collaborative Adaptive Management Program Progress
When the Comprehensive Everglades Restoration Plan (CERP) was authorized in 2000, adaptive management (AM) was recognized as a necessary tool to address uncertainty in achieving the broad goals and objectives for restoring a highly managed system. The Everglades covers18,000 squ...
Analog forecasting with dynamics-adapted kernels
NASA Astrophysics Data System (ADS)
Zhao, Zhizhen; Giannakis, Dimitrios
2016-09-01
Analog forecasting is a nonparametric technique introduced by Lorenz in 1969 which predicts the evolution of states of a dynamical system (or observables defined on the states) by following the evolution of the sample in a historical record of observations which most closely resembles the current initial data. Here, we introduce a suite of forecasting methods which improve traditional analog forecasting by combining ideas from kernel methods developed in harmonic analysis and machine learning and state-space reconstruction for dynamical systems. A key ingredient of our approach is to replace single-analog forecasting with weighted ensembles of analogs constructed using local similarity kernels. The kernels used here employ a number of dynamics-dependent features designed to improve forecast skill, including Takens’ delay-coordinate maps (to recover information in the initial data lost through partial observations) and a directional dependence on the dynamical vector field generating the data. Mathematically, our approach is closely related to kernel methods for out-of-sample extension of functions, and we discuss alternative strategies based on the Nyström method and the multiscale Laplacian pyramids technique. We illustrate these techniques in applications to forecasting in a low-order deterministic model for atmospheric dynamics with chaotic metastability, and interannual-scale forecasting in the North Pacific sector of a comprehensive climate model. We find that forecasts based on kernel-weighted ensembles have significantly higher skill than the conventional approach following a single analog.
Adaptive dynamic FBG interrogation utilising erbium-doped fibre
NASA Astrophysics Data System (ADS)
John, R. N.; Read, I.; MacPherson, W. N.
2013-04-01
A dynamic fibre Bragg grating interrogation scheme is investigated using two-wave mixing in erbium-doped fibre, capable of adapting to quasistatic strain and temperature drifts. An interference pattern set up in the erbium-doped fibre creates, due to the photorefractive effect, a dynamic grating capable of wavelength demodulating the FBG signal. The presence of a dynamic grating was verified and then dynamic strain signals from a fibre stretcher were measured. The adaptive nature of the technique was successfully demonstrated by heating the FBG while it underwent dynamic straining leading to detection unlike an alternative arrayed waveguide grating system which simultaneously failed detection. Two gratings were then wavelength division multiplexed with the signal grating receiving approximately 30dB greater signal showing that there was little cross talk in the system.
Adapting Scheduling Programs for Educational Specifications.
ERIC Educational Resources Information Center
Glass, Thomas E.
1984-01-01
Planners of a new Arizona school used the district's existing computerized master scheduling program to identify instructional spaces needed. Total classroom needs by subject were translated into total square footage requirements. (MLF)
Teaching Adaptability of Object-Oriented Programming Language Curriculum
ERIC Educational Resources Information Center
Zhu, Xiao-dong
2012-01-01
The evolution of object-oriented programming languages includes update of their own versions, update of development environments, and reform of new languages upon old languages. In this paper, the evolution analysis of object-oriented programming languages is presented in term of the characters and development. The notion of adaptive teaching upon…
Dynamic Programming Applications in Water Resources
NASA Astrophysics Data System (ADS)
Yakowitz, Sidney
1982-08-01
The central intention of this survey is to review dynamic programming models for water resource problems and to examine computational techniques which have been used to obtain solutions to these problems. Problem areas surveyed here include aqueduct design, irrigation system control, project development, water quality maintenance, and reservoir operations analysis. Computational considerations impose severe limitation on the scale of dynamic programming problems which can be solved. Inventive numerical techniques for implementing dynamic programming have been applied to water resource problems. Discrete dynamic programming, differential dynamic programming, state incremental dynamic programming, and Howard's policy iteration method are among the techniques reviewed. Attempts have been made to delineate the successful applications, and speculative ideas are offered toward attacking problems which have not been solved satisfactorily.
Adaptive Programming Improves Outcomes in Drug Court: An Experimental Trial
Marlowe, Douglas B.; Festinger, David S.; Dugosh, Karen L.; Benasutti, Kathleen M.; Fox, Gloria; Croft, Jason R.
2011-01-01
Prior studies in Drug Courts reported improved outcomes when participants were matched to schedules of judicial status hearings based on their criminological risk level. The current experiment determined whether incremental efficacy could be gained by periodically adjusting the schedule of status hearings and clinical case-management sessions in response to participants’ ensuing performance in the program. The adjustments were made pursuant to a priori criteria specified in an adaptive algorithm. Results confirmed that participants in the full adaptive condition (n = 62) were more than twice as likely as those assigned to baseline-matching only (n = 63) to be drug-abstinent during the first 18 weeks of the program; however, graduation rates and the average time to case resolution were not significantly different. The positive effects of the adaptive program appear to have stemmed from holding noncompliant participants more accountable for meeting their attendance obligations in the program. Directions for future research and practice implications are discussed. PMID:22923854
Adaptive planning for applications with dynamic objectives
NASA Technical Reports Server (NTRS)
Hadavi, Khosrow; Hsu, Wen-Ling; Pinedo, Michael
1992-01-01
We devise a qualitative control layer to be integrated into a real-time multi-agent reactive planner. The reactive planning system consists of distributed planning agents attending to various perspectives of the task environment. Each perspective corresponds to an objective. The set of objectives considered are sometimes in conflict with each other. Each agent receives information about events as they occur, and a set of actions based on heuristics can be taken by the agents. Within the qualitative control scheme, we use a set of qualitative feature vectors to describe the effects of applying actions. A qualitative transition vector is used to denote the qualitative distance between the current state and the target state. We will then apply on-line learning at the qualitative control level to achieve adaptive planning. Our goal is to design a mechanism to refine the heuristics used by the reactive planner every time an action is taken toward achieving the objectives, using feedback from the results of the actions. When the outcome is compared with expectations, our prior objectives may be modified and a new set of objectives (or a new assessment of the relative importance of the different objectives) can be introduced. Because we are able to obtain better estimates of the time-varying objectives, the reactive strategies can be improved and better prediction can be achieved.
Dynamics and Adaptive Control for Stability Recovery of Damaged Aircraft
NASA Technical Reports Server (NTRS)
Nguyen, Nhan; Krishnakumar, Kalmanje; Kaneshige, John; Nespeca, Pascal
2006-01-01
This paper presents a recent study of a damaged generic transport model as part of a NASA research project to investigate adaptive control methods for stability recovery of damaged aircraft operating in off-nominal flight conditions under damage and or failures. Aerodynamic modeling of damage effects is performed using an aerodynamic code to assess changes in the stability and control derivatives of a generic transport aircraft. Certain types of damage such as damage to one of the wings or horizontal stabilizers can cause the aircraft to become asymmetric, thus resulting in a coupling between the longitudinal and lateral motions. Flight dynamics for a general asymmetric aircraft is derived to account for changes in the center of gravity that can compromise the stability of the damaged aircraft. An iterative trim analysis for the translational motion is developed to refine the trim procedure by accounting for the effects of the control surface deflection. A hybrid direct-indirect neural network, adaptive flight control is proposed as an adaptive law for stabilizing the rotational motion of the damaged aircraft. The indirect adaptation is designed to estimate the plant dynamics of the damaged aircraft in conjunction with the direct adaptation that computes the control augmentation. Two approaches are presented 1) an adaptive law derived from the Lyapunov stability theory to ensure that the signals are bounded, and 2) a recursive least-square method for parameter identification. A hardware-in-the-loop simulation is conducted and demonstrates the effectiveness of the direct neural network adaptive flight control in the stability recovery of the damaged aircraft. A preliminary simulation of the hybrid adaptive flight control has been performed and initial data have shown the effectiveness of the proposed hybrid approach. Future work will include further investigations and high-fidelity simulations of the proposed hybrid adaptive Bight control approach.
ERIC Educational Resources Information Center
Reinschmidt, Kerstin M.; Teufel-Shone, Nicolette I.; Bradford, Gail; Drummond, Rebecca L.; Torres, Emma; Redondo, Floribella; Elenes, Jo Jean; Sanders, Alicia; Gastelum, Sylvia; Moore-Monroy, Martha; Barajas, Salvador; Fernandez, Lourdes; Alvidrez, Rosy; de Zapien, Jill Guernsey; Staten, Lisa K.
2010-01-01
Diabetes health disparities among Hispanic populations have been countered with federally funded health promotion and disease prevention programs. Dissemination has focused on program adaptation to local cultural contexts for greater acceptability and sustainability. Taking a broader approach and drawing on our experience in Mexican American…
Sex speeds adaptation by altering the dynamics of molecular evolution.
McDonald, Michael J; Rice, Daniel P; Desai, Michael M
2016-03-10
Sex and recombination are pervasive throughout nature despite their substantial costs. Understanding the evolutionary forces that maintain these phenomena is a central challenge in biology. One longstanding hypothesis argues that sex is beneficial because recombination speeds adaptation. Theory has proposed several distinct population genetic mechanisms that could underlie this advantage. For example, sex can promote the fixation of beneficial mutations either by alleviating interference competition (the Fisher-Muller effect) or by separating them from deleterious load (the ruby in the rubbish effect). Previous experiments confirm that sex can increase the rate of adaptation, but these studies did not observe the evolutionary dynamics that drive this effect at the genomic level. Here we present the first, to our knowledge, comparison between the sequence-level dynamics of adaptation in experimental sexual and asexual Saccharomyces cerevisiae populations, which allows us to identify the specific mechanisms by which sex speeds adaptation. We find that sex alters the molecular signatures of evolution by changing the spectrum of mutations that fix, and confirm theoretical predictions that it does so by alleviating clonal interference. We also show that substantially deleterious mutations hitchhike to fixation in adapting asexual populations. In contrast, recombination prevents such mutations from fixing. Our results demonstrate that sex both speeds adaptation and alters its molecular signature by allowing natural selection to more efficiently sort beneficial from deleterious mutations. PMID:26909573
Adaptable and dynamic soft colloidal photonics (Presentation Recording)
NASA Astrophysics Data System (ADS)
Kuehne, Alexander J. C.; Go, Dennis
2015-10-01
Existent photonic systems are highly integrated with the active component being completely isolated from the environment as a result of their complex format. There are almost no example for periodic photonic materials, which can interact with their environment by being sensitive to external stimuli while providing the corresponding photonic response. Due to this lack of interaction with the outside world, smart optical components, which are self-healing or adaptable, are almost impossible to achieve. I am going to present an aqueous colloidal system, consisting of core-shell particles with a solid core and a soft shell, bearing both negatively and positively charged groups. The described soft colloids exhibit like charges over a broad range of pH, where they repel each other resulting in a pefect and defect-free photonic crystal. In the absence of a net charge the colloids acquire the arrangement of an amorphous photonic glass. We showcase the applicability of our colloidal system for photonic applications by temporal programming of the photonic system and dynamic switching between ordered and amorphous particle arrangements. We can decrease the pH slowly allowing the particles to transit from negative through neutral to positive, and have them arrange accordingly from crystalline to amorphous and back to crystalline. Thus, we achieve a pre-programmable and autonomous dynamic modulation of the crystallinity of the colloidal arrays and their photonic response. References [1] Go, D., Kodger, T. E., Sprakel, J., and Kuehne, A. J.C. Soft matter. 2014, 10(40), 8060-8065.
Enhancing Functional Performance using Sensorimotor Adaptability Training Programs
NASA Technical Reports Server (NTRS)
Bloomberg, J. J.; Mulavara, A. P.; Peters, B. T.; Brady, R.; Audas, C.; Ruttley, T. M.; Cohen, H. S.
2009-01-01
During the acute phase of adaptation to novel gravitational environments, sensorimotor disturbances have the potential to disrupt the ability of astronauts to perform functional tasks. The goal of this project is to develop a sensorimotor adaptability (SA) training program designed to facilitate recovery of functional capabilities when astronauts transition to different gravitational environments. The project conducted a series of studies that investigated the efficacy of treadmill training combined with a variety of sensory challenges designed to increase adaptability including alterations in visual flow, body loading, and support surface stability.
Gradient-based adaptation of continuous dynamic model structures
NASA Astrophysics Data System (ADS)
La Cava, William G.; Danai, Kourosh
2016-01-01
A gradient-based method of symbolic adaptation is introduced for a class of continuous dynamic models. The proposed model structure adaptation method starts with the first-principles model of the system and adapts its structure after adjusting its individual components in symbolic form. A key contribution of this work is its introduction of the model's parameter sensitivity as the measure of symbolic changes to the model. This measure, which is essential to defining the structural sensitivity of the model, not only accommodates algebraic evaluation of candidate models in lieu of more computationally expensive simulation-based evaluation, but also makes possible the implementation of gradient-based optimisation in symbolic adaptation. The proposed method is applied to models of several virtual and real-world systems that demonstrate its potential utility.
Boundary detection via dynamic programming
NASA Astrophysics Data System (ADS)
Udupa, Jayaram K.; Samarasekera, Supun; Barrett, William A.
1992-09-01
This paper reports a new method for detecting optimal boundaries in multidimensional scene data via dynamic programming (DP). In its current form the algorithm detects 2-D contours on slices and differs from other reported DP-based algorithms in an essential way in that it allows freedom in 2-D for finding optimal contour paths (as opposed to a single degree of freedom in the published methods). The method is being successfully used in segmenting object boundaries in a variety of medical applications including orbital volume from CT images (for craniofacial surgical planning), segmenting bone in MR images for kinematic analysis of the joints of the foot, segmenting the surface of the brain from the inner surface of the cranial vault, segmenting pituitary gland tumor for following the effect of a drug on the tumor, segmenting the boundaries of the heart in MR images, and segmenting the olfactory bulb for verifying hypotheses related to the size of this bulb in certain disease states.
Adaptive sampling program support for expedited site characterization
Johnson, R.
1993-10-01
Expedited site characterizations offer substantial savings in time and money when assessing hazardous waste sites. Key to some of these savings is the ability to adapt a sampling program to the ``real-time`` data generated by an expedited site characterization. This paper presents a two-prong approach to supporting adaptive sampling programs: a specialized object-oriented database/geographical information system for data fusion, management and display; and combined Bayesian/geostatistical methods for contamination extent estimation and sample location selection.
Modifications to the Flexible Spacecraft Dynamics Program
NASA Technical Reports Server (NTRS)
1980-01-01
Modifications to existing subroutines are briefly described and a detailed description of new subroutines is given. The capability to simulate the Dynamics Explorer-B control system new developed and the formulation for this addition is given. The program variables in new labelled COMMON blocks are described in detail and the modified input and output for the d Flexible Spacecraft Dynamics Program is described.
Content-adaptive ghost imaging of dynamic scenes.
Li, Ziwei; Suo, Jinli; Hu, Xuemei; Dai, Qionghai
2016-04-01
Limited by long acquisition time of 2D ghost imaging, current ghost imaging systems are so far inapplicable for dynamic scenes. However, it's been demonstrated that nature images are spatiotemporally redundant and the redundancy is scene dependent. Inspired by that, we propose a content-adaptive computational ghost imaging approach to achieve high reconstruction quality under a small number of measurements, and thus achieve ghost imaging of dynamic scenes. To utilize content-adaptive inter-frame redundancy, we put the reconstruction under an iterative reweighted optimization, with non-uniform weight computed from temporal-correlated frame sequences. The proposed approach can achieve dynamic imaging at 16fps with 64×64-pixel resolution. PMID:27137022
Serial and parallel dynamic adaptation of general hybrid meshes
NASA Astrophysics Data System (ADS)
Kavouklis, Christos
The Navier-Stokes equations are a standard mathematical representation of viscous fluid flow. Their numerical solution in three dimensions remains a computationally intensive and challenging task, despite recent advances in computer speed and memory. A strategy to increase accuracy of Navier-Stokes simulations, while maintaining computing resources to a minimum, is local refinement of the associated computational mesh in regions of large solution gradients and coarsening in regions where the solution does not vary appreciably. In this work we consider adaptation of general hybrid meshes for Computational Fluid Dynamics (CFD) applications. Hybrid meshes are composed of four types of elements; hexahedra, prisms, pyramids and tetrahedra, and have been proven a promising technology in accurately resolving fluid flow for complex geometries. The first part of this dissertation is concerned with the design and implementation of a serial scheme for the adaptation of general three dimensional hybrid meshes. We have defined 29 refinement types, for all four kinds of elements. The core of the present adaptation scheme is an iterative algorithm that flags mesh edges for refinement, so that the adapted mesh is conformal. Of primary importance is considered the design of a suitable dynamic data structure that facilitates refinement and coarsening operations and furthermore minimizes memory requirements. A special dynamic list is defined for mesh elements, in contrast with the usual tree structures. It contains only elements of the current adaptation step and minimal information that is utilized to reconstruct parent elements when the mesh is coarsened. In the second part of this work, a new parallel dynamic mesh adaptation and load balancing algorithm for general hybrid meshes is presented. Partitioning of a hybrid mesh reduces to partitioning of the corresponding dual graph. Communication among processors is based on the faces of the interpartition boundary. The distributed
Dynamic analysis of neural encoding by point process adaptive filtering.
Eden, Uri T; Frank, Loren M; Barbieri, Riccardo; Solo, Victor; Brown, Emery N
2004-05-01
Neural receptive fields are dynamic in that with experience, neurons change their spiking responses to relevant stimuli. To understand how neural systems adapt their representations of biological information, analyses of receptive field plasticity from experimental measurements are crucial. Adaptive signal processing, the well-established engineering discipline for characterizing the temporal evolution of system parameters, suggests a framework for studying the plasticity of receptive fields. We use the Bayes' rule Chapman-Kolmogorov paradigm with a linear state equation and point process observation models to derive adaptive filters appropriate for estimation from neural spike trains. We derive point process filter analogues of the Kalman filter, recursive least squares, and steepest-descent algorithms and describe the properties of these new filters. We illustrate our algorithms in two simulated data examples. The first is a study of slow and rapid evolution of spatial receptive fields in hippocampal neurons. The second is an adaptive decoding study in which a signal is decoded from ensemble neural spiking activity as the receptive fields of the neurons in the ensemble evolve. Our results provide a paradigm for adaptive estimation for point process observations and suggest a practical approach for constructing filtering algorithms to track neural receptive field dynamics on a millisecond timescale. PMID:15070506
Parallel tetrahedral mesh adaptation with dynamic load balancing
Oliker, Leonid; Biswas, Rupak; Gabow, Harold N.
2000-06-28
The ability to dynamically adapt an unstructured grid is a powerful tool for efficiently solving computational problems with evolving physical features. In this paper, we report on our experience parallelizing an edge-based adaptation scheme, called 3D-TAG, using message passing. Results show excellent speedup when a realistic helicopter rotor mesh is randomly refined. However, performance deteriorates when the mesh is refined using a solution-based error indicator since mesh adaptation for practical problems occurs in a localized region, creating a severe load imbalance. To address this problem, we have developed PLUM, a global dynamic load balancing framework for adaptive numerical computations. Even though PLUM primarily balances processor workloads for the solution phase, it reduces the load imbalance problem within mesh adaptation by repartitioning the mesh after targeting edges for refinement but before the actual subdivision. This dramatically improves the performance of parallel 3D-TAG since refinement occurs in a more load balanced fashion. We also present optimal and heuristic algorithms that, when applied to the default mapping of a parallel repartitioner, significantly reduce the data redistribution overhead. Finally, portability is examined by comparing performance on three state-of-the-art parallel machines.
Model-adaptive hybrid dynamic control for robotic assembly tasks
Austin, D.J.; McCarragher, B.J.
1999-10-01
A new task-level adaptive controller is presented for the hybrid dynamic control of robotic assembly tasks. Using a hybrid dynamic model of the assembly task, velocity constraints are derived from which satisfactory velocity commands are obtained. Due to modeling errors and parametric uncertainties, the velocity commands may be erroneous and may result in suboptimal performance. Task-level adaptive control schemes, based on the occurrence of discrete events, are used to change the model parameters from which the velocity commands are determined. Two adaptive schemes are presented: the first is based on intuitive reasoning about the vector spaces involved whereas the second uses a search region that is reduced with each iteration. For the first adaptation law, asymptotic convergence to the correct model parameters is proven except for one case. This weakness motivated the development of the second adaptation law, for which asymptotic convergence is proven in all cases. Automated control of a peg-in-hole assembly task is given as an example, and simulations and experiments for this task are presented. These results demonstrate the success of the method and also indicate properties for rapid convergence.
Parallel Tetrahedral Mesh Adaptation with Dynamic Load Balancing
NASA Technical Reports Server (NTRS)
Oliker, Leonid; Biswas, Rupak; Gabow, Harold N.
1999-01-01
The ability to dynamically adapt an unstructured grid is a powerful tool for efficiently solving computational problems with evolving physical features. In this paper, we report on our experience parallelizing an edge-based adaptation scheme, called 3D_TAG. using message passing. Results show excellent speedup when a realistic helicopter rotor mesh is randomly refined. However. performance deteriorates when the mesh is refined using a solution-based error indicator since mesh adaptation for practical problems occurs in a localized region., creating a severe load imbalance. To address this problem, we have developed PLUM, a global dynamic load balancing framework for adaptive numerical computations. Even though PLUM primarily balances processor workloads for the solution phase, it reduces the load imbalance problem within mesh adaptation by repartitioning the mesh after targeting edges for refinement but before the actual subdivision. This dramatically improves the performance of parallel 3D_TAG since refinement occurs in a more load balanced fashion. We also present optimal and heuristic algorithms that, when applied to the default mapping of a parallel repartitioner, significantly reduce the data redistribution overhead. Finally, portability is examined by comparing performance on three state-of-the-art parallel machines.
Eco-evolutionary feedbacks, adaptive dynamics and evolutionary rescue theory
Ferriere, Regis; Legendre, Stéphane
2013-01-01
Adaptive dynamics theory has been devised to account for feedbacks between ecological and evolutionary processes. Doing so opens new dimensions to and raises new challenges about evolutionary rescue. Adaptive dynamics theory predicts that successive trait substitutions driven by eco-evolutionary feedbacks can gradually erode population size or growth rate, thus potentially raising the extinction risk. Even a single trait substitution can suffice to degrade population viability drastically at once and cause ‘evolutionary suicide’. In a changing environment, a population may track a viable evolutionary attractor that leads to evolutionary suicide, a phenomenon called ‘evolutionary trapping’. Evolutionary trapping and suicide are commonly observed in adaptive dynamics models in which the smooth variation of traits causes catastrophic changes in ecological state. In the face of trapping and suicide, evolutionary rescue requires that the population overcome evolutionary threats generated by the adaptive process itself. Evolutionary repellors play an important role in determining how variation in environmental conditions correlates with the occurrence of evolutionary trapping and suicide, and what evolutionary pathways rescue may follow. In contrast with standard predictions of evolutionary rescue theory, low genetic variation may attenuate the threat of evolutionary suicide and small population sizes may facilitate escape from evolutionary traps. PMID:23209163
Adaptable Constrained Genetic Programming: Extensions and Applications
NASA Technical Reports Server (NTRS)
Janikow, Cezary Z.
2005-01-01
An evolutionary algorithm applies evolution-based principles to problem solving. To solve a problem, the user defines the space of potential solutions, the representation space. Sample solutions are encoded in a chromosome-like structure. The algorithm maintains a population of such samples, which undergo simulated evolution by means of mutation, crossover, and survival of the fittest principles. Genetic Programming (GP) uses tree-like chromosomes, providing very rich representation suitable for many problems of interest. GP has been successfully applied to a number of practical problems such as learning Boolean functions and designing hardware circuits. To apply GP to a problem, the user needs to define the actual representation space, by defining the atomic functions and terminals labeling the actual trees. The sufficiency principle requires that the label set be sufficient to build the desired solution trees. The closure principle allows the labels to mix in any arity-consistent manner. To satisfy both principles, the user is often forced to provide a large label set, with ad hoc interpretations or penalties to deal with undesired local contexts. This unfortunately enlarges the actual representation space, and thus usually slows down the search. In the past few years, three different methodologies have been proposed to allow the user to alleviate the closure principle by providing means to define, and to process, constraints on mixing the labels in the trees. Last summer we proposed a new methodology to further alleviate the problem by discovering local heuristics for building quality solution trees. A pilot system was implemented last summer and tested throughout the year. This summer we have implemented a new revision, and produced a User's Manual so that the pilot system can be made available to other practitioners and researchers. We have also designed, and partly implemented, a larger system capable of dealing with much more powerful heuristics.
Cheung, Ying Kuen; Chakraborty, Bibhas; Davidson, Karina W
2015-06-01
Implementation study is an important tool for deploying state-of-the-art treatments from clinical efficacy studies into a treatment program, with the dual goals of learning about effectiveness of the treatments and improving the quality of care for patients enrolled into the program. In this article, we deal with the design of a treatment program of dynamic treatment regimens (DTRs) for patients with depression post-acute coronary syndrome. We introduce a novel adaptive randomization scheme for a sequential multiple assignment randomized trial of DTRs. Our approach adapts the randomization probabilities to favor treatment sequences having comparatively superior Q-functions used in Q-learning. The proposed approach addresses three main concerns of an implementation study: it allows incorporation of historical data or opinions, it includes randomization for learning purposes, and it aims to improve care via adaptation throughout the program. We demonstrate how to apply our method to design a depression treatment program using data from a previous study. By simulation, we illustrate that the inputs from historical data are important for the program performance measured by the expected outcomes of the enrollees, but also show that the adaptive randomization scheme is able to compensate poorly specified historical inputs by improving patient outcomes within a reasonable horizon. The simulation results also confirm that the proposed design allows efficient learning of the treatments by alleviating the curse of dimensionality. PMID:25354029
Dynamical singularities in adaptive delayed-feedback control.
Saito, Asaki; Konishi, Keiji
2011-09-01
We demonstrate the dynamical characteristics of adaptive delayed-feedback control systems, exploiting a discrete-time adaptive control method derived for carrying out detailed analysis. In particular, the systems exhibit singularities such as power-law decay of the distribution of transient times and almost zero finite-time Lyapunov exponents. We can explain these results by characterizing such systems as having (1) a Jacobian matrix with unity eigenvalue in the whole phase space, and (2) parameters approaching a stability boundary proven to be identical with that of (nonadaptive) delayed-feedback control. PMID:22060398
Adaptive network dynamics and evolution of leadership in collective migration
NASA Astrophysics Data System (ADS)
Pais, Darren; Leonard, Naomi E.
2014-01-01
The evolution of leadership in migratory populations depends not only on costs and benefits of leadership investments but also on the opportunities for individuals to rely on cues from others through social interactions. We derive an analytically tractable adaptive dynamic network model of collective migration with fast timescale migration dynamics and slow timescale adaptive dynamics of individual leadership investment and social interaction. For large populations, our analysis of bifurcations with respect to investment cost explains the observed hysteretic effect associated with recovery of migration in fragmented environments. Further, we show a minimum connectivity threshold above which there is evolutionary branching into leader and follower populations. For small populations, we show how the topology of the underlying social interaction network influences the emergence and location of leaders in the adaptive system. Our model and analysis can be extended to study the dynamics of collective tracking or collective learning more generally. Thus, this work may inform the design of robotic networks where agents use decentralized strategies that balance direct environmental measurements with agent interactions.
A Comparison of Three Programming Models for Adaptive Applications
NASA Technical Reports Server (NTRS)
Shan, Hong-Zhang; Singh, Jaswinder Pal; Oliker, Leonid; Biswa, Rupak; Kwak, Dochan (Technical Monitor)
2000-01-01
We study the performance and programming effort for two major classes of adaptive applications under three leading parallel programming models. We find that all three models can achieve scalable performance on the state-of-the-art multiprocessor machines. The basic parallel algorithms needed for different programming models to deliver their best performance are similar, but the implementations differ greatly, far beyond the fact of using explicit messages versus implicit loads/stores. Compared with MPI and SHMEM, CC-SAS (cache-coherent shared address space) provides substantial ease of programming at the conceptual and program orchestration level, which often leads to the performance gain. However it may also suffer from the poor spatial locality of physically distributed shared data on large number of processors. Our CC-SAS implementation of the PARMETIS partitioner itself runs faster than in the other two programming models, and generates more balanced result for our application.
Function-valued adaptive dynamics and the calculus of variations.
Parvinen, Kalle; Dieckmann, Ulf; Heino, Mikko
2006-01-01
Adaptive dynamics has been widely used to study the evolution of scalar-valued, and occasionally vector-valued, strategies in ecologically realistic models. In many ecological situations, however, evolving strategies are best described as function-valued, and thus infinite-dimensional, traits. So far, such evolution has only been studied sporadically, mostly based on quantitative genetics models with limited ecological realism. In this article we show how to apply the calculus of variations to find evolutionarily singular strategies of function-valued adaptive dynamics: such a strategy has to satisfy Euler's equation with environmental feedback. We also demonstrate how second-order derivatives can be used to investigate whether or not a function-valued singular strategy is evolutionarily stable. We illustrate our approach by presenting several worked examples. PMID:16012801
Dynamic Load Balancing for Adaptive Meshes using Symmetric Broadcast Networks
NASA Technical Reports Server (NTRS)
Das, Sajal K.; Harvey, Daniel J.; Biswas, Rupak; Saini, Subhash (Technical Monitor)
1998-01-01
Many scientific applications involve grids that lack a uniform underlying structure. These applications are often dynamic in the sense that the grid structure significantly changes between successive phases of execution. In parallel computing environments, mesh adaptation of grids through selective refinement/coarsening has proven to be an effective approach. However, achieving load balance while minimizing inter-processor communication and redistribution costs is a difficult problem. Traditional dynamic load balancers are mostly inadequate because they lack a global view across processors. In this paper, we compare a novel load balancer that utilizes symmetric broadcast networks (SBN) to a successful global load balancing environment (PLUM) created to handle adaptive unstructured applications. Our experimental results on the IBM SP2 demonstrate that performance of the proposed SBN load balancer is comparable to results achieved under PLUM.
Adaptive neural information processing with dynamical electrical synapses
Xiao, Lei; Zhang, Dan-ke; Li, Yuan-qing; Liang, Pei-ji; Wu, Si
2013-01-01
The present study investigates a potential computational role of dynamical electrical synapses in neural information process. Compared with chemical synapses, electrical synapses are more efficient in modulating the concerted activity of neurons. Based on the experimental data, we propose a phenomenological model for short-term facilitation of electrical synapses. The model satisfactorily reproduces the phenomenon that the neuronal correlation increases although the neuronal firing rates attenuate during the luminance adaptation. We explore how the stimulus information is encoded in parallel by firing rates and correlated activity of neurons, and find that dynamical electrical synapses mediate a transition from the firing rate code to the correlation one during the luminance adaptation. The latter encodes the stimulus information by using the concerted, but lower neuronal firing rate, and hence is economically more efficient. PMID:23596413
Effects of adaptive dynamical linking in networked games.
Yang, Zhihu; Li, Zhi; Wu, Te; Wang, Long
2013-10-01
The role of dynamical topologies in the evolution of cooperation has received considerable attention, as some studies have demonstrated that dynamical networks are much better than static networks in terms of boosting cooperation. Here we study a dynamical model of evolution of cooperation on stochastic dynamical networks in which there are no permanent partners to each agent. Whenever a new link is created, its duration is randomly assigned without any bias or preference. We allow the agent to adaptively adjust the duration of each link during the evolution in accordance with the feedback from game interactions. By Monte Carlo simulations, we find that cooperation can be remarkably promoted by this adaptive dynamical linking mechanism both for the game of pairwise interactions, such as the Prisoner's Dilemma game (PDG), and for the game of group interactions, illustrated by the public goods game (PGG). And the faster the adjusting rate, the more successful the evolution of cooperation. We also show that in this context weak selection favors cooperation much more than strong selection does. What is particularly meaningful is that the prosperity of cooperation in this study indicates that the rationality and selfishness of a single agent in adjusting social ties can lead to the progress of altruism of the whole population. PMID:24229137
Effects of adaptive dynamical linking in networked games
NASA Astrophysics Data System (ADS)
Yang, Zhihu; Li, Zhi; Wu, Te; Wang, Long
2013-10-01
The role of dynamical topologies in the evolution of cooperation has received considerable attention, as some studies have demonstrated that dynamical networks are much better than static networks in terms of boosting cooperation. Here we study a dynamical model of evolution of cooperation on stochastic dynamical networks in which there are no permanent partners to each agent. Whenever a new link is created, its duration is randomly assigned without any bias or preference. We allow the agent to adaptively adjust the duration of each link during the evolution in accordance with the feedback from game interactions. By Monte Carlo simulations, we find that cooperation can be remarkably promoted by this adaptive dynamical linking mechanism both for the game of pairwise interactions, such as the Prisoner's Dilemma game (PDG), and for the game of group interactions, illustrated by the public goods game (PGG). And the faster the adjusting rate, the more successful the evolution of cooperation. We also show that in this context weak selection favors cooperation much more than strong selection does. What is particularly meaningful is that the prosperity of cooperation in this study indicates that the rationality and selfishness of a single agent in adjusting social ties can lead to the progress of altruism of the whole population.
The adaptive potential of maternal stress exposure in regulating population dynamics.
Sheriff, Michael J
2015-03-01
Ecologists, evolutionary biologists and biomedical researchers are investing great effort in understanding the impact maternal stress may have on offspring phenotypes. Bian et al. advance this field by providing evidence that density-induced maternal stress programs offspring phenotypes, resulting in direct consequences on their fitness and population dynamics, but doing so in a context-dependent manner. They suggest that intrinsic state alterations induced by maternal stress may be one ecological factor generating delayed density-dependent effects. This research highlights the connection between maternal stress and population dynamics, and the importance of understanding the adaptive potential of such effects in a context-dependent manner. PMID:26247815
NASA Astrophysics Data System (ADS)
Chai, Runqi; Savvaris, Al; Tsourdos, Antonios
2016-06-01
In this paper, a fuzzy physical programming (FPP) method has been introduced for solving multi-objective Space Manoeuvre Vehicles (SMV) skip trajectory optimization problem based on hp-adaptive pseudospectral methods. The dynamic model of SMV is elaborated and then, by employing hp-adaptive pseudospectral methods, the problem has been transformed to nonlinear programming (NLP) problem. According to the mission requirements, the solutions were calculated for each single-objective scenario. To get a compromised solution for each target, the fuzzy physical programming (FPP) model is proposed. The preference function is established with considering the fuzzy factor of the system such that a proper compromised trajectory can be acquired. In addition, the NSGA-II is tested to obtain the Pareto-optimal solution set and verify the Pareto optimality of the FPP solution. Simulation results indicate that the proposed method is effective and feasible in terms of dealing with the multi-objective skip trajectory optimization for the SMV.
Vectorization of computer programs with applications to computational fluid dynamics
NASA Astrophysics Data System (ADS)
Gentzsch, W.
Techniques for adapting serial computer programs to the architecture of modern vector computers are presented and illustrated with examples, mainly from the field of computational fluid dynamics. The limitations of conventional computers are reviewed; the vector computers CRAY-1S and CDC-CYBER 205 are characterized; and chapters are devoted to vectorization of FORTRAN programs, sample-program vectorization on five different vector and parallel-architecture computers, restructuring of basic linear-algebra algorithms, iterative methods, vectorization of simple numerical algorithms, and fluid-dynamics vectorization on CRAY-1 (including an implicit beam and warming scheme, an implicit finite-difference method for laminar boundary-layer equations, the Galerkin method and a direct Monte Carlo simulation). Diagrams, charts, tables, and photographs are provided.
Dynamic Programming: An Introduction by Example
ERIC Educational Resources Information Center
Zietz, Joachim
2007-01-01
The author introduces some basic dynamic programming techniques, using examples, with the help of the computer algebra system "Maple". The emphasis is on building confidence and intuition for the solution of dynamic problems in economics. To integrate the material better, the same examples are used to introduce different techniques. One covers the…
Glassy Dynamics in the Adaptive Immune Response Prevents Autoimmune Disease
NASA Astrophysics Data System (ADS)
Sun, Jun; Earl, David J.; Deem, Michael W.
2005-09-01
The immune system normally protects the human host against death by infection. However, when an immune response is mistakenly directed at self-antigens, autoimmune disease can occur. We describe a model of protein evolution to simulate the dynamics of the adaptive immune response to antigens. Computer simulations of the dynamics of antibody evolution show that different evolutionary mechanisms, namely, gene segment swapping and point mutation, lead to different evolved antibody binding affinities. Although a combination of gene segment swapping and point mutation can yield a greater affinity to a specific antigen than point mutation alone, the antibodies so evolved are highly cross reactive and would cause autoimmune disease, and this is not the chosen dynamics of the immune system. We suggest that in the immune system’s search for antibodies, a balance has evolved between binding affinity and specificity.
Generalization in Adaptation to Stable and Unstable Dynamics
Kadiallah, Abdelhamid; Franklin, David W.; Burdet, Etienne
2012-01-01
Humans skillfully manipulate objects and tools despite the inherent instability. In order to succeed at these tasks, the sensorimotor control system must build an internal representation of both the force and mechanical impedance. As it is not practical to either learn or store motor commands for every possible future action, the sensorimotor control system generalizes a control strategy for a range of movements based on learning performed over a set of movements. Here, we introduce a computational model for this learning and generalization, which specifies how to learn feedforward muscle activity in a function of the state space. Specifically, by incorporating co-activation as a function of error into the feedback command, we are able to derive an algorithm from a gradient descent minimization of motion error and effort, subject to maintaining a stability margin. This algorithm can be used to learn to coordinate any of a variety of motor primitives such as force fields, muscle synergies, physical models or artificial neural networks. This model for human learning and generalization is able to adapt to both stable and unstable dynamics, and provides a controller for generating efficient adaptive motor behavior in robots. Simulation results exhibit predictions consistent with all experiments on learning of novel dynamics requiring adaptation of force and impedance, and enable us to re-examine some of the previous interpretations of experiments on generalization. PMID:23056191
Generalization in adaptation to stable and unstable dynamics.
Kadiallah, Abdelhamid; Franklin, David W; Burdet, Etienne
2012-01-01
Humans skillfully manipulate objects and tools despite the inherent instability. In order to succeed at these tasks, the sensorimotor control system must build an internal representation of both the force and mechanical impedance. As it is not practical to either learn or store motor commands for every possible future action, the sensorimotor control system generalizes a control strategy for a range of movements based on learning performed over a set of movements. Here, we introduce a computational model for this learning and generalization, which specifies how to learn feedforward muscle activity in a function of the state space. Specifically, by incorporating co-activation as a function of error into the feedback command, we are able to derive an algorithm from a gradient descent minimization of motion error and effort, subject to maintaining a stability margin. This algorithm can be used to learn to coordinate any of a variety of motor primitives such as force fields, muscle synergies, physical models or artificial neural networks. This model for human learning and generalization is able to adapt to both stable and unstable dynamics, and provides a controller for generating efficient adaptive motor behavior in robots. Simulation results exhibit predictions consistent with all experiments on learning of novel dynamics requiring adaptation of force and impedance, and enable us to re-examine some of the previous interpretations of experiments on generalization. PMID:23056191
Computer program for flexible rotor dynamics analysis
NASA Technical Reports Server (NTRS)
Shen, F. A.
1974-01-01
Program analyzes general nonaxisymmetric and nonsynchronous transient and steady-state rotor dynamic performance of bending- and shear-wise flexible rotor-bearing system under various operating conditions. Program can be used as analytical study tool for general transient spin-speed and/or non-axisymmetric rotor motion.
NASA Astrophysics Data System (ADS)
Lv, Yongfeng; Na, Jing; Yang, Qinmin; Wu, Xing; Guo, Yu
2016-01-01
An online adaptive optimal control is proposed for continuous-time nonlinear systems with completely unknown dynamics, which is achieved by developing a novel identifier-critic-based approximate dynamic programming algorithm with a dual neural network (NN) approximation structure. First, an adaptive NN identifier is designed to obviate the requirement of complete knowledge of system dynamics, and a critic NN is employed to approximate the optimal value function. Then, the optimal control law is computed based on the information from the identifier NN and the critic NN, so that the actor NN is not needed. In particular, a novel adaptive law design method with the parameter estimation error is proposed to online update the weights of both identifier NN and critic NN simultaneously, which converge to small neighbourhoods around their ideal values. The closed-loop system stability and the convergence to small vicinity around the optimal solution are all proved by means of the Lyapunov theory. The proposed adaptation algorithm is also improved to achieve finite-time convergence of the NN weights. Finally, simulation results are provided to exemplify the efficacy of the proposed methods.
Space station structures and dynamics test program
NASA Technical Reports Server (NTRS)
Moore, Carleton J.; Townsend, John S.; Ivey, Edward W.
1987-01-01
The design, construction, and operation of a low-Earth orbit space station poses unique challenges for development and implementation of new technology. The technology arises from the special requirement that the station be built and constructed to function in a weightless environment, where static loads are minimal and secondary to system dynamics and control problems. One specific challenge confronting NASA is the development of a dynamics test program for: (1) defining space station design requirements, and (2) identifying the characterizing phenomena affecting the station's design and development. A general definition of the space station dynamic test program, as proposed by MSFC, forms the subject of this report. The test proposal is a comprehensive structural dynamics program to be launched in support of the space station. The test program will help to define the key issues and/or problems inherent to large space structure analysis, design, and testing. Development of a parametric data base and verification of the math models and analytical analysis tools necessary for engineering support of the station's design, construction, and operation provide the impetus for the dynamics test program. The philosophy is to integrate dynamics into the design phase through extensive ground testing and analytical ground simulations of generic systems, prototype elements, and subassemblies. On-orbit testing of the station will also be used to define its capability.
Hybrid Differential Dynamic Programming with Stochastic Search
NASA Technical Reports Server (NTRS)
Aziz, Jonathan; Parker, Jeffrey; Englander, Jacob A.
2016-01-01
Differential dynamic programming (DDP) has been demonstrated as a viable approach to low-thrust trajectory optimization, namely with the recent success of NASA's Dawn mission. The Dawn trajectory was designed with the DDP-based Static/Dynamic Optimal Control algorithm used in the Mystic software.1 Another recently developed method, Hybrid Differential Dynamic Programming (HDDP),2, 3 is a variant of the standard DDP formulation that leverages both first-order and second-order state transition matrices in addition to nonlinear programming (NLP) techniques. Areas of improvement over standard DDP include constraint handling, convergence properties, continuous dynamics, and multi-phase capability. DDP is a gradient based method and will converge to a solution nearby an initial guess. In this study, monotonic basin hopping (MBH) is employed as a stochastic search method to overcome this limitation, by augmenting the HDDP algorithm for a wider search of the solution space.
Hybrid Differential Dynamic Programming with Stochastic Search
NASA Technical Reports Server (NTRS)
Aziz, Jonathan; Parker, Jeffrey; Englander, Jacob
2016-01-01
Differential dynamic programming (DDP) has been demonstrated as a viable approach to low-thrust trajectory optimization, namely with the recent success of NASAs Dawn mission. The Dawn trajectory was designed with the DDP-based Static Dynamic Optimal Control algorithm used in the Mystic software. Another recently developed method, Hybrid Differential Dynamic Programming (HDDP) is a variant of the standard DDP formulation that leverages both first-order and second-order state transition matrices in addition to nonlinear programming (NLP) techniques. Areas of improvement over standard DDP include constraint handling, convergence properties, continuous dynamics, and multi-phase capability. DDP is a gradient based method and will converge to a solution nearby an initial guess. In this study, monotonic basin hopping (MBH) is employed as a stochastic search method to overcome this limitation, by augmenting the HDDP algorithm for a wider search of the solution space.
Dynamic data-driven sensor network adaptation for border control
NASA Astrophysics Data System (ADS)
Bein, Doina; Madan, Bharat B.; Phoha, Shashi; Rajtmajer, Sarah; Rish, Anna
2013-06-01
Given a specific scenario for the border control problem, we propose a dynamic data-driven adaptation of the associated sensor network via embedded software agents which make sensor network control, adaptation and collaboration decisions based on the contextual information value of competing data provided by different multi-modal sensors. We further propose the use of influence diagrams to guide data-driven decision making in selecting the appropriate action or course of actions which maximize a given utility function by designing a sensor embedded software agent that uses an influence diagram to make decisions about whether to engage or not engage higher level sensors for accurately detecting human presence in the region. The overarching goal of the sensor system is to increase the probability of target detection and classification and reduce the rate of false alarms. The proposed decision support software agent is validated experimentally on a laboratory testbed for multiple border control scenarios.
Elucidating Microbial Adaptation Dynamics via Autonomous Exposure and Sampling
NASA Astrophysics Data System (ADS)
Grace, J. M.; Verseux, C.; Gentry, D.; Moffet, A.; Thayabaran, R.; Wong, N.; Rothschild, L.
2013-12-01
The adaptation of micro-organisms to their environments is a complex process of interaction between the pressures of the environment and of competition. Reducing this multifactorial process to environmental exposure in the laboratory is a common tool for elucidating individual mechanisms of evolution, such as mutation rates[Wielgoss et al., 2013]. Although such studies inform fundamental questions about the way adaptation and even speciation occur, they are often limited by labor-intensive manual techniques[Wassmann et al., 2010]. Current methods for controlled study of microbial adaptation limit the length of time, the depth of collected data, and the breadth of applied environmental conditions. Small idiosyncrasies in manual techniques can have large effects on outcomes; for example, there are significant variations in induced radiation resistances following similar repeated exposure protocols[Alcántara-Díaz et al., 2004; Goldman and Travisano, 2011]. We describe here a project under development to allow rapid cycling of multiple types of microbial environmental exposure. The system allows continuous autonomous monitoring and data collection of both single species and sampled communities, independently and concurrently providing multiple types of controlled environmental pressure (temperature, radiation, chemical presence or absence, and so on) to a microbial community in dynamic response to the ecosystem's current status. When combined with DNA sequencing and extraction, such a controlled environment can cast light on microbial functional development, population dynamics, inter- and intra-species competition, and microbe-environment interaction. The project's goal is to allow rapid, repeatable iteration of studies of both natural and artificial microbial adaptation. As an example, the same system can be used both to increase the pH of a wet soil aliquot over time while periodically sampling it for genetic activity analysis, or to repeatedly expose a culture of
Development of a dynamically adaptive grid method for multidimensional problems
NASA Astrophysics Data System (ADS)
Holcomb, J. E.; Hindman, R. G.
1984-06-01
An approach to solution adaptive grid generation for use with finite difference techniques, previously demonstrated on model problems in one space dimension, has been extended to multidimensional problems. The method is based on the popular elliptic steady grid generators, but is 'dynamically' adaptive in the sense that a grid is maintained at all times satisfying the steady grid law driven by a solution-dependent source term. Testing has been carried out on Burgers' equation in one and two space dimensions. Results appear encouraging both for inviscid wave propagation cases and viscous boundary layer cases, suggesting that application to practical flow problems is now possible. In the course of the work, obstacles relating to grid correction, smoothing of the solution, and elliptic equation solvers have been largely overcome. Concern remains, however, about grid skewness, boundary layer resolution and the need for implicit integration methods. Also, the method in 3-D is expected to be very demanding of computer resources.
Direct Adaptive Aircraft Control Using Dynamic Cell Structure Neural Networks
NASA Technical Reports Server (NTRS)
Jorgensen, Charles C.
1997-01-01
A Dynamic Cell Structure (DCS) Neural Network was developed which learns topology representing networks (TRNS) of F-15 aircraft aerodynamic stability and control derivatives. The network is integrated into a direct adaptive tracking controller. The combination produces a robust adaptive architecture capable of handling multiple accident and off- nominal flight scenarios. This paper describes the DCS network and modifications to the parameter estimation procedure. The work represents one step towards an integrated real-time reconfiguration control architecture for rapid prototyping of new aircraft designs. Performance was evaluated using three off-line benchmarks and on-line nonlinear Virtual Reality simulation. Flight control was evaluated under scenarios including differential stabilator lock, soft sensor failure, control and stability derivative variations, and air turbulence.
Program of Research in Structures and Dynamics
NASA Technical Reports Server (NTRS)
1988-01-01
The Structures and Dynamics Program was first initiated in 1972 with the following two major objectives: to provide a basic understanding and working knowledge of some key areas pertinent to structures, solid mechanics, and dynamics technology including computer aided design; and to provide a comprehensive educational and research program at the NASA Langley Research Center leading to advanced degrees in the structures and dynamics areas. During the operation of the program the research work was done in support of the activities of both the Structures and Dynamics Division and the Loads and Aeroelasticity Division. During the period of 1972 to 1986 the Program provided support for two full-time faculty members, one part-time faculty member, three postdoctoral fellows, one research engineer, eight programmers, and 28 graduate research assistants. The faculty and staff of the program have published 144 papers and reports, and made 70 presentations at national and international meetings, describing their research findings. In addition, they organized and helped in the organization of 10 workshops and national symposia in the structures and dynamics areas. The graduate research assistants and the students enrolled in the program have written 20 masters theses and 2 doctoral dissertations. The overall progress is summarized.
NASA Astrophysics Data System (ADS)
Piacentino, Michael R.; Berends, David C.; Zhang, David C.; Gudis, Eduardo
2013-05-01
Two of the biggest challenges in designing U×V vision systems are properly representing high dynamic range scene content using low dynamic range components and reducing camera motion blur. SRI's MASI-HDR (Motion Adaptive Signal Integration-High Dynamic Range) is a novel technique for generating blur-reduced video using multiple captures for each displayed frame while increasing the effective camera dynamic range by four bits or more. MASI-HDR processing thus provides high performance video from rapidly moving platforms in real-world conditions in low latency real time, enabling even the most demanding applications on air, ground and water.
A comparison of three programming models for adaptive applications on the Origin2000
Shan, Hongzhang; Singh, Jaswinder Pal; Oliker, Leonid; Biswas, Rupak
2001-05-30
Adaptive applications have computational workloads and communication patterns which change unpredictably at runtime, requiring dynamic load balancing to achieve scalable performance on parallel machines. Efficient parallel implementations of such adaptive applications is therefore a challenging task. In this paper, we compare the performance of and the programming effort required for two major classes of adaptive applications under three leading parallel programming models on an SGI Origin2000 system, a machine which supports all three models efficiently. Results indicate that the three models deliver comparable performance; however, the implementations differ significantly beyond merely using explicit messages versus implicit loads/stores even though the basic parallel algorithms are similar. Compared with the message-passing (using MPI) and SHMEM programming models, the cache-coherent shared address space (CC-SAS) model provides substantial ease of programming at both the conceptual and program orchestration levels, often accompanied by performance gains. However, CC-SAS currently has portability limitations and may suffer from poor spatial locality of physically distributed shared data on large numbers of processors.
Adaptive and neuroadaptive control for nonnegative and compartmental dynamical systems
NASA Astrophysics Data System (ADS)
Volyanskyy, Kostyantyn Y.
Neural networks have been extensively used for adaptive system identification as well as adaptive and neuroadaptive control of highly uncertain systems. The goal of adaptive and neuroadaptive control is to achieve system performance without excessive reliance on system models. To improve robustness and the speed of adaptation of adaptive and neuroadaptive controllers several controller architectures have been proposed in the literature. In this dissertation, we develop a new neuroadaptive control architecture for nonlinear uncertain dynamical systems. The proposed framework involves a novel controller architecture with additional terms in the update laws that are constructed using a moving window of the integrated system uncertainty. These terms can be used to identify the ideal system weights of the neural network as well as effectively suppress system uncertainty. Linear and nonlinear parameterizations of the system uncertainty are considered and state and output feedback neuroadaptive controllers are developed. Furthermore, we extend the developed framework to discrete-time dynamical systems. To illustrate the efficacy of the proposed approach we apply our results to an aircraft model with wing rock dynamics, a spacecraft model with unknown moment of inertia, and an unmanned combat aerial vehicle undergoing actuator failures, and compare our results with standard neuroadaptive control methods. Nonnegative systems are essential in capturing the behavior of a wide range of dynamical systems involving dynamic states whose values are nonnegative. A sub-class of nonnegative dynamical systems are compartmental systems. These systems are derived from mass and energy balance considerations and are comprised of homogeneous interconnected microscopic subsystems or compartments which exchange variable quantities of material via intercompartmental flow laws. In this dissertation, we develop direct adaptive and neuroadaptive control framework for stabilization, disturbance
Adaptive mesh refinement for 1-dimensional gas dynamics
Hedstrom, G.; Rodrigue, G.; Berger, M.; Oliger, J.
1982-01-01
We consider the solution of the one-dimensional equation of gas-dynamics. Accurate numerical solutions are difficult to obtain on a given spatial mesh because of the existence of physical regions where components of the exact solution are either discontinuous or have large gradient changes. Numerical methods treat these phenomena in a variety of ways. In this paper, the method of adaptive mesh refinement is used. A thorough description of this method for general hyperbolic systems is given elsewhere and only properties of the method pertinent to the system are elaborated.
Inter-limb interference during bimanual adaptation to dynamic environments
Casadio, Maura; Sanguineti, Vittorio; Squeri, Valentina; Masia, Lorenzo; Morasso, Pietro
2015-01-01
Skillful manipulation of objects often requires the spatio-temporal coordination of both hands and, at the same time, the compensation of environmental forces. In bimanual coordination, movements of the two hands may be coupled because each hand needs to compensate the forces generated by the other hand or by an object operated by both hands (dynamic coupling), or because the two hands share the same workspace (spatial coupling). We examined how spatial coupling influences bimanual coordination, by looking at the adaptation of velocity-dependent force fields during a task in which the two hands simultaneously perform center-out reaching movements with the same initial position and the same targets, equally spaced on a circle. Subjects were randomly allocated to two groups, which differed in terms of the force fields they were exposed to: in one group (CW-CW), force fields had equal clockwise orientations in both hands; in the other group (CCW-CW), they had opposite orientations. In both groups, in randomly selected trials (catch trials) of the adaptation phase, the force fields were unexpectedly removed. Adaptation was quantified in terms of the changes of directional error for both hand trajectories. Bimanual coordination was quantified in terms of inter-limb longitudinal and sideways displacements, in force field and in catch trials. Experimental results indicate that both arms could simultaneously adapt to the two force fields. However, in the CCW-CW group, adaptation was incomplete for the movements from the central position to the more distant targets with respect to the body. In addition, in this group the left hand systematically leads in the movements toward targets on the left of the starting position, whereas the right hand leads in the movements to targets on the right. We show that these effects are due to a gradual sideways shift of the hands, so that during movements the left hand tends to consistently remain at the left of the right hand. These
Hydrodynamics in adaptive resolution particle simulations: Multiparticle collision dynamics
NASA Astrophysics Data System (ADS)
Alekseeva, Uliana; Winkler, Roland G.; Sutmann, Godehard
2016-06-01
A new adaptive resolution technique for particle-based multi-level simulations of fluids is presented. In the approach, the representation of fluid and solvent particles is changed on the fly between an atomistic and a coarse-grained description. The present approach is based on a hybrid coupling of the multiparticle collision dynamics (MPC) method and molecular dynamics (MD), thereby coupling stochastic and deterministic particle-based methods. Hydrodynamics is examined by calculating velocity and current correlation functions for various mixed and coupled systems. We demonstrate that hydrodynamic properties of the mixed fluid are conserved by a suitable coupling of the two particle methods, and that the simulation results agree well with theoretical expectations.
Experimental Dynamic Characterization of a Reconfigurable Adaptive Precision Truss
NASA Technical Reports Server (NTRS)
Hinkle, J. D.; Peterson, L. D.
1994-01-01
The dynamic behavior of a reconfigurable adaptive truss structure with non-linear joints is investigated. The objective is to experimentally examine the effects of the local non-linearities on the global dynamics of the structure. Amplitude changes in the frequency response functions are measured at micron levels of motion. The amplitude and frequency variations of a number of modes indicate a non-linear Coulomb friction response. Hysteretic bifurcation behavior is also measured at an amplitude approximately equal to the specified free-play in the joint. Under the 1 g pre-load, however, the non-linearity was dominantly characteristic of Coulomb friction with little evidence of free-play stiffening.
Adaptive integral dynamic surface control of a hypersonic flight vehicle
NASA Astrophysics Data System (ADS)
Aslam Butt, Waseem; Yan, Lin; Amezquita S., Kendrick
2015-07-01
In this article, non-linear adaptive dynamic surface air speed and flight path angle control designs are presented for the longitudinal dynamics of a flexible hypersonic flight vehicle. The tracking performance of the control design is enhanced by introducing a novel integral term that caters to avoiding a large initial control signal. To ensure feasibility, the design scheme incorporates magnitude and rate constraints on the actuator commands. The uncertain non-linear functions are approximated by an efficient use of the neural networks to reduce the computational load. A detailed stability analysis shows that all closed-loop signals are uniformly ultimately bounded and the ? tracking performance is guaranteed. The robustness of the design scheme is verified through numerical simulations of the flexible flight vehicle model.
Structural dynamic health monitoring of adaptive CFRP structures
NASA Astrophysics Data System (ADS)
Kaiser, Stephan; Melcher, Joerg; Breitbach, Elmar J.; Sachau, Delf
1999-07-01
The DLR Institute of Structural Mechanics is engaged in the construction and optimization of adaptive structures for aerospace and terrestrial applications. Due to the FFS- Project, one of the recent works of the Institute is the reduction of buffet induced vibration loads at a fin. The construction of modern aircrafts is influenced b the increasing use of fiber composites. They have more specific stiffness and strength properties than metals. On the other hand the layered structure leads to new kinds of damages like delaminations. In the fin interface there are actuators and sensors integrated. Therefore the fin is connected with a controller. For the extension of this adaptive system towards an on-line tool for health monitoring this controller can be used as an identifier of the structure's modal parameters. The most promising procedure is based on MX filters. These filters constitute the filter coefficients from which a fast transformation procedure extracts the modal parameters. The changes of these parameters are related to the location and extent of the damage. So when using the already integrate controller for system identification, one can have a low-cost on-line damage detection for dynamic adaptive structures. First off-line test at CFRP plates have shown the ability to detect delaminations.
Optimal spectral tracking--adapting to dynamic regime change.
Brittain, John-Stuart; Halliday, David M
2011-01-30
Real world data do not always obey the statistical restraints imposed upon them by sophisticated analysis techniques. In spectral analysis for instance, an ergodic process--the interchangeability of temporal for spatial averaging--is assumed for a repeat-trial design. Many evolutionary scenarios, such as learning and motor consolidation, do not conform to such linear behaviour and should be approached from a more flexible perspective. To this end we previously introduced the method of optimal spectral tracking (OST) in the study of trial-varying parameters. In this extension to our work we modify the OST routines to provide an adaptive implementation capable of reacting to dynamic transitions in the underlying system state. In so doing, we generalise our approach to characterise both slow-varying and rapid fluctuations in time-series, simultaneously providing a metric of system stability. The approach is first applied to a surrogate dataset and compared to both our original non-adaptive solution and spectrogram approaches. The adaptive OST is seen to display fast convergence and desirable statistical properties. All three approaches are then applied to a neurophysiological recording obtained during a study on anaesthetic monitoring. Local field potentials acquired from the posterior hypothalamic region of a deep brain stimulation patient undergoing anaesthesia were analysed. The characterisation of features such as response delay, time-to-peak and modulation brevity are considered. PMID:21115043
Space station structures and dynamics test program
NASA Technical Reports Server (NTRS)
Bugg, Frank M.; Ivey, E. W.; Moore, C. J.; Townsend, John S.
1987-01-01
The design, construction, and operation of a low-Earth orbit space station poses challenges for development and implementation of technology. One specific challenge is the development of a dynamics test program for defining the space station design requirements, and identifying and characterizing phenomena affecting the space station's design and development. The test proposal, as outlined, is a comprehensive structural dynamics program to be launched in support of the space station (SS). Development of a parametric data base and verification of the mathematical models and analytical analysis tools necessary for engineering support of the station's design, construction, and operation provide the impetus for the dynamics test program. The four test phases planned are discussed: testing of SS applicable structural concepts; testing of SS prototypes; testing of actual SS structural hardware; and on-orbit testing of SS construction.
Adaptation and Learning of Agents in Market Oriented Programming
NASA Astrophysics Data System (ADS)
Ishinishi, Masayuki; Namatame, Akira; Kita, Hajime
Market Oriented Programming (MOP) proposed by Wellman is a decentralized control method using auction machanism inspired by the market economy. It is applied to many problems such as network and computation resource allocation. Conventional MOP models are formulated based on the concept of ‘competitive market’ of economics which assumes that the market consists of sufficiently many and small agents. However, in realistic applications of MOP, number of agents is limited and their interdependency is not negligible. In this paper, MOP for interdependent agents is discussed. An oligopoly market model for MOP is introduced, and adaptation process of interdependent agents and its stability are discussed. Further, it is also demonstrated that selfish learning of adaptation coefficiency by each agent achieves stability of market through computer simulation.
Reconfigurable systems for sequence alignment and for general dynamic programming.
Jacobi, Ricardo P; Ayala-Rincón, Mauricio; Carvalho, Luis G A; Llanos, Carlos H; Hartenstein, Reiner W
2005-01-01
Reconfigurable systolic arrays can be adapted to efficiently resolve a wide spectrum of computational problems; parallelism is naturally explored in systolic arrays and reconfigurability allows for redefinition of the interconnections and operations even during run time (dynamically). We present a reconfigurable systolic architecture that can be applied for the efficient treatment of several dynamic programming methods for resolving well-known problems, such as global and local sequence alignment, approximate string matching and longest common subsequence. The dynamicity of the reconfigurability was found to be useful for practical applications in the construction of sequence alignments. A VHDL (VHSIC hardware description language) version of this new architecture was implemented on an APEX FPGA (Field programmable gate array). It would be several magnitudes faster than the software algorithm alternatives. PMID:16342039
Interactive Beam-Dynamics Program
Energy Science and Technology Software Center (ESTSC)
2001-01-08
TRACE3D is an interactive program that calculates the envelopes of a bunched beam, including linear space-charge forces, through a user-defined system. The transport system may consist of the following elements: drift, thin lens, quadrupole, permanent magnet quadrupole, solenoid, doublet, triplet, bending magnet, edge angle (for bend), RF gap, radio-frequency-quadrupole cell, RF cavity, coupled-cavity tank, user-desired element, coordinate rotation, and identical element. The beam is represented by a 6X6 matrix defining a hyper-ellipsoid in six-dimensional phasemore » space. The projection of this hyperellipsoid on any two-dimensional plane is an ellipse that defines the boundary of the beam in that plane.« less
Configuring Airspace Sectors with Approximate Dynamic Programming
NASA Technical Reports Server (NTRS)
Bloem, Michael; Gupta, Pramod
2010-01-01
In response to changing traffic and staffing conditions, supervisors dynamically configure airspace sectors by assigning them to control positions. A finite horizon airspace sector configuration problem models this supervisor decision. The problem is to select an airspace configuration at each time step while considering a workload cost, a reconfiguration cost, and a constraint on the number of control positions at each time step. Three algorithms for this problem are proposed and evaluated: a myopic heuristic, an exact dynamic programming algorithm, and a rollouts approximate dynamic programming algorithm. On problem instances from current operations with only dozens of possible configurations, an exact dynamic programming solution gives the optimal cost value. The rollouts algorithm achieves costs within 2% of optimal for these instances, on average. For larger problem instances that are representative of future operations and have thousands of possible configurations, excessive computation time prohibits the use of exact dynamic programming. On such problem instances, the rollouts algorithm reduces the cost achieved by the heuristic by more than 15% on average with an acceptable computation time.
Open Groups: Adaptations in Implementing a Parent Training Program
Brock, Donna-Jean P.; Marek, Lydia I.; Matteo-Kerney, Cheryl; Bagby, Tammy
2013-01-01
Background: Programs that focus on positive parenting have been shown to improve parental attitudes, knowledge, and behaviors, and increase parent and child bonding. These programs are typically conducted in a closed group format. However, when individual or community needs are more immediate, programmers sometimes opt for an open group format. To determine the effectiveness of this adaptation to an open group format, the present study compared both groups on parental outcomes. Methods: Both closed and open group formats were offered and implemented between January 2009 and December 2012. Participants for both formats were recruited through similar means and the format placement for each family was determined by the immediacy of the need for an intervention, the time lapse until a new cycle would begin, and scheduling flexibility. Chi-Square analyses were conducted to determine demographic differences between the two groups and gain scores were calculated from the pre- and post-test AAPI-2 scales within a mixed MANOVA to determine group format effectiveness. Results: Though open groups contained higher risk families; parental outcome improvements were significant for both groups. All participants, regardless of group membership, demonstrated the same statistically significant improvements following completion of the program. Conclusion: Findings provide support for adapting group formats when necessary to fit community and individual needs. PMID:24688972
Dynamic programming in applied optimization problems
NASA Astrophysics Data System (ADS)
Zavalishchin, Dmitry
2015-11-01
Features of the use dynamic programming in applied problems are investigated. In practice such problems as finding the critical paths in network planning and control, finding the optimal supply plan in transportation problem, objects territorial distribution are traditionally solved by special methods of operations research. It should be noted that the dynamic programming is not provided computational advantages, but facilitates changes and modifications of tasks. This follows from the Bellman's optimality principle. The features of the multistage decision processes construction in applied problems are provided.
Effects of adaptive protective behavior on the dynamics of sexually transmitted infections.
Hayashi, Michael A L; Eisenberg, Marisa C
2016-01-01
Sexually transmitted infections (STIs) continue to present a complex and costly challenge to public health programs. The preferences and social dynamics of a population can have a large impact on the course of an outbreak as well as the effectiveness of interventions intended to influence individual behavior. In addition, individuals may alter their sexual behavior in response to the presence of STIs, creating a feedback loop between transmission and behavior. We investigate the consequences of modeling the interaction between STI transmission and prophylactic use with a model that links a Susceptible-Infectious-Susceptible (SIS) system to evolutionary game dynamics that determine the effective contact rate. The combined model framework allows us to address protective behavior by both infected and susceptible individuals. Feedback between behavioral adaptation and prevalence creates a wide range of dynamic behaviors in the combined model, including damped and sustained oscillations as well as bistability, depending on the behavioral parameters and disease growth rate. We found that disease extinction is possible for multiple regions where R0>1, due to behavior adaptation driving the epidemic downward, although conversely endemic prevalence for arbitrarily low R0 is also possible if contact rates are sufficiently high. We also tested how model misspecification might affect disease forecasting and estimation of the model parameters and R0. We found that alternative models that neglect the behavioral feedback or only consider behavior adaptation by susceptible individuals can potentially yield misleading parameter estimates or omit significant features of the disease trajectory. PMID:26362102
Analysis of dynamic deformation processes with adaptive KALMAN-filtering
NASA Astrophysics Data System (ADS)
Eichhorn, Andreas
2007-05-01
In this paper the approach of a full system analysis is shown quantifying a dynamic structural ("white-box"-) model for the calculation of thermal deformations of bar-shaped machine elements. The task was motivated from mechanical engineering searching new methods for the precise prediction and computational compensation of thermal influences in the heating and cooling phases of machine tools (i.e. robot arms, etc.). The quantification of thermal deformations under variable dynamic loads requires the modelling of the non-stationary spatial temperature distribution inside the object. Based upon FOURIERS law of heat flow the high-grade non-linear temperature gradient is represented by a system of partial differential equations within the framework of a dynamic Finite Element topology. It is shown that adaptive KALMAN-filtering is suitable to quantify relevant disturbance influences and to identify thermal parameters (i.e. thermal diffusivity) with a deviation of only 0,2%. As result an identified (and verified) parametric model for the realistic prediction respectively simulation of dynamic temperature processes is presented. Classifying the thermal bend as the main deformation quantity of bar-shaped machine tools, the temperature model is extended to a temperature deformation model. In lab tests thermal load steps are applied to an aluminum column. Independent control measurements show that the identified model can be used to predict the columns bend with a mean deviation (
Glassy Dynamics in the Adaptive Immune Response Prevents Autoimmune Disease
NASA Astrophysics Data System (ADS)
Sun, Jun; Deem, Michael
2006-03-01
The immune system normally protects the human host against death by infection. However, when an immune response is mistakenly directed at self antigens, autoimmune disease can occur. We describe a model of protein evolution to simulate the dynamics of the adaptive immune response to antigens. Computer simulations of the dynamics of antibody evolution show that different evolutionary mechanisms, namely gene segment swapping and point mutation, lead to different evolved antibody binding affinities. Although a combination of gene segment swapping and point mutation can yield a greater affinity to a specific antigen than point mutation alone, the antibodies so evolved are highly cross-reactive and would cause autoimmune disease, and this is not the chosen dynamics of the immune system. We suggest that in the immune system a balance has evolved between binding affinity and specificity in the mechanism for searching the amino acid sequence space of antibodies. Our model predicts that chronic infection may lead to autoimmune disease as well due to cross-reactivity and suggests a broad distribution for the time of onset of autoimmune disease due to chronic exposure. The slow search of antibody sequence space by point mutation leads to the broad of distribution times.
Patient-adaptive lesion metabolism analysis by dynamic PET images.
Gao, Fei; Liu, Huafeng; Shi, Pengcheng
2012-01-01
Dynamic PET imaging provides important spatial-temporal information for metabolism analysis of organs and tissues, and generates a great reference for clinical diagnosis and pharmacokinetic analysis. Due to poor statistical properties of the measurement data in low count dynamic PET acquisition and disturbances from surrounding tissues, identifying small lesions inside the human body is still a challenging issue. The uncertainties in estimating the arterial input function will also limit the accuracy and reliability of the metabolism analysis of lesions. Furthermore, the sizes of the patients and the motions during PET acquisition will yield mismatch against general purpose reconstruction system matrix, this will also affect the quantitative accuracy of metabolism analyses of lesions. In this paper, we present a dynamic PET metabolism analysis framework by defining a patient adaptive system matrix to improve the lesion metabolism analysis. Both patient size information and potential small lesions are incorporated by simulations of phantoms of different sizes and individual point source responses. The new framework improves the quantitative accuracy of lesion metabolism analysis, and makes the lesion identification more precisely. The requirement of accurate input functions is also reduced. Experiments are conducted on Monte Carlo simulated data set for quantitative analysis and validation, and on real patient scans for assessment of clinical potential. PMID:23286175
Dynamic modeling and adaptive control for space stations
NASA Technical Reports Server (NTRS)
Ih, C. H. C.; Wang, S. J.
1985-01-01
Of all large space structural systems, space stations present a unique challenge and requirement to advanced control technology. Their operations require control system stability over an extremely broad range of parameter changes and high level of disturbances. During shuttle docking the system mass may suddenly increase by more than 100% and during station assembly the mass may vary even more drastically. These coupled with the inherent dynamic model uncertainties associated with large space structural systems require highly sophisticated control systems that can grow as the stations evolve and cope with the uncertainties and time-varying elements to maintain the stability and pointing of the space stations. The aspects of space station operational properties are first examined, including configurations, dynamic models, shuttle docking contact dynamics, solar panel interaction, and load reduction to yield a set of system models and conditions. A model reference adaptive control algorithm along with the inner-loop plant augmentation design for controlling the space stations under severe operational conditions of shuttle docking, excessive model parameter errors, and model truncation are then investigated. The instability problem caused by the zero-frequency rigid body modes and a proposed solution using plant augmentation are addressed. Two sets of sufficient conditions which guarantee the globablly asymptotic stability for the space station systems are obtained.
Efficient dynamic optimization of logic programs
NASA Technical Reports Server (NTRS)
Laird, Phil
1992-01-01
A summary is given of the dynamic optimization approach to speed up learning for logic programs. The problem is to restructure a recursive program into an equivalent program whose expected performance is optimal for an unknown but fixed population of problem instances. We define the term 'optimal' relative to the source of input instances and sketch an algorithm that can come within a logarithmic factor of optimal with high probability. Finally, we show that finding high-utility unfolding operations (such as EBG) can be reduced to clause reordering.
Two Characterizations of Optimality in Dynamic Programming
Karatzas, Ioannis; Sudderth, William D.
2010-06-15
It holds in great generality that a plan is optimal for a dynamic programming problem, if and only if it is 'thrifty' and 'equalizing.' An alternative characterization of an optimal plan, that applies in many economic models, is that the plan must satisfy an appropriate Euler equation and a transversality condition. Here we explore the connections between these two characterizations.
Two stage gear tooth dynamics program
NASA Technical Reports Server (NTRS)
Boyd, Linda S.
1989-01-01
The epicyclic gear dynamics program was expanded to add the option of evaluating the tooth pair dynamics for two epicyclic gear stages with peripheral components. This was a practical extension to the program as multiple gear stages are often used for speed reduction, space, weight, and/or auxiliary units. The option was developed for either stage to be a basic planetary, star, single external-external mesh, or single external-internal mesh. The two stage system allows for modeling of the peripherals with an input mass and shaft, an output mass and shaft, and a connecting shaft. Execution of the initial test case indicated an instability in the solution with the tooth paid loads growing to excessive magnitudes. A procedure to trace the instability is recommended as well as a method of reducing the program's computation time by reducing the number of boundary condition iterations.
Dynamic adaptive learning for decision-making supporting systems
NASA Astrophysics Data System (ADS)
He, Haibo; Cao, Yuan; Chen, Sheng; Desai, Sachi; Hohil, Myron E.
2008-03-01
This paper proposes a novel adaptive learning method for data mining in support of decision-making systems. Due to the inherent characteristics of information ambiguity/uncertainty, high dimensionality and noisy in many homeland security and defense applications, such as surveillances, monitoring, net-centric battlefield, and others, it is critical to develop autonomous learning methods to efficiently learn useful information from raw data to help the decision making process. The proposed method is based on a dynamic learning principle in the feature spaces. Generally speaking, conventional approaches of learning from high dimensional data sets include various feature extraction (principal component analysis, wavelet transform, and others) and feature selection (embedded approach, wrapper approach, filter approach, and others) methods. However, very limited understandings of adaptive learning from different feature spaces have been achieved. We propose an integrative approach that takes advantages of feature selection and hypothesis ensemble techniques to achieve our goal. Based on the training data distributions, a feature score function is used to provide a measurement of the importance of different features for learning purpose. Then multiple hypotheses are iteratively developed in different feature spaces according to their learning capabilities. Unlike the pre-set iteration steps in many of the existing ensemble learning approaches, such as adaptive boosting (AdaBoost) method, the iterative learning process will automatically stop when the intelligent system can not provide a better understanding than a random guess in that particular subset of feature spaces. Finally, a voting algorithm is used to combine all the decisions from different hypotheses to provide the final prediction results. Simulation analyses of the proposed method on classification of different US military aircraft databases show the effectiveness of this method.
Community dynamics of cellulose-adapted thermophilic bacterial consortia.
Eichorst, Stephanie A; Varanasi, Patanjali; Stavila, Vatalie; Zemla, Marcin; Auer, Manfred; Singh, Seema; Simmons, Blake A; Singer, Steven W
2013-09-01
Enzymatic hydrolysis of cellulose is a key process in the global carbon cycle and the industrial conversion of biomass to biofuels. In natural environments, cellulose hydrolysis is predominately performed by microbial communities. However, detailed understanding of bacterial cellulose hydrolysis is primarily confined to a few model isolates. Developing models for cellulose hydrolysis by mixed microbial consortia will complement these isolate studies and may reveal new mechanisms for cellulose deconstruction. Microbial communities were adapted to microcrystalline cellulose under aerobic, thermophilic conditions using green waste compost as the inoculum to study cellulose hydrolysis in a microbial consortium. This adaptation selected for three dominant taxa--the Firmicutes, Bacteroidetes and Thermus. A high-resolution profile of community development during the enrichment demonstrated a community transition from Firmicutes to a novel Bacteroidetes population that clusters in the Chitinophagaceae family. A representative strain of this population, strain NYFB, was successfully isolated, and sequencing of a nearly full-length 16S rRNA gene demonstrated that it was only 86% identical compared with other validated strains in the phylum Bacteroidetes. Strain NYFB grew well on soluble polysaccharide substrates, but grew poorly on insoluble polysaccharide substrates. Similar communities were observed in companion thermophilic enrichments on insoluble wheat arabinoxylan, a hemicellulosic substrate, suggesting a common model for deconstruction of plant polysaccharides. Combining observations of community dynamics and the physiology of strain NYFB, a cooperative successional model for polysaccharide hydrolysis by the Firmicutes and Bacteroidetes in the thermophilic cellulolytic consortia is proposed. PMID:23763762
PAQ: Persistent Adaptive Query Middleware for Dynamic Environments
NASA Astrophysics Data System (ADS)
Rajamani, Vasanth; Julien, Christine; Payton, Jamie; Roman, Gruia-Catalin
Pervasive computing applications often entail continuous monitoring tasks, issuing persistent queries that return continuously updated views of the operational environment. We present PAQ, a middleware that supports applications' needs by approximating a persistent query as a sequence of one-time queries. PAQ introduces an integration strategy abstraction that allows composition of one-time query responses into streams representing sophisticated spatio-temporal phenomena of interest. A distinguishing feature of our middleware is the realization that the suitability of a persistent query's result is a function of the application's tolerance for accuracy weighed against the associated overhead costs. In PAQ, programmers can specify an inquiry strategy that dictates how information is gathered. Since network dynamics impact the suitability of a particular inquiry strategy, PAQ associates an introspection strategy with a persistent query, that evaluates the quality of the query's results. The result of introspection can trigger application-defined adaptation strategies that alter the nature of the query. PAQ's simple API makes developing adaptive querying systems easily realizable. We present the key abstractions, describe their implementations, and demonstrate the middleware's usefulness through application examples and evaluation.
Fully Threaded Tree for Adaptive Refinement Fluid Dynamics Simulations
NASA Technical Reports Server (NTRS)
Khokhlov, A. M.
1997-01-01
A fully threaded tree (FTT) for adaptive refinement of regular meshes is described. By using a tree threaded at all levels, tree traversals for finding nearest neighbors are avoided. All operations on a tree including tree modifications are O(N), where N is a number of cells, and are performed in parallel. An efficient implementation of the tree is described that requires 2N words of memory. A filtering algorithm for removing high frequency noise during mesh refinement is described. A FTT can be used in various numerical applications. In this paper, it is applied to the integration of the Euler equations of fluid dynamics. An adaptive mesh time stepping algorithm is described in which different time steps are used at different l evels of the tree. Time stepping and mesh refinement are interleaved to avoid extensive buffer layers of fine mesh which were otherwise required ahead of moving shocks. Test examples are presented, and the FTT performance is evaluated. The three dimensional simulation of the interaction of a shock wave and a spherical bubble is carried out that shows the development of azimuthal perturbations on the bubble surface.
iAPBS: a programming interface to Adaptive Poisson-Boltzmann Solver (APBS).
Konecny, Robert; Baker, Nathan A; McCammon, J Andrew
2012-07-26
The Adaptive Poisson-Boltzmann Solver (APBS) is a state-of-the-art suite for performing Poisson-Boltzmann electrostatic calculations on biomolecules. The iAPBS package provides a modular programmatic interface to the APBS library of electrostatic calculation routines. The iAPBS interface library can be linked with a FORTRAN or C/C++ program thus making all of the APBS functionality available from within the application. Several application modules for popular molecular dynamics simulation packages - Amber, NAMD and CHARMM are distributed with iAPBS allowing users of these packages to perform implicit solvent electrostatic calculations with APBS. PMID:22905037
iAPBS: a programming interface to Adaptive Poisson-Boltzmann Solver
Konecny, Robert; Baker, Nathan A.; McCammon, J. A.
2012-07-26
The Adaptive Poisson-Boltzmann Solver (APBS) is a state-of-the-art suite for performing Poisson-Boltzmann electrostatic calculations on biomolecules. The iAPBS package provides a modular programmatic interface to the APBS library of electrostatic calculation routines. The iAPBS interface library can be linked with a Fortran or C/C++ program thus making all of the APBS functionality available from within the application. Several application modules for popular molecular dynamics simulation packages -- Amber, NAMD and CHARMM are distributed with iAPBS allowing users of these packages to perform implicit solvent electrostatic calculations with APBS.
A new procedure for dynamic adaption of three-dimensional unstructured grids
NASA Technical Reports Server (NTRS)
Biswas, Rupak; Strawn, Roger
1993-01-01
A new procedure is presented for the simultaneous coarsening and refinement of three-dimensional unstructured tetrahedral meshes. This algorithm allows for localized grid adaption that is used to capture aerodynamic flow features such as vortices and shock waves in helicopter flowfield simulations. The mesh-adaption algorithm is implemented in the C programming language and uses a data structure consisting of a series of dynamically-allocated linked lists. These lists allow the mesh connectivity to be rapidly reconstructed when individual mesh points are added and/or deleted. The algorithm allows the mesh to change in an anisotropic manner in order to efficiently resolve directional flow features. The procedure has been successfully implemented on a single processor of a Cray Y-MP computer. Two sample cases are presented involving three-dimensional transonic flow. Computed results show good agreement with conventional structured-grid solutions for the Euler equations.
Expansion of epicyclic gear dynamic analysis program
NASA Technical Reports Server (NTRS)
Boyd, Linda Smith; Pike, James A.
1987-01-01
The multiple mesh/single stage dynamics program is a gear tooth analysis program which determines detailed geometry, dynamic loads, stresses, and surface damage factors. The program can analyze a variety of both epicyclic and single mesh systems with spur or helical gear teeth including internal, external, and buttress tooth forms. The modifications refine the options for the flexible carrier and flexible ring gear rim and adds three options: a floating Sun gear option; a natural frequency option; and a finite element compliance formulation for helical gear teeth. The option for a floating Sun incorporates two additional degrees of freedom at the Sun center. The natural frequency option evaluates the frequencies of planetary, star, or differential systems as well as the effect of additional springs at the Sun center and those due to a flexible carrier and/or ring gear rim. The helical tooth pair finite element calculated compliance is obtained from an automated element breakup of the helical teeth and then is used with the basic gear dynamic solution and stress postprocessing routines. The flexible carrier or ring gear rim option for planetary and star spur gear systems allows the output torque per carrier and ring gear rim segment to vary based on the dynamic response of the entire system, while the total output torque remains constant.
Adaptive methods for nonlinear structural dynamics and crashworthiness analysis
NASA Technical Reports Server (NTRS)
Belytschko, Ted
1993-01-01
The objective is to describe three research thrusts in crashworthiness analysis: adaptivity; mixed time integration, or subcycling, in which different timesteps are used for different parts of the mesh in explicit methods; and methods for contact-impact which are highly vectorizable. The techniques are being developed to improve the accuracy of calculations, ease-of-use of crashworthiness programs, and the speed of calculations. The latter is still of importance because crashworthiness calculations are often made with models of 20,000 to 50,000 elements using explicit time integration and require on the order of 20 to 100 hours on current supercomputers. The methodologies are briefly reviewed and then some example calculations employing these methods are described. The methods are also of value to other nonlinear transient computations.
Dynamic skeletal muscle stimulation and its potential in bone adaptation
Qin, Y-X.; Lam, H.; Ferreri, S.; Rubin, C.
2016-01-01
To identify mechanotransductive signals for combating musculoskeletal deterioration, it is essential to determine the components and mechanisms critical to the anabolic processes of musculoskeletal tissues. It is hypothesized that the interaction between bone and muscle may depend on fluid exchange in these tissues by mechanical loading. It has been shown that intramedullary pressure (ImP) and low-level bone strain induced by muscle stimulation (MS) has the potential to mitigate bone loss induced by disuse osteopenia. Optimized MS signals, i.e., low-intensity and high frequency, may be critical in maintaining bone mass and mitigating muscle atrophy. The objectives for this review are to discuss the potential for MS to induce ImP and strains on bone, to regulate bone adaptation, and to identify optimized stimulation frequency in the loading regimen. The potential for MS to regulate blood and fluid flow will also be discussed. The results suggest that oscillatory MS regulates fluid dynamics with minimal mechanical strain in bone. The response was shown to be dependent on loading frequency, serving as a critical mediator in mitigating bone loss. A specific regimen of dynamic MS may be optimized in vivo to attenuate disuse osteopenia and serve as a biomechanical intervention in the clinical setting. PMID:20190376
On Cognition, Structured Sequence Processing, and Adaptive Dynamical Systems
NASA Astrophysics Data System (ADS)
Petersson, Karl Magnus
2008-11-01
Cognitive neuroscience approaches the brain as a cognitive system: a system that functionally is conceptualized in terms of information processing. We outline some aspects of this concept and consider a physical system to be an information processing device when a subclass of its physical states can be viewed as representational/cognitive and transitions between these can be conceptualized as a process operating on these states by implementing operations on the corresponding representational structures. We identify a generic and fundamental problem in cognition: sequentially organized structured processing. Structured sequence processing provides the brain, in an essential sense, with its processing logic. In an approach addressing this problem, we illustrate how to integrate levels of analysis within a framework of adaptive dynamical systems. We note that the dynamical system framework lends itself to a description of asynchronous event-driven devices, which is likely to be important in cognition because the brain appears to be an asynchronous processing system. We use the human language faculty and natural language processing as a concrete example through out.
Simulation of dynamic processes with adaptive neural networks.
Tzanos, C. P.
1998-02-03
Many industrial processes are highly non-linear and complex. Their simulation with first-principle or conventional input-output correlation models is not satisfactory, either because the process physics is not well understood, or it is so complex that direct simulation is either not adequately accurate, or it requires excessive computation time, especially for on-line applications. Artificial intelligence techniques (neural networks, expert systems, fuzzy logic) or their combination with simple process-physics models can be effectively used for the simulation of such processes. Feedforward (static) neural networks (FNNs) can be used effectively to model steady-state processes. They have also been used to model dynamic (time-varying) processes by adding to the network input layer input nodes that represent values of input variables at previous time steps. The number of previous time steps is problem dependent and, in general, can be determined after extensive testing. This work demonstrates that for dynamic processes that do not vary fast with respect to the retraining time of the neural network, an adaptive feedforward neural network can be an effective simulator that is free of the complexities introduced by the use of input values at previous time steps.
Dynamic stability of sequential stimulus representations in adapting neuronal networks
Duarte, Renato C. F.; Morrison, Abigail
2014-01-01
The ability to acquire and maintain appropriate representations of time-varying, sequential stimulus events is a fundamental feature of neocortical circuits and a necessary first step toward more specialized information processing. The dynamical properties of such representations depend on the current state of the circuit, which is determined primarily by the ongoing, internally generated activity, setting the ground state from which input-specific transformations emerge. Here, we begin by demonstrating that timing-dependent synaptic plasticity mechanisms have an important role to play in the active maintenance of an ongoing dynamics characterized by asynchronous and irregular firing, closely resembling cortical activity in vivo. Incoming stimuli, acting as perturbations of the local balance of excitation and inhibition, require fast adaptive responses to prevent the development of unstable activity regimes, such as those characterized by a high degree of population-wide synchrony. We establish a link between such pathological network activity, which is circumvented by the action of plasticity, and a reduced computational capacity. Additionally, we demonstrate that the action of plasticity shapes and stabilizes the transient network states exhibited in the presence of sequentially presented stimulus events, allowing the development of adequate and discernible stimulus representations. The main feature responsible for the increased discriminability of stimulus-driven population responses in plastic networks is shown to be the decorrelating action of inhibitory plasticity and the consequent maintenance of the asynchronous irregular dynamic regime both for ongoing activity and stimulus-driven responses, whereas excitatory plasticity is shown to play only a marginal role. PMID:25374534
Adaptive strategies in designing the simultaneous global drug development program.
Yuan, Zhilong; Chen, Gang; Huang, Qin
2016-01-01
Many methods have been proposed to account for the potential impact of ethnic/regional factors when extrapolating results from multiregional clinical trials (MRCTs) to targeted ethnic (TE) patients, i.e., "bridging." Most of them either focused on TE patients in the MRCT (i.e., internal bridging) or a separate local clinical trial (LCT) (i.e., external bridging). Huang et al. (2012) integrated both bridging concepts in their method for the Simultaneous Global Drug Development Program (SGDDP) which designs both the MRCT and the LCT prospectively and combines patients in both trials by ethnic origin, i.e., TE vs. non-TE (NTE). The weighted Z test was used to combine information from TE and NTE patients to test with statistical rigor whether a new treatment is effective in the TE population. Practically, the MRCT is often completed before the LCT. Thus to increase the power for the SGDDP and/or obtain more informative data in TE patients, we may use the final results from the MRCT to re-evaluate initial assumptions (e.g., effect sizes, variances, weight), and modify the LCT accordingly. We discuss various adaptive strategies for the LCT such as sample size reassessment, population enrichment, endpoint change, and dose adjustment. As an example, we extend a popular adaptive design method to re-estimate the sample size for the LCT, and illustrate it for a normally distributed endpoint. PMID:26098138
DEAN: A program for dynamic engine analysis
NASA Technical Reports Server (NTRS)
Sadler, G. G.; Melcher, K. J.
1985-01-01
The Dynamic Engine Analysis program, DEAN, is a FORTRAN code implemented on the IBM/370 mainframe at NASA Lewis Research Center for digital simulation of turbofan engine dynamics. DEAN is an interactive program which allows the user to simulate engine subsystems as well as a full engine systems with relative ease. The nonlinear first order ordinary differential equations which define the engine model may be solved by one of four integration schemes, a second order Runge-Kutta, a fourth order Runge-Kutta, an Adams Predictor-Corrector, or Gear's method for still systems. The numerical data generated by the model equations are displayed at specified intervals between which the user may choose to modify various parameters affecting the model equations and transient execution. Following the transient run, versatile graphics capabilities allow close examination of the data. DEAN's modeling procedure and capabilities are demonstrated by generating a model of simple compressor rig.
Velocity fluctuation analysis via dynamic programming
Schlossberg, D. J.; Gupta, D. K.; Fonck, R. J.; McKee, G. R.; Shafer, M. W.
2006-10-15
A new method of calculating one-dimensional velocity fluctuations from spatially resolved density fluctuation measurements is presented. The algorithm uses vector-matching methods of dynamic programming that match structures, such as turbulent fluctuations, in two data sets. The associated time delay between data sets is estimated by determining an optimal path to transform one vector to another. This time-delay-estimation (TDE) method establishes a new benchmark for velocity analysis by achieving higher sensitivity and frequency response than previously developed methods, such as time-resolved cross correlations and wavelets. TDE has been successfully applied to beam emission spectroscopy measurements of density fluctuations to obtain poloidal flow fluctuations associated with such phenomena as the geodesic acoustic mode. The dynamic programming algorithm should allow extension to high frequency velocity fluctuations associated with underlying electrostatic potential and resulting ExB fluctuations.
Eradication of Ebola Based on Dynamic Programming.
Zhu, Jia-Ming; Wang, Lu; Liu, Jia-Bao
2016-01-01
This paper mainly studies the eradication of the Ebola virus, proposing a scientific system, including three modules for the eradication of Ebola virus. Firstly, we build a basic model combined with nonlinear incidence rate and maximum treatment capacity. Secondly, we use the dynamic programming method and the Dijkstra Algorithm to set up M-S (storage) and several delivery locations in West Africa. Finally, we apply the previous results to calculate the total cost, production cost, storage cost, and shortage cost. PMID:27313655
Eradication of Ebola Based on Dynamic Programming
Zhu, Jia-Ming; Wang, Lu; Liu, Jia-Bao
2016-01-01
This paper mainly studies the eradication of the Ebola virus, proposing a scientific system, including three modules for the eradication of Ebola virus. Firstly, we build a basic model combined with nonlinear incidence rate and maximum treatment capacity. Secondly, we use the dynamic programming method and the Dijkstra Algorithm to set up M-S (storage) and several delivery locations in West Africa. Finally, we apply the previous results to calculate the total cost, production cost, storage cost, and shortage cost. PMID:27313655
Joint Chance-Constrained Dynamic Programming
NASA Technical Reports Server (NTRS)
Ono, Masahiro; Kuwata, Yoshiaki; Balaram, J. Bob
2012-01-01
This paper presents a novel dynamic programming algorithm with a joint chance constraint, which explicitly bounds the risk of failure in order to maintain the state within a specified feasible region. A joint chance constraint cannot be handled by existing constrained dynamic programming approaches since their application is limited to constraints in the same form as the cost function, that is, an expectation over a sum of one-stage costs. We overcome this challenge by reformulating the joint chance constraint into a constraint on an expectation over a sum of indicator functions, which can be incorporated into the cost function by dualizing the optimization problem. As a result, the primal variables can be optimized by a standard dynamic programming, while the dual variable is optimized by a root-finding algorithm that converges exponentially. Error bounds on the primal and dual objective values are rigorously derived. We demonstrate the algorithm on a path planning problem, as well as an optimal control problem for Mars entry, descent and landing. The simulations are conducted using a real terrain data of Mars, with four million discrete states at each time step.
A Knowledge-Structure-Based Adaptive Dynamic Assessment System for Calculus Learning
ERIC Educational Resources Information Center
Ting, M.-Y.; Kuo, B.-C.
2016-01-01
The purpose of this study was to investigate the effect of a calculus system that was designed using an adaptive dynamic assessment (DA) framework on performance in the "finding an area using an integral". In this study, adaptive testing and dynamic assessment were combined to provide different test items depending on students'…
Dynamic adaptation of the peripheral circulation to cold exposure.
Cheung, Stephen S; Daanen, Hein A M
2012-01-01
Humans residing or working in cold environments exhibit a stronger cold-induced vasodilation (CIVD) reaction in the peripheral microvasculature than those living in warm regions of the world, leading to a general assumption that thermal responses to local cold exposure can be systematically improved by natural acclimatization or specific acclimation. However, it remains unclear whether this improved tolerance is actually due to systematic acclimatization, or alternately due to the genetic pre-disposition or self-selection for such occupations. Longitudinal studies of repeated extremity exposure to cold demonstrate only ambiguous adaptive responses. In field studies, general cold acclimation may lead to increased sympathetic activity that results in reduced finger blood flow. Laboratory studies offer more control over confounding parameters, but in most studies, no consistent changes in peripheral blood flow occur even after repeated exposure for several weeks. Most studies are performed on a limited amount of subjects only, and the variability of the CIVD response demands more subjects to obtain significant results. This review systematically surveys the trainability of CIVD, concluding that repeated local cold exposure does not alter circulatory dynamics in the peripheries, and that humans remain at risk of cold injuries even after extended stays in cold environments. PMID:21851473
Adaptive optics optical coherence tomography with dynamic retinal tracking
Kocaoglu, Omer P.; Ferguson, R. Daniel; Jonnal, Ravi S.; Liu, Zhuolin; Wang, Qiang; Hammer, Daniel X.; Miller, Donald T.
2014-01-01
Adaptive optics optical coherence tomography (AO-OCT) is a highly sensitive and noninvasive method for three dimensional imaging of the microscopic retina. Like all in vivo retinal imaging techniques, however, it suffers the effects of involuntary eye movements that occur even under normal fixation. In this study we investigated dynamic retinal tracking to measure and correct eye motion at KHz rates for AO-OCT imaging. A customized retina tracking module was integrated into the sample arm of the 2nd-generation Indiana AO-OCT system and images were acquired on three subjects. Analyses were developed based on temporal amplitude and spatial power spectra in conjunction with strip-wise registration to independently measure AO-OCT tracking performance. After optimization of the tracker parameters, the system was found to correct eye movements up to 100 Hz and reduce residual motion to 10 µm root mean square. Between session precision was 33 µm. Performance was limited by tracker-generated noise at high temporal frequencies. PMID:25071963
Dynamics of adaptive immunity against phage in bacterial populations
NASA Astrophysics Data System (ADS)
Bradde, Serena; Vucelja, Marija; Tesileanu, Tiberiu; Balasubramanian, Vijay
The CRISPR (clustered regularly interspaced short palindromic repeats) mechanism allows bacteria to adaptively defend against phages by acquiring short genomic sequences (spacers) that target specific sequences in the viral genome. We propose a population dynamical model where immunity can be both acquired and lost. The model predicts regimes where bacterial and phage populations can co-exist, others where the populations oscillate, and still others where one population is driven to extinction. Our model considers two key parameters: (1) ease of acquisition and (2) spacer effectiveness in conferring immunity. Analytical calculations and numerical simulations show that if spacers differ mainly in ease of acquisition, or if the probability of acquiring them is sufficiently high, bacteria develop a diverse population of spacers. On the other hand, if spacers differ mainly in their effectiveness, their final distribution will be highly peaked, akin to a ``winner-take-all'' scenario, leading to a specialized spacer distribution. Bacteria can interpolate between these limiting behaviors by actively tuning their overall acquisition rate.
Adaptive optics optical coherence tomography with dynamic retinal tracking.
Kocaoglu, Omer P; Ferguson, R Daniel; Jonnal, Ravi S; Liu, Zhuolin; Wang, Qiang; Hammer, Daniel X; Miller, Donald T
2014-07-01
Adaptive optics optical coherence tomography (AO-OCT) is a highly sensitive and noninvasive method for three dimensional imaging of the microscopic retina. Like all in vivo retinal imaging techniques, however, it suffers the effects of involuntary eye movements that occur even under normal fixation. In this study we investigated dynamic retinal tracking to measure and correct eye motion at KHz rates for AO-OCT imaging. A customized retina tracking module was integrated into the sample arm of the 2nd-generation Indiana AO-OCT system and images were acquired on three subjects. Analyses were developed based on temporal amplitude and spatial power spectra in conjunction with strip-wise registration to independently measure AO-OCT tracking performance. After optimization of the tracker parameters, the system was found to correct eye movements up to 100 Hz and reduce residual motion to 10 µm root mean square. Between session precision was 33 µm. Performance was limited by tracker-generated noise at high temporal frequencies. PMID:25071963
Plant toxicity, adaptive herbivory, and plant community dynamics
Feng, Z.; Liu, R.; DeAngelis, D.L.; Bryant, J.P.; Kielland, K.; Stuart, Chapin F.; Swihart, R.K.
2009-01-01
We model effects of interspecific plant competition, herbivory, and a plant's toxic defenses against herbivores on vegetation dynamics. The model predicts that, when a generalist herbivore feeds in the absence of plant toxins, adaptive foraging generally increases the probability of coexistence of plant species populations, because the herbivore switches more of its effort to whichever plant species is more common and accessible. In contrast, toxin-determined selective herbivory can drive plant succession toward dominance by the more toxic species, as previously documented in boreal forests and prairies. When the toxin concentrations in different plant species are similar, but species have different toxins with nonadditive effects, herbivores tend to diversify foraging efforts to avoid high intakes of any one toxin. This diversification leads the herbivore to focus more feeding on the less common plant species. Thus, uncommon plants may experience depensatory mortality from herbivory, reducing local species diversity. The depensatory effect of herbivory may inhibit the invasion of other plant species that are more palatable or have different toxins. These predictions were tested and confirmed in the Alaskan boreal forest. ?? 2009 Springer Science+Business Media, LLC.
ERIC Educational Resources Information Center
Olson, Jonathan R.; Welsh, Janet A.; Perkins, Daniel F.
2015-01-01
In this article, we describe how the recent movement towards evidence-based programming has impacted Extension. We review how the emphasis on implementing such programs with strict fidelity to an underlying program model may be at odds with Extension's strong history of adapting programming to meet the unique needs of children, youth, families,…
Algebraic Dynamic Programming over general data structures
2015-01-01
Background Dynamic programming algorithms provide exact solutions to many problems in computational biology, such as sequence alignment, RNA folding, hidden Markov models (HMMs), and scoring of phylogenetic trees. Structurally analogous algorithms compute optimal solutions, evaluate score distributions, and perform stochastic sampling. This is explained in the theory of Algebraic Dynamic Programming (ADP) by a strict separation of state space traversal (usually represented by a context free grammar), scoring (encoded as an algebra), and choice rule. A key ingredient in this theory is the use of yield parsers that operate on the ordered input data structure, usually strings or ordered trees. The computation of ensemble properties, such as a posteriori probabilities of HMMs or partition functions in RNA folding, requires the combination of two distinct, but intimately related algorithms, known as the inside and the outside recursion. Only the inside recursions are covered by the classical ADP theory. Results The ideas of ADP are generalized to a much wider scope of data structures by relaxing the concept of parsing. This allows us to formalize the conceptual complementarity of inside and outside variables in a natural way. We demonstrate that outside recursions are generically derivable from inside decomposition schemes. In addition to rephrasing the well-known algorithms for HMMs, pairwise sequence alignment, and RNA folding we show how the TSP and the shortest Hamiltonian path problem can be implemented efficiently in the extended ADP framework. As a showcase application we investigate the ancient evolution of HOX gene clusters in terms of shortest Hamiltonian paths. Conclusions The generalized ADP framework presented here greatly facilitates the development and implementation of dynamic programming algorithms for a wide spectrum of applications. PMID:26695390
Thom, Ronald M.; Anderson, Michael G.; Tyre, Drew; Fleming, Craig A.
2009-02-28
The paper, “Adaptive Management: Background for Stakeholders in the Missouri River Recovery Program,” introduced the concept of adaptive management (AM), its principles and how they relate to one-another, how AM is applied, and challenges for its implementation. This companion paper describes how the AM principles were applied to specific management actions within the Missouri River Recovery Program to facilitate understanding, decision-making, and stakeholder engagement. For context, we begin with a brief synopsis of the Missouri River Recovery Program (MRRP) and the strategy for implementing adaptive management (AM) within the program; we finish with an example of AM in action within Phase I of the MRPP.
Cultural Adaptation of the Strengthening Families Program 10-14 to Italian Families
ERIC Educational Resources Information Center
Ortega, Enrique; Giannotta, Fabrizia; Latina, Delia; Ciairano, Silvia
2012-01-01
Background: The family context has proven to be a useful target in which to apply prevention efforts aimed at child and adolescent health risk behaviors. There are currently a variety of cultural adaptation models that serve to guide the international adaptation of intervention programs. Objective: The cultural adaptation process and program…
Adaptive control in the presence of unmodeled dynamics. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Rohrs, C. E.
1982-01-01
Stability and robustness properties of a wide class of adaptive control algorithms in the presence of unmodeled dynamics and output disturbances were investigated. The class of adaptive algorithms considered are those commonly referred to as model reference adaptive control algorithms, self-tuning controllers, and dead beat adaptive controllers, developed for both continuous-time systems and discrete-time systems. A unified analytical approach was developed to examine the class of existing adaptive algorithms. It was discovered that all existing algorithms contain an infinite gain operator in the dynamic system that defines command reference errors and parameter errors; it is argued that such an infinite gain operator appears to be generic to all adaptive algorithms, whether they exhibit explicit or implicit parameter identification. It is concluded that none of the adaptive algorithms considered can be used with confidence in a practical control system design, because instability will set in with a high probability.
ALEGRA -- A massively parallel h-adaptive code for solid dynamics
Summers, R.M.; Wong, M.K.; Boucheron, E.A.; Weatherby, J.R.
1997-12-31
ALEGRA is a multi-material, arbitrary-Lagrangian-Eulerian (ALE) code for solid dynamics designed to run on massively parallel (MP) computers. It combines the features of modern Eulerian shock codes, such as CTH, with modern Lagrangian structural analysis codes using an unstructured grid. ALEGRA is being developed for use on the teraflop supercomputers to conduct advanced three-dimensional (3D) simulations of shock phenomena important to a variety of systems. ALEGRA was designed with the Single Program Multiple Data (SPMD) paradigm, in which the mesh is decomposed into sub-meshes so that each processor gets a single sub-mesh with approximately the same number of elements. Using this approach the authors have been able to produce a single code that can scale from one processor to thousands of processors. A current major effort is to develop efficient, high precision simulation capabilities for ALEGRA, without the computational cost of using a global highly resolved mesh, through flexible, robust h-adaptivity of finite elements. H-adaptivity is the dynamic refinement of the mesh by subdividing elements, thus changing the characteristic element size and reducing numerical error. The authors are working on several major technical challenges that must be met to make effective use of HAMMER on MP computers.
Adaptive fusion of infrared and visible images in dynamic scene
NASA Astrophysics Data System (ADS)
Yang, Guang; Yin, Yafeng; Man, Hong; Desai, Sachi
2011-11-01
Multiple modalities sensor fusion has been widely employed in various surveillance and military applications. A variety of image fusion techniques including PCA, wavelet, curvelet and HSV has been proposed in recent years to improve human visual perception for object detection. One of the main challenges for visible and infrared image fusion is to automatically determine an optimal fusion strategy for different input scenes along with an acceptable computational cost. This paper, we propose a fast and adaptive feature selection based image fusion method to obtain high a contrast image from visible and infrared sensors for targets detection. At first, fuzzy c-means clustering is applied on the infrared image to highlight possible hotspot regions, which will be considered as potential targets' locations. After that, the region surrounding the target area is segmented as the background regions. Then image fusion is locally applied on the selected target and background regions by computing different linear combination of color components from registered visible and infrared images. After obtaining different fused images, histogram distributions are computed on these local fusion images as the fusion feature set. The variance ratio which is based on Linear Discriminative Analysis (LDA) measure is employed to sort the feature set and the most discriminative one is selected for the whole image fusion. As the feature selection is performed over time, the process will dynamically determine the most suitable feature for the image fusion in different scenes. Experiment is conducted on the OSU Color-Thermal database, and TNO Human Factor dataset. The fusion results indicate that our proposed method achieved a competitive performance compared with other fusion algorithms at a relatively low computational cost.
Evaluation of dynamic programming among the existing stereo matching algorithms
NASA Astrophysics Data System (ADS)
Huat, Teo Chee; Manap, Nurulfajar bin Abd
2015-05-01
There are various types of existing stereo matching algorithms on image processing which applied on stereo vision images to get better results of disparity depth map. One of them is the dynamic programming method. On this research is to perform an evaluation on the performance between the dynamic programming with other existing method as comparison. The algorithm used on the dynamic programming is the global optimization which provides better process on stereo images like its accuracy and its computational efficiency compared to other existing stereo matching algorithms. The dynamic programming algorithm used on this research is the current method as its disparity estimates at a particular pixel and all the other pixels unlike the old methods which with scanline based of dynamic programming. There will be details on every existing methods presented on this paper with the comparison between the dynamic programming and the existing methods. This can propose the dynamic programming method to be used on many applications in image processing.
Automatic cone photoreceptor segmentation using graph theory and dynamic programming
Chiu, Stephanie J.; Lokhnygina, Yuliya; Dubis, Adam M.; Dubra, Alfredo; Carroll, Joseph; Izatt, Joseph A.; Farsiu, Sina
2013-01-01
Geometrical analysis of the photoreceptor mosaic can reveal subclinical ocular pathologies. In this paper, we describe a fully automatic algorithm to identify and segment photoreceptors in adaptive optics ophthalmoscope images of the photoreceptor mosaic. This method is an extension of our previously described closed contour segmentation framework based on graph theory and dynamic programming (GTDP). We validated the performance of the proposed algorithm by comparing it to the state-of-the-art technique on a large data set consisting of over 200,000 cones and posted the results online. We found that the GTDP method achieved a higher detection rate, decreasing the cone miss rate by over a factor of five. PMID:23761854
Automated Flight Routing Using Stochastic Dynamic Programming
NASA Technical Reports Server (NTRS)
Ng, Hok K.; Morando, Alex; Grabbe, Shon
2010-01-01
Airspace capacity reduction due to convective weather impedes air traffic flows and causes traffic congestion. This study presents an algorithm that reroutes flights in the presence of winds, enroute convective weather, and congested airspace based on stochastic dynamic programming. A stochastic disturbance model incorporates into the reroute design process the capacity uncertainty. A trajectory-based airspace demand model is employed for calculating current and future airspace demand. The optimal routes minimize the total expected traveling time, weather incursion, and induced congestion costs. They are compared to weather-avoidance routes calculated using deterministic dynamic programming. The stochastic reroutes have smaller deviation probability than the deterministic counterpart when both reroutes have similar total flight distance. The stochastic rerouting algorithm takes into account all convective weather fields with all severity levels while the deterministic algorithm only accounts for convective weather systems exceeding a specified level of severity. When the stochastic reroutes are compared to the actual flight routes, they have similar total flight time, and both have about 1% of travel time crossing congested enroute sectors on average. The actual flight routes induce slightly less traffic congestion than the stochastic reroutes but intercept more severe convective weather.
Runway Scheduling Using Generalized Dynamic Programming
NASA Technical Reports Server (NTRS)
Montoya, Justin; Wood, Zachary; Rathinam, Sivakumar
2011-01-01
A generalized dynamic programming method for finding a set of pareto optimal solutions for a runway scheduling problem is introduced. The algorithm generates a set of runway fight sequences that are optimal for both runway throughput and delay. Realistic time-based operational constraints are considered, including miles-in-trail separation, runway crossings, and wake vortex separation. The authors also model divergent runway takeoff operations to allow for reduced wake vortex separation. A modeled Dallas/Fort Worth International airport and three baseline heuristics are used to illustrate preliminary benefits of using the generalized dynamic programming method. Simulated traffic levels ranged from 10 aircraft to 30 aircraft with each test case spanning 15 minutes. The optimal solution shows a 40-70 percent decrease in the expected delay per aircraft over the baseline schedulers. Computational results suggest that the algorithm is promising for real-time application with an average computation time of 4.5 seconds. For even faster computation times, two heuristics are developed. As compared to the optimal, the heuristics are within 5% of the expected delay per aircraft and 1% of the expected number of runway operations per hour ad can be 100x faster.
Optimal caching algorithm based on dynamic programming
NASA Astrophysics Data System (ADS)
Guo, Changjie; Xiang, Zhe; Zhong, Yuzhuo; Long, Jidong
2001-07-01
With the dramatic growth of multimedia streams, the efficient distribution of stored videos has become a major concern. There are two basic caching strategies: the whole caching strategy and the caching strategy based on layered encoded video, the latter can satisfy the requirement of the highly heterogeneous access to the Internet. Conventional caching strategies assign each object a cache gain by calculating popularity or density popularity, and determine which videos and which layers should be cached. In this paper, we first investigate the delivery model of stored video based on proxy, and propose two novel caching algorithms, DPLayer (for layered encoded caching scheme) and DPWhole (for whole caching scheme) for multimedia proxy caching. The two algorithms are based on the resource allocation model of dynamic programming to select the optimal subset of objects to be cached in proxy. Simulation proved that our algorithms achieve better performance than other existing schemes. We also analyze the computational complexity and space complexity of the algorithms, and introduce a regulative parameter to compress the states space of the dynamic programming problem and reduce the complexity of algorithms.
Adaptive Competency Acquisition: Why LPN-to-ADN Career Mobility Education Programs Work.
ERIC Educational Resources Information Center
Coyle-Rogers, Patricia G.
Adaptive competencies are the skills required to effectively complete a particular task and are the congruencies (balance) between personal skills and task demands. The differences between the adaptive competency acquisition of students in licensed practical nurse (LPN) programs and associate degree nurse (ADN) programs were examined in a…
ERIC Educational Resources Information Center
Massachusetts Inst. of Tech., Cambridge. Dept. of Urban Studies and Planning.
The report of Project ADAPT (Aerospace and Defense Adaptation to Public Technology), describes the design, execution, and forthcoming evaluation of the program. The program's objective was to demonstrate the feasibility of redeploying surplus technical manpower into public service at State and local levels of government. The development of the…
Goal representation heuristic dynamic programming on maze navigation.
Ni, Zhen; He, Haibo; Wen, Jinyu; Xu, Xin
2013-12-01
Goal representation heuristic dynamic programming (GrHDP) is proposed in this paper to demonstrate online learning in the Markov decision process. In addition to the (external) reinforcement signal in literature, we develop an adaptively internal goal/reward representation for the agent with the proposed goal network. Specifically, we keep the actor-critic design in heuristic dynamic programming (HDP) and include a goal network to represent the internal goal signal, to further help the value function approximation. We evaluate our proposed GrHDP algorithm on two 2-D maze navigation problems, and later on one 3-D maze navigation problem. Compared to the traditional HDP approach, the learning performance of the agent is improved with our proposed GrHDP approach. In addition, we also include the learning performance with two other reinforcement learning algorithms, namely Sarsa(λ) and Q-learning, on the same benchmarks for comparison. Furthermore, in order to demonstrate the theoretical guarantee of our proposed method, we provide the characteristics analysis toward the convergence of weights in neural networks in our GrHDP approach. PMID:24805221
A mathematical programming approach for sequential clustering of dynamic networks
NASA Astrophysics Data System (ADS)
Silva, Jonathan C.; Bennett, Laura; Papageorgiou, Lazaros G.; Tsoka, Sophia
2016-02-01
A common analysis performed on dynamic networks is community structure detection, a challenging problem that aims to track the temporal evolution of network modules. An emerging area in this field is evolutionary clustering, where the community structure of a network snapshot is identified by taking into account both its current state as well as previous time points. Based on this concept, we have developed a mixed integer non-linear programming (MINLP) model, SeqMod, that sequentially clusters each snapshot of a dynamic network. The modularity metric is used to determine the quality of community structure of the current snapshot and the historical cost is accounted for by optimising the number of node pairs co-clustered at the previous time point that remain so in the current snapshot partition. Our method is tested on social networks of interactions among high school students, college students and members of the Brazilian Congress. We show that, for an adequate parameter setting, our algorithm detects the classes that these students belong more accurately than partitioning each time step individually or by partitioning the aggregated snapshots. Our method also detects drastic discontinuities in interaction patterns across network snapshots. Finally, we present comparative results with similar community detection methods for time-dependent networks from the literature. Overall, we illustrate the applicability of mathematical programming as a flexible, adaptable and systematic approach for these community detection problems. Contribution to the Topical Issue "Temporal Network Theory and Applications", edited by Petter Holme.
Yang, Cheng-Hsiung; Wu, Cheng-Lin
2014-01-01
An adaptive control scheme is developed to study the generalized adaptive chaos synchronization with uncertain chaotic parameters behavior between two identical chaotic dynamic systems. This generalized adaptive chaos synchronization controller is designed based on Lyapunov stability theory and an analytic expression of the adaptive controller with its update laws of uncertain chaotic parameters is shown. The generalized adaptive synchronization with uncertain parameters between two identical new Lorenz-Stenflo systems is taken as three examples to show the effectiveness of the proposed method. The numerical simulations are shown to verify the results. PMID:25295292
Ingram, James N; Howard, Ian S; Flanagan, J Randall; Wolpert, Daniel M
2011-09-01
Motor learning has been extensively studied using dynamic (force-field) perturbations. These induce movement errors that result in adaptive changes to the motor commands. Several state-space models have been developed to explain how trial-by-trial errors drive the progressive adaptation observed in such studies. These models have been applied to adaptation involving novel dynamics, which typically occurs over tens to hundreds of trials, and which appears to be mediated by a dual-rate adaptation process. In contrast, when manipulating objects with familiar dynamics, subjects adapt rapidly within a few trials. Here, we apply state-space models to familiar dynamics, asking whether adaptation is mediated by a single-rate or dual-rate process. Previously, we reported a task in which subjects rotate an object with known dynamics. By presenting the object at different visual orientations, adaptation was shown to be context-specific, with limited generalization to novel orientations. Here we show that a multiple-context state-space model, with a generalization function tuned to visual object orientation, can reproduce the time-course of adaptation and de-adaptation as well as the observed context-dependent behavior. In contrast to the dual-rate process associated with novel dynamics, we show that a single-rate process mediates adaptation to familiar object dynamics. The model predicts that during exposure to the object across multiple orientations, there will be a degree of independence for adaptation and de-adaptation within each context, and that the states associated with all contexts will slowly de-adapt during exposure in one particular context. We confirm these predictions in two new experiments. Results of the current study thus highlight similarities and differences in the processes engaged during exposure to novel versus familiar dynamics. In both cases, adaptation is mediated by multiple context-specific representations. In the case of familiar object dynamics
Tao, Ye; Xu, Lijia; Zhang, Zhen; Chen, Runfeng; Li, Huanhuan; Xu, Hui; Zheng, Chao; Huang, Wei
2016-08-01
Current static-state explorations of organic semiconductors for optimal material properties and device performance are hindered by limited insights into the dynamically changed molecular states and charge transport and energy transfer processes upon device operation. Here, we propose a simple yet successful strategy, resonance variation-based dynamic adaptation (RVDA), to realize optimized self-adaptive properties in donor-resonance-acceptor molecules by engineering the resonance variation for dynamic tuning of organic semiconductors. Organic light-emitting diodes hosted by these RVDA materials exhibit remarkably high performance, with external quantum efficiencies up to 21.7% and favorable device stability. Our approach, which supports simultaneous realization of dynamically adapted and selectively enhanced properties via resonance engineering, illustrates a feasible design map for the preparation of smart organic semiconductors capable of dynamic structure and property modulations, promoting the studies of organic electronics from static to dynamic. PMID:27403886
Dynamics modeling and adaptive control of flexible manipulators
NASA Technical Reports Server (NTRS)
Sasiadek, J. Z.
1991-01-01
An application of Model Reference Adaptive Control (MRAC) to the position and force control of flexible manipulators and robots is presented. A single-link flexible manipulator is analyzed. The problem was to develop a mathematical model of a flexible robot that is accurate. The objective is to show that the adaptive control works better than 'conventional' systems and is suitable for flexible structure control.
Robot trajectory planning via dynamic programming
Dohrmann, C.R.; Robinett, R.D.
1994-03-01
The method of dynamic programming is applied to three example problems dealing with robot trajectory planning. The first two examples involve end-effector tracking of a straight line with rest-to-rest motions of planar two-link and three-link rigid robots. These examples illustrate the usefulness of the method for producing smooth trajectories either in the presence or absence of joint redundancies. The last example demonstrates the use of the method for rest-to-rest maneuvers of a single-link manipulator with a flexible payload. Simulation results for this example display interesting symmetries that are characteristic of such maneuvers. Details concerning the implementation and computational aspects of the method are discussed.
Model-Free Dual Heuristic Dynamic Programming.
Ni, Zhen; He, Haibo; Zhong, Xiangnan; Prokhorov, Danil V
2015-08-01
Model-based dual heuristic dynamic programming (MB-DHP) is a popular approach in approximating optimal solutions in control problems. Yet, it usually requires offline training for the model network, and thus resulting in extra computational cost. In this brief, we propose a model-free DHP (MF-DHP) design based on finite-difference technique. In particular, we adopt multilayer perceptron with one hidden layer for both the action and the critic networks design, and use delayed objective functions to train both the action and the critic networks online over time. We test both the MF-DHP and MB-DHP approaches with a discrete time example and a continuous time example under the same parameter settings. Our simulation results demonstrate that the MF-DHP approach can obtain a control performance competitive with that of the traditional MB-DHP approach while requiring less computational resources. PMID:25955997
Pareto optimization in algebraic dynamic programming.
Saule, Cédric; Giegerich, Robert
2015-01-01
Pareto optimization combines independent objectives by computing the Pareto front of its search space, defined as the set of all solutions for which no other candidate solution scores better under all objectives. This gives, in a precise sense, better information than an artificial amalgamation of different scores into a single objective, but is more costly to compute. Pareto optimization naturally occurs with genetic algorithms, albeit in a heuristic fashion. Non-heuristic Pareto optimization so far has been used only with a few applications in bioinformatics. We study exact Pareto optimization for two objectives in a dynamic programming framework. We define a binary Pareto product operator [Formula: see text] on arbitrary scoring schemes. Independent of a particular algorithm, we prove that for two scoring schemes A and B used in dynamic programming, the scoring scheme [Formula: see text] correctly performs Pareto optimization over the same search space. We study different implementations of the Pareto operator with respect to their asymptotic and empirical efficiency. Without artificial amalgamation of objectives, and with no heuristics involved, Pareto optimization is faster than computing the same number of answers separately for each objective. For RNA structure prediction under the minimum free energy versus the maximum expected accuracy model, we show that the empirical size of the Pareto front remains within reasonable bounds. Pareto optimization lends itself to the comparative investigation of the behavior of two alternative scoring schemes for the same purpose. For the above scoring schemes, we observe that the Pareto front can be seen as a composition of a few macrostates, each consisting of several microstates that differ in the same limited way. We also study the relationship between abstract shape analysis and the Pareto front, and find that they extract information of a different nature from the folding space and can be meaningfully combined. PMID
Adaptive-mesh algorithms for computational fluid dynamics
NASA Technical Reports Server (NTRS)
Powell, Kenneth G.; Roe, Philip L.; Quirk, James
1993-01-01
The basic goal of adaptive-mesh algorithms is to distribute computational resources wisely by increasing the resolution of 'important' regions of the flow and decreasing the resolution of regions that are less important. While this goal is one that is worthwhile, implementing schemes that have this degree of sophistication remains more of an art than a science. In this paper, the basic pieces of adaptive-mesh algorithms are described and some of the possible ways to implement them are discussed and compared. These basic pieces are the data structure to be used, the generation of an initial mesh, the criterion to be used to adapt the mesh to the solution, and the flow-solver algorithm on the resulting mesh. Each of these is discussed, with particular emphasis on methods suitable for the computation of compressible flows.
Techniques for grid manipulation and adaptation. [computational fluid dynamics
NASA Technical Reports Server (NTRS)
Choo, Yung K.; Eisemann, Peter R.; Lee, Ki D.
1992-01-01
Two approaches have been taken to provide systematic grid manipulation for improved grid quality. One is the control point form (CPF) of algebraic grid generation. It provides explicit control of the physical grid shape and grid spacing through the movement of the control points. It works well in the interactive computer graphics environment and hence can be a good candidate for integration with other emerging technologies. The other approach is grid adaptation using a numerical mapping between the physical space and a parametric space. Grid adaptation is achieved by modifying the mapping functions through the effects of grid control sources. The adaptation process can be repeated in a cyclic manner if satisfactory results are not achieved after a single application.
2014-01-01
Background Anastrepha fraterculus is one of the most important fruit fly plagues in the American continent and only chemical control is applied in the field to diminish its population densities. A better understanding of the genetic variability during the introduction and adaptation of wild A. fraterculus populations to laboratory conditions is required for the development of stable and vigorous experimental colonies and mass-reared strains in support of successful Sterile Insect Technique (SIT) efforts. Methods The present study aims to analyze the dynamics of changes in genetic variability during the first six generations under artificial rearing conditions in two populations: a) a wild population recently introduced to laboratory culture, named TW and, b) a long-established control line, named CL. Results Results showed a declining tendency of genetic variability in TW. In CL, the relatively high values of genetic variability appear to be maintained across generations and could denote an intrinsic capacity to avoid the loss of genetic diversity in time. Discussion The impact of evolutionary forces on this species during the adaptation process as well as the best approach to choose strategies to introduce experimental and mass-reared A. fraterculus strains for SIT programs are discussed. PMID:25471362
PSF halo reduction in adaptive optics using dynamic pupil masking.
Osborn, James; Myers, Richard M; Love, Gordon D
2009-09-28
We describe a method to reduce residual speckles in an adaptive optics system which add to the halo of the point spread function (PSF). The halo is particularly problematic in astronomical applications involving the detection of faint companions. Areas of the pupil are selected where the residual wavefront aberrations are large and these are masked using a spatial light modulator. The method is also suitable for smaller telescopes without adaptive optics as a relatively simple method to increase the resolution of the telescope. We describe the principle of the technique and show simulation results. PMID:19907514
Adaptive routing for dynamic on-body wireless sensor networks.
Maskooki, Arash; Soh, Cheong Boon; Gunawan, Erry; Low, Kay Soon
2015-03-01
Energy is scarce in mobile computing devices including wearable and implantable devices in a wireless body area network. In this paper, an adaptive routing protocol is developed and analyzed which minimizes the energy cost per bit of information by using the channel information to choose the best strategy to route data. In this approach, the source node will switch between direct and relayed communication based on the quality of the link and will use the relay only if the channel quality is below a certain threshold. The mathematical model is then validated through simulations which shows that the adaptive routing strategy can improve energy efficiency significantly compared with existing methods. PMID:24686306
STAR adaptation of QR algorithm. [program for solving over-determined systems of linear equations
NASA Technical Reports Server (NTRS)
Shah, S. N.
1981-01-01
The QR algorithm used on a serial computer and executed on the Control Data Corporation 6000 Computer was adapted to execute efficiently on the Control Data STAR-100 computer. How the scalar program was adapted for the STAR-100 and why these adaptations yielded an efficient STAR program is described. Program listings of the old scalar version and the vectorized SL/1 version are presented in the appendices. Execution times for the two versions applied to the same system of linear equations, are compared.
Free energy calculations from adaptive molecular dynamics simulations with adiabatic reweighting
NASA Astrophysics Data System (ADS)
Cao, Lingling; Stoltz, Gabriel; Lelièvre, Tony; Marinica, Mihai-Cosmin; Athènes, Manuel
2014-03-01
We propose an adiabatic reweighting algorithm for computing the free energy along an external parameter from adaptive molecular dynamics simulations. The adaptive bias is estimated using Bayes identity and information from all the sampled configurations. We apply the algorithm to a structural transition in a cluster and to the migration of a crystalline defect along a reaction coordinate. Compared to standard adaptive molecular dynamics, we observe an acceleration of convergence. With the aid of the algorithm, it is also possible to iteratively construct the free energy along the reaction coordinate without having to differentiate the gradient of the reaction coordinate or any biasing potential.
Dynamic Range Adaptation to Sound Level Statistics in the Auditory Nerve
Wen, Bo; Wang, Grace I.; Dean, Isabel; Delgutte, Bertrand
2009-01-01
The auditory system operates over a vast range of sound pressure levels (100–120 dB) with nearly constant discrimination ability across most of the range, well exceeding the dynamic range of most auditory neurons (20–40 dB). Dean et al. (Nat. Neurosci. 8:1684, 2005) have reported that the dynamic range of midbrain auditory neurons adapts to the distribution of sound levels in a continuous, dynamic stimulus by shifting towards the most frequently occurring level. Here we show that dynamic range adaptation, distinct from classic firing rate adaptation, also occurs in primary auditory neurons in anesthetized cats for tone and noise stimuli. Specifically, the range of sound levels over which firing rates of auditory-nerve (AN) fibers grows rapidly with level shifts nearly linearly with the most probable levels in a dynamic sound stimulus. This dynamic range adaptation was observed for fibers with all characteristic frequencies and spontaneous discharge rates. As in the midbrain, dynamic range adaptation improved the precision of level coding by the AN fiber population for the prevailing sound levels in the stimulus. However, dynamic range adaptation in the AN was weaker than in the midbrain, and not sufficient (0.25 dB/dB on average for broadband noise) to prevent a significant degradation of the precision of level coding by the AN population above 60 dB SPL. These findings suggest that adaptive processing of sound levels first occurs in the auditory periphery and is enhanced along the auditory pathway. PMID:19889991
Adaptive control of nonlinear systems using multistage dynamic neural networks
NASA Astrophysics Data System (ADS)
Gupta, Madan M.; Rao, Dandina H.
1992-11-01
In this paper we present a new architecture of neuron, called the dynamic neural unit (DNU). The topology of the proposed neuronal model embodies delay elements, feedforward and feedback signals weighted by the synaptic weights and a time-varying nonlinear activation function, and is thus different from the conventionally and assumed architecture of neurons. The learning algorithm for the proposed neuronal structure and the corresponding implementation scheme are presented. A multi-stage dynamic neural network is developed using the DNU as the basic processing element. The performance evaluation of the dynamic neural network is presented for nonlinear dynamic systems under various situations. The capabilities of the proposed neural network model not only account for the learning and control actions emulating some of the biological control functions, but also provide a promising parallel-distributed intelligent control scheme for large-scale complex dynamic systems.
ERIC Educational Resources Information Center
Keller, Mimi
An adaptive physical education program was implemented for two special classes of educable mentally retarded children, grades K-3 in California. Children from a regular kindergarten class also participated in the program. The program operated for 5 months, with children receiving motor skills training 40 minutes per day, 4 days per week. Analysis…
Adapting a Multifaceted U.S. HIV Prevention Education Program for Girls in Ghana
ERIC Educational Resources Information Center
Fiscian, Vivian Sarpomaa; Obeng, E. Kwame; Goldstein, Karen; Shea, Judy A.; Turner, Barbara J.
2009-01-01
We adapted a U.S. HIV prevention program to address knowledge gaps and cultural pressures that increase the risk of infection in adolescent Ghanaian girls. The theory-based nine-module HIV prevention program combines didactics and games, an interactive computer program about sugar daddies, and tie-and-dye training to demonstrate an economic…
A massively parallel adaptive finite element method with dynamic load balancing
Devine, K.D.; Flaherty, J.E.; Wheat, S.R.; Maccabe, A.B.
1993-05-01
We construct massively parallel, adaptive finite element methods for the solution of hyperbolic conservation laws in one and two dimensions. Spatial discretization is performed by a discontinuous Galerkin finite element method using a basis of piecewise Legendre polynomials. Temporal discretization utilizes a Runge-Kutta method. Dissipative fluxes and projection limiting prevent oscillations near solution discontinuities. The resulting method is of high order and may be parallelized efficiently on MIMD computers. We demonstrate parallel efficiency through computations on a 1024-processor nCUBE/2 hypercube. We also present results using adaptive p-refinement to reduce the computational cost of the method. We describe tiling, a dynamic, element-based data migration system. Tiling dynamically maintains global load balance in the adaptive method by overlapping neighborhoods of processors, where each neighborhood performs local load balancing. We demonstrate the effectiveness of the dynamic load balancing with adaptive p-refinement examples.
Arévalo, Orlando; Bornschlegl, Mona A; Eberhardt, Sven; Ernst, Udo; Pawelzik, Klaus; Fahle, Manfred
2013-01-01
In everyday life, humans interact with a dynamic environment often requiring rapid adaptation of visual perception and motor control. In particular, new visuo-motor mappings must be learned while old skills have to be kept, such that after adaptation, subjects may be able to quickly change between two different modes of generating movements ('dual-adaptation'). A fundamental question is how the adaptation schedule determines the acquisition speed of new skills. Given a fixed number of movements in two different environments, will dual-adaptation be faster if switches ('phase changes') between the environments occur more frequently? We investigated the dynamics of dual-adaptation under different training schedules in a virtual pointing experiment. Surprisingly, we found that acquisition speed of dual visuo-motor mappings in a pointing task is largely independent of the number of phase changes. Next, we studied the neuronal mechanisms underlying this result and other key phenomena of dual-adaptation by relating model simulations to experimental data. We propose a simple and yet biologically plausible neural model consisting of a spatial mapping from an input layer to a pointing angle which is subjected to a global gain modulation. Adaptation is performed by reinforcement learning on the model parameters. Despite its simplicity, the model provides a unifying account for a broad range of experimental data: It quantitatively reproduced the learning rates in dual-adaptation experiments for both direct effect, i.e. adaptation to prisms, and aftereffect, i.e. behavior after removal of prisms, and their independence on the number of phase changes. Several other phenomena, e.g. initial pointing errors that are far smaller than the induced optical shift, were also captured. Moreover, the underlying mechanisms, a local adaptation of a spatial mapping and a global adaptation of a gain factor, explained asymmetric spatial transfer and generalization of prism adaptation, as
A Simulation Program for Dynamic Infrared (IR) Spectra
ERIC Educational Resources Information Center
Zoerb, Matthew C.; Harris, Charles B.
2013-01-01
A free program for the simulation of dynamic infrared (IR) spectra is presented. The program simulates the spectrum of two exchanging IR peaks based on simple input parameters. Larger systems can be simulated with minor modifications. The program is available as an executable program for PCs or can be run in MATLAB on any operating system. Source…
An adaptive compromise programming method for multi-objective path optimization
NASA Astrophysics Data System (ADS)
Li, Rongrong; Leung, Yee; Lin, Hui; Huang, Bo
2013-04-01
Network routing problems generally involve multiple objectives which may conflict one another. An effective way to solve such problems is to generate a set of Pareto-optimal solutions that is small enough to be handled by a decision maker and large enough to give an overview of all possible trade-offs among the conflicting objectives. To accomplish this, the present paper proposes an adaptive method based on compromise programming to assist decision makers in identifying Pareto-optimal paths, particularly for non-convex problems. This method can provide an unbiased approximation of the Pareto-optimal alternatives by adaptively changing the origin and direction of search in the objective space via the dynamic updating of the largest unexplored region till an appropriately structured Pareto front is captured. To demonstrate the efficacy of the proposed methodology, a case study is carried out for the transportation of dangerous goods in the road network of Hong Kong with the support of geographic information system. The experimental results confirm the effectiveness of the approach.
Adapting Physical Education: A Guide for Individualizing Physical Education Programs.
ERIC Educational Resources Information Center
Buckanavage, Robert, Ed.; And Others
Guidelines are presented for organizing programs and modifying activities in physical education programs for children with a wide range of physical and emotional disabilities. The guidelines should result in a program that allows students to work to their maximum potential within the framework of regular physical education classes. In planning the…
Computer simulation program is adaptable to industrial processes
NASA Technical Reports Server (NTRS)
Schultz, F. E.
1966-01-01
The Reaction kinetics ablation program /REKAP/, developed to simulate ablation of various materials, provides mathematical formulations for computer programs which can simulate certain industrial processes. The programs are based on the use of nonsymmetrical difference equations that are employed to solve complex partial differential equation systems.
Applying Parallel Adaptive Methods with GeoFEST/PYRAMID to Simulate Earth Surface Crustal Dynamics
NASA Technical Reports Server (NTRS)
Norton, Charles D.; Lyzenga, Greg; Parker, Jay; Glasscoe, Margaret; Donnellan, Andrea; Li, Peggy
2006-01-01
This viewgraph presentation reviews the use Adaptive Mesh Refinement (AMR) in simulating the Crustal Dynamics of Earth's Surface. AMR simultaneously improves solution quality, time to solution, and computer memory requirements when compared to generating/running on a globally fine mesh. The use of AMR in simulating the dynamics of the Earth's Surface is spurred by future proposed NASA missions, such as InSAR for Earth surface deformation and other measurements. These missions will require support for large-scale adaptive numerical methods using AMR to model observations. AMR was chosen because it has been successful in computation fluid dynamics for predictive simulation of complex flows around complex structures.
Shaughnessy, M C; Jones, R E
2016-02-01
We develop and demonstrate a method to efficiently use density functional calculations to drive classical dynamics of complex atomic and molecular systems. The method has the potential to scale to systems and time scales unreachable with current ab initio molecular dynamics schemes. It relies on an adapting dataset of independently computed Hellmann-Feynman forces for atomic configurations endowed with a distance metric. The metric on configurations enables fast database lookup and robust interpolation of the stored forces. We discuss mechanisms for the database to adapt to the needs of the evolving dynamics, while maintaining accuracy, and other extensions of the basic algorithm. PMID:26669825
Atkinson, A.J.; Trenham, P.C.; Fisher, R.N.; Hathaway, S.A.; Johnson, B.S.; Torres, S.G.; Moore, Y.C.
2004-01-01
critical management uncertainties; and 3) implementing long-term monitoring and adaptive management. Ultimately, the success of regional conservation planning depends on the ability of monitoring programs to confront the challenges of adaptively managing and monitoring complex ecosystems and diverse arrays of sensitive species.
A Theory of Secondary Teachers' Adaptations When Implementing a Reading Intervention Program
ERIC Educational Resources Information Center
Leko, Melinda M.; Roberts, Carly A.; Pek, Yvonne
2015-01-01
This study examined the causes and consequences of secondary teachers' adaptations when implementing a research-based reading intervention program. Interview, observation, and artifact data were collected on five middle school intervention teachers, leading to a grounded theory composed of the core component, reconciliation through adaptation, and…
An Extension Education Program to Help Local Governments with Flood Adaptation
ERIC Educational Resources Information Center
Gary, Gretchen; Allred, Shorna; LoGiudice, Elizabeth
2014-01-01
Education is an important tool to increase the capacity of local government officials for community flood adaptation. To address flood adaptation and post-flood stream management in municipalities, Cornell Cooperative Extension and collaborators developed an educational program to increase municipal officials' knowledge about how to work…
ERIC Educational Resources Information Center
McCabe, Kristen M.; Yeh, May; Garland, Ann F.; Lau, Anna S.; Chavez, Gloria
2005-01-01
The current manuscript describes the process of developing the GANA program, a version of PCIT that has been culturally adapted for Mexican American families. The adaptation process involved combining information from 1) clinical literature on Mexican American families, 2) empirical literature on barriers to treatment access and effectiveness, and…
Computer Adaptive Testing for Small Scale Programs and Instructional Systems
ERIC Educational Resources Information Center
Rudner, Lawrence M.; Guo, Fanmin
2011-01-01
This study investigates measurement decision theory (MDT) as an underlying model for computer adaptive testing when the goal is to classify examinees into one of a finite number of groups. The first analysis compares MDT with a popular item response theory model and finds little difference in terms of the percentage of correct classifications. The…
University of Rhode Island Adapted Aquatics Program Manual.
ERIC Educational Resources Information Center
Scraba, Paula J.; Bloomquist, Lorraine E.
An overview is presented of the aquatics course, adapted for persons with disabilities, at the University of Rhode Island. A description of the course includes information on course requirements, objectives, content and learning activities, assignments, modules used in the course, and a course syllabus. A description of the course organization and…
Space station orbit design using dynamic programming
NASA Astrophysics Data System (ADS)
Lin, Kun-Peng; Luo, Ya-Zhong; Tang, Guo-Jin
2013-08-01
A space station orbit design mission is characterized by a long-duration and multi-step decision process. First, the long-duration design process is divided into multiple planning periods, each of which consists of five basic flight segments. Second, each planning period is modeled as a multi-step decision process, and the orbital altitude strategies of different flight segments have interaction effects on each other. Third, a dynamic programming method is used to optimize the total propellant consumption of a planning period while considering interaction effects. The step cost of each decision segment is the propellant for orbital-decay maintenance or lifting altitude, and is calculated by approximate analytical equations and combining a shooting iteration method. The proposed approach is demonstrated for a typical orbit design problem of a space station. The results show that the proposed approach can effectively optimize the design of altitude strategies, and can save considerable propellant consumption for the space station than previous public studies.
A Dynamically Adaptive Arbitrary Lagrangian-Eulerian Method for Hydrodynamics
Anderson, R W; Pember, R B; Elliott, N S
2004-01-28
A new method that combines staggered grid Arbitrary Lagrangian-Eulerian (ALE) techniques with structured local adaptive mesh refinement (AMR) has been developed for solution of the Euler equations. The novel components of the combined ALE-AMR method hinge upon the integration of traditional AMR techniques with both staggered grid Lagrangian operators as well as elliptic relaxation operators on moving, deforming mesh hierarchies. Numerical examples demonstrate the utility of the method in performing detailed three-dimensional shock-driven instability calculations.
A Dynamically Adaptive Arbitrary Lagrangian-Eulerian Method for Hydrodynamics
Anderson, R W; Pember, R B; Elliott, N S
2002-10-19
A new method that combines staggered grid Arbitrary Lagrangian-Eulerian (ALE) techniques with structured local adaptive mesh refinement (AMR) has been developed for solution of the Euler equations. The novel components of the combined ALE-AMR method hinge upon the integration of traditional AMR techniques with both staggered grid Lagrangian operators as well as elliptic relaxation operators on moving, deforming mesh hierarchies. Numerical examples demonstrate the utility of the method in performing detailed three-dimensional shock-driven instability calculations.
Dynamic Nature of Noncoding RNA Regulation of Adaptive Immune Response
Curtale, Graziella; Citarella, Franca
2013-01-01
Immune response plays a fundamental role in protecting the organism from infections; however, dysregulation often occurs and can be detrimental for the organism, leading to a variety of immune-mediated diseases. Recently our understanding of the molecular and cellular networks regulating the immune response, and, in particular, adaptive immunity, has improved dramatically. For many years, much of the focus has been on the study of protein regulators; nevertheless, recent evidence points to a fundamental role for specific classes of noncoding RNAs (ncRNAs) in regulating development, activation and homeostasis of the immune system. Although microRNAs (miRNAs) are the most comprehensive and well-studied, a number of reports suggest the exciting possibility that long ncRNAs (lncRNAs) could mediate host response and immune function. Finally, evidence is also accumulating that suggests a role for miRNAs and other small ncRNAs in autocrine, paracrine and exocrine signaling events, thus highlighting an elaborate network of regulatory interactions mediated by different classes of ncRNAs during immune response. This review will explore the multifaceted roles of ncRNAs in the adaptive immune response. In particular, we will focus on the well-established role of miRNAs and on the emerging role of lncRNAs and circulating ncRNAs, which all make indispensable contributions to the understanding of the multilayered modulation of the adaptive immune response. PMID:23975170
Plant adaptation to dynamically changing environment: the shade avoidance response.
Ruberti, I; Sessa, G; Ciolfi, A; Possenti, M; Carabelli, M; Morelli, G
2012-01-01
The success of competitive interactions between plants determines the chance of survival of individuals and eventually of whole plant species. Shade-tolerant plants have adapted their photosynthesis to function optimally under low-light conditions. These plants are therefore capable of long-term survival under a canopy shade. In contrast, shade-avoiding plants adapt their growth to perceive maximum sunlight and therefore rapidly dominate gaps in a canopy. Daylight contains roughly equal proportions of red and far-red light, but within vegetation that ratio is lowered as a result of red absorption by photosynthetic pigments. This light quality change is perceived through the phytochrome system as an unambiguous signal of the proximity of neighbors resulting in a suite of developmental responses (termed the shade avoidance response) that, when successful, result in the overgrowth of those neighbors. Shoot elongation induced by low red/far-red light may confer high relative fitness in natural dense communities. However, since elongation is often achieved at the expense of leaf and root growth, shade avoidance may lead to reduction in crop plant productivity. Over the past decade, major progresses have been achieved in the understanding of the molecular basis of shade avoidance. However, uncovering the mechanisms underpinning plant response and adaptation to changes in the ratio of red to far-red light is key to design new strategies to precise modulate shade avoidance in time and space without impairing the overall crop ability to compete for light. PMID:21888962
Arévalo, Orlando; Bornschlegl, Mona A.; Eberhardt, Sven; Ernst, Udo; Pawelzik, Klaus; Fahle, Manfred
2013-01-01
In everyday life, humans interact with a dynamic environment often requiring rapid adaptation of visual perception and motor control. In particular, new visuo–motor mappings must be learned while old skills have to be kept, such that after adaptation, subjects may be able to quickly change between two different modes of generating movements (‘dual–adaptation’). A fundamental question is how the adaptation schedule determines the acquisition speed of new skills. Given a fixed number of movements in two different environments, will dual–adaptation be faster if switches (‘phase changes’) between the environments occur more frequently? We investigated the dynamics of dual–adaptation under different training schedules in a virtual pointing experiment. Surprisingly, we found that acquisition speed of dual visuo–motor mappings in a pointing task is largely independent of the number of phase changes. Next, we studied the neuronal mechanisms underlying this result and other key phenomena of dual–adaptation by relating model simulations to experimental data. We propose a simple and yet biologically plausible neural model consisting of a spatial mapping from an input layer to a pointing angle which is subjected to a global gain modulation. Adaptation is performed by reinforcement learning on the model parameters. Despite its simplicity, the model provides a unifying account for a broad range of experimental data: It quantitatively reproduced the learning rates in dual–adaptation experiments for both direct effect, i.e. adaptation to prisms, and aftereffect, i.e. behavior after removal of prisms, and their independence on the number of phase changes. Several other phenomena, e.g. initial pointing errors that are far smaller than the induced optical shift, were also captured. Moreover, the underlying mechanisms, a local adaptation of a spatial mapping and a global adaptation of a gain factor, explained asymmetric spatial transfer and generalization of
Integrated Network Decompositions and Dynamic Programming for Graph Optimization (INDDGO)
Energy Science and Technology Software Center (ESTSC)
2012-05-31
The INDDGO software package offers a set of tools for finding exact solutions to graph optimization problems via tree decompositions and dynamic programming algorithms. Currently the framework offers serial and parallel (distributed memory) algorithms for finding tree decompositions and solving the maximum weighted independent set problem. The parallel dynamic programming algorithm is implemented on top of the MADNESS task-based runtime.
Segmentation of Indus Texts: A Dynamic Programming Approach.
ERIC Educational Resources Information Center
Siromoney, Gift; Huq, Abdul
1988-01-01
Demonstrates how a dynamic programing algorithm can be developed to segment unusually long written inscriptions from the Indus Valley Civilization. Explains the problem of segmentation, discusses the dynamic programing algorithm used, and includes tables which illustrate the segmentation of the inscriptions. (GEA)
Stefanich, Charlotte A; Witmer, Julie M; Young, Bonnie D; Benson, LouAnn E; Penn, Cheryl A; Ammerman, Alice S; Garcia, Beverly A; Jilcott, Stephanie B; Etzel, Ruth A
2005-10-01
Southcentral Foundation's Traditions of the Heart program is an innovative cardiovascular disease prevention program for women designed to build on the strengths of the Alaska Native culture as a way to support and encourage positive lifestyle behaviors that focus on healthy eating, active living, stress management, and tobacco cessation. After conducting assessments of existing intervention programs and formative data collection, we adapted two existing programs, Native Nutrition Circles and A New Leaf... Choices for Healthy Living, to develop the Traditions of the Heart program. We implemented and evaluated a pilot intervention study to determine the program's acceptance among Alaska Native women. We used the evaluation results to further refine our study protocol. This article describes the adaptation of these programs to the cultural needs and strengths of Alaska Native women and the results of the formative evaluation used to improve the program design. The complete pilot study outcomes will be published separately. PMID:16210690
Modeling for deformable mirrors and the adaptive optics optimization program
Henesian, M.A.; Haney, S.W.; Trenholme, J.B.; Thomas, M.
1997-03-18
We discuss aspects of adaptive optics optimization for large fusion laser systems such as the 192-arm National Ignition Facility (NIF) at LLNL. By way of example, we considered the discrete actuator deformable mirror and Hartmann sensor system used on the Beamlet laser. Beamlet is a single-aperture prototype of the 11-0-5 slab amplifier design for NIF, and so we expect similar optical distortion levels and deformable mirror correction requirements. We are now in the process of developing a numerically efficient object oriented C++ language implementation of our adaptive optics and wavefront sensor code, but this code is not yet operational. Results are based instead on the prototype algorithms, coded-up in an interpreted array processing computer language.
Promising Practices, and Program Adaptations & Successes. Annual Report.
ERIC Educational Resources Information Center
Dianda, Marcella; Flaherty, John
Through its Metropolitan Educational Trends and Research Outcomes (METRO) Center, the Southwest Regional Laboratory (SWRL) helps school districts implement research-based programs for educationally disadvantaged students. The most prominent of these is Success for All, a nationally recognized school restructuring program. In 1992, SWRL made a…
[Development of an adapted leisure education program for persons with dementia].
Carbonneau, Hélène; Caron, Chantal D; Desrosiers, Johanne
2009-06-01
Leisure represents a positive way to keep relationships satisfactory between caregivers and a person with dementia. Adapted leisure education is a promising approach to assist the family to discover new ways to share good times with their relatives. This study aimed to develop an adapted leisure education program. It included an evaluation of the caregivers' needs, the program content development, and a pilot study to experiment with the content of the program. Three focus groups of dementia caregivers (n = 19) were conducted to investigate caregivers needs. Based on content analysis of these focus groups and a literature review, the content of the program was developed. The pilot study (n = 4) included a quasi-experimental trial and an implementation evaluation. This study led to the development of an adapted leisure education program that puts caregiver support in a new perspective, focusing on positive aspects rather than the burden of caregiving. PMID:19860971
Improve Problem Solving Skills through Adapting Programming Tools
NASA Technical Reports Server (NTRS)
Shaykhian, Linda H.; Shaykhian, Gholam Ali
2007-01-01
There are numerous ways for engineers and students to become better problem-solvers. The use of command line and visual programming tools can help to model a problem and formulate a solution through visualization. The analysis of problem attributes and constraints provide insight into the scope and complexity of the problem. The visualization aspect of the problem-solving approach tends to make students and engineers more systematic in their thought process and help them catch errors before proceeding too far in the wrong direction. The problem-solver identifies and defines important terms, variables, rules, and procedures required for solving a problem. Every step required to construct the problem solution can be defined in program commands that produce intermediate output. This paper advocates improved problem solving skills through using a programming tool. MatLab created by MathWorks, is an interactive numerical computing environment and programming language. It is a matrix-based system that easily lends itself to matrix manipulation, and plotting of functions and data. MatLab can be used as an interactive command line or a sequence of commands that can be saved in a file as a script or named functions. Prior programming experience is not required to use MatLab commands. The GNU Octave, part of the GNU project, a free computer program for performing numerical computations, is comparable to MatLab. MatLab visual and command programming are presented here.
Adaptive optimal spectral range for dynamically changing scene
NASA Astrophysics Data System (ADS)
Pinsky, Ephi; Siman-tov, Avihay; Peles, David
2012-06-01
A novel multispectral video system that continuously optimizes both its spectral range channels and the exposure time of each channel autonomously, under dynamic scenes, varying from short range-clear scene to long range-poor visibility, is currently being developed. Transparency and contrast of high scattering medium of channels with spectral ranges in the near infrared is superior to the visible channels, particularly to the blue range. Longer wavelength spectral ranges that induce higher contrast are therefore favored. Images of 3 spectral channels are fused and displayed for (pseudo) color visualization, as an integrated high contrast video stream. In addition to the dynamic optimization of the spectral channels, optimal real-time exposure time is adjusted simultaneously and autonomously for each channel. A criterion of maximum average signal, derived dynamically from previous frames of the video stream is used (Patent Application - International Publication Number: WO2009/093110 A2, 30.07.2009). This configuration enables dynamic compatibility with the optimal exposure time of a dynamically changing scene. It also maximizes the signal to noise ratio and compensates each channel for the specified value of daylight reflections and sensors response for each spectral range. A possible implementation is a color video camera based on 4 synchronized, highly responsive, CCD imaging detectors, attached to a 4CCD dichroic prism and combined with a common, color corrected, lens. Principal Components Analysis (PCA) technique is then applied for real time "dimensional collapse" in color space, in order to select and fuse, for clear color visualization, the 3 most significant principal channels out of at least 4 characterized by high contrast and rich details in the image data.
Broom, Donald M
2006-01-01
The term adaptation is used in biology in three different ways. It may refer to changes which occur at the cell and organ level, or at the individual level, or at the level of gene action and evolutionary processes. Adaptation by cells, especially nerve cells helps in: communication within the body, the distinguishing of stimuli, the avoidance of overload and the conservation of energy. The time course and complexity of these mechanisms varies. Adaptive characters of organisms, including adaptive behaviours, increase fitness so this adaptation is evolutionary. The major part of this paper concerns adaptation by individuals and its relationships to welfare. In complex animals, feed forward control is widely used. Individuals predict problems and adapt by acting before the environmental effect is substantial. Much of adaptation involves brain control and animals have a set of needs, located in the brain and acting largely via motivational mechanisms, to regulate life. Needs may be for resources but are also for actions and stimuli which are part of the mechanism which has evolved to obtain the resources. Hence pigs do not just need food but need to be able to carry out actions like rooting in earth or manipulating materials which are part of foraging behaviour. The welfare of an individual is its state as regards its attempts to cope with its environment. This state includes various adaptive mechanisms including feelings and those which cope with disease. The part of welfare which is concerned with coping with pathology is health. Disease, which implies some significant effect of pathology, always results in poor welfare. Welfare varies over a range from very good, when adaptation is effective and there are feelings of pleasure or contentment, to very poor. A key point concerning the concept of individual adaptation in relation to welfare is that welfare may be good or poor while adaptation is occurring. Some adaptation is very easy and energetically cheap and
Dynamic Reconstruction and Multivariable Control for Force-Actuated, Thin Facesheet Adaptive Optics
NASA Technical Reports Server (NTRS)
Grocott, Simon C. O.; Miller, David W.
1997-01-01
The Multiple Mirror Telescope (MMT) under development at the University of Arizona takes a new approach in adaptive optics placing a large (0.65 m) force-actuated, thin facesheet deformable mirror at the secondary of an astronomical telescope, thus reducing the effects of emissivity which are important in IR astronomy. However, The large size of the mirror and low stiffness actuators used drive the natural frequencies of the mirror down into the bandwidth of the atmospheric distortion. Conventional adaptive optics takes a quasi-static approach to controlling the, deformable mirror. However, flexibility within the control bandwidth calls for a new approach to adaptive optics. Dynamic influence functions are used to characterize the influence of each actuator on the surface of the deformable mirror. A linearized model of atmospheric distortion is combined with dynamic influence functions to produce a dynamic reconstructor. This dynamic reconstructor is recognized as an optimal control problem. Solving the optimal control problem for a system with hundreds of actuators and sensors is formidable. Exploiting the circularly symmetric geometry of the mirror, and a suitable model of atmospheric distortion, the control problem is divided into a number of smaller decoupled control problems using circulant matrix theory. A hierarchic control scheme which seeks to emulate the quasi-static control approach that is generally used in adaptive optics is compared to the proposed dynamic reconstruction technique. Although dynamic reconstruction requires somewhat more computational power to implement, it achieves better performance with less power usage, and is less sensitive than the hierarchic technique.
Trans-radial upper extremity amputees are capable of adapting to a novel dynamic environment.
Schabowsky, Christopher N; Dromerick, Alexander W; Holley, Rahsaan J; Monroe, Brian; Lum, Peter S
2008-07-01
This study investigated differences in adaptation to a novel dynamic environment between eight trans-radial upper extremity (UE) prosthetic users and eight naive, neurologically intact subjects. Participants held onto the handle of a robotic manipulandum and executed reaching movements within a horizontal plane following a pseudo-random sequence of targets. Curl field perturbations were imposed by the robot motors, and we compared the rate and quality of adaptation between the prosthetic and control subjects. Adaptation was quantitatively assessed by peak error, defined as the maximum orthogonal distance between an observed trajectory and an ideal straight trajectory. Initial exposure to the curl field resulted in large errors, and as the subjects adapted to the novel environment, the errors decreased. During the early phase of adaptation, group differences in the rate of motor adaptation were not significant. However, during late learning, both error magnitude and variability were larger in the prosthetic group. The quality of adaptation, as indicated by the magnitude of the aftereffects, was similar between groups. We conclude that in persons with trans-radial arm amputation, motor adaptation to curl fields during reaching is similar to unimpaired individuals. These findings are discussed in relation to mechanisms of motor adaptation, neural plasticity following an upper extremity amputation (UEA), and potential motor recovery therapies for prosthetic users. PMID:18443766
Understanding barriers to implementation of an adaptive land management program.
Jacobson, Susan K; Morris, Julie K; Sanders, J Scott; Wiley, Eugene N; Brooks, Michael; Bennetts, Robert E; Percival, H Franklin; Marynowski, Susan
2006-10-01
The Florida Fish and Wildlife Conservation Commission manages over 650,000 ha, including 26 wildlife management and environmental areas. To improve management, they developed an objective-based vegetation management (OBVM) process that focuses on desired conditions of plant communities through an adaptive management framework. Our goals were to understand potential barriers to implementing OBVM and to recommend strategies to overcome barriers. A literature review identified 47 potential barriers in six categories to implementation of adaptive and ecosystem management: logistical, communication, attitudinal, institutional, conceptual, and educational. We explored these barriers through a bureau-wide survey of 90 staff involved in OBVM and personal interviews with area managers, scientists, and administrators. The survey incorporated an organizational culture assessment instrument to gauge how institutional factors might influence OBVM implementation. The survey response rate was 69%. Logistics and communications were the greatest barriers to implementing OBVM. Respondents perceived that the agency had inadequate resources for implementing OBVM and provided inadequate information. About one-third of the respondents believed OBVM would decrease their job flexibility and perceived greater institutional barriers to the approach. The 43% of respondents who believed they would have more responsibility under OBVM also had greater attitudinal barriers. A similar percentage of respondents reported OBVM would not give enough priority to wildlife. Staff believed that current agency culture was hierarchical but preferred a culture that would provide more flexibility for adaptive management and would foster learning from land management activities. In light of the barriers to OBVM, we recommend the following: (1) mitigation of logistical barriers by addressing real and perceived constraints of staff, funds, and other resources in a participatory manner; (2) mitigation of
An integrated architecture of adaptive neural network control for dynamic systems
Ke, Liu; Tokar, R.; Mcvey, B.
1994-07-01
In this study, an integrated neural network control architecture for nonlinear dynamic systems is presented. Most of the recent emphasis in the neural network control field has no error feedback as the control input which rises the adaptation problem. The integrated architecture in this paper combines feed forward control and error feedback adaptive control using neural networks. The paper reveals the different internal functionality of these two kinds of neural network controllers for certain input styles, e.g., state feedback and error feedback. Feed forward neural network controllers with state feedback establish fixed control mappings which can not adapt when model uncertainties present. With error feedbacks, neural network controllers learn the slopes or the gains respecting to the error feedbacks, which are error driven adaptive control systems. The results demonstrate that the two kinds of control scheme can be combined to realize their individual advantages. Testing with disturbances added to the plant shows good tracking and adaptation.
Inverse dynamics of adaptive structures used as space cranes
NASA Technical Reports Server (NTRS)
Das, S. K.; Utku, S.; Wada, B. K.
1990-01-01
As a precursor to the real-time control of fast moving adaptive structures used as space cranes, a formulation is given for the flexibility induced motion relative to the nominal motion (i.e., the motion that assumes no flexibility) and for obtaining the open loop time varying driving forces. An algorithm is proposed for the computation of the relative motion and driving forces. The governing equations are given in matrix form with explicit functional dependencies. A simulator is developed to implement the algorithm on a digital computer. In the formulations, the distributed mass of the crane is lumped by two schemes, vz., 'trapezoidal' lumping and 'Simpson's rule' lumping. The effects of the mass lumping schemes are shown by simulator runs.
A quantitative evolutionary theory of adaptive behavior dynamics.
McDowell, J J
2013-10-01
The idea that behavior is selected by its consequences in a process analogous to organic evolution has been discussed for over 100 years. A recently proposed theory instantiates this idea by means of a genetic algorithm that operates on a population of potential behaviors. Behaviors in the population are represented by numbers in decimal integer (phenotypic) and binary bit string (genotypic) forms. One behavior from the population is emitted at random each time tick, after which a new population of potential behaviors is constructed by recombining parent behavior bit strings. If the emitted behavior produced a benefit to the organism, then parents are chosen on the basis of their phenotypic similarity to the emitted behavior; otherwise, they are chosen at random. After parent behavior recombination, the population is subjected to a small amount of mutation by flipping random bits in the population's bit strings. The behavior generated by this process of selection, reproduction, and mutation reaches equilibrium states that conform to every empirically valid equation of matching theory, exactly and without systematic error. These equations are known to describe the behavior of many vertebrate species, including humans, in a variety of experimental, naturalistic, natural, and social environments. The evolutionary theory also generates instantaneous dynamics and patterns of preference change in constantly changing environments that are consistent with the dynamics of live-organism behavior. These findings support the assertion that the world of behavior we observe and measure is generated by evolutionary dynamics. PMID:24219847
Dynamic analysis of naive adaptive brain-machine interfaces.
Kowalski, Kevin C; He, Bryan D; Srinivasan, Lakshminarayan
2013-09-01
The closed-loop operation of brain-machine interfaces (BMI) provides a context to discover foundational principles behind human-computer interaction, with emerging clinical applications to stroke, neuromuscular diseases, and trauma. In the canonical BMI, a user controls a prosthetic limb through neural signals that are recorded by electrodes and processed by a decoder into limb movements. In laboratory demonstrations with able-bodied test subjects, parameters of the decoder are commonly tuned using training data that include neural signals and corresponding overt arm movements. In the application of BMI to paralysis or amputation, arm movements are not feasible, and imagined movements create weaker, partially unrelated patterns of neural activity. BMI training must begin naive, without access to these prototypical methods for parameter initialization used in most laboratory BMI demonstrations. Naive adaptive BMI refer to a class of methods recently introduced to address this problem. We first identify the basic elements of existing approaches based on adaptive filtering and define a decoder, ReFIT-PPF to represent these existing approaches. We then present Joint RSE, a novel approach that logically extends prior approaches. Using recently developed human- and synthetic-subjects closed-loop BMI simulation platforms, we show that Joint RSE significantly outperforms ReFIT-PPF and nonadaptive (static) decoders. Control experiments demonstrate the critical role of jointly estimating neural parameters and user intent. In addition, we show that nonzero sensorimotor delay in the user significantly degrades ReFIT-PPF but not Joint RSE, owing to differences in the prior on intended velocity. Paradoxically, substantial differences in the nature of sensory feedback between these methods do not contribute to differences in performance between Joint RSE and ReFIT-PPF. Instead, BMI performance improvement is driven by machine learning, which outpaces rates of human learning in
Intelligent control of non-linear dynamical system based on the adaptive neurocontroller
NASA Astrophysics Data System (ADS)
Engel, E.; Kovalev, I. V.; Kobezhicov, V.
2015-10-01
This paper presents an adaptive neuro-controller for intelligent control of non-linear dynamical system. The formed as the fuzzy selective neural net the adaptive neuro-controller on the base of system's state, creates the effective control signal under random perturbations. The validity and advantages of the proposed adaptive neuro-controller are demonstrated by numerical simulations. The simulation results show that the proposed controller scheme achieves real-time control speed and the competitive performance, as compared to PID, fuzzy logic controllers.
Foshee, Vangie A; Dixon, Kimberly S; Ennett, Susan T; Moracco, Kathryn E; Bowling, J Michael; Chang, Ling-Yin; Moss, Jennifer L
2015-07-01
Adolescents exposed to domestic violence are at increased risk of dating abuse, yet no evaluated dating abuse prevention programs have been designed specifically for this high-risk population. This article describes the process of adapting Families for Safe Dates (FSD), an evidenced-based universal dating abuse prevention program, to this high-risk population, including conducting 12 focus groups and 107 interviews with the target audience. FSD includes six booklets of dating abuse prevention information, and activities for parents and adolescents to do together at home. We adapted FSD for mothers who were victims of domestic violence, but who no longer lived with the abuser, to do with their adolescents who had been exposed to the violence. Through the adaptation process, we learned that families liked the program structure and valued being offered the program and that some of our initial assumptions about this population were incorrect. We identified practices and beliefs of mother victims and attributes of these adolescents that might increase their risk of dating abuse that we had not previously considered. In addition, we learned that some of the content of the original program generated negative family interactions for some. The findings demonstrate the utility of using a careful process to adapt evidence-based interventions (EBIs) to cultural sub-groups, particularly the importance of obtaining feedback on the program from the target audience. Others can follow this process to adapt EBIs to groups other than the ones for which the original EBI was designed. PMID:25287405
SIMCA T 1.0: A SAS Computer Program for Simulating Computer Adaptive Testing
ERIC Educational Resources Information Center
Raiche, Gilles; Blais, Jean-Guy
2006-01-01
Monte Carlo methodologies are frequently applied to study the sampling distribution of the estimated proficiency level in adaptive testing. These methods eliminate real situational constraints. However, these Monte Carlo methodologies are not currently supported by the available software programs, and when these programs are available, their…
ERIC Educational Resources Information Center
Firth, Nola; Frydenberg, Erica; Greaves, Daryl
2008-01-01
This study explored the effect of a coping program and a teacher feedback intervention on perceived control and adaptive coping for 98 adolescent students who had specific learning disabilities. The coping program was modified to build personal control and to address the needs of students who have specific learning disabilities. The teacher…
Structural self-assembly and avalanchelike dynamics in locally adaptive networks.
Gräwer, Johannes; Modes, Carl D; Magnasco, Marcelo O; Katifori, Eleni
2015-07-01
Transport networks play a key role across four realms of eukaryotic life: slime molds, fungi, plants, and animals. In addition to the developmental algorithms that build them, many also employ adaptive strategies to respond to stimuli, damage, and other environmental changes. We model these adapting network architectures using a generic dynamical system on weighted graphs and find in simulation that these networks ultimately develop a hierarchical organization of the final weighted architecture accompanied by the formation of a system-spanning backbone. In addition, we find that the long term equilibration dynamics exhibit behavior reminiscent of glassy systems characterized by long periods of slow changes punctuated by bursts of reorganization events. PMID:26274219
Structural self-assembly and avalanchelike dynamics in locally adaptive networks
NASA Astrophysics Data System (ADS)
Gräwer, Johannes; Modes, Carl D.; Magnasco, Marcelo O.; Katifori, Eleni
2015-07-01
Transport networks play a key role across four realms of eukaryotic life: slime molds, fungi, plants, and animals. In addition to the developmental algorithms that build them, many also employ adaptive strategies to respond to stimuli, damage, and other environmental changes. We model these adapting network architectures using a generic dynamical system on weighted graphs and find in simulation that these networks ultimately develop a hierarchical organization of the final weighted architecture accompanied by the formation of a system-spanning backbone. In addition, we find that the long term equilibration dynamics exhibit behavior reminiscent of glassy systems characterized by long periods of slow changes punctuated by bursts of reorganization events.