Science.gov

Sample records for adaptive fuzzy control

  1. Genetic algorithms in adaptive fuzzy control

    NASA Technical Reports Server (NTRS)

    Karr, C. Lucas; Harper, Tony R.

    1992-01-01

    Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic algorithms (GA's) are used to augment fuzzy logic controllers (FLC's). GA's are search algorithms that rapidly locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural genetics. FLC's are rule based systems that efficiently manipulate a problem environment by modeling the 'rule-of-thumb' strategy used in human decision making. Together, GA's and FLC's possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, an analysis element to recognize changes in the problem environment, and a learning element to adjust fuzzy membership functions in response to the changes in the problem environment. Details of an overall adaptive control system are discussed. A specific computer-simulated chemical system is used to demonstrate the ideas presented.

  2. Robust adaptive control of MEMS triaxial gyroscope using fuzzy compensator.

    PubMed

    Fei, Juntao; Zhou, Jian

    2012-12-01

    In this paper, a robust adaptive control strategy using a fuzzy compensator for MEMS triaxial gyroscope, which has system nonlinearities, including model uncertainties and external disturbances, is proposed. A fuzzy logic controller that could compensate for the model uncertainties and external disturbances is incorporated into the adaptive control scheme in the Lyapunov framework. The proposed adaptive fuzzy controller can guarantee the convergence and asymptotical stability of the closed-loop system. The proposed adaptive fuzzy control strategy does not depend on accurate mathematical models, which simplifies the design procedure. The innovative development of intelligent control methods incorporated with conventional control for the MEMS gyroscope is derived with the strict theoretical proof of the Lyapunov stability. Numerical simulations are investigated to verify the effectiveness of the proposed adaptive fuzzy control scheme and demonstrate the satisfactory tracking performance and robustness against model uncertainties and external disturbances compared with conventional adaptive control method. PMID:22575691

  3. Computation of Parametric Adaptive Fuzzy Controller for Wood Drying System

    NASA Astrophysics Data System (ADS)

    Situmorang, Zakarias; Wardoyo, Retantyo; Hartati, Sri; Istiyanto, Jazi Eko

    2009-08-01

    The paper reports the computation of parametric adaptive fuzzy controller for used to wood drying system. Parametric of adaptive fuzzy controller is control period system. Control period system is how long time need to hoist of temperature drying or humidity drying if the actuator in on-conditions. The parametric is implemented for control system of wood drying process at prototype chamber with solar is source of energy. The actuator of system is heater, damper and sprayer. From result of measurement, that data were doing to analysis statistic to have the parametric. Whenever the parametric want to implemented with mechanism adaptive. Membership Functions of variable control of system to became something is difficult to have effect to temperature and humidity drying. The result of implemented of adaptive fuzzy control is described in graphic typical. The control system is able to adapt change of humidity drying in system schedule of wood drying system.

  4. An adaptive fuzzy controller for permanent-magnet AC servo drives

    SciTech Connect

    Le-Huy, H.

    1995-12-31

    This paper presents a theoretical study on a model-reference adaptive fuzzy logic controller for vector-controlled permanent-magnet ac servo drives. In the proposed system, fuzzy logic is used to implement the direct controller as well as the adaptation mechanism. The operation of the direct fuzzy controller and the fuzzy logic based adaptation mechanism is studied. The control performance of the adaptive fuzzy controller is evaluated by simulation for various operating conditions. The results are compared with that provided by a non-adaptive fuzzy controller. The implementation of proposed adaptive fuzzy controller is discussed.

  5. Adaptive Fuzzy Control of a Direct Drive Motor: Experimental Aspects

    NASA Technical Reports Server (NTRS)

    Medina, E.; Akbarzadeh-T, M.-R.; Kim, Y. T.

    1998-01-01

    This paper presents a state feedback adaptive control method for position and velocity control of a direct drive motor. The proposed control scheme allows for integrating heuristic knowledge with mathematical knowledge of a system. It performs well even when mathematical model of the system is poorly understood. The controller consists of an adaptive fuzzy controller and a supervisory controller. The supervisory controller requires only knowledge of the upper bound and lower bound of the system parameters. The fuzzy controller is based on fuzzy basis functions and states of the system. The adaptation law is derived based on the Lyapunov function which ensures that the state of the system asymptotically approaches zero. The proposed controller is applied to a direct drive motor with payload and parameter uncertainty, and the effectiveness is experimentally verified. The real-time performance is compared with simulation results.

  6. Adaptive Fuzzy Control of a Direct Drive Motor

    NASA Technical Reports Server (NTRS)

    Medina, E.; Kim, Y. T.; Akbaradeh-T., M. -R.

    1997-01-01

    This paper presents a state feedback adaptive control method for position and velocity control of a direct drive motor. The proposed control scheme allows for integrating heuristic knowledge with mathematical knowledge of a system. It performs well even when mathematical model of the system is poorly understood. The controller consists of an adaptive fuzzy controller and a supervisory controller. The supervisory controller requires only knowledge of the upper bound and lower bound of the system parameters. The fuzzy controller is based on fuzzy basis functions and states of the system. The adaptation law is derived based on the Lyapunov function which ensures that the state of the system asymptotically approaches zero. The proposed controller is applied to a direct drive motor with payload and parameter uncertainty, and the effectiveness is verified by simulation results.

  7. Fuzzy Adaptive Control for Intelligent Autonomous Space Exploration Problems

    NASA Technical Reports Server (NTRS)

    Esogbue, Augustine O.

    1998-01-01

    The principal objective of the research reported here is the re-design, analysis and optimization of our newly developed neural network fuzzy adaptive controller model for complex processes capable of learning fuzzy control rules using process data and improving its control through on-line adaption. The learned improvement is according to a performance objective function that provides evaluative feedback; this performance objective is broadly defined to meet long-range goals over time. Although fuzzy control had proven effective for complex, nonlinear, imprecisely-defined processes for which standard models and controls are either inefficient, impractical or cannot be derived, the state of the art prior to our work showed that procedures for deriving fuzzy control, however, were mostly ad hoc heuristics. The learning ability of neural networks was exploited to systematically derive fuzzy control and permit on-line adaption and in the process optimize control. The operation of neural networks integrates very naturally with fuzzy logic. The neural networks which were designed and tested using simulation software and simulated data, followed by realistic industrial data were reconfigured for application on several platforms as well as for the employment of improved algorithms. The statistical procedures of the learning process were investigated and evaluated with standard statistical procedures (such as ANOVA, graphical analysis of residuals, etc.). The computational advantage of dynamic programming-like methods of optimal control was used to permit on-line fuzzy adaptive control. Tests for the consistency, completeness and interaction of the control rules were applied. Comparisons to other methods and controllers were made so as to identify the major advantages of the resulting controller model. Several specific modifications and extensions were made to the original controller. Additional modifications and explorations have been proposed for further study. Some of these are in progress in our laboratory while others await additional support. All of these enhancements will improve the attractiveness of the controller as an effective tool for the on line control of an array of complex process environments.

  8. Neural and Fuzzy Adaptive Control of Induction Motor Drives

    SciTech Connect

    Bensalem, Y.; Sbita, L.; Abdelkrim, M. N.

    2008-06-12

    This paper proposes an adaptive neural network speed control scheme for an induction motor (IM) drive. The proposed scheme consists of an adaptive neural network identifier (ANNI) and an adaptive neural network controller (ANNC). For learning the quoted neural networks, a back propagation algorithm was used to automatically adjust the weights of the ANNI and ANNC in order to minimize the performance functions. Here, the ANNI can quickly estimate the plant parameters and the ANNC is used to provide on-line identification of the command and to produce a control force, such that the motor speed can accurately track the reference command. By combining artificial neural network techniques with fuzzy logic concept, a neural and fuzzy adaptive control scheme is developed. Fuzzy logic was used for the adaptation of the neural controller to improve the robustness of the generated command. The developed method is robust to load torque disturbance and the speed target variations when it ensures precise trajectory tracking with the prescribed dynamics. The algorithm was verified by simulation and the results obtained demonstrate the effectiveness of the IM designed controller.

  9. Neural and Fuzzy Adaptive Control of Induction Motor Drives

    NASA Astrophysics Data System (ADS)

    Bensalem, Y.; Sbita, L.; Abdelkrim, M. N.

    2008-06-01

    This paper proposes an adaptive neural network speed control scheme for an induction motor (IM) drive. The proposed scheme consists of an adaptive neural network identifier (ANNI) and an adaptive neural network controller (ANNC). For learning the quoted neural networks, a back propagation algorithm was used to automatically adjust the weights of the ANNI and ANNC in order to minimize the performance functions. Here, the ANNI can quickly estimate the plant parameters and the ANNC is used to provide on-line identification of the command and to produce a control force, such that the motor speed can accurately track the reference command. By combining artificial neural network techniques with fuzzy logic concept, a neural and fuzzy adaptive control scheme is developed. Fuzzy logic was used for the adaptation of the neural controller to improve the robustness of the generated command. The developed method is robust to load torque disturbance and the speed target variations when it ensures precise trajectory tracking with the prescribed dynamics. The algorithm was verified by simulation and the results obtained demonstrate the effectiveness of the IM designed controller.

  10. Study on rule-based adaptive fuzzy excitation control technology

    NASA Astrophysics Data System (ADS)

    Zhao, Hui; Wang, Hong-jun; Liu, Lu-yuan; Yue, You-jun

    2008-10-01

    Power system is a kind of typical non-linear system, it is hard to achieve excellent control performance with conventional PID controller under different operating conditions. Fuzzy parameter adaptive PID exciting controller is very efficient to overcome the influence of tiny disturbances, but the performance of the control system will be worsened when operating conditions of the system change greatly or larger disturbances occur. To solve this problem, this article presents a rule adaptive fuzzy control scheme for synchronous generator exciting system. In this scheme the control rule adaptation is implemented by regulating the value of parameter di under the given proportional divisors K1, K2 and K3 of fuzzy sets Ai and Bi. This rule adaptive mechanism is constituted by two groups of original rules about the self-generation and self-correction of the control rule. Using two groups of rules, the control rule activated by status 1 and 2 in figure 2 system can be regulated automatically and simultaneously at the time instant k. The results from both theoretical analysis and simulation show that the presented scheme is effective and feasible and possesses good performance.

  11. Adaptive recurrent fuzzy neural networks for active noise control

    NASA Astrophysics Data System (ADS)

    Zhang, Qi-Zhi; Gan, Woon-Seng; Zhou, Ya-li

    2006-10-01

    This paper discussed nonlinear active noise control (ANC). Some adaptive nonlinear noise control approaches using recurrent fuzzy neural networks (RFNNs) were derived. The proposed RFNNs were feed-forward fuzzy neural networks (NNs) with different local feedback connections that are used to construct dynamic fuzzy rules. Different recurrent connection strategies, diagonal recurrent and full connected recurrent ones, were considered. In addition, different fuzzy operation strategies, product (multiply) inference and "summation" (addition) inference, were proposed. Because RFNN-based ANC systems can capture the dynamic behavior of a system through the feedback links, the exact lag of the input variables need not be known in advance. Online dynamic back-propagation learning algorithms based on the error gradient descent method were proposed, and the local convergence of a closed-loop system was proven using the discrete Lyapunov function. A nonlinear simulation example showed that an adaptive ANC system based on an RFNN with summation inference is superior to a system based on other fuzzy NNs.

  12. A Robot Manipulator with Adaptive Fuzzy Controller in Obstacle Avoidance

    NASA Astrophysics Data System (ADS)

    Sreekumar, Muthuswamy

    2016-03-01

    Building robots and machines to act within a fuzzy environment is a problem featuring complexity and ambiguity. In order to avoid obstacles, or move away from it, the robot has to perform functions such as obstacle identification, finding the location of the obstacle, its velocity, direction of movement, size, shape, and so on. This paper presents about the design, and implementation of an adaptive fuzzy controller designed for a 3 degree of freedom spherical coordinate robotic manipulator interfaced with a microcontroller and an ultrasonic sensor. Distance between the obstacle and the sensor and its time rate are considered as inputs to the controller and how the manipulator to take diversion from its planned trajectory, in order to avoid collision with the obstacle, is treated as output from the controller. The obstacles are identified as stationary or moving objects and accordingly adaptive self tuning is accomplished with three set of linguistic rules. The prototype of the manipulator has been fabricated and tested for collision avoidance by placing stationary and moving obstacles in its planned trajectory. The performance of the adaptive control algorithm is analyzed in MATLAB by generating 3D fuzzy control surfaces.

  13. Fuzzy Logic Controller (FLC)

    NASA Technical Reports Server (NTRS)

    Wang, Leo

    1990-01-01

    The purpose of using Fuzzy Logic Controller (FLC) originally is to replace human operators in some control task. The presentation gives brief introduction of fuzzy logic controller and the related concepts in fuzzy sets. Fuzzy modeling is a process of system identification by using a model of fuzzy structure. Representation capability of fuzzy modeling in nonlinear function approximation is shown by mathematical analysis. General conclusions and results of simulation example are given. Finally, configuration of a fuzzy adaptive controller and the adaptive control algorithms are presented, accompanied with simulation results of an example in which a nonlinear plant is controlled by the proposed fuzzy adaptive controller to do the model-following.

  14. Adaptive Process Control with Fuzzy Logic and Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Karr, C. L.

    1993-01-01

    Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic algorithms (GA's) are used to augment fuzzy logic controllers (FLC's). GA's are search algorithms that rapidly locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural genetics. FLC's are rule based systems that efficiently manipulate a problem environment by modeling the 'rule-of-thumb' strategy used in human decision-making. Together, GA's and FLC's possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, an analysis element to recognize changes in the problem environment, and a learning element to adjust to the changes in the problem environment. Details of an overall adaptive control system are discussed. A specific laboratory acid-base pH system is used to demonstrate the ideas presented.

  15. Adaptive process control using fuzzy logic and genetic algorithms

    NASA Technical Reports Server (NTRS)

    Karr, C. L.

    1993-01-01

    Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic algorithms (GA's) are used to augment fuzzy logic controllers (FLC's). GA's are search algorithms that rapidly locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural genetics. FLC's are rule based systems that efficiently manipulate a problem environment by modeling the 'rule-of-thumb' strategy used in human decision making. Together, GA's and FLC's possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, and a learning element to adjust to the changes in the problem environment. Details of an overall adaptive control system are discussed. A specific laboratory acid-base pH system is used to demonstrate the ideas presented.

  16. Application of Adaptive Neuro Fuzzy Inference System (ANFIS) In Implementing of New CMOS Fuzzy Logic Controller (FLC) Chip

    NASA Astrophysics Data System (ADS)

    Aminifar, S.; Yosefi, Gh.

    2007-09-01

    In this paper, we present away of using Anfis architecture to implement a new fuzzy logic controller chip. Anfis which tunes the fuzzy inference system with a backpropagation algorithm based on collection of input-output data makes fuzzy system to learn. This training is given from a standard response of the system and membership functions are suitably modified. For adaptive Anfis based fuzzy controller and its circuit design, we propose new circuits for implementing each controller block, and illustrate the test results and control surface of Anfis controller along with CMOS fuzzy logic controller using Matlab and Hspice software respectively. For implementing controller according to the Anfis training, we proposed new and improved integrated circuits which consist of Fuzzifier, Min operator and Multiplier/Divider. The control surfaces of controller are obtained by using Anfis training and simulation results of integrated circuits in less than 0.075 mm2 area in 0.35 ?m CMOS standard technology.

  17. Comparative Study of Adaptive Type-1 and Type-2 Fuzzy Controls for Nonlinear Systems under Uncertainty

    NASA Astrophysics Data System (ADS)

    Mokaddem, S.; Khaber, F.

    2008-06-01

    This work presents a development of adaptive type-1 and type-2 fuzzy controls for uncertain nonlinear systems. Using the adaptive type-1 fuzzy control, the dynamic of the nonlinear systems is approximated with type-1 fuzzy systems whose parameters are adjusted by appropriate law adaptation. For adaptive type-2 fuzzy control, the dynamic of the nonlinear systems is approximated with interval type-2 fuzzy systems. The use of this type-2 control requires an additional operation witch is the type reduction, in comparing with typ-1 control. The closed-loop system stability is guaranteed by the Lyaponov synthesis. To show the performance of the developed controls, a comparative study is realized through the application of these controls so that an inverted pendulum tracks a given trajectory in presence of disturbances.

  18. T-S model based indirect adaptive fuzzy control using online parameter estimation.

    PubMed

    Park, Chang-Woo; Cho, Young-Wan

    2004-12-01

    A parameter estimation scheme with an appropriate adaptive law for updating the parameters is designed and analyzed based on the Lyapunov theory for the general MIMO Takagi-Sugeno (T-S) fuzzy models. The parameters of the Takagi-Sugeno fuzzy models can be estimated by observing the behavior of the system and with the online parameter estimator, any type of fuzzy controllers works adaptively to the parameter perturbation. In order to show the applicability of the proposed estimator, an existing fuzzy state feedback controller is adopted and indirect adaptive fuzzy control design with the proposed estimator is shown. From the numerical simulations and experiments, it is shown that the derived adaptive law works for the estimation model to follows the parameterized plant model and the overall control system has robustness to the parameter perturbation. PMID:15619930

  19. A new adaptive configuration of PID type fuzzy logic controller.

    PubMed

    Fereidouni, Alireza; Masoum, Mohammad A S; Moghbel, Moayed

    2015-05-01

    In this paper, an adaptive configuration for PID type fuzzy logic controller (FLC) is proposed to improve the performances of both conventional PID (C-PID) controller and conventional PID type FLC (C-PID-FLC). The proposed configuration is called adaptive because its output scaling factors (SFs) are dynamically tuned while the controller is functioning. The initial values of SFs are calculated based on its well-tuned counterpart while the proceeding values are generated using a proposed stochastic hybrid bacterial foraging particle swarm optimization (h-BF-PSO) algorithm. The performance of the proposed configuration is evaluated through extensive simulations for different operating conditions (changes in reference, load disturbance and noise signals). The results reveal that the proposed scheme performs significantly better over the C-PID controller and the C-PID-FLC in terms of several performance indices (integral absolute error (IAE), integral-of-time-multiplied absolute error (ITAE) and integral-of-time-multiplied squared error (ITSE)), overshoot and settling time for plants with and without dead time. PMID:25530256

  20. Adaptive Performance Seeking Control Using Fuzzy Model Reference Learning Control and Positive Gradient Control

    NASA Technical Reports Server (NTRS)

    Kopasakis, George

    1997-01-01

    Performance Seeking Control attempts to find the operating condition that will generate optimal performance and control the plant at that operating condition. In this paper a nonlinear multivariable Adaptive Performance Seeking Control (APSC) methodology will be developed and it will be demonstrated on a nonlinear system. The APSC is comprised of the Positive Gradient Control (PGC) and the Fuzzy Model Reference Learning Control (FMRLC). The PGC computes the positive gradients of the desired performance function with respect to the control inputs in order to drive the plant set points to the operating point that will produce optimal performance. The PGC approach will be derived in this paper. The feedback control of the plant is performed by the FMRLC. For the FMRLC, the conventional fuzzy model reference learning control methodology is utilized, with guidelines generated here for the effective tuning of the FMRLC controller.

  1. Adaptive fuzzy bilinear feedback control design for synchronization of TS fuzzy bilinear generalized Lorenz system with uncertain parameters

    NASA Astrophysics Data System (ADS)

    Baek, Jaeho

    2010-04-01

    In this Letter, we propose an adaptive fuzzy bilinear feedback control (FBFC) design for synchronization of Takagi-Sugeno (TS) fuzzy bilinear generalized Lorenz system (FBGLS) with uncertain parameters. The generalized Lorenz system (GLS) can be described to TS FBGLS. We design an adaptive synchronization scheme of the response system based on TS FBGLS, feedback control scheme and Lyapunov theory. Lyapunov theory is employed to guarantee the stability of error dynamic system and to derive the adaptive laws to estimate unknown parameters. Numerical example is given to demonstrate the validity of our proposed adaptive FBFC approach with comparative results for synchronization.

  2. Adaptive fuzzy-neural-network control for maglev transportation system.

    PubMed

    Wai, Rong-Jong; Lee, Jeng-Dao

    2008-01-01

    A magnetic-levitation (maglev) transportation system including levitation and propulsion control is a subject of considerable scientific interest because of highly nonlinear and unstable behaviors. In this paper, the dynamic model of a maglev transportation system including levitated electromagnets and a propulsive linear induction motor (LIM) based on the concepts of mechanical geometry and motion dynamics is developed first. Then, a model-based sliding-mode control (SMC) strategy is introduced. In order to alleviate chattering phenomena caused by the inappropriate selection of uncertainty bound, a simple bound estimation algorithm is embedded in the SMC strategy to form an adaptive sliding-mode control (ASMC) scheme. However, this estimation algorithm is always a positive value so that tracking errors introduced by any uncertainty will cause the estimated bound increase even to infinity with time. Therefore, it further designs an adaptive fuzzy-neural-network control (AFNNC) scheme by imitating the SMC strategy for the maglev transportation system. In the model-free AFNNC, online learning algorithms are designed to cope with the problem of chattering phenomena caused by the sign action in SMC design, and to ensure the stability of the controlled system without the requirement of auxiliary compensated controllers despite the existence of uncertainties. The outputs of the AFNNC scheme can be directly supplied to the electromagnets and LIM without complicated control transformations for relaxing strict constrains in conventional model-based control methodologies. The effectiveness of the proposed control schemes for the maglev transportation system is verified by numerical simulations, and the superiority of the AFNNC scheme is indicated in comparison with the SMC and ASMC strategies. PMID:18269938

  3. Design of a self-adaptive fuzzy PID controller for piezoelectric ceramics micro-displacement system

    NASA Astrophysics Data System (ADS)

    Zhang, Shuang; Zhong, Yuning; Xu, Zhongbao

    2008-12-01

    In order to improve control precision of the piezoelectric ceramics (PZT) micro-displacement system, a self-adaptive fuzzy Proportional Integration Differential (PID) controller is designed based on the traditional digital PID controller combining with fuzzy control. The arithmetic gives a fuzzy control rule table with the fuzzy control rule and fuzzy reasoning, through this table, the PID parameters can be adjusted online in real time control. Furthermore, the automatic selective control is achieved according to the change of the error. The controller combines the good dynamic capability of the fuzzy control and the high stable precision of the PID control, adopts the method of using fuzzy control and PID control in different segments of time. In the initial and middle stage of the transition process of system, that is, when the error is larger than the value, fuzzy control is used to adjust control variable. It makes full use of the fast response of the fuzzy control. And when the error is smaller than the value, the system is about to be in the steady state, PID control is adopted to eliminate static error. The problems of PZT existing in the field of precise positioning are overcome. The results of the experiments prove that the project is correct and practicable.

  4. Observer-Based Adaptive Fuzzy Backstepping Dynamic Surface Control for a Class of MIMO Nonlinear Systems.

    PubMed

    Shao-Cheng Tong; Yong-Ming Li; Gang Feng; Tie-Shan Li

    2011-08-01

    In this paper, an adaptive fuzzy backstepping dynamic surface control (DSC) approach is developed for a class of multiple-input-multiple-output nonlinear systems with immeasurable states. Using fuzzy-logic systems to approximate the unknown nonlinear functions, a fuzzy state observer is designed to estimate the immeasurable states. By combining adaptive-backstepping technique and DSC technique, an adaptive fuzzy output-feedback backstepping-control approach is developed. The proposed control method not only overcomes the problem of "explosion of complexity" inherent in the backstepping-design methods but also overcomes the problem of unavailable state measurements. It is proved that all the signals of the closed-loop adaptive-control system are semiglobally uniformly ultimately bounded, and the tracking errors converge to a small neighborhood of the origin. Simulation results are provided to show the effectiveness of the proposed approach. PMID:21317084

  5. Induction machine Direct Torque Control system based on fuzzy adaptive control

    NASA Astrophysics Data System (ADS)

    Li, Shi-ping; Yu, Yan; Jiao, Zhen-gang; Gu, Shu-sheng

    2009-07-01

    Direct Torque Control technology is a high-performance communication control method, it uses the space voltage vector method, and then to the inverter switch state control, to obtain high torque dynamic performance. But none of the switching states is able to generate the exact voltage vector to produce the desired changes in torque and flux in most of the switching instances. This causes a high ripple in torque. To solve this problem, a fuzzy implementation of Direct Torque Control of Induction machine is presented here. Error of stator flux, error of motor electromagnetic torque and position of angle of flux are taken as fuzzy variables. In order to further solve nonlinear problem of variation parameters in direct torque control system, the paper proposes a fuzzy parameter PID adaptive control method which is suitable for the direct torque control of an asynchronous motor. The generation of its fuzzy control is obtained by analyzing and optimizing PID control step response and combining expert's experience. For this reason, it carries out fuzzy work to PID regulator of motor speed to achieve to regulate PID parameters. Therefore the control system gets swifter response velocity, stronger robustness and higher precision of velocity control. The computer simulated results verify the validity of this novel method.

  6. Performance improvement of a microbial fuel cell based on adaptive fuzzy control.

    PubMed

    Fan, Liping; Li, Chong; Boshnakov, Kosta

    2014-05-01

    Microbial fuel cells have been obtaining more and more attention with the associated abilities of continuous electrical power supply and wastewater treatment. Because of its complicated reaction mechanism and its inherent characteristics of time varying, uncertainty, strong coupling and nonlinearity, there are complex control challenges in microbial fuel cells. In this paper, an adaptive fuzzy control scheme is proposed for the microbial fuel cell system to achieve constant voltage output under different loads. A main fuzzy controller is used to track the set value, and an auxiliary fuzzy controller is applied to adjust the factors of the main controller. Simulation results show that the output voltage can track the given value well. The proposed adaptive fuzzy controller can give better steady-state behavior and faster response, and it improves the running performance of the microbial fuel cell. PMID:24816708

  7. Study on application of adaptive fuzzy control and neural network in the automatic leveling system

    NASA Astrophysics Data System (ADS)

    Xu, Xiping; Zhao, Zizhao; Lan, Weiyong; Sha, Lei; Qian, Cheng

    2015-04-01

    This paper discusses the adaptive fuzzy control and neural network BP algorithm in large flat automatic leveling control system application. The purpose is to develop a measurement system with a flat quick leveling, Make the installation on the leveling system of measurement with tablet, to be able to achieve a level in precision measurement work quickly, improve the efficiency of the precision measurement. This paper focuses on the automatic leveling system analysis based on fuzzy controller, Use of the method of combining fuzzy controller and BP neural network, using BP algorithm improve the experience rules .Construct an adaptive fuzzy control system. Meanwhile the learning rate of the BP algorithm has also been run-rate adjusted to accelerate convergence. The simulation results show that the proposed control method can effectively improve the leveling precision of automatic leveling system and shorten the time of leveling.

  8. Observed-Based Adaptive Fuzzy Tracking Control for Switched Nonlinear Systems With Dead-Zone.

    PubMed

    Tong, Shaocheng; Sui, Shuai; Li, Yongming

    2015-12-01

    In this paper, the problem of adaptive fuzzy output-feedback control is investigated for a class of uncertain switched nonlinear systems in strict-feedback form. The considered switched systems contain unknown nonlinearities, dead-zone, and immeasurable states. Fuzzy logic systems are utilized to approximate the unknown nonlinear functions, a switched fuzzy state observer is designed and thus the immeasurable states are obtained by it. By applying the adaptive backstepping design principle and the average dwell time method, an adaptive fuzzy output-feedback tracking control approach is developed. It is proved that the proposed control approach can guarantee that all the variables in the closed-loop system are bounded under a class of switching signals with average dwell time, and also that the system output can track a given reference signal as closely as possible. The simulation results are given to check the effectiveness of the proposed approach. PMID:25594991

  9. Adjustable Adaptive Fuzzy Attitude Control using Nonlinear SISO Structure of Satellite Dynamics

    NASA Astrophysics Data System (ADS)

    Moradi, Morteza; Esmaelzadeh, Reza; Ghasemi, Ali

    This paper presents a method for three-dimensional attitude stabilization of a satellite. The pitch loop of the satellite is controlled by a momentum wheel; whereas the roll/yaw loops are stabilized using two magnetic torques along their respective axes. In order to design an efficient controller, the stability conditions are considered based on a nonlinear model of system. An adjustable adaptive fuzzy system is proposed as the method to design the controller. The span of membership functions are tuned using errors of fuzzy inputs with respect to their references. Results show that fuzzy sets cover all variations of fuzzy inputs and optimal fuzzy output is gained. The Lyapunov synthesis method is used to prove the stability of the closed-loop system. The efficiency of the controller in converging of the position error to close to zero is also shown using some numerical simulations.

  10. Fuzzy Backstepping Torque Control Of Passive Torque Simulator With Algebraic Parameters Adaptation

    NASA Astrophysics Data System (ADS)

    Ullah, Nasim; Wang, Shaoping; Wang, Xingjian

    2015-07-01

    This work presents fuzzy backstepping control techniques applied to the load simulator for good tracking performance in presence of extra torque, and nonlinear friction effects. Assuming that the parameters of the system are uncertain and bounded, Algebraic parameters adaptation algorithm is used to adopt the unknown parameters. The effect of transient fuzzy estimation error on parameters adaptation algorithm is analyzed and the fuzzy estimation error is further compensated using saturation function based adaptive control law working in parallel with the actual system to improve the transient performance of closed loop system. The saturation function based adaptive control term is large in the transient time and settles to an optimal lower value in the steady state for which the closed loop system remains stable. The simulation results verify the validity of the proposed control method applied to the complex aerodynamics passive load simulator.

  11. Generalized projective synchronization of the fractional-order chaotic system using adaptive fuzzy sliding mode control

    NASA Astrophysics Data System (ADS)

    Wang, Li-Ming; Tang, Yong-Guang; Chai, Yong-Quan; Wu, Feng

    2014-10-01

    An adaptive fuzzy sliding mode strategy is developed for the generalized projective synchronization of a fractional-order chaotic system, where the slave system is not necessarily known in advance. Based on the designed adaptive update laws and the linear feedback method, the adaptive fuzzy sliding controllers are proposed via the fuzzy design, and the strength of the designed controllers can be adaptively adjusted according to the external disturbances. Based on the Lyapunov stability theorem, the stability and the robustness of the controlled system are proved theoretically. Numerical simulations further support the theoretical results of the paper and demonstrate the efficiency of the proposed method. Moreover, it is revealed that the proposed method allows us to manipulate arbitrarily the response dynamics of the slave system by adjusting the desired scaling factor λi and the desired translating factor ηi, which may be used in a channel-independent chaotic secure communication.

  12. Robust adaptive fuzzy tracking control for pure-feedback stochastic nonlinear systems with input constraints.

    PubMed

    Wang, Huanqing; Chen, Bing; Liu, Xiaoping; Liu, Kefu; Lin, Chong

    2013-12-01

    This paper is concerned with the problem of adaptive fuzzy tracking control for a class of pure-feedback stochastic nonlinear systems with input saturation. To overcome the design difficulty from nondifferential saturation nonlinearity, a smooth nonlinear function of the control input signal is first introduced to approximate the saturation function; then, an adaptive fuzzy tracking controller based on the mean-value theorem is constructed by using backstepping technique. The proposed adaptive fuzzy controller guarantees that all signals in the closed-loop system are bounded in probability and the system output eventually converges to a small neighborhood of the desired reference signal in the sense of mean quartic value. Simulation results further illustrate the effectiveness of the proposed control scheme. PMID:23757518

  13. Adaptive fuzzy predictive sliding control of uncertain nonlinear systems with bound-known input delay.

    PubMed

    Khazaee, Mostafa; Markazi, Amir H D; Omidi, Ehsan

    2015-11-01

    In this paper, a new Adaptive Fuzzy Predictive Sliding Mode Control (AFP-SMC) is presented for nonlinear systems with uncertain dynamics and unknown input delay. The control unit consists of a fuzzy inference system to approximate the ideal linearization control, together with a switching strategy to compensate for the estimation errors. Also, an adaptive fuzzy predictor is used to estimate the future values of the system states to compensate for the time delay. The adaptation laws are used to tune the controller and predictor parameters, which guarantee the stability based on a Lyapunov-Krasovskii functional. To evaluate the method effectiveness, the simulation and experiment on an overhead crane system are presented. According to the obtained results, AFP-SMC can effectively control the uncertain nonlinear systems, subject to input delays of known bound. PMID:26524958

  14. Adaptive Fuzzy Tracking Control for a Class of MIMO Nonlinear Systems in Nonstrict-Feedback Form.

    PubMed

    Chen, Bing; Lin, Chong; Liu, Xiaoping; Liu, Kefu

    2015-12-01

    This paper focuses on the problem of fuzzy adaptive control for a class of multiinput and multioutput (MIMO) nonlinear systems in nonstrict-feedback form, which contains the strict-feedback form as a special case. By the condition of variable partition, a new fuzzy adaptive backstepping is proposed for such a class of nonlinear MIMO systems. The suggested fuzzy adaptive controller guarantees that the proposed control scheme can guarantee that all the signals in the closed-loop system are semi-globally uniformly ultimately bounded and the tracking errors eventually converge to a small neighborhood around the origin. The main advantage of this paper is that a control approach is systematically derived for nonlinear systems with strong interconnected terms which are the functions of all states of the whole system. Simulation results further illustrate the effectiveness of the suggested approach. PMID:25561604

  15. Fuzzy control of magnetic bearings

    NASA Technical Reports Server (NTRS)

    Feeley, J. J.; Niederauer, G. M.; Ahlstrom, D. J.

    1991-01-01

    The use of an adaptive fuzzy control algorithm implemented on a VLSI chip for the control of a magnetic bearing was considered. The architecture of the adaptive fuzzy controller is similar to that of a neural network. The performance of the fuzzy controller is compared to that of a conventional controller by computer simulation.

  16. Controlling Discrete Time T-S Fuzzy Chaotic Systems via Adaptive Adjustment

    NASA Astrophysics Data System (ADS)

    Nian, Yibei; Zheng, Yongai

    In order to overcome typical drawbacks of the OGY control, i.e. the long waiting time for control to be applied and the accessible turning system parameter in advance, this paper presents a new chaos control method based on Takagi- Sugeno (T-S) fuzzy model and adaptive adjustment. This method represents a chaotic system by linear models in different state space regions based on T-S fuzzy model and then stabilize the linear models in different state space regions by the adaptive adjustment mechanism. An example for the Henon map is given to demonstrate the effectiveness of the proposed method.

  17. Design of sewage treatment system by applying fuzzy adaptive PID controller

    NASA Astrophysics Data System (ADS)

    Jin, Liang-Ping; Li, Hong-Chan

    2013-03-01

    In the sewage treatment system, the dissolved oxygen concentration control, due to its nonlinear, time-varying, large time delay and uncertainty, is difficult to establish the exact mathematical model. While the conventional PID controller only works with good linear not far from its operating point, it is difficult to realize the system control when the operating point far off. In order to solve the above problems, the paper proposed a method which combine fuzzy control with PID methods and designed a fuzzy adaptive PID controller based on S7-300 PLC .It employs fuzzy inference method to achieve the online tuning for PID parameters. The control algorithm by simulation and practical application show that the system has stronger robustness and better adaptability.

  18. Research on adaptive fuzzy PID control for long time delay systems

    NASA Astrophysics Data System (ADS)

    Luo, Wenguang; Lan, Hongli; Chen, Wenhui

    2006-11-01

    An adaptive fuzzy PID controller is proposed to solve the problem that long time delay systems are difficult to be controlled. The controller is obtained by combining the fuzzy controller with PID controller in series, namely the output of the fuzzy controller is as the input of PID, and the control parameters of PID change nonlinearly with the system error's change. Meanwhile, the output scaling gain K u of the fuzzy controller can be adaptively regulated. Two regulation methods are presented: one is that the linear function between K u and the system's error is built up based on the system's dynamical characteristics; the other is that K u is automatically regulated with the fuzzy inference whose two inputs are the comprehensive performance index and its change, the output is the increment of K u. In the paper, we combine the controlled system with PID controller as an integrated system, and then build up its discrete state space model in the condition that the system's output delays. Based on these, the system's stability is analyzed with Lyapunov Direct Method. Simulation test results show the method provides good control performances to long time delay systems.

  19. FPGA-based adaptive backstepping fuzzy control for a micro-positioning Scott-Russell mechanism

    NASA Astrophysics Data System (ADS)

    Fung, Rong-Fong; Weng, Ming-Hong; Kung, Ying-Shieh

    2009-11-01

    This paper utilizes the field programmable gate array (FPGA) and Nios II embedded processor technologies to design a controller IC for a micro-positioning Scott-Russell (SR) mechanism, which is driven by a piezoelectric actuator (PA) and its hysteresis phenomenon is described by Bouc-Wen hysteresis model. For the controller design, the adaptive backstepping fuzzy control (ABFC) method is developed to compensate the PA's hysteresis and achieve the motion tracking control. The fuzzy logic method (FLM) is utilized to find the best adaptation gain of the adaptation law and control gain of the stabilization controls. This ABFC controller method can improve the transient and asymptotic tracking performances, and make the SR mechanism keep good working performance when external disturbances is added in the control system. Finally, we successfully apply the system-on-a-programmable-chip (SoPC) technologies to develop the motion controller IC, and achieve the advantages of reduced space, high performance and low cost.

  20. Flatness-based embedded adaptive fuzzy control of spark ignited engines

    NASA Astrophysics Data System (ADS)

    Rigatos, Gerasimos; Siano, Pierluigi; Arsie, Ivan

    2014-10-01

    The paper proposes a differential flatness theory-based adaptive fuzzy controller for spark-ignited (SI) engines. The system's dynamic model is considered to be completely unknown. By applying a change of variables (diffeomorphism) that is based on differential flatness theory the engine's dynamic model is written in the linear canonical (Brunovsky) form. After transforming the SI-engine model into the canonical form, the resulting control inputs are shown to contain nonlinear elements which depend on the system's parameters. These nonlinear terms are approximated with the use of neuro-fuzzy networks while a suitable learning law can be defined for the aforementioned neuro-fuzzy approximators so as to preserve the closed-loop system stability. Moreover, using Lyapunov stability analysis it is shown that the adaptive fuzzy control scheme succeeds H∞ tracking performance, which means that the influence of the modeling errors and the external disturbances on the tracking error is attenuated to an arbitrary desirable level. The efficiency of the proposed adaptive fuzzy control scheme is checked through simulation experiments.

  1. Neuro-fuzzy controller of low head hydropower plants using adaptive-network based fuzzy inference system

    SciTech Connect

    Djukanovic, M.B.; Calovic, M.S.; Vesovic, B.V.; Sobajic, D.J.

    1997-12-01

    This paper presents an attempt of nonlinear, multivariable control of low-head hydropower plants, by using adaptive-network based fuzzy inference system (ANFIS). The new design technique enhances fuzzy controllers with self-learning capability for achieving prescribed control objectives in a near optimal manner. The controller has flexibility for accepting more sensory information, with the main goal to improve the generator unit transients, by adjusting the exciter input, the wicket gate and runner blade positions. The developed ANFIS controller whose control signals are adjusted by using incomplete on-line measurements, can offer better damping effects to generator oscillations over a wide range of operating conditions, than conventional controllers. Digital simulations of hydropower plant equipped with low-head Kaplan turbine are performed and the comparisons of conventional excitation-governor control, state-feedback optimal control and ANFIS based output feedback control are presented. To demonstrate the effectiveness of the proposed control scheme and the robustness of the acquired neuro-fuzzy controller, the controller has been implemented on a complex high-order non-linear hydrogenerator model.

  2. Adaptive backstepping sliding mode control with fuzzy monitoring strategy for a kind of mechanical system.

    PubMed

    Song, Zhankui; Sun, Kaibiao

    2014-01-01

    A novel adaptive backstepping sliding mode control (ABSMC) law with fuzzy monitoring strategy is proposed for the tracking-control of a kind of nonlinear mechanical system. The proposed ABSMC scheme combining the sliding mode control and backstepping technique ensure that the occurrence of the sliding motion in finite-time and the trajectory of tracking-error converge to equilibrium point. To obtain a better perturbation rejection property, an adaptive control law is employed to compensate the lumped perturbation. Furthermore, we introduce fuzzy monitoring strategy to improve adaptive capacity and soften the control signal. The convergence and stability of the proposed control scheme are proved by using Lyaponov's method. Finally, numerical simulations demonstrate the effectiveness of the proposed control scheme. PMID:24059943

  3. Adaptive Fuzzy Tracking Control of Nonlinear Systems With Asymmetric Actuator Backlash Based on a New Smooth Inverse.

    PubMed

    Lai, Guanyu; Liu, Zhi; Zhang, Yun; Philip Chen, C L

    2016-06-01

    This paper is concentrated on the problem of adaptive fuzzy tracking control for an uncertain nonlinear system whose actuator is encountered by the asymmetric backlash behavior. First, we propose a new smooth inverse model which can approximate the asymmetric actuator backlash arbitrarily. By applying it, two adaptive fuzzy control scenarios, namely, the compensation-based control scheme and nonlinear decomposition-based control scheme, are then developed successively. It is worth noticing that the first fuzzy controller exhibits a better tracking control performance, although it recourses to a known slope ratio of backlash nonlinearity. The second one further removes the restriction, and also gets a desirable control performance. By the strict Lyapunov argument, both adaptive fuzzy controllers guarantee that the output tracking error is convergent to an adjustable region of zero asymptotically, while all the signals remain semiglobally uniformly ultimately bounded. Lastly, two comparative simulations are conducted to verify the effectiveness of the proposed fuzzy controllers. PMID:27187937

  4. Output feedback adaptive fuzzy control of uncertain MIMO nonlinear systems with unknown input nonlinearities.

    PubMed

    Shahnazi, Reza

    2015-01-01

    An adaptive fuzzy output feedback controller is proposed for a class of uncertain MIMO nonlinear systems with unknown input nonlinearities. The input nonlinearities can be backlash-like hysteresis or dead-zone. Besides, the gains of unknown input nonlinearities are unknown nonlinear functions. Based on universal approximation theorem, the unknown nonlinear functions are approximated by fuzzy systems. The proposed method does not need the availability of the states and an observer based on strictly positive real (SPR) theory is designed to estimate the states. An adaptive robust structure is used to cope with fuzzy approximation error and external disturbances. The semi-global asymptotic stability of the closed-loop system is guaranteed via Lyapunov approach. The applicability of the proposed method is also shown via simulations. PMID:25104646

  5. Station-keeping control for a stratospheric airship platform via fuzzy adaptive backstepping approach

    NASA Astrophysics Data System (ADS)

    Yang, Yueneng; Wu, Jie; Zheng, Wei

    2013-04-01

    This paper presents a novel approach for station-keeping control of a stratospheric airship platform in the presence of parametric uncertainty and external disturbance. First, conceptual design of the stratospheric airship platform is introduced, including the target mission, configuration, energy sources, propeller and payload. Second, the dynamics model of the airship platform is presented, and the mathematical model of its horizontal motion is derived. Third, a fuzzy adaptive backstepping control approach is proposed to develop the station-keeping control system for the simplified horizontal motion. The backstepping controller is designed assuming that the airship model is accurately known, and a fuzzy adaptive algorithm is used to approximate the uncertainty of the airship model. The stability of the closed-loop control system is proven via the Lyapunov theorem. Finally, simulation results illustrate the effectiveness and robustness of the proposed control approach.

  6. Controlling fractional order chaotic systems based on Takagi-Sugeno fuzzy model and adaptive adjustment mechanism

    NASA Astrophysics Data System (ADS)

    Zheng, Yongai; Nian, Yibei; Wang, Dejin

    2010-12-01

    In this Letter, a kind of novel model, called the generalized Takagi-Sugeno (T-S) fuzzy model, is first developed by extending the conventional T-S fuzzy model. Then, a simple but efficient method to control fractional order chaotic systems is proposed using the generalized T-S fuzzy model and adaptive adjustment mechanism (AAM). Sufficient conditions are derived to guarantee chaos control from the stability criterion of linear fractional order systems. The proposed approach offers a systematic design procedure for stabilizing a large class of fractional order chaotic systems from the literature about chaos research. The effectiveness of the approach is tested on fractional order Rössler system and fractional order Lorenz system.

  7. Composite Adaptive Fuzzy Output Feedback Control Design for Uncertain Nonlinear Strict-Feedback Systems With Input Saturation.

    PubMed

    Li, Yongming; Tong, Shaocheng; Li, Tieshan

    2015-10-01

    In this paper, a composite adaptive fuzzy output-feedback control approach is proposed for a class of single-input and single-output strict-feedback nonlinear systems with unmeasured states and input saturation. Fuzzy logic systems are utilized to approximate the unknown nonlinear functions, and a fuzzy state observer is designed to estimate the unmeasured states. By utilizing the designed fuzzy state observer, a serial-parallel estimation model is established. Based on adaptive backstepping dynamic surface control technique and utilizing the prediction error between the system states observer model and the serial-parallel estimation model, a new fuzzy controller with the composite parameters adaptive laws are developed. It is proved that all the signals of the closed-loop system are bounded and the system output can follow the given bounded reference signal. A numerical example and simulation comparisons with previous control methods are provided to show the effectiveness of the proposed approach. PMID:25438335

  8. Flight test results of the fuzzy logic adaptive controller-helicopter (FLAC-H)

    NASA Astrophysics Data System (ADS)

    Wade, Robert L.; Walker, Gregory W.

    1996-05-01

    The fuzzy logic adaptive controller for helicopters (FLAC-H) demonstration is a cooperative effort between the US Army Simulation, Training, and Instrumentation Command (STRICOM), the US Army Aviation and Troop Command, and the US Army Missile Command to demonstrate a low-cost drone control system for both full-scale and sub-scale helicopters. FLAC-H was demonstrated on one of STRICOM's fleet of full-scale rotary-winged target drones. FLAC-H exploits fuzzy logic in its flight control system to provide a robust solution to the control of the helicopter's dynamic, nonlinear system. Straight forward, common sense fuzzy rules governing helicopter flight are processed instead of complex mathematical models. This has resulted in a simplified solution to the complexities of helicopter flight. Incorporation of fuzzy logic reduced the cost of development and should also reduce the cost of maintenance of the system. An adaptive algorithm allows the FLAC-H to 'learn' how to fly the helicopter, enabling the control system to adjust to varying helicopter configurations. The adaptive algorithm, based on genetic algorithms, alters the fuzzy rules and their related sets to improve the performance characteristics of the system. This learning allows FLAC-H to automatically be integrated into a new airframe, reducing the development costs associated with altering a control system for a new or heavily modified aircraft. Successful flight tests of the FLAC-H on a UH-1H target drone were completed in September 1994 at the White Sands Missile Range in New Mexico. This paper discuses the objective of the system, its design, and performance.

  9. Fuzzy-rule-based Adaptive Resource Control for Information Sharing in P2P Networks

    NASA Astrophysics Data System (ADS)

    Wu, Zhengping; Wu, Hao

    With more and more peer-to-peer (P2P) technologies available for online collaboration and information sharing, people can launch more and more collaborative work in online social networks with friends, colleagues, and even strangers. Without face-to-face interactions, the question of who can be trusted and then share information with becomes a big concern of a user in these online social networks. This paper introduces an adaptive control service using fuzzy logic in preference definition for P2P information sharing control, and designs a novel decision-making mechanism using formal fuzzy rules and reasoning mechanisms adjusting P2P information sharing status following individual users' preferences. Applications of this adaptive control service into different information sharing environments show that this service can provide a convenient and accurate P2P information sharing control for individual users in P2P networks.

  10. Adaptive Fuzzy Hysteresis Band Current Controller for Four-Wire Shunt Active Filter

    NASA Astrophysics Data System (ADS)

    Hamoudi, F.; Chaghi, A.; Amimeur, H.; Merabet, E.

    2008-06-01

    This paper presents an adaptive fuzzy hysteresis band current controller for four-wire shunt active power filters to eliminate harmonics and to compensate reactive power in distribution systems in order to keep currents at the point of common coupling sinusoidal and in phase with the corresponding voltage and the cancel neutral current. The conventional hysteresis band known for its robustness and its advantage in current controlled applications is adapted with a fuzzy logic controller to change the bandwidth according to the operating point in order to keep the frequency modulation at tolerable limits. The algorithm used to identify the reference currents is based on the synchronous reference frame theory (dqγ). Finally, simulation results using Matlab/Simulink are given to validate the proposed control.

  11. Functional Based Adaptive and Fuzzy Sliding Controller for Non-Autonomous Active Suspension System

    NASA Astrophysics Data System (ADS)

    Huang, Shiuh-Jer; Chen, Hung-Yi

    In this paper, an adaptive sliding controller is developed for controlling a vehicle active suspension system. The functional approximation technique is employed to substitute the unknown non-autonomous functions of the suspension system and release the model-based requirement of sliding mode control algorithm. In order to improve the control performance and reduce the implementation problem, a fuzzy strategy with online learning ability is added to compensate the functional approximation error. The update laws of the functional approximation coefficients and the fuzzy tuning parameters are derived from the Lyapunov theorem to guarantee the system stability. The proposed controller is implemented on a quarter-car hydraulic actuating active suspension system test-rig. The experimental results show that the proposed controller suppresses the oscillation amplitude of the suspension system effectively.

  12. Adaptive fuzzy dynamic surface control for the chaotic permanent magnet synchronous motor using Nussbaum gain

    SciTech Connect

    Luo, Shaohua

    2014-09-01

    This paper is concerned with the problem of adaptive fuzzy dynamic surface control (DSC) for the permanent magnet synchronous motor (PMSM) system with chaotic behavior, disturbance and unknown control gain and parameters. Nussbaum gain is adopted to cope with the situation that the control gain is unknown. And the unknown items can be estimated by fuzzy logic system. The proposed controller guarantees that all the signals in the closed-loop system are bounded and the system output eventually converges to a small neighborhood of the desired reference signal. Finally, the numerical simulations indicate that the proposed scheme can suppress the chaos of PMSM and show the effectiveness and robustness of the proposed method.

  13. Adaptive fuzzy dynamic surface control for the chaotic permanent magnet synchronous motor using Nussbaum gain.

    PubMed

    Luo, Shaohua

    2014-09-01

    This paper is concerned with the problem of adaptive fuzzy dynamic surface control (DSC) for the permanent magnet synchronous motor (PMSM) system with chaotic behavior, disturbance and unknown control gain and parameters. Nussbaum gain is adopted to cope with the situation that the control gain is unknown. And the unknown items can be estimated by fuzzy logic system. The proposed controller guarantees that all the signals in the closed-loop system are bounded and the system output eventually converges to a small neighborhood of the desired reference signal. Finally, the numerical simulations indicate that the proposed scheme can suppress the chaos of PMSM and show the effectiveness and robustness of the proposed method. PMID:25273215

  14. Fuzzy Adaptive Quantized Control for a Class of Stochastic Nonlinear Uncertain Systems.

    PubMed

    Liu, Zhi; Wang, Fang; Zhang, Yun; Philip Chen, C L

    2016-02-01

    In this paper, a fuzzy adaptive approach for stochastic strict-feedback nonlinear systems with quantized input signal is developed. Compared with the existing research on quantized input problem, the existing works focus on quantized stabilization, while this paper considers the quantized tracking problem, which recovers stabilization as a special case. In addition, uncertain nonlinearity and the unknown stochastic disturbances are simultaneously considered in the quantized feedback control systems. By putting forward a new nonlinear decomposition of the quantized input, the relationship between the control signal and the quantized signal is established, as a result, the major technique difficulty arising from the piece-wise quantized input is overcome. Based on fuzzy logic systems' universal approximation capability, a novel fuzzy adaptive tracking controller is constructed via backstepping technique. The proposed controller guarantees that the tracking error converges to a neighborhood of the origin in the sense of probability and all the signals in the closed-loop system remain bounded in probability. Finally, an example illustrates the effectiveness of the proposed control approach. PMID:25751885

  15. Fuzzy Adaptive Control Design and Discretization for a Class of Nonlinear Uncertain Systems.

    PubMed

    Zhao, Xudong; Shi, Peng; Zheng, Xiaolong

    2016-06-01

    In this paper, tracking control problems are investigated for a class of uncertain nonlinear systems in lower triangular form. First, a state-feedback controller is designed by using adaptive backstepping technique and the universal approximation ability of fuzzy logic systems. During the design procedure, a developed method with less computation is proposed by constructing one maximum adaptive parameter. Furthermore, adaptive controllers with nonsymmetric dead-zone are also designed for the systems. Then, a sampled-data control scheme is presented to discretize the obtained continuous-time controller by using the forward Euler method. It is shown that both proposed continuous and discrete controllers can ensure that the system output tracks the target signal with a small bounded error and the other closed-loop signals remain bounded. Two simulation examples are presented to verify the effectiveness and applicability of the proposed new design techniques. PMID:26208376

  16. Simulation of traffic flow and control using conventional, fuzzy, and adaptive methods

    SciTech Connect

    Bisset, K.R.; Kelsey, R.L.

    1992-06-01

    This paper describes the graphical simulation of a traffic environment. The environment includes streets leading to an intersection, the intersection, vehicle traffic, and signal lights in the intersection controlled by different methods. The simulation allows for the study of parameters affecting traffic environments and the study of different control strategies for traffic signal lights, including conventional, fuzzy, and adaptive control methods. Realistic traffic environments are simulated including a cross intersection, with one or more lanes of traffic in each direction, with and without turn lanes. Vehicle traffic patterns are a mixture of cars going straight and making right or left turns. The free velocities of vehicles follow a normal distribution with a mean of the ``posted`` speed limit. Actual velocities depend on such factors as the proximity and velocity of surrounding traffic, approaches to intersections, and human response time. The simulation proves the be a useful tool for evaluating controller methods. Preliminary results show that larger quantities of traffic are ``handled`` by fuzzy control methods then by conventional control methods. Also, the average time spent waiting in traffic decreases with the use of fuzzy control versus conventional control.

  17. Simulation of traffic flow and control using conventional, fuzzy, and adaptive methods

    SciTech Connect

    Bisset, K.R.; Kelsey, R.L.

    1992-01-01

    This paper describes the graphical simulation of a traffic environment. The environment includes streets leading to an intersection, the intersection, vehicle traffic, and signal lights in the intersection controlled by different methods. The simulation allows for the study of parameters affecting traffic environments and the study of different control strategies for traffic signal lights, including conventional, fuzzy, and adaptive control methods. Realistic traffic environments are simulated including a cross intersection, with one or more lanes of traffic in each direction, with and without turn lanes. Vehicle traffic patterns are a mixture of cars going straight and making right or left turns. The free velocities of vehicles follow a normal distribution with a mean of the posted'' speed limit. Actual velocities depend on such factors as the proximity and velocity of surrounding traffic, approaches to intersections, and human response time. The simulation proves the be a useful tool for evaluating controller methods. Preliminary results show that larger quantities of traffic are handled'' by fuzzy control methods then by conventional control methods. Also, the average time spent waiting in traffic decreases with the use of fuzzy control versus conventional control.

  18. Towards autonomous fuzzy control

    NASA Technical Reports Server (NTRS)

    Shenoi, Sujeet; Ramer, Arthur

    1993-01-01

    The efficient implementation of on-line adaptation in real time is an important research problem in fuzzy control. The goal is to develop autonomous self-organizing controllers employing system-independent control meta-knowledge which enables them to adjust their control policies depending on the systems they control and the environments in which they operate. An autonomous fuzzy controller would continuously observe system behavior while implementing its control actions and would use the outcomes of these actions to refine its control policy. It could be designed to lie dormant when its control actions give rise to adequate performance characteristics but could rapidly and autonomously initiate real-time adaptation whenever its performance degrades. Such an autonomous fuzzy controller would have immense practical value. It could accommodate individual variations in system characteristics and also compensate for degradations in system characteristics caused by wear and tear. It could also potentially deal with black-box systems and control scenarios. On-going research in autonomous fuzzy control is reported. The ultimate research objective is to develop robust and relatively inexpensive autonomous fuzzy control hardware suitable for use in real time environments.

  19. Automation of a portable extracorporeal circulatory support system with adaptive fuzzy controllers.

    PubMed

    Mendoza García, A; Krane, M; Baumgartner, B; Sprunk, N; Schreiber, U; Eichhorn, S; Lange, R; Knoll, A

    2014-08-01

    The presented work relates to the procedure followed for the automation of a portable extracorporeal circulatory support system. Such a device may help increase the chances of survival after suffering from cardiogenic shock outside the hospital, additionally a controller can provide of optimal organ perfusion, while reducing the workload of the operator. Animal experiments were carried out for the acquisition of haemodynamic behaviour of the body under extracorporeal circulation. A mathematical model was constructed based on the experimental data, including a cardiovascular model, gas exchange and the administration of medication. As the base of the controller fuzzy logic was used allowing the easy integration of knowledge from trained perfusionists, an adaptive mechanism was included to adapt to the patient's individual response. Initial simulations show the effectiveness of the controller and the improvements of perfusion after adaptation. PMID:24894032

  20. Fractional fuzzy adaptive sliding-mode control of a 2-DOF direct-drive robot arm.

    PubMed

    Efe, Mehmet Onder

    2008-12-01

    This paper presents a novel parameter adjustment scheme to improve the robustness of fuzzy sliding-mode control achieved by the use of an adaptive neuro-fuzzy inference system (ANFIS) architecture. The proposed scheme utilizes fractional-order integration in the parameter tuning stage. The controller parameters are tuned such that the system under control is driven toward the sliding regime in the traditional sense. After a comparison with the classical integer-order counterpart, it is seen that the control system with the proposed adaptation scheme displays better tracking performance, and a very high degree of robustness and insensitivity to disturbances are observed. The claims are justified through some simulations utilizing the dynamic model of a 2-DOF direct-drive robot arm. Overall, the contribution of this paper is to demonstrate that the response of the system under control is significantly better for the fractional-order integration exploited in the parameter adaptation stage than that for the classical integer-order integration. PMID:19022726

  1. Fuzzy neural network-based adaptive control for a class of uncertain nonlinear stochastic systems.

    PubMed

    Chen, C L Philip; Liu, Yan-Jun; Wen, Guo-Xing

    2014-05-01

    This paper studies an adaptive tracking control for a class of nonlinear stochastic systems with unknown functions. The considered systems are in the nonaffine pure-feedback form, and it is the first to control this class of systems with stochastic disturbances. The fuzzy-neural networks are used to approximate unknown functions. Based on the backstepping design technique, the controllers and the adaptation laws are obtained. Compared to most of the existing stochastic systems, the proposed control algorithm has fewer adjustable parameters and thus, it can reduce online computation load. By using Lyapunov analysis, it is proven that all the signals of the closed-loop system are semiglobally uniformly ultimately bounded in probability and the system output tracks the reference signal to a bounded compact set. The simulation example is given to illustrate the effectiveness of the proposed control algorithm. PMID:24132033

  2. Direct adaptive fuzzy control of a translating piezoelectric flexible manipulator driven by a pneumatic rodless cylinder

    NASA Astrophysics Data System (ADS)

    Qiu, Zhi-cheng; Wang, Bin; Zhang, Xian-min; Han, Jian-da

    2013-04-01

    This study presents a novel translating piezoelectric flexible manipulator driven by a rodless cylinder. Simultaneous positioning control and vibration suppression of the flexible manipulator is accomplished by using a hybrid driving scheme composed of the pneumatic cylinder and a piezoelectric actuator. Pulse code modulation (PCM) method is utilized for the cylinder. First, the system dynamics model is derived, and its standard multiple input multiple output (MIMO) state-space representation is provided. Second, a composite proportional derivative (PD) control algorithms and a direct adaptive fuzzy control method are designed for the MIMO system. Also, a time delay compensation algorithm, bandstop and low-pass filters are utilized, under consideration of the control hysteresis and the caused high-frequency modal vibration due to the long stroke of the cylinder, gas compression and nonlinear factors of the pneumatic system. The convergence of the closed loop system is analyzed. Finally, experimental apparatus is constructed and experiments are conducted. The effectiveness of the designed controllers and the hybrid driving scheme is verified through simulation and experimental comparison studies. The numerical simulation and experimental results demonstrate that the proposed system scheme of employing the pneumatic drive and piezoelectric actuator can suppress the vibration and achieve the desired positioning location simultaneously. Furthermore, the adopted adaptive fuzzy control algorithms can significantly enhance the control performance.

  3. Application of fuzzy adaptive control to a MIMO nonlinear time-delay pump-valve system.

    PubMed

    Lai, Zhounian; Wu, Peng; Wu, Dazhuan

    2015-07-01

    In this paper, a control strategy to balance the reliability against efficiency is introduced to overcome the common off-design operation problem in pump-valve systems. The pump-valve system is a nonlinear multi-input-multi-output (MIMO) system with time delays which cannot be accurately measured but can be approximately modeled using Bernoulli Principle. A fuzzy adaptive controller is applied to approximate system parameters and achieve the control of delay-free model since the system model is inaccurate and the direct feedback linearization method cannot be applied. An extended Smith predictor is introduced to compensate time delays of the system using the inaccurate system model. The experiment is carried out to verify the effectiveness of the control strategy whose results show that the control performance is well achieved. PMID:25681018

  4. A fuzzy model based adaptive PID controller design for nonlinear and uncertain processes.

    PubMed

    Savran, Aydogan; Kahraman, Gokalp

    2014-03-01

    We develop a novel adaptive tuning method for classical proportional-integral-derivative (PID) controller to control nonlinear processes to adjust PID gains, a problem which is very difficult to overcome in the classical PID controllers. By incorporating classical PID control, which is well-known in industry, to the control of nonlinear processes, we introduce a method which can readily be used by the industry. In this method, controller design does not require a first principal model of the process which is usually very difficult to obtain. Instead, it depends on a fuzzy process model which is constructed from the measured input-output data of the process. A soft limiter is used to impose industrial limits on the control input. The performance of the system is successfully tested on the bioreactor, a highly nonlinear process involving instabilities. Several tests showed the method's success in tracking, robustness to noise, and adaptation properties. We as well compared our system's performance to those of a plant with altered parameters with measurement noise, and obtained less ringing and better tracking. To conclude, we present a novel adaptive control method that is built upon the well-known PID architecture that successfully controls highly nonlinear industrial processes, even under conditions such as strong parameter variations, noise, and instabilities. PMID:24140160

  5. Output feedback direct adaptive neural network control for uncertain SISO nonlinear systems using a fuzzy estimator of the control error.

    PubMed

    Chemachema, Mohamed

    2012-12-01

    A direct adaptive control algorithm, based on neural networks (NN) is presented for a class of single input single output (SISO) nonlinear systems. The proposed controller is implemented without a priori knowledge of the nonlinear systems; and only the output of the system is considered available for measurement. Contrary to the approaches available in the literature, in the proposed controller, the updating signal used in the adaptive laws is an estimate of the control error, which is directly related to the NN weights instead of the tracking error. A fuzzy inference system (FIS) is introduced to get an estimate of the control error. Without any additional control term to the NN adaptive controller, all the signals involved in the closed loop are proven to be exponentially bounded and hence the stability of the system. Simulation results demonstrate the effectiveness of the proposed approach. PMID:23037773

  6. An Adaptive Supervisory Sliding Fuzzy Cerebellar Model Articulation Controller for Sensorless Vector-Controlled Induction Motor Drive Systems

    PubMed Central

    Wang, Shun-Yuan; Tseng, Chwan-Lu; Lin, Shou-Chuang; Chiu, Chun-Jung; Chou, Jen-Hsiang

    2015-01-01

    This paper presents the implementation of an adaptive supervisory sliding fuzzy cerebellar model articulation controller (FCMAC) in the speed sensorless vector control of an induction motor (IM) drive system. The proposed adaptive supervisory sliding FCMAC comprised a supervisory controller, integral sliding surface, and an adaptive FCMAC. The integral sliding surface was employed to eliminate steady-state errors and enhance the responsiveness of the system. The adaptive FCMAC incorporated an FCMAC with a compensating controller to perform a desired control action. The proposed controller was derived using the Lyapunov approach, which guarantees learning-error convergence. The implementation of three intelligent control schemes—the adaptive supervisory sliding FCMAC, adaptive sliding FCMAC, and adaptive sliding CMAC—were experimentally investigated under various conditions in a realistic sensorless vector-controlled IM drive system. The root mean square error (RMSE) was used as a performance index to evaluate the experimental results of each control scheme. The analysis results indicated that the proposed adaptive supervisory sliding FCMAC substantially improved the system performance compared with the other control schemes. PMID:25815450

  7. An adaptive supervisory sliding fuzzy cerebellar model articulation controller for sensorless vector-controlled induction motor drive systems.

    PubMed

    Wang, Shun-Yuan; Tseng, Chwan-Lu; Lin, Shou-Chuang; Chiu, Chun-Jung; Chou, Jen-Hsiang

    2015-01-01

    This paper presents the implementation of an adaptive supervisory sliding fuzzy cerebellar model articulation controller (FCMAC) in the speed sensorless vector control of an induction motor (IM) drive system. The proposed adaptive supervisory sliding FCMAC comprised a supervisory controller, integral sliding surface, and an adaptive FCMAC. The integral sliding surface was employed to eliminate steady-state errors and enhance the responsiveness of the system. The adaptive FCMAC incorporated an FCMAC with a compensating controller to perform a desired control action. The proposed controller was derived using the Lyapunov approach, which guarantees learning-error convergence. The implementation of three intelligent control schemes--the adaptive supervisory sliding FCMAC, adaptive sliding FCMAC, and adaptive sliding CMAC--were experimentally investigated under various conditions in a realistic sensorless vector-controlled IM drive system. The root mean square error (RMSE) was used as a performance index to evaluate the experimental results of each control scheme. The analysis results indicated that the proposed adaptive supervisory sliding FCMAC substantially improved the system performance compared with the other control schemes. PMID:25815450

  8. Adaptive Neuro-Fuzzy Control of a Spherical Rolling Robot Using Sliding-Mode-Control-Theory-Based Online Learning Algorithm.

    PubMed

    Kayacan, Erkan; Kayacan, Erdal; Ramon, Herman; Saeys, Wouter

    2013-02-01

    As a model is only an abstraction of the real system, unmodeled dynamics, parameter variations, and disturbances can result in poor performance of a conventional controller based on this model. In such cases, a conventional controller cannot remain well tuned. This paper presents the control of a spherical rolling robot by using an adaptive neuro-fuzzy controller in combination with a sliding-mode control (SMC)-theory-based learning algorithm. The proposed control structure consists of a neuro-fuzzy network and a conventional controller which is used to guarantee the asymptotic stability of the system in a compact space. The parameter updating rules of the neuro-fuzzy system using SMC theory are derived, and the stability of the learning is proven using a Lyapunov function. The simulation results show that the control scheme with the proposed SMC-theory-based learning algorithm is able to not only eliminate the steady-state error but also improve the transient response performance of the spherical rolling robot without knowing its dynamic equations. PMID:22773047

  9. A neural fuzzy controller learning by fuzzy error propagation

    NASA Technical Reports Server (NTRS)

    Nauck, Detlef; Kruse, Rudolf

    1992-01-01

    In this paper, we describe a procedure to integrate techniques for the adaptation of membership functions in a linguistic variable based fuzzy control environment by using neural network learning principles. This is an extension to our work. We solve this problem by defining a fuzzy error that is propagated back through the architecture of our fuzzy controller. According to this fuzzy error and the strength of its antecedent each fuzzy rule determines its amount of error. Depending on the current state of the controlled system and the control action derived from the conclusion, each rule tunes the membership functions of its antecedent and its conclusion. By this we get an unsupervised learning technique that enables a fuzzy controller to adapt to a control task by knowing just about the global state and the fuzzy error.

  10. Flatness-based adaptive fuzzy control of an autonomous submarine model

    NASA Astrophysics Data System (ADS)

    Rigatos, Gerasimos; Siano, Pierluigi; Raffo, Guilherme

    2015-12-01

    The article presents a differential flatness theory-based method for adaptive control of autonomous submarines. A proof is provided about the differential flatness properties of the submarine's model (having as state variables the vessel's depth and its pitch angle). This also means that all its state variables and its control inputs can be written as differential functions of the flat output. Making use of its differential flatness features, the submarine's dynamic model is transformed into the multivariable linear canonical (Brunovsky) form. In the transformed model, the control inputs consist of unknown nonlinear parts, which are identified with the use of neurofuzzy approximators. The learning rate for these estimators is determined by the requirement the first derivative of the closed-loop's Lyapunov function to be a negative one. Furthermore, with the use of Lyapunov stability analysis it is proven that an H-infinity tracking performance is succeeded for the feedback control loop. This implies enhanced robustness to model uncertainty and to external perturbations. Simulation experiments are carried out to further confirm the efficiency of the proposed adaptive fuzzy control scheme.

  11. Direct adaptive iterative learning control of nonlinear systems using an output-recurrent fuzzy neural network.

    PubMed

    Wang, Ying-Chung; Chien, Chiang-Ju; Teng, Ching-Cheng

    2004-06-01

    In this paper, a direct adaptive iterative learning control (DAILC) based on a new output-recurrent fuzzy neural network (ORFNN) is presented for a class of repeatable nonlinear systems with unknown nonlinearities and variable initial resetting errors. In order to overcome the design difficulty due to initial state errors at the beginning of each iteration, a concept of time-varying boundary layer is employed to construct an error equation. The learning controller is then designed by using the given ORFNN to approximate an optimal equivalent controller. Some auxiliary control components are applied to eliminate approximation error and ensure learning convergence. Since the optimal ORFNN parameters for a best approximation are generally unavailable, an adaptive algorithm with projection mechanism is derived to update all the consequent, premise, and recurrent parameters during iteration processes. Only one network is required to design the ORFNN-based DAILC and the plant nonlinearities, especially the nonlinear input gain, are allowed to be totally unknown. Based on a Lyapunov-like analysis, we show that all adjustable parameters and internal signals remain bounded for all iterations. Furthermore, the norm of state tracking error vector will asymptotically converge to a tunable residual set as iteration goes to infinity. Finally, iterative learning control of two nonlinear systems, inverted pendulum system and Chua's chaotic circuit, are performed to verify the tracking performance of the proposed learning scheme. PMID:15484908

  12. Universal Approximation of Mamdani Fuzzy Controllers and Fuzzy Logical Controllers

    NASA Technical Reports Server (NTRS)

    Yuan, Bo; Klir, George J.

    1997-01-01

    In this paper, we first distinguish two types of fuzzy controllers, Mamdani fuzzy controllers and fuzzy logical controllers. Mamdani fuzzy controllers are based on the idea of interpolation while fuzzy logical controllers are based on fuzzy logic in its narrow sense, i.e., fuzzy propositional logic. The two types of fuzzy controllers treat IF-THEN rules differently. In Mamdani fuzzy controllers, rules are treated disjunctively. In fuzzy logic controllers, rules are treated conjunctively. Finally, we provide a unified proof of the property of universal approximation for both types of fuzzy controllers.

  13. Adaptive neuro-fuzzy sliding mode control of multi-joint movement using intraspinal microstimulation.

    PubMed

    Asadi, Ali-Reza; Erfanian, Abbas

    2012-07-01

    During the last decade, intraspinal microstimulation (ISMS) has been proposed as a potential technique for restoring motor function in paralyzed limbs. A major challenge to restoration of a desired functional limb movement through the use of ISMS is the development of a robust control strategy for determining the stimulation patterns. Accurate and stable control of limbs by functional intraspinal microstimulation is a very difficult task because neuromusculoskeletal systems have significant nonlinearity, time variability, large latency and time constant, and muscle fatigue. Furthermore, the controller must be able to compensate the effect of the dynamic interaction between motor neuron pools and electrode sites during ISMS. In this paper, we present a robust strategy for multi-joint control through ISMS in which the system parameters are adapted online and the controller requires no offline training phase. The method is based on the combination of sliding mode control with fuzzy logic and neural control. Extensive experiments on six rats are provided to demonstrate the robustness, stability, and tracking accuracy of the proposed method. Despite the complexity of the spinal neuronal networks, our results show that the proposed strategy could provide accurate tracking control with fast convergence and could generate control signals to compensate for the effects of muscle fatigue. PMID:22711783

  14. Usefulness of Neuro-Fuzzy Models' Application for Tobacco Control

    NASA Astrophysics Data System (ADS)

    Petrovic-Lazarevic, Sonja; Zhang, Jian Ying

    2007-12-01

    The paper presents neuro-fuzzy models' application appropriate for tobacco control: the fuzzy control model, Adaptive Network Based Fuzzy Inference System, Evolving Fuzzy Neural Network models, and EVOlving POLicies. We propose further the use of Fuzzy Casual Networks to help tobacco control decision makers develop policies and measure their impact on social regulation.

  15. Based on interval type-2 adaptive fuzzy H∞ tracking controller for SISO time-delay nonlinear systems

    NASA Astrophysics Data System (ADS)

    Lin, Tsung-Chih; Roopaei, Mehdi

    2010-12-01

    In this article, based on the adaptive interval type-2 fuzzy logic, by adjusting weights, centers and widths of proposed fuzzy neural network (FNN), the modeling errors can be eliminated for a class of SISO time-delay nonlinear systems. The proposed scheme has the advantage that can guarantee the H∞ tracking performance to attenuate the lumped uncertainties caused by the unmodelled dynamics, the approximation error and the external disturbances. Moreover, the stability analysis of the proposed control scheme will be guaranteed in the sense that all the states and signals are uniformly bounded and arbitrary small attenuation level. The simulation results are demonstrated to show the effectiveness of the advocated design methodology.

  16. Adaptive fuzzy system for 3-D vision

    NASA Technical Reports Server (NTRS)

    Mitra, Sunanda

    1993-01-01

    An adaptive fuzzy system using the concept of the Adaptive Resonance Theory (ART) type neural network architecture and incorporating fuzzy c-means (FCM) system equations for reclassification of cluster centers was developed. The Adaptive Fuzzy Leader Clustering (AFLC) architecture is a hybrid neural-fuzzy system which learns on-line in a stable and efficient manner. The system uses a control structure similar to that found in the Adaptive Resonance Theory (ART-1) network to identify the cluster centers initially. The initial classification of an input takes place in a two stage process; a simple competitive stage and a distance metric comparison stage. The cluster prototypes are then incrementally updated by relocating the centroid positions from Fuzzy c-Means (FCM) system equations for the centroids and the membership values. The operational characteristics of AFLC and the critical parameters involved in its operation are discussed. The performance of the AFLC algorithm is presented through application of the algorithm to the Anderson Iris data, and laser-luminescent fingerprint image data. The AFLC algorithm successfully classifies features extracted from real data, discrete or continuous, indicating the potential strength of this new clustering algorithm in analyzing complex data sets. The hybrid neuro-fuzzy AFLC algorithm will enhance analysis of a number of difficult recognition and control problems involved with Tethered Satellite Systems and on-orbit space shuttle attitude controller.

  17. Fuzzy logic controller optimization

    DOEpatents

    Sepe, Jr., Raymond B; Miller, John Michael

    2004-03-23

    A method is provided for optimizing a rotating induction machine system fuzzy logic controller. The fuzzy logic controller has at least one input and at least one output. Each input accepts a machine system operating parameter. Each output produces at least one machine system control parameter. The fuzzy logic controller generates each output based on at least one input and on fuzzy logic decision parameters. Optimization begins by obtaining a set of data relating each control parameter to at least one operating parameter for each machine operating region. A model is constructed for each machine operating region based on the machine operating region data obtained. The fuzzy logic controller is simulated with at least one created model in a feedback loop from a fuzzy logic output to a fuzzy logic input. Fuzzy logic decision parameters are optimized based on the simulation.

  18. Active pneumatic vibration control by using pressure and velocity measurements and adaptive fuzzy sliding-mode controller.

    PubMed

    Chen, Hung-Yi; Liang, Jin-Wei; Wu, Jia-Wei

    2013-01-01

    This paper presents an intelligent control strategy to overcome nonlinear and time-varying characteristics of a diaphragm-type pneumatic vibration isolator (PVI) system. By combining an adaptive rule with fuzzy and sliding-mode control, the method has online learning ability when it faces the system's nonlinear and time-varying behaviors during an active vibration control process. Since the proposed scheme has a simple structure, it is easy to implement. To validate the proposed scheme, a composite control which adopts both chamber pressure and payload velocity as feedback signal is implemented. During experimental investigations, sinusoidal excitation at resonance and random-like signal are input on a floor base to simulate ground vibration. Performances obtained from the proposed scheme are compared with those obtained from passive system and PID scheme to illustrate the effectiveness of the proposed intelligent control. PMID:23820746

  19. Active Pneumatic Vibration Control by Using Pressure and Velocity Measurements and Adaptive Fuzzy Sliding-Mode Controller

    PubMed Central

    Chen, Hung-Yi; Liang, Jin-Wei; Wu, Jia-Wei

    2013-01-01

    This paper presents an intelligent control strategy to overcome nonlinear and time-varying characteristics of a diaphragm-type pneumatic vibration isolator (PVI) system. By combining an adaptive rule with fuzzy and sliding-mode control, the method has online learning ability when it faces the system's nonlinear and time-varying behaviors during an active vibration control process. Since the proposed scheme has a simple structure, it is easy to implement. To validate the proposed scheme, a composite control which adopts both chamber pressure and payload velocity as feedback signal is implemented. During experimental investigations, sinusoidal excitation at resonance and random-like signal are input on a floor base to simulate ground vibration. Performances obtained from the proposed scheme are compared with those obtained from passive system and PID scheme to illustrate the effectiveness of the proposed intelligent control. PMID:23820746

  20. Adaptive fuzzy PID temperature control system based on single-chip computer for the autoclave

    NASA Astrophysics Data System (ADS)

    Zhang, F.; Wang, J.; Fu, S. L.; He, Z. T.; Li, X. P.

    2008-12-01

    The autoclave is one of main preparation equipments of crystal preparation by hydrothermal method. The preparation temperature will seriously influence crystals quality and crystals size at high temperature, how to measure and control precisely the autoclave temperature can be of real significance. The characteristic of hysteresis, nonlinearity and difficulty to acquire the precise mathematical model existing in the temperature control of the autoclave was researched. The general PID controller adopted usually in the autoclave temperature control system is hard to improve temperature control performance. Based on the advantages of fuzzy controller that does not depend on the precise mathematical model and the stabilization of PID controller, single-chip computer integrated fuzzy PID control algorithm is adopted, and the temperature system is designed, the foundational working principle was discussed. The control system includes SCM (AT89C52), temperature sensor, A/D converter circuit and corresponding circuit and interface, can make the autoclave temperature measure and control accurately. The system hardware includes main circuit, thyristor drive circuit, audible and visual alarm circuit, watchdog circuit, clock circuit, keyboard and display circuit so on, which can achieve gathering, analyzing, comparing and controlling the autoclave temperature parameter. The program of control system includes the treatment and collection of temperature data, the dynamic display program, the fuzzy PID control system, the audible and visual alarm program, et al, and the system's main software, which includes initialization, key-press processing, input processing, display, and the fuzzy PID control program was analyzed. The results showed that the fuzzy PID control system makes the adjustment time of temperature decreased and the precision of temperature control improved, the quality and the crystals size of the preparation crystals can achieve the expect experiment results.

  1. Study on Fuzzy Adaptive Fractional Order PIλDμ Control for Maglev Guiding System

    NASA Astrophysics Data System (ADS)

    Hu, Qing; Hu, Yuwei

    The mathematical model of the linear elevator maglev guiding system is analyzed in this paper. For the linear elevator needs strong stability and robustness to run, the integer order PID was expanded to the fractional order, in order to improve the steady state precision, rapidity and robustness of the system, enhance the accuracy of the parameter in fractional order PIλDμ controller, the fuzzy control is combined with the fractional order PIλDμ control, using the fuzzy logic achieves the parameters online adjustment. The simulations reveal that the system has faster response speed, higher tracking precision, and has stronger robustness to the disturbance.

  2. Design of a new adaptive fuzzy controller and its application to vibration control of a vehicle seat installed with an MR damper

    NASA Astrophysics Data System (ADS)

    Phu, Do Xuan; Shin, Do Kyun; Choi, Seung-Bok

    2015-08-01

    This paper presents a new adaptive fuzzy controller featuring a combination of two different control methodologies: H infinity control technique and sliding mode control. It is known that both controllers are powerful in terms of high performance and robust stability. However, both control methods require an accurate dynamic model to design a state variable based controller in order to maintain their advantages. Thus, in this work a fuzzy control method which does not require an accurate dynamic model is adopted and two control methodologies are integrated to maintain the advantages even in an uncertain environment of the dynamic system. After a brief explanation of the interval type 2 fuzzy logic, a new adaptive fuzzy controller associated with the H infinity control and sliding mode control is formulated on the basis of Lyapunov stability theory. Subsequently, the formulated controller is applied to vibration control of a vehicle seat equipped with magnetorheological fluid damper (MR damper in short). An experimental setup for realization of the proposed controller is established and vibration control performances such as acceleration at the driver’s seat are evaluated. In addition, in order to demonstrate the effectiveness of the proposed controller, a comparative work with two existing controllers is undertaken. It is shown through simulation and experiment that the proposed controller can provide much better vibration control performance than the two existing controllers.

  3. Fuzzy and neural control

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.

    1992-01-01

    Fuzzy logic and neural networks provide new methods for designing control systems. Fuzzy logic controllers do not require a complete analytical model of a dynamic system and can provide knowledge-based heuristic controllers for ill-defined and complex systems. Neural networks can be used for learning control. In this chapter, we discuss hybrid methods using fuzzy logic and neural networks which can start with an approximate control knowledge base and refine it through reinforcement learning.

  4. Adaptive fuzzy control of a class of SISO nonaffine nonlinear Systems

    NASA Astrophysics Data System (ADS)

    Doudou, S.; Khaber, F.

    2008-06-01

    The aim of this paper is to control a nonaffine nonlinear system single input single output (SISO). Based on the implicit function theory, the existence of an unknown ideal controller is demonstrated. A fuzzy system is used to approximate this controller and its parameters are updated according to gradient descend method. The closed-loop control structure stability is guaranteed using Lyapunov analysis. An illustrative simulation example is given to demonstrate the feasibility of the proposed method.

  5. Robust DTC Based on Adaptive Fuzzy Control of Double Star Synchronous Machine Drive with Fixed Switching Frequency

    NASA Astrophysics Data System (ADS)

    Boudana, Djamel; Nezli, Lazhari; Tlemçani, Abdelhalim; Mahmoudi, Mohand Oulhadj; Tadjine, Mohamed

    2012-05-01

    The double star synchronous machine (DSSM) is widely used for high power traction drives. It possesses several advantages over the conventional three phase machine. To reduce the torque ripple the DSSM are supplied with source voltage inverter (VSI). The model of the system DSSM-VSI is high order, multivariable and nonlinear. Further, big harmonic currents are generated. The aim of this paper is to develop a new direct torque adaptive fuzzy logic control in order to control DSSM and minimize the harmonics currents. Simulations results are given to show the effectiveness of our approach.

  6. Adaptive fuzzy output-feedback controller design for nonlinear systems via backstepping and small-gain approach.

    PubMed

    Liu, Zhi; Wang, Fang; Zhang, Yun; Chen, Xin; Chen, C L Philip

    2014-10-01

    This paper focuses on an input-to-state practical stability (ISpS) problem of nonlinear systems which possess unmodeled dynamics in the presence of unstructured uncertainties and dynamic disturbances. The dynamic disturbances depend on the states and the measured output of the system, and its assumption conditions are relaxed compared with the common restrictions. Based on an input-driven filter, fuzzy logic systems are directly used to approximate the unknown and desired control signals instead of the unknown nonlinear functions, and an integrated backstepping technique is used to design an adaptive output-feedback controller that ensures robustness with respect to unknown parameters and uncertain nonlinearities. This paper, by applying the ISpS theory and the generalized small-gain approach, shows that the proposed adaptive fuzzy controller guarantees the closed-loop system being semi-globally uniformly ultimately bounded. A main advantage of the proposed controller is that it contains only three adaptive parameters that need to be updated online, no matter how many states there are in the systems. Finally, the effectiveness of the proposed approach is illustrated by two simulation examples. PMID:25222716

  7. Robust decentralized hybrid adaptive output feedback fuzzy control for a class of large-scale MIMO nonlinear systems and its application to AHS.

    PubMed

    Huang, Yi-Shao; Liu, Wel-Ping; Wu, Min; Wang, Zheng-Wu

    2014-09-01

    This paper presents a novel observer-based decentralized hybrid adaptive fuzzy control scheme for a class of large-scale continuous-time multiple-input multiple-output (MIMO) uncertain nonlinear systems whose state variables are unmeasurable. The scheme integrates fuzzy logic systems, state observers, and strictly positive real conditions to deal with three issues in the control of a large-scale MIMO uncertain nonlinear system: algorithm design, controller singularity, and transient response. Then, the design of the hybrid adaptive fuzzy controller is extended to address a general large-scale uncertain nonlinear system. It is shown that the resultant closed-loop large-scale system keeps asymptotically stable and the tracking error converges to zero. The better characteristics of our scheme are demonstrated by simulations. PMID:24975565

  8. Adaptive Neuro-Fuzzy Inference System for Classification of Background EEG Signals from ESES Patients and Controls

    PubMed Central

    Yang, Zhixian; Wang, Yinghua; Ouyang, Gaoxiang

    2014-01-01

    Background electroencephalography (EEG), recorded with scalp electrodes, in children with electrical status epilepticus during slow-wave sleep (ESES) syndrome and control subjects has been analyzed. We considered 10 ESES patients, all right-handed and aged 3–9 years. The 10 control individuals had the same characteristics of the ESES ones but presented a normal EEG. Recordings were undertaken in the awake and relaxed states with their eyes open. The complexity of background EEG was evaluated using the permutation entropy (PE) and sample entropy (SampEn) in combination with the ANOVA test. It can be seen that the entropy measures of EEG are significantly different between the ESES patients and normal control subjects. Then, a classification framework based on entropy measures and adaptive neuro-fuzzy inference system (ANFIS) classifier is proposed to distinguish ESES and normal EEG signals. The results are promising and a classification accuracy of about 89% is achieved. PMID:24790547

  9. Fuzzy control of small servo motors

    NASA Technical Reports Server (NTRS)

    Maor, Ron; Jani, Yashvant

    1993-01-01

    To explore the benefits of fuzzy logic and understand the differences between the classical control methods and fuzzy control methods, the Togai InfraLogic applications engineering staff developed and implemented a motor control system for small servo motors. The motor assembly for testing the fuzzy and conventional controllers consist of servo motor RA13M and an encoder with a range of 4096 counts. An interface card was designed and fabricated to interface the motor assembly and encoder to an IBM PC. The fuzzy logic based motor controller was developed using the TILShell and Fuzzy C Development System on an IBM PC. A Proportional-Derivative (PD) type conventional controller was also developed and implemented in the IBM PC to compare the performance with the fuzzy controller. Test cases were defined to include step inputs of 90 and 180 degrees rotation, sine and square wave profiles in 5 to 20 hertz frequency range, as well as ramp inputs. In this paper we describe our approach to develop a fuzzy as well as PH controller, provide details of hardware set-up and test cases, and discuss the performance results. In comparison, the fuzzy logic based controller handles the non-linearities of the motor assembly very well and provides excellent control over a broad range of parameters. Fuzzy technology, as indicated by our results, possesses inherent adaptive features.

  10. A decentralized adaptive fuzzy robust strategy for control of upright standing posture in paraplegia using functional electrical stimulation.

    PubMed

    Kobravi, Hamid-Reza; Erfanian, Abbas

    2012-01-01

    In this paper, we present a novel decentralized robust methodology for control of quiet upright posture during arm-free paraplegic standing using functional electrical stimulation (FES). Each muscle-joint complex is considered as a subsystem and individual controllers are designed for each one. Each controller operates solely on its associated subsystem, with no exchange of information between them, and the interaction between the subsystems are taken as external disturbances. In order to achieve robustness with respect to external disturbances, unmodeled dynamics, model uncertainty and time-varying properties of muscle-joint dynamics, a robust control framework is proposed. The method is based on the synergistic combination of an adaptive nonlinear compensator with sliding mode control (SMC). Fuzzy logic system is used to represent unknown system dynamics for implementing SMC and an adaptive updating law is designed for online estimating the system parameters such that the global stability and asymptotic convergence to zero of tracking errors is guaranteed. The proposed controller requires no prior knowledge about the dynamics of system to be controlled and no offline learning phase. The results of experiments on three paraplegic subjects show that the proposed control strategy is able to maintain the vertical standing posture using only FES control of ankle dorsiflexion and plantarflexion without using upper limbs for support and to compensate the effect of external disturbances and muscle fatigue. PMID:21764350

  11. Self-Adaptive Strategy Based on Fuzzy Control Systems for Improving Performance in Wireless Sensors Networks.

    PubMed

    Hernández Díaz, Vicente; Martínez, José-Fernán; Lucas Martínez, Néstor; del Toro, Raúl M

    2015-01-01

    The solutions to cope with new challenges that societies have to face nowadays involve providing smarter daily systems. To achieve this, technology has to evolve and leverage physical systems automatic interactions, with less human intervention. Technological paradigms like Internet of Things (IoT) and Cyber-Physical Systems (CPS) are providing reference models, architectures, approaches and tools that are to support cross-domain solutions. Thus, CPS based solutions will be applied in different application domains like e-Health, Smart Grid, Smart Transportation and so on, to assure the expected response from a complex system that relies on the smooth interaction and cooperation of diverse networked physical systems. The Wireless Sensors Networks (WSN) are a well-known wireless technology that are part of large CPS. The WSN aims at monitoring a physical system, object, (e.g., the environmental condition of a cargo container), and relaying data to the targeted processing element. The WSN communication reliability, as well as a restrained energy consumption, are expected features in a WSN. This paper shows the results obtained in a real WSN deployment, based on SunSPOT nodes, which carries out a fuzzy based control strategy to improve energy consumption while keeping communication reliability and computational resources usage among boundaries. PMID:26393612

  12. Self-Adaptive Strategy Based on Fuzzy Control Systems for Improving Performance in Wireless Sensors Networks

    PubMed Central

    Hernández Díaz, Vicente; Martínez, José-Fernán; Lucas Martínez, Néstor; del Toro, Raúl M.

    2015-01-01

    The solutions to cope with new challenges that societies have to face nowadays involve providing smarter daily systems. To achieve this, technology has to evolve and leverage physical systems automatic interactions, with less human intervention. Technological paradigms like Internet of Things (IoT) and Cyber-Physical Systems (CPS) are providing reference models, architectures, approaches and tools that are to support cross-domain solutions. Thus, CPS based solutions will be applied in different application domains like e-Health, Smart Grid, Smart Transportation and so on, to assure the expected response from a complex system that relies on the smooth interaction and cooperation of diverse networked physical systems. The Wireless Sensors Networks (WSN) are a well-known wireless technology that are part of large CPS. The WSN aims at monitoring a physical system, object, (e.g., the environmental condition of a cargo container), and relaying data to the targeted processing element. The WSN communication reliability, as well as a restrained energy consumption, are expected features in a WSN. This paper shows the results obtained in a real WSN deployment, based on SunSPOT nodes, which carries out a fuzzy based control strategy to improve energy consumption while keeping communication reliability and computational resources usage among boundaries. PMID:26393612

  13. A Car-Steering Model Based on an Adaptive Neuro-Fuzzy Controller

    NASA Astrophysics Data System (ADS)

    Amor, Mohamed Anis Ben; Oda, Takeshi; Watanabe, Shigeyoshi

    This paper is concerned with the development of a car-steering model for traffic simulation. Our focus in this paper is to propose a model of the steering behavior of a human driver for different driving scenarios. These scenarios are modeled in a unified framework using the idea of target position. The proposed approach deals with the driver’s approximation and decision-making mechanisms in tracking a target position by means of fuzzy set theory. The main novelty in this paper lies in the development of a learning algorithm that has the intention to imitate the driver’s self-learning from his driving experience and to mimic his maneuvers on the steering wheel, using linear networks as local approximators in the corresponding fuzzy areas. Results obtained from the simulation of an obstacle avoidance scenario show the capability of the model to carry out a human-like behavior with emphasis on learned skills.

  14. A Load Frequency Control in an Off-Grid Sustainable Power System Based on a Parameter Adaptive PID-Type Fuzzy Controller

    NASA Astrophysics Data System (ADS)

    Ronilaya, Ferdian; Miyauchi, Hajime

    2014-10-01

    This paper presents a new implementation of a parameter adaptive PID-type fuzzy controller (PAPIDfc) for a grid-supporting inverter of battery to alleviate frequency fluctuations in a wind-diesel power system. A variable speed wind turbine that drives a permanent magnet synchronous generator is assumed for demonstrations. The PAPIDfc controller is built from a set of control rules that adopts the droop method and uses only locally measurable frequency signal. The output control signal is determined from the knowledge base and the fuzzy inference. The input-derivative gain and the output-integral gain of the PAPIDfc are tuned online. To ensure safe battery operating limits, we also propose a protection scheme called intelligent battery protection (IBP). Several simulation experiments are performed by using MATLAB®/SimPowersystems™. Next, to verify the scheme's effectiveness, the simulation results are compared with the results of conventional controllers. The results demonstrate the effectiveness of the PAPIDfc scheme to control a grid-supporting inverter of the battery in the reduction of frequency fluctuations.

  15. A fuzzy-logic based dual-purpose adaptive circuit for vibration control and energy harvesting using piezoelectric transducer

    NASA Astrophysics Data System (ADS)

    Liu, Zhe Peng; Li, Qing

    2013-04-01

    Due to their two-way electromechanical coupling effect, piezoelectric transducers can be used to synthesize passive vibration control schemes, e.g., RLC circuit with the integration of inductance and resistance elements that is conceptually similar to damped vibration absorber. Meanwhile, the wide usage of wireless sensors has led to the recent enthusiasm of developing piezoelectric-based energy harvesting devices that can convert ambient vibratory energy into useful electrical energy. It can be shown that the integration of circuitry elements such as resistance and inductance can benefit the energy harvesting capability. Here we explore a dual-purpose circuit that can facilitate simultaneous vibration suppression and energy harvesting. It is worth noting that the goal of vibration suppression and the goal of energy harvesting may not always complement each other. That is, the maximization of vibration suppression doesn't necessarily lead to the maximization of energy harvesting, and vice versa. In this research, we develop a fuzzy-logic based algorithm to decide the proper selection of circuitry elements to balance between the two goals. As the circuitry elements can be online tuned, this research yields an adaptive circuitry concept for the effective manipulation of system energy and vibration suppression. Comprehensive analyses are carried out to demonstrate the concept and operation.

  16. An adaptive neuro fuzzy inference system controlled space cector pulse width modulation based HVDC light transmission system under AC fault conditions

    NASA Astrophysics Data System (ADS)

    Ajay Kumar, M.; Srikanth, N.

    2014-03-01

    In HVDC Light transmission systems, converter control is one of the major fields of present day research works. In this paper, fuzzy logic controller is utilized for controlling both the converters of the space vector pulse width modulation (SVPWM) based HVDC Light transmission systems. Due to its complexity in the rule base formation, an intelligent controller known as adaptive neuro fuzzy inference system (ANFIS) controller is also introduced in this paper. The proposed ANFIS controller changes the PI gains automatically for different operating conditions. A hybrid learning method which combines and exploits the best features of both the back propagation algorithm and least square estimation method is used to train the 5-layer ANFIS controller. The performance of the proposed ANFIS controller is compared and validated with the fuzzy logic controller and also with the fixed gain conventional PI controller. The simulations are carried out in the MATLAB/SIMULINK environment. The results reveal that the proposed ANFIS controller is reducing power fluctuations at both the converters. It also improves the dynamic performance of the test power system effectively when tested for various ac fault conditions.

  17. Fuzzy logic in control systems: Fuzzy logic controller. I, II

    NASA Technical Reports Server (NTRS)

    Lee, Chuen Chien

    1990-01-01

    Recent advances in the theory and applications of fuzzy-logic controllers (FLCs) are examined in an analytical review. The fundamental principles of fuzzy sets and fuzzy logic are recalled; the basic FLC components (fuzzification and defuzzification interfaces, knowledge base, and decision-making logic) are described; and the advantages of FLCs for incorporating expert knowledge into a control system are indicated. Particular attention is given to fuzzy implication functions, the interpretation of sentence connectives (and, also), compositional operators, and inference mechanisms. Applications discussed include the FLC-guided automobile developed by Sugeno and Nishida (1985), FLC hardware systems, FLCs for subway trains and ship-loading cranes, fuzzy-logic chips, and fuzzy computers.

  18. Current projects in Fuzzy Control

    NASA Technical Reports Server (NTRS)

    Sugeno, Michio

    1990-01-01

    Viewgraphs on current projects in fuzzy control are presented. Three projects on helicopter flight control are discussed. The projects are (1) radio control by oral instructions; (2) automatic autorotation entry in engine failure; and (3) unmanned helicopter for sea rescue.

  19. Adaptive Fuzzy Systems in Computational Intelligence

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.

    1996-01-01

    In recent years, the interest in computational intelligence techniques, which currently includes neural networks, fuzzy systems, and evolutionary programming, has grown significantly and a number of their applications have been developed in the government and industry. In future, an essential element in these systems will be fuzzy systems that can learn from experience by using neural network in refining their performances. The GARIC architecture, introduced earlier, is an example of a fuzzy reinforcement learning system which has been applied in several control domains such as cart-pole balancing, simulation of to Space Shuttle orbital operations, and tether control. A number of examples from GARIC's applications in these domains will be demonstrated.

  20. Extending Fuzzy System Concepts for Control of a Vitrification Melter

    SciTech Connect

    Whitehouse, J.C.; Sorgel, W.; Garrison, A.; Schalkoff, R.J.

    1995-08-16

    Fuzzy systems provide a mathematical framework to capture uncertainty. The complete description of real, complex systems or situations often requires far more detail and information than could ever be obtained (or understood). Fuzzy approaches are an alternative technology for both system control and information processing and management. In this paper, we present the design of a fuzzy control system for a melter used in the vitrification of hazardous waste. Design issues, especially those related to melter shutdown and obtaining smooth control surfaces, are addressed. Several extensions to commonly-applied fuzzy techniques, notably adaptive defuzzification and modified rule structures are developed.

  1. Fuzzy-neural control of an aircraft tracking camera platform

    NASA Technical Reports Server (NTRS)

    Mcgrath, Dennis

    1994-01-01

    A fuzzy-neural control system simulation was developed for the control of a camera platform used to observe aircraft on final approach to an aircraft carrier. The fuzzy-neural approach to control combines the structure of a fuzzy knowledge base with a supervised neural network's ability to adapt and improve. The performance characteristics of this hybrid system were compared to those of a fuzzy system and a neural network system developed independently to determine if the fusion of these two technologies offers any advantage over the use of one or the other. The results of this study indicate that the fuzzy-neural approach to control offers some advantages over either fuzzy or neural control alone.

  2. Fuzzy logic control of telerobot manipulators

    NASA Technical Reports Server (NTRS)

    Franke, Ernest A.; Nedungadi, Ashok

    1992-01-01

    Telerobot systems for advanced applications will require manipulators with redundant 'degrees of freedom' (DOF) that are capable of adapting manipulator configurations to avoid obstacles while achieving the user specified goal. Conventional methods for control of manipulators (based on solution of the inverse kinematics) cannot be easily extended to these situations. Fuzzy logic control offers a possible solution to these needs. A current research program at SRI developed a fuzzy logic controller for a redundant, 4 DOF, planar manipulator. The manipulator end point trajectory can be specified by either a computer program (robot mode) or by manual input (teleoperator). The approach used expresses end-point error and the location of manipulator joints as fuzzy variables. Joint motions are determined by a fuzzy rule set without requiring solution of the inverse kinematics. Additional rules for sensor data, obstacle avoidance and preferred manipulator configuration, e.g., 'righty' or 'lefty', are easily accommodated. The procedure used to generate the fuzzy rules can be extended to higher DOF systems.

  3. How to combine probabilistic and fuzzy uncertainties in fuzzy control

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung T.; Kreinovich, Vladik YA.; Lea, Robert

    1991-01-01

    Fuzzy control is a methodology that translates natural-language rules, formulated by expert controllers, into the actual control strategy that can be implemented in an automated controller. In many cases, in addition to the experts' rules, additional statistical information about the system is known. It is explained how to use this additional information in fuzzy control methodology.

  4. Fuzzy scheduled RTDA controller design.

    PubMed

    Srinivasan, K; Anbarasan, K

    2013-03-01

    In this paper, the design and development of fuzzy scheduled robustness, tracking, disturbance rejection and overall aggressiveness (RTDA) controller design for non-linear processes are discussed. pH process is highly non-linear and the design of good controller for this process is always a challenging one due to large gain variation. Fuzzy scheduled RTDA controller design based on normalized integral square error (N_ISE) performance criteria for pH neutralization process is developed. The applicability of the proposed controller is tested for other different non-linear processes like type I diabetic process and conical tank process. The servo and regulatory performance of fuzzy scheduled RTDA controller design is compared with well-tuned internal model control (IMC) and dynamic matrix control (DMC)-based control schemes. PMID:23317662

  5. Fuzzy support vector machines for adaptive Morse code recognition.

    PubMed

    Yang, Cheng-Hong; Jin, Li-Cheng; Chuang, Li-Yeh

    2006-11-01

    Morse code is now being harnessed for use in rehabilitation applications of augmentative-alternative communication and assistive technology, facilitating mobility, environmental control and adapted worksite access. In this paper, Morse code is selected as a communication adaptive device for persons who suffer from muscle atrophy, cerebral palsy or other severe handicaps. A stable typing rate is strictly required for Morse code to be effective as a communication tool. Therefore, an adaptive automatic recognition method with a high recognition rate is needed. The proposed system uses both fuzzy support vector machines and the variable-degree variable-step-size least-mean-square algorithm to achieve these objectives. We apply fuzzy memberships to each point, and provide different contributions to the decision learning function for support vector machines. Statistical analyses demonstrated that the proposed method elicited a higher recognition rate than other algorithms in the literature. PMID:16807054

  6. Fuzzy coordinator in control problems

    NASA Technical Reports Server (NTRS)

    Rueda, A.; Pedrycz, W.

    1992-01-01

    In this paper a hierarchical control structure using a fuzzy system for coordination of the control actions is studied. The architecture involves two levels of control: a coordination level and an execution level. Numerical experiments will be utilized to illustrate the behavior of the controller when it is applied to a nonlinear plant.

  7. Expert system driven fuzzy control application to power reactors

    SciTech Connect

    Tsoukalas, L.H.; Berkan, R.C.; Upadhyaya, B.R.; Uhrig, R.E.

    1990-01-01

    For the purpose of nonlinear control and uncertainty/imprecision handling, fuzzy controllers have recently reached acclaim and increasing commercial application. The fuzzy control algorithms often require a supervisory'' routine that provides necessary heuristics for interface, adaptation, mode selection and other implementation issues. Performance characteristics of an on-line fuzzy controller depend strictly on the ability of such supervisory routines to manipulate the fuzzy control algorithm and enhance its control capabilities. This paper describes an expert system driven fuzzy control design application to nuclear reactor control, for the automated start-up control of the Experimental Breeder Reactor-II. The methodology is verified through computer simulations using a valid nonlinear model. The necessary heuristic decisions are identified that are vitally important for the implemention of fuzzy control in the actual plant. An expert system structure incorporating the necessary supervisory routines is discussed. The discussion also includes the possibility of synthesizing the fuzzy, exact and combined reasoning to include both inexact concepts, uncertainty and fuzziness, within the same environment.

  8. Expert system driven fuzzy control application to power reactors

    SciTech Connect

    Tsoukalas, L.H.; Berkan, R.C.; Upadhyaya, B.R.; Uhrig, R.E.

    1990-12-31

    For the purpose of nonlinear control and uncertainty/imprecision handling, fuzzy controllers have recently reached acclaim and increasing commercial application. The fuzzy control algorithms often require a ``supervisory`` routine that provides necessary heuristics for interface, adaptation, mode selection and other implementation issues. Performance characteristics of an on-line fuzzy controller depend strictly on the ability of such supervisory routines to manipulate the fuzzy control algorithm and enhance its control capabilities. This paper describes an expert system driven fuzzy control design application to nuclear reactor control, for the automated start-up control of the Experimental Breeder Reactor-II. The methodology is verified through computer simulations using a valid nonlinear model. The necessary heuristic decisions are identified that are vitally important for the implemention of fuzzy control in the actual plant. An expert system structure incorporating the necessary supervisory routines is discussed. The discussion also includes the possibility of synthesizing the fuzzy, exact and combined reasoning to include both inexact concepts, uncertainty and fuzziness, within the same environment.

  9. Learning fuzzy logic control system

    NASA Technical Reports Server (NTRS)

    Lung, Leung Kam

    1994-01-01

    The performance of the Learning Fuzzy Logic Control System (LFLCS), developed in this thesis, has been evaluated. The Learning Fuzzy Logic Controller (LFLC) learns to control the motor by learning the set of teaching values that are generated by a classical PI controller. It is assumed that the classical PI controller is tuned to minimize the error of a position control system of the D.C. motor. The Learning Fuzzy Logic Controller developed in this thesis is a multi-input single-output network. Training of the Learning Fuzzy Logic Controller is implemented off-line. Upon completion of the training process (using Supervised Learning, and Unsupervised Learning), the LFLC replaces the classical PI controller. In this thesis, a closed loop position control system of a D.C. motor using the LFLC is implemented. The primary focus is on the learning capabilities of the Learning Fuzzy Logic Controller. The learning includes symbolic representation of the Input Linguistic Nodes set and Output Linguistic Notes set. In addition, we investigate the knowledge-based representation for the network. As part of the design process, we implement a digital computer simulation of the LFLCS. The computer simulation program is written in 'C' computer language, and it is implemented in DOS platform. The LFLCS, designed in this thesis, has been developed on a IBM compatible 486-DX2 66 computer. First, the performance of the Learning Fuzzy Logic Controller is evaluated by comparing the angular shaft position of the D.C. motor controlled by a conventional PI controller and that controlled by the LFLC. Second, the symbolic representation of the LFLC and the knowledge-based representation for the network are investigated by observing the parameters of the Fuzzy Logic membership functions and the links at each layer of the LFLC. While there are some limitations of application with this approach, the result of the simulation shows that the LFLC is able to control the angular shaft position of the D.C. motor. Furthermore, the LFLC has better performance in rise time, settling time and steady state error than to the conventional PI controller. This abstract accurately represents the content of the candidate's thesis. I recommend its publication.

  10. Study on adaptive PID algorithm of hydraulic turbine governing system based on fuzzy neural network

    NASA Astrophysics Data System (ADS)

    Tang, Liangbao; Bao, Jumin

    2006-11-01

    The conventional hydraulic turbine governing system can't automatically modulate PID parameters according to the dynamic process of the system, the generator speed is unstable and the mains frequency fluctuation results in. To solve the above problem, the fuzzy neural network (FNN) and the adaptive control are combined to design an adaptive PID algorithm based on the fuzzy neural network which can effectively control the hydraulic turbine governing system. Finally, the improved mathematic model is simulated. The simulation results are compared with the conventional hydraulic turbine's. Thus the validity and superiority of the fuzzy neural network PID algorithm have been proved. The simulation results show that the algorithm not only retains the functions of fuzzy control, but also provides the ability to approach to the non-linear system. Also the dynamic process of the system can be reflected more precisely and the on-line adaptive control is implemented. The algorithm is superior to other methods in response and control effect.

  11. Adaptive defuzzification for fuzzy systems modeling

    NASA Technical Reports Server (NTRS)

    Yager, Ronald R.; Filev, Dimitar P.

    1992-01-01

    We propose a new parameterized method for the defuzzification process based on the simple M-SLIDE transformation. We develop a computationally efficient algorithm for learning the relevant parameter as well as providing a computationally simple scheme for doing the defuzzification step in the fuzzy logic controllers. The M-SLIDE method results in a particularly simple linear form of the algorithm for learning the parameter which can be used both off- and on-line.

  12. Fuzzy logic control of an AGV

    NASA Astrophysics Data System (ADS)

    Kelkar, Nikhal; Samu, Tayib; Hall, Ernest L.

    1997-09-01

    Automated guided vehicles (AGVs) have many potential applications in manufacturing, medicine, space and defense. The purpose of this paper is to describe exploratory research on the design of a modular autonomous mobile robot controller. The controller incorporates a fuzzy logic approach for steering and speed control, a neuro-fuzzy approach for ultrasound sensing (not discussed in this paper) and an overall expert system. The advantages of a modular system are related to portability and transportability, i.e. any vehicle can become autonomous with minimal modifications. A mobile robot test-bed has been constructed using a golf cart base. This cart has full speed control with guidance provided by a vision system and obstacle avoidance using ultrasonic sensors. The speed and steering fuzzy logic controller is supervised by a 486 computer through a multi-axis motion controller. The obstacle avoidance system is based on a micro-controller interfaced with six ultrasonic transducers. This micro- controller independently handles all timing and distance calculations and sends a steering angle correction back to the computer via the serial line. This design yields a portable independent system in which high speed computer communication is not necessary. Vision guidance is accomplished with a CCD camera with a zoom lens. The data is collected by a vision tracking device that transmits the X, Y coordinates of the lane marker to the control computer. Simulation and testing of these systems yielded promising results. This design, in its modularity, creates a portable autonomous fuzzy logic controller applicable to any mobile vehicle with only minor adaptations.

  13. Fuzzy logic based robotic controller

    NASA Technical Reports Server (NTRS)

    Attia, F.; Upadhyaya, M.

    1994-01-01

    Existing Proportional-Integral-Derivative (PID) robotic controllers rely on an inverse kinematic model to convert user-specified cartesian trajectory coordinates to joint variables. These joints experience friction, stiction, and gear backlash effects. Due to lack of proper linearization of these effects, modern control theory based on state space methods cannot provide adequate control for robotic systems. In the presence of loads, the dynamic behavior of robotic systems is complex and nonlinear, especially where mathematical modeling is evaluated for real-time operators. Fuzzy Logic Control is a fast emerging alternative to conventional control systems in situations where it may not be feasible to formulate an analytical model of the complex system. Fuzzy logic techniques track a user-defined trajectory without having the host computer to explicitly solve the nonlinear inverse kinematic equations. The goal is to provide a rule-based approach, which is closer to human reasoning. The approach used expresses end-point error, location of manipulator joints, and proximity to obstacles as fuzzy variables. The resulting decisions are based upon linguistic and non-numerical information. This paper presents a solution to the conventional robot controller which is independent of computationally intensive kinematic equations. Computer simulation results of this approach as obtained from software implementation are also discussed.

  14. Incorporating Adaptive Local Information Into Fuzzy Clustering for Image Segmentation.

    PubMed

    Liu, Guoying; Zhang, Yun; Wang, Aimin

    2015-11-01

    Fuzzy c-means (FCM) clustering with spatial constraints has attracted great attention in the field of image segmentation. However, most of the popular techniques fail to resolve misclassification problems due to the inaccuracy of their spatial models. This paper presents a new unsupervised FCM-based image segmentation method by paying closer attention to the selection of local information. In this method, region-level local information is incorporated into the fuzzy clustering procedure to adaptively control the range and strength of interactive pixels. First, a novel dissimilarity function is established by combining region-based and pixel-based distance functions together, in order to enhance the relationship between pixels which have similar local characteristics. Second, a novel prior probability function is developed by integrating the differences between neighboring regions into the mean template of the fuzzy membership function, which adaptively selects local spatial constraints by a tradeoff weight depending upon whether a pixel belongs to a homogeneous region or not. Through incorporating region-based information into the spatial constraints, the proposed method strengthens the interactions between pixels within the same region and prevents over smoothing across region boundaries. Experimental results over synthetic noise images, natural color images, and synthetic aperture radar images show that the proposed method achieves more accurate segmentation results, compared with five state-of-the-art image segmentation methods. PMID:26186787

  15. Fuzzy Control of Robotic Arm

    NASA Astrophysics Data System (ADS)

    Lin, Kyaw Kyaw; Soe, Aung Kyaw; Thu, Theint Theint

    2008-10-01

    This research work investigates a Self-Tuning Proportional Derivative (PD) type Fuzzy Logic Controller (STPDFLC) for a two link robot system. The proposed scheme adjusts on-line the output Scaling Factor (SF) by fuzzy rules according to the current trend of the robot. The rule base for tuning the output scaling factor is defined on the error (e) and change in error (de). The scheme is also based on the fact that the controller always tries to manipulate the process input. The rules are in the familiar if-then format. All membership functions for controller inputs (e and de) and controller output (UN) are defined on the common interval [-1,1]; whereas the membership functions for the gain updating factor (?) is defined on [0,1]. There are various methods to calculate the crisp output of the system. Center of Gravity (COG) method is used in this application due to better results it gives. Performances of the proposed STPDFLC are compared with those of their corresponding PD-type conventional Fuzzy Logic Controller (PDFLC). The proposed scheme shows a remarkably improved performance over its conventional counterpart especially under parameters variation (payload). The two-link results of analysis are simulated. These simulation results are illustrated by using MATLAB programming.

  16. Tuning parameters of PID controller based on fuzzy logic controlled genetic algorithms

    NASA Astrophysics Data System (ADS)

    Feng, Dongqing; Wang, Xiaopei; Fei, Minrui; Chen, Tiejun

    2006-11-01

    To solve the problem of tuning parameters of PID controller using the conventional genetic algorithm, an improved genetic algorithm based on fuzzy inference is proposed. On the basis of generalizing heuristic knowledge about crossover and mutation operations, a fuzzy controller is designed to adaptively adjust the crossover rate and mutation rate. The fuzzy logic controlled genetic algorithm (FCGA) improves global optimization ability of the standard genetic algorithm. We apply it to adaptive PID controller. The comparison between the FCGA and the SGA is performed, which demonstrates that the FCGA has much better capability of parameters optimization and convergent speed, and it can also fulfill the requirement of real-time control.

  17. Design of the Electronic Brake Pressure Modulator Using a Direct Adaptive Fuzzy Controller in Commercial Vehicles for the Safety of Braking in Fail

    NASA Astrophysics Data System (ADS)

    Kim, Hunmo

    In the brake systems, it is important to reduce the rear brake pressure in order to secure the safety of the vehicle in braking. So, there was some research that reduced and controlled the rear brake pressure exactly like a L. S. P. V and a E. L. S. P. V. However, the previous research has some weaknesses: the L. S. P. V is a mechanical system and its brake efficiency is lower than the efficiency of E. L. S. P. V. But, the cost of E. L. S. P. V is very higher so its application to the vehicle is very difficult. Additionally, when a fail appears in the circuit which controls the valves, the fail results in some wrong operation of the valves. But, the previous researchers didn't take the effect of fail into account. Hence, the efficiency of them is low and the safety of the vehicle is not confirmed. So, in this paper we develop a new economical pressure modulator that exactly controls brake pressure and confirms the safety of the vehicle in any case using a direct adaptive fuzzy controller.

  18. Fuzzy logic control and optimization system

    DOEpatents

    Lou, Xinsheng

    2012-04-17

    A control system (300) for optimizing a power plant includes a chemical loop having an input for receiving an input signal (369) and an output for outputting an output signal (367), and a hierarchical fuzzy control system (400) operably connected to the chemical loop. The hierarchical fuzzy control system (400) includes a plurality of fuzzy controllers (330). The hierarchical fuzzy control system (400) receives the output signal (367), optimizes the input signal (369) based on the received output signal (367), and outputs an optimized input signal (369) to the input of the chemical loop to control a process of the chemical loop in an optimized manner.

  19. Comments on fuzzy control systems design via fuzzy Lyapunov functions.

    PubMed

    Guelton, Kevin; Guerra, Thierry-Marie; Bernal, Miguel; Bouarar, Tahar; Manamanni, Noureddine

    2010-06-01

    This paper considers the work entitled "Fuzzy control systems design via fuzzy Lyapunov functions" and published in IEEE Transactions on Systems, Man, and Cybernetics-Part B , where the authors try to extend the work of Rhee and Won. Nevertheless, the results proposed by Li have been obtained without taking into account a necessary path independency condition to ensure the line integral function to be a Lyapunov function candidate, and consequently, the proposed global asymptotic stability and stabilization conditions are unsuitable. PMID:19900850

  20. Analysis of inventory difference using fuzzy controllers

    SciTech Connect

    Zardecki, A.

    1994-08-01

    The principal objectives of an accounting system for safeguarding nuclear materials are as follows: (a) to provide assurance that all material quantities are present in the correct amount; (b) to provide timely detection of material loss; and (c) to estimate the amount of any loss and its location. In fuzzy control, expert knowledge is encoded in the form of fuzzy rules, which describe recommended actions for different classes of situations represented by fuzzy sets. The concept of a fuzzy controller is applied to the forecasting problem in a time series, specifically, to forecasting and detecting anomalies in inventory differences. This paper reviews the basic notion underlying the fuzzy control systems and provides examples of application. The well-known material-unaccounted-for diffusion plant data of Jaech are analyzed using both feedforward neural networks and fuzzy controllers. By forming a deference between the forecasted and observed signals, an efficient method to detect small signals in background noise is implemented.

  1. Fuzzy logic control for camera tracking system

    NASA Astrophysics Data System (ADS)

    Lea, Robert N.; Fritz, R. H.; Giarratano, J.; Jani, Yashvant

    1992-01-01

    A concept utilizing fuzzy theory has been developed for a camera tracking system to provide support for proximity operations and traffic management around the Space Station Freedom. Fuzzy sets and fuzzy logic based reasoning are used in a control system which utilizes images from a camera and generates required pan and tilt commands to track and maintain a moving target in the camera's field of view. This control system can be implemented on a fuzzy chip to provide an intelligent sensor for autonomous operations. Capabilities of the control system can be expanded to include approach, handover to other sensors, caution and warning messages.

  2. A fuzzy classifier system for process control

    NASA Technical Reports Server (NTRS)

    Karr, C. L.; Phillips, J. C.

    1994-01-01

    A fuzzy classifier system that discovers rules for controlling a mathematical model of a pH titration system was developed by researchers at the U.S. Bureau of Mines (USBM). Fuzzy classifier systems successfully combine the strengths of learning classifier systems and fuzzy logic controllers. Learning classifier systems resemble familiar production rule-based systems, but they represent their IF-THEN rules by strings of characters rather than in the traditional linguistic terms. Fuzzy logic is a tool that allows for the incorporation of abstract concepts into rule based-systems, thereby allowing the rules to resemble the familiar 'rules-of-thumb' commonly used by humans when solving difficult process control and reasoning problems. Like learning classifier systems, fuzzy classifier systems employ a genetic algorithm to explore and sample new rules for manipulating the problem environment. Like fuzzy logic controllers, fuzzy classifier systems encapsulate knowledge in the form of production rules. The results presented in this paper demonstrate the ability of fuzzy classifier systems to generate a fuzzy logic-based process control system.

  3. Fuzzy temperature controller and its applications

    NASA Astrophysics Data System (ADS)

    Isaka, Satoru

    1993-12-01

    This paper describes an application of fuzzy logic to an industrial temperature control system. It is a hybrid system of an advanced 2-degree-of- freedom PID controller unit and a fuzzy logic unit. The PID controller functions as a main control component while the fuzzy logical unit functions as a disturbance compensator. The 2-degree-of-freedom PID controller uses a feed forward operator to enhance the system's response to a desired value and allows simultaneous adjustments on target tracking and disturbance response. The fuzzy logic unit enables a simultaneous reduction of the disturbance recovery time and the overshoot amount. Both PID and fuzzy control parameters are tuned automatically, simplifying the user interaction. This hybrid control system has been successfully used in various industrial applications, and some of them are described in this paper.

  4. Refining fuzzy logic controllers with machine learning

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.

    1994-01-01

    In this paper, we describe the GARIC (Generalized Approximate Reasoning-Based Intelligent Control) architecture, which learns from its past performance and modifies the labels in the fuzzy rules to improve performance. It uses fuzzy reinforcement learning which is a hybrid method of fuzzy logic and reinforcement learning. This technology can simplify and automate the application of fuzzy logic control to a variety of systems. GARIC has been applied in simulation studies of the Space Shuttle rendezvous and docking experiments. It has the potential of being applied in other aerospace systems as well as in consumer products such as appliances, cameras, and cars.

  5. Robust Fuzzy Controllers Using FPGAs

    NASA Technical Reports Server (NTRS)

    Monroe, Author Gene S., Jr.

    2007-01-01

    Electro-mechanical device controllers typically come in one of three forms, proportional (P), Proportional Derivative (PD), and Proportional Integral Derivative (PID). Two methods of control are discussed in this paper; they are (1) the classical technique that requires an in-depth mathematical use of poles and zeros, and (2) the fuzzy logic (FL) technique that is similar to the way humans think and make decisions. FL controllers are used in multiple industries; examples include control engineering, computer vision, pattern recognition, statistics, and data analysis. Presented is a study on the development of a PD motor controller written in very high speed hardware description language (VHDL), and implemented in FL. Four distinct abstractions compose the FL controller, they are the fuzzifier, the rule-base, the fuzzy inference system (FIS), and the defuzzifier. FL is similar to, but different from, Boolean logic; where the output value may be equal to 0 or 1, but it could also be equal to any decimal value between them. This controller is unique because of its VHDL implementation, which uses integer mathematics. To compensate for VHDL's inability to synthesis floating point numbers, a scale factor equal to 10(sup (N/4) is utilized; where N is equal to data word size. The scaling factor shifts the decimal digits to the left of the decimal point for increased precision. PD controllers are ideal for use with servo motors, where position control is effective. This paper discusses control methods for motion-base platforms where a constant velocity equivalent to a spectral resolution of 0.25 cm(exp -1) is required; however, the control capability of this controller extends to various other platforms.

  6. Fuzzy regulator design for wind turbine yaw control.

    PubMed

    Theodoropoulos, Stefanos; Kandris, Dionisis; Samarakou, Maria; Koulouras, Grigorios

    2014-01-01

    This paper proposes the development of an advanced fuzzy logic controller which aims to perform intelligent automatic control of the yaw movement of wind turbines. The specific fuzzy controller takes into account both the wind velocity and the acceptable yaw error correlation in order to achieve maximum performance efficacy. In this way, the proposed yaw control system is remarkably adaptive to the existing conditions. In this way, the wind turbine is enabled to retain its power output close to its nominal value and at the same time preserve its yaw system from pointless movement. Thorough simulation tests evaluate the proposed system effectiveness. PMID:24693237

  7. Fuzzy Regulator Design for Wind Turbine Yaw Control

    PubMed Central

    Koulouras, Grigorios

    2014-01-01

    This paper proposes the development of an advanced fuzzy logic controller which aims to perform intelligent automatic control of the yaw movement of wind turbines. The specific fuzzy controller takes into account both the wind velocity and the acceptable yaw error correlation in order to achieve maximum performance efficacy. In this way, the proposed yaw control system is remarkably adaptive to the existing conditions. In this way, the wind turbine is enabled to retain its power output close to its nominal value and at the same time preserve its yaw system from pointless movement. Thorough simulation tests evaluate the proposed system effectiveness. PMID:24693237

  8. A fuzzy control design case: The fuzzy PLL

    NASA Technical Reports Server (NTRS)

    Teodorescu, H. N.; Bogdan, I.

    1992-01-01

    The aim of this paper is to present a typical fuzzy control design case. The analyzed controlled systems are the phase-locked loops (PLL's)--classic systems realized in both analogic and digital technology. The crisp PLL devices are well known.

  9. H? synchronization of uncertain fractional order chaotic systems: adaptive fuzzy approach.

    PubMed

    Lin, Tsung-Chih; Kuo, Chia-Hao

    2011-10-01

    This paper presents a novel adaptive fuzzy logic controller (FLC) equipped with an adaptive algorithm to achieve H(?) synchronization performance for uncertain fractional order chaotic systems. In order to handle the high level of uncertainties and noisy training data, a desired synchronization error can be attenuated to a prescribed level by incorporating fuzzy control design and H(?) tracking approach. Based on a Lyapunov stability criterion, not only the performance of the proposed method is satisfying with an acceptable synchronization error level, but also a rather simple stability analysis is performed. The simulation results signify the effectiveness of the proposed control scheme. PMID:21741648

  10. The Research on Fuzzy PID Control of the Permanent Magnet Linear Synchronous Motor

    NASA Astrophysics Data System (ADS)

    Wu, Ying; Jiang, Hang; Zou, Min

    Based on analyzing mathematical mode of the permanent magnet linear synchronous motor (PMLSM), three-closed-loop control system is presented in this paper. Combined the advantages of traditional PID control algorithm and fuzzy control algorithm, according to the characteristics of linear motor and the possible factors of uncertainty, a set of adaptive fuzzy PID control system is designed for the speed loop of the proposed control system, moreover, fuzzy inference rules is established to realize the Fuzzy PID controlling of the speed loop. In the end, the simulation models of the motor and the whole control system are built on Matlab/Simulink platform to compare and analyze the fuzzy PID control and conventional PID control. Simulation results show that the designed fuzzy PID speed loop controller can significantly improve the response performance of linear motor.

  11. Fuzzy control of battery chargers

    SciTech Connect

    Aldridge, J.

    1996-03-01

    The increasing reliance on battery power for portable terrestrial purposes, such as portable tools, portable computers, and telecommunications, provides motivation to optimize the battery charging process with respect to speed of charging and charging cycle lifetime of the battery. Fuzzy control, implemented on a small microcomputer, optimizes charging in the presence of nonlinear effects and large uncertainty in the voltage vs. charge state characteristics for the battery. Use of a small microcontroller makes possible a small, capable, and affordable package for the charger. Microcontroller-based chargers provide improved performance by adjusting both charging voltage and charging current during the entire charging process depending on a current estimate of the state of charge of the battery. The estimate is derived from the zero-current voltage of the battery and the temperature and their rates of change. All of these quantities are uncertain due to the variation in condition between the individual cells in a battery, the rapid and nonlinear dependence of the fundamental electrochemistry on the internal temperature, and the placement of a single temperature sensor within the battery package. While monitoring the individual cell voltages and temperatures would be desirable, cost and complexity considerations preclude the practice. NASA has developed considerable technology in batteries for supplying significant amounts of power for spacecraft and in fuzzy control techniques for the space applications. In this paper, we describe how we are using both technologies to build an optimal charger prototype as a precursor to a commercial version. {copyright} {ital 1996 American Institute of Physics.}

  12. Improvement on fuzzy controller design techniques

    NASA Technical Reports Server (NTRS)

    Wang, Paul P.

    1993-01-01

    This paper addresses three main issues, which are somewhat interrelated. The first issue deals with the classification or types of fuzzy controllers. Careful examination of the fuzzy controllers designed by various engineers reveals distinctive classes of fuzzy controllers. Classification is believed to be helpful from different perspectives. The second issue deals with the design according to specifications, experiments related to the tuning of fuzzy controllers, according to the specification, will be discussed. General design procedure, hopefully, can be outlined in order to ease the burden of a design engineer. The third issue deals with the simplicity and limitation of the rule-based IF-THEN logical statements. The methodology of fuzzy-constraint network is proposed here as an alternative to the design practice at present. It is our belief that predicate calculus and the first order logic possess much more expressive power.

  13. Control Augmentation Using Fuzzy Logic Control

    NASA Astrophysics Data System (ADS)

    Kato, Akio; Inukai, Daisuke

    Overall control to improve the control characteristics of an aircraft, CA (Control Augmentation), is used to realize the desirable motion of the aircraft in relation to the pilot’s control action. C∗ criterion is an important factor for the pilot’s preferred longitudinal motion. The time history of C∗ corresponding to the step input is specified within the upper and lower envelope, and it is desirable to be near the center of the envelope. In this research, the control laws of control augmentation for small supersonic aircraft were designed with the use of fuzzy logic control to obtain the C∗ response near the center of the envelope. The evaluation of the designed control laws showed good performance in all flight conditions. Here the control laws were varied by only one scaling factor for dynamic pressure. This means that virtually no gain schedules by the Mach number and the angle of attack are necessary. This paper shows that fuzzy logic control is an effective and flexible method when applied to control laws for the control augmentation of aircraft.

  14. Fuzzy logic controllers: From development to deployment

    SciTech Connect

    Bonissone, P.P.; Chiang, K.H.

    1994-12-31

    We view fuzzy logic control technology as a high level language in which we can efficiently define and synthesize non-linear controllers for a given process. We contrast fuzzy Proportional Integral (PI) controllers with conventional PI and two dimensional sliding mode controllers. Then we compare the development of Fuzzy Logic Controllers (FLC) with that of Knowledge Based System (KBS) applications. We decompose the comparison into reasoning tasks (representation, inference, and control) and application tasks (acquisition, development, validation, compilation, and deployment). After reviewing the reasoning tasks, we focus on the compilation of fuzzy rule bases into fast access lookup tables. These tables can be used by a simplified run-time engine to determine the TLC`s crisp output for a given input.

  15. Synthesis of nonlinear control strategies from fuzzy logic control algorithms

    NASA Technical Reports Server (NTRS)

    Langari, Reza

    1993-01-01

    Fuzzy control has been recognized as an alternative to conventional control techniques in situations where the plant model is not sufficiently well known to warrant the application of conventional control techniques. Precisely what fuzzy control does and how it does what it does is not quite clear, however. This important issue is discussed and in particular it is shown how a given fuzzy control scheme can resolve into a nonlinear control law and that in those situations the success of fuzzy control hinges on its ability to compensate for nonlinearities in plant dynamics.

  16. Prediction of Conductivity by Adaptive Neuro-Fuzzy Model

    PubMed Central

    Akbarzadeh, S.; Arof, A. K.; Ramesh, S.; Khanmirzaei, M. H.; Nor, R. M.

    2014-01-01

    Electrochemical impedance spectroscopy (EIS) is a key method for the characterizing the ionic and electronic conductivity of materials. One of the requirements of this technique is a model to forecast conductivity in preliminary experiments. The aim of this paper is to examine the prediction of conductivity by neuro-fuzzy inference with basic experimental factors such as temperature, frequency, thickness of the film and weight percentage of salt. In order to provide the optimal sets of fuzzy logic rule bases, the grid partition fuzzy inference method was applied. The validation of the model was tested by four random data sets. To evaluate the validity of the model, eleven statistical features were examined. Statistical analysis of the results clearly shows that modeling with an adaptive neuro-fuzzy is powerful enough for the prediction of conductivity. PMID:24658582

  17. The adaptive control system of acetylene generator

    NASA Astrophysics Data System (ADS)

    Kovaliuk, D. O.; Kovaliuk, Oleg; Burlibay, Aron; Gromaszek, Konrad

    2015-12-01

    The method of acetylene production in acetylene generator was analyzed. It was found that impossible to provide the desired process characteristics by the PID-controller. The adaptive control system of acetylene generator was developed. The proposed system combines the classic controller and fuzzy subsystem for controller parameters tuning.

  18. Fuzzy Modeling and Control of HIV Infection

    PubMed Central

    Zarei, Hassan; Kamyad, Ali Vahidian; Heydari, Ali Akbar

    2012-01-01

    The present study proposes a fuzzy mathematical model of HIV infection consisting of a linear fuzzy differential equations (FDEs) system describing the ambiguous immune cells level and the viral load which are due to the intrinsic fuzziness of the immune system's strength in HIV-infected patients. The immune cells in question are considered CD4+ T-cells and cytotoxic T-lymphocytes (CTLs). The dynamic behavior of the immune cells level and the viral load within the three groups of patients with weak, moderate, and strong immune systems are analyzed and compared. Moreover, the approximate explicit solutions of the proposed model are derived using a fitting-based method. In particular, a fuzzy control function indicating the drug dosage is incorporated into the proposed model and a fuzzy optimal control problem (FOCP) minimizing both the viral load and the drug costs is constructed. An optimality condition is achieved as a fuzzy boundary value problem (FBVP). In addition, the optimal fuzzy control function is completely characterized and a numerical solution for the optimality system is computed. PMID:22536298

  19. Fuzzy controllers in nuclear material accounting

    SciTech Connect

    Zardecki, A.

    1994-10-01

    Fuzzy controllers are applied to predicting and modeling a time series, with particular emphasis on anomaly detection in nuclear material inventory differences. As compared to neural networks, the fuzzy controllers can operate in real time; their learning process does not require many iterations to converge. For this reason fuzzy controllers are potentially useful in time series forecasting, where the authors want to detect and identify trends in real time. They describe an object-oriented implementation of the algorithm advanced by Wang and Mendel. Numerical results are presented both for inventory data and time series corresponding to chaotic situations, such as encountered in the context of strange attractors. In the latter case, the effects of noise on the predictive power of the fuzzy controller are explored.

  20. Microturbine control based on fuzzy neural network

    NASA Astrophysics Data System (ADS)

    Yan, Shijie; Bian, Chunyuan; Wang, Zhiqiang

    2006-11-01

    As microturbine generator (MTG) is a clean, efficient, low cost and reliable energy supply system. From outside characteristics of MTG, it is multi-variable, time-varying and coupling system, so it is difficult to be identified on-line and conventional control law adopted before cannot achieve desirable result. A novel fuzzy-neural networks (FNN) control algorithm was proposed in combining with the conventional PID control. In the paper, IF-THEN rules for tuning were applied by a first-order Sugeno fuzzy model with seven fuzzy rules and the membership function was given as the continuous GAUSSIAN function. Some sample data were utilized to train FNN. Through adjusting shape of membership function and weight continually, objective of auto-tuning fuzzy-rules can be achieved. The FNN algorithm had been applied to "100kW Microturbine control and power converter system". The results of simulation and experiment are shown that the algorithm can work very well.

  1. Decentralized fuzzy control of multiple nonholonomic vehicles

    SciTech Connect

    Driessen, B.J.; Feddema, J.T.; Kwok, K.S.

    1997-09-01

    This work considers the problem of controlling multiple nonholonomic vehicles so that they converge to a scent source without colliding with each other. Since the control is to be implemented on simple 8-bit microcontrollers, fuzzy control rules are used to simplify a linear quadratic regulator control design. The inputs to the fuzzy controllers for each vehicle are the (noisy) direction to the source, the distance to the closest neighbor vehicle, and the direction to the closest vehicle. These directions are discretized into four values: Forward, Behind, Left, and Right, and the distance into three values: Near, Far, Gone. The values of the control at these discrete values are obtained based on the collision-avoidance repulsive forces and the change of variables that reduces the motion control problem of each nonholonomic vehicle to a nonsingular one with two degrees of freedom, instead of three. A fuzzy inference system is used to obtain control values for inputs between the small number of discrete input values. Simulation results are provided which demonstrate that the fuzzy control law performs well compared to the exact controller. In fact, the fuzzy controller demonstrates improved robustness to noise.

  2. Terminology and concepts of control and Fuzzy Logic

    NASA Technical Reports Server (NTRS)

    Aldridge, Jack; Lea, Robert; Jani, Yashvant; Weiss, Jonathan

    1990-01-01

    Viewgraphs on terminology and concepts of control and fuzzy logic are presented. Topics covered include: control systems; issues in the design of a control system; state space control for inverted pendulum; proportional-integral-derivative (PID) controller; fuzzy controller; and fuzzy rule processing.

  3. Variable-order fuzzy fractional PID controller.

    PubMed

    Liu, Lu; Pan, Feng; Xue, Dingyu

    2015-03-01

    In this paper, a new tuning method of variable-order fractional fuzzy PID controller (VOFFLC) is proposed for a class of fractional-order and integer-order control plants. Fuzzy logic control (FLC) could easily deal with parameter variations of control system, but the fractional-order parameters are unable to change through this way and it has confined the effectiveness of FLC. Therefore, an attempt is made in this paper to allow all the five parameters of fractional-order PID controller vary along with the transformation of system structure as the outputs of FLC, and the influence of fractional orders λ and μ on control systems has been investigated to make the fuzzy rules for VOFFLC. Four simulation results of different plants are shown to verify the availability of the proposed control strategy. PMID:25440947

  4. Learning and tuning fuzzy logic controllers through reinforcements

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.; Khedkar, Pratap

    1992-01-01

    A new method for learning and tuning a fuzzy logic controller based on reinforcements from a dynamic system is presented. In particular, our Generalized Approximate Reasoning-based Intelligent Control (GARIC) architecture: (1) learns and tunes a fuzzy logic controller even when only weak reinforcements, such as a binary failure signal, is available; (2) introduces a new conjunction operator in computing the rule strengths of fuzzy control rules; (3) introduces a new localized mean of maximum (LMOM) method in combining the conclusions of several firing control rules; and (4) learns to produce real-valued control actions. Learning is achieved by integrating fuzzy inference into a feedforward network, which can then adaptively improve performance by using gradient descent methods. We extend the AHC algorithm of Barto, Sutton, and Anderson to include the prior control knowledge of human operators. The GARIC architecture is applied to a cart-pole balancing system and has demonstrated significant improvements in terms of the speed of learning and robustness to changes in the dynamic system's parameters over previous schemes for cart-pole balancing.

  5. Learning and tuning fuzzy logic controllers through reinforcements

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.; Khedkar, Pratap

    1992-01-01

    This paper presents a new method for learning and tuning a fuzzy logic controller based on reinforcements from a dynamic system. In particular, our generalized approximate reasoning-based intelligent control (GARIC) architecture (1) learns and tunes a fuzzy logic controller even when only weak reinforcement, such as a binary failure signal, is available; (2) introduces a new conjunction operator in computing the rule strengths of fuzzy control rules; (3) introduces a new localized mean of maximum (LMOM) method in combining the conclusions of several firing control rules; and (4) learns to produce real-valued control actions. Learning is achieved by integrating fuzzy inference into a feedforward neural network, which can then adaptively improve performance by using gradient descent methods. We extend the AHC algorithm of Barto et al. (1983) to include the prior control knowledge of human operators. The GARIC architecture is applied to a cart-pole balancing system and demonstrates significant improvements in terms of the speed of learning and robustness to changes in the dynamic system's parameters over previous schemes for cart-pole balancing.

  6. T-S Fuzzy Adaptive Delayed Feedback Synchronization for Time-Delayed Chaotic Systems with Uncertain Parameters

    NASA Astrophysics Data System (ADS)

    Ahn, Choon Ki; Kim, Pyung Soo

    In this paper, we propose a new adaptive synchronization method, called a fuzzy adaptive delayed feedback synchronization (FADFS) method, for time-delayed chaotic systems with uncertain parameters. An FADFS controller that is based on the Lyapunov-Krasovskii theory, Takagi-Sugeno (T-S) fuzzy model, and delayed feedback control is developed to guarantee adaptive synchronization. The proposed controller can be obtained by solving the linear matrix inequality (LMI) problem. A numerical example using a time-delayed Lorenz system is discussed to assess the validity of the proposed FADFS method.

  7. Autonomous navigation system using a fuzzy adaptive nonlinear H∞ filter.

    PubMed

    Outamazirt, Fariz; Li, Fu; Yan, Lin; Nemra, Abdelkrim

    2014-01-01

    Although nonlinear H∞ (NH∞) filters offer good performance without requiring assumptions concerning the characteristics of process and/or measurement noises, they still require additional tuning parameters that remain fixed and that need to be determined through trial and error. To address issues associated with NH∞ filters, a new SINS/GPS sensor fusion scheme known as the Fuzzy Adaptive Nonlinear H∞ (FANH∞) filter is proposed for the Unmanned Aerial Vehicle (UAV) localization problem. Based on a real-time Fuzzy Inference System (FIS), the FANH∞ filter continually adjusts the higher order of the Taylor development thorough adaptive bounds  and adaptive disturbance attenuation , which significantly increases the UAV localization performance. The results obtained using the FANH∞ navigation filter are compared to the NH∞ navigation filter results and are validated using a 3D UAV flight scenario. The comparison proves the efficiency and robustness of the UAV localization process using the FANH∞ filter. PMID:25244587

  8. Autonomous Navigation System Using a Fuzzy Adaptive Nonlinear H∞ Filter

    PubMed Central

    Outamazirt, Fariz; Li, Fu; Yan, Lin; Nemra, Abdelkrim

    2014-01-01

    Although nonlinear H∞ (NH∞) filters offer good performance without requiring assumptions concerning the characteristics of process and/or measurement noises, they still require additional tuning parameters that remain fixed and that need to be determined through trial and error. To address issues associated with NH∞ filters, a new SINS/GPS sensor fusion scheme known as the Fuzzy Adaptive Nonlinear H∞ (FANH∞) filter is proposed for the Unmanned Aerial Vehicle (UAV) localization problem. Based on a real-time Fuzzy Inference System (FIS), the FANH∞ filter continually adjusts the higher order of the Taylor development thorough adaptive bounds (δi) and adaptive disturbance attenuation (γ), which significantly increases the UAV localization performance. The results obtained using the FANH∞ navigation filter are compared to the NH∞ navigation filter results and are validated using a 3D UAV flight scenario. The comparison proves the efficiency and robustness of the UAV localization process using the FANH∞ filter. PMID:25244587

  9. Intelligent control based on fuzzy logic and neural net theory

    NASA Technical Reports Server (NTRS)

    Lee, Chuen-Chien

    1991-01-01

    In the conception and design of intelligent systems, one promising direction involves the use of fuzzy logic and neural network theory to enhance such systems' capability to learn from experience and adapt to changes in an environment of uncertainty and imprecision. Here, an intelligent control scheme is explored by integrating these multidisciplinary techniques. A self-learning system is proposed as an intelligent controller for dynamical processes, employing a control policy which evolves and improves automatically. One key component of the intelligent system is a fuzzy logic-based system which emulates human decision making behavior. It is shown that the system can solve a fairly difficult control learning problem. Simulation results demonstrate that improved learning performance can be achieved in relation to previously described systems employing bang-bang control. The proposed system is relatively insensitive to variations in the parameters of the system environment.

  10. Neural and fuzzy robotic hand control.

    PubMed

    Tascillo, A; Bourbakis, N

    1999-01-01

    An efficient first grasp for a wheelchair robotic arm-hand with pressure sensing is determined and presented. The grasp is learned by combining the advantages of neural networks and fuzzy logic into a hybrid control algorithm which learns from its tip and slip control experiences. Neurofuzzy modifications are outlined, and basic steps are demonstrated in preparation for physical implementation. Choice of object approach vector based on fuzzy tip and slip data and an expert supervisor, as well as training of a diagnostic neural tip and slip controller, are the focus of this work. PMID:18252342

  11. Experiment Study on Fuzzy Vibration Control of Solar Panel

    NASA Astrophysics Data System (ADS)

    Li, Dongxu X.; Xu, Rui; Jiang, Jiangjian P.

    Some flexible appendages of spacecraft are cantilever plate structures, such as solar panels. These structures usually have very low damping ratios, high dimensional order, low modal frequencies and parameter uncertainties in dynamics. Their unwanted vibrations will be caused unavoidably, and harmful to the spacecraft. To solve this problem, the dynamic equations of the solar panel with piezoelectric patches are derived, and an accelerometer based fuzzy controller is designed. In order to verify the effectiveness of the vibration control algorithms, experiment research was conducted on a piezoelectric adaptive composite honeycomb cantilever panel. The experiment results demonstrate that the accelerometer-based fuzzy vibration control method can suppress the vibration of the solar panel effectively, the first bending mode damping ratio of the controlled system increase to 1.64%, and that is 3.56 times of the uncontrolled system.

  12. A transductive neuro-fuzzy controller: application to a drilling process.

    PubMed

    Gajate, Agustín; Haber, Rodolfo E; Vega, Pastora I; Alique, José R

    2010-07-01

    Recently, new neuro-fuzzy inference algorithms have been developed to deal with the time-varying behavior and uncertainty of many complex systems. This paper presents the design and application of a novel transductive neuro-fuzzy inference method to control force in a high-performance drilling process. The main goal is to study, analyze, and verify the behavior of a transductive neuro-fuzzy inference system for controlling this complex process, specifically addressing the dynamic modeling, computational efficiency, and viability of the real-time application of this algorithm as well as assessing the topology of the neuro-fuzzy system (e.g., number of clusters, number of rules). A transductive reasoning method is used to create local neuro-fuzzy models for each input/output data set in a case study. The direct and inverse dynamics of a complex process are modeled using this strategy. The synergies among fuzzy, neural, and transductive strategies are then exploited to deal with process complexity and uncertainty through the application of the neuro-fuzzy models within an internal model control (IMC) scheme. A comparative study is made of the adaptive neuro-fuzzy inference system (ANFIS) and the suggested method inspired in a transductive neuro-fuzzy inference strategy. The two neuro-fuzzy strategies are evaluated in a real drilling force control problem. The experimental results demonstrated that the transductive neuro-fuzzy control system provides a good transient response (without overshoot) and better error-based performance indices than the ANFIS-based control system. In particular, the IMC system based on a transductive neuro-fuzzy inference approach reduces the influence of the increase in cutting force that occurs as the drill depth increases, reducing the risk of rapid tool wear and catastrophic tool breakage. PMID:20659865

  13. Genetic algorithm based fuzzy control of spacecraft autonomous rendezvous

    NASA Technical Reports Server (NTRS)

    Karr, C. L.; Freeman, L. M.; Meredith, D. L.

    1990-01-01

    The U.S. Bureau of Mines is currently investigating ways to combine the control capabilities of fuzzy logic with the learning capabilities of genetic algorithms. Fuzzy logic allows for the uncertainty inherent in most control problems to be incorporated into conventional expert systems. Although fuzzy logic based expert systems have been used successfully for controlling a number of physical systems, the selection of acceptable fuzzy membership functions has generally been a subjective decision. High performance fuzzy membership functions for a fuzzy logic controller that manipulates a mathematical model simulating the autonomous rendezvous of spacecraft are learned using a genetic algorithm, a search technique based on the mechanics of natural genetics. The membership functions learned by the genetic algorithm provide for a more efficient fuzzy logic controller than membership functions selected by the authors for the rendezvous problem. Thus, genetic algorithms are potentially an effective and structured approach for learning fuzzy membership functions.

  14. Self-Adaptive Prediction of Cloud Resource Demands Using Ensemble Model and Subtractive-Fuzzy Clustering Based Fuzzy Neural Network

    PubMed Central

    Chen, Zhijia; Zhu, Yuanchang; Di, Yanqiang; Feng, Shaochong

    2015-01-01

    In IaaS (infrastructure as a service) cloud environment, users are provisioned with virtual machines (VMs). To allocate resources for users dynamically and effectively, accurate resource demands predicting is essential. For this purpose, this paper proposes a self-adaptive prediction method using ensemble model and subtractive-fuzzy clustering based fuzzy neural network (ESFCFNN). We analyze the characters of user preferences and demands. Then the architecture of the prediction model is constructed. We adopt some base predictors to compose the ensemble model. Then the structure and learning algorithm of fuzzy neural network is researched. To obtain the number of fuzzy rules and the initial value of the premise and consequent parameters, this paper proposes the fuzzy c-means combined with subtractive clustering algorithm, that is, the subtractive-fuzzy clustering. Finally, we adopt different criteria to evaluate the proposed method. The experiment results show that the method is accurate and effective in predicting the resource demands. PMID:25691896

  15. Self-adaptive prediction of cloud resource demands using ensemble model and subtractive-fuzzy clustering based fuzzy neural network.

    PubMed

    Chen, Zhijia; Zhu, Yuanchang; Di, Yanqiang; Feng, Shaochong

    2015-01-01

    In IaaS (infrastructure as a service) cloud environment, users are provisioned with virtual machines (VMs). To allocate resources for users dynamically and effectively, accurate resource demands predicting is essential. For this purpose, this paper proposes a self-adaptive prediction method using ensemble model and subtractive-fuzzy clustering based fuzzy neural network (ESFCFNN). We analyze the characters of user preferences and demands. Then the architecture of the prediction model is constructed. We adopt some base predictors to compose the ensemble model. Then the structure and learning algorithm of fuzzy neural network is researched. To obtain the number of fuzzy rules and the initial value of the premise and consequent parameters, this paper proposes the fuzzy c-means combined with subtractive clustering algorithm, that is, the subtractive-fuzzy clustering. Finally, we adopt different criteria to evaluate the proposed method. The experiment results show that the method is accurate and effective in predicting the resource demands. PMID:25691896

  16. Fuzzy Modal Control Applied to Smart Composite Structure

    NASA Astrophysics Data System (ADS)

    Koroishi, E. H.; Faria, A. W.; Lara-Molina, F. A.; Steffen, V., Jr.

    2015-07-01

    This paper proposes an active vibration control technique, which is based on Fuzzy Modal Control, as applied to a piezoelectric actuator bonded to a composite structure forming a so-called smart composite structure. Fuzzy Modal Controllers were found to be well adapted for controlling structures with nonlinear behavior, whose characteristics change considerably with respect to time. The smart composite structure was modelled by using a so called mixed theory. This theory uses a single equivalent layer for the discretization of the mechanical displacement field and a layerwise representation of the electrical field. Temperature effects are neglected. Due to numerical reasons it was necessary to reduce the size of the model of the smart composite structure so that the design of the controllers and the estimator could be performed. The role of the Kalman Estimator in the present contribution is to estimate the modal states of the system, which are used by the Fuzzy Modal controllers. Simulation results illustrate the effectiveness of the proposed vibration control methodology for composite structures.

  17. A Laboratory Testbed for Embedded Fuzzy Control

    ERIC Educational Resources Information Center

    Srivastava, S.; Sukumar, V.; Bhasin, P. S.; Arun Kumar, D.

    2011-01-01

    This paper presents a novel scheme called "Laboratory Testbed for Embedded Fuzzy Control of a Real Time Nonlinear System." The idea is based upon the fact that project-based learning motivates students to learn actively and to use their engineering skills acquired in their previous years of study. It also fosters initiative and focuses students'…

  18. Fuzzy Control/Space Station automation

    NASA Technical Reports Server (NTRS)

    Gersh, Mark

    1990-01-01

    Viewgraphs on fuzzy control/space station automation are presented. Topics covered include: Space Station Freedom (SSF); SSF evolution; factors pointing to automation & robotics (A&R); astronaut office inputs concerning A&R; flight system automation and ground operations applications; transition definition program; and advanced automation software tools.

  19. A Laboratory Testbed for Embedded Fuzzy Control

    ERIC Educational Resources Information Center

    Srivastava, S.; Sukumar, V.; Bhasin, P. S.; Arun Kumar, D.

    2011-01-01

    This paper presents a novel scheme called "Laboratory Testbed for Embedded Fuzzy Control of a Real Time Nonlinear System." The idea is based upon the fact that project-based learning motivates students to learn actively and to use their engineering skills acquired in their previous years of study. It also fosters initiative and focuses students'

  20. FUZZY LOGIC CONTROL OF AC INDUCTION MOTORS

    EPA Science Inventory

    The paper discusses the fuzzy logic control (FLC) of electric motors, being investigated under the sponsorship of the U.S. EPA to reduce energy consumption when motors are operated at less than rated speeds and loads. lectric motors use 60% of the electrical energy generated in t...

  1. New fuzzy wavelet network for modeling and control: The modeling approach

    NASA Astrophysics Data System (ADS)

    Ebadat, Afrooz; Noroozi, Navid; Safavi, Ali Akbar; Mousavi, Seyyed Hossein

    2011-08-01

    In this paper, a fuzzy wavelet network is proposed to approximate arbitrary nonlinear functions based on the theory of multiresolution analysis (MRA) of wavelet transform and fuzzy concepts. The presented network combines TSK fuzzy models with wavelet transform and ROLS learning algorithm while still preserve the property of linearity in parameters. In order to reduce the number of fuzzy rules, fuzzy clustering is invoked. In the clustering algorithm, those wavelets that are closer to each other in the sense of the Euclidean norm are placed in a group and are used in the consequent part of a fuzzy rule. Antecedent parts of the rules are Gaussian membership functions. Determination of the deviation parameter is performed with the help of gold partition method. Here, mean of each function is derived by averaging center of all wavelets that are related to that particular rule. The overall developed fuzzy wavelet network is called fuzzy wave-net and simulation results show superior performance over previous networks. The present work is complemented by a second part which focuses on the control aspects and to be published in this journal( [17]). This paper proposes an observer based self-structuring robust adaptive fuzzy wave-net (FWN) controller for a class of nonlinear uncertain multi-input multi-output systems.

  2. Fuzzy multinomial control chart and its application

    NASA Astrophysics Data System (ADS)

    Wibawati, Mashuri, Muhammad; Purhadi, Irhamah

    2016-03-01

    Control chart is a technique that has been used widely in industry and services. P chart is the simplest control chart. In this chart, item is classified into two categories as either conforming and non conforming. This chart based on binomial distribution. In practice, each item can classify in more than two categories such as very bad, bad, good and very good. Then to monitor the process we used multinomial p control chart. However, if the classification is an element of vagueness, the fuzzy multinomial control chart (FM) is more appropriately used. Control limit of FM chart obtained multinomial distribution and the degree of membership using fuzzy trianguler are 0, 0.25. 0.5 and 1. This chart will be applied to the data glass and will compare with multinomial p control chart.

  3. The cognitive bases for the design of a new class of fuzzy logic controllers: The clearness transformation fuzzy logic controller

    NASA Technical Reports Server (NTRS)

    Sultan, Labib; Janabi, Talib

    1992-01-01

    This paper analyses the internal operation of fuzzy logic controllers as referenced to the human cognitive tasks of control and decision making. Two goals are targeted. The first goal focuses on the cognitive interpretation of the mechanisms employed in the current design of fuzzy logic controllers. This analysis helps to create a ground to explore the potential of enhancing the functional intelligence of fuzzy controllers. The second goal is to outline the features of a new class of fuzzy controllers, the Clearness Transformation Fuzzy Logic Controller (CT-FLC), whereby some new concepts are advanced to qualify fuzzy controllers as 'cognitive devices' rather than 'expert system devices'. The operation of the CT-FLC, as a fuzzy pattern processing controller, is explored, simulated, and evaluated.

  4. Generalizations of fuzzy linguistic control points in geometric design

    NASA Astrophysics Data System (ADS)

    Sallehuddin, M. H.; Wahab, A. F.; Gobithaasan, R. U.

    2014-07-01

    Control points are geometric primitives that play an important role in designing the geometry curve and surface. When these control points are blended with some basis functions, there are several geometric models such as Bezier, B-spline and NURBS(Non-Uniform Rational B-Spline) will be produced. If the control points are defined by the theory of fuzzy sets, then fuzzy geometric models are produced. But the fuzzy geometric models can only solve the problem of uncertainty complex. This paper proposes a new definition of fuzzy control points with linguistic terms. When the fuzzy control points with linguistic terms are blended with basis functions, then a fuzzy linguistic geometric model is produced. This paper ends with some numerical examples illustrating linguistic control attributes of fuzzy geometric models.

  5. Image subband coding using fuzzy inference and adaptive quantization.

    PubMed

    Hsieh, Ming-Shing; Tseng, Din-Chang

    2003-01-01

    Wavelet image decomposition generates a hierarchical data structure to represent an image. Recently, a new class of image compression algorithms has been developed for exploiting dependencies between the hierarchical wavelet coefficients using zerotrees. This paper deals with a fuzzy inference filter for image entropy coding by choosing significant coefficients and zerotree roots in the higher frequency wavelet subbands. Moreover, an adaptive quantization is proposed to improve the coding performance. Evaluating with the standard images, the proposed approaches are comparable or superior to most state-of-the-art coders. Based on the fuzzy energy judgment, the proposed approaches can achieve an excellent performance on the combination applications of image compression and watermarking. PMID:18238197

  6. Adaptive fuzzy systems for backing up a truck-and-trailer.

    PubMed

    Kong, S G; Kosko, B

    1992-01-01

    Fuzzy control systems and neural-network control systems for backing up a simulated truck, and truck-and-trailer, to a loading dock in a parking lot are presented. The supervised backpropagation learning algorithm trained the neural network systems. The robustness of the neural systems was tested by removing random subsets of training data in learning sequences. The neural systems performed well but required extensive computation for training. The fuzzy systems performed well until over 50% of their fuzzy-associative-memory (FAM) rules were removed. They also performed well when the key FAM equilibration rule was replaced with destructive, or ;sabotage', rules. Unsupervised differential competitive learning (DCL) and product-space clustering adaptively generated FAM rules from training data. The original fuzzy control systems and neural control systems generated trajectory data. The DCL system rapidly recovered the underlying FAM rules. Product-space clustering converted the neural truck systems into structured sets of FAM rules that approximated the neural system's behavior. PMID:18276422

  7. Clustering of tethered satellite system simulation data by an adaptive neuro-fuzzy algorithm

    NASA Technical Reports Server (NTRS)

    Mitra, Sunanda; Pemmaraju, Surya

    1992-01-01

    Recent developments in neuro-fuzzy systems indicate that the concepts of adaptive pattern recognition, when used to identify appropriate control actions corresponding to clusters of patterns representing system states in dynamic nonlinear control systems, may result in innovative designs. A modular, unsupervised neural network architecture, in which fuzzy learning rules have been embedded is used for on-line identification of similar states. The architecture and control rules involved in Adaptive Fuzzy Leader Clustering (AFLC) allow this system to be incorporated in control systems for identification of system states corresponding to specific control actions. We have used this algorithm to cluster the simulation data of Tethered Satellite System (TSS) to estimate the range of delta voltages necessary to maintain the desired length rate of the tether. The AFLC algorithm is capable of on-line estimation of the appropriate control voltages from the corresponding length error and length rate error without a priori knowledge of their membership functions and familarity with the behavior of the Tethered Satellite System.

  8. The simplification of fuzzy control algorithm and hardware implementation

    NASA Technical Reports Server (NTRS)

    Wu, Z. Q.; Wang, P. Z.; Teh, H. H.

    1991-01-01

    The conventional interface composition algorithm of a fuzzy controller is very time and memory consuming. As a result, it is difficult to do real time fuzzy inference, and most fuzzy controllers are realized by look-up tables. Here, researchers derive a simplified algorithm using the defuzzification mean of maximum. This algorithm takes shorter computation time and needs less memory usage, thus making it possible to compute the fuzzy inference on real time and easy to tune the control rules on line. A hardware implementation based on a simplified fuzzy inference algorithm is described.

  9. Fuzzy Multicriteria Decision Analysis for Adaptive Watershed Management

    NASA Astrophysics Data System (ADS)

    Chang, N.

    2006-12-01

    The dramatic changes of societal complexity due to intensive interactions among agricultural, industrial, and municipal sectors have resulted in acute issues of water resources redistribution and water quality management in many river basins. Given the fact that integrated watershed management is more a political and societal than a technical challenge, there is a need for developing a compelling method leading to justify a water-based land use program in some critical regions. Adaptive watershed management is viewed as an indispensable tool nowadays for providing step-wise constructive decision support that is concerned with all related aspects of the water consumption cycle and those facilities affecting water quality and quantity temporally and spatially. Yet the greatest challenge that decision makers face today is to consider how to leverage ambiguity, paradox, and uncertainty to their competitive advantage of management policy quantitatively. This paper explores a fuzzy multicriteria evaluation method for water resources redistribution and subsequent water quality management with respect to a multipurpose channel-reservoir system--the Tseng- Wen River Basin, South Taiwan. Four fuzzy operators tailored for this fuzzy multicriteria decision analysis depict greater flexibility in representing the complexity of various possible trade-offs among management alternatives constrained by physical, economic, and technical factors essential for adaptive watershed management. The management strategies derived may enable decision makers to integrate a vast number of internal weirs, water intakes, reservoirs, drainage ditches, transfer pipelines, and wastewater treatment facilities within the basin and bring up the permitting issue for transboundary diversion from a neighboring river basin. Experience gained indicates that the use of different types of fuzzy operators is highly instructive, which also provide unique guidance collectively for achieving the overarching goals of sustainable development on a regional scale.

  10. A Fuzzy Heater Control System Stimulating Thermal Cycling of Flight Hardware for a Thermal Environmental Test

    NASA Astrophysics Data System (ADS)

    Chang, Chih-Li; Chen, Yow-Hwa; Pan, Hsu-Pin; Cheng, Robert; Hsiao, Chiuder

    2004-08-01

    The flight hardware suffers thermal cycling in space environment. The temperature range of the hardware is controlled between -45 C and 85 C for the space-flight test environment in a thermal vacuum chamber on ground. A Heater Control System (HCS) provides thirty heating points to simulate the thermal status of flight hardware. The control is configured in traditional PD algorithm and implemented in a workstation of a control room. Since the thermal mass is different for the different articles, the pre-determined parameters of PD control cannot fit all articles. The fuzzy logics are then proposed to be adaptive to the different articles. The fuzzy control is implemented with LabVIEW in a PXI industrial computer. The remote GPIB instruments of hibay are interfaced to PXI computer via Ethernet communication. In summary, the overall system takes advantages of GPIB standardized component, increasing capabilities, adaptive control with a fuzzy algorithm, and distributed control architecture.

  11. Fuzzy control of an automotive while braking

    NASA Astrophysics Data System (ADS)

    Yan, Shirong

    2005-12-01

    To investigate the dynamic characteristics of an automotive and develop a control method for its safe braking, a dynamic model of the car with active suspension devices during its braking was established. The dynamic model was with 4 degrees of freedom, that is, two degrees of freedom with the car body and others with forefront wheels and rear wheels. For the purpose of reliable use of the control method in most cases, a wavy road was included in the problem. Considering random road surface, braking deceleration and traveling speed of the car when braking, a fuzzy control method was used. Based on a real car made in China, computer simulation was adopted to investigate the dynamic characteristics of the car and the fuzzy control method. The results show that under the condition of an elaborately developed fuzzy control method used in the 4 active suspension devices, the displacement of the mass center and the turnover angle of the car body are greatly reduced and about only one half of their original values are remained.

  12. Maximum entropy approach to fuzzy control

    NASA Technical Reports Server (NTRS)

    Ramer, Arthur; Kreinovich, Vladik YA.

    1992-01-01

    For the same expert knowledge, if one uses different &- and V-operations in a fuzzy control methodology, one ends up with different control strategies. Each choice of these operations restricts the set of possible control strategies. Since a wrong choice can lead to a low quality control, it is reasonable to try to loose as few possibilities as possible. This idea is formalized and it is shown that it leads to the choice of min(a + b,1) for V and min(a,b) for &. This choice was tried on NASA Shuttle simulator; it leads to a maximally stable control.

  13. PI and fuzzy logic controllers for shunt Active Power Filter--a report.

    PubMed

    P, Karuppanan; Mahapatra, Kamala Kanta

    2012-01-01

    This paper presents a shunt Active Power Filter (APF) for power quality improvements in terms of harmonics and reactive power compensation in the distribution network. The compensation process is based only on source current extraction that reduces the number of sensors as well as its complexity. A Proportional Integral (PI) or Fuzzy Logic Controller (FLC) is used to extract the required reference current from the distorted line-current, and this controls the DC-side capacitor voltage of the inverter. The shunt APF is implemented with PWM-current controlled Voltage Source Inverter (VSI) and the switching patterns are generated through a novel Adaptive-Fuzzy Hysteresis Current Controller (A-F-HCC). The proposed adaptive-fuzzy-HCC is compared with fixed-HCC and adaptive-HCC techniques and the superior features of this novel approach are established. The FLC based shunt APF system is validated through extensive simulation for diode-rectifier/R-L loads. PMID:21982358

  14. Design of fuzzy system by NNs and realization of adaptability

    NASA Technical Reports Server (NTRS)

    Takagi, Hideyuki

    1993-01-01

    The issue of designing and tuning fuzzy membership functions by neural networks (NN's) was started by NN-driven Fuzzy Reasoning in 1988. NN-driven fuzzy reasoning involves a NN embedded in the fuzzy system which generates membership values. In conventional fuzzy system design, the membership functions are hand-crafted by trial and error for each input variable. In contrast, NN-driven fuzzy reasoning considers several variables simultaneously and can design a multidimensional, nonlinear membership function for the entire subspace.

  15. Force control of a tri-layer conducting polymer actuator using optimized fuzzy logic control

    NASA Astrophysics Data System (ADS)

    Itik, Mehmet; Sabetghadam, Mohammadreza; Alici, Gursel

    2014-12-01

    Conducting polymers actuators (CPAs) are potential candidates for replacing conventional actuators in various fields, such as robotics and biomedical engineering, due to their advantageous properties, which includes their low cost, light weight, low actuation voltage and biocompatibility. As these actuators are very suitable for use in micro-nano manipulation and in injection devices in which the magnitude of the force applied to the target is of crucial importance, the force generated by CPAs needs to be accurately controlled. In this paper, a fuzzy logic (FL) controller with a Mamdani inference system is designed to control the blocking force of a trilayer CPA with polypyrrole electrodes, which operates in air. The particle swarm optimization (PSO) method is employed to optimize the controller’s membership function parameters and therefore enhance the performance of the FL controller. An adaptive neuro-fuzzy inference system model, which can capture the nonlinear dynamics of the actuator, is utilized in the optimization process. The optimized Mamdani FL controller is then implemented on the CPA experimentally, and its performance is compared with a non-optimized fuzzy controller as well as with those obtained from a conventional PID controller. The results presented indicate that the blocking force at the tip of the CPA can be effectively controlled by the optimized FL controller, which shows excellent transient and steady state characteristics but increases the control voltage compared to the non-optimized fuzzy controllers.

  16. Fuzzy-Based Hybrid Control Algorithm for the Stabilization of a Tri-Rotor UAV.

    PubMed

    Ali, Zain Anwar; Wang, Daobo; Aamir, Muhammad

    2016-01-01

    In this paper, a new and novel mathematical fuzzy hybrid scheme is proposed for the stabilization of a tri-rotor unmanned aerial vehicle (UAV). The fuzzy hybrid scheme consists of a fuzzy logic controller, regulation pole-placement tracking (RST) controller with model reference adaptive control (MRAC), in which adaptive gains of the RST controller are being fine-tuned by a fuzzy logic controller. Brushless direct current (BLDC) motors are installed in the triangular frame of the tri-rotor UAV, which helps maintain control on its motion and different altitude and attitude changes, similar to rotorcrafts. MRAC-based MIT rule is proposed for system stability. Moreover, the proposed hybrid controller with nonlinear flight dynamics is shown in the presence of translational and rotational velocity components. The performance of the proposed algorithm is demonstrated via MATLAB simulations, in which the proposed fuzzy hybrid controller is compared with the existing adaptive RST controller. It shows that our proposed algorithm has better transient performance with zero steady-state error, and fast convergence towards stability. PMID:27171084

  17. Fuzzy-Based Hybrid Control Algorithm for the Stabilization of a Tri-Rotor UAV

    PubMed Central

    Ali, Zain Anwar; Wang, Daobo; Aamir, Muhammad

    2016-01-01

    In this paper, a new and novel mathematical fuzzy hybrid scheme is proposed for the stabilization of a tri-rotor unmanned aerial vehicle (UAV). The fuzzy hybrid scheme consists of a fuzzy logic controller, regulation pole-placement tracking (RST) controller with model reference adaptive control (MRAC), in which adaptive gains of the RST controller are being fine-tuned by a fuzzy logic controller. Brushless direct current (BLDC) motors are installed in the triangular frame of the tri-rotor UAV, which helps maintain control on its motion and different altitude and attitude changes, similar to rotorcrafts. MRAC-based MIT rule is proposed for system stability. Moreover, the proposed hybrid controller with nonlinear flight dynamics is shown in the presence of translational and rotational velocity components. The performance of the proposed algorithm is demonstrated via MATLAB simulations, in which the proposed fuzzy hybrid controller is compared with the existing adaptive RST controller. It shows that our proposed algorithm has better transient performance with zero steady-state error, and fast convergence towards stability. PMID:27171084

  18. Fuzzy Current-Mode Control and Stability Analysis

    NASA Technical Reports Server (NTRS)

    Kopasakis, George

    2000-01-01

    In this paper a current-mode control (CMC) methodology is developed for a buck converter by using a fuzzy logic controller. Conventional CMC methodologies are based on lead-lag compensation with voltage and inductor current feedback. In this paper the converter lead-lag compensation will be substituted with a fuzzy controller. A small-signal model of the fuzzy controller will also be developed in order to examine the stability properties of this buck converter control system. The paper develops an analytical approach, introducing fuzzy control into the area of CMC.

  19. SaFIN: a self-adaptive fuzzy inference network.

    PubMed

    Tung, Sau Wai; Quek, Chai; Guan, Cuntai

    2011-12-01

    There are generally two approaches to the design of a neural fuzzy system: 1) design by human experts, and 2) design through a self-organization of the numerical training data. While the former approach is highly subjective, the latter is commonly plagued by one or more of the following major problems: 1) an inconsistent rulebase; 2) the need for prior knowledge such as the number of clusters to be computed; 3) heuristically designed knowledge acquisition methodologies; and 4) the stability-plasticity tradeoff of the system. This paper presents a novel self-organizing neural fuzzy system, named Self-Adaptive Fuzzy Inference Network (SaFIN), to address the aforementioned deficiencies. The proposed SaFIN model employs a new clustering technique referred to as categorical learning-induced partitioning (CLIP), which draws inspiration from the behavioral category learning process demonstrated by humans. By employing the one-pass CLIP, SaFIN is able to incorporate new clusters in each input-output dimension when the existing clusters are not able to give a satisfactory representation of the incoming training data. This not only avoids the need for prior knowledge regarding the number of clusters needed for each input-output dimension, but also allows SaFIN the flexibility to incorporate new knowledge with old knowledge in the system. In addition, the self-automated rule formation mechanism proposed within SaFIN ensures that it obtains a consistent resultant rulebase. Subsequently, the proposed SaFIN model is employed in a series of benchmark simulations to demonstrate its efficiency as a self-organizing neural fuzzy system, and excellent performances have been achieved. PMID:22020678

  20. Harmonic Control Based on Fuzzy Logic

    NASA Astrophysics Data System (ADS)

    Wu, Shihong; Dang, Gang; Wang, Jun; Li, Xiaohui; Zhang, Zhixia; Jiang, Fengli

    Proliferation of nonlinear loads in power systems has increased harmonic pollution and deteriorated power quality. Passive filtering has typically been the standard technology for harmonic and reactive power compensation .With the advancements in power electronics, active filtering is being more widely considered given its flexibility and precise control. However, cost, complexity, and reliability are considered the major drawbacks of active filters. In this paper a new fuzzy logic is introduced to control the harmonic in the power system, which has more advantages such as simplicity, ease of application, flexibility, speed and ability to deal with imprecision and uncertainties .The introduction of fuzzy logic can not only reduce harmonic,but also correct the power factor.

  1. Fuzzy logic controller for weaning neonates from mechanical ventilation.

    PubMed Central

    Hatzakis, G. E.; Davis, G. M.

    2002-01-01

    Weaning from mechanical ventilation is the gradual detachment from any ventilatory support till normal spontaneous breathing can be fully resumed. To date, we have developed a fuzzy logic controller for weaning COPD adults using pressure support ventilation (PS). However, adults and newborns differ in the pathophysiology of lung disease. We therefore used our fuzzy logic-based weaning platform to develop modularized components for weaning newborns with lung disease. Our controller uses the heart rate (HR), respiratory rate (RR), tidal volume (VT) and oxygen saturation (SaO2) and their trends deltaHR/deltat, deltaVT/deltat and deltaSaO2/deltat to evaluate, respectively, the Current and Trend weaning status of the newborn. Through appropriate fuzzification of these vital signs, Current and Trend weaning status can quantitatively determine the increase/decrease in the synchronized intermittent mandatory ventilation (SIMV) setting. The post-operative weaning courses of 10 newborns, 82+/-162 days old, were assessed at 2-hour intervals for 68+/-39 days. The SIMV levels, proposed by our algorithm, were matched to those levels actually applied. For 60% of the time both values coincided. For the remaining 40%, our algorithm suggested lower SIMV support than what was applied. The Area Under the Curve for integrated ventilatory support over time was 1203+/-846 for standard ventilatory strategies and 1152+/-802 for fuzzy controller. This suggests that the algorithm, approximates the actual weaning progression, and may advocate a more aggressive strategy. Moreover, the core of the fuzzy controller facilitates adaptation for body size and diversified disease patterns and sets the premises as an infant-weaning tool. PMID:12463838

  2. Fuzzy controllers and fuzzy expert systems: industrial applications of fuzzy technology

    NASA Astrophysics Data System (ADS)

    Bonissone, Piero P.

    1995-06-01

    We will provide a brief description of the field of approximate reasoning systems, with a particular emphasis on the development of fuzzy logic control (FLC). FLC technology has drastically reduced the development time and deployment cost for the synthesis of nonlinear controllers for dynamic systems. As a result we have experienced an increased number of FLC applications. In a recently published paper we have illustrated some of our efforts in FLC technology transfer, covering projects in turboshaft aircraft engine control, stream turbine startup, steam turbine cycling optimization, resonant converter power supply control, and data-induced modeling of the nonlinear relationship between process variable in a rolling mill stand. These applications will be illustrated in the oral presentation. In this paper, we will compare these applications in a cost/complexity framework, and examine the driving factors that led to the use of FLCs in each application. We will emphasize the role of fuzzy logic in developing supervisory controllers and in maintaining explicit the tradeoff criteria used to manage multiple control strategies. Finally, we will describe some of our FLC technology research efforts in automatic rule base tuning and generation, leading to a suite of programs for reinforcement learning, supervised learning, genetic algorithms, steepest descent algorithms, and rule clustering.

  3. Nonlinear Fuzzy Hybrid Control of Spacecraft

    NASA Technical Reports Server (NTRS)

    Mason, Paul A. C.; Crassidis, John L.; Markley, F. Landis

    1999-01-01

    This paper describes a new approach for intelligent control of a spacecraft with large angle maneuvers. This new approach, based on fuzzy logic, determines the required torque to achieve a robust, high performance attitude response. This scheme extends the robustness, performance and portability of the existing linear or nonlinear attitude controllers. Formulations are presented for attitude-control but can be extended to other applications. A simulation study, which uses the new control strategy to stabilize the motion of the Microwave Anisotropy Probe spacecraft in the presence of disturbances and saturations, demonstrates the merits of the proposed scheme.

  4. Fuzzy control of power factor preregulators

    SciTech Connect

    Mattavelli, P.; Buso, S.; Spiazzi, G.; Tenti, P.

    1995-12-31

    In this paper, a fuzzy-logic-based controller for Power Factor Preregulators (PFP`s) is investigated. Through this approach it is possible to get low-distorted and in-phase line current without need for sophisticated mathematical analysis or complex models to design the controller. Moreover, the intrinsic non-linearity of this control technique allows improved dynamic response and increased robustness as compared to linear approaches. In this paper, controller design and operation are discussed, and implementation by a microcontroller is described. Actual converter operation is analyzed by simulation in the case of a boost PFP, demonstrating the feasibility of the approach.

  5. Fuzzy control for closed-loop, patient-specific hypnosis in intraoperative patients: a simulation study.

    PubMed

    Moore, Brett L; Pyeatt, Larry D; Doufas, Anthony G

    2009-01-01

    Research has demonstrated the efficacy of closed-loop control of anesthesia using bispectral index (BIS) as the controlled variable, and the recent development of model-based, patient-adaptive systems has considerably improved anesthetic control. To further explore the use of model-based control in anesthesia, we investigated the application of fuzzy control in the delivery of patient-specific propofol-induced hypnosis. In simulated intraoperative patients, the fuzzy controller demonstrated clinically acceptable performance, suggesting that further study is warranted. PMID:19963562

  6. Position Control for Ultrasonic Motors Using Backstepping Control and Dead-Zone Compensation with Fuzzy Inference

    NASA Astrophysics Data System (ADS)

    Senjyu, Tomonobu; Yoshida, Tomohiro; Uezato, Katsumi; Funabashi, Toshihisa

    The ultrasonic motor has a heavy nonlinearity, which varies with driving conditions and possesses variable dead-zone in the control input associated with applied load torque. The dead-zone is a problem as an accurate positioning actuator for industrial applications and it is important to eliminate the dead-zone in order to improve the control performance. This paper proposes a new position control scheme of ultrasonic motors to overcome dead-zone employing model reference adaptive control (MRAC) with fuzzy inference. The dead-zone is compensated by fuzzy inference, and backstepping control performs accurate position control. As compared with MRAC which uses an augmented error, backstepping control can analyze a transient response. Mathematical models are formulated and experimental results are given to validate the proposed position control scheme.

  7. Intelligent fuzzy controller for event-driven real time systems

    NASA Technical Reports Server (NTRS)

    Grantner, Janos; Patyra, Marek; Stachowicz, Marian S.

    1992-01-01

    Most of the known linguistic models are essentially static, that is, time is not a parameter in describing the behavior of the object's model. In this paper we show a model for synchronous finite state machines based on fuzzy logic. Such finite state machines can be used to build both event-driven, time-varying, rule-based systems and the control unit section of a fuzzy logic computer. The architecture of a pipelined intelligent fuzzy controller is presented, and the linguistic model is represented by an overall fuzzy relation stored in a single rule memory. A VLSI integrated circuit implementation of the fuzzy controller is suggested. At a clock rate of 30 MHz, the controller can perform 3 MFLIPS on multi-dimensional fuzzy data.

  8. Active structural control by fuzzy logic rules: An introduction

    SciTech Connect

    Tang, Y.

    1995-07-01

    An introduction to fuzzy logic control applied to the active structural control to reduce the dynamic response of structures subjected to earthquake excitations is presented. It is hoped that this presentation will increase the attractiveness of the methodology to structural engineers in research as well as in practice. The basic concept of the fuzzy logic control are explained by examples and by diagrams with a minimum of mathematics. The effectiveness and simplicity of the fuzzy logic control is demonstrated by a numerical example in which the response of a single-degree-of-freedom system subjected to earthquake excitations is controlled by making use of the fuzzy logic controller. In the example, the fuzzy rules are first learned from the results obtained from linear control theory; then they are fine tuned to improve their performance. It is shown that the performance of fuzzy logic control surpasses that of the linear control theory. The paper shows that linear control theory provides experience for fuzzy logic control, and fuzzy logic control can provide better performance; therefore, two controllers complement each other.

  9. Active structural control by fuzzy logic rules: An introduction

    SciTech Connect

    Tang, Yu; Wu, Kung C.

    1996-12-31

    A zeroth level introduction to fuzzy logic control applied to the active structural control to reduce the dynamic response of structures subjected to earthquake excitations is presented. It is hoped that this presentation will increase the attractiveness of the methodology to structural engineers in research as well as in practice. The basic concept of the fuzzy logic control are explained by examples and by diagrams with a minimum of mathematics. The effectiveness and simplicity of the fuzzy logic control is demonstrated by a numerical example in which the response of a single- degree-of-freedom system subjected to earthquake excitations is controlled by making use of the fuzzy logic controller. In the example, the fuzzy rules are first learned from the results obtained from linear control theory; then they are fine tuned to improve their performance. It is shown that the performance of fuzzy logic control surpasses that of the linear control theory. The paper shows that linear control theory provides experience for fuzzy logic control, and fuzzy logic control can provide better performance; therefore, two controllers complement each other.

  10. Fuzzy control and multimedia with examples from law enforcement

    NASA Astrophysics Data System (ADS)

    Hackwood, Susan

    1995-06-01

    We present an extension of fuzzy controllers to include multimedia rules, i.e., rules which do not include verbal or numerical descriptors. We describe the structure and construction of such a multimedia fuzzy controller. In particular, we describe an empirical but unbiased methodology to measure, from human subjects, distances in feature space and hence determine fuzzy memberships. We also propose a practical multimedia fuzzy controller and describe its application examples are given from the law enforcement field where man-machine interactions are important and applications of the methodology described in this paper appear promising.

  11. Fuzzy Delay Compensation Control for T-S Fuzzy Systems Over Network.

    PubMed

    Zhang, Jinhui; Shi, Peng; Xia, Yuanqing

    2013-02-01

    This paper is concerned with the network delay compensation problem for nonlinear networked control systems (NCSs). By taking full advantage of the characteristics of the packet-based transmission in NCSs, new network delay compensation approaches are proposed to actively compensate the network communication delay under the fuzzy control framework. The nonlinear plant is represented by a Takagi-Sugeno fuzzy model, and the predictive control input packets are constructed based on parallel distributed compensation technique. Both state and output feedback fuzzy delay compensation controllers are designed. Finally, two examples are provided to illustrate the effectiveness and applicability of the developed techniques. PMID:22801520

  12. Modal control of a plate using a fuzzy logic controller

    NASA Astrophysics Data System (ADS)

    Sharma, Manu; Singh, S. P.; Sachdeva, B. L.

    2007-08-01

    This paper presents fuzzy logic based independent modal space control (IMSC) and fuzzy logic based modified independent modal space control (MIMSC) of vibration. The rule base of the controller consists of nine rules, which have been derived based upon simple human reasoning. Input to the controller consists of the first two modal displacements and velocities of the structure and the output of the controller is the modal force to be applied by the actuator. Fuzzy logic is used in such a way that the actuator is never called to apply effort which is beyond safe limits and also the operator is saved from calculating control gains. The proposed fuzzy controller is experimentally tested for active vibration control of a cantilevered plate. A piezoelectric patch is used as a sensor to sense vibrations of the plate and another piezoelectric patch is used as an actuator to control vibrations of the plate. For analytical formulation, a finite element method based upon Hamilton's principle is used to model the plate. For experimentation, the first two modes of the plate are observed using a Kalman observer. Real-time experiments are performed to control the first mode, the second mode and both modes simultaneously. Experiments are also performed to control the first mode by IMSC, the second mode by IMSC and both modes simultaneously by MIMSC. It is found that for the same decibel reduction in the first mode, the voltage applied by the fuzzy logic based controller is less than that applied by IMSC. While controlling the second mode by IMSC, a considerable amount of spillover is observed in the first mode and region just after the second mode, whereas while controlling the second mode by fuzzy logic, spillover effects are much smaller. While controlling two modes simultaneously, with a single sensor/actuator pair, appreciable resonance control is observed both with fuzzy logic based MIMSC as well as with direct MIMSC, but there is a considerable amount of spillover in the off-resonance region. This may be due to the sub-optimal location and/or an insufficient number of actuators. So, another smart plate with two piezoelectric actuators and one piezoelectric sensor is considered. Piezoelectric patches are fixed in an area where modal strains are high. With this configuration of the smart plate, experiments are conducted to control the first three modes of the plate and it is found that spillover effects are greatly reduced.

  13. Decentralized adaptive control

    NASA Technical Reports Server (NTRS)

    Oh, B. J.; Jamshidi, M.; Seraji, H.

    1988-01-01

    A decentralized adaptive control is proposed to stabilize and track the nonlinear, interconnected subsystems with unknown parameters. The adaptation of the controller gain is derived by using model reference adaptive control theory based on Lyapunov's direct method. The adaptive gains consist of sigma, proportional, and integral combination of the measured and reference values of the corresponding subsystem. The proposed control is applied to the joint control of a two-link robot manipulator, and the performance in computer simulation corresponds with what is expected in theoretical development.

  14. Wastewater neutralization control based in fuzzy logic: Simulation results

    SciTech Connect

    Garrido, R.; Adroer, M.; Poch, M.

    1997-05-01

    Neutralization is a technique widely used as a part of wastewater treatment processes. Due to the importance of this technique, extensive study has been devoted to its control. However, industrial wastewater neutralization control is a procedure with a lot of problems--nonlinearity of the titration curve, variable buffering, changes in loading--and despite the efforts devoted to this subject, the problem has not been totally solved. in this paper, the authors present the development of a controller based in fuzzy logic (FLC). In order to study its effectiveness, it has been compared, by simulation, with other advanced controllers (using identification techniques and adaptive control algorithms using reference models) when faced with various types of wastewater with different buffer capacity or when changes in the concentration of the acid present in the wastewater take place. Results obtained show that FLC could be considered as a powerful alternative for wastewater neutralization processes.

  15. Adaptive inferential sensors based on evolving fuzzy models.

    PubMed

    Angelov, Plamen; Kordon, Arthur

    2010-04-01

    A new technique to the design and use of inferential sensors in the process industry is proposed in this paper, which is based on the recently introduced concept of evolving fuzzy models (EFMs). They address the challenge that the modern process industry faces today, namely, to develop such adaptive and self-calibrating online inferential sensors that reduce the maintenance costs while keeping the high precision and interpretability/transparency. The proposed new methodology makes possible inferential sensors to recalibrate automatically, which reduces significantly the life-cycle efforts for their maintenance. This is achieved by the adaptive and flexible open-structure EFM used. The novelty of this paper lies in the following: (1) the overall concept of inferential sensors with evolving and self-developing structure from the data streams; (2) the new methodology for online automatic selection of input variables that are most relevant for the prediction; (3) the technique to detect automatically a shift in the data pattern using the age of the clusters (and fuzzy rules); (4) the online standardization technique used by the learning procedure of the evolving model; and (5) the application of this innovative approach to several real-life industrial processes from the chemical industry (evolving inferential sensors, namely, eSensors, were used for predicting the chemical properties of different products in The Dow Chemical Company, Freeport, TX). It should be noted, however, that the methodology and conclusions of this paper are valid for the broader area of chemical and process industries in general. The results demonstrate that well-interpretable and with-simple-structure inferential sensors can automatically be designed from the data stream in real time, which predict various process variables of interest. The proposed approach can be used as a basis for the development of a new generation of adaptive and evolving inferential sensors that can address the challenges of the modern advanced process industry. PMID:19775972

  16. What procedure to choose while designing a fuzzy control? Towards mathematical foundations of fuzzy control

    NASA Technical Reports Server (NTRS)

    Kreinovich, Vladik YA.; Quintana, Chris; Lea, Robert

    1991-01-01

    Fuzzy control has been successfully applied in industrial systems. However, there is some caution in using it. The reason is that it is based on quite reasonable ideas, but each of these ideas can be implemented in several different ways, and depending on which of the implementations chosen different results are achieved. Some implementations lead to a high quality control, some of them not. And since there are no theoretical methods for choosing the implementation, the basic way to choose it now is experimental. But if one chooses a method that is good for several examples, there is no guarantee that it will work fine in all of them. Hence the caution. A theoretical basis for choosing the fuzzy control procedures is provided. In order to choose a procedure that transforms a fuzzy knowledge into a control, one needs, first, to choose a membership function for each of the fuzzy terms that the experts use, second, to choose operations of uncertainty values that corresponds to 'and' and 'or', and third, when a membership function for control is obtained, one must defuzzy it, that is, somehow generate a value of the control u that will be actually used. A general approach that will help to make all these choices is described: namely, it is proved that under reasonable assumptions membership functions should be linear or fractionally linear, defuzzification must be described by a centroid rule and describe all possible 'and' and 'or' operations. Thus, a theoretical explanation of the existing semi-heuristic choices is given and the basis for the further research on optimal fuzzy control is formulated.

  17. Fuzzy logic control of AC induction motors

    NASA Astrophysics Data System (ADS)

    Cleland, J.; Turner, W.; Wang, P.; Espy, T.; Chappell, P. J.

    The fuzzy logic control (FLC) of electric motors, being investigated under the sponsorship of the U.S. EPA to reduce energy consumption when motors are operated at less than rated speeds and loads is discussed. Electric motors use 60 percent of the electrical energy generated in the U.S. An improvement of 1 percent in operating efficiency of all electric motors could result in savings of 17 billion kWh per year in the U.S. New techniques are required to extract maximum performance from modern motors. One possibility, FLC, has recently demonstrated success in solving control problems of nonlinear, multivariable systems such as ac induction motors and adjustable motor-speed drives. Simulated results of a microprocessor-based fuzzy logic motor controller (FLMC) are described. The investigation includes a motor stator voltage control scheme to minimize motor input power at specified speed/torque conditions; simulation of ac motor performance; and development of a FLMC for optimized motor efficiency. Simulated FLMC results compare favorably with other motor control approaches. Potential energy savings are quantitated based on the preliminary predictions of FLMC performance.

  18. Knowledge acquisition and representation using fuzzy evidential reasoning and dynamic adaptive fuzzy Petri nets.

    PubMed

    Liu, Hu-Chen; Liu, Long; Lin, Qing-Lian; Liu, Nan

    2013-06-01

    The two most important issues of expert systems are the acquisition of domain experts' professional knowledge and the representation and reasoning of the knowledge rules that have been identified. First, during expert knowledge acquisition processes, the domain expert panel often demonstrates different experience and knowledge from one another and produces different types of knowledge information such as complete and incomplete, precise and imprecise, and known and unknown because of its cross-functional and multidisciplinary nature. Second, as a promising tool for knowledge representation and reasoning, fuzzy Petri nets (FPNs) still suffer a couple of deficiencies. The parameters in current FPN models could not accurately represent the increasingly complex knowledge-based systems, and the rules in most existing knowledge inference frameworks could not be dynamically adjustable according to propositions' variation as human cognition and thinking. In this paper, we present a knowledge acquisition and representation approach using the fuzzy evidential reasoning approach and dynamic adaptive FPNs to solve the problems mentioned above. As is illustrated by the numerical example, the proposed approach can well capture experts' diversity experience, enhance the knowledge representation power, and reason the rule-based knowledge more intelligently. PMID:23757441

  19. Fuzzy logic control for an automated guided vehicle

    NASA Astrophysics Data System (ADS)

    Cao, Ming; Hall, Ernest L.

    1998-10-01

    This paper describes the use of fuzzy logic control for the high level control systems of a mobile robot. The advantages of the fuzzy logic system are that multiple types of input such as that from vision and sonar sensors as well as stored map information can be used to guide the robot. Sensor fusion can be accomplished between real time sensed information and stored information in a manner similar to a human decision maker. Vision guidance is accomplished with a CCD camera with a zoom lens. The data is collected through a commercial tracking device, communicating to the computer the X,Y coordinates of a lane marker. Testing of these systems yielded positive results by showing that at five miles per hour, the vehicle can follow a line and avoid obstacles. The obstacle detection uses information from Polaroid sonar detection system. The motor control system uses a programmable Galil motion control system. This design, in its modularity, creates a portable autonomous controller that could be used for any mobile vehicle with only minor adaptations.

  20. Coordinated signal control for arterial intersections using fuzzy logic

    NASA Astrophysics Data System (ADS)

    Kermanian, Davood; Zare, Assef; Balochian, Saeed

    2013-09-01

    Every day growth of the vehicles has become one of the biggest problems of urbanism especially in major cities. This can waste people's time, increase the fuel consumption, air pollution, and increase the density of cars and vehicles. Fuzzy controllers have been widely used in many consumer products and industrial applications with success over the past two decades. This article proposes a comprehensive model of urban traffic network using state space equations and then using Fuzzy Logic Tool Box and SIMULINK Program MATLAB a fuzzy controller in order to optimize and coordinate signal control at two intersections at an arterial road. The fuzzy controller decides to extend, early cut or terminate a signal phase and phase sequence to ensure smooth flow of traffic with minimal waiting time and length of queue. Results show that the performance of the proposed traffic controller at novel fuzzy model is better that of conventional controllers under normal and abnormal traffic conditions.

  1. Fuzzy control of power converters based on quasilinear modelling

    NASA Astrophysics Data System (ADS)

    Li, C. K.; Lee, W. L.; Chou, Y. W.

    1995-03-01

    Unlike feedback control by the fuzzy PID method, a new fuzzy control algorithm based on quasilinear modelling of the DC-DC converter is proposed. Investigation is carried out using a buck-boost converter. Simulation results demonstrated that the converter can be regulated with improved performance even when subjected to input disturbance and load variation.

  2. Behaviorist-based control of an autonomous skid-steer robot using threshold fuzzy systems

    NASA Astrophysics Data System (ADS)

    Overholt, James L.; Cheok, K. C.; Smid, G. Edzko

    2001-09-01

    This paper describes a method of acquiring behaviorist-based reactive control strategies for an autonomous skid-steer robot operating in an unknown environment. First, a detailed interactive simulation of the robot (including simplified vehicle kinematics, sensors and a randomly generated environment) is developed with the capability of a human driver supplying all control actions. We then introduce a new modular, neural-fuzzy system called Threshold Fuzzy Systems (TFS). A TFS has two unique features that distinguish it from traditional fuzzy logic and neural network systems; (1) the rulebase of a TFS contains only single antecedent, single consequence rules, called a Behaviorist Fuzzy Rulebase (BFR) and (2) a highly structured adaptive node network, called a Rule Dominance Network (RDN), is added to the fuzzy logic inference engine. Each rule in the BFR is a direct mapping of an input sensor to a system output. Connection nodes in the RDN occur when rules in the BFR are conflicting. The nodes of the RDN contain functions that are used to suppress the output of other conflicting rules in the BFR. Supervised training, using error backpropagation, is used to find the optimal parameters of the dominance functions. The usefulness of the TFS approach becomes evident when examining an autonomous vehicle system (AVS). In this paper, a TFS controller is developed for a skid-steer AVS. Several hundred simulations are conducted and results for the AVS with a traditional fuzzy controller and with a TFS controller are compared.

  3. Predictive neuro-fuzzy controller for multilink robot manipulator

    NASA Astrophysics Data System (ADS)

    Kaymaz, Emre; Mitra, Sunanda

    1995-10-01

    A generalized controller based on fuzzy clustering and fuzzy generalized predictive control has been developed for nonlinear systems including multilink robot manipulators. The proposed controller is particularly useful when the dynamics of the nonlinear system to be controlled are difficult to yield exact solutions and the system specification can be obtained in terms of crisp input-output pairs. It inherits the advantages of both fuzzy logic and predictive control. The identification of the nonlinear mapping of the system to be controlled is realized by a three- layer feed-forward neural network model employing the input-output data obtained from the system. The speed of convergence of the neural network is improved by the introduction of a fuzzy logic controlled backpropagation learning algorithm. The neural network model is then used as a simulation tool to generate the input-output data for developing the predictive fuzzy logic controller for the chosen nonlinear system. The use of fuzzy clustering facilitates automatic generation of membership relations of the input-output data. Unlike the linguistic fuzzy logic controller which requires approximate knowledge of the shape and the numbers of the membership functions in the input and output universes of the discourse, this integrated neuro-fuzzy approach allows one to find the fuzzy relations and the membership functions more accurately. Furthermore, it is not necessary to tune the controller. For a two-link robot manipulator, the performance of this predictive fuzzy controller is shown to be superior to that of a conventional controller employing an ARMA model of the system in terms of accuracy and consumption of energy.

  4. Self-learning fuzzy controllers based on temporal back propagation

    NASA Technical Reports Server (NTRS)

    Jang, Jyh-Shing R.

    1992-01-01

    This paper presents a generalized control strategy that enhances fuzzy controllers with self-learning capability for achieving prescribed control objectives in a near-optimal manner. This methodology, termed temporal back propagation, is model-insensitive in the sense that it can deal with plants that can be represented in a piecewise-differentiable format, such as difference equations, neural networks, GMDH structures, and fuzzy models. Regardless of the numbers of inputs and outputs of the plants under consideration, the proposed approach can either refine the fuzzy if-then rules if human experts, or automatically derive the fuzzy if-then rules obtained from human experts are not available. The inverted pendulum system is employed as a test-bed to demonstrate the effectiveness of the proposed control scheme and the robustness of the acquired fuzzy controller.

  5. An Experiment in Linguistic Synthesis with a Fuzzy Logic Controller

    ERIC Educational Resources Information Center

    Mamdani, E. H.; Assilian, S.

    1975-01-01

    This paper describes an experiment on the "linguistic" synthesis of a controller for a model industrial plant (a steam engine). Fuzzy logic is used to convert heuristic control rules stated by a human operator into an automatic control strategy. (Author)

  6. A fuzzy logic controller for an autonomous mobile robot

    NASA Technical Reports Server (NTRS)

    Yen, John; Pfluger, Nathan

    1993-01-01

    The ability of a mobile robot system to plan and move intelligently in a dynamic system is needed if robots are to be useful in areas other than controlled environments. An example of a use for this system is to control an autonomous mobile robot in a space station, or other isolated area where it is hard or impossible for human life to exist for long periods of time (e.g., Mars). The system would allow the robot to be programmed to carry out the duties normally accomplished by a human being. Some of the duties that could be accomplished include operating instruments, transporting objects, and maintenance of the environment. The main focus of our early work has been on developing a fuzzy controller that takes a path and adapts it to a given environment. The robot only uses information gathered from the sensors, but retains the ability to avoid dynamically placed obstacles near and along the path. Our fuzzy logic controller is based on the following algorithm: (1) determine the desired direction of travel; (2) determine the allowed direction of travel; and (3) combine the desired and allowed directions in order to determine a direciton that is both desired and allowed. The desired direction of travel is determined by projecting ahead to a point along the path that is closer to the goal. This gives a local direction of travel for the robot and helps to avoid obstacles.

  7. Backpropagation through time training of a neuro-fuzzy controller.

    PubMed

    Koprinkova-Hristova, Petia

    2010-10-01

    The paper considers gradient training of fuzzy logic controller (FLC) presented in the form of neural network structure. The proposed neuro-fuzzy structure allows keeping linguistic meaning of fuzzy rule base. Its main adjustable parameters are shape determining parameters of the linguistic variables fuzzy values as well as that of the used as intersection operator parameterized T-norm. The backpropagation through time method was applied to train neuro-FLC for a highly non-linear plant (a biotechnological process). The obtained results are discussed with respect to adjustable parameters rationality. Conclusions are made with respect to the appropriate intersection operations too. PMID:20945520

  8. Hierarchical fuzzy control of low-energy building systems

    SciTech Connect

    Yu, Zhen; Dexter, Arthur

    2010-04-15

    A hierarchical fuzzy supervisory controller is described that is capable of optimizing the operation of a low-energy building, which uses solar energy to heat and cool its interior spaces. The highest level fuzzy rules choose the most appropriate set of lower level rules according to the weather and occupancy information; the second level fuzzy rules determine an optimal energy profile and the overall modes of operation of the heating, ventilating and air-conditioning system (HVAC); the third level fuzzy rules select the mode of operation of specific equipment, and assign schedules to the local controllers so that the optimal energy profile can be achieved in the most efficient way. Computer simulation is used to compare the hierarchical fuzzy control scheme with a supervisory control scheme based on expert rules. The performance is evaluated by comparing the energy consumption and thermal comfort. (author)

  9. Application and classification of fuzzy dynamic system and fuzzy linguistic controller with examples illustrated

    NASA Astrophysics Data System (ADS)

    Wang, Paul P.; Tyan, Ching-Yu

    1993-12-01

    This paper presents the classification of fuzzy dynamic systems and fuzzy linguistic controllers (FLC) into standard types (TYPE 1 through TYPE 7). The need, utility value, and the logic behind this classification are given. The proposed classification is the result of studying many known examples of FLC applications. The impact of this classification to new designs and to the improved performance of classical and modern control systems is an important consideration.

  10. Prediction of contact forces of underactuated finger by adaptive neuro fuzzy approach

    NASA Astrophysics Data System (ADS)

    Petković, Dalibor; Shamshirband, Shahaboddin; Abbasi, Almas; Kiani, Kourosh; Al-Shammari, Eiman Tamah

    2015-12-01

    To obtain adaptive finger passive underactuation can be used. Underactuation principle can be used to adapt shapes of the fingers for grasping objects. The fingers with underactuation do not require control algorithm. In this study a kinetostatic model of the underactuated finger mechanism was analyzed. The underactuation is achieved by adding the compliance in every finger joint. Since the contact forces of the finger depend on contact position of the finger and object, it is suitable to make a prediction model for the contact forces in function of contact positions of the finger and grasping objects. In this study prediction of the contact forces was established by a soft computing approach. Adaptive neuro-fuzzy inference system (ANFIS) was applied as the soft computing method to perform the prediction of the finger contact forces.

  11. Vibration suppression control of smart piezoelectric rotating truss structure by parallel neuro-fuzzy control with genetic algorithm tuning

    NASA Astrophysics Data System (ADS)

    Lin, J.; Zheng, Y. B.

    2012-07-01

    The main goal of this paper is to develop a novel approach for vibration control on a piezoelectric rotating truss structure. This study will analyze the dynamics and control of a flexible structure system with multiple degrees of freedom, represented in this research as a clamped-free-free-free truss type plate rotated by motors. The controller has two separate feedback loops for tracking and damping, and the vibration suppression controller is independent of position tracking control. In addition to stabilizing the actual system, the proposed proportional-derivative (PD) control, based on genetic algorithm (GA) to seek the primary optimal control gain, must supplement a fuzzy control law to ensure a stable nonlinear system. This is done by using an intelligent fuzzy controller based on adaptive neuro-fuzzy inference system (ANFIS) with GA tuning to increase the efficiency of fuzzy control. The PD controller, in its assisting role, easily stabilized the linear system. The fuzzy controller rule base was then constructed based on PD performance-related knowledge. Experimental validation for such a structure demonstrates the effectiveness of the proposed controller. The broad range of problems discussed in this research will be found useful in civil, mechanical, and aerospace engineering, for flexible structures with multiple degree-of-freedom motion.

  12. Fire control system for mobile vehicles using fuzzy controllers

    NASA Astrophysics Data System (ADS)

    Krishna Moorty, J. A. R.; Marathe, Rajeev; Srivastava, Hari Babu

    2005-12-01

    Inertial stabilization of electro-optical sighting systems and weapon slaving control loops are essential constituents of modern fire control systems for mobile combat vehicles. These systems are used for surveillance, target tracking and engaging the targets under dynamic conditions. Firing accuracy of such systems largely depends on stabilization and weapon slaving accuracies. Accuracy requirements become stringent as the operating range increases. Several other issues such as bore sighting offsets, ballistic offsets and mounting error compensation etc. are also to be considered. Fuzzy knowledge based controller (FKBC) offers an alternative method to the conventional control synthesis methodologies using root locus, Bode plots or pole placement. Fuzzy control loops are particularly useful when the plant consists of substantial non-linearity due to actuator saturation, stiction, Coulomb friction, digitization etc. Since, the control surface obtained through this method is non-linear, generally it provides greater flexibility to designer to achieve better damping, lesser control energy even in presence of various constraints. This work presents the design of weapon slaving loop using a fuzzy controller. The weapon is slaved to a gimbaled electro-optical sight, which has a stabilized line of sight along two axes. The system under consideration is designed for naval platforms. A two-input (error and rate of change of error) and single output (incremental control) fuzzy controller has been designed to position the weapon at desired position. Implementation of controller has been done using digitized inputs. Simulations have been carried out to evaluate the performance of the integrated fire control system under the presence of various non-linearities, sensor inaccuracies and other exogenous inputs like host platform generated disturbances and measurement noise. Stringent requirements of disturbance attenuation, tracking and command following have been met.

  13. Fuzzy attitude control for a nanosatellite in leo orbit

    NASA Astrophysics Data System (ADS)

    Calvo, Daniel; Laverón-Simavilla, Ana; Lapuerta, Victoria; Aviles, Taisir

    Fuzzy logic controllers are flexible and simple, suitable for small satellites Attitude Determination and Control Subsystems (ADCS). In this work, a tailored fuzzy controller is designed for a nanosatellite and is compared with a traditional Proportional Integrative Derivative (PID) controller. Both control methodologies are compared within the same specific mission. The orbit height varies along the mission from injection at around 380 km down to a 200 km height orbit, and the mission requires pointing accuracy over the whole time. Due to both the requirements imposed by such a low orbit, and the limitations in the power available for the attitude control, a robust and efficient ADCS is required. For these reasons a fuzzy logic controller is implemented as the brain of the ADCS and its performance and efficiency are compared to a traditional PID. The fuzzy controller is designed in three separated controllers, each one acting on one of the Euler angles of the satellite in an orbital frame. The fuzzy memberships are constructed taking into account the mission requirements, the physical properties of the satellite and the expected performances. Both methodologies, fuzzy and PID, are fine-tuned using an automated procedure to grant maximum efficiency with fixed performances. Finally both methods are probed in different environments to test their characteristics. The simulations show that the fuzzy controller is much more efficient (up to 65% less power required) in single maneuvers, achieving similar, or even better, precision than the PID. The accuracy and efficiency improvement of the fuzzy controller increase with orbit height because the environmental disturbances decrease, approaching the ideal scenario. A brief mission description is depicted as well as the design process of both ADCS controllers. Finally the validation process and the results obtained during the simulations are described. Those results show that the fuzzy logic methodology is valid for small satellites' missions benefiting from a well-developed artificial intelligence theory.

  14. Automatic Ship Handling of the Maritime Search Mission using a Self-Tuning Fuzzy Gain Scheduling PD Controller

    NASA Astrophysics Data System (ADS)

    Yu, Ker-Wei; Hwang, Rey-Chue; Hsieh, Jer-Guang

    In this paper, the ship manoeuvring problems particular to maritime search and rescue are investigated. A solution to such problems is necessary for successful ship handling to save human life. A fuzzy gain scheduling Proportional Derivative (PD) controller, using a back-propagation algorithm, is developed to solve these maritime search and rescue problems. The parameters of the proposed PD controller are determined on-line by fuzzy rules and adjustable fuzzy reasons. The proposed controller is self-adaptive and can accommodate the effects caused by wave or wind disturbance. Some computer simulations are provided to illustrate the use of the main ideas.

  15. Type-2 fuzzy model based controller design for neutralization processes.

    PubMed

    Kumbasar, Tufan; Eksin, Ibrahim; Guzelkaya, Mujde; Yesil, Engin

    2012-03-01

    In this study, an inverse controller based on a type-2 fuzzy model control design strategy is introduced and this main controller is embedded within an internal model control structure. Then, the overall proposed control structure is implemented in a pH neutralization experimental setup. The inverse fuzzy control signal generation is handled as an optimization problem and solved at each sampling time in an online manner. Although, inverse fuzzy model controllers may produce perfect control in perfect model match case and/or non-existence of disturbances, this open loop control would not be sufficient in the case of modeling mismatches or disturbances. Therefore, an internal model control structure is proposed to compensate these errors in order to overcome this deficiency where the basic controller is an inverse type-2 fuzzy model. This feature improves the closed-loop performance to disturbance rejection as shown through the real-time control of the pH neutralization process. Experimental results demonstrate the superiority of the inverse type-2 fuzzy model controller structure compared to the inverse type-1 fuzzy model controller and conventional control structures. PMID:22036014

  16. Adaptive neuro-fuzzy inference system for real-time monitoring of integrated-constructed wetlands.

    PubMed

    Dzakpasu, Mawuli; Scholz, Miklas; McCarthy, Valerie; Jordan, Siobhán; Sani, Abdulkadir

    2015-01-01

    Monitoring large-scale treatment wetlands is costly and time-consuming, but required by regulators. Some analytical results are available only after 5 days or even longer. Thus, adaptive neuro-fuzzy inference system (ANFIS) models were developed to predict the effluent concentrations of 5-day biochemical oxygen demand (BOD5) and NH4-N from a full-scale integrated constructed wetland (ICW) treating domestic wastewater. The ANFIS models were developed and validated with a 4-year data set from the ICW system. Cost-effective, quicker and easier to measure variables were selected as the possible predictors based on their goodness of correlation with the outputs. A self-organizing neural network was applied to extract the most relevant input variables from all the possible input variables. Fuzzy subtractive clustering was used to identify the architecture of the ANFIS models and to optimize fuzzy rules, overall, improving the network performance. According to the findings, ANFIS could predict the effluent quality variation quite strongly. Effluent BOD5 and NH4-N concentrations were predicted relatively accurately by other effluent water quality parameters, which can be measured within a few hours. The simulated effluent BOD5 and NH4-N concentrations well fitted the measured concentrations, which was also supported by relatively low mean squared error. Thus, ANFIS can be useful for real-time monitoring and control of ICW systems. PMID:25607665

  17. Adaptive Control Strategies for Flexible Robotic Arm

    NASA Technical Reports Server (NTRS)

    Bialasiewicz, Jan T.

    1996-01-01

    The control problem of a flexible robotic arm has been investigated. The control strategies that have been developed have a wide application in approaching the general control problem of flexible space structures. The following control strategies have been developed and evaluated: neural self-tuning control algorithm, neural-network-based fuzzy logic control algorithm, and adaptive pole assignment algorithm. All of the above algorithms have been tested through computer simulation. In addition, the hardware implementation of a computer control system that controls the tip position of a flexible arm clamped on a rigid hub mounted directly on the vertical shaft of a dc motor, has been developed. An adaptive pole assignment algorithm has been applied to suppress vibrations of the described physical model of flexible robotic arm and has been successfully tested using this testbed.

  18. Distributed traffic signal control using fuzzy logic

    NASA Technical Reports Server (NTRS)

    Chiu, Stephen

    1992-01-01

    We present a distributed approach to traffic signal control, where the signal timing parameters at a given intersection are adjusted as functions of the local traffic condition and of the signal timing parameters at adjacent intersections. Thus, the signal timing parameters evolve dynamically using only local information to improve traffic flow. This distributed approach provides for a fault-tolerant, highly responsive traffic management system. The signal timing at an intersection is defined by three parameters: cycle time, phase split, and offset. We use fuzzy decision rules to adjust these three parameters based only on local information. The amount of change in the timing parameters during each cycle is limited to a small fraction of the current parameters to ensure smooth transition. We show the effectiveness of this method through simulation of the traffic flow in a network of controlled intersections.

  19. Design of PID Fuzzy Controller for Electric Vehicle Brake Control System Based on Parallel Structure of PI Fuzzy and PD Fuzzy

    NASA Astrophysics Data System (ADS)

    Sugisaka, Masanori; Mbaïtiga, Zacharie

    There exist several problems in the control of vehicle brake including the development of control logic for anti-lock braking system (ABS), base-braking and intelligent braking. Here we study the intelligent braking control where we seek to develop a controller that can ensure that the braking torque commended by the driver will be achieved. In particular, we develop, a new PID Fuzzy controller (PIDFC) based on parallel operation of PI Fuzzy and PD Fuzzy control. Two fuzzy rule bases are constructed by separating the linguistic control rule for PID Fuzzy control into two parts: The first part is e-Δe and the second part is Δ2e-Δe respectively. Then two Fuzzy controls employing these rules bases individually are synthesized and run in parallel. The incremental control input is determined by taking weighted mean of the outputs of two Fuzzy controls. The result, which proves the merit of the proposed method are compared to those found in the previous research.

  20. Performance Optimization Control of ECH using Fuzzy Inference Application

    NASA Astrophysics Data System (ADS)

    Dubey, Abhay Kumar

    Electro-chemical honing (ECH) is a hybrid electrolytic precision micro-finishing technology that, by combining physico-chemical actions of electro-chemical machining and conventional honing processes, provides the controlled functional surfaces-generation and fast material removal capabilities in a single operation. Process multi-performance optimization has become vital for utilizing full potential of manufacturing processes to meet the challenging requirements being placed on the surface quality, size, tolerances and production rate of engineering components in this globally competitive scenario. This paper presents an strategy that integrates the Taguchi matrix experimental design, analysis of variances and fuzzy inference system (FIS) to formulate a robust practical multi-performance optimization methodology for complex manufacturing processes like ECH, which involve several control variables. Two methodologies one using a genetic algorithm tuning of FIS (GA-tuned FIS) and another using an adaptive network based fuzzy inference system (ANFIS) have been evaluated for a multi-performance optimization case study of ECH. The actual experimental results confirm their potential for a wide range of machining conditions employed in ECH.

  1. Fuzzy logic controllers: A knowledge-based system perspective

    NASA Technical Reports Server (NTRS)

    Bonissone, Piero P.

    1993-01-01

    Over the last few years we have seen an increasing number of applications of Fuzzy Logic Controllers. These applications range from the development of auto-focus cameras, to the control of subway trains, cranes, automobile subsystems (automatic transmissions), domestic appliances, and various consumer electronic products. In summary, we consider a Fuzzy Logic Controller to be a high level language with its local semantics, interpreter, and compiler, which enables us to quickly synthesize non-linear controllers for dynamic systems.

  2. Approach to Synchronization Control of Magnetic Bearings Using Fuzzy Logic

    NASA Technical Reports Server (NTRS)

    Yang, Li-Farn

    1996-01-01

    This paper presents a fuzzy-logic approach to the synthesis of synchronization control for magnetically suspended rotor system. The synchronization control enables a whirling rotor to undergo synchronous motion along the magnetic bearing axes; thereby avoiding the gyroscopic effect that degrade the stability of rotor systems when spinning at high speed. The control system features a fuzzy controller acting on the magnetic bearing device, in which the fuzzy inference system trained through fuzzy rules to minimize the differential errors between four bearing axes so that an error along one bearing axis can affect the overall control loop for the motion synchronization. Numerical simulations of synchronization control for the magnetically suspended rotor system are presented to show the effectiveness of the present approach.

  3. Fuzzy logic applications to expert systems and control

    NASA Technical Reports Server (NTRS)

    Lea, Robert N.; Jani, Yashvant

    1991-01-01

    A considerable amount of work on the development of fuzzy logic algorithms and application to space related control problems has been done at the Johnson Space Center (JSC) over the past few years. Particularly, guidance control systems for space vehicles during proximity operations, learning systems utilizing neural networks, control of data processing during rendezvous navigation, collision avoidance algorithms, camera tracking controllers, and tether controllers have been developed utilizing fuzzy logic technology. Several other areas in which fuzzy sets and related concepts are being considered at JSC are diagnostic systems, control of robot arms, pattern recognition, and image processing. It has become evident, based on the commercial applications of fuzzy technology in Japan and China during the last few years, that this technology should be exploited by the government as well as private industry for energy savings.

  4. Fuzzy-PID control for airborne optoelectronic stabilized platform

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Shen, Hong-hai

    2012-10-01

    The advantages and disadvantages of the traditional PID control and the fuzzy control principle are analyzed. A fuzzy-PID controller is designed for the airborne stabilized platform, to meet the requirements for tracking precision and response speed. The simulation result from MATLAB verified the validity of the method. The dynamic performance of the system has been improved, and the overshoot decreased. At the same time, the stable precision and the response speed are improved obviously.

  5. Modal-space reference-model-tracking fuzzy control of earthquake excited structures

    NASA Astrophysics Data System (ADS)

    Park, Kwan-Soon; Ok, Seung-Yong

    2015-01-01

    This paper describes an adaptive modal-space reference-model-tracking fuzzy control technique for the vibration control of earthquake-excited structures. In the proposed approach, the fuzzy logic is introduced to update optimal control force so that the controlled structural response can track the desired response of a reference model. For easy and practical implementation, the reference model is constructed by assigning the target damping ratios to the first few dominant modes in modal space. The numerical simulation results demonstrate that the proposed approach successfully achieves not only the adaptive fault-tolerant control system against partial actuator failures but also the robust performance against the variations of the uncertain system properties by redistributing the feedback control forces to the available actuators.

  6. Adaptive neuro-fuzzy and expert systems for power quality analysis and prediction of abnormal operation

    NASA Astrophysics Data System (ADS)

    Ibrahim, Wael Refaat Anis

    The present research involves the development of several fuzzy expert systems for power quality analysis and diagnosis. Intelligent systems for the prediction of abnormal system operation were also developed. The performance of all intelligent modules developed was either enhanced or completely produced through adaptive fuzzy learning techniques. Neuro-fuzzy learning is the main adaptive technique utilized. The work presents a novel approach to the interpretation of power quality from the perspective of the continuous operation of a single system. The research includes an extensive literature review pertaining to the applications of intelligent systems to power quality analysis. Basic definitions and signature events related to power quality are introduced. In addition, detailed discussions of various artificial intelligence paradigms as well as wavelet theory are included. A fuzzy-based intelligent system capable of identifying normal from abnormal operation for a given system was developed. Adaptive neuro-fuzzy learning was applied to enhance its performance. A group of fuzzy expert systems that could perform full operational diagnosis were also developed successfully. The developed systems were applied to the operational diagnosis of 3-phase induction motors and rectifier bridges. A novel approach for learning power quality waveforms and trends was developed. The technique, which is adaptive neuro fuzzy-based, learned, compressed, and stored the waveform data. The new technique was successfully tested using a wide variety of power quality signature waveforms, and using real site data. The trend-learning technique was incorporated into a fuzzy expert system that was designed to predict abnormal operation of a monitored system. The intelligent system learns and stores, in compressed format, trends leading to abnormal operation. The system then compares incoming data to the retained trends continuously. If the incoming data matches any of the learned trends, an alarm is instigated predicting the advent of system abnormal operation. The incoming data could be compared to previous trends as well as matched to trends developed through computer simulations and stored using fuzzy learning.

  7. Sampled-data fuzzy controller for time-delay nonlinear systems: fuzzy-model-based LMI approach.

    PubMed

    Lam, H K; Leung, Frank H F

    2007-06-01

    This paper presents the stability analysis and performance design for a sampled-data fuzzy control system with time delay, which is formed by a nonlinear plant with time delay and a sampled-data fuzzy controller connected in a closed loop. As the sampled-data fuzzy controller can be implemented by a microcontroller or a digital computer, the implementation time and cost can be reduced. However, the sampling activity and time delay, which are potential causes of system instability, will complicate the system dynamics and make the stability analysis much more difficult than that for a pure continuous-time fuzzy control system. In this paper, a sampled-data fuzzy controller with enhanced nonlinearity compensation ability is proposed. Based on the fuzzy-model-based control approach, linear matrix inequality (LMI)-based stability conditions are derived to guarantee the system stability. By using a descriptor representation, the complexity of the sampled-data fuzzy control system with time delay can be reduced to ease the stability analysis, which effectively leads to a smaller number of LMI-stability conditions. Information of the membership functions of both the fuzzy plant model and fuzzy controller are considered, which allows arbitrary matrices to be introduced, to ease the satisfaction of the stability conditions. An application example will be given to show the merits and design procedure of the proposed approach. Furthermore, LMI-based performance conditions are derived to aid the design of a well-performed sampled-data fuzzy controller. PMID:17550116

  8. PI and fuzzy logic controllers for shunt Active Power Filter--a report.

    PubMed

    Karuppanan, P; Mahapatra, Kamala Kanta

    2012-09-01

    The authors acknowledge certain errors in their recently published paper titled "PI and fuzzy logic controllers for shunt active power filter--A report.The ambiguity in band width calculation of adaptive hysteresis controller and control aspects of dc-link voltage issues are addressed. The shunt APF system is validated through extensive simulation and the results are support features of the proposed technique. PMID:23012711

  9. The application of variable universe fuzzy PID controller in computer-aided alignment of lithography projector

    NASA Astrophysics Data System (ADS)

    Zhang, Mei; Zheng, Meng; Li, Yanqiu

    2013-12-01

    A variable universe fuzzy PID algorithm is designed to control the misalignment of the lithography projection optics to meet the requirement of high image quality. This paper first simulates the alignment of Schwarzschild objective designed by us. Secondly, the variable universe fuzzy PID control is introduced to feed back the misalignment of Schwarzschild objective to the control system to drive the stage which holds the objective. So the position can be adjusted automatically. This feedback scheme can adjust the variables' universe self-adaptively by using fuzzy rules so that the concrete function and parameters of the contraction-expansion factor are not necessary. Finally, the proposed approach is demonstrated by simulations. The results show that, variable universe fuzzy PID method exhibits better performance in both improving response speed and decreasing overshoot compared to conventional PID and fuzzy PID control methods. In addition, the interference signal can be effectively restrained. It is concluded that this method can improve the dynamic and static properties of system and meet the requirement of fast response.

  10. Autonomous Control of a Quadrotor UAV Using Fuzzy Logic

    NASA Astrophysics Data System (ADS)

    Sureshkumar, Vijaykumar

    UAVs are being increasingly used today than ever before in both military and civil applications. They are heavily preferred in "dull, dirty or dangerous" mission scenarios. Increasingly, UAVs of all kinds are being used in policing, fire-fighting, inspection of structures, pipelines etc. Recently, the FAA gave its permission for UAVs to be used on film sets for motion capture and high definition video recording. The rapid development in MEMS and actuator technology has made possible a plethora of UAVs that are suited for commercial applications in an increasingly cost effective manner. An emerging popular rotary wing UAV platform is the Quadrotor A Quadrotor is a helicopter with four rotors, that make it more stable; but more complex to model and control. Characteristics that provide a clear advantage over other fixed wing UAVs are VTOL and hovering capabilities as well as a greater maneuverability. It is also simple in construction and design compared to a scaled single rotorcraft. Flying such UAVs using a traditional radio Transmitter-Receiver setup can be a daunting task especially in high stress situations. In order to make such platforms widely applicable, a certain level of autonomy is imperative to the future of such UAVs. This thesis paper presents a methodology for the autonomous control of a Quadrotor UAV using Fuzzy Logic. Fuzzy logic control has been chosen over conventional control methods as it can deal effectively with highly nonlinear systems, allows for imprecise data and is extremely modular. Modularity and adaptability are the key cornerstones of FLC. The objective of this thesis is to present the steps of designing, building and simulating an intelligent flight control module for a Quadrotor UAV. In the course of this research effort, a Quadrotor UAV is indigenously developed utilizing the resources of an online open source project called Aeroquad. System design is comprehensively dealt with. A math model for the Quadrotor is developed and a simulation environment is built in the MATLAB/Simulink framework. The Fuzzy flight controller development is discussed intensively. Validation of the math model developed is presented using actual flight data. Excellent attitude tracking is demonstrated for near hover flight regimes. The responses are analyzed and future work involving implementation is discussed.

  11. Nonlinear rescaling of control values simplifies fuzzy control

    NASA Technical Reports Server (NTRS)

    Vanlangingham, H.; Tsoukkas, A.; Kreinovich, V.; Quintana, C.

    1993-01-01

    Traditional control theory is well-developed mainly for linear control situations. In non-linear cases there is no general method of generating a good control, so we have to rely on the ability of the experts (operators) to control them. If we want to automate their control, we must acquire their knowledge and translate it into a precise control strategy. The experts' knowledge is usually represented in non-numeric terms, namely, in terms of uncertain statements of the type 'if the obstacle is straight ahead, the distance to it is small, and the velocity of the car is medium, press the brakes hard'. Fuzzy control is a methodology that translates such statements into precise formulas for control. The necessary first step of this strategy consists of assigning membership functions to all the terms that the expert uses in his rules (in our sample phrase these words are 'small', 'medium', and 'hard'). The appropriate choice of a membership function can drastically improve the quality of a fuzzy control. In the simplest cases, we can take the functions whose domains have equally spaced endpoints. Because of that, many software packages for fuzzy control are based on this choice of membership functions. This choice is not very efficient in more complicated cases. Therefore, methods have been developed that use neural networks or generic algorithms to 'tune' membership functions. But this tuning takes lots of time (for example, several thousands iterations are typical for neural networks). In some cases there are evident physical reasons why equally space domains do not work: e.g., if the control variable u is always positive (i.e., if we control temperature in a reactor), then negative values (that are generated by equal spacing) simply make no sense. In this case it sounds reasonable to choose another scale u' = f(u) to represent u, so that equal spacing will work fine for u'. In the present paper we formulate the problem of finding the best rescaling function, solve this problem, and show (on a real-life example) that after an optimal rescaling, the un-tuned fuzzy control can be as good as the best state-of-art traditional non-linear controls.

  12. Adaptive Generalized Projective Synchronization of Takagi-Sugeno Fuzzy Drive-response Dynamical Networks with Time Delay

    NASA Astrophysics Data System (ADS)

    Zheng, Yong-Ai

    2012-02-01

    Time-delay Takagi-Sugeno fuzzy drive-response dynamical networks (TD-TSFDRDNs) are defined by extending the drive-response dynamical networks. Based on the LaSalle invariant principle, a simple and systematic adaptive control scheme is proposed to synchronize the TD-TSFDRDNs with a desired scalar factor. A sufficient condition for the generalized projective synchronization in TD-TSFDRDNs is derived. Moreover, numerical simulations are provided to verify the correctness and effectiveness of the scheme.

  13. Neuro-fuzzy controller to navigate an unmanned vehicle.

    PubMed

    Selma, Boumediene; Chouraqui, Samira

    2013-12-01

    A Neuro-fuzzy control method for an Unmanned Vehicle (UV) simulation is described. The objective is guiding an autonomous vehicle to a desired destination along a desired path in an environment characterized by a terrain and a set of distinct objects, such as obstacles like donkey traffic lights and cars circulating in the trajectory. The autonomous navigate ability and road following precision are mainly influenced by its control strategy and real-time control performance. Fuzzy Logic Controller can very well describe the desired system behavior with simple "if-then" relations owing the designer to derive "if-then" rules manually by trial and error. On the other hand, Neural Networks perform function approximation of a system but cannot interpret the solution obtained neither check if its solution is plausible. The two approaches are complementary. Combining them, Neural Networks will allow learning capability while Fuzzy-Logic will bring knowledge representation (Neuro-Fuzzy). In this paper, an artificial neural network fuzzy inference system (ANFIS) controller is described and implemented to navigate the autonomous vehicle. Results show several improvements in the control system adjusted by neuro-fuzzy techniques in comparison to the previous methods like Artificial Neural Network (ANN). PMID:23705105

  14. Review of Medical Image Classification using the Adaptive Neuro-Fuzzy Inference System

    PubMed Central

    Hosseini, Monireh Sheikh; Zekri, Maryam

    2012-01-01

    Image classification is an issue that utilizes image processing, pattern recognition and classification methods. Automatic medical image classification is a progressive area in image classification, and it is expected to be more developed in the future. Because of this fact, automatic diagnosis can assist pathologists by providing second opinions and reducing their workload. This paper reviews the application of the adaptive neuro-fuzzy inference system (ANFIS) as a classifier in medical image classification during the past 16 years. ANFIS is a fuzzy inference system (FIS) implemented in the framework of an adaptive fuzzy neural network. It combines the explicit knowledge representation of an FIS with the learning power of artificial neural networks. The objective of ANFIS is to integrate the best features of fuzzy systems and neural networks. A brief comparison with other classifiers, main advantages and drawbacks of this classifier are investigated. PMID:23493054

  15. Fuzzy modelling and impulsive control of the hyperchaotic Lü system

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-Hong; Li, Dong

    2009-05-01

    This paper presents a novel approach to hyperchaos control of hyperchaotic systems based on impulsive control and the Takagi-Sugeno (T-S) fuzzy model. In this study, the hyperchaotic Lü system is exactly represented by the T-S fuzzy model and an impulsive control framework is proposed for stabilizing the hyperchaotic Lü system, which is also suitable for classes of T-S fuzzy hyperchaotic systems, such as the hyperchaotic Rössler, Chen, Chua systems and so on. Sufficient conditions for achieving stability in impulsive T-S fuzzy hyperchaotic systems are derived by using Lyapunov stability theory in the form of the linear matrix inequality, and are less conservative in comparison with existing results. Numerical simulations are given to demonstrate the effectiveness of the proposed method.

  16. Adaptive neural-based fuzzy modeling for biological systems.

    PubMed

    Wu, Shinq-Jen; Wu, Cheng-Tao; Chang, Jyh-Yeong

    2013-04-01

    The inverse problem of identifying dynamic biological networks from their time-course response data set is a cornerstone of systems biology. Hill and Michaelis-Menten model, which is a forward approach, provides local kinetic information. However, repeated modifications and a large amount of experimental data are necessary for the parameter identification. S-system model, which is composed of highly nonlinear differential equations, provides the direct identification of an interactive network. However, the identification of skeletal-network structure is challenging. Moreover, biological systems are always subject to uncertainty and noise. Are there suitable candidates with the potential to deal with noise-contaminated data sets? Fuzzy set theory is developed for handing uncertainty, imprecision and complexity in the real world; for example, we say "driving speed is high" wherein speed is a fuzzy variable and high is a fuzzy set, which uses the membership function to indicate the degree of a element belonging to the set (words in Italics to denote fuzzy variables or fuzzy sets). Neural network possesses good robustness and learning capability. In this study we hybrid these two together into a neural-fuzzy modeling technique. A biological system is formulated to a multi-input-multi-output (MIMO) Takagi-Sugeno (T-S) fuzzy system, which is composed of rule-based linear subsystems. Two kinds of smooth membership functions (MFs), Gaussian and Bell-shaped MFs, are used. The performance of the proposed method is tested with three biological systems. PMID:23376801

  17. Application of self-adjustment PID fuzzy controller in inverter air-conditioning control system

    NASA Astrophysics Data System (ADS)

    Jiang, Jing; Zhang, Xuesong

    2013-03-01

    Two-dimensional fuzzy temperature controller was used in the system of inverter air-conditioner to control the room temperature. Self-adjustment PID fuzzy controller was proposed to realize real-time control function. V / F control mode was used to compensate with low voltage, the average sampling algorithm was proposed to implement SPWM waveform modulation. Finally, the feasibility of self-adjustment PID fuzzy controller was verified by simulation, the actual operation results had proved that self-adjustment PID fuzzy controller had reliable, good output waveform and small harmonic wave, which could meet operational requirements of inverter air-conditioner.

  18. Artificial frame filling using adaptive neural fuzzy inference system for particle image velocimetry dataset

    NASA Astrophysics Data System (ADS)

    Akdemir, Bayram; Doǧan, Sercan; Aksoy, Muharrem H.; Canli, Eyüp; Özgören, Muammer

    2015-03-01

    Liquid behaviors are very important for many areas especially for Mechanical Engineering. Fast camera is a way to observe and search the liquid behaviors. Camera traces the dust or colored markers travelling in the liquid and takes many pictures in a second as possible as. Every image has large data structure due to resolution. For fast liquid velocity, there is not easy to evaluate or make a fluent frame after the taken images. Artificial intelligence has much popularity in science to solve the nonlinear problems. Adaptive neural fuzzy inference system is a common artificial intelligence in literature. Any particle velocity in a liquid has two dimension speed and its derivatives. Adaptive Neural Fuzzy Inference System has been used to create an artificial frame between previous and post frames as offline. Adaptive neural fuzzy inference system uses velocities and vorticities to create a crossing point vector between previous and post points. In this study, Adaptive Neural Fuzzy Inference System has been used to fill virtual frames among the real frames in order to improve image continuity. So this evaluation makes the images much understandable at chaotic or vorticity points. After executed adaptive neural fuzzy inference system, the image dataset increase two times and has a sequence as virtual and real, respectively. The obtained success is evaluated using R2 testing and mean squared error. R2 testing has a statistical importance about similarity and 0.82, 0.81, 0.85 and 0.8 were obtained for velocities and derivatives, respectively.

  19. Intelligent control of non-linear dynamical system based on the adaptive neurocontroller

    NASA Astrophysics Data System (ADS)

    Engel, E.; Kovalev, I. V.; Kobezhicov, V.

    2015-10-01

    This paper presents an adaptive neuro-controller for intelligent control of non-linear dynamical system. The formed as the fuzzy selective neural net the adaptive neuro-controller on the base of system's state, creates the effective control signal under random perturbations. The validity and advantages of the proposed adaptive neuro-controller are demonstrated by numerical simulations. The simulation results show that the proposed controller scheme achieves real-time control speed and the competitive performance, as compared to PID, fuzzy logic controllers.

  20. Fuzzy control of parabolic antenna with backlash compensation

    NASA Astrophysics Data System (ADS)

    Ahmed, Mohammed; Noor, Samsul Bahari B. Mohd

    2015-05-01

    A fuzzy logic based controller (FLC) was proposed for position control of a parabolic dish antenna system with the major aim of eradicating the effect backlash disturbance which may be present in the system. The disturbance is nonlinear and is capable of generating steady state positional errors. Simulation results obtained using SIMULINK/MATLAB 2012a were compared with those obtained when the controller was proportional-derivative controller (PDC). The fuzzy controller portrays that it has the capability of reducing the noise due to backlash and possibly others more than the proportional-derivative controller.

  1. Turbine speed control system based on a fuzzy-PID

    NASA Astrophysics Data System (ADS)

    Sun, Jian-Hua; Wang, Wei; Yu, Hai-Yan

    2008-12-01

    The flexibility demand of marine nuclear power plant is very high, the multiple parameters of the marine nuclear power plant with the once-through steam generator are strongly coupled, and the normal PID control of the turbine speed can’t meet the control demand. This paper introduces a turbine speed Fuzzy-PID controller to coordinately control the steam pressure and thus realize the demand for quick tracking and steady state control over the turbine speed by using the Fuzzy control’s quick dynamic response and PID control’s steady state performance. The simulation shows the improvement of the response time and steady state performance of the control system.

  2. Advances in Adaptive Control Methods

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan

    2009-01-01

    This poster presentation describes recent advances in adaptive control technology developed by NASA. Optimal Control Modification is a novel adaptive law that can improve performance and robustness of adaptive control systems. A new technique has been developed to provide an analytical method for computing time delay stability margin for adaptive control systems.

  3. Auto-control of pumping operations in sewerage systems by rule-based fuzzy neural networks

    NASA Astrophysics Data System (ADS)

    Chiang, Y.-M.; Chang, L.-C.; Tsai, M.-J.; Wang, Y.-F.; Chang, F.-J.

    2010-09-01

    Pumping stations play an important role in flood mitigation in metropolitan areas. The existing sewerage systems, however, are facing a great challenge of fast rising peak flow resulting from urbanization and climate change. It is imperative to construct an efficient and accurate operating prediction model for pumping stations to simulate the drainage mechanism for discharging the rainwater in advance. In this study, we propose two rule-based fuzzy neural networks, adaptive neuro-fuzzy inference system (ANFIS) and counterpropagatiom fuzzy neural network (CFNN) for on-line predicting of the number of open and closed pumps of a pivotal pumping station in Taipei city up to a lead time of 20 min. The performance of ANFIS outperforms that of CFNN in terms of model efficiency, accuracy, and correctness. Furthermore, the results not only show the predictive water levels do contribute to the successfully operating pumping stations but also demonstrate the applicability and reliability of ANFIS in automatically controlling the urban sewerage systems.

  4. Auto-control of pumping operations in sewerage systems by rule-based fuzzy neural networks

    NASA Astrophysics Data System (ADS)

    Chiang, Y.-M.; Chang, L.-C.; Tsai, M.-J.; Wang, Y.-F.; Chang, F.-J.

    2011-01-01

    Pumping stations play an important role in flood mitigation in metropolitan areas. The existing sewerage systems, however, are facing a great challenge of fast rising peak flow resulting from urbanization and climate change. It is imperative to construct an efficient and accurate operating prediction model for pumping stations to simulate the drainage mechanism for discharging the rainwater in advance. In this study, we propose two rule-based fuzzy neural networks, adaptive neuro-fuzzy inference system (ANFIS) and counterpropagation fuzzy neural network for on-line predicting of the number of open and closed pumps of a pivotal pumping station in Taipei city up to a lead time of 20 min. The performance of ANFIS outperforms that of CFNN in terms of model efficiency, accuracy, and correctness. Furthermore, the results not only show the predictive water levels do contribute to the successfully operating pumping stations but also demonstrate the applicability and reliability of ANFIS in automatically controlling the urban sewerage systems.

  5. Adaptive sequential controller

    SciTech Connect

    El-Sharkawi, M.A.; Xing, J.; Butler, N.G.; Rodriguez, A.

    1994-11-01

    An adaptive sequential controller for controlling a circuit breaker or other switching device to substantially eliminate transients on a distribution line caused by closing and opening the circuit breaker. The device adaptively compensates for changes in the response time of the circuit breaker due to aging and environmental effects. A potential transformer provides a reference signal corresponding to the zero crossing of the voltage waveform, and a phase shift comparator circuit compares the reference signal to the time at which any transient was produced when the circuit breaker closed, producing a signal indicative of the adaptive adjustment that should be made. Similarly, in controlling the opening of the circuit breaker, a current transformer provides a reference signal that is compared against the time at which any transient is detected when the circuit breaker last opened. An adaptive adjustment circuit produces a compensation time that is appropriately modified to account for changes in the circuit breaker response, including the effect of ambient conditions and aging. When next opened or closed, the circuit breaker is activated at an appropriately compensated time, so that it closes when the voltage crosses zero and opens when the current crosses zero, minimizing any transients on the distribution line. Phase angle can be used to control the opening of the circuit breaker relative to the reference signal provided by the potential transformer. 15 figs.

  6. Adaptive sequential controller

    DOEpatents

    El-Sharkawi, Mohamed A.; Xing, Jian; Butler, Nicholas G.; Rodriguez, Alonso

    1994-01-01

    An adaptive sequential controller (50/50') for controlling a circuit breaker (52) or other switching device to substantially eliminate transients on a distribution line caused by closing and opening the circuit breaker. The device adaptively compensates for changes in the response time of the circuit breaker due to aging and environmental effects. A potential transformer (70) provides a reference signal corresponding to the zero crossing of the voltage waveform, and a phase shift comparator circuit (96) compares the reference signal to the time at which any transient was produced when the circuit breaker closed, producing a signal indicative of the adaptive adjustment that should be made. Similarly, in controlling the opening of the circuit breaker, a current transformer (88) provides a reference signal that is compared against the time at which any transient is detected when the circuit breaker last opened. An adaptive adjustment circuit (102) produces a compensation time that is appropriately modified to account for changes in the circuit breaker response, including the effect of ambient conditions and aging. When next opened or closed, the circuit breaker is activated at an appropriately compensated time, so that it closes when the voltage crosses zero and opens when the current crosses zero, minimizing any transients on the distribution line. Phase angle can be used to control the opening of the circuit breaker relative to the reference signal provided by the potential transformer.

  7. Simulation and design of fuzzy sliding-mode controller for ship heading-tracking

    NASA Astrophysics Data System (ADS)

    Yuan, Lei; Wu, Hansong

    2011-03-01

    In considering the characteristic of a rudder, the maneuvers of a ship were described by an unmatched uncertain nonlinear mathematic model with unknown virtual control coefficient and parameter uncertainties. In order to solve the uncertainties in the ship heading control, specifically the controller singular and paramount re-estimation problem, a new multiple sliding-mode adaptive fuzzy control algorithm was proposed by combining Nussbaum gain technology, the approximation property of fuzzy logic systems, and a multiple sliding-mode control algorithm. Based on the Lyapunov function, it was proven in theory that the controller made all signals in the nonlinear system of unmatched uncertain ship motion uniformly bounded, with tracking errors converging to zero. Simulation results show that the demonstrated controller design can track a desired course fast and accurately. It also exhibits strong robustness peculiarity in relation to system uncertainties and disturbances.

  8. Fuzzy logic control of the building structure with CLEMR dampers

    NASA Astrophysics Data System (ADS)

    Zhang, Xiang-Cheng; Xu, Zhao-Dong; Huang, Xing-Huai; Zhu, Jun-Tao

    2013-04-01

    The semi-active control technology has been paid more attention in the field of structural vibration control due to its high controllability, excellent control effect and low power requirement. When semi-active control device are used for vibration control, some challenges must be taken into account, such as the reliability and the control strategy of the device. This study presents a new large tonnage compound lead extrusion magnetorheological (CLEMR) damper, whose mathematical model is introduced to describe the variation of damping force with current and velocity. Then a current controller based on the fuzzy logic control strategy is designed to determine control currents of the CLEMR dampers rapidly. A ten-floor frame structure with CLEMR dampers using the fuzzy logic control strategy is built and calculated by using MATLAB. Calculation results show that CLEMR dampers can reduce the seismic responses of structures effectively. Calculation results of the fuzzy logic control strategy are compared with those of the semi-active limit Hrovat control structure, the passive-off control structure, and the uncontrolled structure. Comparison results show that the fuzzy logic control strategy can determine control currents of CLEMR dampers quickly and can reduce seismic responses of the structures more effectively than the passive-off control strategy and the uncontrolled structure.

  9. Neuro-Fuzzy Control of a Robotic Manipulator

    NASA Astrophysics Data System (ADS)

    Gierlak, P.; Muszyńska, M.; Żylski, W.

    2014-08-01

    In this paper, to solve the problem of control of a robotic manipulator's movement with holonomical constraints, an intelligent control system was used. This system is understood as a hybrid controller, being a combination of fuzzy logic and an artificial neural network. The purpose of the neuro-fuzzy system is the approximation of the nonlinearity of the robotic manipulator's dynamic to generate a compensatory control. The control system is designed in such a way as to permit modification of its properties under different operating conditions of the two-link manipulator

  10. A Numerical Optimization Approach for Tuning Fuzzy Logic Controllers

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Garg, Devendra P.

    1998-01-01

    This paper develops a method to tune fuzzy controllers using numerical optimization. The main attribute of this approach is that it allows fuzzy logic controllers to be tuned to achieve global performance requirements. Furthermore, this approach allows design constraints to be implemented during the tuning process. The method tunes the controller by parameterizing the membership functions for error, change-in-error and control output. The resulting parameters form a design vector which is iteratively changed to minimize an objective function. The minimal objective function results in an optimal performance of the system. A spacecraft mounted science instrument line-of-sight pointing control is used to demonstrate results.

  11. Fuzzy Logic Decoupled Lateral Control for General Aviation Airplanes

    NASA Technical Reports Server (NTRS)

    Duerksen, Noel

    1997-01-01

    It has been hypothesized that a human pilot uses the same set of generic skills to control a wide variety of aircraft. If this is true, then it should be possible to construct an electronic controller which embodies this generic skill set such that it can successfully control different airplanes without being matched to a specific airplane. In an attempt to create such a system, a fuzzy logic controller was devised to control aileron or roll spoiler position. This controller was used to control bank angle for both a piston powered single engine aileron equipped airplane simulation and a business jet simulation which used spoilers for primary roll control. Overspeed, stall and overbank protection were incorporated in the form of expert systems supervisors and weighted fuzzy rules. It was found that by using the artificial intelligence techniques of fuzzy logic and expert systems, a generic lateral controller could be successfully used on two general aviation aircraft types that have very different characteristics. These controllers worked for both airplanes over their entire flight envelopes. The controllers for both airplanes were identical except for airplane specific limits (maximum allowable airspeed, throttle ]ever travel, etc.). This research validated the fact that the same fuzzy logic based controller can control two very different general aviation airplanes. It also developed the basic controller architecture and specific control parameters required for such a general controller.

  12. Adaptive Cruise Control (ACC)

    NASA Astrophysics Data System (ADS)

    Reif, Konrad

    Die adaptive Fahrgeschwindigkeitsregelung (ACC, Adaptive Cruise Control) ist eine Weiterentwicklung der konventionellen Fahrgeschwindigkeitsregelung, die eine konstante Fahrgeschwindigkeit einstellt. ACC überwacht mittels eines Radarsensors den Bereich vor dem Fahrzeug und passt die Geschwindigkeit den Gegebenheiten an. ACC reagiert auf langsamer vorausfahrende oder einscherende Fahrzeuge mit einer Reduzierung der Geschwindigkeit, sodass der vorgeschriebene Mindestabstand zum vorausfahrenden Fahrzeug nicht unterschritten wird. Hierzu greift ACC in Antrieb und Bremse ein. Sobald das vorausfahrende Fahrzeug beschleunigt oder die Spur verlässt, regelt ACC die Geschwindigkeit wieder auf die vorgegebene Sollgeschwindigkeit ein (Bild 1). ACC steht somit für eine Geschwindigkeitsregelung, die sich dem vorausfahrenden Verkehr anpasst.

  13. An intelligent adaptive control scheme for postsurgical blood pressure regulation.

    PubMed

    Gao, Yang; Er, Meng Joo

    2005-03-01

    This paper presents an adaptive modeling and control scheme for drug delivery systems based on a generalized fuzzy neural network (G-FNN). The proposed G-FNN is a novel intelligent modeling tool, which can model unknown nonlinearities of complex drug delivery systems and adapt to changes and uncertainties in these systems online. It offers salient features, such as dynamic fuzzy neural topology, fast online learning ability and adaptability. System approximation formulated by the G-FNN is employed in the adaptive controller design for drug infusion in intensive care environment. In particular, this paper investigates automated regulation of mean arterial pressure (MAP) through intravenous infusion of sodium nitroprusside (SNP), which is one attractive application in automation of drug delivery. Simulation studies demonstrate the capability of the proposed approach in estimating the drug's effect and regulating blood pressure at a prescribed level. PMID:15787153

  14. Terminal sliding mode fuzzy control based on multiple sliding surfaces for nonlinear ship autopilot systems

    NASA Astrophysics Data System (ADS)

    Yuan, Lei; Wu, Han-Song

    2010-12-01

    A terminal sliding mode fuzzy control based on multiple sliding surfaces was proposed for ship course tracking steering, which takes account of rudder characteristics and parameter uncertainty. In order to solve the problem, the controller was designed by employing the universal approximation property of fuzzy logic system, the advantage of Nussbaum function, and using multiple sliding mode control algorithm based on the recursive technique. In the last step of designing, a nonsingular terminal sliding mode was utilized to drive the last state of the system to converge in a finite period of time, and high-order sliding mode control law was designed to eliminate the chattering and make the system robust. The simulation results showed that the controller designed here could track a desired course fast and accurately. It also exhibited strong robustness peculiarly to system, and had better adaptive ability than traditional PID control algorithms.

  15. Genetic optimization of fuzzy fractional PD+I controllers.

    PubMed

    Jesus, Isabel S; Barbosa, Ramiro S

    2015-07-01

    Fractional order calculus is a powerful emerging mathematical tool in science and engineering. There is currently an increasing interest in generalizing classical control theories and developing novel control strategies. The genetic algorithms (GA) are a stochastic search and optimization methods based on the reproduction processes found in biological systems, used for solving engineering problems. In the context of process control, the fuzzy logic usually means variables that are described by imprecise terms, and represented by quantities that are qualitative and vague. In this article we consider the development of an optimal fuzzy fractional PD+I controller in which the parameters are tuned by a GA. The performance of the proposed fuzzy fractional control is illustrated through some application examples. PMID:25661162

  16. An architecture for designing fuzzy logic controllers using neural networks

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.

    1991-01-01

    Described here is an architecture for designing fuzzy controllers through a hierarchical process of control rule acquisition and by using special classes of neural network learning techniques. A new method for learning to refine a fuzzy logic controller is introduced. A reinforcement learning technique is used in conjunction with a multi-layer neural network model of a fuzzy controller. The model learns by updating its prediction of the plant's behavior and is related to the Sutton's Temporal Difference (TD) method. The method proposed here has the advantage of using the control knowledge of an experienced operator and fine-tuning it through the process of learning. The approach is applied to a cart-pole balancing system.

  17. Autonomous vehicle motion control, approximate maps, and fuzzy logic

    NASA Technical Reports Server (NTRS)

    Ruspini, Enrique H.

    1993-01-01

    Progress on research on the control of actions of autonomous mobile agents using fuzzy logic is presented. The innovations described encompass theoretical and applied developments. At the theoretical level, results of research leading to the combined utilization of conventional artificial planning techniques with fuzzy logic approaches for the control of local motion and perception actions are presented. Also formulations of dynamic programming approaches to optimal control in the context of the analysis of approximate models of the real world are examined. Also a new approach to goal conflict resolution that does not require specification of numerical values representing relative goal importance is reviewed. Applied developments include the introduction of the notion of approximate map. A fuzzy relational database structure for the representation of vague and imprecise information about the robot's environment is proposed. Also the central notions of control point and control structure are discussed.

  18. Application of genetic algorithms to tuning fuzzy control systems

    NASA Technical Reports Server (NTRS)

    Espy, Todd; Vombrack, Endre; Aldridge, Jack

    1993-01-01

    Real number genetic algorithms (GA) were applied for tuning fuzzy membership functions of three controller applications. The first application is our 'Fuzzy Pong' demonstration, a controller that controls a very responsive system. The performance of the automatically tuned membership functions exceeded that of manually tuned membership functions both when the algorithm started with randomly generated functions and with the best manually-tuned functions. The second GA tunes input membership functions to achieve a specified control surface. The third application is a practical one, a motor controller for a printed circuit manufacturing system. The GA alters the positions and overlaps of the membership functions to accomplish the tuning. The applications, the real number GA approach, the fitness function and population parameters, and the performance improvements achieved are discussed. Directions for further research in tuning input and output membership functions and in tuning fuzzy rules are described.

  19. Composite fuzzy sliding mode control of nonlinear singularly perturbed systems.

    PubMed

    Nagarale, Ravindrakumar M; Patre, B M

    2014-05-01

    This paper deals with the robust asymptotic stabilization for a class of nonlinear singularly perturbed systems using the fuzzy sliding mode control technique. In the proposed approach the original system is decomposed into two subsystems as slow and fast models by the singularly perturbed method. The composite fuzzy sliding mode controller is designed for stabilizing the full order system by combining separately designed slow and fast fuzzy sliding mode controllers. The two-time scale design approach minimizes the effect of boundary layer system on the full order system. A stability analysis allows us to provide sufficient conditions for the asymptotic stability of the full order closed-loop system. The simulation results show improved system performance of the proposed controller as compared to existing methods. The experimentation results validate the effectiveness of the proposed controller. PMID:24636524

  20. Fuzzy sampled-data control for uncertain vehicle suspension systems.

    PubMed

    Li, Hongyi; Jing, Xingjian; Lam, Hak-Keung; Shi, Peng

    2014-07-01

    This paper investigates the problem of sampled-data H∞ control of uncertain active suspension systems via fuzzy control approach. Our work focuses on designing state-feedback and output-feedback sampled-data controllers to guarantee the resulting closed-loop dynamical systems to be asymptotically stable and satisfy H∞ disturbance attenuation level and suspension performance constraints. Using Takagi-Sugeno (T-S) fuzzy model control method, T-S fuzzy models are established for uncertain vehicle active suspension systems considering the desired suspension performances. Based on Lyapunov stability theory, the existence conditions of state-feedback and output-feedback sampled-data controllers are obtained by solving an optimization problem. Simulation results for active vehicle suspension systems with uncertainty are provided to demonstrate the effectiveness of the proposed method. PMID:24043419

  1. Fuzzy Control of Flexible-Link Manipulators: A Review

    NASA Technical Reports Server (NTRS)

    Akbarzadeh-T, M.-R.; Quintana, S.; Jamshidi, M.

    1998-01-01

    Several recent research efforts are reviewed here which have applied fuzzy logic in control of flexible-link manipulators. A flexible robot is a distributed parameter system represented by complex nonlinear dynamics, its actuator and the control parameters are non-colocated, and lastly, unstructured/unknown parameters play a significant role in model dynamics of a flexible robot operating in the real world. As a result, control of flexible robots is considered a promising area for application of intelligent control methodologies such as fuzzy logic, genetic algorithms, and neural networks.

  2. a Study of K-P Interaction at High Energy Using Adaptive Fuzzy Inference System Interactions

    NASA Astrophysics Data System (ADS)

    El-Bakry, M. Y.

    Adaptive Network Fuzzy Inference System (ANFIS) is an artificial intelligence (AI)-based technique that proved efficient in a variety of problems such as classification, recognition and modeling of complex systems. This paper utilizes the adaptive network fuzzy inference system to model the K-P interactions. The ANFIS-based K-P model simulates the multiplicity distribution of charged pions at different high energies. The results showed very accurate fitting to the experimental data recommending it to be a good alternative to other theoretical techniques.

  3. Applications of fuzzy logic to control and decision making

    NASA Technical Reports Server (NTRS)

    Lea, Robert N.; Jani, Yashvant

    1991-01-01

    Long range space missions will require high operational efficiency as well as autonomy to enhance the effectivity of performance. Fuzzy logic technology has been shown to be powerful and robust in interpreting imprecise measurements and generating appropriate control decisions for many space operations. Several applications are underway, studying the fuzzy logic approach to solving control and decision making problems. Fuzzy logic algorithms for relative motion and attitude control have been developed and demonstrated for proximity operations. Based on this experience, motion control algorithms that include obstacle avoidance were developed for a Mars Rover prototype for maneuvering during the sample collection process. A concept of an intelligent sensor system that can identify objects and track them continuously and learn from its environment is under development to support traffic management and proximity operations around the Space Station Freedom. For safe and reliable operation of Lunar/Mars based crew quarters, high speed controllers with ability to combine imprecise measurements from several sensors is required. A fuzzy logic approach that uses high speed fuzzy hardware chips is being studied.

  4. Design and performance comparison of fuzzy logic based tracking controllers

    NASA Technical Reports Server (NTRS)

    Lea, Robert N.; Jani, Yashvant

    1992-01-01

    Several camera tracking controllers based on fuzzy logic principles have been designed and tested in software simulation in the software technology branch at the Johnson Space Center. The fuzzy logic based controllers utilize range measurement and pixel positions from the image as input parameters and provide pan and tilt gimble rate commands as output. Two designs of the rulebase and tuning process applied to the membership functions are discussed in light of optimizing performance. Seven test cases have been designed to test the performance of the controllers for proximity operations where approaches like v-bar, fly-around and station keeping are performed. The controllers are compared in terms of responsiveness, and ability to maintain the object in the field-of-view of the camera. Advantages of the fuzzy logic approach with respect to the conventional approach have been discussed in terms of simplicity and robustness.

  5. A Design of Fuzzy Neural Network Based Robust Gain Scheduling Controllers

    NASA Astrophysics Data System (ADS)

    Sato, Yoshishige

    This paper propose robust gain scheduling control design by intelligent control which uses Fuzzy-Neural Network without model. Proposal methods are as follows, To constitute a robust and capable of automatically gain controlling against the conventional fixed PID control system. To build the Neural Network which learns inverse dynamics as feed forward compensation, and to build 2 degrees freedom control which is the feedback compensation. To propose the control system which adaptively adjusts the gain according to the changes of target errors, and to verified the effectiveness of the proposed method.

  6. Analysis and Synthesis of Memory-Based Fuzzy Sliding Mode Controllers.

    PubMed

    Zhang, Jinhui; Lin, Yujuan; Feng, Gang

    2015-12-01

    This paper addresses the sliding mode control problem for a class of Takagi-Sugeno fuzzy systems with matched uncertainties. Different from the conventional memoryless sliding surface, a memory-based sliding surface is proposed which consists of not only the current state but also the delayed state. Both robust and adaptive fuzzy sliding mode controllers are designed based on the proposed memory-based sliding surface. It is shown that the sliding surface can be reached and the closed-loop control system is asymptotically stable. Furthermore, to reduce the chattering, some continuous sliding mode controllers are also presented. Finally, the ball and beam system is used to illustrate the advantages and effectiveness of the proposed approaches. It can be seen that, with the proposed control approaches, not only can the stability be guaranteed, but also its transient performance can be improved significantly. PMID:25643421

  7. Full design of fuzzy controllers using genetic algorithms

    NASA Technical Reports Server (NTRS)

    Homaifar, Abdollah; Mccormick, ED

    1992-01-01

    This paper examines the applicability of genetic algorithms in the complete design of fuzzy logic controllers. While GA has been used before in the development of rule sets or high performance membership functions, the interdependence between these two components dictates that they should be designed together simultaneously. GA is fully capable of creating complete fuzzy controllers given the equations of motion of the system, eliminating the need for human input in the design loop. We show the application of this new method to the development of a cart controller.

  8. Fuzzy logic control for active bus suspension system

    NASA Astrophysics Data System (ADS)

    Turkkan, Mujde; Yagiz, Nurkan

    2013-02-01

    In this study an active controller is presented for vibration suppression of a full-bus suspension model that use air spring. Since the air spring on the full-bus model may face different working conditions, auxiliary chambers have been designed. The vibrations, caused by the irregularities of the road surfaces, are tried to be suppressed via a multi input-single output fuzzy logic controller. The effect of changes in the number of auxiliary chambers on the vehicle vibrations is also investigated. The numerical results demonstrate that the presented fuzzy logic controller improves both ride comfort and road holding.

  9. Full design of fuzzy controllers using genetic algorithms

    NASA Technical Reports Server (NTRS)

    Homaifar, Abdollah; Mccormick, ED

    1992-01-01

    This paper examines the applicability of genetic algorithms (GA) in the complete design of fuzzy logic controllers. While GA has been used before in the development of rule sets or high performance membership functions, the interdependence between these two components dictates that they should be designed together simultaneously. GA is fully capable of creating complete fuzzy controllers given the equations of motion of the system, eliminating the need for human input in the design loop. We show the application of this new method to the development of a cart controller.

  10. Optimized Reactive Power Compensation Using Fuzzy Logic Controller

    NASA Astrophysics Data System (ADS)

    George, S.; Mini, K. N.; Supriya, K.

    2015-03-01

    Reactive power flow in a long transmission line plays a vital role in power transfer capability and voltage stability in power system. Traditionally, shunt connected compensators are used to control reactive power in long transmission line. Thyristor controlled reactor is used to control reactive power under lightly loaded condition. By controlling firing angle of thyristor, it is possible to control reactive power in the transmission lines. However, thyristor controlled reactor will inject harmonic current into the system. An attempt to reduce reactive power injection will increase harmonic distortion in the line current and vice versa. Thus, there is a trade-off between reactive power injection and harmonics in current. By optimally controlling the reactive power injection, harmonics in current can be brought within the specified limit. In this paper, a Fuzzy Logic Controller is implemented to obtain optimal control of reactive power of the compensator to maintain voltage and harmonic in current within the limits. An algorithm which optimizes the firing angle in each fuzzy subset by calculating the rank of feasible firing angles is proposed for the construction of rules in Fuzzy Logic Controller. The novelty of the algorithm is that it uses a simple error formula for the calculation of the rank of the feasible firing angles in each fuzzy subset.

  11. Neural and fuzzy computation techniques for playout delay adaptation in VoIP networks.

    PubMed

    Ranganathan, Mohan Krishna; Kilmartin, Liam

    2005-09-01

    Playout delay adaptation algorithms are often used in real time voice communication over packet-switched networks to counteract the effects of network jitter at the receiver. Whilst the conventional algorithms developed for silence-suppressed speech transmission focused on preserving the relative temporal structure of speech frames/packets within a talkspurt (intertalkspurt adaptation), more recently developed algorithms strive to achieve better quality by allowing for playout delay adaptation within a talkspurt (intratalkspurt adaptation). The adaptation algorithms, both intertalkspurt and intratalkspurt based, rely on short term estimations of the characteristics of network delay that would be experienced by up-coming voice packets. The use of novel neural networks and fuzzy systems as estimators of network delay characteristics are presented in this paper. Their performance is analyzed in comparison with a number of traditional techniques for both inter and intratalkspurt adaptation paradigms. The design of a novel fuzzy trend analyzer system (FTAS) for network delay trend analysis and its usage in intratalkspurt playout delay adaptation are presented in greater detail. The performance of the proposed mechanism is analyzed based on measured Internet delays. Index Terms-Fuzzy delay trend analysis, intertalkspurt, intratalkspurt, multilayer perceptrons (MLPs), network delay estimation, playout buffering, playout delay adaptation, time delay neural networks (TDNNs), voice over Internet protocol (VoIP). PMID:16252825

  12. Fuzzy physical programming for Space Manoeuvre Vehicles trajectory optimization based on hp-adaptive pseudospectral method

    NASA Astrophysics Data System (ADS)

    Chai, Runqi; Savvaris, Al; Tsourdos, Antonios

    2016-06-01

    In this paper, a fuzzy physical programming (FPP) method has been introduced for solving multi-objective Space Manoeuvre Vehicles (SMV) skip trajectory optimization problem based on hp-adaptive pseudospectral methods. The dynamic model of SMV is elaborated and then, by employing hp-adaptive pseudospectral methods, the problem has been transformed to nonlinear programming (NLP) problem. According to the mission requirements, the solutions were calculated for each single-objective scenario. To get a compromised solution for each target, the fuzzy physical programming (FPP) model is proposed. The preference function is established with considering the fuzzy factor of the system such that a proper compromised trajectory can be acquired. In addition, the NSGA-II is tested to obtain the Pareto-optimal solution set and verify the Pareto optimality of the FPP solution. Simulation results indicate that the proposed method is effective and feasible in terms of dealing with the multi-objective skip trajectory optimization for the SMV.

  13. Genetic fuzzy modelling and control of bispectral index (BIS) for general intravenous anaesthesia.

    PubMed

    Shieh, Jiann-Shing; Kao, Ming-Hsien; Liu, Chien-Chiang

    2006-03-01

    Based on an adaptive genetic fuzzy clustering algorithm, a derived fuzzy knowledge model is proposed for quantitatively estimating the systolic arterial pressure (SAP), heart rate (HR), and bispectral index (BIS) using 12 patients and it validates them according to pharmacological reasoning. Also, a genetic proportional integral derivative controller (GPIDC) to adaptive three controller parameters and a genetic fuzzy logic controller (GFLC) to adaptive controller rules using genetic algorithms (GAs) were simulated and compared each other in a patient model using the BIS value as a controlled variable. Each controller was tested using a set of 12 virtual patients undergoing a Gaussian random surgical disturbance repeated with BIS targets set at 40, 50, and 60. Controller performance was assessed using mean absolute error (MAE) of the BIS target, the percentage of time with acceptable BIS control (PTABC), and drug consumption (DC). It was found that the MAE value of the BIS target was significantly lower (P < 0.05) and the values of PTABC and DC of BIS target were significantly higher (P < 0.05) in BIS targets set at 40 than at 50 or 60 in both GPIDC and GFLC. However, when compared with two controllers in terms of the values of MAE, PTABC, and DC each other in BIS targets set at 40, 50, and 60, there were no significant differences (P > 0.05). Furthermore, when the simulation results in these two controllers were compared with routine standard practice of 12 clinical trials (i.e., manual control) in BIS target set at 50, the values of PTABC in both GPIDC and GFLC groups were significantly higher (P < 0.05) than in the manual control group. In contrast, there were no significant differences (P > 0.05) for these three groups in terms of drug consumption. This indicates that either GPIDC or GFLC can control the BIS target set at 50 better than manual control, although the similar drug consumption is used. PMID:15961340

  14. Adaptive control for accelerators

    SciTech Connect

    Eaton, L.E.; Jachim, S.P.; Natter, E.F.

    1991-01-01

    This patent describes an adaptive feedforward control loop is provided to stabilize accelerator beam loading of the radio frequency field in an accelerator cavity during successive pulses of the beam into the cavity. A digital signal processor enables an adaptive algorithm to generate a feedforward error correcting signal functionally determined by the feedback error obtained by a beam pulse loading the cavity after the previous correcting signal was applied to the cavity. Each cavity feedforward correcting signal is successively stored in the digital processor and modified by the feedback error resulting from its application to generate the next feedforward error correcting signal. A feedforward error correcting signal is generated by the digital processor in advance of the beam pulse to enable a composite correcting signal and the beam pulse to arrive concurrently at the cavity.

  15. Adaptive control for accelerators

    DOEpatents

    Eaton, Lawrie E.; Jachim, Stephen P.; Natter, Eckard F.

    1991-01-01

    An adaptive feedforward control loop is provided to stabilize accelerator beam loading of the radio frequency field in an accelerator cavity during successive pulses of the beam into the cavity. A digital signal processor enables an adaptive algorithm to generate a feedforward error correcting signal functionally determined by the feedback error obtained by a beam pulse loading the cavity after the previous correcting signal was applied to the cavity. Each cavity feedforward correcting signal is successively stored in the digital processor and modified by the feedback error resulting from its application to generate the next feedforward error correcting signal. A feedforward error correcting signal is generated by the digital processor in advance of the beam pulse to enable a composite correcting signal and the beam pulse to arrive concurrently at the cavity.

  16. Tuning a fuzzy controller using quadratic response surfaces

    NASA Technical Reports Server (NTRS)

    Schott, Brian; Whalen, Thomas

    1992-01-01

    Response surface methodology, an alternative method to traditional tuning of a fuzzy controller, is described. An example based on a simulated inverted pendulum 'plant' shows that with (only) 15 trial runs, the controller can be calibrated using a quadratic form to approximate the response surface.

  17. Fuzzy self-learning control for magnetic servo system

    NASA Technical Reports Server (NTRS)

    Tarn, J. H.; Kuo, L. T.; Juang, K. Y.; Lin, C. E.

    1994-01-01

    It is known that an effective control system is the key condition for successful implementation of high-performance magnetic servo systems. Major issues to design such control systems are nonlinearity; unmodeled dynamics, such as secondary effects for copper resistance, stray fields, and saturation; and that disturbance rejection for the load effect reacts directly on the servo system without transmission elements. One typical approach to design control systems under these conditions is a special type of nonlinear feedback called gain scheduling. It accommodates linear regulators whose parameters are changed as a function of operating conditions in a preprogrammed way. In this paper, an on-line learning fuzzy control strategy is proposed. To inherit the wealth of linear control design, the relations between linear feedback and fuzzy logic controllers have been established. The exercise of engineering axioms of linear control design is thus transformed into tuning of appropriate fuzzy parameters. Furthermore, fuzzy logic control brings the domain of candidate control laws from linear into nonlinear, and brings new prospects into design of the local controllers. On the other hand, a self-learning scheme is utilized to automatically tune the fuzzy rule base. It is based on network learning infrastructure; statistical approximation to assign credit; animal learning method to update the reinforcement map with a fast learning rate; and temporal difference predictive scheme to optimize the control laws. Different from supervised and statistical unsupervised learning schemes, the proposed method learns on-line from past experience and information from the process and forms a rule base of an FLC system from randomly assigned initial control rules.

  18. Fuzzy logic control system to provide autonomous collision avoidance for Mars rover vehicle

    NASA Technical Reports Server (NTRS)

    Murphy, Michael G.

    1990-01-01

    NASA is currently involved with planning unmanned missions to Mars to investigate the terrain and process soil samples in advance of a manned mission. A key issue involved in unmanned surface exploration on Mars is that of supporting autonomous maneuvering since radio communication involves lengthy delays. It is anticipated that specific target locations will be designated for sample gathering. In maneuvering autonomously from a starting position to a target position, the rover will need to avoid a variety of obstacles such as boulders or troughs that may block the shortest path to the target. The physical integrity of the rover needs to be maintained while minimizing the time and distance required to attain the target position. Fuzzy logic lends itself well to building reliable control systems that function in the presence of uncertainty or ambiguity. The following major issues are discussed: (1) the nature of fuzzy logic control systems and software tools to implement them; (2) collision avoidance in the presence of fuzzy parameters; and (3) techniques for adaptation in fuzzy logic control systems.

  19. Layered mode selection logic control with fuzzy sensor fusion network

    NASA Astrophysics Data System (ADS)

    Born, Traig; Wright, Andrew

    2007-04-01

    Robots developed from the 60's to the present have been restricted to highly structured environments such as work cells or automated guided vehicles, primarily to avoid harmful interactions with humans. Next generation robots must function in unstructured environments. Such robots must be fault tolerant to sensor and manipulator failures, scalable in number of agents, and adaptable to different robotic base platforms. The Central Arkansas Robotics Consortium has developed a robot controller architecture, called Layered Mode Selection Logic (LMSL), which addresses all of these concerns. The LMSL architecture is an implementation of a behavior based controller fused with a planner. The architecture creates an abstraction layer for the robot sensors through a Fuzzy Sensor Fusion Network (FSFN), and it creates an abstraction layer for the robot manipulators through a reactive layer. The LMSL architecture has been implemented and tested on UALR's J5 robotics research platform. A FSFN combines acceleration and force signals for collision detection. The output of the FSFN switches among low level behaviors to accomplish obstacle avoidance and obstacle manipulation. Comparable results are achieved with all sensors functioning, with only the acceleration sensor (force sensor faulted), and with only the force sensor (acceleration sensor faulted).

  20. Fuzzy Logic Decoupled Longitudinal Control for General Aviation Airplanes

    NASA Technical Reports Server (NTRS)

    Duerksen, Noel

    1996-01-01

    It has been hypothesized that a human pilot uses the same set of generic skills to control a wide variety of aircraft. If this is true, then it should be possible to construct an electronic controller which embodies this generic skill set such that it can successfully control difference airplanes without being matched to a specific airplane. In an attempt to create such a system, a fuzzy logic controller was devised to control throttle position and another to control elevator position. These two controllers were used to control flight path angle and airspeed for both a piston powered single engine airplane simulation and a business jet simulation. Overspeed protection and stall protection were incorporated in the form of expert systems supervisors. It was found that by using the artificial intelligence techniques of fuzzy logic and expert systems, a generic longitudinal controller could be successfully used on two general aviation aircraft types that have very difference characteristics. These controllers worked for both airplanes over their entire flight envelopes including configuration changes. The controllers for both airplanes were identical except for airplane specific limits (maximum allowable airspeed, throttle lever travel, etc.). The controllers also handled configuration changes without mode switching or knowledge of the current configuration. This research validated the fact that the same fuzzy logic based controller can control two very different general aviation airplanes. It also developed the basic controller architecture and specific control parameters required for such a general controller.

  1. Modeling and Simulation of An Adaptive Neuro-Fuzzy Inference System (ANFIS) for Mobile Learning

    ERIC Educational Resources Information Center

    Al-Hmouz, A.; Shen, Jun; Al-Hmouz, R.; Yan, Jun

    2012-01-01

    With recent advances in mobile learning (m-learning), it is becoming possible for learning activities to occur everywhere. The learner model presented in our earlier work was partitioned into smaller elements in the form of learner profiles, which collectively represent the entire learning process. This paper presents an Adaptive Neuro-Fuzzy

  2. A fuzzy behaviorist approach to sensor-based robot control

    SciTech Connect

    Pin, F.G.

    1996-05-01

    Sensor-based operation of autonomous robots in unstructured and/or outdoor environments has revealed to be an extremely challenging problem, mainly because of the difficulties encountered when attempting to represent the many uncertainties which are always present in the real world. These uncertainties are primarily due to sensor imprecisions and unpredictability of the environment, i.e., lack of full knowledge of the environment characteristics and dynamics. An approach. which we have named the {open_quotes}Fuzzy Behaviorist Approach{close_quotes} (FBA) is proposed in an attempt to remedy some of these difficulties. This approach is based on the representation of the system`s uncertainties using Fuzzy Set Theory-based approximations and on the representation of the reasoning and control schemes as sets of elemental behaviors. Using the FBA, a formalism for rule base development and an automated generator of fuzzy rules have been developed. This automated system can automatically construct the set of membership functions corresponding to fuzzy behaviors. Once these have been expressed in qualitative terms by the user. The system also checks for completeness of the rule base and for non-redundancy of the rules (which has traditionally been a major hurdle in rule base development). Two major conceptual features, the suppression and inhibition mechanisms which allow to express a dominance between behaviors are discussed in detail. Some experimental results obtained with the automated fuzzy, rule generator applied to the domain of sensor-based navigation in aprion unknown environments. using one of our autonomous test-bed robots as well as a real car in outdoor environments, are then reviewed and discussed to illustrate the feasibility of large-scale automatic fuzzy rule generation using the {open_quotes}Fuzzy Behaviorist{close_quotes} concepts.

  3. Control of a flexible beam using fuzzy logic

    NASA Technical Reports Server (NTRS)

    Mccullough, Claire L.

    1991-01-01

    The goal of this project, funded under the NASA Summer Faculty Fellowship program, was to evaluate control methods utilizing fuzzy logic for applicability to control of flexible structures. This was done by applying these methods to control of the Control Structures Interaction Suitcase Demonstrator developed at Marshall Space Flight Center. The CSI Suitcase Demonstrator is a flexible beam, mounted at one end with springs and bearing, and with a single actuator capable of rotating the beam about a pin at the fixed end. The control objective is to return the tip of the free end to a zero error position (from a nonzero initial condition). It is neither completely controllable nor completely observable. Fuzzy logic control was demonstrated to successfully control the system and to exhibit desirable robustness properties compared to conventional control.

  4. Fuzzy control is often better than manual control of the very experts whose knowledge it uses - An explanation

    NASA Technical Reports Server (NTRS)

    Kreinovich, V.; Lea, R.; Fuentes, O.; Lokshin, A.

    1992-01-01

    Fuzzy control techniques are analyzed to explain why the fuzzy control that is based on the expert's knowledge is often smoother and more stable than the control performed manually by the same experts. A precise mathematical explanation of this phenomenon is presented. Results obtained make it possible to predict the quality of the fuzzy control.

  5. Fuzzy logic controller to improve powerline communication

    NASA Astrophysics Data System (ADS)

    Tirrito, Salvatore

    2015-12-01

    The Power Line Communications (PLC) technology allows the use of the power grid in order to ensure the exchange of data information among devices. This work proposes an approach, based on Fuzzy Logic, that dynamically manages the amplitude of the signal, with which each node transmits, by processing the master-slave link quality measured and the master-slave distance. The main objective of this is to reduce both the impact of communication interferences induced and power consumption.

  6. FUZZY LOGIC MOTOR CONTROL FOR POLLUTION PREVENTION AND IMPROVED ENERGY EFFICIENCY

    EPA Science Inventory

    The paper discusses an EPA program investigating fuzzy logic motor control for improved pollution prevention and energy efficiency. nitial computer simulation and laboratory results have demonstrated that fuzzy logic energy optimizers can consistently improve motor operational ef...

  7. Fuzzy control of hydraulic servo system based on DSP

    NASA Astrophysics Data System (ADS)

    He, Juan; Yuan, Song-Yue

    2011-10-01

    On the basis of high-speed switching valve of hydraulic servo system, the complex mathematical model of nonlinear hydraulic servo system was analyzed and constructed. A intelligent Fuzzy control method using TMS320LF2407A DSP chip as primary processor was put forward. The simulation results show that the control strategy has a better effect than the conventional PID control has. And the non-differential control of the system has been basically achieved.

  8. Design and implementation of fuzzy logic controllers. Thesis Final Report, 27 Jul. 1992 - 1 Jan. 1993

    NASA Technical Reports Server (NTRS)

    Abihana, Osama A.; Gonzalez, Oscar R.

    1993-01-01

    The main objectives of our research are to present a self-contained overview of fuzzy sets and fuzzy logic, develop a methodology for control system design using fuzzy logic controllers, and to design and implement a fuzzy logic controller for a real system. We first present the fundamental concepts of fuzzy sets and fuzzy logic. Fuzzy sets and basic fuzzy operations are defined. In addition, for control systems, it is important to understand the concepts of linguistic values, term sets, fuzzy rule base, inference methods, and defuzzification methods. Second, we introduce a four-step fuzzy logic control system design procedure. The design procedure is illustrated via four examples, showing the capabilities and robustness of fuzzy logic control systems. This is followed by a tuning procedure that we developed from our design experience. Third, we present two Lyapunov based techniques for stability analysis. Finally, we present our design and implementation of a fuzzy logic controller for a linear actuator to be used to control the direction of the Free Flight Rotorcraft Research Vehicle at LaRC.

  9. Genetic algorithm-based optimal fuzzy control system for the MT 25 microtron

    NASA Astrophysics Data System (ADS)

    Krist, P.; Bla, J.; Chvtil, D.

    2013-05-01

    This paper deals with the design of the control system for an RF cyclic electron accelerator with a cavity resonator, a classical type of microtron. This type of accelerator has until now been controlled manually. The control system is based on a Mamdani-type fuzzy regulator. The fuzzy regulator is set with the aid of an operator description and also a mathematical model of the microtron. The final control system is optimized with the help of genetic algorithms. The normalizing and denormalizing section of the fuzzy controller and also the shape of the fuzzy values of the fuzzy variables are optimized.

  10. Hydrological time series modeling: A comparison between adaptive neuro-fuzzy, neural network and autoregressive techniques

    NASA Astrophysics Data System (ADS)

    Lohani, A. K.; Kumar, Rakesh; Singh, R. D.

    2012-06-01

    SummaryTime series modeling is necessary for the planning and management of reservoirs. More recently, the soft computing techniques have been used in hydrological modeling and forecasting. In this study, the potential of artificial neural networks and neuro-fuzzy system in monthly reservoir inflow forecasting are examined by developing and comparing monthly reservoir inflow prediction models, based on autoregressive (AR), artificial neural networks (ANNs) and adaptive neural-based fuzzy inference system (ANFIS). To take care the effect of monthly periodicity in the flow data, cyclic terms are also included in the ANN and ANFIS models. Working with time series flow data of the Sutlej River at Bhakra Dam, India, several ANN and adaptive neuro-fuzzy models are trained with different input vectors. To evaluate the performance of the selected ANN and adaptive neural fuzzy inference system (ANFIS) models, comparison is made with the autoregressive (AR) models. The ANFIS model trained with the input data vector including previous inflows and cyclic terms of monthly periodicity has shown a significant improvement in the forecast accuracy in comparison with the ANFIS models trained with the input vectors considering only previous inflows. In all cases ANFIS gives more accurate forecast than the AR and ANN models. The proposed ANFIS model coupled with the cyclic terms is shown to provide better representation of the monthly inflow forecasting for planning and operation of reservoir.

  11. Recurrent RBFN-based fuzzy neural network control for X-Y-theta motion control stage using linear ultrasonic motors.

    PubMed

    Lin, Faa-Jeng; Shieh, Po-Huang

    2006-12-01

    A recurrent radial basis function network (RBFN) based fuzzy neural network (FNN) control system is proposed to control the position of an X-Y-theta motion control stage using linear ultrasonic motors (LUSMs) to track various contours in this study. The proposed recurrent RBFN-based FNN combines the merits of self-constructing fuzzy neural network (SCFNN), recurrent neural network (RNN), and RBFN. Moreover, the structure and the parameter learning phases of the recurrent RBFN-based FNN are performed concurrently and on line. The structure learning is based on the partition of input space, and the parameter learning is based on the supervised gradient decent method using a delta adaptation law. The experimental results due to various contours show that the dynamic behaviors of the proposed recurrent RBFN-based FNN control system are robust with regard to uncertainties. PMID:17186927

  12. Hybrid Takagi-Sugeno Fuzzy FED PID Control of Nonlinear Systems

    NASA Astrophysics Data System (ADS)

    Hamed, Basil; El Khateb, Ahmad

    2008-06-01

    The new method of proportional-integral-derivative (PID) controller is proposed in this paper for a hybrid fuzzy PID controller for nonlinear system. The important feature of the proposed approach is that it combines the fuzzy gain scheduling method and a fuzzy fed PID controller to solve the nonlinear control problem. The resultant fuzzy rule base of the proposed controller contains one part. This single part of the rules uses the Takagi-Sugeno method for solving the nonlinear problem. The simulation results of a nonlinear system show that the performance of a fed PID Hybrid Takagi-Sugeno fuzzy controller is better than that of the conventional fuzzy PID controller or Hybrid Mamdani fuzzy FED PID controller.

  13. A fuzzy controller with nonlinear control rules is the sum of a global nonlinear controller and a local nonlinear PI-like controller

    NASA Technical Reports Server (NTRS)

    Ying, Hao

    1993-01-01

    The fuzzy controllers studied in this paper are the ones that employ N trapezoidal-shaped members for input fuzzy sets, Zadeh fuzzy logic and a centroid defuzzification algorithm for output fuzzy set. The author analytically proves that the structure of the fuzzy controllers is the sum of a global nonlinear controller and a local nonlinear proportional-integral-like controller. If N approaches infinity, the global controller becomes a nonlinear controller while the local controller disappears. If linear control rules are used, the global controller becomes a global two-dimensional multilevel relay which approaches a global linear proportional-integral (PI) controller as N approaches infinity.

  14. Workshop on Fuzzy Control Systems and Space Station Applications

    NASA Technical Reports Server (NTRS)

    Aisawa, E. K. (Compiler); Faltisco, R. M. (Compiler)

    1990-01-01

    The Workshop on Fuzzy Control Systems and Space Station Applications was held on 14-15 Nov. 1990. The workshop was co-sponsored by McDonnell Douglas Space Systems Company and NASA Ames Research Center. Proceedings of the workshop are presented.

  15. Adaptive Neuro-Fuzzy Modeling of UH-60A Pilot Vibration

    NASA Technical Reports Server (NTRS)

    Kottapalli, Sesi; Malki, Heidar A.; Langari, Reza

    2003-01-01

    Adaptive neuro-fuzzy relationships have been developed to model the UH-60A Black Hawk pilot floor vertical vibration. A 200 point database that approximates the entire UH-60A helicopter flight envelope is used for training and testing purposes. The NASA/Army Airloads Program flight test database was the source of the 200 point database. The present study is conducted in two parts. The first part involves level flight conditions and the second part involves the entire (200 point) database including maneuver conditions. The results show that a neuro-fuzzy model can successfully predict the pilot vibration. Also, it is found that the training phase of this neuro-fuzzy model takes only two or three iterations to converge for most cases. Thus, the proposed approach produces a potentially viable model for real-time implementation.

  16. [CT image segmentation based on automatic adaptive minimal fuzzy entropy measure].

    PubMed

    Gong, Guifang; Feng, Chengde; Zhang, Hui; Zhu, Yanfang

    2008-04-01

    In order to extract the anatomical feature of several tissues from CT image and solve the contradiction between the improvement of searching speed and the instability of results,we propose a method for image segmentation using auto adaptive minimal fuzzy entropy measure. Firstly, to find the optimal threshoding for segmenting image, the values of the exponent parameters of membership function of fuzzy subsets and the range of the searching thresholding values can be determined by using the iterative approach and the image histogram, and then the thresholding of minimizing the fuzzy entropy is implemented by searching all possible combinations of every thresholding in determinate searching range. The experiment results show that our proposed method facilitates good performance for CT image segmentation. The searching speed is quick, the segmented images show more details, and the results of many runs are steadier than those obtained by using genetic algorithm or simulated annealing algorithm. PMID:18610611

  17. Adaptive fuzzy leader clustering of complex data sets in pattern recognition

    NASA Technical Reports Server (NTRS)

    Newton, Scott C.; Pemmaraju, Surya; Mitra, Sunanda

    1992-01-01

    A modular, unsupervised neural network architecture for clustering and classification of complex data sets is presented. The adaptive fuzzy leader clustering (AFLC) architecture is a hybrid neural-fuzzy system that learns on-line in a stable and efficient manner. The initial classification is performed in two stages: a simple competitive stage and a distance metric comparison stage. The cluster prototypes are then incrementally updated by relocating the centroid positions from fuzzy C-means system equations for the centroids and the membership values. The AFLC algorithm is applied to the Anderson Iris data and laser-luminescent fingerprint image data. It is concluded that the AFLC algorithm successfully classifies features extracted from real data, discrete or continuous.

  18. General-purpose fuzzy controller for dc-dc converters

    SciTech Connect

    Mattavelli, P.; Rossetto, L.; Spiazzi, G.; Tenti, P.

    1997-01-01

    In this paper, a general-purpose fuzzy controller for dc-dc converters is investigated. Based on a qualitative description of the system to be controlled, fuzzy controllers are capable of good performances, even for those systems where linear control techniques fail, e.g., when a mathematical description is not available or is in the presence of wide parameter variations. The presented approach is general and can be applied to any dc-dc converter topologies. Controller implementation is relatively simple and can guarantee a small-signal response as fast and stable as other standard regulators and an improved large-signal response. Simulation results of Buck-Boost and Sepic converters show control potentialities.

  19. Fuzzy logic sliding mode control for command guidance law design.

    PubMed

    Elhalwagy, Y Z; Tarbouchi, M

    2004-04-01

    Recently, the combination of sliding mode and fuzzy logic techniques has emerged as a promising methodology for dealing with nonlinear, uncertain, dynamical systems. In this paper, a sliding mode control algorithm combined with a fuzzy control scheme is developed for the trajectory control of a command guidance system. The acceleration command input is mathematically derived. The proposed controller is used to compensate for the influence of unmodeled dynamics and to alleviate chattering. Simulation results show that the proposed controller gives good system performance in the face of system parameters variation and external disturbances. In addition, they show the effectiveness of the proposed missile guidance law against different engagement scenarios where the results demonstrate better performance over the conventional sliding mode control. PMID:15098583

  20. Implementation Of Fuzzy Automated Brake Controller Using TSK Algorithm

    NASA Astrophysics Data System (ADS)

    Mittal, Ruchi; Kaur, Magandeep

    2010-11-01

    In this paper an application of Fuzzy Logic for Automatic Braking system is proposed. Anti-blocking system (ABS) brake controllers pose unique challenges to the designer: a) For optimal performance, the controller must operate at an unstable equilibrium point, b) Depending on road conditions, the maximum braking torque may vary over a wide range, c) The tire slippage measurement signal, crucial for controller performance, is both highly uncertain and noisy. A digital controller design was chosen which combines a fuzzy logic element and a decision logic network. The controller identifies the current road condition and generates a command braking pressure signal Depending upon the speed and distance of train. This paper describes design criteria, and the decision and rule structure of the control system. The simulation results present the system's performance depending upon the varying speed and distance of the train.

  1. Trends and Issues in Fuzzy Control and Neuro-Fuzzy Modeling

    NASA Technical Reports Server (NTRS)

    Chiu, Stephen

    1996-01-01

    Everyday experience in building and repairing things around the home have taught us the importance of using the right tool for the right job. Although we tend to think of a 'job' in broad terms, such as 'build a bookcase,' we understand well that the 'right job' associated with each 'right tool' is typically a narrowly bounded subtask, such as 'tighten the screws.' Unfortunately, we often lose sight of this principle when solving engineering problems; we treat a broadly defined problem, such as controlling or modeling a system, as a narrow one that has a single 'right tool' (e.g., linear analysis, fuzzy logic, neural network). We need to recognize that a typical real-world problem contains a number of different sub-problems, and that a truly optimal solution (the best combination of cost, performance and feature) is obtained by applying the right tool to the right sub-problem. Here I share some of my perspectives on what constitutes the 'right job' for fuzzy control and describe recent advances in neuro-fuzzy modeling to illustrate and to motivate the synergistic use of different tools.

  2. Design issues of a reinforcement-based self-learning fuzzy controller for petrochemical process control

    NASA Technical Reports Server (NTRS)

    Yen, John; Wang, Haojin; Daugherity, Walter C.

    1992-01-01

    Fuzzy logic controllers have some often-cited advantages over conventional techniques such as PID control, including easier implementation, accommodation to natural language, and the ability to cover a wider range of operating conditions. One major obstacle that hinders the broader application of fuzzy logic controllers is the lack of a systematic way to develop and modify their rules; as a result the creation and modification of fuzzy rules often depends on trial and error or pure experimentation. One of the proposed approaches to address this issue is a self-learning fuzzy logic controller (SFLC) that uses reinforcement learning techniques to learn the desirability of states and to adjust the consequent part of its fuzzy control rules accordingly. Due to the different dynamics of the controlled processes, the performance of a self-learning fuzzy controller is highly contingent on its design. The design issue has not received sufficient attention. The issues related to the design of a SFLC for application to a petrochemical process are discussed, and its performance is compared with that of a PID and a self-tuning fuzzy logic controller.

  3. Robust fuzzy output feedback controller for affine nonlinear systems via T-S fuzzy bilinear model: CSTR benchmark.

    PubMed

    Hamdy, M; Hamdan, I

    2015-07-01

    In this paper, a robust H∞ fuzzy output feedback controller is designed for a class of affine nonlinear systems with disturbance via Takagi-Sugeno (T-S) fuzzy bilinear model. The parallel distributed compensation (PDC) technique is utilized to design a fuzzy controller. The stability conditions of the overall closed loop T-S fuzzy bilinear model are formulated in terms of Lyapunov function via linear matrix inequality (LMI). The control law is robustified by H∞ sense to attenuate external disturbance. Moreover, the desired controller gains can be obtained by solving a set of LMI. A continuous stirred tank reactor (CSTR), which is a benchmark problem in nonlinear process control, is discussed in detail to verify the effectiveness of the proposed approach with a comparative study. PMID:25765955

  4. A self-organizing fuzzy control approach to arc sensor for weld joint tracking in gas metal arc welding of butt joints

    SciTech Connect

    Na, S.J. ); Kim, J.W.

    1993-02-01

    For the artificial intelligence (AI) approach to automatic control, the fuzzy rule-based control schemes have been successfully applied to the control of complex processes. The arc welding process is one of the processes due to the fact that it possesses complex and nonlinear characteristics such as a moving distributed heat source, a current path and metal transfer. One possible solution to the design of an effective controller suitable for such a process is to use the fuzzy control scheme. The fuzzy rule-based control can easily realize the heuristic rules obtained from human experiences that cannot be expressed in mathematical form. In this study, an arc sensor, which utilizes the electrical signal obtained from the welding arc itself, was developed for CO[sub 2] gas metal arc welding of butt joints using the fuzzy set theory. A simple fuzzy controller without any adaptation was implemented for the weld joint tracking. A set of fixed rules, which was designed based upon the experiments, and a self-organizing fuzzy controller, which could improve the control rules automatically, were examined. Through a series of experiments, the performance and learning action of the proposed self-organizing fuzzy controller were assessed.

  5. On structuring the rules of a fuzzy controller

    NASA Technical Reports Server (NTRS)

    Zhou, Jun; Raju, G. V. S.

    1993-01-01

    Since the pioneering work of Zadeh and Mamdani and Assilian, fuzzy logic control has emerged as one of the most active and fruitful research areas. The applications of fuzzy logic control can be found in many fields such as control of stream generators, automatic train operation systems, elevator control, nuclear reactor control, automobile transmission control, etc. In this paper, two new structures of hierarchical fuzzy rule-based controller are proposed to reduce the number of rules in a complete rule set of a controller. In one approach, the overall system is split into sub-systems which are treated independently in parallel. A coordinator is then used to take into account the interactions. This is done via an iterating information exchange between the lower level and the coordinator level. From the point of view of information used, this structure is very similar to central structure in that the coordinator can have at least in principle, all the information that the local controllers have.

  6. A reinforcement learning-based architecture for fuzzy logic control

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.

    1992-01-01

    This paper introduces a new method for learning to refine a rule-based fuzzy logic controller. A reinforcement learning technique is used in conjunction with a multilayer neural network model of a fuzzy controller. The approximate reasoning based intelligent control (ARIC) architecture proposed here learns by updating its prediction of the physical system's behavior and fine tunes a control knowledge base. Its theory is related to Sutton's temporal difference (TD) method. Because ARIC has the advantage of using the control knowledge of an experienced operator and fine tuning it through the process of learning, it learns faster than systems that train networks from scratch. The approach is applied to a cart-pole balancing system.

  7. MOEA-Based Fuzzy Control for Seismically Excited Structures

    NASA Astrophysics Data System (ADS)

    Ning, Xiang-Liang; Tan, Ping; Zhou, Fu-Lin

    To guarantee the safety and functionality of structures simultaneously at different levels of seismic loadings, this paper proposes a multi-objective switching fuzzy control (MOSFC) strategy. MOSFC functions as a trigger with two control states considered. When the structure is at the state of linear, the main objection of control is the peak acceleration. On the other hand, once the nonlinear appears, the control of peak inter-storey drift is the main objection. Multi-objective genetic algorithm, NSGA-II, is employed for optimizing the fuzzy control rules. A scaled model of a six-storey building with two MR dampers installed at the two bottom floors is simulated here. Linear and Nonlinear numerical simulations demonstrate the effectiveness and robustness.

  8. Fuzzy Control for Omni-Directional Vehicle with Ball Wheels

    NASA Astrophysics Data System (ADS)

    Iida, Kenichi; Mori, Taichi; Yasuno, Takashi

    In this paper, motion control for omni-directional vehicle with ball wheels is considered. The proposed omni-directional vehicle has two ball wheels, and the actuators are arranged to X-direction and Y-direction in ball wheel. Hence, omni-directional vehicle has the ability to move in arbitrary speed and direction, and has also the ability to turn around the place. The proposed control system consists of the fixed gain feedback controllers and self tuning fuzzy controllers. To achieve improvement of responses, rules of fuzzy controller are automatically adjusted by a tuning law. To achieve improvement of mobility, the optical mouse sensor is installed on omni-directional vehicle for self-localization. The experimental results demonstrate the effectiveness of the proposed system for improvement of the movement performance of the omni-directional vehicle.

  9. Adaptive neuro-fuzzy inference system to improve the power quality of a split shaft microturbine power generation system

    NASA Astrophysics Data System (ADS)

    Oğuz, Yüksel; Üstün, Seydi Vakkas; Yabanova, İsmail; Yumurtaci, Mehmet; Güney, İrfan

    2012-01-01

    This article presents design of adaptive neuro-fuzzy inference system (ANFIS) for the turbine speed control for purpose of improving the power quality of the power production system of a split shaft microturbine. To improve the operation performance of the microturbine power generation system (MTPGS) and to obtain the electrical output magnitudes in desired quality and value (terminal voltage, operation frequency, power drawn by consumer and production power), a controller depended on adaptive neuro-fuzzy inference system was designed. The MTPGS consists of the microturbine speed controller, a split shaft microturbine, cylindrical pole synchronous generator, excitation circuit and voltage regulator. Modeling of dynamic behavior of synchronous generator driver with a turbine and split shaft turbine was realized by using the Matlab/Simulink and SimPowerSystems in it. It is observed from the simulation results that with the microturbine speed control made with ANFIS, when the MTPGS is operated under various loading situations, the terminal voltage and frequency values of the system can be settled in desired operation values in a very short time without significant oscillation and electrical production power in desired quality can be obtained.

  10. Adaptive neuro-fuzzy fusion of sensor data

    NASA Astrophysics Data System (ADS)

    Petković, Dalibor

    2014-11-01

    A framework is proposed, which consolidates the benefits of a fuzzy rationale and a neural system. The framework joins together Kalman separating and delicate processing guideline i.e. ANFIS to structure an effective information combination strategy for the target following framework. A novel versatile calculation focused around ANFIS is proposed to adjust logical progressions and to weaken the questionable aggravation of estimation information from multisensory. Fuzzy versatile combination calculation is a compelling device to make the genuine quality of the leftover covariance steady with its hypothetical worth. ANFIS indicates great taking in and forecast proficiencies, which makes it a productive device to manage experienced vulnerabilities in any framework. A neural system is presented, which can concentrate the measurable properties of the samples throughout the preparation sessions. Reproduction results demonstrate that the calculation can successfully alter the framework to adjust context oriented progressions and has solid combination capacity in opposing questionable data. This sagacious estimator is actualized utilizing Matlab/Simulink and the exhibitions are explored.

  11. Ultra-precise tracking control of piezoelectric actuators via a fuzzy hysteresis model.

    PubMed

    Li, Pengzhi; Yan, Feng; Ge, Chuan; Zhang, Mingchao

    2012-08-01

    In this paper, a novel Takagi-Sugeno (T-S) fuzzy system based model is proposed for hysteresis in piezoelectric actuators. The antecedent and consequent structures of the fuzzy hysteresis model (FHM) can be, respectively, identified on-line through uniform partition approach and recursive least squares (RLS) algorithm. With respect to controller design, the inverse of FHM is used to develop a feedforward controller to cancel out the hysteresis effect. Then a hybrid controller is designed for high-performance tracking. It combines the feedforward controller with a proportional integral differential (PID) controller favourable for stabilization and disturbance compensation. To achieve nanometer-scale tracking precision, the enhanced adaptive hybrid controller is further developed. It uses real-time input and output data to update FHM, thus changing the feedforward controller to suit the on-site hysteresis character of the piezoelectric actuator. Finally, as to 3 cases of 50 Hz sinusoidal, multiple frequency sinusoidal and 50 Hz triangular trajectories tracking, experimental results demonstrate the efficiency of the proposed controllers. Especially, being only 0.35% of the maximum desired displacement, the maximum error of 50 Hz sinusoidal tracking is greatly reduced to 5.8 nm, which clearly shows the ultra-precise nanometer-scale tracking performance of the developed adaptive hybrid controller. PMID:22938339

  12. Ultra-precise tracking control of piezoelectric actuators via a fuzzy hysteresis model

    NASA Astrophysics Data System (ADS)

    Li, Pengzhi; Yan, Feng; Ge, Chuan; Zhang, Mingchao

    2012-08-01

    In this paper, a novel Takagi-Sugeno (T-S) fuzzy system based model is proposed for hysteresis in piezoelectric actuators. The antecedent and consequent structures of the fuzzy hysteresis model (FHM) can be, respectively, identified on-line through uniform partition approach and recursive least squares (RLS) algorithm. With respect to controller design, the inverse of FHM is used to develop a feedforward controller to cancel out the hysteresis effect. Then a hybrid controller is designed for high-performance tracking. It combines the feedforward controller with a proportional integral differential (PID) controller favourable for stabilization and disturbance compensation. To achieve nanometer-scale tracking precision, the enhanced adaptive hybrid controller is further developed. It uses real-time input and output data to update FHM, thus changing the feedforward controller to suit the on-site hysteresis character of the piezoelectric actuator. Finally, as to 3 cases of 50 Hz sinusoidal, multiple frequency sinusoidal and 50 Hz triangular trajectories tracking, experimental results demonstrate the efficiency of the proposed controllers. Especially, being only 0.35% of the maximum desired displacement, the maximum error of 50 Hz sinusoidal tracking is greatly reduced to 5.8 nm, which clearly shows the ultra-precise nanometer-scale tracking performance of the developed adaptive hybrid controller.

  13. Study of Facial Features Combination Using a Novel Adaptive Fuzzy Integral Fusion Model

    NASA Astrophysics Data System (ADS)

    Ardakani, M. Mahdi Ghazaei; Shokouhi, Shahriar Baradaran

    A new adaptive model based on fuzzy integrals has been presented and used for combining three well-known methods, Eigenface, Fisherface and SOMface, for face classification. After training the competence estimation functions, the adaptive mechanism enables our system the filtering of unsure judgments of classifiers for a specific input. Comparison with classical and non-adaptive approaches proves the superiority of this model. Also we examined how these features contribute to the combined result and whether they can together establish a more robust feature.

  14. Feedforward Tracking Control of Flat Recurrent Fuzzy Systems

    NASA Astrophysics Data System (ADS)

    Gering, Stefan; Adamy, Jürgen

    2014-12-01

    Flatness based feedforward control has proven to be a feasible solution for the problem of tracking control, which may be applied to a broad class of nonlinear systems. If a flat output of the system is known, the control is often based on a feedforward controller generating a nominal input in combination with a linear controller stabilizing the linearized error dynamics around the trajectory. We show in this paper that the very same idea may be incorporated for tracking control of MIMO recurrent fuzzy systems. Their dynamics is given by means of linguistic differential equations but may be converted into a hybrid system representation, which then serves as the basis for controller synthesis.

  15. Adaptive hybrid control of manipulators

    NASA Technical Reports Server (NTRS)

    Seraji, H.

    1987-01-01

    Simple methods for the design of adaptive force and position controllers for robot manipulators within the hybrid control architecuture is presented. The force controller is composed of an adaptive PID feedback controller, an auxiliary signal and a force feedforward term, and it achieves tracking of desired force setpoints in the constraint directions. The position controller consists of adaptive feedback and feedforward controllers and an auxiliary signal, and it accomplishes tracking of desired position trajectories in the free directions. The controllers are capable of compensating for dynamic cross-couplings that exist between the position and force control loops in the hybrid control architecture. The adaptive controllers do not require knowledge of the complex dynamic model or parameter values of the manipulator or the environment. The proposed control schemes are computationally fast and suitable for implementation in on-line control with high sampling rates.

  16. Prediction of flood abnormalities for improved public safety using a modified adaptive neuro-fuzzy inference system.

    PubMed

    Aqil, M; Kita, I; Yano, A; Nishiyama, S

    2006-01-01

    It is widely accepted that an efficient flood alarm system may significantly improve public safety and mitigate economical damages caused by inundations. In this paper, a modified adaptive neuro-fuzzy system is proposed to modify the traditional neuro-fuzzy model. This new method employs a rule-correction based algorithm to replace the error back propagation algorithm that is employed by the traditional neuro-fuzzy method in backward pass calculation. The final value obtained during the backward pass calculation using the rule-correction algorithm is then considered as a mapping function of the learning mechanism of the modified neuro-fuzzy system. Effectiveness of the proposed identification technique is demonstrated through a simulation study on the flood series of the Citarum River in Indonesia. The first four-year data (1987 to 1990) was used for model training/calibration, while the other remaining data (1991 to 2002) was used for testing the model. The number of antecedent flows that should be included in the input variables was determined by two statistical methods, i.e. autocorrelation and partial autocorrelation between the variables. Performance accuracy of the model was evaluated in terms of two statistical indices, i.e. mean average percentage error and root mean square error. The algorithm was developed in a decision support system environment in order to enable users to process the data. The decision support system is found to be useful due to its interactive nature, flexibility in approach, and evolving graphical features, and can be adopted for any similar situation to predict the streamflow. The main data processing includes gauging station selection, input generation, lead-time selection/generation, and length of prediction. This program enables users to process the flood data, to train/test the model using various input options, and to visualize results. The program code consists of a set of files, which can be modified as well to match other purposes. This program may also serve as a tool for real-time flood monitoring and process control. The results indicate that the modified neuro-fuzzy model applied to the flood prediction seems to have reached encouraging results for the river basin under examination. The comparison of the modified neuro-fuzzy predictions with the observed data was satisfactory, where the error resulted from the testing period was varied between 2.632% and 5.560%. Thus, this program may also serve as a tool for real-time flood monitoring and process control. PMID:17302300

  17. Motion Control of the Soccer Robot Based on Fuzzy Logic

    NASA Astrophysics Data System (ADS)

    Coman, Daniela; Ionescu, Adela

    2009-08-01

    Robot soccer is a challenging platform for multi-agent research, involving topics such as real-time image processing and control, robot path planning, obstacle avoidance and machine learning. The conventional robot control consists of methods for path generation and path following. When a robot moves away the estimated path, it must return immediately, and while doing so, the obstacle avoidance behavior and the effectiveness of such a path are not guaranteed. So, motion control is a difficult task, especially in real time and high speed control. This paper describes the use of fuzzy logic control for the low level motion of a soccer robot. Firstly, the modelling of the soccer robot is presented. The soccer robot based on MiroSoT Small Size league is a differential-drive mobile robot with non-slipping and pure-rolling. Then, the design of fuzzy controller is describes. Finally, the computer simulations in MATLAB Simulink show that proposed fuzzy logic controller works well.

  18. Fuzzy logic and adaptive neuro-fuzzy inference system for characterization of contaminant exposure through selected biomarkers in African catfish.

    PubMed

    Karami, Ali; Keiter, Steffen; Hollert, Henner; Courtenay, Simon C

    2013-03-01

    This study represents a first attempt at applying a fuzzy inference system (FIS) and an adaptive neuro-fuzzy inference system (ANFIS) to the field of aquatic biomonitoring for classification of the dosage and time of benzo[a]pyrene (BaP) injection through selected biomarkers in African catfish (Clarias gariepinus). Fish were injected either intramuscularly (i.m.) or intraperitoneally (i.p.) with BaP. Hepatic glutathione S-transferase (GST) activities, relative visceral fat weights (LSI), and four biliary fluorescent aromatic compounds (FACs) concentrations were used as the inputs in the modeling study. Contradictory rules in FIS and ANFIS models appeared after conversion of bioassay results into human language (rule-based system). A "data trimming" approach was proposed to eliminate the conflicts prior to fuzzification. However, the model produced was relevant only to relatively low exposures to BaP, especially through the i.m. route of exposure. Furthermore, sensitivity analysis was unable to raise the classification rate to an acceptable level. In conclusion, FIS and ANFIS models have limited applications in the field of fish biomarker studies. PMID:22752811

  19. Design of a selftuning fuzzy control system and the application to a distillation column

    SciTech Connect

    Hanakuma, Y.; Irizuki, Y; Adachi, M. . Technical and Engineering Dept.); Nakanishi, E. . Dept. of Chemical Engineering)

    1994-01-01

    A selftuning fuzzy control system was developed for industrial use, with a hierarchical structure of, in the lower loop, an algorithm for feedforward-feedback fuzzy control and, in the upper loop, a learning algorithm for evaluation of the control performance and selftuning of the gain of the feedforward fuzzy control. The function of the selftuning fuzzy controller is to overadjust the gain of the feedback fuzzy controller, using a learning rule which compares the trends in the manipulated variables from the feedforward and feedback controllers. This fuzzy control system was tested in a demethanizer column in an ethylene plant, and was effective for the bottom-temperature control loop, which has, hitherto, been difficult to control.

  20. An automatic tuning method of a fuzzy logic controller for nuclear reactors

    SciTech Connect

    Ramaswamy, P.; Lee, K.Y. . Dept. of Electrical and Computer Engineering); Edwards, R.M. . Dept. of Nuclear Engineering)

    1993-08-01

    The design and evaluation by simulation of an automatically tuned fuzzy logic controller is presented. Typically, fuzzy logic controllers are designed based on an expert's knowledge of the process. However, this approach has its limitations in the fact that the controller is hard to optimize or tune to get the desired control action. A method to automate the tuning process using a simplified Kalman filter approach is presented for the fuzzy logic controller to track a suitable reference trajectory. Here, for purposes of illustration an optimal controller's response is used as a reference trajectory to determine automatically the rules for the fuzzy logic controller. To demonstrate the robustness of this design approach, a nonlinear six-delayed neutron group plant is controlled using a fuzzy logic controller that utilizes estimated reactor temperatures from a one-delayed neutron group observer. The fuzzy logic controller displayed good stability and performance robustness characteristics for a wide range of operation.

  1. Design and implementation of a fuzzy controller based automatic voltage regulator for a synchronous generator

    SciTech Connect

    Hasan, A.R.; Martis, T.S. . Dept. of Electrical Engineering); Ula, A.H.M.S. Sr. . Dept. of Electrical Engineering)

    1994-09-01

    Fuzzy controllers are increasingly being accepted by engineers and scientists alike as a viable alternative for classical controllers. The processes involved in fuzzy controllers closely imitate human control processes. Human responses to stimuli are not governed by transfer function and neither are those from fuzzy controllers. This study involves the design and application of fuzzy control to the problem of automatic voltage regulation of a synchronous generator. The method explored deals with the use of Binary Input-output Fuzzy Associative Memories for control. Error and rate of change of voltage are used to maintain a constant output voltage. Software routines were written in ''C'' language and were fast enough for real time computer control. The fuzzy controller was implemented in an IBM compatible personal computer to control an industrial size 5 kVA synchronous machine.

  2. A fuzzy logic based approach to direct load control

    SciTech Connect

    Bhattacharyya, K.; Crow, M.L.

    1996-05-01

    Demand side management programs are strategies designed to alter the shape of the load curve. In order to successfully implement such a strategy, customer acceptance of the program is vital. It is thus desirable to design a model for direct load control which may accommodate customer preferences. This paper presents a methodology for optimizing both customer satisfaction and utility unit commitment savings, based on a fuzzy load model for the direct load control of appliances.

  3. Fault tolerant synchronization of chaotic systems based on T-S fuzzy model with fuzzy sampled-data controller

    NASA Astrophysics Data System (ADS)

    Ma, Da-Zhong; Zhang, Hua-Guang; Wang, Zhan-Shan; Feng, Jian

    2010-05-01

    In this paper the fault tolerant synchronization of two chaotic systems based on fuzzy model and sample data is investigated. The problem of fault tolerant synchronization is formulated to study the global asymptotical stability of the error system with the fuzzy sampled-data controller which contains a state feedback controller and a fault compensator. The synchronization can be achieved no matter whether the fault occurs or not. To investigate the stability of the error system and facilitate the design of the fuzzy sampled-data controller, a Takagi-Sugeno (T-S) fuzzy model is employed to represent the chaotic system dynamics. To acquire good performance and produce a less conservative analysis result, a new parameter-dependent Lyapunov-Krasovksii functional and a relaxed stabilization technique are considered. The stability conditions based on linear matrix inequality are obtained to achieve the fault tolerant synchronization of the chaotic systems. Finally, a numerical simulation is shown to verify the results.

  4. A fuzzy logic based spacecraft controller for six degree of freedom control and performance results

    NASA Technical Reports Server (NTRS)

    Lea, Robert N.; Hoblit, Jeffrey; Jani, Yashvant

    1991-01-01

    The development philosophy of the fuzzy logic controller is explained, details of the rules and membership functions used are given, and the early results of testing of the control system for a representative range of scenarios are reported. The fuzzy attitude controller was found capable of performing all rotational maneuvers, including rate hold and rate maneuvers. It handles all orbital perturbations very efficiently and is very responsive in correcting errors.

  5. How to control if even experts are not sure: Robust fuzzy control

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung T.; Kreinovich, Vladik YA.; Lea, Robert; Tolbert, Dana

    1992-01-01

    In real life, the degrees of certainty that correspond to one of the same expert can differ drastically, and fuzzy control algorithms translate these different degrees of uncertainty into different control strategies. In such situations, it is reasonable to choose a fuzzy control methodology that is the least vulnerable to this kind of uncertainty. It is shown that this 'robustness' demand leads to min and max for &- and V-operations, to 1-x for negation, and to centroid as a defuzzification procedure.

  6. Novel Hybrid Adaptive Controller for Manipulation in Complex Perturbation Environments

    PubMed Central

    Smith, Alex M. C.; Yang, Chenguang; Ma, Hongbin; Culverhouse, Phil; Cangelosi, Angelo; Burdet, Etienne

    2015-01-01

    In this paper we present a hybrid control scheme, combining the advantages of task-space and joint-space control. The controller is based on a human-like adaptive design, which minimises both control effort and tracking error. Our novel hybrid adaptive controller has been tested in extensive simulations, in a scenario where a Baxter robot manipulator is affected by external disturbances in the form of interaction with the environment and tool-like end-effector perturbations. The results demonstrated improved performance in the hybrid controller over both of its component parts. In addition, we introduce a novel method for online adaptation of learning parameters, using the fuzzy control formalism to utilise expert knowledge from the experimenter. This mechanism of meta-learning induces further improvement in performance and avoids the need for tuning through trial testing. PMID:26029916

  7. Clustering of noisy image data using an adaptive neuro-fuzzy system

    NASA Technical Reports Server (NTRS)

    Pemmaraju, Surya; Mitra, Sunanda

    1992-01-01

    Identification of outliers or noise in a real data set is often quite difficult. A recently developed adaptive fuzzy leader clustering (AFLC) algorithm has been modified to separate the outliers from real data sets while finding the clusters within the data sets. The capability of this modified AFLC algorithm to identify the outliers in a number of real data sets indicates the potential strength of this algorithm in correct classification of noisy real data.

  8. A NOISE ADAPTIVE FUZZY EQUALIZATION METHOD FOR PROCESSING SOLAR EXTREME ULTRAVIOLET IMAGES

    SciTech Connect

    Druckmueller, M.

    2013-08-15

    A new image enhancement tool ideally suited for the visualization of fine structures in extreme ultraviolet images of the corona is presented in this paper. The Noise Adaptive Fuzzy Equalization method is particularly suited for the exceptionally high dynamic range images from the Atmospheric Imaging Assembly instrument on the Solar Dynamics Observatory. This method produces artifact-free images and gives significantly better results than methods based on convolution or Fourier transform which are often used for that purpose.

  9. Backstepping fuzzy-neural-network control design for hybrid maglev transportation system.

    PubMed

    Wai, Rong-Jong; Yao, Jing-Xiang; Lee, Jeng-Dao

    2015-02-01

    This paper focuses on the design of a backstepping fuzzy-neural-network control (BFNNC) for the online levitated balancing and propulsive positioning of a hybrid magnetic levitation (maglev) transportation system. The dynamic model of the hybrid maglev transportation system including levitated hybrid electromagnets to reduce the suspension power loss and the friction force during linear movement and a propulsive linear induction motor based on the concepts of mechanical geometry and motion dynamics is first constructed. The ultimate goal is to design an online fuzzy neural network (FNN) control methodology to cope with the problem of the complicated control transformation and the chattering control effort in backstepping control (BSC) design, and to directly ensure the stability of the controlled system without the requirement of strict constraints, detailed system information, and auxiliary compensated controllers despite the existence of uncertainties. In the proposed BFNNC scheme, an FNN control is utilized to be the major control role by imitating the BSC strategy, and adaptation laws for network parameters are derived in the sense of projection algorithm and Lyapunov stability theorem to ensure the network convergence as well as stable control performance. The effectiveness of the proposed control strategy for the hybrid maglev transportation system is verified by experimental results, and the superiority of the BFNNC scheme is indicated in comparison with the BSC strategy and the backstepping particle-swarm-optimization control system in previous research. PMID:25608292

  10. Evolving fuzzy rules in a learning classifier system

    NASA Technical Reports Server (NTRS)

    Valenzuela-Rendon, Manuel

    1993-01-01

    The fuzzy classifier system (FCS) combines the ideas of fuzzy logic controllers (FLC's) and learning classifier systems (LCS's). It brings together the expressive powers of fuzzy logic as it has been applied in fuzzy controllers to express relations between continuous variables, and the ability of LCS's to evolve co-adapted sets of rules. The goal of the FCS is to develop a rule-based system capable of learning in a reinforcement regime, and that can potentially be used for process control.

  11. Adaptive control of linearizable systems

    NASA Technical Reports Server (NTRS)

    Sastry, S. Shankar; Isidori, Alberto

    1989-01-01

    Initial results are reported regarding the adaptive control of minimum-phase nonlinear systems which are exactly input-output linearizable by state feedback. Parameter adaptation is used as a technique to make robust the exact cancellation of nonlinear terms, which is called for in the linearization technique. The application of the adaptive technique to control of robot manipulators is discussed. Only the continuous-time case is considered; extensions to the discrete-time and sampled-data cases are not obvious.

  12. The Study and Design of Adaptive Learning System Based on Fuzzy Set Theory

    NASA Astrophysics Data System (ADS)

    Jia, Bing; Zhong, Shaochun; Zheng, Tianyang; Liu, Zhiyong

    Adaptive learning is an effective way to improve the learning outcomes, that is, the selection of learning content and presentation should be adapted to each learner's learning context, learning levels and learning ability. Adaptive Learning System (ALS) can provide effective support for adaptive learning. This paper proposes a new ALS based on fuzzy set theory. It can effectively estimate the learner's knowledge level by test according to learner's target. Then take the factors of learner's cognitive ability and preference into consideration to achieve self-organization and push plan of knowledge. This paper focuses on the design and implementation of domain model and user model in ALS. Experiments confirmed that the system providing adaptive content can effectively help learners to memory the content and improve their comprehension.

  13. Fuzzy decoupling controller based on multimode control algorithm of PI-single neuron and its application

    NASA Astrophysics Data System (ADS)

    Zhang, Xianxia; Wang, Jian; Qin, Tinggao

    2003-09-01

    Intelligent control algorithms are introduced into the control system of temperature and humidity. A multi-mode control algorithm of PI-Single Neuron is proposed for single loop control of temperature and humidity. In order to remove the coupling between temperature and humidity, a new decoupling method is presented, which is called fuzzy decoupling. The decoupling is achieved by using a fuzzy controller that dynamically modifies the static decoupling coefficient. Taking the control algorithm of PI-Single Neuron as the single loop control of temperature and humidity, the paper provides the simulated output response curves with no decoupling control, static decoupling control and fuzzy decoupling control. Those control algorithms are easily implemented in singlechip-based hardware systems.

  14. Power-Constrained Fuzzy Logic Control of Video Streaming over a Wireless Interconnect

    NASA Astrophysics Data System (ADS)

    Razavi, Rouzbeh; Fleury, Martin; Ghanbari, Mohammed

    2008-12-01

    Wireless communication of video, with Bluetooth as an example, represents a compromise between channel conditions, display and decode deadlines, and energy constraints. This paper proposes fuzzy logic control (FLC) of automatic repeat request (ARQ) as a way of reconciling these factors, with a 40% saving in power in the worst channel conditions from economizing on transmissions when channel errors occur. Whatever the channel conditions are, FLC is shown to outperform the default Bluetooth scheme and an alternative Bluetooth-adaptive ARQ scheme in terms of reduced packet loss and delay, as well as improved video quality.

  15. Type-2 fuzzy logic control based MRAS speed estimator for speed sensorless direct torque and flux control of an induction motor drive.

    PubMed

    Ramesh, Tejavathu; Kumar Panda, Anup; Shiva Kumar, S

    2015-07-01

    In this research study, a model reference adaptive system (MRAS) speed estimator for speed sensorless direct torque and flux control (DTFC) of an induction motor drive (IMD) using two adaptation mechanism schemes are proposed to replace the conventional proportional integral controller (PIC). The first adaptation mechanism scheme is based on Type-1 fuzzy logic controller (T1FLC), which is used to achieve high performance sensorless drive in both transient as well as steady state conditions. However, the Type-1 fuzzy sets are certain and unable to work effectively when higher degree of uncertainties presents in the system which can be caused by sudden change in speed or different load disturbances, process noise etc. Therefore, a new Type-2 fuzzy logic controller (T2FLC) based adaptation mechanism scheme is proposed to better handle the higher degree of uncertainties and improves the performance and also robust to various load torque and sudden change in speed conditions, respectively. The detailed performances of various adaptation mechanism schemes are carried out in a MATLAB/Simulink environment with a speed sensor and speed sensorless modes of operation when an IMD is operating under different operating conditions, such as, no-load, load and sudden change in speed, respectively. To validate the different control approaches, the system also implemented on real-time system and adequate results are reported for its validation. PMID:25887841

  16. Modulation transfer function estimation of optical lens system by adaptive neuro-fuzzy methodology

    NASA Astrophysics Data System (ADS)

    Petković, Dalibor; Shamshirband, Shahaboddin; Pavlović, Nenad T.; Anuar, Nor Badrul; Kiah, Miss Laiha Mat

    2014-07-01

    The quantitative assessment of image quality is an important consideration in any type of imaging system. The modulation transfer function (MTF) is a graphical description of the sharpness and contrast of an imaging system or of its individual components. The MTF is also known and spatial frequency response. The MTF curve has different meanings according to the corresponding frequency. The MTF of an optical system specifies the contrast transmitted by the system as a function of image size, and is determined by the inherent optical properties of the system. In this study, the adaptive neuro-fuzzy (ANFIS) estimator is designed and adapted to estimate MTF value of the actual optical system. Neural network in ANFIS adjusts parameters of membership function in the fuzzy logic of the fuzzy inference system. The back propagation learning algorithm is used for training this network. This intelligent estimator is implemented using Matlab/Simulink and the performances are investigated. The simulation results presented in this paper show the effectiveness of the developed method.

  17. Adaptive neuro-fuzzy prediction of modulation transfer function of optical lens system

    NASA Astrophysics Data System (ADS)

    Petković, Dalibor; Shamshirband, Shahaboddin; Anuar, Nor Badrul; Md Nasir, Mohd Hairul Nizam; Pavlović, Nenad T.; Akib, Shatirah

    2014-07-01

    The quantitative assessment of image quality is an important consideration in any type of imaging system. The modulation transfer function (MTF) is a graphical description of the sharpness and contrast of an imaging system or of its individual components. The MTF is also known and spatial frequency response. The MTF curve has different meanings according to the corresponding frequency. The MTF of an optical system specifies the contrast transmitted by the system as a function of image size, and is determined by the inherent optical properties of the system. In this study, the adaptive neuro-fuzzy (ANFIS) estimator is designed and adapted to predict MTF value of the actual optical system. Neural network in ANFIS adjusts parameters of membership function in the fuzzy logic of the fuzzy inference system. The back propagation learning algorithm is used for training this network. This intelligent estimator is implemented using MATLAB/Simulink and the performances are investigated. The simulation results presented in this paper show the effectiveness of the developed method.

  18. Estimating Reservoir Inflow Using RADAR Forecasted Precipitation and Adaptive Neuro Fuzzy Inference System

    NASA Astrophysics Data System (ADS)

    Yi, J.; Choi, C.

    2014-12-01

    Rainfall observation and forecasting using remote sensing such as RADAR(Radio Detection and Ranging) and satellite images are widely used to delineate the increased damage by rapid weather changeslike regional storm and flash flood. The flood runoff was calculated by using adaptive neuro-fuzzy inference system, the data driven models and MAPLE(McGill Algorithm for Precipitation Nowcasting by Lagrangian Extrapolation) forecasted precipitation data as the input variables.The result of flood estimation method using neuro-fuzzy technique and RADAR forecasted precipitation data was evaluated by comparing it with the actual data.The Adaptive Neuro Fuzzy method was applied to the Chungju Reservoir basin in Korea. The six rainfall events during the flood seasons in 2010 and 2011 were used for the input data.The reservoir inflow estimation results were comparedaccording to the rainfall data used for training, checking and testing data in the model setup process. The results of the 15 models with the combination of the input variables were compared and analyzed. Using the relatively larger clustering radius and the biggest flood ever happened for training data showed the better flood estimation in this study.The model using the MAPLE forecasted precipitation data showed better result for inflow estimation in the Chungju Reservoir.

  19. Classification of diabetes maculopathy images using data-adaptive neuro-fuzzy inference classifier.

    PubMed

    Ibrahim, Sulaimon; Chowriappa, Pradeep; Dua, Sumeet; Acharya, U Rajendra; Noronha, Kevin; Bhandary, Sulatha; Mugasa, Hatwib

    2015-12-01

    Prolonged diabetes retinopathy leads to diabetes maculopathy, which causes gradual and irreversible loss of vision. It is important for physicians to have a decision system that detects the early symptoms of the disease. This can be achieved by building a classification model using machine learning algorithms. Fuzzy logic classifiers group data elements with a degree of membership in multiple classes by defining membership functions for each attribute. Various methods have been proposed to determine the partitioning of membership functions in a fuzzy logic inference system. A clustering method partitions the membership functions by grouping data that have high similarity into clusters, while an equalized universe method partitions data into predefined equal clusters. The distribution of each attribute determines its partitioning as fine or coarse. A simple grid partitioning partitions each attribute equally and is therefore not effective in handling varying distribution amongst the attributes. A data-adaptive method uses a data frequency-driven approach to partition each attribute based on the distribution of data in that attribute. A data-adaptive neuro-fuzzy inference system creates corresponding rules for both finely distributed and coarsely distributed attributes. This method produced more useful rules and a more effective classification system. We obtained an overall accuracy of 98.55%. PMID:26109519

  20. [The control method design of thermal treatment system via fuzzy logic].

    PubMed

    Song, Mingyang; Cai, Zhanghao; Bai, Jingfeng; Sun, Jianqi

    2012-05-01

    A novel system is proposed to control the liquid nitrogen cooling and radio frequency heating of tissue to achieve effective thermal ablation in the treatment using fuzzy logic controller and fuzzy logic PID type controller separately. Results of ex-vivo pig liver experiments demonstrate that this system is useful and could p control the desired treatment procedure. PMID:22916471

  1. A composite self tuning strategy for fuzzy control of dynamic systems

    NASA Technical Reports Server (NTRS)

    Shieh, C.-Y.; Nair, Satish S.

    1992-01-01

    The feature of self learning makes fuzzy logic controllers attractive in control applications. This paper proposes a strategy to tune the fuzzy logic controller on-line by tuning the data base as well as the rule base. The structure of the controller is outlined and preliminary results are presented using simulation studies.

  2. Stabilization of nonlinear systems using sampled-data output-feedback fuzzy controller based on polynomial-fuzzy-model-based control approach.

    PubMed

    Lam, H K

    2012-02-01

    This paper investigates the stability of sampled-data output-feedback (SDOF) polynomial-fuzzy-model-based control systems. Representing the nonlinear plant using a polynomial fuzzy model, an SDOF fuzzy controller is proposed to perform the control process using the system output information. As only the system output is available for feedback compensation, it is more challenging for the controller design and system analysis compared to the full-state-feedback case. Furthermore, because of the sampling activity, the control signal is kept constant by the zero-order hold during the sampling period, which complicates the system dynamics and makes the stability analysis more difficult. In this paper, two cases of SDOF fuzzy controllers, which either share the same number of fuzzy rules or not, are considered. The system stability is investigated based on the Lyapunov stability theory using the sum-of-squares (SOS) approach. SOS-based stability conditions are obtained to guarantee the system stability and synthesize the SDOF fuzzy controller. Simulation examples are given to demonstrate the merits of the proposed SDOF fuzzy control approach. PMID:21900076

  3. Spacecraft attitude control using neuro-fuzzy approximation of the optimal controllers

    NASA Astrophysics Data System (ADS)

    Kim, Sung-Woo; Park, Sang-Young; Park, Chandeok

    2016-01-01

    In this study, a neuro-fuzzy controller (NFC) was developed for spacecraft attitude control to mitigate large computational load of the state-dependent Riccati equation (SDRE) controller. The NFC was developed by training a neuro-fuzzy network to approximate the SDRE controller. The stability of the NFC was numerically verified using a Lyapunov-based method, and the performance of the controller was analyzed in terms of approximation ability, steady-state error, cost, and execution time. The simulations and test results indicate that the developed NFC efficiently approximates the SDRE controller, with asymptotic stability in a bounded region of angular velocity encompassing the operational range of rapid-attitude maneuvers. In addition, it was shown that an approximated optimal feedback controller can be designed successfully through neuro-fuzzy approximation of the optimal open-loop controller.

  4. Fuzzy Logic Controller for Low Temperature Application

    NASA Technical Reports Server (NTRS)

    Hahn, Inseob; Gonzalez, A.; Barmatz, M.

    1996-01-01

    The most common temperature controller used in low temperature experiments is the proportional-integral-derivative (PID) controller due to its simplicity and robustness. However, the performance of temperature regulation using the PID controller depends on initial parameter setup, which often requires operator's expert knowledge on the system. In this paper, we present a computer-assisted temperature controller based on the well known.

  5. Adaptive-Neuro Fuzzy Inference System for Human Posture Classification Using a Simplified Shock Graph

    NASA Astrophysics Data System (ADS)

    Shahbudin, S.; Hussain, A.; El-Shafie, Ahmed; Tahir, N. M.; Samad, S. A.

    In this paper, a neuro-fuzzy technique known as the Adaptive-Neuro Fuzzy Inference System (ANFIS) has been used to highlight the application of ANFIS to perform human posture classification task using the new simplified shock graph (SSG) representation. Basically, a shock graph is a shape abstraction that decomposed a shape into a set of hierarchically organized primitive parts. The shock graph that represents the silhouette of an object in terms of a set of qualitatively defined parts and organized in a hierarchical, directed acyclic graph is used as a powerful representation of human shape in our work. The SSG feature provides a compact, unique and simple way of representing human shape and has been tested with several classifiers. As such, in this paper we intend to test its efficacy with another classifier, that is, the ANFIS classifier system. The result showed that the proposed ANFIS model can be used in classifying various human postures.

  6. Approximation-Based Discrete-Time Adaptive Position Tracking Control for Interior Permanent Magnet Synchronous Motors.

    PubMed

    Yu, Jinpeng; Shi, Peng; Yu, Haisheng; Chen, Bing; Lin, Chong

    2015-07-01

    This paper considers the problem of discrete-time adaptive position tracking control for a interior permanent magnet synchronous motor (IPMSM) based on fuzzy-approximation. Fuzzy logic systems are used to approximate the nonlinearities of the discrete-time IPMSM drive system which is derived by direct discretization using Euler method, and a discrete-time fuzzy position tracking controller is designed via backstepping approach. In contrast to existing results, the advantage of the scheme is that the number of the adjustable parameters is reduced to two only and the problem of coupling nonlinearity can be overcome. It is shown that the proposed discrete-time fuzzy controller can guarantee the tracking error converges to a small neighborhood of the origin and all the signals are bounded. Simulation results illustrate the effectiveness and the potentials of the theoretic results obtained. PMID:25216493

  7. Aircraft adaptive learning control

    NASA Technical Reports Server (NTRS)

    Lee, P. S. T.; Vanlandingham, H. F.

    1979-01-01

    The optimal control theory of stochastic linear systems is discussed in terms of the advantages of distributed-control systems, and the control of randomly-sampled systems. An optimal solution to longitudinal control is derived and applied to the F-8 DFBW aircraft. A randomly-sampled linear process model with additive process and noise is developed.

  8. Robust controller design for fuzzy parametric uncertain systems: an optimal control approach.

    PubMed

    Patre, Balasaheb M; Bhiwani, R J

    2013-03-01

    A new approach of designing a robust controller for fuzzy parametric uncertain systems is proposed. A linear time invariant (LTI) system with fuzzy coefficients is called as fuzzy parametric uncertain system (FPUS). The proposed method envisages conversion of the FPUS into an uncertain (interval) state space controllable canonical form system in terms of its alpha cut. Further, the problem of designing a robust controller is translated into an optimal control problem minimizing a cost function. For matched uncertainty, it is shown that the optimal control problem is a linear quadratic regulator (LQR) problem, which can be solved to obtain a robust controller for FPUS. The numerical examples and simulation results show the effectiveness of the proposed method in terms of robustness of the controller. PMID:23148996

  9. Design, modelling, implementation, and intelligent fuzzy control of a hovercraft

    NASA Astrophysics Data System (ADS)

    El-khatib, M. M.; Hussein, W. M.

    2011-05-01

    A Hovercraft is an amphibious vehicle that hovers just above the ground or water by air cushion. The concept of air cushion vehicle can be traced back to 1719. However, the practical form of hovercraft nowadays is traced back to 1955. The objective of the paper is to design, simulate and implement an autonomous model of a small hovercraft equipped with a mine detector that can travel over any terrains. A real time layered fuzzy navigator for a hovercraft in a dynamic environment is proposed. The system consists of a Takagi-Sugenotype fuzzy motion planner and a modified proportional navigation based fuzzy controller. The system philosophy is inspired by human routing when moving between obstacles based on visual information including the right and left views from which he makes his next step towards the goal in the free space. It intelligently combines two behaviours to cope with obstacle avoidance as well as approaching a goal using a proportional navigation path accounting for hovercraft kinematics. MATLAB/Simulink software tool is used to design and verify the proposed algorithm.

  10. Adaptive Control of Aeroacoustic Instabilities

    NASA Astrophysics Data System (ADS)

    METTENLEITER, M.; HAILE, E.; CANDEL, S.

    2000-03-01

    This paper describes an experimental investigation of adaptive control algorithms applied to aeroacoustic instabilities. The study is carried out on a cold flow experimental rig, designed to reproduce the essential features of acoustically coupled vortex shedding. This mechanism is the source of thrust oscillations in large segmented solid rocket motors. It is also found in a wide variety of combustion instabilities. Two adaptive control strategies are investigated and selected experimental results are reported. These results show the feasibility of control. The effect of the controller on the instability mechanism is analyzed and improvements to the control strategy are proposed.

  11. FUZZY LOGIC CONTROL OF ELECTRIC MOTORS AND MOTOR DRIVES: FEASIBILITY STUDY

    EPA Science Inventory

    The report gives results of a study (part 1) of fuzzy logic motor control (FLMC). The study included: 1) reviews of existing applications of fuzzy logic, of motor operation, and of motor control; 2) a description of motor control schemes that can utilize FLMC; 3) selection of a m...

  12. Design Genetic Algorithm Optimization Education Software Based Fuzzy Controller for a Tricopter Fly Path Planning

    ERIC Educational Resources Information Center

    Tran, Huu-Khoa; Chiou, Juing -Shian; Peng, Shou-Tao

    2016-01-01

    In this paper, the feasibility of a Genetic Algorithm Optimization (GAO) education software based Fuzzy Logic Controller (GAO-FLC) for simulating the flight motion control of Unmanned Aerial Vehicles (UAVs) is designed. The generated flight trajectories integrate the optimized Scaling Factors (SF) fuzzy controller gains by using GAO algorithm. The…

  13. Fuzzy Predictive Control Strategy in the Application of the Industrial Furnace Temperature Control

    NASA Astrophysics Data System (ADS)

    Dai, Luping; Chen, Xingliang; Chen, Liu; Liu, Xia

    Ceramic kiln with large heat capacity, big lag and nonlinear characteristic, this paper proposes a combining fuzzy control and predictive control of the control algorithm, to enhance the tracking and anti-interference ability of the algorithm. The simulation results show, this method compared with the control of PID has the high steady precision and dynamic characteristic.

  14. Adaptive Control Of Multisensor Systems

    NASA Astrophysics Data System (ADS)

    Chen, Su-shing

    1988-08-01

    A hierarchical and adaptive control scheme of multisensor systems is introduced for improvement of image understanding, correspondence (registration) problem and sensory data fusion. The neural network approach provides adaptiveness and learning to not only the control level of the overall system architecture, but also the processing level of the image frames. Furthermore, our improved sensing capability enhances the performance of large, complex, integrated sensor-driven robotic systems.

  15. Recurrent fuzzy neural network backstepping control for the prescribed output tracking performance of nonlinear dynamic systems.

    PubMed

    Han, Seong-Ik; Lee, Jang-Myung

    2014-01-01

    This paper proposes a backstepping control system that uses a tracking error constraint and recurrent fuzzy neural networks (RFNNs) to achieve a prescribed tracking performance for a strict-feedback nonlinear dynamic system. A new constraint variable was defined to generate the virtual control that forces the tracking error to fall within prescribed boundaries. An adaptive RFNN was also used to obtain the required improvement on the approximation performances in order to avoid calculating the explosive number of terms generated by the recursive steps of traditional backstepping control. The boundedness and convergence of the closed-loop system was confirmed based on the Lyapunov stability theory. The prescribed performance of the proposed control scheme was validated by using it to control the prescribed error of a nonlinear system and a robot manipulator. PMID:24055100

  16. Hybrid Adaptive Flight Control with Model Inversion Adaptation

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan

    2011-01-01

    This study investigates a hybrid adaptive flight control method as a design possibility for a flight control system that can enable an effective adaptation strategy to deal with off-nominal flight conditions. The hybrid adaptive control blends both direct and indirect adaptive control in a model inversion flight control architecture. The blending of both direct and indirect adaptive control provides a much more flexible and effective adaptive flight control architecture than that with either direct or indirect adaptive control alone. The indirect adaptive control is used to update the model inversion controller by an on-line parameter estimation of uncertain plant dynamics based on two methods. The first parameter estimation method is an indirect adaptive law based on the Lyapunov theory, and the second method is a recursive least-squares indirect adaptive law. The model inversion controller is therefore made to adapt to changes in the plant dynamics due to uncertainty. As a result, the modeling error is reduced that directly leads to a decrease in the tracking error. In conjunction with the indirect adaptive control that updates the model inversion controller, a direct adaptive control is implemented as an augmented command to further reduce any residual tracking error that is not entirely eliminated by the indirect adaptive control.

  17. Falcon: neural fuzzy control and decision systems using FKP and PFKP clustering algorithms.

    PubMed

    Tung, W L; Quek, C

    2004-02-01

    Neural fuzzy networks proposed in the literature can be broadly classified into two groups. The first group is essentially fuzzy systems with self-tuning capabilities and requires an initial rule base to be specified prior to training. The second group of neural fuzzy networks, on the other hand, is able to automatically formulate the fuzzy rules from the numerical training data. Examples are the Falcon-ART, and the POPFNN family of networks. A cluster analysis is first performed on the training data and the fuzzy rules are subsequently derived through the proper connections of these computed clusters. This correspondence proposes two new networks: Falcon-FKP and Falcon-PFKP. They are extensions of the Falcon-ART network, and aimed to overcome the shortcomings faced by the Falcon-ART network itself, i.e., poor classification ability when the classes of input data are very similar to each other, termination of training cycle depends heavily on a preset error parameter, the fuzzy rule base of the Falcon-ART network may not be consistent Nauck, there is no control over the number of fuzzy rules generated, and learning efficiency may deteriorate by using complementarily coded training data. These deficiencies are essentially inherent to the fuzzy ART, clustering technique employed by the Falcon-ART network. Hence, two clustering techniques--Fuzzy Kohonen Partitioning (FKP) and its pseudo variant PFKP, are synthesized with the basic Falcon structure to compute the fuzzy sets and to automatically derive the fuzzy rules from the training data. The resultant neural fuzzy networks are Falcon-FKP and Falcon-PFKP, respectively. These two proposed networks have a lean and efficient training algorithm and consistent fuzzy rule bases. Extensive simulations are conducted using the two networks and their performances are encouraging when benchmarked against other neural and neural fuzzy systems. PMID:15369109

  18. Evolutionary Fuzzy Control and Navigation for Two Wheeled Robots Cooperatively Carrying an Object in Unknown Environments.

    PubMed

    Juang, Chia-Feng; Lai, Min-Ge; Zeng, Wan-Ting

    2015-09-01

    This paper presents a method that allows two wheeled, mobile robots to navigate unknown environments while cooperatively carrying an object. In the navigation method, a leader robot and a follower robot cooperatively perform either obstacle boundary following (OBF) or target seeking (TS) to reach a destination. The two robots are controlled by fuzzy controllers (FC) whose rules are learned through an adaptive fusion of continuous ant colony optimization and particle swarm optimization (AF-CACPSO), which avoids the time-consuming task of manually designing the controllers. The AF-CACPSO-based evolutionary fuzzy control approach is first applied to the control of a single robot to perform OBF. The learning approach is then applied to achieve cooperative OBF with two robots, where an auxiliary FC designed with the AF-CACPSO is used to control the follower robot. For cooperative TS, a rule for coordination of the two robots is developed. To navigate cooperatively, a cooperative behavior supervisor is introduced to select between cooperative OBF and cooperative TS. The performance of the AF-CACPSO is verified through comparisons with various population-based optimization algorithms for the OBF learning problem. Simulations and experiments verify the effectiveness of the approach for cooperative navigation of two robots. PMID:25398185

  19. Nonlinear and adaptive control

    NASA Technical Reports Server (NTRS)

    Athans, Michael

    1989-01-01

    The primary thrust of the research was to conduct fundamental research in the theories and methodologies for designing complex high-performance multivariable feedback control systems; and to conduct feasibiltiy studies in application areas of interest to NASA sponsors that point out advantages and shortcomings of available control system design methodologies.

  20. Error Correction, Control Systems and Fuzzy Logic

    NASA Technical Reports Server (NTRS)

    Smith, Earl B.

    2004-01-01

    This paper will be a discussion on dealing with errors. While error correction and communication is important when dealing with spacecraft vehicles, the issue of control system design is also important. There will be certain commands that one wants a motion device to execute. An adequate control system will be necessary to make sure that the instruments and devices will receive the necessary commands. As it will be discussed later, the actual value will not always be equal to the intended or desired value. Hence, an adequate controller will be necessary so that the gap between the two values will be closed.

  1. Control of transient flow in irrigation canals using Lyapunov fuzzy filter-based Gaussian regulator

    NASA Astrophysics Data System (ADS)

    Faruk Durdu, Ömer

    2006-02-01

    An optimal fuzzy filter was applied to solve the state estimation problem of the controlled irrigation canals. Using linearized finite-difference model of the open-channel flow, a canal operation problem was formulated as an optimal control problem and an algorithm for gate openings in the presence of unknown external disturbances was derived. A fuzzy filter was designed to estimate the state variables at the intermediate nodes based upon measured values of depth at the points in the canal. A Lyapunov function was utilized as a performance index to formulate the fuzzy interference rules of the optimal fuzzy filter. A linear quadratic Gaussian (LQG) optimal controller for a multi-pool irrigation canal was considered as an example. The state estimation problem in the controller was simulated using two techniques: Kalman estimator and the proposed fuzzy filter. The performance of the fuzzy state estimator designed using the Lyapunov fuzzy technique was compared with the results obtained using the Kalman estimator technique. The obvious advantages of the fuzzy filter were the lower computational costs and ease of implementation. The results of this study demonstrated that proposed Lyapunov-type fuzzy filter provides both good stability and simplicity in the control of irrigation canals more than a Kalman filter.

  2. Reducing the Impact of Uncertainties in Networked Control Systems Using Type-2 Fuzzy Logic

    NASA Astrophysics Data System (ADS)

    Michal, Blaho; Jn, Murga; Eugen, Viszus; Peter, Fodrek

    2015-01-01

    The networked control systems (NCS) have grown in popularity in recent years. Despite their advantages over the traditional control schemes, some of their drawbacks emerged as well (time delays, packet losses). There are several ways of dealing with the time delays and packet losses in NCS, but only a few authors have ever used type-2 fuzzy controllers for this purpose to our knowledge. This paper is aimed at dealing with the negative effects that occur in NCS, by using type-2 fuzzy control systems. It is presented that this approach can be successfully used to decrease the effects of time delays and packet losses. A type-2 fuzzy controller has been designed and compared to a type-1 fuzzy controller. The intervals of type-2 fuzzy controller were optimized via genetic algorithm.

  3. Fuzzy compensated computed torque control of a manipulator

    NASA Astrophysics Data System (ADS)

    Ficici, Seniz; Sawan, Edwin M.; Bahr, Behnam

    1996-12-01

    A great deal of research has been done in fuzzy logic control (FLC) and its applications since Mamdani's pioneering papers in 1974 and 1977. FLC has also been applied to manipulator control which is a very challenging nonlinear control problem. Both classical and advanced robot controllers have problems because of high nonlinearity or uncertainties in robot dynamics. FLC, as an alternate, suffer from lack of analytical methods for design, tuning and stability analysis. A nonlinear controller which is robust in the presence of modeling errors and disturbances is presented in this paper. A computed torque controller can be designed based on an approximate model and FLC can be used to minimize the tracking error due to modeling errors and disturbance. Since the approximate model of the system reduces the overall nonlinearity, FLC works with very simple rules and it is easy to tune.

  4. Morphology analysis of EKG R waves using wavelets with adaptive parameters derived from fuzzy logic

    NASA Astrophysics Data System (ADS)

    Caldwell, Max A.; Barrington, William W.; Miles, Richard R.

    1996-03-01

    Understanding of the EKG components P, QRS (R wave), and T is essential in recognizing cardiac disorders and arrhythmias. An estimation method is presented that models the R wave component of the EKG by adaptively computing wavelet parameters using fuzzy logic. The parameters are adaptively adjusted to minimize the difference between the original EKG waveform and the wavelet. The R wave estimate is derived from minimizing the combination of mean squared error (MSE), amplitude difference, spread difference, and shift difference. We show that the MSE in both non-noise and additive noise environment is less using an adaptive wavelet than a static wavelet. Research to date has focused on the R wave component of the EKG signal. Extensions of this method to model P and T waves are discussed.

  5. Parametric control of an axially moving string via fuzzy sliding-mode and fuzzy neural network methods

    NASA Astrophysics Data System (ADS)

    Huang, Jeng-Sheng; Chao, Paul C.-P.; Fung, Rong-Fong; Lai, Cheng-Liang

    2003-06-01

    This study is dedicated to design effective control schemes to suppress transverse vibration of an axially moving string system by adjusting the axial tension of the string. To this end, a continuous model in the form of partial differential equations is first established to describe the system dynamics. Using an energy-like system functional as a Lyapunov function, a sliding-mode controller (SMC) is designed to be applied when the level of vibration is not small. Due to non-analyticity of the SMC control effort generated as vibration level becoming small, two intelligent control schemes are proposed to complete the task — fuzzy sliding-mode control (FSMC) and fuzzy neural network control (FNNC). Both control approaches are based on a common structure of fuzzy control, taking switching function and its derivative as inputs and tension variation as output to reduce the transverse vibration of the string. In the framework of FSMC, genetic algorithm (GA) is utilized to search for the optimal scalings for the inputs; in addition, the technique of regionwise linear fuzzy logic control (RLFLC) is employed to simplify the computation procedure of the fuzzy reasoning. On the other hand, FNNC is proposed for conducting on-line tuning of control parameters to overcome model uncertainty. Numerical simulations are conducted to verify the effectiveness of controllers. Satisfactory stability and vibration suppression are attained for all controllers with the findings that the FSMC assisted by GA holds the advantage of fast convergence with a precise model while the FNNC is robust to model uncertainty and environmental disturbance although a relatively slower convergence could be present.

  6. Respiratory motion prediction by using the adaptive neuro fuzzy inference system (ANFIS)

    NASA Astrophysics Data System (ADS)

    Kakar, Manish; Nyström, Håkan; Rye Aarup, Lasse; Jakobi Nøttrup, Trine; Rune Olsen, Dag

    2005-10-01

    The quality of radiation therapy delivered for treating cancer patients is related to set-up errors and organ motion. Due to the margins needed to ensure adequate target coverage, many breast cancer patients have been shown to develop late side effects such as pneumonitis and cardiac damage. Breathing-adapted radiation therapy offers the potential for precise radiation dose delivery to a moving target and thereby reduces the side effects substantially. However, the basic requirement for breathing-adapted radiation therapy is to track and predict the target as precisely as possible. Recent studies have addressed the problem of organ motion prediction by using different methods including artificial neural network and model based approaches. In this study, we propose to use a hybrid intelligent system called ANFIS (the adaptive neuro fuzzy inference system) for predicting respiratory motion in breast cancer patients. In ANFIS, we combine both the learning capabilities of a neural network and reasoning capabilities of fuzzy logic in order to give enhanced prediction capabilities, as compared to using a single methodology alone. After training ANFIS and checking for prediction accuracy on 11 breast cancer patients, it was found that the RMSE (root-mean-square error) can be reduced to sub-millimetre accuracy over a period of 20 s provided the patient is assisted with coaching. The average RMSE for the un-coached patients was 35% of the respiratory amplitude and for the coached patients 6% of the respiratory amplitude.

  7. Counterpropagation fuzzy-neural network for city flood control system

    NASA Astrophysics Data System (ADS)

    Chang, Fi-John; Chang, Kai-Yao; Chang, Li-Chiu

    2008-08-01

    SummaryThe counterpropagation fuzzy-neural network (CFNN) can effectively solve highly non-linear control problems and robustly tune the complicated conversion of human intelligence to logical operating system. We propose the CFNN for extracting flood control knowledge in the form of fuzzy if-then rules to simulate a human-like operating strategy in a city flood control system through storm events. The Yu-Cheng pumping station, Taipei City, is used as a case study, where storm and operating records are used to train and verify the model's performance. Historical records contain information of rainfall amounts, inner water levels, and pump and gate operating records in torrential rain events. Input information can be classified according to its similarity and mapped into the hidden layer to form precedent if-then rules, while the output layer gradually adjusts the linked weights to obtain the optimal operating result. A model with increasing historical data can automatically increase rules and thus enhance its predicting ability. The results indicate the network has a simple basic structure with efficient learning ability to construct a human-like operating strategy and has the potential ability to automatically operating the flood control system.

  8. Fuzzy chaos control for vehicle lateral dynamics based on active suspension system

    NASA Astrophysics Data System (ADS)

    Huang, Chen; Chen, Long; Jiang, Haobin; Yuan, Chaochun; Xia, Tian

    2014-07-01

    The existing research of the active suspension system (ASS) mainly focuses on the different evaluation indexes and control strategies. Among the different components, the nonlinear characteristics of practical systems and control are usually not considered for vehicle lateral dynamics. But the vehicle model has some shortages on tyre model with side-slip angle, road adhesion coefficient, vertical load and velocity. In this paper, the nonlinear dynamic model of lateral system is considered and also the adaptive neural network of tire is introduced. By nonlinear analysis methods, such as the bifurcation diagram and Lyapunov exponent, it has shown that the lateral dynamics exhibits complicated motions with the forward speed. Then, a fuzzy control method is applied to the lateral system aiming to convert chaos into periodic motion using the linear-state feedback of an available lateral force with changing tire load. Finally, the rapid control prototyping is built to conduct the real vehicle test. By comparison of time response diagram, phase portraits and Lyapunov exponents at different work conditions, the results on step input and S-shaped road indicate that the slip angle and yaw velocity of lateral dynamics enter into stable domain and the results of test are consistent to the simulation and verified the correctness of simulation. And the Lyapunov exponents of the closed-loop system are becoming from positive to negative. This research proposes a fuzzy control method which has sufficient suppress chaotic motions as an effective active suspension system.

  9. Development of a fuzzy logic controller for dc/dc converters: Design, computer simulation, and experimental evaluation

    SciTech Connect

    So, W.C.; Tse, C.K.; Lee, Y.S.

    1996-01-01

    The design of a fuzzy logic controller for dc/dc converters is described in this paper. A brief review of fuzzy logic and its application to control is first given. Then, the derivation of a fuzzy control algorithm for regulating dc/dc converters is described in detail. The proposed fuzzy control is evaluated by computer simulations as well as experimental measurements of the closed-loop performance of simple dc/dc converters in respect of load regulation and line regulation.

  10. Design and Construction of Intelligent Traffic Light Control System Using Fuzzy Logic

    NASA Astrophysics Data System (ADS)

    Lin, Htin; Aye, Khin Muyar; Tun, Hla Myo; Theingi, Naing, Zaw Min

    2008-10-01

    Vehicular travel is increasing throughout the world, particularly in large urban areas. Therefore the need arises for simulation and optimizing traffic control algorithms to better accommodate this increasing demand. This paper presents a microcontroller simulation of intelligent traffic light controller using fuzzy logic that is used to change the traffic signal cycles adaptively at a two-way intersection. This paper is an attempt to design an intelligent traffic light control systems using microcontrollers such as PIC 16F84A and PIC 16F877A. And then traffic signal can be controlled depending upon the densities of cars behind green and red lights of the two-way intersection by using sensors and detectors circuits.

  11. Criticality of Adaptive Control Dynamics

    NASA Astrophysics Data System (ADS)

    Patzelt, Felix; Pawelzik, Klaus

    2011-12-01

    We show, that stabilization of a dynamical system can annihilate observable information about its structure. This mechanism induces critical points as attractors in locally adaptive control. It also reveals, that previously reported criticality in simple controllers is caused by adaptation and not by other controller details. We apply these results to a real-system example: human balancing behavior. A model of predictive adaptive closed-loop control subject to some realistic constraints is introduced and shown to reproduce experimental observations in unprecedented detail. Our results suggests, that observed error distributions in between the Lévy and Gaussian regimes may reflect a nearly optimal compromise between the elimination of random local trends and rare large errors.

  12. Vector control of wind turbine on the basis of the fuzzy selective neural net*

    NASA Astrophysics Data System (ADS)

    Engel, E. A.; Kovalev, I. V.; Engel, N. E.

    2016-04-01

    An article describes vector control of wind turbine based on fuzzy selective neural net. Based on the wind turbine system’s state, the fuzzy selective neural net tracks an maximum power point under random perturbations. Numerical simulations are accomplished to clarify the applicability and advantages of the proposed vector wind turbine’s control on the basis of the fuzzy selective neuronet. The simulation results show that the proposed intelligent control of wind turbine achieves real-time control speed and competitive performance, as compared to a classical control model with PID controllers based on traditional maximum torque control strategy.

  13. Fuzzy control system for a remote focusing microscope

    NASA Technical Reports Server (NTRS)

    Weiss, Jonathan J.; Tran, Luc P.

    1992-01-01

    Space Station Crew Health Care System procedures require the use of an on-board microscope whose slide images will be transmitted for analysis by ground-based microbiologists. Focusing of microscope slides is low on the list of crew priorities, so NASA is investigating the option of telerobotic focusing controlled by the microbiologist on the ground, using continuous video feedback. However, even at Space Station distances, the transmission time lag may disrupt the focusing process, severely limiting the number of slides that can be analyzed within a given bandwidth allocation. Substantial time could be saved if on-board automation could pre-focus each slide before transmission. The authors demonstrate the feasibility of on-board automatic focusing using a fuzzy logic ruled-based system to bring the slide image into focus. The original prototype system was produced in under two months and at low cost. Slide images are captured by a video camera, then digitized by gray-scale value. A software function calculates an index of 'sharpness' based on gray-scale contrasts. The fuzzy logic rule-based system uses feedback to set the microscope's focusing control in an attempt to maximize sharpness. The systems as currently implemented performs satisfactorily in focusing a variety of slide types at magnification levels ranging from 10 to 1000x. Although feasibility has been demonstrated, the system's performance and usability could be improved substantially in four ways: by upgrading the quality and resolution of the video imaging system (including the use of full color); by empirically defining and calibrating the index of image sharpness; by letting the overall focusing strategy vary depending on user-specified parameters; and by fine-tuning the fuzzy rules, set definitions, and procedures used.

  14. A fuzzy self-tuning PI controller for HVDC links

    SciTech Connect

    Routray, A.; Dash, P.K.; Panda, S.K.

    1996-09-01

    This paper introduces a fuzzy logic-based tuning of the controller parameters for the rectifier side current regulator and inverter side gamma controller in a high voltage direct current (HVDC) system. A typical point-to-point system has been taken with the detailed representation of converters, transmission links transformers, and filters. The current error and its derivative and the gamma error and its derivative are used as the principal signals to adjust the proportional and integral gains of the rectifier pole controller and the inverter gamma controller, respectively, for the optimum system performance under various normal and abnormal conditions. Finally, a comparative study has been performed with and without tuning, to prove the superiority of the proposed scheme.

  15. Rollover prevention for sport utility vehicle using fuzzy logic controller

    NASA Astrophysics Data System (ADS)

    Lee, Yong-hwi; Yi, Seung-Jong

    2005-12-01

    The purpose of this study is to develop the fuzzy logic RSC(Roll Stability Control) system to prevent the rollover for the SUV(sport utility vehicle). The SUV model used in this study is the 8-DOF model considering the longitudinal, lateral, yaw and roll motions. The longitudinal and transversal weight transfers are considered in the computation of the vertical forces acting on a wheel. The engine torque is obtained from the throttle position and the r.p.m. of the engine map. The fuzzy logic controller input consists of the roll angle error and its derivative. The output is the brake torque and the throttle angle. The engine torque controller controls the throttle valve angle. The brake controller independently controls both right and left wheels. When the roll angle is +/-4.5° defined as the critical roll angle, the front inner tire experiences the 1/100 ~ 1/50 of the total vertical forces, and the rollover starts. To prevent the rollover in advance, the target angle +/-4.5° is adopted to control the vehicle stability. The RSC system begins operating at +/-4.5° and stops at 0°. The simulations are conducted to evaluate the controller performance at right turns for the excessive steering angle. When the roll angle error and its derivative exceed the limited point, the RSC system makes the longitudinal velocity of the SUV decrease the brake torque and adjusts the throttle angle. The roll motion of the SUV is then stabilized.

  16. Fuzzy and Internal Model Control of an Active Suspension System for a 2-DOF Vehicle Model

    NASA Astrophysics Data System (ADS)

    Demir, Özgür; Karakurt, Derya; Alarçin, Fuat

    2007-09-01

    In this study, Fuzzy-Logic-Based (FL) controller and Internal Model Control (IMC) scheme are designed for active suspension system. An aim of active suspension systems for a vehicle model is to provide good road handling and high passenger comfort by shaping the output function. The simulated system was considered to be a two-degree-of-freedom (2-DOF) model. The effectiveness of this Fuzzy Control is verified by comparison with Internal Model Control simulation results. Simulation results show that the effectiveness of the fuzzy controller is better than Internal Model Control under the same conditions.

  17. Virtual reality simulation of fuzzy-logic control during underwater dynamic positioning

    NASA Astrophysics Data System (ADS)

    Thekkedan, Midhin Das; Chin, Cheng Siong; Woo, Wai Lok

    2015-03-01

    In this paper, graphical-user-interface (GUI) software for simulation and fuzzy-logic control of a remotely operated vehicle (ROV) using MATLAB™ GUI Designing Environment is proposed. The proposed ROV's GUI platform allows the controller such as fuzzy-logic control systems design to be compared with other controllers such as proportional-integral-derivative (PID) and sliding-mode controller (SMC) systematically and interactively. External disturbance such as sea current can be added to improve the modelling in actual underwater environment. The simulated results showed the position responses of the fuzzy-logic control exhibit reasonable performance under the sea current disturbance.

  18. Design of an enhanced hybrid fuzzy P+ID controller for a mechanical manipulator.

    PubMed

    Li, W; Chang, X G; Farrell, J; Wahl, F M

    2001-01-01

    We propose in this paper an enhanced fuzzy P+ID controller to improve control performance in both dynamic transient and steady-state periods for mechanical manipulators under uncertainty. The fuzzy P+ID controller adds only two additional parameters to be tuned relative to the original PID controller. One of these parameters is mainly used to reduce a steady-state error. The other is used to speed up the dynamic response. A simulation study and experimental results for a two-link manipulator with uncertainty demonstrate the superior control performance of the proposed fuzzy P+ID controllers. PMID:18244859

  19. Fuzzy expert systems vs. neural networks - Truck backer-upper control revisited

    NASA Technical Reports Server (NTRS)

    Ramamoorthy, P. A.; Huang, Song

    1991-01-01

    It is pointed out that by merging the advantages of fuzzy expert systems and neural networks one can arrive at a more powerful yet more flexible system for inferencing and learning. The advantages of fuzzy expert systems are their ability to provide nonlinear mapping through the membership functions and fuzzy rules, and the ability to deal with fuzzy information and incomplete and/or imprecise data. The merger of these two concepts is explained using the truck backer-upper control problem. Novel network architectures obtained by merging these two concepts and simulation results for the truck backer-upper problem using the architecture are shown.

  20. Robust Optimal Adaptive Control Method with Large Adaptive Gain

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.

    2009-01-01

    In the presence of large uncertainties, a control system needs to be able to adapt rapidly to regain performance. Fast adaptation is referred to the implementation of adaptive control with a large adaptive gain to reduce the tracking error rapidly. However, a large adaptive gain can lead to high-frequency oscillations which can adversely affect robustness of an adaptive control law. A new adaptive control modification is presented that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. The modification is based on the minimization of the Y2 norm of the tracking error, which is formulated as an optimal control problem. The optimality condition is used to derive the modification using the gradient method. The optimal control modification results in a stable adaptation and allows a large adaptive gain to be used for better tracking while providing sufficient stability robustness. Simulations were conducted for a damaged generic transport aircraft with both standard adaptive control and the adaptive optimal control modification technique. The results demonstrate the effectiveness of the proposed modification in tracking a reference model while maintaining a sufficient time delay margin.

  1. A genetic algorithms approach for altering the membership functions in fuzzy logic controllers

    NASA Technical Reports Server (NTRS)

    Shehadeh, Hana; Lea, Robert N.

    1992-01-01

    Through previous work, a fuzzy control system was developed to perform translational and rotational control of a space vehicle. This problem was then re-examined to determine the effectiveness of genetic algorithms on fine tuning the controller. This paper explains the problems associated with the design of this fuzzy controller and offers a technique for tuning fuzzy logic controllers. A fuzzy logic controller is a rule-based system that uses fuzzy linguistic variables to model human rule-of-thumb approaches to control actions within a given system. This 'fuzzy expert system' features rules that direct the decision process and membership functions that convert the linguistic variables into the precise numeric values used for system control. Defining the fuzzy membership functions is the most time consuming aspect of the controller design. One single change in the membership functions could significantly alter the performance of the controller. This membership function definition can be accomplished by using a trial and error technique to alter the membership functions creating a highly tuned controller. This approach can be time consuming and requires a great deal of knowledge from human experts. In order to shorten development time, an iterative procedure for altering the membership functions to create a tuned set that used a minimal amount of fuel for velocity vector approach and station-keep maneuvers was developed. Genetic algorithms, search techniques used for optimization, were utilized to solve this problem.

  2. Robust and fast learning for fuzzy cerebellar model articulation controllers.

    PubMed

    Su, Shun-Feng; Lee, Zne-Jung; Wang, Yan-Ping

    2006-02-01

    In this paper, the online learning capability and the robust property for the learning algorithms of cerebellar model articulation controllers (CMAC) are discussed. Both the traditional CMAC and fuzzy CMAC are considered. In the study, we find a way of embeding the idea of M-estimators into the CMAC learning algorithms to provide the robust property against outliers existing in training data. An annealing schedule is also adopted for the learning constant to fulfill robust learning. In the study, we also extend our previous work of adopting the credit assignment idea into CMAC learning to provide fast learning for fuzzy CMAC. From demonstrated examples, it is clearly evident that the proposed algorithm indeed has faster and more robust learning. In our study, we then employ the proposed CMAC for an online learning control scheme used in the literature. In the implementation, we also propose to use a tuning parameter instead of a fixed constant to achieve both online learning and fine-tuning effects. The simulation results indeed show the effectiveness of the proposed approaches. PMID:16468579

  3. Nonmonotonic observer-based fuzzy controller designs for discrete time T-S fuzzy systems via LMI.

    PubMed

    Derakhshan, Siavash Fakhimi; Fatehi, Alireza; Sharabiany, Mehrad Ghasem

    2014-12-01

    In this paper, based on the nonmonotonic Lyapunov functions, a new less conservative state feedback controller synthesis method is proposed for a class of discrete time nonlinear systems represented by Takagi-Sugeno (T-S) fuzzy systems. Parallel distributed compensation (PDC) state feedback is employed as the controller structure. Also, a T-S fuzzy observer is designed in a manner similar to state feedback controller design. The observer and the controller can be obtained separately and then combined together to form an output feedback controller by means of the Separation theorem. Both observer and controller are obtained via solving a sequence of linear matrix inequalities. Nonmonotonic Lyapunov method allows the design of controllers for the aforementioned systems where other methods fail. Illustrative examples are presented which show how the proposed method outperforms other methods such as common quadratic, piecewise or non quadratic Lyapunov functions. PMID:24733035

  4. Fuzzy Control Hardware for Segmented Mirror Phasing Algorithm

    NASA Technical Reports Server (NTRS)

    Roth, Elizabeth

    1999-01-01

    This paper presents a possible implementation of a control model developed to phase a system of segmented mirrors, with a PAMELA configuration, using analog fuzzy hardware. Presently, the model is designed for piston control only, but with the foresight that the parameters of tip and tilt will be integrated eventually. The proposed controller uses analog circuits to exhibit a voltage-mode singleton fuzzifier, a mixed-mode inference engine, and a current-mode defuzzifier. The inference engine exhibits multiplication circuits that perform the algebraic product composition through the use of operational transconductance amplifiers rather than the typical min-max circuits. Additionally, the knowledge base, containing exemplar data gained a priori through simulation, interacts via a digital interface.

  5. The Temperature Fuzzy Control System of Barleythe Malt Drying Based on Microcontroller

    NASA Astrophysics Data System (ADS)

    Gao, Xiaoyang; Bi, Yang; Zhang, Lili; Chen, Jingjing; Yun, Jianmin

    The control strategy of temperature and humidity in the beer barley malt drying chamber based on fuzzy logic control was implemented.Expounded in this paper was the selection of parameters for the structure of the regulatory device, as well as the essential design from control rules based on the existing experience. A temperature fuzzy controller was thus constructed using relevantfuzzy logic, and humidity control was achieved by relay, ensured the situation of the humidity to control the temperature. The temperature's fuzzy control and the humidity real-time control were all processed by single chip microcomputer with assembly program. The experimental results showed that the temperature control performance of this fuzzy regulatory system,especially in the ways of working stability and responding speed and so on,was better than normal used PID control. The cost of real-time system was inquite competitive position. It was demonstrated that the system have a promising prospect of extensive application.

  6. Fuzzy Logic Control Based QoS Management in Wireless Sensor/Actuator Networks

    PubMed Central

    Xia, Feng; Zhao, Wenhong; Sun, Youxian; Tian, Yu-Chu

    2007-01-01

    Wireless sensor/actuator networks (WSANs) are emerging rapidly as a new generation of sensor networks. Despite intensive research in wireless sensor networks (WSNs), limited work has been found in the open literature in the field of WSANs. In particular, quality-of-service (QoS) management in WSANs remains an important issue yet to be investigated. As an attempt in this direction, this paper develops a fuzzy logic control based QoS management (FLC-QM) scheme for WSANs with constrained resources and in dynamic and unpredictable environments. Taking advantage of the feedback control technology, this scheme deals with the impact of unpredictable changes in traffic load on the QoS of WSANs. It utilizes a fuzzy logic controller inside each source sensor node to adapt sampling period to the deadline miss ratio associated with data transmission from the sensor to the actuator. The deadline miss ratio is maintained at a pre-determined desired level so that the required QoS can be achieved. The FLC-QM has the advantages of generality, scalability, and simplicity. Simulation results show that the FLC-QM can provide WSANs with QoS support.

  7. Inverting the Pendulum Using Fuzzy Control (Center Director's Discretionary Fund (Project 93-02)

    NASA Technical Reports Server (NTRS)

    Kissel, R. R.; Sutherland, W. T.

    1997-01-01

    A single pendulum was simulated in software and then built on a rotary base. A fuzzy controller was used to show its advantages as a nonlinear controller since bringing the pendulum inverted is extremely nonlinear. The controller was implemented in a Motorola 6811 microcontroller. A double pendulum was simulated and fuzzy control was used to hold it in a vertical position. The double pendulum was not built into hardware for lack of time. This project was for training and to show advantages of fuzzy control.

  8. Introduction to Fuzzy Set Theory

    NASA Technical Reports Server (NTRS)

    Kosko, Bart

    1990-01-01

    An introduction to fuzzy set theory is described. Topics covered include: neural networks and fuzzy systems; the dynamical systems approach to machine intelligence; intelligent behavior as adaptive model-free estimation; fuzziness versus probability; fuzzy sets; the entropy-subsethood theorem; adaptive fuzzy systems for backing up a truck-and-trailer; product-space clustering with differential competitive learning; and adaptive fuzzy system for target tracking.

  9. Fuzzy control with amplitude/pulse-width modulation of nerve electrical stimulation for muscle force control

    NASA Astrophysics Data System (ADS)

    Lin, C.-C. K.; Liu, W.-C.; Chan, C.-C.; Ju, M.-S.

    2012-04-01

    The main goal of this study was to study the performance of fuzzy logic controllers combined with simplified hybrid amplitude/pulse-width (AM/PW) modulation to regulate muscle force via nerve electrical stimulation. The recruitment curves with AM/PW and AM modulations were constructed for the calf muscles of rabbits. Integrated with the modulation methods, a proportional-integral-derivative (PID) and three fuzzy logic controllers were designed and applied for the electrical stimulation of tibial nerves to control the ankle torque under isometric conditions. The performance of the two modulation methods combined with the four controllers was compared when the ankle was fixed at three positions for both in vivo experiments and model simulations using a nonlinear muscle model. For the animal experiments, AM/PW modulation performed better than AM modulation alone. The fuzzy PI controller performed marginally better and was resistant to external noises, though it tended to have a larger overshoot. The performance of the controllers had a similar trend in the three different joint positions, and the simulation results with the nonlinear model matched the experimental results well. In conclusion, AM/PW modulation improved controller performance, while the contribution of fuzzy logic was only marginal.

  10. Fuzzy control with amplitude/pulse-width modulation of nerve electrical stimulation for muscle force control.

    PubMed

    Lin, C-C K; Liu, W-C; Chan, C-C; Ju, M-S

    2012-04-01

    The main goal of this study was to study the performance of fuzzy logic controllers combined with simplified hybrid amplitude/pulse-width (AM/PW) modulation to regulate muscle force via nerve electrical stimulation. The recruitment curves with AM/PW and AM modulations were constructed for the calf muscles of rabbits. Integrated with the modulation methods, a proportional-integral-derivative (PID) and three fuzzy logic controllers were designed and applied for the electrical stimulation of tibial nerves to control the ankle torque under isometric conditions. The performance of the two modulation methods combined with the four controllers was compared when the ankle was fixed at three positions for both in vivo experiments and model simulations using a nonlinear muscle model. For the animal experiments, AM/PW modulation performed better than AM modulation alone. The fuzzy PI controller performed marginally better and was resistant to external noises, though it tended to have a larger overshoot. The performance of the controllers had a similar trend in the three different joint positions, and the simulation results with the nonlinear model matched the experimental results well. In conclusion, AM/PW modulation improved controller performance, while the contribution of fuzzy logic was only marginal. PMID:22422279

  11. Simulation of the Predictive Control Algorithm for Container Crane Operation using Matlab Fuzzy Logic Tool Box

    NASA Technical Reports Server (NTRS)

    Richardson, Albert O.

    1997-01-01

    This research has investigated the use of fuzzy logic, via the Matlab Fuzzy Logic Tool Box, to design optimized controller systems. The engineering system for which the controller was designed and simulate was the container crane. The fuzzy logic algorithm that was investigated was the 'predictive control' algorithm. The plant dynamics of the container crane is representative of many important systems including robotic arm movements. The container crane that was investigated had a trolley motor and hoist motor. Total distance to be traveled by the trolley was 15 meters. The obstruction height was 5 meters. Crane height was 17.8 meters. Trolley mass was 7500 kilograms. Load mass was 6450 kilograms. Maximum trolley and rope velocities were 1.25 meters per sec. and 0.3 meters per sec., respectively. The fuzzy logic approach allowed the inclusion, in the controller model, of performance indices that are more effectively defined in linguistic terms. These include 'safety' and 'cargo swaying'. Two fuzzy inference systems were implemented using the Matlab simulation package, namely the Mamdani system (which relates fuzzy input variables to fuzzy output variables), and the Sugeno system (which relates fuzzy input variables to crisp output variable). It is found that the Sugeno FIS is better suited to including aspects of those plant dynamics whose mathematical relationships can be determined.

  12. Norepinephrine weaning in septic shock patients by closed loop control based on fuzzy logic

    PubMed Central

    Merouani, Mehdi; Guignard, Bruno; Vincent, François; Borron, Stephen W; Karoubi, Philippe; Fosse, Jean-Philippe; Cohen, Yves; Clec'h, Christophe; Vicaut, Eric; Marbeuf-Gueye, Carole; Lapostolle, Frederic; Adnet, Frederic

    2008-01-01

    Introduction The rate of weaning of vasopressors drugs is usually an empirical choice made by the treating in critically ill patients. We applied fuzzy logic principles to modify intravenous norepinephrine (noradrenaline) infusion rates during norepinephrine infusion in septic patients in order to reduce the duration of shock. Methods Septic patients were randomly assigned to norepinephrine infused either at the clinician's discretion (control group) or under closed-loop control based on fuzzy logic (fuzzy group). The infusion rate changed automatically after analysis of mean arterial pressure in the fuzzy group. The primary end-point was time to cessation of norepinephrine. The secondary end-points were 28-day survival, total amount of norepinephine infused and duration of mechanical ventilation. Results Nineteen patients were randomly assigned to fuzzy group and 20 to control group. Weaning of norepinephrine was achieved in 18 of the 20 control patients and in all 19 fuzzy group patients. Median (interquartile range) duration of shock was significantly shorter in the fuzzy group than in the control group (28.5 [20.5 to 42] hours versus 57.5 [43.7 to 117.5] hours; P < 0.0001). There was no significant difference in duration of mechanical ventilation or survival at 28 days between the two groups. The median (interquartile range) total amount of norepinephrine infused during shock was significantly lower in the fuzzy group than in the control group (0.6 [0.2 to 1.0] μg/kg versus 1.4 [0.6 to 2.7] μg/kg; P < 0.01). Conclusions Our study has shown a reduction in norepinephrine weaning duration in septic patients enrolled in the fuzzy group. We attribute this reduction to fuzzy control of norepinephrine infusion. Trial registration Trial registration: Clinicaltrials.gov NCT00763906. PMID:19068113

  13. Nonlinear Performance Seeking Control using Fuzzy Model Reference Learning Control and the Method of Steepest Descent

    NASA Technical Reports Server (NTRS)

    Kopasakis, George

    1997-01-01

    Performance Seeking Control (PSC) attempts to find and control the process at the operating condition that will generate maximum performance. In this paper a nonlinear multivariable PSC methodology will be developed, utilizing the Fuzzy Model Reference Learning Control (FMRLC) and the method of Steepest Descent or Gradient (SDG). This PSC control methodology employs the SDG method to find the operating condition that will generate maximum performance. This operating condition is in turn passed to the FMRLC controller as a set point for the control of the process. The conventional SDG algorithm is modified in this paper in order for convergence to occur monotonically. For the FMRLC control, the conventional fuzzy model reference learning control methodology is utilized, with guidelines generated here for effective tuning of the FMRLC controller.

  14. Fault tolerant control based on interval type-2 fuzzy sliding mode controller for coaxial trirotor aircraft.

    PubMed

    Zeghlache, Samir; Kara, Kamel; Saigaa, Djamel

    2015-11-01

    In this paper, a robust controller for a Six Degrees of Freedom (6 DOF) coaxial trirotor helicopter control is proposed in presence of defects in the system. A control strategy based on the coupling of the interval type-2 fuzzy logic control and sliding mode control technique are used to design a controller. The main purpose of this work is to eliminate the chattering phenomenon and guaranteeing the stability and the robustness of the system. In order to achieve this goal, interval type-2 fuzzy logic control has been used to generate the discontinuous control signal. The simulation results have shown that the proposed control strategy can greatly alleviate the chattering effect, and perform good reference tracking in presence of defects in the system. PMID:26428878

  15. Application of Fuzzy-Logic Controller and Neural Networks Controller in Gas Turbine Speed Control and Overheating Control and Surge Control on Transient Performance

    NASA Astrophysics Data System (ADS)

    Torghabeh, A. A.; Tousi, A. M.

    2007-08-01

    This paper presents Fuzzy Logic and Neural Networks approach to Gas Turbine Fuel schedules. Modeling of non-linear system using feed forward artificial Neural Networks using data generated by a simulated gas turbine program is introduced. Two artificial Neural Networks are used , depicting the non-linear relationship between gas generator speed and fuel flow, and turbine inlet temperature and fuel flow respectively . Off-line fast simulations are used for engine controller design for turbojet engine based on repeated simulation. The Mamdani and Sugeno models are used to expression the Fuzzy system . The linguistic Fuzzy rules and membership functions are presents and a Fuzzy controller will be proposed to provide an Open-Loop control for the gas turbine engine during acceleration and deceleration . MATLAB Simulink was used to apply the Fuzzy Logic and Neural Networks analysis. Both systems were able to approximate functions characterizing the acceleration and deceleration schedules . Surge and Flame-out avoidance during acceleration and deceleration phases are then checked . Turbine Inlet Temperature also checked and controls by Neural Networks controller. This Fuzzy Logic and Neural Network Controllers output results are validated and evaluated by GSP software . The validation results are used to evaluate the generalization ability of these artificial Neural Networks and Fuzzy Logic controllers.

  16. Controlling of grid connected photovoltaic lighting system with fuzzy logic

    SciTech Connect

    Saglam, Safak; Ekren, Nazmi; Erdal, Hasan

    2010-02-15

    In this study, DC electrical energy produced by photovoltaic panels is converted to AC electrical energy and an indoor area is illuminated using this energy. System is controlled by fuzzy logic algorithm controller designed with 16 rules. Energy is supplied from accumulator which is charged by photovoltaic panels if its energy would be sufficient otherwise it is supplied from grid. During the 1-week usage period at the semester time, 1.968 kWh energy is used from grid but designed system used 0.542 kWh energy from photovoltaic panels at the experiments. Energy saving is determined by calculations and measurements for one education year period (9 months) 70.848 kWh. (author)

  17. A Methodology for Investigating Adaptive Postural Control

    NASA Technical Reports Server (NTRS)

    McDonald, P. V.; Riccio, G. E.

    1999-01-01

    Our research on postural control and human-environment interactions provides an appropriate scientific foundation for understanding the skill of mass handling by astronauts in weightless conditions (e.g., extravehicular activity or EVA). We conducted an investigation of such skills in NASA's principal mass-handling simulator, the Precision Air-Bearing Floor, at the Johnson Space Center. We have studied skilled movement-body within a multidisciplinary context that draws on concepts and methods from biological and behavioral sciences (e.g., psychology, kinesiology and neurophysiology) as well as bioengineering. Our multidisciplinary research has led to the development of measures, for manual interactions between individuals and the substantial environment, that plausibly are observable by human sensory systems. We consider these methods to be the most important general contribution of our EVA investigation. We describe our perspective as control theoretic because it draws more on fundamental concepts about control systems in engineering than it does on working constructs from the subdisciplines of biomechanics and motor control in the bio-behavioral sciences. At the same time, we have attempted to identify the theoretical underpinnings of control-systems engineering that are most relevant to control by human beings. We believe that these underpinnings are implicit in the assumptions that cut across diverse methods in control-systems engineering, especially the various methods associated with "nonlinear control", "fuzzy control," and "adaptive control" in engineering. Our methods are based on these theoretical foundations rather than on the mathematical formalisms that are associated with particular methods in control-systems engineering. The most important aspects of the human-environment interaction in our investigation of mass handling are the functional consequences that body configuration and stability have for the pick up of information or the achievement of overt goals. It follows that an essential characteristic of postural behavior is the effective maintenance of the orientation and stability of the sensory and motor "platforms" (e.g., head or shoulders) over variations in the human, the environment and the task. This general skill suggests that individuals should be sensitive to the functional consequences of body configuration and stability. In other words, individuals should perceive the relation between configuration, stability, and performance so that they can adaptively control their interaction with the surroundings. Human-environment interactions constitute robust systems in that individuals can maintain the stability of such interactions over uncertainty about and variations in the dynamics of the interaction. Robust interactions allow individuals to adopt orientations and configurations that are not optimal with respect to purely energetic criteria. Individuals can tolerate variation in postural states, and such variation can serve an important function in adaptive systems. Postural variability generates stimulation which is "textured" by the dynamics of the human-environment system. The texture or structure in stimulation provides information about variation in dynamics, and such information can be sufficient to guide adaption in control strategies. Our method were designed to measure informative patterns of movement variability.

  18. Vector control and fuzzy logic control of doubly fed variable speed drives with DSP implementation

    SciTech Connect

    Tang, Y.; Xu, L.

    1995-12-01

    Field orientation control and fuzzy logic control are designed for variable speed drive systems with a doubly fed machine in slip power recovery configuration. Laboratory implementation with a general purpose DSP (digital signal processing) system is described and experimental results are given. High performance potential of a slip power recovery system is realized with these advanced controls, while flexible reactive power control becomes possible, and compared to the ordinary variable speed drives with singly fed induction machine, power converter rating is reduced.

  19. Convergent method of and apparatus for distributed control of robotic systems using fuzzy logic

    DOEpatents

    Feddema, John T.; Driessen, Brian J.; Kwok, Kwan S.

    2002-01-01

    A decentralized fuzzy logic control system for one vehicle or for multiple robotic vehicles provides a way to control each vehicle to converge on a goal without collisions between vehicles or collisions with other obstacles, in the presence of noisy input measurements and a limited amount of compute-power and memory on board each robotic vehicle. The fuzzy controller demonstrates improved robustness to noise relative to an exact controller.

  20. Development of a GA-Fuzzy-Immune PID Controller with Incomplete Derivation for Robot Dexterous Hand

    PubMed Central

    Liu, Xin-hua; Chen, Xiao-hu; Zheng, Xian-hua; Li, Sheng-peng; Wang, Zhong-bin

    2014-01-01

    In order to improve the performance of robot dexterous hand, a controller based on GA-fuzzy-immune PID was designed. The control system of a robot dexterous hand and mathematical model of an index finger were presented. Moreover, immune mechanism was applied to the controller design and an improved approach through integration of GA and fuzzy inference was proposed to realize parameters' optimization. Finally, a simulation example was provided and the designed controller was proved ideal. PMID:25097881

  1. Learning control of inverted pendulum system by neural network driven fuzzy reasoning: The learning function of NN-driven fuzzy reasoning under changes of reasoning environment

    NASA Technical Reports Server (NTRS)

    Hayashi, Isao; Nomura, Hiroyoshi; Wakami, Noboru

    1991-01-01

    Whereas conventional fuzzy reasonings are associated with tuning problems, which are lack of membership functions and inference rule designs, a neural network driven fuzzy reasoning (NDF) capable of determining membership functions by neural network is formulated. In the antecedent parts of the neural network driven fuzzy reasoning, the optimum membership function is determined by a neural network, while in the consequent parts, an amount of control for each rule is determined by other plural neural networks. By introducing an algorithm of neural network driven fuzzy reasoning, inference rules for making a pendulum stand up from its lowest suspended point are determined for verifying the usefulness of the algorithm.

  2. Multiple Adaptive Neuro-Fuzzy Inference System with Automatic Features Extraction Algorithm for Cervical Cancer Recognition

    PubMed Central

    Subhi Al-batah, Mohammad; Mat Isa, Nor Ashidi; Klaib, Mohammad Fadel; Al-Betar, Mohammed Azmi

    2014-01-01

    To date, cancer of uterine cervix is still a leading cause of cancer-related deaths in women worldwide. The current methods (i.e., Pap smear and liquid-based cytology (LBC)) to screen for cervical cancer are time-consuming and dependent on the skill of the cytopathologist and thus are rather subjective. Therefore, this paper presents an intelligent computer vision system to assist pathologists in overcoming these problems and, consequently, produce more accurate results. The developed system consists of two stages. In the first stage, the automatic features extraction (AFE) algorithm is performed. In the second stage, a neuro-fuzzy model called multiple adaptive neuro-fuzzy inference system (MANFIS) is proposed for recognition process. The MANFIS contains a set of ANFIS models which are arranged in parallel combination to produce a model with multi-input-multioutput structure. The system is capable of classifying cervical cell image into three groups, namely, normal, low-grade squamous intraepithelial lesion (LSIL) and high-grade squamous intraepithelial lesion (HSIL). The experimental results prove the capability of the AFE algorithm to be as effective as the manual extraction by human experts, while the proposed MANFIS produces a good classification performance with 94.2% accuracy. PMID:24707316

  3. Design and implementation of a new fuzzy PID controller for networked control systems.

    PubMed

    Fadaei, A; Salahshoor, K

    2008-10-01

    This paper presents a practical network platform to design and implement a networked-based cascade control system linking a Smar Foundation Fieldbus (FF) controller (DFI-302) and a Siemens programmable logic controller (PLC-S7-315-2DP) through Industrial Ethernet to a laboratory pilot plant. In the presented network configuration, the Smar OPC tag browser and Siemens WinCC OPC Channel provide the communicating interface between the two controllers. The paper investigates the performance of a PID controller implemented in two different possible configurations of FF function block (FB) and networked control system (NCS) via a remote Siemens PLC. In the FB control system implementation, the desired set-point is provided by the Siemens Human-Machine Interface (HMI) software (i.e, WinCC) via an Ethernet Modbus link. While, in the NCS implementation, the cascade loop is realized in remote Siemens PLC station and the final element set-point is sent to the Smar FF station via Ethernet bus. A new fuzzy PID control strategy is then proposed to improve the control performances of the networked-based control systems due to an induced transmission delay degradation effect. The proposed strategy utilizes an innovative idea based on sectionalizing the error signal of the step response into three different functional zones. The supporting philosophy behind these three functional zones is to decompose the desired control objectives in terms of rising time, settling time and steady-state error measures maintained by an appropriate PID-type controller in each zone. Then, fuzzy membership factors are defined to configure the control signal on the basis of the fuzzy weighted PID outputs of all three zones. The obtained results illustrate the effectiveness of the proposed fuzzy PID control scheme in improving the performances of the implemented NCS for different transportation delays. PMID:18692184

  4. Design and Implementation of Takagi-Sugeno Fuzzy Logic Controller for Shunt Compensator

    NASA Astrophysics Data System (ADS)

    Singh, Alka; Badoni, Manoj

    2015-08-01

    This paper describes the application of Takagi-Sugeno (TS) type fuzzy logic controller to a three-phase shunt compensator in power distribution system. The shunt compensator is used for power quality improvement and has the ability to provide reactive power compensation, reduce the level of harmonics in supply currents, power factor correction and load balancing. Additionally, it can also be used to regulate voltage at the point of common coupling (PCC). The paper discusses the design of TS fuzzy logic controller and its implementation based on only four rules. The smaller number of rules makes it suitable for experimental verification as compared to Mamdani fuzzy controller. A small laboratory prototype of the system is developed and the control algorithm is verified experimentally. The TS fuzzy controller is compared with the proportional integral based industrial controller and their performance is compared under a wide variation of dynamic load changes.

  5. Adaptable state based control system

    NASA Technical Reports Server (NTRS)

    Rasmussen, Robert D. (Inventor); Dvorak, Daniel L. (Inventor); Gostelow, Kim P. (Inventor); Starbird, Thomas W. (Inventor); Gat, Erann (Inventor); Chien, Steve Ankuo (Inventor); Keller, Robert M. (Inventor)

    2004-01-01

    An autonomous controller, comprised of a state knowledge manager, a control executor, hardware proxies and a statistical estimator collaborates with a goal elaborator, with which it shares common models of the behavior of the system and the controller. The elaborator uses the common models to generate from temporally indeterminate sets of goals, executable goals to be executed by the controller. The controller may be updated to operate in a different system or environment than that for which it was originally designed by the replacement of shared statistical models and by the instantiation of a new set of state variable objects derived from a state variable class. The adaptation of the controller does not require substantial modification of the goal elaborator for its application to the new system or environment.

  6. Fuzzy Modeling and Impulsive Control of a Memristor-Based Chaotic System

    NASA Astrophysics Data System (ADS)

    Zhong, Qi-Shui; Yu, Yong-Bin; Yu, Jue-Bang

    2010-02-01

    We mainly investigate the issues of fuzzy modeling and impulsive control of a memristor-based chaotic system and present a memristor-based chaotic system as the Takagi-Sugeno model-based fuzzy system. Then, based on the impulsive control theory of dynamical systems, a criterion ensuring impulsive stabilization of the memristor-based chaotic system is derived for the first time. An illustrative example is given to verify the effectiveness of the control scheme.

  7. Adaptive Fuzzy Association Rule mining for effective decision support in biomedical applications.

    PubMed

    He, Yuanchen; Tang, Yuchun; Zhang, Yan-Qing; Sunderraman, Rajshekhar

    2006-01-01

    Due to complexity of biomedical classification problems, it is impossible to build a perfect classifier with 100% prediction accuracy. Hence a more realistic target is to build an effective Decision Support System (DSS). Here 'effective' means that a DSS should not only predict unseen samples accurately, but also work in a human-understandable way. In this paper, we propose a novel adaptive Fuzzy Association Rules (FARs) mining algorithm, named FARM-DS, to build such a DSS for binary classification problems in the biomedical domain. In the training phase, four steps are executed to mine FARs, which are thereafter used to predict unseen samples in the testing phase. The new FARM-DS algorithm is evaluated on two publicly available medical datasets. The experimental results show that FARM-DS is competitive in terms of prediction accuracy. More importantly, the mined FARs provide strong decision support on disease diagnoses due to their easy interpretability. PMID:18402040

  8. Prediction of ultrasonic pulse velocity for enhanced peat bricks using adaptive neuro-fuzzy methodology.

    PubMed

    Motamedi, Shervin; Roy, Chandrabhushan; Shamshirband, Shahaboddin; Hashim, Roslan; Petković, Dalibor; Song, Ki-Il

    2015-08-01

    Ultrasonic pulse velocity is affected by defects in material structure. This study applied soft computing techniques to predict the ultrasonic pulse velocity for various peats and cement content mixtures for several curing periods. First, this investigation constructed a process to simulate the ultrasonic pulse velocity with adaptive neuro-fuzzy inference system. Then, an ANFIS network with neurons was developed. The input and output layers consisted of four and one neurons, respectively. The four inputs were cement, peat, sand content (%) and curing period (days). The simulation results showed efficient performance of the proposed system. The ANFIS and experimental results were compared through the coefficient of determination and root-mean-square error. In conclusion, use of ANFIS network enhances prediction and generation of strength. The simulation results confirmed the effectiveness of the suggested strategies. PMID:25957464

  9. Fuzzy logic feedback control for fed-batch enzymatic hydrolysis of lignocellulosic biomass.

    PubMed

    Tai, Chao; Voltan, Diego S; Keshwani, Deepak R; Meyer, George E; Kuhar, Pankaj S

    2016-06-01

    A fuzzy logic feedback control system was developed for process monitoring and feeding control in fed-batch enzymatic hydrolysis of a lignocellulosic biomass, dilute acid-pretreated corn stover. Digested glucose from hydrolysis reaction was assigned as input while doser feeding time and speed of pretreated biomass were responses from fuzzy logic control system. Membership functions for these three variables and rule-base were created based on batch hydrolysis data. The system response was first tested in LabVIEW environment then the performance was evaluated through real-time hydrolysis reaction. The feeding operations were determined timely by fuzzy logic control system and efficient responses were shown to plateau phases during hydrolysis. Feeding of proper amount of cellulose and maintaining solids content was well balanced. Fuzzy logic proved to be a robust and effective online feeding control tool for fed-batch enzymatic hydrolysis. PMID:26915095

  10. Design and simulation of an image-based fuzzy tracking controller for a wheeled mobile robot

    NASA Astrophysics Data System (ADS)

    Shiao, Ying Shing; Wu, Ching Wei

    2011-12-01

    Image processing algorithms and fuzzy logic method are used to design a visual tracking controller for mobile robot navigation. In this paper, a wheeled mobile robot is equipped with a camera for detecting its task space. The grabbed environmental images are treated using image recognition processing to obtain target's size and position. The images are treated using input membership functions as the fuzzy logic controller input. The recognized target's size and position are input into a fuzzy logic controller in which fuzzy rules are used for inference. The inference results are output to the defuzzifier to obtain a physical control signal to control the mobile robot's movement. The velocity and direction of the mobile robot are the output of fuzzy logic controller. The differences in velocities for two wheels are used to control the robot's movement directions. The fuzzy logic controller outputs the control commands to drive the mobile robot to reach a position 50cm front of the target location. The simulation results verify that the proposed FLC is effective in navigating the mobile robot to track a moving target.

  11. Time-Varying Characteristics Analysis and Fuzzy Controller Systematic Design Method for Pressurized Water Reactor Power Control

    SciTech Connect

    Liu Shengzhi; Zhang Naiyao; Cui Zhenhua

    2004-11-15

    In this paper a systematic design method of fuzzy control systems is applied to the pressurized water reactor's (PWR) power control. The paper includes three parts. In the first part, a simplified time-varying linear model of the PWR power system is constructed, and its inner structure and time-varying characteristics are analyzed. That provides a solid basis for study and design of the nuclear reactor power control system. In the second part, a systematic design method of fuzzy control systems is introduced and applied to control the nuclear reactor power process. The design procedures and parameters are given in detail. This systematic design method has some notable advantages. The control of a global fuzzy model can be decomposed into controlling a set of linear submodels. Each submodel controller can be independently designed by using a linear quadratic regulator approach. This systematic design method gives a sufficient and necessary condition to guarantee the stability of fuzzy control systems; thus, better control performance can be obtained due to the accurate control gains. In the third part, the control performance of the nuclear reactor fuzzy control system is examined by simulation experiments, including nuclear reactor power shutdown, start-up, and adjustment operations. The satisfactory experiment results have shown that the systematic design method for fuzzy control systems is effective and feasible.

  12. Adaptive Force Control in Compliant Motion

    NASA Technical Reports Server (NTRS)

    Seraji, H.

    1994-01-01

    This paper addresses the problem of controlling a manipulator in compliant motion while in contact with an environment having an unknown stiffness. Two classes of solutions are discussed: adaptive admittance control and adaptive compliance control. In both admittance and compliance control schemes, compensator adaptation is used to ensure a stable and uniform system performance.

  13. Genetic Fuzzy Trees for Intelligent Control of Unmanned Combat Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Ernest, Nicholas D.

    Fuzzy Logic Control is a powerful tool that has found great success in a variety of applications. This technique relies less on complex mathematics and more "expert knowledge" of a system to bring about high-performance, resilient, and efficient control through linguistic classification of inputs and outputs and if-then rules. Genetic Fuzzy Systems (GFSs) remove the need of this expert knowledge and instead rely on a Genetic Algorithm (GA) and have similarly found great success. However, the combination of these methods suffer severely from scalability; the number of rules required to control the system increases exponentially with the number of states the inputs and outputs can take. Therefor GFSs have thus far not been applicable to complex, artificial intelligence type problems. The novel Genetic Fuzzy Tree (GFT) method breaks down complex problems hierarchically, makes sub-decisions when possible, and thus greatly reduces the burden on the GA. This development significantly changes the field of possible applications for GFSs. Within this study, this is demonstrated through applying this technique to a difficult air combat problem. Looking forward to an autonomous Unmanned Combat Aerial Vehicle (UCAV) in the 2030 time-frame, it becomes apparent that the mission, flight, and ground controls will utilize the emerging paradigm of Intelligent Systems (IS); namely, the ability to learn, adapt, exhibit robustness in uncertain situations, make sense of the data collected in real-time and extrapolate when faced with scenarios significantly different from those used in training. LETHA (Learning Enhanced Tactical Handling Algorithm) was created to develop intelligent controllers for these advanced unmanned craft as the first GFT. A simulation space referred to as HADES (Hoplological Autonomous Defend and Engage Simulation) was created in which LETHA can train the UCAVs. Equipped with advanced sensors, a limited supply of Self-Defense Missiles (SDMs), and a recharging Laser Weapon System (LWS), these UCAVs can navigate a mission space, counter enemy threats, cope with losses in communications, and destroy mission-critical targets. Monte Carlo simulations of the resulting controllers were tested in mission scenarios that are distinct from the training scenarios to determine the training effectiveness in new environments and the presence of deep learning. Despite an incredibly large solution space, LETHA has demonstrated remarkable effectiveness in training intelligent controllers for the UCAV squadron and shown robustness to drastically changing states, uncertainty, and limited information while maintaining extreme levels of computational efficiency.

  14. Takagi-Sugeno fuzzy modeling and chaos control of partial differential systems

    NASA Astrophysics Data System (ADS)

    Vasegh, Nastaran; Khellat, Farhad

    2013-12-01

    In this paper a unified approach is presented for controlling chaos in nonlinear partial differential systems by a fuzzy control design. First almost all known chaotic partial differential equation systems are represented by Takagi-Sugeno fuzzy model. For investigating design procedure, Kuramoto-Sivashinsky (K-S) equation is selected. Then, all linear subsystems of K-S equation are transformed to ordinary differential equation (ODE) systems by truncated Fourier series of sine-cosine functions. By solving Riccati equation for each ODE systems, parallel stabilizing feedback controllers are determined. Finally, a distributed fuzzy feedback for K-S equation is designed. Numerical simulations are given to show that the distributed fuzzy controller is very easy to design, efficient, and capable to extend.

  15. Takagi-Sugeno fuzzy modeling and chaos control of partial differential systems.

    PubMed

    Vasegh, Nastaran; Khellat, Farhad

    2013-12-01

    In this paper a unified approach is presented for controlling chaos in nonlinear partial differential systems by a fuzzy control design. First almost all known chaotic partial differential equation systems are represented by Takagi-Sugeno fuzzy model. For investigating design procedure, Kuramoto-Sivashinsky (K-S) equation is selected. Then, all linear subsystems of K-S equation are transformed to ordinary differential equation (ODE) systems by truncated Fourier series of sine-cosine functions. By solving Riccati equation for each ODE systems, parallel stabilizing feedback controllers are determined. Finally, a distributed fuzzy feedback for K-S equation is designed. Numerical simulations are given to show that the distributed fuzzy controller is very easy to design, efficient, and capable to extend. PMID:24387539

  16. Adaptive Controller Effects on Pilot Behavior

    NASA Technical Reports Server (NTRS)

    Trujillo, Anna C.; Gregory, Irene M.; Hempley, Lucas E.

    2014-01-01

    Adaptive control provides robustness and resilience for highly uncertain, and potentially unpredictable, flight dynamics characteristic. Some of the recent flight experiences of pilot-in-the-loop with an adaptive controller have exhibited unpredicted interactions. In retrospect, this is not surprising once it is realized that there are now two adaptive controllers interacting, the software adaptive control system and the pilot. An experiment was conducted to categorize these interactions on the pilot with an adaptive controller during control surface failures. One of the objectives of this experiment was to determine how the adaptation time of the controller affects pilots. The pitch and roll errors, and stick input increased for increasing adaptation time and during the segment when the adaptive controller was adapting. Not surprisingly, altitude, cross track and angle deviations, and vertical velocity also increase during the failure and then slowly return to pre-failure levels. Subjects may change their behavior even as an adaptive controller is adapting with additional stick inputs. Therefore, the adaptive controller should adapt as fast as possible to minimize flight track errors. This will minimize undesirable interactions between the pilot and the adaptive controller and maintain maneuvering precision.

  17. High-order fuzzy time-series based on multi-period adaptation model for forecasting stock markets

    NASA Astrophysics Data System (ADS)

    Chen, Tai-Liang; Cheng, Ching-Hsue; Teoh, Hia-Jong

    2008-02-01

    Stock investors usually make their short-term investment decisions according to recent stock information such as the late market news, technical analysis reports, and price fluctuations. To reflect these short-term factors which impact stock price, this paper proposes a comprehensive fuzzy time-series, which factors linear relationships between recent periods of stock prices and fuzzy logical relationships (nonlinear relationships) mined from time-series into forecasting processes. In empirical analysis, the TAIEX (Taiwan Stock Exchange Capitalization Weighted Stock Index) and HSI (Heng Seng Index) are employed as experimental datasets, and four recent fuzzy time-series models, Chens (1996), Yus (2005), Chengs (2006) and Chens (2007), are used as comparison models. Besides, to compare with conventional statistic method, the method of least squares is utilized to estimate the auto-regressive models of the testing periods within the databases. From analysis results, the performance comparisons indicate that the multi-period adaptation model, proposed in this paper, can effectively improve the forecasting performance of conventional fuzzy time-series models which only factor fuzzy logical relationships in forecasting processes. From the empirical study, the traditional statistic method and the proposed model both reveal that stock price patterns in the Taiwan stock and Hong Kong stock markets are short-term.

  18. Proceedings of the Second Joint Technology Workshop on Neural Networks and Fuzzy Logic, volume 2

    NASA Technical Reports Server (NTRS)

    Lea, Robert N. (Editor); Villarreal, James A. (Editor)

    1991-01-01

    Documented here are papers presented at the Neural Networks and Fuzzy Logic Workshop sponsored by NASA and the University of Texas, Houston. Topics addressed included adaptive systems, learning algorithms, network architectures, vision, robotics, neurobiological connections, speech recognition and synthesis, fuzzy set theory and application, control and dynamics processing, space applications, fuzzy logic and neural network computers, approximate reasoning, and multiobject decision making.

  19. Design issues for a reinforcement-based self-learning fuzzy controller

    NASA Technical Reports Server (NTRS)

    Yen, John; Wang, Haojin; Dauherity, Walter

    1993-01-01

    Fuzzy logic controllers have some often cited advantages over conventional techniques such as PID control: easy implementation, its accommodation to natural language, the ability to cover wider range of operating conditions and others. One major obstacle that hinders its broader application is the lack of a systematic way to develop and modify its rules and as result the creation and modification of fuzzy rules often depends on try-error or pure experimentation. One of the proposed approaches to address this issue is self-learning fuzzy logic controllers (SFLC) that use reinforcement learning techniques to learn the desirability of states and to adjust the consequent part of fuzzy control rules accordingly. Due to the different dynamics of the controlled processes, the performance of self-learning fuzzy controller is highly contingent on the design. The design issue has not received sufficient attention. The issues related to the design of a SFLC for the application to chemical process are discussed and its performance is compared with that of PID and self-tuning fuzzy logic controller.

  20. MATLAB Simulation of UPQC for Power Quality Mitigation Using an Ant Colony Based Fuzzy Control Technique.

    PubMed

    Kumarasabapathy, N; Manoharan, P S

    2015-01-01

    This paper proposes a fuzzy logic based new control scheme for the Unified Power Quality Conditioner (UPQC) for minimizing the voltage sag and total harmonic distortion in the distribution system consequently to improve the power quality. UPQC is a recent power electronic module which guarantees better power quality mitigation as it has both series-active and shunt-active power filters (APFs). The fuzzy logic controller has recently attracted a great deal of attention and possesses conceptually the quality of the simplicity by tackling complex systems with vagueness and ambiguity. In this research, the fuzzy logic controller is utilized for the generation of reference signal controlling the UPQC. To enable this, a systematic approach for creating the fuzzy membership functions is carried out by using an ant colony optimization technique for optimal fuzzy logic control. An exhaustive simulation study using the MATLAB/Simulink is carried out to investigate and demonstrate the performance of the proposed fuzzy logic controller and the simulation results are compared with the PI controller in terms of its performance in improving the power quality by minimizing the voltage sag and total harmonic distortion. PMID:26504895

  1. MATLAB Simulation of UPQC for Power Quality Mitigation Using an Ant Colony Based Fuzzy Control Technique

    PubMed Central

    Kumarasabapathy, N.; Manoharan, P. S.

    2015-01-01

    This paper proposes a fuzzy logic based new control scheme for the Unified Power Quality Conditioner (UPQC) for minimizing the voltage sag and total harmonic distortion in the distribution system consequently to improve the power quality. UPQC is a recent power electronic module which guarantees better power quality mitigation as it has both series-active and shunt-active power filters (APFs). The fuzzy logic controller has recently attracted a great deal of attention and possesses conceptually the quality of the simplicity by tackling complex systems with vagueness and ambiguity. In this research, the fuzzy logic controller is utilized for the generation of reference signal controlling the UPQC. To enable this, a systematic approach for creating the fuzzy membership functions is carried out by using an ant colony optimization technique for optimal fuzzy logic control. An exhaustive simulation study using the MATLAB/Simulink is carried out to investigate and demonstrate the performance of the proposed fuzzy logic controller and the simulation results are compared with the PI controller in terms of its performance in improving the power quality by minimizing the voltage sag and total harmonic distortion. PMID:26504895

  2. Adaptive feedback active noise control

    NASA Astrophysics Data System (ADS)

    Kuo, Sen M.; Vijayan, Dipa

    Feedforward active noise control (ANC) systems use a reference sensor that senses a reference input to the controller. This signal is assumed to be unaffected by the secondary source and is a good measure of the undesired noise to be cancelled by the system. The reference sensor may be acoustic (e.g., microphone) or non-acoustic (e.g., tachometer, optical transducer). An obvious problem when using acoustic sensors is that the reference signal may be corrupted by the canceling signal generated by the secondary source. This problem is known as acoustic feedback. One way of avoiding this is by using a feedback active noise control (FANC) system which dispenses with the reference sensor. The FANC technique originally proposed by Olson and May employs a high gain negative feedback amplifier. This system suffered from the drawback that the error microphone had to be placed very close to the loudspeaker. The operation of the system was restricted to low frequency range and suffered from instability due to the possibility of positive feedback. Feedback systems employing adaptive filtering techniques for active noise control were developed. This paper presents the FANC system modeled as an adaptive prediction scheme.

  3. Sliding Mode Control for Delayed T-S Fuzzy Neural Network with Norm-Bounded Uncertainties

    NASA Astrophysics Data System (ADS)

    Chen, Jie; Mo, Wei

    In this paper, we consider the sliding mode control of delayed T-S fuzzy neural network with normbounded uncertainties. Based on the Lyapunov-Krasovskii stability theory, we originally research the sliding mode control method for T-S fuzzy neural network with time delay on the basis of the linear matrix inequalities (LMIs). A numerical example is given to validate the effectiveness of our method.

  4. Enhancing dissolved oxygen control using an on-line hybrid fuzzy-neural soft-sensing model-based control system in an anaerobic/anoxic/oxic process.

    PubMed

    Huang, Mingzhi; Wan, Jinquan; Hu, Kang; Ma, Yongwen; Wang, Yan

    2013-12-01

    An on-line hybrid fuzzy-neural soft-sensing model-based control system was developed to optimize dissolved oxygen concentration in a bench-scale anaerobic/anoxic/oxic (A(2)/O) process. In order to improve the performance of the control system, a self-adapted fuzzy c-means clustering algorithm and adaptive network-based fuzzy inference system (ANFIS) models were employed. The proposed control system permits the on-line implementation of every operating strategy of the experimental system. A set of experiments involving variable hydraulic retention time (HRT), influent pH (pH), dissolved oxygen in the aerobic reactor (DO), and mixed-liquid return ratio (r) was carried out. Using the proposed system, the amount of COD in the effluent stabilized at the set-point and below. The improvement was achieved with optimum dissolved oxygen concentration because the performance of the treatment process was optimized using operating rules implemented in real time. The system allows various expert operational approaches to be deployed with the goal of minimizing organic substances in the outlet while using the minimum amount of energy. PMID:24052227

  5. Development of a Synthetic Adaptive Neuro-Fuzzy Prediction Model for Tumor Motion Tracking in External Radiotherapy by Evaluating Various Data Clustering Algorithms.

    PubMed

    Ghorbanzadeh, Leila; Torshabi, Ahmad Esmaili; Nabipour, Jamshid Soltani; Arbatan, Moslem Ahmadi

    2016-04-01

    In image guided radiotherapy, in order to reach a prescribed uniform dose in dynamic tumors at thorax region while minimizing the amount of additional dose received by the surrounding healthy tissues, tumor motion must be tracked in real-time. Several correlation models have been proposed in recent years to provide tumor position information as a function of time in radiotherapy with external surrogates. However, developing an accurate correlation model is still a challenge. In this study, we proposed an adaptive neuro-fuzzy based correlation model that employs several data clustering algorithms for antecedent parameters construction to avoid over-fitting and to achieve an appropriate performance in tumor motion tracking compared with the conventional models. To begin, a comparative assessment is done between seven nuero-fuzzy correlation models each constructed using a unique data clustering algorithm. Then, each of the constructed models are combined within an adaptive sevenfold synthetic model since our tumor motion database has high degrees of variability and that each model has its intrinsic properties at motion tracking. In the proposed sevenfold synthetic model, best model is selected adaptively at pre-treatment. The model also updates the steps for each patient using an automatic model selectivity subroutine. We tested the efficacy of the proposed synthetic model on twenty patients (divided equally into two control and worst groups) treated with CyberKnife synchrony system. Compared to Cyberknife model, the proposed synthetic model resulted in 61.2% and 49.3% reduction in tumor tracking error in worst and control group, respectively. These results suggest that the proposed model selection program in our synthetic neuro-fuzzy model can significantly reduce tumor tracking errors. Numerical assessments confirmed that the proposed synthetic model is able to track tumor motion in real time with high accuracy during treatment. PMID:25765021

  6. Motorized CPM/CAM physiotherapy device with sliding-mode Fuzzy Neural Network control loop.

    PubMed

    Ho, Hung-Jung; Chen, Tien-Chi

    2009-11-01

    Continuous passive motion (CPM) and controllable active motion (CAM) physiotherapy devices promote rehabilitation of damaged joints. This paper presents a computerized CPM/CAM system that obviates the need for mechanical resistance devices such as springs. The system is controlled by a computer which performs sliding-mode Fuzzy Neural Network (FNN) calculations online. CAM-type resistance force is generated by the active performance of an electric motor which is controlled so as to oppose the motion of the patient's leg. A force sensor under the patient's foot on the device pedal provides data for feedback in a sliding-mode FNN control loop built around the motor. Via an active impedance control feedback system, the controller drives the motor to behave similarly to a damped spring by generating and controlling the amplitude and direction of the pedal force in relation to the patient's leg. Experiments demonstrate the high sensitivity and speed of the device. The PC-based feedback nature of the control loop means that sophisticated auto-adaptable CPM/CAM custom-designed physiotherapy becomes possible. The computer base also allows extensive data recording, data analysis and network-connected remote patient monitoring. PMID:19439391

  7. SOS based robust H(∞) fuzzy dynamic output feedback control of nonlinear networked control systems.

    PubMed

    Chae, Seunghwan; Nguang, Sing Kiong

    2014-07-01

    In this paper, a methodology for designing a fuzzy dynamic output feedback controller for discrete-time nonlinear networked control systems is presented where the nonlinear plant is modelled by a Takagi-Sugeno fuzzy model and the network-induced delays by a finite state Markov process. The transition probability matrix for the Markov process is allowed to be partially known, providing a more practical consideration of the real world. Furthermore, the fuzzy controller's membership functions and premise variables are not assumed to be the same as the plant's membership functions and premise variables, that is, the proposed approach can handle the case, when the premise of the plant are not measurable or delayed. The membership functions of the plant and the controller are approximated as polynomial functions, then incorporated into the controller design. Sufficient conditions for the existence of the controller are derived in terms of sum of square inequalities, which are then solved by YALMIP. Finally, a numerical example is used to demonstrate the validity of the proposed methodology. PMID:24108002

  8. A fuzzy-split range control system applied to a fermentation process.

    PubMed

    Fonseca, Rodolpho Rodrigues; Schmitz, Jones Erni; Fileti, Ana Maria Frattini; da Silva, Flavio Vasconcelos

    2013-08-01

    In this study it was proposed the application of a fuzzy-PI controller in tandem with a split range control strategy to regulate the temperature inside a fermentation vat. Simulations were carried out using different configurations of fuzzy controllers and split range combinations for regulatory control. The performance of these control systems were compared using conventional integral of error criteria, the demand of utilities and the control effort. The proposed control system proved able to adequately regulate the temperature in all the tests. Besides, considering a similar ITAE index and using the energetically most efficient split range configuration, fuzzy-PI controller provided a reduction of approximately 84.5% in the control effort and of 6.75% in total demand of utilities by comparison to a conventional PI controller. PMID:23759431

  9. Synchronisation of chaotic systems using a novel sampled-data fuzzy controller

    NASA Astrophysics Data System (ADS)

    Feng, Yi-Fu; Zhang, Qing-Ling

    2011-01-01

    This paper presents the synchronisation of chaotic systems using a sampled-data fuzzy controller and is meaningful for many physical real-life applications. Firstly, a Takagi—Sugeno (T—S) fuzzy model is employed to represent the chaotic systems that contain some nonlinear terms, then a type of fuzzy sampled-data controller is proposed and an error system formed by the response and drive chaotic system. Secondly, relaxed LMI-based synchronisation conditions are derived by using a new parameter-dependent Lyapunov—Krasovskii functional and relaxed stabilisation techniques for the underlying error system. The derived LMI-based conditions are used to aid the design of a sampled-data fuzzy controller to achieve the synchronisation of chaotic systems. Finally, a numerical example is provided to illustrate the effectiveness of the proposed results.

  10. A Genetic Algorithm Optimised Fuzzy Logic Controller for Automatic Generation Control for Single Area System

    NASA Astrophysics Data System (ADS)

    Saini, J. S.; Jain, V.

    2015-03-01

    This paper presents a genetic algorithm (GA)-based design and optimization of fuzzy logic controller (FLC) for automatic generation control (AGC) for a single area. FLCs are characterized by a set of parameters, which are optimized using GA to improve their performance. The design of input and output membership functions (mfs) of an FLC is carried out by automatically tuning (off-line) the parameters of the membership functions. Tuning is based on maximization of a comprehensive fitness function constructed as inverse of a weighted average of three performance indices, i.e., integral square deviation (ISD), the integral of square of the frequency deviation and peak overshoot (Mp), and settling time (ts). The GA-optimized FLC (GAFLC) shows better performance as compared to a conventional proportional integral (PI) and a hand-designed fuzzy logic controller not only for a standard system (displaying frequency deviations) but also under parametric and load disturbances.

  11. Adaptive control of base-isolated buildings using piezoelectric friction dampers against near-field earthquakes

    NASA Astrophysics Data System (ADS)

    Bitaraf, Maryam; Ozbulut, Osman E.; Hurlebaus, Stefan

    2010-04-01

    This paper investigates the effectiveness of two adaptive control strategies for modulating control force of piezoelectric friction dampers (PFDs) that are employed as semi-active devices in combination with laminated rubber bearings for seismic protection of buildings. The first controller developed in this study is a direct adaptive fuzzy logic controller. It consists of an upper-level and a sub-level direct fuzzy controller. In the hierarchical control scheme, higher-level controller modifies universe of discourse of both premise and consequent variables of the sub-level controller using scaling factors in order to determine command voltage of the damper according to current level of ground motion. The sub-level fuzzy controller employs isolation displacement and velocity as its premise variables and command voltage as its consequent variable. The second controller is based on the simple adaptive control (SAC) method, which is a type of direct adaptive control approach. The objective of the SAC method is to make the plant, the controlled system, track the behavior of the structure with the optimum performance. By using SAC strategy, any change in the characteristics of the structure or uncertainties in the modeling of the structure and in the external excitation would be considered because it continuously monitors its own performance to modify its parameters. Here, SAC methodology is employed to obtain the required force which results in the optimum performance of the structure. Then, the command voltage of the PFD is determined to generate the desired force. For comparison purposes, an optimal controller is also developed and considered in the simulations together with maximum passive operation of the friction damper. Time-history analyses of a base-isolated five-story building are performed to evaluate the performance of the controllers. Results reveal that developed adaptive controllers can successfully improve seismic response of the base-isolated buildings against various types of earthquakes.

  12. Adaptive Antenna Control (AAC) program

    NASA Astrophysics Data System (ADS)

    Monsen, P.; Eschle, J.

    1980-09-01

    This is the test report for the Adaptive Antenna Control Program (Contract No. DAAB07-76-C-8085). The program is under the management of the U.S. Army Communications Systems Agency and monitored by the U.S. Army Communications R D Command both of Ft. Monmouth, New Jersey. SIGNATRON, Inc. and RF Systems, Inc. (as antenna sub-contractor) had the responsibility for executing the program tasks. This report summarizes these tasks and includes the results of the factory and field test phases.

  13. Adaptive Flight Control for Aircraft Safety Enhancements

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.; Gregory, Irene M.; Joshi, Suresh M.

    2008-01-01

    This poster presents the current adaptive control research being conducted at NASA ARC and LaRC in support of the Integrated Resilient Aircraft Control (IRAC) project. The technique "Approximate Stability Margin Analysis of Hybrid Direct-Indirect Adaptive Control" has been developed at NASA ARC to address the needs for stability margin metrics for adaptive control that potentially enables future V&V of adaptive systems. The technique "Direct Adaptive Control With Unknown Actuator Failures" is developed at NASA LaRC to deal with unknown actuator failures. The technique "Adaptive Control with Adaptive Pilot Element" is being researched at NASA LaRC to investigate the effects of pilot interactions with adaptive flight control that can have implications of stability and performance.

  14. Fuzzy theory based control method for an in-pipe robot to move in variable resistance environment

    NASA Astrophysics Data System (ADS)

    Li, Te; Ma, Shugen; Li, Bin; Wang, Minghui; Wang, Yuechao

    2015-11-01

    Most of the existing screw drive in-pipe robots cannot actively adjust the maximum traction capacity, which limits the adaptability to the wide range of variable environment resistance, especially in curved pipes. In order to solve this problem, a screw drive in-pipe robot based on adaptive linkage mechanism is proposed. The differential property of the adaptive linkage mechanism allows the robot to move without motion interference in the straight and varied curved pipes by adjusting inclining angles of rollers self-adaptively. The maximum traction capacity of the robot can be changed by actively adjusting the inclining angles of rollers. In order to improve the adaptability to the variable resistance, a torque control method based on the fuzzy controller is proposed. For the variable environment resistance, the proposed control method can not only ensure enough traction force, but also limit the output torque in a feasible region. In the simulations, the robot with the proposed control method is compared to the robot with fixed inclining angles of rollers. The results show that the combination of the torque control method and the proposed robot achieves the better adaptability to the variable resistance in the straight and curved pipes.

  15. Fuzzy Auto-adjust PID Controller Design of Brushless DC Motor

    NASA Astrophysics Data System (ADS)

    Yuanxi, Wang; Yali, Yu; Guosheng, Zhang; Xiaoliang, Sheng

    Using conventional PID control method, to guarantee the rapidity and small overshoot dynamic and static performance of the BLDCM (brushless DC motor) system is out of the question. The control method to combine fuzzy control with PID control was fit the multivariable strong coupling nonlinear characteristic of BLDCM system. Matlab/Simulink simulation model had been built. The result of computer simulation shows that, compared with the conventional PID controller, the dynamic and static performance of fuzzy auto-adjust PID controller are put forward to optimize. The research work of this paper has profound significance for high precision controller design.

  16. Free vibration control of smart composite beams using particle swarm optimized self-tuning fuzzy logic controller

    NASA Astrophysics Data System (ADS)

    Zorić, Nemanja D.; Simonović, Aleksandar M.; Mitrović, Zoran S.; Stupar, Slobodan N.; Obradović, Aleksandar M.; Lukić, Nebojša S.

    2014-10-01

    This paper deals with active free vibrations control of smart composite beams using particle-swarm optimized self-tuning fuzzy logic controller. In order to improve the performance and robustness of the fuzzy logic controller, this paper proposes integration of self-tuning method, where scaling factors of the input variables in the fuzzy logic controller are adjusted via peak observer, with optimization of membership functions using the particle swarm optimization algorithm. The Mamdani and zero-order Takagi-Sugeno-Kang fuzzy inference methods are employed. In order to overcome stability problem, at the same time keeping advantages of the proposed self-tuning fuzzy logic controller, this controller is combined with the LQR making composite controller. Several numerical studies are provided for the cantilever composite beam for both single mode and multimodal cases. In the multimodal case, a large-scale system is decomposed into smaller subsystems in a parallel structure. In order to represent the efficiency of the proposed controller, obtained results are compared with the corresponding results in the cases of the optimized fuzzy logic controllers with constant scaling factors and linear quadratic regulator.

  17. Application of an adaptive neuro-fuzzy inference system to ground subsidence hazard mapping

    NASA Astrophysics Data System (ADS)

    Park, Inhye; Choi, Jaewon; Jin Lee, Moung; Lee, Saro

    2012-11-01

    We constructed hazard maps of ground subsidence around abandoned underground coal mines (AUCMs) in Samcheok City, Korea, using an adaptive neuro-fuzzy inference system (ANFIS) and a geographical information system (GIS). To evaluate the factors related to ground subsidence, a spatial database was constructed from topographic, geologic, mine tunnel, land use, and ground subsidence maps. An attribute database was also constructed from field investigations and reports on existing ground subsidence areas at the study site. Five major factors causing ground subsidence were extracted: (1) depth of drift; (2) distance from drift; (3) slope gradient; (4) geology; and (5) land use. The adaptive ANFIS model with different types of membership functions (MFs) was then applied for ground subsidence hazard mapping in the study area. Two ground subsidence hazard maps were prepared using the different MFs. Finally, the resulting ground subsidence hazard maps were validated using the ground subsidence test data which were not used for training the ANFIS. The validation results showed 95.12% accuracy using the generalized bell-shaped MF model and 94.94% accuracy using the Sigmoidal2 MF model. These accuracy results show that an ANFIS can be an effective tool in ground subsidence hazard mapping. Analysis of ground subsidence with the ANFIS model suggests that quantitative analysis of ground subsidence near AUCMs is possible.

  18. Automatic segmentation of brain MR images using an adaptive balloon snake model with fuzzy classification.

    PubMed

    Liu, Hung-Ting; Sheu, Tony W H; Chang, Herng-Hua

    2013-10-01

    Skull-stripping in magnetic resonance (MR) images is one of the most important preprocessing steps in medical image analysis. We propose a hybrid skull-stripping algorithm based on an adaptive balloon snake (ABS) model. The proposed framework consists of two phases: first, the fuzzy possibilistic c-means (FPCM) is used for pixel clustering, which provides a labeled image associated with a clean and clear brain boundary. At the second stage, a contour is initialized outside the brain surface based on the FPCM result and evolves under the guidance of an adaptive balloon snake model. The model is designed to drive the contour in the inward normal direction to capture the brain boundary. The entire volume is segmented from the center slice toward both ends slice by slice. Our ABS algorithm was applied to numerous brain MR image data sets and compared with several state-of-the-art methods. Four similarity metrics were used to evaluate the performance of the proposed technique. Experimental results indicated that our method produced accurate segmentation results with higher conformity scores. The effectiveness of the ABS algorithm makes it a promising and potential tool in a wide variety of skull-stripping applications and studies. PMID:23744446

  19. Summary report: A preliminary investigation into the use of fuzzy logic for the control of redundant manipulators

    NASA Technical Reports Server (NTRS)

    Cheatham, John B., Jr.; Magee, Kevin N.

    1991-01-01

    The Rice University Department of Mechanical Engineering and Materials Sciences' Robotics Group designed and built an eight degree of freedom redundant manipulator. Fuzzy logic was proposed as a control scheme for tasks not directly controlled by a human operator. In preliminary work, fuzzy logic control was implemented for a camera tracking system and a six degree of freedom manipulator. Both preliminary systems use real time vision data as input to fuzzy controllers. Related projects include integration of tactile sensing and fuzzy control of a redundant snake-like arm that is under construction.

  20. Design and real time implementation of fuzzy switched controller for single phase active power filter.

    PubMed

    Afghoul, Hamza; Krim, Fateh; Chikouche, Djamel; Beddar, Antar

    2015-09-01

    This paper proposes a novel fuzzy switched controller (FSC) integrated in direct current control (DCC) algorithm for single phase active power filter (SPAPF). The controller under study consists of conventional PI controller, fractional order PI controller (FO-PI) and fuzzy decision maker (FDM) that switches between them using reduced fuzzy logic control. The proposed controller offers short response time with low damping and deals efficiently with the external disturbances while preserving the robustness properties. To fulfill the requirements of power quality, unity power factor and harmonics limitations in active power filtering an experimental test bench has been built using dSPACE 1104 to demonstrate the feasibility and effectiveness of the proposed controller. The obtained results present high performance in steady and transient states. PMID:26233491

  1. Research on AHP speed adjusting based on fuzzy-PID double-mode complex control

    NASA Astrophysics Data System (ADS)

    Sang, Yong; Liu, Yang; Lin, Hongbin; Wang, Zhanlin

    2008-10-01

    In the ground test station of AC motor driven airborne hydraulic pump (referred to as AHP, hereinafter), speed adjusting is usually worsened by the high order, nonlinearity and time-varying features of AC motor, as well as the nonlinearity of the hydraulic system. In order to solve these problems a new complex control method based on Fuzzy-PID control theory is brought forward. The control method adopts fuzzy controller to enhance the system's tracing features under big error conditions and adopts parameter self-modifying Fuzzy-PID control to eliminate static errors under small error conditions. Simulation results show that the complex controller has faster response, higher accuracy, stronger robust, compared with the general PID controller. The AHP speed and robust requirements can be satisfied.

  2. A fuzzy adaptive network approach to parameter estimation in cases where independent variables come from an exponential distribution

    NASA Astrophysics Data System (ADS)

    Dalkilic, Turkan Erbay; Apaydin, Aysen

    2009-11-01

    In a regression analysis, it is assumed that the observations come from a single class in a data cluster and the simple functional relationship between the dependent and independent variables can be expressed using the general model; Y=f(X)+[epsilon]. However; a data cluster may consist of a combination of observations that have different distributions that are derived from different clusters. When faced with issues of estimating a regression model for fuzzy inputs that have been derived from different distributions, this regression model has been termed the [`]switching regression model' and it is expressed with . Here li indicates the class number of each independent variable and p is indicative of the number of independent variables [J.R. Jang, ANFIS: Adaptive-network-based fuzzy inference system, IEEE Transaction on Systems, Man and Cybernetics 23 (3) (1993) 665-685; M. Michel, Fuzzy clustering and switching regression models using ambiguity and distance rejects, Fuzzy Sets and Systems 122 (2001) 363-399; E.Q. Richard, A new approach to estimating switching regressions, Journal of the American Statistical Association 67 (338) (1972) 306-310]. In this study, adaptive networks have been used to construct a model that has been formed by gathering obtained models. There are methods that suggest the class numbers of independent variables heuristically. Alternatively, in defining the optimal class number of independent variables, the use of suggested validity criterion for fuzzy clustering has been aimed. In the case that independent variables have an exponential distribution, an algorithm has been suggested for defining the unknown parameter of the switching regression model and for obtaining the estimated values after obtaining an optimal membership function, which is suitable for exponential distribution.

  3. Intelligent control of PV system on the basis of the fuzzy recurrent neuronet*

    NASA Astrophysics Data System (ADS)

    Engel, E. A.; Kovalev, I. V.; Engel, N. E.

    2016-04-01

    This paper presents the fuzzy recurrent neuronet for PV system’s control. Based on the PV system’s state, the fuzzy recurrent neural net tracks the maximum power point under random perturbations. The validity and advantages of the proposed intelligent control of PV system are demonstrated by numerical simulations. The simulation results show that the proposed intelligent control of PV system achieves real-time control speed and competitive performance, as compared to a classical control scheme on the basis of the perturbation & observation algorithm.

  4. Fuzzy auto-tuning PID control of multiple joint robot driven by ultrasonic motors.

    PubMed

    Sun, Zhijun; Xing, Rentao; Zhao, Chunsheng; Huang, Weiqing

    2007-11-01

    A three-joint robot is directly driven by ultrasonic motors with advantage of high torque at low speed. The speed of the ultrasonic motors is actually controlled by regulating their operating frequencies. The kinematic and kinetic analyses of the robot have been carried out using Adams. Due to the lack of accurate control model of ultrasonic motors and the time-varying motor parameters, a fuzzy auto-tuning proportional integral derivative (PID) controller for the robot is experimented, in which a simple method to tune parameters of the PID type fuzzy controller on-line is developed and a new position-speed feedback strategy is proposed and implemented. The effectiveness of the proposed control strategy and fuzzy logic controller is verified by experimental investigation. PMID:17540429

  5. Dual-arm manipulators with adaptive control

    NASA Technical Reports Server (NTRS)

    Seraji, Homayoun (Inventor)

    1991-01-01

    The described and improved multi-arm invention of this application presents three strategies for adaptive control of cooperative multi-arm robots which coordinate control over a common load. In the position-position control strategy, the adaptive controllers ensure that the end-effector positions of both arms track desired trajectories in Cartesian space despite unknown time-varying interaction forces exerted through a load. In the position-hybrid control strategy, the adaptive controller of one arm controls end-effector motions in the free directions and applied forces in the constraint directions; while the adaptive controller of the other arm ensures that the end-effector tracks desired position trajectories. In the hybrid-hybrid control strategy, the adaptive controllers ensure that both end-effectors track reference position trajectories while simultaneously applying desired forces on the load. In all three control strategies, the cross-coupling effects between the arms are treated as disturbances which are compensated for by the adaptive controllers while following desired commands in a common frame of reference. The adaptive controllers do not require the complex mathematical model of the arm dynamics or any knowledge of the arm dynamic parameters or the load parameters such as mass and stiffness. Circuits in the adaptive feedback and feedforward controllers are varied by novel adaptation laws.

  6. A hybrid clustering based fuzzy structure for vibration control - Part 2: An application to semi-active vehicle seat-suspension system

    NASA Astrophysics Data System (ADS)

    Nguyen, Sy Dzung; Nguyen, Quoc Hung; Choi, Seung-Bok

    2015-05-01

    This work presents a novel neuro-fuzzy controller (NFC) for car-driver's seat-suspension system featuring magnetorheological (MR) dampers. The NFC is built based on the algorithm for building adaptive neuro-fuzzy inference systems (ANFISs) named B-ANFIS, which has been developed in Part 1, and fuzzy logic inference systems (FISs). In order to create the NFC, the following steps are performed. Firstly, a control strategy based on a ride-comfort-oriented tendency (RCOT) is established. Subsequently, optimal FISs are built based on a genetic algorithm (GA) to estimate the desired damping force that satisfies the RCOT corresponding to the road status at each time. The B-ANFIS is then used to build ANFISs for inverse dynamic models of the suspension system (I-ANFIS). Based on the FISs, the desired force values are calculated according to the status of road at each time. The corresponding exciting current value to be applied to the MR damper is then determined by the I-ANFIS. In order to validate the effectiveness of the developed neuro-fuzzy controller, control performances of the seat-suspension systems featuring MR dampers are evaluated under different road conditions. In addition, a comparative work between conventional skyhook controller and the proposed NFC is undertaken in order to demonstrate superior control performances of the proposed methodology.

  7. Ozone levels in the Empty Quarter of Saudi Arabia--application of adaptive neuro-fuzzy model.

    PubMed

    Rahman, Syed Masiur; Khondaker, A N; Khan, Rouf Ahmad

    2013-05-01

    In arid regions, primary pollutants may contribute to the increase of ozone levels and cause negative effects on biotic health. This study investigates the use of adaptive neuro-fuzzy inference system (ANFIS) for ozone prediction. The initial fuzzy inference system is developed by using fuzzy C-means (FCM) and subtractive clustering (SC) algorithms, which determines the important rules, increases generalization capability of the fuzzy inference system, reduces computational needs, and ensures speedy model development. The study area is located in the Empty Quarter of Saudi Arabia, which is considered as a source of huge potential for oil and gas field development. The developed clustering algorithm-based ANFIS model used meteorological data and derived meteorological data, along with NO and NO₂ concentrations and their transformations, as inputs. The root mean square error and Willmott's index of agreement of the FCM- and SC-based ANFIS models are 3.5 ppbv and 0.99, and 8.9 ppbv and 0.95, respectively. Based on the analysis of the performance measures and regression error characteristic curves, it is concluded that the FCM-based ANFIS model outperforms the SC-based ANFIS model. PMID:23111771

  8. Discrimination of Human Forearm Motions on the Basis of Myoelectric Signals by Using Adaptive Fuzzy Inference System

    NASA Astrophysics Data System (ADS)

    Kiso, Atsushi; Seki, Hirokazu

    This paper describes a method for discriminating of the human forearm motions based on the myoelectric signals using an adaptive fuzzy inference system. In conventional studies, the neural network is often used to estimate motion intention by the myoelectric signals and realizes the high discrimination precision. On the other hand, this study uses the fuzzy inference for a human forearm motion discrimination based on the myoelectric signals. This study designs the membership function and the fuzzy rules using the average value and the standard deviation of the root mean square of the myoelectric potential for every channel of each motion. In addition, the characteristics of the myoelectric potential gradually change as a result of the muscle fatigue. Therefore, the motion discrimination should be performed by taking muscle fatigue into consideration. This study proposes a method to redesign the fuzzy inference system such that dynamic change of the myoelectric potential because of the muscle fatigue will be taken into account. Some experiments carried out using a myoelectric hand simulator show the effectiveness of the proposed motion discrimination method.

  9. Based on the Fuzzy Set-valued Statistics and the Fuzzy Mathematics Theory in Air Traffic Control System Safety Appraisal Application

    NASA Astrophysics Data System (ADS)

    Zhaoning, Zhang; Na, Meng; Peng, Zhou

    Elaborated carries on the safety evaluation to the air traffic control system the important meaning .First, the person-equipment- environment- management system management model takes the instruction based on the systems engineering theory, establishes the air traffic management system safety evaluating indicator system. Next, based on the fuzzy set value statistical theory, calculates various targets the weight, and has carried on the fail-safe analysis to its weight; Based on the fuzzy mathematics theory, the use fuzzy comprehensive judgment carries on the safety evaluation to the air traffic management system. Finally, through the example analysis computation, confirmed has proposed the method the validity and the feasibility.

  10. Statistical Physics for Adaptive Distributed Control

    NASA Technical Reports Server (NTRS)

    Wolpert, David H.

    2005-01-01

    A viewgraph presentation on statistical physics for distributed adaptive control is shown. The topics include: 1) The Golden Rule; 2) Advantages; 3) Roadmap; 4) What is Distributed Control? 5) Review of Information Theory; 6) Iterative Distributed Control; 7) Minimizing L(q) Via Gradient Descent; and 8) Adaptive Distributed Control.

  11. Neuro-Fuzzy Computational Technique to Control Load Frequency in Hydro-Thermal Interconnected Power System

    NASA Astrophysics Data System (ADS)

    Prakash, S.; Sinha, S. K.

    2015-09-01

    In this research work, two areas hydro-thermal power system connected through tie-lines is considered. The perturbation of frequencies at the areas and resulting tie line power flows arise due to unpredictable load variations that cause mismatch between the generated and demanded powers. Due to rising and falling power demand, the real and reactive power balance is harmed; hence frequency and voltage get deviated from nominal value. This necessitates designing of an accurate and fast controller to maintain the system parameters at nominal value. The main purpose of system generation control is to balance the system generation against the load and losses so that the desired frequency and power interchange between neighboring systems are maintained. The intelligent controllers like fuzzy logic, artificial neural network (ANN) and hybrid fuzzy neural network approaches are used for automatic generation control for the two area interconnected power systems. Area 1 consists of thermal reheat power plant whereas area 2 consists of hydro power plant with electric governor. Performance evaluation is carried out by using intelligent (ANFIS, ANN and fuzzy) control and conventional PI and PID control approaches. To enhance the performance of controller sliding surface i.e. variable structure control is included. The model of interconnected power system has been developed with all five types of said controllers and simulated using MATLAB/SIMULINK package. The performance of the intelligent controllers has been compared with the conventional PI and PID controllers for the interconnected power system. A comparison of ANFIS, ANN, Fuzzy and PI, PID based approaches shows the superiority of proposed ANFIS over ANN, fuzzy and PI, PID. Thus the hybrid fuzzy neural network controller has better dynamic response i.e., quick in operation, reduced error magnitude and minimized frequency transients.

  12. Flight Test Approach to Adaptive Control Research

    NASA Technical Reports Server (NTRS)

    Pavlock, Kate Maureen; Less, James L.; Larson, David Nils

    2011-01-01

    The National Aeronautics and Space Administration s Dryden Flight Research Center completed flight testing of adaptive controls research on a full-scale F-18 testbed. The validation of adaptive controls has the potential to enhance safety in the presence of adverse conditions such as structural damage or control surface failures. This paper describes the research interface architecture, risk mitigations, flight test approach and lessons learned of adaptive controls research.

  13. Hybrid clustering based fuzzy structure for vibration control - Part 1: A novel algorithm for building neuro-fuzzy system

    NASA Astrophysics Data System (ADS)

    Nguyen, Sy Dzung; Nguyen, Quoc Hung; Choi, Seung-Bok

    2015-01-01

    This paper presents a new algorithm for building an adaptive neuro-fuzzy inference system (ANFIS) from a training data set called B-ANFIS. In order to increase accuracy of the model, the following issues are executed. Firstly, a data merging rule is proposed to build and perform a data-clustering strategy. Subsequently, a combination of clustering processes in the input data space and in the joint input-output data space is presented. Crucial reason of this task is to overcome problems related to initialization and contradictory fuzzy rules, which usually happen when building ANFIS. The clustering process in the input data space is accomplished based on a proposed merging-possibilistic clustering (MPC) algorithm. The effectiveness of this process is evaluated to resume a clustering process in the joint input-output data space. The optimal parameters obtained after completion of the clustering process are used to build ANFIS. Simulations based on a numerical data, 'Daily Data of Stock A', and measured data sets of a smart damper are performed to analyze and estimate accuracy. In addition, convergence and robustness of the proposed algorithm are investigated based on both theoretical and testing approaches.

  14. Online elicitation of Mamdani-type fuzzy rules via TSK-based generalized predictive control.

    PubMed

    Mahfouf, M; Abbod, M F; Linkens, D A

    2003-01-01

    Many synergies have been proposed between soft-computing techniques, such as neural networks (NNs), fuzzy logic (FL), and genetic algorithms (GAs), which have shown that such hybrid structures can work well and also add more robustness to the control system design. In this paper, a new control architecture is proposed whereby the on-line generated fuzzy rules relating to the self-organizing fuzzy logic controller (SOFLC) are obtained via integration with the popular generalized predictive control (GPC) algorithm using a Takagi-Sugeno-Kang (TSK)-based controlled autoregressive integrated moving average (CARIMA) model structure. In this approach, GPC replaces the performance index (PI) table which, as an incremental model, is traditionally used to discover, amend, and delete the rules. Because the GPC sequence is computed using predicted future outputs, the new hybrid approach rewards the time-delay very well. The new generic approach, named generalized predictive self-organizing fuzzy logic control (GPSOFLC), is simulated on a well-known nonlinear chemical process, the distillation column, and is shown to produce an effective fuzzy rule-base in both qualitative (minimum number of generated rules) and quantitative (good rules) terms. PMID:18238192

  15. Fractional order fuzzy control of hybrid power system with renewable generation using chaotic PSO.

    PubMed

    Pan, Indranil; Das, Saptarshi

    2016-05-01

    This paper investigates the operation of a hybrid power system through a novel fuzzy control scheme. The hybrid power system employs various autonomous generation systems like wind turbine, solar photovoltaic, diesel engine, fuel-cell, aqua electrolyzer etc. Other energy storage devices like the battery, flywheel and ultra-capacitor are also present in the network. A novel fractional order (FO) fuzzy control scheme is employed and its parameters are tuned with a particle swarm optimization (PSO) algorithm augmented with two chaotic maps for achieving an improved performance. This FO fuzzy controller shows better performance over the classical PID, and the integer order fuzzy PID controller in both linear and nonlinear operating regimes. The FO fuzzy controller also shows stronger robustness properties against system parameter variation and rate constraint nonlinearity, than that with the other controller structures. The robustness is a highly desirable property in such a scenario since many components of the hybrid power system may be switched on/off or may run at lower/higher power output, at different time instants. PMID:25816968

  16. Takagi-Sugeno Fuzzy Model-Based Control of Spacecraft with Flexible Appendage

    NASA Astrophysics Data System (ADS)

    Ayoubi, Mohammad A.; Sendi, Chokri

    2015-06-01

    This paper presents a Takagi-Sugeno (T-S) fuzzy model-based approach to model and control a rigid spacecraft with flexible antenna. First, the equations of motion of the flexible spacecraft, which are based on Lagrange equations and given in terms of quasi-coordinates and the Rayleigh-Ritz method, are briefly reviewed. Then, the T-S fuzzy modeling and the parallel distributed compensation control technique are introduced. We utilize full state-feedback and optimal H∞ robustness performance via a T-S fuzzy model to achieve position and attitude stabilization, vibration suppression, and disturbance rejection objectives. Finally, this technique is applied to the flexible spacecraft equations of motion resulting in a nonlinear controller. The controller produces an asymptotically stable closed-loop system which is robust to external disturbances and has a simple structure for straightforward implementation. Numerical simulation is provided for performance evaluation of the proposed controller design.

  17. Fuzzy logic switching of thyristor controlled braking resistor considering coordination with SVC

    SciTech Connect

    Hiyama, T.; Mishiro, M.; Kihara, H.; Ortmeyer, T.H.

    1995-10-01

    This paper presents a new switching control scheme for braking resistors using a fuzzy logic to enhance overall stability of electric power systems. In addition, the coordination with an SVC is also considered to achieve a wider stable region. The braking resistor is set on one of the generator busbars, where the real power output from the generator is measured to determine the firing-angle of the thyristor switch. The switching control scheme is simple so as not to require heavy computation on the micro-computer based switching controller. An SVC is set on one of the busbars in the transmission system. The switching of the SVC is performed by using a similar fuzzy logic control scheme to the one for the BR. Simulation results show the effectiveness of the proposed fuzzy logic switching control scheme.

  18. Adaptive neuro-fuzzy methodology for noise assessment of wind turbine.

    PubMed

    Shamshirband, Shahaboddin; Petković, Dalibor; Hashim, Roslan; Motamedi, Shervin

    2014-01-01

    Wind turbine noise is one of the major obstacles for the widespread use of wind energy. Noise tone can greatly increase the annoyance factor and the negative impact on human health. Noise annoyance caused by wind turbines has become an emerging problem in recent years, due to the rapid increase in number of wind turbines, triggered by sustainable energy goals set forward at the national and international level. Up to now, not all aspects of the generation, propagation and perception of wind turbine noise are well understood. For a modern large wind turbine, aerodynamic noise from the blades is generally considered to be the dominant noise source, provided that mechanical noise is adequately eliminated. The sources of aerodynamic noise can be divided into tonal noise, inflow turbulence noise, and airfoil self-noise. Many analytical and experimental acoustical studies performed the wind turbines. Since the wind turbine noise level analyzing by numerical methods or computational fluid dynamics (CFD) could be very challenging and time consuming, soft computing techniques are preferred. To estimate noise level of wind turbine, this paper constructed a process which simulates the wind turbine noise levels in regard to wind speed and sound frequency with adaptive neuro-fuzzy inference system (ANFIS). This intelligent estimator is implemented using Matlab/Simulink and the performances are investigated. The simulation results presented in this paper show the effectiveness of the developed method. PMID:25075621

  19. Adaptive Neuro-Fuzzy Methodology for Noise Assessment of Wind Turbine

    PubMed Central

    Shamshirband, Shahaboddin; Petković, Dalibor; Hashim, Roslan; Motamedi, Shervin

    2014-01-01

    Wind turbine noise is one of the major obstacles for the widespread use of wind energy. Noise tone can greatly increase the annoyance factor and the negative impact on human health. Noise annoyance caused by wind turbines has become an emerging problem in recent years, due to the rapid increase in number of wind turbines, triggered by sustainable energy goals set forward at the national and international level. Up to now, not all aspects of the generation, propagation and perception of wind turbine noise are well understood. For a modern large wind turbine, aerodynamic noise from the blades is generally considered to be the dominant noise source, provided that mechanical noise is adequately eliminated. The sources of aerodynamic noise can be divided into tonal noise, inflow turbulence noise, and airfoil self-noise. Many analytical and experimental acoustical studies performed the wind turbines. Since the wind turbine noise level analyzing by numerical methods or computational fluid dynamics (CFD) could be very challenging and time consuming, soft computing techniques are preferred. To estimate noise level of wind turbine, this paper constructed a process which simulates the wind turbine noise levels in regard to wind speed and sound frequency with adaptive neuro-fuzzy inference system (ANFIS). This intelligent estimator is implemented using Matlab/Simulink and the performances are investigated. The simulation results presented in this paper show the effectiveness of the developed method. PMID:25075621

  20. Intelligent Modeling Combining Adaptive Neuro Fuzzy Inference System and Genetic Algorithm for Optimizing Welding Process Parameters

    NASA Astrophysics Data System (ADS)

    Gowtham, K. N.; Vasudevan, M.; Maduraimuthu, V.; Jayakumar, T.

    2011-04-01

    Modified 9Cr-1Mo ferritic steel is used as a structural material for steam generator components of power plants. Generally, tungsten inert gas (TIG) welding is preferred for welding of these steels in which the depth of penetration achievable during autogenous welding is limited. Therefore, activated flux TIG (A-TIG) welding, a novel welding technique, has been developed in-house to increase the depth of penetration. In modified 9Cr-1Mo steel joints produced by the A-TIG welding process, weld bead width, depth of penetration, and heat-affected zone (HAZ) width play an important role in determining the mechanical properties as well as the performance of the weld joints during service. To obtain the desired weld bead geometry and HAZ width, it becomes important to set the welding process parameters. In this work, adaptative neuro fuzzy inference system is used to develop independent models correlating the welding process parameters like current, voltage, and torch speed with weld bead shape parameters like depth of penetration, bead width, and HAZ width. Then a genetic algorithm is employed to determine the optimum A-TIG welding process parameters to obtain the desired weld bead shape parameters and HAZ width.

  1. Classifying work rate from heart rate measurements using an adaptive neuro-fuzzy inference system.

    PubMed

    Kolus, Ahmet; Imbeau, Daniel; Dubé, Philippe-Antoine; Dubeau, Denise

    2016-05-01

    In a new approach based on adaptive neuro-fuzzy inference systems (ANFIS), field heart rate (HR) measurements were used to classify work rate into four categories: very light, light, moderate, and heavy. Inter-participant variability (physiological and physical differences) was considered. Twenty-eight participants performed Meyer and Flenghi's step-test and a maximal treadmill test, during which heart rate and oxygen consumption (V˙O2) were measured. Results indicated that heart rate monitoring (HR, HRmax, and HRrest) and body weight are significant variables for classifying work rate. The ANFIS classifier showed superior sensitivity, specificity, and accuracy compared to current practice using established work rate categories based on percent heart rate reserve (%HRR). The ANFIS classifier showed an overall 29.6% difference in classification accuracy and a good balance between sensitivity (90.7%) and specificity (95.2%) on average. With its ease of implementation and variable measurement, the ANFIS classifier shows potential for widespread use by practitioners for work rate assessment. PMID:26851475

  2. Adaptive network-based fuzzy inference system for assessment of lower limb peripheral vascular occlusive disease.

    PubMed

    Du, Yi-Chun; Lin, Chia-Hung

    2012-02-01

    Detecting lower limb peripheral vascular occlusive disease (PVOD) early is important for patients to prevent disabling claudication, ischaemic rest pain and gangrene. According to previous research, the pulse timing and shape distortion characteristics of photoplethysmography (PPG) signals tend to increase with disease severity and calibrated amplitude decreases with vascular diseases. However, this is not a reliable method of evaluating the condition of PVOD because of noise effect. In this paper, an adaptive network-based fuzzy inference system (ANFIS) is proposed to assess lower limb PVOD based on PPG signals. PPG signals are non-invasively recorded from the right and left sides at the big toe sites from twenty subjects, including normal condition (Nor), lower-grade disease (LG), and higher-grade disease (HG) groups. The number of each group is 10, 8 and 2 respectively, and the ages ranged from 24 to 65 years. With the time-domain technique, the parameters for the absolute bilateral differences (right-to-left side of foot) in pulse delay and amplitude were extracted for analyzing ANFIS. The results indicated that ANFIS based on three timing parameters base bilateral differences, including ΔPTTf and ΔPTTp, and ΔRT has a high rate and noise tolerance of PVOD assessment. PMID:20703718

  3. Estimating oxygen consumption from heart rate using adaptive neuro-fuzzy inference system and analytical approaches.

    PubMed

    Kolus, Ahmet; Dubé, Philippe-Antoine; Imbeau, Daniel; Labib, Richard; Dubeau, Denise

    2014-11-01

    In new approaches based on adaptive neuro-fuzzy systems (ANFIS) and analytical method, heart rate (HR) measurements were used to estimate oxygen consumption (VO2). Thirty-five participants performed Meyer and Flenghi's step-test (eight of which performed regeneration release work), during which heart rate and oxygen consumption were measured. Two individualized models and a General ANFIS model that does not require individual calibration were developed. Results indicated the superior precision achieved with individualized ANFIS modelling (RMSE = 1.0 and 2.8 ml/kg min in laboratory and field, respectively). The analytical model outperformed the traditional linear calibration and Flex-HR methods with field data. The General ANFIS model's estimates of VO2 were not significantly different from actual field VO2 measurements (RMSE = 3.5 ml/kg min). With its ease of use and low implementation cost, the General ANFIS model shows potential to replace any of the traditional individualized methods for VO2 estimation from HR data collected in the field. PMID:24793823

  4. Adaptive network based on fuzzy inference system for equilibrated urea concentration prediction.

    PubMed

    Azar, Ahmad Taher

    2013-09-01

    Post-dialysis urea rebound (PDUR) has been attributed mostly to redistribution of urea from different compartments, which is determined by variations in regional blood flows and transcellular urea mass transfer coefficients. PDUR occurs after 30-90min of short or standard hemodialysis (HD) sessions and after 60min in long 8-h HD sessions, which is inconvenient. This paper presents adaptive network based on fuzzy inference system (ANFIS) for predicting intradialytic (Cint) and post-dialysis urea concentrations (Cpost) in order to predict the equilibrated (Ceq) urea concentrations without any blood sampling from dialysis patients. The accuracy of the developed system was prospectively compared with other traditional methods for predicting equilibrated urea (Ceq), post dialysis urea rebound (PDUR) and equilibrated dialysis dose (eKt/V). This comparison is done based on root mean squares error (RMSE), normalized mean square error (NRMSE), and mean absolute percentage error (MAPE). The ANFIS predictor for Ceq achieved mean RMSE values of 0.3654 and 0.4920 for training and testing, respectively. The statistical analysis demonstrated that there is no statistically significant difference found between the predicted and the measured values. The percentage of MAE and RMSE for testing phase is 0.63% and 0.96%, respectively. PMID:23806679

  5. Control Synthesis of Discrete-Time T-S Fuzzy Systems via a Multi-Instant Homogenous Polynomial Approach.

    PubMed

    Xie, Xiangpeng; Yue, Dong; Zhang, Huaguang; Xue, Yusheng

    2016-03-01

    This paper deals with the problem of control synthesis of discrete-time Takagi-Sugeno fuzzy systems by employing a novel multiinstant homogenous polynomial approach. A new multiinstant fuzzy control scheme and a new class of fuzzy Lyapunov functions, which are homogenous polynomially parameter-dependent on both the current-time normalized fuzzy weighting functions and the past-time normalized fuzzy weighting functions, are proposed for implementing the object of relaxed control synthesis. Then, relaxed stabilization conditions are derived with less conservatism than existing ones. Furthermore, the relaxation quality of obtained stabilization conditions is further ameliorated by developing an efficient slack variable approach, which presents a multipolynomial dependence on the normalized fuzzy weighting functions at the current and past instants of time. Two simulation examples are given to demonstrate the effectiveness and benefits of the results developed in this paper. PMID:25823054

  6. Adaptive, predictive controller for optimal process control

    SciTech Connect

    Brown, S.K.; Baum, C.C.; Bowling, P.S.; Buescher, K.L.; Hanagandi, V.M.; Hinde, R.F. Jr.; Jones, R.D.; Parkinson, W.J.

    1995-12-01

    One can derive a model for use in a Model Predictive Controller (MPC) from first principles or from experimental data. Until recently, both methods failed for all but the simplest processes. First principles are almost always incomplete and fitting to experimental data fails for dimensions greater than one as well as for non-linear cases. Several authors have suggested the use of a neural network to fit the experimental data to a multi-dimensional and/or non-linear model. Most networks, however, use simple sigmoid functions and backpropagation for fitting. Training of these networks generally requires large amounts of data and, consequently, very long training times. In 1993 we reported on the tuning and optimization of a negative ion source using a special neural network[2]. One of the properties of this network (CNLSnet), a modified radial basis function network, is that it is able to fit data with few basis functions. Another is that its training is linear resulting in guaranteed convergence and rapid training. We found the training to be rapid enough to support real-time control. This work has been extended to incorporate this network into an MPC using the model built by the network for predictive control. This controller has shown some remarkable capabilities in such non-linear applications as continuous stirred exothermic tank reactors and high-purity fractional distillation columns[3]. The controller is able not only to build an appropriate model from operating data but also to thin the network continuously so that the model adapts to changing plant conditions. The controller is discussed as well as its possible use in various of the difficult control problems that face this community.

  7. Control performance evaluation of railway vehicle MR suspension using fuzzy sky-ground hook control algorithm

    NASA Astrophysics Data System (ADS)

    Ha, S. H.; Choi, S. B.; Lee, G. S.; Yoo, W. H.

    2013-02-01

    This paper presents control performance evaluation of railway vehicle featured by semi-active suspension system using magnetorheological (MR) fluid damper. In order to achieve this goal, a nine degree of freedom of railway vehicle model, which includes car body and bogie, is established. The wheel-set data is loaded from measured value of railway vehicle. The MR damper system is incorporated with the governing equation of motion of the railway vehicle model which includes secondary suspension. To illustrate the effectiveness of the controlled MR dampers on suspension system of railway vehicle, the control law using the sky-ground hook controller is adopted. This controller takes into account for both vibration control of car body and increasing stability of bogie by adopting a weighting parameter between two performance requirements. The parameters appropriately determined by employing a fuzzy algorithm associated with two fuzzy variables: the lateral speed of the car body and the lateral performance of the bogie. Computer simulation results of control performances such as vibration control and stability analysis are presented in time and frequency domains.

  8. Fuzzy mixed assembly line sequencing and scheduling optimization model using multiobjective dynamic fuzzy GA.

    PubMed

    Tahriri, Farzad; Dawal, Siti Zawiah Md; Taha, Zahari

    2014-01-01

    A new multiobjective dynamic fuzzy genetic algorithm is applied to solve a fuzzy mixed-model assembly line sequencing problem in which the primary goals are to minimize the total make-span and minimize the setup number simultaneously. Trapezoidal fuzzy numbers are implemented for variables such as operation and travelling time in order to generate results with higher accuracy and representative of real-case data. An improved genetic algorithm called fuzzy adaptive genetic algorithm (FAGA) is proposed in order to solve this optimization model. In establishing the FAGA, five dynamic fuzzy parameter controllers are devised in which fuzzy expert experience controller (FEEC) is integrated with automatic learning dynamic fuzzy controller (ALDFC) technique. The enhanced algorithm dynamically adjusts the population size, number of generations, tournament candidate, crossover rate, and mutation rate compared with using fixed control parameters. The main idea is to improve the performance and effectiveness of existing GAs by dynamic adjustment and control of the five parameters. Verification and validation of the dynamic fuzzy GA are carried out by developing test-beds and testing using a multiobjective fuzzy mixed production assembly line sequencing optimization problem. The simulation results highlight that the performance and efficacy of the proposed novel optimization algorithm are more efficient than the performance of the standard genetic algorithm in mixed assembly line sequencing model. PMID:24982962

  9. Fuzzy Mixed Assembly Line Sequencing and Scheduling Optimization Model Using Multiobjective Dynamic Fuzzy GA

    PubMed Central

    Tahriri, Farzad; Dawal, Siti Zawiah Md; Taha, Zahari

    2014-01-01

    A new multiobjective dynamic fuzzy genetic algorithm is applied to solve a fuzzy mixed-model assembly line sequencing problem in which the primary goals are to minimize the total make-span and minimize the setup number simultaneously. Trapezoidal fuzzy numbers are implemented for variables such as operation and travelling time in order to generate results with higher accuracy and representative of real-case data. An improved genetic algorithm called fuzzy adaptive genetic algorithm (FAGA) is proposed in order to solve this optimization model. In establishing the FAGA, five dynamic fuzzy parameter controllers are devised in which fuzzy expert experience controller (FEEC) is integrated with automatic learning dynamic fuzzy controller (ALDFC) technique. The enhanced algorithm dynamically adjusts the population size, number of generations, tournament candidate, crossover rate, and mutation rate compared with using fixed control parameters. The main idea is to improve the performance and effectiveness of existing GAs by dynamic adjustment and control of the five parameters. Verification and validation of the dynamic fuzzy GA are carried out by developing test-beds and testing using a multiobjective fuzzy mixed production assembly line sequencing optimization problem. The simulation results highlight that the performance and efficacy of the proposed novel optimization algorithm are more efficient than the performance of the standard genetic algorithm in mixed assembly line sequencing model. PMID:24982962

  10. Fuzzy time-optimal controller (FTOC) for second order nonlinear systems.

    PubMed

    Nagi, Farrukh; Ahmed, Syed Khaleel; Zularnain, Abdul Talip; Nagi, Jawad

    2011-07-01

    The motivation behind this paper is to seek alternative techniques to achieve a near optimal controller for non-linear systems without solving the analytical problem. In classical optimal control systems, the system states and optimization co-state parameters generate a two-point boundary value problem (TPBVP) using Pontryagin's minimum principle (PMP). The paper contributes a new fuzzy time-optimal controller to the existing fuzzy controllers which has two regular inputs and one bang-bang output. The proposed controller closely approximates the output of the classical time-optimal controller. Further, input membership function are tuned on-line to improve the time-optimal output. The new controller exhibits optimal behaviour for second order non-linear systems. The rules are selected to satisfy the stability and optimality conditions of the new fuzzy time-optimal controller. The paper describes a systematic procedure to design the controller and how to achieve the desired result. To benchmark the new controller performance, a sliding mode controller is used for guidance and comparison purpose. Simulation of three non-linear examples shows promising results. The work described here is expected to incite researcher's interest in fuzzy time-optimal controller design. PMID:21353218

  11. Implementation of Adaptive Digital Controllers on Programmable Logic Devices

    NASA Technical Reports Server (NTRS)

    Gwaltney, David A.; King, Kenneth D.; Smith, Keary J.; Montenegro, Justino (Technical Monitor)

    2002-01-01

    Much has been made of the capabilities of Field Programmable Gate Arrays (FPGA's) in the hardware implementation of fast digital signal processing functions. Such capability also makes an FPGA a suitable platform for the digital implementation of closed loop controllers. Other researchers have implemented a variety of closed-loop digital controllers on FPGA's. Some of these controllers include the widely used Proportional-Integral-Derivative (PID) controller, state space controllers, neural network and fuzzy logic based controllers. There are myriad advantages to utilizing an FPGA for discrete-time control functions which include the capability for reconfiguration when SRAM- based FPGA's are employed, fast parallel implementation of multiple control loops and implementations that can meet space level radiation tolerance requirements in a compact form-factor. Generally, a software implementation on a Digital Signal Processor (DSP) device or microcontroller is used to implement digital controllers. At Marshall Space Flight Center, the Control Electronics Group has been studying adaptive discrete-time control of motor driven actuator systems using DSP devices. While small form factor, commercial DSP devices are now available with event capture, data conversion, Pulse Width Modulated (PWM) outputs and communication peripherals, these devices are not currently available in designs and packages which meet space level radiation requirements. In general, very few DSP devices are produced that are designed to meet any level of radiation tolerance or hardness. An alternative is required for compact implementation of such functionality to withstand the harsh environment encountered on spacemap. The goal of this effort is to create a fully digital, flight ready controller design that utilizes an FPGA for implementation of signal conditioning for control feedback signals, generation of commands to the controlled system, and hardware insertion of adaptive-control algorithm approaches. Radiation tolerant FPGA's are a feasible option for reaching this goal.

  12. Implementation of Adaptive Digital Controllers on Programmable Logic Devices

    NASA Technical Reports Server (NTRS)

    Gwaltney, David A.; King, Kenneth D.; Smith, Keary J.; Monenegro, Justino (Technical Monitor)

    2002-01-01

    Much has been made of the capabilities of FPGA's (Field Programmable Gate Arrays) in the hardware implementation of fast digital signal processing. Such capability also makes an FPGA a suitable platform for the digital implementation of closed loop controllers. Other researchers have implemented a variety of closed-loop digital controllers on FPGA's. Some of these controllers include the widely used proportional-integral-derivative (PID) controller, state space controllers, neural network and fuzzy logic based controllers. There are myriad advantages to utilizing an FPGA for discrete-time control functions which include the capability for reconfiguration when SRAM-based FPGA's are employed, fast parallel implementation of multiple control loops and implementations that can meet space level radiation tolerance requirements in a compact form-factor. Generally, a software implementation on a DSP (Digital Signal Processor) or microcontroller is used to implement digital controllers. At Marshall Space Flight Center, the Control Electronics Group has been studying adaptive discrete-time control of motor driven actuator systems using digital signal processor (DSP) devices. While small form factor, commercial DSP devices are now available with event capture, data conversion, pulse width modulated (PWM) outputs and communication peripherals, these devices are not currently available in designs and packages which meet space level radiation requirements. In general, very few DSP devices are produced that are designed to meet any level of radiation tolerance or hardness. The goal of this effort is to create a fully digital, flight ready controller design that utilizes an FPGA for implementation of signal conditioning for control feedback signals, generation of commands to the controlled system, and hardware insertion of adaptive control algorithm approaches. An alternative is required for compact implementation of such functionality to withstand the harsh environment encountered on spacecraft. Radiation tolerant FPGA's are a feasible option for reaching this goal.

  13. A Comparative Study of Fuzzy Logic and Classical Control with EPICS[Experimental Physics and Industrial Control System

    SciTech Connect

    Johnny Tang; Hamid Shoaee

    1995-11-01

    The classical control theory which relies on the mathematical model of the underlying system has been successfully applied to the control of a large variety of simple, non-linear processes. However, it has not been as widely used with complicated, non-linear, time varying systems or with processes suffering from noisy measurements. The main idea of fuzzy control is to build a model of an expert operator who is capable of controlling the plant without thinking in terms of a mathematical model. This paper describes the application of fuzzy control to a feedback system within an EPICS environment. Comparison of the application of a modern controller and a fuzzy controller to an inverted pendulum problem is presented.

  14. Fuzzy Logic Controlled Solar Module for Driving Three- Phase Induction Motor

    NASA Astrophysics Data System (ADS)

    Afiqah Zainal, Nurul; Sooi Tat, Chan; Ajisman

    2016-02-01

    Renewable energy produced by solar module gives advantages for generated three- phase induction motor in remote area. But, solar module's ou tput is uncertain and complex. Fuzzy logic controller is one of controllers that can handle non-linear system and maximum power of solar module. Fuzzy logic controller used for Maximum Power Point Tracking (MPPT) technique to control Pulse-Width Modulation (PWM) for switching power electronics circuit. DC-DC boost converter used to boost up photovoltaic voltage to desired output and supply voltage source inverter which controlled by three-phase PWM generated by microcontroller. IGBT switched Voltage source inverter (VSI) produced alternating current (AC) voltage from direct current (DC) source to control speed of three-phase induction motor from boost converter output. Results showed that, the output power of solar module is optimized and controlled by using fuzzy logic controller. Besides that, the three-phase induction motor can be drive and control using VSI switching by the PWM signal generated by the fuzzy logic controller. This concluded that the non-linear system can be controlled and used in driving three-phase induction motor.

  15. Design of an iterative auto-tuning algorithm for a fuzzy PID controller

    NASA Astrophysics Data System (ADS)

    Saeed, Bakhtiar I.; Mehrdadi, B.

    2012-05-01

    Since the first application of fuzzy logic in the field of control engineering, it has been extensively employed in controlling a wide range of applications. The human knowledge on controlling complex and non-linear processes can be incorporated into a controller in the form of linguistic terms. However, with the lack of analytical design study it is becoming more difficult to auto-tune controller parameters. Fuzzy logic controller has several parameters that can be adjusted, such as: membership functions, rule-base and scaling gains. Furthermore, it is not always easy to find the relation between the type of membership functions or rule-base and the controller performance. This study proposes a new systematic auto-tuning algorithm to fine tune fuzzy logic controller gains. A fuzzy PID controller is proposed and applied to several second order systems. The relationship between the closed-loop response and the controller parameters is analysed to devise an auto-tuning method. The results show that the proposed method is highly effective and produces zero overshoot with enhanced transient response. In addition, the robustness of the controller is investigated in the case of parameter changes and the results show a satisfactory performance.

  16. Survey of adaptive control using Liapunov design

    NASA Technical Reports Server (NTRS)

    Lindorff, D. P.; Carroll, R. L.

    1973-01-01

    A survey of the literature in which Liapunov's second method is used in determining the control law is presented, with emphasis placed on the model-tracking adaptive control problem. Forty references are listed. Following a brief tutorial exposition of the adaptive control problem, the techniques for treating reduction of order, disturbance and time-varying parameters, multivariable systems, identification, and adaptive observers are discussed. The method is critically evaluated, particularly with respect to possibilities for application.

  17. Delay-dependent fuzzy static output feedback control for discrete-time fuzzy stochastic systems with distributed time-varying delays.

    PubMed

    Xia, ZhiLe; Li, JunMin; Li, JiangRong

    2012-11-01

    This paper is concerned with the delay-dependent H(∞) fuzzy static output feedback control scheme for discrete-time Takagi-Sugeno (T-S) fuzzy stochastic systems with distributed time-varying delays. To begin with, the T-S fuzzy stochastic system is transformed to an equivalent switching fuzzy stochastic system. Then, based on novel matrix decoupling technique, improved free-weighting matrix technique and piecewise Lyapunov-Krasovskii function (PLKF), a new delay-dependent H(∞) fuzzy static output feedback controller design approach is first derived for the switching fuzzy stochastic system. Some drawbacks existing in the previous papers such as matrix equalities constraint, coordinate transformation, the same output matrices, diagonal structure constraint on Lyapunov matrices and BMI problem have been eliminated. Since only a set of LMIs is involved, the controller parameters can be solved directly by the Matlab LMI toolbox. Finally, two examples are provided to illustrate the validity of the proposed method. PMID:22795723

  18. Distributed Proportional-spatial Derivative control of nonlinear parabolic systems via fuzzy PDE modeling approach.

    PubMed

    Wang, Jun-Wei; Wu, Huai-Ning; Li, Han-Xiong

    2012-06-01

    In this paper, a distributed fuzzy control design based on Proportional-spatial Derivative (P-sD) is proposed for the exponential stabilization of a class of nonlinear spatially distributed systems described by parabolic partial differential equations (PDEs). Initially, a Takagi-Sugeno (T-S) fuzzy parabolic PDE model is proposed to accurately represent the nonlinear parabolic PDE system. Then, based on the T-S fuzzy PDE model, a novel distributed fuzzy P-sD state feedback controller is developed by combining the PDE theory and the Lyapunov technique, such that the closed-loop PDE system is exponentially stable with a given decay rate. The sufficient condition on the existence of an exponentially stabilizing fuzzy controller is given in terms of a set of spatial differential linear matrix inequalities (SDLMIs). A recursive algorithm based on the finite-difference approximation and the linear matrix inequality (LMI) techniques is also provided to solve these SDLMIs. Finally, the developed design methodology is successfully applied to the feedback control of the Fitz-Hugh-Nagumo equation. PMID:22328181

  19. Adaptive Controller Adaptation Time and Available Control Authority Effects on Piloting

    NASA Technical Reports Server (NTRS)

    Trujillo, Anna; Gregory, Irene

    2013-01-01

    Adaptive control is considered for highly uncertain, and potentially unpredictable, flight dynamics characteristic of adverse conditions. This experiment looked at how adaptive controller adaptation time to recover nominal aircraft dynamics affects pilots and how pilots want information about available control authority transmitted. Results indicate that an adaptive controller that takes three seconds to adapt helped pilots when looking at lateral and longitudinal errors. The controllability ratings improved with the adaptive controller, again the most for the three seconds adaptation time while workload decreased with the adaptive controller. The effects of the displays showing the percentage amount of available safe flight envelope used in the maneuver were dominated by the adaptation time. With the displays, the altitude error increased, controllability slightly decreased, and mental demand increased. Therefore, the displays did require some of the subjects resources but these negatives may be outweighed by pilots having more situation awareness of their aircraft.

  20. Fuzzy logic

    NASA Technical Reports Server (NTRS)

    Zadeh, Lofti A.

    1988-01-01

    The author presents a condensed exposition of some basic ideas underlying fuzzy logic and describes some representative applications. The discussion covers basic principles; meaning representation and inference; basic rules of inference; and the linguistic variable and its application to fuzzy control.

  1. Prediction analysis and comparison between agriculture and mining stocks in Indonesia by using adaptive neuro-fuzzy inference system (ANFIS)

    NASA Astrophysics Data System (ADS)

    Mahandrio, Irsantyo; Budi, Andriantama; Liong, The Houw; Purqon, Acep

    2015-09-01

    The growing patterns in cultural and mining sectors are interesting particularly in developed country such as in Indonesia. Here, we investigate the local characteristics of stocks between the sectors of agriculture and mining which si representing two leading companies and two common companies in these sectors. We analyze the prediction by using Adaptive Neuro Fuzzy Inference System (ANFIS). The type of Fuzzy Inference System (FIS) is Sugeno type with Generalized Bell membership function (Gbell). Our results show that ANFIS is a proper method to predicting the stock market with the RMSE : 0.14% for AALI and 0.093% for SGRO representing the agriculture sectors, meanwhile, 0.073% for ANTM and 0.1107% for MDCO representing the mining sectors.

  2. [Particle swarm optimization fuzzy modeling and closed-loop anaesthesia control based on cerebral state index].

    PubMed

    Tang, Jingtian; Cao, Yang; Xiao, Jiaying; Guo, Qulian

    2014-06-01

    Due to individual differences of the depth of anaesthesia (DOA) controlled objects, the drawbacks of monitoring index, the traditional PID controller of anesthesia depth could not meet the demands of nonlinear control. However, the adjustments of the rules of DOA fuzzy control often rely on personal experience and, therefore, it could not achieve the satisfactory control effects. The present research established a fuzzy closed-loop control system which takes the cerebral state index (CSI) value as a feedback controlled variable, and it also adopts the particle swarm optimization (PSO) to optimize the fuzzy control rule and membership functions between the change of CSI and propofol infusion rate. The system sets the CSI targets at 40 and 30 through the system simulation, and it also adds some Gaussian noise to imitate clinical disturbance. Experimental results indicated that this system could reach the set CSI point accurately, rapidly and stably, with no obvious perturbation in the presence of noise. The fuzzy controller based on CSI which has been optimized by PSO has better stability and robustness in the DOA closed loop control system. PMID:25219229

  3. Adaptive control: Myths and realities

    NASA Technical Reports Server (NTRS)

    Athans, M.; Valavani, L.

    1984-01-01

    It was found that all currently existing globally stable adaptive algorithms have three basic properties in common: positive realness of the error equation, square-integrability of the parameter adjustment law and, need for sufficient excitation for asymptotic parameter convergence. Of the three, the first property is of primary importance since it satisfies a sufficient condition for stabillity of the overall system, which is a baseline design objective. The second property has been instrumental in the proof of asymptotic error convergence to zero, while the third addresses the issue of parameter convergence. Positive-real error dynamics can be generated only if the relative degree (excess of poles over zeroes) of the process to be controlled is known exactly; this, in turn, implies perfect modeling. This and other assumptions, such as absence of nonminimum phase plant zeros on which the mathematical arguments are based, do not necessarily reflect properties of real systems. As a result, it is natural to inquire what happens to the designs under less than ideal assumptions. The issues arising from violation of the exact modeling assumption which is extremely restrictive in practice and impacts the most important system property, stability, are discussed.

  4. Fuzzy modeling and predictive control of superheater steam temperature for power plant.

    PubMed

    Wu, Xiao; Shen, Jiong; Li, Yiguo; Lee, Kwang Y

    2015-05-01

    This paper develops a stable fuzzy model predictive controller (SFMPC) to solve the superheater steam temperature (SST) control problem in a power plant. First, a data-driven Takagi-Sugeno (TS) fuzzy model is developed to approximate the behavior of the SST control system using the subspace identification (SID) method. Then, an SFMPC for output regulation is designed based on the TS-fuzzy model to regulate the SST while guaranteeing the input-to-state stability under the input constraints. The effect of modeling mismatches and unknown plant behavior variations are overcome by the use of a disturbance term and steady-state target calculator (SSTC). Simulation results for a 600 MW power plant show that an offset-free tracking of SST can be achieved over a wide range of load variation. PMID:25530258

  5. Adaptive control of dual-arm robots

    NASA Technical Reports Server (NTRS)

    Seraji, H.

    1987-01-01

    Three strategies for adaptive control of cooperative dual-arm robots are described. In the position-position control strategy, the adaptive controllers ensure that the end-effector positions of both arms track desired trajectories in Cartesian space despite unknown time-varying interaction forces exerted through the load. In the position-hybrid control strategy, the adaptive controller of one arm controls end-effector motions in the free directions and applied forces in the constraint directions, while the adaptive controller of the other arm ensures that the end-effector tracks desired position trajectories. In the hybrid-hybrid control strategy, the adaptive controllers ensure that both end-effectors track reference position trajectories while simultaneously applying desired forces on the load. In all three control strategies, the cross-coupling effects between the arms are treated as disturbances which are rejected by the adaptive controllers while following desired commands in a common frame of reference. The adaptive controllers do not require the complex mathematical model of the arm dynamics or any knowledge of the arm dynamic parameters or the load parameters such as mass and stiffness. The controllers have simple structures and are computationally fast for on-line implementation with high sampling rates.

  6. A Fuzzy Logic Based Controller for the Automated Alignment of a Laser-beam-smoothing Spatial Filter

    NASA Technical Reports Server (NTRS)

    Krasowski, M. J.; Dickens, D. E.

    1992-01-01

    A fuzzy logic based controller for a laser-beam-smoothing spatial filter is described. It is demonstrated that a human operator's alignment actions can easily be described by a system of fuzzy rules of inference. The final configuration uses inexpensive, off-the-shelf hardware and allows for a compact, readily implemented embedded control system.

  7. Welding Penetration Control of Fixed Pipe in TIG Welding Using Fuzzy Inference System

    NASA Astrophysics Data System (ADS)

    Baskoro, Ario Sunar; Kabutomori, Masashi; Suga, Yasuo

    This paper presents a study on welding penetration control of fixed pipe in Tungsten Inert Gas (TIG) welding using fuzzy inference system. The welding penetration control is essential to the production quality welds with a specified geometry. For pipe welding using constant arc current and welding speed, the bead width becomes wider as the circumferential welding of small diameter pipes progresses. Having welded pipe in fixed position, obviously, the excessive arc current yields burn through of metals; in contrary, insufficient arc current produces imperfect welding. In order to avoid these errors and to obtain the uniform weld bead over the entire circumference of the pipe, the welding conditions should be controlled as the welding proceeds. This research studies the intelligent welding process of aluminum alloy pipe 6063S-T5 in fixed position using the AC welding machine. The monitoring system used a charge-coupled device (CCD) camera to monitor backside image of molten pool. The captured image was processed to recognize the edge of molten pool by image processing algorithm. Simulation of welding control using fuzzy inference system was constructed to simulate the welding control process. The simulation result shows that fuzzy controller was suitable for controlling the welding speed and appropriate to be implemented into the welding system. A series of experiments was conducted to evaluate the performance of the fuzzy controller. The experimental results show the effectiveness of the control system that is confirmed by sound welds.

  8. Expert system training and control based on the fuzzy relation matrix

    NASA Technical Reports Server (NTRS)

    Ren, Jie; Sheridan, T. B.

    1991-01-01

    Fuzzy knowledge, that for which the terms of reference are not crisp but overlapped, seems to characterize human expertise. This can be shown from the fact that an experienced human operator can control some complex plants better than a computer can. Proposed here is fuzzy theory to build a fuzzy expert relation matrix (FERM) from given rules or/and examples, either in linguistic terms or in numerical values to mimic human processes of perception and decision making. The knowledge base is codified in terms of many implicit fuzzy rules. Fuzzy knowledge thus codified may also be compared with explicit rules specified by a human expert. It can also provide a basis for modeling the human operator and allow comparison of what a human operator says to what he does in practice. Two experiments were performed. In the first, control of liquid in a tank, demonstrates how the FERM knowledge base is elicited and trained. The other shows how to use a FERM, build up from linguistic rules, and to control an inverted pendulum without a dynamic model.

  9. Fuzzy logic electric vehicle regenerative antiskid braking and traction control system

    DOEpatents

    Cikanek, Susan R.

    1994-01-01

    An regenerative antiskid braking and traction control system using fuzzy logic for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensor and determining if regenerative antiskid braking control, requiring hydraulic braking control, and requiring traction control are required. The processor then employs fuzzy logic based on the determined vehicle state and provides command signals to a motor controller to control operation of the electric traction motor and to the brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative braking control, hydraulic braking control, and traction control.

  10. Fuzzy logic electric vehicle regenerative antiskid braking and traction control system

    DOEpatents

    Cikanek, S.R.

    1994-10-25

    An regenerative antiskid braking and traction control system using fuzzy logic for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensor and determining if regenerative antiskid braking control, requiring hydraulic braking control, and requiring traction control are required. The processor then employs fuzzy logic based on the determined vehicle state and provides command signals to a motor controller to control operation of the electric traction motor and to the brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative braking control, hydraulic braking control, and traction control. 123 figs.

  11. A Genetic Algorithm with Fuzzy Logic Controller for Design of Communication Networks

    NASA Astrophysics Data System (ADS)

    Altiparmak, Fulya; Gen, Mitsuo; Dengiz, Berna; Smith, Alice E.

    In this paper, we develop a network-based genetic algorithm with fuzzy logic controller (flc-NBGA) to the design of computer communication networks under reliability constraint, which is a well-known NP-hard problem. A new encoding based on Prüfer numbers, two-point crossover and local search operator as a mutation have been used in flc-NBGA. The algorithm results are compared to optimum results found by branch and bound (B&B), GA based on binary representation (SGA) and NBGA without fuzzy logic controller (NBGA) on a suite of test problems.

  12. Fuzzy-logic-based LLRF control for the RFT-30 cyclotron

    NASA Astrophysics Data System (ADS)

    Kong, Young-Bae; Lee, Eun-Je; Hur, Min-Goo; Park, Jeong-Hoon; Park, Yong-Dae; Yang, Seung-Dae; Jung, In-Su; Park, Yeun-Soo

    2015-10-01

    A RFT-30 cyclotron can be used for various applications such as radioisotope production and fundamental research. A low level radio frequency (LLRF) system adjusts the parameters for stable operation of the radio frequency (RF) system. It is important for the LLRF system to maintain a stable resonance condition during its operation. In this paper, we propose a fuzzy-based LLRF control for the RFT-30 cyclotron. The proposed approach stabilizes the resonance condition by moving the fine tuner based on a fuzzy logic controller (FLC). Performance results show that the FLC approach maintains a stable resonance condition for the RF system.

  13. Parallel Control of Velocity Control and Energy-Saving Control for a Hydraulic Valve-Controlled Cylinder System Using Self-Organizing Fuzzy Sliding Mode Control

    NASA Astrophysics Data System (ADS)

    Chiang, Mao-Hsiung; Chien, Yu-Wei

    Conventional hydraulic valve-controlled systems that incorporate positive displacement pumps and relief valves have a problem of low energy efficiency. The objective of the research is to implement parallel control of energy-saving control in an electro-hydraulic load-sensing system and velocity control in a hydraulic valve-controlled cylinder system to achieve both high velocity control accuracy and low input power simultaneously. The overall control system is a two-input two-output system. For that, the control strategy of self-organizing fuzzy sliding mode control (SOFSMC) is developed in this study to reduce the fuzzy rule number and to self-organize on-line the fuzzy rules. To compare the energy-saving performance, the velocity control is implemented under three different energy-saving control systems, such as load-sensing control system, constant supply pressure control system and conventional hydraulic system. The parallel control of the velocity control and energy-saving control by the SOFSMC is implemented experimentally.

  14. Adaptive neuro-fuzzy inference system to forecast peak gust speed during thunderstorms

    NASA Astrophysics Data System (ADS)

    Chaudhuri, Sutapa; Middey, Anirban

    2011-11-01

    The aim of the present study is to develop an adaptive neuro-fuzzy inference system (ANFIS) to forecast the peak gust speed associated with thunderstorms during the pre-monsoon season (April-May) over Kolkata (22°32'N, 88°20'E), India. The pre-monsoon thunderstorms during 1997-2008 are considered in this study to train the model. The input parameters are selected from various stability indices using statistical skill score analysis. The most useful and relevant stability indices are taken to form the input matrix of the model. The forecast through the hybrid ANFIS model is compared with non-hybrid radial basis function network (RBFN), multi layer perceptron (MLP) and multiple linear regression (MLR) models. The forecast error analyses of the models in the test cases reveal that ANFIS provides the best forecast of the peak gust speed with 3.52% error, whereas the errors with RBFN, MLP, and MLR models are 10.48, 11.57, and 12.51%, respectively. During the validation with the 2009 observations of the India Meteorological Department (IMD), the ANFIS model confirms its superiority over other comparative models. The forecast error during the validation of the ANFIS model is observed to be 3.69%, with a lead time of <12 h, whereas the errors with RBFN, MLP, and MLR are 12.25, 13.19, and 14.86%, respectively. The ANFIS model may, therefore, be used as an operational model for forecasting the peak gust speed associated with thunderstorms over Kolkata during the pre-monsoon season.

  15. Prediction of Scour Depth around Bridge Piers using Adaptive Neuro-Fuzzy Inference Systems (ANFIS)

    NASA Astrophysics Data System (ADS)

    Valyrakis, Manousos; Zhang, Hanqing

    2014-05-01

    Earth's surface is continuously shaped due to the action of geophysical flows. Erosion due to the flow of water in river systems has been identified as a key problem in preserving ecological health of river systems but also a threat to our built environment and critical infrastructure, worldwide. As an example, it has been estimated that a major reason for bridge failure is due to scour. Even though the flow past bridge piers has been investigated both experimentally and numerically, and the mechanisms of scouring are relatively understood, there still lacks a tool that can offer fast and reliable predictions. Most of the existing formulas for prediction of bridge pier scour depth are empirical in nature, based on a limited range of data or for piers of specific shape. In this work, the application of a Machine Learning model that has been successfully employed in Water Engineering, namely an Adaptive Neuro-Fuzzy Inference System (ANFIS) is proposed to estimate the scour depth around bridge piers. In particular, various complexity architectures are sequentially built, in order to identify the optimal for scour depth predictions, using appropriate training and validation subsets obtained from the USGS database (and pre-processed to remove incomplete records). The model has five variables, namely the effective pier width (b), the approach velocity (v), the approach depth (y), the mean grain diameter (D50) and the skew to flow. Simulations are conducted with data groups (bed material type, pier type and shape) and different number of input variables, to produce reduced complexity and easily interpretable models. Analysis and comparison of the results indicate that the developed ANFIS model has high accuracy and outstanding generalization ability for prediction of scour parameters. The effective pier width (as opposed to skew to flow) is amongst the most relevant input parameters for the estimation.

  16. T-S-Fuzzy-Model-Based Approximation and Controller Design for General Nonlinear Systems.

    PubMed

    Qing Gao; Xiao-Jun Zeng; Gang Feng; Yong Wang; Jianbin Qiu

    2012-08-01

    This paper presents a novel approach to control general nonlinear systems based on Takagi-Sugeno (T-S) fuzzy dynamic models. It is first shown that a general nonlinear system can be approximated by a generalized T-S fuzzy model to any degree of accuracy on any compact set. It is then shown that the stabilization problem of the general nonlinear system can be solved as a robust stabilization problem of the developed T-S fuzzy system with the approximation errors as the uncertainty term. Based on a piecewise quadratic Lyapunov function, the robust semiglobal stabilization and H∞ control of the general nonlinear system are formulated in the form of linear matrix inequalities. Simulation results are provided to illustrate the effectiveness of the proposed approaches. PMID:22434816

  17. Non-fragile H∞ output feedback control design for continuous-time fuzzy systems.

    PubMed

    Kchaou, Mourad; Hajjaji, Ahmed El; Toumi, Ahmed

    2015-01-01

    In this paper, we investigate the problem of non-fragile H∞ fuzzy control design for continuous Takagi Sugeno (T-S) fuzzy systems with uncertainties, external disturbance and unmeasurable state variables. For the case of controller and observer gain additive variations, we propose a new solution of the fragility problem by developing the non-fragile design schemes ensuring the asymptotic stability and H∞ performance for the resulting closed loop systems. By considering a fuzzy Lyapunov function and by introducing slack variables, we propose the new sufficient stabilization conditions formulated in LMI constraints which can be easily solved using the convex optimization tools. The effectiveness the proposed results are illustrated through three numerical examples. PMID:25064784

  18. Fuzzy Logic Controller for Hemodialysis Machine Based on Human Body Model

    PubMed Central

    Nafisi, Vahid Reza; Eghbal, Manouchehr; Motlagh, Mohammad Reza Jahed; Yavari, Fatemeh

    2011-01-01

    Fuzzy controllers are being used in various control schemes. The aim of this study is to adjust the hemodialysis machine parameters by utilizing a fuzzy logic controller (FLC) so that patient's hemodynamic condition remains stable during hemodialysis treatment. For this purpose, a comprehensive mathematical model of the arterial pressure response during hemodialysis, including hemodynamic, osmotic, and regulatory phenomena has been used. The multi-input multi-output (MIMO) fuzzy logic controller receives three parameters from the model (heart rate, arterial blood pressure, and relative blood volume) as input. According to the changes in the controller input values and its rule base, the outputs change so that the patient's hemodynamic condition remains stable. The results of the simulations illustrate that applying the controller can improve the stability of a patient's hemodynamic condition during hemodialysis treatment and it also decreases the treatment time. Furthermore, by using fuzzy logic, there is no need to have prior knowledge about the system under control and the FLC is compatible with different patients. PMID:22606657

  19. Impulsive control for a Takagi-Sugeno fuzzy model with time-delay and its application to chaotic systems

    NASA Astrophysics Data System (ADS)

    Peng, Shi-Guo; Yu, Si-Min

    2009-09-01

    A control approach where the fuzzy logic methodology is combined with impulsive control is developed for controlling some time-delay chaotic systems in this paper. We first introduce impulses into each subsystem with delay of the Takagi-Sugeno (TS) fuzzy IF-THEN rules and then present a unified TS impulsive fuzzy model with delay for chaos control. Based on the new model, a simple and unified set of conditions for controlling chaotic systems is derived by the Lyapunov-Razumikhin method, and a design procedure for estimating bounds on control matrices is also given. Several numerical examples are presented to illustrate the effectiveness of this method.

  20. Dynamic optimization and adaptive controller design

    NASA Astrophysics Data System (ADS)

    Inamdar, S. R.

    2010-10-01

    In this work I present a new type of controller which is an adaptive tracking controller which employs dynamic optimization for optimizing current value of controller action for the temperature control of nonisothermal continuously stirred tank reactor (CSTR). We begin with a two-state model of nonisothermal CSTR which are mass and heat balance equations and then add cooling system dynamics to eliminate input multiplicity. The initial design value is obtained using local stability of steady states where approach temperature for cooling action is specified as a steady state and a design specification. Later we make a correction in the dynamics where material balance is manipulated to use feed concentration as a system parameter as an adaptive control measure in order to avoid actuator saturation for the main control loop. The analysis leading to design of dynamic optimization based parameter adaptive controller is presented. The important component of this mathematical framework is reference trajectory generation to form an adaptive control measure.