Adaptive control of redundant multilink robot using fuzzy logic
NASA Astrophysics Data System (ADS)
Su, X.; Mitra, Sunanda
1993-12-01
A new approach to fuzzy distance and restriction measures is used to obtain the appropriate orientations of the links for avoiding obstacles in the robot trajectories. This approach eliminates the classical task of solving highly coupled, nonlinear equations describing the ill- posed inverse problems of multilink robot motion at a much less demanding computational time. Such clear advantage of fuzzy logic based adaptive controller are illustrated by simulation results of guidance of a multilink robot in target positioning and trajectories tracking. The simulation results involve a three-link robot arm with capability of moving from one position to any desired position and tracking a defined trajectories accurately. A modified fuzzy rule based distance measure allows the robot to follow trajectories within hitting the obstacles in the path. The simulation results indicate the advantage of fuzzy logic based adaptive controllers in multiple criteria decision-making tasks.
Adaptive process control using fuzzy logic and genetic algorithms
NASA Technical Reports Server (NTRS)
Karr, C. L.
1993-01-01
Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic algorithms (GA's) are used to augment fuzzy logic controllers (FLC's). GA's are search algorithms that rapidly locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural genetics. FLC's are rule based systems that efficiently manipulate a problem environment by modeling the 'rule-of-thumb' strategy used in human decision making. Together, GA's and FLC's possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, and a learning element to adjust to the changes in the problem environment. Details of an overall adaptive control system are discussed. A specific laboratory acid-base pH system is used to demonstrate the ideas presented.
Adaptive Process Control with Fuzzy Logic and Genetic Algorithms
NASA Technical Reports Server (NTRS)
Karr, C. L.
1993-01-01
Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic algorithms (GA's) are used to augment fuzzy logic controllers (FLC's). GA's are search algorithms that rapidly locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural genetics. FLC's are rule based systems that efficiently manipulate a problem environment by modeling the 'rule-of-thumb' strategy used in human decision-making. Together, GA's and FLC's possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, an analysis element to recognize changes in the problem environment, and a learning element to adjust to the changes in the problem environment. Details of an overall adaptive control system are discussed. A specific laboratory acid-base pH system is used to demonstrate the ideas presented.
NASA Technical Reports Server (NTRS)
Zadeh, Lofti A.
1988-01-01
The author presents a condensed exposition of some basic ideas underlying fuzzy logic and describes some representative applications. The discussion covers basic principles; meaning representation and inference; basic rules of inference; and the linguistic variable and its application to fuzzy control.
An Adaptive Fuzzy-Logic Traffic Control System in Conditions of Saturated Transport Stream.
Yusupbekov, N R; Marakhimov, A R; Igamberdiev, H Z; Umarov, Sh X
2016-01-01
This paper considers the problem of building adaptive fuzzy-logic traffic control systems (AFLTCS) to deal with information fuzziness and uncertainty in case of heavy traffic streams. Methods of formal description of traffic control on the crossroads based on fuzzy sets and fuzzy logic are proposed. This paper also provides efficient algorithms for implementing AFLTCS and develops the appropriate simulation models to test the efficiency of suggested approach. PMID:27517081
An Adaptive Fuzzy-Logic Traffic Control System in Conditions of Saturated Transport Stream
Marakhimov, A. R.; Igamberdiev, H. Z.; Umarov, Sh. X.
2016-01-01
This paper considers the problem of building adaptive fuzzy-logic traffic control systems (AFLTCS) to deal with information fuzziness and uncertainty in case of heavy traffic streams. Methods of formal description of traffic control on the crossroads based on fuzzy sets and fuzzy logic are proposed. This paper also provides efficient algorithms for implementing AFLTCS and develops the appropriate simulation models to test the efficiency of suggested approach. PMID:27517081
A new adaptive configuration of PID type fuzzy logic controller.
Fereidouni, Alireza; Masoum, Mohammad A S; Moghbel, Moayed
2015-05-01
In this paper, an adaptive configuration for PID type fuzzy logic controller (FLC) is proposed to improve the performances of both conventional PID (C-PID) controller and conventional PID type FLC (C-PID-FLC). The proposed configuration is called adaptive because its output scaling factors (SFs) are dynamically tuned while the controller is functioning. The initial values of SFs are calculated based on its well-tuned counterpart while the proceeding values are generated using a proposed stochastic hybrid bacterial foraging particle swarm optimization (h-BF-PSO) algorithm. The performance of the proposed configuration is evaluated through extensive simulations for different operating conditions (changes in reference, load disturbance and noise signals). The results reveal that the proposed scheme performs significantly better over the C-PID controller and the C-PID-FLC in terms of several performance indices (integral absolute error (IAE), integral-of-time-multiplied absolute error (ITAE) and integral-of-time-multiplied squared error (ITSE)), overshoot and settling time for plants with and without dead time. PMID:25530256
NASA Astrophysics Data System (ADS)
Aminifar, S.; Yosefi, Gh.
2007-09-01
In this paper, we present away of using Anfis architecture to implement a new fuzzy logic controller chip. Anfis which tunes the fuzzy inference system with a backpropagation algorithm based on collection of input-output data makes fuzzy system to learn. This training is given from a standard response of the system and membership functions are suitably modified. For adaptive Anfis based fuzzy controller and its circuit design, we propose new circuits for implementing each controller block, and illustrate the test results and control surface of Anfis controller along with CMOS fuzzy logic controller using Matlab and Hspice software respectively. For implementing controller according to the Anfis training, we proposed new and improved integrated circuits which consist of Fuzzifier, Min operator and Multiplier/Divider. The control surfaces of controller are obtained by using Anfis training and simulation results of integrated circuits in less than 0.075 mm2 area in 0.35 μm CMOS standard technology.
Adaptively Managing Wildlife for Climate Change: A Fuzzy Logic Approach
NASA Astrophysics Data System (ADS)
Prato, Tony
2011-07-01
Wildlife managers have little or no control over climate change. However, they may be able to alleviate potential adverse impacts of future climate change by adaptively managing wildlife for climate change. In particular, wildlife managers can evaluate the efficacy of compensatory management actions (CMAs) in alleviating potential adverse impacts of future climate change on wildlife species using probability-based or fuzzy decision rules. Application of probability-based decision rules requires managers to specify certain probabilities, which is not possible when they are uncertain about the relationships between observed and true ecological conditions for a species. Under such uncertainty, the efficacy of CMAs can be evaluated and the best CMA selected using fuzzy decision rules. The latter are described and demonstrated using three constructed cases that assume: (1) a single ecological indicator (e.g., population size for a species) in a single time period; (2) multiple ecological indicators for a species in a single time period; and (3) multiple ecological conditions for a species in multiple time periods.
Fuzzy logic controller optimization
Sepe, Jr., Raymond B; Miller, John Michael
2004-03-23
A method is provided for optimizing a rotating induction machine system fuzzy logic controller. The fuzzy logic controller has at least one input and at least one output. Each input accepts a machine system operating parameter. Each output produces at least one machine system control parameter. The fuzzy logic controller generates each output based on at least one input and on fuzzy logic decision parameters. Optimization begins by obtaining a set of data relating each control parameter to at least one operating parameter for each machine operating region. A model is constructed for each machine operating region based on the machine operating region data obtained. The fuzzy logic controller is simulated with at least one created model in a feedback loop from a fuzzy logic output to a fuzzy logic input. Fuzzy logic decision parameters are optimized based on the simulation.
Sleep apnea detection using an adaptive fuzzy logic based screening system.
Morsy, Ahmed A; Al-Ashmouny, Khaled M
2005-01-01
We report an adaptive diagnostic system for the classification of breathing events for the purpose of detecting sleep apnea syndromes. The system employs two classification engines used in series. The first engine is fuzzy logic-based and generates one of three outcomes for each breathing event: normal, abnormal, and not-sure. The second classification engine is based on a center of gravity engine which is trained using the normal and abnormal events, generated by the first engine, and is specifically designed for sorting out the not-sure events. The fuzzy logic engine can be tuned very conservatively to reduce or eliminate the chance of error at the first stage. Since the second engine is trained adaptively using normal and abnormal data of the same patient, its accuracy is generally better than relying on multi-patient training approaches. The two-step, adaptive nature of the system allows for high accuracy and lends itself well for practical implementation. PMID:17281661
NASA Technical Reports Server (NTRS)
Howard, Ayanna
2005-01-01
The Fuzzy Logic Engine is a software package that enables users to embed fuzzy-logic modules into their application programs. Fuzzy logic is useful as a means of formulating human expert knowledge and translating it into software to solve problems. Fuzzy logic provides flexibility for modeling relationships between input and output information and is distinguished by its robustness with respect to noise and variations in system parameters. In addition, linguistic fuzzy sets and conditional statements allow systems to make decisions based on imprecise and incomplete information. The user of the Fuzzy Logic Engine need not be an expert in fuzzy logic: it suffices to have a basic understanding of how linguistic rules can be applied to the user's problem. The Fuzzy Logic Engine is divided into two modules: (1) a graphical-interface software tool for creating linguistic fuzzy sets and conditional statements and (2) a fuzzy-logic software library for embedding fuzzy processing capability into current application programs. The graphical- interface tool was developed using the Tcl/Tk programming language. The fuzzy-logic software library was written in the C programming language.
Hansen, M; Haugland, M K
2001-01-01
Adaptive restriction rules based on fuzzy logic have been developed to eliminate errors and to increase stimulation safety in the foot-drop correction application, specifically when using adaptive logic networks to provide a stimulation control signal based on neural activity recorded from peripheral sensory nerve branches. The fuzzy rules were designed to increase flexibility and offer easier customization, compared to earlier versions of restriction rules. The rules developed quantified the duration of swing and stance phases into states of accepting or rejecting new transitions, based on the cyclic nature of gait and statistics on the current gait patterns. The rules were easy to custom design for a specific application, using linguistic terms to model the actions of the rules. The rules were tested using pre-recorded gait data processed through a gait event detector and proved to reduce detection delay and the number of errors, compared to conventional rules. PMID:11601442
Flight test results of the fuzzy logic adaptive controller-helicopter (FLAC-H)
NASA Astrophysics Data System (ADS)
Wade, Robert L.; Walker, Gregory W.
1996-05-01
The fuzzy logic adaptive controller for helicopters (FLAC-H) demonstration is a cooperative effort between the US Army Simulation, Training, and Instrumentation Command (STRICOM), the US Army Aviation and Troop Command, and the US Army Missile Command to demonstrate a low-cost drone control system for both full-scale and sub-scale helicopters. FLAC-H was demonstrated on one of STRICOM's fleet of full-scale rotary-winged target drones. FLAC-H exploits fuzzy logic in its flight control system to provide a robust solution to the control of the helicopter's dynamic, nonlinear system. Straight forward, common sense fuzzy rules governing helicopter flight are processed instead of complex mathematical models. This has resulted in a simplified solution to the complexities of helicopter flight. Incorporation of fuzzy logic reduced the cost of development and should also reduce the cost of maintenance of the system. An adaptive algorithm allows the FLAC-H to 'learn' how to fly the helicopter, enabling the control system to adjust to varying helicopter configurations. The adaptive algorithm, based on genetic algorithms, alters the fuzzy rules and their related sets to improve the performance characteristics of the system. This learning allows FLAC-H to automatically be integrated into a new airframe, reducing the development costs associated with altering a control system for a new or heavily modified aircraft. Successful flight tests of the FLAC-H on a UH-1H target drone were completed in September 1994 at the White Sands Missile Range in New Mexico. This paper discuses the objective of the system, its design, and performance.
Zargham, M.R.
1995-06-01
Recently, fuzzy logic has been applied to many areas, such as process control, image understanding, robots, expert systems, and decision support systems. This paper will explain the basic concepts of fuzzy logic and its application in different fields. The steps to design a control system will be explained in detail. Fuzzy control is the first successful industrial application of fuzzy logic. A fuzzy controller is able to control systems which previously could only be controlled by skilled operators. In recent years Japan has achieved significant progress in this area and has applied it to variety of products such as cruise control for cars, video cameras, rice cookers, washing machines, etc.
NASA Astrophysics Data System (ADS)
Malhas, Othman Qasim
1993-10-01
The concept of “abacus logic” has recently been developed by the author (Malhas, n.d.). In this paper the relation of abacus logic to the concept of fuzziness is explored. It is shown that if a certain “regularity” condition is met, concepts from fuzzy set theory arise naturally within abacus logics. In particular it is shown that every abacus logic then has a “pre-Zadeh orthocomplementation”. It is also shown that it is then possible to associate a fuzzy set with every proposition of abacus logic and that the collection of all such sets satisfies natural conditions expected in systems of fuzzy logic. Finally, the relevance to quantum mechanics is discussed.
Fuzzy logic of Aristotelian forms
Perlovsky, L.I.
1996-12-31
Model-based approaches to pattern recognition and machine vision have been proposed to overcome the exorbitant training requirements of earlier computational paradigms. However, uncertainties in data were found to lead to a combinatorial explosion of the computational complexity. This issue is related here to the roles of a priori knowledge vs. adaptive learning. What is the a-priori knowledge representation that supports learning? I introduce Modeling Field Theory (MFT), a model-based neural network whose adaptive learning is based on a priori models. These models combine deterministic, fuzzy, and statistical aspects to account for a priori knowledge, its fuzzy nature, and data uncertainties. In the process of learning, a priori fuzzy concepts converge to crisp or probabilistic concepts. The MFT is a convergent dynamical system of only linear computational complexity. Fuzzy logic turns out to be essential for reducing the combinatorial complexity to linear one. I will discuss the relationship of the new computational paradigm to two theories due to Aristotle: theory of Forms and logic. While theory of Forms argued that the mind cannot be based on ready-made a priori concepts, Aristotelian logic operated with just such concepts. I discuss an interpretation of MFT suggesting that its fuzzy logic, combining a-priority and adaptivity, implements Aristotelian theory of Forms (theory of mind). Thus, 2300 years after Aristotle, a logic is developed suitable for his theory of mind.
Morphology analysis of EKG R waves using wavelets with adaptive parameters derived from fuzzy logic
NASA Astrophysics Data System (ADS)
Caldwell, Max A.; Barrington, William W.; Miles, Richard R.
1996-03-01
Understanding of the EKG components P, QRS (R wave), and T is essential in recognizing cardiac disorders and arrhythmias. An estimation method is presented that models the R wave component of the EKG by adaptively computing wavelet parameters using fuzzy logic. The parameters are adaptively adjusted to minimize the difference between the original EKG waveform and the wavelet. The R wave estimate is derived from minimizing the combination of mean squared error (MSE), amplitude difference, spread difference, and shift difference. We show that the MSE in both non-noise and additive noise environment is less using an adaptive wavelet than a static wavelet. Research to date has focused on the R wave component of the EKG signal. Extensions of this method to model P and T waves are discussed.
Controlling chaos in a defined trajectory using adaptive fuzzy logic algorithm
NASA Astrophysics Data System (ADS)
Sadeghi, Maryam; Menhaj, Bagher
2012-09-01
Chaos is a nonlinear behavior of chaotic system with the extreme sensitivity to the initial conditions. Chaos control is so complicated that solutions never converge to a specific numbers and vary chaotically from one amount to the other next. A tiny perturbation in a chaotic system may result in chaotic, periodic, or stationary behavior. Modern controllers are introduced for controlling the chaotic behavior. In this research an adaptive Fuzzy Logic Controller (AFLC) is proposed to control the chaotic system with two equilibrium points. This method is introduced as an adaptive progressed fashion with the full ability to control the nonlinear systems even in the undertrained conditions. Using AFLC designers are released to determine the precise mathematical model of system and satisfy the vast adaption that is needed for a rapid variation which may be caused in the dynamic of nonlinear system. Rules and system parameters are generated through the AFLC and expert knowledge is downright only in the initialization stage. So if the knowledge was not assuring the dynamic of system it could be changed through the adaption procedure of parameters values. AFLC methodology is an advanced control fashion in control yielding to both robustness and smooth motion in nonlinear system control.
NASA Astrophysics Data System (ADS)
Wang, Yin-He; Luo, Liang; Fan, Yong-Qing; Zhang, Yun; Liu, Xiao-Ping; Zhang, Si-Ying
2014-03-01
Many practical engineering applications require various types of fuzzy logic systems (FLSs) to design adaptive controllers for nonlinear systems with uncertainties. In this article, we will consider a fundamental theoretical question: is it possible to find a unified adaptive control design method suited to various types of FLSs? In order to solve this problem, we will introduce scalers and saturators at the input and output terminals of FLSs to form the extended FLSs (EFLS). The scalers and saturators have adjustable parameters. By designing the updated laws of these parameters and the estimate values of the fuzzy approximate accuracies, stable adaptive fuzzy controllers can be realised for a class of nonlinear systems with unknown homogeneous drift functions and gains. The proposed design method is only dependent on the outputs of EFLS and the above updated laws, thus increasing its adaptability. The fuzzy control scheme introduced in this article is suitable for all fuzzy systems with or without fuzzy rules. Simulations will also be used to show the validity of the method proposed in this article.
Universal Approximation of Mamdani Fuzzy Controllers and Fuzzy Logical Controllers
NASA Technical Reports Server (NTRS)
Yuan, Bo; Klir, George J.
1997-01-01
In this paper, we first distinguish two types of fuzzy controllers, Mamdani fuzzy controllers and fuzzy logical controllers. Mamdani fuzzy controllers are based on the idea of interpolation while fuzzy logical controllers are based on fuzzy logic in its narrow sense, i.e., fuzzy propositional logic. The two types of fuzzy controllers treat IF-THEN rules differently. In Mamdani fuzzy controllers, rules are treated disjunctively. In fuzzy logic controllers, rules are treated conjunctively. Finally, we provide a unified proof of the property of universal approximation for both types of fuzzy controllers.
Fuzzy logic in control systems: Fuzzy logic controller. I, II
NASA Technical Reports Server (NTRS)
Lee, Chuen Chien
1990-01-01
Recent advances in the theory and applications of fuzzy-logic controllers (FLCs) are examined in an analytical review. The fundamental principles of fuzzy sets and fuzzy logic are recalled; the basic FLC components (fuzzification and defuzzification interfaces, knowledge base, and decision-making logic) are described; and the advantages of FLCs for incorporating expert knowledge into a control system are indicated. Particular attention is given to fuzzy implication functions, the interpretation of sentence connectives (and, also), compositional operators, and inference mechanisms. Applications discussed include the FLC-guided automobile developed by Sugeno and Nishida (1985), FLC hardware systems, FLCs for subway trains and ship-loading cranes, fuzzy-logic chips, and fuzzy computers.
Fuzzy logic particle tracking velocimetry
NASA Technical Reports Server (NTRS)
Wernet, Mark P.
1993-01-01
Fuzzy logic has proven to be a simple and robust method for process control. Instead of requiring a complex model of the system, a user defined rule base is used to control the process. In this paper the principles of fuzzy logic control are applied to Particle Tracking Velocimetry (PTV). Two frames of digitally recorded, single exposure particle imagery are used as input. The fuzzy processor uses the local particle displacement information to determine the correct particle tracks. Fuzzy PTV is an improvement over traditional PTV techniques which typically require a sequence (greater than 2) of image frames for accurately tracking particles. The fuzzy processor executes in software on a PC without the use of specialized array or fuzzy logic processors. A pair of sample input images with roughly 300 particle images each, results in more than 200 velocity vectors in under 8 seconds of processing time.
NASA Technical Reports Server (NTRS)
2005-01-01
A new all-electronic Particle Image Velocimetry technique that can efficiently map high speed gas flows has been developed in-house at the NASA Lewis Research Center. Particle Image Velocimetry is an optical technique for measuring the instantaneous two component velocity field across a planar region of a seeded flow field. A pulsed laser light sheet is used to illuminate the seed particles entrained in the flow field at two instances in time. One or more charged coupled device (CCD) cameras can be used to record the instantaneous positions of particles. Using the time between light sheet pulses and determining either the individual particle displacements or the average displacement of particles over a small subregion of the recorded image enables the calculation of the fluid velocity. Fuzzy logic minimizes the required operator intervention in identifying particles and computing velocity. Using two cameras that have the same view of the illumination plane yields two single exposure image frames. Two competing techniques that yield unambiguous velocity vector direction information have been widely used for reducing the single-exposure, multiple image frame data: (1) cross-correlation and (2) particle tracking. Correlation techniques yield averaged velocity estimates over subregions of the flow, whereas particle tracking techniques give individual particle velocity estimates. For the correlation technique, the correlation peak corresponding to the average displacement of particles across the subregion must be identified. Noise on the images and particle dropout result in misidentification of the true correlation peak. The subsequent velocity vector maps contain spurious vectors where the displacement peaks have been improperly identified. Typically these spurious vectors are replaced by a weighted average of the neighboring vectors, thereby decreasing the independence of the measurements. In this work, fuzzy logic techniques are used to determine the true
Fuzzy logic and neural network technologies
NASA Technical Reports Server (NTRS)
Villarreal, James A.; Lea, Robert N.; Savely, Robert T.
1992-01-01
Applications of fuzzy logic technologies in NASA projects are reviewed to examine their advantages in the development of neural networks for aerospace and commercial expert systems and control. Examples of fuzzy-logic applications include a 6-DOF spacecraft controller, collision-avoidance systems, and reinforcement-learning techniques. The commercial applications examined include a fuzzy autofocusing system, an air conditioning system, and an automobile transmission application. The practical use of fuzzy logic is set in the theoretical context of artificial neural systems (ANSs) to give the background for an overview of ANS research programs at NASA. The research and application programs include the Network Execution and Training Simulator and faster training algorithms such as the Difference Optimized Training Scheme. The networks are well suited for pattern-recognition applications such as predicting sunspots, controlling posture maintenance, and conducting adaptive diagnoses.
Knowledge representation in fuzzy logic
NASA Technical Reports Server (NTRS)
Zadeh, Lotfi A.
1989-01-01
The author presents a summary of the basic concepts and techniques underlying the application of fuzzy logic to knowledge representation. He then describes a number of examples relating to its use as a computational system for dealing with uncertainty and imprecision in the context of knowledge, meaning, and inference. It is noted that one of the basic aims of fuzzy logic is to provide a computational framework for knowledge representation and inference in an environment of uncertainty and imprecision. In such environments, fuzzy logic is effective when the solutions need not be precise and/or it is acceptable for a conclusion to have a dispositional rather than categorical validity. The importance of fuzzy logic derives from the fact that there are many real-world applications which fit these conditions, especially in the realm of knowledge-based systems for decision-making and control.
Fuzzy logic and neural networks
Loos, J.R.
1994-11-01
Combine fuzzy logic`s fuzzy sets, fuzzy operators, fuzzy inference, and fuzzy rules - like defuzzification - with neural networks and you can arrive at very unfuzzy real-time control. Fuzzy logic, cursed with a very whimsical title, simply means multivalued logic, which includes not only the conventional two-valued (true/false) crisp logic, but also the logic of three or more values. This means one can assign logic values of true, false, and somewhere in between. This is where fuzziness comes in. Multi-valued logic avoids the black-and-white, all-or-nothing assignment of true or false to an assertion. Instead, it permits the assignment of shades of gray. When assigning a value of true or false to an assertion, the numbers typically used are {open_quotes}1{close_quotes} or {open_quotes}0{close_quotes}. This is the case for programmed systems. If {open_quotes}0{close_quotes} means {open_quotes}false{close_quotes} and {open_quotes}1{close_quotes} means {open_quotes}true,{close_quotes} then {open_quotes}shades of gray{close_quotes} are any numbers between 0 and 1. Therefore, {open_quotes}nearly true{close_quotes} may be represented by 0.8 or 0.9, {open_quotes}nearly false{close_quotes} may be represented by 0.1 or 0.2, and {close_quotes}your guess is as good as mine{close_quotes} may be represented by 0.5. The flexibility available to one is limitless. One can associate any meaning, such as {open_quotes}nearly true{close_quotes}, to any value of any granularity, such as 0.9999. 2 figs.
Karami, Ali; Keiter, Steffen; Hollert, Henner; Courtenay, Simon C
2013-03-01
This study represents a first attempt at applying a fuzzy inference system (FIS) and an adaptive neuro-fuzzy inference system (ANFIS) to the field of aquatic biomonitoring for classification of the dosage and time of benzo[a]pyrene (BaP) injection through selected biomarkers in African catfish (Clarias gariepinus). Fish were injected either intramuscularly (i.m.) or intraperitoneally (i.p.) with BaP. Hepatic glutathione S-transferase (GST) activities, relative visceral fat weights (LSI), and four biliary fluorescent aromatic compounds (FACs) concentrations were used as the inputs in the modeling study. Contradictory rules in FIS and ANFIS models appeared after conversion of bioassay results into human language (rule-based system). A "data trimming" approach was proposed to eliminate the conflicts prior to fuzzification. However, the model produced was relevant only to relatively low exposures to BaP, especially through the i.m. route of exposure. Furthermore, sensitivity analysis was unable to raise the classification rate to an acceptable level. In conclusion, FIS and ANFIS models have limited applications in the field of fish biomarker studies. PMID:22752811
Favieiro, Gabriela W; Balbinot, Alexandre
2011-01-01
The myoelectric signal is a sign of control of the human body that contains the information of the user's intent to contract a muscle and, therefore, make a move. Studies shows that the Amputees are able to generate standardized myoelectric signals repeatedly before of the intention to perform a certain movement. This paper presents a study that investigates the use of forearm surface electromyography (sEMG) signals for classification of five distinguish movements of the arm using just three pairs of surface electrodes located in strategic places. The classification is done by an adaptive neuro-fuzzy inference system (ANFIS) to process signal features to recognize performed movements. The average accuracy reached for the classification of five motion classes was 86-98% for three subjects. PMID:22256169
Fuzzy Logic in Medicine and Bioinformatics
Torres, Angela; Nieto, Juan J.
2006-01-01
The purpose of this paper is to present a general view of the current applications of fuzzy logic in medicine and bioinformatics. We particularly review the medical literature using fuzzy logic. We then recall the geometrical interpretation of fuzzy sets as points in a fuzzy hypercube and present two concrete illustrations in medicine (drug addictions) and in bioinformatics (comparison of genomes). PMID:16883057
NASA Technical Reports Server (NTRS)
Ruspini, Enrique H.
1991-01-01
Summarized here are the results of recent research on the conceptual foundations of fuzzy logic. The focus is primarily on the principle characteristics of a model that quantifies resemblance between possible worlds by means of a similarity function that assigns a number between 0 and 1 to every pair of possible worlds. Introduction of such a function permits one to interpret the major constructs and methods of fuzzy logic: conditional and unconditional possibility and necessity distributions and the generalized modus ponens of Zadeh on the basis of related metric relationships between subsets of possible worlds.
Neurocontrol and fuzzy logic: Connections and designs
NASA Technical Reports Server (NTRS)
Werbos, Paul J.
1991-01-01
Artificial neural networks (ANNs) and fuzzy logic are complementary technologies. ANNs extract information from systems to be learned or controlled, while fuzzy techniques mainly use verbal information from experts. Ideally, both sources of information should be combined. For example, one can learn rules in a hybrid fashion, and then calibrate them for better whole-system performance. ANNs offer universal approximation theorems, pedagogical advantages, very high-throughput hardware, and links to neurophysiology. Neurocontrol - the use of ANNs to directly control motors or actuators, etc. - uses five generalized designs, related to control theory, which can work on fuzzy logic systems as well as ANNs. These designs can copy what experts do instead of what they say, learn to track trajectories, generalize adaptive control, and maximize performance or minimize cost over time, even in noisy environments. Design tradeoffs and future directions are discussed throughout.
Soft computing and fuzzy logic
Zadeh, L.A.
1994-12-31
Soft computing is a collection of methodologies that aim to exploit the tolerance for imprecision and uncertainty to achieve tractability, robustness, and low solution cost. Its principal constituents are fuzzy logic, neuro-computing, and probabilistic reasoning. Soft computing is likely to play an increasingly important role in many application areas, including software engineering. The role model for soft computing is the human mind.
Learning fuzzy logic control system
NASA Technical Reports Server (NTRS)
Lung, Leung Kam
1994-01-01
The performance of the Learning Fuzzy Logic Control System (LFLCS), developed in this thesis, has been evaluated. The Learning Fuzzy Logic Controller (LFLC) learns to control the motor by learning the set of teaching values that are generated by a classical PI controller. It is assumed that the classical PI controller is tuned to minimize the error of a position control system of the D.C. motor. The Learning Fuzzy Logic Controller developed in this thesis is a multi-input single-output network. Training of the Learning Fuzzy Logic Controller is implemented off-line. Upon completion of the training process (using Supervised Learning, and Unsupervised Learning), the LFLC replaces the classical PI controller. In this thesis, a closed loop position control system of a D.C. motor using the LFLC is implemented. The primary focus is on the learning capabilities of the Learning Fuzzy Logic Controller. The learning includes symbolic representation of the Input Linguistic Nodes set and Output Linguistic Notes set. In addition, we investigate the knowledge-based representation for the network. As part of the design process, we implement a digital computer simulation of the LFLCS. The computer simulation program is written in 'C' computer language, and it is implemented in DOS platform. The LFLCS, designed in this thesis, has been developed on a IBM compatible 486-DX2 66 computer. First, the performance of the Learning Fuzzy Logic Controller is evaluated by comparing the angular shaft position of the D.C. motor controlled by a conventional PI controller and that controlled by the LFLC. Second, the symbolic representation of the LFLC and the knowledge-based representation for the network are investigated by observing the parameters of the Fuzzy Logic membership functions and the links at each layer of the LFLC. While there are some limitations of application with this approach, the result of the simulation shows that the LFLC is able to control the angular shaft position of the
Fuzzy logic control of telerobot manipulators
NASA Technical Reports Server (NTRS)
Franke, Ernest A.; Nedungadi, Ashok
1992-01-01
Telerobot systems for advanced applications will require manipulators with redundant 'degrees of freedom' (DOF) that are capable of adapting manipulator configurations to avoid obstacles while achieving the user specified goal. Conventional methods for control of manipulators (based on solution of the inverse kinematics) cannot be easily extended to these situations. Fuzzy logic control offers a possible solution to these needs. A current research program at SRI developed a fuzzy logic controller for a redundant, 4 DOF, planar manipulator. The manipulator end point trajectory can be specified by either a computer program (robot mode) or by manual input (teleoperator). The approach used expresses end-point error and the location of manipulator joints as fuzzy variables. Joint motions are determined by a fuzzy rule set without requiring solution of the inverse kinematics. Additional rules for sensor data, obstacle avoidance and preferred manipulator configuration, e.g., 'righty' or 'lefty', are easily accommodated. The procedure used to generate the fuzzy rules can be extended to higher DOF systems.
NASA Astrophysics Data System (ADS)
Liu, Zhe Peng; Li, Qing
2013-04-01
Due to their two-way electromechanical coupling effect, piezoelectric transducers can be used to synthesize passive vibration control schemes, e.g., RLC circuit with the integration of inductance and resistance elements that is conceptually similar to damped vibration absorber. Meanwhile, the wide usage of wireless sensors has led to the recent enthusiasm of developing piezoelectric-based energy harvesting devices that can convert ambient vibratory energy into useful electrical energy. It can be shown that the integration of circuitry elements such as resistance and inductance can benefit the energy harvesting capability. Here we explore a dual-purpose circuit that can facilitate simultaneous vibration suppression and energy harvesting. It is worth noting that the goal of vibration suppression and the goal of energy harvesting may not always complement each other. That is, the maximization of vibration suppression doesn't necessarily lead to the maximization of energy harvesting, and vice versa. In this research, we develop a fuzzy-logic based algorithm to decide the proper selection of circuitry elements to balance between the two goals. As the circuitry elements can be online tuned, this research yields an adaptive circuitry concept for the effective manipulation of system energy and vibration suppression. Comprehensive analyses are carried out to demonstrate the concept and operation.
Indirect Adaptive Fuzzy Power System Stabilizer
NASA Astrophysics Data System (ADS)
Saoudi, Kamel; Bouchama, Ziad; Harmas, Mohamed Naguib; Zehar, Khaled
2008-06-01
A power system stabilizer based on adaptive fuzzy technique is presented. The design of a fuzzy logic power system stabilizer (FLPSS) requires the collection of fuzzy IF-THEN rules which are used to initialize an adaptive fuzzy power system AFPSS. The rule-base can be then tuned on-line so that the stabilizer can adapt to the different operating conditions occurring in the power system. The adaptation laws are developed based on a Lyapunov synthesis approach. Assessing the validity of this technique simulation of a power system is conducted and results are discussed.
Fuzzy logic based robotic controller
NASA Technical Reports Server (NTRS)
Attia, F.; Upadhyaya, M.
1994-01-01
Existing Proportional-Integral-Derivative (PID) robotic controllers rely on an inverse kinematic model to convert user-specified cartesian trajectory coordinates to joint variables. These joints experience friction, stiction, and gear backlash effects. Due to lack of proper linearization of these effects, modern control theory based on state space methods cannot provide adequate control for robotic systems. In the presence of loads, the dynamic behavior of robotic systems is complex and nonlinear, especially where mathematical modeling is evaluated for real-time operators. Fuzzy Logic Control is a fast emerging alternative to conventional control systems in situations where it may not be feasible to formulate an analytical model of the complex system. Fuzzy logic techniques track a user-defined trajectory without having the host computer to explicitly solve the nonlinear inverse kinematic equations. The goal is to provide a rule-based approach, which is closer to human reasoning. The approach used expresses end-point error, location of manipulator joints, and proximity to obstacles as fuzzy variables. The resulting decisions are based upon linguistic and non-numerical information. This paper presents a solution to the conventional robot controller which is independent of computationally intensive kinematic equations. Computer simulation results of this approach as obtained from software implementation are also discussed.
NASA Astrophysics Data System (ADS)
Kelkar, Nikhal; Samu, Tayib; Hall, Ernest L.
1997-09-01
Automated guided vehicles (AGVs) have many potential applications in manufacturing, medicine, space and defense. The purpose of this paper is to describe exploratory research on the design of a modular autonomous mobile robot controller. The controller incorporates a fuzzy logic approach for steering and speed control, a neuro-fuzzy approach for ultrasound sensing (not discussed in this paper) and an overall expert system. The advantages of a modular system are related to portability and transportability, i.e. any vehicle can become autonomous with minimal modifications. A mobile robot test-bed has been constructed using a golf cart base. This cart has full speed control with guidance provided by a vision system and obstacle avoidance using ultrasonic sensors. The speed and steering fuzzy logic controller is supervised by a 486 computer through a multi-axis motion controller. The obstacle avoidance system is based on a micro-controller interfaced with six ultrasonic transducers. This micro- controller independently handles all timing and distance calculations and sends a steering angle correction back to the computer via the serial line. This design yields a portable independent system in which high speed computer communication is not necessary. Vision guidance is accomplished with a CCD camera with a zoom lens. The data is collected by a vision tracking device that transmits the X, Y coordinates of the lane marker to the control computer. Simulation and testing of these systems yielded promising results. This design, in its modularity, creates a portable autonomous fuzzy logic controller applicable to any mobile vehicle with only minor adaptations.
Proceedings of the Second Joint Technology Workshop on Neural Networks and Fuzzy Logic, volume 2
NASA Technical Reports Server (NTRS)
Lea, Robert N. (Editor); Villarreal, James A. (Editor)
1991-01-01
Documented here are papers presented at the Neural Networks and Fuzzy Logic Workshop sponsored by NASA and the University of Texas, Houston. Topics addressed included adaptive systems, learning algorithms, network architectures, vision, robotics, neurobiological connections, speech recognition and synthesis, fuzzy set theory and application, control and dynamics processing, space applications, fuzzy logic and neural network computers, approximate reasoning, and multiobject decision making.
Fuzzy Versions of Epistemic and Deontic Logic
NASA Technical Reports Server (NTRS)
Gounder, Ramasamy S.; Esterline, Albert C.
1998-01-01
Epistemic and deontic logics are modal logics, respectively, of knowledge and of the normative concepts of obligation, permission, and prohibition. Epistemic logic is useful in formalizing systems of communicating processes and knowledge and belief in AI (Artificial Intelligence). Deontic logic is useful in computer science wherever we must distinguish between actual and ideal behavior, as in fault tolerance and database integrity constraints. We here discuss fuzzy versions of these logics. In the crisp versions, various axioms correspond to various properties of the structures used in defining the semantics of the logics. Thus, any axiomatic theory will be characterized not only by its axioms but also by the set of properties holding of the corresponding semantic structures. Fuzzy logic does not proceed with axiomatic systems, but fuzzy versions of the semantic properties exist and can be shown to correspond to some of the axioms for the crisp systems in special ways that support dependency networks among assertions in a modal domain. This in turn allows one to implement truth maintenance systems. For the technical development of epistemic logic, and for that of deontic logic. To our knowledge, we are the first to address fuzzy epistemic and fuzzy deontic logic explicitly and to consider the different systems and semantic properties available. We give the syntax and semantics of epistemic logic and discuss the correspondence between axioms of epistemic logic and properties of semantic structures. The same topics are covered for deontic logic. Fuzzy epistemic and fuzzy deontic logic discusses the relationship between axioms and semantic properties for these logics. Our results can be exploited in truth maintenance systems.
Fuzzy logic components for iterative deconvolution systems
NASA Astrophysics Data System (ADS)
Northan, Brian M.
2013-02-01
Deconvolution systems rely heavily on expert knowledge and would benefit from approaches that capture this expert knowledge. Fuzzy logic is an approach that is used to capture expert knowledge rules and produce outputs that range in degree. This paper describes a fuzzy-deconvolution-system that integrates traditional Richardson-Lucy deconvolution with fuzzy components. The system is intended for restoration of 3D widefield images taken under conditions of refractive index mismatch. The system uses a fuzzy rule set for calculating sample refractive index, a fuzzy median filter for inter-iteration noise reduction, and a fuzzy rule set for stopping criteria.
Fuzzy logic and coarse coding using programmable logic devices
NASA Astrophysics Data System (ADS)
Brooks, Geoffrey
2009-05-01
Naturally-occurring sensory signal processing algorithms, such as those that inspired fuzzy-logic control, can be integrated into non-naturally-occurring high-performance technology, such as programmable logic devices, to realize novel bio-inspired designs. Research is underway concerning an investigation into using field programmable logic devices (FPLD's) to implement fuzzy logic sensory processing. A discussion is provided concerning the commonality between bio-inspired fuzzy logic algorithms and coarse coding that is prevalent in naturally-occurring sensory systems. Undergraduate design projects using fuzzy logic for an obstacle-avoidance robot has been accomplished at our institution and other places; numerous other successful fuzzy logic applications can be found as well. The long-term goal is to leverage such biomimetic algorithms for future applications. This paper outlines a design approach for implementing fuzzy-logic algorithms into reconfigurable computing devices. This paper is presented in an effort to connect with others who may be interested in collaboration as well as to establish a starting point for future research.
Refining fuzzy logic controllers with machine learning
NASA Technical Reports Server (NTRS)
Berenji, Hamid R.
1994-01-01
In this paper, we describe the GARIC (Generalized Approximate Reasoning-Based Intelligent Control) architecture, which learns from its past performance and modifies the labels in the fuzzy rules to improve performance. It uses fuzzy reinforcement learning which is a hybrid method of fuzzy logic and reinforcement learning. This technology can simplify and automate the application of fuzzy logic control to a variety of systems. GARIC has been applied in simulation studies of the Space Shuttle rendezvous and docking experiments. It has the potential of being applied in other aerospace systems as well as in consumer products such as appliances, cameras, and cars.
An adaptive fuzzy controller for permanent-magnet AC servo drives
Le-Huy, H.
1995-12-31
This paper presents a theoretical study on a model-reference adaptive fuzzy logic controller for vector-controlled permanent-magnet ac servo drives. In the proposed system, fuzzy logic is used to implement the direct controller as well as the adaptation mechanism. The operation of the direct fuzzy controller and the fuzzy logic based adaptation mechanism is studied. The control performance of the adaptive fuzzy controller is evaluated by simulation for various operating conditions. The results are compared with that provided by a non-adaptive fuzzy controller. The implementation of proposed adaptive fuzzy controller is discussed.
Application of Fuzzy Logic to Matrix FMECA
NASA Astrophysics Data System (ADS)
Shankar, N. Ravi; Prabhu, B. S.
2001-04-01
A methodology combining the benefits of Fuzzy Logic and Matrix FMEA is presented in this paper. The presented methodology extends the risk prioritization beyond the conventional Risk Priority Number (RPN) method. Fuzzy logic is used to calculate the criticality rank. Also the matrix approach is improved further to develop a pictorial representation retaining all relevant qualitative and quantitative information of several FMEA elements relationships. The methodology presented is demonstrated by application to an illustrative example.
Fuzzy logic mode switching in helicopters
NASA Technical Reports Server (NTRS)
Sherman, Porter D.; Warburton, Frank W.
1993-01-01
The application of fuzzy logic to a wide range of control problems has been gaining momentum internationally, fueled by a concentrated Japanese effort. Advanced Research & Development within the Engineering Department at Sikorsky Aircraft undertook a fuzzy logic research effort designed to evaluate how effective fuzzy logic control might be in relation to helicopter operations. The mode switching module in the advanced flight control portion of Sikorsky's motion based simulator was identified as a good candidate problem because it was simple to understand and contained imprecise (fuzzy) decision criteria. The purpose of the switching module is to aid a helicopter pilot in entering and leaving coordinated turns while in flight. The criteria that determine the transitions between modes are imprecise and depend on the varied ranges of three flight conditions (i.e., simulated parameters): Commanded Rate, Duration, and Roll Attitude. The parameters were given fuzzy ranges and used as input variables to a fuzzy rulebase containing the knowledge of mode switching. The fuzzy control program was integrated into a real time interactive helicopter simulation tool. Optimization of the heading hold and turn coordination was accomplished by interactive pilot simulation testing of the handling quality performance of the helicopter dynamic model. The fuzzy logic code satisfied all the requirements of this candidate control problem.
Fuzzy logic control synthesis without any rule base.
Novakovic, B M
1999-01-01
A new analytic fuzzy logic control (FLC) system synthesis without any rule base is proposed. For this purpose the following objectives are preferred and reached: 1) an introduction of a new adaptive shape of fuzzy sets and a new adaptive distribution of input fuzzy sets, 2) a determination of an analytic activation function for activation of output fuzzy sets, instead of using of min-max operators, and 3) a definition of a new analytic function that determines the positions of centers of output fuzzy sets in each mapping process, instead of definition of the rule base. A real capability of the proposed FLC synthesis procedures is presented by synthesis of FLC of robot of RRTR-structure. PMID:18252321
Fuzzy logic control for camera tracking system
NASA Technical Reports Server (NTRS)
Lea, Robert N.; Fritz, R. H.; Giarratano, J.; Jani, Yashvant
1992-01-01
A concept utilizing fuzzy theory has been developed for a camera tracking system to provide support for proximity operations and traffic management around the Space Station Freedom. Fuzzy sets and fuzzy logic based reasoning are used in a control system which utilizes images from a camera and generates required pan and tilt commands to track and maintain a moving target in the camera's field of view. This control system can be implemented on a fuzzy chip to provide an intelligent sensor for autonomous operations. Capabilities of the control system can be expanded to include approach, handover to other sensors, caution and warning messages.
Application of fuzzy logic in computer-aided design of digital systems
NASA Astrophysics Data System (ADS)
Shragowitz, Eugene B.; Lee, Jun-Yong; Kang, Eric Q.
1996-06-01
Application of fuzzy logic structures in computer-aided design (CAD) of electronic systems substantially improves quality of design solutions by providing designers with flexibility in formulating goals and selecting trade-offs. In addition, the following aspects of a design process are positively impacted by application of fuzzy logic: utilization of domain knowledge, interpretation of uncertainties in design data, and adaptation of design algorithms. We successfully applied fuzzy logic structures in conjunction with constructive and iterative algorithms for selecting of design solutions for different stages of the design process. We also introduced a fuzzy logic software development tool to be used in CAD applications.
Adaptive parallel logic networks
NASA Technical Reports Server (NTRS)
Martinez, Tony R.; Vidal, Jacques J.
1988-01-01
Adaptive, self-organizing concurrent systems (ASOCS) that combine self-organization with massive parallelism for such applications as adaptive logic devices, robotics, process control, and system malfunction management, are presently discussed. In ASOCS, an adaptive network composed of many simple computing elements operating in combinational and asynchronous fashion is used and problems are specified by presenting if-then rules to the system in the form of Boolean conjunctions. During data processing, which is a different operational phase from adaptation, the network acts as a parallel hardware circuit.
Fuzzy logic controllers: From development to deployment
Bonissone, P.P.; Chiang, K.H.
1994-12-31
We view fuzzy logic control technology as a high level language in which we can efficiently define and synthesize non-linear controllers for a given process. We contrast fuzzy Proportional Integral (PI) controllers with conventional PI and two dimensional sliding mode controllers. Then we compare the development of Fuzzy Logic Controllers (FLC) with that of Knowledge Based System (KBS) applications. We decompose the comparison into reasoning tasks (representation, inference, and control) and application tasks (acquisition, development, validation, compilation, and deployment). After reviewing the reasoning tasks, we focus on the compilation of fuzzy rule bases into fast access lookup tables. These tables can be used by a simplified run-time engine to determine the TLC`s crisp output for a given input.
Fuzzy logic in autonomous orbital operations
NASA Technical Reports Server (NTRS)
Lea, Robert N.; Jani, Yashvant
1991-01-01
Fuzzy logic can be used advantageously in autonomous orbital operations that require the capability of handling imprecise measurements from sensors. Several applications are underway to investigate fuzzy logic approaches and develop guidance and control algorithms for autonomous orbital operations. Translational as well as rotational control of a spacecraft have been demonstrated using space shuttle simulations. An approach to a camera tracking system has been developed to support proximity operations and traffic management around the Space Station Freedom. Pattern recognition and object identification algorithms currently under development will become part of this camera system at an appropriate level in the future. A concept to control environment and life support systems for large Lunar based crew quarters is also under development. Investigations in the area of reinforcement learning, utilizing neural networks, combined with a fuzzy logic controller, are planned as a joint project with the Ames Research Center.
Proceedings of the Second Joint Technology Workshop on Neural Networks and Fuzzy Logic, volume 1
NASA Technical Reports Server (NTRS)
Lea, Robert N. (Editor); Villarreal, James (Editor)
1991-01-01
Documented here are papers presented at the Neural Networks and Fuzzy Logic Workshop sponsored by NASA and the University of Houston, Clear Lake. The workshop was held April 11 to 13 at the Johnson Space Flight Center. Technical topics addressed included adaptive systems, learning algorithms, network architectures, vision, robotics, neurobiological connections, speech recognition and synthesis, fuzzy set theory and application, control and dynamics processing, space applications, fuzzy logic and neural network computers, approximate reasoning, and multiobject decision making.
Adaptive parallel logic networks
Martinez, T.R.; Vidal, J.J.
1988-02-01
This paper presents a novel class of special purpose processors referred to as ASOCS (adaptive self-organizing concurrent systems). Intended applications include adaptive logic devices, robotics, process control, system malfunction management, and in general, applications of logic reasoning. ASOCS combines massive parallelism with self-organization to attain a distributed mechanism for adaptation. The ASOCS approach is based on an adaptive network composed of many simple computing elements (nodes) which operate in a combinational and asynchronous fashion. Problem specification (programming) is obtained by presenting to the system if-then rules expressed as Boolean conjunctions. New rules are added incrementally. In the current model, when conflicts occur, precedence is given to the most recent inputs. With each rule, desired network response is simply presented to the system, following which the network adjusts itself to maintain consistency and parsimony of representation. Data processing and adaptation form two separate phases of operation. During processing, the network acts as a parallel hardware circuit. Control of the adaptive process is distributed among the network nodes and efficiently exploits parallelism.
Pattern recognition using linguistic fuzzy logic predictors
NASA Astrophysics Data System (ADS)
Habiballa, Hashim
2016-06-01
The problem of pattern recognition has been solved with numerous methods in the Artificial Intelligence field. We present an unconventional method based on Lingustic Fuzzy Logic Forecaster which is primarily used for the task of time series analysis and prediction through logical deduction wtih linguistic variables. This method should be used not only to the time series prediction itself, but also for recognition of patterns in a signal with seasonal component.
FUZZY LOGIC CONTROL OF AC INDUCTION MOTORS
The paper discusses the fuzzy logic control (FLC) of electric motors, being investigated under the sponsorship of the U.S. EPA to reduce energy consumption when motors are operated at less than rated speeds and loads. lectric motors use 60% of the electrical energy generated in t...
Indeterminacy, linguistic semantics and fuzzy logic
Novak, V.
1996-12-31
In this paper, we discuss the indeterminacy phenomenon which has two distinguished faces, namely uncertainty modeled especially by the probability theory and vagueness, modeled by fuzzy logic. Other important mathematical model of vagueness is provided by the Alternative Set Theory. We focus on some of the basic concepts of these theories in connection with mathematical modeling of the linguistic semantics.
Outstanding-objects-oriented color image segmentation using fuzzy logic
NASA Astrophysics Data System (ADS)
Hayasaka, Rina; Zhao, Jiying; Matsushita, Yutaka
1997-10-01
This paper presents a novel fuzzy-logic-based color image segmentation scheme focusing on outstanding objects to human eyes. The scheme first segments the image into rough fuzzy regions, chooses visually significant regions, and conducts fine segmentation on the chosen regions. It can not only reduce the computational load, but also make contour detection easy because the brief object externals has been previously determined. The scheme reflects human sense, and it can be sued efficiently in automatic extraction of image retrieval key, robot vision and region-adaptive image compression.
The Impact of Fuzzy Logic on Student Press Law.
ERIC Educational Resources Information Center
McCool, Lauralee; Plopper, Bruce L.
2001-01-01
Uses the relatively new science of fuzzy logic to review lower court and appellate court decisions from the last four decades regarding free expression in student publications. Finds pronounced effects, showing that fuzzy sets inherently favor administrators, while students show a strikingly high win/loss ratio when courts avoid fuzzy logic. (SR)
Astronomical pipeline processing using fuzzy logic
NASA Astrophysics Data System (ADS)
Shamir, Lior; Nemiroff, Robert J. Nemiroff
2008-01-01
Fundamental astronomical questions on the composition of the universe, the abundance of Earth-like planets, and the cause of the brightest explosions in the universe are being attacked by robotic telescopes costing billions of dollars and returning vast pipelines of data. The success of these programs depends on the accuracy of automated real time processing of images never seen by a human, and all predicated on fast and accurate automatic identifications of known astronomical objects and new astronomical transients. In this paper the needs of modern astronomical pipelines are discussed in the light of fuzzy-logic based decision-making. Several specific fuzzy-logic algorithms have been develop for the first time for astronomical purposes, and tested with excellent results on a test pipeline of data from the existing Night Sky Live sky survey.
Fuzzy logic controller to improve powerline communication
NASA Astrophysics Data System (ADS)
Tirrito, Salvatore
2015-12-01
The Power Line Communications (PLC) technology allows the use of the power grid in order to ensure the exchange of data information among devices. This work proposes an approach, based on Fuzzy Logic, that dynamically manages the amplitude of the signal, with which each node transmits, by processing the master-slave link quality measured and the master-slave distance. The main objective of this is to reduce both the impact of communication interferences induced and power consumption.
Intelligent control based on fuzzy logic and neural net theory
NASA Technical Reports Server (NTRS)
Lee, Chuen-Chien
1991-01-01
In the conception and design of intelligent systems, one promising direction involves the use of fuzzy logic and neural network theory to enhance such systems' capability to learn from experience and adapt to changes in an environment of uncertainty and imprecision. Here, an intelligent control scheme is explored by integrating these multidisciplinary techniques. A self-learning system is proposed as an intelligent controller for dynamical processes, employing a control policy which evolves and improves automatically. One key component of the intelligent system is a fuzzy logic-based system which emulates human decision making behavior. It is shown that the system can solve a fairly difficult control learning problem. Simulation results demonstrate that improved learning performance can be achieved in relation to previously described systems employing bang-bang control. The proposed system is relatively insensitive to variations in the parameters of the system environment.
Automated interpretation of LIBS spectra using a fuzzy logic inference engine.
Hatch, Jeremy J; McJunkin, Timothy R; Hanson, Cynthia; Scott, Jill R
2012-03-01
Automated interpretation of laser-induced breakdown spectroscopy (LIBS) data is necessary due to the plethora of spectra that can be acquired in a relatively short time. However, traditional chemometric and artificial neural network methods that have been employed are not always transparent to a skilled user. A fuzzy logic approach to data interpretation has now been adapted to LIBS spectral interpretation. Fuzzy logic inference rules were developed using methodology that includes data mining methods and operator expertise to differentiate between various copper-containing and stainless steel alloys as well as unknowns. Results using the fuzzy logic inference engine indicate a high degree of confidence in spectral assignment. PMID:22410914
Fuzzy logic, neural networks, and soft computing
NASA Technical Reports Server (NTRS)
Zadeh, Lofti A.
1994-01-01
The past few years have witnessed a rapid growth of interest in a cluster of modes of modeling and computation which may be described collectively as soft computing. The distinguishing characteristic of soft computing is that its primary aims are to achieve tractability, robustness, low cost, and high MIQ (machine intelligence quotient) through an exploitation of the tolerance for imprecision and uncertainty. Thus, in soft computing what is usually sought is an approximate solution to a precisely formulated problem or, more typically, an approximate solution to an imprecisely formulated problem. A simple case in point is the problem of parking a car. Generally, humans can park a car rather easily because the final position of the car is not specified exactly. If it were specified to within, say, a few millimeters and a fraction of a degree, it would take hours or days of maneuvering and precise measurements of distance and angular position to solve the problem. What this simple example points to is the fact that, in general, high precision carries a high cost. The challenge, then, is to exploit the tolerance for imprecision by devising methods of computation which lead to an acceptable solution at low cost. By its nature, soft computing is much closer to human reasoning than the traditional modes of computation. At this juncture, the major components of soft computing are fuzzy logic (FL), neural network theory (NN), and probabilistic reasoning techniques (PR), including genetic algorithms, chaos theory, and part of learning theory. Increasingly, these techniques are used in combination to achieve significant improvement in performance and adaptability. Among the important application areas for soft computing are control systems, expert systems, data compression techniques, image processing, and decision support systems. It may be argued that it is soft computing, rather than the traditional hard computing, that should be viewed as the foundation for artificial
Learning and tuning fuzzy logic controllers through reinforcements
NASA Technical Reports Server (NTRS)
Berenji, Hamid R.; Khedkar, Pratap
1992-01-01
This paper presents a new method for learning and tuning a fuzzy logic controller based on reinforcements from a dynamic system. In particular, our generalized approximate reasoning-based intelligent control (GARIC) architecture (1) learns and tunes a fuzzy logic controller even when only weak reinforcement, such as a binary failure signal, is available; (2) introduces a new conjunction operator in computing the rule strengths of fuzzy control rules; (3) introduces a new localized mean of maximum (LMOM) method in combining the conclusions of several firing control rules; and (4) learns to produce real-valued control actions. Learning is achieved by integrating fuzzy inference into a feedforward neural network, which can then adaptively improve performance by using gradient descent methods. We extend the AHC algorithm of Barto et al. (1983) to include the prior control knowledge of human operators. The GARIC architecture is applied to a cart-pole balancing system and demonstrates significant improvements in terms of the speed of learning and robustness to changes in the dynamic system's parameters over previous schemes for cart-pole balancing.
Learning and tuning fuzzy logic controllers through reinforcements
NASA Technical Reports Server (NTRS)
Berenji, Hamid R.; Khedkar, Pratap
1992-01-01
A new method for learning and tuning a fuzzy logic controller based on reinforcements from a dynamic system is presented. In particular, our Generalized Approximate Reasoning-based Intelligent Control (GARIC) architecture: (1) learns and tunes a fuzzy logic controller even when only weak reinforcements, such as a binary failure signal, is available; (2) introduces a new conjunction operator in computing the rule strengths of fuzzy control rules; (3) introduces a new localized mean of maximum (LMOM) method in combining the conclusions of several firing control rules; and (4) learns to produce real-valued control actions. Learning is achieved by integrating fuzzy inference into a feedforward network, which can then adaptively improve performance by using gradient descent methods. We extend the AHC algorithm of Barto, Sutton, and Anderson to include the prior control knowledge of human operators. The GARIC architecture is applied to a cart-pole balancing system and has demonstrated significant improvements in terms of the speed of learning and robustness to changes in the dynamic system's parameters over previous schemes for cart-pole balancing.
NASA Astrophysics Data System (ADS)
Qing Hu, Bao
2015-11-01
The fuzzy rough set model and interval-valued fuzzy rough set model have been introduced to handle databases with real values and interval values, respectively. Variable precision rough set was advanced by Ziarko to overcome the shortcomings of misclassification and/or perturbation in Pawlak rough sets. By combining fuzzy rough set and variable precision rough set, a variety of fuzzy variable precision rough sets were studied, which cannot only handle numerical data, but are also less sensitive to misclassification. However, fuzzy variable precision rough sets cannot effectively handle interval-valued data-sets. Research into interval-valued fuzzy rough sets for interval-valued fuzzy data-sets has commenced; however, variable precision problems have not been considered in interval-valued fuzzy rough sets and generalized interval-valued fuzzy rough sets based on fuzzy logical operators nor have interval-valued fuzzy sets been considered in variable precision rough sets and fuzzy variable precision rough sets. These current models are incapable of wide application, especially on misclassification and/or perturbation and on interval-valued fuzzy data-sets. In this paper, these models are generalized to a more integrative approach that not only considers interval-valued fuzzy sets, but also variable precision. First, we review generalized interval-valued fuzzy rough sets based on two fuzzy logical operators: interval-valued fuzzy triangular norms and interval-valued fuzzy residual implicators. Second, we propose generalized interval-valued fuzzy variable precision rough sets based on the above two fuzzy logical operators. Finally, we confirm that some existing models, including rough sets, fuzzy variable precision rough sets, interval-valued fuzzy rough sets, generalized fuzzy rough sets and generalized interval-valued fuzzy variable precision rough sets based on fuzzy logical operators, are special cases of the proposed models.
Fuzzy Logic Connectivity in Semiconductor Defect Clustering
Gleason, S.S.; Kamowski, T.P.; Tobin, K.W.
1999-01-24
In joining defects on semiconductor wafer maps into clusters, it is common for defects caused by different sources to overlap. Simple morphological image processing tends to either join too many unrelated defects together or not enough together. Expert semiconductor fabrication engineers have demonstrated that they can easily group clusters of defects from a common manufacturing problem source into a single signature. Capturing this thought process is ideally suited for fuzzy logic. A system of rules was developed to join disconnected clusters based on properties such as elongation, orientation, and distance. The clusters are evaluated on a pair-wise basis using the fuzzy rules and are joined or not joined based on a defuzzification and threshold. The system continuously re-evaluates the clusters under consideration as their fuzzy memberships change with each joining action. The fuzzy membership functions for each pair-wise feature, the techniques used to measure the features, and methods for improving the speed of the system are all developed. Examples of the process are shown using real-world semiconductor wafer maps obtained from chip manufacturers. The algorithm is utilized in the Spatial Signature Analyzer (SSA) software, a joint development project between Oak Ridge National Lab (ORNL) and SEMATECH.
Designing a Software Tool for Fuzzy Logic Programming
NASA Astrophysics Data System (ADS)
Abietar, José M.; Morcillo, Pedro J.; Moreno, Ginés
2007-12-01
Fuzzy Logic Programming is an interesting and still growing research area that agglutinates the efforts for introducing fuzzy logic into logic programming (LP), in order to incorporate more expressive resources on such languages for dealing with uncertainty and approximated reasoning. The multi-adjoint logic programming approach is a recent and extremely flexible fuzzy logic paradigm for which, unfortunately, we have not found practical tools implemented so far. In this work, we describe a prototype system which is able to directly translate fuzzy logic programs into Prolog code in order to safely execute these residual programs inside any standard Prolog interpreter in a completely transparent way for the final user. We think that the development of such fuzzy languages and programing tools might play an important role in the design of advanced software applications for computational physics, chemistry, mathematics, medicine, industrial control and so on.
Improving Cooperative PSO using Fuzzy Logic
NASA Astrophysics Data System (ADS)
Afsahi, Zahra; Meybodi, Mohammadreza
PSO is a population-based technique for optimization, which simulates the social behaviour of the fish schooling or bird flocking. Two significant weaknesses of this method are: first, falling into local optimum and second, the curse of dimensionality. In this work we present the FCPSO-H to overcome these weaknesses. Our approach was implemented in the cooperative PSO, which employs fuzzy logic to control the acceleration coefficients in velocity equation of each particle. The proposed approach is validated by function optimization problem form the standard literature simulation result indicates that the approach is highly competitive specifically in its better general convergence performance.
Fuzzy logic and guidance algorithm design
Leng, G.
1994-12-31
This paper explores the use of fuzzy logic for the design of a terminal guidance algorithm for an air to surface missile against a stationary target. The design objectives are (1) a smooth transition, at lock-on, (2) large impact angles and (3) self-limiting acceleration commands. The method of reverse kinematics is used in the design of the membership functions and the rule base. Simulation results for a Mach 0.8 missile with a 6g acceleration limit are compared with a traditional proportional navigation scheme.
Robust fuzzy logic control of mechanical systems
NASA Astrophysics Data System (ADS)
Kohn-Rich, Sylvia
An approach for the design of robust fuzzy control laws for a large class of mechanical systems was developed. The approach applies Lyapunov's Stability Theory to ensure closed loop stability in the presence of plant perturbations and bounded disturbances. It uses inherent properties of an important class of mechanical and aerospace systems, such as robotic manipulators and large spacecraft, to derive closed-loop stability conditions. Based on these conditions, a methodology for the design of robust fuzzy control systems with guaranteed closed-loop stability was developed. Two classes of control laws for mechanical systems were considered. First, a methodology for point-to-point control was formulated. It combines an energy-type approach with Lyapunov's Stability Theory and its extensions, to obtain robust stability conditions for the closed-loop system. A procedure for control system development based on the above conditions is presented. Finally, a procedure for the implementation of the fuzzy control system with guaranteed performance and closed-loop stability characteristics is formulated. In the second part of the dissertation, the problem of robust tracking for mechanical systems was considered. Based on Lyapunov's Stability Theory and its extensions due to Leitmann and Corless, conditions were developed to prove robust stability and performance in the presence of plant uncertainties, bounded disturbances and control saturation. These conditions involve a large number of parameters and functional dependencies that can be chosen by the designer, therefore are well suited for Fuzzy Logic Control implementation. Three different fuzzy implementation methods for the proposed controls system were analyzed and their relative advantages were discussed. An extensive simulation study of the proposed approach was conducted. It demonstrated the excellent performance of the proposed control systems. The proposed method showed superior performance compared to other robust
Genetic algorithms in adaptive fuzzy control
NASA Technical Reports Server (NTRS)
Karr, C. Lucas; Harper, Tony R.
1992-01-01
Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic algorithms (GA's) are used to augment fuzzy logic controllers (FLC's). GA's are search algorithms that rapidly locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural genetics. FLC's are rule based systems that efficiently manipulate a problem environment by modeling the 'rule-of-thumb' strategy used in human decision making. Together, GA's and FLC's possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, an analysis element to recognize changes in the problem environment, and a learning element to adjust fuzzy membership functions in response to the changes in the problem environment. Details of an overall adaptive control system are discussed. A specific computer-simulated chemical system is used to demonstrate the ideas presented.
The Influence of Fuzzy Logic Theory on Students' Achievement
ERIC Educational Resources Information Center
Semerci, Çetin
2004-01-01
As science and technology develop, the use's areas of Fuzzy Logic Theory develop too. Measurement and evaluation in education is one of these areas. The purpose of this research is to explain the influence of fuzzy logic theory on students' achievement. An experimental method is employed in the research. The traditional achievement marks and The…
Advanced PID type fuzzy logic power system stabilizer
Hiyama, Takashi; Kugimiya, Masahiko; Satoh, Hironori . Dept. of Electrical Engineering and Computer Science)
1994-09-01
An advanced fuzzy logic control scheme has been proposed for a micro-computer based power system stabilizer to enhance the overall stability of power systems. The proposed control scheme utilizes the PID information of the generator speed. The input signal to the stabilizer is the real power output of a study unit. Simulations show the effectiveness of the advanced fuzzy logic control scheme.
Terminology and concepts of control and Fuzzy Logic
NASA Technical Reports Server (NTRS)
Aldridge, Jack; Lea, Robert; Jani, Yashvant; Weiss, Jonathan
1990-01-01
Viewgraphs on terminology and concepts of control and fuzzy logic are presented. Topics covered include: control systems; issues in the design of a control system; state space control for inverted pendulum; proportional-integral-derivative (PID) controller; fuzzy controller; and fuzzy rule processing.
Proceedings of the Third International Workshop on Neural Networks and Fuzzy Logic, volume 1
NASA Technical Reports Server (NTRS)
Culbert, Christopher J. (Editor)
1993-01-01
Documented here are papers presented at the Neural Networks and Fuzzy Logic Workshop sponsored by the National Aeronautics and Space Administration and cosponsored by the University of Houston, Clear Lake. The workshop was held June 1-3, 1992 at the Lyndon B. Johnson Space Center in Houston, Texas. During the three days approximately 50 papers were presented. Technical topics addressed included adaptive systems; learning algorithms; network architectures; vision; robotics; neurobiological connections; speech recognition and synthesis; fuzzy set theory and application, control, and dynamics processing; space applications; fuzzy logic and neural network computers; approximate reasoning; and multiobject decision making.
Proceedings of the Third International Workshop on Neural Networks and Fuzzy Logic, volume 2
NASA Technical Reports Server (NTRS)
Culbert, Christopher J. (Editor)
1993-01-01
Papers presented at the Neural Networks and Fuzzy Logic Workshop sponsored by the National Aeronautics and Space Administration and cosponsored by the University of Houston, Clear Lake, held 1-3 Jun. 1992 at the Lyndon B. Johnson Space Center in Houston, Texas are included. During the three days approximately 50 papers were presented. Technical topics addressed included adaptive systems; learning algorithms; network architectures; vision; robotics; neurobiological connections; speech recognition and synthesis; fuzzy set theory and application, control and dynamics processing; space applications; fuzzy logic and neural network computers; approximate reasoning; and multiobject decision making.
Intelligent Paging Based Mobile User Tracking Using Fuzzy Logic
NASA Astrophysics Data System (ADS)
Saha, Sajal; Dutta, Raju; Debnath, Soumen; Mukhopadhyay, Asish K.
2010-11-01
In general, a mobile user travels in a predefined path that depends mostly on the user's characteristics. Thus, tracking the locations of a mobile user is one of the challenges for location management. In this paper, we introduce a movement pattern learning strategy system to track the user's movements using adaptive fuzzy logic. Our fuzzy inference system extracts patterns from the historical data record of the cell numbers along with the date and time stamp of the users occupying the cell. Implementation of this strategy has been evaluated with the real time user data which proves the efficiency and accuracy of the model. This mechanism not only reduces user location tracking costs, but also significantly decreases the call-loss rates and average paging delays.
Active structural control by fuzzy logic rules: An introduction
Tang, Yu; Wu, Kung C.
1996-12-31
A zeroth level introduction to fuzzy logic control applied to the active structural control to reduce the dynamic response of structures subjected to earthquake excitations is presented. It is hoped that this presentation will increase the attractiveness of the methodology to structural engineers in research as well as in practice. The basic concept of the fuzzy logic control are explained by examples and by diagrams with a minimum of mathematics. The effectiveness and simplicity of the fuzzy logic control is demonstrated by a numerical example in which the response of a single- degree-of-freedom system subjected to earthquake excitations is controlled by making use of the fuzzy logic controller. In the example, the fuzzy rules are first learned from the results obtained from linear control theory; then they are fine tuned to improve their performance. It is shown that the performance of fuzzy logic control surpasses that of the linear control theory. The paper shows that linear control theory provides experience for fuzzy logic control, and fuzzy logic control can provide better performance; therefore, two controllers complement each other.
Active structural control by fuzzy logic rules: An introduction
Tang, Y.
1995-07-01
An introduction to fuzzy logic control applied to the active structural control to reduce the dynamic response of structures subjected to earthquake excitations is presented. It is hoped that this presentation will increase the attractiveness of the methodology to structural engineers in research as well as in practice. The basic concept of the fuzzy logic control are explained by examples and by diagrams with a minimum of mathematics. The effectiveness and simplicity of the fuzzy logic control is demonstrated by a numerical example in which the response of a single-degree-of-freedom system subjected to earthquake excitations is controlled by making use of the fuzzy logic controller. In the example, the fuzzy rules are first learned from the results obtained from linear control theory; then they are fine tuned to improve their performance. It is shown that the performance of fuzzy logic control surpasses that of the linear control theory. The paper shows that linear control theory provides experience for fuzzy logic control, and fuzzy logic control can provide better performance; therefore, two controllers complement each other.
NASA Technical Reports Server (NTRS)
Sultan, Labib; Janabi, Talib
1992-01-01
This paper analyses the internal operation of fuzzy logic controllers as referenced to the human cognitive tasks of control and decision making. Two goals are targeted. The first goal focuses on the cognitive interpretation of the mechanisms employed in the current design of fuzzy logic controllers. This analysis helps to create a ground to explore the potential of enhancing the functional intelligence of fuzzy controllers. The second goal is to outline the features of a new class of fuzzy controllers, the Clearness Transformation Fuzzy Logic Controller (CT-FLC), whereby some new concepts are advanced to qualify fuzzy controllers as 'cognitive devices' rather than 'expert system devices'. The operation of the CT-FLC, as a fuzzy pattern processing controller, is explored, simulated, and evaluated.
Control of a fluidized bed combustor using fuzzy logic
Koffman, S.J.; Brown, R.C.; Fullmer, R.R.
1996-01-01
Fuzzy logic--an artificial intelligence technique--can be employed to exploit the wealth of information human experts have learned about complex systems while attempting to control them. This information is usually of a qualitative nature that is unusable by rigid conventional control techniques. Fuzzy logic, uses as a control method, manipulates linguistically expressed, heuristic knowledge from a human expert to derive control actions for a described system. As an alternative approach to classical controls, fuzzy logic is examined for start-up control and normal regulation of a bubbling fluidized bed combustor. To validate the fuzzy logic approach, the fuzzy controller is compared to a classical proportional and integral (PI) controller, commonly used in industrial applications, designed by Ziegler-Nichols tuning.
Fuzzy Logic and Its Application in Football Team Ranking
Li, Junhong
2014-01-01
Fuzzy set theory and fuzzy logic are a highly suitable and applicable basis for developing knowledge-based systems in physical education for tasks such as the selection for athletes, the evaluation for different training approaches, the team ranking, and the real-time monitoring of sports data. In this paper, we use fuzzy set theory and apply fuzzy clustering analysis in football team ranking. Based on some certain rules, we propose four parameters to calculate fuzzy similar matrix, obtain fuzzy equivalence matrix and the ranking result for our numerical example, T7, T3, T1, T9, T10, T8, T11, T12, T2, T6, T5, T4, and investigate four parameters sensitivity analysis. The study shows that our fuzzy logic method is reliable and stable when the parameters change in certain range. PMID:25032227
A simple fuzzy logic real-time camera tracking system
NASA Technical Reports Server (NTRS)
Magee, Kevin N.; Cheatham, John B., Jr.
1993-01-01
A fuzzy logic control of camera pan and tilt has been implemented to provide real-time camera tracking of a moving object. The user clicks a mouse button to identify the object that is to be tracked. A rapid centroid estimation algorithm is used to estimate the location of the moving object, and based on simple fuzzy membership functions, fuzzy x and y values are input into a six-rule fuzzy logic rule base. The output of this system is de-fuzzified to provide pan and tilt velocities required to keep the image of the object approximately centered in the camera field of view.
Fruit Sorting Using Fuzzy Logic Techniques
NASA Astrophysics Data System (ADS)
Elamvazuthi, Irraivan; Sinnadurai, Rajendran; Aftab Ahmed Khan, Mohamed Khan; Vasant, Pandian
2009-08-01
Fruit and vegetables market is getting highly selective, requiring their suppliers to distribute the goods according to very strict standards of quality and presentation. In the last years, a number of fruit sorting and grading systems have appeared to fulfill the needs of the fruit processing industry. However, most of them are overly complex and too costly for the small and medium scale industry (SMIs) in Malaysia. In order to address these shortcomings, a prototype machine was developed by integrating the fruit sorting, labeling and packing processes. To realise the prototype, many design issues were dealt with. Special attention is paid to the electronic weighing sub-system for measuring weight, and the opto-electronic sub-system for determining the height and width of the fruits. Specifically, this paper discusses the application of fuzzy logic techniques in the sorting process.
Fuzzy Logic Enhanced Digital PIV Processing Software
NASA Technical Reports Server (NTRS)
Wernet, Mark P.
1999-01-01
Digital Particle Image Velocimetry (DPIV) is an instantaneous, planar velocity measurement technique that is ideally suited for studying transient flow phenomena in high speed turbomachinery. DPIV is being actively used at the NASA Glenn Research Center to study both stable and unstable operating conditions in a high speed centrifugal compressor. Commercial PIV systems are readily available which provide near real time feedback of the PIV image data quality. These commercial systems are well designed to facilitate the expedient acquisition of PIV image data. However, as with any general purpose system, these commercial PIV systems do not meet all of the data processing needs required for PIV image data reduction in our compressor research program. An in-house PIV PROCessing (PIVPROC) code has been developed for reducing PIV data. The PIVPROC software incorporates fuzzy logic data validation for maximum information recovery from PIV image data. PIVPROC enables combined cross-correlation/particle tracking wherein the highest possible spatial resolution velocity measurements are obtained.
Dynamic regimes of random fuzzy logic networks
NASA Astrophysics Data System (ADS)
Wittmann, Dominik M.; Theis, Fabian J.
2011-01-01
Random multistate networks, generalizations of the Boolean Kauffman networks, are generic models for complex systems of interacting agents. Depending on their mean connectivity, these networks exhibit ordered as well as chaotic behavior with a critical boundary separating both regimes. Typically, the nodes of these networks are assigned single discrete states. Here, we describe nodes by fuzzy numbers, i.e. vectors of degree-of-membership (DOM) functions specifying the degree to which the nodes are in each of their discrete states. This allows our models to deal with imprecision and uncertainties. Compatible update rules are constructed by expressing the update rules of the multistate network in terms of Boolean operators and generalizing them to fuzzy logic (FL) operators. The standard choice for these generalizations is the Gödel FL, where AND and OR are replaced by the minimum and maximum of two DOMs, respectively. In mean-field approximations we are able to analytically describe the percolation and asymptotic distribution of DOMs in random Gödel FL networks. This allows us to characterize the different dynamic regimes of random multistate networks in terms of FL. In a low-dimensional example, we provide explicit computations and validate our mean-field results by showing that they agree well with network simulations.
Twenty-Five Years of the Fuzzy Factor: Fuzzy Logic, the Courts, and Student Press Law.
ERIC Educational Resources Information Center
Plopper, Bruce L.; McCool, Lauralee
A study applied the structure of fuzzy logic, a fairly modern development in mathematical set theory, to judicial opinions concerning non-university, public school student publications, from 1975 to 1999. The study examined case outcomes (19 cases generated 27 opinions) as a function of fuzzy logic, and it evaluated interactions between fuzzy…
A fuzzy logic approach to modeling a vehicle crash test
NASA Astrophysics Data System (ADS)
Pawlus, Witold; Karimi, Hamid; Robbersmyr, Kjell
2013-03-01
This paper presents an application of fuzzy approach to vehicle crash modeling. A typical vehicle to pole collision is described and kinematics of a car involved in this type of crash event is thoroughly characterized. The basics of fuzzy set theory and modeling principles based on fuzzy logic approach are presented. In particular, exceptional attention is paid to explain the methodology of creation of a fuzzy model of a vehicle collision. Furthermore, the simulation results are presented and compared to the original vehicle's kinematics. It is concluded which factors have influence on the accuracy of the fuzzy model's output and how they can be adjusted to improve the model's fidelity.
Organizational coevolutionary classifiers with fuzzy logic used in intrusion detection
NASA Astrophysics Data System (ADS)
Chen, Zhenguo
2009-07-01
Intrusion detection is an important technique in the defense-in-depth network security framework and a hot topic in computer security in recent years. To solve the intrusion detection question, we introduce the fuzzy logic into Organization CoEvolutionary algorithm [1] and present the algorithm of Organization CoEvolutionary Classification with Fuzzy Logic. In this paper, we give an intrusion detection models based on Organization CoEvolutionary Classification with Fuzzy Logic. After illustrating our model with a representative dataset and applying it to the real-world network datasets KDD Cup 1999. The experimental result shown that the intrusion detection based on Organizational Coevolutionary Classifiers with Fuzzy Logic can give higher recognition accuracy than the general method.
An Experiment in Linguistic Synthesis with a Fuzzy Logic Controller
ERIC Educational Resources Information Center
Mamdani, E. H.; Assilian, S.
1975-01-01
This paper describes an experiment on the "linguistic" synthesis of a controller for a model industrial plant (a steam engine). Fuzzy logic is used to convert heuristic control rules stated by a human operator into an automatic control strategy. (Author)
Fuzzy logic control for an automated guided vehicle
NASA Astrophysics Data System (ADS)
Cao, Ming; Hall, Ernest L.
1998-10-01
This paper describes the use of fuzzy logic control for the high level control systems of a mobile robot. The advantages of the fuzzy logic system are that multiple types of input such as that from vision and sonar sensors as well as stored map information can be used to guide the robot. Sensor fusion can be accomplished between real time sensed information and stored information in a manner similar to a human decision maker. Vision guidance is accomplished with a CCD camera with a zoom lens. The data is collected through a commercial tracking device, communicating to the computer the X,Y coordinates of a lane marker. Testing of these systems yielded positive results by showing that at five miles per hour, the vehicle can follow a line and avoid obstacles. The obstacle detection uses information from Polaroid sonar detection system. The motor control system uses a programmable Galil motion control system. This design, in its modularity, creates a portable autonomous controller that could be used for any mobile vehicle with only minor adaptations.
Fuzzy logic controllers: A knowledge-based system perspective
NASA Technical Reports Server (NTRS)
Bonissone, Piero P.
1993-01-01
Over the last few years we have seen an increasing number of applications of Fuzzy Logic Controllers. These applications range from the development of auto-focus cameras, to the control of subway trains, cranes, automobile subsystems (automatic transmissions), domestic appliances, and various consumer electronic products. In summary, we consider a Fuzzy Logic Controller to be a high level language with its local semantics, interpreter, and compiler, which enables us to quickly synthesize non-linear controllers for dynamic systems.
Fuzzy logic based ELF magnetic field estimation in substations.
Kosalay, Ilhan
2008-01-01
This paper examines estimation of the extremely low frequency magnetic fields (MF) in the power substation. First, the results of the previous relevant research studies and the MF measurements in a sample power substation are presented. Then, a fuzzy logic model based on the geometric definitions in order to estimate the MF distribution is explained. Visual software, which has a three-dimensional screening unit, based on the fuzzy logic technique, has been developed. PMID:18440967
A Priority Fuzzy Logic Extension of the XQuery Language
NASA Astrophysics Data System (ADS)
Škrbić, Srdjan; Wettayaprasit, Wiphada; Saeueng, Pannipa
2011-09-01
In recent years there have been significant research findings in flexible XML querying techniques using fuzzy set theory. Many types of fuzzy extensions to XML data model and XML query languages have been proposed. In this paper, we introduce priority fuzzy logic extensions to XQuery language. Describing these extensions we introduce a new query language. Moreover, we describe a way to implement an interpreter for this language using an existing XML native database.
A new way of predicting cement strength -- Fuzzy logic
Gao Faliang
1997-06-01
This paper is to analyze the fuzzy logic method of predicting cement strength and to calculate some samples with fuzzy models. In order to compare, samples of them are calculated with regression method. All of results are shown in both root mean square error and scattered map.
Using fuzzy logic to integrate neural networks and knowledge-based systems
NASA Technical Reports Server (NTRS)
Yen, John
1991-01-01
Outlined here is a novel hybrid architecture that uses fuzzy logic to integrate neural networks and knowledge-based systems. The author's approach offers important synergistic benefits to neural nets, approximate reasoning, and symbolic processing. Fuzzy inference rules extend symbolic systems with approximate reasoning capabilities, which are used for integrating and interpreting the outputs of neural networks. The symbolic system captures meta-level information about neural networks and defines its interaction with neural networks through a set of control tasks. Fuzzy action rules provide a robust mechanism for recognizing the situations in which neural networks require certain control actions. The neural nets, on the other hand, offer flexible classification and adaptive learning capabilities, which are crucial for dynamic and noisy environments. By combining neural nets and symbolic systems at their system levels through the use of fuzzy logic, the author's approach alleviates current difficulties in reconciling differences between low-level data processing mechanisms of neural nets and artificial intelligence systems.
Automated Interpretation of LIBS Spectra using a Fuzzy Logic Inference Engine
Jeremy J. Hatch; Timothy R. McJunkin; Cynthia Hanson; Jill R. Scott
2012-02-01
Automated interpretation of laser-induced breakdown spectroscopy (LIBS) data is necessary due to the plethora of spectra that can be acquired in a relatively short time. However, traditional chemometric and artificial neural network methods that have been employed are not always transparent to a skilled user. A fuzzy logic approach to data interpretation has now been adapted to LIBS spectral interpretation. A fuzzy logic inference engine (FLIE) was used to differentiate between various copper containing and stainless steel alloys as well as unknowns. Results using FLIE indicate a high degree of confidence in spectral assignment.
Optimized parameter extraction using fuzzy logic
NASA Astrophysics Data System (ADS)
Picos, Rodrigo; Calvo, Oscar; Iñiguez, Benjamín; García-Moreno, Eugeni; García, Rodolfo; Estrada, Magali
2007-05-01
Precise extraction of transistor model parameters is of much importance for modeling and at the same time a difficult and time consuming task. Methods for parameter extraction can rely on purely mathematical basis, calling for intensive use of computational resources, or in human expertise to interpret results. In this work, we propose a method for parameter extraction based on fuzzy logic that includes a precise knowledge about the function of each parameter in the model to create a set of simple fitting rules that are easy to describe in human language. To simplify the computational effort, the parameter fitting rules work using only data at specific points (e.g. the distance between the calculated curve and the measured one at VDS corresponding to 50% of the maximum current). If necessary, a more accurate implementation can be used without altering the basic underlying philosophy of the method. In this work, the method is applied to extract model parameters required by Level 3 bulk MOS model and by a compact model for TFTs used in the Unified Model and Extraction Method (UMEM), which is based on an integral function. Results obtained show that the method is quite insensitive to the initial conditions and that it is also quite fast. Extension of this method for more complex models requires only the creation of the corresponding rule base, using the appropriate measurements. The method is especially useful for production testing or design.
A Fuzzy Description Logic with Automatic Object Membership Measurement
NASA Astrophysics Data System (ADS)
Cai, Yi; Leung, Ho-Fung
In this paper, we propose a fuzzy description logic named f om -DL by combining the classical view in cognitive psychology and fuzzy set theory. A formal mechanism used to determine object memberships automatically in concepts is also proposed, which is lacked in previous work fuzzy description logics. In this mechanism, object membership is based on the defining properties of concept definition and properties in object description. Moreover, while previous works cannot express the qualitative measurements of an object possessing a property, we introduce two kinds of properties named N-property and L-property, which are quantitative measurements and qualitative measurements of an object possessing a property respectively. The subsumption and implication of concepts and properties are also explored in our work. We believe that it is useful to the Semantic Web community for reasoning the fuzzy membership of objects for concepts in fuzzy ontologies.
Seismic event interpretation using fuzzy logic and neural networks
Maurer, W.J.; Dowla, F.U.
1994-01-01
In the computer interpretation of seismic data, unknown sources of seismic events must be represented and reasoned about using measurements from the recorded signal. In this report, we develop the use of fuzzy logic to improve our ability to interpret weak seismic events. Processing strategies for the use of fuzzy set theory to represent vagueness and uncertainty, a phenomena common in seismic data analysis, are developed. A fuzzy-assumption based truth-maintenance-inferencing engine is also developed. Preliminary results in interpreting seismic events using the fuzzy neural network knowledge-based system are presented.
McKone, Thomas E.; Deshpande, Ashok W.
2004-06-14
In modeling complex environmental problems, we often fail to make precise statements about inputs and outcome. In this case the fuzzy logic method native to the human mind provides a useful way to get at these problems. Fuzzy logic represents a significant change in both the approach to and outcome of environmental evaluations. Risk assessment is currently based on the implicit premise that probability theory provides the necessary and sufficient tools for dealing with uncertainty and variability. The key advantage of fuzzy methods is the way they reflect the human mind in its remarkable ability to store and process information which is consistently imprecise, uncertain, and resistant to classification. Our case study illustrates the ability of fuzzy logic to integrate statistical measurements with imprecise health goals. But we submit that fuzzy logic and probability theory are complementary and not competitive. In the world of soft computing, fuzzy logic has been widely used and has often been the ''smart'' behind smart machines. But it will require more effort and case studies to establish its niche in risk assessment or other types of impact assessment. Although we often hear complaints about ''bright lines,'' could we adapt to a system that relaxes these lines to fuzzy gradations? Would decision makers and the public accept expressions of water or air quality goals in linguistic terms with computed degrees of certainty? Resistance is likely. In many regions, such as the US and European Union, it is likely that both decision makers and members of the public are more comfortable with our current system in which government agencies avoid confronting uncertainties by setting guidelines that are crisp and often fail to communicate uncertainty. But some day perhaps a more comprehensive approach that includes exposure surveys, toxicological data, epidemiological studies coupled with fuzzy modeling will go a long way in resolving some of the conflict, divisiveness
Wastewater neutralization control based in fuzzy logic: Simulation results
Garrido, R.; Adroer, M.; Poch, M.
1997-05-01
Neutralization is a technique widely used as a part of wastewater treatment processes. Due to the importance of this technique, extensive study has been devoted to its control. However, industrial wastewater neutralization control is a procedure with a lot of problems--nonlinearity of the titration curve, variable buffering, changes in loading--and despite the efforts devoted to this subject, the problem has not been totally solved. in this paper, the authors present the development of a controller based in fuzzy logic (FLC). In order to study its effectiveness, it has been compared, by simulation, with other advanced controllers (using identification techniques and adaptive control algorithms using reference models) when faced with various types of wastewater with different buffer capacity or when changes in the concentration of the acid present in the wastewater take place. Results obtained show that FLC could be considered as a powerful alternative for wastewater neutralization processes.
Life insurance risk assessment using a fuzzy logic expert system
NASA Technical Reports Server (NTRS)
Carreno, Luis A.; Steel, Roy A.
1992-01-01
In this paper, we present a knowledge based system that combines fuzzy processing with rule-based processing to form an improved decision aid for evaluating risk for life insurance. This application illustrates the use of FuzzyCLIPS to build a knowledge based decision support system possessing fuzzy components to improve user interactions and KBS performance. The results employing FuzzyCLIPS are compared with the results obtained from the solution of the problem using traditional numerical equations. The design of the fuzzy solution consists of a CLIPS rule-based system for some factors combined with fuzzy logic rules for others. This paper describes the problem, proposes a solution, presents the results, and provides a sample output of the software product.
Navigating a Mobile Robot Across Terrain Using Fuzzy Logic
NASA Technical Reports Server (NTRS)
Seraji, Homayoun; Howard, Ayanna; Bon, Bruce
2003-01-01
A strategy for autonomous navigation of a robotic vehicle across hazardous terrain involves the use of a measure of traversability of terrain within a fuzzy-logic conceptual framework. This navigation strategy requires no a priori information about the environment. Fuzzy logic was selected as a basic element of this strategy because it provides a formal methodology for representing and implementing a human driver s heuristic knowledge and operational experience. Within a fuzzy-logic framework, the attributes of human reasoning and decision- making can be formulated by simple IF (antecedent), THEN (consequent) rules coupled with easily understandable and natural linguistic representations. The linguistic values in the rule antecedents convey the imprecision associated with measurements taken by sensors onboard a mobile robot, while the linguistic values in the rule consequents represent the vagueness inherent in the reasoning processes to generate the control actions. The operational strategies of the human expert driver can be transferred, via fuzzy logic, to a robot-navigation strategy in the form of a set of simple conditional statements composed of linguistic variables. These linguistic variables are defined by fuzzy sets in accordance with user-defined membership functions. The main advantages of a fuzzy navigation strategy lie in the ability to extract heuristic rules from human experience and to obviate the need for an analytical model of the robot navigation process.
A fuzzy logic controller for an autonomous mobile robot
NASA Technical Reports Server (NTRS)
Yen, John; Pfluger, Nathan
1993-01-01
The ability of a mobile robot system to plan and move intelligently in a dynamic system is needed if robots are to be useful in areas other than controlled environments. An example of a use for this system is to control an autonomous mobile robot in a space station, or other isolated area where it is hard or impossible for human life to exist for long periods of time (e.g., Mars). The system would allow the robot to be programmed to carry out the duties normally accomplished by a human being. Some of the duties that could be accomplished include operating instruments, transporting objects, and maintenance of the environment. The main focus of our early work has been on developing a fuzzy controller that takes a path and adapts it to a given environment. The robot only uses information gathered from the sensors, but retains the ability to avoid dynamically placed obstacles near and along the path. Our fuzzy logic controller is based on the following algorithm: (1) determine the desired direction of travel; (2) determine the allowed direction of travel; and (3) combine the desired and allowed directions in order to determine a direciton that is both desired and allowed. The desired direction of travel is determined by projecting ahead to a point along the path that is closer to the goal. This gives a local direction of travel for the robot and helps to avoid obstacles.
NASA Astrophysics Data System (ADS)
Zhang, Jianling; An, Jinwen; Wang, Mina
2005-11-01
This paper describes the application and simulation of an adaptive fuzzy controller for a missile model. The fuzzy control system is tested using different values of fuzzy controller correctional factor on a nonlinear missile model. It is shown that the self-tuning fuzzy controller is well suited for controlling the pitch loop of the missile control system with air turbulence and parameter variety. The research shows that the Popov stability criterion could successfully guarantee the stability of the fuzzy system. It provides a good method for the design of missile control system. Simulation results suggest significant benefits from fuzzy logic in control task for missile pitch loop control.
Fuzzy logic control and optimization system
Lou, Xinsheng
2012-04-17
A control system (300) for optimizing a power plant includes a chemical loop having an input for receiving an input signal (369) and an output for outputting an output signal (367), and a hierarchical fuzzy control system (400) operably connected to the chemical loop. The hierarchical fuzzy control system (400) includes a plurality of fuzzy controllers (330). The hierarchical fuzzy control system (400) receives the output signal (367), optimizes the input signal (369) based on the received output signal (367), and outputs an optimized input signal (369) to the input of the chemical loop to control a process of the chemical loop in an optimized manner.
Fuzzy logic applications to expert systems and control
NASA Technical Reports Server (NTRS)
Lea, Robert N.; Jani, Yashvant
1991-01-01
A considerable amount of work on the development of fuzzy logic algorithms and application to space related control problems has been done at the Johnson Space Center (JSC) over the past few years. Particularly, guidance control systems for space vehicles during proximity operations, learning systems utilizing neural networks, control of data processing during rendezvous navigation, collision avoidance algorithms, camera tracking controllers, and tether controllers have been developed utilizing fuzzy logic technology. Several other areas in which fuzzy sets and related concepts are being considered at JSC are diagnostic systems, control of robot arms, pattern recognition, and image processing. It has become evident, based on the commercial applications of fuzzy technology in Japan and China during the last few years, that this technology should be exploited by the government as well as private industry for energy savings.
FUZZY LOGIC MOTOR CONTROL FOR POLLUTION PREVENTION AND IMPROVED ENERGY EFFICIENCY
The paper discusses an EPA program investigating fuzzy logic motor control for improved pollution prevention and energy efficiency. nitial computer simulation and laboratory results have demonstrated that fuzzy logic energy optimizers can consistently improve motor operational ef...
Power control of SAFE reactor using fuzzy logic
NASA Astrophysics Data System (ADS)
Irvine, Claude
2002-01-01
Controlling the 100 kW SAFE (Safe Affordable Fission Engine) reactor consists of design and implementation of a fuzzy logic process control system to regulate dynamic variables related to nuclear system power. The first phase of development concentrates primarily on system power startup and regulation, maintaining core temperature equilibrium, and power profile matching. This paper discusses the experimental work performed in those areas. Nuclear core power from the fuel elements is simulated using resistive heating elements while heat rejection is processed by a series of heat pipes. Both axial and radial nuclear power distributions are determined from neuronic modeling codes. The axial temperature profile of the simulated core is matched to the nuclear power profile by varying the resistance of the heating elements. The SAFE model establishes radial temperature profile equivalence by establishing 32 control zones as the nodal coordinates. Control features also allow for slow warm up, since complete shutoff can occur in the heat pipes if heat-source temperatures drop/rise below a certain minimum value, depending on the specific fluid and gas combination in the heat pipe. The entire system is expected to be self-adaptive, i.e., capable of responding to long-range changes in the space environment. Particular attention in the development of the fuzzy logic algorithm shall ensure that the system process remains at set point, virtually eliminating overshoot on start-up and during in-process disturbances. The controller design will withstand harsh environments and applications where it might come in contact with water, corrosive chemicals, radiation fields, etc. .
The design of thermoelectric footwear heating system via fuzzy logic.
Işik, Hakan; Saraçoğlu, Esra
2007-12-01
In this study, Heat Control of Thermoelectric Footwear System via Fuzzy Logic has been implemented in order to use efficiently in cold weather conditions. Temperature control is very important in domestic as well as in many industrial applications. The final product is seriously affected from the changes in temperature. So it is necessary to reach some desired temperature points quickly and avoid large overshoot. Here, fuzzy logic acts an important role. PIC 16F877 microcontroller has been designed to act as fuzzy logic controller. The designed system provides energy saving and has better performance than proportional control that was implemented in the previous study. The designed system takes into consideration so appropriate parameters that it can also be applied to the people safely who has illnesses like diabetes, etc. PMID:18041286
Probing Dynamical Character of Neural Circuits by Using Fuzzy Logic
NASA Astrophysics Data System (ADS)
Hu, Hong; Shi, Zhongzhi
2008-11-01
Analytical study or designing of large-scale nonlinear neural circuits, especially for chaotic neural circuits, is a difficult task. Here we analyze the function of neural systems by probing the fuzzy logical framework of the neural cells' dynamical equations. In this paper, the fuzzy logical framework of neural cells is used to understand the nonlinear dynamic attributes of a common neural system, and we proved that if a neural system works in a non-chaotic way, a suitable fuzzy logical framework can be found and we can analyze or design such kind neural system similar to analyze or design a digit computer, but if a neural system works in a chaotic way, an approximation is needed for understanding the function of such neural system.
Design and performance comparison of fuzzy logic based tracking controllers
NASA Technical Reports Server (NTRS)
Lea, Robert N.; Jani, Yashvant
1992-01-01
Several camera tracking controllers based on fuzzy logic principles have been designed and tested in software simulation in the software technology branch at the Johnson Space Center. The fuzzy logic based controllers utilize range measurement and pixel positions from the image as input parameters and provide pan and tilt gimble rate commands as output. Two designs of the rulebase and tuning process applied to the membership functions are discussed in light of optimizing performance. Seven test cases have been designed to test the performance of the controllers for proximity operations where approaches like v-bar, fly-around and station keeping are performed. The controllers are compared in terms of responsiveness, and ability to maintain the object in the field-of-view of the camera. Advantages of the fuzzy logic approach with respect to the conventional approach have been discussed in terms of simplicity and robustness.
Experiments on neural network architectures for fuzzy logic
NASA Technical Reports Server (NTRS)
Keller, James M.
1991-01-01
The use of fuzzy logic to model and manage uncertainty in a rule-based system places high computational demands on an inference engine. In an earlier paper, the authors introduced a trainable neural network structure for fuzzy logic. These networks can learn and extrapolate complex relationships between possibility distributions for the antecedents and consequents in the rules. Here, the power of these networks is further explored. The insensitivity of the output to noisy input distributions (which are likely if the clauses are generated from real data) is demonstrated as well as the ability of the networks to internalize multiple conjunctive clause and disjunctive clause rules. Since different rules with the same variables can be encoded in a single network, this approach to fuzzy logic inference provides a natural mechanism for rule conflict resolution.
Completed Optimised Structure of Threonine Molecule by Fuzzy Logic Modelling
NASA Astrophysics Data System (ADS)
Sahiner, Ahmet; Ucun, Fatih; Kapusuz, Gulden; Yilmaz, Nurullah
2016-04-01
In this study we applied the fuzzy logic approach in order to model the energy depending on the two torsion angles for the threonine (C4H9NO3) molecule. The model is set up according to theoretical results obtained by the density functional theory (B3LYP) with a 6-31 G(d) basic set on a Gausian program. We aimed to determine the best torsion angle values providing the energy of the molecule minimum by a fuzzy logic approach and to compare them with the density functional theory results. It was concluded that the fuzzy logic approach gives information about the untested data and its best value which are expensive and time-consuming to obtain by other methods and experimentation.
Genetic Algorithm Tuned Fuzzy Logic for Gliding Return Trajectories
NASA Technical Reports Server (NTRS)
Burchett, Bradley T.
2003-01-01
The problem of designing and flying a trajectory for successful recovery of a reusable launch vehicle is tackled using fuzzy logic control with genetic algorithm optimization. The plant is approximated by a simplified three degree of freedom non-linear model. A baseline trajectory design and guidance algorithm consisting of several Mamdani type fuzzy controllers is tuned using a simple genetic algorithm. Preliminary results show that the performance of the overall system is shown to improve with genetic algorithm tuning.
Applications of fuzzy logic to control and decision making
NASA Technical Reports Server (NTRS)
Lea, Robert N.; Jani, Yashvant
1991-01-01
Long range space missions will require high operational efficiency as well as autonomy to enhance the effectivity of performance. Fuzzy logic technology has been shown to be powerful and robust in interpreting imprecise measurements and generating appropriate control decisions for many space operations. Several applications are underway, studying the fuzzy logic approach to solving control and decision making problems. Fuzzy logic algorithms for relative motion and attitude control have been developed and demonstrated for proximity operations. Based on this experience, motion control algorithms that include obstacle avoidance were developed for a Mars Rover prototype for maneuvering during the sample collection process. A concept of an intelligent sensor system that can identify objects and track them continuously and learn from its environment is under development to support traffic management and proximity operations around the Space Station Freedom. For safe and reliable operation of Lunar/Mars based crew quarters, high speed controllers with ability to combine imprecise measurements from several sensors is required. A fuzzy logic approach that uses high speed fuzzy hardware chips is being studied.
Coordinated signal control for arterial intersections using fuzzy logic
NASA Astrophysics Data System (ADS)
Kermanian, Davood; Zare, Assef; Balochian, Saeed
2013-09-01
Every day growth of the vehicles has become one of the biggest problems of urbanism especially in major cities. This can waste people's time, increase the fuel consumption, air pollution, and increase the density of cars and vehicles. Fuzzy controllers have been widely used in many consumer products and industrial applications with success over the past two decades. This article proposes a comprehensive model of urban traffic network using state space equations and then using Fuzzy Logic Tool Box and SIMULINK Program MATLAB a fuzzy controller in order to optimize and coordinate signal control at two intersections at an arterial road. The fuzzy controller decides to extend, early cut or terminate a signal phase and phase sequence to ensure smooth flow of traffic with minimal waiting time and length of queue. Results show that the performance of the proposed traffic controller at novel fuzzy model is better that of conventional controllers under normal and abnormal traffic conditions.
Concurrent engineering use of fuzzy logic
Feraille, F.; Chedmail, P.
1996-12-31
In concurrent engineering a crucial problem is the management of conflicts. To avoid conflicts between the different viewpoints and activities, the usual tools and methods are rather poor. As we can group all the constraints from several viewpoints, and solve the global problem. But it`s difficult to manage the associated mathematical problem. However as proposed, every designer who is acting at the design of the product solves his own problem, the different solutions are collected. But in this case, we can`t avoid clash or conflicts. Therefore we propose a new approach including fuzzy design environment. On an example, we present a fuzzy environment approach to design in a concurrent engineering context. So we can reduce clashes between viewpoints. After this, we present the tools we need to design with fuzzy variables. First, we summarize the usual method to optimize a problem with fuzzy constraints or parameters, giving an usual solution vector. Secondly, we introduce the concept of fuzzy solutions-set of an optimization problem. This concept is a generalization of the {open_quotes}solution family{close_quotes} notion as proposed. Ours is stronger because we attach to the solution vector X a satisfaction function {mu}(X) which mathematically describes a fuzzy solution set. We also propose a method to obtain such sets. Third, we present how to collect the different fuzzy solutions-sets from different viewpoints, in order to obtain the global fuzzy solutions-set of a design. We must pay attention to the fact that two viewpoints may have several common variables. Finally we describe the exploration of this global fuzzy solutions-set by different viewpoints using such variables as parameters for a new optimization of concurrent engineering.
Fuzzy Logic Path Planning System for Collision Avoidance by an Autonomous Rover Vehicle
NASA Technical Reports Server (NTRS)
Murphy, Michael G.
1991-01-01
Systems already developed at JSC have shown the benefits of applying fuzzy logic control theory to space related operations. Four major issues are addressed that are associated with developing an autonomous collision avoidance subsystem within a path planning system designed for application in a remote, hostile environment that does not lend itself well to remote manipulation of the vehicle involved through Earth-based telecommunication. A good focus for this is unmanned exploration of the surface of Mars. The uncertainties involved indicate that robust approaches such as fuzzy logic control are particularly appropriate. The four major issues addressed are: (1) avoidance of a single fuzzy moving obstacle; (2) back off from a dead end in a static obstacle environment; (3) fusion of sensor data to detect obstacles; and (4) options for adaptive learning in a path planning system.
Automated cloud classification with a fuzzy logic expert system
NASA Technical Reports Server (NTRS)
Tovinkere, Vasanth; Baum, Bryan A.
1993-01-01
An unresolved problem in current cloud retrieval algorithms concerns the analysis of scenes containing overlapping cloud layers. Cloud parameterizations are very important both in global climate models and in studies of the Earth's radiation budget. Most cloud retrieval schemes, such as the bispectral method used by the International Satellite Cloud Climatology Project (ISCCP), have no way of determining whether overlapping cloud layers exist in any group of satellite pixels. One promising method uses fuzzy logic to determine whether mixed cloud and/or surface types exist within a group of pixels, such as cirrus, land, and water, or cirrus and stratus. When two or more class types are present, fuzzy logic uses membership values to assign the group of pixels partially to the different class types. The strength of fuzzy logic lies in its ability to work with patterns that may include more than one class, facilitating greater information extraction from satellite radiometric data. The development of the fuzzy logic rule-based expert system involves training the fuzzy classifier with spectral and textural features calculated from accurately labeled 32x32 regions of Advanced Very High Resolution Radiometer (AVHRR) 1.1-km data. The spectral data consists of AVHRR channels 1 (0.55-0.68 mu m), 2 (0.725-1.1 mu m), 3 (3.55-3.93 mu m), 4 (10.5-11.5 mu m), and 5 (11.5-12.5 mu m), which include visible, near-infrared, and infrared window regions. The textural features are based on the gray level difference vector (GLDV) method. A sophisticated new interactive visual image Classification System (IVICS) is used to label samples chosen from scenes collected during the FIRE IFO II. The training samples are chosen from predefined classes, chosen to be ocean, land, unbroken stratiform, broken stratiform, and cirrus. The November 28, 1991 NOAA overpasses contain complex multilevel cloud situations ideal for training and validating the fuzzy logic expert system.
Autonomous Control of a Quadrotor UAV Using Fuzzy Logic
NASA Astrophysics Data System (ADS)
Sureshkumar, Vijaykumar
UAVs are being increasingly used today than ever before in both military and civil applications. They are heavily preferred in "dull, dirty or dangerous" mission scenarios. Increasingly, UAVs of all kinds are being used in policing, fire-fighting, inspection of structures, pipelines etc. Recently, the FAA gave its permission for UAVs to be used on film sets for motion capture and high definition video recording. The rapid development in MEMS and actuator technology has made possible a plethora of UAVs that are suited for commercial applications in an increasingly cost effective manner. An emerging popular rotary wing UAV platform is the Quadrotor A Quadrotor is a helicopter with four rotors, that make it more stable; but more complex to model and control. Characteristics that provide a clear advantage over other fixed wing UAVs are VTOL and hovering capabilities as well as a greater maneuverability. It is also simple in construction and design compared to a scaled single rotorcraft. Flying such UAVs using a traditional radio Transmitter-Receiver setup can be a daunting task especially in high stress situations. In order to make such platforms widely applicable, a certain level of autonomy is imperative to the future of such UAVs. This thesis paper presents a methodology for the autonomous control of a Quadrotor UAV using Fuzzy Logic. Fuzzy logic control has been chosen over conventional control methods as it can deal effectively with highly nonlinear systems, allows for imprecise data and is extremely modular. Modularity and adaptability are the key cornerstones of FLC. The objective of this thesis is to present the steps of designing, building and simulating an intelligent flight control module for a Quadrotor UAV. In the course of this research effort, a Quadrotor UAV is indigenously developed utilizing the resources of an online open source project called Aeroquad. System design is comprehensively dealt with. A math model for the Quadrotor is developed and a
Prediction of conductivity by adaptive neuro-fuzzy model.
Akbarzadeh, S; Arof, A K; Ramesh, S; Khanmirzaei, M H; Nor, R M
2014-01-01
Electrochemical impedance spectroscopy (EIS) is a key method for the characterizing the ionic and electronic conductivity of materials. One of the requirements of this technique is a model to forecast conductivity in preliminary experiments. The aim of this paper is to examine the prediction of conductivity by neuro-fuzzy inference with basic experimental factors such as temperature, frequency, thickness of the film and weight percentage of salt. In order to provide the optimal sets of fuzzy logic rule bases, the grid partition fuzzy inference method was applied. The validation of the model was tested by four random data sets. To evaluate the validity of the model, eleven statistical features were examined. Statistical analysis of the results clearly shows that modeling with an adaptive neuro-fuzzy is powerful enough for the prediction of conductivity. PMID:24658582
Prediction of Conductivity by Adaptive Neuro-Fuzzy Model
Akbarzadeh, S.; Arof, A. K.; Ramesh, S.; Khanmirzaei, M. H.; Nor, R. M.
2014-01-01
Electrochemical impedance spectroscopy (EIS) is a key method for the characterizing the ionic and electronic conductivity of materials. One of the requirements of this technique is a model to forecast conductivity in preliminary experiments. The aim of this paper is to examine the prediction of conductivity by neuro-fuzzy inference with basic experimental factors such as temperature, frequency, thickness of the film and weight percentage of salt. In order to provide the optimal sets of fuzzy logic rule bases, the grid partition fuzzy inference method was applied. The validation of the model was tested by four random data sets. To evaluate the validity of the model, eleven statistical features were examined. Statistical analysis of the results clearly shows that modeling with an adaptive neuro-fuzzy is powerful enough for the prediction of conductivity. PMID:24658582
North American Fuzzy Logic Processing Society (NAFIPS 1992), volume 2
NASA Technical Reports Server (NTRS)
Villarreal, James A. (Compiler)
1992-01-01
This document contains papers presented at the NAFIPS '92 North American Fuzzy Information Processing Society Conference. More than 75 papers were presented at this Conference, which was sponsored by NAFIPS in cooperation with NASA, the Instituto Tecnologico de Morelia, the Indian Society for Fuzzy Mathematics and Information Processing (ISFUMIP), the Instituto Tecnologico de Estudios Superiores de Monterrey (ITESM), the International Fuzzy Systems Association (IFSA), the Japan Society for Fuzzy Theory and Systems, and the Microelectronics and Computer Technology Corporation (MCC). The fuzzy set theory has led to a large number of diverse applications. Recently, interesting applications have been developed which involve the integration of fuzzy systems with adaptive processes such a neural networks and genetic algorithms. NAFIPS '92 was directed toward the advancement, commercialization, and engineering development of these technologies.
North American Fuzzy Logic Processing Society (NAFIPS 1992), volume 1
NASA Technical Reports Server (NTRS)
Villarreal, James A. (Compiler)
1992-01-01
This document contains papers presented at the NAFIPS '92 North American Fuzzy Information Processing Society Conference. More than 75 papers were presented at this Conference, which was sponsored by NAFIPS in cooperation with NASA, the Instituto Tecnologico de Morelia, the Indian Society for Fuzzy Mathematics and Information Processing (ISFUMIP), the Instituto Tecnologico de Estudios Superiores de Monterrey (ITESM), the International Fuzzy Systems Association (IFSA), the Japan Society for Fuzzy Theory and Systems, and the Microelectronics and Computer Technology Corporation (MCC). The fuzzy set theory has led to a large number of diverse applications. Recently, interesting applications have been developed which involve the integration of fuzzy systems with adaptive processes such as neural networks and genetic algorithms. NAFIPS '92 was directed toward the advancement, commercialization, and engineering development of these technologies.
Modeling and simulation of evacuation behavior using fuzzy logic in a goal finding application
NASA Astrophysics Data System (ADS)
Sharma, Sharad; Ogunlana, Kola; Sree, Swetha
2016-05-01
Modeling and simulation has been widely used as a training and educational tool for depicting different evacuation strategies and damage control decisions during evacuation. However, there are few simulation environments that can include human behavior with low to high levels of fidelity. It is well known that crowd stampede induced by panic leads to fatalities as people are crushed or trampled. Our proposed goal finding application can be used to model situations that are difficult to test in real-life due to safety considerations. It is able to include agent characteristics and behaviors. Findings of this model are very encouraging as agents are able to assume various roles to utilize fuzzy logic on the way to reaching their goals. Fuzzy logic is used to model stress, panic and the uncertainty of emotions. The fuzzy rules link these parts together while feeding into behavioral rules. The contributions of this paper lies in our approach of utilizing fuzzy logic to show learning and adaptive behavior of agents in a goal finding application. The proposed application will aid in running multiple evacuation drills for what-if scenarios by incorporating human behavioral characteristics that can scale from a room to building. Our results show that the inclusion of fuzzy attributes made the evacuation time of the agents closer to the real time drills.
The Balanced Cross-Layer Design Routing Algorithm in Wireless Sensor Networks Using Fuzzy Logic.
Li, Ning; Martínez, José-Fernán; Hernández Díaz, Vicente
2015-01-01
Recently, the cross-layer design for the wireless sensor network communication protocol has become more and more important and popular. Considering the disadvantages of the traditional cross-layer routing algorithms, in this paper we propose a new fuzzy logic-based routing algorithm, named the Balanced Cross-layer Fuzzy Logic (BCFL) routing algorithm. In BCFL, we use the cross-layer parameters' dispersion as the fuzzy logic inference system inputs. Moreover, we give each cross-layer parameter a dynamic weight according the value of the dispersion. For getting a balanced solution, the parameter whose dispersion is large will have small weight, and vice versa. In order to compare it with the traditional cross-layer routing algorithms, BCFL is evaluated through extensive simulations. The simulation results show that the new routing algorithm can handle the multiple constraints without increasing the complexity of the algorithm and can achieve the most balanced performance on selecting the next hop relay node. Moreover, the Balanced Cross-layer Fuzzy Logic routing algorithm can adapt to the dynamic changing of the network conditions and topology effectively. PMID:26266412
The Balanced Cross-Layer Design Routing Algorithm in Wireless Sensor Networks Using Fuzzy Logic
Li, Ning; Martínez, José-Fernán; Díaz, Vicente Hernández
2015-01-01
Recently, the cross-layer design for the wireless sensor network communication protocol has become more and more important and popular. Considering the disadvantages of the traditional cross-layer routing algorithms, in this paper we propose a new fuzzy logic-based routing algorithm, named the Balanced Cross-layer Fuzzy Logic (BCFL) routing algorithm. In BCFL, we use the cross-layer parameters’ dispersion as the fuzzy logic inference system inputs. Moreover, we give each cross-layer parameter a dynamic weight according the value of the dispersion. For getting a balanced solution, the parameter whose dispersion is large will have small weight, and vice versa. In order to compare it with the traditional cross-layer routing algorithms, BCFL is evaluated through extensive simulations. The simulation results show that the new routing algorithm can handle the multiple constraints without increasing the complexity of the algorithm and can achieve the most balanced performance on selecting the next hop relay node. Moreover, the Balanced Cross-layer Fuzzy Logic routing algorithm can adapt to the dynamic changing of the network conditions and topology effectively. PMID:26266412
IMPROVING AC MOTOR EFFICIENCY WITH FUZZY LOGIC ENERGY OPTIMIZER
The paper discusses EPA's research program to develop fuzzy-logic-based energy optimizers for alternating-current (AC) induction motors driven by Adjustable Speed Drives (ASDs). he technical goals of the program are to increase the efficiency of ASD/motor combinations (especially...
Professional Learning: A Fuzzy Logic-Based Modelling Approach
ERIC Educational Resources Information Center
Gravani, M. N.; Hadjileontiadou, S. J.; Nikolaidou, G. N.; Hadjileontiadis, L. J.
2007-01-01
Studies have suggested that professional learning is influenced by two key parameters, i.e., climate and planning, and their associated variables (mutual respect, collaboration, mutual trust, supportiveness, openness). In this paper, we applied analysis of the relationships between the proposed quantitative, fuzzy logic-based model and a series of…
Fuzzy logic control of the building structure with CLEMR dampers
NASA Astrophysics Data System (ADS)
Zhang, Xiang-Cheng; Xu, Zhao-Dong; Huang, Xing-Huai; Zhu, Jun-Tao
2013-04-01
The semi-active control technology has been paid more attention in the field of structural vibration control due to its high controllability, excellent control effect and low power requirement. When semi-active control device are used for vibration control, some challenges must be taken into account, such as the reliability and the control strategy of the device. This study presents a new large tonnage compound lead extrusion magnetorheological (CLEMR) damper, whose mathematical model is introduced to describe the variation of damping force with current and velocity. Then a current controller based on the fuzzy logic control strategy is designed to determine control currents of the CLEMR dampers rapidly. A ten-floor frame structure with CLEMR dampers using the fuzzy logic control strategy is built and calculated by using MATLAB. Calculation results show that CLEMR dampers can reduce the seismic responses of structures effectively. Calculation results of the fuzzy logic control strategy are compared with those of the semi-active limit Hrovat control structure, the passive-off control structure, and the uncontrolled structure. Comparison results show that the fuzzy logic control strategy can determine control currents of CLEMR dampers quickly and can reduce seismic responses of the structures more effectively than the passive-off control strategy and the uncontrolled structure.
Autonomous vehicle motion control, approximate maps, and fuzzy logic
NASA Technical Reports Server (NTRS)
Ruspini, Enrique H.
1993-01-01
Progress on research on the control of actions of autonomous mobile agents using fuzzy logic is presented. The innovations described encompass theoretical and applied developments. At the theoretical level, results of research leading to the combined utilization of conventional artificial planning techniques with fuzzy logic approaches for the control of local motion and perception actions are presented. Also formulations of dynamic programming approaches to optimal control in the context of the analysis of approximate models of the real world are examined. Also a new approach to goal conflict resolution that does not require specification of numerical values representing relative goal importance is reviewed. Applied developments include the introduction of the notion of approximate map. A fuzzy relational database structure for the representation of vague and imprecise information about the robot's environment is proposed. Also the central notions of control point and control structure are discussed.
An Innovative Fuzzy-Logic-Based Methodology for Trend Identification
Wang Xin; Tsoukalas, Lefteri H.; Wei, Thomas Y.C.; Reifman, Jaques
2001-07-15
A new fuzzy-logic-based methodology for on-line signal trend identification is introduced. The methodology may be used for detecting the onset of nuclear power plant (NPP) transients at the earliest possible time and could be of great benefit to diagnostic, maintenance, and performance-monitoring programs. Although signal trend identification is complicated by the presence of noise, fuzzy methods can help capture important features of on-line signals, integrate the information included in these features, and classify incoming NPP signals into increasing, decreasing, and steady-state trend categories. A computer program named PROTREN is developed and tested for the purpose of verifying this methodology using NPP and simulation data. The results indicate that the new fuzzy-logic-based methodology is capable of detecting transients accurately, it identifies trends reliably and does not misinterpret a steady-state signal as a transient one.
Stock and option portfolio using fuzzy logic approach
NASA Astrophysics Data System (ADS)
Sumarti, Novriana; Wahyudi, Nanang
2014-03-01
Fuzzy Logic in decision-making process has been widely implemented in various problems in industries. It is the theory of imprecision and uncertainty that was not based on probability theory. Fuzzy Logic adds values of degree between absolute true and absolute false. It starts with and builds on a set of human language rules supplied by the user. The fuzzy systems convert these rules to their mathematical equivalents. This could simplify the job of the system designer and the computer, and results in much more accurate representations of the way systems behave in the real world. In this paper we examine the decision making process of stock and option trading by the usage of MACD (Moving Average Convergence Divergence) technical analysis and Option Pricing with Fuzzy Logic approach. MACD technical analysis is for the prediction of the trends of underlying stock prices, such as bearish (going downward), bullish (going upward), and sideways. By using Fuzzy C-Means technique and Mamdani Fuzzy Inference System, we define the decision output where the value of MACD is high then decision is "Strong Sell", and the value of MACD is Low then the decision is "Strong Buy". We also implement the fuzzification of the Black-Scholes option-pricing formula. The stock and options methods are implemented on a portfolio of one stock and its options. Even though the values of input data, such as interest rates, stock price and its volatility, cannot be obtain accurately, these fuzzy methods can give a belief degree of the calculated the Black-Scholes formula so we can make the decision on option trading. The results show the good capability of the methods in the prediction of stock price trends. The performance of the simulated portfolio for a particular period of time also shows good return.
Approach to Synchronization Control of Magnetic Bearings Using Fuzzy Logic
NASA Technical Reports Server (NTRS)
Yang, Li-Farn
1996-01-01
This paper presents a fuzzy-logic approach to the synthesis of synchronization control for magnetically suspended rotor system. The synchronization control enables a whirling rotor to undergo synchronous motion along the magnetic bearing axes; thereby avoiding the gyroscopic effect that degrade the stability of rotor systems when spinning at high speed. The control system features a fuzzy controller acting on the magnetic bearing device, in which the fuzzy inference system trained through fuzzy rules to minimize the differential errors between four bearing axes so that an error along one bearing axis can affect the overall control loop for the motion synchronization. Numerical simulations of synchronization control for the magnetically suspended rotor system are presented to show the effectiveness of the present approach.
Boolean and fuzzy logic implemented at the molecular level
NASA Astrophysics Data System (ADS)
Gentili, Pier Luigi
2007-07-01
In this work, it is shown how to implement both hard and soft computing by means of two structurally related heterocyclic compounds: flindersine (FL) and 6(5H)-phenanthridinone (PH). Since FL and PH have a carbonyl group in their molecular skeletons, they exhibit Proximity Effects in their photophysics. In other words, they have an emission power that can be modulated through external inputs such as temperature ( T) and hydrogen-bonding donation (HBD) ability of solvents. This phenomenology can be exploited to implement both crisp and fuzzy logic. Fuzzy Logic Systems (FLSs) wherein the antecedents of the rules are connected through the AND operator, are built by both the Mamdani's and Sugeno's models. Finally, they are adopted as approximators of the proximity effect phenomenon and tested for their prediction capabilities. Moreover, FL as photochromic compound is also a multiply configurable crisp logic molecular element.
Modelling of Reservoir Operations using Fuzzy Logic and ANNs
NASA Astrophysics Data System (ADS)
Van De Giesen, N.; Coerver, B.; Rutten, M.
2015-12-01
Today, almost 40.000 large reservoirs, containing approximately 6.000 km3 of water and inundating an area of almost 400.000 km2, can be found on earth. Since these reservoirs have a storage capacity of almost one-sixth of the global annual river discharge they have a large impact on the timing, volume and peaks of river discharges. Global Hydrological Models (GHM) are thus significantly influenced by these anthropogenic changes in river flows. We developed a parametrically parsimonious method to extract operational rules based on historical reservoir storage and inflow time-series. Managing a reservoir is an imprecise and vague undertaking. Operators always face uncertainties about inflows, evaporation, seepage losses and various water demands to be met. They often base their decisions on experience and on available information, like reservoir storage and the previous periods inflow. We modeled this decision-making process through a combination of fuzzy logic and artificial neural networks in an Adaptive-Network-based Fuzzy Inference System (ANFIS). In a sensitivity analysis, we compared results for reservoirs in Vietnam, Central Asia and the USA. ANFIS can indeed capture reservoirs operations adequately when fed with a historical monthly time-series of inflows and storage. It was shown that using ANFIS, operational rules of existing reservoirs can be derived without much prior knowledge about the reservoirs. Their validity was tested by comparing actual and simulated releases with each other. For the eleven reservoirs modelled, the normalised outflow, <0,1>, was predicted with a MSE of 0.002 to 0.044. The rules can be incorporated into GHMs. After a network for a specific reservoir has been trained, the inflow calculated by the hydrological model can be combined with the release and initial storage to calculate the storage for the next time-step using a mass balance. Subsequently, the release can be predicted one time-step ahead using the inflow and storage.
A scene-based nonuniformity correction algorithm based on fuzzy logic
NASA Astrophysics Data System (ADS)
Huang, Jun; Ma, Yong; Fan, Fan; Mei, Xiaoguang; Liu, Zhe
2015-08-01
Scene-based nonuniformity correction algorithms based on the LMS adaptive filter are quite efficient to reduce the fixed pattern noise in infrared images. They are famous for their low cost of computation and storage recourses. Unfortunately, ghosting artifacts can be easily introduced in edge areas when the inter-frame motion slows. In this paper, a gated scene-based nonuniformity correction algorithm is proposed. A novel low-pass filter based on the fuzzy logic is proposed to estimate the true scene radiation as the desired signal in the LMS adaptive filter. The fuzzy logic can also evaluate the probability that a pixel and its locals belong to edge areas. Then the update of the correction parameters for the pixels in edge areas can be gated. The experiment results show that our method is reliable and the ghosting artifacts are reduced.
Modal control of a plate using a fuzzy logic controller
NASA Astrophysics Data System (ADS)
Sharma, Manu; Singh, S. P.; Sachdeva, B. L.
2007-08-01
This paper presents fuzzy logic based independent modal space control (IMSC) and fuzzy logic based modified independent modal space control (MIMSC) of vibration. The rule base of the controller consists of nine rules, which have been derived based upon simple human reasoning. Input to the controller consists of the first two modal displacements and velocities of the structure and the output of the controller is the modal force to be applied by the actuator. Fuzzy logic is used in such a way that the actuator is never called to apply effort which is beyond safe limits and also the operator is saved from calculating control gains. The proposed fuzzy controller is experimentally tested for active vibration control of a cantilevered plate. A piezoelectric patch is used as a sensor to sense vibrations of the plate and another piezoelectric patch is used as an actuator to control vibrations of the plate. For analytical formulation, a finite element method based upon Hamilton's principle is used to model the plate. For experimentation, the first two modes of the plate are observed using a Kalman observer. Real-time experiments are performed to control the first mode, the second mode and both modes simultaneously. Experiments are also performed to control the first mode by IMSC, the second mode by IMSC and both modes simultaneously by MIMSC. It is found that for the same decibel reduction in the first mode, the voltage applied by the fuzzy logic based controller is less than that applied by IMSC. While controlling the second mode by IMSC, a considerable amount of spillover is observed in the first mode and region just after the second mode, whereas while controlling the second mode by fuzzy logic, spillover effects are much smaller. While controlling two modes simultaneously, with a single sensor/actuator pair, appreciable resonance control is observed both with fuzzy logic based MIMSC as well as with direct MIMSC, but there is a considerable amount of spillover in the off
Fuzzy Logic Decoupled Lateral Control for General Aviation Airplanes
NASA Technical Reports Server (NTRS)
Duerksen, Noel
1997-01-01
It has been hypothesized that a human pilot uses the same set of generic skills to control a wide variety of aircraft. If this is true, then it should be possible to construct an electronic controller which embodies this generic skill set such that it can successfully control different airplanes without being matched to a specific airplane. In an attempt to create such a system, a fuzzy logic controller was devised to control aileron or roll spoiler position. This controller was used to control bank angle for both a piston powered single engine aileron equipped airplane simulation and a business jet simulation which used spoilers for primary roll control. Overspeed, stall and overbank protection were incorporated in the form of expert systems supervisors and weighted fuzzy rules. It was found that by using the artificial intelligence techniques of fuzzy logic and expert systems, a generic lateral controller could be successfully used on two general aviation aircraft types that have very different characteristics. These controllers worked for both airplanes over their entire flight envelopes. The controllers for both airplanes were identical except for airplane specific limits (maximum allowable airspeed, throttle ]ever travel, etc.). This research validated the fact that the same fuzzy logic based controller can control two very different general aviation airplanes. It also developed the basic controller architecture and specific control parameters required for such a general controller.
Automatic control of pressure support mechanical ventilation using fuzzy logic.
Nemoto, T; Hatzakis, G E; Thorpe, C W; Olivenstein, R; Dial, S; Bates, J H
1999-08-01
There is currently no universally accepted approach to weaning patients from mechanical ventilation, but there is clearly a feeling within the medical community that it may be possible to formulate the weaning process algorithmically in some manner. Fuzzy logic seems suited this task because of the way it so naturally represents the subjective human notions employed in much of medical decision-making. The purpose of the present study was to develop a fuzzy logic algorithm for controlling pressure support ventilation in patients in the intensive care unit, utilizing measurements of heart rate, tidal volume, breathing frequency, and arterial oxygen saturation. In this report we describe the fuzzy logic algorithm, and demonstrate its use retrospectively in 13 patients with severe chronic obstructive pulmonary disease, by comparing the decisions made by the algorithm with what actually transpired. The fuzzy logic recommendations agreed with the status quo to within 2 cm H(2)O an average of 76% of the time, and to within 4 cm H(2)O an average of 88% of the time (although in most of these instances no medical decisions were taken as to whether or not to change the level of ventilatory support). We also compared the predictions of our algorithm with those cases in which changes in pressure support level were actually made by an attending physician, and found that the physicians tended to reduce the support level somewhat more aggressively than the algorithm did. We conclude that our fuzzy algorithm has the potential to control the level of pressure support ventilation from ongoing measurements of a patient's vital signs. PMID:10430727
Neural and Fuzzy Adaptive Control of Induction Motor Drives
Bensalem, Y.; Sbita, L.; Abdelkrim, M. N.
2008-06-12
This paper proposes an adaptive neural network speed control scheme for an induction motor (IM) drive. The proposed scheme consists of an adaptive neural network identifier (ANNI) and an adaptive neural network controller (ANNC). For learning the quoted neural networks, a back propagation algorithm was used to automatically adjust the weights of the ANNI and ANNC in order to minimize the performance functions. Here, the ANNI can quickly estimate the plant parameters and the ANNC is used to provide on-line identification of the command and to produce a control force, such that the motor speed can accurately track the reference command. By combining artificial neural network techniques with fuzzy logic concept, a neural and fuzzy adaptive control scheme is developed. Fuzzy logic was used for the adaptation of the neural controller to improve the robustness of the generated command. The developed method is robust to load torque disturbance and the speed target variations when it ensures precise trajectory tracking with the prescribed dynamics. The algorithm was verified by simulation and the results obtained demonstrate the effectiveness of the IM designed controller.
Neural and Fuzzy Adaptive Control of Induction Motor Drives
NASA Astrophysics Data System (ADS)
Bensalem, Y.; Sbita, L.; Abdelkrim, M. N.
2008-06-01
This paper proposes an adaptive neural network speed control scheme for an induction motor (IM) drive. The proposed scheme consists of an adaptive neural network identifier (ANNI) and an adaptive neural network controller (ANNC). For learning the quoted neural networks, a back propagation algorithm was used to automatically adjust the weights of the ANNI and ANNC in order to minimize the performance functions. Here, the ANNI can quickly estimate the plant parameters and the ANNC is used to provide on-line identification of the command and to produce a control force, such that the motor speed can accurately track the reference command. By combining artificial neural network techniques with fuzzy logic concept, a neural and fuzzy adaptive control scheme is developed. Fuzzy logic was used for the adaptation of the neural controller to improve the robustness of the generated command. The developed method is robust to load torque disturbance and the speed target variations when it ensures precise trajectory tracking with the prescribed dynamics. The algorithm was verified by simulation and the results obtained demonstrate the effectiveness of the IM designed controller.
Content-addressable-memory for the three key operations of fuzzy logic
NASA Astrophysics Data System (ADS)
Jiang, Tao; Li, Yao
1999-03-01
Today, most fuzzy logic operations are performed via software means, which is inevitably slow. While searching for long term hardware solutions to realize analog fuzzy logic operations, the use of the well-developed Boolean logic hardware with analog to digital and digital to analog converters to implement the digitized fuzzy logic could provide an efficient solution. Similar to Boolean logic, digitized fuzzy logic operations can be written as a minimized sum-of-product term format, which can then be implemented based on programmable logic arrays. We address a fundamental issue of the computational complexity of this method. We derive the minimum number of the Boolean sum-of-product terms for some key fuzzy logic operations, such as Union, Intersection, and Complement operators. Our derivations provide ways to estimate the general computational complexity or memory capacity of using binary circuits, electronic or optoelectronic, to implement the digitized analog logic operations.
A Numerical Optimization Approach for Tuning Fuzzy Logic Controllers
NASA Technical Reports Server (NTRS)
Woodard, Stanley E.; Garg, Devendra P.
1998-01-01
This paper develops a method to tune fuzzy controllers using numerical optimization. The main attribute of this approach is that it allows fuzzy logic controllers to be tuned to achieve global performance requirements. Furthermore, this approach allows design constraints to be implemented during the tuning process. The method tunes the controller by parameterizing the membership functions for error, change-in-error and control output. The resulting parameters form a design vector which is iteratively changed to minimize an objective function. The minimal objective function results in an optimal performance of the system. A spacecraft mounted science instrument line-of-sight pointing control is used to demonstrate results.
An Analysis Regarding the Possibility of Using Fuzzy Logic in Inventory Management
NASA Astrophysics Data System (ADS)
Stoia, Claudiu-Leonardo
2014-11-01
The paper presents a brief state-of-the-art survey regarding the use of fuzzy logic in inventory management. Its goal is to motivate enthusiastic entrepreneurs to take into account the benefits of using fuzzy logic inventory control systems. It offers a guide to model an inventory system having a free fuzzy tool as starting point
Obstacle detection for mobile vehicle using neural network and fuzzy logic
NASA Astrophysics Data System (ADS)
Sun, Huaijiang; Yang, Jingyu
2001-09-01
In our mobile vehicle project, sensors for environment modeling are a CCD color camera and two line-scan laser range finders. The CCD color camera is used to detect road edges. The two line-scan laser range finders are used to detect obstacles. Only two line-scan laser range finders increase processing speed, but there are blind zones for low obstacles, especially near the vehicle. In this paper, neural network and fuzzy logic are used to cluster and fuse obstacle points provided by two line-scan laser range finders. There is an assumption that obstacles missed by laser radar in some instant must be detected previously. A circle Adaptive Resonance neural network algorithm is used to incrementally cluster obstacle points provided by laser range finders into candidate obstacles. Every candidate obstacle is expressed by a circle, and is assigned a belief by a fuzzy logic system. Inputs of the fuzzy logic system are radius and number of points. Fuzzy rules are provided by human and can be fine-tuned with training data. The final true obstacle is the nearest one chosen from candidate obstacles whose beliefs exceed a threshold. Experiment results indicate that our mobile vehicle can safely follow road and avoid obstacles.
Fuzzy logic control system to provide autonomous collision avoidance for Mars rover vehicle
NASA Technical Reports Server (NTRS)
Murphy, Michael G.
1990-01-01
NASA is currently involved with planning unmanned missions to Mars to investigate the terrain and process soil samples in advance of a manned mission. A key issue involved in unmanned surface exploration on Mars is that of supporting autonomous maneuvering since radio communication involves lengthy delays. It is anticipated that specific target locations will be designated for sample gathering. In maneuvering autonomously from a starting position to a target position, the rover will need to avoid a variety of obstacles such as boulders or troughs that may block the shortest path to the target. The physical integrity of the rover needs to be maintained while minimizing the time and distance required to attain the target position. Fuzzy logic lends itself well to building reliable control systems that function in the presence of uncertainty or ambiguity. The following major issues are discussed: (1) the nature of fuzzy logic control systems and software tools to implement them; (2) collision avoidance in the presence of fuzzy parameters; and (3) techniques for adaptation in fuzzy logic control systems.
INJECTION PAINTING OPTIMIZATION WITH FUZZY LOGIC EXPERT SYSTEM.
BEEBE-WANG,J.; TANG,J.
2001-06-18
Optimizing transverse particle distributions in the accumulator ring is one of most important factors to the future performance of the Spallation Neutron Source (SNS) [l]. This can only be achieved by optimizing the injection bumps that paint the beam in phase space. The process is complex due to the vague distribution inputs and the multiple optimization goals. Furthermore, the priority of the optimization criteria could change at different operational stages. We propose optimizing transverse phase space painting with fuzzy logic and present our initial studies toward that end. The focus of this paper is on how the problem can be solved with a Fuzzy Logic (FL) expert system through the creation of a set of rules that can be applied by the system. Various particle distributions, from computer simulations, are analyzed with FL and the results are compared and discussed. Finally, a run-time optimization control system is proposed.
Fuzzy temporal logic based railway passenger flow forecast model.
Dou, Fei; Jia, Limin; Wang, Li; Xu, Jie; Huang, Yakun
2014-01-01
Passenger flow forecast is of essential importance to the organization of railway transportation and is one of the most important basics for the decision-making on transportation pattern and train operation planning. Passenger flow of high-speed railway features the quasi-periodic variations in a short time and complex nonlinear fluctuation because of existence of many influencing factors. In this study, a fuzzy temporal logic based passenger flow forecast model (FTLPFFM) is presented based on fuzzy logic relationship recognition techniques that predicts the short-term passenger flow for high-speed railway, and the forecast accuracy is also significantly improved. An applied case that uses the real-world data illustrates the precision and accuracy of FTLPFFM. For this applied case, the proposed model performs better than the k-nearest neighbor (KNN) and autoregressive integrated moving average (ARIMA) models. PMID:25431586
Use of Fuzzy Logic Systems for Assessment of Primary Faults
NASA Astrophysics Data System (ADS)
Petrović, Ivica; Jozsa, Lajos; Baus, Zoran
2015-09-01
In electric power systems, grid elements are often subjected to very complex and demanding disturbances or dangerous operating conditions. Determining initial fault or cause of those states is a difficult task. When fault occurs, often it is an imperative to disconnect affected grid element from the grid. This paper contains an overview of possibilities for using fuzzy logic in an assessment of primary faults in the transmission grid. The tool for this task is SCADA system, which is based on information of currents, voltages, events of protection devices and status of circuit breakers in the grid. The function model described with the membership function and fuzzy logic systems will be presented in the paper. For input data, diagnostics system uses information of protection devices tripping, states of circuit breakers and measurements of currents and voltages before and after faults.
Control of a flexible beam using fuzzy logic
NASA Technical Reports Server (NTRS)
Mccullough, Claire L.
1991-01-01
The goal of this project, funded under the NASA Summer Faculty Fellowship program, was to evaluate control methods utilizing fuzzy logic for applicability to control of flexible structures. This was done by applying these methods to control of the Control Structures Interaction Suitcase Demonstrator developed at Marshall Space Flight Center. The CSI Suitcase Demonstrator is a flexible beam, mounted at one end with springs and bearing, and with a single actuator capable of rotating the beam about a pin at the fixed end. The control objective is to return the tip of the free end to a zero error position (from a nonzero initial condition). It is neither completely controllable nor completely observable. Fuzzy logic control was demonstrated to successfully control the system and to exhibit desirable robustness properties compared to conventional control.
Fuzzy Temporal Logic Based Railway Passenger Flow Forecast Model
Dou, Fei; Jia, Limin; Wang, Li; Xu, Jie; Huang, Yakun
2014-01-01
Passenger flow forecast is of essential importance to the organization of railway transportation and is one of the most important basics for the decision-making on transportation pattern and train operation planning. Passenger flow of high-speed railway features the quasi-periodic variations in a short time and complex nonlinear fluctuation because of existence of many influencing factors. In this study, a fuzzy temporal logic based passenger flow forecast model (FTLPFFM) is presented based on fuzzy logic relationship recognition techniques that predicts the short-term passenger flow for high-speed railway, and the forecast accuracy is also significantly improved. An applied case that uses the real-world data illustrates the precision and accuracy of FTLPFFM. For this applied case, the proposed model performs better than the k-nearest neighbor (KNN) and autoregressive integrated moving average (ARIMA) models. PMID:25431586
An architecture for designing fuzzy logic controllers using neural networks
NASA Technical Reports Server (NTRS)
Berenji, Hamid R.
1991-01-01
Described here is an architecture for designing fuzzy controllers through a hierarchical process of control rule acquisition and by using special classes of neural network learning techniques. A new method for learning to refine a fuzzy logic controller is introduced. A reinforcement learning technique is used in conjunction with a multi-layer neural network model of a fuzzy controller. The model learns by updating its prediction of the plant's behavior and is related to the Sutton's Temporal Difference (TD) method. The method proposed here has the advantage of using the control knowledge of an experienced operator and fine-tuning it through the process of learning. The approach is applied to a cart-pole balancing system.
Rule based fuzzy logic approach for classification of fibromyalgia syndrome.
Arslan, Evren; Yildiz, Sedat; Albayrak, Yalcin; Koklukaya, Etem
2016-06-01
Fibromyalgia syndrome (FMS) is a chronic muscle and skeletal system disease observed generally in women, manifesting itself with a widespread pain and impairing the individual's quality of life. FMS diagnosis is made based on the American College of Rheumatology (ACR) criteria. However, recently the employability and sufficiency of ACR criteria are under debate. In this context, several evaluation methods, including clinical evaluation methods were proposed by researchers. Accordingly, ACR had to update their criteria announced back in 1990, 2010 and 2011. Proposed rule based fuzzy logic method aims to evaluate FMS at a different angle as well. This method contains a rule base derived from the 1990 ACR criteria and the individual experiences of specialists. The study was conducted using the data collected from 60 inpatient and 30 healthy volunteers. Several tests and physical examination were administered to the participants. The fuzzy logic rule base was structured using the parameters of tender point count, chronic widespread pain period, pain severity, fatigue severity and sleep disturbance level, which were deemed important in FMS diagnosis. It has been observed that generally fuzzy predictor was 95.56 % consistent with at least of the specialists, who are not a creator of the fuzzy rule base. Thus, in diagnosis classification where the severity of FMS was classified as well, consistent findings were obtained from the comparison of interpretations and experiences of specialists and the fuzzy logic approach. The study proposes a rule base, which could eliminate the shortcomings of 1990 ACR criteria during the FMS evaluation process. Furthermore, the proposed method presents a classification on the severity of the disease, which was not available with the ACR criteria. The study was not limited to only disease classification but at the same time the probability of occurrence and severity was classified. In addition, those who were not suffering from FMS were
NASA Technical Reports Server (NTRS)
Abihana, Osama A.; Gonzalez, Oscar R.
1993-01-01
The main objectives of our research are to present a self-contained overview of fuzzy sets and fuzzy logic, develop a methodology for control system design using fuzzy logic controllers, and to design and implement a fuzzy logic controller for a real system. We first present the fundamental concepts of fuzzy sets and fuzzy logic. Fuzzy sets and basic fuzzy operations are defined. In addition, for control systems, it is important to understand the concepts of linguistic values, term sets, fuzzy rule base, inference methods, and defuzzification methods. Second, we introduce a four-step fuzzy logic control system design procedure. The design procedure is illustrated via four examples, showing the capabilities and robustness of fuzzy logic control systems. This is followed by a tuning procedure that we developed from our design experience. Third, we present two Lyapunov based techniques for stability analysis. Finally, we present our design and implementation of a fuzzy logic controller for a linear actuator to be used to control the direction of the Free Flight Rotorcraft Research Vehicle at LaRC.
A robust fuzzy logic controller for robot manipulators with uncertainties.
Yi, S Y; Chung, M J
1997-01-01
Owing to load variation and unmodeled dynamics, a robot manipulator can be classified as a nonlinear dynamic system with structured and unstructured uncertainties. In this paper, the stability and robustness of a class of the fuzzy logic control (FLC) is investigated and a robust FLC is proposed for a robot manipulator with uncertainties. In order to show the performance of the proposed control algorithm, computer simulations are carried out on a simple two-link robot manipulator. PMID:18255910
Optimized Reactive Power Compensation Using Fuzzy Logic Controller
NASA Astrophysics Data System (ADS)
George, S.; Mini, K. N.; Supriya, K.
2015-03-01
Reactive power flow in a long transmission line plays a vital role in power transfer capability and voltage stability in power system. Traditionally, shunt connected compensators are used to control reactive power in long transmission line. Thyristor controlled reactor is used to control reactive power under lightly loaded condition. By controlling firing angle of thyristor, it is possible to control reactive power in the transmission lines. However, thyristor controlled reactor will inject harmonic current into the system. An attempt to reduce reactive power injection will increase harmonic distortion in the line current and vice versa. Thus, there is a trade-off between reactive power injection and harmonics in current. By optimally controlling the reactive power injection, harmonics in current can be brought within the specified limit. In this paper, a Fuzzy Logic Controller is implemented to obtain optimal control of reactive power of the compensator to maintain voltage and harmonic in current within the limits. An algorithm which optimizes the firing angle in each fuzzy subset by calculating the rank of feasible firing angles is proposed for the construction of rules in Fuzzy Logic Controller. The novelty of the algorithm is that it uses a simple error formula for the calculation of the rank of the feasible firing angles in each fuzzy subset.
A fuzzy logic intelligent diagnostic system for spacecraft integrated vehicle health management
NASA Technical Reports Server (NTRS)
Wu, G. Gordon
1995-01-01
Due to the complexity of future space missions and the large amount of data involved, greater autonomy in data processing is demanded for mission operations, training, and vehicle health management. In this paper, we develop a fuzzy logic intelligent diagnostic system to perform data reduction, data analysis, and fault diagnosis for spacecraft vehicle health management applications. The diagnostic system contains a data filter and an inference engine. The data filter is designed to intelligently select only the necessary data for analysis, while the inference engine is designed for failure detection, warning, and decision on corrective actions using fuzzy logic synthesis. Due to its adaptive nature and on-line learning ability, the diagnostic system is capable of dealing with environmental noise, uncertainties, conflict information, and sensor faults.
Fuzzy Logic Decoupled Longitudinal Control for General Aviation Airplanes
NASA Technical Reports Server (NTRS)
Duerksen, Noel
1996-01-01
It has been hypothesized that a human pilot uses the same set of generic skills to control a wide variety of aircraft. If this is true, then it should be possible to construct an electronic controller which embodies this generic skill set such that it can successfully control difference airplanes without being matched to a specific airplane. In an attempt to create such a system, a fuzzy logic controller was devised to control throttle position and another to control elevator position. These two controllers were used to control flight path angle and airspeed for both a piston powered single engine airplane simulation and a business jet simulation. Overspeed protection and stall protection were incorporated in the form of expert systems supervisors. It was found that by using the artificial intelligence techniques of fuzzy logic and expert systems, a generic longitudinal controller could be successfully used on two general aviation aircraft types that have very difference characteristics. These controllers worked for both airplanes over their entire flight envelopes including configuration changes. The controllers for both airplanes were identical except for airplane specific limits (maximum allowable airspeed, throttle lever travel, etc.). The controllers also handled configuration changes without mode switching or knowledge of the current configuration. This research validated the fact that the same fuzzy logic based controller can control two very different general aviation airplanes. It also developed the basic controller architecture and specific control parameters required for such a general controller.
Fuzzy logic controls pressure in Fracturing Fluid Characterization Facility
Rivera, V.P.; Farabee, L.M.
1994-12-31
A fuzzy logic pressure control system has been designed and implemented to deal with the demanding requirements of the Fracturing Fluid Characterization Facility (FFCF), a test bed that simulates downhole conditions for investigating fluid behavior during fracturing stimulation. Pressure control in the fracture simulator was difficult because of the wide range of fluid types and pumping conditions used and by the compliant structure of the simulator, which uses servo-controlled actuators to maintain a constant gap width under varying pressure conditions. The FFCF pressure control system must handle fluids that vary from water to high-viscosity gel slurries at flow rates ranging from 1/2 to 3 bbl/min. Conventional control approaches were successful only under very limited conditions. To solve this problem, a fuzzy logic controller (FLC) was developed to be a user function in the FFCF supervisory control and data acquisition system. Using several fuzzy logic rules, the FLC generates a position set point for a slurry throttling valve. An electro-hydraulic directional control valve uses the set point supplied by the FLC to position the active control element of the slurry throttling valve.
Control Law for Automatic Landing Using Fuzzy-Logic Control
NASA Astrophysics Data System (ADS)
Kato, Akio; Inagaki, Yoshiki
The effectiveness of a fuzzy-logic control law for automatically landing an aircraft that handles both the control to lead an aircraft from horizontal flight at an altitude of 500 meters to flight along the glide-path course near the runway, as well as the control to direct the aircraft to land smoothly on a runway, was investigated. The control law for the automatic landing was designed to match the design goals of directing an aircraft from horizontal flight to flight along a glide-path course quickly and smoothly, and for landing smoothly on a runway. The design of the control law and evaluation of the control performance were performed considering the ground effect at landing. As a result, it was confirmed that the design goals were achieved. Even if the characteristics of the aircraft change greatly, the proposed control law is able to maintain the control performance. Moreover, it was confirmed to be able to land an aircraft safely during air turbulence. The present paper indicates that fuzzy-logic control is an effective and flexible method when applied to the control law for automatic landing, and the design method of the control law using fuzzy-logic control was obtained.
Control Law for Automatic Landing Using Fuzzy Logic Control
NASA Astrophysics Data System (ADS)
Kato, Akio; Inagaki, Yoshiki
The effectiveness of fuzzy logic control law for automatic landing of aircraft, which cover both of control to lead aircraft from level flight at an altitude of 500m to the flight on the glide-path course near the runway and control for the aircraft to land smoothly on a runway, was studied. The control law of the automatic landing was designed to match the design goals of leading from the horizontal flight to the flight on the glide-path course quickly and smoothly and of landing smoothly on a runway. Because there is the ground effect at landing, design of control law and evaluation of control performance were done in consideration of the ground effect. As a result, it was confirmed that the design objective was achieved. Even if the characteristics of the plant changes greatly, this control law was able to maintain the control performance. Moreover, it was confirmed to be able to land safely when there was air turbulence. This paper shows that fuzzy logic control is an effective and flexible method when applied to control law for automatic landing and the design method of control law using fuzzy logic control was obtained.
Fuzzy Logic: A New Tool for the Analysis and Organization of International Business Communications.
ERIC Educational Resources Information Center
Sondak, Norman E.; Sondak, Eileen M.
Classical western logic, built on a foundation of true/false, yes/no, right/wrong statements, leads to many difficulties and inconsistencies in the logical analysis and organization of international business communications. This paper presents the basic principles of classical logic and of fuzzy logic, a type of logic developed to allow for…
Distributed traffic signal control using fuzzy logic
NASA Technical Reports Server (NTRS)
Chiu, Stephen
1992-01-01
We present a distributed approach to traffic signal control, where the signal timing parameters at a given intersection are adjusted as functions of the local traffic condition and of the signal timing parameters at adjacent intersections. Thus, the signal timing parameters evolve dynamically using only local information to improve traffic flow. This distributed approach provides for a fault-tolerant, highly responsive traffic management system. The signal timing at an intersection is defined by three parameters: cycle time, phase split, and offset. We use fuzzy decision rules to adjust these three parameters based only on local information. The amount of change in the timing parameters during each cycle is limited to a small fraction of the current parameters to ensure smooth transition. We show the effectiveness of this method through simulation of the traffic flow in a network of controlled intersections.
Searching arousals: A fuzzy logic approach.
Chaparro-Vargas, Ramiro; Ahmed, Beena; Penzel, Thomas; Cvetkovic, Dean
2015-08-01
This paper presents a computational approach to detect spontaneous, chin tension and limb movement-related arousals by estimating neuronal and muscular activity. Features extraction is carried out by Time Varying Autoregressive Moving Average (TVARMA) models and recursive particle filtering. Classification is performed by a fuzzy inference system with rule-based decision scheme based upon the AASM scoring rules. Our approach yielded two metrics: arousal density and arousal index to comply with standardised clinical benchmarking. The obtained statistics achieved error deviation around ±1.5 to ±30. These results showed that our system can differentiate amongst 3 different types of arousals, subject to inter-subject variability and up-to-date scoring references. PMID:26736862
Security risk assessment: applying the concepts of fuzzy logic.
Bajpai, Shailendra; Sachdeva, Anish; Gupta, J P
2010-01-15
Chemical process industries (CPI) handling hazardous chemicals in bulk can be attractive targets for deliberate adversarial actions by terrorists, criminals and disgruntled employees. It is therefore imperative to have comprehensive security risk management programme including effective security risk assessment techniques. In an earlier work, it has been shown that security risk assessment can be done by conducting threat and vulnerability analysis or by developing Security Risk Factor Table (SRFT). HAZOP type vulnerability assessment sheets can be developed that are scenario based. In SRFT model, important security risk bearing factors such as location, ownership, visibility, inventory, etc., have been used. In this paper, the earlier developed SRFT model has been modified using the concepts of fuzzy logic. In the modified SRFT model, two linguistic fuzzy scales (three-point and four-point) are devised based on trapezoidal fuzzy numbers. Human subjectivity of different experts associated with previous SRFT model is tackled by mapping their scores to the newly devised fuzzy scale. Finally, the fuzzy score thus obtained is defuzzyfied to get the results. A test case of a refinery is used to explain the method and compared with the earlier work. PMID:19744788
Robustness of fuzzy logic power system stabilizers applied to multimachine power system
Hiyama, Takashi . Dept. of Electrical Engineering and Computer Science)
1994-09-01
This paper investigates the robustness of fuzzy logic stabilizers using the information of speed and acceleration states of a study unit. The input signals are the real power output and/or the speed of the study unit. Non-linear simulations show the robustness of the fuzzy logic power system stabilizers. Experiments are also performed by using a micro-machine system. The results show the feasibility of proposed fuzzy logic stabilizer.
Fuzzy knowledge base construction through belief networks based on Lukasiewicz logic
NASA Technical Reports Server (NTRS)
Lara-Rosano, Felipe
1992-01-01
In this paper, a procedure is proposed to build a fuzzy knowledge base founded on fuzzy belief networks and Lukasiewicz logic. Fuzzy procedures are developed to do the following: to assess the belief values of a consequent, in terms of the belief values of its logical antecedents and the belief value of the corresponding logical function; and to update belief values when new evidence is available.
Medical application of fuzzy logic: fuzzy patient state in arterial hypertension analysis
NASA Astrophysics Data System (ADS)
Blinowska, Aleksandra; Duckstein, Lucien
1993-12-01
A few existing applications of fuzzy logic in medicine are briefly described and some potential applications are reviewed. The problem of classification of patient states and medical decision making is discussed more in detail and illustrated by the example of a fuzzy rule based model developed to elicit, analyze and reproduce the opinions of multiple medical experts in the case of arterial hypertension. The goal was to reproduce the average coded answers using an adequate fuzzy procedure, here a fuzzy rule. State categories and the initial set of experimental parameters were defined according to medical practice. The fuzzy set membership functions were then assessed for each parameter in each category and a small subset of representative and pertinent parameters selected for each question. The data were split into two sets of 50 patient files each, the calibration set and the validation set. Two evaluation criteria were used: the sum of squared deviations and the sum of deviations. Fuzzy rules were then sought that reproduced the target, which was the average coded answer. Only one fuzzy rule `and' appeared to be necessary to describe the patient state in a continuous way and to approach the target as closely as the majority of experts.
An investigation into the application of fuzzy logic to well stimulation treatment design
Xiong, H.; Holditch, S.A.
1995-02-01
Designing an optimal stimulation treatment for an oil or gas well is a complex procedure requiring in-depth knowledge and experience. This paper describes how fuzzy logic applies to stimulation design and clearly illustrates how to apply fuzzy logic theory. The paper also discusses the advantages and disadvantages of applying fuzzy logic to well stimulation design. Fuzzy logic evaluators can be applied to study, evaluate, and determine the best methods to improve productivity in oil and gas wells or injectivity in water wells. The approach can be extended to the solution of other problems associated with drilling, completing, and working over wells and with formation damage diagnosis.
Adaptive fuzzy system for 3-D vision
NASA Technical Reports Server (NTRS)
Mitra, Sunanda
1993-01-01
An adaptive fuzzy system using the concept of the Adaptive Resonance Theory (ART) type neural network architecture and incorporating fuzzy c-means (FCM) system equations for reclassification of cluster centers was developed. The Adaptive Fuzzy Leader Clustering (AFLC) architecture is a hybrid neural-fuzzy system which learns on-line in a stable and efficient manner. The system uses a control structure similar to that found in the Adaptive Resonance Theory (ART-1) network to identify the cluster centers initially. The initial classification of an input takes place in a two stage process; a simple competitive stage and a distance metric comparison stage. The cluster prototypes are then incrementally updated by relocating the centroid positions from Fuzzy c-Means (FCM) system equations for the centroids and the membership values. The operational characteristics of AFLC and the critical parameters involved in its operation are discussed. The performance of the AFLC algorithm is presented through application of the algorithm to the Anderson Iris data, and laser-luminescent fingerprint image data. The AFLC algorithm successfully classifies features extracted from real data, discrete or continuous, indicating the potential strength of this new clustering algorithm in analyzing complex data sets. The hybrid neuro-fuzzy AFLC algorithm will enhance analysis of a number of difficult recognition and control problems involved with Tethered Satellite Systems and on-orbit space shuttle attitude controller.
Fuzzy Logic-Based Guaranteed Lifetime Protocol for Real-Time Wireless Sensor Networks.
Shah, Babar; Iqbal, Farkhund; Abbas, Ali; Kim, Ki-Il
2015-01-01
Few techniques for guaranteeing a network lifetime have been proposed despite its great impact on network management. Moreover, since the existing schemes are mostly dependent on the combination of disparate parameters, they do not provide additional services, such as real-time communications and balanced energy consumption among sensor nodes; thus, the adaptability problems remain unresolved among nodes in wireless sensor networks (WSNs). To solve these problems, we propose a novel fuzzy logic model to provide real-time communication in a guaranteed WSN lifetime. The proposed fuzzy logic controller accepts the input descriptors energy, time and velocity to determine each node's role for the next duration and the next hop relay node for real-time packets. Through the simulation results, we verified that both the guaranteed network's lifetime and real-time delivery are efficiently ensured by the new fuzzy logic model. In more detail, the above-mentioned two performance metrics are improved up to 8%, as compared to our previous work, and 14% compared to existing schemes, respectively. PMID:26295238
Trigueros, José Antonio; Piñero, David P; Ismail, Mahmoud M
2016-01-01
AIM To define the financial and management conditions required to introduce a femtosecond laser system for cataract surgery in a clinic using a fuzzy logic approach. METHODS In the simulation performed in the current study, the costs associated to the acquisition and use of a commercially available femtosecond laser platform for cataract surgery (VICTUS, TECHNOLAS Perfect Vision GmbH, Bausch & Lomb, Munich, Germany) during a period of 5y were considered. A sensitivity analysis was performed considering such costs and the countable amortization of the system during this 5y period. Furthermore, a fuzzy logic analysis was used to obtain an estimation of the money income associated to each femtosecond laser-assisted cataract surgery (G). RESULTS According to the sensitivity analysis, the femtosecond laser system under evaluation can be profitable if 1400 cataract surgeries are performed per year and if each surgery can be invoiced more than $500. In contrast, the fuzzy logic analysis confirmed that the patient had to pay more per surgery, between $661.8 and $667.4 per surgery, without considering the cost of the intraocular lens (IOL). CONCLUSION A profitability of femtosecond laser systems for cataract surgery can be obtained after a detailed financial analysis, especially in those centers with large volumes of patients. The cost of the surgery for patients should be adapted to the real flow of patients with the ability of paying a reasonable range of cost. PMID:27500115
Fuzzy Logic-Based Guaranteed Lifetime Protocol for Real-Time Wireless Sensor Networks
Shah, Babar; Iqbal, Farkhund; Abbas, Ali; Kim, Ki-Il
2015-01-01
Few techniques for guaranteeing a network lifetime have been proposed despite its great impact on network management. Moreover, since the existing schemes are mostly dependent on the combination of disparate parameters, they do not provide additional services, such as real-time communications and balanced energy consumption among sensor nodes; thus, the adaptability problems remain unresolved among nodes in wireless sensor networks (WSNs). To solve these problems, we propose a novel fuzzy logic model to provide real-time communication in a guaranteed WSN lifetime. The proposed fuzzy logic controller accepts the input descriptors energy, time and velocity to determine each node’s role for the next duration and the next hop relay node for real-time packets. Through the simulation results, we verified that both the guaranteed network’s lifetime and real-time delivery are efficiently ensured by the new fuzzy logic model. In more detail, the above-mentioned two performance metrics are improved up to 8%, as compared to our previous work, and 14% compared to existing schemes, respectively. PMID:26295238
On-line fuzzy logic control of tube bending
NASA Astrophysics Data System (ADS)
Lieh, Junghsen; Li, Wei Jie
2005-11-01
This paper describes the simulation and on-line fuzzy logic control of tube bending. By combining elasticity and plasticity theories, a conventional model was developed. The results from simulation were compared with those obtained from testing. The experimental data reveal that there exists certain level of uncertainty and nonlinearity in tube bending, and its variation could be significant. To overcome this, a on-line fuzzy logic controller with self-tuning capabilities was designed. The advantages of this on-line system are (1) its computational requirement is simple in comparison with more algorithmic-based controllers, and (2) the system does not need prior knowledge of material characteristics. The device includes an AC motor, a servo controller, a forming mechanism, a 3D optical sensor, and a microprocessor. This automated bending machine adopts primary and secondary errors between the actual response and desired output to conduct on-line rule reasoning. Results from testing show that the spring back angle can be effectively compensated by the self- tuning fuzzy system in a real-time fashion.
Motion Control of the Soccer Robot Based on Fuzzy Logic
NASA Astrophysics Data System (ADS)
Coman, Daniela; Ionescu, Adela
2009-08-01
Robot soccer is a challenging platform for multi-agent research, involving topics such as real-time image processing and control, robot path planning, obstacle avoidance and machine learning. The conventional robot control consists of methods for path generation and path following. When a robot moves away the estimated path, it must return immediately, and while doing so, the obstacle avoidance behavior and the effectiveness of such a path are not guaranteed. So, motion control is a difficult task, especially in real time and high speed control. This paper describes the use of fuzzy logic control for the low level motion of a soccer robot. Firstly, the modelling of the soccer robot is presented. The soccer robot based on MiroSoT Small Size league is a differential-drive mobile robot with non-slipping and pure-rolling. Then, the design of fuzzy controller is describes. Finally, the computer simulations in MATLAB Simulink show that proposed fuzzy logic controller works well.
Fuzzy Logic Approaches to Multi-Objective Decision-Making in Aerospace Applications
NASA Technical Reports Server (NTRS)
Hardy, Terry L.
1994-01-01
Fuzzy logic allows for the quantitative representation of multi-objective decision-making problems which have vague or fuzzy objectives and parameters. As such, fuzzy logic approaches are well-suited to situations where alternatives must be assessed by using criteria that are subjective and of unequal importance. This paper presents an overview of fuzzy logic and provides sample applications from the aerospace industry. Applications include an evaluation of vendor proposals, an analysis of future space vehicle options, and the selection of a future space propulsion system. On the basis of the results provided in this study, fuzzy logic provides a unique perspective on the decision-making process, allowing the evaluator to assess the degree to which each option meets the evaluation criteria. Future decision-making should take full advantage of fuzzy logic methods to complement existing approaches in the selection of alternatives.
NASA Astrophysics Data System (ADS)
Platz, M.; Rapp, J.; Groessler, M.; Niehaus, E.; Babu, A.; Soman, B.
2014-11-01
A Spatial Decision Support System (SDSS) provides support for decision makers and should not be viewed as replacing human intelligence with machines. Therefore it is reasonable that decision makers are able to use a feature to analyze the provided spatial decision support in detail to crosscheck the digital support of the SDSS with their own expertise. Spatial decision support is based on risk and resource maps in a Geographic Information System (GIS) with relevant layers e.g. environmental, health and socio-economic data. Spatial fuzzy logic allows the representation of spatial properties with a value of truth in the range between 0 and 1. Decision makers can refer to the visualization of the spatial truth of single risk variables of a disease. Spatial fuzzy logic rules that support the allocation of limited resources according to risk can be evaluated with measure theory on topological spaces, which allows to visualize the applicability of this rules as well in a map. Our paper is based on the concept of a spatial fuzzy logic on topological spaces that contributes to the development of an adaptive Early Warning And Response System (EWARS) providing decision support for the current or future spatial distribution of a disease. It supports the decision maker in testing interventions based on available resources and apply risk mitigation strategies and provide guidance tailored to the geo-location of the user via mobile devices. The software component of the system would be based on open source software and the software developed during this project will also be in the open source domain, so that an open community can build on the results and tailor further work to regional or international requirements and constraints. A freely available EWARS Spatial Fuzzy Logic Demo was developed wich enables a user to visualize risk and resource maps based on individual data in several data formats.
Combustion control of municipal incinerators by fuzzy neural network logic
Chang, N.B.; Chang, Y.H.
1996-12-31
The successful operation of mass burn waterwall incinerators involves many uncertain factors. Not only the physical composition and chemical properties of the refuse but also the complexity of combustion mechanism would significantly influence the performance of waste treatment. Due to the rising concerns of dioxin/furan emissions from municipal incinerators, improved combustion control algorithms, such as fuzzy and its fusion control technologies, have gradually received attention in the scientific community. This paper describes a fuzzy and neural network control logic for the refuse combustion process in a mass burn waterwall incinerator. It is anticipated that this system can also be easily applied to several other types of municipal incinerators, such as modular, rotary kiln, RDF and fluidized bed incinerators, by slightly modified steps. Partial performance of this designed controller is tested by computer simulation using identified process model in this analysis. Process control could be sensitive especially for the control of toxic substance emissions, such as dioxin and furans.
A reinforcement learning-based architecture for fuzzy logic control
NASA Technical Reports Server (NTRS)
Berenji, Hamid R.
1992-01-01
This paper introduces a new method for learning to refine a rule-based fuzzy logic controller. A reinforcement learning technique is used in conjunction with a multilayer neural network model of a fuzzy controller. The approximate reasoning based intelligent control (ARIC) architecture proposed here learns by updating its prediction of the physical system's behavior and fine tunes a control knowledge base. Its theory is related to Sutton's temporal difference (TD) method. Because ARIC has the advantage of using the control knowledge of an experienced operator and fine tuning it through the process of learning, it learns faster than systems that train networks from scratch. The approach is applied to a cart-pole balancing system.
Fuzzy logic sliding mode control for command guidance law design.
Elhalwagy, Y Z; Tarbouchi, M
2004-04-01
Recently, the combination of sliding mode and fuzzy logic techniques has emerged as a promising methodology for dealing with nonlinear, uncertain, dynamical systems. In this paper, a sliding mode control algorithm combined with a fuzzy control scheme is developed for the trajectory control of a command guidance system. The acceleration command input is mathematically derived. The proposed controller is used to compensate for the influence of unmodeled dynamics and to alleviate chattering. Simulation results show that the proposed controller gives good system performance in the face of system parameters variation and external disturbances. In addition, they show the effectiveness of the proposed missile guidance law against different engagement scenarios where the results demonstrate better performance over the conventional sliding mode control. PMID:15098583
Application of fuzzy logic in multicomponent analysis by optodes.
Wollenweber, M; Polster, J; Becker, T; Schmidt, H L
1997-01-01
Fuzzy logic can be a useful tool for the determination of substrate concentrations applying optode arrays in combination with flow injection analysis, UV-VIS spectroscopy and kinetics. The transient diffuse reflectance spectra in the visible wavelength region from four optodes were evaluated to carry out the simultaneous determination of artificial mixtures of ampicillin and penicillin. The discrimination of the samples was achieved by changing the composition of the receptor gel and working pH. Different algorithms of pre-processing were applied on the data to reduce the spectral information to a few analytic-specific variables. These variables were used to develop the fuzzy model. After calibration the model was validated by an independent test data set. PMID:9451783
NASA Technical Reports Server (NTRS)
Starks, Scott; Abdel-Hafeez, Saleh; Usevitch, Bryan
1997-01-01
This paper discusses the implementation of a fuzzy logic system using an ASICs design approach. The approach is based upon combining the inherent advantages of symmetric triangular membership functions and fuzzy singleton sets to obtain a novel structure for fuzzy logic system application development. The resulting structure utilizes a fuzzy static RAM to store the rule-base and the end-points of the triangular membership functions. This provides advantages over other approaches in which all sampled values of membership functions for all universes must be stored. The fuzzy coprocessor structure implements the fuzzification and defuzzification processes through a two-stage parallel pipeline architecture which is capable of executing complex fuzzy computations in less than 0.55us with an accuracy of more than 95%, thus making it suitable for a wide range of applications. Using the approach presented in this paper, a fuzzy logic rule-base can be directly downloaded via a host processor to an onchip rule-base memory with a size of 64 words. The fuzzy coprocessor's design supports up to 49 rules for seven fuzzy membership functions associated with each of the chip's two input variables. This feature allows designers to create fuzzy logic systems without the need for additional on-board memory. Finally, the paper reports on simulation studies that were conducted for several adaptive filter applications using the least mean squared adaptive algorithm for adjusting the knowledge rule-base.
Adaptive defuzzification for fuzzy systems modeling
NASA Technical Reports Server (NTRS)
Yager, Ronald R.; Filev, Dimitar P.
1992-01-01
We propose a new parameterized method for the defuzzification process based on the simple M-SLIDE transformation. We develop a computationally efficient algorithm for learning the relevant parameter as well as providing a computationally simple scheme for doing the defuzzification step in the fuzzy logic controllers. The M-SLIDE method results in a particularly simple linear form of the algorithm for learning the parameter which can be used both off- and on-line.
An application of fuzzy logic to power generation control
Tarabishy, M.N.; Grudzinski, J.J.
1996-10-01
The high demand for more energy at lower prices, coupled with tighter safety and environmental regulations made it necessary for utility companies to provide reliable power more efficiently, and for that purpose new control methods are being utilized to meet those challenges. Fuzzy Logic Control (FLC) technology produces controllers that are more robust at lower development cost and time. These qualities give FLC advantage over conventional control technologies particularly in dealing with increasingly complex nonlinear systems. In this paper the authors examine some of the main applications of FLC in power systems and demonstrate it`s usefulness in the control of a gas turbine.
FUZZY LOGIC CONTROL OF ELECTRIC MOTORS AND MOTOR DRIVES: FEASIBILITY STUDY
The report gives results of a study (part 1) of fuzzy logic motor control (FLMC). The study included: 1) reviews of existing applications of fuzzy logic, of motor operation, and of motor control; 2) a description of motor control schemes that can utilize FLMC; 3) selection of a m...
Quantitative high resolution electron microscopy of III-V compounds: A fuzzy logic approach
NASA Astrophysics Data System (ADS)
Hillebrand, R.; Hofmeister, H.; Werner, P.; Gösele, U.
1995-09-01
In the study of interdiffusion phenomena in layered structures of III-V compounds by high resolution electron microscopy, contrast features in the micrographs can be correlated with the variation of the chemical composition of the crystals. For quantitative interpretation of the micrographs a fuzzy logic approach is adapted to extract chemical information. The linguistic variable ``similarity of images'' is derived from the standard deviation (SD) of their difference patterns, which proved to be an appropriate measure. The approach developed is used to analyze simulated contrast tableaus of GaAs/P (As/P variation) and experimental micrographs of Al/GaAs (Al/Ga variation).
Adaptive Neuro-fuzzy approach in friction identification
NASA Astrophysics Data System (ADS)
Zaiyad Muda @ Ismail, Muhammad
2016-05-01
Friction is known to affect the performance of motion control system, especially in terms of its accuracy. Therefore, a number of techniques or methods have been explored and implemented to alleviate the effects of friction. In this project, the Artificial Intelligent (AI) approach is used to model the friction which will be then used to compensate the friction. The Adaptive Neuro-Fuzzy Inference System (ANFIS) is chosen among several other AI methods because of its reliability and capabilities of solving complex computation. ANFIS is a hybrid AI-paradigm that combines the best features of neural network and fuzzy logic. This AI method (ANFIS) is effective for nonlinear system identification and compensation and thus, being used in this project.
Automated maneuver planning using a fuzzy logic algorithm
NASA Technical Reports Server (NTRS)
Conway, D.; Sperling, R.; Folta, D.; Richon, K.; Defazio, R.
1994-01-01
Spacecraft orbital control requires intensive interaction between the analyst and the system used to model the spacecraft trajectory. For orbits with right mission constraints and a large number of maneuvers, this interaction is difficult or expensive to accomplish in a timely manner. Some automation of maneuver planning can reduce these difficulties for maneuver-intensive missions. One approach to this automation is to use fuzzy logic in the control mechanism. Such a prototype system currently under development is discussed. The Tropical Rainfall Measurement Mission (TRMM) is one of several missions that could benefit from automated maneuver planning. TRMM is scheduled for launch in August 1997. The spacecraft is to be maintained in a 350-km circular orbit throughout the 3-year lifetime of the mission, with very small variations in this orbit allowed. Since solar maximum will occur as early as 1999, the solar activity during the TRMM mission will be increasing. The increasing solar activity will result in orbital maneuvers being performed as often as every other day. The results of automated maneuver planning for the TRMM mission will be presented to demonstrate the prototype of the fuzzy logic tool.
Estimating outcomes in newborn infants using fuzzy logic
Chaves, Luciano Eustáquio; Nascimento, Luiz Fernando C.
2014-01-01
OBJECTIVE: To build a linguistic model using the properties of fuzzy logic to estimate the risk of death of neonates admitted to a Neonatal Intensive Care Unit. METHODS: Computational model using fuzzy logic. The input variables of the model were birth weight, gestational age, 5th-minute Apgar score and inspired fraction of oxygen in newborn infants admitted to a Neonatal Intensive Care Unit of Taubaté, Southeast Brazil. The output variable was the risk of death, estimated as a percentage. Three membership functions related to birth weight, gestational age and 5th-minute Apgar score were built, as well as two functions related to the inspired fraction of oxygen; the risk presented five membership functions. The model was developed using the Mandani inference by means of Matlab(r) software. The model values were compared with those provided by experts and their performance was estimated by ROC curve. RESULTS: 100 newborns were included, and eight of them died. The model estimated an average possibility of death of 49.7±29.3%, and the possibility of hospital discharge was 24±17.5%. These values are different when compared by Student's t-test (p<0.001). The correlation test revealed r=0.80 and the performance of the model was 81.9%. CONCLUSIONS: This predictive, non-invasive and low cost model showed a good accuracy and can be applied in neonatal care, given the easiness of its use. PMID:25119746
Application of fuzzy logic in multipassive acoustic tracking
NASA Astrophysics Data System (ADS)
Ng, Gee W.
1999-07-01
In this paper, we introduce the application of fuzzy logic concepts to solve the time-delay problem in tracking moving target using passive acoustic sensors. Passive tracking which uses the direction of arrival or bearing of a target is a nontrivial task. The problem is made even more difficult to solve if the passive sensors measurement of bearing is based on acoustic signal only. This is because the acoustic signal introduce time-delay i.e. different senors spatially apart will receive the same target's acoustic signal at different time. The time-delay problem cannot be resolve easily partly because the amplitude of the acoustic signal strength cannot be modeled linearly; its behavior is nonlinear subjected to environmental conditions. To solve these problems we propose to apply the fuzzy logic concept, using information from sensors such as amplitude difference and time-stamp difference from different sensors. The defuzzified results provide one of the main factors for computing the correlation strength between different bearing tracks. The two tracks with the highest correlation strength are then used to determine the position of the target.
Fuzzy Logic Based Autonomous Parallel Parking System with Kalman Filtering
NASA Astrophysics Data System (ADS)
Panomruttanarug, Benjamas; Higuchi, Kohji
This paper presents an emulation of fuzzy logic control schemes for an autonomous parallel parking system in a backward maneuver. There are four infrared sensors sending the distance data to a microcontroller for generating an obstacle-free parking path. Two of them mounted on the front and rear wheels on the parking side are used as the inputs to the fuzzy rules to calculate a proper steering angle while backing. The other two attached to the front and rear ends serve for avoiding collision with other cars along the parking space. At the end of parking processes, the vehicle will be in line with other parked cars and positioned in the middle of the free space. Fuzzy rules are designed based upon a wall following process. Performance of the infrared sensors is improved using Kalman filtering. The design method needs extra information from ultrasonic sensors. Starting from modeling the ultrasonic sensor in 1-D state space forms, one makes use of the infrared sensor as a measurement to update the predicted values. Experimental results demonstrate the effectiveness of sensor improvement.
Fuzzy Adaptive Control for Intelligent Autonomous Space Exploration Problems
NASA Technical Reports Server (NTRS)
Esogbue, Augustine O.
1998-01-01
The principal objective of the research reported here is the re-design, analysis and optimization of our newly developed neural network fuzzy adaptive controller model for complex processes capable of learning fuzzy control rules using process data and improving its control through on-line adaption. The learned improvement is according to a performance objective function that provides evaluative feedback; this performance objective is broadly defined to meet long-range goals over time. Although fuzzy control had proven effective for complex, nonlinear, imprecisely-defined processes for which standard models and controls are either inefficient, impractical or cannot be derived, the state of the art prior to our work showed that procedures for deriving fuzzy control, however, were mostly ad hoc heuristics. The learning ability of neural networks was exploited to systematically derive fuzzy control and permit on-line adaption and in the process optimize control. The operation of neural networks integrates very naturally with fuzzy logic. The neural networks which were designed and tested using simulation software and simulated data, followed by realistic industrial data were reconfigured for application on several platforms as well as for the employment of improved algorithms. The statistical procedures of the learning process were investigated and evaluated with standard statistical procedures (such as ANOVA, graphical analysis of residuals, etc.). The computational advantage of dynamic programming-like methods of optimal control was used to permit on-line fuzzy adaptive control. Tests for the consistency, completeness and interaction of the control rules were applied. Comparisons to other methods and controllers were made so as to identify the major advantages of the resulting controller model. Several specific modifications and extensions were made to the original controller. Additional modifications and explorations have been proposed for further study. Some of
Simple fuzzy logic estimation of flow forecast uncertainty
NASA Astrophysics Data System (ADS)
Danhelka, Jan
2010-05-01
Fuzzy logic is recognized as useful tool to support for decision making under uncertainty. As such some methods for reservoir operation or real time flood management were developed. Maskey (2004) describes method of model uncertainty assessment based on qualitative expert judgement and its representation in fuzzy space. It is based on categorical judging of the quality and importance of selected model parameters (processes). The method was modified in order to reflect varying uncertainty of single model realization (forecast) with respect to inputting precipitation forecast (QPF). Two model uncertainty parameters were distinguish: 1) QPF, 2) model uncertainty due to concept and parameters. The approach was tested and applied for Černá river basin (127 km2) in southern Bohemia for the period from January 2008. Aqualog forecasting system (SAC-SMA implemented) is used for real time forecasting within the basin. It provides deterministic QPF based (NWP ALADIN) forecast with 48 h lead time. The aim of the study was to estimate the uncertainty of the forecast using simple fuzzy procedure. QPF uncertainty dominates the total uncertainty of hydrological forecast in condition of the Czech Republic. Therefore an evaluation of QPF performance was done for the basin. Based on detected quantiles of relative difference the fuzzy expression of QPF exceedance probability was done to represent the quality of QPF parameter. We further assumed that the importance of QPF parameter is proportional to its quality. Model uncertainty was qualitatively estimated to be moderate both in quality and importance. Than the fuzzy sum of both parameters was computed. The output is than fitted to deterministic flow forecast using the highest forecasted flow and its known reference in fuzzy space (determined according to QPF performance evaluation). The case study provided promising results in the meaning of Brier skill score (0.24) as well as in comparison of forecasted to expected distribution
Force control of a tri-layer conducting polymer actuator using optimized fuzzy logic control
NASA Astrophysics Data System (ADS)
Itik, Mehmet; Sabetghadam, Mohammadreza; Alici, Gursel
2014-12-01
Conducting polymers actuators (CPAs) are potential candidates for replacing conventional actuators in various fields, such as robotics and biomedical engineering, due to their advantageous properties, which includes their low cost, light weight, low actuation voltage and biocompatibility. As these actuators are very suitable for use in micro-nano manipulation and in injection devices in which the magnitude of the force applied to the target is of crucial importance, the force generated by CPAs needs to be accurately controlled. In this paper, a fuzzy logic (FL) controller with a Mamdani inference system is designed to control the blocking force of a trilayer CPA with polypyrrole electrodes, which operates in air. The particle swarm optimization (PSO) method is employed to optimize the controller’s membership function parameters and therefore enhance the performance of the FL controller. An adaptive neuro-fuzzy inference system model, which can capture the nonlinear dynamics of the actuator, is utilized in the optimization process. The optimized Mamdani FL controller is then implemented on the CPA experimentally, and its performance is compared with a non-optimized fuzzy controller as well as with those obtained from a conventional PID controller. The results presented indicate that the blocking force at the tip of the CPA can be effectively controlled by the optimized FL controller, which shows excellent transient and steady state characteristics but increases the control voltage compared to the non-optimized fuzzy controllers.
Qualitative information modeling: The role of fuzzy logic in project economic evaluations
Warnken, P.G.
1995-12-31
Conventional models rely on a precise mathematical formalism to express the quantitative essentials of the system being modeled. In contrast, decisionmakers in the real world employ cognitive skills to process information and arrive at decisions based on judgement and experience. Bridging the gap between the two analytic approaches -- that is, formulating intelligent models -- has met with very limited success using traditional computational methods. The difficulty stems from two problems. First, imprecision, which is the distinguishing feature of qualitative factors, is an information attribute that is not easily computable using the rules of traditional set theory and Boolean (bivalent) logic. Second, cognitive information processing is cumbersome using the numerical rule-based approaches common in today`s expert systems. Fuzzy models overcome these problems by employing new mathematical rules for expressing and processing knowledge. These rules are based on fuzzy logic. Fuzzy logic is the formal symbolic language used to represent linguistic terms and verbal rules for computational and modeling purposes. This language provides model builders with the means to incorporate subjective judgements, imprecise information, and human reasoning capabilities as part of a model`s framework. This paper outlines the concepts needed to understand fuzzy modeling systems. The key concepts discussed include fuzzy sets, fuzzy logical operators, linguistic variables, and verbal rules. A simple fuzzy economic rating model for project investments is presented to demonstrate the fuzzy modeling technique. Finally, the paper discusses the role of fuzzy logic in the economic modeling process.
Multi-objective decision-making under uncertainty: Fuzzy logic methods
NASA Technical Reports Server (NTRS)
Hardy, Terry L.
1995-01-01
Fuzzy logic allows for quantitative representation of vague or fuzzy objectives, and therefore is well-suited for multi-objective decision-making. This paper presents methods employing fuzzy logic concepts to assist in the decision-making process. In addition, this paper describes software developed at NASA Lewis Research Center for assisting in the decision-making process. Two diverse examples are used to illustrate the use of fuzzy logic in choosing an alternative among many options and objectives. One example is the selection of a lunar lander ascent propulsion system, and the other example is the selection of an aeration system for improving the water quality of the Cuyahoga River in Cleveland, Ohio. The fuzzy logic techniques provided here are powerful tools which complement existing approaches, and therefore should be considered in future decision-making activities.
A Modern Syllogistic Method in Intuitionistic Fuzzy Logic with Realistic Tautology
Rushdi, Ali Muhammad; Zarouan, Mohamed; Alshehri, Taleb Mansour; Rushdi, Muhammad Ali
2015-01-01
The Modern Syllogistic Method (MSM) of propositional logic ferrets out from a set of premises all that can be concluded from it in the most compact form. The MSM combines the premises into a single function equated to 1 and then produces the complete product of this function. Two fuzzy versions of MSM are developed in Ordinary Fuzzy Logic (OFL) and in Intuitionistic Fuzzy Logic (IFL) with these logics augmented by the concept of Realistic Fuzzy Tautology (RFT) which is a variable whose truth exceeds 0.5. The paper formally proves each of the steps needed in the conversion of the ordinary MSM into a fuzzy one. The proofs rely mainly on the successful replacement of logic 1 (or ordinary tautology) by an RFT. An improved version of Blake-Tison algorithm for generating the complete product of a logical function is also presented and shown to be applicable to both crisp and fuzzy versions of the MSM. The fuzzy MSM methodology is illustrated by three specific examples, which delineate differences with the crisp MSM, address the question of validity values of consequences, tackle the problem of inconsistency when it arises, and demonstrate the utility of the concept of Realistic Fuzzy Tautology. PMID:26380357
Robust observer-based adaptive fuzzy sliding mode controller
NASA Astrophysics Data System (ADS)
Oveisi, Atta; Nestorović, Tamara
2016-08-01
In this paper, a new observer-based adaptive fuzzy integral sliding mode controller is proposed based on the Lyapunov stability theorem. The plant is subjected to a square-integrable disturbance and is assumed to have mismatch uncertainties both in state- and input-matrices. Based on the classical sliding mode controller, the equivalent control effort is obtained to satisfy the sufficient requirement of sliding mode controller and then the control law is modified to guarantee the reachability of the system trajectory to the sliding manifold. In order to relax the norm-bounded constrains on the control law and solve the chattering problem of sliding mode controller, a fuzzy logic inference mechanism is combined with the controller. An adaptive law is then introduced to tune the parameters of the fuzzy system on-line. Finally, for evaluating the controller and the robust performance of the closed-loop system, the proposed regulator is implemented on a real-time mechanical vibrating system.
Observed-Based Adaptive Fuzzy Tracking Control for Switched Nonlinear Systems With Dead-Zone.
Tong, Shaocheng; Sui, Shuai; Li, Yongming
2015-12-01
In this paper, the problem of adaptive fuzzy output-feedback control is investigated for a class of uncertain switched nonlinear systems in strict-feedback form. The considered switched systems contain unknown nonlinearities, dead-zone, and immeasurable states. Fuzzy logic systems are utilized to approximate the unknown nonlinear functions, a switched fuzzy state observer is designed and thus the immeasurable states are obtained by it. By applying the adaptive backstepping design principle and the average dwell time method, an adaptive fuzzy output-feedback tracking control approach is developed. It is proved that the proposed control approach can guarantee that all the variables in the closed-loop system are bounded under a class of switching signals with average dwell time, and also that the system output can track a given reference signal as closely as possible. The simulation results are given to check the effectiveness of the proposed approach. PMID:25594991
WARP: Weight Associative Rule Processor. A dedicated VLSI fuzzy logic megacell
NASA Technical Reports Server (NTRS)
Pagni, A.; Poluzzi, R.; Rizzotto, G. G.
1992-01-01
During the last five years Fuzzy Logic has gained enormous popularity in the academic and industrial worlds. The success of this new methodology has led the microelectronics industry to create a new class of machines, called Fuzzy Machines, to overcome the limitations of traditional computing systems when utilized as Fuzzy Systems. This paper gives an overview of the methods by which Fuzzy Logic data structures are represented in the machines (each with its own advantages and inefficiencies). Next, the paper introduces WARP (Weight Associative Rule Processor) which is a dedicated VLSI megacell allowing the realization of a fuzzy controller suitable for a wide range of applications. WARP represents an innovative approach to VLSI Fuzzy controllers by utilizing different types of data structures for characterizing the membership functions during the various stages of the Fuzzy processing. WARP dedicated architecture has been designed in order to achieve high performance by exploiting the computational advantages offered by the different data representations.
Wastewater neutralization control based on fuzzy logic: Experimental results
Adroer, M.; Alsina, A.; Aumatell, J.; Poch, M.
1999-07-01
Many industrial wastes contain acidic or alkaline materials that require neutralization of previous discharge into receiving waters or to chemical and biological treatment plants. The control of the wastewater neutralization process is subjected to several difficulties, such as the highly nonlinear titration curve (with special sensitivity around neutrality), the unknown water composition, the variable buffering capacity of the system, and the changes in input loading. To deal with these problems, this study proposes a fixed fuzzy logic controller (FLC) structure coupled with a tuning factor. The versatility and robustness of this controller has been proved when faced with solutions of variable buffering capacity, with acids that cover a wide pK range and with switches between acids throughout the course of a test. Laboratory experiments and simulation runs using the proposed controller were successful in a wide operational range.
Forest fire autonomous decision system based on fuzzy logic
NASA Astrophysics Data System (ADS)
Lei, Z.; Lu, Jianhua
2010-11-01
The proposed system integrates GPS / pseudolite / IMU and thermal camera in order to autonomously process the graphs by identification, extraction, tracking of forest fire or hot spots. The airborne detection platform, the graph-based algorithms and the signal processing frame are analyzed detailed; especially the rules of the decision function are expressed in terms of fuzzy logic, which is an appropriate method to express imprecise knowledge. The membership function and weights of the rules are fixed through a supervised learning process. The perception system in this paper is based on a network of sensorial stations and central stations. The sensorial stations collect data including infrared and visual images and meteorological information. The central stations exchange data to perform distributed analysis. The experiment results show that working procedure of detection system is reasonable and can accurately output the detection alarm and the computation of infrared oscillations.
Forest fire autonomous decision system based on fuzzy logic
NASA Astrophysics Data System (ADS)
Lei, Z.; Lu, Jianhua
2009-09-01
The proposed system integrates GPS / pseudolite / IMU and thermal camera in order to autonomously process the graphs by identification, extraction, tracking of forest fire or hot spots. The airborne detection platform, the graph-based algorithms and the signal processing frame are analyzed detailed; especially the rules of the decision function are expressed in terms of fuzzy logic, which is an appropriate method to express imprecise knowledge. The membership function and weights of the rules are fixed through a supervised learning process. The perception system in this paper is based on a network of sensorial stations and central stations. The sensorial stations collect data including infrared and visual images and meteorological information. The central stations exchange data to perform distributed analysis. The experiment results show that working procedure of detection system is reasonable and can accurately output the detection alarm and the computation of infrared oscillations.
Controlling of grid connected photovoltaic lighting system with fuzzy logic
Saglam, Safak; Ekren, Nazmi; Erdal, Hasan
2010-02-15
In this study, DC electrical energy produced by photovoltaic panels is converted to AC electrical energy and an indoor area is illuminated using this energy. System is controlled by fuzzy logic algorithm controller designed with 16 rules. Energy is supplied from accumulator which is charged by photovoltaic panels if its energy would be sufficient otherwise it is supplied from grid. During the 1-week usage period at the semester time, 1.968 kWh energy is used from grid but designed system used 0.542 kWh energy from photovoltaic panels at the experiments. Energy saving is determined by calculations and measurements for one education year period (9 months) 70.848 kWh. (author)
Fuzzy Logic Based Rotor Health Index of Induction Motor
NASA Astrophysics Data System (ADS)
Misra, Rajul; Pahuja, G. L.
2015-10-01
This paper presents an experimental study on detection and diagnosis of broken rotor bars in Squirrel Cage Induction Motor (SQIM). The proposed scheme is based on Motor Current Signature Analysis (MCSA) which uses amplitude difference of supply frequency to upper and lower side bands. Initially traditional MCSA has been used for rotor fault detection. It provides rotor health index on full load conditions. However in real practice if a fault occurs motor can not run at full load. To overcome the issue of reduced load condition a Fuzzy Logic based MCSA has been designed, implemented, tested and compared with traditional MCSA. A simulation result shows that proposed scheme is not only capable of detecting the severity of rotor fault but also provides remarkable performance at reduced load conditions.
Fuzzy logic for identifying pigments studied by Raman spectroscopy.
Ramos, Pablo Manuel; Ferré, Joan; Ruisánchez, Itziar; Andrikopoulos, Konstantinos S
2004-07-01
Fuzzy logic and linguistic variables are used for the automatic interpretation of Raman spectra obtained from pigments found in cultural heritage art objects. Featured bands are extracted from a Raman spectrum of a reference pigment and the methodology for constructing the library is illustrated. An unknown spectrum is then interpreted automatically and a process for identifying the corresponding pigment is described. A reference library consisting of 32 pigments was built and the effectiveness of the algorithm was tested by the Raman spectroscopic analysis of 10 pigments that are known to have been extensively used in Byzantine hagiography. Binary mixtures of these pigments were also tested. The algorithm's level of identification was good even though extra peaks, noise, and background signals were encountered in the spectra. PMID:15282052
Virtual reality simulation of fuzzy-logic control during underwater dynamic positioning
NASA Astrophysics Data System (ADS)
Thekkedan, Midhin Das; Chin, Cheng Siong; Woo, Wai Lok
2015-03-01
In this paper, graphical-user-interface (GUI) software for simulation and fuzzy-logic control of a remotely operated vehicle (ROV) using MATLAB™ GUI Designing Environment is proposed. The proposed ROV's GUI platform allows the controller such as fuzzy-logic control systems design to be compared with other controllers such as proportional-integral-derivative (PID) and sliding-mode controller (SMC) systematically and interactively. External disturbance such as sea current can be added to improve the modelling in actual underwater environment. The simulated results showed the position responses of the fuzzy-logic control exhibit reasonable performance under the sea current disturbance.
Hiyama, Takashi; Miyazaki, Koushi; Satoh, Hironori
1996-06-01
A fuzzy logic excitation system has been proposed to enhance the overall stability of power systems. The proposed excitation system has two control loops. One is the voltage control loop which achieves the automatic voltage regulator (AVR) function, and the other is the damping control loop which gives the PSS function. Simple fuzzy logic control rules are applied to both loops. The input signal to the voltage control loop is the terminal voltage, and the input signal to the damping control loop is the real power output. Simulation studies show the advantages of the fuzzy logic excitation system.
A comprehensive approach using fuzzy logic to select fracture fluid systems
Xiong, H.; Davidson, B.; Holditch, S.A.; Saunders, B.
1997-01-01
This system, which consists of several fuzzy logic evaluators, can also be applied to similar problems associated with drilling, completing and working over wells. With formation information, the fuzzy logic system first determines base fluid, viscosifying method and energization method before choosing the 3--5 best combinations of possible fluids. The system then determines polymer type and loading, crosslinker, gas type if necessary, and other additives for the fluid systems. Also using fuzzy logic, this system checks the compatibility of the fluid and additives with formation fluids and composition.
A Fuzzy Logic Framework for Integrating Multiple Learned Models
Bobi Kai Den Hartog
1999-03-01
The Artificial Intelligence field of Integrating Multiple Learned Models (IMLM) explores ways to combine results from sets of trained programs. Aroclor Interpretation is an ill-conditioned problem in which trained programs must operate in scenarios outside their training ranges because it is intractable to train them completely. Consequently, they fail in ways related to the scenarios. We developed a general-purpose IMLM solution, the Combiner, and applied it to Aroclor Interpretation. The Combiner's first step, Scenario Identification (M), learns rules from very sparse, synthetic training data consisting of results from a suite of trained programs called Methods. S1 produces fuzzy belief weights for each scenario by approximately matching the rules. The Combiner's second step, Aroclor Presence Detection (AP), classifies each of three Aroclors as present or absent in a sample. The third step, Aroclor Quantification (AQ), produces quantitative values for the concentration of each Aroclor in a sample. AP and AQ use automatically learned empirical biases for each of the Methods in each scenario. Through fuzzy logic, AP and AQ combine scenario weights, automatically learned biases for each of the Methods in each scenario, and Methods' results to determine results for a sample.
Using fuzzy logic to enhance stereo matching in multiresolution images.
Medeiros, Marcos D; Gonçalves, Luiz Marcos G; Frery, Alejandro C
2010-01-01
Stereo matching is an open problem in computer vision, for which local features are extracted to identify corresponding points in pairs of images. The results are heavily dependent on the initial steps. We apply image decomposition in multiresolution levels, for reducing the search space, computational time, and errors. We propose a solution to the problem of how deep (coarse) should the stereo measures start, trading between error minimization and time consumption, by starting stereo calculation at varying resolution levels, for each pixel, according to fuzzy decisions. Our heuristic enhances the overall execution time since it only employs deeper resolution levels when strictly necessary. It also reduces errors because it measures similarity between windows with enough details. We also compare our algorithm with a very fast multi-resolution approach, and one based on fuzzy logic. Our algorithm performs faster and/or better than all those approaches, becoming, thus, a good candidate for robotic vision applications. We also discuss the system architecture that efficiently implements our solution. PMID:22205859
Using Fuzzy Logic to Enhance Stereo Matching in Multiresolution Images
Medeiros, Marcos D.; Gonçalves, Luiz Marcos G.; Frery, Alejandro C.
2010-01-01
Stereo matching is an open problem in Computer Vision, for which local features are extracted to identify corresponding points in pairs of images. The results are heavily dependent on the initial steps. We apply image decomposition in multiresolution levels, for reducing the search space, computational time, and errors. We propose a solution to the problem of how deep (coarse) should the stereo measures start, trading between error minimization and time consumption, by starting stereo calculation at varying resolution levels, for each pixel, according to fuzzy decisions. Our heuristic enhances the overall execution time since it only employs deeper resolution levels when strictly necessary. It also reduces errors because it measures similarity between windows with enough details. We also compare our algorithm with a very fast multi-resolution approach, and one based on fuzzy logic. Our algorithm performs faster and/or better than all those approaches, becoming, thus, a good candidate for robotic vision applications. We also discuss the system architecture that efficiently implements our solution. PMID:22205859
A fuzzy logic sliding mode controlled electronic differential for a direct wheel drive EV
NASA Astrophysics Data System (ADS)
Ozkop, Emre; Altas, Ismail H.; Okumus, H. Ibrahim; Sharaf, Adel M.
2015-11-01
In this study, a direct wheel drive electric vehicle based on an electronic differential system with a fuzzy logic sliding mode controller (FLSMC) is studied. The conventional sliding surface is modified using a fuzzy rule base to obtain fuzzy dynamic sliding surfaces by changing its slopes using the global error and its derivative in a fuzzy logic inference system. The controller is compared with proportional-integral-derivative (PID) and sliding mode controllers (SMCs), which are usually preferred to be used in industry. The proposed controller provides robustness and flexibility to direct wheel drive electric vehicles. The fuzzy logic sliding mode controller, electronic differential system and the overall electrical vehicle mechanism are modelled and digitally simulated by using the Matlab software. Simulation results show that the system with FLSMC has better efficiency and performance compared to those of PID and SMCs.
Preventive Maintenance Prioritization by Fuzzy Logic for Seamless Hydro Power Generation
NASA Astrophysics Data System (ADS)
Roy, P. K.; Adhikary, P.; Mazumdar, A.
2014-06-01
Preventive maintenance prioritization is one of the most important criteria for the electricity generation planners to minimize the down time and production costs. Break down of equipments increases costs and plant down time results in loss of business. This work focuses on prioritizing the preventive maintenance for seamless hydro power generation considering (24 × 7) client's power demand using fuzzy logic. The main task involves prioritizing the maintenance work considering constraints of varied power demand and hydro turbine plant breakdown. Fuzzy logic is used to optimize the preventive maintenance prioritization under the main constraints. Manual fuzzy arithmetic is used to develop the model and MATLAB Fuzzy Inference System editor used to validate the same. This novel fuzzy logic approach of preventive maintenance prioritizing for hydro power generation is absent in renewable power generation and industrial engineering literatures due to its assessment complexity.
Fuzzy logic feedback control for fed-batch enzymatic hydrolysis of lignocellulosic biomass.
Tai, Chao; Voltan, Diego S; Keshwani, Deepak R; Meyer, George E; Kuhar, Pankaj S
2016-06-01
A fuzzy logic feedback control system was developed for process monitoring and feeding control in fed-batch enzymatic hydrolysis of a lignocellulosic biomass, dilute acid-pretreated corn stover. Digested glucose from hydrolysis reaction was assigned as input while doser feeding time and speed of pretreated biomass were responses from fuzzy logic control system. Membership functions for these three variables and rule-base were created based on batch hydrolysis data. The system response was first tested in LabVIEW environment then the performance was evaluated through real-time hydrolysis reaction. The feeding operations were determined timely by fuzzy logic control system and efficient responses were shown to plateau phases during hydrolysis. Feeding of proper amount of cellulose and maintaining solids content was well balanced. Fuzzy logic proved to be a robust and effective online feeding control tool for fed-batch enzymatic hydrolysis. PMID:26915095
Predicting recycling behaviour: Comparison of a linear regression model and a fuzzy logic model.
Vesely, Stepan; Klöckner, Christian A; Dohnal, Mirko
2016-03-01
In this paper we demonstrate that fuzzy logic can provide a better tool for predicting recycling behaviour than the customarily used linear regression. To show this, we take a set of empirical data on recycling behaviour (N=664), which we randomly divide into two halves. The first half is used to estimate a linear regression model of recycling behaviour, and to develop a fuzzy logic model of recycling behaviour. As the first comparison, the fit of both models to the data included in estimation of the models (N=332) is evaluated. As the second comparison, predictive accuracy of both models for "new" cases (hold-out data not included in building the models, N=332) is assessed. In both cases, the fuzzy logic model significantly outperforms the regression model in terms of fit. To conclude, when accurate predictions of recycling and possibly other environmental behaviours are needed, fuzzy logic modelling seems to be a promising technique. PMID:26774211
Fuzzy logic and image processing techniques for the interpretation of seismic data
NASA Astrophysics Data System (ADS)
Orozco-del-Castillo, M. G.; Ortiz-Alemán, C.; Urrutia-Fucugauchi, J.; Rodríguez-Castellanos, A.
2011-06-01
Since interpretation of seismic data is usually a tedious and repetitive task, the ability to do so automatically or semi-automatically has become an important objective of recent research. We believe that the vagueness and uncertainty in the interpretation process makes fuzzy logic an appropriate tool to deal with seismic data. In this work we developed a semi-automated fuzzy inference system to detect the internal architecture of a mass transport complex (MTC) in seismic images. We propose that the observed characteristics of a MTC can be expressed as fuzzy if-then rules consisting of linguistic values associated with fuzzy membership functions. The constructions of the fuzzy inference system and various image processing techniques are presented. We conclude that this is a well-suited problem for fuzzy logic since the application of the proposed methodology yields a semi-automatically interpreted MTC which closely resembles the MTC from expert manual interpretation.
Use of fuzzy logic in lignite inventory estimation
Tutmez, B.; Dag, A.
2007-07-01
Seam thickness is one of the most important parameters for reserve estimation of a lignite deposit. This paper addresses a case study on fuzzy estimation of lignite seam thickness from spatial coordinates. From the relationships between input (Cartesian coordinates) and output (thickness) parameters, fuzzy clustering and a fuzzy rule-based inference system were designed. Data-driven fuzzy model parameters were derived from numerical values directly. In addition, estimations of the fuzzy model were compared with kriging estimations. It was concluded that the performance ofthe fuzzy model was more satisfactory. The results indicated that the fuzzy modeling approach is very reliable for the estimation of lignite reserves.
NASA Technical Reports Server (NTRS)
Richardson, Albert O.
1997-01-01
This research has investigated the use of fuzzy logic, via the Matlab Fuzzy Logic Tool Box, to design optimized controller systems. The engineering system for which the controller was designed and simulate was the container crane. The fuzzy logic algorithm that was investigated was the 'predictive control' algorithm. The plant dynamics of the container crane is representative of many important systems including robotic arm movements. The container crane that was investigated had a trolley motor and hoist motor. Total distance to be traveled by the trolley was 15 meters. The obstruction height was 5 meters. Crane height was 17.8 meters. Trolley mass was 7500 kilograms. Load mass was 6450 kilograms. Maximum trolley and rope velocities were 1.25 meters per sec. and 0.3 meters per sec., respectively. The fuzzy logic approach allowed the inclusion, in the controller model, of performance indices that are more effectively defined in linguistic terms. These include 'safety' and 'cargo swaying'. Two fuzzy inference systems were implemented using the Matlab simulation package, namely the Mamdani system (which relates fuzzy input variables to fuzzy output variables), and the Sugeno system (which relates fuzzy input variables to crisp output variable). It is found that the Sugeno FIS is better suited to including aspects of those plant dynamics whose mathematical relationships can be determined.
Sliding mode control of wind-induced vibrations using fuzzy sliding surface and gain adaptation
NASA Astrophysics Data System (ADS)
Thenozhi, Suresh; Yu, Wen
2016-04-01
Although fuzzy/adaptive sliding mode control can reduce the chattering problem in structural vibration control applications, they require the equivalent control and the upper bounds of the system uncertainties. In this paper, we used fuzzy logic to approximate the standard sliding surface and designed a dead-zone adaptive law for tuning the switching gain of the sliding mode control. The stability of the proposed controller is established using Lyapunov stability theory. A six-storey building prototype equipped with an active mass damper has been used to demonstrate the effectiveness of the proposed controller towards the wind-induced vibrations.
NASA Astrophysics Data System (ADS)
Derrouazin, A.; Aillerie, M.; Mekkakia-Maaza, N.; Charles, J. P.
2016-07-01
Several researches for management of diverse hybrid energy systems and many techniques have been proposed for robustness, savings and environmental purpose. In this work we aim to make a comparative study between two supervision and control techniques: fuzzy and classic logics to manage the hybrid energy system applied for typical housing fed by solar and wind power, with rack of batteries for storage. The system is assisted by the electric grid during energy drop moments. A hydrogen production device is integrated into the system to retrieve surplus energy production from renewable sources for the household purposes, intending the maximum exploitation of these sources over years. The models have been achieved and generated signals for electronic switches command of proposed both techniques are presented and discussed in this paper.
Fuzzy Adaptive Cubature Kalman Filter for Integrated Navigation Systems.
Tseng, Chien-Hao; Lin, Sheng-Fuu; Jwo, Dah-Jing
2016-01-01
This paper presents a sensor fusion method based on the combination of cubature Kalman filter (CKF) and fuzzy logic adaptive system (FLAS) for the integrated navigation systems, such as the GPS/INS (Global Positioning System/inertial navigation system) integration. The third-degree spherical-radial cubature rule applied in the CKF has been employed to avoid the numerically instability in the system model. In processing navigation integration, the performance of nonlinear filter based estimation of the position and velocity states may severely degrade caused by modeling errors due to dynamics uncertainties of the vehicle. In order to resolve the shortcoming for selecting the process noise covariance through personal experience or numerical simulation, a scheme called the fuzzy adaptive cubature Kalman filter (FACKF) is presented by introducing the FLAS to adjust the weighting factor of the process noise covariance matrix. The FLAS is incorporated into the CKF framework as a mechanism for timely implementing the tuning of process noise covariance matrix based on the information of degree of divergence (DOD) parameter. The proposed FACKF algorithm shows promising accuracy improvement as compared to the extended Kalman filter (EKF), unscented Kalman filter (UKF), and CKF approaches. PMID:27472336
So, W.C.; Tse, C.K.; Lee, Y.S.
1996-01-01
The design of a fuzzy logic controller for dc/dc converters is described in this paper. A brief review of fuzzy logic and its application to control is first given. Then, the derivation of a fuzzy control algorithm for regulating dc/dc converters is described in detail. The proposed fuzzy control is evaluated by computer simulations as well as experimental measurements of the closed-loop performance of simple dc/dc converters in respect of load regulation and line regulation.
Fuzzy-logic-based active vibration control of beams using piezoelectric patches
NASA Astrophysics Data System (ADS)
Sharma, Manu; Singh, S. P.; Sachdeva, B. L.
2003-10-01
The present work presents a fuzzy logic based controller with a compact rule base, for active vibration control of beams. The controller was implemented experimentally on a test beam and the results were found satisfactory. The test system consists of a cantilevered beam with two piezoelectric patches mounted near its root in collocated fashion. This piezo-beam system was modelled using Finite Element Method. To derive the equations of motion, Hamilton's principle was used. Electro-mechanical interaction of the piezoelectric patch with the beam was modelled using linear constitutive equations for piezoceramics, which relate strain and electric displacement to stress and electric field. The fuzzy logic controller is based on modal velocity of the beam. The basis for generating the fuzzy logic rule base of this controller is obtained from negative velocity feedback control. Modal velocity of the beam acts as an input to the fuzzy controller and actuation force is the output from the inference engine. Linear decay of vibratory amplitude is observed in case of fuzzy logic controller as opposed to logarithmic decay in case of negative velocity feedback control Present controller has just three rules. This is an important achievement because bulky fuzzy logic controllers for active vibration control require fast processors for real time implementation (Kwak and Sciulli and Mayhan and Washington).
Fuzzy logic path planning system for collision avoidance by an autonomous rover vehicle
NASA Technical Reports Server (NTRS)
Murphy, Michael G.
1993-01-01
The Space Exploration Initiative of the United States will make great demands upon NASA and its limited resources. One aspect of great importance will be providing for autonomous (unmanned) operation of vehicles and/or subsystems in space flight and surface exploration. An additional, complicating factor is that much of the need for autonomy of operation will take place under conditions of great uncertainty or ambiguity. Issues in developing an autonomous collision avoidance subsystem within a path planning system for application in a remote, hostile environment that does not lend itself well to remote manipulation by Earth-based telecommunications is addressed. A good focus is unmanned surface exploration of Mars. The uncertainties involved indicate that robust approaches such as fuzzy logic control are particularly appropriate. Four major issues addressed are (1) avoidance of a fuzzy moving obstacle; (2) backoff from a deadend in a static obstacle environment; (3) fusion of sensor data to detect obstacles; and (4) options for adaptive learning in a path planning system. Examples of the need for collision avoidance by an autonomous rover vehicle on the surface of Mars with a moving obstacle would be wind-blown debris, surface flow or anomalies due to subsurface disturbances, another vehicle, etc. The other issues of backoff, sensor fusion, and adaptive learning are important in the overall path planning system.
Flexible automated parameterization of hydrologic models using fuzzy logic
NASA Astrophysics Data System (ADS)
Samanta, Sudeep; Mackay, D. Scott
2003-01-01
Recent developments in model calibration suggest that information obtained from calibration is inherently uncertain in nature. Therefore identification of optimum parameter values is often highly nonspecific. A calibration framework using fuzzy logic is presented to deal with such uncertain information. An application of this technique to calibrate the streamflow of a hydrologic submodel embedded within an ecosystem simulation model demonstrates that objective estimates of parameter values and the range of model output associated with a failure to identify a unique solution can be obtained with suitable choices of objective functions. An iterative refinement in parameter estimates through a process of elimination was possible by incorporating multiple objective functions in calibration, thereby reducing the range of parameter values that capture the streamflow response. It is shown that objective function tradeoffs can lead to suboptimal solutions using the process of elimination without an automated procedure for reevaluation. Owing to its computational simplicity and flexibility this framework could be extended into a nonmonotonic system for automated parameter estimation.
Automated mango fruit assessment using fuzzy logic approach
NASA Astrophysics Data System (ADS)
Hasan, Suzanawati Abu; Kin, Teoh Yeong; Sauddin@Sa'duddin, Suraiya; Aziz, Azlan Abdul; Othman, Mahmod; Mansor, Ab Razak; Parnabas, Vincent
2014-06-01
In term of value and volume of production, mango is the third most important fruit product next to pineapple and banana. Accurate size assessment of mango fruits during harvesting is vital to ensure that they are classified to the grade accordingly. However, the current practice in mango industry is grading the mango fruit manually using human graders. This method is inconsistent, inefficient and labor intensive. In this project, a new method of automated mango size and grade assessment is developed using RGB fiber optic sensor and fuzzy logic approach. The calculation of maximum, minimum and mean values based on RGB fiber optic sensor and the decision making development using minimum entropy formulation to analyse the data and make the classification for the mango fruit. This proposed method is capable to differentiate three different grades of mango fruit automatically with 77.78% of overall accuracy compared to human graders sorting. This method was found to be helpful for the application in the current agricultural industry.
Mobile Health in Maternal and Newborn Care: Fuzzy Logic
Premji, Shahirose
2014-01-01
Whether mHealth improves maternal and newborn health outcomes remains uncertain as the response is perhaps not true or false but lies somewhere in between when considering unintended harmful consequences. Fuzzy logic, a mathematical approach to computing, extends the traditional binary “true or false” (one or zero) to exemplify this notion of partial truths that lies between completely true and false. The commentary explores health, socio-ecological and environmental consequences–positive, neutral or negative. Of particular significance is the negative influence of mHealth on maternal care-behaviors, which can increase stress reactivity and vulnerability to stress-induced illness across the lifespan of the child and establish pathways for intergenerational transmission of behaviors. A mHealth “fingerprinting” approach is essential to monitor psychosocial, economic, cultural, environmental and physical impact of mHealth intervention and make evidence-informed decision(s) about use of mHealth in maternal and newborn care. PMID:25003177
Fuzzy logic controller for the electric motor driving the astronomical telescope
NASA Astrophysics Data System (ADS)
Soliman, Hussein F.; Attia, Abdel-Fattah A.; Badr, Mohammed A.; Osman, Anas M.; Gamaleldin, Abdul A.
1998-05-01
The paper presents an application of fuzzy logic controller to regulate the DC motor driver system of astronomical telescope. The mathematical model of such a telescope is highly nonlinear coupled equations. However, the accuracy requirement in telescope system exceed those of other industrial plants. Fuzzy logic controller provides means to deal with nonlinear functions. A fuzzy logic controller (FLC) was designed to enhance the performance of a two-link model of astronomical telescope. The proposed FLC utilizes the position deviation for the desired value, and its rate of change to regulate the armature voltage of the DC motor drive of each link. The final action of FLC is equivalent to PD controller with a variable gain by using an expert look- up table. This work presents the derivation of the mathematical model of 14 inch Celestron telescope and computer simulation of its motion. The FLC contains two groups of fuzzy sets.
Rocket engine system reliability analyses using probabilistic and fuzzy logic techniques
NASA Technical Reports Server (NTRS)
Hardy, Terry L.; Rapp, Douglas C.
1994-01-01
The reliability of rocket engine systems was analyzed by using probabilistic and fuzzy logic techniques. Fault trees were developed for integrated modular engine (IME) and discrete engine systems, and then were used with the two techniques to quantify reliability. The IRRAS (Integrated Reliability and Risk Analysis System) computer code, developed for the U.S. Nuclear Regulatory Commission, was used for the probabilistic analyses, and FUZZYFTA (Fuzzy Fault Tree Analysis), a code developed at NASA Lewis Research Center, was used for the fuzzy logic analyses. Although both techniques provided estimates of the reliability of the IME and discrete systems, probabilistic techniques emphasized uncertainty resulting from randomness in the system whereas fuzzy logic techniques emphasized uncertainty resulting from vagueness in the system. Because uncertainty can have both random and vague components, both techniques were found to be useful tools in the analysis of rocket engine system reliability.
Fuzzy logic and neural networks in artificial intelligence and pattern recognition
NASA Astrophysics Data System (ADS)
Sanchez, Elie
1991-10-01
With the use of fuzzy logic techniques, neural computing can be integrated in symbolic reasoning to solve complex real world problems. In fact, artificial neural networks, expert systems, and fuzzy logic systems, in the context of approximate reasoning, share common features and techniques. A model of Fuzzy Connectionist Expert System is introduced, in which an artificial neural network is designed to construct the knowledge base of an expert system from, training examples (this model can also be used for specifications of rules in fuzzy logic control). Two types of weights are associated with the synaptic connections in an AND-OR structure: primary linguistic weights, interpreted as labels of fuzzy sets, and secondary numerical weights. Cell activation is computed through min-max fuzzy equations of the weights. Learning consists in finding the (numerical) weights and the network topology. This feedforward network is described and first illustrated in a biomedical application (medical diagnosis assistance from inflammatory-syndromes/proteins profiles). Then, it is shown how this methodology can be utilized for handwritten pattern recognition (characters play the role of diagnoses): in a fuzzy neuron describing a number for example, the linguistic weights represent fuzzy sets on cross-detecting lines and the numerical weights reflect the importance (or weakness) of connections between cross-detecting lines and characters.
Fuzzy logic based intelligent control of a variable speed cage machine wind generation system
Simoes, M.G.; Bose, B.K.; Spiegel, R.J.
1997-01-01
The paper describes a variable speed wind generation system where fuzzy logic principles are used for efficiency optimization and performance enhancement control. A squirrel cage induction generator feeds the power to a double-sided pulse width modulated converter system which pumps power to a utility grid or can supply to an autonomous system. The generation system has fuzzy logic control with vector control in the inner loops. A fuzzy controller tracks the generator speed with the wind velocity to extract the maximum power. A second fuzzy controller programs the machine flux for light load efficiency improvement, and a third fuzzy controller gives robust speed control against wind gust and turbine oscillatory torque. The complete control system has been developed, analyzed, and validated by simulation study. Performances have then been evaluated in detail.
Li, Yongming; Tong, Shaocheng; Li, Tieshan
2015-10-01
In this paper, a composite adaptive fuzzy output-feedback control approach is proposed for a class of single-input and single-output strict-feedback nonlinear systems with unmeasured states and input saturation. Fuzzy logic systems are utilized to approximate the unknown nonlinear functions, and a fuzzy state observer is designed to estimate the unmeasured states. By utilizing the designed fuzzy state observer, a serial-parallel estimation model is established. Based on adaptive backstepping dynamic surface control technique and utilizing the prediction error between the system states observer model and the serial-parallel estimation model, a new fuzzy controller with the composite parameters adaptive laws are developed. It is proved that all the signals of the closed-loop system are bounded and the system output can follow the given bounded reference signal. A numerical example and simulation comparisons with previous control methods are provided to show the effectiveness of the proposed approach. PMID:25438335
Design and Construction of Intelligent Traffic Light Control System Using Fuzzy Logic
NASA Astrophysics Data System (ADS)
Lin, Htin; Aye, Khin Muyar; Tun, Hla Myo; Theingi, Naing, Zaw Min
2008-10-01
Vehicular travel is increasing throughout the world, particularly in large urban areas. Therefore the need arises for simulation and optimizing traffic control algorithms to better accommodate this increasing demand. This paper presents a microcontroller simulation of intelligent traffic light controller using fuzzy logic that is used to change the traffic signal cycles adaptively at a two-way intersection. This paper is an attempt to design an intelligent traffic light control systems using microcontrollers such as PIC 16F84A and PIC 16F877A. And then traffic signal can be controlled depending upon the densities of cars behind green and red lights of the two-way intersection by using sensors and detectors circuits.
Development of Fuzzy Logic and Soft Computing Methodologies
NASA Technical Reports Server (NTRS)
Zadeh, L. A.; Yager, R.
1999-01-01
Our earlier research on computing with words (CW) has led to a new direction in fuzzy logic which points to a major enlargement of the role of natural languages in information processing, decision analysis and control. This direction is based on the methodology of computing with words and embodies a new theory which is referred to as the computational theory of perceptions (CTP). An important feature of this theory is that it can be added to any existing theory - especially to probability theory, decision analysis, and control - and enhance the ability of the theory to deal with real-world problems in which the decision-relevant information is a mixture of measurements and perceptions. The new direction is centered on an old concept - the concept of a perception - a concept which plays a central role in human cognition. The ability to reason with perceptions perceptions of time, distance, force, direction, shape, intent, likelihood, truth and other attributes of physical and mental objects - underlies the remarkable human capability to perform a wide variety of physical and mental tasks without any measurements and any computations. Everyday examples of such tasks are parking a car, driving in city traffic, cooking a meal, playing golf and summarizing a story. Perceptions are intrinsically imprecise. Imprecision of perceptions reflects the finite ability of sensory organs and ultimately, the brain, to resolve detail and store information. More concretely, perceptions are both fuzzy and granular, or, for short, f-granular. Perceptions are f-granular in the sense that: (a) the boundaries of perceived classes are not sharply defined; and (b) the elements of classes are grouped into granules, with a granule being a clump of elements drawn together by indistinguishability, similarity. proximity or functionality. F-granularity of perceptions may be viewed as a human way of achieving data compression. In large measure, scientific progress has been, and continues to be
Methodological development of fuzzy-logic controllers from multivariable linear control.
Tso, S K; Fung, Y H
1997-01-01
It is the function of the design of a fuzzy-logic controller to determine the universes of discourse of the antecedents and the consequents, number of membership labels, distribution and shape of membership functions, rule formulation, etc. Much of the information is usually extracted from expert knowledge, operator experience, or heuristic thinking. It is hence difficult to mechanize the first-stage design of fuzzy-logic controllers using linguistic labels whose performance is no worse than that of conventional multivariable linear controllers such as state-feedback controllers, PID controllers, etc. In this paper, an original systematic seven-step linear-to-fuzzy (LIN2FUZ) algorithm is proposed for generating the labels, universes of discourse of the antecedents and the consequents, and fuzzy rules of ;basically linear' fuzzy-logic controllers, given the reference design of available conventional multivariable linear controllers. The functionally equivalent fuzzy-logic controllers can thus provide the sound basis for the further development to achieve performance beyond the capability or the conventional controllers. The validity and effectiveness of the proposed LIN2FUZ algorithm are demonstrated by a four-input one-output inverted pendulum system. PMID:18255897
Fuzzy logic control of water level in advanced boiling water reactor
Lin, Chaung; Lee, Chi-Szu; Raghavan, R.; Fahrner, D.M.
1995-12-31
The feedwater control system in the Advanced Boiling Water Reactor (ABWR) is more challenging to design compared to other control systems in the plant, due to the possible change in level from void collapses and swells during transient events. A basic fuzzy logic controller is developed using a simplified ABWR mathematical model to demonstrate and compare the performance of this controller with a simplified conventional controller. To reduce the design effort, methods are developed to automatically tune the scaling factors and control rules. As a first step in developing the fuzzy controller, a fuzzy controller with a limited number of rules is developed to respond to normal plant transients such as setpoint changes of plant parameters and load demand changes. Various simulations for setpoint and load demand changes of plant performances were conducted to evaluate the modeled fuzzy logic design against the simplified ABWR model control system. The simulation results show that the performance of the fuzzy logic controller is comparable to that of the Proportional-Integral (PI) controller, However, the fuzzy logic controller produced shorter settling time for step setpoint changes compared to the simplified conventional controller.
Poisson's ratio prediction through dual stimulated fuzzy logic by ACE and GA-PS
NASA Astrophysics Data System (ADS)
Bagheripour, Parisa; Asoodeh, Mojtaba
2014-08-01
Poisson's ratio is one of the most important rock mechanical parameters having significance in both planning and post analysis of wellbore operations. Laboratory measurement of this parameter covers a broad range of costs, including sidewall sampling, preservation, and laboratory tests. This study proposes an improved strategy, called dual stimulated fuzzy logic by ACE and GA-PS for determining Poisson's ratio from conventional well log data in a rapid, precise, and cost-effective way. Firstly, conventional well log data are transformed to a higher correlated data space with Poisson's ratio through the use of alternative condition expectation (ACE) algorithm. This step simplifies the convoluted space of the problem and makes it easier to solve for fuzzy logic. Subsequently, transformed conventional well log data are fed to fuzzy logic model. To ensure that optimal fuzzy model is constructed, a hybrid genetic algorithm-pattern search (GA-PS) technique is employed for extracting fuzzy clusters (or rules). This step sets fuzzy logic to its optimal performance. The propounded strategy was successfully applied to data from carbonate reservoir rocks of an Iranian Oil Field. A comparison between present model and previous models showed superiority of current study.
Fuzzy-logic-based resource allocation for isolated and multiple platforms
NASA Astrophysics Data System (ADS)
Smith, James F., III; Rhyne, Robert D., II
2000-08-01
Modern naval battle forces generally include many different platforms each with its own sensors, radar, ESM, and communications. The sharing of information measured by local sensors via communication links across the battle group should allow for optimal or near optimal decision. The survival of the battle group or members of the group depends on the automatic real-time allocation of various resources. A fuzzy logic algorithm has been developed that automatically allocates electronic attack resources in real- time. The particular approach to fuzzy logic that is used is the fuzzy decision tree, a generalization of the standard artificial intelligence technique of decision trees. The controller must be able to make decisions based on rules provided by experts. The fuzzy logic approach allows the direct incorporation of expertise forming a fuzzy linguistic description, i.e. a formal representation of the system in terms of fuzzy if-then rules. Genetic algorithm based optimization is conducted to determine the form of the membership functions for the fuzzy root concepts. The isolated platform and multi platform resource manager models are discussed as well as the underlying multi-platform communication model. The resource manager is shown to exhibit excellent performance under many demanding scenarios.
Integration of Genetic Algorithms and Fuzzy Logic for Urban Growth Modeling
NASA Astrophysics Data System (ADS)
Foroutan, E.; Delavar, M. R.; Araabi, B. N.
2012-07-01
Urban growth phenomenon as a spatio-temporal continuous process is subject to spatial uncertainty. This inherent uncertainty cannot be fully addressed by the conventional methods based on the Boolean algebra. Fuzzy logic can be employed to overcome this limitation. Fuzzy logic preserves the continuity of dynamic urban growth spatially by choosing fuzzy membership functions, fuzzy rules and the fuzzification-defuzzification process. Fuzzy membership functions and fuzzy rule sets as the heart of fuzzy logic are rather subjective and dependent on the expert. However, due to lack of a definite method for determining the membership function parameters, certain optimization is needed to tune the parameters and improve the performance of the model. This paper integrates genetic algorithms and fuzzy logic as a genetic fuzzy system (GFS) for modeling dynamic urban growth. The proposed approach is applied for modeling urban growth in Tehran Metropolitan Area in Iran. Historical land use/cover data of Tehran Metropolitan Area extracted from the 1988 and 1999 Landsat ETM+ images are employed in order to simulate the urban growth. The extracted land use classes of the year 1988 include urban areas, street, vegetation areas, slope and elevation used as urban growth physical driving forces. Relative Operating Characteristic (ROC) curve as an fitness function has been used to evaluate the performance of the GFS algorithm. The optimum membership function parameter is applied for generating a suitability map for the urban growth. Comparing the suitability map and real land use map of 1999 gives the threshold value for the best suitability map which can simulate the land use map of 1999. The simulation outcomes in terms of kappa of 89.13% and overall map accuracy of 95.58% demonstrated the efficiency and reliability of the proposed model.
Fault classification by neural networks and fuzzy logic
Chwan-Hwa ``John`` Wu; Chihwen Li; Shih, H.; Alexion, C.C.; Ovick, N.L.; Murphy, J.H.
1995-01-25
A neural fuzzy-based and a backpropagation neural network-based fault classifier for a three-phase motor will be described in this paper. In order to acquire knowledge, the neural fuzzy classifier incorporates a learning technique to automatically generate membership functions for fuzzy rules, and the backpropagation algorithm is used to train the neural network model. Therefore, in this paper, the preprocessing of signals, fuzzy and neural models, training methods, implementations for real-time response and testing results will be discussed in detail. Furthermore, the generalization capabilities of the neural fuzzy- and backpropagation-based classifiers for waveforms with varying magnitudes, frequencies, noises and positions of spikes and chops in a cycle of a sine wave will be investigated, and the computation requirements needed to achieve real-time response for both fuzzy and neural methods will be compared. {copyright} 1995 {ital American} {ital Institute} {ital of} {ital Physics}
Synthesis of nonlinear control strategies from fuzzy logic control algorithms
NASA Technical Reports Server (NTRS)
Langari, Reza
1993-01-01
Fuzzy control has been recognized as an alternative to conventional control techniques in situations where the plant model is not sufficiently well known to warrant the application of conventional control techniques. Precisely what fuzzy control does and how it does what it does is not quite clear, however. This important issue is discussed and in particular it is shown how a given fuzzy control scheme can resolve into a nonlinear control law and that in those situations the success of fuzzy control hinges on its ability to compensate for nonlinearities in plant dynamics.
Gentili, Pier Luigi
2011-12-01
1,3-Dihydro-1,3,3-trimethyl-8'-nitro-spiro[2H-indole-2,3'-[3H]naphth[2,1-b][1,4]oxazine] (SpO) is a photochromic, acidichromic and metallochromic compound. Its chromogenic properties are characterized in acetonitrile, at room temperature. They are exploited to process both boolean and Fuzzy logic. By using HClO(4), AlCl(3) and Cu(ClO(4))(2) as chemical inputs, UV radiation as power supply, and the absorbance at specific wavelengths in the visible as optical output, SpO results in a five-states molecular switch whereby some complex boolean logic circuits are implemented. If the chemical inputs are varied in an analog manner, the solution of SpO assumes an infinite number of colours. Therefore, by choosing the RGB colour coordinates as optical outputs, the fundamental operators of the "infinite-valued" Fuzzy logic are implemented. Particularly, two Fuzzy logic systems are built upon a new defuzzification procedure imitating the way humans perceive colours. PMID:21997229
A fuzzy logic approach to modeling the underground economy in Taiwan
NASA Astrophysics Data System (ADS)
Yu, Tiffany Hui-Kuang; Wang, David Han-Min; Chen, Su-Jane
2006-04-01
The size of the ‘underground economy’ (UE) is valuable information in the formulation of macroeconomic and fiscal policy. This study applies fuzzy set theory and fuzzy logic to model Taiwan's UE over the period from 1960 to 2003. Two major factors affecting the size of the UE, the effective tax rate and the degree of government regulation, are used. The size of Taiwan's UE is scaled and compared with those of other models. Although our approach yields different estimates, similar patterns and leading are exhibited throughout the period. The advantage of applying fuzzy logic is twofold. First, it can avoid the complex calculations in conventional econometric models. Second, fuzzy rules with linguistic terms are easy for human to understand.